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 Summary 
 

With ever increasing demands to develop coastal environments for sustainable use, 

particularly within UK government’s renewable energy framework, policy makers and 

managers face growing pressure from conservation agencies as well as national and 

international regulatory bodies to comply with requirements to monitor the species and 

habitats in the areas under development or allocated for future use. 

This work assesses one method of facilitating the monitoring of coastal cetacean species, 

and focuses on the two most common cetacean species in Wales, bottlenose dolphin 

(Tursiops truncatus) and harbour porpoise (Phocoena phocoena), both listed in the 

Annex II of the EU Habitats Directive, which requires reporting on their favourable 

conservation status. The study focuses on one static acoustic monitoring (SAM) device, 

the C-POD, which is already widely used in cetacean monitoring studies due to its 

practicality, ease of use and inexpensive set-up. Despite its popularity, some questions on 

its capabilities remain unresolved. This work aims to answer some of those questions. 

Firstly the thesis estimates the effective detection area for harbour porpoises with 

C-PODs and examines the performance of both the hydrophone’s click detection as well 

as the automated train detection algorithm. This is achieved with two different field 

experiments, comprising of playing back both artificial and real harbour porpoise sounds 

to the C-PODs at increasing distances. The results illustrate the ability of the C-POD to 

effectively log clicks, and the comparative performance of the train classification 

software. The effects of source level and distance from data logger on the detectability of 

porpoises are revealed, which enables the calculation of robust estimates of effective 

detection areas for future acoustic monitoring studies of the species.  

Next the detection probability of bottlenose dolphins with C-PODs is examined using 

simultaneous visual observations and acoustic recordings and the effects of group size 

and behaviour on dolphin detection with acoustic devices is assessed. The analyses 

demonstrate a significant effect of both group size and behaviour on the detectability of 

dolphins consequently affecting the calculated effective detection radius and area. These 

findings pose a challenge for density estimation of dolphins using an overall detection 

function and emphasize the importance of prior knowledge of the activity and 
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behavioural patterns of target animals for developing appropriate experimental design, 

effective placement of data loggers and a meaningful analysis of SAM data. 

The study also explored the difference in click train characteristics between broadband 

hydrophone recordings and C-POD recordings of bottlenose dolphins. A significant 

reduction in click rates was evident in the C-POD data, indicating that the C-POD train 

detection algorithm may not be logging the full range of dolphin echolocation, 

particularly those trains with long inter-click intervals. 

The thesis then goes on to compare C-POD data with visual observations to assess 

whether the data can be used to discern behavioural information from the two species. 

The results confirm that regardless of the fact that the C-POD does not record the full 

vocal repertoire produced by these animals, it can reveal valuable behavioural 

information about its target species by detecting feeding or foraging events and 

identifying important feeding areas, particularly for harbour porpoise but also potentially 

for bottlenose dolphin. 

This thesis supports the use of C-PODs in future monitoring efforts of both bottlenose 

dolphins and harbour porpoises. The findings will help analyse and interpret existing 

datasets and assist in designing effective and useful monitoring surveys for harbour 

porpoises and bottlenose dolphins and other species with similar behaviour and 

vocalisation characteristics.  

Considering the already wide use of the device it is essential that future studies on the 

efficacy of the device continue. More detailed understanding of the effect of different 

behaviours and group sizes on the echolocation rate and characteristics for both species 

would be beneficial, particularly for the harbour porpoise. Further studies to extract 

dolphin feeding buzzes from C-POD data would increase the loggers’ ability to identify 

critical feeding sites. Improvements of the train classification algorithm would enhance 

the detection probability of dolphins with C-PODs, potentially overcoming the effects of 

behaviour and group size discovered here. 
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Chapter 1 INTRODUCTION  

Synopsis 

In this introductory chapter, I present the rationale for this project, which investigates 

acoustic monitoring of bottlenose dolphins (Tursiops truncatus) and harbour porpoises 

(Phocoena phocoena) using static acoustic data loggers (C-PODs) in Cardigan Bay, 

Wales. I introduce reasons why monitoring distribution and abundance of cetaceans is 

required, describe my study area, Cardigan Bay Special Area of Conservation (SAC), 

and briefly introduce the two study species and their echolocation behaviour. I then 

describe the advantages and disadvantages of acoustic monitoring techniques versus 

traditional visual techniques and discuss the role that static, passive acoustic 

monitoring (SAM) can play in monitoring coastal cetaceans. I describe the data 

loggers used in this study, identifying some gaps in the current scientific knowledge 

about their use which this thesis sets out to address, and finish by summarising the 

main objectives of my PhD. 

1.1 Rationale for monitoring cetaceans 

Because many species of cetaceans face threats from anthropogenic activities such as 

by-catch, disturbance, marine seismic exploration, habitat degradation and pollution, 

they are now recognised as requiring specific conservation and management strategies 

implemented at national, regional and international levels (Reeves & Rejinders 2002; 

Compton et al. 2008; Evans & Teilmann 2009; Reynolds, III et al. 2009; Alter et al. 

2010; Evans & Thomas 2011; Simmonds 2012). Impacts from climate change, such as 

loss of habitat, changes in prey availability and climate-induced changes in human 

activities put additional pressures on many cetacean populations (Alter et al. 2010). At 

a European level, monitoring of cetaceans is conducted under the European Union’s 

(EU) Habitats Directive (92/43/EEC 1992), and all cetaceans fall under Annex IV of 

the Habitats Directive requiring national reporting on their favourable conservation 

status. Annex II requires the establishment of Special Areas of Conservation (SAC) 

for harbour porpoise and bottlenose dolphin to form a network of conservation sites 

(termed the Natura 2000 network) (European Commission 2006; European Union 

2007; Evans 2012). This is also now complemented through marine spatial planning 

and coastal zone management under the EU’s Marine Strategy Framework Directive, 

which requires governments, regulators and developers to assess the potential effect of 
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their activities on the marine environment, including marine mammals (European 

Union 2012; Evans 2012). An important step towards designation of protected areas is 

to identify those key habitats of the target species, which are required for maintaining 

a healthy population (Hoyt 2004). 

 

Monitoring cetacean population is all the more relevant in the context of the European 

Union directives requiring European member states to achieve 20 % of their energy 

from renewable resources by 2020 (Directive 2001/77/EC). As a consequence, there is 

a growing demand to develop offshore wind, tidal and wave technologies, which have 

the potential to cause substantial disturbance to coastal processes, benthic 

communities, and fish populations (Gill 2005; Hiddink et al. 2007; Shields et al. 2009; 

Alexander et al. 2013). These in turn can cause adverse effects on seabirds (Langton et 

al. 2011; Soanes et al. 2012) as well as marine mammals, in the form of reduced prey 

availability, noise pollution and habitat degradation or loss (Carstensen et al. 2006; 

Tougaard et al. 2009a; Dolman & Simmonds 2010; Simmonds & Brown 2010). 

 

Cetaceans, as well as many other mobile marine species, are also affected by the 

construction and operation of various types of marine renewable energy extraction 

devices, which include offshore wind, wave and tidal power generators – both tidal 

barrages and tidal stream turbines (Carstensen et al. 2006; Wilson et al. 2007; Evans 

2008; Brandt et al. 2011). Disturbance to cetaceans from renewable energy generators 

is caused by increased ambient noise, general habitat degradation from presence of the 

devices, potential changes in prey availability as well as the very real risk of collision 

with underwater devices, such as tidal turbines (Richardson et al. 1998; Madsen et al. 

2006; Teilmann et al. 2006; Carstensen et al. 2006; Tougaard et al. 2009a). With such 

projects expected to increase due to the UK government’s commitment to the EU to 

increase energy sourced from renewable resources in the next eight years, there will be 

a real necessity (as well as a legal requirement) to monitor the impacts of such projects 

on protected cetacean species and habitats (DECC 2011), especially when much of the 

impacts and the extend of potential impacts is still relatively unknown (Inger et al. 

2009). 
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In the UK, the Joint Nature Conservation Council (JNCC) provides guidelines for 

management and conservation of protected species and habitats to achieve or maintain 

their favourable conservation status. The statutory national conservation agencies are 

required to assess whether selected species or habitats are in a favourable condition 

and this is achieved by collecting data on population status (Davies et al. 2001). Data 

should be used to assess population trends and to evaluate the impacts of 

anthropogenic pressures, such as habitat degradation, fisheries by-catch and 

disturbance from shipping or recreational activities, on the health and conservation 

status of populations (Ross et al. 2011). 

 

One essential component of monitoring the population status of cetaceans is a reliable 

estimate of population size (abundance) or the number of animals per unit area 

(density), achieved through a continuous programme of systematic biological surveys 

of distribution and abundance (Thomas 2009). As most cetacean species are 

challenging to survey, indices of abundance derived from presence and absence data 

such as distribution, range and seasonal habitat have frequently been used in place of 

absolute density estimates (Evans & Hammond 2004). Acoustic data loggers are one 

such technique used for the monitoring of echolocating cetaceans in coastal waters, 

and the subject of this thesis.  

1.2 Study species 

Two cetacean species that are obvious targets for monitoring are the bottlenose 

dolphin and harbour porpoise. Both are regular inhabitants of the Cardigan Bay 

Special Area of Conservation in West Wales, one of three SACs established for 

bottlenose dolphin in the UK. This study was conducted off New Quay which lies 

within the Cardigan Bay SAC.  

The harbour porpoise 

The harbour porpoise (Phocoena phocoena, Linnaeus, 1758) is Britain’s smallest 

cetacean, measuring on average 1.5 m in length with a mean weight of 50-55 kg 

(Bjørge & Tolley 2009). It is inconspicuous, and due to its small size often missed by 

visual observers. It is easily identified by its rotund head, lack of distinct beak and 

small triangular dorsal fin (Figure 1.1). It inhabits large parts of the Welsh coast, with 

hot spots around Anglesey, the Llyn Peninsula, southern Cardigan Bay and the Gower 
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Peninsula (Baines & Evans, 2009; Figure 1.2). The abundance estimate from the July 

2005 SCANS II survey for the entire Irish Sea was calculated at 15,200 (CV = 0.35) 

individuals (Hammond et al. 2008).  

 

 

In Cardigan Bay, line transect surveys of the SAC indicate that the harbour porpoise 

population has been slightly increasing since systematic surveys began in 2001, with 

numbers ranging from 167 to 302 (Pesante et al. 2008; Veneruso & Evans 2012). 

Harbour porpoise are found in temperate shelf seas of 20-100 m depth and are 

commonly encountered in coastal bays and estuaries, near headlands with high rates of 

tidal flow (Evans et al. 2003; Evans & Hintner 2010; Isojunno et al. 2012). They are 

present year round in Welsh waters (Baines & Evans 2012), and in Cardigan Bay SAC 

site occupancy apparently increases over winter months (Simon et al. 2010). They are 

usually seen in the region in small groups of 2-10 animals, although congregations of 

larger numbers of animals are not uncommon (Pesante et al. 2008; Pierpoint 2008; 

Evans & Hintner 2010). Porpoises in the UK feed in the water column or on the sea 

floor on small schooling fish such as whiting (Merlangius merlangus), bib 

(Trisopterus spp.), pollack (Pollachius spp.), sandeel (Ammodytidae spp.) and gobies 

(of the family Gobiidae) (Santos et al. 2001, 2004; Santos & Pierce 2003). The 

harbour porpoise is exposed to many human activities, being the most commonly 

occurring cetacean within the nearshore area. In UK, its main identified causes of 

death are entanglement in fishing gear, infectious disease and bottlenose dolphin 

attack (Deaville & Jepson 2011).  

Figure 1.1 Illustration of a bottlenose dolphin (top) and a harbour porpoise (bottom). 

Adapted from the American Cetacean Society, www.acsonline.org 
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Figure 1.2 Long-term mean sightings rates (counts per 10 km distance travelled) of 

harbour porpoise in Welsh waters (Baines and Evans, 2012). 

 

The bottlenose dolphin 

The bottlenose dolphin (Tursiops truncatus, Montagu, 1821) can easily be 

distinguished from the harbour porpoise by its distinct, stubby beak, large, 

sickle-shaped dorsal fin, and its much larger size (Figure 1.1). It has a stocky build and 

can grow to nearly 4 m in length – over double the length of the porpoise (Wells & 

Scott 2009). It is distributed across hemispheres in both tropical and temperate seas 

and its sub-populations are typically defined as either coastal or offshore populations. 

In the UK there are two semi-resident coastal populations; one in the Moray Firth, 

north-east Scotland and the other in Cardigan Bay (Wilson et al. 1997; Evans et al. 

2003). In Wales, the bottlenose dolphin is the second most common cetacean species, 

typically seen close to shore with occasional offshore records. It is most frequently 
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sighted in southern Cardigan Bay, Tremadog Bay and off the Isle of Anglesey (Baines 

& Evans 2012), (Figure 1.3). The abundance of the population inhabiting the Cardigan 

Bay SAC, as determined from line transect surveys has been estimated between 114 

and 206 animals (Pesante et al. 2008; Veneruso & Evans 2012). Mark-recapture 

estimates from photo-ID studies indicate a population of around 150-300 animals 

occupying Cardigan Bay in summer in any one year (Veneruso & Evans 2012).  

 

 

 

Coastal bottlenose dolphins are typically found around headlands, near areas of 

uneven topography and steep gradients as well as sandbanks, estuaries and areas of 

strong tidal current (Hastie et al. 2003a; b). Although seen throughout the year in 

Cardigan Bay, they exhibit seasonal preferences in habitat use occurring in southern 

and central Cardigan Bay in the summer, and dispersing northwards during winter 

months (Pesante et al. 2008; Baines & Evans 2012).  

Figure 1.3 Long-term sightings rates (counts per 10 km distance travelled) of bottlenose 

dolphins in Wales (reproduced from Baines & Evans, 2012). 
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The bottlenose dolphin has a wide-ranging diet including a variety of fish and 

cephalopods, benthic and pelagic species. Stomach contents of stranded animals have 

included both solitary and schooling fish species, such as cod (Gadus morhua), 

pollack, whiting, haddock (Melanogrammus aeglefinus), salmon (Salmo salar), sprat 

(Sprattus sprattus), sandeels, flatfish (Pleuronectidae spp.) and cephalopods (Santos et 

al. 2001). In Wales, dolphins have been observed taking sea bass (Dicentrarchus 

labrax), salmon, conger eel (Conger conger), garfish (Belone belone), dragonet 

(Callionymus spp.) sandeel and small shark species but have also been associated with 

schooling herring and mackerel (Pesante et al. 2008; Evans & Hintner 2010). Only a 

small number of dolphins strand in Welsh waters and the cause of death is often not 

established, although relatively high levels of PCBs have been reported (Jepson 2005).  

 

1.3 Study area 

Cardigan Bay is the largest bay in the UK, situated between the western point of the 

Llyn Peninsula in the north (52° 47’ 45’’ N, 004° 46’ 00’’ W) and St David’s Head in 

the south (51° 54’ 10’’ N, 005° 18’ 54’’ W). It is a shallow bay, with water depths of 

less than 60 m throughout, very gentle slopes, and seasonally fluctuating salinity levels 

associated with freshwater inputs from rainfall, rivers and water masses from the 

Atlantic ranging from 34.2 in the summer to 33.3 in the winter. The sea surface 

temperatures vary from a minimum of 5C in winter to a maximum of 16C offshore 

and 20C inshore in late summer (Evans 1995). The bay is exposed to the prevailing 

westerly and south-westerly winds and it has semi-diurnal tides with a mean spring 

tidal range of 4-5 metres (Evans 1995). The tidal currents are normally lower than 3.3 

km/h flowing north during the flood, and south during the ebb. The substrate consists 

mainly of gravel in the strong current zone, and mud where the water energy is low 

(Evans 1995). 
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Figure 1.4 Cardigan Bay in West Wales with bathymetric contours; the diagonal line 

on the left delimits Cardigan Bay, the rectangle is the Cardigan Bay SAC, and the 

hatched, shaded polygon is the Pen Llyn a’r Sarnau SAC (reproduced from Pesante et 

al. 2008). 

 

The Bay has two Special Areas of Conservation (SAC) which are protected sites 

designated under the EU Habitats Directive and forming the Natura 2000 network. 

These are the Cardigan Bay SAC and the Pen Llyn a`r Sarnau SAC (Figure 1.4). Each 

SAC is designated for one or more habitats and species (called features) listed in the 

Directive, which also requires a management plan to be prepared and implemented to 

ensure the favourable conservation status of the selected habitats and species (Anon. 

2001). Both SACs in Cardigan Bay have the bottlenose dolphin listed either as their 

primary or qualifying feature (Pesante et al. 2008). The study site, New Quay, is 

located in the middle of the Cardigan Bay Special Area of Conservation (SAC), and 

the two study species, the bottlenose dolphin (Tursiops truncatus) and the harbour 

porpoise (Phocoena phocoena), are both resident there (Pesante et al. 2008). Studies 

of these dolphins in the area have been conducted since the 1990’s (Lewis & Evans 

1993; Bristow & Rees 2001; Bristow et al. 2001). More recent marine mammal 

research in the area has also included the harbour porpoise as its target species, despite 

not being a designated feature of the SAC (Pesante et al. 2008; Simon et al. 2010). 
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Both are suited for acoustic monitoring combined with visual observations as they 

often visit shallow near shore areas in the region (Pierpoint 2008; Pierpoint et al. 

2009; Isojunno et al. 2012). 

Both species are at risk from disturbance from anthropogenic activities, such as 

recreational boating, noise pollution, habitat degradation, reduction in prey availability 

and by-catch due to their year-round presence in coastal areas where the human 

presence and impact is at its highest (Baines & Evans 2012). Measured effects from 

anthropogenic causes include behavioural changes and decreased or modified site 

usage (Pierpoint et al. 2009; Veneruso & Evans 2012), all of which can lead to 

decreased feeding or breeding opportunities and affect the health of the population in 

the long-term (Lusseau & Higham 2004; Bejder et al. 2006; Lemon et al. 2006; Jensen 

et al. 2009a). Other observed effects are the increased inter-specific aggression 

between the two species in the area (Ross & Wilson 1996; Jepson & Baker 1998; 

Pesante et al. 2008).  

 

1.4 Acoustic behaviour 

Acoustic communication is an intrinsic part of all mammal behaviour but particularly 

so for cetaceans who have adapted to their marine existence by evolving special 

hearing and sound production mechanisms, not only for communication but also for 

purposes of navigation, foraging and feeding (Tyack & Miller 2002; Frankel 2010; 

Nummela 2010).  

The two study species produce very different types of vocalisations. The bottlenose 

dolphin emits vocalisations in three broad structural categories: burst-pulse sounds, 

whistles and clicks (Caldwell et al. 1990; Tyack 1997). It uses echolocation clicks 

mainly for feeding and navigation, and burst-pulse sounds and whistles for 

communication (Mann et al. 2000; Janik 2009), although it has been suggested that 

clicks may also serve some communicative purpose (Tyack 1997). By contrast, the 

harbour porpoise produces only clicks, and uses these for navigation, feeding and 

communication (Koschinski et al. 2008; Verfuß et al. 2009).  

Cetacean echolocation, and the sonar capabilities of the bottlenose dolphin in 

particular, have been much studied since the discovery of dolphin echolocation in the 
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1950s (McBride 1956; Kellogg 1958). The sound production in echolocating 

cetaceans takes place in the nasal complex in association with their respiratory system. 

Within this structure there is a pair of small lipid filled bursae surrounded by 

connective tissue lips and airsacs previously coined the monkey lips and dorsal bursae 

complex (MLDB), but now usually referred to as the phonic lips (Cranford et al. 

1996). The clicks are generated via a pneumatic process when pressurised air is forced 

through the tight connective muscular tissue of the phonic lips, which open and close 

briefly to produce the sound. The clicks are then projected through the fat tissue 

bursae into the melon in the animal’s forehead. The air sacs and the skull help direct 

the sound into the melon, resulting in a narrow directed sound beam (Au 1993; 

Cranford et al. 1996; Madsen et al. 2010; Au et al. 2012). 

Studies on dolphin echolocation have been conducted almost entirely with captive 

animals, and to date, the functional significance and details of echolocation in the wild 

are not yet fully understood. Echolocation clicks are typically described by the 

intensity of their source level, their peak frequency, click duration and inter-click 

interval (ICI). Here, the echolocation characteristics of dolphins and porpoises are 

listed, drawing as much as possible from studies conducted in the wild, with 

unrestricted animals.  

Table 1.1 Echolocation click characteristics of harbour porpoise and bottlenose 

dolphin 

 Harbour porpoise Bottlenose dolphin 

Mean source level dB re 1 µPa 
(peak-to-peak) @ 1 m 

157 to 191  177-228 

Click duration 77 µs 8-72 µs 
Peak frequency 131 kHz  30-150 kHz 

Beam width 13 ° 9-10 ° 
Sources (Au et al. 1999; Teilmann et al. 

2002; Villadsgaard et al. 2007; 
Koblitz et al. 2012) 

(Au et al. 1974, 2012; Au & 
Hastings 2008; Wahlberg et al. 
2011). 

 

In general, porpoise clicks are less varied than those of dolphins, with lower mean 

source levels, longer but more stable click lengths and peak frequencies. Dolphin 

clicks are shorter and more diverse in click duration and frequency, with very high 

source levels (Table 1.1). Inter-click intervals are context specific for both species. 

Dolphins decrease their ICIs steadily with decreasing distance to a target (Jensen et al. 

2009b) and their echolocation rates (the number of clicks or click trains recorded in a 
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time unit) vary according to different behaviours (Jones & Sayigh 2002). During 

foraging and feeding, they produce shorter and faster clicks with the shortest ICIs 

reported between 3.0 and 7.1 ms (Wahlberg et al. 2011). 

 

Similarly, porpoise ICIs decrease progressively when ‘range locking’ upon a target 

during search phase, ending in a high rate ‘buzz’ of 300-500 clicks/s (DeRuiter et al. 

2009; Miller 2010), with extremely short ICIs of around 1.5 ms (Villadsgaard et al. 

2007; Verfuß et al. 2009) during the final prey capture (Figure 1.5). Some studies have 

also reported ICIs of around 50-60 ms from small data samples during the initial 

search phase (Au 1993; Akamatsu et al. 2005b; Villadsgaard et al. 2007).  

 

Figure 1.5 The sections of a (harbour porpoise) click train in a fish capture trial. 

‘Splash’ refers to moment when fish or a boat hook hits the water creating a noise as 

cue for the animal. The after-splash section is divided into a far stage and a near stage, 

indicating animal’s distance from target, beginning with the transition to progressively 

shorter click intervals. Horizontal brackets indicate the mean click interval over five 

consecutive clicks. (Adapted from Verfuß et al. 2009) 

 

Both species project their echolocation clicks in a directional beam with most of the 

acoustic energy directly in front of the animal, porpoise beam width being slightly 

wider than that of dolphins (Au et al. 2012; Koblitz et al. 2012). Dolphin clicks are 

very intense, short and broadband with energy across the frequency spectrum, 30-150 

kHz (Figure 1.6), whereas porpoises produce very narrowband clicks centred around 

130 kHz (Au 1993; Wahlberg et al. 2011; Koblitz et al. 2012). As a consequence, the 
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higher frequency porpoise clicks are more rapidly absorbed by seawater, while the 

higher intensity and lower frequency dolphin clicks travel further – extending the area 

within which they are able to navigate and communicate, or be detected by 

researchers. 

 

Figure 1.6 Example of a typical dolphin click time signal (top) and relative amplitude 

spectrum (bottom). Most of the energy is spread between 50 and 150 kHz. (Adapted 

from Au et al. 2012) 

 

Figure 1.7 Example of a typical porpoise click time signal (A) and power spectrum 

(B). There is virtually no energy present below 100 kHz (the curve below 100 kHz 

represent background noise of the recording). (Adapted from Tougaard et al. 2005)  

Most of the literature describing dolphin or porpoise echolocation focuses upon clicks 

recorded near to the beam axis, the so called “on-axis” clicks. However, the further 

away from the beam axis the clicks are recorded, the more altered they become. These 

“off-axis” clicks from dolphins have generally lower frequency and amplitude to the 

on-axis clicks (Au & Hastings 2008). This can result in a high number of clicks with 

dominant frequency in the lower part of the frequency range. The narrowband, high 

frequency clicks of the porpoise exhibit much less off-axis click frequency variability. 

A B 
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Despite the distinct characteristics of clicks, there are occasions when dolphin clicks 

can appear very similar to porpoise clicks (Simon et al. 2010).   

Both species alter their vocalisations according to function and behaviour, and many 

studies have examined the types of vocalisations used for different behaviours 

(Nowacek 1999, 2005; Acevedo-Gutiérrez & Stienessen 2004; Quick & Janik 2008; 

Janik 2009; Simard et al. 2011) or environmental characteristics, such as water depth 

(Simard et al. 2010) For porpoises which produce only one type of vocalisation  (the 

high frequency click), differences in click train characteristics, particularly the ICI, 

relate to the behavioural context (Akamatsu et al. 1994; Verfuß et al. 2009; Clausen et 

al. 2010).  

 

1.5 Acoustic studies of cetaceans 

In cetacean studies, ‘bioacoustics’ can be described as the use of acoustics to study a 

variety of aspects of cetacean biology including auditory capacities, sound production, 

and communication or feeding and foraging behaviour. Light, thermal, and 

electromagnetic energy attenuate quickly in water, but acoustic energy propagates 

efficiently over large distances underwater, and it is the most effective method for 

cetaceans to communicate, navigate and locate prey or conspecifics, or avoid their 

predators (Au & Hastings 2008). Acoustic methods to study cetaceans include 

underwater microphones (hydrophones) and recorders to receive sound or transducers 

to emit sound. 

 

Acoustical techniques can be used to detect and track marine animals as well as to 

assist in the study of their environment and behaviour, including feeding, mating and 

social interactions (Johnson et al. 2006; Au & Hastings 2008). A common approach is 

to study the types of vocalisations produced by cetaceans and how these relate to their 

behaviour or group size, or try to ascertain the functions of particular sounds (Janik & 

Slater 1998; Nowacek 2005; Villadsgaard et al. 2007). 

 

Many studies have concentrated on describing the hearing abilities of marine 

mammals and how anthropogenic noise might affect them (Kastelein et al. 2002; 

Gannon et al. 2005). Static acoustic gear has also been used to measure presence and 
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absence of animals to assess the impacts of marine developments such as wind farms 

and shipping or fishing gear on the abundance, distribution or behaviour of cetaceans 

(Lesage et al. 1999; Cox et al. 2004; Carstensen et al. 2006; Holt et al. 2009; 

Tougaard et al. 2009a; b). Acoustic methods, such as towed or stationary hydrophones 

have also been used to detect vocalisations of cetaceans to study their range, 

distribution and to estimate their abundance (McDonald & Fox 1999; Barlow & 

Taylor 2005; Berrow et al. 2009; Marques et al. 2009, 2012). 

 

1.6 Visual versus acoustic studies of cetaceans 

The fact that marine mammals have evolved to utilise sound as their main means of 

communication and navigation enables us to study animals which otherwise can be 

extremely hard to detect. Small odontocetes (toothed whales) in particular can be 

difficult to locate by eye sight (Akamatsu et al. 2008) as only a small portion of them 

is visible for a brief period of time. Many small cetaceans have fast swimming speeds 

- up to 1.2–5.0 m/s for harbour porpoises (Hanson & Baird 1998; Akamatsu et al. 

2002) with a dive duration of 4-6 min and potentially longer when feeding - up to 

10-15 min (Otani et al. 1998; Teilmann et al. 2007), and hence they can travel several 

hundred metres underwater without being observed visually at the surface (Akamatsu 

et al. 2008). Large cetaceans, such as baleen whales and sperm whale, are easier to 

spot when they are on the surface, but many are fast swimmers and can spend long 

times submerged (up to an hour for sperm whales) which can seriously affect one’s 

ability to sight them (Whitehead 2003). 

 

Visual studies of cetaceans often use shipboard or aerial survey methods which are 

generally limited to calm weather conditions and daylight hours. There are serious 

constraints which can introduce bias to visual surveys, including sea state (Clark 1982; 

Barlow 1988; Evans & Hammond 2004), observer variability (Young & Pearce 1999; 

O’Brien et al. 2009), optics and platform used, and the eye height above sea level, 

adding uncertainty to the data collected. The level of experience, the number of 

observers, and the environmental conditions will all affect how well or how quickly 

animals are sighted (Figure 1.8). For some species, the probability of detecting 

animals in sea states above Beaufort scale 2 is considerably reduced, and the size, 

noise, speed or mere presence of the vessel used can bias the study, with animals 
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either being attracted towards it or avoiding it. All these factors affect the sighting 

rates, initial sighting distances and subsequent estimates of abundance based on them 

(Palka 1996; Teilmann 2003).  

 

 

Figure 1.8 Abundance point estimates for harbour porpoise (black dots) for sea states 

1, 2, and 3 with 95% confidence intervals (x symbols). (Adapted from Teilmann 2003) 

 

When shipboard or aerial surveys are used for density estimates, the above biases must 

be taken into account, necessarily resulting in a complex detection function for the 

animals. Traditionally, the main assumption of these surveys is that all animals on the 

track line are detected, so that the detection probability (g) at distance 0 is 1, (g(0) =1); 

this is difficult or impossible to achieve with many diving animals, and must be 

corrected for, e.g. using dive data from tagged animals. Furthermore, cetacean surveys 

have generally low coverage in space and time, which contributes significantly to the 

variability, adding bias from likely changes in diurnal and seasonal diving patterns, as 

most surveys are conducted in the summer months when the weather is most suitable 

(Evans & Hammond 2004). Together with observer variability and the density 

estimates obtained from visual surveys have potentially very large margins of 

uncertainty. 

 

Acoustic studies have several distinct advantages over visual observations. They can 

be used outside daylight hours and in more varied weather conditions especially with 
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static acoustic gear that is left moored on the seabed. The equipment used can be 

standardised and made independent of each observer’s abilities which may allow 

independent comparisons between several detection methods. A hydrophone array can 

be used to accurately determine both the distance and direction to a vocalising animal, 

whereas determining distance in particular is notoriously difficult for even the most 

experienced observers. Static acoustic methods also allow monitoring to be carried out 

without any interference from observer variables or the presence of a boat. Because 

acoustic detection methods do not need to rely on human observers, they are useful as 

an independent detection method during visual transect surveys (Akamatsu et al. 

2008). 

 

However, acoustic methods do have important limitations. The main disadvantage is 

that only vocalising animals will be detected and animals that are silent for long 

periods will be missed, making certain species more suitable for acoustic monitoring, 

e.g. the harbour porpoise, which echolocates almost continuously (Akamatsu et al. 

2007). Furthermore, estimating abundance for species where call rate and detection 

function are not quantified is still problematic. If acoustic line transect methods are 

used, expensive survey platforms (boats and ships) are still required. Several species-

specific factors including the frequency range of the target species need be taken into 

account when planning acoustic surveys. Low frequency sounds such as those of 

mysticetes (usually below 1 kHz) have significantly less seawater absorption loss than 

sounds emitted by odontocetes (typically above 10 kHz), and this greatly affects their 

detection distance. Large species, like the sperm whale, produce long range sonar 

clicks with extremely high source levels up to 223 dB re 1 µPa/root mean square 

(RMS) at centroid frequencies of 15 to 20 kHz where energy absorption is low, and 

which can be detected several kilometres away (Møhl et al. 2000; Madsen et al. 2002). 

In contrast, most species of porpoises produce narrow band high-frequency (NBHF) 

clicks of around 130 kHz, and these are disadvantaged by a high rate of absorption 

around 40 times higher than those of sperm whale clicks so that they are only 

functional or detectable at short distances (Kyhn et al. 2009). 

 

The probability of detecting an animal will also depend on its vocal behaviour, the rate 

of sound production, and the source levels of the vocalisations. Importantly for 
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echolocating cetaceans, the directionality and beam width of the sound emitted as well 

as the actual direction of the head of the vocalising animal will have an important 

effect on the detectability of the signal, as on–axis clicks will be more intense and thus 

more easily detectable (Figures 1.9 and 1.10). Foraging and feeding vocalisations tend 

to vary from those emitted during resting or socialising. Dolphins produce specific 

foraging calls, and both dolphins and porpoises increase their echolocation rate when 

feeding (Janik 2000; Johnson et al. 2006; Verfuß et al. 2009). Intense vocalisations 

with a lot of energy across the frequency spectrum will have a greater likelihood of 

reaching the recording hydrophone without the loss of much acoustic energy through 

absorption or refraction in the water column (Au & Hastings 2008).  Vocal behaviour 

can vary with gender, age and season; humpback whales are well known for the songs 

produced exclusively by males in their wintering grounds (Darling & Bérubé 2001). 

Although visual observer bias can be eliminated, and acoustic data can be collected in 

more varied weather conditions, the detection function will still vary according to the 

ambient noise levels from wind, waves and rain, and therefore must be quantified. In 

Another very important factor to consider is the ambient noise at the time of recording. 

Vocalisations with low source levels will be masked by the ambient noise in the same 

frequency band, being only detectable at close range to the hydrophone (Akamatsu et 

al. 2008). This is of particular concern in noisy environments such as shipping lanes or 

areas with high tidal flow and increased noise from mobile sediments (Hamilton et al. 

1956), but in fact applicable to all recordings. 

 

Figure 1.9 Averaged horizontal beam pattern for harbour porpoise clicks. Error bars 

show mean and 1 standard deviation of the measurements for each receiver. Black 

solid line is the averaged interpolated beam pattern. One standard deviation of all 

interpolated beams is depicted by the black dashed line. (Reproduced from Koblitz et 

al. 2012) 
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Figure 1.10 An example of a single bottlenose dolphin echolocation click measured by 

hydrophones at different angles in the horizontal plane, showing the click time signal 

and the varying frequency content and relative amplitude. (Reproduced from Au et al. 

2012) 

 

1.7 Acoustic methods to study cetaceans 

Generally, acoustical techniques available for cetacean studies can be described as 

either passive or active. Acoustic methods can also be described as real time or 

archived, static or mobile. Active acoustic methods typically produce and transmit a 

sound and consequently analyse the returning echo (SONAR).  Active acoustics can 

be used to find and track animals in the water column in real time or to explore the 

environment in which the animals live (Similä & Ugarte 1993; Similä 1997; Benoit-

Bird et al. 2009). For example, acoustic echo sounders have been used to detect 

localised concentrations of migrating sound scattering layers of micronektonic animals 

to study patterns in beaked whale foraging (Figure 1.11).  Many dolphin species feed 

on this layer so active acoustics can be used to study the predator and its prey 

simultaneously (Johnston et al. 2008). 
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Figure 1.11(a) Detection of beaked whale clicks, primarily at night, at Cross 

Seamount, Hawaii. Each black mark indicates a detection, and the grey region 

represents local night. (b) Day and night echogram snapshots illustrating the nocturnal 

enhancement of prey fields (i and ii) at Cross Seamount. (Reproduced from Johnston 

et al. 2008) 

Passive acoustic techniques are much more widely used in cetacean studies, and can 

be further divided into fixed or static versus mobile acoustic sensors. Passive acoustic 

techniques allow the localisation of animals for the purpose of abundance and density 

estimation (Clark & Ellison 1988). Mobile methods include hydrophones towed 

behind a ship or other mobile platform (Mellinger et al. 2007). For multiple 

hydrophone arrays, the number and position of hydrophones in an array can be 

modified according to target species and task at hand. Towed hydrophones can be used 

alone, or in combination with visual surveys, to estimate abundance and density of 

cetaceans (Leaper et al. 2000; Akamatsu et al. 2001; Hastie et al. 2003b; Barlow & 

Taylor 2005; Lewis et al. 2007; Berrow et al. 2009), using the same or slightly 

modified methodology as in visual line transect surveys (Buckland et al. 2001). 

 

Another type of mobile acoustic technique is the acoustic tag where the animal itself is 

used as the recording platform. Acoustic tags provide information on the acoustic 

behaviour of the animal itself but also of its conspecifics, and can be used to collect 

other auxiliary information on dive times, depth, and movement as well as 

environmental information (Akamatsu et al. 2005a; Zimmer et al. 2005; Johnson et al. 

2006). Digital tag recordings have also been used in conjunction with the U.S. Navy 

underwater test ranges such as the Atlantic Underwater Test and Evaluation Center’s 
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(AUTEC) bottom mounted hydrophones to track beaked whales, and to provide 

auxiliary data for long term passive monitoring (Ward et al. 2008). 

 

Hydrophones can also be fixed to set locations for long time periods. Advantages of 

mobile acoustic receivers are the larger spatial coverage and simplicity in combining 

acoustic detection with visual surveys. The main benefit of fixed systems is the longer 

temporal coverage, allowing continuous monitoring around the clock, between years 

and seasons, and they are typically a lot less expensive than shipboard surveys 

(Marques et al. 2009).  

Fixed (static) acoustic methods 

The main types of static equipment used to capture sound are cabled hydrophones in 

permanent or semi-permanent installations, radio linked hydrophones, sonobuoys and 

autonomous recorders (Mellinger et al. 2007). Static acoustic methods have long been 

used to locate and track cetaceans, and to provide information on the relative 

abundance (in terms of presence over time) and habitat use of cetaceans. Recently, 

static acoustic methods have also been used to provide population estimates of 

abundance and density within specified areas using a variety of techniques including 

modified distance sampling methods (Marques et al. 2010, 2011, 2012  K sel et al. 

2011).  

 

Fixed cabled hydrophones are usually placed on the sea floor in permanent 

configurations, and have the capability to be continuously powered by an external 

source and to continuously send data to a receiving station. They are expensive and 

usually only used by governmental agencies, such as the U.S. Navy’s low frequency 

Sound Surveillance System (SOSUS) or the AUTEC) in the Bahamas (Mellinger et 

al., 2007). Studies have used data from existing fixed hydrophone arrays designed for 

other purposes (usually military) in order to study cetacean distribution and 

occurrence, both short term and spanning very long time periods and over ocean 

basins (Stafford et al. 1998, 2007; Simard et al. 2008). These have proved very useful 

especially for large, sparsely distributed species like humpback (Megaptera 

novaeangliae) and sperm whales (Physeter macrocephalus) (Tiemann et al. 2006), 

Blainville’s beaked whales (Mesoplodon densirostris) (Marques et al. 2009), and 

minke whales (Balaenoptera acutrostrata) (Marques et al. 2010). In general, the 
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military or governmental sources can provide near real time data and have 

hydrophones in pelagic areas otherwise often inaccessible for scientists.  

 

Another kind of passive acoustic device available for marine mammal scientists is the 

sonobuoy which oceanographers have long used to record noise in the oceans, and the 

U.S. Navy has used for several decades to record the sound of submarines (Northrop 

1973, 1975). The sonobuoy can be deployed either from an aircraft or a surface ship, 

and includes a single underwater hydrophone and a radio transmitter to send the 

recorded signals back to the aircraft or ship. By deploying multiple sonobuoys in a 

pattern, the location of the “target” can be determined. Sonobuoys have been used in 

ocean exploration as well to record marine mammal calls and listen for earthquake 

activity (Levenson 1974).  

 

Radio-linked or cabled hydrophones can also be used for marine mammal surveys; 

these consist of a hydrophone receiver on a mooring with a connection through a radio 

link or cable to a shore station or a ship, and data captured real time (Rankin et al. 

2005). Examples of such systems include the Comprehensive Test Ban Treaty 

Organization’s (CTBTO) International Monitoring System and the WHOI/Cornell 

Right Whale Detection Buoy System, which has been designed specifically to study 

marine mammals.  

 

Autonomous recorders contain a hydrophone and a battery powered recording and 

data storage system. Some devices record sound directly but others record only 

selected characteristics of sound, either continuously or following a duty cycle.  

Recorders are typically moored to the sea bed or float from the surface and require the 

equipment to be recovered for the data to be downloaded (Dudzinski et al. 2011). One 

such autonomous system is the C-POD. 

 

1.8 Static acoustic monitoring with autonomous click loggers 

Static acoustic monitoring (SAM) of cetaceans encompasses a wide variety of fixed, 

mainly passive, acoustic methods, some of which were mentioned earlier. One type of 

automated click logger is the C-POD (Chelonia Ltd.). The C-POD, and its 

predecessor, T-POD, were developed to detect small odontocetes such as the harbour 
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porpoise which produces a stereotypical narrowband high frequency (NBHF) signal 

and is particularly well suited for automated detection (Dudzinski et al. 2011). 

 

 

Figure 1.12 Photograph of a C-POD prior to deployment attached to a rope and 

weights. 

C-PODs and T-PODs as monitoring tools 

T-PODs and C-PODs are self-contained omni-directional static acoustic click 

detectors comprising a hydrophone, filter and digital memory (Figure 1.12). The first 

versions of the Chelonia click detector were tested more than a decade ago (Baines et 

al. 1999; Tregenza 2009), and one of their initial uses was to detect and monitor 

harbour porpoise and fisheries interactions, specifically their movements around 

pingers (Cox et al. 2001). 

 

They automatically detect and record the time and duration of echolocation clicks. The 

T-POD, the predecessor of C-PODs, scans through six frequency channels per minute, 

which can be adjusted by the user to the desired frequency band. The T-POD has two 

band-pass filters, the target filter and the reference filter. Clicks are logged when the 

acoustic energy in the target filter surpasses that of the reference filter by a predefined 

ratio (Kyhn et al. 2008; Dudzinski et al. 2011). This ratio is set by the ‘click 

bandwidth’ (version 4) and ‘selectivity (Ratio A/B)’ (version 3). The minimum sound 
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pressure level picked up by a T-POD is adjusted with the ‘threshold’ (version 4) and 

‘sensitivity’ (version 3) settings (Simon et al. 2010).  

 

The C-POD uses digital waveform characterisation within a frequency band of 

20-160 kHz to detect click signals with brief spikes in sound intensity, and logs the 

time, centre frequency, intensity and bandwidth of each cetacean click. Instead of 

scanning through the six channels like the T-POD, the C-POD logs all clicks 

continuously and stores data onto a removable SD card, allowing more data to be 

collected and making rapid servicing at sea possible. The C-POD has a much lower 

false negative rate, in particular for bottlenose dolphins, and is more suitable for 

recording in areas of high levels of background noise where T-PODs would fail to 

detect cetaceans (Tregenza 2009). The data collected from both types of data loggers 

have to be extracted from the loggers using specific software (T-POD.exe and 

C-POD.exe respectively, available at http://www.chelonia.co.uk/downloads). Once 

data area extracted, the software, comprising a train detection algorithm, filters 

through the raw click data, identifies cetacean click trains, and estimates their 

probability of arising by chance from a non-train producing source (like rain or a boat 

propeller). This probability, p is determined by Poisson distribution of the prevailing 

rate of arrival of clicks, the size of the interval between each click and the regularity of 

the trains. The probability of an entire identified train arising by chance from random 

sources will be the product of successive p values (Chelonia Ltd 2012b). The software 

then assigns the click trains to categories by species and their probability of being 

from cetacean origin, as High, Medium and Low quality (Thomsen et al. 2005).  

Comparability of units 

Several versions of the T-POD hardware and software were developed and used in 

monitoring studies before being replaced by the C-POD, and although they have been 

shown to be a very useful tool with both porpoises and dolphins, there are still 

concerns over the comparability of data across regions and how differences in the 

sensitivity of different versions, different train algorithms or even individual loggers 

affect the performance of the equipment and outcome of the analysis. Despite 

calibration of hydrophone sensitivity and omni-directionality during the manufacturing 

process, the early versions (v.1 - v.3) of the T-POD had large variations in their 

sensitivities and detection thresholds (Kyhn et al. 2008; Bailey et al. 2010). 
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Essentially, data collected with different versions of the T-POD or analysed with 

different versions of the train algorithm varied greatly and were not comparable 

without cross-calibrating the equipment (Dudzinski et al. 2011; Kyhn et al. 2012). The 

C-PODs are now manufacturer calibrated to strict standards and tank calibrations are 

no longer considered necessary prior to deployment (Chelonia Ltd 2012a). The 

C-PODs used in chapters 2 and 4 were tank calibrated by the German Oceanographic 

Museum, and those used in chapters 3 and 5 similarly tank calibrated by the 

manufacturer, both before and after the deployment period.  

 

The manufacturer calibrated the instruments an acoustic tank using a standard signal, 

by rotating the complete instrument in a sound field, and adjusted to achieve a radially 

averaged, temperature corrected, maximum sound source pressure level (SPL) reading 

within 5% of the standard at 130 kHz (±0.5 dB). The radial values were not averaged 

and were taken at 5 degree intervals. This is in contrast to many hydrophone 

manufacturers who publish a rolling mean value that reduces the apparent range 

between minimum and maximum values. The sensitivity of each C-POD was adjusted 

to record an average sound pressure level (SPL) value of 45 for the signal (equivalent 

to 2 Pascals (peak to peak) which equates in water to 120 dB  re 1 µPa @ 1m) 

(Chelonia Ltd 2012a). After two years of near continuous deployment the recalibration 

revealed that the sensitivity of the C-PODs had shifted between 0.0-1.1dB (mean of 

0.55 dB). Regardless of such small changes, it is sensible to cross-correlate collected 

data across units and, if logistically possible, conduct field calibrations between units 

prior to embarking on a long-term monitoring study. The calibration and 

standardisation process are described in detail on the manufacturer’s website 

(www.chelonia.co.uk). 

 

Deployment 

The T-PODs and C-PODs can be left underwater, moored to the seabed, for up to four 

months at a time. They are small cylindrical devices in polypropylene casing, which 

are positively buoyant and powered by alkaline batteries. They can be moored to small 

weights, and deployed and picked up by hand from small boats in shallow and 

sheltered coastal environments (Simon et al. 2010), or be attached to large deep water 
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moorings in shipping lanes and around wind farms (Verfuß et al. 2007; Tougaard et al. 

2009b).  

 

T-PODs have been used in several studies to assess the effect of varying types of 

fishing gear, pingers or chemically enhanced nets on porpoises (Cox et al. 2004; 

Carlström 2005) and bottlenose dolphins  (Lauriano & Bruno 2007; Leeney et al. 

2007). The presence and absence data recorded with the T-PODs have successfully 

been used in studies of environmental impacts of noise producing operations, such as 

for monitoring the effects of wind farm construction and operation (Teilmann et al. 

2002); and both T-PODs and the new generation C-PODs have become one of the 

most widely used marine mammal monitoring tools for wind farm impact assessments 

in Denmark, Germany and The Netherlands, particularly at offshore sites where other 

survey methods are difficult or too expensive (Diederichs et al. 2003; Carstensen et al. 

2006; Tougaard et al. 2009a; b; Lucke et al. 2009; Brandt et al. 2011). They have also 

been used to monitor effects of gas pipeline installations and tidal power generators 

(Fisher & Tregenza 2003; Englund et al. 2006; Philpott et al. 2007). 

 

The click loggers detect echolocation clicks between 9 kHz and 170 kHz for the  

T-PODs and 20-160 kHz for the C-PODs, making them ideal for monitoring almost all 

odontocete species, except for the sperm whale whose clicks have energy at too low a 

frequency band. In addition to harbour porpoises and bottlenose dolphins, T-PODs and 

C-PODs have been used to detect various other species such as Hector’s dolphins 

(Cephalorhyncus hectori) (Rayment et al. 2009), finless porpoises (Neophocaena 

phocaenoides) (Jefferson et al. 2002), dusky dolphins (Lagenorhynchus obscurus) 

(Fisher 2005), Cuvier’s beaked whales (Ziphius cavirostris) and striped dolphins 

(Stenella coeruleoalba) (Ludwig et al. 2010), and Heaviside’s dolphins 

(Cephalorhyncus heavisidii)  (Leeney et al. 2011), amongst others. Although they 

were not designed to discriminate clicks of various delphinid species from each other, 

they have successfully been used to study harbour porpoise and bottlenose dolphins 

simultaneously (Bailey et al. 2010; Simon et al. 2010).  

 

Click detectors can reveal patterns of localised habitat usage and perform well in areas 

of both low and medium density as is the case with harbour porpoises in the Danish 
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and German Baltic (Teilmann et al. 2002; Verfuß et al. 2007), and porpoises and 

bottlenose dolphins in relatively high density areas around the UK and Ireland 

(Berrow et al. 2009; Bailey et al. 2010; Simon et al. 2010). Currently a large 

international project is utilising over 300 C-PODs to estimate the density of the 

endangered Baltic harbour porpoise, which is present at very low densities over most 

of its range (Carlström et al. 2012). The click loggers are particularly useful in long-

term monitoring and detecting trends in abundance across seasons and years. Visual 

surveys on the other hand, are typically conducted seasonally and often many years 

apart and thus have a lower ability to estimate long term trends. 

 

1.9 Estimating density with static data loggers 

Many conservation objectives encompass a requirement to estimate animal density in 

a given area. Marine mammal abundance estimates are traditionally achieved by line-

transect surveys with Distance sampling methods using data from visual observations, 

either from headlands, ships or low flying airplanes (Akamatsu et al. 2008). 

Techniques also exist to extract information on animal positions from acoustic data, 

either from towed hydrophone arrays, or arrays of fixed hydrophones on the seabed 

(McDonald & Fox 1999; Barlow & Taylor 2005; Lewis et al. 2007). 

 

In many areas static acoustic monitoring (SAM) devices, and specifically the 

automated click loggers, such as T-PODs and C-PODs have been selected as the study 

methodology of choice, usually due to inaccessibility of the location or lack of funds 

to carry out more expensive visual or acoustic line transect surveys. Its value as an 

additional method to visual surveys has been widely recognised, and there is huge 

demand to develop SAM further, especially in the field of density estimation. 

Tougaard et al. (2006) were the first to explore the idea of using T-PODs for density 

estimation, conducting preliminary studies on the radial detection probability and 

distance detection function of the T-POD (Tougaard et al. 2006). This was a 

breakthrough study utilising the SAM device as a point sample location, developed 

further by Kyhn et al. (2012), who demonstrated the ability to estimate detection 

probability and calculate density estimations with T-PODs for harbour porpoises. 
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To develop static data loggers for the application of density estimation requires using 

each SAM unit as an individual sampling point. The data logged can either be 

collected over a continuous time period or divided into snapshots of shorter time 

periods. The analytical approaches vary depending on the detection target, but what is 

required is exactly the same as for the other passive acoustic studies described above: 

the known point sample area, termed ‘effective detection radius’ or EDR, derived from 

the detection function, the rate of acoustic cue production and its decay, and the 

detection capabilities of the data logger used. 

 

If individual animals cannot be distinguished using acoustic data, an alternative 

density estimation method exists based on detecting acoustic cues instead of animals 

themselves (Marques et al. 2009; K sel et al. 2011), a method commonly used for 

song-birds obscured by vegetation. The vocalisations of birds are counted instead of 

the birds themselves, and converted into abundance using song rates (Buckland et al. 

2001). For this method further auxiliary data on cue rates and vocal behaviour are 

required in addition to the detection probability. Techniques have also been developed 

to estimate animal density from fixed sensors without the need to estimate animal 

position and distance from the recorder (Marques et al. 2010).  

 

1.10 Developing data loggers into an effective monitoring tool 

Effect of distance from data logger and the source level of vocalisations on detection 

probability 

The newer C-POD train detection algorithm detects a wider variety of signals, not just 

the NBHF clicks, and has less variability across units. The software now allows more 

detailed assessment of the resulting train data, including manual verification of 

individual click trains and species (Dudzinski et al. 2011). The detection range of the 

T-POD and its optimum settings for porpoises and dolphins have been studied to some 

extent (Philpott et al. 2007; Simon et al. 2010; Elliott et al. 2011b),  but no such data 

have yet been published for C-PODs. In previous studies with T-PODs where acoustic 

data have been validated with visual observations, bottlenose dolphins have been 

detected from 1246 m (Philpott et al. 2007) and 1313 m away (Elliott et al. 2011b), 

and the effective detection radius (EDR) for dolphins estimated at 266 m (95% CI 

222-317 m) (Elliott et al. 2011b). For harbour porpoises, the effective detection radius 
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with T-PODs has been calculated to be between 22 and 104 m depending on the 

T-POD version (Kyhn et al. 2012).  

 

Playback studies have been conducted with artificial porpoise-like clicks to estimate 

detection ranges and effective detection radii for C-PODs (Brundiers et al. 2012) but 

no studies on the detection probability of wild animals with C-PODs have been 

published so far. Apart from ambient noise and distance from datalogger, the source 

level of emitted clicks affects how well and how far away they can be detected (Au et 

al. 2007; Kyhn et al. 2009; DeRuiter et al. 2010). This concept can be explored 

through the basic passive sonar equation, which, in its various forms, describes the 

performance of a sonar system (Au & Hastings 2008; Zimmer 2011). It enables the 

estimation of how far a sonar device (in this case the C-POD) will be able to hear and 

detect the sound producing animal. This is achieved by utilising the relationship 

between acoustic intensity (dB) at one meter from the source (source level = SL), the 

amount of intensity (dB) lost during transmission from source to the receiver 

(transmission loss = TL), and the received acoustic intensity (dB) (received level = 

RL). In one of its simplest forms this can be expressed as  

RL = SL – TL. 

However, only those signals which are above both the equipment detection threshold  

(DT in dB) and the background (ambient) noise level (NL in dB) can be detected. 

This can be expressed as  

 

RL = SL – TL > NL > DT 

  

The properties of the receiver (the C-POD) are of interest here, including the threshold 

at which the C-POD is able to detect clicks (and correctly classify them) and the range 

that they can effectively operate, which of course depends on the noise levels of the 

deployment site. 

 

Studies have attempted to measure the source levels of clicks emitted by both harbour 

porpoises (Villadsgaard et al. 2007) and bottlenose dolphins (Wahlberg et al. 2011) in 

the wild. Studies using C-PODs should aim to determine the extent to which the 

detection distance and probability are affected by changes in source levels of 
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vocalisations, and crucially, how variable the emitted source levels are for the target 

species.     

Effects of behaviour, group size and echolocation rate on detection probability 

Detection of echolocation clicks by the data loggers is not only dependent on animal 

distance from the data logger, noise levels and the source level of acoustic emissions; 

the vocal behaviour of the animal may also affect detection if vocalisation rate, 

acoustic beam pattern and orientation and other movement patterns vary between 

different behaviours. For example, resting animals are likely to vocalise less, making 

them less detectable to the loggers (Linnenschmidt et al. 2012).  

 

Several studies have looked at the effect of group size on detection rates with acoustic 

devices (Akamatsu et al. 1992, 1994, 2008). Some studies found no effect of group 

size on bottlenose dolphin and Hector’s dolphin detections (Philpott et al. 2007; 

Rayment et al. 2009) similar results were reported with harbour porpoises (Koschinski 

et al. 2008). However, increased group size was found to be correlated with increased 

detections of Yangtze finless porpoise (Neophocaena phocaenoides) (Wang et al. 

2005). Contrasting findings have been made with one of the largest echolocating 

dolphins, the orca (Orcinus orca), where the echolocation rate per individual 

decreased with increasing group size, suggesting that individuals share information 

within a group (Barrett-Lennard et al. 1996), interpreting echolocation signals of 

others (Dawson 1991). This could potentially result in the number of clicks generated 

by a group being relatively constant and independent of the number of members. For 

humpback dolphins, the number of vocalisations (whistles and echolocation clicks) 

increased with group size (Van Parijs et al. 2002). 

 

Some studies suggest that porpoises in particular produce clicks almost continuously 

(Akamatsu et al. 2007; Verfuß et al. 2009). However, recent studies with captive 

porpoise have found that harbour porpoises can remain silent for up to 20 minutes at a 

time (Linnenschmidt et al. 2012). A C-POD study on bottlenose dolphins in Turkey 

(James et al. 2012) found periods with a distinct lack of echolocation within the diel 

cycle. Silent animals will not be detected, so this must be factored into the research 

design of any acoustic study, especially if it is known that there are certain times of the 

day or tidal cycle when the animals might be more vocal than others (Akamatsu et al. 
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1992, 1995). Increased vocalisations during night time have been found for porpoises 

with T-PODs (Carlström 2005; Todd et al. 2009) and acoustic tags (Linnenschmidt et 

al. 2012), although some studies found no such increase (Kastelein et al. 1995). 

Investigating how group size and behaviour affect the rate of vocalisations, and 

subsequently, the detection probability of the study species, would substantially 

strengthen inferences that can be drawn from the click detector data (Rayment et al. 

2009).  

Quantifying the quality of data recorded with C-POD 

As detailed earlier, the C-PODs are click detectors designed to detect clicks which 

stand out from background noise and which then use a train detection algorithm to 

identify cetacean vocalisations (Dudzinski et al. 2011). To enable high quality data to 

be produced only those clicks that can be assigned to distinctive click trains are used. 

Furthermore, click trains are also classified for purposes of species identification. 

Consequently, some clicks and click trains will inevitably be excluded from the final 

output to ensure a low rate of false positive detections. As neither the click detection 

process nor the train detection algorithm is available for public inspection, researchers 

must test data empirically to fully understand what proportion of echolocation clicks 

may be missed. Understanding what kinds of clicks maybe missed by the C-POD and 

how this will affect the data collected is crucial for effective interpretation of 

monitoring data. 

Identifying behavioural information from C-POD data 

If the echolocation click or click train carries behavioural information, it may be 

possible to distinguish behaviour with click loggers. Studies of echolocation rates for 

harbour porpoise found that these typically varied with water depth and location, 

reflecting possibly either porpoise behaviour or prey abundance (Cox et al. 2004), but 

most likely both. Some previous studies have attempted to describe communication 

signals of echolocating cetaceans from the click characteristics by assessing the 

variation in the inter-click intervals (ICI) of the echolocation clicks logged by T-PODs 

and other hydrophones (Koschinski et al. 2008; Clausen et al. 2010). In addition to the 

communication clicks, the echolocation clicks themselves vary between different 

functions, especially those emitted during feeding or foraging (Verfuß et al. 2009).  By 

investigating changes in the ICI, train duration, and the total number of clicks per time 
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unit, it may be possible to identify potential feeding events from the click train data, 

and consequently identify critical feeding areas and trends in feeding patterns. 

 

1.11 Aims and objectives of this study 

Static acoustic monitoring with data loggers is already an established methodology for 

many species of cetaceans. Density estimation with acoustic methods has had great 

successes with terrestrial mammals such as elephants (Thompson et al. 2009), as well 

as large whales using extensive hydrophone arrays across ocean basins (Marques et al. 

2012), but smaller scale static systems are also becoming more popular. This thesis 

assesses one method of monitoring of two of the most common cetacean species in 

Wales, the bottlenose dolphin (Tursiops truncatus) and the harbour porpoise 

(Phocoena phocoena). The study focuses on a popular static acoustic monitoring 

(SAM) method, the C-POD, widely used in cetacean monitoring studies due to its 

practicality and cost-effectiveness. It is increasingly used either in place of, or 

simultaneously with, traditional visual methods, to assess animal presence and habitat 

use, and can facilitate mandatory monitoring of protected species within marine 

protected marine areas such as SACs.  

 

Regardless of its popularity, some questions on its capabilities remain unresolved. 

Although C-PODs are in common use by many research projects, there have been no 

published results on the ability of the device to detect the vocalisations of the two 

species, including types of clicks detected, maximum detection threshold and range 

and the effective detection area. A gap exists in our knowledge on how the C-POD’s 

hydrophone performs in detecting clicks, as well as what proportion of detected clicks 

the automated train detection algorithm classifies as cetacean click trains. Likewise, 

questions remain on the performance of individual C-PODs in comparison to each 

other. There is also a critical lack of information on the effect of group size and 

behaviour on dolphin and porpoise vocalisations, particularly of call rates and silent 

periods, which will all affect C-POD detections, and be of crucial importance to any 

studies attempting to estimate animal density with these devices.  

 

The general aim of this study was to increase our knowledge of how static click 

loggers detect harbour porpoises and bottlenose dolphins, specifically by examining 
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the performance of both the click detection and the train classification algorithm. The 

overall hypothesis is that C-PODs are capable of detecting the echolocation clicks of 

both bottlenose dolphins and harbour porpoises but that their detection probability is 

affected by animal behaviour, and group size. Furthermore, we hypothesise that 

although C-PODs probably do not detect all echolocation clicks emitted they are still 

able to record enough detail to enable feeding and foraging behaviour to be 

distinguished from other activities. 

 

To address these hypotheses the thesis describes the detection probability as a function 

of distance and, for the harbour porpoise, the source level. The study also examines 

how group size and behaviour affect the detectability of bottlenose dolphins, 

comparing C-POD detections with simultaneous and broadband recordings, and 

assesses whether the loggers can be used to discern porpoise and dolphin behaviour.  

 

It was not possible to study the two species in an exactly the same manner. Insufficient 

visually observed porpoise data were acquired to examine the effects of group size and 

behaviour on porpoise detection probability and unfortunately no successful 

recordings of wild harbour porpoise echolocation clicks were made. Likewise it was 

not practical to conduct a playback study with simulated bottlenose dolphin clicks 

because of the enormous variability in dolphin clicks, making it difficult to 

characterise a ‘typical’ dolphin click. Consequently the research objectives and 

methodologies are slightly different for the two species. 

 

Specific objectives of the research, and more detailed hypotheses addressed, were: 

 To define the optimum distances at which the C-POD detects harbour porpoise 

echolocation clicks by estimating the effective detection radii and effective area 

using artificial and real playback signals at various distances and source levels 

  To define the optimum distances at which the C-POD detects bottlenose dolphin 

echolocation clicks by estimating the effective detection radii and effective area 

using visual observations of wild bottlenose dolphins 

 To assess the performance of both the click detection of the C-POD and the train 

classification algorithm of the accompanying software for harbour porpoises by 
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comparing the detections of the playback study on both raw click data files and  

those produced by the train classification algorithm 

 To test the hypothesis that behaviour and group size affect acoustic detection of 

bottlenose dolphins, and to evaluate the effect of both behaviour and group size on 

the effective detection distance of dolphins with C-PODs 

 To test the hypothesis that C-PODs do not detect all kinds of echolocation clicks 

by examining the difference between clicks recorded by the C-POD with those 

recorded with a broad-band hydrophone  

 To determine whether bottlenose dolphin and harbour porpoise behaviours, 

particularly feeding, can be distinguished from C-POD data 

 To make recommendations on C-POD use for acoustic monitoring of bottlenose 

dolphins and harbour porpoises 

 

Chapter 2 describes the detection probability of harbour porpoises for C-POD data 

loggers as a function of distance and source level, through extensive field-experiment 

using artificial and real recorded porpoise clicks. It also assesses the performance of 

both the click detection of the C-POD and the train classification algorithm of the 

accompanying software.  

Chapter 3 explores the C-POD detection probability of bottlenose dolphins with 

regards to the effects of distance from the data logger, animal behaviour, and group 

size. It also assesses the performance of paired C-PODs in comparison to each other, 

and whether variation between individual C-PODs will have an effect on the overall 

detection probability. 

Chapter 4 compares bottlenose dolphin echolocation clicks recorded from free 

swimming animals using a broadband hydrophone with data logged by C-PODs, in 

order to examine differences in the logged click characteristics between the two, and 

to assess whether certain types of clicks may not be recorded by the data logger. 

Chapter 5 compares C-POD data with visual observations of bottlenose dolphin and 

harbour porpoise behaviour to assess whether SAM data can be used to extract 

behavioural information of the target species.  
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And finally, Chapter 6 summarises the findings of the thesis, setting them in the 

context of current developments in acoustic monitoring, and provides 

recommendations for further research. 
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Chapter 2 DETECTION PROBABILITY OF HARBOUR PORPOISE 

(PHOCOENA PHOCOENA) FOR C-PODS FROM PLAYBACK 

EXPERIMENTS 
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Wales an array of hydrophones, several transducers, and all the recording and playback 

equipment. I organised the day to day logistics of the fieldwork, the two boats used and the 
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organised the deployment of C-PODs and T-PODs, and Kati was in charge of setting and 

maintenance of the PODs. 

Kati, Winnie Courtene-Jones and I conducted the visual analysis of the C-POD data, 

although Kati did the lion’s share of that work. I compiled the data and conducted all the 

analyses and wrote the manuscript. Len Thomas helped with statistical analysis and R 

script, and comments from Jan Hiddink and Peter Evans greatly improved the structure of 

the manuscript. All authors proofread the manuscript and offered helpful suggestions 

before submission to the Journal.  

 

2.1 Abstract  

Harbour porpoises (Phocoena phocoena) have been extensively monitored using static 

acoustic data loggers, but few studies have quantified what fraction of animal vocalisations 

these devices capture and how animal distance and source level affect their detection 

probability. Knowing the effective detection area of the device is imperative for designing 

and implementing effective monitoring studies. Here we assessed the effectiveness of the 

C-POD’s hydrophone in detecting porpoise clicks using artificial signals played at varying 

distances and source levels to the data loggers, and measuring the fraction of acoustic 

detections recorded in each C-POD. Additionally, to assess the C-POD’s performance for 

wild animal signals, recorded porpoise clicks were played at increasing distances from the 
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C-PODs and their detection rate on each device was calculated. Furthermore, the 

performance of the C-POD software in correctly identifying porpoise click trains was 

examined. Generalized Additive Mixed Models (GAMM) were used to create the detection 

function  and estimate the effective detection radius (EDR) and effective detection area for 

each C-POD for both artificial and real porpoise clicks. Both source level and distance 

from data logger influenced the detection probability, whilst differences between C-PODs 

were evident across the study. Maximum distance for detecting real porpoise clicks was 

566 m. The average EDR for the real recorded porpoise sequence using a directional 

transducer was 188 m (95% CI: 135-241) and the effective detection area 0.111 km2. For 

detections which were correctly assigned as harbour porpoise trains, the EDR was reduced 

to 72 m and the area to 0.016 km2.The mean EDR for artificial porpoise like clicks at 

184dB re 1 µPa @ 1m (peak-peak) was 187 m (95% CI: 173-200) resulting in an average 

effective detection area of 0.1098 km2. Differences between C-PODs were likely due to 

site specific variation in environmental characteristics. Such differences in detection 

probability will affect monitoring studies and specifically the density estimates based on 

these figures and estimating an average EDR across several C-PODs for each study site is 

recommended. The method described here is applicable to most cetaceans recorded by 

C-PODs and will greatly facilitate statutory monitoring of protected species. 

 

2.2 Introduction 

The harbour porpoise (Phocoena phocoena, Linnaeus, 1758) is one of the most common 

cetaceans off the North East Atlantic coastline. It is the only regularly seen cetacean in the 

Baltic where the subpopulation is increasingly threatened by human activities and listed as  

‘critically endangered’ in the IUCN Red List (Hammond et al. 2008). To effectively 

conserve and manage porpoise populations it is imperative that the population status, 

including the density is assessed. The harbour porpoise is small and inconspicuous and 

difficult to monitor using traditional visual techniques because of its size and cryptic 

behaviour. In recent years many studies have used static acoustic data loggers to monitor 

the presence of porpoises in both coastal and offshore areas (Verfuß et al. 2007; Todd et al. 

2009). Harbour porpoise lends itself well to acoustic studies because it emits stereotypical 

high frequency, narrow-band echolocation clicks and produces near continuous 

vocalisations apart from short periods of rest (Linnenschmidt et al. 2012). Automated 
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echolocation click loggers such as C-PODs and their predecessors, T-PODs record the 

times and duration of clicks. C-PODs also additionally log the frequencies of the recorded 

clicks. The specific software then classifies detected clicks into series of clicks called click 

trains, based on known characteristics of cetacean vocalisations. These trains are further 

categorised based on their likely origin: boat sonar, dolphin, or porpoise click trains, which 

the C-POD software’s species identification process calls “Narrow Band High Frequency“ 

(NBHF) click trains. 

C-POD data are easy to analyse as daily or hourly detections, train durations or total 

number of trains and clicks detected. This type of data are now widely used in studies 

evaluating presence and absence of cetaceans (Verfuß et al. 2007; Bailey et al. 2010; 

Simon et al. 2010) and assessing disturbance to porpoises from wind farms, shipping, 

fisheries and coastal development (Carstensen et al. 2006; Carlström et al. 2009; Todd et 

al. 2009; Tougaard et al. 2009a; Brandt et al. 2011) but can also be used to estimate animal 

density (Kyhn et al. 2012).  

To use C-POD data in density estimation, the area around the C-POD within which the 

porpoises are effectively detected, is calculated from the effective detection radius (EDR), 

derived from the detection function, which defines the detection probability of porpoises as 

a function of animal distance from the logger (Marques et al. 2009). Kyhn et al. (2012) 

calculated the EDR for harbour porpoises detected with T-PODs between 22 and 104 m 

depending on the T-POD version. The C-PODs outperform T-PODs in porpoise detection 

due to their more sensitive hydrophones and lower between-logger variation (Dudzinski et 

al. 2011). Although no studies have been conducted on the detection probability of real 

porpoises with C-PODs, the EDR for an artificial, porpoise like click of 176 dB re 1 µPa/V 

@ 1m (peak-peak) was found to range between 151-196 m in controlled field experiments 

(Brundiers et al. 2012). Many factors may affect the detection probability of cetaceans 

with acoustic data loggers, including animal behaviour and activity state, vocalisation rate, 

intensity and frequency of emitted sounds, direction of movement, and orientation in the 

water column. Animals searching prey on the seabed may direct their sonar beams into the 

sediment and resting animals are likely to vocalise less, making them less detectable to the 

loggers (Linnenschmidt et al. 2012). Besides these, ambient noise, water temperature, 

pressure and salinity as well as the physical characteristics of the immediate surroundings 

of the logger are likely to affect the detection probability of porpoise sounds, due to 
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transmission loss of sound, absorption into sediment and potential shadowing from 

physical objects (Au 1993; Au & Hastings 2008; Zimmer 2011).  

Furthermore, the C-POD’s ability to detect a cetacean click depends on several processes – 

firstly the detection and logging of the actual click by the hydrophone and secondly the 

correct identification of clicks into click trains of cetacean origin and thence into the 

correct species classification.  

Because the EDR depends on so many physical characteristics, it is likely to vary at each 

study site, and ideally should be estimated for every site. Here we present a standardised 

method based on established distance sampling theory (Buckland et al. 2001) to estimate 

EDR for several C-PODs for one study site, which can be repeated at other locations, 

across varying environmental characteristics, such as bottom composition and water depth. 

However, this process can be costly and difficult to accomplish for many smaller projects 

with no access to required acoustic equipment. Therefore we hope that our results may be 

of use to other projects where estimating EDR is not practical or logistically possible. 

The first objective of this study was to assess the performance of the data logger’s 

hydrophone in detecting porpoise clicks. This was done by playing back artificial, porpoise 

like clicks of varying source levels to the C-PODs at increasing distances from the loggers. 

The detection probability of each playback click was estimated as a function of increasing 

distance and decreasing source level. From this, the average effective detection radius of 

C-PODs for the playback signals was then calculated. An artificial signal was used to 

create a repeatable signal with a known source level that could be manipulated to cover the 

intensity range of harbour porpoise vocalisations.  

The second objective was to examine the performance of the train classification and 

species identification software, and involved playing real porpoise click sequences to the 

C-PODs and calculating the detection rate not only of the clicks detected but also of 

identified trains. 

 

2.3 Materials and methods 

 Eighteen tank calibrated acoustic echolocation click loggers (C-PODs) were deployed off 

New Quay, Wales, of which fifteen were single C-PODs bottom moored in five stations of 
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three loggers each in a triangle formation, at depths of 13 - 20 m of water, approximately 

50-75 m apart and further three C-PODs attached together were used as a control and 

deployed in the middle of each station for every playback trial (Figure 2.1). The control 

C-PODs were deployed at each station to assess potential variability in playback signal, 

and were deployed at each station before the playback trials begun. All the playbacks were 

conducted in sea states 2 or less, to ensure safety and stability of the recording set up and 

the accuracy of the distance measurements. A side scan survey of the area was conducted 

prior to the study, revealing a generally even, sandy bottom substrate. 

Figure 2.1 A diagram of a C-POD mooring set up for one station (A) and the map of the 

deployment site of all the C-PODs (B). Each station had three C-PODs moored on the sea 

bed and the three control C-PODs (C1, C2 and C3) were temporarily deployed in that 

station during the playbacks. The playback hydrophone was suspended from the boat.  

Theoretical detection distance 

To appreciate the effect of transmission loss on porpoise like signals, and to determine the 

required playback distances a simplified theoretical detection distance was modelled for a 

C-POD with a detection threshold of 114 dB peak-to-peak re 1uPa at 130 kHz detecting a 

typical harbour porpoise click at source levels from 178 to 205 dB re 1µPa peak-to-peak 

(Villadsgaard et al. 2007) in sea water of 20 °C. The model was constructed using the 

transmission loss (TL) based on spherical spreading (Zimmer 2011): TL = 20*log10(R) + 

(R)*a, where R is the distance to animal in meters and a is the frequency-dependent 

absorption, estimated at ~0.04 dB/m at 135 kHz (Fisher & Simmons 1977).   
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Artificial porpoise-like signal 

Series of artificial clicks were played back with an omni-directional transducer at various 

different source levels and distances from 0-1500 m from the C-PODs to assess the effect 

of varying intensity on detection probability and to estimate the effective detection area for 

porpoise signals for the C-PODs. Artificially constructed porpoise-like clicks were used to 

ensure standard, repeatable signal for which source level could be controlled. The signal 

consisted of 15 cycles of 130 kHz frequency, generated via National Instruments 6356 usb-

box and played back using Labview software. The signals were fed through an amplifier 

(gain 26dB), which drove a Reson TC4033, and an omni-directional transducer with a 

projective sensitivity of 137 dB re 1 µPa/V for 130 kHz signal, suspended from the side of 

the boat to 2 m below water surface. The set up was powered using external car batteries 

via an inverter. 

 

The playback consisted of four separate sequences. One playback sequence contained 

eleven blocks of ten clicks (90 ms duration with 60 ms between each block), each block 

with a different source level (SL), decreasing in 3 dB steps over a range of 30 dB from 176 

dB re 1 µPa/V @ 1 m (peak-peak) to 146 dB re 1 µPa/V @ 1m (peak-peak). At each 

source level, ten clicks were emitted (Figure 2.2). To increase the source levels further and 

cover as much as possible of the range of source levels emitted by the porpoise, the first 

two sequences were played back with an additional 20 dB gain, in an attempt to achieve 

source levels up to 196 dB re 1 µPa/V @ 1m (peak-peak). Unfortunately, unknown to the 

playback operators at the time, the hydrophone used as the transducer could not cope with 

source levels higher than 184 dB re 1 µPa/V @ 1m (peak-peak) - which now remains the 

highest source level tested. It is also important to bear in mind that even this source level 

may have suffered some distortion and further testing of the reported source levels is 

required. However, at the time of writing this, the 184 dB re 1 µPa/V @ 1m used here was 

considered sufficiently accurate for this analysis. 



CHAPTER 2 

 

 

59 

  

 

Figure 2.2 Artificial playback sequence as a screenshots from C-POD.exe: Above is a set 

of four sequences with first two sequences played with 20dB amplitude gain (A). Below is 

a zoomed in recording of a sequence where the 11 blocks of decreasing amplitude can be 

seen in progressively shorter length of clicks recorded in each block (B). 

Real porpoise click 

To assess the detection probability of actual harbour porpoise vocalisations, and the 

performance of the train detection algorithm as well as the hydrophone’s ability to detect 

clicks, real porpoise clicks were recorded from captive porpoises at Fjord & Bælt Center, 

Denmark, and compiled into an 18 s long sequence of clicks. The recordings contained 

both weak and intense clicks, and the constructed signal had varying amplitude and 

frequency ranges, with source levels between 182 and 152 dB (peak-peak) re 1 µPa, 

representing some of the known variability in both click rate and source level of real 

porpoise vocalisations (Figure 2.3). It was played using a similar set up as above but 

without an amplifier and through a directional transducer, a Reson TC2130 with a 

transmitting sensitivity of 158.5 dB re 1 µPa/V @ 1 m (peak-peak) (for 130 kHz signal) 

and a projection directionality similar to a porpoise beam (12.25° for 150 kHz signal). The 

playbacks were played from distances ranging from 0 to 640 m from the C-PODs with an 

additional gain of 20 dB generated through the computer, resulting in a maximum source 

level of 179 dB re 1 µPa/V @ 1 m (peak-peak). A directional transducer was used to 

replicate a real porpoise to imitate the directionality and beam width of the animal. As 
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opposed to the omni-directional transducer used with the artificial playbacks, this would 

emit sounds in narrow beam only. During playbacks it was moved from side to side in 

(arbitrarily selected) 90° angle, pointed towards the middle of each C-POD station, 

imitating the sweeping movement of a porpoise head (shown for finless porpoise by 

Akamatsu et al. 2010), whilst the playback boat was moving away from the station. 

 

 

Figure 2.3 The porpoise playback click sequence (A) and the same sequence logged by two 

C-PODs simultaneously (B). Y-axis depicts a relative amplitude as recorded by the C-

POD. 

Play-back procedure 

Each C-POD station contained three C-PODs, approximately 50-75 m apart and before the 

playback trials were commenced, the control station was deployed to the seabed, in the 

middle of the three C-PODs (Figure 2.1). The boat then moved away from the station with 

the tidal current, playing the signal at approximately 10-50 m steps from 0 to 1500 m 

distance for the artificial playbacks and 0-640 m distance for the real porpoise clicks, to 

achieve a dataset of clicks recorded on C-PODs with gradually increasing distances from 

the data logger to a distance where they were definitely no longer detected. The distance 
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between the playback vessel and the C-POD was determined using the spherical law of 

cosines as follows:  

d = cos-1 (sin(lat1) .sin(lat2) + cos(lat1) .cos(lat2) .cos(long2 – long1)) .R 

where the position of the boat was defined as lat1 and long1 and the position of the C-POD 

was defined as lat2 and long2 and R is the mean radius of the earth (6371 km). Formulas 

were obtained and adapted from http://moveable-type.co.uk/scripts/latlong.html (Veness 

2010).  

Data analysis 

The data were visually inspected using bespoke C-POD software (CPOD.exe v.2.026) to 

note whether each of the playbacks were detected by the C-PODs. For each artificial 

playback sequence, the C-POD raw click files (CP1 files) were examined and the number 

of clicks from each series and each block was counted. Only those playbacks with more 

than one click recorded out of each block of ten were used for the analysis. For the real 

porpoise click sequence, the observers noted whether or not the sequence was detected on 

the C-POD or not - only those playbacks with a clear recording of the whole or part of the 

sequence were considered as detected. For the real porpoise recording, also the classified 

train files (CP3 files) were examined to assess the performance of the train classification 

algorithm in identifying the playback sequence as a cetacean train and more specifically, a 

porpoise click train. The distance between the playback transducer and the C-PODs were 

calculated from the GPS latitude and longitude coordinates (Veness, 2012, www.movable-

type.co.uk) 

The curve depicting the probability of detecting a porpoise click, if within a distance x, is 

called the ‘detection function’ or g(x). To estimate the detection function, from which the 

effective detection radius (EDR) could be calculated, the resulting datasets of detected 

clicks and sequences were analysed using a Generalized Additive Mixed Model (GAMM) 

in mgcv and gamm4 package in R (Wood 2006) with binomial error structure. ‘Detected’ 

or ‘not detected’ was the binary response variable and distance and source level the 

explanatory variables with smoothers, C-POD ID as an explanatory factor variable and 

playback as random variable. The playbacks were not independent as each playback was 

used multiple times – once for each different C-POD. Variance and 95% confidence 

intervals (CIs) were calculated using a nonparametric bootstrap, treating each playback as 

the unit for resampling with 1000 bootstrap replicates. 
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Effective detection radius and effective area 

The effective detection radius (EDR, also denoted  ̂), was calculated by obtaining the 

average probability ( ̂) of detecting each click or click sequence within distance w of the 

data logger, derived  from the detection function (Kyhn et al. 2012) assuming uniform 

probability of detection from around the data logger and by integrating out the distance:  

  ̂   ∫
    ( )  

   

 

 
             

   
 

  
∫   ( )   
 

 
          (1) 

The effective detection radius,  ̂, was then calculated using 500 m as the truncation 

distance: 

  ̂    √ ̂            (2) 

The effective area was calculated as a circular plot around the C-POD using EDR as the 

radius (r): 

                 (3) 

 

 

2.4 Results 

Artificial playbacks were successfully conducted on all five stations, but playbacks with 

real click data were only conducted on four stations (1, 2, 3, 4) due to time and weather 

constraints. Although all bottom moored C-PODs yielded full datasets, of the control 

deployment with the three closely attached C-PODs, only one functioned throughout the 

entire playback experiment – the other two were not restarted properly after having been 

downloaded and only limited data were acquired from them.  

 

Theoretical detection distance 

The modelled detection distance by a C-POD for an average porpoise click of 135 kHz was 

estimated at 337 m for 178 dB, 554 m at 191 dB and 819 m for a sound of 205 dB source 

level (all re 1µPa peak-to-peak) (Figure 2.4). Based on this relatively simple model for 

ideal conditions, and for “on-axis” clicks (the most intense clicks emitted within the 

narrow acoustic beam of the animal, as opposed to “off-axis” clicks which can originate 
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off the main acoustic beam), we were confident that conducting the playback at distances 

up to 1500 m would cover the entire range of the C-POD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Playbacks with artificial porpoise clicks 

For the artificial playbacks, the detection of every click sequence was assessed on all the 

C-PODs, as the use of omni-directional transducer meant that the sound would travel to all 

directions. Thus a total of 343 artificial playbacks (4 sequences of 11 blocks each 

consisting of 10 clicks, each block emitted at a different source level) played at the 18 

C-PODs produced over 16000 recorded playback blocks which were visually assessed. 

Only playback source levels up to 184 dB re 1 µPa @ 1 m (peak-to-peak) were usable for 

the analysis due to saturation of the transducer to the extreme high voltages at the highest 

source levels.  

 

The dataset consisted of a binary response variable (whether each click that was emitted 

was detected), explanatory variables (distance from data logger, source level and C-POD 

Distance (m) 

Figure 2.4 Theoretical detection distance for a porpoise click at 135 kHz for different source levels 

based on spherical spreading loss. 



CHAPTER 2 

 

 

64 

  

ID) and a random effect of each playback. The GAMM was run separately for each station. 

For each dataset, the model with lowest AIC values included all three variables and the 

random effect. The smoothers for the covariates of distance and source level were 

significant for all stations (P < 0.001). Additionally, the parameter, C-POD ID, 

significantly contributed to the model for each dataset. The models for each station 

explained between 39.3 and 68.8 % of the deviance in the datasets. Appendix 2.1 lists the 

results of the GAMM. As expected, there was a negative effect of increasing distance and 

decreasing source level of the playback signal on the detection probability (Figure 2.5). 

The detection function curves were similar in shape for all C-PODs apart from those in 

station 2, which had peaks of higher detection probability at longer distances than any 

other C-POD. Despite careful checking, no anomalies or outliers in the dataset were 

discovered. A possible explanation for this could be an error in the distance calculations. 

For the rest of the C-PODs, the detection probability falls sharply between 100 and 200 m 

distance from the data logger, although slight variations between C-PODs are evident. The 

effect of source level on detection probability increases sharply for clicks over 160 dB re 1 

µPa/V @ 1m (peak-peak) for all C-PODs, apart from station 2, where the source level 

seems to have little effect on detection probability, further indicating an existence of a 

potential error in the dataset. Figure 2.6 depicts the estimated smoothers for each covariate 

for station 4. The smooth plots for each station are listed in the Appendix 2.3. 
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Figure 2.5 Fitted probability curves for the detection of artificial porpoise-like playback clicks 

at different distances for source levels between 184 and 147 dB re 1 µPa/V @ 1 m (peak-peak) 

for all C-PODs. Each line depicts the fitted probability for one dB value. 

1A 1B 1C

2C2B2A

3B 3C3A
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1A 1B 1C

5C5B5A

3B 3C3AC1 C2 C3

4A 4B 4C

Figure 2.5 (continued from previous). Probability of detection of artificial porpoise-like 

playback clicks at different distances for source levels between 184 and 147 dB re 1 µPa/V 

@ 1 m (peak-peak) for all C-PODs.  
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Figure 2.6 The effect of distance from C-POD and signal source level on the detection 

probability of artificial playback signal in the GAMM model for Station 4. Dashed lines 

indicate two standard errors; y-axis is transformed to the response variable scale, and the 

lines on x-axis show the distribution of the values of predictors in the underlying dataset. 

 

The calculated effective detection radii (EDR) for artificial clicks with the highest emitted 

source level (184dB re 1 µPa @ 1m (peak-peak)) varied from 207 to 142 m for the main 

C-PODs, with a mean of 187 m (95% CI: 173-200) and an average effective detection area 

of 0.1098 km2. The EDR for the control C-PODs was much lower varying from 137 to 

94 m, probably due to the different mooring set up with three C-PODs in close proximity 

to each other, which may have caused a shadowing effect on the hydrophones.. A 20 dB 

reduction in the source level of the artificial playback signal reduced the effective detection 

radius to 107 m, and clicks of source level 170 dB re 1 µPa @ 1m (peak-peak) or less had 

less than 100 m detection radius (Figure 2.7). The EDR values with 95% confident 

intervals (CI) and coefficients of variation (CV) for each C-POD for different source levels 

are listed in Appendix 2.3.  
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Figure 2.7 The estimated average effective detection radii for different source levels for a 

single artificial porpoise click for each C-POD. C1, C2 and C3 were the control C-PODs, 

re-deployed at each station for the duration of the playback trials. Axis in meters. Source 

level reference dB re 1 µPa/V @ 1m (peak-peak).  

 

Playbacks with real porpoise clicks 

For the real playbacks, only those sequences played back at the direction of each station 

were usable, as the directional transducer would only emit sounds at a narrow beam width 

of 12.5°. This resulted in a total of 715 porpoise click sequence times to be assessed across 

distances up to 640 m from the data loggers.  From the 715 total sequences, 289 (40 %) 

were recognised and logged as clicks by the C-PODs, 186 (26 %) identified as train and 

149 (21 %) classified as harbour porpoise trains. The average rate of detection for clicks in 

raw data files (CP1s) was 40 % across the C-PODs. 

 

The GAMM was run for three datasets: 1) detections of playback sequence on raw click 

files (CP1); 2) detections as trains (CP3); and 3) detections as porpoise trains (CP3). For all 

three, the detection probability of the playback sequence was significantly affected by 

distance, and the GAMM model with lowest AIC values included the C-POD ID as a 

factor variable and the playback as random effect. The smoother for distance was 
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significant for all raw datasets (P < 0.001). The GAMM results are displayed in Appendix 

2.1. The three models explained between 13.3 and 22.2 % of the deviance in the datasets, 

notably less than the models for the artificial playbacks. Figure 2.8 depicts the detection 

function curves for the real porpoise playback sequences for all stations, for raw click data 

as well as for classified trains. Lowest detection probabilities for click data (CP1) were 

recorded for C-PODs 1A, 1C, 2A and 2B. High detection probability of clicks did not 

always correspond to high detection of classified porpoise trains (see 4C in Fig. 2.8).  
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Figure 2.8 Detection probability of real harbour porpoise clicks recorded by C-PODs and 

the probability of click trains classified using the C-POD.exe software for each C-POD 

(A,B,C) at each station (1,2,3,4). Solid line = all clicks detected, dashed line = trains 

classified and dotted line = trains classified as porpoises (NBHF). 
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The calculated mean effective detection radii (EDR) of real porpoise signals was 188 m 

(95% CI: 135-241) for all clicks detected (CP1 files), 116 m (95% CI: 80-152) for 

classified trains and 72 m (95% CI: 52-92) for classified porpoise trains (Figure 2.9). This 

reflects the increasing detection threshold required for the train and species classification,  a 

task that is more demanding of higher signal to noise ratio. The calculated effective 

detection area, using the clicks detected from the raw click files (CP1), was 0.111 km2. 

When taking only those detections into account that were correctly assigned as harbour 

porpoise trains by the algorithm, the reduced EDR of 72 m yielded an effective area of 

0.016km2. The mean difference in EDR from detected clicks to correctly detected species 

was 105 m (95% CI: 66-144), demonstrating the rather larger difference in how the clicks 

are detected by comparison to the correct species identification.  

 

Figure 2.9 The estimated effective detection radii for real porpoise playback sequence for 

all logged clicks (black line), for all detected trains (grey line), and for all detected 

porpoise trains (dashed line). The average EDR of a single artificial click for the highest 

source level is shown with dotted line. C-PODs C1, C2 and C3 were the control C-PODs, 

re-deployed at each station for the duration of the playback trials. Axis in metres. 
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Notably, the control C-PODs had the lowest EDRs and detection distances in both 

experiments, most likely due to their method of deployment. This consisted of attachment 

of three C-PODs in close proximity to each other, which we now believe probably 

decreased their detection rates due to shadowing effect. Hence the EDRs of the control 

C--PODs were not used to calculate the overall means and confidence intervals for either 

experiment. 

Despite the between-C-POD variation in detection probability for the three different 

datasets: raw clicks, click trains and porpoise trains, the control C-POD displayed a very 

gradual and regular decrease in detection probability across the sites (Figure 2.10) . 

Furthermore the control C-POD showed little difference in the overall detection probability 

across each station, with the exception of porpoise train detections at station 4 

(Figure 2.11).  The EDR values with 95% confident intervals (CI) and coefficients of 

variation (CV) for each C-POD are listed in Table 2.1. 

 

 

Figure 2.10 The probability of real harbour porpoise clicks and click trains detected with 

the control C-POD (C1). Solid line depicts all clicks detected in the C-POD raw data, 

dashed and solid lines depict the probability of these clicks being classified into trains 

(dashed line) and into porpoise (NBHF) click trains (dotted line) for all real porpoise click 

playback from all the stations on the control C-POD. 
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Figure 2.11 The probability of real harbour porpoise clicks logged, all click trains detected 

and porpoise (NBHF) trains detected with the control C-POD (C1) at each station. Station1 

(solid line), station2 (dashed line), station 3 (dotted line) and station 4 (dots and dashes) 

 

Table 2.1 Effective detection radius and effective detection area with bootstrapped 95% 

confidence intervals and coefficient of variation (CV) for the recorded porpoise playback 

signal for each of the C-PODs tested 

POD 
EDR 

(m) 
2.50%  97.50%  CV 

EF. AREA 

(km
2
) 

2.50%  97.50%  CV 

1A 101 53 167 0.29 0.03 0.01 0.09 0.09 

1B 158 113 217 0.17 0.08 0.04 0.15 0.03 

1C 85 55 137 0.25 0.02 0.01 0.06 0.06 

2A 119 61 207 0.31 0.04 0.01 0.13 0.10 

2B 107 64 173 0.26 0.04 0.01 0.09 0.07 

2C 170 109 245 0.20 0.09 0.04 0.19 0.04 

3A 155 99 233 0.22 0.08 0.03 0.17 0.05 

3B 327 236 418 0.15 0.34 0.18 0.55 0.02 

3C 243 169 327 0.17 0.19 0.09 0.34 0.03 

4A 247 191 308 0.12 0.19 0.11 0.30 0.02 

4B 223 173 282 0.13 0.16 0.09 0.25 0.02 

4C 322 265 381 0.09 0.33 0.22 0.46 0.01 

CTRL 1 168 142 208 0.11 0.09 0.06 0.14 0.01 

CTRL 2 91 63 126 0.18 0.03 0.01 0.05 0.03 

CTRL 3 100 69 144 0.19 0.03 0.02 0.07 0.04 

 

Maximum detection distances  

Maximum detection distances where acoustic detections were still made depended on the 

source levels of the emitted signals. The longest maximum theoretical modelled distance of 
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819 m was based on an estimated source level of 205 dB re 1 µPa @ 1m (peak-peak) 

(Villadsgaard et al. 2007). Unfortunately we were not able to cover such high source levels 

in this experiment. The maximum artificial click source level emitted was 184 dB re 1 µPa 

@ 1m (peak-peak), yielding a maximum detection distance of 545 m (recorded with 

C-POD 3B) and a mean of 402 m (95% CI: 371-429), which corresponds to what was 

expected based on the modelled theoretical distances (Figure 2.4). 

 

The highest source level of the real recorded porpoise signal was 179 dB re 1 µPa @ 1m 

(peak-peak), yielding a maximum detection distance of 566 m (C-POD 4C). The mean 

maximum distance for all the C-PODs was 248 m (95% CI: 181-316), which reflects much 

reduced detection rates due to the directional transducer used, emulating more closely the 

real-life scenario of actual porpoise movement patterns and sonar beam width. For both 

experiments, the shortest maximum distances were recorded with the same C-POD, 

(C2) - 268 m for the artificial playbacks and 105 m for the real porpoise playbacks. 

 

2.5 Discussion 

Static data loggers such as C-PODs are one of the most common methods for studying and 

monitoring harbour porpoises in Europe, and understanding the distance at which 

porpoises are detected by C-PODs and how source level affects their detectability is crucial 

for quantifying cetacean area use. Accurate estimates of effective detection radius are 

essential for density estimation using static acoustic data loggers. This is the first 

experimental study to estimate harbour porpoise detection probability for C-PODs using 

both artificial and real porpoise clicks. The use of an artificial click sequence allowed us to 

assess the performance of the C-POD’s hydrophone in detecting clicks in a standardised 

and repeatable way, whereas the use of real clicks enabled us to evaluate the performance 

of the train classification algorithm. 

As expected, the detection probability and the effective detection radius decreased with 

increasing distance from data logger and with decreasing source level of the artificial 

signal. No detections were made beyond 545 m from the logger and signals below 161 dB 

re 1 µPa/V at 1 m (peak-peak) had less than 0.2 probability of being detected even at 

distances of less than 50 m from the C-POD.   
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We calculate that the C-POD is capable of effectively detecting a porpoise-like click 

around 187 m radius for the most intense signal measured, (184 dB re 1 µPa/V at 1 m 

peak-peak), yielding a detection area of 0.11 km2, which is somewhat lower than those 

calculated in previous studies (Brundiers et al. 2012), probably due to lower levels of 

ambient noise in a non-tidal environment and a slightly different technique for calculating 

detections, both of which may have increased the number of detections in their study. It is 

important to note that transmission loss and noise levels will vary between sea states and 

site and therefore ideally should be measured prior to C-POD deployment. Additionally, 

further research is recommended to assess detection probability with varying levels of 

ambient noise, such as those caused by wind and waves, using either existing data on noise 

level change with sea state or repeating the present experiment in higher sea states, 

something that was not possible here due to equipment and boat configuration used. 

The same pattern of decreasing detection probability with distance was evident with real 

porpoise click sequences, with an almost equivalent EDR of 188 m. The real clicks had 

generally higher detection probability and were detected from further away (up to 566 m) 

than the artificial clicks. This was expected considering that the detection probability for an 

artificial signal is estimated for a single click, whereas the detection probability of the real 

porpoise click was calculated for the entire 18 s long sequence, despite the fact that the real 

clicks were played out with a directional transducer and at lower maximum source level 

(179 dB re 1 µPa/V @ 1 m peak-peak). No published EDR values for porpoise clicks exist 

for C-PODs, but for T-PODs (the predecessors of C-PODs), the reported mean EDR for 

wild porpoises detected as cetaceans was 47 m, varying slightly with T-POD type and 

sensitivity (Kyhn et al. 2012). Here, the mean EDR for detecting real porpoise clicks as 

porpoises, was much improved at 72 m. There was a clear reduction in detection 

probability and EDR for correctly classified porpoise trains (mean EDR: 72 m) in 

comparison to the EDR of the clicks logged (mean EDR: 188 m). 

When examining the modelled detection distances for a typical porpoise click, it is 

interesting to note that the mean maximum distance recorded for the artificial click 

sequences matched closely the theoretical distance, indicating that at such short ranges the 

transmission loss is well described simply by spherical spreading, although at deeper 

depths and longer ranges, sound-speed profile, bathymetry, bottom properties, and 

multipath acoustic propagation will also affect the transmission loss, requiring more 

complex calculations to estimate the sound propagation (DeRuiter et al. 2010). 
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Click detection vs. train classification 

As expected from the higher signal to noise ratio required for a more complex task, the 

detection probability decreased progressively from detected clicks to classified trains , and 

again to correctly classified species (Figure 2.10). Although the raw click files (CP1) had 

high detection rates of porpoise clicks and maximum detection distances close to those 

modelled here with transmission loss based on spherical spreading, the detection rates of 

the correctly classified click trains were greatly reduced in comparison. Variations between 

units for the probability of correct species classification were high in contrast to the overall 

detection probability (Figure.2.8) The challenge remains for the developers of the software 

to improve the train classification algorithm to more closely match the click detection 

abilities of the device, which would greatly increase its effective detection area – in the 

case of the real porpoise click sequence used in this study, this would be a five-fold 

increase from 0.02 to 0.1 km2. However, it is unlikely that this can be achieved at all, since 

more complicated signal (trains and species classification) will always require more 

information (more intense clicks and larger number of them) than just detecting a click – 

and therefore the detection probability of click trains will always lower than that of clicks. 

Differences between C-PODs 

Although there was only little variation in detection probability across the stations, as 

measured by the control C-POD, and the confidence intervals around the mean EDRs were 

relatively small, specifically for the artificial playbacks, there were some differences 

between individual C-PODs in how they detected clicks and click trains. This could be due 

to either site or C-POD unit variation, or unforeseen slight alterations in playback or data 

handling protocol. 

The C-PODs were calibrated with comparable sensitivity levels within 0.5 dB (no range 

given) of each other (www.chelonia.co.uk), which would result in variation of 56 m in 

detection distance. For the artificial playbacks a variation in the region of ±10 m was 

found, and therefore we do not think that much of the variation seen here was a result of 

differences in C-POD sensitivities. A likely cause of variation in detection probability 

could be due to random site specific differences, such troughs in the seabed or variation in 

the substrate type, which cannot be ruled out despite the side scan survey of the area. A 

further cause of variation could be unforeseen errors during playback procedure or data 

handling, given that very large amounts of data were processed by a small team. Even with 

a double checking procedure in place to avoid such errors, we cannot exclude the 
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possibility of observer error in our visual assessments, and have to accept a small 

likelihood of both false positive and false negative detections in the dataset. However, with 

such large sample sizes we expect the effect of these errors to be minimal.   

Wild harbour porpoise source levels 

The source levels used in this study were based upon limited data from recordings of wild 

porpoises (Villadsgaard et al. 2007), which may not reflect the real variation in source 

levels, likely to be affected by behavioural context and variation in habitat characteristics, 

such as ambient noise, as demonstrated for the beluga whale (Delphinapterus leucas), 

which adapts the source level and frequency of its echolocation clicks according to noise 

levels of its surroundings (Au et al. 1985). Lower source levels have been reported since, 

but from captivity. In the study by Koblitz et al. (2012) all harbour porpoise clicks 

recorded were within 132–140 dB re 1 µPa range. Here, the maximum source level emitted 

was 184 dB re 1 µPa/V @ 1 m (peak-peak) for the artificial playbacks and 179 dB re 1 

µPa/V @ 1 m (peak-peak) for the real porpoise playbacks, which are considerably less 

than the maximum estimated level of 205 dB re 1 µPa/V @ 1 m (peak-peak), or even the 

mean of 191 dB re 1 µPa/V @ 1 m (peak-peak), although within those recorded from 

captive porpoises. Hence the EDRs reported here will not represent the full detection range 

of wild porpoises. Nevertheless, it should be noted that these high source levels have been 

calculated for the most intense, “on-axis” clicks of the animals, whereas static acoustic 

data-loggers will by definition detect all clicks emitted and projected into the water 

column. If the animal moves its head frequently and both on and off-axis clicks are equally 

as likely to be received by the C-PODs, it is imperative that the detection probability of 

data loggers is based on the full range of clicks projected, including both on- and off-axis 

clicks, and consequently clicks of varying source levels. Thence we believe that the highest 

levels measured here probably represent a reasonable average source level arriving at a 

C-POD in low ambient noise conditions and the results can therefore be of practical use in 

studies of similar environmental conditions throughout the harbour porpoise range. 

Designing effective sampling regimes 

Kyhn et al. demonstrated how to estimate density around a single T-POD using the 

estimated EDR. However, typically one would want to cover a larger area. The area 

surveyed will depend on the nature of the research question and the target species. It is not 

practical or useful to try and cover the whole area with C-PODs and typically systematic 

sampling is the preferred method whilst ensuring that the detection ranges of each C-POD 
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do not overlap. The maximum detection distance recorded for porpoise click trains was 

256 m whilst the mean maximum detection distance across C-PODs was 163 m (95% CI: 

132-194). To monitor an area whilst excluding the possibility of simultaneous recordings 

of porpoises from two C-PODs, one would need to deploy the C-PODs beyond their 

maximum detection range, yet close enough to achieve best possible coverage. Allowing 

250 m between each C-POD would satisfy these criteria, for the source levels used here 

requiring a total of 16 C-PODs to cover a sampling site of 1 km2. However, as the source 

levels of wild animals have been reported to be much higher, this would need to be taken 

into account here too.  

The narrowband nature of the porpoise’s echolocation click (at 130kHz) means that it will 

be unlikely to cause simultaneous detections with the same click trains more than 54 m 

apart, based upon a beam width of 12.25° at 250 m from the C-POD. Obviously, any added 

side-to-side head movement would increase this. For example, if the porpoise head side-to-

side movement is 45° with a beam width of 12.25°, the beam at 250 m from the animal 

would cover a maximum range of 388 m – although, as seen from the maximum detection 

ranges, at these distances there is insufficient information arriving at the C-POD to allow 

for effective detection of porpoise click trains. 

When planning for practical deployment distances, considerations must also include the 

potential swim speed of the animals. Using a maximum swim speed of 2 m/s (Westgate et 

al. 1995; Otani et al. 2001), the porpoise might cover a distance of 120 m in a minute. If 

the C-PODs are deployed more than 265 m apart (to ensure no simultaneous detections) 

and the data are sampled in no longer than one minute periods (to ensure that the animal 

does not move into the EDR of another C-POD), it will be possible to arrive at a crude 

density estimate for a series of consecutive sampling snapshots in the study area, providing 

the average group size is known (or estimated).   

Typically a sampling design does not aim to cover the entire area but rather to sample 

systematically in a representative manner, to cover any variation in the study area (such as 

depth or bottom substrate). Hence, the amount of sampling points required will depend on 

the nature of the area of interest, the target species and indeed the question asked.  

The challenge for the C-POD is not detecting the clicks – as seen from the results of the 

artificial click experiment, the C-PODs hydrophone detects porpoise clicks extremely well. 

However, due to inherent characteristics of signal detection of complex signals, the train 
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detection algorithm and the species identification software have a lower detection 

threshold and thus a lower EDR. In areas of low porpoise density, where there are no other 

cetaceans present, (and if false positive rate is low and can be quantified) it might be useful 

to use the raw click data or the train classification results, without species identification, 

improving the overall detection rate and enlarging the effective detection area. However in 

areas where dolphins are present this approach is not workable and species classification is 

the most practical way of distinguishing species, regardless of the reduced EDR, after all it 

is always more useful to have a lower rate of true positives than risk recording many false 

positives, as long as the rate of missed detections can be quantified – as this is much easier 

to quantify and correct for in the analysis.  

To fully establish detection probabilities for small cetaceans we need to gain a thorough 

understanding of the effect of behaviour and group size on vocalisation rates, including the 

portion of time that animals rest and spend silent, which will obviously affect their 

detection. Currently, we have limited information on wild porpoise vocalisation rates, and 

can only conclude that they vary according to time of day (Carlström 2005; Todd et al. 

2009), and that periods of silence lasting several minutes are not uncommon 

(Linnenschmidt et al. 2012). Research on captive animals shows that porpoise click rates 

increase during prey capture (DeRuiter et al. 2009; Verfuß et al. 2009), but that source 

levels of feeding buzzes are reduced, making them less detectable than other clicks at 

similar ranges (DeRuiter et al. 2009). For many other cetacean species we have only 

limited information on their vocalisation rates and further research is required. 

The EDR results presented here are promising, and can be used in practical assessments of 

C-POD data and in planning and designing sampling protocols for monitoring studies. 

Understanding variability in detection probability and effective detection radius is 

particularly important when using static acoustic monitoring devices for density estimation 

or monitoring of impacts of anthropogenic disturbance.  
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2.7 Appendices 

Appendix 2.1: GAMM Result tables for both artificial and real recorded porpoise click playback experiments  

Table 2.2 Output of the best GAMM model for playbacks with artificial porpoise clicks.  

 Each station was modelled separately due to memory size restrictions 

 Parametric coefficients Approximate significance of smooth terms  

Station  
Estim

ate 
Std. Error z-value 

Pr 

(>|z|) 
 edf Ref.df Chi.sq P-value 

R-sq. 

(adj) 

glmer 

ML 

score 

Scal

e est 
n 

2 (Intercept) -56.124 28.497 -1.969 0.049 s(dist) 5.028 5.028 49.5 0.000 0.476 30030 1 26727 

2 as.factor(pod)2B -0.440 0.082 -5.341 0.000 s(sl) 8.663 8.663 1600.8 <2e-16     

2 as.factor(pod)2C 0.023 0.086 0.268 0.789          

4 (Intercept) -16.373 2.698 -6.068 0.000 s(dist) 2.659 2.659 33.7 0.000 0.511 17898 1 27544 

4 as.factor(pod)4B 0.693 0.098 7.105 0.000 s(sl) 4.663 4.663 1114.8 <2e-16     

4 as.factor(pod)4C 0.923 0.105 8.817 <2e-16          

5 (Intercept) -14.832 0.870 -7.041 <2e-16 s(dist) 1.000 1.000 133.1 <2e-16 0.400 12185 1 26802 

5 as.factor(pod)5B 0.368 0.129 2.853 0.004 s(sl) 4.821 4.821 832.2 <2e-16     

5 as.factor(pod)5C -0.508 0.147 -3.465 0.001          

CTRL 1 (Intercept) -9.452 0.772 -12.248 <2e-16 s(dist) 1.000 1.000 102.8 <2e-16 0.534 25819 1 17465 

CTRL 2 as.factor(pod)JEM19 -0.362 0.090 -4.033 0.000 s(sl) 4.518 4.518 1430.6 <2e-16     

CTRL 3 as.factor(pod)JEM469 -1.413 0.097 -14.514 <2e-16          
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Table 2.3 Output of the best GAMM model for playbacks with recorded porpoise clicks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Parametric coefficients  

Station  Estimate 
Std. 

Error 
z-value Pr(>|z|) 

 

 (Intercept) -2.096 0.725 -2.891 0.004  

1 as.factor(pod)1B 1.186 0.795 1.492 0.136 
 

1 as.factor(pod)1C -0.399 0.840 -0.474 0.635 
 

2 (as.factor(pod)2A 0.400 1.066 0.375 0.707 
 

2 as.factor(pod)2B 0.151 0.957 0.158 0.875 
 

2 as.factor(pod)2C 1.395 0.949 1.470 0.142 
 

3 as.factor(pod)3A 2.621 0.940 1.187 0.235 
 

3 as.factor(pod)3B 2.685 1.063 3.730 0.000 
 

3 as.factor(pod)3C 3.965 0.946 2.770 0.006 
 

4 as.factor(pod)4A 2.685 0.849 3.161 0.002 
 

4 as.factor(pod)4B 2.307 0.842 2.739 0.006 
 

4 as.factor(pod)4C 3.891 0.840 4.633 3.6e-06 
 

CTRL 1 

as.factor(pod)JEM18
29 1.364 0.764 1.787 0.074 

 

CTRL 2 as.factor(pod)JEM19 -0.254 0.856 -0.296 0.767 
 

CTRL 3 

as.factor(pod)JEM46

9 --0.015 0.861 -0.017 0.986 

 

Approximate significance of smooth terms 
 

 edf Ref.df Chi.sq p-value R-sq. (adj) 

glmer 

ML 

score 

Scale est n 

s(dist) 1 1 51.23 8.2e-13 0.224 686.96 1 
718 
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Appendix 2.2:  Effect of distance from C-POD and signal source level on the 

detection probability of artificial playback signal depicted by GAMM smoothers 

 

 

 

 

Figure 2.12 Smoothers of the effect of distance from C-POD and signal source level on 

the detection probability of artificial playback signal as raw clicks (CP1 files) in the 

GAMM model for all stations. Dashed lines indicate two standard errors; y-axis is 

transformed to the response variable scale, and the lines on x-axis show the distribution 

of the values of predictors in the underlying dataset. 
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Figure 2.12 Continued from previous page  

 

  



CHAPTER 2 

 

 

85 

  

Appendix 2.3:  Effective detection radii and effective detection areas for two 

source levels for the artificial playback signal 

Table 2.4 Effective detection radius and effective detection area with bootstrapped 95% 

confidence intervals and coefficient of variation (CV) for source level of 184 dB re 1 

µPa @ 1m (pp) for the artificial playback signal 

POD 
SOURCE 

LEVEL 

EDR 

(m) 
2.50% 97.50% CV 

EF. AREA 

(km
2
) 

2.50% 97.50% CV 

1A 184 148.0 112.5 181.6 0.12 0.069 0.040 0.104 0.014 

1B 184 191.7 161.1 219.9 0.08 0.115 0.082 0.152 0.006 

1C 184 150.2 122.6 178.9 0.10 0.071 0.047 0.101 0.009 

2A 184 223.5 194.4 254.5 0.07 0.157 0.119 0.204 0.005 

2B 184 201.8 174.8 233.4 0.08 0.128 0.096 0.171 0.006 

2C 184 225.0 195.9 257.3 0.07 0.159 0.121 0.208 0.005 

3A 184 208.7 178.3 240.4 0.08 0.137 0.100 0.181 0.006 

3B 184 170.5 140.0 200.7 0.09 0.091 0.062 0.127 0.009 

3C 184 192.5 162.9 223.2 0.08 0.116 0.083 0.156 0.007 

4A 184 152.2 128.8 174.6 0.08 0.073 0.052 0.096 0.006 

4B 184 184.6 160.6 206.1 0.06 0.107 0.081 0.133 0.004 

4C 184 189.0 166.1 211.0 0.06 0.112 0.087 0.140 0.004 

5A 184 188.0 160.3 213.7 0.07 0.111 0.081 0.143 0.005 

5B 184 203.6 180.6 228.1 0.06 0.130 0.102 0.163 0.004 

5C 184 170.4 148.1 195.5 0.07 0.091 0.069 0.120 0.005 

C1 184 142.3 124.8 162.3 0.07 0.064 0.049 0.083 0.005 

C2 184 93.1 76.9 109.4 0.09 0.027 0.019 0.038 0.008 

C3 184 131.8 114.5 151.2 0.07 0.055 0.041 0.072 0.005 

 

 

Table 2.5 Effective detection radius and effective detection area with bootstrapped 95% 

confidence intervals and coefficient of variation (CV) for source level of 176 re 1 µPa 

@ 1m (pp), for the artificial playback signal 

POD 
SOURCE 

LEVEL 

EDR 

(m) 
2.50% 97.50% CV 

EF. 

AREA 

(km
2
) 

2.50% 97.50% CV 

1A 176 103.2 69.7 137.5 0.17 0.033 0.015 0.059 0.029 

1B 176 144.6 119.4 170.9 0.09 0.065 0.044 0.092 0.009 

1C 176 105.2 81.9 131.5 0.12 0.035 0.021 0.054 0.014 

2A 176 145.7 121.7 169.1 0.08 0.066 0.046 0.089 0.007 

2B 176 127.2 104.7 151.2 0.09 0.051 0.034 0.072 0.009 

2C 176 147 123.6 171.8 0.08 0.068 0.048 0.092 0.007 

3A 176 160.9 134.1 192.1 0.09 0.081 0.056 0.116 0.009 

3B 176 122.9 94.7 153.5 0.12 0.047 0.028 0.074 0.015 

3C 176 144.5 115.5 175.0 0.10 0.065 0.042 0.096 0.011 

4A 176 98.57 79.3 119.5 0.11 0.030 0.019 0.045 0.012 

4B 176 129.9 108.0 152.7 0.09 0.053 0.036 0.073 0.008 

4C 176 134.3 112.1 156.9 0.08 0.056 0.039 0.077 0.007 

5A 176 98.87 72.5 124.9 0.1 0.031 0.016 0.049 0.019 

5B 176 112.5 86.1 136.5 0.11 0.039 0.023 0.058 0.013 

5C 176 84.11 61.9 107.4 0.14 0.022 0.012 0.036 0.019 

C1 176 115.7 100.3 132.5 0.07 0.042 0.031 0.055 0.005 

C2 176 70.07 57.0 86.0 0.10 0.015 0.010 0.023 0.011 

C3 176 105.7 90.28614 122.7823 0.080367 0.035073 0.025609 0.04736 0.0065 
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Appendix 2.4:  Effective detection radii and effective detection areas for the real 

porpoise playback signal 

 

Table 2.6 Effective detection radius and effective detection area with bootstrapped 95% 

confidence intervals and coefficient of variation (CV) for the real porpoise sequence for A) 

Clicks detected (CP1 files), B) Classified trains and C) Trains classified as NBHF (porpoises). 

A) Clicks detected (CP1 files) 

POD EDR (m) 2.50% 97.50% CV 

EF. 

AREA 

(km2) 

2.50% 97.50% CV 

1A 101.0 54.7 170.8 0.30 0.03 0.009 0.092 0.092 

1B 158.4 112.6 212.1 0.16 0.08 0.040 0.141 0.026 

1C 85.4 52.2 133.1 0.24 0.02 0.009 0.056 0.059 

2A 120.8 62.8 214.4 0.31 0.05 0.012 0.144 0.099 

2B 107.7 65.2 170.6 0.26 0.04 0.013 0.091 0.067 

2C 170.1 109.1 245.7 0.22 0.09 0.037 0.190 0.046 

3A 154.7 97.1 214.6 0.20 0.08 0.030 0.145 0.039 

3B 326.9 226.8 426.2 0.16 0.34 0.162 0.571 0.024 

3C 242.9 173.0 326.4 0.16 0.19 0.094 0.335 0.027 

4A 246.8 193.5 310.5 0.12 0.19 0.118 0.303 0.015 

4B 223.5 172.1 279.7 0.12 0.16 0.093 0.246 0.015 

4C 322.3 259.8 380.2 0.09 0.33 0.212 0.454 0.009 

C1 168.3 137.9 205.9 0.10 0.09 0.060 0.133 0.011 

C2 100.6 67.8 143.5 0.19 0.03 0.014 0.065 0.036 

C3 91.0 63.3 129.6 0.18 0.03 0.013 0.053 0.033 

 

 B) Classified trains  

POD EDR (m) 0.0 1.0 CV 

EF. 

AREA 

(km2) 

0.025 0.975 CV 

1A 62.0 24.4 138.8 0.47 0.01 0.002 0.060 0.224 

1B 116.1 79.3 169.9 0.20 0.04 0.020 0.091 0.040 

1C 55.9 31.9 100.7 0.32 0.01 0.003 0.032 0.101 

2A 120.5 62.5 201.6 0.30 0.05 0.012 0.128 0.087 

2B 58.4 24.4 128.3 0.47 0.01 0.002 0.052 0.221 

2C 117.2 72.2 187.6 0.26 0.04 0.016 0.111 0.068 

3A 140.2 88.8 212.3 0.22 0.06 0.025 0.142 0.051 

3B 227.4 156.0 320.3 0.19 0.16 0.076 0.322 0.035 

3C 204.6 140.8 285.5 0.18 0.13 0.062 0.256 0.033 

4A 146.5 103.1 210.0 0.19 0.07 0.033 0.139 0.034 

4B 65.1 39.0 110.0 0.28 0.01 0.005 0.038 0.077 

4C 80.9 50.1 133.6 0.26 0.02 0.008 0.056 0.069 

C1 133.4 107.3 173.6 0.13 0.06 0.036 0.095 0.017 

C2 49.7 29.2 86.2 0.29 0.01 0.003 0.023 0.086 

C3 88.7 61.1 127.5 0.20 0.02 0.012 0.051 0.039 
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C) Trains classified as NBHF (porpoises) 

POD EDR (m) 0.0 1.0 CV 

EF. 

AREA 

(km2) 

0.025 0.975 CV 

1A 52.9 19.7 127.0 0.52 0.01 0.001 0.051 0.274 

1B 60.0 34.6 106.3 0.32 0.01 0.004 0.036 0.103 

1C 36.9 19.6 77.8 0.41 0.00 0.001 0.019 0.172 

2A 88.3 32.7 184.8 0.45 0.02 0.003 0.107 0.205 

2B 55.0 20.6 133.9 0.53 0.01 0.001 0.056 0.283 

2C 33.3 8.3 113.2 0.86 0.00 0.000 0.040 0.743 

3A 94.6 55.6 167.7 0.31 0.03 0.010 0.088 0.095 

3B 101.2 60.3 169.0 0.28 0.03 0.011 0.090 0.078 

3C 126.9 79.4 201.6 0.26 0.05 0.020 0.128 0.066 

4A 116.2 77.4 187.0 0.24 0.04 0.019 0.110 0.058 

4B 39.0 20.6 71.5 0.34 0.00 0.001 0.016 0.119 

4C 58.6 34.7 100.1 0.29 0.01 0.004 0.031 0.085 

C1 98.4 76.5 138.9 0.17 0.03 0.018 0.061 0.027 

C2 42.0 22.6 80.1 0.35 0.01 0.002 0.020 0.123 

C3 42.2 23.9 75.1 0.32 0.01 0.002 0.018 0.101 
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Chapter 3 ACOUSTIC DETECTION PROBABILITY OF 

BOTTLENOSE DOLPHINS (TURSIOPS TRUNCATUS), WITH 

STATIC ACOUSTIC DATA LOGGERS 

 

 

Nuuttila, H.K., Thomas, L., Hiddink, J.G., Meier, R., Turner, J.R., Bennell, J.D., and 

Evans, P.G.H. (in review for Journal of Acoustical Society of America) 

Author’s contribution 

I prepared the fieldwork, collected (with help of volunteers) most of the data and 

conducted all the analyses and wrote the manuscript. Rhiannon Meier together 

with volunteers Elisa Girola and Gemma James collected part of the data which 

was submitted as Rhiannon’s MSc thesis in 2010. Nick Tregenza lent the 

equipment and helped deploy and set the C-PODs. 

Len Thomas and Jan Hiddink helped with statistical analysis and R script and 

improved the structure of manuscript. Jim Bennell conducted side scan analysis 

of the study area.  

All authors proofread the manuscript and offered helpful comments before 

submission to the Journal. 

  



CHAPTER 4 

 

 

89 

  

3.1 Abstract  

Acoustic data loggers are widely used for monitoring the occurrence of cetaceans and 

can play an important role in fulfilling the statutory monitoring requirements of 

protected species. Although useful for long-term monitoring they are restricted in their 

spatial coverage and for many devices the effective detection distance is not specified. 

A generalized additive mixed model (GAMM) was used to investigate the effects of (1) 

distance from data logger, (2) animal behaviour (feeding and travelling) and (3) group 

size on the detection probability of bottlenose dolphins (Tursiops truncatus) with 

autonomous data loggers (C-PODs) validated with visual observations. In addition the 

performance and detection probabilities of single vs. paired data loggers were assessed. 

The average probability of acoustic detection for minutes with a sighting was 0.59 and 

the maximum detection distance ranged from 1343-1779 m. Minutes with feeding 

activity had higher acoustic detection rates and longer average effective detection radius 

(EDR) than travelling ones. Unexpectedly, the detection probability for single dolphins 

was significantly higher than for groups, indicating that the acoustic behaviour of single 

dolphins in the area may differ from those of larger groups, making them more 

detectable. The C-POD is effective at detecting dolphin presence but the potential 

effects of behaviour and group size on detectability create challenges for estimating 

density from detections as higher detection rate of feeding dolphins in comparison to 

travelling ones could yield erroneously high density estimates in feeding areas.  

 

3.2 Introduction 

Monitoring mobile species in the marine environment is challenging because of the 

difficulty and expense in locating them, especially if they range across many kilometres 

per day like many cetaceans (Stevick et al. 2002). Determining adequate sampling areas 

and rates for such wide-ranging species poses many problems. Visual surveys, either 

land or boat based, are restricted to daylight and relatively calm seas (Teilmann 2003) 

and can be affected by observer variability (Young & Pearce 1999). Cetaceans can 

easily be missed by visual observers because they swim fast (Akamatsu et al. 2008) and 

spend a large proportion of time underwater. Seasonal ranging patterns of many species 

mean that both temporal and spatial coverage for sampling is required, but covering 
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large areas is expensive and simultaneous sampling of wide ranges is impractical using 

visual techniques (Hammond 2001).  

Several cetacean species have highly evolved social structures and complex intra-

specific communication systems (Tyack 1997) and may travel considerable distances to 

fulfil high energetic requirements (Bowen et al. 2002). Evolutionary adaptations to a 

marine lifestyle have favoured the development of specialised vocal production and 

auditory systems (Au 1993; Richardson et al. 1998). As a consequence, cetaceans rely 

on vocalisations to identify conspecifics, communicate, navigate and forage, making 

acoustic methods one of the most efficient ways to localise and track them. Acoustic 

surveys, especially those using static data loggers can be conducted 24 hrs a day, 

regardless of weather and sea state, and can provide a simultaneous cover of large areas 

(Evans & Hammond 2004). 

The bottlenose dolphin (Tursiops truncatus) faces threats from many anthropogenic 

activities such as by-catch, disturbance, marine seismic exploration, and it is listed in 

the Annex II of the EU Habitats Directive. The directive requires national reporting on 

the favourable conservation status of threatened species and habitats and the 

establishment of Special Areas of Conservation (SAC) to ensure their adequate 

management (European Commission 2006; European Union 2007; Evans 2012). Static 

acoustic monitoring (SAM) devices have been used in cetacean studies covering long 

time periods across seasons or years (Verfuß et al. 2007; Simon et al. 2010) and they 

show potential to fulfil the statutory monitoring requirements of protected cetaceans in 

many coastal areas complementing or potentially even replacing some visual surveys 

(Marques et al. 2012). Here the suitability of one type of static acoustic data logger, the 

C-POD, is assessed as a monitoring tool for bottlenose dolphins. 

C-PODs and their predecessors, T-PODs, are static acoustic data loggers that 

autonomously log times and characteristics of echolocation clicks which the 

accompanying software identifies as cetacean click trains and classifies into different 

species groups (Chelonia Ltd 2012a). These click loggers detect echolocation clicks 

from 9-170 kHz for the T-PODs and 20-160 kHz for the C-PODs, and can be used to 

monitor many odontocete species. Clicks are logged if they show a sufficiently high 

peak sound pressure level and a distinct spectral peak in the frequency range covered. 

Most of the clicks logged are non-cetacean clicks and cetacean detection depends on 
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post-processing to identify coherent trains of clicks among those logged. The first 

versions of the earlier click detector were tested more than a decade ago (Tregenza 

1999), and used to monitor harbour porpoise (Phocoena phocoena) and fisheries 

interactions, and the movements of porpoises around pingers (Cox et al. 2001). Since 

then the T-PODs have been used for monitoring many echolocating cetaceans, such as 

harbour porpoise, bottlenose dolphin and Hector’s dolphin (Cephalorhynchus hectori) 

occurrence in coastal areas (Rayment et al. 2009), and their responses to disturbance 

from marine developments, such as effects of wind farm construction and operation 

(Carstensen et al. 2006; Tougaard et al. 2009b; Brandt et al. 2011) and various types of 

fishing gear (Cox et al. 2004; Carlström et al. 2009). Although the T-POD was first 

used to monitor harbour porpoises, many studies have since used it to monitor 

bottlenose dolphin occurrence and habitat use (Bailey et al. 2010; Simon et al. 2010; 

Elliott et al. 2011a). Dolphins emit frequent and intense clicks within the effective 

frequency band of both T-PODs and C-PODs (Table 1) for navigation and feeding (Au 

1993; Wahlberg et al. 2011; Au et al. 2012), making them suitable target species for the 

click loggers. 

Table 3.1 Reported echolocation click characteristics of the bottlenose dolphin 

Click characteristics Reported range 

Mean source level dB re 1 µPa 
(peak-to-peak) @ 1 m 

177-228 

Click duration 8-72 µs 

Peak frequency 30-150 kHz 

Beam width 9-10 ° 

Sources (Au et al. 1974, 2012; Au & 
Hastings 2008; Wahlberg et al. 
2011). 

 

In addition to monitoring population trends and relative abundance, static hydrophones 

have also been assessed and used for absolute abundance and density estimation 

(Marques et al. 2009; Kyhn et al. 2012). The commonly used term, detection function 

g(x) is the probability of animal detection as a function of a variable such as distance (x) 

from the data logger (Buckland et al. 2001). This can be derived from the predicted 

values from the statistical and acoustic modelling and gives the probability of detecting 

a dolphin given it is within distance x of the detector. From the detection function we 

can integrate distance to attain the effective detection radius (EDR), the distance from 

the C-POD within which as many animals are missed as are detected at greater 



CHAPTER 4 

 

 

92 

  

distances (Buckland et al. 2001). The effective detection area (the circular plot around 

the data logger) can then be calculated and given sufficient information about detections 

(such as average group size or the relation between vocalisation rate and animal 

density), the density for the area can be estimated using equations detailed further 

below. 

While some information exists on the T-POD detection abilities (Rayment et al. 2009) 

detailed information on detection distances, or potential factors influencing dolphin 

detectability such as vocalisation rates require sea testing for the C-POD. Although 

bottlenose dolphin echolocation clicks have been studied extensively in captivity (Au 

1993) very little is known about how group size or behaviour might influence the click 

train production rates of wild animals.  

The objective of this study was to examine simultaneous visual observations and 

distances measured with a theodolite and acoustic data logged by the C-PODs to define 

the maximum acoustic detection range and effective detection radius for bottlenose 

dolphins. In particular the effect of dolphin group size and behaviour on the detection 

probability was examined and the performance and detection probabilities of single vs. 

paired data loggers were assessed. We hypothesised that all variables would have some 

effect on the dolphin detection probability and that paired data loggers would increase 

the detectability of visually observed encounters. To our knowledge this is the first 

study to look at the effect of a combination of biotic factors on the detectability of 

dolphins, and to describe the effective detection radius and detection probabili ty of 

bottlenose dolphins with C-PODs, both of which can have potential implications on 

future monitoring of this protected species. 

 

3.3 Materials and methods 

Study Area 

The study was conducted within the Cardigan Bay Special Area of Conservation 

(SAC), Wales between March and July 2010, and consisted of acoustic recordings of 

dolphin echolocation clicks with C-PODs compared with simultaneous visual 

observations from a coastal cliff-top monitoring site located at the Old Coastguard 

Lookout, New Quay (Figure.3.1).  
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Figure 3.1 Location of the theodolite observation station and the C-POD mooring sites 

(1-5) for the seven C-PODs deployed in the study (1: C-POD 900; 2: C-POD 885; 3: C-

POD 921; 4: C-PODs 840 and 898; 5: C-PODs 901 and 897). Positions of tracked 

dolphin sightings during the study period marked with N.  

Acoustic Data Collection 

A total of seven calibrated C-PODs were set to log clicks within a frequency range of 

20-160 kHz. The sensitivity of the units had been standardised when built by rotating 

the complete instrument in a sound field and adjusted to achieve a radially averaged, 

temperature corrected, max source pressure level (SPL) reading within 5% of the 

standard at 130kHz (±0.5 dB). The radial values were taken at 5 degree intervals.  

Recalibration after the experiment showed that all units were within the original 

specifications after two years of use and that there were no changes of operational 

significance. The calibration and standardisation process is described in detail on the 

manufacturer’s website, (www.chelonia.co.uk).  Paired loggers were also compared in 

this study as an additional assessment of uniformity of sensitivity. 

The C-POD units were moored over two separate periods in 2010 and were part of a 

larger experiment including up to 44 C-PODs. The first deployment took place from 

February to May and consisted of three C-PODs; the second was from June to August 

with four C-PODs moored in two pairs (Figure 3.1). The moorings were deployed at a 

site where dolphins are often sighted, and spanned water depths of 17–22 m (chart 

datum) and distances of 720-1055 m from the visual observation site. The moorings 

consisted of metal weights, connecting rope, and two pairs of surface buoys on either 
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end of a mooring line, marking the position of the data loggers. The moorings 

maintained the floating data logger units in a vertical position in the water column, at 

1 m above the seabed, which was investigated with a side scan sonar and found to 

consist of an even mixture of sandy and muddy substrate. Although only five C-PODs 

were used for the main analysis, during the mid-summer deployment a trial was set up 

with two additional C-PODs deployed within 1 m of the main device to assess the 

between-logger variability and to assess the extent to which paired C-PODs (1 and 

100 m apart) would increase detection probability.   

Visual Observations   

Visual observations of dolphins were conducted on 108 days, recording data on the 

sightings and tracking the animals with a theodolite. Visual scans were conducted by a 

team of 2-4 trained, experienced observers during daylight hours in sea states 3 on the 

Beaufort scale over a visible sea-surface area of approximately 3 km around the C-

PODs. 8 x 32 binoculars were used to aid detection and tracking of the study animals. 

Whilst one observer was tracking the animals with a theodolite, another was dedicated 

to searching animals outside the tracked group. A dolphin group was defined as ‘a 

number of dolphins in association with one another, often engaged in the same activity 

and remaining within approximately 100 m of one another” (Bearzi et al. 1997). Once 

sighted, dolphin groups were tracked using a 30 x magnification Sokkia electronic 

digital theodolite (DT5A) which provided the horizontal and vertical angles from a 

GPS-calibrated reference point for each fix, which were later converted to geographical  

positions and then to distances to the C-POD sites. The theodolite was calibrated daily 

with set reference points. To ensure that animal positions calculated from theodolite 

fixes using the equations below were accurate, theodolite fixes of known positions 

(with GPS coordinates) were taken and the resulting calculations were compared 

against the GPS generated positions.  

Measuring station altitude 

The station altitude above sea level was determined with a stadia rod calibration 

method, following Frankel et al. (2009). A 4 m long rod was held vertically on the 

shore below the monitoring station during low tide, with the bottom of the rod 

positioned at sea level. From the monitoring station, vertical angles were then recorded 

to the top and bottom of the rod (n = 20) using the theodolite, and mean ( SE) values 
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of both angles were obtained to reduce measurement error. The reference altitude of the 

station was then determined using the following equations as described in detail in 

Meier (2012) (Figure 3.2): 

A = B –T 

 = 180 –B 

Hypotenuse = Pole Height x sin (T)/sin (A) 

Station Altitude = Hypotenuse x cos () 

where B is the mean vertical bottom angle of the rod (relative to gravity with 0 = 

zenith), T is the mean vertical top angle and A the differential angle between B and T.  
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Figure 3.2 Diagram of the rod method (after methodology from Frankel & Yin, 2009) 

used to determine theodolite station altitude during field studies (reproduced from 

Meier, 2010).   

To account for the effect of tidal height on the elevation of the cliff above sea level 

during the study, a reference tidal marker (RTM) was painted on an intertidal rock in 

contact with sea level, at low tide during the spring tidal phase of the lunar cycle. 

Additional tidal markers were then painted at 0.5 m intervals above the reference tidal 

marker. This was undertaken at the same time that cliff elevation measurements were 

recorded to ensure that the station altitude from the reference tidal marker was known. 

The height of sea level above the reference tidal marker could then be determined from 

the monitoring station at any point during the tidal cycle. Tidal height measurements 

were subsequently taken at 15-minute intervals throughout all visual observation 

periods. The total theodolite height varied between 93.3 – 96.9 m above sea level and 

was calculated as: 

Total Theodolite Height = Reference Station Altitude (RSA) + Theodolite Eye Height 

/+ Tidal Height (above/below the RTM) 

Dolphin distance from theodolite  

The distance of the cetacean(s) from the theodolite (B) was calculated from the 

measured vertical angle () between the animal’s position and ‘nadir’ / 180 from the 

vertical reference point (0 = zenith), and the known altitude of the theodolite station 

(A) at the time of the sighting (Figure 3.3). This was calculated using right-angled 

trigonometry by applying the following equation: 

B  = A x tan () 

When more than one animal was sighted, theodolite fixes were taken from the animal 

nearest to the C-PODs at the time of initial sighting and then on every surfacing. 

Tracking then continued until the animals moved out of view. To ensure that the 

acoustic and visual data originated from the same group of animals, only those 

measurements where the focal group was considered to be the only one within the study 

area were used. 
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 The distance between the animal’s position and the C-POD was calculated using the 

recorded geographical coordinates of the theodolite station and the data loggers (taken 

with a handheld Garmin GPS device), and the angular measurements recorded with the 

theodolite.  

 

Figure 3.3 Diagram of the trigonometric method used to determine distance of the 

dolphin(s) and C-POD moorings from the theodolite monitoring station, in the present 

study. ‘A’ is the altitude of the theodolite station, ‘B’ is the base distance between the 

theodolite and the dolphin(s) or C-POD, and  is the vertical angle between the 

dolphin’s position and nadir (Meier, 2010).   

1) Converting geographical coordinates into true bearings 

The geographical coordinates of the theodolite station and the horizontal reference point 

were used to calculate the true bearings (in relation to geographic north) of the 

horizontal reference point from the theodolite station using the following formula:  

 = tan-1 ((cos(lat1) x sin(lat2) – sin(lat1) x cos(lat2) x cos(long1 - long2))/( sin(long2 – 

long1) x cos(lat2))) 

Where lat1 and lat2 are the first and second latitude coordinates, and long1 and long2 are 

the first and second longitude coordinates. 
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2) Determining the true bearing of the dolphin(s) from the theodolite station 

Using a) the determined bearing of the horizontal reference point from the theodolite 

station (step 1), and b) the measured horizontal angle between the animal, theodolite 

station and the horizontal reference point (taken from the theodolite), the bearing of the 

animal(s) from the theodolite station could be determined. The formula used to 

determine this bearing was dependent on the location of the animal(s) in relation to true 

north, the horizontal reference point and the theodolite station. 

a) Horizontal reference point 1 (coordinates: 52 13.196’ N, 004 16.557’ W): 

When the animal was to the west: 

A = 360 - (B + C) 

When the animal was to the east:   

A = C – B 

b) Horizontal reference point 2 (coordinates: 52 12.842’ N, 004 22.563’ W): 

When the animal was to the west: 

A = B + C 

When the animal was is to the east:   

D = 360 - B 

 A = C – D 

Where A is the bearing of the animal(s) from the theodolite station, B is the measured 

horizontal angle between the animal(s), theodolite and the horizontal reference point, C 

is the bearing of the horizontal reference point from the theodolite and D is angular 

difference between B and 360. 

3) Converting theodolite angles into latitude and longitude 

The latitude and longitude of the animal(s) position could be calculated, using the 

calculated distance of the animal(s) from the theodolite station, the geographic 

coordinates of the theodolite station and the bearing of the animal from the theodolite 

station (Veness 2010). 

The angular distance of the animal(s) (Bd/R) was initially calculated, where Bd is the 

distance of the animal(s) from the theodolite station and R is the radius of the earth 
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(6371km). The latitude of the animal (lat2) was then calculated using the following 

formula:  

lat2 = sin-1(sin(lat1) x cos(Bd/R) + cos(lat1) x sin(Bd/R) x cos()) 

where lat1 is the latitude of the theodolite station and  is the true bearing of the animal 

from the theodolite station.  

A similar method was used to calculate the longitude of the animal(s) using the 

following formula: 

long2 = long1 + tan-1((sin() x sin(Bd/R) x cos(lat1)/ cos(Bd/R) – sin(lat1) x sin(lat2))) 

where lat1 and long1 are the latitude and longitude of the theodolite station, lat2 is the 

latitude of the animal and  is the true bearing of the animal from the theodolite station.  

4) Determining distance of the animal(s) from the C-POD 

With the latitude and longitude of the animal’s position (step 1-3), and the latitude and 

longitude of the C-POD position, the distance between the animal(s) and the C-POD 

could be determined using the spherical law of cosines as follows:  

d = cos-1 (sin(lat1) .sin(lat2) + cos(lat1) .cos(lat2) .cos(long2 – long1)) .R 

where lat1 and lat2 are the first and second latitude coordinates, long1 and long2 are the 

first and second longitude coordinates, and R is the mean radius of the earth (6371 km). 

All angles and coordinates were converted into radians for calculations. All distances 

determined in this way were then verified using a second methodology following the 

spherical law of cosines, described in detail in Meier (2010). Formulas were obtained 

and adapted from http://moveable-type.co.uk/scripts/latlong.html (Veness 2010). 

During every theodolite fix, the observers recorded group size, composition and 

cohesion, travel direction and surface behaviour. Behaviour was defined using the 

following categories: foraging/feeding (surface foraging, prey pursuit/capture, demersal 

foraging), socialising (physical contact, synchronised movement, aggression, play), 

aerial behaviour, travelling, and milling (Shane 1990; Bearzi et al. 1999). Due to the 

low number of observations in some of the categories, only foraging/feeding and 

travelling categories were used for analysis. Here the terms ’feeding’ and ‘foraging’ are 

at times used interchangeably to describe both foraging and feeding activities and 



CHAPTER 4 

 

 

100 

  

defined as such if one or more of the following were observed: visible prey in dolphin’s 

mouth or tossed above water surface, feeding birds in the same location as surfacing 

animals (surface foraging), bursts of high speed swimming with rapid turns in the same 

area (prey pursuit/capture) and repeated vertical dives in same area with raised tail 

flukes without consistent travel direction (demersal foraging) (Würsig & Würsig 1979; 

Shane 1990; Bearzi et al. 1999). Travelling was defined as continuous movement in one 

general direction (Bearzi et al. 1999). Environmental data with sea state, swell height, 

cloud cover, visibility and tidal height were collected at 15-minute intervals to assess 

the observation conditions so that sightings made during poor sighting conditions would 

not be used for further analysis. To eliminate observer error, only those sightings in 

which a single species was present and where the behaviour or group size did not 

change during the entire encounter were used for the study.  

Data Analysis 

The data were downloaded using the C-POD.exe versions v2.001 and v2.009 and the 

train detection was conducted with v.2.019. The train detection algorithm identifies 

click trains (more or less regular series of similar clicks), and estimates their probability 

of arising by chance from a non-train producing source (like rain or a boat propeller). 

This probability is determined in part by the Poisson distribution of the prevailing rate 

of arrival of clicks, the size of the time interval between each click, the regularity of the 

trains, and the number of clicks in the train.  A quality value, ‘High’, ‘Medium’, ‘Low’ 

or ‘Doubtful’ quality, is attached to each train to represent the estimated confidence that 

it arises from a train source, such as a cetacean or boat sonar. A cetacean train is 

identified as showing variation in temporal spacing of clicks over time, and reduced 

similarity of the clicks caused by the changing orientation of the animal, propagation 

effects, and by changes in the click produced, especially in the case of broad-band 

dolphin clicks. Here only ‘High’, ‘Medium’ and ‘Low’ quality class trains were used, 

with all ‘Doubtful’ trains excluded from analysis. Low quality trains were included in 

the analysis to improve the validity of the data and to incorporate short click trains from 

animals engaged in behaviors other than foraging (following the manufacturer’s 

recommendation).  

The performance of the train detection depends on the level of background noise and 

interference from other sound sources and the result is a balance of detecting the 

weakest possible clicks without picking out false detections. Earlier published studies of 
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bottlenose dolphins with T-PODs reported low rates of false acoustic detections during 

periods when no dolphins were observed visually, (Philpott et al. 2007); others 

described porpoise detections during times when no porpoises were assumed present 

(Bailey et al. 2010) while some chose not to examine their data for false positive 

detections (Leeney et al. 2007; Elliott et al. 2011a). Although some false positive 

detections appear commonplace with dolphin monitoring (Elliott et al. 2011b), T-POD 

studies on harbour porpoises reported very low incidence of false positive detections 

(Kyhn et al. 2012). According to the manufacturer, the C-POD’s train detection is now 

much improved in comparison to the T-POD’s, with a very low rate of false positive 

detections, although there have been no published studies to assess this, with either 

porpoises or dolphins. To ascertain a false positive rate for a dataset, the manufacturer 

recommends a visual examination of a sample of classified trains 

(www.chelonia.co.uk). Additionally one could examine the C-POD click train data 

from periods when no animals were sighted (although this would then relay on the 

quality of visual observations) and express the false positive rate as a percentage of total 

observation time (Kyhn et al. 2012). Here both methods were attempted, although 

visual examination of dolphin clicks is complicated by the fact that dolphin clicks are 

not as easily defined as the very stereotypical porpoise clicks (Au 1993; Wahlberg et al. 

2011). Furthermore, attempts to examine false positive detections during periods when 

no dolphins were sighted are necessarily affected by the potential observer error, as no 

sightings does not automatically mean that animals were not present, especially with 

dolphins which can emit clicks of very high intensity. A fast travelling animal, may 

have ensonified the C-POD and consequently been acoustically detected, whilst being 

missed by the visual observer. During a 50 day sample (during deployment period 2) of 

visual observations totalling 147 hours of visual effort time, there were 90 sightings of 

dolphins, of which 71 were acoustically detected within 5 minutes of the visual 

sightings, and further six acoustic detections which were not visually detected, totalling 

3293 click trains in four C-PODs. The portion of false positive click trains in this 

sample was considered negligible at 0.0018 % (6 out of 3293).  Of the six acoustic 

encounters without simultaneous visual detections, three were clusters of trains classed 

as ‘moderate’ quality, and considered to be actual dolphins missed by observers, 

whereas three consisted of single ‘low’ quality click trains and were identified as 

potential false positives. A further cause for concern with dolphin detections is the 
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potential likelihood of erroneous species classification, especially in areas where both 

dolphins and porpoises are present. Here we sampled 100 randomly selected click trains 

which were assigned as dolphins by the train detection algorithm and visually assessed 

them to identify trains that may have been falsely classified as dolphins when they were 

actually of non-cetacean origin or from a another species (in this case harbour 

porpoise). This visual validation was based on known characteristics (Table 1) of 

dolphin echolocations such as click duration, mean inter-click interval (ICI), modal 

frequency, bandwidth and amplitude profile represented in CPOD.exe. In cases when 

more than one of these characteristics was deemed substantially different from the 

known characteristics, it was categorised as a potential false positive train. The false 

positive rate for the sample data was 2/100, and in both cases the train was thought to 

originate from a porpoise. To avoid any further misclassifications of the trains, all 

encounters with both species present were excluded from the analysis. Other studies 

have used additional click train criteria in their analyses to minimise the potential for 

false positive detections (Elliott et al. 2011a; Rayment et al. 2011).  

Comparison of Visual and Acoustic Data 

The goal was to examine the acoustic detections on C-PODs during periods of visually 

confirmed dolphin sightings. A binary code was assigned to indicate whether an 

acoustic detection occurred during each sample minute of visual detections (1 for 

detection or 0 for no detection). Visual sightings were used as a ground truth and the 

overall detection probability was calculated as the fraction of minutes acoustically 

detected from the total number of minutes with visual sightings. Every minute that a 

visual sighting occurred was considered a trial if it took place within the truncation 

distance w, beyond which detection probability is zero. The truncation distance of 

1999 m was determined based on detection distances calculated from theodolite tracks. 

Each trial was examined separately for all the C-PODs. Acoustic detections without 

simultaneous visual sightings were not included in the analysis. Although a minute is a 

relatively long time period to assess, it is also one of the most commonly used for 

analysing C-POD data, which is the reason why it was selected for this study, and the 

implications this may have for the data is discussed later. 

Statistical analysis  

The aim of the analysis was to explore the effect of distance, behaviour and group size 

on the acoustic detection probability and the estimated effective detection radius. The 
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variables used were detection distance, group size and behaviour as well as site of 

C-POD, the deployment period (and season) and each distinct animal encounter (animal 

visit to the study site separated by at least 15 minutes of no sightings) to model the 

detection probability of dolphins as a function of distance from the data logger and to 

assess the effect of group size and behaviour on the detection probability, as well as 

residual variation in detectability between encounters not explained by these variables. 

Each minute of data during an encounter was viewed as a binary trial, and the 

probability of success (i.e., of acoustic detection) was modelled using generalized 

additive mixed models (GAMMs), with a logit link function and binomial error 

distribution.  Models were fitted with distance, behaviour and group size as covariates, 

and model selection was based on Akaike’s Information Criterion (AIC) and the 

deviance explained (from R2 and McFadden “pseudo R2”) (Crawley 2005; Zuur et al. 

2010). Adding an interaction term between variables behaviour and group size 

improved the deviance explained and therefore the model fit. Animal encounter, 

deployment period and C-POD were fitted as random (mixed) variables, to allow for 

otherwise un-modelled residual variation in detectability between encounters, 

deployment periods or C-PODs. The intercept values for each random variable were 

plotted in R to visually inspect this variation and to select the appropriate random 

variable. Diagnostic plots were inspected to assess overall model fit. All statistical 

analyses were conducted in R version 2.13.2 (R Development Core Team, 2011) using 

the packages mgcv and gamm4  (Wood 2011).  

Effective detection radius  

To arrive at the effective detection radius (EDR, also denoted  ̂), the average 

probability ( ̂) of detecting a dolphin when it is within distance w of the data logger 

was derived from the detection function (Kyhn et al. 2012) assuming uniform animal 

density around the data logger and by integrating out the distance:  

  ̂   ∫
    ( )  

   

 

 
             

   
 

  
∫   ( )   
 

 
          (1) 

The effective detection radius,  ̂, was then calculated using 1999 m as the truncation 
distance: 

  ̂    √ ̂            (2) 
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3.4 Results 

After excluding all data from unsuitable conditions or where the group size or 

behaviour was not distinctly identifiable, a total of 66 dolphin encounters were used for 

the analyses, consisting of a combined total of 3142 minutes with visual sightings 

compared with acoustic data from the five C-PODs. Figure 3.4 depicts theodolite fixes 

obtained from a feeding dolphin and tracks of theodolite positions from a travelling 

dolphin. 

 

Figure 3.4 Example tracks of a feeding and travelling dolphin observed off of the New 

Quay Headland during the study. The triangles represent the surface locations of the 

dolphin classified as feeding, while the circles illustrate surface locations of the dolphin 

categorised as travelling. C-POD moorings and the theodolite monitoring station are 

shown on the map by black dots.  

Acoustic detections 

There were very small differences in number of detections between paired C-PODs, 

moored 1 m apart, (Figure 3.5), with a high correlation between data from paired 

C-PODs (Pearson Correlation r=0.995, p<0.0001 and r=0.997, p<0.0001 for the two 

pairs respectively), which demonstrates the accurate standardisation of these 

instruments. 



CHAPTER 4 

 

 

105 

  

 

Figure 3.5 Comparison of the number of minutes per day (represented by circles) within 

which a dolphin was detected for paired C-PODs (898 and 840 and 901 and 897), 

moored within 1m from each other. DPM =Detection Positive Minutes. Diagonal line of 

the graph denotes perfect agreement. 

The maximum detection distances calculated from theodolite tracks for the different 

C-POD locations varied between 1343 m and 1779 m and the mean maximum distance 

was 1512 m (95% CI: 1414–1609 m), (Table 3.2). The average detection probability for 

bottlenose dolphins for all the C-PODs was 0.59 (95% CI: 0.45-0.73). Adding an 

additional C-POD 1 m and 100 m apart, only slightly increased the probability of 

detecting more dolphins from an average of 0.72 for single C-PODs to 0.75 for paired 

1 m apart and 0.78 paired 100 m apart.  
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Table 3.2 The maximum and median dolphin detection distance and the overall detection 

probability (P) for each C-POD. Paired C-PODs during deployment 2 separated by grey 

lines. 

 

 

 

 

 

 

 

 

 

 

Differences between deployment periods 

The detection probability for the second (summer) period was significantly higher than 

that of the first period (Table 3.2). The mean distance from an observed dolphin to a 

data logger, the group size and frequency distribution of behaviours differed greatly 

between the two deployment periods (Figure 3.3). In particular, the average distance 

between the logger and the sighted animal for sightings was longer and the group sizes 

larger in the first deployment than in the second. There were also more sightings of 

travelling dolphins than feeding ones in the first deployment, whereas there were 

considerably more feeding encounters in the second period (Figure 3.6). 

Deployment 

Period 

C-POD 

Site 

C-POD 

# 

Max    

Dist (m) 

Median 

Dist (m) 
P 

1 1 900 1779 729 0.41 

1 2 885 1590 535 0.48 

1 3 921 1343 668 0.41 

2 4 840 1272 462 0.70 

2 4 898 1684 465 0.74 

2 5 901 1624 539 0.70 

2 5 897 1624 541 0.70 

1 & 2  Mean 1512 563 0.59 
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Figure 3.6 Differences between the two C-POD deployment periods for each variable 

used to explain detection probability. If the notches in box plots do not overlap, the 

medians are significantly different at the 5% level.  Period 1 (Feb to May), n=715 

period 2 (June to July), n=2125. 

Modelling acoustic detection probability  

All variables tested contributed significantly to the model with lowest AIC including 

the interaction terms (Table 3.3). GAMM with all variables and interactions between 

group size and behaviour was the model with best fit without false convergence errors 

and lowest AIC values, despite explaining only 11% (McFadden Pseudo R2) of the 

variability in detection probability in the dataset. Of the random variables, the largest 

effect was found from encounter, judging by the amount of variation introduced to the 

model. Encounter was thus kept as a random effect in the final model, effectively 

allowing for the possibility that the outcomes of trials within encounters are more 

similar than those between encounters. Maintaining the random variable of animal 

encounter lowered the AIC value (2985), decreased the adjusted R2 value to 0.11, and 

increased p-values of all variables, rendering behaviour non-significant (p=0.0543).   

The z- and p-values from the R summary outputs were used to assess the influence of 

each variable. After distance, the variable group size had consistently the strongest 

influence on the response variable, followed by interaction between behaviour and 

group size (Table 3.3).  

 



CHAPTER 4 

 

 

108 

  

Table 3.3 Parameter estimates and their statistical significance from the generalized 

additive mixed model (GAMM) of acoustic detection probability.   AC.DET~s(DIST) + 

GRS * BEH, random=~(1|ENC). The model included as fixed covariates behaviour 

(BEH, a factor with 2 levels) and group size (GRS, numerical covariate), together with 

their interaction (GRS*BEH), and a smooth of distance from whale to POD (s(DIST)).  

Encounter was included as a random effect.   

 

As expected, the detection probability decreased with distance from the data logger, but 

with a varying effect for two behaviours (Figure 3.7). The number of detected feeding 

dolphins was significantly higher than that of travelling dolphins (0.17, Χ2 =104.9224, 

df=1, p-value < 2.2e-16) (Figure 3.8), and there was a distinct seasonal difference in the 

number of animals observed feeding, with a marked increase during the summer 

months (Figure 3.6).  

 

Figure 3.7 Detection probability of dolphin click trains for C-PODs as function of 

distance from data logger. Solid line is the smoother for distance with GAMM; dotted 

lines depict the 95% confidence interval. 

Coefficients Estimate Std. error z value Pr(>|z|) 

(Intercept) -0.5328 -0.804 0.4215 0.4215 

BEH -1.0519 -1.924 0.0543 0.0543 

GRS -0.6483 -2.547 0.0109 0.0109 

GRS* BEH 0.5090 2.016 0.0438 0.0438 

Smooth term Effective df Ref.df Chi.sq p-value 

s(DIST) 5.28 135.6 <2e-16  
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Figure 3.8 The number of visual dolphin sightings with simultaneous acoustic 

detections (black) and those without matching acoustic detections (grey) in the two 

behavioural categories for both single animals and groups of dolphins. 

The overall detection probability decreased with increasing group size, although for 

feeding dolphins, an increase in group size increased detectability (Figure 3.9).  

Furthermore, the detection probability (P) for single dolphins was significantly higher 

than that of groups. For single dolphins, the detection probability of travelling dolphins 

was higher than for feeding dolphins whereas for groups, the opposite was found 

(Figure 3.10).  

 

Figure 3.9 The effect of group size on acoustic detection for feeding and travelling 

dolphins. Solid line is the estimated smoother and the dashed line indicates 95% 

confidence intervals. 
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Figure 3.10 The effect of distance (x-axis) on acoustic detection probability (y-axis) for 

the two different behaviours for single dolphins (n = 1097), and for groups of dolphins 

(n=1743) obtained using the generalized additive mixed model (GAMM). Dashed lines 

indicate 95% confidence intervals. 

Effective detection radius (EDR) 

The average EDR for travelling dolphins was 317 m (95% CI:  211-497 m) and for 

feeding dolphins, 449 m (95% CI: 280-691 m). The highest EDR was calculated for 

single travelling dolphins (604 m, 95% CI: 447-785 m). Effective detection area 

respectively varied from 0.04 km2 to 1.14 km2 (travelling) and 0.73 km2 to 0.55 km2 

(feeding). For travelling dolphins, the EDR decreased considerably with increase in 

group size (604 m to 113 m), whereas for feeding dolphins the EDR remained relatively 

constant (481 to 416 m) (Figure 3.11). 
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Figure 3.11 Effective detection radii (EDR) and the effective detection area calculated 

for different behaviours, feeding and travelling, and for all group sizes with non-

parametric bootstrapped 95% confidence intervals (CI) (dashed lines). 

 

3.5 Discussion 

This study demonstrates the suitability of acoustic monitoring, and in particular that of 

C-POD to detect presence and absence of bottlenose dolphins. However, the study 

revealed a notable difference in detection probability for the two visually observed 

behaviours, and varying results for different group sizes, both of which will have 

implications on acoustic monitoring studies, posing a particular challenge to future 

efforts using C-PODs to estimate animal density. 

The average effective detection radius was defined at just below 400 m and maximum 

acoustic detections were recorded 1512 m from the data logger. To our knowledge, this 

is the first time the effective detection radius (EDR) and maximum detection range have 

been described using C-PODs for bottlenose dolphins. The values fluctuated between 

deployments (seasons) as well as between group sizes, reflecting the increased feeding 

events during the summer period. Based on the estimated EDR, the average effective 

detection area (a circular plot with EDR as the radius) regardless of animal behaviour 

would be 0.52km2__ an area for which there is as many dolphins missed inside as are 

detected outside it.  
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There were no differences in the two pairs of C-PODs tested, which showed very 

similar overall detection patterns. Large differences in T-POD sensitivities were seen in 

previous studies (Kyhn et al. 2008) as early T-PODs were not standardised at 

manufacture. The average acoustical detection probability of each minute when animals 

were sighted was high, with 59% of all visual minutes also acoustically detected for an 

area with a diameter of approximately 3000 m. The mean maximum detection range, 

1512 m, was higher than previously reported for T-PODs (1246 m (Philpott et al. 2007) 

and 1313 m (Elliott et al. 2011a)), which was expected considering the C-POD’s 

improved click detection performance. Although this may seem high, it is in fact lower 

than theoretically calculated maximum detection distances at typical dolphin 

frequencies of 75, 100 and 135 kHz and for minimum and maximum measured wild 

dolphin source levels (SL), 177 and 228 dB  re 1 µPa (peak-to-peak) @ 1 m,  

(Wahlberg et al. 2011). Calculating transmission loss based on spherical spreading in 

shallow water (DeRuiter et al. 2010) and sound absorption values measured for sea 

water at 20°C (Fisher & Simmons 1977), transmission loss (TL) can be calculated as 

follows: 

 TL = 20*log10(R) + (R)*a, where R is the distance to the animal in meters and a is the 

frequency-dependent absorption (~0.04 dB/m at 135 kHz, ~0.03 dB/m at 100 kHz, 

~0.02 dB/m at 75 kHz). This equation yields detection distances of clicks at these 

frequencies for minimum SL as 322 m, 381 m and 415 m and for maximum SL as 

1264 m, 1627 m and 2291 m respectively which makes our maximum detection 

distances entirely plausible. Additionally, distances calculated between animals and the 

C-PODs depended on the accuracy of the theodolite fixes and the accurate measurement 

of the theodolite station altitude from the tidal height. However, the maximum 

estimated error in measuring the tidal height correctly was 50 cm, which would cause a 

distance error of just over 5 m at distances over 1000 m from the theodolite, which was 

considered acceptable for the purposes of the study. 

In addition to the main effect of distance from the data logger, both behaviour (feeding 

or travelling) and group size contributed to the final model explaining the detection 

probability of dolphins. As the model explained only 11% of the variation in the data, it 

is likely that other factors apart from those examined here may also affect this. Indeed 

the interpretation of how both behaviour and group size affect dolphin detection is by 

no means straight forward and requires a thorough consideration of other potential 
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affecting factors as well inherent biases and possible errors in the analysis presented 

here. 

The results revealed that in general feeding dolphins were more likely to be detected by 

C-PODs than travelling ones. This is not surprising, as foraging and feeding dolphins 

are known to echolocate at high rates, using echolocation clicks to locate and range in 

on their prey, as well as using buzzes in the final ‘terminal’ phase of prey capture 

(Jones & Sayigh 2002). Furthermore, feeding animals are likely to be pointing their 

beam in more directions, increasing the chance of it being picked up by a C-POD. 

During travelling, animals familiar with the area may not need to echolocate as 

frequently, and they may also utilise information from each other’s vocalisations 

without the need to constantly echolocate themselves. As the study period spanned 

across seasons, it was evident that the previously reported summer peak in dolphin 

presence (Simon et al. 2010) was matched by undocumented behavioural differences 

whereby the dolphins would spend a much higher proportion of their time feeding in the 

summer months. As a consequence, the visual sightings of dolphins in the summer 

lasted longer, were located closer to the shore, and consisted of smaller group sizes than 

those in the winter. This was reflected in the increased detection rates and EDR for the 

summer periods – largely due to the seasonal variation in frequency of observed feeding 

encounters in New Quay Bay probably following increased abundance of prey. Current 

interpretation of dolphin presence and absence based on C-POD data alone will produce 

biased results depending on the behavioural budget of the animals, and in particular the 

time spent foraging near the C-POD deployment site. 

When examining group size without the effect of behaviour it was found that increasing 

group size had a significant negative effect on detectability for travelling dolphins, 

larger groups being less likely to be detected than smaller ones. This may be due to 

train detection being impaired by reverberation of a large number of concurrent clicks 

in shallow water, as this effect can be predicted from the probability assessment of 

trains described previously, however previous T-POD and C-POD studies reported no 

difference in acoustic detection from changing group sizes (Philpott et al. 2007; Meier 

2010). In this study, surprisingly, it was found that single dolphins were significantly 

more detectable by acoustic means than those in groups. A more detailed picture 

emerged when assessing the detection probability with an interaction between group 

size and behaviour. This indicated that detection probability increased slightly for larger 
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group sizes of feeding dolphins, but decreased markedly for travelling animals. 

Furthermore, it appears that not only are solitary dolphins more detectable than groups, 

but travelling single dolphins are more likely to be detected than single animals feeding 

in the area. What could explain this? This may be due to foraging animals directing 

more of their sonar into the sea bed where travelling animals ‘look’ ahead using a 

louder and more horizontal beam that will be detected by more distant PODs. In groups 

an increased proportion of animals echo-locating during foraging could outweigh this 

effect. 

In any observational study, observer bias must be taken into account. The observers 

could have missed single travelling dolphins or simply misclassified dolphin behavior. 

The accuracy of the visual classification of behaviors is important since the animals 

only spend a fraction of time on the surface, and despite careful descriptive categories, 

this classification is inherently subjective (Similä and Ugarte, 1993). Despite our 

stringent criteria, visual observations can never be perfect, and some animals may well 

have been missed. However it is unlikely that such an increase in single dolphin 

detections resulted from numerous (unseen) animals in the area, especially considering 

the large proportion of single dolphins detected visually and only three minutes which 

were detected acoustically but not visually. At that rate the overall detection probability 

would have been reduced by just under 0.2%. With such minor effect this potential 

error was not taken into account here, but studies with lower vantage point, smaller 

target species or fewer observers may find missed sightings significantly affecting their 

calculations. 

To avoid issues with potential misclassification of animal behavior, future studies could 

use an alternative way of determining behavior from the acoustic data, using short inter-

click intervals (ICIs) as indicators of foraging activity (DeRuiter et al., 2009; Nowacek 

2005). This approach would be particularly beneficial if detection probability was 

estimated for whole encounters, where the proportion of short ICIs could be assessed 

for the entire encounter duration, instead of individual minutes like in this study.  

The accuracy of the distance calculations is essential for this study. Nevertheless with 

so many separate calculations, and using manually operated theodolite, some errors are 

inevitable. In addition, the curvature of the earth was accounted for in all the 

calculations apart from the first one, which estimated the distance of animal from 
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theodolite. Due to the height of the theodolite station, the fractional error caused from 

omitting the curvature of the earth in this calculation was small, 0.01 or less for the 

distances measured below 500 m and 0.05 for distances up to 1750 m (Lerczak & 

Hobbs, 1998). However, to minimise unnecessary error in distance calculations, this 

should be accounted for in future studies. 

There were more sightings of feeding animals in general, but this does not explain why 

travelling single dolphins had such a high detection probability. A possibility remains 

that the vocal behavior of single dolphins differs from that of larger groups. It could be 

that their vocalisations are louder or less directional – increasing detectability - if they 

needed to cover a larger area by themselves. Groups of feeding animals may go 

undetected if the decreased source level of buzzes consequently decreases the detection 

rate of feeding animals buzzes (Atem et al. 2009; Jensen et al. 2009b). The decreased 

detection probability of groups of dolphins may be explained by a theory that 

echolocation information is shared between group members, and that echolocation 

production per dolphin decreases with increased group size (Jones and Sayigh, 2002; 

Quick and Janik, 2008). Similar findings for bottlenose dolphins exist from Sarasota, 

Florida, where individual dolphins were found to echolocate at a higher rate than groups 

of dolphins (Nowacek 2005). Quick and Janik (2008) showed that larger dolphin groups 

produced fewer whistles for some behaviours, potentially engaging in passive listening 

instead. Alternatively, animals in groups might not need to echolocate to the same 

extent as single animals if they attain necessary information through whistles instead. 

The function of echolocation is to create a soundscape that allows animals to identify 

objects and conspecifics, to navigate through turbid or unknown waters, and to search 

for, approach and capture prey. Travelling groups may have less need to echolocate 

continuously, as group cohesion and communication between members by whistling 

serves as a navigational aid even to those not engaging in vocalisation (Tyack 1997). 

Furthermore, maximum communication distances by whistles, measured for bottlenose 

dolphins, range over 5 km (Jensen et al. 2012), meaning that groups can easily share 

information over longer distances than the effective detection distance of the C-PODs. 

Solitary animals would have to create their own soundscape, and therefore may require 

more regular echolocation.  

Another plausible explanation for the difference in detection rates is if dolphins in this 

study modified their echolocation strategy depending on the habitat type (water depth, 
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ambient noise, bottom composition, etc.), prey sensitivity and their need to 

simultaneously communicate with conspecifics, thus varying the click rates, sound 

intensity and frequency, all of which would affect how the C-POD will record the clicks 

(Jensen et al. 2009b). Similar modification according to environmental factors has been 

suggested for whistle production (Jones & Sayigh 2002; Acevedo-Gutiérrez & 

Stienessen 2004; Ansmann et al. 2007; Jensen et al. 2012). Single dolphins may have 

different echolocation requirements especially if their feeding tactics or prey targets 

differ from those of larger groups. For example, if single animals were more likely to 

feed on dispersed benthic or demersal species they may require more intense or more 

constant echolocations than groups feeding on large shoals of pelagic prey. Larger 

groups were seen more frequently in the summer when the waters in the bay are 

considerably less turbid, and further out to sea away from coastal sediment build-up, 

facilitating navigation by sight, perhaps reducing the need to echolocate continuously.  

Many non-biological factors could also have affected the detection rates measured here, 

such as equipment sensitivity, water temperature and salinity, location in the water 

column, bottom topography and composition (Au & Hastings, 2008). Previous studies 

have demonstrated clear differences in sensitivity between T-PODs (Kyhn et al., 2012; 

Verfuß et al., 2007) and recommended estimating detection probability for each data 

logger before embarking on further studies. However, the C-PODs are calibrated to 

much higher standard than the T-PODs were and the paired C-POD comparison 

revealed a high similarity between those units that were tested.  The C-PODS used in 

this study were all recalibrated after the experiment by the manufacturer and were al l 

found to be within specification of ±0.5 dB after two years of use.  

While it was not possible to control the effects of environmental variables in our 

experimental set up, we estimated that the potential changes in salinity or water 

temperature during the short study period would have had only minimal effect on the 

high frequency sounds (Fisher and Simmons, 1977), especially within the short ranges 

covered here and it was assumed that any halo-or thermocline presence was relatively 

constant during the study period (Evans, 1995). The deployment site was selected for its 

relatively consistent character and each C-POD was moored at the exact same depth 

from the seabed. Still, ambient noise from recreational activities and coastal 

development may affect the echolocation frequency range used, causing animals to shift 

to a frequency less masked by other sounds. It is also important to note that dolphins 
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visit the study area regularly (Baines and Evans, 2012) and it may well be that the 

echolocation patterns in this area are not applicable for other populations or even other 

sites within the Cardigan Bay area. 

3.6 Conclusion 

Unlike the harbour porpoise, whose vocalisations are extremely stereotyped across time 

and space (Goodson & Sturtivant 1996), dolphin echolocation clicks are very variable 

(Wahlberg et al. 2011) making it difficult to categorise ‘typical’ dolphin click 

characteristics for an automated data classification system, such as the C-POD and 

creating a challenge when acoustically monitoring dolphins. The results here reveal that 

detection probability depends on dolphin behaviour and their group size. A higher 

detection rate of feeding dolphins in comparison to travelling ones could yield 

erroneously high density estimates in feeding areas. This will pose a serious challenge 

to density estimation of dolphins with SAM data. Even monitoring dolphin presence 

may be problematic due to the effects of behaviour and group size on detectability if 

non-feeding areas are not identified as an important habitat, particularly if the data are 

used to assess critical areas for protected species like the bottlenose dolphin. 

To overcome this issue monitoring programs should conduct preliminary visual studies 

to obtain an idea of the average group size and behavioural distribution in the area of 

interest in order to work out the appropriate average EDR (or P) prior to conducting a  

larger passive acoustic monitoring study. Alternative method would be to use data 

loggers capable of determining ranges to detected animals, allowing the detection 

probability to be calculated via distance sampling methods (Marques et al. 2012).  
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3.8 Appendices 

Appendix 3.1: Details of C-POD deployment settings 

Table 3.4 Details of deployment for C-PODs used 

Period POD Location Start Date End Date 
Distance  

from cliff 

Filter setting (khz) 

/ 

 Gain 

 
1 

 
885 

 
52.2250 N, 04.3649 W 

 
09/02/2010 

 
20/05/2010 856 m 

 
20 / 133 

1 900 52.2250 N, 04.3736 W 09/02/2010 20/05/2010 1053m 20 / 107 

1 921 52.2250 N, 04.3619 W 09/02/2010 20/05/2010 874 m 20 / 142 

2 840 52.2228 N, 04.3716 W 05/06/2010 30/07/2010 779 m 20 / 173 

2 898 52.2228 N, 04.3716 W 05/06/2010 30/07/2010 779 m 20 / 193 

2 897 52.2233 N, 04.3717 W 05/06/2010 30/07/2010 828m 20 / 175 

2 901 52.2233 N, 04.3717 W 05/06/2010 30/07/2010 828 m 20 / 200 

2 909 52.2228 N, 04.3716 W 05/06/2010 30/07/2010 779 m 80 / 127 

2 911 52.2233 N, 04.3717 W 
 

05/06/2010 30/07/2010 828 m 80 / 119 

 

 

Figure 3.12 Diagram of the C-POD mooring system deployed during the study in A) 

deployment one (single C-PODs) and B) deployment two (paired C- PODs). Note that 

seabed rope length not drawn to scale 
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Appendix 3.2: Inspecting the effect of random variables 

 

Figure 3.13 Plotting the standard deviations for each level of the random effect around 

the intercept values from GAMM with a ‘caterpillar’ plot in R. Random effects were: 

deployment perid (A), C-POD (B) and encounter (C). The larger the difference between 

intercept values, the bigger the effect on the dataset (as in some encounters) . 

Overlapping intercept values signify minimal effect from the variables (see deployment 

period and C-POD). Fitted with ‘lme4’ package in R (Wood 2011). 
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Chapter 4 COMPARISON OF BROADBAND HYDROPHONE 

AND C-POD DATA LOGGER RECORDINGS OF WILD 

BOTTLENOSE DOLPHIN (TURSIOPS TRUNCATUS) 

ECHOLOCATION CLICKS  

 

Nuuttila, H.K., Courtene-Jones, W., Brundiers, K., Koblitz, J., Turner, J. Evans, P.G.H., 

Bennell, J. and Hiddink, J. (in prep.) 
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conducted the statistical analyses and wrote the manuscript, which was greatly 

improved by contributions from both Peter Evans and Jan Hiddink. Jim Bennell and 

John Turner proof read the manuscript and offered helpful comments before submission 

to the journal. 
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4.1 Abstract 

Static acoustic data loggers, such as C-PODs, detect echolocation clicks and click trains 

of cetaceans and have various applications in the monitoring of coastal cetacean 

populations. Bottlenose dolphins (Tursiops truncatus) produce a large range of 

vocalisations, presenting challenges for the pre-defined C-POD algorithm to accurately 

identify click trains as dolphins, which can lead to an underestimation of animals 

detected or an incorrect species classification. As the C-POD has become a popular tool 

for assessing cetacean presence at sites for coastal development, it is crucial to quantify 

the detection rate of dolphin vocalisations, and whether click trains with certain 

characteristics are recognised by the logger’s software. Here, we compared 

simultaneous C-POD recordings of wild bottlenose dolphins to recordings made with a 

hydrophone with the objective of assessing whether data recorded with the C-POD are 

comparable to those of concurrent broadband recordings. Earlier work in this thesis 

indicates that C-PODs may not be able to detect all dolphin feeding buzzes (chapters 3 

and 5) and we hypothesise that some click sequences with short ICIs (below 10 ms) 

may be missed by the C-POD. The total number of clicks recorded, the click rate per 

minute, and the minimum and maximum inter-click intervals (ICIs) per minute were 

used for the comparison. The analysis revealed that there was a significant positive 

correlation between number of clicks logged with the two methods, and that every 

1 min sample period with dolphins recorded on the hydrophone had corresponding 

recordings on the C-POD. However, the hydrophone detected a higher number of clicks 

per minute. There was a significant difference in the maximum ICI recorded by the two 

methods (p <0.0001) but no difference in the minimum or mean ICI (at level of p 

<0.05). Overall, many clicks detected by the hydrophone were not detected with the 

C-POD, although this did not affect the algorithm’s ability to detect dolphin presence 

since all sampled minutes had dolphins recorded on the C-POD. Contrary to the 

hypothesis, click sequences with short ICIs (indicating potential feeding events) were 

identified by the C-PODs despite some not being recorded with the hydrophone, 

whereas clicks with long ICIs were not classified as dolphin clicks by the current train 

detection software. C-PODs are capable of identifying bottlenose dolphins, and are 

suitable for acoustic monitoring, but they do not record their entire vocal repertoire and 

may not be able to convey full information about vocalisations associated with social 

context. However, by detecting short feeding buzzes they do have potential to identify 
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foraging areas, which is critical information for effective management of these 

protected species.  

 

4.2 Introduction 

Echolocation, or biosonar, has evolved as the primary sense for navigation and foraging 

in odontocetes and bats (Griffin & Galambos 1941; Au et al. 1974). Since the discovery 

of echolocation in dolphins in the 1950s (Kellogg 1958), this sensory system has been 

under widespread scientific investigation, with much focus amongst cetaceans on 

bottlenose dolphin (Tursiops truncatus) biosonar abilities. The bottlenose dolphin has 

an exceptionally varied vocal repertoire including burst-pulse sounds and whistles used 

for communication (Mann et al. 2000; Quick & Janik 2008; Janik 2009), and 

narrowband pulsed sounds like echolocation clicks and buzzes for navigation and 

foraging (Caldwell et al. 1990; Au 1993; Tyack 1997), although clicks probably also 

have a communicative function (Tyack 1997). 

As the majority of the lives of cetaceans is spent underwater, and several species emit 

frequent vocalisations, acoustic methods provide an important means to study their 

distribution, abundance and behaviour (Filatova et al. 2006; Mellinger et al. 2007). One 

type of static acoustic monitoring (SAM) device is the C-POD, an automated acoustic 

data logger that records times and frequencies of cetacean clicks. These SAM devices 

exploit the fact that many odontocetes echolocate regularly (Mellinger et al. 2007), and 

they are capable of recording and storing click data over long periods of time, in most 

weather conditions, 24 hours a day (Evans & Hammond 2004).  

C-PODs and their predecessors T-PODs, have been used to study coastal cetaceans, 

including the bottlenose dolphin (Philpott et al. 2007; Berrow et al. 2009; Simon et al. 

2010), and they can be used to detect trends in seasonal and diel presence (Simon et al. 

2010; Elliott et al. 2011a), assess impacts of coastal developments on habitat use 

(Leeney et al. 2007), or estimate the relative abundance of a population  (Kyhn et al. 

2012). As with any static sampling method, the area surveyed is limited and directly 

related to the effective detection area, which is around 400 m for bottlenose dolphins 

(chapter 3).   
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C-PODs select and log clicks in a frequency band of 20-160 kHz using digital 

waveform characterisation. They record the time, centre frequency, intensity and 

bandwidth of cetacean echolocation clicks, and other sounds with similar pure tone 

properties (www.chelonia.co.uk/design_history.htm, Tregenza (2012)). Logged clicks 

are stored in the C-POD memory card and downloaded with the accompanying 

software, CPOD.exe for further analysis by the user. These are raw click data stored in 

CP1 files. The train classification algorithm of the software then assigns these clicks 

into associated series called click trains and runs a discrimination process to identify the 

possible source of origin for each train. This produces classified train files, called CP3 

files. The trains can be classified as boat sonars or cetaceans, which again are divided 

into the narrowband high frequency (“NBHF”) clicks of porpoises of the family 

Phocoenidae, and the more broadband generic dolphin clicks, such as those produced 

by many species of the family Delphinidae (Dudzinski et al. 2011). Simultaneously, the 

software also assigns a ‘quality class’ to each click train, which represents the 

probability of the train originating from the said source. Thus each click train will be 

assigned to a category (boat sonar, NBHF, dolphin, other) and a quality class (High, 

Mod, Low). Generally, dolphin species are not distinguishable from each other. 

Bottlenose dolphins produce highly directional, broad-band echolocation clicks with 

measured source levels of 177-228 dB re 1 µPa (peak-to-peak) @ 1m, click durations of 

8-72 µs, and peak frequencies between 30-150 kHz bandwidth (Au et al. 1974; Au & 

Hastings 2008; Wahlberg et al. 2011). Most of the energy within the click is projected 

out in a directional beam of 9-10o width directly in front of the animal (Au et al. 2012). 

The transmitted beam can be altered in terms of both direction and width, to aid 

detection of targets slightly off the dolphin’s body axis, and the frequency content 

(Moore et al. 2008) can be changed according to ambient noise or other environmental 

characteristics of particular habitats (Moore & Pawloski 1990; Rendell et al. 1999). 

Echolocation clicks are produced as a series of clicks called trains, which can be further 

described by their inter-click interval (ICI). ICIs relate to the distance of the 

echolocation target and the time it takes for the click to reach the target and arrive back 

at the dolphin, and for the information to be processed (Au 1993). Dolphins decrease 

their ICIs steadily with decreasing distance to a target (Jensen et al. 2009b), and their 

echolocation rates (the number of clicks or click trains recorded in a time unit) may 

vary according to different behaviours (Jones & Sayigh 2002). During foraging, they 
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produce shorter and faster clicks, with the shortest ICIs reported for ‘buzzes’ at 3-7 ms 

duration, emitted immediately before and during prey capture (Wahlberg et al. 2011).  

 

Traditionally, recordings of dolphin clicks have been derived from captive studies 

where the dolphin was trained to remain still and the vocalisations were recorded from 

directly in front of the animal (Au 1993). Thus most literature on dolphin echolocation 

focuses upon clicks recorded near to the beam axis, the so called “on-axis” clicks 

(Madsen & Wahlberg 2007). However, the further from the beam axis the clicks are 

recorded, the more altered they will be. These “off-axis” clicks have typically lower 

frequency and amplitude characteristics compared to the on-axis clicks, resulting in a 

high number of clicks with dominant frequency in the lower part of the frequency range 

(Au & Hastings 2008). When wild dolphins are being acoustically monitored, the 

sounds recorded originate from all around the SAM logger, containing a mixture of 

both on- and off-axis clicks. This can cause a wide variation in the click characteristics 

recorded, which may be challenging for an automated software to recognise.  

With the increased use of C-PODs in acoustic monitoring studies of bottlenose 

dolphins, the quantification of the efficiency of C-PODs in detecting echolocation 

clicks is particularly relevant. Practical measures of efficiency are the detection range 

and probability of detecting dolphins. To assess the acoustic detection probability of 

dolphins, we need to have a good understanding of the types of vocalisations produced, 

the context in which they are emitted, and whether different types of vocalisations vary 

in how they are detected by the C-PODs. SAM studies typically assume that all clicks 

emitted by the dolphin are detected with equal probability by the logger within the 

estimated detection radius. Analysis presented in chapter 5 found slightly conflicting 

evidence for the C-PODs ability to distinguish visually observed feeding behaviour. 

Here, we hypothesise that some very rapid clicks, with short ICIs, such as those 

described for feeding buzzes, may be missed by the C-POD’s train detection algorithm, 

or even not be detected at all. If these types of clicks are less likely to be recorded than 

others, there will be implications for the application of C-PODs in cetacean monitoring, 

conservation and protected area management, including the detection of critical 

foraging areas. 

While no survey method is perfect, acoustic methods for marine mammals have 

advantages over visual techniques with their capability of continuous coverage, 
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automated and potentially less biased data collection, and ability to collect data during 

conditions that are not suitable for visual surveys. On the other hand, for many species, 

visual abundance assessment still surpasses acoustic methods despite recent advances in 

density estimation from acoustic data showing promising results (Marques et al. 2009, 

2012). 

Automated click loggers, like C-PODs, are in some sense at a disadvantage compared 

to broadband hydrophones because they restrict the accumulated data according to the 

frequency band they are targeting, therefore missing other information. However, this is 

also precisely why click loggers are useful, since they limit the data stored, enabling 

longer deployment periods and reducing observer bias with the automated detection and 

classification process, providing the devices are calibrated and detector bias eliminated 

or taken into account. 

So whereas C-PODs are designed to miss some data, it is still useful to know what and 

how much of the data are missed. As C-PODs have gained popularity as a monitoring 

tool for coastal cetaceans in many areas including the UK, Germany, Denmark and 

New Zealand assessing and understanding their limitations are crucial to enable future 

improvements and to assist researchers when drawing conclusions regarding habitat 

use, acoustic behaviour and activity state, and when estimating relative abundance of 

dolphins using static data loggers. 

This study compares wild bottlenose dolphin echolocation clicks recorded with a 

broadband hydrophone to simultaneous C-POD recordings, and attempts to assess 

whether certain click trains may be more detectable than others. To assess this, we used 

an alternative recording method: a broadband hydrophone with a similar sensitivity and 

frequency range, deployed simultaneously with the C-POD. The aim was to compare 

clicks (and click trains) classified with the C-POD’s software algorithm with dolphin 

clicks extracted from the hydrophone recordings and to examine click characteristics 

such as minimum, mean and maximum inter-click intervals (ICIs), the total number of 

clicks recorded and the click rate per minute in both datasets. 
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4.3 Methods  

The study was conducted between 16th April and 5th May 2012 in the near-shore area of 

New Quay Bay, west Wales (Figure 4.1). This is a shallow bay of 12-25 m water depth, 

with bottom substrate composed of sand, sandy mud and fine gravel.  

Acoustic researchers conducting sound recordings in the field have to cope with 

environmental and technical challenges, such as generating enough power to drive 

amplifiers and recording equipment surrounded by seawater, managing engine noise 

from their own and other boats, accounting for the number of animals and species 

present and storing the data acquired. This study had its fair share of technical problems 

as well as being severely constrained by bad weather and a lack of dolphin sightings on 

suitably calm days. As a consequence, of the three weeks allocated for the recordings, 

successful recordings were carried out on only two days, and only one day yielded 

suitable data for the analysis due to a malfunction in the hydrophone recording 

software. The data used in this study were recorded on 4th May 2012 on a calm day with 

Beaufort sea state 1 during an hour long encounter with a single feeding bottlenose 

dolphin. 

Three C-PODs were attached together in a triangle formation and deployed from the 

research vessel, suspended 3 m below the surface, weighed down to keep them in a 

vertical position. The intention was to compare the data from all three data loggers to 

the data collected from the hydrophone, which was also suspended from the boat. 

 

 

Figure 4.1 Map of the study site (A) and drawing of the recording set up in New Quay 

bay (B) with a broadband hydrophone and C-PODs suspended from the boat near the 
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cliff top observation site.  Recording position 52° 13.15 N, 004° 21.69W. Not drawn to 

scale. 

Hydrophone recordings were conducted when bottlenose dolphins were sighted within 

500 m of the research vessel. The hydrophone used to record dolphin echolocation 

signals was an omni-directional, Reson TC-4013-5 with 20 m cable, sensitivity: -212 

dB re 1V/1uPa at 130 kHz, and a flat frequency response between 110 and 150 kHz. 

Hydrophone signals were amplified by a custom made 16-channel amplifier by 18 or 38 

dB depending on the background noise. Simultaneous A/D conversion was performed 

by an A/D converter with 16 bit resolution at a sampling rate of 500 kHz per channel 

(National Instruments PXI-6123). The hydrophone was attached with an aluminium 

pole to the side of the boat and suspended 3 m below the surface.  

The C-POD selects and logs clicks in a frequency band of 20-160 kHz using digital 

waveform characterisation and duration (5μs resolution), intensity, bandwidth, 

frequency and envelope criteria to select cetacean clicks. The sensitivity of the 

C-POD’s omni-directional hydrophone varies between -208 and -221 dB re 1V/1Pa, 

between the entire range of 20 to 160 kHz, with a -208 dB re 1V/1Pa at 130 kHz 

(www.chelonia.co.uk). 

The boat was anchored during the recording period to avoid engine noise and 

unnecessary movement of the hydrophone set up. A three person cliff-top observation 

team simultaneously surveyed the area, recording number and behaviour of all 

cetaceans in the area, ensuring no other species besides bottlenose dolphin were in the 

vicinity during recordings. The only other cetacean commonly seen in the area is the 

harbour porpoise (Phocoena phocoena), and although porpoise echolocation clicks are 

very stereotyped and distinct from dolphins, the dolphin clicks can appear similar to 

porpoise clicks and thus be misclassified by the C-POD software. The aim was to make 

sure as much as possible, that if porpoise clicks were identified by the software, these 

would be definite false classifications and not caused by chance encounter of actual 

porpoises. 

 



CHAPTER 4 

 

 

128 

  

Data analysis  

With a trained captive dolphin or acoustically tagged dolphin, it would be possible to 

control or at least monitor the emitted vocalisations and then compare those with 

recordings from the hydrophone and C-POD. As the study subject was a wild dolphin, it 

was not possible to compare each emitted vocalisation directly with recorded data, nor 

could one exactly match the timings of each vocalisation from hydrophone recording to 

those on the C-POD, although this should be possible with more sophisticated software. 

To compare the data, the click characteristics were pooled together for one minute 

blocks across the study period. Data from C-PODs were extracted using C-POD.exe 

software (v.2.026) which classifies clicks into click trains, and compiles various 

characteristics that researchers can export to analyse the data. The algorithm of the 

C-POD’s train detection and classification is not available for the public, but some 

details of the detection process are obtainable from www.chelonia.co.uk. Only click 

trains classified as dolphins (CP3 files) were used for the analysis, although the raw 

click data were visually inspected to assess the proportion of dolphin-like clicks not 

classified as click trains by the algorithm. Click and click train characteristics were then 

exported for trains classified as High, Moderate and Low quality dolphin clicks, and the 

mean, maximum and minimum inter-click intervals (ICIs) from each train were 

compiled.  

A Matlab (v2007b) script was used to extract inter-click intervals from dolphin clicks 

recorded by the hydrophone. The recording software created sound files (wav files) of 

four second duration, and these were grouped together and analysed in segments of 20 

seconds due to memory size restrictions of the software used. The waveform of each 

wav file was plotted using time versus intensity of the signal, and a relative intensity 

threshold value was applied to each 20-second segment to select those echolocation 

clicks which crossed the threshold value (Figure 4.2). Each 20 s recording was visually 

inspected to confirm that it contained clicks of the typical dolphin click waveform, 

although not every click was inspected separately. To avoid echoes in the hydrophone 

data, a feature was added to the script, which jumped 1250 sampling points (2.5 ms), 

effectively cutting off any clicks with intervals shorter than 2.5 ms from the previous 

click. Since some echoes can have longer ICIs than that, all ICIs less than 20 ms were 

inspected visually, and echoes with opposing waveforms deleted from the dataset. No 

attempt was made to select specifically on-axis clicks from the hydrophone recordings, 
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so as to ensure that the data analysed from the hydrophone would correspond to the data 

recorded by the C-PODs. 

 

Figure 4.2 Bottlenose dolphin click signal viewed in Matlab as relative intensity against 

time. The dashed line represents the threshold value that the click intensity has to 

exceed to be considered a click. 

Comparisons of the C-POD and hydrophone recordings were conducted in Excel and R 

(v.2.13). Data consisted of both counts (click rates) and interval data of ICIs pooled for 

each minute sample of the dataset. Although pooling data has an effect on the statistical 

degrees of freedom, it was necessary to cut it to smaller samples to represent the 

variation in the dolphin vocalisations across the study period. 

To investigate the relationship between the click counts from both methods, the non-

parametric Spearman’s rank order correlation test was used. To compare the 

distributions and means of the different click characteristics, we used the non-

parametric Kolmogorov-Smirnov test and the Kruskal-Wallis one-way Analysis of 

Variance by ranks. 

The reasoning behind using pooled data for each minute was that it was not feasible to 

compare the data click by click for the two methods. However, as the hydrophone data 

were already divided into 20 s long recordings, it was possible to visually compare 

these snapshot recordings to the continuous C-POD data file, and manually mark those 
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periods of hydrophone recordings which had corresponding detections in the C-POD 

data. It was then possible to compare the characteristics of those hydrophone recordings 

which had been detected by the C-POD with those that had not. 

 

4.4 Results 

A total of 20 minutes of simultaneous hydrophone and C-POD recordings, when a 

single dolphin was present, was obtained in the study. This limited amount of data was 

generated during short single animal encounters in the vicinity of the research vessel in 

optimum weather conditions. The visual cliff observation team confirmed that no other 

animal (dolphin or porpoise) was present in the study area and that the animal observed 

was feeding throughout the recording period. Technical problems with the recording 

equipment, including data storage and power output on board the research vessel 

precluded the collection of more extensive recordings. The data covered three separate 

recording periods of 8 min, 8 min, and 4 min duration with the same animal, all 

collected from the morning of 4th May 2012. 

 

Despite having deployed three C-PODs suspended from the research vessel, only one of 

them yielded usable data as one had not started logging due to a faulty SD card (which 

went unnoticed by the C-POD operator) and the other had switched itself off, probably 

due to excessive movement from numerous deployments and recoveries to which it was 

exposed. From the single successfully deployed C-POD, a total of 2219 clicks were 

acquired for the recording periods, which were automatically classified into dolphin 

click trains. The data from hydrophone recordings contained a total of 2959 clicks, 

which were allocated into consecutive click sequences by visual examination of the 

data. Both methods successfully recorded the dolphin vocalisations for all the minutes 

when the dolphin was seen in the area. The C-POD’s algorithm classifies clicks into 

dolphin trains if they fit the predetermined criteria within the algorithm. In our sample, 

there was only one sequence of clicks that had been identified by the algorithm as a 

click train but not given a species classification (i.e. one that the algorithm could not 

place into dolphin or porpoise category), and there were no classifications of porpoises 

in either dataset. Only classified click trains from CP3 files were used for the analysis, 

but the visual examination of the raw C-POD click data (CP1 files) revealed that only 



CHAPTER 4 

 

 

131 

  

73 % of detected clicks matching dolphin click characteristics in frequency and 

waveform were classified as dolphins by the algorithm. 

 

The number of clicks recorded, and the minimum, mean and maximum ICI values for 

each minute of successful recordings were compiled for both hydrophone and C-POD 

data (Figure 4.3). Only those trains that the C-POD’s algorithm had classified as 

dolphins were used for the analysis. The mean ICI and the minimum ICI values from 

the hydrophone data were very similar for both whereas the maximum ICIs had larger 

ranges than those extracted from the C-POD data (Figure 4), and the total number of 

clicks was slightly higher for the hydrophone (in 12 out of 20 samples). 

 

 

Figure 4.3 The minimum, mean and maximum ICIs for each recorded minute for both C-POD and the 

hydrophone data (A), and frequency histograms for each variable for both C-POD and the hydrophone 

(B). 
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Figure 4.4 Figure 4. Boxplots depicting the distribution of total clicks logged, mean ICI, 

minimum ICI and maximum ICI for each minute for both hydrophone and C-POD. The 

thick black line is the median; the upper and lower whiskers represent the interquartile 

ranges, and circles are outliers.  

 

The click characteristics were compared between the two methods using non-parametric 

Spearman’s rank correlation which revealed significant correlation between C-POD and 

hydrophone data for all click characteristics. As this did not take the outliers into 

account also Pearson’s product moment correlation was conducted, which revealed only 

the click rate/min and the minimum ICI significantly correlated at level of p<0.05 

(Figure 4.5). Although the hydrophone detected a higher median value of clicks per 

minute, the analysis confirmed a significant, strong positive correlation between 

number of clicks logged with hydrophone and those logged with the C-POD (s = 

317.6193, p-value <0.001, ρ = 0.7612 (Spearman), t=8.1021, df = 18, p-value <0.001, 

r = 0.8858 (Pearson)).  Similarly the correlation for the minimum ICI test showed a 

significant positive correlation, albeit not a very strong correlation (s = 610, 

p-value =0.01505, ρ = 0.5413 (Spearman) and t=2.6585, df = 18, p-value = 0.016, 

r = 0.5309 (Pearson)).  The maximum ICI showed a weak negative correlation, although 

this was not statistically significant (s = 1934, p-value =0.04578, ρ = -0.4541 

(Spearman) and t=-1.468, df = 18, p-value = 0.1591, r = -0.3271 (Pearson)).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER 4 

 

 

133 

  

 

 

Of the four variables examined in this data sample, only the numbers of clicks / min and 

the maximum ICI / min were found to have statistically significantly different means s, 

as well as different ratios of variance using the F test in R between the CPOD and the 

hydrophone (Table 4.1). 

 

 

Table 4.1 Test statistics and P-values for the Kolmogorov-Smirnov test for differences 

in mean and the F-test for ratio of variances. Significant p-values in bold. 

 
K-S Test 
statistics (D) 

K-S  
P-value 

F test statistics (F) F test P-value 

No of clicks/min 0.5238 0.00629 9.6566 4.396e-06 

Mean ICI / min 0.25 0.1963 1.953 0.1535 

Min ICI / min 0.25 0.5713 0.7533 0.5468 

Max ICI / min 0.555 0.00396 2.3946 0.06431 

 
 

A visual inspection of the hydrophone recordings (n=90), together with the continuous 

C-POD file, enabled the hydrophone click recordings to be divided into those with and 

those without corresponding C-POD click train classifications. The proportion of 

C-POD minutes with ‘raw’ clicks with simultaneous recordings to hydrophone data was 

97%, whereas of the classified train data files, only 74% had simultaneous detections 

with the hydrophone data. The average ICI of those hydrophone recordings without 

corresponding C-POD recordings was significantly higher at 161 ms than those with 

simultaneous recordings at 99 ms (Welch Two Sample t-test, t=5.9819, df=292.1, 

p <0.0001). 

 

Figure 4.5 Pearson correlation between total dolphin clicks logged/min (A); mean ICI /min 

(B), minimum ICI/min (C) and maximum ICI/min (D) for the data acquired from the 

hydrophone and C-POD suspended from boat. Black line is the best fit line from a linear 

regression, dotted line is the 1:1 line. 
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4.5 Discussion 

Overall, the C-POD performed well by comparison to the hydrophone; every minute of 

hydrophone recordings were click were detected had corresponding detections on the 

C-POD, and there was a significant and strong positive correlation in the number of 

clicks recorded between the two methods. However, significantly fewer clicks (85%) 

were obtained with the C-POD’s train classification method compared to the 

hydrophone data. Similar comparisons with the C-POD’s predecessor, the T-POD, and 

a broadband hydrophone, revealed even bigger differences in the number of clicks 

missed by the T-POD (Bailey et al. 2010), demonstrating the improved performance of 

the C-POD compared with its prototype. Of the inter-click interval (ICI) parameters 

inspected, there was a strong positive correlation with the minimum ICIs recorded but 

no meaningful correlation found for the mean ICI, and a negative (but non-significant) 

correlation for maximum ICIs. Despite the fact that no correlation was found for the 

mean and minimum ICI, they were not significantly different, and the lack of 

correlation may be due the short time period of recordings presented in the analysis. Of 

the inter-click interval (ICI) parameters assessed, only the maximum ICI was 

significantly different between the two datasets.  This is probably explained by the fact 

that the hydrophone click data were visually inspected to identify click sequences, 

whereas the C-POD data were run with the algorithm that automatically assigns clicks 

into click trains, which is more conservative and generally does not recognise clicks 

with very long ICIs as belonging to a train, which may have been classified as such by 

the visual observers. Therefore, ‘single’ clicks far apart would be missed by the C-POD. 

The same reasoning also explains the higher number of clicks in the hydrophone data 

compared to the C-POD data.  

Based on an earlier analysis of C-POD recordings of dolphin and porpoise clicks (see 

chapter 5 of this thesis), it was hypothesised that the C-POD would miss some of the 

shortest ICIs because the difference between clicks trains recorded from feeding and 

travelling dolphins were not very different (although still statistically significant). This 

could have been caused if some of the fast feeding buzzes were being missed by the 

C-POD.  

The results here did not support such a hypothesis as the minimum ICI values reported 

correlated well with the hydrophone data. In fact, for some of the samples, the shortest 
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ICIs recorded were in the C-POD data, although this may be caused by the inability of 

the C-POD algorithm to accurately pick out from the dataset echoes reflected from the 

sea surface (Au & Hastings 2008).  

To better understand why the C-POD misses some clicks, it is useful to remember that 

the train detection algorithm was designed to detect cetacean click trains with the aim 

of detecting the occurrence of cetacean vocalisations, and it was never intended to 

detect every single click produced (Chelonia Ltd 2012b). There will always be 

individual clicks which are not recognised, due to the trade-off between sensitivity and 

selectivity and the need to reduce false positive detections. It is therefore expected that 

the detection rate of the C-POD will be lower than that of the hydrophone. The main 

potential cause for false detections and for masking the real clicks, is background noise 

caused by tonal sounds from sediment noise at cetacean frequencies (Thorne 1990). The 

C-POD’s click detection can only detect clicks if they are distinguishable from 

background noise and therefore will not be able to pick out clicks in very high noise 

environments. All hydrophones suffer from this, but applying the appropriate high or 

low-pass filters for the specific location enables better quality recordings to be made. 

Real-time broadband recordings can assess the noise levels prior to conducting sound 

recordings, and can better adjust to this problem. With C-POD data, the researcher must 

assess the quality of the recordings and the level of noise in the data only after the 

recordings have been made. 

In addition to clicks not being detected by the C-POD’s hydrophone, they may also not 

be classified as trains during the post-processing of data by the algorithm, despite 

having been initially detected. Here, the proportion of C-POD ‘raw’ clicks with 

simultaneous detections to hydrophone data was high - 97%, whereas of the classified 

train data files, only 74% had simultaneous detections with the hydrophone data. To 

understand why these clicks were not classified into dolphin trains, we examined the 

ICI characteristics and found that those hydrophone samples that had no corresponding 

C-POD recordings had significantly larger ICIs. Large ICIs indicate slow clicks, and 

this type of ‘gappy’ data are particularly difficult for the algorithm to identify since 

clicks spaced far apart are not easily recognised as trains (www.chelonia.co.uk). 

Although these types of ‘slow’ clicks were uncommon in this dataset it is not known 

how prevalent such clicks are in dolphin vocalisations. If dolphins produce a lot of 
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spaced out clicks, these will be invariably missed by the C-POD, potentially lowering 

the logger’s ability to detect them. 

There were a few instances where fast feeding buzzes were missed by one of the 

methods, but detected on the other. Feeding buzzes of other species such as harbour 

porpoises and white beaked dolphins have very short ICIs (down to 1.5 - 2 ms), and are 

typically lower in intensity than regular clicks. These high repetition rates can make 

them difficult to detect (Beedholm & Miller 2007; DeRuiter et al. 2009). The most 

likely cause for one equipment missing a click train whilst the other detected it is the 

high directionality of the clicks (Au et al. 2012) combined with the sweeping head 

movement as the animal scans its surroundings. This would cause the click train to 

‘ensonify’ only one of the instruments. Similarly, dolphin clicks could go undetected if 

their structure was considerably altered by reverberation (the process of sound decay 

when echoes and reflections are produced and the sound is subsequently absorbed with 

each reflection). But if this was the case, one might expect to see altered clicks in both 

instruments, which was not observed. 

Further studies would benefit from feeding the C-POD data through the Matlab script to 

closely compare the performance of the script with times and number of detections 

acquired using the C-POD’s algorithm. This would allow a closer match with both 

datasets to see exactly which clicks were detected and which were not (without having 

to pool the data in to minutes and using average values). The most likely cause of a 

lower number of clicks recorded in the C-PODs is due to post processing of the C-POD 

algorithm and the inability of the train algorithm to recognise click sequences with long 

ICIs and assign these into trains. However, the potential bias introduced in the 

subjective selection of the intensity threshold of the Matlab script cannot be ruled out. 

Future studies would benefit from examining received levels and noise levels in both 

types of recordings to determine directly the detection threshold of the C-POD.  

Unfortunately, the algorithm for the C-POD’s train detection and classification is not 

publicly available and so it was not possible to examine more closely why the click 

sequences with long ICIs are not detected. The manufacturer (Chelonia Ltd) states that 

the algorithm is so complex that it would not be possible to predict its performance 

from the algorithm alone, and that it requires intensive testing with real data for 

empirical validation and to produce a valid and usable transfer function (describing the 
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relation between input and output). Although not within the scope of this study, if the 

exact system details were available, future researchers could potentially identify areas 

within the algorithm that could be improved. At present, researchers need to continue to 

analyse and compare the results of the C-POD studies across different projects to enable 

them to validate results and interpret them in a sensible way.  

Bottlenose dolphin clicks are extremely variable in frequency range, amplitude, length, 

click rate and inter-click interval, and this poses challenges to any researcher trying to 

select criteria and parameters with which to identify them. Using automated click 

loggers and their associated software allows long-term, round the clock monitoring 

without accumulating excessive data sets, as would be the case with many other 

acoustic methods. However, the C-POD’s algorithm requires distinct parameters in 

order to recognise dolphin clicks from background noise or from clicks originating from 

other species such as the harbour porpoise. So far, the different versions of train 

algorithm from T-PODs to the current C-PODs have steadily improved species 

detection, which can now identify dolphins and porpoises. Regardless of missing some 

of the clicks, there were no acoustic events of 30 s or longer on the hydrophone that 

were missed by the C-POD, and the C-POD data were analysed with considerably less 

researcher effort than the hydrophone data. However, acoustic detection is not only 

affected by the instrument, but is very much dependent on animal behaviour and 

potentially also group size, as demonstrated in chapter 3. 

Based upon the results presented here the C-POD is a suitable device for monitoring 

presence and absence of bottlenose dolphins. It can detect short ICIs that potentially 

identify foraging events, but besides identifying potential feeding sites, it is not ideal for 

assessing behaviour without further knowledge on how click rates or ICIs relate to 

different behavioural states.  

The C-POD does not detect all clicks emitted and, furthermore, does not classify all 

these as trains. In low density areas, this may be problematic if confirming the presence 

of dolphins is based on very few detections, whereas in high density areas, missing 

small proportion of vocalisations would not affect resulting interpretation. C-PODs 

have the potential to be used in analysis of abundance, click detections serving as cues 

for animal presence, which can then be converted into abundance estimates using 
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correction factors involving average group size and/or click production rate (Marques et 

al. 2012).  
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5.1 Abstract 

Sound is the main means of communication for cetaceans and studying their vocal 

behaviour can reveal important information about their activity patterns. As static 

acoustic monitoring of whales, dolphins and porpoises becomes more widespread, it is 

important to understand how data collected with automated click loggers relate to their 

behaviour. To assess whether behaviour can be inferred from click train data, 

echolocation click trains of bottlenose dolphins and harbour porpoises recorded by 

C-PODs were examined with simultaneous visual observations. Recorded click trains 

from both species had different characteristics for the two observed behavioural 

categories: travelling and feeding. Foraging click trains for both species were of shorter 

duration, and had shorter inter-click intervals. The distinction in click trains between 

the two behaviours was stronger for porpoises. More than one quarter of the porpoise 

trains represented a distinct group of very fast click trains, or “buzzes”, thought to be 

associated with foraging, whereas only a small fraction of such trains was found in the 

dolphin clicks. For both species, the C-PODs showed potential in detecting foraging 

behaviour and in identifying potential feeding sites and trends in foraging activity. 

5.2 Introduction 

The protection of a threatened species requires conservation and management of its 

habitat and the ecosystem upon which it relies. For large, mobile marine mammal 

species it is not practical to designate their entire habitats as protected areas. Therefore 

it is essential to identify those areas which, if protected, would be most beneficial  to 

the species’ survival, such as those used for feeding or breeding (Hoyt 2004). To assess 

impacts of threats on populations, it is important to investigate trends in foraging or 

breeding success, in addition to monitoring animal abundance (Fiedler & Jain 1992). 

For marine mammals this typically requires visual observations of behaviour, which 

can be expensive and often require a lot of manpower, especially when it requires 

techniques like aerial or boat based surveys, photo-identification or tagging (Evans & 

Hammond 2004). Many studies of cetaceans rely purely on behavioural observations 

during surfacing, but behaviour can be difficult to identify accurately from visual 

observations. Cetaceans are only visible at the surface for between 1-10 % of the time 

(Tyack & Miller 2002), making classification of animal activity based on their 

vocalisations more appropriate (Martin & Reeves 2002). Cetaceans echolocate more 
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frequently than they produce other types of sounds, possibly due to the energetic costs 

of whistles in comparison to clicks (Jensen et al. 2012).  One method of monitoring 

echolocation activity is to deploy static acoustic data loggers, such as C-PODs to 

record the clicks (Dudzinski et al. 2011). 

 The two study species, the bottlenose dolphin (Tursiops truncatus) and the harbour 

porpoise (Phocoena phocoena), produce very different vocalisations. The bottlenose 

dolphin emits sounds in three broad structural categories, burst-pulse sounds, whistles 

and clicks (Caldwell et al. 1990; Tyack 1997). It is thought to use echolocation clicks 

mainly for navigation and feeding while burst-pulse sounds and whistles are used for 

communication (Mann et al. 2000; Janik 2009), although it is highly likely that clicks 

also serve a communicative function (Tyack 1997). By contrast the harbour porpoise 

only produces clicks and is thought to use these for navigation, feeding and 

communication (Verboom & Kastelein, 2003; Koschinski et al. 2008; Verfuß et al. 

2009). This study focuses on the characteristics of echolocation click trains during 

different behaviours.  

Porpoise clicks have mean source levels ranging from 157-191 dB re 1 µPa (peak-to-

peak) @ 1 m, click durations dependent on the click repetition rate between 

approximately 77 – 300 µs, and a peak frequency around 131 kHz (Au et al. 1999; 

Teilmann et al. 2002; Verboom & Kastelein, 2003; Villadsgaard et al. 2007). Dolphin 

clicks are shorter and more varied, with measured source levels of 177-228 dB re 

1 µPa (peak-to-peak) @ 1m, click durations of 8-72 µs, and peak frequencies between 

30-150 kHz (Au et al. 1974; Au & Hastings 2008; Wahlberg et al. 2011). Inter-click 

intervals vary with context for both species. Dolphins steadily decrease their inter-click 

intervals (ICI) with decreasing distance to a target (Jensen et al. 2009b). For porpoises, 

ICIs of around 50-60 ms have been reported from small data samples during the initial 

navigation/search phase (Au 1993; Verboom & Kastelein, 2003; Akamatsu et al. 

2005b; Villadsgaard et al. 2007). They are thought to switch to a decreasing ICI only 

when ‘range locking’ upon the target, and finally end with a terminal buzz with a 

constant ICI of around 1.5 ms (during maximum click repetition rate) when reaching 

the target (Villadsgaard et al. 2007; Verfuß et al. 2009). Both harbour porpoise and 

bottlenose dolphin are able to adjust the properties of their echolocation signals to 

allow for varying target range and multiple target selection selection (Jensen et al., 

2009b; Wisniewska et al., 2012). Both species project their echolocation clicks in a 
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directional beam with most of the acoustic energy directly in front of the animal, 

approximately 9-10 ° wide for dolphins (Au et al. 2012) and 13° for porpoises (Koblitz 

et al. 2012). Dolphins produce intense, short broadband clicks, whereas porpoises 

produce only narrowband clicks centred around 130 kHz (Au 1993; Wahlberg et al. 

2011; Koblitz et al. 2012). As higher frequencies are more absorbed by seawater, the 

higher intensity and lower frequency dolphin clicks travel further than those of 

porpoises.  

Most of the literature describing dolphin or porpoise echolocation focuses only on 

clicks recorded near to the beam axis, the so called “on-axis” clicks. However, the 

further away from the beam axis the clicks are recorded, the more altered they become. 

The “off-axis” clicks from dolphins have lower frequency and amplitude 

characteristics to the on-axis clicks (Au & Hastings 2008), which results in a high 

number of clicks with dominant frequency in the lower part of the frequency range, 

making the dolphin clicks recorded by C-PODs very variable. The quieter, more 

narrowband, high frequency clicks of the porpoise show very little off-axis click 

frequency variability and thus are easier to recognise and classify, particularly when 

using automated algorithms such as those utilised by C-POD’s software. Despite the 

distinct characteristics of clicks, there are occasions where individual dolphin clicks 

can seem very similar to porpoise clicks, and this can cause errors in species 

classification (Simon et al. 2010).   

Both species alter their vocalisations according to function and behaviour. Dolphins 

emit different types of vocalisations used for different behaviours (Nowacek 1999, 

2005; Acevedo-Gutiérrez & Stienessen 2004; Quick & Janik 2008; Janik 2009; Simard 

et al. 2011). For porpoises which produce only one type of vocalisation (the high 

frequency click), differences in click train characteristics, particularly the ICI, relate to 

the behavioural context (Akamatsu et al. 1994; Verfuß et al. 2009; Clausen et al. 

2010).  

Although echolocation in bottlenose dolphins and harbour porpoises is relatively well 

studied, few attempts have been made to investigate the influence of behaviour on 

click train characteristics. Those studies that have examined vocal behaviour in this 

context have been largely conducted in captivity, and information on wild vocal 

behaviour involving signal characteristics is generally lacking (Au 1993).   



CHAPTER 5 

 

 

143 

 

Previous studies have reported varying porpoise ICIs, with  progressively falling ICI 

during foraging ending in a high rate ‘buzz’ of 300-500 clicks/s, (DeRuiter et al. 2009; 

Miller 2010) with an extremely short ICIs of around 1.5 ms (Verfuß et al. 2009) during 

the final prey capture. For dolphins, studies have shown that echolocation rates (the 

number of clicks or click trains recorded in a time unit) vary according to different 

behaviours (Jones & Sayigh 2002) and that during feeding, dolphins produce shorter 

and faster clicks with the shortest ICIs reported between 3.0 and 7.1 ms (Wahlberg et 

al. 2011). 

C-PODs and their predecessors T-PODs are acoustic data loggers developed to record 

information about odontocete echolocation clicks, and are widely used to monitor 

cetacean presence (Carstensen et al. 2006; Rayment et al. 2009; Simon et al. 2010). 

Some studies have also used T-POD data to identify porpoise feeding behaviour 

(Koschinski et al. 2008) and to characterise click train characteristics of feeding and 

travelling dolphins (Zamudio Reyes 2005; Bond 2006). The use of static click loggers 

as an alternative to broadband hydrophones with recording gear has its advantages, as 

they are relatively inexpensive, easy to use with small data storage requirements, have 

automated train detection and they can be left in situ for several months. The C-POD 

detects clicks in the 20-160 kHz range and records the time and duration to 5 s 

resolution, the dominant frequency, and a range of click characteristics. This selective 

logging limits the amount of data stored. Continuous broadband recording with 16 bit 

resolution at 500 kHz sampling rate generates about one terabyte of data every ten 

days, whereas the C-POD’s four gigabyte memory card can last up to five months. 

This study explores the use of C-POD click train data to identify different behavioural 

states for both bottlenose dolphin and harbour porpoise by comparing click train 

characteristics and visually observed animal behaviours. Additionally the occurrence 

of potential feeding buzzes based on ICI criteria is examined for both behavioural 

categories. We hypothesise that differing click characteristics for the two measured 

visually observed behaviours, feeding and travelling can be distinguished from C-POD 

data for the two species. 
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5.3 Materials and Methods 

Data Collection 

The study was conducted within the Cardigan Bay Special Area of Conservation 

(SAC), West Wales from February to July 2010. A total of 33, manufacturer calibrated, 

C-PODs were deployed near the observation site for 151 days at water depths of 17-

22m, each C-POD approximately one meter above the sea bed. During this period, 

visual observations of the area around the C-PODs were carried out on 72 days for a 

total of 261 hours from a cliff-top monitoring site on the New Quay Headland within 

the SAC (Latitude: 52 13.040 N, Longitude: 04 21.871 W  5 m).  

Calibration of C-PODs 

The sensitivity of the C-PODs had been tested after manufacturing by rotating each 

unit in a sound field. The sensitivity of the unit had then been adjusted to achieve a 

radially averaged, temperature corrected, max source pressure level reading within 5% 

of the standard at 130 kHz (±0.5 dB). These radial values were taken at 5 degree 

intervals. After the experiment, the units were sent to the manufacturer for 

recalibration which showed that all units were within the original specifications after 

two years of use and that there were no changes of operational significance. This 

calibration and standardisation procedure is accessible in detail on the manufacturer’s 

website, (www.chelonia.co.uk). 

Visual Observations   

Visual observations were conducted by two to four observer teams in sea states 3 

over a visible sea-surface area of approximately 3 km around the deployed C-PODs 

from a cliff top at 93 m from the sea surface. During animal sightings, observers 

recorded behaviour, group size, travel direction, group composition and group 

cohesion. Binoculars with magnification of 8x32 and a 30 x magnification Sokkia 

electronic digital theodolite (DT5A) were used to aid detection and tracking of the 

study animals. A group of animals was described as ‘a number of dolphins or porpoises 

in close association with one another, often engaged in the same activity and remaining 

within approximately 100 m of one another” (Shane, 1990  Bearzi et al., 1999). To 

ensure that the acoustic and visual data originated from the same group of animals all 

periods with multiple groups were excluded from the analysis. As the effective 
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detection area where porpoises and dolphins are detected with C-PODs is relatively 

small, approximately 150-200 m for harbour porpoises and around 300-400 m for 

bottlenose dolphins, depending on behaviour (Chapters 2 and 3, this PhD thesis). 

Behaviour was defined using the following categories: foraging/feeding (visible 

surface foraging and prey pursuit/capture where fish seen fleeing, tossed about or in 

the dolphins’ mouth, feeding birds circling above the dolphins, fish shoals visible 

under the surface and demersal foraging consisting of repetitive,  long feeding dives in 

the same location), socializing (physical contact, chasing each other, mating, 

synchronised movement, aggression, and play), aerial behaviour, travelling, and 

milling, where dolphins are moving in varying directions with no observable surface 

behaviour (Shane, 1990; Bearzi et al., 1999). Because of the low number of 

observations in some of the behaviour categories (e.g., only 24 minutes of resting 

behaviour reported for bottlenose dolphins), only foraging/feeding and travelling 

categories were used for analysis. Typically, the term “foraging” describes the search 

for food while “feeding” is the actual event of food intake. Here, the category 

foraging/feeding comprised both foraging and feeding activities, which for 

echolocating cetaceans typically involves producing high frequency, echolocation 

clicks.  

“Feeding buzzes” were defined as those clicks with ICIs of less than 10 ms duration 

that are produced during feeding (Verfuß et al. 2009).. Environmental data with sea 

state, swell height, cloud cover, visibility and tidal height were collected at 15-minute 

intervals to assess the observation conditions so that sightings made during poor 

sighting (e.g., rain, fog or sea state over 3 in the Beaufort scale ) would not be used for 

further analysis.   

Acoustic Data 

The data were downloaded using the C-POD software (CPOD.exe) and the click trains 

in the acoustic data were identified by the KERNO classifier that is part of the post-

processing software. Click trains logged on a static logger are generally only brief 

fragments of longer trains made by the animal and captured as the animal’s sound 

beam sweeps across the hydrophone.  Train duration therefore represents the speed of 

such sweeping movements and is not a measure of the full duration of trains produced.  

Click trains (series of clicks) are automatically classified by the KERNO classifier into 
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four quality classes according to their likelihood of being correctly classified as 

originating from cetaceans. Click trains classified into the three highest quality classes 

(‘high’, ‘moderate’ and ‘low’) were used in the study, while ‘doubtful’ click trains 

were disregarded. After consulting the manufacturer, low quality class trains were 

included in the analysis since the study area has low levels of background noise, and 

low quality click trains showed a strong temporal association with high and moderate 

quality click trains. The algorithm also assigns each train to a species class  ‘porpoise’ 

(also called narrowband high frequency (NBHF)), ‘dolphin’ or ‘boat sonar’. To avoid 

potential false classification by the algorithm, only data recorded during visual 

observations of single species were used. Additionally, a visual validation of train 

identification was carried out using the graphical data presentation in CPOD.exe on 

100 systematically selected trains of both species. This resulted in one potential false 

positive porpoise detection and two potential false positives in the dolphin data.  For 

dolphins, both false positives were thought to originate from a porpoise. To avoid 

problems with erroneous species or behaviour classification, only single species 

sightings and those periods where behaviour did not change, were included in the 

analysis. Visual and acoustic data were matched by time and each minute of acoustic 

data was assigned a behavioural category from the simultaneous visual observations.  

 

A total of 13 different click train characteristics recorded by the C-POD were 

investigated for both dolphin and porpoise data (Table 5.1). Trains with inter-click 

intervals of unusually long duration (possibly resulting from solitary clicks which the 

algorithm grouped together as single trains) were removed.  

 

First the click train characteristics for both species were described for the entire 

acoustic data. This was then repeated for those minutes that had matching visual 

observations. The acoustic dataset was then inspected for underlying structure between 

the characteristics using multi-dimensional scaling (MDS). Patterns in the distribution 

of ICIs were used to identify distinct groups of trains with similar minimum and 

average ICIs. Trains were considered as outliers and removed if they had ICIs longer 

than 250 ms for porpoises and 450 ms for dolphins. 
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Table 5.1 Echolocation click train characteristics recorded by C-PODs used to compare 

click trains. Inter-click interval (ICI), sound pressure level (SPL) 

Characteristic extracted from C-PODs data 

Train Duration (s) Modal Frequency (kHz) 

No of Clicks/Train Mean End Frequency (kHz) 
Clicks/s Minimum Frequency (kHz) 

Maximum ICI (s) Maximum Frequency (kHz) 

Minimum ICI (s) Maximum SPL*  

Mean ICI (s) Mean SPL* 
Last ICI in a train units  

*
Sound pressure levels (SPL) recorded by C-PODs are on a linear scale that varies with frequency and 

are the peak-to-peak SPLs of the loudest cycles within the clicks. The data logged on each click are 

insufficient to calculate a true intensity for the click. At 130 kHz the true SPL is the CPOD scale value / 

10 Pascals. The SPL scale upper limit is often exceeded by loud clicks which are then logged as having 

the highest SPL scale value. 

 

Comparison of Click Trains between Different Behaviours 

Click trains recorded during observed foraging/feeding and travelling behaviour were 

compared to examine for potential differences in train characteristics using Wilcoxon 

rank sum W tests (Mann-Whitney-Wilcoxon). A generalized linear model (GLM) with 

binomial errors, MDS and an analysis of similarity (ANOSIM) were also used to 

investigate similarity within predefined groups of click characteristics for the two 

behaviour categories.  

Identifying Feeding Buzzes Based on ICI Criteria 

Following previous studies, fast trains with a minimum inter-click interval (MinICI) of 

< 10 ms were used as a proxy for potential feeding activity and those with minimum 

ICI more than 10 ms were classed as non-feeding activity (Carlström, 2005; Verfuß et 

al., 2009). The ratio of these ‘feeding buzzes’ to ‘non-feeding buzzes’ and the total 

echolocation rate recorded were then calculated for the two different behavioural 

categories (Todd et al., 2009). Both total number of clicks/min and the number of click 

trains/min were calculated in order to assess the total amount of vocalisation produced 

(and recorded) by the C-POD 

5.4 Results 

During the 151 days of deployment, C-PODs recorded 75,015 minutes of porpoise 

detections and 42,716 minutes of dolphin detections. There were 88 visual encounters 
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of dolphins and 26 of porpoises. Of these, 139 minutes were considered suitable for 

further analysis. Only 1106 click trains matched the selected visual observation times, 

of which 536 were harbour porpoises and 570 bottlenose dolphins.  

Entire Acoustic Dataset 

Both dolphin and porpoise click train characteristics matched those reported in the 

literature for frequency range and for average and minimum ICI (Table 5.2). The 

distribution of inter-click intervals of trains classified as stemming from porpoises had 

a distinct peak of very short ICIs of less than 2.5 ms, whereas dolphin click trains had 

three peaks, at less than 2.5 ms, at around 65 ms, and at around 135 ms (Figure 1). The 

average centre frequency of individual porpoise clicks within a train was concentrated 

around 130 kHz, whereas the average centre frequency of dolphin trains varied 

between 25 and 120 kHz. The C-POD records a relative amplitude parameter for the 

received sound pressure levels of each click (confusingly termed SPLs, but care must 

be taken not confuse this with the widely used acronym for source pressure level). This 

parameter is shown on a linear scale which varies with frequency and is the peak-to-

peak sound pressure level of the loudest cycles within the clicks. The data logged on 

each click are insufficient to calculate a true intensity for the click. The SPL scale 

upper limit is often exceeded by loud clicks, which are then logged as having the 

highest SPL scale value. Here the porpoise clicks showed little SPL variation and 

relatively low values of below 50 SPL units, whereas the SPL values for dolphin clicks 

ranged from 10 to 160 units, indicating large differences in the sound pressure levels 

(Figure 5.2). 

 Table 5.2 Summary of harbour porpoise (HP) and bottlenose dolphin (BND) 

echolocation click train characteristics detected by C-PODs during whole of the 

acoustic deployment period. Mean values (± standard deviation, SD) are shown. Inter-

click interval (ICI), sound pressure level (SPL*) 

Click 

Characteristic 
HP medians 

HP 

 means 

HP 

 SD 

BND 

medians 

BND 

means 

BND 

SD 

Train Duration (ms) 207.99   371.08 482 1029 1259 1012 

No of Clicks/Train   7 10.1 7.4 8 10.7 6.4 

Clicks/s 37 102 151 7 20 51.2 

Maximum ICI (ms) 33.1 55.9 62.3  169 177 1132 

Minimum ICI (ms) 25.3 44.0 49.3  126 134 85 

Mean ICI (ms) 27.1 46.2 56.8 138 142 87 

Last ICI in a train 30.0 52.4 60 156 169 1155 
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Modal Frequency (kHz) 129 130 5.5 47 50   19.9 

Mean End Frequency (kHz) 126 126.2 5.7 61 63 21.8 

Minimum Frequency (kHz) 125 124.4 7.6 37 39 14.0 

Maximum Frequency (kHz) 134 134.7 5.4 101 95 33.6 

Maximum SPL*  40 68.9 66.1 173 159 80.7 

Mean SPL*  28.0 39.9 33.2 68 73 43.1 

n 1 376 594   272 317   

* Unreferenced sound pressure level derived from C-POD software output. See Table 1. 

 

 

 

Figure 5.1 Histograms of inter-click minimum and average intervals (ICI) for harbour 

porpoise (a and b) and bottlenose dolphin (c and d) click trains 
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Figure 5.2 Histograms of modal frequency and average received sound pressure levels 

(SPL) for porpoise (a and b) and bottlenose dolphin (c and d) click trains 

 

There was a positive correlation between train duration and minimum inter-click 

interval (ICI), shorter click trains being fastest, and having the shortest ICIs (HP: r = 

0.75, t = 26.24, df = 534, p< 0.001, BND: r = 0.5521, t = 15.78, df = 568, p < 0.001).  

Differences between Foraging/Feeding and Travelling Trains 

Porpoise feeding click trains were shorter in duration, had faster repetition rates, and 

lower ICIs. Porpoise click trains also had lower frequencies recorded in all frequency 

categories and lower received maximum sound pressure levels compared to travelling 

click trains. Similarly, dolphin feeding click trains were shorter and faster, but the 

differences between the two behaviours were not as obvious as for porpoises (Figure 

5.3). According to Wilcoxon rank sum W tests, 10 characteristics were significantly 

different between the two behaviours for harbour porpoise, and six for bottlenose 

dolphin (Table 5.3). 
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Table 5.3 Summary of Wilcoxon rank sum W tests (Mann Whitney Wilcox) comparing 

median click train characteristics detected by C-PODs which corresponded to visually 

observed dolphin (BND) and porpoise (HP) groups engaged in feeding and travelling. 

Inter-click interval (ICI), sound pressure level (SPL*). Number of click trains 

analysed: Dolphins: Feeding/foraging, n=424, Travelling, n=146; Porpoises: 

Feeding/foraging, n=163, Travelling, n=373. Marked in bold are those characteristics 

that were most influential variables in binomial GLM 

* Unreferenced sound pressure level derived from C-POD software output. See Table 1. 

Click 

Characteristics 

HP W test 

statistic 

HP 

P-value 

BND W 

test 

statistic 

BND 

P-value 

Train Duration (s) 11102 < 0.001* 20121 < 0.001* 

No of Clicks/Train 20695 0.9718 26199 0.569 

Clicks/s 45605.5 1 37277.5 0.999 

Maximum ICI (s) 10198 < 0.001* 19924 < 0.001* 

Minimum ICI (s) 9913.5 < 0.001* 20386 < 0.001* 

Mean ICI (s) 10143.5 < 0.001* 20537 < 0.001* 

Last ICI in a train 10186.5 < 0.001* 20942 < 0.001* 

Modal Frequency (kHz) 11768 < 0.001* 27591 0.863 

Mean End Frequency (kHz) 11799 < 0.001* 22482 0.011 

Minimum Frequency (kHz) 11526.5 < 0.001* 28470 0.953 

Maximum Frequency (kHz) 12466 < 0.001* 19542 < 0.001* 

Maximum SPL * 15563.5 < 0.001* 23879 0.086 

Mean SPL * 16502.5 0.03022 27832 0.895 
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A B 

Figure 5.3 Boxplots depicting selected A) harbour porpoise and B) bottlenose dolphin click train characteristics by behaviour: feeding/foraging (FD) and 

travelling (TR). Characteristics: a) Train duration; b) Number of clicks in a train; c) Clicks/s; d) Maximum ICI; e) Minimum ICI; f) Mean ICI; g) Maximum 

frequency; h) Minimum frequency; i) Modal frequency; j) Average end frequency; k) Maximum sound pressure level; l) Average sound pressure level. Box 

represents the interquartile range (IQR), with whiskers extending up to 1.5 x IQR, thick black lines are median values, circles mark outliers, and width of the 

box indicates sample size. If the notches in box plots don’t overlap, the medians are significantly different to the 5% level, p<0.05, assuming asymptotic 

normality around medians and roughly equal sample sizes 
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Multidimensional Scaling and Analysis of Similarity 

ANOSIM within porpoise click characteristics revealed significant differences between 

click trains recorded during observed feeding and travelling states, (R= 0.2333, p-value 

< 0.001, 999 permutations). No significant difference was found in dolphin click trains 

for feeding and travelling animals (R= -0.08403, p=1, 999 permutations). Similarly, no 

difference in dolphin trains was found from the MDS (Figure 5.4). 

 

 

 

 

 

 

 

 

 

 

Generalized Linear Model 

The GLM with binomial errors, conflicted with the ANOSIM analysis, as it indicated 

that behaviour contributed significantly to explaining the observed differences in click 

characteristics for both study species. For porpoises, modal frequency and clicks/s were 

the two variables that best explained the difference between feeding and travelling 

animals (according to AIC model selection). For dolphin data, the selected variables 

were minimum ICI, average SPL, clicks/s, and maximum frequency. Although clicks/s 

was not a significant variable, it was nevertheless selected for the best model according 

to AIC values. 

 

Identifying Foraging/Feeding Click Trains Based on ICI Criteria 

a b 

Figure 5.4 Multidimensional scaling (MDS) plots for harbour porpoise (a) and 

bottlenose dolphins (b) for log transformed click train characteristics by behaviour, 

feeding/foraging (black) and travelling (red) 



CHAPTER 5 

 

 

154 

 

For both species, there was a peak of click trains with very short ICIs, indicating 

possible foraging behaviour (Figure 5.1).  This was particularly notable in the porpoise 

data, with 27.3 % of click trains classified as feeding buzzes with minimum ICIs of 

<10 ms. Only 3.8 % of the dolphin trains had minimum ICIs under 10 ms. Furthermore, 

16.8 % of all porpoise click trains had a minimum ICI of less than 5 ms, whereas only 

1.8 % of dolphin data had such short ICIs. 

The ratio of these ‘feeding buzzes’ to ‘non-feeding buzzes’ in porpoise data was higher 

for click trains recorded during observed feeding events in comparison to trains from 

travelling ones, but there was no such difference in the dolphin data (Figure 5.5). The 

echolocation rate (for total numbers of clicks produced and number of click trains) was 

higher for feeding porpoises but lower for feeding dolphins in comparison to travelling 

animals (Figure 5.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

a b 

a 

a b 

b 

Figure 5.5 Ratio of feeding buzzes (click trains ICIs < 10 ms) to non-feeding buzzes for 

harbour porpoises (a) and bottlenose dolphins (b) for both behavioural categories (top). 

Also shown is the echolocation rate in number of trains (middle) and number of clicks 

recorded per minute (bottom). See Figure 5.3 for explanation. 
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5.5 Discussion 

This study demonstrates that the C-POD click logger together with its associated 

software is able to identify and distinguish click trains from both bottlenose dolphins 

and harbour porpoises, and that the resulting click trains have similar characteristics to 

those described in the literature from direct measurements. The software produces 

several output characteristics but not all of these are useful for further analysis. Train 

classification software does not necessarily identify all the clicks of a train with similar 

probability; and some may go unclassified, while other non-cetacean clicks may be 

included in the trains.  For example, the minimum and maximum frequency 

characteristics may be affected by these accidental non-cetacean clicks thus obscuring 

real animal clicks. For this reason, the modal frequency of a train may be more 

representative of the actual frequency. In cases where there are few detections, or long 

periods between detections, the software may merge clicks to form trains or 

alternatively cut trains short, thus causing artificially long or short train durations and 

potentially erroneous average or minimum inter-click intervals. In fact, train duration is 

more descriptive of the speed of the animal’s head movement than of the actual 

vocalisation. Additionally, subsequent trains of very similar characteristics may be of 

different quality class, in which case the selected quality class, in which case the 

selected quality class will affect the end results. To avoid these issues, only quality 

classes high, medium and low were included and trains that had outlier ICI values 

longer than 250 ms for porpoises and 450 ms for dolphins were discarded. 

Minimum ICI and train duration were correlated, so that short trains were also fast 

trains, indicating that animals sweep their heads from side to side whilst vocalising. 

Another reason which may cause very short buzzes to be missed by the C-POD, is the 

lower amplitude levels of buzzes, causing even less of the buzz to be detectable by the 

C-POD and therefore only partial trains to be recorded. 

Trains from porpoises had a distinct peak with a high number of recorded trains 

containing very short ICIs. Such a peak was not present in the dolphin data which 

instead had three distinct groupings of ICIs. This could indicate that dolphins use clicks 

with varied ICIs, producing clicks with short and longer ICIs, whereas porpoises mainly 

produce clicks with very short ICIs during the last phase of foraging. This might 
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explain why there was a clearer distinction between the two behaviours in the C-POD 

data from porpoises.   

When assessing those trains that were recorded during periods of visual observation, it 

is evident that both train duration and minimum ICI recorded during observed foraging 

were shorter than those recorded during travelling. Interestingly, for both species, the 

trains are of greater intensity (SPL) and of higher frequency in travelling animals. This 

fits with previous studies where click frequency content was found to correlate wi th 

click amplitude (Beedholm, 2010).  

This finding is consistent with the theory that travelling animals are interested in 

interpreting the acoustic scene further ahead, thus requiring more intense clicks with 

longer ICIs to read echoes from distant targets (Au et al. 1985; Atem et al. 2009). This 

is particularly interesting for porpoises as they have so far not been shown to vary their 

click frequency according to behaviour (Clausen et al., 2010). It must be noted, 

however, that the SPL of dolphin clicks often exceeds the upper limit of the sound 

pressure scale of the C-POD and that the sound intensity levels measured from C-POD 

are not actual source level measurements. 

For harbour porpoise data, the difference between feeding and travelling trains was 

statistically significant using all three methods of analysis (non-parametric Wilcoxon 

Mann-Whitney, GLM and ANOSIM), whereas the ANOSIM did not indicate 

statistically significant differences in click trains between the dolphin behaviours. 

Furthermore, the percentage of click trains which corresponded to the ‘correct’ visually 

observed behavioural classification was much higher in the porpoise data than in the 

dolphin data.  

There are a number of potential explanations for this: 1) due to the small sample sizes 

the data may not have been entirely representative of the two behaviours investigated 

here and the power of the statistical tests was thus reduced; 2) dolphins simply do not 

produce different clicks for these two behaviours, or 3) the distinction between 

observed feeding and travelling behaviours was erroneous. The accuracy of the visual 

classification of behaviour is important since the animals only spend a fraction of time 

on the surface, and despite careful descriptive categories, this classification is inherently 

subjective (Similä & Ugarte 1993). Here the observations were carried out only on days 

with good visibility using visual aids (binoculars and theodolite) and the most 
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experienced observer would confirm the assigned behavioural category depending on 

his/her judgement of animal movement and speed and any additional information such 

as feeding birds or visible fish shoals. In order to avoid misclassification, data from 

encounters where behaviour was frequently changing between the two or where 

combined feeding and travelling were observed were omitted from the analysis. 

Additionally, data from encounters of more than one species, and of encounters with 

several animals engaged in differing behaviours were excluded. Thus, data with 

observer bias have mostly been excluded from the results. Furthermore, 

misclassifications would be expected to erode the level of significance of the acoustic 

discrimination, but as this has proved statistically significant it could be seen as 

validating the visual classification. 

Another explanation for why the data may not be entirely representative of foraging and 

feeding vocalisations is if some of the dolphin feeding trains (such as trains with very 

short ICIs) were not recorded by the C-PODs or, even if recorded, they did not fit the 

algorithm’s classification criteria. It is important to note also that C-PODs, like any 

static acoustic devices are confined to their mooring location and only those clicks 

which are directed towards the device, and which are produced at the device’s detection 

range are detected. The effective detection radius with C-PODs has been estimated to 

be around 150-200 m for harbour porpoises and around 300-400 m for bottlenose 

dolphins, depending on animal behaviour, however C-PODs have been found to detect 

clicks from over 500 m for porpoises and over 1500 m for dolphins (Chapters 2 and 3, 

this PhD thesis). Here we used detections from animals up to 1500 m away to maximise 

our sample size. 

Of the trains that were recorded during behavioural observations, over 70 % were 

during feeding events, and yet only 3.8 % were classified as feeding buzzes with a 

minimum ICI of less than 10 ms. The comparative absence of fast clicks in the dolphin 

data could be the result of decreased source levels of the feeding buzzes (Jensen et al. 

2009b) which would make them less detectable to the C-POD. Alternatively, if they 

were too similar to porpoise clicks, fast clicks from dolphins might be discarded by the 

software’s train classification process.  

Although dolphins are capable of adapting their source levels to suit their surroundings 

(Jensen et al., 2009b), emitting intense clicks in shallow water can create high levels of 
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reverberation due to sound reflecting from both the surface and seabed (Zimmer, 2011). 

A single dolphin click in shallow water is thus commonly received as a cluster of many 

clicks arriving along different pathways. This results in many trains from those animals 

close to the logger not being identified as trains.  C-PODs are designed to detect click 

trains, and as the C-POD does not log the shortest, most broadband clicks or the lower 

part of the vocal repertoire (< 20 kHz), and it includes off-axis clicks, the clicks 

recorded by C-PODs are a relatively inaccurate representation of the actual 

vocalisations produced. This is likely to be particularly problematic when attempting to 

classify or characterise dolphin clicks. 

The lack of feeding buzzes (clicks with very short ICIs) in the dolphin data would also 

explain why the echolocation rate for dolphins is actually lower for feeding animals 

than for travelling animals, contrary to what was expected based on previous studies 

(Tyack 2000; Nowacek 2005). An alternative explanation could be that if the dolphins 

considered to be feeding were involved in more complex search behaviour (Bailey & 

Thompson 2006) and were not producing feeding buzzes until within very close 

proximity to a fish. Perhaps buzzes are more frequently used on demersal or benthic 

prey, which are highly camouflaged and lie still on the seabed for the majority of the 

time (Gibson 2005). This could conceivably make the use of buzzes more necessary 

than when feeding on fish shoals in the water column. If feeding buzzes are directed 

towards the seabed, large part of the sound’s energy may be absorbed in the seabed and 

due to their directional nature, will not be able to ensonify the C-PODs hydrophone and 

therefore will not be detected. 

There were insufficient visual observation data to assess the click characteristics 

relating to other behavioural categories such as milling, resting or socialising, which 

also form an important part of these species’ behavioural budgets (Mann et al. 2000), 

and will affect the content and rate of their vocal behaviour. Future studies of wild 

bottlenose dolphins and harbour porpoises should attempt to assess the vocal behaviour 

recorded by C-PODs for other visually observable behaviours such as mating and 

socialising. 

Communication trains have been described from porpoises with ICIs as short as those 

in feeding buzzes (Clausen et al. 2010). The extent of the use of such trains is not 

known, but the data show that, regardless of their actual function, more clicks with 
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short ICIs are produced during feeding than during travelling. It is not possible to 

distinguish unsuccessful feeding attempts (approaches to a target) from those that end in 

prey capture, and therefore an increase in feeding buzzes does not necessarily indicate 

an increase in feeding. However, an increased rate of feeding buzzes should at the very 

least indicate areas where prey is available and feeding attempts take place, which in 

itself is critical information for conservation and management purposes. 

Regardless of the fact that the C-POD does not record the full vocal repertoire produced 

by these animals, nor does it select all the recorded clicks for its final train 

classification, it can reveal valuable behavioural information about its target species by 

detecting potential foraging events, making C-PODs particularly useful for long-term 

monitoring studies. These devices can be used to identify important feeding areas, 

particularly for harbour porpoises but also potentially for bottlenose dolphins. 

Nevertheless, further studies to extract dolphin feeding buzzes from C-POD data are 

recommended. Behavioural observations using visual methods are limited to calm seas 

and daylight hours, typically during summer months. Therefore acoustic monitoring is 

the only way to acquire detailed information on feeding patterns for animals that are 

known to forage nocturnally 

The C-POD detects and identifies cetacean vocalisations based on complicated 

algorithm, and its detection capability is dependent on the acoustic properties of the 

target sound, the surrounding ambient noise and the animal behaviour, as well as the 

actual sensitivity of the device. Over the recent years many such devices and algorithms 

have been developed and will hopefully continue to be developed and improved to the 

benefit of researchers, decision makers and the conservation of coastal cetacean 

populations. The C-POD, like other similar acoustic devices, is designed for long-term 

static acoustic monitoring (SAM), and enables researchers to monitor cetacean presence 

in larger spatial and temporal scales than previously may have been possible. It, as any 

other method, does have its disadvantages, and due to the nature of its train detection, 

some individual clicks will always go undetected. It is therefore imperative to recognise 

that although SAM devices may be very useful in detecting long term trends of 

presence, or in fact identify feeding areas, they should not be used for analysing vocal 

behaviour in great detail. Furthermore bias resulting from potential differences between 

devices, and effects of deployment sites need to accounted for. An important advantage 

of the static acoustic click logger over traditional acoustic methods is the reduced 



CHAPTER 5 

 

 

160 

 

amount of data incurred and the automated species recognition process, both of which 

speed up the data analysis. In addition, describing behaviour through acoustic methods 

removes biases associated with visual descriptions of behaviour, ultimately facilitating 

comparisons of data between studies and across regions. 
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5.7 Appendices 

Appendix 5.1: Click train characteristics 

Summary of click train characteristics for harbour porpoise (HP) (Table 5.4) and 

bottlenose dolphin (BND), (Table 5.5) for both feeding and travelling behavioural 

categories.  

Table 5.4 Summary of Wilcoxon rank sum W tests (Mann Whitney Wilcox) performed 

to statistically compare click train characteristics detected by C-PODs during field trials 

that corresponded to P. phocoena groups engaged in foraging/feeding and travelling. 

Median, mean and standard deviation (SD) values are shown. Inter-click interval (ICI), 

sound pressure level (SPL) 

Characteristic 
HP FD 

Median 

HP 

FD 

Mean 

HP 

FD 

SD 

HP 

Travelli

ng 

Median 

HP 

Travelling 

Mean 

HP 

Travelling 

SD 

W test 

statisti

c 

P-value 

Train Duration 

(ms) 
374.9 350.0 727.8 703.1 606.9 637.6 11102 < 0.001* 

No of Clicks/Train 10.9 11.1 8.8 9.4 9.6 6.3 20695 0.9718 

Clicks/s 198.7 208.3 241.3 54.2 70.7 132.0 27113 1 

Max ICI (ms) 56.2 51.9 123.7 116.1 101.8 105.8 10198 < 0.001* 

Min ICI (ms) 43.4 39.9 100.0 94.2 83.2 92.0 9913.5 < 0.001* 

Mean ICI (ms) 45.9 42.5 100.5 97.7 85.2 91.3 
10143.

5 
< 0.001* 

Last ICI in a 

train 
51.5 48.3 119.4 106.3 93.0 97.5 

10186.

5 
< 0.001* 

ICI Rising (%) 56.8 56.1 19.1 57.8 57.1 19.4 
18245.
5 

0.3763 

Modal Frequency 

(kHz) 
128.9 128.5 4.2 132.6 131.6 4.9 11768 < 0.001* 

Mean End 

Frequency (kHz) 
124.8 124.3 6.1 129.2 128.5 6.4 11799 

 

< 0.001* 

Minimum 

Frequency (kHz) 
124.0 123.5 4.9 127.1 126.7 7.2 

11526.

5 
< 0.001* 

Maximum 

Frequency (kHz) 
133.5 133.3 5.9 137.2 136.5 5.9 12466 < 0.001* 

Maximum SPL  64.6 67.9 66.3 94.8 87.7 80.0 
15563.

5 
< 0.001* 

Mean SPL  38.3 40.1 32.0 53.8 48.7 40.9 
16502.
5 

0.03022 

n 147   253     

* indicates a significant result 
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Table 5.5 Summary of Wilcoxon rank sum W tests (Mann Whitney Wilcox) comparing 

click train characteristics detected by C-PODs during field trials that corresponded to 

bottlenose dolphin (BND) groups engaged in feeding and travelling. Median and mean 

values are shown. Inter-click interval (ICI), sound pressure level (SPL) 

 

BND 

Feeding 

Median 

BND 

Feeding 

Mean 

BND 

Feeding  

SD 

BND 

Travelling 

Median 

BND 

Travellin

g Mean 

BND 

Travellin

g SD 

W test 

statistic  
P-value 

Train 

Duration 

(ms) 

1095.8 1299.5 1003.5 1407.3 159.7 903.8 20121 < 0.001* 

No of 

Clicks/Train 
9 11.2 7.01 9 10.3 4.5 26199 0.5691 

Clicks/s 6 24.1 53.8 6 10.9 27.3 27113 1 

Maximum 

ICI (ms) 
192.6 185.2 128.6 226.9 229.0 101.3 19924 < 0.001* 

Minimum 

ICI (ms) 
146.4 140.6 98.3 175.3 170.6 73.3 20386 < 0.001* 

Mean ICI 

(ms) 
160.5 150.1 102.9 179.4 180.4 73.9 20537 < 0.001* 

Last ICI in a 

train 
170.4 178.7 132.4 200.8 216.3 112.1 20942 < 0.001* 

ICI Rising 
(%) 

60 61.6 17.5 60 60.1 16.5 27327 0.8216 

Modal 
Frequency 

(kHz) 

47 49.1 14.7 45 48.2 18.3 27591 0.8633 

Mean End 
Frequency 
(kHz) 

59 63.3 16.9 65 65.9 20.9 22482 0.01108 

Minimum 

Frequency 
(kHz) 

36 37.9 8.5 35 36.67 10.3 28470 0.9534 

Maximum 

Frequency 

(kHz) 

98.5 96.3 29.1 121 106.9 31.6 19542 < 0.001* 

Maximum 
SPL  

181 165.5 80.2 203 172.8 82.1 23879 0.0863 

Mean SPL  72 74.7 39.8 70 68.3 34.8 27832 0.895 

n 396   131     

* indicates a significant result 
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Appendix 5.2: GLM output 

Results of the Generalized Linear Model (GLM) for harbour porpoise and bottlenose 

dolphin datasets. 

1. Results of the Generalized Linear Model (GLM) for harbour porpoise data 

glm(formula = HPbeh$Behaviour ~ HPbeh$modalKHz + HPbeh$Clx.s,  

    family = binomial, data = HPbeh) 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-2.1333  -0.7571   0.5721   0.7860   1.9221   

Coefficients: 

                 Estimate Std. Error z value Pr(>|z|)     

(Intercept)    -1.241e+01  3.049e+00  -4.071 4.69e-05 *** 

HPbeh$modalKHz  1.042e-01  2.319e-02   4.492 7.06e-06 *** 

HPbeh$Clx.s    -3.565e-03  6.733e-04  -5.294 1.20e-07 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

(Dispersion parameter for binomial family taken to be 1) 

    Null deviance: 658.53  on 535  degrees of freedom 

Residual deviance: 562.79  on 533  degrees of freedom 

AIC: 568.79 

Number of Fisher Scoring iterations: 4 

 

2. Results of the Generalized Linear Model (GLM) for dolphin data 

glm(formula = BNDbeh$Behaviour ~ BNDbeh$MinICI_us + BNDbeh$avSPL +  

    BNDbeh$Clx.s + BNDbeh$MaxF, family = binomial, data = HPbeh) 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-1.3514  -0.8096  -0.6428   1.2144   2.4574   

Coefficients: 

                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)      -2.203e+00  4.686e-01  -4.702 2.57e-06 *** 

BNDbeh$MinICI_us  2.625e-06  1.284e-06   2.045   0.0408 *   

BNDbeh$avSPL     -8.596e-03  2.844e-03  -3.023   0.0025 **  

BNDbeh$Clx.s     -8.991e-03  5.585e-03  -1.610   0.1074     

BNDbeh$MaxF       1.449e-02  3.697e-03   3.918 8.93e-05 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

(Dispersion parameter for binomial family taken to be 1) 

    Null deviance: 648.64  on 569  degrees of freedom 

Residual deviance: 610.99  on 565  degrees of freedom 

AIC: 620.99 

Number of Fisher Scoring iterations: 5 
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Chapter 6 DISCUSSION AND CONCLUSIONS 

The goal of this research was to assess the suitability of the C-POD for acoustic 

monitoring studies of bottlenose dolphins and harbour porpoises, with a particular 

regard to density estimation. My intention was to quantify the detection probability of 

harbour porpoises and bottlenose dolphins using C-PODs and how source level, and 

animal behaviour and group size affect this, by assessing the performance of both the 

click detection and the train classification algorithm of the device. I aimed to examine 

these aspects in more detail than previous studies, in particular for the bottlenose 

dolphin, for which the information on the detection probability was still lacking. The 

overall hypothesis was that C-PODs are capable of detecting the echolocation clicks of 

both bottlenose dolphins and harbour porpoises but that their detection probability is 

affected by distance from the data logger, animal behaviour and group size, and the 

results of chapter 2 and 3 confirm this. I also hypothesised that although C-PODs 

probably do not detect all echolocation clicks emitted they are still able to record 

enough detail to enable feeding and foraging behaviour to be distinguished and the 

results obtained in chapters 4 and 5 support this hypothesis. Here, the main results of 

each chapter are summarised and placed in the broader context of static acoustic 

monitoring and the statutory monitoring requirements for bottlenose dolphins and 

harbour porpoises. The suitability of the C-POD as a monitoring tool and particularly as 

an instrument to estimate animal density is assessed. The limitations of the study are 

explored, and recommendations made for future efforts of acoustic monitoring of the 

two species.  

 

6.1 Detection probability of harbour porpoises  

Click detectors have thus far been used successfully to identify and monitor local trends 

in the presence of cetaceans in specific areas, as well as in studies revealing patterns of 

population trends more widely, and identifying seasonal feeding strategies for coastal 

species (Verfuß et al. 2007; Elliott et al. 2011a). The latest challenge in static acoustic 

monitoring (SAM) is to develop statistical methods for density estimation based on 

acoustic cues. To facilitate this, it is essential that factors affecting acoustic detection 

rates and vocal behaviour are reviewed (Küsel et al. 2011; Kyhn et al. 2012; Marques et 
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al. 2012). In chapter 2, I estimated the detection probability of harbour porpoises as a 

function of increasing distance from the data logger and decreasing source level with an 

extensive field experiment using artificial and actual recorded porpoise clicks. 

Furthermore, this detection function was modelled for both clicks detected (CP1 files) 

and classified click trains (CP3), including those correctly classified as harbour 

porpoise click trains. The results of the playback study were used to calculate the 

effective detection radius (EDR) and area for the data loggers in this area, for different 

source levels potentially used by the porpoise. A 20 dB reduction in the source level of 

the artificial playback signal reduced the EDR by 42% from 187 m to 107 m, 

highlighting the importance of identifying the mean source levels used in a particular 

study area, which is likely to depend on the level of ambient noise (Au et al. 1985). The 

stereotypical vocalisations of the harbour porpoise (Villadsgaard et al. 2007; Koblitz et 

al. 2012) were easily picked up by the C-POD, but the decreased detection probability 

of the click trains by comparison to the raw clicks shows that many clicks are being 

excluded from the train classification process.  

 

The detection probability decreased progressively from detected clicks to classified 

trains, and further to correctly classified species. Although the raw click files (CP1) had 

high detection rates of porpoise clicks and maximum detection distances close to what 

is theoretically possible, the detection rates of the correctly classified click trains were 

greatly reduced by comparison. The challenge remains for the developers of the 

software to improve the train classification algorithm to match the click detection 

abilities of the device, which would greatly increase its effective detection area.  

However, it is unlikely that this can be achieved at all, since more complicated signal 

(trains and species classification) will always require more information (more intense 

clicks and larger number of them) than just detecting a click – and therefore the 

detection probability of click trains will always lower than that of clicks. 

 

These findings contribute to the current knowledge of the capabilities of the C-POD, 

and the effective detection areas estimated in this study will help design effective and 

useful monitoring studies for harbour porpoises and other species with similar 

behaviour and vocalisation characteristics. Although these results are site and context 

dependent, they can be used as guidelines in other studies where such an expensive and 



CHAPTER 6 

 

 

166 

 

time-consuming experiment is not possible. The results highlight the need for future 

research on the effect of emitted source levels and possible modification due to 

variations in ambient noise levels which will affect the detection probability of 

porpoises with any SAM device. Further study is also needed to define how changes in 

behaviour or number of animals may affect the vocal behaviour and click production 

rate of the porpoise – both of which are crucial for achieving accurate density 

estimations (Marques et al. 2012). 

 

6.2 Detection probability of bottlenose dolphins  

With the growing interest in developing adequate and cost-effective acoustic 

monitoring methods for bottlenose dolphins and recent changes in the C-POD’s train 

detection algorithm which have improved its ability to classify dolphin echolocation 

clicks (Chelonia Ltd 2012b), the C-POD has potential to complement visual survey 

techniques in monitoring efforts of this Annex II listed species (Evans & Thomas 

2011). The main problems facing the acoustic monitoring of dolphins are the large 

range of vocalisations produced which can frequently be behaviour-dependent, (Janik & 

Slater 1998; Acevedo-Gutiérrez & Stienessen 2004), the lack of stereotypical 

echolocation clicks (Au 1993; Wahlberg et al. 2011), and their highly varied group size 

and composition in the region and elsewhere (Connor et al. 2000; Baines & Evans 

2012; Veneruso & Evans 2012). To address these problems, chapter 3 explored the 

C-POD detection probability of bottlenose dolphins with regards to effects of distance 

from the data logger, animal behaviour and group size and defined the effective 

detection radius (EDR) and area for these parameters. Results confirmed that as well as 

distance from the C-POD, both group size and behaviour play an important part in the 

detectability of dolphins by click loggers. The results revealed that, in general, feeding 

dolphins were more likely to be detected by C-PODs than travelling ones, but that 

single dolphins have an unexpectedly high detection probability, especially so when 

travelling.  

The study highlighted a distinct difference in detection probability for the two visually 

observed behaviours, with varying results for different group sizes, both findings of 

which will have implications on acoustic monitoring studies, posing a particular 

challenge to future efforts to use C-PODs to estimate animal density. Higher detection 
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rates of feeding dolphins in comparison to travelling ones could yield erroneously high 

density estimates in feeding areas and vice versa. Current interpretation of dolphin 

presence and absence based on C-POD data alone will produce biased results depending 

on the behavioural budget of the animals, and, in particular, the time spent foraging 

near the C-POD deployment site.  

 Only two distinct behaviours were examined: feeding and travelling. Since other 

activity states and behaviours are also likely to affect vocal behaviour, for example the 

production rate or types of vocalisations emitted, further research in this area is 

required, focusing both on types and rates of vocalisations produced. 

 

6.3 Comparison of C-POD data with broadband hydrophone recordings 

One of the main gaps in our knowledge of the ability of C-PODs to detect and classify 

cetacean trains, is a quantitative assessment of the proportion of clicks undetected by 

the logger. Chapter 2 approached this question by comparing the detection probability 

of porpoise clicks to the actual trains classified by the algorithm and found that many 

clicks were not assigned to trains, markedly decreasing the effective detection area of 

the C-PODs.  

In chapter 4, a selection of wild bottlenose dolphin click data recorded with a 

broadband hydrophone was compared with simultaneous C-POD recordings. Here I 

inspected the number of actual clicks missed by the combined click detection and train 

classification process, and assess the temporal characteristics of identified click trains to 

define whether clicks with certain inter-click intervals (ICIs) may be more likely to be 

missed than others. In particular, I hypothesised that click trains with very short ICIs, 

such as those present in feeding buzzes (Verfuß et al. 2009; Miller 2010), would not be 

detected by the C-PODs nor classified into click trains as often as would slower clicks. 

Interestingly, the analysis gave a result counter to the proposed hypothesis – in this 

sample dataset, the C-POD was able to identify click trains with short ICIs and, 

consequently, to describe feeding buzzes. This is encouraging for monitoring studies 

that are planning to use C-PODs to identify feeding sites or quantify feeding activity 

based on detected vocalisations. However, a considerable portion of dolphin clicks 

remained unclassified by the train detection algorithm, similar to the results presented 
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for (playback) porpoise clicks in chapter 2. The sample size was relatively small, based 

on one encounter with a single dolphin, and the analysis of the hydrophone recordings 

was based on semi-objective threshold definition of clicks, so the results are not 

conclusive. Further work describing vocalisations recorded by SAM devices for both 

bottlenose dolphin and harbour porpoise is recommended to enable a better 

interpretation of SAM data. 

 

6.4 Identifying animal behaviour from C-POD data 

Recent advances in statistical methods to estimate density from passive acoustic data 

have emphasised the importance of understanding how acoustic behaviour and 

vocalisation rate relate to the actual behaviour of target species (Mellinger et al. 2007; 

Ku sel et al. 2011; Marques et al. 2012). Previous studies with T-PODs have attempted 

to identify feeding events of free living harbour porpoises (Carlström 2005; Koschinski 

et al. 2008; Todd et al. 2009), but these studies did not conduct visual validation for 

their behavioural classifications. Earlier, I demonstrated that behaviour, together with 

group size, will significantly affect the detection probability of bottlenose dolphins, and 

consequently the effective detection area and any density estimates derived from this 

(see chapter 3). To address this problem in the context of SAM, conclusive information 

on the behavioural budget of the study species is needed, together with the ability to 

distinguish different behaviours from acoustic monitoring results.  

In chapter 5, I examined the latter solution and inspected C-POD data in comparison 

with visual observations of dolphin and porpoise behaviour, to assess whether SAM 

data can be used to discern behavioural information of target species. The resulting 

click trains of both species had similar characteristics to those described in the literature 

(detailed in chapters 1 and 5). The results showed that there was a clear difference 

between travelling and feeding click trains recorded by the C-POD – indicating that 

C-POD data could be used to characterise feeding events and thus identify potential 

feeding areas. This finding was more evident in the harbour porpoise data since in 

bottlenose dolphins, the result varied between the analytical methods. A number of 

explanations were proposed to explain the lack of statistical difference between vocal 

characteristics for the two different dolphin behaviours, including an inadequate sample 

size, an actual absence of distinct vocalisations produced by the dolphins, and 
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potentially erroneous behavioural classifications by the observers, all of which are 

discussed in detail in chapter 5.  

The key finding of this study was that C-POD data record enough of the vocal 

repertoire to represent different behaviours, although these results were restricted to 

only two distinct behaviours, feeding and travelling. Distinguishing the behavioural 

state of the target species allows for more in-depth analysis of the habitat use of the 

target population studied and is crucial in estimating density from acoustic data 

(Marques et al. 2012), since differences in behaviour can significantly alter vocal 

detections and consequently density estimation by acoustic means. Additional studies 

defining the relationship between behaviour and vocalisations are strongly 

recommended for both species. 

6.5 Summary of key findings 

Based on the results presented here, I can conclude that the C-PODs are capable of 

detecting both harbour porpoise and bottlenose dolphin echolocation clicks, and 

accurately distinguishing and correctly classifying them. The effective detection area of 

the bottlenose dolphin was much larger than that of the harbour porpoise, most likely 

due to the more intense clicks emitted by the dolphin. The C-POD detected clicks well 

but the train detection algorithm was found to be conservative and, as a consequence, 

many clicks were not assigned to click trains. The reduced number of train detections 

considerably decreased the effective detection area (EDR), in comparison to that 

obtained for the click detections, as was shown in the harbour porpoise playback 

experiment. In areas of low background noise and only single species present – where 

species classification is not required, the raw click files could be used to detect 

cetaceans and increase the area monitored. Despite the C-POD missing some 

echolocation clicks, and the conservative selection process of the click trains, the 

resulting data were still informative enough to identify foraging sites, when using short 

inter-click interval (ICI) as an indicator of potential feeding behaviour. However, 

behaviour and group size were shown to affect dolphin detection and consequently the 

effective detection area. It is likely that porpoise detection is also affected by behaviour, 

since their vocal behaviour during feeding was distinguishable from travelling. These 

factors make density estimates based on SAM data challenging. Furthermore, when 

attempting to distinguish foraging from other behaviours, or to specifically identify 
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foraging sites, it is important to note that the foraging and/or feeding will be detected 

from further away. This has implications on how far away from the data logger the each 

identified behavioural activity can be extrapolated to.  

 

6.6 Limitations of the study  

Study site and sample sizes 

All the experiments described in this thesis were conducted in New Quay, Ceredigion, 

where the height of the headland near a well-known feeding site for both species 

allowed prolonged visual observations to take place. Additionally, the site had weak 

tidal currents, a low number of commercially operating fishing boats, no ferry or 

shipping activities, and only a small recreational harbour nearby, and thus a minimal 

risk of losing equipment. Most importantly, in New Quay I had easy access to a suitable 

commercial boat to deploy and pick-up C-PODs, and to service moorings when 

required. However, the results obtained here are based on one geographical location and 

in the future would be useful to compare them to those obtained elsewhere to see 

whether site-specific differences will significantly affect the estimated effective area. 

 

Approach to detection threshold 

The approach taken here was to use distance and source level of detections to estimate 

the detection probability of C-PODs. Another, perhaps more universal approach would 

have been to assess C-PODs detection probability by using ambient noise levels and 

estimated transmission loss together with known source levels to examine received 

levels and to characterise the C-PODs detection threshold. 

 

Equipment 

Many technological and weather related constraints limited the amount of data 

collected, especially the number of usable visual observations, despite extensive 

observation periods. The broadband recordings in particular (described in chapter 4), 

suffered from an unprecedented and prolonged period of bad weather during April 

2012, as well as multiple equipment related issues. The limited amount of data collected 

was due to very short single animal encounters in the vicinity of the research vessel in 

optimum weather conditions, as well as technical problems with the recording 
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equipment (both hydrophones and C-PODs), and issues with data storage and power 

output on board the research vessel. Importantly the highest source levels used for the 

omnidirectional playback experiment in chapter 2, have been found to contain some 

irregularities, since the analysis was conducted. The resulting dataset has since been 

modified for publication and only the lower source levels up to 168 dB re 1 µPa @ 1 m 

have been retained in the analysis.  

 

Many studies have reported problems with C-PODs not starting or stopping in the 

middle of deployment (Chelonia Ltd 2012a), and this was also experienced in this study 

(See chapter 4). Some of the problems could have been avoided by more stringent 

operator protocol to ensure that each C-POD had indeed started logging. However, no 

obvious explanation could be found for the failure of one of the devices during the 

study. The only way to have discovered this would have been to download the 

experimental data on a daily basis – which is not practical for a monitoring study. This 

is an issue that the manufacturer clearly needs to address before these data loggers can 

be used in wider monitoring studies.  

Statistical significance 

In this thesis, I attempted to avoid setting strict null hypotheses and testing their 

statistical significance with P-values as such practice has many inherent weaknesses 

(Ioannidis 2005; Gerrodette 2011), especially since descriptive statistics can often 

produce more ecologically meaningful conclusions than simple significance testing 

(Beninger et al. 2012). Most of the results presented here can be confirmed from careful 

visual examination of the range and distribution of the data, although I have still used 

traditional statistical tests to compare means and variances of my samples, particularly 

in chapters 4 and 5. Significance values do not conclusively confirm the existence or 

the absence of real biological difference or effect. The datasets used here were not 

extensive, and small studies often report non-significance even when important real 

effects may have been detected by a large study (type II error). Equally, statistical 

significance does not necessarily mean that the described effect is real (type I error), or 

biologically significant, and confidence intervals can reveal much more about the 

importance of the finding (Ioannidis 2005). 

In chapters 2 and 3, I used a combination of an information-theoretic approach together 

with significance testing (Anderson et al. 2000; Beninger et al. 2012) when applying 
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Generalized Linear Models (GLM) and Generalized Additive Mixed Models (GAMM) 

to the data. Put simply, in this approach, different models are compared according to the 

principle of parsimony, which implies that the model that best represents the data is the 

one with fewest possible parameters. Consequently, there is always a trade-off between 

model fit (likelihood) and model complexity. The measure used in this study to apply 

the principle of parsimony was Akaike’s Information Criterion, AIC (Beninger et al. 

2012). Other possible approaches for statistical analysis, which are more informative 

than simple P-values, are based on maximum likelihood ratios and Bayesian inference 

methods. All these methods can produce varying results, and ideally should be used in 

combination with visual data inspection and descriptive statistics for improved 

statistical inference and meaningful ecological interpretation (Gerrodette 2011).  

Software versions 

The software (CPOD.exe) used for the extraction of data from the click loggers has 

undergone some developments during the last three years, and as a consequence some 

of the earlier analyses were conducted twice. In general, the updates in the software 

have not affected the analyses, although it must be noted that there is now a newer 

addition in the latest software (GENENC train classifier), which allows for more 

accurate detection on dolphin type click trains with fewer false positives 

(www.chelonia.co.uk). I was not in a position to re-run the entire raw data with this 

latest classifier, although an initial comparison of part of my dataset was conducted 

with it. Fortunately, due to the nature of the dataset from Cardigan Bay which has very 

low levels of background noise in the recorded C-POD data, there was scarcely any 

difference between the ‘old’ dataset and the data run with the new classifier, 

particularly due to the fact that I had used all three train quality classes (‘High’, ‘Mod’  

and ‘Low’). Therefore, I am confident that the results presented here would not be very 

different had I been able to use the latest train classifier. In more noisy surroundings the 

C-POD’s train classifier is likely to miss more clicks, and therefore the EDR estimated 

here would be overly optimistic for those environments.  
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6.7 Recommendations for static acoustic monitoring programmes and 

suggested areas of future research 

Despite recent advances in SAM technology and associated statistical approaches, 

acoustic data loggers have many shortcomings and limitations that need to be addressed 

in order to conduct meaningful monitoring programmes. Many of these were considered 

here but some remain unanswered and require further research. Here I attempt to 

address these with proposed practical solutions for the ideal research project.  

Vocal behaviour 

The main limitation of any acoustic method is simultaneously its greatest asset - its 

reliance on vocalising animals. Only vocally active animals will be detected and 

animals that are silent for long periods will be missed, making certain species more 

suitable for acoustic monitoring – e.g. the harbour porpoise, which echolocates almost 

continuously (Akamatsu et al. 2007). Several species-specific factors including the 

frequency range, vocalisation rate and emitted source levels of the target species, as 

shown for porpoises in chapter 2, need to be taken into account when deciding whether 

SAM is the appropriate survey method (Kyhn et al. 2009).  

Recommended solutions: Describe the full vocal repertoire of the monitored species 

including their frequency range and source levels, and evaluate the proportion of silent 

or vocally inactive periods within an animal’s behaviour budget to assess whether it is 

suitable for acoustic monitoring. For example, if the animal only vocalised during 

foraging, or at night time, placing data loggers near foraging sites would be the best 

option to assess animal presence in the area. Describing source levels requires using 

expensive hydrophone arrays or attaching acoustic tags on the animals themselves, but 

is necessary to effectively define EDR and effective area, as demonstrated in chapter 2. 

 

Effect of behaviour and group size on vocalisations 

As described in detail above, one of the main drawbacks of acoustic monitoring 

methods is the variability of vocalisations depending on the behavioural context and 

group size of the target species, although both of these factors affect visual surveys in 

equal measure. The effect of behaviour and group size on detection rates was clearly 

established for bottlenose dolphins in chapter 3. It is therefore crucial to define the 

relationship between different behaviours and group sizes with vocalisations and rate of 

sound production of the target species since all these can significantly affect the 
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detection probability with SAM devices. (Janik 2000; Johnson et al. 2006; Verfuß et al. 

2009).  

Recommended solutions: Assess the variability of vocalisations and their production 

rate for different behaviours and how this may be influenced by group size. One way to 

do this would be to conduct an experiment on detection probability using visual 

validation to examine the effect of these variables on detection probability, as described 

in chapter 3. 

Species discrimination 

Although considerable effort has been spent to discriminate different species based on 

their vocalisations (Rendell et al. 1999; Bearzi 2005), there are still large gaps in our 

knowledge in this field. In particular, this applies to our ability to distinguish species 

based on their click characteristics alone, which is obviously relevant to click detectors 

such as the C-POD and the T-POD (Simon et al. 2010). The harbour porpoises and 

bottlenose dolphins are relatively easy to identify based on their vocal behaviour, as 

demonstrated in chapters 3 and 4. However, even for those species that we can 

distinguish acoustically, overlap exists in parts of their vocal repertoire creating 

challenges to automated systems to accurately distinguish them from each other. 

Although the C-POD has improved its performance in this field by comparison to the 

T-POD, with a much reduced number of false positives, many clicks are simply 

discarded to avoid misclassification (See chapters 4 and 5).  

Recommended solutions: As above – invest in further research to describe the full range 

of vocal repertoire of target species to design a more accurate species discrimination 

algorithm based on echolocation characteristic so that C-PODs or other SAM data 

loggers could be used in locations where multiple cetacean species are present. Assess 

the variability of vocal production and characteristics during multi-species encounters 

and during inter-specific interaction to discover whether animals adjust their vocal 

behaviour to avoid producing overlapping signals. More in-depth knowledge of vocal 

production during multi-species encounters would greatly facilitate the use of C-POD to 

assess presence and absence and to infer relative or absolute abundance.  



CHAPTER 6 

 

 

175 

 

 

Detection thresholds and ambient noise 

As mentioned above, another factor that limits a SAM’s ability to detect cetaceans is 

ambient noise. In noisy environments such as shipping lanes or areas with high tidal 

flow (Hamilton et al. 1956) any vocalisations with low source levels will be masked by 

the ambient noise and only detectable at close range to the hydrophone (Akamatsu et al. 

2008). To combat this animals may alter their vocalisations, including frequency range 

and emitted source level (Au et al. 1985; Ansmann et al. 2007) which may be 

problematic to automated detection algorithms, which have been set to detect species 

based on set parameters. Studies attempting to monitor cetaceans in proposed tidal 

energy extraction sites may experience difficulties in discerning cetaceans from such 

noisy backgrounds, regardless of the acoustic method used, and should seek alternative 

ways to monitor a buffer site surrounding the proposed development sites, and combine 

visual and acoustic methods to achieve reliable estimates of habitat use and abundance.  

Recommended solution: To reliably use acoustic devices, such as C-PODs we really 

need to understand their detection threshold and how this varies with ambient noise of 

different frequencies. Measuring ambient noise as part of the acoustic monitoring study 

is essential to correctly assess the signal to noise ratio in given period and to identify 

periods when recorded data may not be reliable.  

Moorings and deployment techniques 

A recent study by Dudzinski et al. (2010) collated useful information about moorings 

for static acoustic monitoring gear for both shallow and deep water applications, listing 

the various constraints to be taken into account when deploying expensive and delicate 

equipment in the marine environment. For this study, moorings were developed with 

local fishermen over several years and this collaboration proved fruitful – the only 

losses of equipment incurred from deliberate or accidental interactions (entanglement) 

with leisure craft or fishermen, the actual mooring design used here was robust and 

reliable (Appendix 3.1, Figure 3.12) for the conditions in Cardigan Bay. Elsewhere, 

strong tides and currents, storm damage and shipping have created a lot of problems for 

SAM deployments (Dudzinski et al. 2010). An anchoring and marking system should 

be developed with plenty of local knowledge to fully appreciate prevailing sea 

conditions and take into account other sea users. Mooring systems could also introduce 
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a bias to the study, especially when recording animals at close ranges. Large, 

conspicuous moorings may attract or repel both cetaceans and their prey, or alter the 

acoustic conditions of the study area. Chains and other additional fixtures may create 

unwanted noise and large anchor blocks may cause acoustic shadows or refractions. 

Large marker buoys will be dragged by the tide and currents, and if attached to the 

same connection line as the data logger, they can physically affect it by pulling or from 

vibrations. Apart from the physical effects of the mooring, it may also be that due to 

species-specific behavioural differences, prey availability or general foraging 

preferences the monitored animals may spend proportionally more time either near the 

bottom (if feeding on benthic prey), or in the water column or near the surface (if 

feeding on pelagic prey).  

Recommended solutions: Collaborate with local sea users, fishermen and other 

researchers that deploy SAM devices under similar environmental conditions to gain 

information about the most reliable and practical deployment and anchoring methods. 

Conduct a pilot study to test the effect of mooring type and C-POD deployment depth 

on detection probability of target species.  

Automated detection and train classification 

The automated click detection and species classification enable large amounts of data to 

be processed without excessive time and staff costs, and can be much more reliable than 

subjective observer based analysis (Marques et al. 2012) as well as more comparable 

over time periods and across regions. However, as demonstrated in chapter 2 for 

porpoises and chapter 3 and 4 for dolphins, many factors affect the final output of an 

automated system, such as animal behaviour and environmental factors to equipment 

sensitivity and the detection algorithms. Further affecting factors are user defined 

settings such as time scale used and frequency filter options when exporting data from 

the C-POD. As discussed in chapter 4, one of the drawbacks of the C-POD is that the 

train detection is not openly available to the public. Although such algorithms may not 

be useful to most people using C-PODs for acoustic monitoring, it means that it can be 

difficult to validate the data recorded and to assess potential faults in the data collection 

methods. Figure 6.1 illustrates the many factors and processes affecting detection, 

classification and data analysis of echolocation clicks with C-PODs, as described in this 

thesis.  
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Recommended solution: Familiarise yourself with both the click detection process and 

the train detection algorithm (from data available on the manufacturer’s website) and 

most crucially with the data handling and analysis options of the C-POD software 

before deploying your equipment. 

 

 

Figure 6.1 Illustration of the processes affecting detection, classification and data 

analysis of cetacean sounds with C-PODs as described in this thesis 

 

Research design 

In order to produce useful and accurate information with C-PODs one must assess the 

suitability of the logger for the target species, evaluating factors such as device 

thresholds against known animal source levels and click characteristics. In chapter 2 I 

show that decreased source level of harbour porpoise significantly decreases the 

effective detection area. In chapter 3 I demonstrate how feeding dolphins are more 

likely to be detected than travelling dolphins. Therefore, the researcher must be 

knowledgeable about vocal behaviour and movement patterns of the target species, to 

be able to estimate the effective detection area of the devices and to ensure that the 

C-PODs are places in the most appropriate place. He/She should also investigate the 

physical characteristics of the study areas as well potential logistical constraints for 

moorings, deployment and pick-up and interactions with local stakeholders.  
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Attaining 100% acoustic detections  

Based on results from chapter 2, and a mean EDR of 72 m, nine C-PODs would be 

required to achieve 100% detection in an area of 1 km2, and 61 C-PODs (!) would be 

required to ensure detection and correct classification of all porpoise click trains. 

However, this is actually not entirely useful as overlapping detections could not be 

ruled out considering that porpoise click trains were detected up to 265 m away and the 

mean maximum detection distance across C-PODs in this study was 163 m (95% CI: 

132-194). Furthermore, recent studies with T-PODs have shown that even just a few 

SAM devices, acoustic detection rates correlated well with visual sightings rates 

(Goulton, 2012, MSc Thesis). 

Avoiding simultaneous detections with highest possible cover 

To exclude the possibility of simultaneous recording whilst still achieving the best 

possible coverage and to enable a rectangular survey design (instead of overlapping 

circles), C-PODs would need to be deployed far enough apart to exceed their maximum 

detection range. Allowing 250 m between each C-POD would satisfy these criteria but 

would require a total of 16 C-PODs to cover an area of 1km2. The narrowband nature of 

the porpoise’s echolocation click means that it will be unlikely to cause simultaneous 

detections with the same click trains more than 54 m apart, based on a beam width of 

12.25° at 250 m from the C-POD. Obviously any additional side-to-side head 

movement would increase this. For example, if the porpoise head side-to-side 

movement is 45° with a beam width of 12.25°, the beam at 250 m from the animal 

would cover a maximum range of 388 m – although as seen from the maximum 

detection ranges, at these distances there is insufficient information to arrive at the 

C-POD to allow for effective detection of porpoise click trains. 

Avoiding the effect of animal movement 

Considerations for research design should also include the potential swim speed of the 

animals. Using a maximum swim speed of 2m/s (Westgate et al. 1995; Otani et al. 

2001), the porpoise might cover a distance of 120 m in a minute. If the C-PODs are 

deployed over 250 m apart (to ensure no simultaneous detections) and the data are 

sampled in no longer than one minute periods (to ensure that the animal does not move 

into the EDR of another C-POD), it will be possible to arrive at a crude density estimate 
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for a series of consecutive sampling snapshots in the study area, providing the average 

group size in the area is known (or estimated) from visual observations. 

Obviously, a typical sampling design would not aim to cover the entire area such as an 

SAC, because of its size and costs involved, but rather to represent conceivable 

variation in the study area (such as depth or bottom substrate) in a systematic manner to 

account for the effect of this variation on animal distribution and behaviour. Hence the 

amount of sampling points required will depend on the nature of the area of interest, the 

target species, and the research question asked. Areas where only bottlenose dolphins 

are present, fewer C-PODs will allow for covering larger areas than those were also 

porpoises are present, due to the larger effective detection area of the dolphins. When 

both species are being simultaneously monitored the different EDRs of the two species 

must be taken into account, preferably aiming for an effective coverage of porpoises 

with lower EDR and accounting for potential overlap of dolphin detections in the data.  

 

6.8 The future of static acoustic monitoring and C-PODs 

Static acoustic methods are widely used in several locations, and click loggers such as 

T-PODs and C-PODs have gained popularity in monitoring coastal cetaceans, 

particularly in the UK, other parts of Europe and in New Zealand (Simon et al. 2010; 

Elliott et al. 2011a; Rayment et al. 2011; Brandt et al. 2011). Current developments in 

the statistical methods to enable the use of SAM data for density estimation (Marques et 

al. 2010, 2012; Ku sel et al. 2011; Kyhn et al. 2012) have further increased the potential 

application of such devices.  

Monitoring coastal areas is more necessary than ever, considering increased 

anthropogenic threats on coastal areas due to population growth, increased coastal 

tourism and recreational use of coastal sea areas with expanding populations in many 

developing countries with more disposable income (Evans et al. 2007; Reynolds, III et 

al. 2009). The pressure on inshore fishermen who need to work harder to make ends 

meet with decreasing fishing stocks place an extra burden on those coastal areas where 

cetaceans and humans co-exist (Evans & Hintner 2010). Furthermore, there is an 

increased demand to develop techniques to extract marine renewable energy, whether in 

wave, wind or tidal form, and many of the areas earmarked for such developments 
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coincide with important cetacean habitats, with potentially negative consequences 

(Carstensen et al. 2006; Evans 2008; Dolman & Simmonds 2010; Simmonds & Brown 

2010; Brandt et al. 2011). In addition, we are also dealing with potentially fluctuating 

climate where the consequences of future changes on the marine realm and its 

inhabitants remain poorly understood (Alter et al. 2010).  

All these pressures will require increased monitoring efforts to ensure that a balance 

remains between human developments and the marine environment, and to fulfil the 

reporting and monitoring requirements defined for EU Habitats Directive Annex II 

species. It is highly likely that static acoustic monitoring will be one of the ways to 

achieve these so long as limitations to its use are acknowledged and resolved (Mellinger 

et al. 2007; Marques et al. 2012). SAM devices will be able to provide long-term 

coverage, complementing visual surveys and information acquired from satellite 

tagging studies (Read & Westgate 1997; Sveegaard et al. 2011b). Acoustic surveys 

using mobile hydrophone arrays have produced comparable density estimates to visual 

surveys and identified key habitats (Gillespie et al. 2005; Sveegaard et al. 2011a). 

However, despite their popularity, SAM methods and particularly T-PODs and 

C-PODs, are still some way from being able to deliver clearly interpretable data on 

animal abundance. 

In this study I set out to describe and seek solutions to some of those shortcomings, and 

to increase our knowledge of the efficacy of the C-POD in particular. Using playback 

studies and visual observations, I defined the effective detection area for detection for 

both harbour porpoises and bottlenose dolphins, and found that source level greatly 

influences the detection probability of porpoises whilst behaviour and group size have a 

significant effect on the detection rates of dolphins. In fact, current interpretation of 

dolphin presence and absence based on C-POD data alone will produce biased results 

depending on the behavioural budget of the animals, whereby feeding dolphins will be 

more likely to be detected than travelling ones and the proximity of a regular feeding 

site near a monitoring location will increase detections.  

After assessing the vocalisations produced during visually observed feeding and 

travelling behaviours, I found that whereas resulting data were distinctly different for 

the two behaviours, it was more obvious within porpoise data. Currently the C-POD 

cannot be used to distinguish a variety of behaviours, only as an indicator for potential 
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feeding and /or foraging. Although I first thought that this could result from the 

C-POD’s inability to detect very fast feeding buzzes, this does not seem to be the case. 

Additional comparison with broadband data and more in-depth analyses of different 

behaviours and corresponding vocalisations are needed to enable C-POD data to be 

used to distinguish behavioural states from click data alone, particularly for the 

bottlenose dolphin. 

By no means have I managed to conclusively define the feasibility of the C-POD as a 

monitoring tool, nor have I been able to address all the limitations of the method, or to 

develop alternatives and solutions for each. Nonetheless I have shown that SAM in 

general has much potential and that the shortcomings of static acoustic methods only 

mean that we have a challenging task ahead to resolve them.   

The advantage of any automated SAM device is the ability to decrease or eliminate 

observer bias present in visual surveys, and provide the ideal detection probability with 

minimal responsive movement towards the observer (Marques et al. 2012). This is also 

the case with C-PODs. Automated analysis, and in particular species discrimination, 

allows for large datasets to be analysed with reduced observer variation, saving staff 

time and decreasing costs. In addition, due to the automated detection process, and 

providing any unit specific variation is accounted for, static data loggers can produce 

results that are comparable over wide areas and time scales. Long term monitoring 

enables SAM to measure small trends in abundance, even for low density areas (Verfuß 

et al. 2007; Rayment et al. 2011) which can be challenging for visual surveys. Notably, 

the ASCOBANS (The Agreement on the Conservation of Small Cetaceans of the Baltic 

and North Seas) Advisory Committee has acknowledged in its recent reports that static 

acoustic monitoring has proven valuable in small scale monitoring, and that it will be 

essential for assessing effectiveness of recovery efforts for many small cetaceans 

(Evans & Teilmann 2009; ASCOBANS 2011). 

The C-POD’s train detection algorithm has limitations (as does any survey method), 

and the resulting output of the train classification is affected by various factors. 

However, this does not hinder the device’s current use as a practical tool for long-term 

monitoring and environmental impact assessments of several cetacean  species, as well 

as identifying trends and patterns in cetacean occurrence for areas and species that 

previously had very little (if any) monitoring effort (Leeney et al. 2011; Rayment et al. 
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2011). Neither should be seen as an obstacle to future efforts to develop and refine its 

click detection and train classifying algorithm. Furthermore, using visual and acoustic 

methods simultaneously may help reduce the impact of inherent biases of these 

respective methods. More research is required on the capabilities of the C-POD, namely 

the detection threshold, and the vocal behaviour of its target species to be able to adjust 

results and correct for biases such as reduced detection probability in noisy 

environments or the variability in vocalisations according to behaviour. Future studies 

of cetacean acoustics, defining species-specific vocal repertoires, developing species 

discrimination algorithms and assessing behaviour and density specific vocalisation 

rates, will further enable the advancement of SAM methods and increase the feasibility 

of using loggers like C-PODs as a density estimation tool.  

Given the recent advances in statistical methods to estimate animal density from static 

acoustic monitoring devices  (Marques et al. 2012), and the growing requirement for 

reliable estimates of population sizes for many protected species, the results  of this 

thesis provide necessary information to increase our understanding of how click loggers 

can and cannot be utilised to detect two of the most common, coastally occurring, 

cetacean species in the UK and the Atlantic coastline of northern Europe. The results 

should assist those implementing monitoring guidelines to design effective acoustic 

strategies, as well as aid in interpreting existing datasets collected using SAM devices, 

particularly C-PODs, thus encouraging future research in cetacean acoustic methods. 
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