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1. SUMMARY
Ochre deposits from sites in England and Wales varied widely in their
composition, their appearance, their rate of formation and where they

occurred.

It was demonstrated that chemical oxidation could account for the
precipitation of iron from drainage water. In sterile samples of
drainage water from ochreous sites 80% of the total iroh in solution
was oxidized within 48 hours. It was also shown that autocatalysis of
ferrous iron oxidation by ferric precipitates could occur in drainage

water.

Filamentous bacteria were observed by light microscopy in most samples and

were assigned to the genus Leptothrix. Gallionella spp were observed in some

deposits but their distribution was not widespread. Sphaerotilus spp
were not found by light microscopy or isolated in artificial media. The

chemolithotroph T.ferrooxidans was found in acidic ochre samples (pH<4.0)

and in samples from drainage water of near neutral pH sﬁggesting that it

can survive in microenvironments of low pH, contributing to ochre

formation over a wide range of drainage water pH. Heterotrophic bacteria
capable of growing in artificial media of low pH were isolated, primarily
from acidic samples, and the results suggested that they were polysacchlarmride
producing. Complex degrading heterotrophic bacteria were also isolated from

ochre using a ferric ammonium citrate medium.

Some deposits, on the basis of chemistry and microbiology, could be
described as either pyritic or filamentous ochre. However, the majority
of samples fell between these extremes and had various combinations of

filamentous bacteria, Thiobacilli and heterotrophic organisms.



A marine antifouling paint containing copper was used £o control the
growth of shewhed.filahentous bacteria in drainage water and other
heterotrophic bacteria in artificial media. Since ochre results from
the interaction of many factors, chemical and microbial, the use of
copper applied as an antifouling paint or incorporated into drainage
pipes. must be proved effective and economic in relation to ochre

prevention in agricultural drainage systems.



2. LITERATURE REVIEW

2.1 INTRODUCTION

Field drainage can be defined as the removal from agricultural land of
surplus water which might otherwise restrict crop growth (Hudson, 1975).
In 1977 the Ministry of Agriculture, Fisheries and Food (MAFF) estimated
that for over a half of the agricultural land of England and Wales, field
drainage was a fundamental necessity for efficient farming. A national
survey by MAFF (1977) showed that agricultural production on approximately
three million hectares of land was limited by the absence of efficient
drainage, while almost another three million hectares depended upon the
.maintenance of existing drainage systems. Similarly, in many parts of
Europe dréinage is an urgent priority if production is to be efficient

(Eddowes, 1976).

Poor drainage causes standing water in fields, increased susceptibility
to poaching by livestock, and risk of wheel slip, rutting and subsequent
soil structure damage from ﬁéchinery. Poor drainage has a marked effect
on crop yields through short growing seasons; poor germination and
development, stunted root growth, and poor fertilizer response. An
increased tendency for weeds, or poor indigenous species, to develop and
plant diseases to flourish is also characteristic of wet areas. Animal
performance can be affected, not only by poor grass yields and sward
quality, but also by problems such as liver fluke, foot-rot and red water

which are associated with wet land.

The remedy of these problems by field drainage can be very beneficial.
Not only can yields and animal performance be improved but often drainage
allows a change in farming systems (Trafford 1977). However, any
improvements resulting from drainage shouid be evaluated in economic
terms. It has been shown that drainage can be economically viable and
this is frequently substantiated by farmers' experiences (Hunter and

Trafford, 1979; Trafford, 1977; MAFF, 1973; Morris and Calvert, 1976).



With any investment, a certain time period is required for the initial
expenditure to be repaid. Thus the economic viability of any dréinage
scheme depends upon the drainage system maintaining its efficiency
throughbut the repayment period. Trafford (1977) calculated the time
needed to repay a loan for drainage. The experiment involved four basic
treatments including pipes, subsoiling and moling. The results, given in
Table 2.1 show that the repayment period ranged from about three to twelve
years. Hunter and Trafford (1979) demonstrated that grant aid was a very

important factor governing economic return.

TABLE 2.1 : THE NUMBER OF YEARS REQUIRED TO PAY BACK A LOAN FOR

DRAINAGE WORK WITH RESPECT TO TREATMENT

(from Trafford, 1977)

TREATMENT: - COST AFTER GRANT NUMBER OF YEARS
£/ha TO PAY LOAN BACK

Pipes only at 15 m 154 12.0

spacing

Pipes at 60m spacing 103 75

+ subsoiling

Pipes at 60m spacing 103 3¢5

+ moling

These considerations reveal the importance of factors that are likely to
effect the efficiency of any drainage system, especially in the repayment
period. A reduction in efficiency reduces the benefits of drainage and
lengthens the repayment period thus affecting the economic viability of
the scheme. Trafford et al (1973) noted that, in the U.K., drainage is
only attempted where experience shows that the system is likely to have
a life of 5 years or more. They also found that where drain blocking was
so severe as to cause drain failure in 6 months to 2 years it was usually

uneconomic to attempt drainage.
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The efficiency of a drainage system can be reduced by many factors.
Incorrect grading, poor design or drain layout, poor overall schéme

(i.e. the use or not of secondary treatments), the use or non-use of
permeable backfill, and installation when climatic and soil conditions are
not correct are all examples of faults that can arise due to the way in

which the drains have been installed.

The efficiency of a "correctly laid and designed" system can also be
reduced. The blockage of drainage ditches by soil, silt, aquatic weeds

and rubbish is a common but easily cured problem (Nicholson, 1953;

Blake, 1979). Similarily the accumulation of silt within drain lines can

be a serious obstruction. Drain blockage by siltation results from the
accumulation of mineral soil particles. The most easily mobilised particles
are those in the fine sand range (5Qym - 15me) which can enter the

drainage system via the gaps between clay tiles or through the slats and

perforations of plastic pipes (Nicholson, 1953; Trafford et at, 1974;

Grass et al, 1976).

The roots of trees and agricultural crops have also been identified as

potential causes of drain failure. Roots can accumulate in drain lines
partly or completely blocking them (Nicholson, 1953; Armstrong, 1976).
Hudson et al (1962) included the entry of animals into drain pipes as a
cause of blockage but Nolte (1980) noted that tiles in Williams County,

Ohio, had been blocked by animals only five times in twenty years.

In some areas drains can be blocked by deposits of gypsum (calcium sulphate)
or calcium carbonate (Grass et al, 19764 Grass and Mackenzie, 1972). 1In
1849 Portman et al described a hard calcareous field drain deposit
containing 86% calcium carbonate. Black deposits of manganese may also
form in drains by chemical or microbial oxidation of manganese in ground
water (Meek et al, 1968; Mackenzie, 1962; Grass et al, 1973; Grass and

Mackenzie, 1972; Streutker, 1977; Bloomfield, 1967).

11



Other deposits that can be encountered in field drains, ditches and drip
irrigation systems include those based on iron sulphide. Iron sﬁlphide
accumulates as a black sludge and is often seen beneath iron ochre in open
ditches (Bloomfield and Coulter, 1973). It has been postulated that the
iron sulphide sludges result from bacterial reduction of sulphates. The
sulphides produced.combine with ferrous ions under suitable reducing
conditions to form colloidal ferrous sulphide (Ford et al, 1970; Ford, 1973).
According to Bloomfield and Coulter (1973) sulphate is readily reduced

under anaerobic conditions at pH values of 5.0 and above. However, Van Beek
et al (1982) were uncertain about the role of sulphate reducing bacteria.
They found high numbers of these organisms in wells where iron sulphide
clogging was evident but were unclear as to whether the bacteria were the

cause or result of well clogging.

White or almost colourless sulphur slimes are sometimes associated with
the iron sulphide deposits (Spencer et al, 1963). The sulphur slimes have
been attributed to the partial oxidation of hydrogen sulphide by bacteria
(Ford, 1969; Ford and Tucker, 1974). No evidence had been found by Ford
(1969) to show that sulphur slimes present a serious problem in tiles and
ditches. However, the blockage of drip irrigation filters by sulphur
slimes has been reported (Ford, 1976; Ford and Tucker, 1974, 1975). The

bacteria Thiothrix nivea and Beggiatoa spp have been associated with these

deposits (Ford and Tucker, 1975; Ford, 1977).

In particular situations other deposits can effectively block a drainage

system such as the gelatinous fungal material found by Johnson and Kelso

(1980).

It should be noted that drain blockage is complicated further by the
simultaneous occurrence of the various drain clogging agents. For example, '
silt can arise in conjunction with other mineral deposits, organic

deposits, and roots, and combinations of many of the latter can also be

found. 12



2.2 THE NATURE OF TRON OCHRE

Ochre is a general name used to deécribe iron based materials blécking
agricultural field drains and ditches (Thorburn and Trafford, 1976;
Thorburn, 1977). Such deposits were described in the nineteenth century

by Mangon (Denison, 1856), Mitchell (1894) and Denton (1883). However,

the use of ochre aé a pigment was discussed by Pliny in the first century
A.D. and prehistoric man used naturally occurring iron deposits in some cave

paintings (Kuhn, 19553 Gardner, 1936).

Ochre has been found in drain lines, in the joints and slots of clay and
plastic pipes respectively (Grass et al, 1973; Ivarson and Sojak, 1978),
in permeable backfill and filter material (Ford, 1969; Field Drainage
Experimental Unit (FDEU), 1975; Thorburn, 1977; Dennis and Wickens, 1978;
Ivarson and Sojak, 1978), and also within and on the sides of open ditches

(Ineschow and Mackenthun, 1952).

Although the deposition of ochre is a widespread problem (Alcock, 1973;
Grass, 1969) it is not uniformly ' severe and may only be serious enough to
cause premature failure of a drainage system in localized areas (Trafford
et al, 1973). Alcock (1973) noted that the problem is viewed differently
in different parts of the U.K. For example, he found that an'ochre problem
site! in Yorkshire may be regarded as a 'serious problem site' in

Cambridgeshire.

Grass and Mackenzie (1972) found that the time taken for ochre to develop
varied from a few months to 35 years. This variability is reflected in the
literature where the times recorded range from several months (Alcock, 1973;
Ford, 1969), through 2 or 3 years (Ivarson and Sojak, 1978; FDEU, 1975) to
5 years or more (Meek et al, 1968). Svobodova (1973, 1977) developed a
method for calculating the probable time required for tile clogging by iron
compounds. She calculated, for example, that for a given drainage system

the gaps between tiles would become blocked in 3 months if the soil water

13



contained 5 mg Fe/l. If the soil water contained 3 mg Fe/l then the gaps
between tiles would become blocked in 46 years. Kuntze (1982)
distingﬁished between temporary (autochthanous) and permsnent
(allochthanous) clogging. In the former ochre results from the oxidation
of iron derived from the soil and will be produced until the iron content
of the soil is exhausted (Thorburn and Trafford, 1976; Thorburn, 1977).
The time interval from initial drainage té complete iron oxidation depends
on the amount of iron originally present, the physical and chemical nature
of the deposits, the degree of soil aeration and the equilibrium pH reached
around the iron deposits. After a 5starting up! period immediately after
drainage, reaction rates will be at a maximum, gradually declining as the

iron deposits are depleted.

In other areas the deposition of iron can continue for a long time and in
some cases not diminish at all. This yields a permanent problem according
to Kuntze's classification. Such areas would be characterized by an inflow

of water, containing iron, from an external source (Hamijer and Wolf, 1965;

Linder, 1977).

2.2.1 Types of ochre

" Ochre is often classified into two types, namely filamentous and pyritic
(Thorburn and Trafford, 1976). Both types are associated with a number of

bacteria which are discussed in sections 2.3 and 2.4.

Filamentous ochre

Filamentous ochre has been described in various ways. It is usually
gelatinous and "rag-like", Ivarson and Sojak (1978) compared it to a
mare's tail and the present author heard a farmer referring to this form

of ochre as a "rope" lengths of which could be pulled from a drain line.

14



Filamentous ochre normally occurs at near neutral pH but values ranging
from 4.0 to 8.3 have been recorded (Bloomfield, 1967; Ivarson and Sojak,

1978; Ford and Tucker, 1975).

This type of ochre is commonly found in wet, peaty soils (Trafford et al,
1973; Ivarson and Sojak, 1978; Ford and Bewille, 1970). Usually these
solls have small quantities of iron sulphides as compared to soils where
pyritic ochre is found (Thormburn and Trafford, 1976). Ochre often forms
at the boundary between aerobic and'a;aerobic zones. At such sites ferrous

ions in solution are oxidized and precipitated as ground water passes from

one zone to the other (Bloomfield, 1967).

Pyritic ochre

This type of ochre is found as a crust, or hard deposit under strongly acid
conditions. Under more moderate conditions softer gels and slurries are
encountered. Pyritic ochre is associated with relatively large quantities
(+ 2%) of pyrite, FeS,, and similar sulphides initially present in.the soil
(Thorburn and Trafford, 1976). Pyrite is oxidized when the soil is drained
producing extreme acidites in the soil and drainage water'(ﬁloomfield, 1972
Trafford et al, 1973). Bloomfield (1967) found pyritic ochre where the
drainage water had a pH of 3.2 and contained 145 mg soﬁf per 100 ml. This
can be compared with the 2 - 11 mg soﬁ“ per 100 ml found by Bloomfield at

filamentous ochre sites (Bloomfield, 1967).

2.2.2 The composition of ochre

The composition of ochre is highly variable (Denison,1856L For example,

Grass et al (1973) discovered that the iron and menganese content of

filamentous ochre varied in the range 35-61% and O-14% respectively.

Iron is the most important component of the ash of ochre samples with
Smalle

aluminium also forming alfraction (Puustjarwi and Juusela, 1952;

Petersen, 1966; Johnson, 1979; Thorburn, 1977; Spencer et al, 1963).

15



The iron of ochre samples is generally in the form of amorphous ferric
oxides and hydroxides (Ivarson and Sojak, 1978; Fischer and Otfaw, 1972).
According to Schwertmannand Taylor (1977),the iron mineral ferrihydrite
has been found in particular environments associated with sites such as
drainage ditches and small, slow running water courses. These authors
noted that this mineral has been described incorrectly in the past as
amorphous ferric hydroxide. Given sufficient time, iron deposits can
form crystalline compoun&s such as goethite (Halbach and Ujma, 1978).
However, the crystallization of iron deposits in field drains is inhibited
by the low concentration of ferrous iron and by the presence of adsorbed
ions and organic matter (Johnson and Kelso, 1980; Schwertman and Fischer,

1973).

Spencer et al (1963) noted that a large proportion of filamentous ochre
was composed of organic matter. An analysis of filamentous ochre by Ford
(1973) showed that the organic matter content ranged from 199 to 51%.

Ford (1979 also pinpointed geographical differences in the organic matter
contents of ochre; in Florida the carbon content of dried ochre was 20%

as compared to under 4% in Southern California.

In addition to organic matter, iron and aluminium, other materials are
also present forming the bulk of ochre deposits. These include clays,
fine sand, vegetation detritus, compounds of manganese, calcium, magnesium
etc, as well as bacterial fibres, and ofher organic material of microbial

origin (Thorburn, 1977).

A noteworthy feature of iron ochre, in the field, is its very high water

content (Schwertmarland Fischer, 1973; Dennis and Wickens, 1977).

2.3 THE MICROBIOLOGY OF FILAMENTOUS OCHRE

The association between bacteria and ochre is often traced back to the work
d
of Winogyasky (1888) who reported the presence of an iron oxidizing

bacterium in spring water. The microbial origin of ochre is also evident

16



in the writings of Pliny who described ochre as a "'slime'.

Subsequently numerous authors have found bacteria in filamentous ochre
and have associated them with its formation. The most commonly reported

genera are Gallionella, Sphaerotilus,Leptothrix, Crenothrix, Cladothrix,

and Thiothrix (Thorburn and Trafford, 1976; Trafford et al, 1973;
Spencer et al, 1963; Ford, 1969; Ford and Beville; 1970; Ford and Tucker,

1975; Ford, 1979 A and B; Ford, 1977; Ivarson and Sojak, 1978).

2.3.1 THE FILAMENTOUS BACTERIA

2e3elel Definition and history

Filamentous bacteria can be defined as organisms composed of chains or

filaments of cells within a thin organic sheath. ' Iron and manganese may
be deposited on the sheath (Pringsheim, 1949; Farqubar and Boyle, 1971).
The most commonly studied filamentous bacteria are those belonging fo the

Sphaerotilus - Leptothrix group but other organisms, including Streptothrix,

Lieskeella, Phragmidiothrix, Crenothrix and Clonothrix, can also show

filamentous growth in sheaths. It should be noted that organisms such as

Bacillus spp, Beggiatoa sEE,Vitregscillaspp and?hiothrix Spp can also

form filaments or chains of cells but without a sheath (Farquhar and Boyle,

1971; Godhino-Orlandi, 1980)

These bacteria can occur in a wide range of habitats. They have been
found in streams and water supply pipes where the concentration of dissolved
nutrients is low and also in polluted rivers and streams and in sewage

treatment plants (Fenchel and Blackburn, 1979).

The early work on the filamentous bacteria was discussed by Pringsheim

(1949). Sphaerotilus natans was first discovered by Kutzing in 1833 and

Leptothrix discophorus by Kutzing in 1843. The latter produced a red

aqueous deposit containing iron. Cohn (1870) discovered an iron bacterium

Crenothrix polyspora and in 1875 described Cladothrix dichotoma. In 1888

17



Winogradsky reported the results of cultural experiments and suggested that
Leptothrix could derive energy from the oxidation of ferrous ioné. Molisch
(1892, 1910) opposed this view on the basis that Leptothrix could thrive
without added iron in the growth medium used. Other authors, up to 1949,
agreed with either Winogradsky or Molisch regarding the relationship
between the filamentous bacteria and iron. This question is discussed in

section 2.3.1.6.

2.%.1.2 Taxonomy

Many of the sheathed filamentous bacteria have not been isolatedvin pure
culture and therefore descriptions of them are based on observations in the
natural environment. This has led to much confusion concerning the
classification of these bacteria,since it is known that their appearance
can vary considerably with environmental conditions (Phaup, 1968;

Eikelboom, 1975). Thus some of the different genera may only represent
different growth forms in certain environments (Fenchel and Blackburn, 1979;

Mulder and Van Veen, 1963).

Another problem is that organisms isolated in the laboratory can be subject
to changes and mutations with consequent loss of morphological and
physiological features. For example, they can loose the capacity to
synthesize a sheath or to oxidize manganese (Van Veen et al, 1978;

Farquhar and Boyle, 1971; Phaup, 1968; - Stokes, 1954). The media used to
isolate the filamentous bacteria can also affect their growth form.

Van Veen et al (1978) noted that non filamentous colonies of Sinatans were

encouraged by media high in sugars and especially peptone.

The taxonomy of the filamentous bacteria is summarized in Figure 2.1
which is abstracted from Bergey's Manual. Attention is also drawn to the

detailed key produced by Godhino-Orlandi (1980).

18



Figure 2.1 : THE SHEATHED BACTERIA

From Bergey's Manual 8th edition.
(Buchanan and Gibbons, 1974)
I Single cells, motile by means of a rolar flagellum

or subpolar flagella.

A. Sheath rarely encrusted with iron and not
encrusted with manganese oxides

Sphaerotilus

B. Sheath encrusted with iron or manganese

oxides

LeEtothrix

IT Single cells not motile by flagella

A. Sheaths not attached
1. Sheaths not encrusted with metal
oxides

Streptothrix

2. Sheaths may be encrusted with metal
oxides
Lieskeella
B. Sheaths attached
1. Sheath not encrusted with metal oxides

Phragmidiothrix

2. Sheath encrusted with metal oxides

a., filaments may be swollen at
tip Crenothrix

b. filaments taper at
tip Clonothrix
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The main area of dispute concerning taxomony is within the Sphaerotilus-

Leptothrix group. Pringsheim (1949) bvelieved that Leptothrix ochracea

and Cladothrix were modificationé or "forms" of S.natans. Cladothrix was

described as a form characterized by false branching and L.ochracea as an
older growth form of S.natans consisting of yellowish tubes containing only

a few 1living cells. The synonymity of Cladothrix and Sphaerotilus is

generally accepted. Cladothrix dichotoma is a variant of S.natans grown

under unfavourable conditions where the tendency for false branching is
greater (Mulder and Van Veen, 1963). Some authors have also adopted

Pringsheim's classification with regard to Leptothrix spp. For example,

Romano (1974) classified Leptothrix spp as a species within the Sphaerotilus

genus, namely S.discophorus. The latter was characterized by an ability to

oxidize manganese and accumulate iron. According to Romano (1974) S.natans
had no ability to oxidize manganese and had little tendency to deposit iron
on its sheath. This classification was adopted by Ivarson and Sojak (1978)

in their work on Canadian ochre deposits where Leptothrix, Cladothrix and

Sphaerotilus were considered to be the same organism.

Other authors, however, have classified Sphaerotilus and Leptothrix as

different genera on the basis of the latter's ability to oxidize manganese
compounds (Mulder and Van Veen, 1963; Van Veen et al, 1978). Additionally,
Mulder and Van Veen (1963) found that L.ochracea had short sheaths, mostly
devoid of cells as opposed to the long, partly filled sheaths of S.natans.
These authors were also unable to reisolate S.natans from crude cultures

of L.ochracea,

The evidence concerning the taxonomic position of Sphaerotilus and

Leptothrix species was discussed by Van Veen et al (1978). The
similarities between the two organisms include the formation of a sheath,
a requirement for vitamin B12 and the formation of polyiﬁ-hydroxybutyrate

as a reserve material. Evidence was also given to show that sufficient
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differences existed between them to warrant separate genera. These

differences are listed below.

1.

2e

e

An ability to oxidize Mn(Il) is only seen in Leptothrix spp.

S.natans can respond very well to increased organic nutrients. It is

a typical wastewater organism rarely found in natural waters. In

contrast, most Leptothrix sp hardly respond to added nutrients and are

typically found in uncontaminated natural waters. This is supported by
Collins! (1964) survey of the organisms present in samples from
different classes of industrial problems. The predominant organism in

effluents was Sphaerotilus. Leptothrix spp, on the other hand, were

found in pipeline systems.

Cells of S.natans are much larger than those of leptothrix spp.

Leptothrix spp except L.Lopholea possess only one polar flagellum

whilst the cells of the latter, in common with S.natans, are motile by

a tuft of subpolar flagella.

False branching only occurs in S.natans and L.ILopholea.

Holdfasts are found in S.natans and L.lopholea but not in other

Leptothrix sppe.

Under the electron microscope sheaths of S.natans appear smooth whilst

Leptothrix spp produce a ''metlike structure'.

Eikelboom (1975) noted that the taxonomic position of the majority of

filamentous organisms occurring in activated sludge is unknown. Many

Gram-negative, sheath-forming bacteria belong to the Sphaerolitus-

Leptothrix group but Eikelboom concluded that many filamentous bacteria

mentioned in Bergey's Manual (see figure 2.l1l) are so ill~defined that a

critical examination of the genera is urgently warranted. Lewin (1970)
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suggested the abandonment of the order Chlamydobacteriales and this

suggestion was supported by Van Veen et al (1978). The Chlamydobacteriales

are composed of three familes, Chlamydobacteriaceae, Peloplocacea and

Crenotrichaceae. Lewin suggested that those organisms of the

Chlamydobacteriaceae, including Sphaerotilus spp and Leptothrix spp,

which reproduce and disperse by motile cells with polar tufts of flagella

could be relocated among the Pseudomonadale. The remaining genus in this

family, Toxothrix, and all members of the Peloplocaces and Crenotrichaceae

might conveniently be set among the Flexibacterales.

2e3.1e3 Sphaerotilus spp

Organisms of the genera Sphaerotilus are gram negative and individual

filaments are composed of ellipsoidal or rod shaped, non-sporulating,
bacterial cells within a colourless sheath. False branching is sometimes
observed (Waitz and Lackey 1959; Dondero et al, 1961; Phaup, 1968;

Ehrlich, 19813 Thornburn and Trafford, 1976). Two species of Sphaerotilus

are usually described, S.natans and S.discophorus. Some authors have

classified Leptothrix spp as S.discophorus. This was discussed in section

2+30,1.2. This classification is not adopted here and leptothrix spp are
described as a separate genera in section 2.3.l.k. Phaup (1968) also

noted a third, minute form, of Sphaerotilus at low temperature but the

possibility that this type was a strain of S.natans was noted.

In young cultures of S.natans all cells are contained in sheaths in single
rows. In older cultures free swimming and non-motile cells may be seen.
According to Phaup (1968) the cell size is about 1.2 pm wide and 3-8 ym
long. These cells are motile by a bundle of intertwined flagella which
may give the appearance of a single flagellum. In liquid cultures the
cells become attached to solid surfaces by means of é holdfast. Sheath
synthesis proceeds from the holdfast end of the filament and presumably

develops synchronously with cell division. (Lackey and Wattie, 1940).
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Yoshikawa and Takiguchi (1979) found that in a continuous flow apparatus
the concentration of nutrients. in the growth medium gffected thé attached
growth of S.natans. At low nutrient concentrations the growing organism
was attached to the inside of the growth vessel but at high concentrations
single, unattached, cells or short chains were observed. Phaup (1968)
noted that calcium was required for attached growth of S.natans is a
continuous flow apparatus. Free swimming cells can also adhere to
existing sheaths and give rise to false branching. This occurs more
frequently in poor media. False branching may also arise as a result of
a sheath rupturing thus allowing cells to protrude from the break while

growth also continues in the original direction (Phaup, 1968).

The available information concerming the composition and formation of the

sheath in Sphaerotilus filaments has been summarized by Phaup (1968) and

Van Veen et al (1978). The sheath is a polysaccharide - protein - 1i§id
complex. Romano and Peloquin (1963) found that the sheath contained 36%
reducing sugars, 11% hexosamines, 27% protein, 5.2% lipid and 0.5% phosphorus
in the dry matter. No muramic or teichoic acid were detected. The sheath

is surrounded by a polysaccharide slime layer, the amount of which varies
with the growth medium. Waitz and Lackey (1959) noted that the gelatinous
nature of the sheath was responsible for the formation of masses of

gelatinous stranded material.

Van Veen et al (1978) considered the function of the sheath; in slow
running water, low in nutrients, it enables the bacteria to attach
themselves to solid surfaces and protects them against parasites and

predators. Venosa (1975) demonstrated that the parasite Bdellovibrio

bacteriovorus was unable to penetrate the sheath of S.natans although

it caused 1ysi§igwarm cells of Sphaerotilus. However, the sheath is not

necessary for cell propagation since sheathless mutants can grow and divide.



Sphaerotilus spp have an optimum pH around neutrality with a range from

6.0 to 8.0 or 10.0 (Phaup, 1968; Lackey and Wattie, 1940). AChané et al
(1979) noted a marked fall in respiration rate below pH 6.6. These
organisms can tolerate temperatures between 5°C and 35°C and have an
optimum of 3090 (Stokes, 1954). They are obligate aerobes but can grow at
extremely low oxygen tensions. Van Veen et al (1978) showed that final
cell yield was not enhanced in strongly aerated culture solutions as
compared to stationary cultures. However, improved aeration did result in

increased growth rates.

Sphaerotilus spp will utilize a variety of organic acids, sugars and

alcohols as carbon and energy sources. The organisms grow well in most
complex nitrogenous laboratory media when suppiemented with carbon sources
(Lackey and Wattie, 1940). The organisms can also utilize inorganic
nitrogen sources especially when pH is controlled (Van Veen et al, 1978).

pH adjustments are needed to counteract shifts that occur after the uptake

3 [

of sodium, potassium, calcium, magnesium, sulphate,'phosphate and chloride.

Sphaerotilus spp require a basal mineral salts supplement

of NH4+ or NO

Lackey and Wattie (1940) found a nutrient threshold of 5.0‘yg/ml for

NaNOB, KHEPOH’ K2HPOA, MgSOl+ and CaCl2 in a medium also containing glucose.,

Omitting any one of these salts at this concentration prevented growth.
It has been found that supplementing media with cyanocobalamin or methionine,

from which vitamin B,., can be synthesized, results in increased growth of

12
S.natans (Waitz and Lackey, 1959; Mulder and Van Veen, 1963).

Waitz and Lackey (1959) found that Sphaerotilus natans grew well in the
presence of hydrogen sulphide with an associated formation of intracellular

deposits of sulphur. It was argued that Sphaerotilus natans could be

elassified as a sulphur bacterium on that basis.
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According to Lackey and Wattie (1940) the broad adaptability of S.natans
in terms of its nutrient requirements is an "important factor in making it

a successful inhabitant of rivers'and sewage disposal plants''.

2.3.1.4 Leptothrix spp

As discussed earlier (2.3.1.2) Leptothrix spp have been classed with

Sphaerotilus as S.discophorus by some authors. Here it is assumed that

they are a different species although this view is not held by all authors

quoted in this section.

Two main forms of Leptothrix spp are usually considered(Mulder and Van Veen,

1963, Mulder, 1964).

1. Leptothrix discophora - appears as an uneven golden brown sheath which

may be very thick from encrusted manganese and iron oxides. These have

the smallest cells amongst iso}ated strains in the Sphaerotilus - Leptothrix
group (Van Veen et al, 1978). Motile cells may be free swimming or
surrounded by a thin sheath. This bacterium grows poorly in running seil
extracts containing iron and manganese. Under these conditions the sheath
becomes covered with a thick, dark brown, fluffy layer of iron and manganese.
The oxides can increase the- diameter. of the bare sheath 10-25 fold up to

about 20-25 um.

2. Leptothrix ochracea - according to Van Veen et al (1978) this is the
most common "iron-storing' ensheathed bacterium. The accumulation and
sedimentation of these organisms can be linked to the formation of bog
iron ore. It is composed of a smooth, colourless or yellow-brown sheath
containing ferric compounds. The sheath usually contains no living cells.
Colourless sheaths have also been observed. These contain either long
chains of large rods (1 - 1.2'Pm wide and B-Q‘ym long) or fungus-like

threads in which septa are hardly visible.
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Mulder (1964) studied L.ochracea in an enrichment culture, in slowly
running artificial ditch watef, and found that more than 99% 6f tﬁe sheaths
were empty and yellow. Some sheaths did contain cells but these migrated
out of the sheath. Pringsheim (1949) claimed that this tendency for cells
to become flagellated swarmers, leaving the sheath, was more pronounced with
L.ochracea than with S.natans. Van ¥een et al (1978) described the
formation of large masses of empty cells by L.ochracea within a relatively
short time. This was demonstrated by a microscopic study of growing crude
cultures. It was observed that ferric compounds were deposited on the

sheath after the cells had left them.

In addition to the two types above Van Veen et al (1978) also identified

three other strains of LeEtothrix.

3. Leptothrix lopholea - This organism is very similar to S,natans in that

it forms holdfasts, develops a bundle of subpolar flagella and shows false
branching. However, L.lopholea has smaller cell diameters and can oxidize

manganese.

L, Leptothrix pseudo-ochracea (Mulder and Van Veen, 1963). The cells of

this organism are very slender as compared to other Leptothrix spp. The cells

are very motile, by means of a single, thin, polar flagellum.

5. Leptothrix cholodnii - L.cholodnii can be isolated from non polluted,

polluted waters and activated sludge. In the presence of manganese the
sheaths become covered, in an irregular distribution, with granular
manganic oxides. In ferrous ion containing water the sheaths become

covered with a moderately thick, dark brown layer of ferric hydroxide.

The isolation of Leptothrix spp has proved very difficult (Mulder, 1964;

Pringsheim, 1949; Mulder and Van Veen, 1963). One possible reason is

that the number of living cells in environments containing many filaments
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is probably low. Since Leptothrix spp have not been isolated and cultured

extensively there is only limited evidence on their nutrition. Leptothrix
Spp are assumed to grow in conditions where organic matter levels are low.
These organisms do not respond to increased levels of organic nutrients.

In their pH optima and their need for vitamin B, ., they are similar to

12
Sphaerotilus spp. Van Veen et al (1978) referred to experiments with a

S.discophorus strain which they assumed was equivalent to Leptothrix

€holodnii. This work suggested that amino acids can inhibit the growth of

Leptothrix spp. For examples, 10 g/l of casamino acids completely

suppressed growth. Leptothrix spp may tolerate up to 2 g/l of peptone

but tryptone and trypticase inhibit growth at this concentration.

2.3.1.5 Other sheathed filamentous bacteria

Many of the sheathed bacteria have not been isolated in pure culture and
therefore very little information is available about them. A short
description of those mentioned in Bergey's Manual 8th edition (1974) is

given below.

1. Streptothrix spp - consist of thin rods in a hardly visible sheath of

0.5 - O.B'pm diameter. Iron and manganese are not deposited on the sheaths.

Eikelboom (1975) referred to Streptothrix hyaline as Haliscomenobacter

hydrossis. The latter was very similar to Toxothrix spp and also to

Peloploca and Pencnema subtilissum. H.hydrossis was described as small,

unbranched, straight filaments protruding like needles from fleccs.

Occasionally the filaments were entwined in bundles.

2. Lieskeela spp are unattached sheaths that may be encrusted with metal

oxides. Ehrlich (1981) described Lieskeela as filaments of rod shaped
cells with rounded ends. Two filaments wound around each other are
surrounded by a common slime capsule. The organism exhibits creeping

motility. Lieskeela spp have not been cultivated and Godinho-=Orlandi

(1980) noted that the filaments are very unstable.



%« Phragmidiothrix consists of attached sheaths that are not encrusted

with metal oxides and are not branched. Cell width may be variable along
the filament and thus its diameter varies from 3 -6 Jume The sheath is
delicate and colourless (Bergey's Manualj Farquhar and Boyle, 1971;

Godhino-Orlandi, 1980).

L, Crenothrix - Pringsheim (1949) believed that Crenothfix was a ''sessile"
organism covering solid surfaces. Young threads look much like Leptothrix Spp
' and only well developed ones can be recognised as Crenothrix. It forms
filaments up to 1 cm long which are attached to surfaces. The filaments
may be swollen at the free end, are thin, and may become encrusted with
iron or manganese oxides at their base. The cells vary from cylindrical
to disk shaped. The cells may leave the sheath but motile swarmers are

not formed. Crenothrix has not been grown on artificial media in pure
culture. According to Kuntze (1982) Crenothrix is a local variety of

Sphaerotilus or Leptothrix being an adaption to strongly flowing water

containing iron. (Ehrlich, 1981; Bergey's Manual, 1974; Farquhar and

Boyle, 1971; Godhino-Orlandi, 1980).

5. Clonothrix - Clonothrix spp form filaments up to 1.5 c¢m long. In one

species they taper towards the top. The filaments may be attached to a
surface. They have a distinct sheath that may be encrusted with iron or
manganese oxides. According to Godhino-Orlandi (1980) the older parts of
the filaments are encrusted with metal oxides while the younger filaments
are more slender, colourless and hardly distinct. The cells within the
sheath are cylindrical. During reproduction the cells leave from a broken
sheath. Clonothrix has not been cultured in artificial media. Kuntze

(1982) regarded Clonothrix as a variety of Sphaerotilus or Leptothrix.
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2.3.1.6 The relationship between filamentous bacteria and iron

The relationship between the filamentous bacteria and iron is frequently
discussed in the literature. Complete autotrophy is seldom assumed but
the role of iron and the possible derivation of energy from its oxidation

has been considered.

Pringsheim (1949) concluded that filamentous bacteria could derive energy
from ferrous ion oxidation and also utilize organic compounds as an energy
source, Similarily, Thorburn and Trafford (1976) believed that the
filamentous bacteria could obtain energy from several sources including

the oxidation of Fe(II).

The major problem associated with work on the role of iron in the nutrition
of these bacteria is rapid chemical oxidation of Fe(II) at the neutral pH
conditions required by the organisms (Van Veen et al, 1978). Farquhar and
Boyle (1970) described an "iron oxidizing" test where ferrous sulphate was
added to a sample of bacterial culture. This test was used to demonstrate
the ability of sheathed microorganisms to oxidize Fe(II) and deposit iron
compounds within their sheath. Van Veen (1973) found this technique to be
insufficient due to the chemical oxidation of Fe(II). It has been
suggested that chemical oxidation is the predominant mechanism by which
iron is accumulated by filamentous bacteria. Phaup (1968) was able to
demonstrate iron deposition on sheaths of heat-killed cultures of S.natans.
Similarily, if S.natans is cultivated in the presence of chelated ferric
complexes the sheath becomes covered with ferric hydroxide (Van Veen et al,
1978). Ford and Beville (1970) suggested that chemically precipitated

iron can be trapped by the sheaths because of their "sticky" nature.

The accumulation of chemically precipitated iron compounds is also suggested
by the results of Waitz and Lackey (1959) who found that iron was not

essential, except in trace quantities, for the growth of Sphaerotilus spp.

They found<that ferric chloride at 2 pg/l had no effect on the growth of

Sphaerotilus and at 25‘pg/l growth was apparent but reduced. The toxic
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effects of large quantities of iron on Sphaerotilus were also demonstrated
by Chang et al (1979). For example, at pH 6.0 20‘pg/1 of iron, aé iron
citrate, inhibited the maximum réspiration rate of S.natans by over 88%
Van Veen et al (1978) noted that the effect of iron on S.natans can be
reduced by complexing agents. For example, it is possible to grow the

bacterium in a nutrient medium containing 1.8 g/1 FeCl .6H20 in the presence

3
of 0.25 g/1 quinic acid. The growth of Sphaerotilus spp in the absence of

iron and their susceptibility to relatively low iron concentrations suggests
that these organisms accumulate chemically precipitated iron without
deriving energy from its oxidation.

When Leptothrix was first isolated it was thought to be autotrophic.

Van Veen et al (1978) suggested that autotrophy may exist in L.ochracea
since natural habitats of the organism contain few living cells amongst
large quantities of iron containing empty sheaths. However these authors
pointed out that cells and newly-formed sheaths are not impregnated with
iron suggesting that they do not require iron in order to grow.
Additionally, it was found that the amount pf iron in relation to cell dry

weight is low in Leptothrix spp. A typical ratio of cell dry weight to

Fe(III) of 1:4 was found in laboratory cultures of Leptothrix. This can be

compared to the same ratio determined for the autotrophic, iron oxidizing

r
T.feroxidans which ranges from 1:200 to 1:500.
K

Work on the oxidation of metal ions by leptothrix spp has concentrated

on manganese. The advantage of manganese is that it does not oxidise
rapidly in bacterial cultures at the pH values associated with
filamentous bacteria. The concensus of opinion is that the precipitation
of Mn(II) is enzymically mediated. Heat treatment or enzyme inhibitors
can prevent Mn(II) oxidation (Van Veen et al, 1978). Van Veen (1972)

suggested that a protein was released from the cells of S.discophorus,

which is probably equivalent to Leptothrix spp (see section 2.3.1.2).

This compound combined with Mn(II) and precipitated as a manganic oxide-

protein complex. It is possible that Leptothrix spp may capture some
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energy from Mn(II) oxidation but Van Veen et al (1978) noted several
reasons why the derivation of energy from manganese oxidation by

Leptothrix spp is unlikely. The enérgy released by the oxidation of

Mn(II) to Mn(IV) is low and the maximum concentration of manganese

tolerated by Leptothrix spp is also very low as compared to, for example;

’ {
the ferrous ion concentrations tolerated by T.ferooxidans.
ld

Jobnson and Stokes (1966) attributed the oxidation of manganese by

S.discophorus (Probably Leptothrix spp, 2.3.1.2) to an inducible enzyme(s).

They foupd that organisms grown in the presence of MnSOLF were able to
oxidize it to MnOa. This ability was not found in cells grown in the
absence of Mnsoh. Van Veen (1972) questioned this conclusion, suggesting
that Johnson and étokes had not recognised the inhibitory effect of
phosphate on Mn(II) oxidation. Van Veen (1972) showed that phosphate
could inhibit manganese oxidation but only in cells that had no manganese
oxides on their sheaths. Thus cells grown in the absence of Mn(II),
having no manganic precipitates, would not oxidise manganese. According
to Van Veen this is due to phosphate inhibition rather than an inducible

enzyme system,

It is not known whether the enzyme system responsible for manganese
" oxidation also operates for iron oxidation (Van Veen et al, 1978). Rogers

and Anderson (19764) found that the growth rate of S.discophorus

(L.cholodnii or L.discophora according to Van Veen et al, 1978) was

independent of iron concentration in the medium, There was no correlation
between iron concentration and final cell protein yield. These results
suggested that iron deposition is caused Sy a component of the organism's
sheath. Rogers and Anderson (1976A) also showed that blocking protein
synthesis did not prevent continued iron precipitation. Once.iron
deposition was initiatedv protein synthesis was not required for further

oxidation.
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Despite the lack of evidence to suggest that Leptothrix spp sain energy

from iron oxidation Jones (1975) did show that the numbers of L.ocﬁracea
in fresh water were proportional to total iron concentration. Counts
obtained from samples with less than loo‘yg/l of iron were very low but
they rose sharply with iron concentration up to about 1000 yg/l. These

results suggest that some positive interaction exists between Leptothrix spp

and iron, even though they do not use iron as an energy source.

Therefore, in conclusion, filamentous bacteria can precipitate and

accumulate ferric and manganic compounds. In the case of Sphaerotilus spv

the presence of these metals does not appear to stimulate growth., In fact
raising iron concentration will eventually reduce its growth. The

oxidation of manganese by Leptothrix spp is related to an enzyme system but

there is no evidence that energy is derived by this oxidation. The

mechanism of iron oxidation by Leptothrix spp is uncertain and could be

chemical, enzyme mediated or caused by a component of the sheath.

W
It appears that neither Sphaerotilus sppnor Leptoflrix spp derive energy

from the oxidation of Fe(II or Mn(I1). However, the close association
between these bacteria and iron and manganese in nature cannot be ignored
(Petersen, 1966). Fenchel and Blackburn (1979) concluded that '"while there
is now strong evidence to show that the sheathed bacteria are not
chemolithotrophs, the real physiological significance of the iron and

manganese deposition remains unknown',

2.3.2 GALLIONELLA

Gallionella spp are characterized by a short curved rod, or bean shaped

cell, which produces a twisted stalk consisting of filaments containing
ferric hydroxides. (Ehrlich, 1981; Fenchel and Blackburn, 1979).

Gallionella ferruginea was discovered by Ehrenberg in 1835. According to

Aristowskaya and Zavarzin (1971) the terminal cells are often absent. The
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stalk is usually anchored to a solid surface. The stalks are composed of
electron opaque strands approximately 0.05 to 0.l microns in diamefer
(Vatter and Wolfe, 1955). As many as eight strands have been observed in
a stalk. The strands are closely united in newly-secreted stalks but as
the stalk ages the strands separate. In natural environments the stalk is

composed primarily of silicon, aluminium and iron (Ridgway et al, 1981).

The cells, which may form one or two polar flagella, can detatch from the
stalk, swim in swarmers, and seek a new site for attachment and a stalked

growth habit.

Gallionella spp grow best at low oxygen tensions and have a pH optimum

between 6 and 7. It is believed that Gallionella spp can catalyse ferrous

ion oxidation and derive energy by this means., ZEvidence for this
assumption was given by Ehrlich (1981). Firstly, the organism will grow
in a mineral salts medium in the absence of organic carbon (Kucera and

Wolfe, 1957). It will assimilate significant quantities of labelled carben
14

dioxide from NaH™ CO_, added to an iron sulphide containing medium.

3

Ehrilch (1981) noted however that a quantitative demonstration of CO. uptake

2

coupled to Fe(II) oxidation remains to be shown.

2.3.3 OTHER MICROORGANISMS

In addition to filamentous bacteria and Gallionella spp other organisms

are commonly found in filamentous ochre samples. These include fungi,
yeasts and common soil heterotrophic bacteria. For example, Ivaerson and

Sojak (1978) isolated a yeast - Rhodotorula sppand small numbers of

Peni¢illium frequentans and Cladosporium in filamentous ochre. Martin et

al (1977) isolated a variety of fungi from iron deposits in field drains.

These were similar to species found in adjacent top soils and included

Aspergillus niger, Fusarium spp, Verticillium sppand Cladosporium sps,
| Bam | \

The hydrogen sulphide oxidizing Toxothrix and Thiothrixare also common in
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ochre. These are found in the anaerobic areas of the biotype (Kuntze,
1982). The occurrence of these organisms may be incidental or they may
have a role in its formation. In a model simulating filamentous ochre

formation Ford (1978, 1979A)used Pseudomonas and Enterpobacter in addition

to the normal filamentous bacteria. It was found that ochre production
was enhanced by the "clear jelly slimes" of these bacteris. Similarily,

Fischer and Ottow (1972) found that Pseudomonas fluorescens was responsible

(with Acinetobacter) for the decomposjition of ammonium iron citrate in a

well aerated solution. The decomposition yielded a yellow brown
precipitate. This type of complex degradation may be a mechanism of ochre

formation (see section 2.5.2.3).

2.4 THE MICROBIOLOGY OF PYRITIC OCHRE

2.4.1 THE THIOBACILLI

Pyritic ochre is normaiiy associated with bacteria of the genus
Thiobacilli (Bloomfield, 1967; FDEU, 1975). The Thiobacilli are a closely
related group of rod shaped, Gram negative bacteria (Thorburn and Trafford,
1976). 1In general these organisms derive their energy from the oxidation
of one or more reduced, or partially reduced, sulphur compounds. Sulphates
are the usual oxidation product but the accumulation of sulphur and
polythionate is seen under certain conditions. The genus Thiobacilli
includes strictly autotrophic organisms, facultative autotrophs and at
least one species requiring organic matter for growth. They are all

obligate aerobes except T.denitrificans (Buchanan and Gibbons, 1974).

In ochre formation two distinguishable species of Thiobacilli are involved

namely T.ferrooxidans and T.thiooxidans (Thorburn . and Trafford, 1976).

The former normally derives its energy from the oxidation of ferrous iron
and reduced sulphur compounds whilst the latter only from the oxidation of
reduced forms of sulphur. Because they obtain metabolically useful energy
from the oxidation of inorganic compounds and fix atmospheric CO2 they are

classed as chemolithotrophic bacteria (Rittenberg, 1969).
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T. ferrooxidans has been isolated throughout the world and found to be
responsible for acidification of pyritic mine wastes and acid sulphate
soils (Temple and Colmer, 1951; Trafford et al, 1973). The commercial

leaching of ores by processes depending on T.ferrooxidans is a well

established practice. Bacterial leaching can be used for uranium and
copper extraction, manganese recovery, and the removal of sulphur from
coal, shale or slag (Le Roux, 1969, . 1972; Tuovinen, 1972; .Dugan and

Apel, 1978; Beck, 1967).

T.ferrooxidans and T.thiooxidans grow at pH values below 4-5, with an

optimum of pH 2.0 - 2.5 (Johnson et al, 1979). The optimum pH of

T.ferrooxidans depends on the substrate being used, as illustrated in

table 2.2 (Tuovinen and Kelly, 1974(v); McGoran et al, 1969).

TABLE 2,2 : OPTIMUM pH OF T.ferrooxidans GROWN ON VARTIOUS

SUBSTRATES (from McGoran et al, 1969)

SUBSTRATE OPTIMUM pH
ferrous ions 2.0
sulphur 1.75 - 5.0
chalcopyrite 1.8 - 3.5

The optimum temperature of the Thiobacilli is about 30°C with a range

from 1000 to k5°C. The metabolic activity of T.ferrooxidans declines

above hOoC and little activity is seen above SOOC (Thorburn and Trafford,

1976; Tuovinen and Kelly, 1972).

T.ferrooxidans and T.thiooxidans obtain oxygen from dissolved atmospheric

oxygen and have an ability to live at very low oxygen concentrations.
These organisms are autotrophic, utilizing atmospheric carbon dioxide as
their sole carbon source (Thorburn and Trafford, 1976). Tuovinen and

Kelly (1972) showed that CO2 fixation by T.ferrooxidans depends on energy

derived from ferrous ion oxidation. The number:of viable cells is thus

+¥
correlated with CO2 fixation and Fe oxidation (Tuovinen and Kelly, 1973).
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The principal nitrogen source of T.ferrooxidans is NHZ but this can bve
replaced by urea, with little loss in activity, or by amino acids with a
subsequent decrease in activity (Moss and Anderson, 1968). Mackintosh (1976)

showed that T.ferrooxidans could fixatmospheric nitrogen and that the

nitrogenase enzyme system was present in the microorganism.

Bloomfield (1972A)demonstrated the effect of T.ferrooxidanson the oxidation

of pyrite. 900 mg/g of pyrite were oxidized in the presence of T.ferrooxidans

as compared to 20-25 mg/g in a sterile control during the same time period.

; +
Lacey and Lawson (1969) found that T.ferrooxidans was able to ozidize Fé’+

at a rate some 500,000 times as fast as that occurring by chemical

e ++
oxidation. No growth of T.ferrooxidans was seen where initial Fe

concentration was less than 125 ppm (Temple and Colmer, 1951). Silverman
et al (1959) could find no signs of toxicity due to kigh ferrous iron

concentration in their studies of Ferrobacillus ferrooxidans, an organism

now considered identical to T.ferrooxidans.

The Thiobacilli can thrive as free floating or self motile organisms but
prefer to adhere to solid surfaces, forming a thin film (Thorburn and
Trafford, 1976). Mehta et al (1974) found that this adherence was strong

and quick. T.ferrooxidans can attach to insoluble substrates and to the

solid end product of ferrous ion oxidation (McGoran et al, 1969).

MacDonald et al (1970) explained that film formation is initiated by the

attachment of T.ferrooxidans cells to a surface. The cells multiply until
the surface is completely covered and then build up layers. Iron precipitates

help to bind or cement the structure.

T.ferrooxidans is tolerant of wide variations in the enviromnment and is

tolerant of most toxic metals. T.ferrooxidans is able to endure over

10 g/1 of zinc, manganese, copper, cobalt and nickel (Tuovinen et al, 1971;
Tuovinen #nd Kelly, 1974 (III)). It is more sensitive to other metals but

can still tolerate SO - 100 mg/l of silver, tellurium. arsenic and

selenium and up to 5 mg/1 of molybdenum (Tuovinen et al, 1971). The
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adaption of T.ferrooxidans to tolerate increasing levels of Zn, Ni, Cu, U

and Cl have been reported (Tuovinen Ei'gl, 1971; Tuovinen and Kelly,
1974(III); Thorburn and Trafford, 1976). It has been shown that the toxic
effects of metals can be affected by external factors. For example,

Tuovinen and Kelly (1974(IV) ) reported that the inhibition of T.ferrooxidans

by 2rM uranyl sulphate could be partially relieved by 200mM K*, Na*, ri*

or NHZ added to the growth medium as sulphates.

T.ferrooxidans is not tolerant of mercury and loolpg/ml mercuric chloride

will stop its activity almost instantly (Le Roux et al, 1973).

T.ferrooxidans is tolerant of organic pioqides but Le Roux et al (1973)
found that panacide (200 pg/ml) was an effective inhibitor. Such levels
would be difficult to maintain in the presencerf clays and silts. Apel
et al (1980) discussed the inhibitory effects of pentachlovophenol and

nigericin on T.ferrooxidans. Similarly, 2:4 dinitrophenol has a marked

uncoupling effect on 002 fixation (Tuovinen and Kelly, 197:(II1); Beck'and

Shafia, 1964).

2.4,2 ACIDOPHILIC HETEROTROPHS

Several authors have isolated heterotrophic bacteria growing in acid media

with Thiobacillns ferrooxidans (Zavarzin, 1972; Dugan and Apek, 1978;

Harrison et al, 1980). Some of the isolates have a pH optimum near netural
while others are acidophilic. Johnson and Kelso (1980) isolated similar
bacteria in the form of gelantinous acid streamers from a mine drainage
stream of ‘great acidity.The extracellular material of the streamer organisms
contained polysacharides and RNA. It has been shown that these bacteria:
are also associated with pyritic ochre deposits (Johnson, 1979; Johnson

and Kelso, 1980). The role of these organisms in the formation of pyritic
ochre is unclear but the presence of bacterial polysaccharides would

accentuate the seasonal swelling and shrinking capacity of the deposits.
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The adhesive properties of extracellular polysaccharides could also

initiate ochre precipitation and hinder cleaning of drains.

2.4.3 THE COEXISTENCE OF MICROORGANISMS ASSOCIATED WITH

PYRITIC AND FILAMENTOUS OCHRE

The conventional view of ochre as being either filamentous or pyritic may

be an over-simplification since there is evidence to suggest that the
bacteria responsible for the formation of the two types can coexist

(FDEU, 1973, 1974, 1975; Thorburn and Trafford, 1976). This is possible
either because both groups of organisms are capable of adapting to a wider
range of pH values in the field, than is apparent in work with defined
laboratory media, or that there are other bacteria which bridge the gap in
the pH range. The two types of bacteria may also exist in microenvironments

of varying pH within the soil and drainage system.

Camercnet al (1981) isolated an iron oxidizing bacterium from an ochre
polluted stream of pH 5.5. This organism grew autotrophically in artificial
media at pH 3.5. The organism, with regard to its autotrophy and pH optimum,
could not be classed as one of the filamentous bacteria described in

section 2.3.1l. It was also distinct from the Thiobacilli since it grew as

long unbranched filaments encrusted with iron.

One bacterium that could be a '"missing link" between filamentous and pyritic

ochre is Metallogenium (Aristowskaya and Zavarzin, 1971; Buchanan and

Gibbons, 1974). According to Walsh and Mitchel (1972) it catalysed iron
oxidation in the pH range 3.5 - 5.0 with an optimum of pH 4.1.

Metallogenium spp have been isolated from soils (Yefremova et al, 1978),

mining waste (Langworthy, 1978), concretions on rice roots (Sidorenko et al,
1979), and on solid laboratory media (Aristovskaya, 1961). Ivarson and

Sojak (1978) observed filamentous structures resembling Metallogenium in

filamentous ochre samples but experimental evidence indicated that they were

aggregates of colloidal Fe(OH)B,
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It appears, however, that in some areas it is possible to find purely
filamentous or pyritic ochre. For example, whereas Ford (1969) iéolated
acidophilic Thiobacilli in filamentous ochre Ivarson and Sojek (1978)
could not find these bacteria in their studies of the same ochre type.
This suggests that although coexistence of the organisms associated with
pyritic and filamenfous ochre does occur, it should not be taken as an

universal rule governing all ochre sites.
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2.5 THE FORMATION OF TRON OCHRE

Before discussing the possible mechanisms by which ochre is formed the
factors influencing its deposition will be considered. The role of some

factors, such as soil type and microbiology, has been mentioned earlier.

2.5.1 Factors influencing ochre formation

These factors can be divided into three main groups, namely environmental

factors, factors associated with the drainage system,and management factors.

Alcock (1973) noted that high rainfall increased ochre deposition. This
could be explained by the longer duration of anaerobic conditions within
the soil resulting in a greater extent of iron reduction and thus increased

input of ferrous iron to the drains.

The effect of geology is not clear. Alcock's (1973) survey of ochégus
sites in England and Wales revealed a high incidénce of ochre on beds with
a high iron content. However, the evidence also suggested that most of the
really serious problems were associated with '"bogs'" where no correlation

with geology would be expected.

Factors associated with the drainage system can also influence the
formation of iron ochre. According to some authors the deposition of
ochre is not related to the material of the drainage pipe (Grass, 1969;
Spencer et al, 1963). In a detailed comparati&e study, using laboratory
models, Talman (1978) found that clay pipes ﬁlocked more readily than
plastic pipes. However, clay pipes showed less accumulation of ochre
where the gap between the tiles was larger than 5 mm. Talman also found
that increasing slot width decreased ochre deposition at the slot whilst

increasing deposition above it (i.e, in the permeable backfill).

Lo



Alcock (1973) found a definite trend of ochre occurrence towards the East
of England. Here high value cash crops are grown and thus there is more
incentive and money available for drainage, "bringing to light" ochre

problems.

The influence of soil mixing on ochre formation was revealed by work at
Arthur Rickwood Experimental Husbandry Farm. Dennis and Wickens (1977)
suggested that soil mixing could influence ochre deposition but no direct
evidence was available. The purpose of soil mixing is to incorporate
mineral matter into organic top soil to reduce peat wastage. In theory
soil mixing should increase the rate of aeration of newly-drained profiles,

hence increasing the oxidation of pyrite and ochre production (FDEU, 1976).

Seheffer and Kuntze (1979) noted that the application of pig slurry to
drained land increased the amount of ochre and its iron content by 40% in
relation to mineral fertilizers. This is worthy of consideration
especially as mineral fertilizers become more expensive and farmers find it

necessary to use more organic manures such as slurry.

2.5.,2 The mechanisms of ochre formation

Many ideas have been advanced concerning the origin of iron deposits in
field drains but it is generally accepted that they are formed by the
oxidation of ferrous iron to ferric oxides and hydroxides, (Petersen, 1966;
Mackenzie, 1962; Puustjarvi and Juusela, 1952; Ford, 1969; Linder, 1977;
Ivarson and Sojak, 19787 Haiijer and Wolf, 1965; Kuntze, 1978). The main

sphere of dispute concerns the means by which oxidation occurs.

Some authors have explained the formation of ochre by purely chemical
mechenisms (Haiijer and Wolf, 1965; Puustjarvi and Juusela, 1952;
Childs et al, 1982). Davison and Seed (1983) found that the rate of

ferrous ion oxidation in natural waters did not change with respect to
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depth or time while the microbial population did. This suggests that the
oxidation reaction is not mediated by bacteria. Other authors have
concentrated on the role of microorganisms in the precipitation of iron.
It has been claimed that chemical oxidatioﬁ cannot account for the
composition of all ochre samples (Petersen, 1966; Glathe and Ottow, 1972).
It has also been claimed that non-catalysed chemical oxidation proceeds
slowly at pH values below neutral. Petersen (1966) included bacteria
amongst the soil water components that could catalyse the reaction.
Aristovskaya (1961) regarded the accumulation of ferric and manganic
hydroxides in soils, if not entirely, then to a considerable degree as a
biological phenomenon.GTeen (1950) demonstrated the microbial oxidation of
iron by reducing ferrous ion oxidation with bacterial inhibitors. This
reduction was accompanied by a reduction in oxygen uptake. With regard

to ochre formation it has been demonstrated (Ford, 1978, 1979a)that
bacteria are the primary cause of ochre formation and clogging from ochre.

Chemically precipitated iron is a poor clogging agent lacking ability to

"adhere" (Ford, 1978).

In reality a combination of chemical and bioclogical mechanisms probably
operate (Mackenzie, 1962; Meek et al, 1968; Quispel et al, 1952;

Odelien et al, 1975; Healvorson, 1931; Ivarson and Sojak, 1978;

Petersen, 19663 Linder, 1977). There are four possible agencies by which
iron could precipitate under natural conditions(Glathe and Ottow, 1972;

Starkey and Halvorson, 1927; Kuntze, 1982).

1. Chemical mechanisms involving atmospheric oxygen.
2. The action of autotrophic iron bacteria.

3« Decomposition of the organic component of soluble complexes by

heterotrophic organisms.

Lk, The action of microorganisms causing environmental changes.
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2.5.2+1 Chemical oxidation

Chemical oxidation can play an important part in the formation of
filamentous ochre since ferrous iron oxidizes rapidly at the near neutral
pH values associated with these sites. Childs et al (1982) found that
ferrous ions in a spring water oxidized, on reaching the surface, to form
an ochreous deposit. The rate of oxidation could be accounted for by

chemical mechanisms.

The chemistry of ferrous iron oxidation is well documented and the aim in
this section is to summarise this information concentrating especially on

those factors relevant to the formation of ochre deposits.

In solutions of pH above 6.0 the oxidation of ferrous ions can be

described by the equation:-

Fe(II) + %02 + 20H + -;—uzo —> Fe (OH)3 (Stumm and Lee, 1961)

The rate of oxidation depends on several factors including pH, the

concentration of dissolved oxygen, temperature, organic matter levels and

the presence of catalysts.

In solutions of pH above 5.0 the rate of Fe(II) oxidation is first order
with respect of oxygen concentration (Stumm and Morgan, 1981). However,
at pH 4.0 ferrous iron is likely to remain in solution at all redox
potentials (Patrick and Henderson, 1981). Oxidation is very slow at pH
values less than 6.0 and in acidic media only a small dependence of the
oxidation rate on hydrogen ion concentration is observed. In less acidic
solutions a 100 fold increase in reaction rate occurs for each unit
increase in pH (Stumm and Lee, 1961; Morgan and Stumm, 1964). There is
an interaction between Eh and pH with regard to Fe(II) oxidation. Collins
and Buol (1970) demonstrated that at low (negative) Fh the pH necessary to
precipitate iron is higher than at more positive valuves. Similarily, the
Eh level necessary to convert iron from Fe(II) to Fe(III) depends largely

on the pH.
L3



Temperature also affects the rate of Fe(II) oxidation. For a given pH
the rate of oxidation increases tenfold for a 1500 temperature rise

(Stumm and Lee, 1961; Sung, 1981).

Catalysts can increase the oxidation rate significantly, especially copper
(Lamb and Elder, 1931; Morgan and Stumm, 1964), and anions that form

. ++ on
complexes with Fe , for example, HPOu

(Huffman and Davidson, 1956;
Stumm and Morgan, 1981). The rate of oxidation by molecular oxygen in
acidic solutions is very dependent upon the nature of the anious present.

The rate is increased as the complex affinity of the anion for Fe

increases.

In neutral sclutions the oxidation of Fe(II) is accelerated by the reaction
product ferric hydroxide, and by the addition of ferric hydroxide (Tamura
et al, 1976; Sung and Morgan, 1980). Sung (1981) showed that the product
of Fe(II) oxidation was ¥-FeOOH (lepidocrocite). Thus thé oxidation of
.Fe(II) .in neutral solutions can proceed via two mechanisms occurring
simultaneously. There is a homogenous reaction in solution but also a
heterogeneous reaction on the ferric hydroxide surface. The second
mechanism involves the preliminary adsorption of Fe(II) by ferric hydroxide

(Tamura et al, 1976; Sung, 1981).

According to Tamura et al (1976) a linear plot for ferrous iron concentration
with time is obtained with 3 mg/l1 Fe(II) initially present in solution. buk
with 25 mg/1 Fe(II) initially present a concave plot is obtained
demonstrating autocatalysis. The autocatalytic effect is negligible with
less than 3 mg/l Fe(II) since the amount of ferric hydroxide produced is
small. Where ferric hydroxide is added to a ferrous solution a greatly
increased rate of oxidation is observed. The rate constant increases
linearly with the amount of ferric hydroxide. Davison and Seed (1983)

found that adding ferric iron at concentrations of 10 mg/l or less had no
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measurable effect on the rate of reaction at pH 7.0. However the addition
of 50 mg/1 (Fe(III) at pH 7.13 - 7.18 produced significantly higher rates

by a factor of two to five.

It has also been demonstrated that the ferric hydroxide surface produced
by Fe(II) oxidation can catalyse the oxidation of Mn(II). In the presence
of hydreus iron precipitates Mn(II) is removed from solution at Eh and

pH values which are not sufficiently high to precipitate manganese in the

absence of iron (Sung, 1981; Collins and Buol 1970).

Organic compounds can affect the rate of Fe(II) oxidation, either
decreasing or increasing it. Organic compounds can reduce the oxidation
rate by foruing complexes. Coulson et al (1960) showed that polyphenols
were capable of reducing iron by forming complexes. Similarily,
Bloomfield (1953) demonstrated that aqueous extracts of pine needles could
mobilize ferric oxides by reducing Fe(III) to Fe(II). The rate of
oxidation of these complexes is low but increases with increasing pH.
However, oxidation of complexed iron does not necessarily result in its
precipitation. Fe(II) can be oxidized to Fe(III) while the total amount

of complexed iron in solution remains constant.

Some organic substances that can reduce Fe(III) can also catalyse the
oxidation of Fe(II). Essentially ferrous ions, oxygen and an organic
compound. react to form a ferric - organic complex. This complex

dissociates yielding ferrous iron and an oxidized organic compound. The
ferrous iron is reoxidized by combination with the organic cémpound and
oxygen. This cycle has been observed with phenols, tannic acid and cysteine
(Stumm and Morgan, 1981). In these cases the ferrous -~ ferric system

acts as a catalyst for the oxidation of organic material by oxygen.
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Thé majority of the work described above was carried out in synthetic
solutions. Davison and Seed (1983) found thét the oxidation of Fe(II)

by molecular oxygen was described by the same rate expressions in natural
systems as in analogous synthetic solutions. The catalytic or inhibifory
effects of other substances appeared to be no greater in natural waters

and in some cases the effect may be less pronounced. Davison and Seed
(1983) concluded that a "universal rate constant of 2 x 10~ 2atn ™ nin™t
(range 1.5 to 3 x 10-3) operates in natural waters of pH 6.5 - 7.5.
Consequently, in air saturated freshwaters of pH 6.5, 7.0, 7.5 and 8.0

the half lives for Fe(II) will be 361, 36, 3.6 and 0.3 minutes at 20°C.

2¢5.2.2 The action of autotrophic iron bacteria (pyritic ochre

formation)

The iron of pyritic ochre deposits is derived from iron sulphides in soil
and parent material. If pyrite is taken as a representative sulphide then
the oxidation of iron sulphides can be described by equation 1 (Le Roux
et al, 1973; Talman, 1978) or alternatively by equation 2 (Lundgren and

Vestal, 1972).

L FeS, + 150, + 2H,0 —_D 2Fe2($04)3 + 2H,80), cecenescncnccananaes (1)

++ + +++
) L" Fe ""‘ 02 "' LI'H -‘—“> l*’ Fe “"' 2H20 I E N ERER NN NNFNNEEREENFERNYEY N (2)

This reaction proceeds via several intermediates giving a reaction sequence
for pyrite oxidation. This sequence involves chemical and microbial

activity, the bacteria are the acidophilic Thiobacilli described in

section 2.4.1.



The initial oxidation of pyrite can be described by reaction 3 (Le Roux,
1972; Thorburn and Trafford, 1976)

2 FeS, + 70, + 20,0 ~—> 2 FesO, + 2H,50;, »eeseee (3)

Le Roux et al (1973) suggested that two reactions were involved in the
initial oxidation of pyrite ia sterile ferric sulphate solutions (equations
4 and 5), and found that the dissolution occurred mainly by reaction k.

FeS2 + 7 Fe2(504)3 + 8H20 ———) 15. FeSOl* + 8H2S0}+ escovee (4)

FeS, + Fe,(80);  ——3 3 FeSO, + 25 eeeeess (5)

The oxidation of pyrite to ferrous sulphate proceeds readily by chemical
oxidation, a reaction which was recognised in 1875 when Case reported in
Nature that:-

"Some iron pyrites exhibited in a particular case in the

Maidstone Museum have crumbled into a coarse, finely

divided mass"

The phenomenon was discussed by several authors in subsequent issues and
it was realised that pyrite was oxidized in the presence of air and moisture
producing acidic ferrous sulphate (Williams, 1875; Wire, 1875).
According to Lingwood (1875):-
' "this salt appeared in abundant crystals, and was
sufficiently strong to partially obliterate and destroy

a contiguous manuscript."

Under acid conditions ferrous sulphate is oxidized to ferric sulphate
(equation 6). Johnson (1979) noted that this is the rate limiting step
in the oxidation of pyrite by chemical reactions and in the pH range 1.5 -

4.5 the reaction is catalysed by T.ferrooxidans

b Fesoy, + O, + 20,80, —3 2 Fea(SOh)B + 2H,0 eeceeee (6)
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The ferric sulphate produced reacts with more pyrite to yield ferrous

sulphate and sulphur (equation 7)

F92(504)3 + Fe82 ‘-—9- 3FeSOL+ +25 esceces (?)

This reaction takes place readily without bacterial action. ILe Roux

et al (1973) found that it could proceed under sterile conditions.

Sulphur produced, as in equation? can be oxidized to sulphuric acid
(equation 8). This reaction is extremely slow by atmospheric oxidation
but is catalysed by T.ferrooxidans or T.thiooxidans (Temple and Delchamps,
1953).

28 + 30, + 2H,0 —> 2H S0, «seeees (8)

In theory sulphur could be oxidized by ferric sulphate by a chemical
reaction (Temple and Delchamps, 1953; Le Roux et al, 1973) (equation 9).

25 + 6 Fea(soh)i + 8H,0 —> 12 FeSOy + 8H,S0, «evnaes (9)

Reactions 6, 7 and 8 form a reaction cycle that is self accelerating with
increasing acidity, up to a maximum at about pH 2.0. Le Roux (1969)
found that the overall effect of these reactions (3 to 9) is to produce

an "oxidizing acidic liquor'. The role of T.ferrooxidans is to provide a

.continuous supply of ferric iron, whereas T.thiooxidans oxidizes elemental

sulphur,

The formation of ferric compounds in acidic drainage water can take place
as in reaction 6. According to Thorburn and Trafford (1976) ferric
sulphate then hydrolyses yielding ferric oxide and sulphuric acid

(equation 10).

FeZ(SOLF)3 + 3H,0 —_— Fe203 + BHZSO”' csesees (10)
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The formation of anhydrous ferric oxide in drainage water is unlikely and it
has been suggested (Johnson, 1979; Dugan and Apel, 1978) that ferric
sulphate hydrolyses to ferric hydroxide and sulphuric acid (equation 11)

F92(304)3 -+ 6H20 —'% 2 Fe(OH)3 + BHESOJ.} ecsoeece (ll)

The ferric hydroxide can react with sulphuric acid to form hydroxy-sulphate
complexes (equation 12)

2= —> Fe(OH)(S.Ol‘.). + 2H,0 ceeeeee (12)

J?e(OH)3 + oHt 4+ 50y, 2

Petersen (1966) believed that basic ferric sulphates would precipitate in
solutions of low pH and high sulphate concentration. This would be
characteristic of pyritic ochre sites. It is possible that combinations of
such precipitates are responsible for the typical yellowish-brown or reddish-

brown deposits associated with pyritic ochre sites (Johnson, 1979).

Alternatively, Leathen et al (1953) suggested that hydrolysis of ferric
sulphate to produce ferric hydroxide could proceed via the formation of
basic ferric sulphates (equation 13). This can be compared with equations
10 and 11 where basic ferric sulphates are formed via ferric hydroxide.

Fe2(504)3> + 20,0 — 2 Fe(0H)SO, + H,50, seecees (13)

The ratio of iron, hydroxide, and sulphate depends upon dilution and
acidity during hydrolysis. Complete hydrolysis results in the formation of

ferric hydroxide.

Thus, the oxidation of pyrite, via several chemical reactions, results in
the formation of ferric hydroxides and basic ferric sulphates. The rate of
pyrite oxidation is directly related to the activity of the autotrophic

Thiobacilli.
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2.5.2+.3 Decomposition of the organic component of

soluble complexes by heterotrophic organisms

According to Glathe and Ottow (1972) the decomposition of organic
compounds has been overlooked as an important mechanism in ochre formation.
Biodegredation can be achieved by a large number of soil microorganisms
that use the organic component of iron-organic complexes as an energy,
éarbon, or nitrogen source regardless of the metal component. Most of
these microorganisms have a wide tolerance of pH (3.0 - 8.0) and are

nutritionally inexacting.

Several authors have demonstrated the effect of microorganisms on iron-
organic complexes. Fischer and Ottow (1972) showed that the soil bacteria

Pseudomonas and Acinetobacter could decompose an iron (III) citrate

complex yielding an amorphous ferric precipitate. Similarily Macrae et al
(1973) studied the degredation of soluble iron-organic complexes by bacteria
and the subsequent precipitation of iron from these complexes.

Aristovskaya (1961) suggested that the accumulation of ferric hyroxide by

microorganisms results from their breakdown of organo-mineral complexes.

The stabilization of iron colloids is a well known property of certain
organic substances (Sholkovitz, 1980). Kauritschev et al (1964) noted

fhat organic chelates ére important in iron transformati&n and migration
processes. Normally the solubility of ferrous iron declines with rising pH.
Most iron in groundwater is completely oxidized at pH values about 7.0.
Chelated iron, on the other hand, will remain in solution at much higher

pH values than the inorganic form (Brady, 1974; Linder, 1977). Therefore,
complex formation is an important mechanism for maintaining the flow or

iron to drains even where pH is high in filamentous ochre sites.

~Iron can be held in solution by organic substances such as tannins,

phenolics and humic acids (Theis and Singer, 1974; Aristorskaya, 1974).

50



Ford and Tucker (1974) noted that these compounds are present in drainage

water where ochre is found.

2.5.2.4k The action of microorganisms causing environmental changes

Tt is known that microorganisms can alter their immediate enviromment
(Starkey and Halvorson; 19273 Brock, 1966). Such effects include changes
in pH, redox potential, temperature, and changes in the concentration of
gases such as oxygen and carbon dioxide. Many of these changes could
cause . the precipitation of iron from solution. Since iron is precipitated

indirectly by these organisms they do not apprently benefit from its

oxidation.
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2.6 POSSIBLE SOLUTIONS TO THE IRON OCHRE PROBLEM

2.6.,1 Prediction

Techniques for predicting the deposifion of iron ochre would be valuable
since the drainage of high risk sites could be avoided. The major problem
in the development of a reliable method is that many factors, especially
biological factors, caﬁ only be assumed and not evaluated before drainage

(Forda, 1978).

Visual examination of a site and adjacent areas before drainage can be
useful. Areas susceptible to ochre are likely to have an orange colouration,
staining or deposits in old field drains and oily sheens on Wwater in
ditches and exposed soil (Alcock, 1973; Ford, 1969; Ivarson and Sojak,
1978; Thorburn and Trafford, 1976). Some of the features indicative of
acid sulphate soils (Sulphagepts), that produce pyritic ochre when drained,

have been discussed by Bloomfield and Coulter (1973).

Several workers have attempted to use an estimation of total soil iron
content as a method of prediction but this technique has limitations.
Firstly, iron is not uniformly distributed in soil (Thorburn and Trafford,
1976; FDEU, 1977). Kuntze (1982) found that the mean soilwater Fe(II)
content in a 3 ha site varied from 0.3 yg/ml to 23‘yg/ml over 9 years.
‘Secondly, factors other than soil iron content can affect ochre deposition,
not least of which is the flow into drains of iron containing water from a
source external to the drainage site. For this reason soil iron content
can only predict the initial development of ochre. At sites where iron
flows from an extermal source the duration and severity of ochre cannot be

estimated (Spencer et al, 1963; Kuntze, 1982).

Linder (1977) reviewed the use of this technique in the East European
countries and found differences of opinion concerning the concentration of

iron at which ochre formation is likely. Linder found that the threshold
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values (the maximum ferrous iron concentration at which it is safe to
drain land) given by different authors varied widely. This is

illustrated in table 2.3 .

TABLE 2.% VALUES OF Fe(II) CONCENTRATION FOR ESTIMATING THE

RISK OF OCHRE FORMATION (From Linder, 1977)

Risk of ochre formation

Author Little Moderate Great
Fe(m) mgik
Chruckaja (1966) 10 10 - 20 - 20

Autorenkoll (1971) 1.6 - 3.1 3.2 = 6.3 6.3

Linder (1977) also found differences of opinion concerning when to.take

soil samples for iron determination.

Meek et al (1968) measured redox potential .(Eh) to predict where ochre

et
might develop. They concluded that such measurements could estimate the
dissolution of iron and manganese in the soil solution and hence the

possible levels of these elements entering drain lines.

Another method of prediction was advocated by Ivarson and Sojak (1980)
for areas with a high risk of ochre formation. They recommended the
installation of a few trial drains, and waiting for up to two years to

gauge the extent and severity of the problem.

Finally, Ford and Tucker (1974) described simple field and laboratory
tests for estimating ochre potential. These tests were based on the
determination of several factors including iron, tannins, and pH. The
value of this approach is that it conforms with the concept of ochre

formation being related to many factors.
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2.6.2 Prevention

2.6.2.1 Self-cleaning grades

It has been suggested that ochre deposition can be reduced by self-cleaning
grades and large water entry holes in drainage pipes (Kuntze, 1982;

Pord, 1969; Ford, 1973). In general ochre will form in pipes with
grades up to 0.3%%. At 0.4%, and above, clogging will decrease. However

self cleaning grades are umlikely to reduce ochre formation substantially.

2.6.2.2 Special drainage systems

In the U.K. ochre has been dealt with in practical drainage work by

adopting special drainage designs for less severe cases, but mainly by
avoiding high risk sites. A simple layout, each drain having an independent
outfall to the ditch possibly below the normal water table, would be typical
(Trafford et al, 1973; Trafford, 1978). These systems do not prevent ochre
but simply eid its detection and removal. In other countries drainage

systems have been used in an attempt to prevent ochre.

One method that has been advocated is pre-drainage (Glathe and Ottow, 1972;
Puustjarvi and Juusela, 1952). In this system land is drained by open
ditches for about twelve months. At the end of this time iron deposits are
removed from the ditches before installing subsurface drains. The period
of twelve months is likely to be too short in soils containing pyrite

which can take many years to oxidize completely (Trafford et al, 1973).
Such a system would also be very costly in terms of labour, machinery, and

reduced production from the temporarily drained land.
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2.6.2.3 Aerobic and anaerobic conditions

Several authors have tried to control ochre by maintaining aerobic or

aneerobic conditions in the soil or drainage system.

In theory the deposition of iron in the soil, before it can enter the
drainage system, can be achieved by keeping the soil aerobic (Ford and
Beville, 1970; Grass et al, 1973 (II). The major problem associated with
this method is controlling the soil water table effectively. Prolonged
anaerobic conditiéns in the soil would reduce the deposited iron releasing
it into the so0il solution (Thorburn and Trafford, 1976). In soils
containing pyritic material aeration achieved, for example, by subsoiling
may result in extreme acidity. The low soil pH would prevent normal

agricultural activity for many yearse.

‘As an alternative to maintaining soil aeration some authors have considered
the prevention of ochre by keeping drains waterlogged and anaerobic
(Bloomfield, 1972A); Wesseling, 1964). The use of "air traps" to prevent
ochre was suggested by Mangon in 1856. In theory, when the entry of air
is inhibited oxygen concentrations in the drain fall and ferrous iron
oxidation is prevented. Thorburn and Trafford (1976) argued that this idea
| ignored the fact that the oxygen concentration in flowing water is high and
énaerobic conditions would seldom be achieved except under static conditions
during the summer months. Practical results on the use of this method are
conflicting. Petersen (1966) in a survey of the ochre problem, concluded
that drain submergence was the only effective control method. Seppala
(1958) also presented results of experiments in Finland where drain traps
had been used to prevent ochre. On the other hand, Ford (1969) found that
drains submerged for seven years contained no ochre but iron sulphide
deposits around the drains drastically reduced their efficiency. Similarily

Kaptein and Zwan (from Petersen, 1966) could not prevent ochre formation
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by keeping drain outlets covered with water.

It is difficult in practice to employ this system except where the land
is flat and the water table easily controlled (Petersen, 1966; Puustjarvi

and Juusela, 1952).

2.6.2.4 TLime

At filamentous ochre sites lime could be used to encourage the

precipitation of iron in the soil. However, Kuntze (1982) noted that if

pH was allowed to fall then iron could migrate into the drainapge system.
Additionally the large quantities of lime required could cause trace

element deficiencies. Limestone chips around drains have been used to raise
the local pH encouraging ochre formation outside the drain (Thorburn and
Trafford, 1976; Puustjarvi and Juusela, 1952; Ford, 1969). Generally
this has been unsuccessful and could cause clogging of pores outside the

drain (Ford, 1973; Kuntze, 1932).

It has been suggested that regular applications of lime can reduce the
rate of pyrite oxidation and hence extend the life of a drainage system
affected by pyritic ochre (FDEU, 1972; Bloomfield and Coulter, 1973).
Trafford et al (1973) found that liming did decrease the rate at which
pyrite was oxidized, thus reducing the amount of iron entering the
drainage system. With a total drainage of about 1,000 mm over twelve
months treating the soil with 42,000 kg of CaCOB/ha decreased the amount
of iron leached from the s0il to about 20% of the amount leached from an

mlimed control.



2.6.2.5 TFilters

Filters normally used in drainage schemes for preventing the deposition
of silt or to intercept and transport soil water rarely prevent ochre
formation. They can, in fact, aggravate the situation by causing ochre
to form outside the pipe where it is inaccessible to cleaning overations

(Petersen, 1966; Thorburn and Trafford, 19763 Talman, 1978).

The filters discussed in this section are designed to prevent ochre
formation within or outside the pipe. Alkaline filters, used to cause

ochre deposition outside the pipe, were discussed in section 2.6.2.4.

Organic filters such as sawdust or tannin rich filters have sone
bacteriocidal effect or are capable of complexing ferrous iron preventing
oxidation and deposition in the drainline. Regamej and Jaton (1976)
prevented ochre formation by using a woodchip filter system. Similarily,
Ford (1969) found that tile lines 1laid in sawdust contained less ochre

than tiles with fiberglass filters. Other authors have not recorded a
reduction of ochre when sawdust was used as a drain filter (Spencer et al,
1963; Scheffer and Kuntze, 1979). Scheffer and Kuntze (1979) were able

to control ochre deposition for two to three years using tannin rich filters.
Care must be taken to avoid the toxic effects of high tamnin extract

concentrations in watercourses (Kuntze, 1982).

Inorganic filters include silica gravel, river gravels, sulphur based
compounds and copper slag. Thorburn and Trafford (1976) described the

use of sulphur based filters arguing that if the drain was surrounded by
sulphur or pyrites the local pH would fall so low that ferric compounds
would remain soluble preventing ochre formation. The bulk of soil could
be maintained at pH values suitable for normal agriculture. The formation
of iron compounds such as Jarrosite at very low pH values and pollution
difficulties arising from the formation of sulphuric acid would limit the

use of this method.
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Petersen (1966) reported work in which gas purifying material was used
to cover drains. Gas purifying material is a waste product from gés
works, the major constituents of which are iron and sulphur compounds.
This was used on account of its assumed bacteriocidal properties. In
the initial experiments some positive action was recorded but when the

tests were repeated fhe results were not confirmed.

Since it is easief to remove ochre from inside drains than from the
surromnding soil and backfill the uselof filters to encourage precipitation
within the drain has been advocated (Ford and Beville, 1970; Ford, 1973).
It was found that silica gravel and river gravel could reduce ochre
deposition around the pipe but these materials could not be recommended
since they gradually became cemented with iron deposits and accumulated

iron sulphide.

2.6.2.6 Bacteriocides

Bacteriocides have been included in this section on "prevention' but it
should be noted that they could also be used to control ochre in systems

already affected.

The use of bacteriocides to control iron and manganese oxidising bacteria
is well known. For example, Gleen (1950) used sodium azide, iodoacetic °
acid and mercuric chloride to reduce iron oxidation in a soil colum
through which ferrous iron was passed. Similarily, Douka (1977) found
that the activity of cell-free extracts of two manganese oxidizing

bacteria was inhibited by mercury chloride (Hg012).

The inhibitory effect of several compounds on the organisms associated -
with filamentous ochre has also been demonstrated. Lackey and Wattie

(1940) used various inhibitors to control the growth of Sphacrotilus

natans in activated sludge. Chlorine was the cheapest bacteriocide

available when the article was written but silver nitrate, chloroform,
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phenol, acetic acid, and several dyes were also effective. Chang et al
(1979) studied the effects of iron compounds on S.natans. Inhibitioﬁ by
iron citrate (20 mg/1 as Fe), iron cysteine (5 mg/l as Fe) and ferrous

sulphate (10 mg/1 as Fe) was observed at pH 6.0. Takiguchi et al (1980)

isolated compounds that specifically inhibited Sphaerotilus at low

concentrations, These included peptide antibiotics, Anslimins A and B,

that inhibited Sphaerotilus at 0.78 and 0.39 pg/ml respectively

(Tekiguchi et al, 1978; Yoshikawa et al, 1979). However, very little
work has been carried out on the use of bacteriocides in ochre control.
Ford (1978, 1979) was able to inhibit the formation of ochre in
experimental models by using Acrolein and §odium hypochlorite. Other
reports suggest that the latter is not practical since the concentrations

required would pose a pollutien hazard (Thorburn and Trafford, 1976).

Although the Thiobacilli, responsible for the formation of pyritic ochre,
are susceptible to bacteriocides the concentration required for their
control in field drains would not be acceptable. ILe Roux et al (1973)
found that 100 mg/l mercuric chloride stopped pyrite oxidation by

T.ferrooxidans. This concentration can be compared to the 4.1 mg/l of

mercuric chloride required to kill 50% of the population of a freshwater
_fish in 24 hours (Hanumante and Kulkarni, 1979). Similarly, McIntyre
(1978) showed that 0.1 to 10.0 yg/l of mercury (as agueous mercuric
chloride) affected all levels of an experimental marine food chain from

photoplankton to fish,

Copper
Copper is a bacteriocide that has been investigated widely in relation to

ochre and thus deserves particular attention.

The effects of copper on living systems is well known. Copper sulphate
was one of the first selective weedkillers used in European agriculture,

early this century. Similarly, the '"Bordeaux mixture' was a copper based
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fungicide used to prevent potato.blight. Copper has also been advocated

for controlling foot rot in sheep and liver fluke in grazing stock. -Iron
bacteria are not exempt from the effects of copper,Lueschow & Mackenthun (1962
recorded the use of copper sulphate for controlling iron bacteria in

drainage ditches and Waitz and Lackey (1959) found that S.natans was

completely inhibited by'l,pg/ml of copper sulphate.

Because of copper's inhibitory effects it.has been used as an ochre
preventative. However, the practical ;esults are conflicting. Some
authors have found that copper prevents ochre formation. In a laboratory
experiment with filamentous ochre Bloomfield (19724)found that a piece of
copper wire delayed the onset of ifon precipitation in an aqueous extract
of dried lucerne by about a week. Similarly, Langish (from Puustjarvi and
Juusela, 1952) described an experimen£ where an 80 mm copper lining was
placed in the joints of drain pipes. Water leaving the pipes contained
copper but no Leptothrix bacteria. Ta tke,‘ahgg“ce_c¥§C&P?epj L.ochracea
was found in the drainage water. Ford (1969) was able to minimize ochre
formation for about six weeks using copper; however, the treatment did not

improve the flow of water out of the drain lines.

Other authors have not found copper to be an effective control measure.
‘Petersen (1966) noted field experiments by Jensen and Jackobsen where
copper was applied in several treatments. All tests showed negative
results despite promising laboratory experiments. Puustjarvi and Juusela
(1952) conducted laboratory and field experiments on the use of copper and

found no positive benefits.

This inconsistency in the reported effects of copper on ochre development
may have arisen, at least in part, from a failure to distinguish between
pyritic and filamentous ochre (Bloomfield, 1972 Bloomfield and Coulter,

1973). For example, Bloomfield (1967) was unable to prevent the formation
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of pyritic ochre with copper whilst the deposition of filamentous ochre
wos inhibited for several days by a piece of copper wire. This was

explained by the well known tolerance of T.ferrooxidans to copper and the

susceptibility of filamentous bacteria such as S.natans (Thorburn and
Trafford, 1976; Bloomfield and Coulter, 1973; Waitz and Lackey, 1959).
TKuntz (1982) noted thet copper might have only a limited effect on the
whole range of organisms involved in ochre formation and believed that

resistant forms and strains could develop in ecological niches.
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2.6.3 Cure

2.6.3.1 Mechanical methods

Mechanical methods for removing ochre include rodding and flushing.

Rodding

One of the "miscellaneous implements' exhibited at Derby in 1906 by

Messrs Jordan Brothers Was a "ferret drain cleaning apparatus'. This
consisted of a helix of steel wire, stiff enough to push through
ohstructions but flexible enough to pass around bends in the drainage

pipe (Hippisley, 1906). This is probably one of the forerunners of today's
drain rodding equipment. A variety of probes, scrappers and brushes can

be used to break vp and clean out all but the hardest deposits. WNormally
only straight, unbranched, drains with individual accessible outfalls can

be treated.

Rodding was advocated as a cure for ochre by Mitchell in 189k, It is best
carried out when there is sufficient drainflow to remove the loosened
deposit (Thorburn and Trafford, 1976). This method is of use when internal
blocking of drains by ochre is encountered. Ochre blocking drain slots,
adjacent soil and backfill cannot be removed by rodding (Streutker, 1977;
Mackenzie, 1962; Trafford et al, 1973). Streutker (1977) found that
rodding of drains containing iron and manganese deposits, with roots
associated, was only possible when the roots were young aqd the deposits

fresh.

Flushing

Flushing was known as a remedy against ochre in the last century (Denton,
1883; Denison, 1850). The drains were flushed with fresh water applied
from a shaft built at the head of each drain. Today, the same effect can
be achieved by flushing the drains with water applied through purpose

‘built hoses working at medium (20-30 atm pressure) or high water pressures
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(80-120 atm pressure) (Raadsma, 1974). The loosened deposits washed back
to the drain access opening are removed by a dewatering type pump and

[N

discharged onto the ground surface,

High pressure jetting can clean deposits inside and immediately outside
the drainage pipe but can also damage the gravel envelope or soil
structure around the drain (Raadsma, 1974; Ford, 1974; Thorburn and

Trafford, 1976; Gress and Willardson, 1974; Grass et al, 1976).

The benefits of jetting have been demonstrated but it seems that drains
over twelve months old with extensive deposits outside the pipe show only

a temporery improvement in water flow as a result of jetting (Ford, 197h4;

Haiijer and Wolf, 1965).

2.6.3.2 Chemical treatment

The most commonly used chemical for removing ochre is sulphur dioxide

(Mackenzie, 1962; Haiijer and Wolf, 1965; Grass and Mackenzie, 1972;

Ford and Tucker, 1975; Grass, 1969). The action of this chemical is

probably threefold (Thorburn and Trafford, 1976; Dennis and Wickens, 1977;

FDEU, 1975):

1. Chemical reduction of iron (III) oxide resulting in the solution of
ferrous salts

2, Stabilisation of ferrous salts by a lowered pH, and if the pH is low
enough, solution of iron oxides as ferric salts,

3. Bacteriocidal effects on filamentous bacteria.

Most workers have used a 2% solution of SO2 gas and water introduced into
the drain line via an inlet pipe (Haiijer and Wolf, 1965; Ford, 1977;
Grass et al, 1976; Grass and Mackenzie, 1972). The outlet and inlet to

the drainline are kept closed for over 24 hours after introducing the gas.

' When the stops are taken out the dissolved compounds are removed by
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flushing. Provided the effluenté are diluted sufficiently pollution of
ditches and water courses should not occur (Aldrich, 1977). Despite the
apparent success of splphur dioxide the FDEU have not obtained comparable
results. Treatment with 502 had a marginal effect but did not restore
drainage efficiency significantly. The FDEU (1975) did not see the use

of 502 to be of wide applicability on cost or safety grounds.
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3. SAMPLING AND CHEMICAL ANALYSIS OF OCHRE SAMPLES

3,1 SAMPLING

Ochre samples were collected in plastic bottles., These were washed by
soaking in dilute hydrochloric acid, rinsing several times with tap water
and finally distilled water. These containers were semi-sterilized by

the inclusion of methylated spirits for at least 12 hours.

On site the bottles were rinsed several times in drainage water to remove

traces of alcohol before collecting the sample.

In other sections the sites are referred to by the names in uppercaée

letters.

3,1.1 Bryn Gwyn Farm,PENYGROES, Dyfed

0.S. REF. SN585146,

This farm was located at a reclaimed open casbt codl site., Ochre had been
reported in springs and land drains at the site (Stewart, V.I; U.C.W.
Aberystwythipersonal communication). Upon examination of the area,ochre
‘was found in three drain lines but the deposits were posing a serious
problem in only one of these. Other drains in the same fields as those

containing ochre showed no evidence of ochre deposition at the outlet.

Some springs were identified by the presence of small amounts of ochre and
red stains on the soil surface but there was insufficient material for

sampling.
Ochre was also found in abundance in several surface water streams.

Sites 1 and 3 : Ochre was collected from drain outlets. The ochre

formed a soft but tenacious mass (Plates 3.1 and 3.2).

Site 5 : Deposits were found at the mouth of a stream that ran into a

small river from a "hole" in the riverbank (Plate 3.3).
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FIGURE 3.1 : DIAGRAM SHOWING THE SUBDIVISION OF PENYGROES SITE 7

DIRECTION OF WATER FLOW

—

X/ SMALL RIVER

ZZZ7 AREA OF OCHRE DEPOSITION

3  WATER FLOWED INTO THESE STREAMS FROM OPEN DITCHES
FED BY PIPE DRAINAGE SYSTEMS.
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Site 6 : A small ditch below a drain outfall. Ochre was not found in

the outfall itself.

Site ? : At this site ochre was collected from a number of small

streams, Site 7 is subdivided as shown in figure 3.1.

2,1.2 CAE COCH MINE, Trefriw, Gwynedd

0.S. REF, SH?774654

In this disused pyrite mine acidic streams have resulted from the

oxidation of pyrite by Thiobacillus ferrooxidans. Large "acid streamers"

have been formed by heterotrophic bacteria in these streams. The chemistry
and microbiology of the mine has been described in detail by Johnson (1979),

Johnson et al (1979), and Johnson and Kelso (1980).

%.1.% Newtowncunningham, Co.DONEGAL, Republic of Ireland

Ochre was collected from the outlets of plastic drains installed four
vears previously. This grassland site was 10m above sea level. The soil
was a peat layer of variable depth (1m to 4m) over boulder clay derived

from Silurian Shale. Where the shale was exposed ochreous mottling was

evident.

3.1.4 LLYN COEDTY, Nr Dolgarrog, Gwynedd

0.S. REF. SH 756667

Llyn Coedty is a reservoir at 300m 0.D. Ground water below the dam wall
flows into a concrete ditch (Site 1, plate 3.4) which conveys the water
to a small river. About 4m from the upper end of the ditch a 'V' notch
flow meter has been installed. This allows ochre to accumulate in a
shallow pool above the 'V' notch (Site 2, plate 3.5). Ochre deposits form

to
at such a fast rate that the ditch has/be cleaned with brushes at least

once a week.
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The concrete ditch is linked to the river by a culvert where a large
amount of ochre has been deposited. Pollution of the river by ferric

deposits was evident on several occasions (plates 3.6 and 3.7).

Ochre was also seen in small rock pools on the river bank especially
where the water from the culvert flowed into the river (Site 3). In

these pools large, readily disrupted, flocs of ochre were seen (plate 3.8).

3.,1.5 LLYN COWLYD, Nr Trefriw, Gwynedd

0.S. REF. SH737634

This reservoir is a natural lake at 380m O.D. Ochre was found in open
ditches carrying surface and ground water to a small river. The open
ditches were forund below the dam wall. At the upper end of the ditc£
water bubbled to the surface at a constant rate. An odour characteristic
of hydrogen sulphide was often evident at this site indicating that the
“emerging water had passed through an anaerobic zone, probably at depth.
Site 1, plate 3.9). The ditch contained a large amount of ochre,
especially in the first 9m where the deposits were composed of dark-
orange, gelatinous flocs (plate 3.10). Large fragments would stay intact
and float downstream when the ochre was disturbed. Site 2 was at a V!

notch some 9m from the head of the ditch.

The open ditch ended in a culvert which conveyed water to a small pool
(site k4, plate %,11) at the head of the river. Water also flowed into
this pool from a subsurface drain. The drain which contained much ochre,
was essentially a stone ditch interspersed with concrete pipes. This
channel carried water from a point at the base of the dam wall, where

ochre was always evident, and from the neighbouring areas.
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3.1.6 Nr. MACHYNLLETH, Powys

0.Se REF. SH735004

This site was found below a recently-built road. Water drained from under
the road, through gravel channels, and was conveyed to a stream via open
ditches. Both the ditches and gravel were subject to ochre deposition.

At the lower end of‘the ditches the ochre was gradually replaced by
gelatinous deposits of algae and aquatic plants which were abundant’ in

the stream (plate 3.12).

Site 1 : Pieces of gravel were collected. These were coated with ferric
deposits but insufficient material was available to examine the deposits

in detail. (plate 3.13).
Site 2 : Thick ochre deposits immediately below the gravel. (plate 3.14).
Site 3 : Some 5Sm from the upper end of the ditch. (plate 3.15).

Site 4 : This was a site near the stream where the ochre was yellow and

very gelatinous.

3.1.7 Norfolk

Several sites were visited in Norfolk in the autumn of 1980. These sites

were predominantly of fen peat in arable production.

BECCLES MARSH, Buxton, S.Aylsham

0.S. REF.

Site 1 : White gelatinous material was collected from a drain outfall.
The pH of this deposit as measured in the laboratory was 6.5. Chemical
analysis was not carried out since insufficient material was available

after drying the sample. (plate 3.16).
Site 2 : Ochre from a drain outfall.

Site 3 : "Crusty" deposits of ochre in an open ditch.

69



BURNLEY HALL, West Somerton

0.S. REF TG478199
Samples were collected from drain outfalls and odour of hydrogen sulphide
was evident in places. In addition to ochre, black stains of presumably

iron sulphide were seen in many outfalls.

A vwhite deposit, as described for Beccles Marsh site 1, was seen in several

drains. Some of this deposit was collected.

FIRBECK, Meeting Hill, North Walsham

0.S. REF. TG305283

Site 1 : This large open ditch (plate 3.17) has been in ope;ation for
about 25 years and had been cleaned in 1979. At the time of sampling a
deep deposit of ochre had formed in the ditch and this contained many

leaves and debris of aquatic plants. Deposits of blaclk iron sulphide were

found beneath the ochre.

Site 2 : Ochre was collected from a drain outfall in the bank of the open

ditch described above.

HALL FARM, Upton

0.8. REF. TGLO2119
- Sites 1 to 3 were all drain outfalls in the same field. At site 2 algae

were evident in the ochre deposit.

Sites 4 to 6 were also drain outfalls. This site had been drained in 1978
and ochre had blocked the system almost immediately. The area was

redrained about 12 months later.

PARK FARM, Wormegay

0.5. REF. TF673125
Ochre samples were taken from 8 sites all of which were drain outfalls

from several areas of the farm.
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PERSEHALL lianor Farm, Bunwell

0.S. REF. TM137915

All ochre collected at this farm céme from drain outlets.

3.1.8 OCHR CEFN ISAF Farm, Nr. Ysbyty Ifan, Gwynedd

0.S. REF. SHB43502

This is a marginal farm at about 900m O0.D. No drainage system on the
farm had suffered from ochre at the time of sampling. Ochre deposits
were found near an unsurfaced road below a rush-infested, waterlogged
area. Ochre was evident at several points along the road and an oily

sheen could be seen on water running from the area. (plate 5.18).

3.1.9 PENTRE MAWR, Pontyberem, Dyfed

0.S. REF. SN492104

Pentre Mawr is a disused coal mine where extraction ceased about 1965.
Access to the coal seams was achieved by drifts. Ochre deposits were
found on the walls of one of.the drifts and these were associated with a

slow, but continuous, flow of water percolating from the ground above.

In some parts of the drift small, vertical, red rods were scen on the

roof. A continuous flow of water was also associated witlh these

_ formations.

The surface of the ochre deposits had a crusty texture and was bright
orange (plate 3.19). Sometimes a very hard deposit formedyhaving a blood

red colouration (plate 3.20). Below these surface layers the ochre was

darker in colour.

3.1.10 PONTHENRI, Dyfed

0.S. REF. SNA491097
Ochre was found on the soil surface in a field used for rough grazing.
The field was wet with many areas dominated by rushes. Cchre had

deposited in part of the field as a red coating about lcm deev overlying
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black material. An odour of hydrogen sulphide was evident when the

deposit was disturbed.

3.1.11 Nr., Porthmadog, Gwynedd

Iwo sites were sampled; both were at sea level and were uscd for grazing.

The brown earth soils were derived from marine or river alluvium.

GALLT-YR-HULLDREM

0.S. REF. SH612432

Samples were taken from the outfalls of a drainage system that had been
operating for over ten years. One drain was completely blocked by ochre
at the outfall. When the deposit was remcved water ran freely from the

drain.

MORFA GLAS

0.5. REF. SH575403

Ochre was collected from inside a clay tile and a pit was dug to gain
access to the drain line. Ochre had formed in the joints between the

tiles and in the gravel backfill.

3e1.12 SPANKER, Nether Heage, Derbyshire

0.S. REF. 8K363505
This reclaimed open cast site had been investigated by Johncon (1979),

who found that ochre deposits in the area were pyritic.
Site 1 : Ochre from an open ditch

Site 2 : Ochre deposits forming on the soil surface over an extensive

area (plate 3.21).

Site 3 : An open ditch close to site 2. Dead earthvorms were found in

this ditch suggesting an acidic environment (plate 3.22).
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Site 4 : Above the open ditch (site 3) a wet, raised mound of ochreous

material was discovered. The mound was partially covefed with grasses.

3.1.13 SYCHNANT PASS, Nr. Conwy, Gwynedd

0.S. REF. SH?64772

Ochre deposits formed in a roadside ditch. The ditch ram between the
road and a wet, peaty area. The ditch was blocked for several metres by
aquatic weeds, mainly rushes. This allowed the ochre deposit to form and
accumulate within the blocked area. Following heavy rainfall water
overflowed onto the road and thin layers of ochre developed on the road

surface. On drying these left a red stain (plate 3.23 and 3.24).

In the early summer ochre usually spread down the ditch for about 10 metres
below the accumulation of rushes. In these parts of the ditch, where the
flow of water was strong, the ochre was a bright orange/yellow colour and
very gelatinous. This can be compared to the small red fleocs associated

with the main accumulation of ochre in the blocked area.

3.1.14 TAL Y BONT Isaf Farm, Tal y Bont, Nr. Bangor, Guynedd

0.S. REF. SK503704
Ochre had developed on the soil surface over a L -~ 6 square metre area.
This site lay across a watercourse where inadequate drainage caused

extensive waterlogging.

%,1.15 TUMBLE Cozl Mine, Tumble Dyfed

0.5. Ref. S8N516123
At this disused coal mine water accumulating in the old workings is

pumped to the surface to prevent flooding in adjacent worked coal seams.

Ochre accumulated as a red sludge about 300 - 400 metres below ground
level. Despite a very fast flow rate (approximately 1,500 1/minute)
ochre severely reduced the effective diameter of the 150 mnm diameter

steel pipes used for pumping water.
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2,2 CHEMICAL AIALYSIS

Fe2.1 METHODS

Before chemical analysis ochrevsamples were dried in an oven at 105°C.
Due to the high water content of the samples it was found that air
drying was very slow and thus the higher temperatures were adopted.
Dried samples wefe ground with a pestle and mortar and stored in plastic
bags. Grinding reduced the ochre to a fine powder and sieving was not

necessary.

2.2.1.1 EH

pH was determined using a 7020 pH meter (Electronic Instruments Limited)
buffered at pH 4.0 and 9.2. The pH of undried samples was measured
after thorough shaking of the sample in its collecting vessel. This was

carried out as soon as possible after sampling.

To determine . the pH of dried samples, ochre and distilled water were
mixed in the ratio 1lg ochre to 2.5 ml water. The mixture was left to

stand, with intermittent stirring, for one hour.

3.2.1.2 Loss on ignition

A known weight of ochre (approximately 2g) was heated in a muffle
furnace at 200°C for 2 hours. The temperature was then raised to SOOOC
for 3} hours. The percentage loss on ignition was calculated for the

oven dried ochre.

3.2.1.3 Total iron and manganese

Total iron and manganese contents were determined for ignited samples
of ochre. Ignited ochre was used since insufficient material was
available to use oven dried ochre for all the chemical analyses.

Large volumes of some samples were reduced to a few grammes after oven

drying.
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The methods outlined below were investigated.

a. Low tempnerature extraction with hydrochloric acid

Ow2 g ignited ochre was extracted in 3 ml concentrated hydrochloric acid
for 18 hours (overnight). 0.5 ml of extract was diluted to 50 ml with

distilled water and 2 ml of this solution diluted further to 100 ml.

b. Extraction with hydrochloric acid at 95°C

0.1 g ignited ochre and 3 ml concentrated hydrochloric acid were heated
for 3 hours at 9500 in a dry block heater. A marble was placed on top of
each extraction tube., After extraction the volume was made up to zbout
10 m1 with distilled water, thoroughly shaken, transferred into a 25 ml
volumetric flask and made up to volume. After all the ochre fragments
had settled to the bottom of the flask 1 ml was withdrawn and made up to

250 ml with distilled water.

c. High temperature extraction with perchloric acid

O.2g ignited ochre was extracted in 2 ml perchloric acid at 200°C for

L hours in a dry block heater. A small marble was placed on top of each
extraction tube to :revent loss of extractant by evaporation. 0.5 ml of
extract was diluted to 50 ml and 2 ml of this solution diluted further to

100 ml with distilled water.

In 211 the methods total iron in the final dilutions was determined using
a Pye Unicam SP2900 atomic absorption spectrophotometer. The results were
compared to those obtained for standard ferric nitrate solutions in the

range O to 10 ypg/ml.

The efficiency of the three methods was investigated by determining total
iron content of ochre from three sites. 3 replicates ver site were used.

The mean results are given in Pable 3.1.
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Table 3.1 : TOTAL IRON CONTENT OF IGNITED OCHRE SAMPLES USING

3 EXTRACTION METHODS

% Fe in ignited ochre (mean of 3 replicates)

METHOD
METHOD SPANKER 1 BECCLES MARSH 3 FERSEHALL 4 MEAN

HYDROCHLORIC ACID. 34,26 (18.90) k.24 (11.77) 40.55 (10.14) 33.02
( OVERNIGHT) A »

I(-IYDgO())HLORIC ACID 48.81 (0.49) 32.48 (4.28) ° 47.01 (0.28) Lo 77
95°C

PERCHLCRIC ACID 49,15 (2.97) 22.05 (1.71) 52.82 (0.98) Ly .34

(THE STANDARD DEVIATION FOR EACH TREATMENT IS GIVEN IN PARENTHESES)

The mean iron content determined.gg the perchloric digest, the overnight
extraction, and hydrochloric acid at 95°C were 41.34%, 33.02% and 42.77%
respectively. Statisticgl analysis, using analysis of variance and Tukey's
test for the comparison of means (Honestly Significant Difference at

p = 0.05 = 23.96) showed that there was no significant difference between
the extraction methods for ochre samples from any of the three sites.
Comparison of the means shows that the overnight extraction with
hydrochloric acid did produce values indicating an iron content about 9%
lower than tkose obtained by the other methods. Additionally, standard
deviations obtained for the overnight extraction results were much greater
showing that with this method it was more difficult to obtain consistent
results. The standard deviations for the perchloric and hydrochloric at
95°C extractions were less than 3 and 5 respectively. The standard

deviations for the overnight extraction exceeded 10 for all the sites.

The method adopted for analysing further ochre samples was extraction with
concentrated hydrochloric acid at 95°C. This gave more consistent results
"than the overnight extraction and was more convenient to use than the high

temperature perchloric digestions.
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An experiment was conducted to determine whether or not the results
obtained by extracting iron from ignited ochre differed substantially

from thqse using oven dried ochfe. 3 replicate samples of oven dried
ochre from Spanker 1, Beccles Marsh 3 and Persehall 4 were digested in
hydrochloric acid at 95°C as described earlier. The mean results were
compared to those bbtainéd for the ignited samples from the same sites.
The results for percentage iron in ignited ochre were adjusted to the
percentage in oven dried ochre by taking into account the loss on ignition

result for the sample (Table 3.3). The results are given in Table 3,.2.

Overall there was no significant difference between the two methods.
However for the sample from Beccles Marsh 3 the result obtained using
ignited ochre (27.32%) was significantly higher than that obtained using
oven dried ochre (21.04%). It is possible, therefore, that a longer
extraction period'is required to remove all the iron from samples of oven

dried ochre.

Table 3.2 : TOTAL TRON CONTENT OF OCHRE SAMPLES USING IGNITED AND

OVEN DRIED SAMPLES

SPANKER 1 BECCLES MARSH 3 PERSEHALL &  MEAN
OVEN DRIED L .75 (0.38) 21.04 (0.97) 35.50 (1.38) 33.76

IGNITED SAMPLE*  41.19 (0.42) 27.32 (3.60) 35.12 (C.21)  3h.5h
(Standard deviation for each treatment is given in parentheses)
* % Fe in oven dried ochre calculated by taking into account % LOI

HONESTLY SIGNIFICANT DIFFERENCE AT p = 0.05 = 4.50 and AT p = 0.0l = 5.78

3.2.1.4 Total organic carbon

Total organic carbon was determined by Tinsley's method (Bremner and
Jenkinson, 1960). To repliczte samples of ochre (0.1 g to 0.25 g oven

dried sample) were added 25 ml O.4N potassium dichromz=te, 25 ml concentrated
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sulphuric acid and 12.5 ml orthophosphoric acid (S.G. 1.75). This
nmixture was heated under reflux for 2 hours. After cooling 100 ml
distilled water was added énd 5 ml indicator solution (N-phenyl

anthranilic acid, 0.2 g in 100 ml of 0.2% NaZCOB)'

Residual dichromate was determined by titrating against 0.2N ammonium
ferrous sulphate (78.44 g/L including 20 ml conc HpS0,) until the colour
changed from dark purple to dark green. A blank containing all reagents

but no ochre was included for each batch of samples.

Total organic carbon was calculated on the basis that 1 ml of O.4N

dichromate is consumed by l.2 mg carbon.

3.2.1e5 Colour

The colour of oven dried and ignited samples was described by reference to

standard Munsell colour charts.

3.2.1.6  Absolute sugar levels (from Johnson, 1979, except for total sugars)

340 g of ochre and 4 ml 72% (w/v) sulphuric acid were mixed to a slurry
in a 250 ml round-bottom flask. After two hours at room temperature

100 ml of distilled water was added. The flasks were heated under reflux
for 16 hours. The final hydrolysate volume was estimated and 20 ml

withdrawn for determining absolute sugar levels.

The 20 ml of hydrolysate was diluted to about 100 ml, neutralised with
NaCH and filtered to remove iron hydroxide precipitates. The volume was
reduced by evaporation under vacuum to 20 ml. Colorimetric methods were

used to determine different classes of monosaccharides.

(a) Total sugars (Mongomery, 1961)

To 2 ml of solution was added 0.1 ml of 80% phenol. 5 ml of concentrated
sulphuric acid was added slowly. The acid was directed onto the surface
of the solution to aid mixing. The reagents were mixed thoroughly.

Absorbance was read at 489 nm after 30 minutes at room temperature.

78



(b) Hexoses

A known volume of solution (containing 10-60 ug hexose, usually 1 ml) was
thoroughly mixed with anthrone réagent (0.2% anthrone in a 5:2 mixture of
concentrated sulphuric acid and water) in an ice bath. The mixture was
heated at 100°C for 10 minutes and then rechilled. Absorbance was read

at 620 nm after 5 minutes. Glucose was used as a standard.

(c) Pentoses

Aniline reagent was prepared by mixiné together 100 ml of glacial acetic
acid, 10 ml 5% aqueous solution of oxalic acid dihydrate, 24 ml distilled
water and 16 ml of freshly redistilled aniline., 6 ml of-this reagent was
added to 2 ml of sugar solution (containing 10-70 pg pentose). The mixture
was incubated at room temperature, in the dark, for 24 hours. Absorbance

was measured at 480 nm using ribose as a standard.

(d) Methyl pentoses

1 ml of solution, containing 10-50 ng mefhyl pentose, was mixed in an ice
bath with 4.5 ml of a 6:1 solution of concentrated sulphuric acid and water.
After heating at 100°C for 10 minutes the mixture was cooled for 5 minutes
in an ice bath. 0.1 ml of thioglycollic acid solution (1.0 ml thioglycollic
acid in 29 ml H20) was added, and the solution incubated in the dark at
room temperature for 3 hours. Absorbance was read at 400 nm and 430 nm.

The difference between the two absorbances corresponded to the optical

density attributable to methyl pentose. Rhamnose was used as a standard.

(e) Uronic acids .

Ou.4 ml of solutionm, containing 2-20 pg uronic acid, was mixed with 3.0 ml
of sodium tetraborate solution (0.952 g in 100 ml concentrated sulphuric
acid). The mixture was chilled in ice, heated at 100°C for 5 minutes, and
then rechilled. SO‘pL of m~-hydroxydiphenyl solution (C.15% in 0.5% aqueous
sodium hydroxide) was added. After five minutes abéorbance was read at

520 nm. Glucuronic acid was used as a standard.
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(f) Hexosamines

1.0 ml of solution, containing 15-150‘yg hex0samine, was mixed with

1.0 ml of acetylacetone reagent (L% acetylacetone in 1.5N sodium carbonate).
1.0 ml of distilled water was added. The solution was then heated for

20 minutes at 100°C and cooled. The volume was made up to 10.0 ml with

954 ethanol and then 1.0 ml of Ehrlich reagent was added (2.66% p-dimethyl-
aminobenzaldehyde in a 1:1 mixture of concentrated hydrochloric acid and
9%% ethanol). Absorbance was read at 520 nm after 45 minutes. Glucosamine

hydrochloride was used as a standard.

3+2+1.7 Relative sugar levels (Johnson, 1979)

Ochre samples were hydrolysed in sulphuric acid as described in section

3e2¢1.64

50 ml of hydrolysate was neutralised with solid barium carbonste and
aqueous barium hydroxide and reduced to dryness by rotoevaporation under
vacuumn. The samples were taken up in 0.1 ml distilled water and reduced
to sugar alcohols by adding 0.1 ml 0.8M sodium borohydride. After two
hours two drops of acetic acid were added to stop the reaction. The
solution was evaporated to dryness under vacuum. Approximotely 5 ml of
methanol/acetic acid solution (200:1) was added and the mixture again
evaporated to dryness under vacuun. The addition of methanol/acetic acid
solution followed by drying was repeated three times. After drying
overnight in a vacuum desiccator over phosphorus pentoxide the sugar
alcohols were acetylated by heating with 0.3 ml acetic anhydride for two
hours at 100°C in an oven. The sugar derivatives were washed three times
by adding 2 ml of toluene and evaporating to dryness under vacuum. The
alditol acetates were taken up in 2 ml chloroform. 2 ml of distilled
water was added and the chloroform phase separated by centrifugation.

This phase was evaporated and thoroughly dried in clean, dry roundbottom

flasks.
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Reference alditol acetates were prepared by the procedure outlined above
for glucose, galactose, mannose, rhamnose, ribose, fucose, arabinose and

xylose.

The sugar derivatives were separated by Gas Liquid Chromatography using a
Pye Unicam series 104 gas chromatograph, using a flame ionisation detector.

The column used was composed of:~-

Polyethylene glycol succinate 0.2%
Polyethylene glycol adipate 0.2%
GE XE 60 0.4%

The flow rates of nitrogen and hydrogen were both 40 cm/min. and a

constant temperature of 170°C was employed.

The derivatives of reference sugars were taken up in a small volume of
acetone, injectedy and their retention times recorded. The hydrolysed

ochre samples were treated in the same way and the monosaccharide
components identified by reference to the retention times of the standardse.
The relative amounts of each sugar in the ochre hydrolysates was determined

by comparing the areas of peakse

81



3.242 RESULTS

502'2.1 EH
Table 3.3, Figure 3.2

The pH of the undried ochre samples ranged from 3.4 (Spanker 4) to 7.8
(Persehall 2) with a mean of 6.0. Over 75% of the samples had a pH
between 5.0 and 7.0 with 50% of the observations being between pH 6.0
and pH 7.0. 1% of the samples had a pH below 5.0 and the remaining 90

had a pH above 7.0.

The minimum pH of the oven dried samples was 2.2 (Spanker 4) and several
samples had the maximum pH of 7.9. The mean pH for oven dried ochre was
6.2. The results recorded for oven dried samples showed a definite shift
of values aw;& from the pH 5~7 range. 39% of the samples had a pH between
50 and 7.0, This was almost half the percentage recorded for the undried
samples. U41% of the oven dried ochre samples had a pH above 7.0 and 20%

of the observations were below pH 5.0.

F.2.22 Loss on ignition

Table 3.3, Figure 3.3

The mean loss on ignition percentage for the samples was 25% with values
ranging from 10.6% (Persehall 3) to 52.6% (Hall Farm 46). The histogram
in figure 3.3 shows that there was no definite trend in the frequency
distribution of the values. In 59% of the samples the loss on ignition
percentage was less than 25. 37% of samples had a loss on ignition between
25% and 50% and only two samples had a loss on ignition greater than 50%.

No samples had less than 10% loss on ignition.

3.2.2.3 Total iron and manganese

Table 3, Figure 3.4
The total iron content of oven dried samples ranged from 2% (Penysroes 5)

to 50% (Spanker 4) with a mean of 27%. Half of the samples analysed had a
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total iron content between 20% and 4O¥. 30% of the samples had less than

20% iron and 20% of the samples had a total iron content greater than LO%.

In over 75% of the samples no manganese was detected. In 20% of the
observations some manganese was found but in concentrations less than 1%.
Manganese contents greater than 1% were only found in 2 samples, namely

Penygroes 3 (4% total manganese) and Pentre Mawr (10% total manganese).

3.2.2.4 Total organic carbon

Table 3, Figure 3.5

The results showed an even distribution of organic carbon values within
the range 0.8% (Tumble) to 13.2% (Donegal). The mean organic carbon
content was 5.9%. Almost half the samples had an organic carbon content
of between 2% and 6%. 13% of the samples had less than 2% organic carbon.

The remaining values (39%) were above 6% organic carbon.
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FIGURE 3.2 : HISTOGRAMS SHOWING THE FREQUENCY DISTRIBUTION OF RECORDED

pH VALUES FOR UNDRIED AND OVEN DRIED SAMPLES (46 SAMPLES)
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FIGURE 3.3 HISTOGRAM SHOWING THE FREQUENCY DISTRIBUTION OF RECORDED
LOSS ON IGNITION PERCENTAGES FOR OVEN DRIED OCHRE SAMPLES
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FIGURE 3.4 HISTOGRAM SHOWING THE FREQUENCY DISTRIBUTION OF RECORDED
TOTAL IRON PERCENTAGES OF OVEN DRIED OCHRE

20

—

25 _| BASED ON 46 SAMPLES

20
OBSERVATIONS

(%)

15 o

10

]

0 10 20 30 40 50 60

TOTAL IRON (%)

88



FIGURE 3.5 HISTOGRAM SHOWING THE FREQUENCY DISTRIBUTION OF RECORDED
ORGANIC CARBON PERCENTAGES FOR OVEN DRIED OCHRE SAMPLES
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FIGURE 3.6 HISTOGRAM SHOWING THE FREQUENCY DISTRIBUTION OF RECORDED
MUNSELL COLOURS OF OVEN DRIED OCHRE. (46 SAMPLES)
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3.2.2.5 Colours

Table 3.3, Figure 3.6

Most oven dried samples (67%) had a colour represented by Hue 7.5YR on the

Munsell scale. This reflects a reddish yellow to strong brown colouration.
24% of the samples fell into the SYR Hue (yellowish-red, reddish brown) and

the remaining 9% had a distinct red colour, Hue 2.5YR.

After ignition the colours were dominated by red ferric compounds. 90% of
the samples had a red to dark red or dark reddish brown colour classified
as Hue 2.5YR. One sample (Donegal) had a dusky red colour after ignitionm,

10R 3/4 on the Munsell scale.

3.2.2.6  Absolute Sugar levels

Table 3.4

The carbohydrate fraction of the 18 samples analysed for absolute sugar
levels was dominated by hexoses. Hexoses accounted for over 50% of the
total sugar content for all samples except two. On average the total
carbohydrate (sum of each absolute sugar level) was composed of hexoses 61%,
Pentoses 6%, nethyl pentoses 6%, uronic acids 254, and hexosamines X%
Uronic acids were found in all samples but at approximately half the
concentration of hexoses. Pentoses wére also identified in all samples
except two. Methyl Pentoses and hexosamines were not common in the analysed

samples. Over half of the samples contained neither of these sugar types.

The results cast doubt on the determination of total sugars by the method
used. In all cases the total sugar value was substantially less than the
sum of the absolute sugar concentrations. In 12 out of the 18 samples the

total sugar content was less than the value calculated for the hexoses.

3.2.277 Relative Sugar Levels

The relative sugar levels for ten ochre samples are given in table 3.5.

The GIC traces for each sample are shown in figure 3.7.
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TABLE 3.4 : ABSOLUTE SUGAR LEVELS IN OVEN DRIED OCHRE SAMPLES

ng/g (to nearest 10 pg)
- METHYL URONIC
TOTAL  HEXOSES PENTOSES PENTOSES  ACIDS HEXOSAMINES

SPANKER 1 700 980 50 * 300 *
SPANKER 4 300 k70 * * 300 *
HALL FARM 1 1000 680 150 » 470 *
HALL FARM 2 1300 1280 160 500 500 *
HALL FARM 3 2100 2390 koo 300 430 30
HALL FARM La 1700 2270 110 800 8t 30
HALL FARM 5 1200 1290 2ho 100 1190 30
HALL FARM 6 1900 2530 140 koo 570 120
PERSEHALL 2 . - 1900 1670 90 * 360 240
PERSEHALL 3 900 600 110 * 220 *
PERSEHALL 4 400 480 £10 * 4ho 120
PERSEHALL 5 700 900 280 * L8o *
PARK FARM 1 1000 1170 70 * Lho 30
PARK FARM 5 800 1080 20 * 360 *
BECCLES MARSH 2 1600 2530 k30 900 1030 *
BECCLES MARSH 3 1600 1280 40 koo 540 *
FIRBECK 1 900 1080 * * 210 30
FIRBECK 2 1200 960 190 100 460 *

* NONE DETECTED
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It proved difficult to obtain reasonable traces from the GIC separation of
ochre hydrolysates. Although separation of individual monosaccharides at
retention times comparable to those of the standards was clearly observed
the peaks produced were often small and showing only a slight deviation
from the baseline. Additionally the "peaks“ of the sugars glucose,

galactose and mannose had pronounced flat tops.

By calculating the mean of each column in table 3.5 it is possible to
derive an overall Glucose : Galactose : Mannose : Ribose : Rhamnose :

Fucose : Arabinose : Xylose ratio for the 10 ochre samples of 100 : 44 : 28 :

4o : 65 : 70 : 104 : 60. This ratio would suggest that arsbinose was
slightly more abundant than glucose in the hydrolysates. The least abundant
monosacchariéé was mannose with galactose and ribose being less than half
as abundant as glucose. However, the trends suggested by the overall ratio
are not applicable to each sample. For example, arabinose is more abundant
than glucose in only 4 samplés. As revealed in table 3.5 a great variation
was observed between the samples. The ranges in the levels of each sugar

relative to glucose are given in table 3.6.

More than one chromatogram were obtained for samples from Persehall by
analysing several subsamples of the alditol acetate derivatives of the
hydrolysates. These results are shown in table 3.7. For some sugars the
results obtained for the replicates were identical or very similar. ZFor
example, the relative xylose ratios for Persehall 3(1) and Persehall 3(2)
were both 0.59. Similarily the relative mannose levels for Persehall 4(1),
L(2) and 4(3) were 0.35, 0.32 and 0.31 respectively. Other sugars however
showed a marked difference between the replicates. The relative levels of
mannose, for example, for Persehall 3(1) and 3(2) were 0.15 and 0.51

respectively.
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TABLE 3.6 : MAXIMUM AND MINIMUM RELATIVE SUGAR LEVELS

BASED ON THE ANALYSIS OF 10 OCHRE SAMPLES

* ALL RATIOS ARE RELATIVE TO GLUCOSE (1.0)

MINIMUM MAXIMUM
GALACTOSE 0.22 0.82
MANNOSE + 0.65
RIBOSE 0.02 1.13
RHAMNOSE 0.22 1.13
FUCOSE 0.23 2.12
ARABINOSE 0.43 2.21
XYLOSE . 0.13 1.79

+ NONE DETECTED
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FIGURE 3,7 - INDEX

GL = GLUCOSE

GA = GALACTOSE

M = MANNOSE .
X = XYLOSE

A = ARABINCSE

F = FUCOSE

RH = RHAMNOSE

MDLQ ¢ /lLu_«a ot ol shambond oo stmafims —
Qos DeschinnTT
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3.3 DISCUSSION

Ochre was collected from a variety of sites including drain outfalls, open
ditches, streams, and the soil éurface. The appearance of ochre in situ
was highly variable. Most of the deposits in open ditches were composed
of small flocs of dark orange material (plate 3.25) whereas samples from
drain outlets were a bright orange colour, harder, well structured and
gelatinous (plate 3.27). Where ochre had dried it formed a crusty and
brittle deposit. The difference in appearance between ochre in ditches
and in drain outlets was also observed in open ditches at Llyn Cowlyd,
Llyn Coedty and Sychnant Pass. Where the flow of water increased (for
example, at the 'V! notches) ochre changed from a well flocculated dark
orange colour to a very gelatinous, bright orange-yellow colour. The ochre
at Spanker was also orange and compact (plate 3.26). A very distinct type
of ochre was observed in the shallow pools at Llyn Coedty (plate 3.8).
These pools contained very large, but fragile, flocs. and filaments of

ochre,

An examination of the sites where ochre was found substantiates the view
that these deposits develop at the interface between aerobic and anaerobic
zones (see section 2.2.1l.). For example, at Sychnant Pass and Ochr Cefn
ochre deposits formed below a very wet, peaty area. At Llyn Cowlyd and
Llyn Coedty water bubbled into the open ditches from an anaerobic zone.
This was evident by the odour of hydrogen sulphide where the water emerged
and by the high ferrous ion concentration of the water (section 6.1.).
Hydrogen sulphide and deposits of ferrous sulphide were found at several

sites.

A marked variation was seen in the extent to which ochre developed within
a site. For example, at Penygroes only two drains were affected by ochre
in a field containing several drain lines. At Penygroes 1 two outlets

emerged at the head of an open ditch. One of the drains contained ochre

105



FIGURE 3.8

PLOT OF pH (UNDRIED) AGAINST pH DRIED/pH UNDRIED

pH dried
pH undried
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whilst the other did not. Similarly, at Llyn Cowlyd an open ditch a few
metres away from the ochre containing ditch contained no iron deposits and
iron could not be found in the water by atomic absorption spectrophotometry

(plate 3.28).

Examination of the various deposits showed that ochre formation had
occurred at different rates. Some drainage systems had been operating

for several years and the ochre deposits in them were not preventing the
discharge of water. Other drains had blocked completely within a very
short time. The most severe case was the site at Hall Farm (Sites 4 to 6)
where ochre had blocked a drainage system within 12 months. Repeated
visits to some sites revealed that ochre could form very quickly. At Llyxd
Coedty and il&d Cowlyd ochre had to be cleared from the open ditches at

least once a week to ensure their continual operation.

Most of the samples had a pH between 5.0 and 7.0 in the undried state.

This rose to pH 6.0 - pH 8.0 on oven drying. This reflects the fact that
most ochre deposits form when the drainage water has a near neutral pH.
Some of the sites, however, were characterized by a very low pH. When
undried samples had a pH below 5.0 then oven drying reduced the pH even
further. Ochre at these sites, especially those at Spanker, would normally
be classified as pyritic deposits (Section 2.2.1) on the basis of
their acidity. The degree to which this distinction is appropriate to the

ochre problem will be discussed in chapter 4.

It should be noted that the effect of oven drying on pH was not simple.

In general oven drying increased pH if the undried sample had a pH greater
than 5.0. If the undried sample had a pH lower than 5.0 then drying caused
the pH to fall. The samples collected at Llyn Coedty, Llyn Cowlyd and
Machynlleth were, however, anomalous in that their pH fell after drying
although the undried samples had a pH above 5.0. This is illustrated in

Figure 3.8 where undried pH is plotted against oven dry pH/undried pH.
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The complex nature of this effect is illustrated also by the fact that

some samples having the same pH before drying yielded different pH values
when oven dried. For example, Hall Farm 2, Hall Farm 3 and Hall Farm La
had a pH of 6.6 in the undried state. On oven drying the pH of these
samples was 7.5, 7.7 and 7.9 respectively. These differences in pH

between and withiﬁ dried and undried samples reflects the inherent
variability of ochre deposits with respect to chemical reaction and external

influences such as the pH, flow rate and composition of the waters in which

they are formed.

The total organic matter content of the samples is reflected in the loss
on ignition and organic carbon percentages. The results show that the
proportion o% organic matter in the samples is highly variable. For
example, the loss on ignition percentage ranged from 10 to 52. However,
all the samples analysed did contain organic matter. The minimum values
recorded for percentage loss on ignition and percentage organic carbon
were 10.6 and 0.8 respectively. This reflects the importance of organic
material in the formation of ochre deposits. An ochre deposit of purely

chemical origin, with no organic component, was not found.

The nature of the carbohydrates in the organic matter was investigated by
colorimetric methods and GLC. Hexoses and uronic acids were the dominant
sugars in the hydrolysed samples. The abundance of hexoses is in agreement
with the fact that hexoses are the most common monosaccharides in
biological systems (Lehninger, 1975). Uronic acids are also an important
component of many polysaccharides (Lehninger, 1975; Russell, 1961). The
levels of the other sugar classes namely, pentoses, methyl pentoses and
hexosamines were relatively low and were not detected at all in some

samples.
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The fractionation of organic matter by GIC yielded some anomalous results.
Johnson (1979) quoted the following ratio as being typical of relative

sugar levels in mineral soils.

GLUCOSE 100
GALACTOSE L6
MANNOSE 50
XYLOSE L2
ARABINOSE 55

RHAMNOSE AND FUCOSE 23

The overall ratio obtained from the results of table 3.5 is substantially

different to this ratio:-~

GLUCOSE ) 100
GALACTOSE Ly
MANNOSE 28
XYLOSE 60
ARABINOSE 104

RHAMNOSE AND FUCOSE 135

It can be seen that mannose levels in the ochre hydrolysates afe lower
than in soils, whereas the amounts of xylose, rhamnose, fucose and
arabinose are much higher. The high levels (relative to glucose)
recorded for the pentose sugar arabinose are especially anomalous since
the absolute level of pentoses in the samples was low in relation to

hexoses.

Johnson (1979) found that the level of ribose in hydrolysates of bacterial
slimes from acid streamers was high giving ribose : xylose ratios greater
than 10. Xylose however is a major component of soil carbohydrates and

the ribose to xylose ratio of most soils is usually less than 0O.l.
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Johnson suggested that the ribose : xylose ratio of ochre hydrolysates
could indicate the importance of the acid streamer bacteria in éhe
formation of ochre deposits. The ribose : xylose ratios of the ochre
hydrolysates analysed in the present study are given in table 3.8. &
ratio greater than 10 was not found in any of the samples. The highest
ratio recorded was 2.3 (Beccles 2). However, all the samples, except two
(Persehall 5 and Hall Farm 6), had a ribose to xylose ratio greater than
that normally found in soils. These results imply that bacteria similar
to those found by Johnson (1979) are also present in the ochre samples

analysed. This conclusion will be discussed further in chapter k.

TABLE 3,8 THE RIBOSE : XYLOSE RATIOS OF OCHRE HYDROLYSATES

RIBOSE : XYLOSE RATIO

SPANKER 1 1.92
SPANKER 4 0.66
HEALL FARM 2 1.64
HALL FARY La : 0.83
HALL FARM 6 0.09
PERSEHALL 3 0.20
PERSEHALL 4 0,70
PERSEHALL 5 0.03
PARK FARM 5 | 1.28
BECCLES 2 2.27

As expected all the ochre samples contained significant quantitiés of
iron. Half the samples had a total iron content when oven dried of
between 20% and 40f. 50% of the dry weight of the sample from Spanker 4
was composed of iron. At the pH values associated with mostvof the sites,
all easily oxidized iron would precipitate out and accumulate. At some
sites, however, the pH values were below 5.0. At Spanker all the sites
had a pH below 4.2. At these pH values the chemical oxidation and

precipitation of iron would be slow. Therefore the accumulation of iron
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at these sites of low pH might suggest the catalysis of ferrous iron

oxidation by acidophilic microorganisds.

The high iron content of the ochre samples demonstrated that the total
amount of iron deposited at each site must be very large. Additionally
the rapidity and duration of deposition would suggest a large reserve or
source of iron. At these sites ochre is likely to be a long term,
recurrent problem and could be described as allochthonous or permanent

according to Kuntze's (1982) classification (See Section 2.2).

Manganese was not found in significant quantities in the samples except
for Pentre Mawr and Penygroes 3 where the percentage of manganese in dried
ochre was 10 and 4 respectively. This may reflect low levels of manganese
in the drainage water at the other sites. Additionally manganese does not
oxidize rapidly at pH values below 8.0 although the rate of oxidation is
increased at lower pH values in the presence of ferric oxides and
hydroxides. Therefore even if manganese was present in the drainage water
its deposition in large quantities is not to be expected at the pH values

associated with the ochre sites.

The colour of the samples reflects the importance of iron in their
composition. The colours recorded are characteristic of the naturally

occurring minerals of iron as shown below.

Lepidocrocite (¥-FeOOH) 5YR - 7.5YR
Goethite (x--FeQOH) 7.5Y¥R - 1OYR
Ferrihydrite 5YR - 7.5YR
Hoematite (4 Fe 203) 5YR - 2.5YR

Schwertmann + Taylor (1977)
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The results of the chemical analysis of ochre were analysed statistically
to determine whether any of the variables were correlated. The matrices

obtained are shown in Table 3.9.

Table 3.9 : CORRELATION MATRICES FOR VARIABLES DETERMINED BY

CHIEMICAL ANALYSIS OF OCHRE SAMPLES

(a) ALL VARIABLES (44* SAMPLES)

* THE SAMPLES WITH MISSING ORGANIC CARBON DATA WERE IGNORED.

pH (WET) (1) 1.000

pH (OVEN DRY) (2) 0.799 1,000

LOI % (3)-0.005 0.090 1.000

TOTAL Fe % (4)~0.158 =-0.127 -0.073 1.000

ORGANIC CARBON % (5) 0,122 0,161 0.740 0.084 1.000

(1) (2) (3) (1) (5)

(b) ALL VARIABLES EXCEPT ORGANIC CARBON % (46 SAMPLES)

pH (WET) (1) 1.000

pH (OVEN DRY) (2) 0.800 1.000

LOI % (3)=0.009 0.083 1.000

TOTAL Fe % (4)-0.158 -~0.127 -0.061 1.000

(D) (2) (3 €]

The only significant correlations found were between the undried and dried
pH values (0.80) and between LOI% and organic carbon % (0.74). The
association between undried and dried pH has been discussed earlier. The
exceptions or anomalies to this relationship have also been considered and

are probably responsible for lowering the correlation coefficient.

The positive correlation between the percentage loss on ignition and
organic carbon content was also to be expected. Loss on ignition is often

used as an estimate of so0il organic matter content. However, the loss of
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structural water from clay minerals and dehydroxylation of ferric
hydroxides can also contribute to the loss on ignition especially at
temperatures above 375°C (Ball 1964; Jackson 1958). Such losses would

have reduced the correlation between loss on ignition and organic carbon

percentage.



Plate 3:1 Ochre in a field drain outlet at Penygroes site 1,

Plate 3:2 Ochre in a field drain outlet at Pe y roes site 3.
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Plate 3:3 Ochre at the mouth of a stream running into a small
river from a "hole" in the riverbank, Penygroes site 5.

Plate 3:4 Llyn Coedty site 2.
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Plate 3:5 Llyn Coedty site 2 : Water entered the ditch via a
culvert. The culvert is not evident in the photograph but runs
diagonally from the bottom right to the centre.

Plate 3:6 Llyn Coedty : Large amounts of ochre accumulated
where water from the ditch shown in plate 3:5 flowed through
the culvert in the bottom right of the photograph.
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Plate 3:7 Llyn Coedty : Pollution by iron deposits
entering a small river.

Plate 3:8 Llyn Coedty : Ochre in a shallow pool on a
riverbank.
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Plate 3:9 Llyn Cowlyd site 1 : Water bubbling to the
surface at the head of an open ditch.

Flate ,:10 Llyn Cowlyd : A porti n of t e open ditch
conveying water from Llyn Cowlyd site 1.
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Plate 3:11 Llyn Cowlyd site 4 : This culvert conveyed water
from the ditch shown in Plate 3:10 to a small river.

Plate 3:12 Nr. Machynlleth : Where drainage ditches
entered a small river ochre was replaced by algae and
aguatic plants.
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Plate 3:13 Machynlleth site 1 :
coated with ferric iron deposits.

gravel

| .

Plate 3:14 Machynlleth site 2 :
an open ditch.
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Plate 3:15 Machynlleth site % : Ochre in
an open ditch.

Plate 3:16 Beccles Marsh site 1 : a white
gelatinous material in a field drain outfall.
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Plate 3%:17 Firbeck site 1 : Ochre in a
large drainage ditch.

Plate 3:18 Ochr Cefn Isaf : ochre deposits
below a rush-infested, waterlogged area.
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Plate %:19 Pentre Mawr, ochre deposits
in a disused coal mine.

Plate 3%:20 Pentre Mawr, ochre deposits in
a disused coal mine.
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Plate 3:21 Spanker site 2 : Ochre forming
on the soil surface over an extensive area,

Plate 3:22 Spanker site 3 : ochre
deposits in an open ditch.
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Plate %+23 Sychnant Pass : Ochre in a
roadside ditch.

Plate 3:24 Sychnant Pass : following heavy
rainfall water overflowed onto the road and
thin layers of ochre developed on the road
surface. On drying these left a red stain.
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FreameNTous Ocwaé
SYCHANANT PASS
5-5-9I

Plate 3%:25 Petri dish containing well floculated ochre
from Sychnant Pass.

Fl

OcHRE

SPANKER
13-4

PYRITIC

Plate 3:26 Petri dish containing compacted, orange, ochre
from Spanker.
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PAgk FARM

FILAMENT ouS OCHRE

Plate 3:27 Petri dish containing ochre from a field drain
outfall from Park Farm,

Plate 3:28 Llyn Cowlyd : this open ditch did not contain
ochre and iron could not be detected in the water. The
cmfluence of this ditch and the ditch containing ochre is
shown in Plate 3:10.
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4, THE MICROBIOLOGY OF OCHRE SAMPLES

4,1 LIGHT AND SCANNING ELECTRON MICROSCOPY

4,1.1 LIGHT MICROSCOPY

The general microbiology of ochre samples was investigated by observing a
few drops of sample on a microscope slide using a Leitz ortholux
microscope, with phase contrast facilities (Ernst Leitz, GMBH, Wetzal,

W.Germany), at a magnification of x250.

0

Filamentous bacteria were observed in most samples in association with
orange-red particles of ferric compounds. These bacteria were
distinguished from fungi by their narrower filaments and lack of
branching. The identification of different types of filamentous bacteria
was made difficult by the masking effect of iron precipitates. In some

samples the filaments were hardly visible except at the edge of iron masses.

The types of organism observed are described below. They were tentatively
identified using the keys in Bergey's Manual (Buchanan & Gibbons, 1974),

Godinho-Orlandi (1980) and by reference to the literature quoted where

relevant,

Type 1 and 2:

Type 1 : Long filaments 2-3 ypm thick with no living cells evident within
the sheath. The filaments were straight or slightly curved and ranged in
length from 10 ym to over 100 nm. This organism was not encrusted with
ferric compounds. Sheaths were found projecting from accumulations of

ferric particles and also found unattached in solution.

Type 2 : Filaments 2-3 pm thick with no living cells within the sheath.
The filaments were straight or slightly curved and ranged in length from
lO/um to 100 um. Iron accumulated on the sheath but not uniformly giving

a "globular" effect with some portions of the sheath having no iron.
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Type 1 and 2 are probably the same organism since filaments could be
described as Type 1 outside an accumulation of iron particles bu£ Type 2
inside it. Type 1 and Type 2 represent encrusted and non-encrusted growth
forms of the same organism. This sheathed filamentous bacterium is
therefore characterised by filaments, with no living cells within the
sheath, sometimes having accumulated iron. Where iron does accumulate

its distribution along the sheath is irregular.

It was found that the unencrusted filaments were most common at the edges
of iron masses and free swimming. This suggests that newly-formed
filaments were unencrusted. With time iron would accumulate on the sheath
and thus the iron mass would get larger or, in the case of unattached

filaments, a new mass would form. This phenomenon was described by Brown

in 1903.

The irregular distribution of accumulated iron and the lack of living
cells within the sheath suggests that this organism belongs to the genus

Leptothrix. It is tentatively identified here as Leptothrix discophorus

although it also bears similarities to Leptothrix cholodnni (Van Veen et

i];’ 1978) 03

Plate 4.1

TYPE 3 :
Sheaths 2-3 pm thick with their length being shorter than filaments of
type 1 and 2. No cells were seen within the sheaths. The filaments were

usually straight. Ferric compounds accumulated evenly on the sheath giving

it an orange colour throughout its length.

The orange colour of the sheaths suggests that Type 3 could be

Leptothrix ochracea. It should be noted that L.discophora is also said

to have uneven golden brown sheaths (Mulder and Van Veen, 1963;

Mulder, 1964; Van Veen et al, 1978).
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TYPE 4 :

A "banded" or "spiral" organism 2-3 pm thick. The length was variable
but rarely exceeded 100 mm. Type 4 was usually observed without iron
accumulation but occasionally iron particles were seen adhering to the

organism.

This Type was tentatively identified as a Gallionella sp. Gallionella
spp. are usually described as having ki@ney shaped cells on the ends of
long twisted stalks (Section 2.3.2). Cells were not observed in
association with organisms of Type 4. However, according to Aristovskaya
and Zavarzin (1971) the terminal cells of Gallionella spp are often
absent. Gallionella spp are normally reported as having accumulated iron
on the stalks. In this respect Type 4 differed since accumulations of

iron were not usually evident.
Plate 4.2

TYPE 5
This organism was composed of rods in chains. No sheath was visible and

iron was not accumulated. Type 5 could be Streptothrix sp, which is

described as thin rods in chains within a hardly visible hyaline sheath.
This organism also resembles Type 1863 isolated by Eikelboom (1975) from
activated sludge. Type 1863 did not have a detectable sheath and was

excluded from the Clamydobacteriaceae on this basis.

TYPE 6 :

This filamentous organism was found in association with iron masses and

also unattached in solution. The filaments themselves were short, not
encrusted with iron and contained no living cells. The organism was
characterised primarily on the basis of its zigzag shape. The angles

formed by the change in direction were always equal. An organism of similar

description was not found in the literature.

130



The distribution of the various types of organisms according to site

are given in Table 1.

RESULTS

Of the 49 samples examined only 5 had no filamentous bacteria, Spanker 1
and 2, Penygroes 1 and 3 and Hall Farm 4b. These did have a large
population of unicellular bacteria. A further two samples, Hall Farm la
and Park Farm 5, had predominantly unicellular organisms but with a few
filamentous bacteria also being present. The lack of filamentous forms
in these samples should be treated as comparative rather than absolute
since it was shown that filamentous organisms were present in drainage

water from Penygroes 1 (Section 5.3.1). (Continued on page 134).
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TABLE 4.1 THE MICROBIOLOGY OF OCHRE SAMPLES AS REVEALED BY LIGHT

MICROSCOPY

THE POSSIBLE IDENTITY OF THE TYPES MENTIONED BELOW

ARE DISCUSSED IN THE TEXT.

SAMPLE
PENYGROES 1
PENYGROES 3
PENYGROES 5

PENYGROES 6

PENYGROES 7:1

LLYN COEDTY

LLYN COWLYD

MACHYNLLETH 2
MACHYNLLETH 3
MACHYNLLETH 4
BECCLES MARSH 1
BECCLES MARSH 2

BECCLES MARSH 3

BURNLEY HALL
FIRBECK 1
FIRBECK 2
HALL FARM 1
HALL FARM 2
HALL FARM 3

HALL FARM ba

HALL FARM 4b
HALL FARM 5
HALL FARM 6
PARK FARM 1

PARK FARM 2

TYPES IDENTIFIED

UNICELLULAR BACTERTA ONLY. MOTILE RODS 4-8 ym LONG (1)
UNICELLULAR BACTERIA ONLY. MOTILE RODS 4-8 ym LONG (1)
TYPES 1; 2; 33 L4 ]

TYPES 1; 23 33 4

TYPES 1; 235 3

TYPES 13 25 3
TYPES 1; 23 3; 43 6
TYPES 13 23 3

TYPES 1; 2; 3
TYPES 15 23 3

THIN BLACK FILAMENTS ATTACHED TO BLACK MINERAL MASSES
TYPES 1; 2; 3

TYPES 1; 2; 3

THIN BLACK FILAMENTS ATTACHED TO BLACK MINERAL MASSES
TYPES 1; 25 3

TYPES 15 23 3

TYPES 13 235 33 4

TYPES 15 25 3

TYPES 1; 2; 3

PREDOMINANTLY UNICELLULAR RODS WITH A FEW FILAMENTS OF
TYPE 1; 23 3

UNICELLULAR BACTERIA ONLY. MOTILE RODS 4-8 pm LONG
TYPES 1; 25 3

TYPES 15 25 3

TYPES 1; 23 3; &4

TYPES 13 23 3; &4
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TABLE 4.1 : CONTINUED

PARK FARM 3 TYPES 1; 2; 3
PARK FARM 4 TYPES 1; 23 33 4
PARK FARM 5 PREDOMINANTLY UNICELLULAR RODS WITH A FEW FILAMENTS
OF TYPE 1; 2; 3
PARK FARM 6 TYPES 1; 2; 3; 4
PARK FARM 7 TYPES 1; 2; 3; &
PARK FARM 8 TYPES 13 2; 33 4; 6
PERSEHALL 1 TYPES 1; 25 3
PERSEHALL 2 TYPES 13 2; 3
PERSEHALL 3 TYPES 1; 23 3
PERSEHALL 4 TYPES 1; 23 3
PERSEHALL 5 TYPES 1; 2; 3
PERSEHALL 6 TYPES 1; 2; 3
PENTRE MAWR TYPES 1; 2; 3; &
PONTHENRI TYPES 1; 25 3

GALLT YR HULLDREM TYPES 1; 2; 3; 5; 6

MORFA GLAS TYPES 1; 2; 3 AND PREDOMINANTLY TYPE 4
SPANKER 1 UNICELLULAR BACTERIA ONLY

SPANKER 2 UNICELLULAR BACTERIA ONLY

SPANKER 3 TYPES 1; 2; 3 BUT NOT NUMEROUS
SPANKER 4 TYPES 1; 2; 3 BUT NOT NUMEROUS
SYCHNANT PASS TYPES 1; 2; 3; &

TALY ¥ BONT .FARM TYPES 1; 25 35 &4
TUMBLE TYPES 1; 25 33 &4

DONEGAL TYPES 15 25 3

(1) THERE WAS SOME EVIDENCE TO SUGGEST THAT FILAMENTOUS ORGANISMS ARE
PRESENT IN THE DRAINAGE WATER ALTHOUGH NONE WERE DETECTED IN OCHRE

AT THE OUTFALL (SECTION 5.3.1)
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At this site about 150 ml of drainage water was collected in a sterile pol

propylene bottle. After a few days ochrous flocs were seen in the bottle.

were shown to contain filamentous bacteria by microscopic examination.
Thus, even if filaments cannot be detected at the outlet they may be

present in the drainage system.

Two samples were atypical. At Beccles Marsh 1 and Burnley Hall the white
deposit contained many free living unicellular organisms and small

filamentous bacteria mostly attached to black mineral masses.

The microbiology of most samples was dominated by filamentous bacteria of
the genus Leptothrix. It should be noted that unicellular microorganisms
were invariably present and in some cases algae and protozoa were also
seen. The iron bacterium Gallionella was identified in many samples but

it was not as numerous or widespread as Leptothrix spp. Several other

types of filamentous organisms were also seen but only on a few occasions.

The organisms Leptothrix spp and Gallionella spp have been identified in

ochre by many authors. Another genus that is commonly associated with

ochre is Sphaerotilus spp. None of the organisms observed in the present

study were similar to Sphaerotilus spp which is usually composed of chains

y—

The st

of cells within a distinct sheath. According to some authors Leptothrix spp

and certain species of Sphaerotilus are synonymous (See Section 2.3.1.2).

This would explain to some extent the often quoted association between

Sphaerotilus spp and ochre deposits.

4,1.,2 SCANNING ELECTRON MICROSCOPY

Samples of ochre in small terylene bags were fixed in 5% glutaraldehyde,
dehydrated with acetone and dried in liquid carbon dioxide using a Polaron
critical point drying apparatus. The samples were gold coated in a
Polaron E32000 Sputter coater and examined using an ISI M - 7 scanning

electron microscope operating at 15kV. Photographs were taken with a
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Pentax 35 mm camera on a Kodak fine grain positive release film.

Negatives were developed in D19 high resolution developer.

A selection of scanning electron micrographs of ochre samples are shown

in plates 4.3 to 4.29.

The structure of ochre is revealed clearly at low magnifications.
Ochre is composed of long filaments in association with iron particles
(plates 4.3 to 4.5). The arrangement of the filaments and particles
appears to be entirely random forming a 'tangled mass'. This would

explain the tenacity and gelatinous nature of the deposits in situ.

The intertwined filaments are again illustrated in plates 4.5 to 4.9.

The filaments are seen here as being of uniform width and variable length.
These electron micrographs also show that the filaments are actually
tubular. The rough edges at the end of many filaments, especially in
plates 4.8 and 4.9, suggest that they have been broken on site, during
collection, or during preparation. The tubular nature of the filaments
confirms the observation made during light microscopy that the filaments

are relics of bacterial growth, containing no living cells.

The nature of the ferric precipitates is shown in plate 4.10 where they
appear to be accumulations of particles forming a "fluffy'", almost coral-
like, aggregate. These masses seem to encoﬁpass the filaments. In plate
4,11 the close association between filament and ferric iron particles is
demonstrated. The ferric iron particles are dispersed along the filaments
and in the centre of the photograph a ferric mass bridges the gap between
two filaments. The accumulation of ferric particles on a filament is
illustrated in plate 4.12 where the central filament in plate 4.1l is

magnified.
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Most of the filaments observed were of uniform width. One exception is

shown in plates 4.13 and 4.14 which show a short filament about'35‘pm

long. One end of the filament is a tube-like opening, whilst the other

tapers to a point.

Plates 4.15 to 4.17 reveal a spiral structure composed of twisted bands.
It is assumed that these are the stalks of Gallionella spp. Twisted

bands associated with bean shaped cells were not seen.

On the whole all the samples analysed had a similar appearance being
dominated by the tubes of filamentous bacteria and by iron particles.
Occasionally other features were observed. Fér example, plate 4,18
illustrates a feature composed of a number of intertwined thin strands.
The strands are no more than 0.25 um in diameter as compared to the

filament in the top right of the photograph which has a diameter of over
1 pm. Iron particles are loosely associated with this structure.

The feature shown in plate 4.19 is probably a fungal propagule.
Plates 4.20 and 4.21 show in increasing magnifications a tangled

structure of very thin strands or fibres. These are much thinner than the

filamentous tubes.

A gold coated SEM sample of ochre from Llyn Cowlyd was analysed by SEM

and EDAX to determine the composition of the sample. Several analyses of

pin-point areas of different filaments were obtained. The traces are

shown in figures 4.1 to 4.4. The trace obtained by analysing an iron

accumulation is shown in figure 4.5. All the results are similar showing

an abundance of iron. Silicon, sulphur and calcium were also detected

in small quantities.
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FIGURE 4.1 LLYN COWLYD FILAMENT 1
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FIGURE 4.2
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FIGURE 4.3 LLYN COWLYD FILAMENT 3
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FIGURE 4.4
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FIGURE 4.5 LLYN COWLYD MASS 1
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L,p AUTOTROPHIC MICROBIOLOGY

The role of Thiobacillus ferrooxidans in the formation of ochre was

discussed in section 2.4.1. T.ferrooxidans were isolated from ochre

samples using the 9K medium of Silverman and Lundgren (1959). The

composition of the medium is shown below:-

SOLUTION A
&
(Nﬂk)2 80, 3.0
KC1. 0.1
KzHPOL+ 0.5
MgSOh.7H20 0.5
Ca(N03)2 0.01
Distilled Water 700 ml

SOLUTION B

%00 ml of a 14.74% (44.22g) solution (w/v) of Fesoq.7H20

including 1.0 ml of 1ON stoh'

Solution A was sterilized by autoclaving at 15 lbs pressure for
15 minutes. Solution B was filter sterilized through a 0.22 pm Millipore
filter and the two solutions mixed. 10 ml portions of the medium were

poured into sterile 25 ml or 50 ml conical flasks.

stored moist at -18°C
Ochre samples,were diluted in the ratio 1 ml ochre to 9 ml sterile,

acidified (pH 2.5) distilled water. The samples were homogenized for
one minute using a Silverson homogenizer. It was found that this

dilution gave no growth for some samples in which case the experiment was

repeated using undiluted ochre.

The total number of T.ferrooxidans in each sample was determined by using

+6
a most probable number technique (Rand et al 196%). 7 portions of 9K

medium were used for each sample. 5 flasks were inoculated with 1.0 ml
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of diluted ochre. The two remaining flasks were inoculated with 0.1 ml
and 0.01 ml respectively. The flasks were incubated for at least 12 days

at 2500. Growth of T.ferrooxidans in the medium was clearly observed

since the oxidation of ferrous iron resulted in a colour change from

greenish-blue to orange.

Growth was confirmed by titrating 3 ml of medium and 3 ml of 1.0M stOL+
against 0.01M KMnOu to a permanent pink. A titre less than or equal to

1.0 ml was taken as a positive result indicating that 90% or more of the

ferrous iron initially present in the medium had been oxidized.

The Most Probable Number of T.ferrooxidans per 100 ml of original diluted

or undiluted sample was calculated by comparing the number of positive
results obtained for the 7 tubes to results in standard tables. (Rand et

al, 1976).

The numbers of T.ferrooxidans in 17 ochre samples are given in table 4.2.

The number of organisms per gramme oven dried ochre ranges from none
(Park Farm 2, Park Farm 3 and Penygroes 5) to 34,290 (Hall Farm 1). All
samples, except Hall Farm 1, had less than 104 organisms per gramme of

oven dried ochre,

The results show that the occurrence of T.ferrooxidans is widespread but also

related to area or site. For example, sampies from Spanker and Hall Farm
had high numbers of the organism. On the other hand they could not be
detected in samples from Park Farm. Similarly the samples from Penygroes,
Llyn Cowlyd, and Llyn Coedty had less than 100 organisms per gramme dried
ochre. One exception was Penygroes 3 where 5.2 x 103 organisms/g dried
ochre were found. It is noteworthy that Penygroes sites 1 and 3 were

drain outlets in the same field showing that the number of T.ferrooxidans

can vary widely within small areas.
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TABLE 4.2 : THE NUMBERS OF THIOBACILLUS FERROOXIDANS IN OCHRE SAMPLES

SAMPLE MPN ORGANISMS/g OVEN DRIED OCHRE (1)
PENYGROES 1 30
PENYGROES 3 5.2 x 10°
PENYGROES 5 NONE DETECTED

PENYGROES 6
PENYGROES 7:1
LIYN COEDTY
LLYN COWLYD
BECCLES MARSH 3
BURNLEY HALL
FIRBECK 2
HALL, FARM 1
HALL FARM Lb
PARK FARM 2
PARK FARM 3
PERSEHALL 6
SPANKER 2

SPANKER 4

* TO THE NEAREST 10 ORGANISMS.

20

Lo

20

4o

1.09 x 103
190

1.01 x 103
2,43 x 104
1.07 x lO3
NONE DETECTED
NONE DETECTED

.92 x 103

150
530

(1) The MPN organisms was initially determined for

known volumes of ochre suspension. The value was

converted to MPN/g oven dried ochre using the

dry wt/ml ochre suspension calculated for each

sample by drying a known volume of ochre suspension

overnight at 10500.
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4.3 BETEROTROPHIC MICROBIOLOGY

4,3,1 ACIDOPHILIC HETEROTROPHS

Johnson (1979) isolated polysaccharide-producing bacteria from streamers
in acid mine drainage water. These bacteria were also isolated from ochre.
The presumed effect of these bacteria on ochre deposits was discussed in

section 2.4.2.

The most suitable medium found in the literature for isolating the
acidophilic heterotrophs was the medium of Harrison et al (1980). The

composition of the medium is shown below.

g/l
(NHL‘L) 5 80, 2.0
KCl. 0.1
Ca(NOB)2 0.01
MgS0,, . 7H,,0 0.50
KZHPOI+ 0.50
Glucose or D-Mannitol 1.0
Tryptone soya broth (oxoid) 0.10

Tryptone soya broth replaced the dehydrated trypticase soy broth (BBL)
used by Harrison et al. The pH of the medium was adjusted to 3.4 Io.2
with H2S04. The medium was sterilized by autoclaving for 15 minutes at
15 1lbs pressure. When glucose was used in place of mannitol it was

autoclaved separately. To solidify the medium 12g/1 of agar were added.

The agar solution was adjusted to pH 4.5 and autoclaved separately.

Liguid and solid media incorporating glucose or mannitol were prepared.

The liquid media were inoculated with acid mine drainage water (Cae Coch).
1 ml of water was diluted to 50 ml with sterile distilled water acidified
to pH 2.5. 8 50 ml portions containing glucose and 8 containing mannitol

were inoculated per sample according to a Most Probable Number technique.
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5 portions were inoculated with 1.0ml of diluted drainage water,
1 portion with O.lml and 1 portion with 0.0lml. The remaining flask was

kept as an uninoculated control.

Agar plates of Harrison's medium were inoculated with undiluted and
diluted mine drainage water. 4 plates with glucose and 4 with mannitol
were inoculated with 0.5ml undiluted water. 4 plates of each medium were
also inoculated with 0.5ml of diluted drainage water. The acid mine
drainage water was diluted 1ml to 50ml with acidified (pH 2.5), sterile,

distilled water. Uninoculated plates were kept as controls.

The results from these inoculations were poor in terms of colony
development. No growth was observed in liquid media containing mannitol.
Growth was evident in 6 out of the 7 flasks containing glucose. No growth
was seen in the uninoculated control flask. Examination of the flocs
under a microscope revealed that they were composed of fungi. Colonies
were seen on all of the inoculated plates. Some bacterial colonies were
evident but fungi were dominant. Fungal colonies were also seen on the

uninoculated controls.

In order to improve the performance of the medium an anti fungal agent,
pimaricin, was incorporated. This was added as a 2.5% sterile solution

(2.5% Pimaricin, Sigma) into sterile medium, to give a final concentration

of 100 pg/ml.

7 50ml portions of Harrison's medium (with pimaricin) containing glucose
and 7 containing mannitol were inoculated according to the Most Brobable
Number technique described above. Undiluted acid mine drainage water from
Cae Coch was used as an inoculum. Uninoculated portions of media were
also prepared. 9 plates of glucose medium with pimaricin were inoculated
with O.5ml undiluted acid mine water. One plate was kept as an
uninoculated control. Flocculated, streamer-like growths were seen in

most of the inoculated flasks. A mixed population of unicellular motile
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and non~-motile rod shaped bacteria were observed in the flocs. No growth

was detected in the uninoculated flasks.

The streamer like growths were also seen on the agar plates. The colonies
were a yellow-cream colour having an irregular shape. A mixed population of
unicellular bacteria were found by examining the colonies under a microscope.
The type of growth encountered is shown in plate 4.22. Plate 4.23
illustrates the effect of omitting and anti fungal agent. Fungal colonies
are seen to dominate the plate in the absence of pimaricin. The

uninoculated plates showed no colony formation.

Harrison's glucose medium (solidified) containing pimaricin was adopted as

a suitable media for isolating acidophilic heterotrophs from ochre samples.
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Isolation of heterotrophic bacteria from ochre

6 media were used to isolate heterotrophic bacteria from ochre samples.

1. Nutrient agar (Oxoid) pH 7.1l. This was chosen because some of the

heterotrophs isolated by Johnson (1979) from acid streamers had a pH
optimum near neutral. Total counts on nutrient agar were also an estimate

of the total numbers of heterotrophic organisms in the sample.

2. Malt Extract Agar (Oxoid). 980ml of agar and 20ml of sterile 10% lactic

acid solution were mixed to give a medium of pH 3.5.

3. Harrison's glucose medium. (Final pH of approximately 3.5)

The composition of the medium was as described earlier. 1000ml of basal
salts solution (pH 3.2 % 0.2), 250 ml glucose (pH 3.2 ¥ 0.2) and 750ml
agar solution were autoclaved separately and then mixed. The agar

solution was not acidified to avoid hydrolysis.

4, Harrison's glucose medium with pimaricin. The medium vas prepared as

Harrison's glucose agar. Pimaricin was added before the plates were

poured,

5. Citrate - Tryptone medium

&/l

tryptone 0.5
tri-Sodium Citrate 2.0
.0
(NH,,) SO, 3
0.5
KQHPOq
Mg S0y, 7H0 0.5
KCl 0.1
0.1
CaNO
3
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The pH of this solution was adjusted to 3.2 with 1.0 M Hasoq. The
solution was mixed in the ratio 3:1 (V/V) with a suspension of separately

sterilized Oxoid No 1 agar (5%). The final pH of the medium was about 3.6.

6. Citrate - Tryptone medium with pimaricin. The medium was prepared as

Citrate - Tryptone agar. Pimaricin was added before pouring the plates

giving a final concentration of 100 pg/ml.

A known volume (approximately 2ml) or weight (1-2g) of ochre, depending
on the nature of the sample, was suspended in 200ml of sterile tap water.
The suspension was homogenized for one minute using a Silverson
homogenizer, cleaned and semi-sterilized by immersing in alcohol. 1,0ml

of homogenized solution was pipetted into 9ml sterile tap water and mixed
using a mechanical stirrer. The tap water was sterilized by autoclaving
and then dispensed into graduated test tubes that had been sterilized by
heating at 160°C for several hours. A further 9ml portion of tap water was
inoculated with 1.0ml of this dilution. The process was repeated until
four dilutions had been prepared, excluding the initial homogenized

dilution.

Lt plates of each medium were inoculated with 0.5ml aliquots of each
dilution. The inoculum was dispersed over the agar surface using a glass
spreader flamed in alcohol. The plate was allowed to dry for 1-2 hours
and then inverted and incubated at 2500. The number of colonies on each

plate was monitored and recorded regularly.
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Ochre dry weights were calculated by drying approximately 20 ml or a known

weight of ochre at 10500 for several days.

The total number of organisms in the samples according to the counts on

different media are given in Table 4.3. Bacterial colonies were observed on

nutrient agar plates for all the samples examined, excluding Beccles Marsh 3

and Park Farm 2 (see note b(1l) in table 3). Numbers greater than 1 x 106/g

dried ochre were recorded in all samples and the number rose above 1 x 107/g
' Extract

in ten samples. No growth, except fungal colonies, was seen on Malt/agar.

The only exception was one bacterial colony isolated on malt agar from Hall

Farm b4b.

Heterotrophic bacteria capable of growing on the acidic media were found in
10 out of the 17 samples examined. None were found in samples from Llyn
Cowlyd and Llyn Coedty. The numbers in Penygroes samples were also very low
with organisms being observed on only a few plates. At Spanker organisms
were observed on all the acidic media and the numbers ranged from

1.08 x 106/g (Spanker 4, Citrate - Tryptone + pimaricin) to 4,10 x 107/g
(Spanker 2, Harrison's medium). Similarly the numbers at Firbeck 2 ranged
from 5.33 x ].OL+ (Citrate - Tryptone) to 5.33 x 107 (Harrison's). The
highest number of organisms was recorded for Hall Farm 1 using Harrison's

medium with pimaricin where 1l.46 x 108 organisms per gramme were found.

It should be noted that fungi were found in all sites except at Llyn Cowlyd
and Llyn Coedty. All the malt extract plates had fungal colonies except

those inoculated with ochre from Hall Farm 1, Park Farm 3, Penygroes 5 and
Penygroes 6. However, fungi were isolated from these sites on one or more of
the other plates. No attempt was made to determine the number of fungi in the

ochre samples.
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The total number of bacterial colonies isolated on each media are shown

in Pable 4.4.

Table 4.4t : Total number of bacterial colonies isolated from ochre samples

using several agar media

NUMBER OF COLONIES

NUTRIENT AGAR 125
MALT EXTRACT AGAR 1
HARRISON'S Ll
HARRISON + PIMARICIN 76
TRYPTONE - CITRATE 16
TRYPTONE-CITRATE + PIMARICIN 21

It can be seen from Table 4.4 that the highest number of colonies were
found on nutrient agar plates. A significant number of isolates were seen
on all the acidic plates except malt agar. The results also show that
Harrison's medium incorporating pimaricin was the most suitable medium for

isolating acidophilic heterotrophs from ochre.

The most commonly observed isolates were transferred to fresh Harrison's
medium (incorporating pimaricin). They are described in detail in Table

4.5. Their distribution according to media and sites is shown in Table

L.6.
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TABLE 4.5

¢ DETAILED DESCRIPTIONS OF THE MOST COMMONLY OBSERVED

ISOLATE

N O W

ISOLATE

I I <) AN B . I U I

HETEROTROPHIC BACTERIA ISOCLATED FROM OCHRE ON ACIDIC

MEDIA AND NUTRIENT AGAR

COLONY MORPHOLOGY

CREAM, DARK CENTRE, CRENATED

PALE YELLOW, WHITE RIM, ENTIRE, RAISED

WHITE-OPAQUE, ENTIRE, FLAT

ORANGE CENTRE, OPAQUE-CREAM RIM, ENTIRE-IRREGULAR, RATISED
CREAM-WHITE, ENTIRE, RAISED

LARGE YELLOW WITH CREAM-WHITE RIM, CRENATED, RAISED

PINK, ENTIRE, RAISED

SHAPE SIZE MOTILITY SPORES GRAM CATALASE
ROD 2-5 pm + + - -
ROD 2 pm + - - -
ROD-COCCL  2-3 ym + - - -
ROD 2-3 ym + - + -
ROD 2 pm * - + -
ROD 3_“_ }m + + + -
ROD b ym - - - =
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Most of the isolates were observed on both the acidic media and on nutrient
agar. The exception was isolate 7 which was only seen on the acidified
media. There were some types isolated on nutrient agar that were not seen
on any of the acidic plates. For example, an orange, crenated, raised
colony was isolated on nutrient agar from Firbeck 2, Burnley Hall,
Penygroes 1 and Penygroes 7. Similar colonies were not observed on acidic
media. Similarly, a yellow, irregular, slightly raised colony was isolated
on nutrient agar from all the Penygroes sites and from Hall Farm 4b. This

colony type was only observed once on acidic media, isolated from

Spanker 2 on Harrison's agar.

It should be noted that the distribution of the isolates was not straight-
forward. This is best illustrated by considering isolate 3 as an example.
This type was isolated on nutrient agar and acidic media from Spanker 2.
However it was only isolated on acidic media from Spanker 4 and Penygroes 5

and only on nutrient agar from Hall Farm 1, Penygroes 3 and Llyd Coedty.

The prominence of the Spanker sites in table 6 should be noted. Several
isolates were only found on acidic plates from these sites although they
were isolated on nutrient agar from several sites. Isolate 7 was only
found at Spanker. Most of the organisms isolated using the Citrate-

Tryptone medium were from Spanker.
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4.3,2 COMPLEX-DEGRADING HETEROTROPHS

The decomposition of organic-iron complexes has been proposed as a
possible mechanism of ochre formation (Section 2.5.2.3). It is thought
that a variety of soil bacteria can utilize the organic component of the
complexes releasing iron, which is subsequently oxidized and
precipitated. Bacteria of this type were isolated from ochre samples

using the Ferric Ammonium Citrate (FAC) medium of Macrae et al (1973).

&1

KEHPOA 0.1
(NH4)2 HPO,, 0.5
MgSO4.7H20 0.2
Ca(NOB) 52,0 0.01
Ferric Ammonium Citrate 5.0
Yeast Extract 0.2
Agar 14,0

Agar plates and 100 ml liquid portions of the medium, with and without

ferric ammonium citrate, were initially prepared.

1 ml of Donegal ochre was diluted and homogenized in 200 ml of sterile
distilled water. 1 ml of this suspension was diluted to 9 ml with sterile
distilled water (dilution 1) in a test tube that had been pre-sterilized
by heating at 160°C for several hours. This process was repeated until

3 dilutions had been obtained.

1 flask of each medium was inoculated with 1.0 ml of each dilution.

Similarly, 1 plate of each medium was inoculated with 0.5 ml of each

dilution.

Colonies formed on all plates except the final dilution for the medium
without FAC. Colony development was extensive with a variety of small

rods, spheres and larger rods being evident by microscopic examination.
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Where FAC was incorporated into the medium the plates were coloured dark

red and red particles could be seen under the microscope.

Liquid cultures without FAC had a ''cloudy" appearance. A variety of rod
and spherical shaped organisms were observed in microscope slides of the
solution. 1In the flasks containing FAC a distinct red precipitate had '
formed in the bottom of the flask with a clear solution above it. A thin
orange layer was seen on the surface of the cultures. Before inoculation
the medium had a uniform, clear, orange colour. Under the microscope a
variety of bacteria were observed including rods and spheres. Some
longer rods of about 20 pm in length were also seen. Additionally many

red-orange particles were evident on the microscope slides and these were

regular or angular in shape.

Aliquots from liquid cultures containing FAC and colonies from solid media,
with and without FAC, were transferred onto agar plates of FAC, Nutrient
agar and malt agar to characterize the isolates further. Eight isolates
were obtained by maintaining and purifying on malt agar or nutrient agar.

The isolates are described below.

Isolate 1A : Originally isolated on FAC agar, dilution 1 and purified
by three transfers onmalt agar. It formed cream-yellow colonies that
were crenated and raised. Under the microscope it appeared as motile rods

about 4 um long.

Isolate 1B : Originally isolated on FAC agar, dilution 1 and purified
by three transfers on malt agar. The isolate was a motile rod about H—ym

long forming opaque-white colonies that were entire and domed.
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Isolate 2 : This type was also isolated on FAC agar, dilution 1.

Pure colonies were obtained by transferring the organism 4 times on malt

agar. It formed opaque-white colonies that were entire and domed. Under
the microscope isolate 2 appeared as motile rods between 4 and 8 pm long.
Some rods were up to 20 ym long. The organism was able to form straight

and irregular shaped chains.

Isolate 3 : Originally isolated on FAC agar, dilution 1 and transferred

twice on malt agar. It produced diffuse white colonies and appeared

under the microscope as motile rods about 4-8 ym long.

Isolate 4 : This type was isolated on FAC agar, dilution 1 and pure
cultures obtained by 2 transfers on nutrient agar. Cream-white, entire,
raised colonies were observed. The isolate was a motile rod 4=8 ym long.
Chains of rods were often seen. The chains were usually about #O—60‘pm

long.

Isolate 5 : Originally isolated on the solid medium without FAC,
dilution 2. Pure cultures were ohtained by transferring the organism
five times on malt agar. Initially the colonies were cream-orange, about
1-2 mm in diameter, being entire and domed. After a few days, when
colonies grew and began to merge an orange colour developed at the centre
whilst the edges became white or opaque. The orange portions contained
unicellular rods about 4-8 ym long. No chains of rods were observed.

The white~opaque outer edges, however, contained motile chains ranging
from 20 ym to 100 pm long. Most chains were straight but a few showed

an irregular, twisted, or zig-zag shape.

On nutrient agar isolate 5 produced yellow colonies that were entire and
flat. On FAC medium an opaque film developed. Motile rods were seen

(b pm long) as were particles of ferric compounds.
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After pure cultures had been obtained isolate 5 was used to inoculate a
liquid FAC medium. A distinct red precipitate, indicating complete release
of iron from solution, was not seen. However, microscopic examination
showed that the organism was growing in the medium. Small motile rods
about 84pm long were seen. Some larger rods up to 20 ym long were also
observed. Red particles were clearly evident indicating release of iron

from the ferric ammonium citrate complex.

Isolate 7 : Originally isolated from a liquid FAC culture, dilution 1.
Further cultures were obtained by two transfers on nutrient agar. The
colonies were cream~white, entire and raised. Some colonies were crenated.
Isolate 7 was composed of very motile rods about 4-8 ym long. Occasionally
motile rods between 8 and 16 ym long were observed. Long, non motile,

chains of rods up to 80 pm long were also formed.

Isolate 8 : Isolated originally from a liquid FAC culture, dilution 1 and
purified by three transfers on malt agar. On agar small white colonies
were formed and these were entire and raised. Under the microscope chains

of 4-8 ym long rods were seen.

The isolates above were originally separated on the basis of colony
appearance. When this evidence was associated with the characteristics
of the isolates under the microscope all the types appear to be similar.
The bacteria isolated from ochre using FAC medium were motile rods 48 ym
long capable of forming chains of various shapes. The chains were mostly
straight or slightly curved; some were motile whilst others were not.
Some isolates, la, 1b and 3, showed no tendency however to form chains.
Occasionally different types were observed, for example, the 8-16 p rods
associated with Isolate 7 and the irregular shaped chains found in

cultures of Isolate 5.
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Because of the pronounced tendency of the isolates to form chains it was
thought at one stage that these heterotrophs might have been filamentous

bacteria of the genus Sphaerotilus spp or Leptothrix spp. It is thought

that these organisms are capable of utilizing organic complexes of iron.
Ferric ammonium citrate was used by Rogers and Anderson (1976) in a medium

for isolating and purifying cultures of Sphaerotilus spp (Section 5.1.15).

However, the characteristic sheath associated with organisms of the

Sphaerotilus - Leptothrix group was not'observed in any of the isolates.

It was also postulated that the chains formed by the isolates might serve
as a template for iron accumulation resulting in the formation of the iron
tubes characteristic of ochre. Such a phenomenon was never observed

in FAC cultures. In these cultures chains of organisms were often
seen as were particles of ferric compounds. The chains and particles were
always independent of one another and deposition of iron onto a bacterial

chain was not encountered.

THE RATE OF IRON RELEASE IN FERRIC AMMONIUM CITRATE MEDIUM

Two 250 ml portions of FAC were prepared and inoculated from existing FAC
cultures. Total iron in solution was determined at regular intervals by
withdrawing 2 ml and filtering through a 0.22 pm Millipore filler to remove
any ferric precipitate. 1 ml of filtrate was diluted to 50 ml with
distilled water. 4 ml was withdrawn and acidified with 1 drop of
concentrated hydrochloric acid. Total iron in solution waé determined by
atomic absorption spectrophotometry and compared with standard solutions of
ferric nitrate in the range O pg/ml to 10 pg/ml. It was sometimes necessary

to dilute the sample to bring the iron concentration within the range of

standards.

The results shown in figure 4.6 reveal that most of the iron was removed

from solution within about eight days. All iron was removed after 12-16 days.
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FIGURE 4.6 PLOT OF TOTAL IRON CONTENT FOR INOCULATED FERRIC AMMONIUM
CITRATE MEDIUM

1.0 o
8
TOTAL IRON
CONTENT IN
SOLUTION 6
g/l
A
2 .

TIME (DAYS)
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The curve in figure 30 follows the exponential pattern characteristic of
bacterial growth. The initial plateau, corresponding to a slow growth rate,
was not observed, presumably because iron content was not determined at

regular intervals within the first 24 hours of growth.

COMPLEX DEGRADING ORGANISMS AS A COMPONENT OF THE TOTAL MICROBIAL

POPULATION OF OCHRE

An experiment was conducted to determine the relationship between complex—

degrading organisms and the total microbial numbers determined by isolating

bacteria on nutrient agar.
Plates of FAC and nutrient agar were prepared.

Initially 1.0 ml of ochre from Penygroes (collected 9.8.1982) and Ilyn
Coedty was diluted to 100 ml with sterile distilled water (dilution 1).

The suspension was homogenized for one minute using a semi-sterilized
Silverson homogenizer. Plates inoculated from dilution 1 had numbers too
high to count and are ignored in the results. 1 ml of homogenized solution
was diluted to 9 ml with sterile distilled water in a pre~sterilized test
tube (heated at 160°C for several hours). This process was repeated until
3 tubes, 3 dilutions, were obtained. 1 plate of each medium was inoculated

with 0.5 ml of each dilution.

The dry weights of ochre were determined by drying a known volume at lOSOC

for several days.
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The colonies that formed on the plates, especially on FAC agar, tended to
spread and therefore the experiment was repeated with ochre from Penygroes
(collected 4.3.1983). The same procedure was used except that 2 ml of
ochre was initially diluted to 100 ml with sterile tap water and 0.2 ml of

each dilution was used to inoculate the agar plates.

The results are shown in table 4,7 and table 4.8.

No strong trend towards either of the media emerges from the results. In
some sites the number of organisms growing on nutrient agar was greater
than on FAC. For example, in Penygroes 7:2 (dilution 2) 8 colonies were
observed on nutrient agar, whereas none were observed on FAC. Conversely
in other sites a greater number of organisms was found on FAC medium. The
number of organisms per gramme dried ochre isolated on FAC medium
(dilution 2) from Llyn Coedty was 2.9x108. The number determined on
nutrient agar was 2.7xld7 organisms per gramme. Thus at Llyn Coedty

(dilution 2) the number of organisms seen on FAC was over 10 times as

great as the number seen on nutrient agar.

Much variation was encountered between the two sampling dates. The number
of colonies on nutrient agar for Penygroes 1, dilution 2, on 9.8.1982 was
3 whilst the number on FAC was too high to determine. On %4.3,1983 the
results were reversed. The number of colonies on nutrient agar was too

numerous to count, whereas only one colony was observed on the FAC plate.

The ratio of bacterial numbers on FAC to the number growing on nutrient agar
could not be calculated for 10 out of the 27 results shown in Table 8,

This was because the number of organisms on both media were too nmumerous

to count or because no growth had occurred. Of the 17 results calculated,
10 showed a ratio greater than 1.0 indicating that the number of organisms
on FAC was higher that the number on nutrient agar. The remaining 7

results showed a higher number of observations on nutrient agar. This

164



TABLE 4.7 : PIATE COUNTS AND TOTAL NUMBERS OF BACTERIA IN OCHRE SAMPLES

AS DETERMINED BY ISOLATING ON NUTRIENT AGAR AND FAC(l)
MEDIUM
NUMBERS PER GRAMME OVEN DRIED
OCHRE (NUMBER OF OBSERVATIONS PER PLATE)
prrurTon(#) (5)
SITE mepron ) i 2 3
LLYN COEDTY NUT 2.1x10°(8) 2-7x167(1) NG
FAC > 1.3x108()50) 2.9x1 08 (11) NG
pENYGROES 102 NUT 7.9x106(20) >1 6xlo8(>4o) 9.9 107(2)
. o JX
7
) FAC 2 1.2x107(>30) haox10%(2) 8.7x105(22)
PENYGROES 1 NUT ™ 3.0}{106(3) 9 9x106(l)
FAC IN
2 c >hiog10°(OL0)  1.98x107(2)
PENYGROES 5 NUT 2 4.1x10°(>50) 6 5
c 645x10°(8) 1.6x10°(2)
FAC >3.3x10° (Y40) v 7
- 1.6x107(20) 2.4x107(3)
PENYGROES 5 NUT IN 6
4.8x10°(2) 4.8x107 (2)
FAC IN
(2 c ,>9-5x107(>4o) NG
PENYGROES 7:1 NUT D4.6x10°(950)

2.8x107(30)  3.7x107 (k)

6
FAC Th6x10°050) 7 e 2.8x10(3)

PENYGROES 7:2(>) NUT N ba7x10° (8) NG
FAC IN NG NG
PENYGROES ?:3(3) NUT TN 6.25x107(5)4 )3425x109(>10)
FAC IN 5.oox108()40) NG
PENYGROES 7:4(3) NUT ™ ™ 8.3x107 (2)
FAG ™ ™ 4.2x10 (1)

(1) NUT = NUTRIENT AGAR; FAC = FERRIC AMMONIUM CITRATEL MEDIUM
(2) SANPLES COLLECTED ON 4.3.83
(3) SAMPLES COLLECTED ON 9.8.82

(4) FOR SAMPLES COLLECTED ON 9.8.82 AND LLYN COEDTY DILUTIONS 1 TO 3 REFRESENT

DILUTIONS OF 2x10°, 2x10% AND 2x10° RESPECTIVELY

FOR SAMPLES COLLECTED ON 4,3.83 DILUTIONS 1 TO 3 REPRESEIT DILUTICNS OF
2.5}{103, 2.5x10£+ AND 2.5}{105 RESPECTIVELY
(5) NG; NO GRUWTH OBSERVED TN-,lgqoo NUMEROUS TO CJOUNT,MANY &£.RTADING COLONIES.



TABLE 4.8 A COMPARISON BETWEEN THE NUMBERS OF COMPLEX DEGRADING BACTERIA(]’)

AND THE NUMBERS DETERMINED ON NUTRIENT AGAR FROM OCHRE SAMPLES

NUMBER OF COMPLEX DEGRADERs(L)

NUMBER ON NUTRIENT AGAR

prruTION(4#)(5)(6)

SIIE & 2 3
LLYN COEDTY 6.2 10.7 NG
PENYGROES 1 (2) > 1.5 < 0.03 11.0
PENYGROES 1 (3) N 2330 2.0
PENYGROES 5 (2) 2.5 1.5
PENYGROES 5 (3) m 219.8 g
PENYGROES 7:1 (2) N 0.93 0.76
PENYGROES 7:2 (3) N 0.0 NG
PENYGROES 7:3 (3) TN 2 8.0 0.0
PENYGROES 7:4 (3) TN ™ 0.51

(1) NUMBERS OF COMPLEX DEGRADING BACTERIA WERE DETERMINED ON FERRIC AMMONIUM

CITRATE MEDIUM

(2) SAMPLES COLLECTED 4.3%.83

(3) SAMPLES COLLECTED 9.8.82

(4) THE MAGNI'TUDE OF DILUTIONS IS EXPLAINED IN THE NOTES ACCOMPANYING

TABLE 4.7 (NOTE 4).

(5) NG; NO GROWTH OBSERVED ON BOTH MEDIA. TN: NUMBERS TUO NUMEROUS FOR

DETERMINING ACCURATE RESULTS

(6) A RATIO OF 0.0 INDICATES NO GROWTH ON FAC MEDIUM.
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indicates that overall a greater number of organisms were encountered on
FAC medium suggesting that complex-degrading organisms were mbre numerous
than the total bacterial numbers determined by plating on nutrient agar.
However, the variation seen in the results and the possible inhibition of
some bacteria by nutrient agar would favour the conclusion that no
significant difference existed between the total number of organisms in
the sample, as determined by isolating on nutrient agar, and the number of

complex-degrading bacteria.

This conclusion confirms the generally accepted view (Section 2.5.2.3)

that most bacteria present in the natural environment, especially in soils,
are capable of degrading organic complexes by utilizing the organic
component. Thus it is ta be expected that organisms growing on nutrient

agar would also grow on the FAC medium.

L. 4 DISCUSSION

At most of the sites examined sheathed filamentous bacteria were observed.
In a few sites none or very few filaments were seen. The low numbers
encountered at Spanker can be related to the acidity of the site. The
optimum pH of the sheathed filamentous bacteria is between 6.0 and 7.0
whereas the pH of the Spanker sites was less than, or just above, 4.0,
However, acidity does not explain why filamentous bacteria were not found
in the ochre at Penygroes 1 and Penygroes 3 where the pH was 6.k.
Similarly at Gallt yr Hulldrem and Morfa Glas, filamentous bacteria were

numerous although undried pH values of 4.6 and 4.8 were recorded.

Several types of sheathed filamentous bacteria were seen and most were

assigned to the genus lLeptothrix spp. Gallionella spp were observed

but their occurrence was not as widespread as the filamentous bacteria.

In the literature Sphaerotilus spp are commonly associated with ochre

but no Sphaerotilus type organisms, characterized by chains of cells

within a distinct sheath, were observed during the present study. Not all

authors would agree with the classification adopted since some consider
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Leptothrix spp to be a type of Sphaerotilus spp (see Section 2.3.1.2)

Scanning electron micrographs of ochre revealed a variety of structures,
but filaments and accumulations of ferric iron compounds were predominant.
It was shown that the filaments observed during light microscopy were
tubular and composed primarily of iron. These tubes or filaments were

usually surrounded by ferric particles.

The abundance of filaments, devoid of living cells suggests that the
sheathed filamentous bacteria present in ochre are capable of producing
"tubes' prolifically. This confirms the observation made by Van Veen et

al (1978) that leptothrix ochracea could produce large masses of empty

sheaths within a short time.

The widespread distribution of Thiobacillus ferrooxidanswas surprising.

T.ferrooxidans was isolated from ochre using autotrophic 9K medium. It

is known that this bacterium grows at pH values below 4.5 with an optimum
of about 2.5 (Section 2.4.1) but high counts of Thiobacilli were obtained
from sites having a much higher pH. For example, the highest number found
was 3.43:{104 organisms per gramme oven dried ochre. This was obtained at
Hall Farm 1, a site having an undried pH of 6.5. 1In fact only 2 out of

the 14 samples where T,ferrooxidans was detected had a pH value less than

4, This suggests that T.ferrooxidans exists in acidic microenvironments

within the drainage system or soil.

It was suggested in section 3.3 that polysaccharide producing acidophilic
bacteria were present in some ochre samples on the basis of high ribose :
xylose ratios in ochre hydrolysates. The isolation of bacteria from ochre
on acidic media strengthens this conclusion although it was not demonstrated
that the acidophilic isolates produced extracellular polysaccharide. The

incorporation of the anti-fungal agent pimaricin in Harrison's agar

(Harrison et al, 1980) gave a particularly useful medium for isolating

these bacteria.
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Acidophilic heterotrophs were found in 10 out of 17 samples ex~mined.
A variety of different organisms were isolated, most of which were also

capable of growing on nutrient agar at neutral pH values.

Organisms capable of degrading organic complexes were isolated from ochre
using a medium based on ferric ammonium citrate. Growth in the media
resulted in the release and subsequent precipitation of ferric iron
compounds from the soluble ferric complex. There appeared to be no
difference between the number of complex degraders and the total number of
bacteria isolated on nutrient agar. This suggests that most organisms in

the samples were capable of utilizing the organic component of iron~crganic

complexes.

The organisms isolated using FAC medium were essentially small, motile,
rod shaped bacteria with a tendency to form chains of cells. These chains
were similar to the chains associated with filamentous bacteria of the

Sphaerotilus ~ Leptothrix group. However, the later organisms are

characterized by a sheath enclosing a chain or filament of cells. Sheaths
were not observed in isolates from FAC medium. Although these isolates
were capable of releasing iron from complexes, deposition on single cells
or chains was not encountered. This suggests that the release of iron is

of no significance to these bacteria. They utilize the organic matter of

the complex irrespective of the metal component.

It has been claimed that ochre can form as a result of the breakdown of
iron-organic complexes by bacteria (Section 2.5.2.3). The presence of
such bacteria in ochre samples confirms that this mechanism is feasible.
However, the importance of complex degredation as a mechanism of ochre
formation depends entirely on the amount of complexed iron in the drainage

water. This aspect will be discussed fully in chapter 8.
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The chemical and microbial characteristics of 17 ochre samples are shown
in table 4.9. The results are derived from tables in Chapters 3 and k.
The data shown can be rationalized by initially examining the extremes.
The sites at Spanker can be considered as representing one extreme. Here
the pH of the samples was low as was the organic matter content. Ione or

very few filamentous bacteria were found but Thiobacillus ferrooxidans

and acidophilic heterotrophs were numerous. The number of acidophilic
heterotrophs were high in relation to the total count on nutrient agar.

At Spanker 2 the ratio of number of bacteria on acidic plates to the number
on nutrient agar was 8.35. The deposits at these sites can be correctly

described as pyritic ochre.

At the other extreme, sites such as Park Farm 2 and Park Farm 3 can be
considered. These had a higher pH (about 5.5) and a high organic matter
content. Filamentous bacteria were numerous but no Thiobacilli or
acidophilic heterotrophs were found. These are typical filamentous ochre
sites.

Understanding the nature of ochre is made difficult by the numerous samples
that fall between the two poles described above. Between the extreme

pyritic and filamentous types various combinations can be observed.

Samples from Penygroes 1 and Penygroes 3 represent a slight shift away
from purely pyritic ochre. At these sites the pH was about 5.5 and the
organic carbon contents of 0.8 and 3.2% respectively were similar to those
obtained at Spanker. ZFilamentous organisms were not found in the ochre
samples but they were observed in the drainage water indicating their

presence but at low numbers. Thiobacillus ferrooxidans and the related

heterotrophs were found at both sites. In the case of Penygroes 1 the
number of Thiobacilli was lower than at Spanker but higher numbers were
observed at Penygroes 3. The number of acidophilic heterotrophs at

Penygroes was lower than at Spanker. The numbers of these organisms were
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also less than the total count on nutrient agar showing that their

contribution to the total microbial population wasless than at Spanker.

Similarly, at Hall Farm 4b the number of Thiobacilli and acidophilic
acidophilic

heterotrophs were high but the numbers ofAheterotrophs were low compared

to the total bacterial population. No filamentous bacteria were found at

Hall Farm 4b but they were observed in samples from adjacent drain lines.

Several samples could be described as containing a mixture of
characteristics representative of pyritic and filamentous ochre types.
The most striking example is Hall Farm 1 having a pH of 6.5 and a high

organic carbon content of 6.0%. Filamentous bacteria and Gallionella spp

were abundant. Additionally the highest counts of Thiobacilli and
acidophilic heterotrophsg3.43x104 and 1.02x108 organisms per gramme dried
ochre respectively, were found here. The number of acidophilic heterotrophs
was almost double the count obtained on nutrient agar. Similar combinations

of features were seen at Firbeck 2 and Beccles Marsh 3.

Other samples show a closer association with the extreme filamentous ochre

type. At Persehall 6 4.9x103 T.ferrooxidans were found per gramme of dried

ochre in addition to filamentous bacteria. At this site, having a pH of
6.5, acidophilic heterotrophs were not isolated. At Penygroes 5 the

undried pH was 6.0 Filamentous bacteria and Gallionella spp were observed.

Although some acidophilic heterotrophs were isolated they represented a very
small proportion of the total microbial population and Thiobacilli were not

found.

Penygroes 6, Penygroes 7:1, Llyn Cowlyd and Llyn Coedty represent samples
very close to '"pure' filamentous ochre. The pH of these sites was about

6.0 and filamentous bacteria were numerous. T.ferrooxidans was isolated

but at numbers less than 50 organisms per gramme dried ochre. Acidophilic
heterotrophs were only found at Penygroes 7:1 where the ratio of acidophiles

to total bacterial numbers was 0.004,
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From the preceding discussion it can be concluded that two extreme types of
ochre can be described. Pyritic ochre is characterized by a low pH (less
than 3.0 or 4.0), a low organic matter content, no filamentous bacteria

but high numbers of T,ferrooxidans and acidophilic heterotrophs. These

heterotrophic organisms form a large proportion of the total heterotrophic
population. Filamentous ochre on the other hand has a pH of about 6.0 and
a high organic matter content as compared to pyritic sites. Filamentous
bacteria are numerous whilst acidophilic autotrophs and heterotrophs are
absent. Between these extremes many different types of ochre exist. Their
pH can vary from 4.0 to over 6.0 as can their organic matter content.

Filamentous bacteria, T.ferrooxidans, and acidophilic heterotrophs can be

present or absent in any combination. Thiobacilli are discouraged by high
PH values but they can be present in ochre samples of high pH by the
existence of acidic microenvironmments in the drainage system. Conversely
filamentous bacteria will be more numerous in the less acidic samples.

The acidophilic heterotrophs are also affected by pH. However examination
of the different isolates showed that many were capable of grouving at
neutral pH values. Only one isolate was found exclusively on acid media.
A decline in the importance of acidophilic heterotrophs as the samples
become more '"filamentous'" is associated with a reduction in their numbers

relative to the total number of bacteria present.

The different types of ochre outlined above can be explained as a
transition from pyritic to filamentous ochre. Initially ochre formation

would be based on the oxidation of pyrite by T.ferrooxidans. As the

amounts of pyrite were reduced the pH would gradually rise and filamentous
bacterial would increase in importance eventually replacing the acidophilic
autotrophs and heterotrophs. Alternatively the different ochre classes
can be described in terms of a coexistence. Pyrite can be present in the

catchment area of the drainage system but in quantities that are too low
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for the development of extreme acidities resulting from pyrite oxidation

by T.ferrooxidans. The amount of pyrite is however sufficient to support

significant numbers of Thiobacilli. Under these conditions filamentous
bacteria would also thrive resulting in many types of ochre of various

compositions.

Whichever of these explanations is correct the transition or coexistence
is not dependent upon time only. The results in table 9 show that as much
variation is often seen from site to site within an area as is seen

between different areas.
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Plate 4:1 Filamentous ochre from Sychnant Pass :
Phase contrast light microscope X250. Organisms of
Type 1 and 2 are illustrated.

Plate 4:2 Filamentous ochre from Park Farm 7 :
Phase contrast (dark field) light microscope X250.
Organisms of Type 4 are illustrated.
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Scanning electron micrographs of gold coated ochre sanples.

Plate Site Magnification
4.3  Donegal X 709
4.4  Sychnant Pass X 1008
4.3  Llyn Coedty X 5009
4.6 Donegal X 2008
4,7 Donegal X 3008
4.8 Llyn Cowlyd X 5008
4.9 Llyn Cowlyd X 5000

4.18  Llyn Cowlyd X 2008

4,11  Llyn Coedty X 760

4.12  Llyn Coedty X 2009

4,13  Llygn Coedty X 2000

4,14  Llyn Coedty X 5008

4,15  Sychnant Pass X 3000

4.16 Sychnant Pass X 7800

4.17 Llyn Coulyd X 7068

4,18 Llyn Cowlyd X 7009

4,19 Donegal X 5800

4.20 Llyn Coedty X 708

421  Llyn Coedty X 2808




———,

Plate 4:22 Bacterial colonies growing on Harrison's acidic
agar medium containing pimaricin.

Plate 4:23 Bacterial and fungal colonies growing on
Harrison's acidic agar medium without pimaricin.
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5.

THE CULTURE OF SHEATHED FILAMENTOUS BACTERTA

5.1 STANDARD MEDIA

Many media for growing sheathed filamentous bacteria have been described in

the literature.

isolating these bacteria from ochre.

1.
2.
3
L,
5.
6.
Te
8.
9.

10.

17.
18.

S medium

Stokes} mediunm

PGY medium

Armbruster's BOD - Lactate medium
TCS agar

Heterotrophic medium

I medium

CGY medium

SCY medium

Al and A2

S and S+ agar

Manganese agar

GG medium

L medium

Ferric ammonium citrate medium
Ferrous sulphide medium
Phaup's medium

Manganous carbonate agar

Several of the media were investigated as a means of

(Lackey and Wattie, 1940)
. (Stokes, 1954)

(Takiguchi et al, 1978)

(Armbruster, 1969)

(Farquhar and Boyle, 1971)

(Godinho~orlandi, 1980)

(Van Veen, 1973)

(Dondero et al, 1961)

(Mulder and Van Veen, 1963)
1963)
1963)

1963)

(Mulder and Van Veen,
(Mulger and Van Veen,
(Mulder and Van Veen,
(Dondero et al, 1960)
(Lackey and Wattie, 1940)
(Rogers and Anderson, 1976)
(Kucera and Wolfe, 1957)
(Phaup, 1968)

(Van Veen et al, 1978)

All the media were prepared as indicated in the original reference unless

stated otherwise.

available equivalent.
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INOCULATION OF MEDIA

Where possible the media were inoculated on the day of sampling. They
were used on various occasions with ochre collected from several sitese

The schemes of dilution and inoculation are described below.

The samples were not homogenized after their initial dilution since it

was thought that this would be too severe for the sheathed filamentous
bacteria. Additionally, Van Veen (1973) had suggested that normal
techniques should be avoided when cultivating sheathed filamentous bacteria
since such treatment would liberate a large number of unicellular bacteria

from flocs.

Ochr Cefn Isaf

Liquid media were inoculated using undiluted ochre in a Most Probable
Number technique employing 3 inocculations with 1.0 ml aliquots, 3 with

Oel mlyand 3 with 0.0l mle An uninoculated control was also prepared.

Solid media were inoculated with 0.5 ml of undiluted ochre per plate.

Uninoculated controls were also prepared.

Sychnant Pass

Ochre was collected from a roadside ditch and 1 ml of undiluted suspension

was used as an inoculume.

Donegal
1.0 ml of ochre was diluted with 200 ml of sterile distilled water and

thoroughly shaken. 1.0 ml was withdrawn and added to 9 ml of pre-sterilized
distilled water in a sterile test tube. This stage was repeated until
3 tubes (3 dilutions) had been prepared. 1.0 ml of each dilution was used

as an inoculume.
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Llyn Cowlyd

2.0 ml of ochre, suspended in drainage water, was diluted in 200 ml of
sterile distilled water and thoroughly shaken (dilution 1). 2.0 ml was
added to 18.0 ml of sterile distilled water in a conical flask. This

process was repeated four times to obtain dilutions 2 to 5. 0,5 ml of

each dilution was used to inoculate flasks or plates of the medium.

5.1.1 S medium (Lackey and Wattie, 1940)

g/1 (distilled water)

NazH.POL{_ 0.05
NaCl. 0.015
KCl. 0.007
MgSOu 0.005
Peptone 0.1

Dextrose 0.5

S medium or synthetic sewage medium was originally used by Lackey and

Wattie (1940) for growing Sphaerotilus natans isolated from sewage sludge.

Chang et al (1979) used the medium to investigate the inhibitory effects of

different iron compounds on the growth of Sphaerotilus strains isolated

from laboratory activated sludge and from the American Type Culture

Collection.

Waitz and Lackey (1959), using § medium at room temperature, found that
S.natans grew as white, fluffy, cotton-ball like colonies throughout the
medium. After about 24 hours growth changed into a gelatinous/strand

type.

The medium was inoculated with ochre from Ochr Cefn Isaf. After 8 days
the cultures were cloudy with a thin "sediment" in the base of the flasks.
The ''sediment" contained motile and non-motile rods of various sizes. No

growth was apparent in the unicoculated controls. Ochre from Sychnant Pass

184



yielded similar results. A large number of rod shaped bacteria about 5 ym

long were seen. Fungal filaments were also numerous in the cultures.

When S medium was originally used (Lackey and Wattie, 1940) the cultures
were continually aerated. To reproduce these conditions 100 ml portions

of the medium were inoculated with Donegal ochre. Air was slowly bubbled
through the media via sterile plastic tubing. Incoming air was sterilized
using a fibreglass filter. Small white flocs developed in the cultures and
these formed cotton-wool like growth. These contained branching fungal
filaments and many unicellular bacteria. The bacteria included small motile
rods, cocci and some chains of rod-shaped organisms. Aliquots from the
cultures were transferred onto nutrient agar to characterize the isolates

further. Small white-opaque colonies developed within four dayse These

colonies contained motile rods 48 um long and non-motile chains of rods.

Although bacteria capable of forming chains were isolated from ochre using

S medium sheathed chains characteristic of Sphaerotilus spp were not

encountered in liquid media or when isolates were grown on agar plates.

5.1.2 Stokes'! medium. (Stokes, 1954)

g/l (Tap Water)

Glucose 1.0
Peptone 1.0
MgS0,, «7H,0 0.2
CaCla. 0.05
FeCIB.GHQO" 0.0
Agar 12.5

Stokes (1954) used this medium to isolate Sphaerotilus natans from a

variety of aquatic habitats. Colonies of the organism appeared "flat,
dull, white and cottony." Microscopic examination revezled chains of rod

shaped bacteria within a sheath. According to Waitz and Lackey (1959),
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who used Stokes' medium for growing S.natans, growth on solid media was
characterized by "outgrowths along the lines of inoculation which had
ramose edges and a wavy interlaced centre." Takiguchi et al (1978) used

Stokes! medium in a study on growth inhibition of Svhaerotilus and

Beggiatoa. Chang et al (1979) used a modification of this medium for

maintaining pure cultures of S.natans.

When plates of the medium were inoculated with ochre from Ochre Cefn Isaf
colonies formed on all plates within 7 days except on the uninoculated
controls. However all the colonies were fungal as confirmed by microscopic

examination of prepared slides.

Vhen ochre from Llyd Cowlyd was used as an inoculum fungal colonies were
not isolated. Within 6 days growth was seen on plates from the two lowest
dilutions. Examination of the colonies revealed motile rods about 20 yu

long. DPurple colonies probably Chromobacterium violacea were also observed.

Colonies similar to those described by Stokes (1954) or Waitz and Lackey
(1959) were not seen. Additionally, forms similar to S.natans were not

found by examining colonies under the microscopee.

5.1.3 PGY medium (Takiguchi et al, 1978)

5[1 (Tap Water)

Peptone 2.0
Yeast autolysate 1.0
Glucose 0.5

pH was adjusted to 7.0 and to solidify the

medium agar was added at 1l.5%

PGY medium was used by Takiguchi et al (1978) to maintain S.natans.
Yoshikawa et al (1979) used liquid cultures and agar plates of PGY to

maintain S.natans.
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All flasks inoculated with ochre from Ochr'. Cefn Isaf developed a dark
green colour within 7 days. A gelatinous orange material was seen on the
surface and a white film was evident on the sides of the flasks. Prepared
slides contained unicellular motile and non motile rods. A similar result
was obtained when liquid media were inoculated with ochre from Sychnont
Pass. Ixtensive colony development was seen on agar plates inoculated with
ochre from Ochr Cefn Isaf and Llyn Cowlyd. The colonies were composed of

motile, sporulating, rod-shaped bacteris up to 10 ym long.

5.1l.4 Armbruster's BOD-Lactate medium (Armbruster 1969)

mg/1 (Distilled Water)

Sodium Lactate 100
NHACl_ 1.7
1(1121?04 85
K HPO,, 21.5
Na2HP04.7H20 344
MgSO,_I_.'?HZO 22.5
CaCl'a ) 27.5
FeClB.éi{aC? . 0.25

This 1iquid medium was used by Armbruster (1969) to isolate Sphaerotilus.

The cultures were incubated at 22—25°O for 5 days.

Portions of the medium were inoculated with ochre from Sychnant Pass and
Donegal. The flasks inoculated with Sychnant Pass ochre were examinea
after 17 days. A red precipitate was seen in the flasks and unicellular
rods and fungal filaments were found in solution. The flasks inoculated
with Donegal ochre showed no apparent growth after 27 days incubation.
Microscopic examination revealed some red particles but no unicellular
bacteria. Some filaments were seen in the flasks inoculated with ochre
from Sychnant Pass and from Donegal. However, it was concluded that these

were dexived from the original inoculgtion. The number of filaments was
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very low, they were always associated with accumulations of iron similar to

the original sample and the filaments contained no living cells.

5.1.5 TCS agar. (Farquhar and Boyle, 1971)

g/L

Trypticase Soy 1.0

Agar 15.0

Farquhar and Boyle (1971) used this solid medium for isolcting and

purifying Sphaerotilus spp and Bacillus spp from activated sludge.

According to the authors colonies of Sphaerotilus ''exhibit: extensively

curled projections growing well out beyond the limits of the main colony",

Plates of TCS were inoculated with ochre from Ochr Cefn Isaf, ILlyn Cowlyd
and Sychnant Pass. IFungi and motile, rod-shaped bacteria were isolated

but sheathed filamentous bacteria were not observed.

5.1.6 '"Heterotrophic' medium (Godinho-Orlandi, 1980)

g/l distilled water

KEHP04 0.2
MgS0y, «7H,0 0.05
Glucose 0.01
Peptone 0.01
Yeast extract 0.0l
FeCl, 4 drops of a 0.01% solution

(The cultures were incubated at 15°C for 10 days).

This medium was found to be the most satisfactory method of isolating
filamentous bacteria from lake sediments (Godinho-Orlandi, 1980;
Godinho~Orlandi and Jones, 1981). Using "Heterotrophic medium" the

filamentous bacteria Leptothrix, Beggiatoa, Vitreoscilla, Pseudonabaena

and Flexibacter were isolated. The sterile cellophane was incorporated in
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liquid cultures to stimulate growth. It was found that filamentous
bacteria did not stand reinoculation in the medium and no further growth

was observed.

Liquid portions of "Heterotrophic medium" were prepared. A 2 cm length
of 5 mm diameter plastic.tubing cut in half lengthways was placed in each
flask before autocla@ing. 0.2 ml of filamentous ochre from Sychnant Pass
was used as an inoculum. All the flasks were disturbed as little as
possible during and after inoculation so that the inoculum remained as
a distinct red floc in the base of the flask. In this way the inoculum
could be identified easily when examining the cultures for new growth.
After 10 days the solution surrounding the flocs of inoculum had a

cloudy appearance. Filamentous bacteria were found in all the cultures
except“the uninoculated controls. These organisms were straight or
slightly curved. Some were not encrusted with iron whilst others had a
slight orange tinge. Some filaments were associated with iron masses;

Very few unicellular bacteria were observed.

Despite the apparent success of the medium there remained some doubt as
to whether the filamento&s bacteria observed were merely part of the
original inoculum. In these experiments a large amount of ochre was used
to inoculate the cultures. Additionally, no further growth was observed

when the flocs were transferred to fresh medium.

In an attempt to prove that filamentous bacteria could grow in
"Heterotrophic medium" liquid portions were inoculated with ochre from
Llyn Cowlyd. The media were inoculated with a range of dilutions from
102 to 106. In the two highest dilutions no growth was observed. In the
flasks inoculated from dilutions 102 to 104 a cloudy precipitate formed
in the base of the flasks. This was composed of a variety of small rods

and cocci. Some spores were evident. A few filaments up to 40‘pm long

were observed but only in the lowest dilution.
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Although "Heterotrophic medium'" may support the growth of filamentous
bacteria its use for their isolation from ochre is not straightforward.
When ochre was diluted filamentous organisms were not isolated. However,
if undiluted ochre, or low dilutions, are used it becomes difficult to

differentiate between new growths and filaments derived from the inoculum.

5.1.7 I Medium (Van Veen, 1973)

g/1 (Distilled Water)

Glucose 0.15
(vH,) 550, 0.50
Ca(NO3)2 0.01
KaHPOH 0.05
Mg504.7H20 0.05
KC1 . 0.05
CaCO3 0.10
Agar 10.0
Vitamin B12 0.01 mg
Thiamine 0.40 mg

Vitamin B12 and Thiamine were filter sterilized.

Van Veen (1973) and Eikelboom (1975) used I medium for isolating

filamentous bacteria, of the Sphaerotilus - Leptothrix group, from

activated sludge samples. It was recommended as a medium for isolating

"iron bacteria" by Rand et al (1976).

5 ml ochre samples from Llyn Coedty and Donegal were diluted in 50 ml of
sterile distilled water in a sterile conical flask (dilution 1). 5 ml of
dilution 1 was added to 50 ml sterile distilled water (dilution 2). The
process was repeated to obtain two further dilutions. 2 plates were
inoculated with 1.0 ml of each dilution for samples from Llyn Coedty and
Donegal. Plates of I medium were also inoculated with ochre from Llyn

Cowlyd. Growth was seen on most inoculated plates and irregular cream
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colonies were dominant. The colonies were composed of 4 yn long rods

and cocci. Sheathed filamentous organisms were not observed.

5.1.8 CGY Medium (Dondero et al, 1961)

/L

Casitone or Trypticase 5.0
Glycerol 10.0
Yeast autolysate 1.0

15g agar was added to solidify the medium.

Dondero et al (1961) used CGY medium to isolate Sphaerotilus from slime

masses in polluted streams,activated sludge, or from slime grown in
artificial laboratory troughs or chamnels. The organism produced colonies
with a filamentous edge. The filaments branched in "arborescent fashion."

This medium was used for growing pure cultures of Sphaerotilus by Mueller

aﬁd Litsky (1968) and Venosa (1975).

Agar plates of CGY medium were inoculated with ochre from Llyn Cowlyd and
incubated at 25DC for 6 dayse Entire, domed/raised, cream colonies 2~4 mm
in diameter were found. The colonies showed no filamentous edgese.
Microscopic examination revealed motile rods up to 8 jm long and some chains

of rods.

5.1.9 SCY medium (Van Veen, 1973)

g/l (Distilled \ater)

Sucrose 1.0
Casitone 0.75
Yeast Extract 0.25

Trypticase Soy Broth without dextrose 0.25

Vitamin B, 1x 107
Thiamine 1x lo-hg
Agar 10.0
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Van Veen (1973) and Eikelboom (1975) used SCY for isolating and purifying
cultures of filamentous bacteria from activated sludge. The organisms

were initially isolated on I medium (See Section 5.1.7).

Agar plates were inoculated with ochre from Llyn Cowlyd and incubated for
6 days. Cream colonies were observed on the three lower dilutions. The
cream colonies contained no sheathed filamentous bacteria and were

dominated by motile 8 ym long rods and cocci.

5.1.10 Al and A2 (Mulder and Van Veen, 1963)

Basal Culture Solution Mg/1 (distilled water)

KH,PO, 27
K HPO,, ko
Na,HPO, .2H,0 Lo
CaCl, 50
Mgs0, .7H,0 75
Fe013.6H20* 10
Mns0,, . 1H,0 5
ZnS0,, . 7H,0 0.1
CuS0y, «5H,0 0.1
H3B03 0.1
Na,MoO, .2H,0 0.05

* Fe013.6H20 was filter sterilized

Al To 1 1 of basal culture solution were added

MgSOu.7H20 200 mg
Glucose 200 mg
Peptone 200 mg
MnSO .1H20 1 nmg
FeSO,, .7H,0 10 mg
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A2 To 11 of basal culture solution were added

MgS04.7H20 200 ng
Glucose 200 mg
Peptone 200 mg
MnSO#.leo 25 mg
FeSOhT7H20 . 10 mg

These media containing ferrous and manganous sulphate were used by
Mulder and Van Veen (1963) to grow filamentous bacteria originally
isolated from sewage, activated sludge and iron containing ditch and well

water.

Portions of Al and A2 were inoculated with ochre from Llyd Cowlyd.

Red flocs were seen in all the flasks after 3 days. In medium Al, no
bacteria were seen except in the lowest dilution. These appeared as
sﬁall motile rods 48 ym long. Similar bacteria were seen in medium A2
in all but the final dilution. Sheathed filamentous bacteria were not

observed.

5.1,11 S and §° agar (Mulder and Van Veen, 1963)

The Basal Culture Solution described in Section 5.1.10 was diluted
tenfold except for the trace element solution which was not diluted.

S medium To 1 1 basal culture solution were added

Vitamin By, 0.005 mg (filter sterilized)
Peptone 1.0g
Glucose 1.0g
Agar 7458

S+ medium To 1 1 basal culture solution were added

Vitamin 312 0.005 mg (filter sterilized)
Peptone : 5.0g
Glucose 5.0g
Agar 758
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Mulder and Van Veen (1963) used these solid media for purifying cultures

of organisms from the Sphaerotilus - Leptothrix group especially

Sphaerotilus. The bacteria were isolated from sewage, activated sludge

and iron containing ditch and well water. On st agar Sphaerotilus and

Leptothrix usually produced white, smooth edged colonies. These colonies

tended to be filamentous especially when crowded on S medium.

The plates were inoculated with ochre from Llyn Cowlyd and incubated for
6 days. Colonies developed on the 3 lowest dilutions for S agar and on
all plates except for the highest dilution on st agar. The most common

colonies observed were entire, raised, white-cream colonies up to 8 mm in

diameter. These were composed of large motile and non-motile rods up to

8 pm long.

5.1.12 Manganese agar (Mulder and Van Veen, 1963)

g/l (Tap Water)

Ferrous-ammonium Sulphate 0.15
MnCO 2.00

3
Beef extract 1.00
Yeast extract 0.075
Na-Citrate 0.15
Vitamin 312 0.005 mg
Agar 75

Mulder and Van Veen (1963) used this agar for isolating and growing

Sphaerotilus and Leptothrix isolated from various sources (see 5.1.10 and

5.1.11). They recorded the formation of filamentous, black-brown colonies

of Leptothrix discophora when plates were inoculated from impure cultures

in running artificial ditch water. Some isolates produced white colonies
becoming brown with time. These appeared as sheathed filamentous

organisms under the microscope.
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Ochre from Llyn Cowlyd was used to inoculate plates of manganese agar.
Growth developed on the three lower dilutions after 6 days. Small white
colonies were seen. A few brown colonies having an irregular or rhizoid
shape were also observed. These contained motile rods 4-8 ym long and
some straight or slightly curved filaments associated with a mineral mass
(probably Mn02). Several brown colonies were transferred onto fresh

manganese agar plates, but subsequent growth was not observed.

5.1.13 G.G. (Glycerol Glutamate) medium. (Dondero et al, 1961)

Basal Medium

Glycerol 5.0g
Glutamic acid 0.9g
MgSO,, . 7H,0 0.1g
Fe50y, +7H,0 - 0.5g
CaCly, .2H,0 0.03g
ZnSOu.7H20 0.03g
Distilled Water 900 ml

pH was adjusted to 7.0 with 10% KOH.

Phosphate Solution

K HPO, 5.78
KHaPou 2.3g
Distilled Water 500 ml

The two solutions were autoclaved separately and mixed in the ratio 1
volume phosphate solution to 9 volumes of basal medium. Agar was added

to the basal medium.

Dondero et al (1961) used this medium for growing Sphaerotilus isolated

from slime masses in polluted streams, artificial laboratory troughs and

activated sludge. Sphaerotilus was identified on the medium by long

segments of '"cylindrical, non segmented, nonseptate sheaths,"
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When plates of G.G. medium were inoculated with ochre from Llyn Cowlyd
growth occurred within 6 days but only on the plates inoculatea from the
lowest dilution. Motile and non motile rods 4-8 pm long were seen.
These bacteria formed cream-white colonies covering the agar surface.

Sheathed cells were not observed.

5.1.14% L Medium. (Lackey and Wattie, 1940)

mg/1

NaNO ' 2
3 5

MgSOh 10
KZHPou 10
KH2P04 15
CzaCl2 Ls
Peptone 100

- Dextrose 500

L Medium was used by Lackey and Wattie (1940) to isolate Sphaerotilus

from activated sludge, sewage, and sewage polluted streams.

Flasks of L Medium were inoculated with ochre from Llyn Cowlyd. After
5 days all except the flask inoculated from the highest dilution had a
"cloudy" appearance. Motile rods 8-12 pm long were found in solution.

These were observed free swimming and as clusters of rods.
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Se1.15 Ferric Ammonium Citrate Medium (Rogers & Anderson, 1976)

g/1 (Tap Water)

Peptone 1.5

Yeast Extract 1.0

N - 2 hydroxyethylpiperazine - N - 2 ethanesulfonic acid (HEPES)

- 10 MM
MgSOh.7H20 0.2
0.0
CaCl2 5
Ferric ammonium citrate 0.5
MnSOu.HZO 0.05
F6013.6H20 0.01
Agar 13

pH was adjusted to 7.1 with a 3:1 (v/v) mixture

of NaOH and KOH.

Rogers and Anderson (1976) used this medium for isolating, purifying and

maintaining stock cultures of Sphaerotilus. The basal medium is based on

that used by Stokes (1954) (See Section 5.1.2). This medium is not

equivalent to the FAC medium described in section 4.3.2.

Plates were inoculated with ochre from Llyn Cowlyd and examined after

6 days. No growth was observed on plates inoculated from the two highest
dilutions. On the other plates cream-white; irregular colonies were
observed. These were composed of unicellular rods 4 ym long.

Precipitates of Fe(III) compounds were not observed.
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5.1.16 Ferrous Sulphide Medium (Kucera and Wolfe, 1957)

Basal medium

g/1

NHucl. 1.0

KEHPO,+ 0.5

Mgsoq.7320 0.2
The constituents were sterilized separately in distilled water. The
basal solution was dispensed into cotton plugged test tubes (1.0 cm x
7.5 cm sterilized by autoclaving) so that each was approximately half full.
Cotton filtered carbon dioxide was then bubbled through each tube for
about 5 seconds using a capillary pipette. 0.2 ml sterile ferrous
sulphide precipitate was then added slowly and allowed to settle gently to

the bottom of the tubes.

This medium was devised by Kucera and Wolfe, (1957) for isolating

Gallionella spp. Ivarson and Sojak (1978) used this medium to isolate

the organism from filamentous ochre samples.

The tubes were inoculated with Llyn Cowlyd Ochre. Organisms resembling
Gallionella had been identified in ochre from this site-by light
microscopy (See Section 4.1.1). After several weeks the tubes were
examined. The ferrous sulphide precipitate had oxidized but no bacteria

were observed when the precipitate was examined under the microscope.

5.1.17 Phaup's Medium (Phaup, 1968)

g/1 (Distilled Water)

Beef Extract 0.4
Peptone 0.6
KNO3 0.15
Mgsoh 0.2
CaCl2 0.05
Agar (When required) 20.0
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"N
Q§up's (1968) isolation medium was used to obtain cultures of

Sphaerotilus. Entire flocs of the organism were originally placed in the

liquid medium. Growths emerging from the flocs were transferred onto

agar plates.

Ten 15 ml portions were autoclaved in 30 ml glass vials. Ten agar plates
of the medium were also prepared. 1 floc (about 4 drops) of ochre from
Sychnant Pass was added to each glass vial using sterile 0.2 ml pipettes.
After 5 days the solutions became "cloudy" and small white flocs were
evident in the top 1 cm of solution. Motile rods about 4 pm long were
found by microscopic analysis. Some 10 um rods were also observed.

These were motile by gliding.

1 agar plate was inoculated from each vial using a sterile wire loop.
After 16 days cream colonies were seen on all plates. A spreading,
"leaf-vein' pattern of growth was seen away from the inoculated area.
These growths were composed of motile rods and cocci. Ensheathed rods

were not seen in the liquid cultures or on the agar plates.

5.1.18 Manganous Carbonate Agar (Van Veen et al, 1978)

gL

Glucose 1.0
Peptone 1.0
Manganous Carbonate (HnCOB) 1.5
Agar 15.0

This medium was based on data given by Van Veen et al (1978) for isolating

Leptothrix sppe.

9 plates were inoculated with ochre from Sychnant Pass. A thin line of
undiluted ochre was drawn across the agar with a sterile wire loop. After
5 days colonies had formed along the line of inoculation. These included

small, rhizoid purple colonies, white-cream colonies and brown rhizoid
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colonies. Some fungal filaments were seen to rise from the agar surface.
After a further 14 days many of the brown colonies had developed a
filamentous nature, spreading downward into the agar. Several of these
colonies were examined. They were composed of fungal filaments

associated with brown particles.

5.2 MODEL SYSTEMS

Several authors have been able to produce ochre in experimental models of

various designs. For example, Talman, 1978; Mulder, 1964; Mulder and

Van Veen, 1963;and Ford, 1979(A) and 1979(B).

Two model systems were investigated in an attempt to simulate conditions

in field drains and open ditches.

5.2.1 TANK MODEL

A 10 1 capacity plastic container was fitted with a 3.0 cm diameter
domestic grade pipe. Holes were drilled at regular intervals along the
ripe. The tank model was filled with gleyed soil (Moretonbampstead) from
above a drain pipe in which ochre had been found. Water draining out of
the model was reintroduced daily. When water was poured onto the model an
odour of hydrogen sulphide could be detected in the drainage pipe as

water flowed out. This indicated reducing c¢onditions within the tank.

After 3 months a small amount of orange-orgénic material accumulated at
the outlet. This material contained red aggregatesand many microorganisms.
Small motile rods were observed under the microscope as were some
filamentous bacteria associated with iron particles. Some fungal
filaments were also seen. However, after 6 months no extensive ochre

formation had occurred in the model.

The tank model was modified to incorporate some of the features of

Mulder's Model (1964). (See also Mulder and Van Veen, 1963). This model
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had an iron cylinder containing "ironstone soil" and ferric carbonate.
The cylinder was saturated with water and incubated for 3 weeks. The

tube served as a source of reduced iron.

The plastic tank described earlier was emptied and fitted with a length of
corrugated plastic drainage pipe (55 mm external diameter). A rubber bung
was used to close one end of the pipe to ensure that water entered the pipe
through the slots. A length of rubber tubing was passed through the bung
and out through the back of the model.. Two small lengths of 5 mm diameter
plastic tubing were inserted through the sides of the tank at two

locations about 5 cm from the top of the model.

In order to generate a supply of reduced iron in association with organic
matter a plastic container was filled with sand, 20g of chopped hay and

5.0g of ferrous sulphate. The container was then filled to capacity with
water. A length of rubber tubing had been fitted to the base of the jar.
The jar was placed in the tank model and the rubber tube passed through a

hole cut at the side of the tank (Figure 5.1).

5.0 ml of Sychnant Pass ochre was injected into the model using 5.0 ml
plastic syringes. Ochre was introduced via the two side inlets and into
the drainage pipe through the rubber bung. 5.0 ml of water was then
injected through these inlets to force ochre into the sand and drainage
pipe. Distilled water was pumped into the anaerobic jar through the lower
inlet pipe using a syringe. This was continued until water escaped from
an outlet pipe in the 1lid of the jar. For one month ochre was introduced
once a day and water pumped through the amaerobic jar twice a day.

Although red stains appeared in the vessel used to collect the outflow no

ochre developed in the drainage pipe.
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Figure 5.1 : Diagram of the tank mpodel used in an attempt to
simulate ochre formation
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5.2.2 OPEN DITCH MODEL

A model simulating an open ditch was made using a 70 cm 1engtﬁ of plastic
guttering fixed to a wooden stand by plastic support brackets. The model
was closed at both ends using proprietary end pieces. At one end an inlet
pipe was installed and an outlet pipe at the other end. The model was
inoculated with a 15 cm piece of 55 mm diameter corrugated plastic drainage
pipe. This pipe had been left in a ditch at Sychnant Pass for several days.

During this time ochre had accumulated ‘inside and outside the pipe.

A dilute infusion was prepared by extracting 30g of hay in 600 ml of water.
The extract was diluted to 10 1 and 5.0g of ferrous sulphate added
(Solution A)., This solution was diluted further in the ratio 11:91 and
allowed to flow slowly through the model. After S5 days 10 1 had flowed
through the model. A further 10 1 was prepared by diluting 1 1 of
autoclaved 'solution A' to 10 1 with water and adding 5.0g of ferrous
sulphate. Precipitates of iron formed in the model within a few days.
These restricted the flow of water to some extent. Gelatinous deposits
were observed in association with the ferric precipitates. Under the
microscope it was seen that these were composed predominantly of inorganic

particles. Some filamentous bacteria were observed as were fungal

filaments.

When iron had precipitated along the entire.length of the model the
precipitates were examined microscopically. No filamentous bacteria were
found at the upper end of the model or at the outlet pipe. Filamentous
bacteria encrusted with ferric iron compounds were seen at the centre of
the model. After a further 10 days fungal colonies had developed, in the
form of red '"cotton-wool" like flocs. Under the microscope fungal
filaments and iron p;Qticles were seen. Motile rod' shaped bacteria,

5-10‘pm long, were also seen but no filamentous bacteria. Filamentous

bacteria were not observed in the model after this time.
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5.3 EXPERIMENTAL MEDIA

Se3.1 DRAINAGE WATER

Two 150 ml portions of drainage water from Llyn Cowlyd and Llyn Coedty
were collected in sterile polypropylene bottles. Care was taken to avoid
collecting flocs of ochre. A 100 ml portion of drainage water was filter
sterilized on site using a 0.22 ym Millipore filter attached to the
apparatus described in section 5.3.4. A brass bicycle pump was used to

force air through the system.

In the filtered water iron (III) had precipitated out as a thin layer
composed of small flocs. No bacteria were observed in these flocs. At
both sites flocs of orange coloured material formed in the unsterilized
water., These were composed of red particles associated with sheathed
filamentous bacteria. The bacteria were straight or slightly curved
organisms some of which were encrusted with ferric particles. Many
unicellular bacteria were also observed. The total organic carbon content

of these drainage waters is given in Table 5.4.

Growth of filamentous bacteria in drainage water was also observed in

samples collected at Penygroes site 1 (See plate. 5.l).

It was demonstrated that growth of the filamentous organismsis related to
the iron content of drainage water. Drainage water was collected from a
ditch near the ochre sites at Llyn Cowlyd. No ochre was found in the ditch
and iron could not be detected in the water by atomic absorption

spectrophotometry (Plate 3.28).

The effect of filtration and dilution on the growth of filamentous
organisms in drainage water should also be noted. 1.0 1 of drainage water
from Llyn Cowlyd was filter sterilized on site using a 0.22 pm Millipore
filter. Two 50 ml portions in pre-sterilized 100 ml conical flasks were

inoculated with 1.0 ml of diluted ochre on site. The ochre was diluted

-~
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1.0 ml of suspension in 100 ml of sterile tap water. The inoculated
flasks were examined after several days and a pale yellow precipitate was
observed at the bottom of both flasks. Large flocs were not seen and

filamentous bacteria were not found in the precipitate.

5.%.2 EXTRACTS AND INFUSIONS

In the past, plant extracts have been used to isolate and grow filamentous
bacteria. For example, Brown (1903) succeeded in growing the organisms in
water containing an infusion of hay and ferric salts. Similarly, Mulder
and Van Veen (1963) used a pea-straw extract as an enrichment medium for

isolating organisms of the Sphaerotilus - Leptothrix group. The organic

compounds present in such extracts are similar to those present in

drainage water.

5¢3.2.1 Hay Infusions

Liquid and solid media based on extracts of hay were prepared.

Approximately 38g of hay (Perennial ryegrass : clover) was extracted for
15 minutes at | 20°% in 300 ml of tap water. Two 120 ml portions
of extract were diluted to 500 ml with sterile tap water. O0.3g ferrous
sulphate was added to one dilution and 1.0g ferrous sulphate was added to
the other dilution. The flasks were inoculated with 0.5 ml of Sychnant
Pass ochre and incubated at 25°C for 14 days. Fungal growth was observed
in the flask containing 0.3g ferrous sulphate. In the second flask fungi
were not evident and the microbial population was dominated by small

unicellular bacteria.

Agar plates were prepared by autoclaving 8.0g hay in 250 ml tap water.
The filtrate was made up to 250 ml with tap water and 4.0g of agar added.
After the solution had been autoclaved and cooled slightly 1.0g ferrous
sulphate was incorporated. 3 plates were inoculated with 0.5 ml of

filamentous ochre from Sychnant Pass. A further 4 plates were inoculated
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with 0.5 ml of ochre diluted 1.0 ml in 100 ml sterile distillgd water. An
uninoculated control was prepared. No growth occurred on the control

plate. Fungal colonies dominated the plates inoculated with undiluted ochre.
On the other plates irregular, raised, white colonies were observed. The

colonies contained small, motile rod-shaped bacteria.

Filamentous bacteria were not isolated with these hay infusions. It was
thought that high organic matter levels were encouraging the growth of fungi
and unicellular bacteria at the expense of the filamentous organisms.

Media based on diluted hay extracts were prepared. These media, and the

problems associated with them, are discussed in section 6.2.

Se3.2.2 Dried grass

A medium based on dried grass was prepared. A similar medium had been used
(Kelso, W.I, Personal Communication) for growing filamentous bacteria from
ochre samples., 20g of a dried Perennial Ryegrass : Clover Mixture (50:50)
was added to 1 1 of boiling water and left for 5 minutes. To 250 ml of
cooled extract was added O.bg FeSOu.7H20 and to a further 250 ml was added
O.kg MnSOu.HHZO. The pH was adjusted to 6.5 with 2M NaOH. Each flask of
medium was diluted so as to contain 30 ml of extract and 50 ml water.

6 flasks of the iron and manganese containing media were prepared and
inoculated with O.1l ml of filamentous ochre from the Vale of Pickering
(collected by Fletcher,P.). . 2 flasks of éach medium were inoculated
with 0.1 ml of ochre from Sychnant Pass. The flasks were incubated at 25°C
for 22 days. All media showed fungal contamination with fungal 'pads' on
the surface of the cultures. Fungi were clearly seen under the microscope

but no filamentous bacteria.
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5e%.2.3 Heather extracts

70 g heather was autoclaved in 800 ml distilled water and the extract
filtered through Whatman 540 filter paper. The extract had a pH of 4.0
and an organic carbon content of 1.8 g/l (organic carbon was determined by

the method described in Section 5.3.5).

1.0 ml of extract was added to various volumes of ferrous sulphate

solution (0.5 g/1) and diluted to 100 ml with distilled water. 6 different
volumes of ferrous sulphate solution w;re used, in the range O to 25 ml,
giving a final Fe(II) concentration between O and 25 pm/ml. The pH of

each solution was adjusted to 6.5 with NaOH. The solutions were
autoclaved, pH was recorded, and the presence or absence of a precipifate
noted. The reéults shown in Table 5.1 demonstrate that up to 20 pg/ml of
Fe could be held in solution by 1.0 ml of extract in 100 ml at a pH above
6.0. Since this amount of iron had been held in solution during autoclaving

it was assumed that any release of iron in inoculated solutions would be

the result of bacterial degredation of the iron-organic complexes.

TABLE 5.1 THE EFFECT OF AUTOCLAVING ON THE pH AND PRECIPITATION OF IRON

IN A HEATHER EXTRACT CONTAINING FERROUS SULPHATE

Fe(II) CONCENTRATION (ng/ml) PRECIPITATE (1) P
0 - 73
5 - 7.1
10 - 6.9
15 - 6.k
20 - 6.4
25 + 4,2

(1) + indicates that a precipitate formed during autoclaving.

Portions of heather extract media with 20 pg/ml Fe(II) were prepared as

described above and inoculated with O.1 ml filamentous ochre. The media

were kept at room temperature for 15 days. Red flocs appeared in all the
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inoculated flasks whilst they did not develop in uninoculated controls.
Microscopic examination of the flocs showed that they were composed of
straight filaments associated with ferric particles. Some unattached

non-encrusted filaments were also observed.

Although these media were apparently successful they were not investigated
further. The composition of the extracts was poorly defined and
identifying new growths as oppossed to original inoculum was difficult.
Additionally, the chemical oxidation effects discussed in section 6.2 with

regard to hay extract would make it difficult to confirm that filamentous

bacteria were growing in the heather extract media.

5¢3.3 ORGANIC ACIDS

Ochre often forms in water flowing from an anaerobic zone. It is to be
expected that such water would contain organic acids such as lactic,
butyric and acetic acid which are characteristically produced in anaerobic
environments (Russell, 1961). Ford (1979B) was able to produce ochre in
chambers or tubes receiving continuous injections of ferrous iron

(2.0 pg/ml) and 1.0‘pg/ml of ascorbic acid, tannic acid, lactic acid or
sulphonated lignin at pH 6.5. Several media incorporating organic acids

and ferrous iron were investigated.

Se3%e %1 Ascorbic acid

Media containing ascorbic acid and 10 ug/ml Fe(II) as ammonium ferrous
sulphate were prepared. Some were supplemented with either yeast extract

or tryptone soya broth (Oxoid). The composition of these media is shown

in Table 5.2.
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Table 5.2 The composition of artificial media based on ascorbic acid

and ferrous iron

CONCENTRATION g/1

ASCORBIC ACID YEAST EXTRACT TRYPTONE SOYA BROTH (OXOID)

1. 0.2 1.0 -
2. 0.2 0.5 -
2. 0.2 - 1.0
b, 0.2 - - 0.5
5e 1.0 1.0 -
6. 1.0 0.5 -
7. 1.0 - 1.0
8. 1.0 - 0.5
9. 0.2 - -
10. 1.0 - -

EACH MEDIUM ALSO CONTAINED 10 pg/ml Fe(1l) AS AMMONIUM FERROUS SULPHATE

100 ml portions of each medium were inoculated with 0.5 ml diluted
Sychnant Pass ochre (1.0 ml ochre suspension diluted in 100 ml sterile
distilled water). The media were incubated at 25°C for 5 days. A red-
orange precipitate had formed in all flasks except those containing 1.0 g/1
yeast extract or 1.0 g/l tryptone soya broth. Many rod shaped unicellular
bacteria were found in all media except number 2 (Table 5.2). These were

motile organisms about 4 pm long. Sheathed filamentous bacteria were not

observed.

5¢3%+3%.2 Tannic, Citric and Lactic acid

Media containing 0.1 g/1 Fe(II) as ferrous sulphate and either tannic acid
or citric acid at 1.0 g/l,or 3.0 g/l of 88% lactic acid solution were
prepared. Some portions of each medium were supplemented with 2.0 g/1

yeast extract. The pH was adjusted to 6.5 with 0.5M KOH and the solutions

autoclaved.
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0.5 ml suspension of Sychnant Pass ochre was used to inoculate the media.
After 12 days at 25°C the flasks were examined. The lactic acid cultures
were dominated by fungi with some large rod-shaped bacteria also being
present., Motile rods and spherical shaped unicellular bacteria were
observed in the tamnic acid and citric acid cultures except in the tannic
acid media supplemented with yeast extract. In the latter no bacteria

were observed. Filamentous bacteria were not observed in these media.

»

5.3.4 GLUCOSE - IRON MEDIA

During the present study it was found that sheathed filamentous bacteria
would grow in drainage water collected from several sites (5.3.1l). It was
concluded that filamentous bacteria might grow in artificial media having
an organic matter content similar to drainage water samples. Additionally,
in drainage water at ochrous sites the rate of Fe(II) oxidation is rapid
(Section 6.1 ). Glucose as a source of organic matter does not
substantially affect the amount of iron held in solution. In order to
avoid precipitation of iron before inoculation a procedure was devised

for adding filter sterilized ferrous sulphate to the media.

Compressed air was used to force a ferrous sulphate solution through a
0.22 pm Millipore filter (GS) from a modified conical flask with side arm.
The flask is illustrated in Figure 5.2. The rubber bung in the neck of
the flask was held in place by hand so that the flow of filtered solution
could be stopped immediately by releasing pressure on the bung. In this
way aliquots of filtered ferrous sulphate could be added directly to media

in 100 ml graduated flasks.

Determination of organic matter in drainage water

In order to determine accurately the amount of organic material in drainage
water supporting ochre formation, the organic carbon content of several

waters was calculated.
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FIGURES 5.2 : DIAGRAMMATIC REPRESENTATION OF THE CONICAL FLASK USED FOR
FILTER STERILIZING DRAINAGE WATER SAMPLES AND FERROUS
SULPHATE SOLUTIONS

FROM COMPRESSED AIR SOURCE

~———> TO MILLIPORE 0.22 M
FILTER

< —- . SOLUTION TO BE FILTER STERILIZED
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150 ml of drainage water was collected in sterile polypropylene bottles.
The bottles were sterilized by autoclaving for 15 minutes at 120°C. The
drainage water was filter sterilized through a 0.22 pm Millipore filter

within 1 hour of sampling.

The apparatus described earlier (Figure 5.1) was used for filtration. A
brass bicycle pump was used to pump air into the system. 5 ml of
concentrated sulphuric acid was added to the filtrate. The total volume
was determined in the laboratory and then aliquots were concentrated as

necessary by rotoevaporation under vacuum. The total organic carbon content

of the water was determined by the method outlined below (Anon, 1969).

5.0 ml of sample, 0.5 ml mecuric sulphate solution (50g in 225 ml of water
and 25 ml concentrated sulphuric acid), 2.0 ml potassium dichromate (7.6605
g/1) and 7.5 ml silver sulphate/sulphuric acid solution (5g silver sulphate
in 500 ml 36N Hasoh) were mixed in a 50 ml round bottom flask. An anti-
bump rod was added and the solution heated under reflux for 2 hours. The
sides of the flask were then flushed with a little distilled water and

2 drops of indicator solution added (1,10 - Phenanthroline - ferrous
sulphate - complex solution 0.025M,BDH). The mixture was titrated against
ferrous ammonium sulphate-(9.803g in 400 ml distilled water containing

40 ml concentrated H,SO, , Wade up to 2 1 with water).

A blank containing 5.0 ml of distilled water was prepared for each batch
of samples. The concentration of organic carbon in solution was
calculated by multiplying the difference between the sample and control

titres by 7.7. The results are given in Table 5.4,
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TABLES 5.4 : THE ORGANIC CARBON CONTENT OF DRAINAGE WATER SAMPLES

pg/ml (1)

Llyn Cowlyd 9
Llyn Coedty 12
Penygroes 1 59
Penygroes 3 20
Penygroes 5 33
Penygroes 7 196 (2) '

(1) Mean of two samples

(2) Penygroes 7 was an open ditch containing much organic debris

On the basis of these results two experiments were conducted. In the first
set media containing lOApg/ml of glucose were used. In the second set
levels of 50 pg/ml and 100 pg/ml were investigated. These concentrations

covered the range of organic carbon levels in the drainage water samples.

S.3.4.1 Glucose at 10 pg/ml

25 ml portions of 20 yg/ml glucose and 0.3 ml 0.05M NaOH were autoclaved.

25 ml of 0.lg/l filter sterilized ferrous sulphate was added. 6 portions

were inoculated immediately with Sychnant Pass ochre collected a few hours
previously. Ochre was diluted 1.0 ml in 100 ml of sterile distilled water
and 1.0 ml was used as an inoculum. It was felt that this dilution would

avoid the problems associated with the preseﬁce of large amounts of

inoculum in the medium when cultures were examined for bacterial growth.

In the glucose media red particles and many filamentous bacteria were seen.
The organisms were encrusted inside iron concretions but non-encrusted at
the edges of the iron particles. Many motile, rod shaped, unicellular
bacteria were also seen. Filamentous bacteria were seen in 5 out of the

6 inoculated flasks.
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The growth of filamentous bacteria in the glucose-iron medium was
substantiated by inoculating various modifications of the medium with
fresh ochre and from previously growing cultures. The following media
were prepared:

Glucose 10 pg/ml, Fe(ll) 10 ng/ml

Glucose 10 yg/ml

Glucose 10 ng/ml, Fe(1l) 10 pg/ml, Cu 5 pg/ml (as Copper Sulphate)

5 portions of each medium were prepared. Two were inoculated with 1.0 ml
of ochre from Sychnant Pass diluted 1.0 ml in 100 ml sterile distilled
water. Two were inoculated with 1.0 ml from a thoroughly shaken Glucose-Fe
culture from the previously described experiment. The remaining flask was

kept as an uninoculated control.

After 8 days large flocs appeared in the Glucose-Fe medium. The flocs in
flasks inoculated from the ''growing cultures" were, however, smaller. No
flocs were seen in the medium containing glucose alone except for small
particles of inoculum. In the Glucose-Fe medium containing coppér small light
orange particles were seen in the inoculated flasks but nothing in the

uninoculated control.

Microscopic analysis revealed that in the glucose-iron media inoculated with
fresh ochre, inorganic iron particles and filamentous bacteria (encrusted and
non-encrusted) had developed. However, in the uninoculated flask and in

those inoculated from previous cultures inorganic particles were evident but
no filamentous or unicellular bacteria. No filamentous bacteria were seen

in any of the media containing glucose alone or in those containing copper.

These results show that the Glucose-Fe medium is satisfactory for growing
filamentous bacteria from fresh ochre. The addition of copper to the
medium or exclusion of iron prevents bacterial growth. However, the medium

does not support the growth of bacteria transferred from previous cultures.
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Supplemented Glucose-Iron Medium

These media were used in an attempt to maintain filamentous bacteria

isolated in (Flucose-Fe medium.

25 ml portions of 20 pg/ml glucose and 0.3 ml 0.05M NaOH were autoclaved.
25 ml of filter sterilized 0.1 g/l ferrous sulphate was added. The media
were inoculated immediately with 1 ml of Donegal ochre diluted 1.0 ml in
100 ml of sterile distilled water. 3 flasks were inoculated. An

uninoculated control was also prepared.

After 8 days orange flocs were seen in all the flasks. The flocs were
large in 2 inoculated flasks but small in the third. In all inoculated
flasks iron encrusted and non-encrusted filaments were observed. The
filamentous bacteria were associated with iron masses being encrusted
inside the mass and non-encrusted outside. One spiral, encrusted filament
was seen. Many unicellular rods about 4.8 ym long were observed. A fungal
filament was found in one inoculated flask. No organisms were seen in the

uninoculated control. The final pH of the media was 5.0.

Flocs from these cultures were transferred into glucose-iron media

containing various supplements.

A basal salts solution was prepared:-

e/l

(NHh) 550, 2.0
Ca(N03)2.4H20 0.04
MgS0, . 7H,0 0.8
K HPO, 0.8

Where required 0.2 g/l of yeast extract was added to the basal salts

solution
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3 media were prepared:-
Glucose-iron medium with basal salts
Glucose~iron medium with yeast extract

Glucose~iron medium with basal salts and yeast extract.

These media were prepared by mixing 25 ml of 20 pg/ml glucose, 12.5 ml of
stock solution containing basal salts, yeast extract or both and 0.3 ml

0.05M NaOH. These were autoclaved for 15 minutes at 1200C. 12.5 ml of

0.2 g/1 filter sterilized ferrous sulphate was then added. The final
concentrations of glucose and Fe(II) were 10 yg/ml. The final concentrations

of salts and yeast extract were a quarter of those used in the basal salts

solution.

Four portions of each medium were prepared. One was kept uninoculated
whilst the others were inoculated with 1.0 ml of shaken cultures of glucose-

iron media containing organisms isolated from Donegal ochre.

After 8 days distinct red flocs were seen in the media containing yeast
extract. Unicellular rods 8 ym long were seen in these flocs. Chains of
rods associated with iron particles were also observed in one of the

inoculated flasks. Filamentous bacteria were not observed.
The pH of the spent media was between 6.5 and 6.8.

5.3.4.,2 Glucose at 50 yg/ml and 100 pg/ml

Five media were prepared and tap water was used throughout except when

making up the ferrous sulphate solution.

25 ml of glucose solution (with or without yeast extract) and 0.5 ml of
0.05M NaOH was autoclaved. 25 ml of filter sterilized 0.2 g/l ferrous

sulphate was added. The media used are listed below:-
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1. Glucose 100 pg/ml, Fe(1l) 20 yg/ml

2. Glucose 100 pg/ml, Fe(1l) 20 pg/ml, Yeast Extract 0.05 g/1
3. Glucose S0 pg/ml, Fe(1l) 20 pg/ml

k. Glucose 50 mg/ml, Fe(ll) 20 pg/ml, Tannic Acid 10 yg/ml

5. Glucose 50 pg/ml, Fe(1l) 20 pg/ml, Ferric Ammonium Citrate 10 pg/ml

2 flasks were inoculated with 1.0 ml Sychnant Pass ochre diluted 1 ml to
100 ml with sterile tap water. 2 portions were inoculated with 1.0 ml of
sterile ochre. Sterile ochre was prepared by diluting 1.0 ml of ochre in

100 ml distilled water and autoclaving for 15 minutes at 2%

One flask was kept as an uninoculated control.

After 3 weeks the flasks were examined. The pH of all the media was
between 4.0 and 5.0 and a fine, pale yellow precipitate was found in all
the flasks except those containing ferric ammonium citrate where well
flocculated, red particles, were observed. In the cultures containing

tannic acid small flocs of brown precipitate were seen.

No bacteria were found in any of the uninoculated flasks. Some filaments
were observed in all inoculated media but they were also found in the same
numbers in the flasks inoculated with sterile ochre. Thus increasing the
concentrations of glucose and iron in the glucose-iron medium decreased

its efficiency for isolating filamentous bacteria from ochre. This
experiment highlighted the problem associated with the presence of original
inoculum. Even when ochre is diluted a hundred times and 1.0 ml used to
inoculate 50 ml of medium filaments from the inoculum can still be found

by examining portions of the solutions with a microscope.

5.4 DISCUSSION

Many different media were utilised in an attempt to isolate sheathed

filamentous bacteria from ochre.
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None of the twenty standard media obtained from the literature were
successful. The only positive results were obtained using Heterotrophic
medium (5.1.6) and Manganese agar (5.1.12). In these media filamentous
bacteria were observed. However, the isolates did not grow when
transferred into fresh medium so that confirmation of growth was not
obtained. Since all these media have been used successfully by other
authors for isolating the filamentous organisms normally associated with
ochre it is worth considering why filamentous bacteria did not grow during

the present study. The most probable reasons are listed below.

1l. Twelve of the standard media used were designed for isolating

Sphaerotilus spp from polluted streams and especially activated sludge.

Others had been used for isolating organisms of the Sphaerotilus -

Leptothrix group from activated sludge and sewerage. Most of these

environments are substantially different to the low organic matter drainage

water associated with ochre formation.

The most common organic compounds used in the media were glucose and
peptone. 11 media used glucose, 12 used peptone and 10 of these used
glucose and peptone. The concentrations of these compounds ranged from

to 5.0 g/1
0.15 g/lﬂof glucose and from 0.1 g/1 to 5.0 g/1 of peptone. The only
medium to have lower concentrations was heterotrophic medium (5.1.6) which
used 0.0l g/l of glucose and peptone. In six media other organic compounds
were used in place of glucose and peptone. These included sodium lactate,
sodium citrate, glycerol, sucrose, tryptone soya broth, casitone or
trypticase, and glutamic acid. These compounds were used in concentrations
ranging from 0.1 g/l to 10 g/l. These concentrations or organic compounds

are high in relation to the organic matter levels of drainage water

determined, for example,in Table 5.4 where the highest organic matter

content was 196’pg/ml.
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2. In all the standard media, unicellular bacteria grew well but no
filamentous forms were found. Fungi were also isolated from ochre on

5 media. The only exceptions were Armbruster's medium (5.1.4) and the
autotrophic ferrous sulphide medium (5.1.16) where no microbial growth was
observed. The growth of unicellular bacteria is not surprising since the

components used, especially glucose and peptone, are common constituents
of biological media,

The unicellular bacteria and fungi competed against filamentous bacteria
in the high organic matter media used. The problem of competition by
unicellular organisms has been noted by several authors. Godhino-Orlandi
(1980) and Godhino-Orlandi and Jones (1981) found that it was difficult to
isolate filamentous bacteria on solid media due to rapid and heavy growths
of unicellular bacteria. Similarly, Van Veen (1973) noted that isolating
filamentous bacteria from bulking sludge was not easy due to the presence

of large numbers of rapidly growing non-filamentous bacteria.

3. Many unicellular bacteria were isolated using the standard media.
Several workers have noted that filamentous bacteria can undergo changes
when isolated in laboratory media. Such changes include the loss of ability
to form a sheath (see Section 2.3.1.2). Since most of the filamentous
bacteria associated with ochre have not been isolated in pure culture their
behaviour and properties in standard media is unknown. However, several
authors have recorded the growth of filamentous bacteria as unicellular
organisms (Venosa, 1975; Mulder and Van Veen, 1963; Dondero et al, 1961;
Van Veen, 1973; Yoshikawa et al, 1979). The tendency to exist as
unicellular organisms is more pronounced in media with high nutrient
concentrations (Pringsheim, 1949, Yoshikawa & Takiguchi 1979). It is
therefore possible that the lack of filamentous isolates in the media does
not necessarily mean that filamentous bacteria were absent. It may be that

they were isolated, but as unicellular organisms.
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4, Although the relationship between filamentous bacteria and iron is not
well understood it is known, from observations in nature, that filamentous

bacteria often occur in iron rich environments.

Iron was included in 10 of the standard media. The most common form was
Fe013.6H20. However, this was only used in trace quantities except in two
media (Stokes' medium, 5.1.2,and ferric ammonium citrate medium, 5.1.15)
where 0.0l g/1 was used. Ferrous sulphate was used in three media. In two
of these trace quantities were used but 0.5 g/l was included in G.G. medium
(5.1.13). 0.15 g/1 of ferrous ammonium sulphate was used in manganese agar
(5.1.12) and 0.5 g/1 of ferric ammonium citrate in medium 5.1.15. On the

whole iron was either absent from the media or present at low concentrations.

It is possible that lack of iron in an easily oxidised form contributed to
the poor performance of the media with regard to the isolation of sheathed
filamentous bacteria. The importance of iron was shown in section 5.3.1.
Drainage water containing iron supported growth of filamentous bacteria.

However, in drainage water without iron filamentous bacteria did not grow.

Filamentous bacteria were not isolated using the experimental media based

on organic acids or low dilutions of hay or dried grass extracts. In these
media unicellular bacteria and fungi grew well but no filamentous bacteria
were observed., Although these media were based on results obtained by other
workers and on the type of compounds likely to be present in drainage water
from anaerobic zones they were not successful in the present study. The
reasons for this are probably the same as those discussed above for the
standard media. Iron was included in the experimental media but at

concentrations that would be held in solution by the extracts or organic

acids.

The model systems used yielded poor results. Some growth of filamentous

bacteria was detected but it was only small and temporary. The inadequate
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verformance of the models is related to the difficulties in simulating

the conditions under which ochre forms. In the tank model it was difficult
in practice to maintain anaerobic and aerobic zones. It was especially
difficult to ensure that the boundary between these zones occurred at the
drain-soil interface. For example water tended to flow down the sides of
the tank rather than through the soil. Thus the edges of the soil block
were well aerated and iron was chemically oxidized here leaving a thin
precipitate on the side of the tank. The major problem with the open

ditch model was the growth of fungi and unicellular bacteria. Although
filamentous bacteria did grow in the model they did not compete well

against other microorganisms and were eventually replaced by them.

The most satisfactory method found for isolating filaméntous bacteria from
ochre was a medium based on glucose and iron. The advantage of the
glucose-iron combination was that the organic concentrations could be
increased without affecting the concentrations of iron held in solution.
The medium was composed of 25 ml of 20 yg/ml glucose, 0.3 ml of 0.05M

NaOH and 25 ml of 0.1 g/l ferrous sulphate giving 10 pg/ml of Fe(II) in
the final solution. A method was developed for filter sterilizing the
ferrous sulphate solution directly into the autoclaved glucose solution.
The medium was inoculated immediately after adding the iron.

Ochre was

usually diluted 1.0 ml in 100 ml of distilled water.

It was shown that filamentous bacteria were growing in the medium by the
experiment described in section 5.3.5.1 where copper was added before
inoculation at 5.0 yg/ml. In the presence of copper no filamentous
bacteria were detected, whereas filaments were clearly observed in media
without copper. This shows that the glucose-iron medium is suitable for
isoiating filamentous bacteria. However, the medium as described was not

completely satisfactory and two problems remain unresolved.
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The first problem is maintaining the isolates. None of the organisms
grown from ochre ip glucose-iron medium grew when transferred into
supplemented or unsupplemented medium. The second problem is confirming
that filamentous bacteria are growing. Analytical techniques are not
applicable. The determination of glucose cannot be used to indicate the
growth of filamentous bacteria since unicellular bacteria can also grow

in the medium. Similarly, monitoring ferrousiyon levels is irrelevant
since chemical oxidation is the main factor causing its precipitation.

In normal inoculation techniques it is assumed that bacteria seen in media
have grown in the cultures. Since high dilutions of original sample are
used the numbers of bacteria from the inoculum would be insignificant in
the final medium. However, it was found that if high dilutions of ochre
were used then no growth occurred. This was observed both with heterotrophi
medium and with drainage water. If drainage water was filtered and
inoculated with small volumes of unfiltered water no filamentous bacteria
grew, However, they grew well in unfiltered water from the same site.
This observation reflects the low numbers of filamentous bacteria in ochre.
It has been noted (Section 4.4) that small numbers of these bacteria can
produce large amounts of filaments, thus giving a false impression of the

number of living filamentous bacteria in the samples.

For the reasons outlined above low dilutions of ochre (1 ml in 100 ml
water) were adopted for the glucose-iron medium. At these dilutions the
number of filaments in the medium that are derived from the original
inoculum is quite high. Consequently the observation of filaments in the
glucose-iron medium does not necessarily prove that they have grown there.
In the present work this problem was overcome by inoculating glucose-iron
medium with ochre and sterile ochre. Ochre was sterilized by autoclaving
1 ml in 100 ml of distilled water. Growth could then be confirmed by
comparing the extent of filamentous growth in the inoculated media and

their sterile counterparts. It was also noted that the appearance of

organisms from the inoculum and in new growth was different under the
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microscope. In new growth many filamentous forms were associated with
pale orange deposits. The filaments derived from the originai inoculum
were composed of one or two filaments associated with darker (orange-
brown) particles of iron. This difference reflects an aged ferric
hydroxide depcsit in the ochre samples as compared to freshly

precipitated iron in the medium.
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Plate 5:1 Growth of sheathed filamentous
bacteria in drainage water from
Penygroes site 1.
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6. CHEMICAL OXIDATION AND THE FORMATION OF OCHRE

6.1 CHEMICAL OXIDATION OF FERROUS IRON IN DRAINAGE WATER

During routine collection of drainage water samples it was observed that
waters which were clear when sampled Aeveloped orange-red precipitates in
a few days. (Section 5.3.1). Microscopic examination showed that the
precipitate was composed of iron particles and filamentous bacteria. Iron
precipitates also formed in drainage water filtered through a 0.22 pm
Millipore filter but no bacteria were present in these precipitates
(5.3.1). These observations show that chemical oxidation was contributing
to the removal of ferrous iron from the drainage water. To investigate
this further an experimental procedure was developed for on site

acidification and filtration of drainage water:

20 ml glass vials were washed in concentrated hydrochloric acid, rinsed
several times in distilled water and sterilized by autoclaving at 120°%¢ for
15 minutes. 12 vials were prepared for each site; 1.0 ml of concentrated

hydrochloric acid was placed in 8 of the vials.

Drainage water was collected using 10 ml plastic syringes and filtered
through 0.22 pm Millipore filters (GSWP) in Swinnex filter units. The

samples were then treated in one of three ways:-

1. ACIDIFIED (A): 10 ml of drainage water acidified with 1.0 ml of
concentrated HCl.
2. FILTERED + ACIDIFIED (F+A): 10 ml of drainage water filter sterilized
and acidified with 1.0 ml of concentrated
HC1.

3, FILTERED (F): 10 ml of drainage water, filtered but not acidified.

4 replicates of each treatment were used at each site.
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The vials were left at room temperature for two to three days, after which
an orange-red precipitate formed in the filtered (unacidified).treatment
(Plate 6.1). 4.0 ml aliquots from treatment F were filtered through

0.22 pm Millipore filters and acidified with 0.5 ml of concentrated
hydrochloric acid. Total iron was determined for all the vials on a Pye
Unicam SP2900 atomic absorption spectrophotometer. The results were
compared to those obtained for standard ferric nitrate solutions in the

range 0-12 pg/ml. '

The procedure outlined above was used at 12 sites. The results, corrected
for dilution by acid, are shown in Table 6.l. At six sites the
concentration of manganese was also determined by the same procedure and

the results are given in Table 6.2.

TABLE 6.1: THE CONCENTRATION OF IRON IN DRAINAGE WATER SAMPLES

FOLLOWING ACIDIFICATION AND FILTRATION

TOTAL IRON IN

TREATMENT SOLUTION pg/ml
SITE A F+A F
LLYN COWLYD 1 8.4 8.0 0.0
LLYN COWLYD 2 7.6 7.0 0.0
LLYN COWLYD &4 8.7 5.7 1.3
LLYN COEDTY 1 15.2 14.8 3.2
LLYN COEDTY 2  14.1 14.1 6.8
LLYN COEDTY 3 5.2 1.6 1.3
PENYGROES 1 2.4 19.5 0.2
PENYGROES 5 5.8 5.7 0.4
PENYGROES 7:2 3.2 2.9 0.1
PENYGROES 7:3 1.1 1.0 0.0
PENYGROES 7:4 1.9 1.4 0.0
PENYGROES 7:5 0.k 0.3 0.3
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TABLE 6.2

THE CONCENTRATION OF MANGANESE IN DRAINAGE WATER SAMPLES

FOLLOWING ACIDIFICATION AND FILTRATION

TREATMENT TOTAL Mn IN SOLUTIONJFg/ml
Site A FA T
PENYGROES 1 3.0 3.0 NR
PENYGROES 5 1.0 1.0 0.9

PENYGROES 7:2 2.5 2.5 NR
PENYGROES 7:3 1.2 1.2 1.0
PENYGROES 7:4 1.8 1.8 1.7

PENYGROES 7:5 0.8 0.7 0.6

NR No result available,

The three treatments A, F+A and F represent, respectively, total iron in
the drainage water, total iron in solution at the site of collection, and
total iron remaining in solution after oxidation. The total iron in the
drainage water ranged from O.4t to 22.4 pg/ml and the total iron in
solution ranged from 0.3 to 19.5 Fg/ml. The sites having the highest
iron concentrations were Llyn Cowlyd (1), Llyn Coedty (1) and Penygroes 1
where total iron in solution was 8.0 ng/ml, 14.8 ng/ml and l9.5/pg/ml
respectively. The concentrations of iron remaining in solution after
oxidation were lower at all sites, ranging from 0.0/pg/ml to 6.8/pg/ml.
At 4 sites iron was below detection limits after oxidation. The results
were analysed statistically by two way analysis of variance. The
treatments were used as one factor and the sites were used as the second

factor. The overall treatment means were:-

Treatment Eg{ml Fe

A 7.8
F+A 6.8
F 1.1
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Tukey's test was used to determine the significance of the results. A
significant difference was found between all treatments at the 1% level
(at p<0.01, honestly significant difference = 0.68). Most iron in the
drainage water on site was in solution and 84% (5-7‘yg/ml) was removed

from solution by oxidation.

The concentrations of manganese in the samples were lower than those
recorded for iron. The total amount in drainage water ranged from 0.8 to
3.0’pg/ml while the total amount in solution ranged from 0.7 to 3.0‘pg/ml.

The concentrations in solution after 2-3 days were slightly lower, ranging

from 0.6 pg/ml to 1.0 pg/ml in the samples analysed.

The difference between each treatment at each site was also examined
statistically by two way analysis of variance. The results are shown in
Table 6.3. In 9 out of the 12 samples no significant difference was found
between total iron in the drainage water and total iron in solution. A
significant difference at the 1% level was only found at Llyn Coedty 3.
At Llyn Cowlyd 3 and Penygroes 1 a significant difference was observed at
the 5% level. At 7 sites a significant difference (at the 1% level) was
observed between total iron in solution before and after oxidation. At
Penygroes 7:3, 7:4 and 7:5 the level of iron initially in the water was
less than 2.0/ug/ml and a significant difference could not be detected
between the treatments but a reduction in iron content after oxidation

was observed.
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TABLE 6.3 : THE STATISTICAL SIGNIFICANCE OF THE DIFFERENCES BETWEEN

IRON CONCENTRATIONS IN UNFILTERED AND FILTERED DRAINAGE

WATER BEFORE AND AFTER OXIDATION

TREATMENT

A F:h F A
LLYN COWLYD 1 ** s
LLYN COWLYD 2 *s **
LLYN COWLYD 4 * Coowx **
LLYN COEDTY 1 x* xx
LLYN COEDTY 2 ** **
LLYN COEDTY 3 e i
PENYGROES 1 * * *x
PENYGROES 5 * *x
PENYGROES 7:2 *
PENYGROES 7:3
PENYGROES 7:4
PENYGROES 7:5 |

Tukey's Honestly significant difference =
2.84 at p<0.05
3.25 at p<0.01

-

STATISTICALLY SIGNIFICANT DIFFERENCE FOUND AT 5% LEVEL ONLY

** STATISTICALLY SIGNIFICANT DIFFERENCE FOUND AT 1% LEVEL
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6.2 THE EFFECT OF OCHRE ON THE RATE OF FERROUS IRON OXIDATION

6.2.1 The apparent growth of filamentous bacteria in hay extract media

The use of plant extracts to isolate sheathed filamentous bacteria was

discussed in section 5.3%.2.

6.2.1.1 Qualitative Observations

Amongst the experimental media used to isolate sheathed filamentous
bacteria were dilute hay extracts containing feX¥ous sulphate. 2.5 g of
hay was boiled in 600 ml of water for three minutes. 10.0 ml, 1.0 ml and
0.l ml aliquots of extract were diluted to 20.0 ml with distilled water
giving three dilutions; 1, 2 and 3 respectively. These solutions were
autoclaved for 15 minutes at 15 lbs pressure. 1.0 ml of filter sterilized
1.0 g/1 FeS0,.7H,0 was then added giving approximately 10 ypg/ml of Fe(II)
in the medium, Ferrous sulphate solutions were filter sterilized by
passing through 0.22 uM Millipore filters in Swinnex filter holders.

After addition of iron the media had a pH of 4.0. Since one of the major
problems associated with the study of filamentous bacteria is the chemical
oxidation of ferrous iron at pH values above 5 (Van Veen, 1972; Ehrlich,
1978; Langworthy, 1978) the pH of the experimental medis was not initially

adjusted.

The media were inoculated with 0.1l ml of undiluted ochre from Llyn Coedty
and Donegal. The inoculum was introduced siowly to form an entire floc in
the medium. Uninoculated controls were also prepared. The flasks were
examined visually after a few days. Whilst the flasks inoculated with
ochre from Llyn Coedty showed no apparent increase in the size of the
inoculum it appeared as if some growth had 6ccurred in the flasks
inoculated with Donegal ochre. For example, in Donegal dilution 1 a thin
opaque film was evident on the surface of the medium. Such a film was not

seen in any of the uninoculated flasks.
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The flocs from the inoculated flasks were transferred into fresh media at
the corresponding dilutions. After twelve days wet mounts of £he flocs
were examined under the microscope. The flocs were composed of straight
filaments associated with iron particles. However, such visual and
microscopic examination was limited since it was difficult to determine

whether or not the organisms observed were part of the original inoculum.

6.2.1.2. Quantitative Observations

In order to monitor the growth of sheathed filamentous bacteria in the hay
extracts the ferrous iron concentration was determined throughout the

incubation period.

Four 100 ml portions of medium (dilution 3) were prepared as described

earlier. One flask was inoculated with 2.0 ml from a hay extract culture
inoculated initially with ochre from Donegal. Two flasks were inoculated
with 2.0 ml of filamentous ochre from Llyn Cowlyd and the remaining flask

was kept as an uninoculated control.

At regular intervals 5.0 ml was withdrawn from each flask using a sterile
pipette. The aliquots were filtered through a 0.224ym Millipore filter
and stored in sterile containers. Total iron in solution was determined

immediately by atomic absorption spectrophotometry.

The results, shown in Figure 6.1, seem to cénfirm the conclusion drawn
from visual examination of the initial media that filamentous bacteria
could grow in the dilute hay extracts. Although a marked decline in Fe(II)
concentration was not observed in the flasks inoculated with Llyn Cowlyd
ochre all iron had precipitated in the flask inoculated with flocs from
the Donegal culture. The drop in iron concentration in the control flask

after 22 days was attributed to chemical oxidation.
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Figure 6.1 THE CONCENTRATION OF FERROUS IRON IN AN INOCULATED HAY
EXTRACT MEDIUM
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This experiment was repeated using dilution 2 and dilution 3 hay extract
media. Replicate 100 ml portions were inoculated with 5.0 ml'of filamentous
ochre from Donegal. Two uninoculated controls were also prepared. 5.0 ml
of autoclaved ochre was included in one flask to act as a sterile control.
5 ml portions were removed at regular intervals, filtered through 0.22 um
Millipore filters, and total iron in solution determined by atomic
absorption spectrophotometry. The results, summarized in Table 6:4,
suggest that growth had occurred in the inoculated flasks. In these flasks
no iron remained in solution after 6 days. Although some oxidation of iromn
was evident in the uninoculated flasks over 6/ng/ml remained in solution
after 18 days. However, a rate of oxidation comparable to that observed

in the inoculated media was recorded in the culture containing autoclaved
ochre. This implies that chemical oxidation of iron in the hay media was
occurring. It was also realized that the rate of oxidation was increased

in the presence of sterile ochre.

TABLE 6.4 : THE CONCENTRATION OF FERROUS IRON IN HAY EXTRACT MEDIA

CONCENTRATION OF Fe(II} (ug/ml)

TIME (days)

1 6 12 18
DILUTION 2
INOCULATED (2) 8.8 0.3 . 0.0 1.0
UNINOCULATED (2) 9.4 7.3 6.5 6.1
STERILE CONTROL (1) 8.0 0.6 * *
DILUTION 3
INOCULATED (2) 8.8 0.0 * *
UNINOCULATED (2) 9.6 8.2 7.3 6.8
STERILE CONTROL (1) 9.3 1.6 * x

* NO RESULT AVAILABLE

(1) THE STERILE CONTROL WAS INOCULATED WITH AUTOCLAVED OCHRE

(2) MEANS OF IRON CONCENTRATION IN TWO REPLICATES
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6.2.1.3 The effect of sterilized ochre on the concentration of iron in

hay extract medium and distilled water

The effect of sterile and non-sterile ochre on the concentration of ferrous
iron in hay extracts and water were determined as follows. Two solutions
were used: firstly, some portions of hay extract medium (dilution 2) were
prepared as described earlier (6.2.1.1); secondly, some portions of
distilled water were autoclaved and 5.0 ml of filter sterilized ferrous
sulphate solution (1.0 g/l) added. Replicate flasks of each medium were

inoculated as shown below.

FLASK ' INOCULUM
1 1.0 ml1 of ochre from Donegal
2 1.0 ml of autoclaved Donegal ochre
3 1.0 m1 of Donegal ochre and 25 mg of Sodium Azide
L 1.0 ml of ochre from Llyn Cowlyd
5 1.0 m1 of autoclaved.Llyn Cowlyd ochre
6 Uninoculated

Total iron in solution was determined at regular intervals by atomic
absorbtion spectrophotometry of filtered (0.22/nm) aliquots. The results
for the hay extract and water media are shown in graphs 6.2 and 6.3
respectively. It can be seen from the graphs that the concentration of
ferrous iron is substantially lower in all the inoculated flasks than in
the uninoculated controls. After 4 days incubation the concentration of
iron in the control flasks remained above ll/ng/ml and 9'pg/ml in the hay
extract and water medium respectively. During the same time period the
concentration in the inoculated flasks did not rise above lo‘pg/ml and
S/pg/ml in the hay and water media. The flasks containing unsterilized
Donegal ochre had a slightly lower iron concentration at the end of the
experiment. However, the difference was no greater than that recorded
between the flasks containing ochre sterilized by autoclaving and by

sodium azide. It appears from Figure 6.2 that more oxidation had occurred
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Figure 6.2 The concentration of ferrous iron in .hay. medium inoculated
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Figure 6.3 The concentration of ferrous iron in water medium
inoculated with sterilized and non-sterilized ochre samples

16
12
Concn Fe
()lg/ ml)
8 L
L
T T L4 \
4 8 12 16

Time (days)
1 CONTROL
2 LLYN COWLYD - AUTOCLAVED

3 LLYN COWLYD - NON STERILIZED

4  DONEGAL - SODIUM AZIDE
5 DONEGAL - AUTOCLAVED
6 DONEGAL - NON STERILIZED

236



in the flask containing unsterilized ochre from Llyn Cowlyd. At the end
of the experiment the concentration of iron in the sterile tréatment was
8.8/ug/m1, whereas a concentration of 3.8 ug/ml was recorded in the flask
containing unsterilized ochre. This suggests that although chemical
oxidation, at a rate increased by the presence of ochre, does occur
microorganisms are also contributing to the oxidation of ferrous iron in
hay medium. However, growth of sheathed filamentous bacteria in the hay
medium is difficult to confirm by monitoring Fe(II) 1evel§ since chemical

oxidation also causes a reduction in Fe(II) concentration.

It was concluded from these experiments that the apparent growth of
filamentous bacteria in the hay extract - ferrous iron medium could be

attributed to a chemical oxidation of iron caused by the presence of ochre.

6.2.2 The effect of air dried ochre on the concentration of Fe(II) in

a ferrous sulphate solution

In the experiments described in section 6.2.1 employing concentrations of
iron less than 15 mg/ml, filtration,and the undefined hay extracts, the
extent of experimental error was quite large. This is revealed by the
fluctuations in iron content from one sampling date to another (see
figures 6.2 and 6.3). The effect of ochre on the concentration of Fe(II)
in solution under standard conditions was studied by a series of

experiments employing air dried ochre and ferrous sulphate solutions.

6.2.2,1 The effect of air dried ochre on the rate of oxidation of

Fe(II) in a ferrous sulphate solution

1.0 g samples of air dried ochre (Persehall 2) were weighed into 16
polypropylene bottles (150 ml) and 50 ml of 5 g/1 FeSOk.7H20 solution
added. The initial concentration of Fe(II) in this solution was 0.96 g/l
as determined by permanganate titratién. 16 bottles containing 50 ml of

ferrous sulphate were used as controls. The bottles were shaken on an
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end-over-end shaker for 3% hours. Eve;y 30 minutes 2 control and 2 ochre
containing bottles were removed. The contents of these bottles were
filtered through Whatman No 1 filter paper and the concentration of Fe(II)
was determined by titrating 5.0 ml of filtrate and 5.0 ml of 1M HQSOI+
against 3.0 x 10-3M (0.5 g/1) potassium permanganate. The latter was
standardized by titrating against 5 x 10™°M ammonium ferrous sulphate.

The pH of the filtrate was recorded throughout the experiment.

The results, shown in figure 6.4, clearly demonstrate the effect of air
dried ochre. All the ferrous iron was oxidized in the presence of ochre,
whereas no significant change was observed in the Fe(II) concentration of
the controls. The reduction in Fe(11l) concentration was accompanied by an
increase in pH. The pH of the controls remained constant at pH 4.1 - 4.2
throughout the experiment while the pH in the ochre containing solution
rose from an initial pH of 3.9 to a pH of 5.4 immediately after ochre was
added. After 3} hours the pH had risen to 6.8. Since the chemical
oxidation of Fe(Il) increases rapidly as pH rises above 5.0 the observed
decrease in ferrous iron concentration in the presence of ochre czn be

attributed to the concurrent increase in pHe

The importance of oxygen in this reaction was shown by repeating the
experiment using unshaken conical flasks. In this case, as shown in
figure 6.5, 0.5 g/1 of ferrous iron remained in solution after 7 hours in

the presence of ochre.

6.2.2.2 The effect of various weights of air dried ochre on the

concentration of Fe(II) in ferrous sulphate solutions

50ml of 5 g/1 FeSO4.7H20 solution was added to replicate samples of air
dried ochre in 150 ml polypropylene bottles. The initial ferrous iron
concentration of the solution was 0.96 g/l (determined by permanganate
titration). Various weights of ochre were used in the range 0.0 g to l.4 g

in 0.2 g intervals. The bottles were shaken on an end over end shaker for
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Figure 6.4 The effect of air dried ochre on the ferrous iron

concentration and pH of a Ferrous Sulphate Solution
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Figure 6.5 The effect of Air dried ochre on the Ferrous iron
concentration of a Ferrous Sulphate solution under
oxycen limiting conditioms

CONCENTRATION OF Fe* (g/1)

1.0
- . _— CONTROL
0.8 —
0.6
+ OCHRE
0.4 _,
0.2 —

1 > 3 n 5

o
~J

Time (hours)

2o



2 hours, and after this time the contents were filtered through Whatman
No 1 filter paper. The ferrous iron concentration of the filtrate was
determined by permanganate titration and the pH of the filtrate was also
recorded. The results are shown in figure 6.6. It can be seen that air
dried ochre has a marked effect on both ferrous iron concentration and pH.
The regressions of weight on pH and iron concentration are both significant
at 1.0%. Weights of ochre greater than 1.0 g resulted in an almost
complete removal of iron from solutiom and caused the pH to rise from 4.5
to over 6.25. Additionally, these results reveal that most of the
variation observed in iron concentration can be explained by the increase
in pHe A correlation coefficient of 0.97 was recorded between these two

variables.

6.2.2.3 The effect of air dried ochre on the Fe(II) concentration of

ferrous sulphate solutions in a continuous flow apparstus

540 1 of ferrous sulphate solution (5.0 g FeSOh.7H20/1) was allowed to
flow continuously by gravity through a column containing 8 g of air dried
ochre, The column was made from a 20 ml syringe with a 200 pl Pipetman
tip attached at the outlet. A 100 uM mesh dis¢. was placed at the base of
the syringe to prevent ochre from entering and blocking the tip. The
solution dripping from the column was collected in a 5 1 container over
2.5 dayse. After this time some ferrous sulphate remained in the upper
container below the outlet, and this solution and the solution in the
receiving vessel were examined. The concentration of ferrous iron was
determined by filtering the solutions through Whatman S41 filter paper
and titrating three aliquots of filtrate against standard potassium
permanganate as described in section 6.2.2.1. The pH of the filtrate was
also recorded. The experiment was repeated using the same column for a

further 2.5 days. The results are given in Table 6.5.
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FIGURE 6.6 ThB effect of air dried ochre on the ferrous iron concentration
and pH of a ferrous sulphate solution
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The results show that ochre caused an initial rise in the pH of the

ferrous sulphate solution accompanied by a decrease in ferrous iron
concentration. The initial ferrous iron concentration of the solution was
0.96 g/1 at pH 4.3. After 2.5 days the ferrous iron concentration of this
solution had fallen to 0.89 g/l. In the solution that had passed through
the column the ferrous iron concentration had fallen to 0.79 g/l and the
pH had risen to 4.5. The results for the second run show that the ability
of ochre to raise the solution pH is reduced as the volume of ferrous
sulphate passing through increases and its buffering capacity is exceeded.
After five days the concentration of Fe(II) in the upper flask was 0.95 g/l

and in the receiving vessel the concentration was 0.89 g/1.

TABLE 6.5 : THE FERROUS ION CONCENTRATION AND pH OF A FERROUS SULPHATE

SOLUTION PASSED THROUGH AIR DRIED OCHRE IN A CONTINUOUS

FLOW APPARATUS

TIME (DAYS) UPPER CONTAINER RECEIVING VESSEL
CONCENTRATION pH CONCENTRATION pH
Fe(II) g/l . Fe(IT) g/1 —
FIRST RUN
1 0.96 L.3 - -
2.5 0.89 L1 0.79 4.5
SECOND RUN
2.5 1.01 4.0 ' - -
3.0 0.97 3.9 0.91 5.1
5.0 0.95 3.9 0.89 4.5

6.2.3 The effect of air dried ochre on the concentration of iron in a

citric acid - ferrous sulphate solution

The experiment described in section 6.2.2.1 was repeated using air dried
ochre (Persehall 2) and a solution of citric acid and ferrous sulphate at
pH 6. It was thought that such a solution would be a better

representation of natural drainage waters, which contain organic compounds,
than a ferrous sulphate solution alone.
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Oel g citric acid and 0.05 g ferrous sulphate were dissolved in distilled
water and made up to 1 1. The pH of the solution was adjusted to 6.0
with 1M NaOH. 1.0 g of air dried ochre was weighed into 16 150 ml
polypropylene bottles. 50 ml of the citric acid - Fe(II) solution was
added to these bottles and to 16 empty bottles used as controls. The
bottles were shaken in an end over end shaker for 3} hours. GEvery

30 minutes 2 controls and 2 bottles containing ochre were removed. The
contents were filtered through Whatman 541 filter paper. The pH of the
filtrate was recorded. A portion of each filtrate was passed through a
0.22 yM Millipore filter to remove all iron precipitates before total
iron was determined by atomic absorption spectrophotometry. The initial

iron concentration of the solution was 11.9 ng/ml.

The results, shown in figure 6.7, are comparable to those obtained in
section 6.2.2.1 (figure 6.4) where a ferrous sulphate solution was used.
The bottles containing ochre showed a decrease in iron concentration from
11.9‘pg/m1 to 4.8 Pg/ml after 2} hours. In the control solutions 9.5 yg/ml
of iron remained in solution after 3} hours. Although an initial increase
in pH, from 6.0 to 7.5, was recorded after adding ochre no further increase
was observed during the experiment. The results show that iron associated

with organic compounds is also subject to an increased rate of oxidation

in the presence of air dried ochre.

6.2.4 The effect of sterilized ochre on the concentration of iron in

drainage water

Filamentous ochre was collected from Sychnant Pass. The pH of the sample,
as determined in the laboratory, was 6.2. 15.0 g portions of this ochre
(0.18 g oven dried ochre) were weighed directly into 4 150 ml polypropylene
bottles. The bottles were sterilized by autoclaving for 15 minutes.

L bottles containing 15.0 ml of distilled water were also autoclaved.
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Figure 6.7 The effect of air dried ochre on the pH and concentration of
iron in a citric acid - ferrous sulphate solution
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Two hottles containing ochre and two control bottles were filled on site
with approximately 150 ml of drainage water from Llyn Cowlyd and Ilyn

Coedty.

It had been found that the contribution of microorganisms to the extent of
iron oxidation in drainage water was negligible and chemical oxidation
could account for the removal of iron from drainage water (section 6.1)
Consequentally the water samples were not sterilized in this experiment but
to confirm that microbial iron oxidati;n was not affecting the results

replicate aliquots of filtered (0.22)mn) and unfiltered water were collected

at each site.

The initial iron concentrations of drainage water samples were determined
by acidifying 10 ml samples with 1.0 ml of concentrated hydrochloric acid
on site. At regular intervals 3.0 ml aliquots were withdrawn from each
polypropylene bottle, filtered through 0.22}um Millipore filters, and
acidified with 0.5 ml of concentrated hydrochloric acid. The acidified
aliquots were stored in pre-sferilized glass vials. This procedure was
continued for 38 hours. Total iron in solution was determined for the
acidified aliquots by atomic absorption spectrophotometry with ferric

nitrate standards in the range O to 12/pg/m1 of iron.

The experiment outlined above was repeated using three drainage waters
collected at Penygroes 1, 5 and 7:1. In this case 10 g portions

(0.12 g oven dried ochre) of sterilized Sychnant Pass ochre were used.

The results are shown in figures 6.8 and 6.9 and are summarized in
Table 6.6. The results are also shown as log-time plots in figure. 6.10.
To avoid negative logarithms in the latter iron concentrations were

expressed in mg/ml.
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Figure 6.8 The effect of sterilized Ochre on the concentration of iron in
drainage water from (a) Llyn Cowlyd and (b) Llyn Coedty
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Figure 6.9 The effect of steri

drainage water from

lized ochre on the concentration of iron in
Penygroes
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Figure 6:10 LOG (Fe)/Time Plots Showing the Effect of Sterilized Ochre on the
Concentration of Iron in Drainage Water (key on page 250)
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Figure 6:10 Key

(i) Llyn Cowlyd
+ OCHRE : Y = -0.08x + 3.56 (*)

- OCHRE : Y = -0.05x + 4.00 (**)

(ii) Llyn Coedt
+ OCHRE : Y

-0.06x + 3.97 (**)

- OCHRE : Y = -0.09x + b4,44 (**)

(iii) Penygroes 1
+ OCHRE : Y = -0.0bx + 3.98 (**)

- OCHRE : Y =-0.03x + 4.20 (**)

(iv) Penygroes 5
+ OCHRE : Y= ~0.05x + 3.57 (**)

- OCHRE : Y=-0.03x + 3.76 (**)

(v) Penygroes 5
+ OCHRE : Y=.0.05x + 3.73 (**)

- OCHRE : Y=~0.02x + 3.89 (**)

+ OCHRE o

------- - OCHRE «x
** Significant at p = 0.001

*

Significant at p

0.01
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At all sites the oxidation of iron was complete within 38 hours. In the
samples containing sterilized ochre the rate of oxidation was éreatly
increased. After two hours 57% of the iron initially in solution had
been oxidized in the bottles containing ochre. The corresponding value
for the controls was 2%. Similarly, after 12 hours 86% and 46% iron had

been oxidized in the bottles with and without ochre respectively.

At 211 sites a sudden decrease in iron concentration was observed during
the first two hours. The reason for éhis is not known but one explanation
is that during this time the samples were transported to the laboratory
and were subject to increased agitation and aeration. This does not
explain why, for example, the ititial decrease was only Z/pg/ml in the
control bottles from Llyn Coedty but about 8/pg/hl in the Penygroes 5

control.

In the samples without added ochre the rate of oxidation after the first
two hours was slow and the concentration of iron fell by only l-Z)Qy@ﬂ
within the first twelve hours. This is substantiated by the almost
horizontal distribution of points on the log plots during this period.
After an initially slow rate of oxidation in the controls the rate

increased rapidly until no iron remained in solution.

The oxidation of iron in the bottles containing ochre contrasts sharply
with the pattern described for the controls. In this case an initial
period of slow oxidation was not observed. Iron was oxidized quickly
from the start of the experiment, the rate gradually decreasing as the
amount of iron in solution diminished. In the log plots a downward
sloping distribution of points was observed without the initial horizontal

pattern seen in the controls.
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TABLE 6.6 : THE EFFECT OF STERILIZED OCHRE ON THE CONCENTRATION OF

IRON IN DRAINAGE WATER

THE AMOUNTS OF IRON ARE EXPRESSED AS A PERCENTAGE OF TOTAL IRON
INITIALLY PRESENT IN SOLUTION. THE PERCENTAGES ARE MEAN VALUES
CALCULATED FROM THE DATA SHOWN IN FIGURES 6.8 AND 6.9

% iron oxidized

TIME (hours) WITH OCHRE WITHOUT OCHRE
0 0 . 0
2 57 25
4 68 29
6 72 28
8 76 3k

10 83 43
12 86 46
14 88 51
16 90 Sh
20 91 70
22 93 77
ol 96 83
26 96 75
28 % 91
30 97 - 95
32 96 923
34 98 97
36 97 97
38 98 99

The iron concentration in filtered and unfiltered aliquots collected on
site are shown in Table 6.7. The results show that the oxidation recorded
in figures 6.8 to 6.10 can be attributed to chemical mechanisms. If
biologically mediated oxidation was occurring to a significant degree then

the concentration of iron in the unfiltered samples would have been less
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than that recorded in the filtered aliquots. In all cases the iron
concentration in filtered samples were less than or equal to the

concentration in unfiltered aliquots.

TABLE 6.7 : THE CONCENTRATION OF IRON IN SOLUTION IN FILTERED AND

UNFILTERED DRAINAGE WATER AFTER 48 HOURS

Fe ng/ml)
FILTERED UNFILTERED
LLYN COWLYD 0.1 0.k
LLYN COEDTY 0.9 2.1
PENYGROES 1 0.0 0.0
PENYGROES 5 0.0 0.0
PENYGROES 7:1 0.0 0.1
MEAN 0.2 0.5

6.3 DISCUSSION

The drainage waters analysed had a range of iron concentrations from
0.3 pg/ml to 19.5‘yg/m1. Ochre was present at all the sites showing that
it can form in drainage waters containing large or small quantities of

iron.

In drainage water iron can be present in solution or as Fe(III)
precipitates in suspension. The amount of iron in suspension depends upon
the degree of aeration of the water. The significance of oxygen in the
removal of iron from solution was shown in section 6.2.2.1 where lack of
oxygen reduced the rate of ferrous iron oxidation. In some sites a
significant amount of iron was found in suspension in the drainage water,
for example, in Llyn Cowlyd 4 and Llyn Coedty 3, which were some distance
away from the source of iron containing water, the proportion of oxidized
iron was high. At Llyn Cowlyd (1) and Llyn Coedty (1) where water reached

the ground surface the amounts of iron in solution were 95% and 97% of
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total iron respectively. At Llyn Cowlyd 4 and Llyn Coedty 3 the percentage
in solution had fallen to 66% and 31% respectively. The results show that
most of the iron in the drainage water was in solution. At all sites,
except Llyn Coedty 3, the amount in solution was greater than that in
suspension. Taking the mean of all samples the amount of iron in solution

was 8%. The percentages in solution at each site are given in Table 6.8.

At the near neutral pH values associated with most ochre sites it is to be
expected that any ferrous iron would be oxidized rapidly. The amounts of
iron in solution at sampling and after 2-3 days are shown in Table 6.8.
Taking a mean of all sites it was found that 76% of the iron initially in
solution was chemically oxidized within 2-3 days. At four sites 100%

oxldation was recorded.

The manganese levels in drainage water from Penygroes (Table 6.2) were
much lower than that recorded for iron and the highest concentration was
3.0‘pg/hl (Penygroes 1). Manganese remains in solution at pH values
higher than those required for the oxidation of Fe(IL) and very little

oxidation of manganese could be detected in the drainage water samples.

The results have not revealed a new mechanism for ochre formation but they
have shown the importance of chemical oxidation in that it can account for
most iron precipitation. Its importance in relation to the other

mechanisms of ochre formation will be discﬁssed in chapter 8. The results
have also shown that the autocatalytic effects described in the literature,
where the rate of Fe(II) oxidation is increased in the presence of Fe(III),

is also relevant to ochre formation.

The rate of oxidation of Fe(Il) was increased by ochre under standard
conditions. In ferrous sulphate solutions, initially at pH 4, the
addition of air dried ochre caused complete oxidation of iron (6.2.2).

It was also shown, using a citric acid - ferrous sulphate solution (6.2.3),

that ochre could cause the precipitation of iron even when there was
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sufficient organic complexing agent to prevent the normmal oxidation of

Fe(II) at pH 6.0.

The catalysis of ferrous iron oxidation was also observed in drainage
water samples. Sterile ochre did not increase the amount of iron oxidation
but it did increase the rate of oxidation. In drainage water containing
sterile ochre 50% of the iron initially present in solution was oxidized
in less than two hourse. The corresponding time for the control solutions
was over 12 hours (Table 6.5). In the ferrous sulphate solutions (and to
some extent the citric acid - Fe(II) solutions) it was found that the
effect of ochre on the oxidation of Fe(II) could be explained in terms of
pH. Ochre raised the solution pH causing iron precipitation. This
explanation is probably too simple with regard to the drainage water
experiments. No pH difference was found between the drainage waters with
and without ochre in samples from Llyn Cowlyd and Llyn Coedty. At Llyn
Cowlyd a final pH of 5.8 was recorded in the drainage water with and

without sterilized ochre. Similarly, for Llyn Coedty samples the pH in

drainage water with added ochre was 5.9 and without ochre 5.8.

In the literature the oxidation of Fe(II) is described in terms of two
mechanisms (see section2.5.,2.1).Fe(II) is firstly oxidized to Fe(III) and
further oxidation of Fe(II) is catalysed by ferric hydroxide. Both these
mechanisms were observed in the drainage water experiments. In water
without added ochre the oxidation of Fe(I¥1) was initially slow with the
rate increasing with time. The increased rate resulted from the catalysis
of Fe(II) oxidation by ferric hydroxide. The rate of oxidation was greatly
increased by adding sterile ochre to the drainage water. Since ferric
hydroxide was initially present the 'catalysed oxidation" mechanism

operated from the start of the experiment and an initial slow phase was not

observed.
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TABLE 6.8 : THE PROPORTIONS OF IRON IN DRAINAGE WATER IN SOLUTION AND

SUBJECT TO CHEMICAL OXIDATION

SIMPLE % Fe IN soLvTIoN'®) ¢ cmrcairy oxrprzep'd)
LLYN COWLYD 1 95 100
LLYN COWLYD 2 92 100
LLYN COWLYD 4 66 77
LLYN COEDTY 1 97 78
LLYN COEDTY 2 100 - 52
LLYN COEDTY 3 31 19
PENYGROES 1 87 99
PENYGROES 5 98 93
PENYGROES 7 : 2 91 97
PENYGROES 7 : 3 91 100
PENYGROES 7 : 4 74 100
PENYGROES 7 : 5 75 Y

(1) CALCULATED FROM RESULTS IN TABLE 6.1

% FPe in solution = (E%A)x 100 % chemically oxidized = SEE%%X:#E x 100

These considerations are relevant to the formation of ochre at sites with
high and low pH values. Water entering drains and watercourses at pyritic
sites are characterized by a high Fe(II) and soi‘, and pH values between
3 and 4, These conditions are similar to £hose found in the ferrous
sulphate solutions, where ferrous iron could be precipitated by adding air
dried ochre. In these solutions no oxidation could be detected if ochre
was not added. Ochre forming at pyritic sites would therefore encourage
the further oxidation of ferrous iron in the drainage water despite its
low pH. At filamentous ochre sites where the pH is normally 5.5 - 6.5 the
effect of existing ochre deposits would be to increase the rate at which
uncomplexed or loosly complexed iron is chemically precipitated. The

increased rate of precipitation would result in complete removal of iron
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from solution in a shorter period of time. In terms of drainage systems
this would cause deposition of iron within a smaller area, thus increasing

the severity of the problem.
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Plate 6:1 The effect of acidification and filtration of
drainage water from an ochreous site (Llyn Coedty)
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7. THE CONTROL OF MICROORGANISMS ASSOCIATED WITH OCHRE DEPOSITION

7.1 THE EFFECT OF COPPER ON SHEATHED FILAMENTOUS BACTERTIA

Copper is a well known bacteriocide and its use as an ochre preventative
has been described in the literature (Section 2.6.2.6). In the present
study the effect of copper on sheathed filamentous bacteria in artificial

media and drainage water samples was investigated.

7.1.1 The effect of copper on sheathed filamentous bacteria in

glucose-iron medium

Thirty 50 ml portions of glucose-iron medium were prepared as described

in Section S.3.4.1.

Solutions containing 510, 255, 127 and 51 pg/ml of cu't as CuSO4.SHEO
were prepared. 1.0 ml of each solution was filter sterilized (0.22‘pM
Millipore filter) into six portions of glucose~iron medium giving final
concentrations of 10, 5, 2.5 and 1.0 pg/ml Cu™". 1.0 ml of filter
sterilized distilled water was added to a further six portions of medium
giving controls containing no copper. 0.3 ml 0.05M NaOH was used to
adjust the pH of media containing 0.0 or l.O‘pg/ml Cu' ' and 0.4 ml 0.05M

NaOH was used at the remaining copper concentrations. The average pH of

the spent media was 5.3,

At each copper concentration replicate portions of media were treated as

follows:

1. Uninoculated

2. Inoculated with 1.0 ml diluted ochre (Llyn Coedty ochre diluted 1.0 ml
to 100 ml with s&erile distilled water)

3. Inoculated with 1.0 ml sterile diluted ochre (Llyn Coedty ochre diluted

1.0 ml to 100 ml with distilled water and autoclaved)
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After ten days a pale orange, poorly floculated, precipitate was found in
most media, but the media with no added copper contained large, bale orange
flocs. Portions of all media were examined by light microscopy. In the
uninoculated media sheathed filamentous bacteria were not observed. Pale

orange or grey ferric iron particles were seen in all uninoculated flasks.

In the media inoculated with sterilized ochre only a few sheathed
filamentous organisms were observed and these were encrusted with small

)
amounts of dark orange material. The flasks inoculated with unsterilized
ochre and containing no copper contained many large, bright orange

particles associated with sheathed filamentous bacteria. In the media

containing copper only a few filaments were observed. '

7.1.2 The effect of VC-17 antifouling paint on sheathed filamentous

bacteria in drainage water

It was demonstrated in Section 5.3%.1 that sheathed filamentous bacteria

will grow in drainage water collected from ochre sites.

150 ml polypropylene bottles were washed in dilute hydrochloric acid,
rinsed in distilled water and sterilized by autoclaving for 15 minutes at
120°C. VC-17 (Extensor AB, Box 323, S-181 03, LIDINGO, SWEDEN) is a
marine antifouling paint containing finely ground copper. VC-17 was
prepared by stirring 4.8 g of copper dust into 30.0 ml of paint. 3.5 cm
lengths of 8.0 mm diameter glass tubing were coated with VC-17 by

immersing in the paint for a few seconds.

Drainage water was collected at % sites, Penygroes 1, Penygroes 5 and
Penygroes 7:1. Care was taken to avoid collecting any ochrous flocs. One
coated glass rod was placed in four bottles at each site. Four other

bottles were used as controls containing no VC-17.
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After 7 days light orange precipitates and numerous small, dark orange
flocs were observed in all the bottles. The precipitate from eaéh bottle
was examined using a phase contrast light microscope. When the
precipitates were taken up by Pasteur pipette during slide preparation a
difference emerged between the samples. On the prepared microscope slides
the flocs from bottles containing VC-1l7 were small and too numerous:to
count. Conversely, flocs from samples without VC-17 were large and
distinct and only 5 to 10 were visible ‘on the slide. This difference was
observed in water collected at Penygroes 1 and 5 but not at Penygroes 7:1

where large flocs were observed on all slides irrespective of treatment

with VC-17.

Microscopic examination of the precipitates revealed that at all sites Vé;i7
had a marked effect on the growth of filamentous bacteria. In all the
untreated bottles irregular iron particles in association with filamentous
bacteria were seen. The filaments were mostly straight or slightly

curved and encrusted and non-encrusted filaments were found. Spiral
organisms similar to the bacteria described as Type 4 in Section 4.1.1
were observed in some of the bottles containing water from Penygroes 1 and
5. In samples containing VC-17 the precipitates were not associated with
filamentous bacteria and tended to be uniform or angular in shape. The
particles formed circular or rectangular accumulations. Sheathed
filamentous bacteria were observed in some of the bottles containing VC-17

but in each case only one or two filaments were found on the microscope

slide.

The pH of the drainage water samples at the end of the experiment was
recorded. The results are shown in Table 7:1. The samples had a pH

ranging from 5.8 to 6.2 and the inclusion of VC-17 did not affect the final
.
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TABLE 7:1 : THE FINAL pH OF DRAINAGE WATER SAMPLES WITH AND WITHOUT

ADDED COPPER AFTER IRON OXIDATION

REPLICATES
SITE (1) 1 2 3 b4 MEAN
PENYGROES 1 5.8 5.7 5.8 5.8 5.8

PENYGROES 1 + 5.7 5.8 5.8 5.8 5.8
PENYGROES 5 6.1 6.0 6.1 6.2 6.1
PENYGROES 5 + 6.2 6.0 6.1 + 6.1 6.1
PENYGROES 7 6.0 6.2 6.1 6.0 6.1
PENYGROES 7 + 6.2 6.1 6.1 6.2 6.2

(1) '+' indicates the inclusion of VC-17 in the drainage water samples.

7.2 THE EFFECT OF BIOCIDES ON THIOBACILLUS FERROOXIDANS

9K medium (4.2) was prepared and dispensed in 20 ml aliquots into sterile

100 ml conical flasks.

Various dilutions of Panacide (BDH), Acrolein (BDH) and copper sulphate
were prepared. 6.56 g of Panacide solution (40% W/W was diluted to 25 ml
with distilled water. 3.088 ml of 0.85 g/ml acrolein solution was
diluted to 25 ml with distilled water and 10.32 g of Cu804.5H20 was
dissolved in 100 ml of distilled water. The stock solutions were diluted
and incorporated into 9K medium by adding 1.0 ml of each dilution to
replicate portions of medium giving final céncentrations of 10, 100, 1000
and 5000 pg/ml of acrolein and panacide. The final concentrations of
copper were 10, 100, 1000 and 1250 yg/ml. Controls containing 1.0 ml of

filter sterilized distilled water were also prepared.

Two strains of T.ferrooxidans were used to inoculate the media:

1. Type A - NC1B 11820 (Johnson + Kelso, 1983)

2. Type B -~ T.ferrooxidans from acid mine drainage water (Section 3.1.2)

1.0 ml from growing cultures of each type in 9K medium were used as an

inoculum.
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After 10 days the flasks were examined visually. In some cultures a
distinct orange colour had developed indicating oxidation of Fe(II) by

the bacteria. Growth of T.ferrooxidans was confirmed by titrating the

20 ml medium against 0.01M KMnOh. 20.0 ml of 1.0M Hasou was added to the
cultures before titration. Titres less than 5.0 ml were taken as positive
results indicating that over 90% of the Fe(II) initially present in the
medium had been oxidized. The results are shown in Table 7.2. Acrolein

inhibited T.ferrooxidans at concentrations above lo‘pg/ml but at 10 pg/ml

ferrous iron oxidation was unaffected. Panacide was effective at all the

concentrations used but copper had no apparent effect on T.ferrooxidans even

at concentrations above IOOO'yg/ml. The copper tolerance of T.ferrooxidans

is well known (2.4.1).

TABLE 7.2 : THE EFFECT OF PANACIDE, ACROLEIN AND COPPER ON FERROUS IRON

OXIDATION BY THIOBACILLUS FERROOXIDANS IN OK MEDIUM

TYPE A TYPE B

INOCULATED CONTROL + +
UNINOCULATED CONTROL - -
ACROLEIN 10 ng/ml N +
100 yg/ml _ -

1000 yg/ml - -

5000 pg/ml - -

PANACIDE lo‘yg/ml - -
100 pg/ml _ -
lOOO‘yg/ml - -

5000 npg/ml - -

COPPER 10 Rg/ml N +
100 ng/ml + +

1000 ng/ml + +

1250 yg/ml + +

+ indicates that over 90% of the iron initially present in the medium had

been oxidized by T.ferrooxidans (after 10 days).

263




7.3 THE EFFECT OF ANTI-BACTERIAL COMPOUNDS ON COMPLEX DEGRADING

HETEROTROPHIC BACTERIA IN FERRIC AMMONIUM CITRATE MEDIUM

The decomposition of organic-iron complexes has been described as a
mechanism by which ochre can form (2.5.2.3). Bacteria capable of

utilizing ferric citrate were isolated from ochre as described in

section 4.3,2.

7.3.1 The effect of copper on complex degrading heterotrophs in ferric
[

ammonium citrate medium

9.0 ml portions of ferric ammonium citrate (FAC) medium (4.3.2) were
transferred into McCartney bottles. Seven solutions containing between
0.1 mg/1 and 1000 mg/l of cu' as CuSOA55H20 were prepared. 1.0 ml of
each solution was added to replicate portions of FAC medium before
autoclaving. Portions of FAC containing 1.0 ml of distilled water were
also prepared.

One bottle of FAC medium at each copper concentration was inoculated,
using a sterile wire loop, from a growing FAC culture. The organisms
had been isolated from ochre using FAC medium.

After three weeks the bottles were examined visually. In the
uninoculated controls the solutions had an orange colour with no
precipitate. In the inoculated media containing less than 5.0 Pg/ml cutt
a distinct precipitate was observed with the solution being colourless.
At 5.0 yg/ml catl or above no precipitate was seen. These observations
were confirmed by filtering 1.0 ml of each medium through a 0.45 pm
Millipore filter. The aliquet was then diluted to 50 ml with distilled
water and total iron determined by atomic absorption spectrophotometry.
The results are shown in Table 7.3.

In the uninoculated controls copper had no effect on the amount of iron
in solution. This remained constant at between 0.75 and 0.90 g/l. In
the inoculated flasks copper had no effect on iron precipitation at
concentrations less than 5.0/pg/ml with no iron remaining in solution in

the cultures containing between 0.0 and 1.0 Pg/ml of copper. As the
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amount of copper was increased up to 100 yg/ml the amount of iron in
solution also increased. At 100 pg/ml Cu the amount of iron in solution

is comparable to the levels observed in the uninoculated flasks.

TABLE 7.3 : THE EFFECT OF COPPER ON THE GROWTH OF COMPLEX DEGRADING

HETEROTROPHIC BACTERIA IN FAC MEDIUM

TOTAL IRON IN SOLUTION

Cu ml (g/1)
INOCULATED UNINOCULATED
0.0 0.00 0.77
0.01 0.00 0.87
0.1 0.00 0.88
0.5 0.00 0.86
1.0 0.05 0.75
5.0 0.67 0.87
10.0 0.70 0.86
100.0 0.83 0.89

7.3.2 The effect of acrolein and panacide on complex-degrading

heterotrophs in ferric ammonium citrate medium

1.0 g/1 stock solutions of biocide were prepared. 1.176 ml of acrolein
(0.85 g/ml) solution or 2.5g of 4O% W/W panacide was diluted to 1 1 with
distilled water. The stock solutions were diluted to give 9 dilutions
containing 0.0 to IOOO‘yg/ml of biocide.

1.0 ml of each dilution of biocide was added to 4 9.0 ml portions of FAC
medium (4.3.2) in McCartney bottles. Two portions were inaculated from
a FAC culture containing organisms isolated from ochre.

After ane month the flasks were examined and growth of bacteria was
indicated by the presence of a clear solution above a dark orange-red

precipitate. The results are shown in Table 7.k4.
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TABLE 7.4 : THE EFFECT OF PANACIDE AND ACROLEIN ON THE GROWTH OF COMPLEX-

DEGRADING HETEROTROPHIC BACTERIA IN FAC MEDIUM

PANACIDE ACROLEIN
BIOCIDE INOCULATED UNINOCULATED INOCULATED UNINOCULATED
CONCENTRATION

Ayg/ml

0.0 + - + -

0.01 + - + -

0.05 + - + -

0.10 + - + -

0.50 + - + -

1.00 + - + -

5.00 + - + -

10.00 + - + -
100.00 + - + -

+ IN THESE SOLUTIONS A CLEAR LIQUID ABOVE AN ORANGE-RED PRECIPITATE WAS
OBSERVED. THIS INDICATES REMOVAL OF IRON FROM SOLUTION RESULTING FROM
COMPLEX DEGREDATION BY BACTERIA.

- A CLEAR ORANGE SOLUTION WAS OBSERVED WITH NO FERRIC PRECIPITATES.

At the concentrations used neither panacide or acrolein had any effect on
the growth of the complex-degrading heterotrophs. No precipitate appeared
in any of the uninoculated bottles. Howevef, a precipitate was observed in
all the inoculated bottles irrespective of biocide concentration from 0.0l

to 100 pg/ml.

7e3«3 The effect of antifouling points on complex-degrading heterotrophs

7e3e3.1 VC-17

Short lengths of glass tubing were coated with VC-17 as described in

section 7.l.2.
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A glass rod was placed in replicate portions of FAC medium (4.3.2).

The media were inoculated from a FAC culture containing organismg
isolated from Donegal ochre (3.1.3). After 12 days a distinct precipitate
was seen in the untreated media but in the portions containing VC~17 no

growth was apparent, the solutions having a clear orange colouration.

7.3.3.2 UGLL, WL92 and W319 antifouling paints

16 25 ml portions of FAC medium (4.3.2) were prepared. Four 3.5 cm lengths
of glass tubing (1.0 cm diameter) were coated with antifouling paint and
allowed to dry overnight. 3 antifouling paints were used, U6hk, W492 and
W319 (obtained from International Paint, Stonygate Lane, Felling,
Gateshead, Tyne and Ware, NE10OSY).

The coated glass tubes were placed in the media and left for 23 days

before inovunlation to ensure that the media had not been contaminated when
the glass rods were introduced. Two portions containing each antifouling pain
paint. were inoculated with bacteria from a growing FAC culture. Four
untreated portions of medium were also prepared and two of these were
inoculated. The media were incubated at 22°c for five days.

A distinct precipitate formed in the inoculated controds but no precipitate
was. cbserved in the uninoculated flasks. A precipitate was not observed

in any of the inoculated or uninoculated media containing antifouling,
However, a thin orange film was seen on the .surface of inoculated cultures
containing U644 antifouling suggesting some release of iron from the ferric-
citrate complex.

In order to examine the continued effect of the antifouling paints some

of the flasks were reinoculated after five days. The results in Table 7.5
show that no growth was detected in any of the flasks containing W319
antifoulingiin%ﬁe uninoculated controls containing W492 had no precipitate
after 5 days but in the reinoculated portions containing W6l and U492

some bacterial growth was evident. No distinct precipitate was observed

but red flocs were seen at the base of the cultures.
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The coated ruds were removed from the FAC cultures, washed, and left to
stand in distilled water for about five weeks. After this time ﬁhey were
placed in 20 ml portions of freshly prepared and autoclaved FAC medium.

Two flasks containing each antifouling were inoculated and two were left
uninoculated. Inoculated and uninoculated portions of untreated FAC were
prepared as controls.

After 20 days a precipitate had formed in the inoculated, but not in the
uninoculated control. In all flasks containing U64h and W492 a precipitate
was clearly seen indicating growth of bacteria. No difference was seen
between the inoculated and uninoculated media. No distinct precipitate

had formed in the flasks containing W319 but an orange precipitate was sen
on the surface of both inoculated and uninoculated cultures. This’
indicates that W319 prevented complete release of iron from solution but

did not totally inhibit the complex degrading bacteria,

TABLE 7.5 : THE EFFECT OF THREE ANTIFOULING PAINTS ON THE GROWTH OF

COMPLEX ~-DEGRADING HETEROTROPHIC BACTERIA IN FERRIC

AMMONIUM CITRATE MEDIUM

AFTER 5 DAYS

INOCULATED UNINOCULATED
ANTIFOULING REPLICATE 1 REPLICATE 2 REPLICATE 1 REPLICATE 2
U6l . . - -
wh92 - - - -
W319 - - - -
AFTER 15 DAYS

INOCULATED UNINOCULATED
ANTIFOULING REPLICATE 1 REPLICATE 2 REPLICATE 1 REPLICATR 2
U6kl ¥ . 7 -
who2 * - *

W319 - -

* NO DISTINCT PRECIPITATE BUT RED/ORANGE MATERIAL SEEN ON SURFACE
-~ NO PRECIPITATE WAS OBSERVED

[]THESE CULTURES WERE REINOCULATED ON DAY 5
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7.4 THE EFFECT OF ANTIFOULING PAINTS ON ACIDOPHILIC HETEROTROPHIC BACTERIA
The isolation and importance of acidophilic heterotrophic bacteria in ochre
was discussed in chapter 4.

22x50 mm glass microscope cover slips were coated with various antifouling
paints. The cover slips were immersed to half their length in the
antifouling paint. Four paints were used, VC17, U6h4, W319 and W492 (see
7.12 and 7.3.3.2 for details). The cover slips were allowed to dry for
several hours, rinsed in sterile distilled water and placed on agar plates
of Harrison's glucose medium (4.3.1). Three plates containing each
antifouling paint were prepared. To ensure that the media were not
contaminated by the coated cover slips the plates were inverted ang
maintained at room temperature for ten days. After this time no bacterial

growth could be detected on any of the plates containing antifouling paint.

The plates were inoculated by transferring small quantities of inoculum
from colonies grown on Harrison's glucose agar (4.3.1). The plates were
inoculated using three species of acidophilic heterotrophs.

1. NC1B 11746

2. NC1B 11745

3. NC1B 11822
After 5 days the three types of acidophilie heterotrophs had grown well
on untreated control plates. However, very little growth was evident on
the plates containing antifouling paint.
After 15 days no growth was found on any plates containing U644, VC-17 was
effective in preventing the growth of type 1 and 3 but some colonies of
type 2 developed on VC-17 treated plates: W319 antifouling prevented
growth of types 2 and 3 but colonies of type 1 were observed. W492
prevented growth of type 1 but not types 2 and 3. It is worth noting that
the majority of colonies surrounded the untreated side of the cover slips-
indicating that the antifouling paints had some bacteriocidal activity

although growth of the acidophilic heterotrophs was not completely

prevented except by U6LlL,
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7.5 THE RELEASE OF COPPER FROM VC-17 ANTIFOULING PAINT

7.5.1 Release of copper from VC-1l7 in different volumes of distilled

water

VC-17 (7.1.2) was prepared by mixing 4.8g of copper dust with 30 ml of
antifouling paint. Ten 35 mm lengths of 8.0 mm diameter glass tubing
were weighed, dipped in antifouling, allowed to dry and then reweighed.
One glass rod was placed in several volumes of distilled water from 50 ml
to 250 m1l (50 ml increments) in 250 ml ‘conical flasks. Two replicates
were prepared for each volume of water.

At regular intervals up to 72 days 5.0 ml aliquots were withdrawn and
replaced with 5.0 ml distilled water, The concentration of copper in the
aliquot was determined by atomic absorption spectrophometry. In order
to relate the release of copper to the initial amount on the coated rods,
the copper content of the dry antifouling was determined by extracting
known weights of VC-17 in concentrated nitric acid at room temperature
for several days and then by boiling vigorously for five minutes. The
extract was diluted with distilled water, filtered and the copper
concentration determined by atomic absorption spectrophotometry. The
mean concentration of copper in the antifouling paint was 62%. The total
amounts of copper in solution at each sampling date expressed as a
percentage of the amount originally present on each coated glass rod are
shown in figure 7.1l. The amounts of copper.removed in the 5 ml aliquots
were taken into account in these calculations.

The results show that there was an increase in copper release with time
(significant at p{0.001). The amount of copper released after one day
was £0.1%, whereas after 72 days 3.4% and 9.8% copper had been removed in
50 ml and 250 ml respectively. The release of copper was also related to
the volume of water. The mean percentage copper released was 1.9, 3.9,
4,1, 6.1 and 5.6 at 50, 100, 150, 200 and 250 ml respectively,
representing a quadratic response (significant at p{0.043) with a maximum

release of copper in 200 ml distilled water.
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The release of copper from VC-17 in a continuous flow of tap water was
recorded by placing a coated glass rod in a 10 ml syringe conneeted to
a tap by a piece of rubber tubing. After 47 days the copper remaining
on the rod was extracted in 75 ml concentrated nitric acid for several
days. The copper concentration in the filtered and diluted extract was
determined by atomic absorption spectrophotometry. The initial weight
of copper on the glass rod was estimated to be 10.2 mg and the amount
remaining after 47 days was 8.9 mg. The release of copper under a
continuous flow of water was therefore 12.7%, approximately double the
amount released in 200 ml .and 250 ml distilled water over the same time

period.

7.5.2 The effect of pH on the release of copper from VC-17 antifouling .

L glass rods were coated with VC-17 as described in section 7.5.l.

The glass rods were placed in solutions of distilled water adjusted to
pH 2.0, 4.0, 6.0 and 8.0 with dilute Hasoh and NaOH., At regular
intervals 5.0 ml aliquots were withdrawn from each solution and replaced
with 5.0 ml of distilled water adjusted to the appropriate pH. The
copper concentration of the aligquots was determined by atomic absorption
spectrophotometry.

The amount of copper in solution at each sampling date expressed as a
percentage of the amount originally present on each glass rod are shown in
figure 7.2. The amounts removed in the 5.6 ml aliquots were also taken
into account. At pH 4.0 to 8.0 less than 4.0¥ copper had been removed
after 43 days. However, at pH 2.0 over 95% of the copper had been
removed. 90% of the copper had been removed at pH 2.0 within 7 days;

whereas only 0.5 - 1.0% had been removed within the same time at pH

4.0 - 8.0.
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Figure 7:1 The percentage of copper removed from VC-17 antifouling
paint in different volumes of distilled water
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Figure 7:2 The effect of pH on the percentage of copper removed
from VC-17 antifouling paint
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(1) Total amount of copper released expressed as a percentage
of the initial weight on each coated glass rod.
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7.6 DISCUSSION

The results described in this chapter do not provide a comprehenéive
examination of the effects of biocides on the microorganisms associated
with ochre deposits. If was not possible, in the time available, to study
more than a few compounds., However, the results illustrate the
susceptibility of "ochre bacteria" to biocides. They also demonstrate the
possibilities and problems associated with the use of anti-bacterial
compounds to control ochre formation.

Generally the effect of each biocide was assessed by a positive/negative
approach, For example, positive growth was determined on agar by the
appearance of colonies and in ferric ammonium citrate medium by the
presence of a distinct red precipitate. Similarly, in 9K medium over 90%

ferrous iron oxidation indicated growth of T.ferrooxidans. This method gives

a maximum concentration of biocide at which bacterial growth is unaffected.

Panacide and acrolein were chosen as examples of readily available anti-

microbial compounds. Both biocides were effective against T.ferrooxidans

in 9% medium. It was found that concentrations of acrolein above lo'yg/ml
were required to prevent complete ferrous iron oxidation. Panacide
prevented complete oxidation at all the concentrations used, in the range
10 to 5,000 pg/ml. This confirms the results of Le Roux et al (1973) who

found that panacide, at 200 Pg/ml, stopped the growth of T.ferrooxidans

almost instantaneously. Neither acrolein or panacide had an apparent

effect on the complex degrading heterotrophs at concentrations up to

100 pg/ml.

Copper controlled the growth of sheathed filamentous bacteria very
effectively. In artificial media few filaments were seen in the presence
of 1 yg/ml or more of copper as copper sulphate. Copper had little effect
on complex~degrading bacteria in ferric ammonium citrate medium at lo‘yg/ml,
but at 5.0 yg/ml and lo‘pg/ml only 21% and 12%, respectively, of the iron
present in uninoculated controls had been precipitated. However, copper

had no effect on ferrous iron oxidation by T.ferrooxidans even at
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concentrations above 1.0 g/l. The tolerance of this organism to copper is
well knownasitis used cémmercially to extract copper from low grade ores
(2.4.1).

In drainage systems a method of applying the biocide is required. The
compound has to be fixed so as to allow a slow but constant release.With
this in mind a copper-containing marine antifouling paint,VC-17, was
investigated. This is used to prevent the accumulation of marine organisms
on the underside of boats. :

The paint was effective against sheathed filamentous bacteria. In 150 ml
volumes of drainage water no filaments formed when VC-17 coated glass rods wer«
present. VC-17 also prevented the growth of complex-degrading bacperia in
FAC medium and was effective against acidophilic heterotrophs growing on - .
Harrison's agar.

Three other antifouling paints were investigated. These controlled the
growth of acidophilic and ferric citrate complex-degrading heterotrophs, but
it was shown that their effect on the latter was not prolonged. After
transferring, washing and soaking, the antifouling had little effect on
bacterial growth in FAC medium.

The results show that it is possible to control the organisms associated
with ochre by using biocides or antifouling paints. However there are
numerous obstacles to their successful use for controlling ochre in
drainage systems.

The biocide has to be applied both economically and safely. However,
biocides such as panacide and acrolein as laboratory grade chemicals are
expensive and in practice it would be difficult to maintain the required
concentration in flowing water and in the presence of organic complexing
agents, silts and clays.

Another problem is the danger of polluting streams and water courses
receiving water from the treated drainage systems. Biocides are effective
not only against the microorganisms associated with ochre but also against

all forms of aquatic life. For example, it has been found that 1-20 pg/ml
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of panacide will strongly inhibit the growth of green and blue-green algae.
If the period of contact is lengthened then the inhibitory concentration is
reduced (Gupta and Saxena, 1974; Sanena et al, 1978). Similarly, McIntyre
(1978) found that copper at 10 to 1000 pg/I had significant effects on all
levels of an experimental aquatic food chain. In certain situations it is
possible that drainage water would be diluted in open ditches and streams,
thus preventing pollution. Aldrich (1977) found that no significant
pollution occurred following sulphur dioxide treatment of ochreous drains
provided the outflow was diluted sufficiently. However, in situations
where dilution is limited, such as low lying areas or coastal sites below
sea level, biocide could pollute watercourses. In such an area Go§ling

and Baker (1980) recorded acid pollution of ditches resulting from pyrite.
oxidation in drained soil. This led to the death of fish, freshwater
muscles and many macrophytes.

Some of the problems outlined above could be avoided by using antifouling
paints. The anti-bacterial effects of these has been discussed. The most
effective treatment was VC-17 antifouling which contained copper. The
other paints were initially effective but lacked continued bacteriocidal
activity. VC-17 provided a means of incorporating copper onto the surface
of drainage pipes. The copper is released slowly from the compound in
stationary solutions but at a faster rate in running water. It was found
that 13 copper was removed within 47 days in continually flowing water.

It might be necessary to improve the retention of copper if VC-17 was to be
used to prevent ochre in drainage systems. It may be.possible to achieve
this by incorporating copper dust into plastic drainage pipes as an
alternative to coating the pipes with paint.

The retention of copper by VC-17 is also affected by pH. At pH values
below 4.0 the rate of release was dramatically increased and at pH 2.0 over
95% copper was released into solution within 43 days (7.5.2). The effect of
PH limits the use of VC-17 to sites of moderate acidity. At low pH,

pyritic, sites the sudden release of copper would make the treatment

275



ineffective and cause a pollution hazard. Even if the release of copper
at low pH could be controlled, its effects on ochre formation at these pH
values is unknown. The bacterium most commonly associated with ochre at

acidic sites is T.ferrooxidans and this microorganism is highly tolerant of

copper. The acidophilic heterotrophs associated with ochre at low pH are
susceptible to inhibition by copper. The effect of copper on ochre
formation would depend upon the importance of the heterotrophs in the
composition of ochre deposits. It has‘been argued (Johnson and Kelso, 1980)
that these organisms increase the tenacity of ochre. If this is the case
then copper might reduce the severity of clogging by acidic ochre by
preventing the growth of heterotrophic organisms.

In solutions of pH greater than 4.0, copper in a slowly released form, such
as VC-17 or its equivalent, could be used to control the majority of bacteria
associated with ochre. Copper was effective against sheathed filamentous
bacteria, ferric citrate complex-degrading bacteria and acidophilic
heterotrophs. The success recorded in laboratory experiments should be
confirmed by conducting trials in the field. Field trials are also
required to monitor the duration of copper release and the concentrations of
copper in the outflow with regard to pollution. The most important
consideration however is the effect of copper on ochre formation.

Copper can prevent the growth of ochre bacteria but cannot prevent the
oxidation of Fe(I]). Puustjarvi and Juusela (1952) argued that copper will
increase the severity of ochre by catalysing ferrous iron oxidation. It
was shown in section 6.1 that most of the soluble iron present in drainage
water will oxidize chemically within a short period of time. Thus the
presence of copper will not increase the amount of iron precipitates
although it may increase the rate of precipitation.

In an experimental model Ford (19794, 1979B) found that chemically
precipitated iron, without bacteria, lacked an ability to adhere and did

not result in the formation of ochre. The extent to which chemical
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precipitates can accumulate to form ochre in field drains must be
monitored with regard to the use of biocides. It is also necessafy to
determine the effect of biocide on drainage performance since ochre can
form, not only in the drainage pipe, but also in the backfill or soil
around the drain. Having a system to control ochre formation inside the
pipe is worthless if ochre in the soil or backfill prevents water from
entering the drain. The use of biocides can only be justified if they
prevent the accumulation of ochre in drain pipes and if they improve the

performance of the drainage system as compared to untreated controls.
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8. DISCUSSION AND CONCLUSION

8.1 Characteristics

Ochre is a general term used to describe a range of iron containing deposits
that form in agricultural drainage systems. Ochre has been described in
various ways - raglike, a sludge, mare's tail, a slime, a mischief and a menace
(Ford, 1978; Ivarson and Sojak, 1978; Bloomfield and Coulter, 1973; Ford,
1979; Brown, 1903; Denison; 1856; : . Hope, 1981; Pliny the Elder).

It is composed of iron and organic matter in the form of an aqueous orange,
yellow or dark red deposit. These deposits vary widely in their composition,

their appearance, their rate of formation and where they occur.

L6 samples were collected from a variety of sites in England and Wales. Their
appearance in situ varied from small flocs of dark orange-red material

(plate 3.25) to hard, gelatinous, orange deposits (plate 3.27). The colour of
the deposits varied but they all had the characteristic red-orange colour
associated with ferric iron minerals (Schwertmann and Taylor, 1977). Most of
the samples had a pH between 5.0 and 7.0 in the undried state (3.2.2.1) but
some samples were characterized by a low pH. A noteable examplewas the Spanker

site (3.1.12) where the ochre had a pH between 3.4 and 4.2.

As expected from the colour of the deposits they all had a high iron content
(3.2.2.3)y half the samples having a total iron content (oven dry sample) of
between 20% and 40%. All the samples analysed contained varying quantities of
organic matter. The organic carbon content varied from 0.8% to 13.2% (3.2.2.4)

whilst the percentage loss on ignition ranged from 10.6% to 52.6% (3.2.2.2).

During sample collection it was noted that ochre formed over a range of sites.
Ochre was found in the fen peats of Norfolk, reclaimed open cast coal mine
sites, loﬁ lying brown earths derived from marine or river alluvium,and upland
peats. Ochre formation required iron in drainage water but was not highly
dependent on the iron concentration. Samples of drainage water from drains

and ditches containing ochre were analysed and the total amount of iron in
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solution varied from 0.3 ug/ml to 19.5 ug/ml (5.3.5, Table 5.4). Differences
among sites and the related differences in iron concentration in the drainage
water influence both the rate at which ochre forms and the time taken for
complete blockage by the deposits. At some sites it appeared as if ochre
deposition had been initially severe but did not present a long term problem.
For example, drains at Hall Farm (Site 4b, 3.1.7) had blocked within 12 months
and the land was redrained. At the time of sampling the second set of drains
were functioning satisfactorily with little evidence of ochre deposition.
Similarily at an upland site in North Wales drainline ochre had been found by
a farmer who removed it by rodding. When the site was examined during the

present study no ochre could be found suggesting an initial, short temm

accunmulation of ochre.

At other sites a different type of problem was found. At Gallt yr Hulldrem
(3.1.11) for example drains had been operating for over ten years despite the
accumulation of ochre at their outlets. Here ochre deposition was long term
or permanent but was not severe enough to seriously impair the performance of

the drainage system.

The worst ochre problem occurred where deposition was both intense and long
term. At Llyn Coedty (3.1.4t) ochre accumulation had occurred for many years
and there was no indication that the deposition was declining. The total iron
content of drainage water at this site was high at 15 pg/ml (Section 6.1).
Similarly at Spanker the accumulation of ochre was a constant, severe problem

aggravated by low pH.

The effect of ochre "intensity" (the time taken for complete blockage of a
drainage system) and the duration of ochre deposition on the severity of the
problem is illustrated in figure_8.1. Drainage Schemes are normally expected
to function for at least 20 years but 10-15 years are usually taken as a
reasonable period for accounting purposes (Brown, 1984; Jackson, 1984). In

figure 8.1 the economic effect of ochre is examined over a 15 year period. It
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Figure 8.1 The effect of ochre intensity and duration of
deposition on the severity of ochre.
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is assumed that drainage doubles the "Gross Margin'' so that the potential
economic yield from the drained land can be defined as 100%, whereas in the
absence of drainage 50% of this potential return is lost. This level of
financial return from drainage is unlikely to be obtained in practice so that
the severity of ochre is probably underestimated in figure 8.1l. However, the
figure shows that the most severe ochre sites (41 to 50% of potential yield
lost) are those where blockage is rapid occurring in less than 5 years. Where
it takes longer than 5 years for complete blockage of the drainage system the
severity of ochre deposition is also influenced by the duration of ochre
deposition. The problem becomes more severe as the duration of deposition

increases.

8.2 Formation

The factors governing the formation of ochre are complex but there are two
prerequisites, Firstly, a source of iron and conditions at the source leading
to the solution 6f iron. Secondly, ochre formatioa requires conditions leading
to the precipitation of iron from solution. Thus ochre can form readily in
field drains and surface ditches since they are at an interface where water
from an anaerobic zone enters an oxidizing environment. The basic process
involved in ochre formation is therefore the oxidation of iron and this can

occur by chemical or microbial processes.

It was demonstrated (Section 6.1) that the precipitation of iron from drainage
water can be accounted fo; by chemical oxidation. 1In sterile samples of
drainage water it was found that on average 80% of the total iron in solution
was oxidized within about 48 hours. At 4 sites 100% oxidation was recorded
over this time period (Table 6.1). These results indicate the importance of
chemical oxidation as a mechanism of ochre formation. It was also shown that
autocatalysis of ferrous iron oxidation by ferric precipitates, Which has been
demonstrated in chemical solutions (e.g. Tamura et al, 1976) is relevant to
drainage water, The addition ofa&i%&ééggd ochre to drainage water samples

containing iron in solution increased the rate of ferrous iron oxidation
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although not the total amount oxidized. On average it took less than 2 hours

. Stecila
to oxidize 50% of the iron initially in solution in samples containing adr dzied

Skeri\e
ochre. The corresponding time for samples without aix drded ochre was over
12 hours. It is suggested that ochre deposits can catalyse the oxidation of

ferrous iron in drainage water. The result of this catalysis is to concentrate

the ochre problem within a smaller area thus increasing its severity.

Although it was shown that chemical oxidation could explain the formation of
ochre the involvement of microorganisms is also an important factor.

Filamentous bacteria were observed by light microscopy in most samples in
association with orange-red particles of ferric compounds. These organisms

were distinguished from fungi by their narrower filaﬁents and lack of branching.
These organisms have an optimum pH between 6.0 and 7.0 and were not numerous

at Spanker (Table 4.l) where the pH did not rise above 4.2. At some other

sites where the pH was around neutral, filamentous bacteria were not observed.
These bacteria were not found in samples of ochre at Penygroes 1 and 3 (Table 4.1)
although the pH of the drainage water was 6.4. In the majority of samples however
filamentous bacteria were observed and most were assigned to the genus Leptothrix.
When samples were examined by scanning electron microscopy and EDAX (4.1.2) it
was found that the filaments were composed primarily of iron and were coated

with iron particles. Under light microscopy the sheaths appeared as empty "tubes"
containing no cells. Lack of cells within the many filaments present in ochre
samples suggests prolific sheath generation by a small number of organisms.

This was noted as a characteristic of Leptothrix spp by Van Veen et al (1978)

(2.3.1.14).

Gallionella spp were also observed in some samples but their distribution was

not widespread. In the literature Sphaerotilus spp are often associated with

ochre but during the present study these organisms were not observed.

Sphaerotilus spp are identified as filaments composed of rod shaped cells within

a colourless sheath - no organisms fitting this description were observed by
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light microscopy and they were not isolated in liquid and agar media that have

been used by other authors to isolate Sphaerotilus spp. The problems associated

with the taxonomy of Sphaerotilus and Leptothrix and the related difficulties

in naminpg the organisms associated with ochre were discussed in section 2.3.1.2.

In addition to the filamentous bacteria, other microorganisms were isolated

from ochre samples. Thiobacillus ferrooxidans (2.4.1) is a chemolithotrophic

bacterium deriving its energy from the oxidation of Fe(II) and utilizing
atmospheric carbon dioxide as its sole carbon source. These bacteria grow at
a pH below 4.5 and have an optimum pH between 2.0 and 2.5. In the literature

they are commonly associated with pyritic ochre deposits of low pH, but in the

present study the distribution of T.ferrooxidans was surprisingly widespread.

These organisms were isolated from the acidic Spanker site but the highest
number, 3.43 x 10“/3 oven dried ochre,was found in a sample from Hall Farm 1

where the pH was 6.5 (Table 3.3 and 4.2). T.ferrooxidans were isolated from

14 of the 17 samples examined and of these 14 only Spanker 2 and Spanker 4 had
a pH below 4.0. The other samples had a pH between 5.5 and 6.5. The isolation

of T.ferrooxidans in ochre at pH greater than 4.0 suggests that they survive

in microenvironments of low pH within the soil and drainage system contributing
to ochre formation at sites which, on the basis of pH, would be described as

filamentous.

Heterotrophic organisms capable of growing on artificial media at low pH were
also isolated from ochre samples. These’organisms were found in 10 out of the
1?7 samples analysed. A variety of organisms were isolated, most of which were
also capable of growing on nutrient agar at neutral pH values. Johnson (1979)
isolated similar organisms from acidic mine drainage water and found that they
produced large quantities of polysaccharide. Hydrolysates of the bacterial
slime contained high concentrations of ribose giving ribose : xylose ratios
greater than 10 as compared to the normal ratios of less than 0.1 encountered

in soils. The ribose : xylose ratios of ochre shown in Table 3.8 reveal that
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values greater than 10 were not found in the hydrolysates of ochre samples but
all, except 2, had ratios greater than those normally found in soils. The role
of these heterotrophic organisms in ochre formation is unclear but they would

increase the bulk and tenacity of the deposits as a result of their extracellulesce

polysaccharide .component.

Heterotrophic bacteria capable of degrading iron-organic complexes were isolated
from ochre in a ferric ammonium citrate medium (4.3.2). There appeared to be
little difference between the numbers of organisms capable of degrading the
ferric citrate complex and those isolated on nutrient agar suggesting that most
of the heterotrophic organisms in the ochre samples were able to degrade iron-
organic complexes. Light microscopy revealed that the iron released from the
complexes was not deposited on the bacterial cells suggesting that the release
of iron was incidental. Complex degredation has been suggested as a mechanism
of ochre formation (2.5.2.3). The presence of organisms capable of degrading
iron-organic complexes confirms that this mechanism is feasible. However the
importance of the mechanism depends on the amount of complexed iron present in
the drainage water. When iron-organic complexes are present heteroérpphic
orgamisms, such as those commonly found in soil, will degrade the complexes

releasing iron for chemical oxidation.

The formation of ochre has been discussed in terms of chemical oxidation and thé
isolation of several bacterial species. The presence of bacteria in iron deposits
suggests a connection bebween these organisms and iron oxidation. The catalysis

of ferrous iron oxidation by T.ferrooxidans is well documented (2.5.2.2) the

organism being able to derive energy from the conversion of Fe(II) to Fe(III).
In contrast the precipitation of iron resulting from the breakdovn of organic-
iron complexes by bacteria is incidental. These bacteria utilize the organic
portion of the complex and in so doing release iron for subsequent chemical
oxidation and precipitation. Thus, although via different mechanisms, both

T.ferrooxidans and the complex-degrading bacteria are actively responsible for
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the precipitation of ferric iron and hence ochre deposition. In their absence

iron would probably remain in solution either because of low pH or chelation.

The role of the filamentous bacteria in ochre formation is unclear. There is
no evidence to suggest that these organisms derive energy from thé oxidation
of ferrous iron but in nature they are commonly found in iron bearing waters
and microscopic examination reveals that they are often encrusted with ferric
deposits. It would appear (2.3.1.6) that iron oxide/hydroxide accumulation
by filamentous bacteria’is a passive, non—biological process where chemically
oxidized ferric compounds are deposited on the organisms sheaths. This is
supported by the growth of these bacteria in water of pH 5.0 to 7.0 where the
rate of chemical ferrous iron oxidation is rapid. Although the filamentous
bacteria do not appear to cause the oxidation of iron they probably have an
important role in ochre formation in that they stabilise and increase the
tenacity of the deposits, the sheaths or filaments providing a template and
fixture for the accumulation of iron precipitates. Active metal binding as
observed in E.coli where cell wall peptidoglycan can bind metals including
ferric iron (Hoyle and Beveridge, 1984) has not been demonstrated in the

filamentous bacteria.

Leentvaar and Rebhun (1983) found that the addition of a polymeric coagulant
caused an increase in the strength and size of ferric hydroxide flocs and it is
likely that the organic sheaths of the filamentous bacteria would have a

similar effect in drainage water. This is confirmed by the observations
described in Section 5.3.1 where distinct differences were found between ferric
precipitates in sterile and non sterile drainage water. In sterilized water the
precipitates formed as a thin layer of ferric oxide/hydroxide particles, whereas
in non-sterile water, in the presence of filamentous bacteria, distinct flocs of

precipitate were observed.
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8.3 Types of Ochre

The deposits known collectively as ochre are inherently variable in their
appearance and composition, both chemical and microbial. This variability is
related to many factors including site and time. It is possible to conclude
that each ochre deposit is unique but it is important to rationalize the

variation in ochre deposits into broad groups or types.

Ochre found at sites of low pH is commonly described as pyritic ochre and
represents one extreme type of ochre characterized by pH values less than k.0

and low organic matter contents. T.ferrooxidans and acidophilic heterotrophs

are found in these deposits but no filamentous bacteria. Filamentous ochrej
at the other extreme, is typically found in water of pH 6.0 to 6.5 and has a

relatively high organic matter content. No T.ferrooxidans or acidophilic

heterotrophsare found but filamentous organisms are numerous and the deposits’
contain a large population of unicellular,heterotrophic bacteria capable of

degrading iron-organic complexes if they are present.

The majority of ochre samples will fall between these extremes and will have
various combinations of filamentous bacteria, Thiobacilli and heterotrophic
organisms. Chemical oxidation will be less important in ochre formation at
low pH sites where most iron oxidation would be the result of biological

catalysis by T.ferrooxidans. However, at pH values around 6.5 chemical

oxidation probably accounts for a large proportion of iron precipitation,.
Where organically compleied iron is present it will be released by complex
degrading organisms and subsequently oxidized chemically. The chemically
precipitated ferric compounds can combine with filamentous bacteria to form
ochre deposits. In some sites of near neutral pH (for example, Penygroes 1

and 3 section 3.1.1) the number of filamentous organisms may be small.
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8.4 Control

The results in chapter 7.0 demonstrated that the bacteria associated with
ochre deposits are susceptible to biocides. For example, Panacide and

#Acrolein controlled the growth of T.ferrooxidans and iron-complex degrading

‘bacteria effectively but these types of compounds are of little use in the
field since they are extremely toxic to all forms of life. Copper was used
at l.O‘pg/ml to control the growth of filamentous bacteria in drainage water
samples and at 5.0 yg/ml to control complex degrading bacteria in ferric

ammonium citrate medium.

In order to control "ochre bacteria' in drainage systems the biocide must be
applied, probably to the drainage pipes, in a form that allows a slow and
constant release. This is necessary to reduce the risk of polluting
watercourses and to maximise the period over which bacterial growth is
actively controlled. Marine antifouling paints provide a means by which
compounds with biocidal activity can be used to treat drainage systems. The
effect of several antifouling paints (7.3.3.2 and 7.4) on filamentous bacteria,
acidophilic heterotrophs and complex degrading bacteria was investigated and it
was found that most were effective in the short term but lost their inhibitory
effect when repeatedly washed with distilled water. However, VC~17, a marine
antifouling paint containing copper dust,was used to control the growth of
filamentous bacteria in drainage water and heterotrophic organisms in artificial
media (7.1.2 and 7.3.3.1). It was found that copper was released slowly except
at pH less than 4.0 when the dissolution of copper was rapid. It is suggested
that copper applied as an antifouling paint or incorporatéd in pipes by some
method could be used in drainage systems to control the growth of filamentous
bacteria and other heterotrophic organisms associated with ochre formation.

In acidic sites the method could not be used since T.ferrooxidans can tolerate

large concentrations of copper and the release of copper at low pH is likely

to be high leading to pollution.
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Despite the laboratory described effect of copper on the microorganisms
associated with ochre there are two problems which must be solved befofe this
method can be adopted in drainage systems. These problems are relevant to all
solutions proposed for ochre control. Firstly, the solution must be effective
in terms of ochre formation in the field. It has been shown that copper can
control the growth of heterotrophic bacteria associated with ochre. However
it has also been demonstrated that biological factors are only one facet in
ochre formation which is also related to chemical oxidation. The success of
biological control hinges upon the importance of chemical oxidation and the
relationship between bacteria and iron in ochre formation. If it is accepted
that filamentous bacteria act as a template for iron accumulation rather than
contributing directly to iron oxidation then the success of biocides depends
upon the extent to which chemically precipitated iron, in the absence of
bacteria, will form precipitates similar to ochre. Ford (1979 A) suggested
that in the absence of microorganisms chemically precipitated iron did not
form drain type ochre since it did not adhere and could be washed easily from
experimental drainlines. The difference in the type of iron precipitate from
drainage water in sterile and non-sterile conditions was described earlier.
There is some ground to believe therefore that controlling the growth of
bacteria may change the form of iron precipitates reducing their clogging
potential. However this has to be substantiated by further laboratory work
and field trials. At Penygroes 1 and Penygroes 3 ochre deposits were found
in drain lines but no filamentous bacteria could be observed in the samples
suggesting that ochre was formed chemically, in the absence of these bacteria.
In view of this observation the effect of any preventative method based on

biocides must be demonstrated in relation to ochre production in the field.

The second problem associated with ochre prevention is that any method, when
proved effective, must also be economic. The biological and chemical factors

associated with ochre are scientifically interesting in themselves but ochre,
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and especially its control, must be viewed in economic terms. When Pliny
described various types of ochre in "Natural History" he was concerned with
their economic value and quoted a price for each. Similarly ochre is

important in agriculture since it causes drainage failure, reduces the economic
viability of the drainage schemes and financial penalties are incurred. When
assessing the effectiveness of ochre control the financial implications must be
considered. The cost and benefits of prevention must be balanced against the

financial loss caused by ochre.,

The economic viability of ochre prevention will depend upon the effectiveness
of the control method, its cost, the intensity of ochre accumulation (i.e. the
time taken for complete blockage) and the duration of ochre deposition. The
benefits of drainage will also influence economic viability, the larger gross
margins obtained for cash crops would allow a larger expenditure in ochre
prevention than for drainage schemes in low grade pasture land. When ochre is
a temporary problem lasting less than 5 to 10 years it is possible to justify
prevention whether the problem is severe or slight in terms of the number of
years taken for complete blockage. It becomes more difficult to justify
expenditure on control whére the ochre problem is a permanent one especially

if the rate of accumulation is not rapid.

Another fundamental and obvious problem is that in most cases the ochre
pre#ention method would be incorporated as part of drainage installation at a
time when the type, duration and intensity of ochre deposition are uncertain.
Local features such as deposits in old field drains and ditches can be used to
identify high risk sites but accurate prediction methods are not available.
Prediction based on soil water iron content (for example Ford, 1982) might

indicate the intensity and likelihood of ochre but cannot guage its duration.
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Chemical precipitates of iron in association with bacteria form an aqueous
iron-organic deposit that can impair the flow of water in agriculturalldrainage
systems. There is a need for an efficient and economic method by which ochre

can be prevented or at least controlled. In the absence of adequate controls
predictive techniques are needed to assess whether ochre is likely to be so
severe as to make drainage uneconomic. Similarily prediction is needed in
conjunction with control measures to determine whether the likely severity of
ochre accumulation warrants the cost of prevention. The development of
predictive tools and preventative measures must be based on a sound understanding
of the nature of ochre, types of ochre, the factors influencing its formation

and especially its variability.

(Denison, 1856)
Since Mangon wrote about ochre in 1856A1arge changes have occurred in

agricultural drainage systems. Drainage work has also been improved by
mechanisation, the introduction of new materials and modern techniques for
drainage scheme design. We now have a better understanding of the characteristics,
chemistry and microbiology of ochre but both the problem caused by it and the

objective of preventing it remain the same.

"This is the most serious mischief which can happen
to works of drainage; and unless it can be
prevented, it is vain to attempt the improvement of

lands liable to be so affected, by draining"

Mangon 1856
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