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A B ST R AC T  

Human activities have modified a significant part of the tropical forest landscapes 

across the globe, affecting their ecological characteristics and their capacity to provide 

ecosystem services. In order to counter act the current decrease in tropical forest quality, 

avoiding and reversing forest degradation has been included as one of the goals of 

multiple international agreements; it is of particular importance for the climate change 

mitigation scheme for Reduced Emissions from Deforestation and forest Degradation, 

forest conservation and enhancement of carbon stocks known as REDD+. In this thesis, I 

investigated the challenges and feasibility of measuring and monitoring tropical forest 

degradation in human modified landscapes, focusing on two types of human activities: 

shifting cultivation and logging.  

In Chapter 2, I built a conceptual framework that analyses the applicability of the 

international definitions of forest degradation, and their contrast with the complexity of 

tropical forest ecosystems and monitoring capacity in tropical countries. I proposed that 

given the current data and technological limitations, a quick start option to measure forest 

degradation is to use a benchmark that can be directly linked with the type and intensity 

of disturbance processes found in an area. Then in Chapter 3, I further studied disturbance 

processes by analysing the dynamics of shifting cultivation systems and the use of forest 

resources by communities. I found through a detailed mapping of high resolution data 

(10X10 m), that similar amounts of forest cover in tropical dry forests (TDF) were lost 

and gained between the study period (2004-2010), both at the regional and at the 

community level. This provides evidence that at least in terms of the above ground 

biomass pool, shifting cultivation systems in TDF could be considered carbon neutral, 

which implies that these systems have potential to participate in REDD+. The probability 

of changes in TDF cover in shifting cultivation systems was found to be dependent on the 

elevation, slope, amount of TDF available per person within a community, and to the 

amount of livestock and fence posts used by the communities.  

The use of forest resources and its relation with forest degradation is further 

studied in Chapter 4. In this Chapter, I evaluated a series of disturbance indicators that 

best explain the response of forest attributes to human disturbance, and used these 

indicators to establish four levels of forest degradation. The feasibility of separating four 

levels of degradation based on two types of high spatial resolution remote sensing data 

(SPOT 5 and RapidEye satellite data) was assessed. I found that at the landscape level, 

based on the use of forest resources it was possible to classify TDF into low and high 
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degradation levels. The capacity to classify the landscape into disturbance levels is further 

explored in Chapter 5, by using historical logging concessions and multi-temporal time 

series of medium spatial resolution (Landsat) in tropical moist forest. Through the 

integration of previous land use information with an analysis of the relation of the amount 

of green vegetation with respect to soil and shadow that compose a pixel, I determined 

that almost one third of the forest in the study area has experienced disturbance processes.  

This work supports the need to advance monitoring of forest cover analysis by 

incorporating forest condition, which has particular implications for the determination of 

forest carbon stocks. Overall, this research strengthens the concept that the definition, 

measuring and monitoring of forest degradation should be tailored to the particular 

dynamics of disturbance processes; and moreover that a direct link between monitoring 

capacity of a country and policy formulation is clearly needed to improve tropical forest 

stewardship. 
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ZUSA M M E N FA SS UN G  

Bedeutende Teile der global verbliebenen tropischen Wälder sind menschlichen 

Einflüssen mit oft gravierenden Auswirkungen auf ökologische Eigenschaften und 

Ökosystemdienstleistungen ausgesetzt. Um der anhaltenden Verschlechterung des Zustands 

tropischer Wälder entgegenzuwirken wurden die Vermeidung von Waldschäden und die 

Wiederherstellung geschädigter Wälder in die Ziele internationaler Abkommen 

aufgenommen. Insbesondere ist hier das Klimaschutzinstrument REDD+ zu nennen, das für 

die Verringerung von Emissionen aus der Entwaldung und Schädigung der Wälder steht. 

In dieser Doktorarbeit habe ich in vier Aufsätzen die Herausforderungen und 

Möglichkeiten untersucht, um tropische Waldschäden in anthropogen überformten 

Landschaften zu messen und zu überwachen. Das Augenmerk lag hierbei auf zwei Formen 

von Landnutzungen die Wälder schädigen können: Wanderfeldbau und Holzeinschlag. 

Der erste Aufsatz (Kapitel 2) präsentiert einen konzeptuellen Rahmen inwieweit 

internationale Definitionen von Waldschäden in der Praxis anwendbar sind und wie diese im 

Kontrast stehen mit der Komplexität von Waldökosystemen und der begrenzten 

Überwachungsmöglichkeiten in tropischen Ländern. Angesichts begrenzter technischer 

Möglichkeiten und mangelnder Verfügbarkeit von Daten schlage ich als „Schnell-Start-

Option“ zur Messung von Waldschäden die Verwendung eines Vergleichsmaßstabes vor, der 

direkt mit dem Typ und der in der Fläche gemessenen Intensität des Störungsprozesses in 

Bezug gesetzt werden kann. 

Im zweiten Aufsatz (Kapitel 3) untersuche ich Störungsprozesse die von dynamischen 

Wanderfeldbausystemen und der Nutzung von Waldressourcen durch lokale Gemeinschaften 

ausgehen. Durch detaillierte Kartierungen von hochaufgelösten (10x10m Pixelgröße) 

Satellitenbildern konnte ich nachweisen, dass zwischen 2004 und 2010 ähnlich große 

Flächen an tropischen Trockenwäldern (TTW) verloren wie hinzugewonnen wurden und 

zwar sowohl auf regionaler als auch auf lokaler Ebene. Dies werte ich als Hinweis darauf, 

dass - zumindest in Hinblick auf die Menge des in oberirdischer Biomasse gebundenen 

Kohlenstoffs - Wanderfeldbausysteme in TTW als Kohlenstoffneutral angesehen werden 

können und damit potentiell in den REDD+ Mechanismus aufgenommen werden könnten. 

Die Wahrscheinlichkeit von Veränderungen in TTW war abhängig von Höhenlage, 

Hangneigung, verfügbarer TTW-Fläche pro Person in der Dorfgemeinschaft, der Anzahl der 

Weidetiere und der Anzahl der Zaunpfosten als Indikatoren für Holznutzung.  
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Die Degradierung von Wäldern durch die Nutzung von Waldprodukten ist auch Thema 

im dritten Aufsatz (Kapitel 4). Dieser untersucht für eine Reihe von Störungsindikatoren, 

wie geeignet sie sind um die Reaktion des Waldcharakters auf menschliche Störungen 

abzubilden, mit dem Ziel unterschiedliche Stufen von Waldschädigungen zu identifizieren. 

In dieser Studie untersuche ich die Machbarkeit, diese Störungsstufen anhand von 

hochaufgelösten Fernerkundungsdaten (SPOT 5 und RapidEye Satellitenbilder) zu 

identifizieren. Auf der Landschaftsebene war es möglich TTW mit hoher und niedriger 

Störung durch Nutzung von Waldressourcen zu differenzieren. 

Die Möglichkeiten Landschaften anhand ihrer Störungsstufen zu unterscheiden ist auch 

Thema des vierten Aufsatzes (Kapitel 5), in diesem Fall anhand von tropischen 

Feuchtwäldern, basierend auf Daten zu historischen Holzeinschlag-Konzessionen und 

multitemporalen Zeitreihen von Landsat-Bildern mittlerer Auflösung. Die Integration von 

Informationen zu vorherigen Landnutzungen erfolgte hier durch die Analyse wie sich jedes 

Pixel aus dem Verhältnis von grüner Vegetation, offenem Boden und Schatten 

zusammensetzt. Die Ergebnisse zeigten dass fast ein Drittel des Waldes im 

Untersuchungsgebiet eine vorherige Störung durchlaufen war. 

Diese Doktorarbeit illustriert den dringenden Bedarf an Weiterentwicklung der 

Überwachung von Walddeckung unter Einbezug des Waldzustandes, was von unmittelbarer 

Bedeutung für die Bemessung der Kohlenstoffvorräte ist. Insgesamt zeigt die Arbeit auf, 

dass Definition, Messung und Überwachung von Waldschäden auf die spezielle Dynamik 

von Störungsprozessen in einem Gebiet abgestimmt werden müssen und dass es einer 

direkten Verbindung zwischen der Politikgestaltung eines Landes und der 

Überwachungsmöglichkeiten bedarf um langfristig Verantwortung für tropische Wälder zu 

übernehmen. 
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1.1. Introduction 

About 60% of the world´s tropical forests have experienced, to some extent, disturbance 

due to human activities that has altered their original ecological characteristics (ITTO, 2002). 

But does this mean that most of the world's forests should be considered to be degraded? 

How can forest degradation be defined and in what context is a definition relevant? 

Moreover, how can it be measured in a way that is useful for decision making? With the 

increasing interest in forest carbon markets and forest biomass becoming a commodity, these 

questions have gone beyond the ecological realm to have important social and economic 

implications (Putz & Redford, 2010).  

Measurement and monitoring of degradation in tropical forests are important from both 

scientific and policy viewpoints. Degradation of forests is associated with carbon emissions 

and biodiversity loss, contributing to a decrease in both the social and environmental 

functions of forests. With regard to policy, this thesis has been carried out in the context of 

recent United Nations Framework Convention on Climate Change (UNFCCC) policy on 

Reduced Emissions from Deforestation and forest Degradation (REDD+), under which 

countries may be rewarded financially on the basis of their national achievements in 

reducing carbon emissions, not only from deforestation but also from forest degradation. 

This policy is firmly rooted in payment by performance, which means that reliable, 

quantitative estimates of degradation will be necessary, and countries are searching for 

appropriate methods to provide such data. Although it is well established in academic 

literature that much tropical forest is degraded, and that it is expected to increase (Blaser et 

al., 2011), in reality estimation of the extent of degraded areas is highly uncertain (Mollicone 

et al., 2007; Asner et al., 2009; Potapov et al., 2009). Likewise there are major challenges in 

estimating the intensity of forest degradation (the extent of the loss of biomass and/or 

capacity to provide environmental services in a given area), and the rate at which different 

types of disturbance lead to degradation. Therefore, methods for this assessment need to be 

improved (Herold et al., 2011; Mertz et al., 2012; Bustamante et al., 2016; Pfeifer et al., 

2016). 

The concept of forest degradation is complex, and needs to be approached from the 

perspective of multiple disciplines (Visseren-Hamakers et al., 2012). An initial conundrum is 

the definition of forest degradation itself, because it is an inherently constrained concept 

based on judgment using a range of criteria (those of ecologists, policy makers, foresters, 

communities, logging companies, non-governmental organizations, economists etc.) 

according to what “we” think an undisturbed tropical forest ecosystem should be. Clearly 

this judgment varies between different stakeholders, the many disciplines involved in the 

study of tropical forest degradation and, moreover, between different forest ecosystems 
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(Guariguata et al., 2009). What would be considered by some as an example of degraded 

forests, would for others be characteristic of improved forest management (Putz & Romero, 

2015). Thus, there is a lack of agreement about the exact definition of forest degradation, and 

there is a tension between conceptually broad definitions and those that make the level and 

spatial extent of degradation amenable to practical measurement and monitoring. One 

consequence of this lack of agreement is that research on forest degradation is to a great 

extent exploratory and contestable. Furthermore, generalizations can be limited, in the sense 

that findings about degradation of forests from one type of disturbance, will have 

particularities to that specific type of forest and management system restricting its 

applicability to others (Mertz et al., 2012). Despite these constraints, the successful creation 

and implementation of global view in which environmental degradation policies are being 

created, calls for an advance in our knowledge and conceptual framework of forest 

degradation. 

That being said, in this thesis I attempt to study the complexity around forest degradation 

by conceptualizing it within the frame of the human-induced disturbance processes that act 

over a landscape, specifically on its carbon stocks. It is at the landscape scale that so much 

human decision making which results in either an increase or decrease in rates of forest 

degradation, that the study of forest degradation is most applicable (Thompson et al., 2012; 

Sayer et al., 2013). Thus, the main premise is that to advance assessment of forest 

degradation, in a way that is feasible to measure and that can be used effectively to reduce 

the extent of forest degradation, it needs to be modelled spatially. Achieving such 

improvements in the spatial modelling of forest degradation depends on improving the 

understanding of disturbance types, frequency and intensity that occur in the different 

landscapes, and how they relate to forest degradation. These spatial models of changes in 

forest cover extent and state as a result of disturbance processes, can be clearly linked to 

changes in forest carbon stocks (Goetz et al., 2009; Pelletier et al., 2012a; GOFC-GOLD, 

2013). Focusing on carbon stocks, apart from being relevant to international policy, is also a 

feasible way to address forest degradation as it provides an indirect link to quantifying 

estimates of changes in the delivery of many ecosystem services in an area (Simula, 2009). 

In this thesis, rather than just analyzing forest degradation by quantifying carbon stocks 

per se, I approach it from the perspective of the disturbance agents, focusing on two human 

activities, namely shifting cultivation and timber exploitation (i.e. selective logging) to 

evaluate the areal extent of forest degradation. My approach to this analysis is from a 

technical perspective that aims to evaluate the feasibility of measuring and monitoring forest 

degradation in relation to shifting cultivation and timber exploitation in human modified 
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landscapes, in order ultimately to spatially model and quantify degradation at the landscape 

scale. 

1.2. Considerations in the definition of forest degradation1  

In broad terms forest degradation can be defined as a reduction of one or more forest 

attributes that do not result in a permanent change in land cover class (i.e. forest areas that 

remain forest areas) (FAO, 2011). Thus forest degradation is conceptualized as a reduction in 

forest quality; the magnitude of this reduction will depend on the intensity and extent of the 

disturbance processes that cause it. The variability in the extent and duration of disturbance 

processes implies that forest degradation results in a continuous range of degrees of 

degradation (and/or successional stages) (Denslow, 1987; Lambin, 1999; Eckert et al., 2011) 

and is thus not a permanent state (Attiwill, 1994). These characteristics create major 

challenges in the definition, measurement and monitoring of forest degradation. At one end 

of this continuum lies the reference state, against which the reduction of forest attributes or 

functioning is compared. Defining reference states is highly subjective , mainly because it 

depends on what measures of forest quality are consider important and also because, in an 

era of high anthropogenic change, almost all forests have been altered to some degree by 

human use (Chazdon, 2008). 

As a possible solution to deal with the dynamic nature of forest ecosystems and the 

ambiguity associated with it, Ghazoul et al. (2015) proposed that forest degradation should 

be framed within ecosystem resilience, stating that an area should be considered degraded 

only if it enters arrested succession, and cannot recover to its pre-disturbance state without 

human intervention. However, such a conceptualization ignores the temporal scale of 

decision making, as it implies that degraded forests can only be identified once it has become 

apparent that a forest system cannot recover. Furthermore, given the many trajectories that 

forest recovery can take (Norden et al., 2015), it is complex to draw a line between any state 

of succession and the pre-disturbance state. Therefore, from both policy and utilitarian 

viewpoints, a major criticism of defining degradation based on resilience capacity is that 

significant amounts of carbon and biodiversity would be lost from the system before an area 

could be categorized as degraded. Such an approach, although scientifically sound as it truly 

captures the fact that tropical forests are constantly changing, would be very hard to make 
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 A more in-depth description of the limitations of defining forest degradation is elaborated in 
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operational within a carbon mitigation or biodiversity conservation context
2
 that aims to 

implement activities or policies to reduce forest degradation. 

Other widely used ecological-based definitions of forest degradation are based on 

biophysical parameters. Forest degradation is most often defined as changes or alterations in 

forest structure, composition, biodiversity, ecosystem functions and services that result from 

disturbance processes (Schoene et al., 2007; Simula, 2009). Reduced biodiversity, reduction 

of primary productivity, changes in the dominance of species and their population structure, 

increases in non-native species or light demanding species etc. are among the ecological 

effects that are used to determine if a forest should be labelled as degraded (Parrotta et al., 

2012). Despite consensus that biodiversity is a key component for defining forest 

degradation, knowledge on biodiversity responses to human-induced disturbances remain 

limited (Gardner et al., 2009), which has restricted its utility for measuring forest 

degradation. Clear examples are the difficulties in establishing biodiversity loss, e.g. 

measured as species richness, in forest areas that are under transition or in logged areas 

(Gardner, 2010; Ramage et al., 2013). Although measurement of changes in biodiversity 

remain very challenging, it has been argued that narrowing the view on forest degradation 

within climate change mitigation schemes only to carbon could potentially have negative 

effects on biodiversity conservation, and ultimately on the ability of ecosystems to recover 

through restoration and enhancement (Stickler et al., 2009; Strassburg et al., 2010; Gardner 

et al., 2012). 

With regard to policy, definitions of forest degradation have attempted to accommodate 

the spatial and temporal complexity surrounding its ecological aspects, by defining it as a 

decrease in forest attributes (FAO, 2011). Different international agencies have applied 

definitions that serve specific policy purposes, tend to be generic and might or not comply 

with the reality of different types of disturbance or of forest ecosystems. The apparent 

efficiency of using remote sensing for vegetation monitoring over a large area has prompted 

a focus on identifying changes in canopy cover (or tree crown cover) (FAO, 2007; GOFC-

GOLD, 2013). One issue is that using this criterion, the substitution of natural forest by 

many tree crops will not qualify as degradation, which is contrary to objectives of many 
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 Nonetheless, this approach can potentially be useful for identifying areas on arrested succession 

in order to explore the possibility of payments for carbon enhancement. 
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concerned about biodiversity conservation. Likewise, if only canopy cover is used to define 

degradation, remote sensing cannot tell apart degradation from forest management (Putz & 

Redford, 2010) so, clearly, complementary information will be needed. The majority of 

international agencies use definitions related to reduction in the delivery of ecosystem 

services (Simula, 2009), with a particular emphasis given to carbon stocks
3
. As argued by 

Cadman (2008), such an approach would avoid many of the practical assessment problems 

that result from measurement of forest attributes or biodiversity to quantify forest 

degradation. 

In summary, multiple attempts have been made to define forest degradation and what is a 

degraded forest (Cadman, 2008; Sasaki & Putz, 2009; Simula, 2009; Thompson et al., 2013; 

Ghazoul et al., 2015). Many have noted the importance of linking the concept to the 

Millennium Development Goals and the ecosystem services framework. Thus, forest 

degradation has been considered to be a reduction in the capacity of forest to deliver 

ecosystem services in a given area. In this context the extensive research-based evidence 

about the relationship between forest biodiversity and ecosystem function has led some to 

emphasise the key role of biodiversity as a component of the natural capital that underpins 

the capacity of forests to deliver ecosystem services (Thompson et al., 2012). Nonetheless, 

as explained above, measures of forest biodiversity are of limited utility to define forest 

degradation, as its response to disturbance is not always clear with total levels of biodiversity 

(e.g. species richness) sometimes being similar in areas under different degrees of 

disturbance or different stages of recovery (Gardner, 2010). Others have emphasised the 

conceptual linkage between forest degradation and the ecological concept of forest resilience 

(e.g. Ghazoul et al., 2015). All of these considerations present major challenges for 

developing a definition amenable to measurement and monitoring of forest degradation, as 

the provision of ecosystem services and resilience are concepts that are not directly 

quantifiable using a single methodology. Therefore they are of limited use in providing 

evidence on the implementation of forest policy, such as REDD+. In contrast, a focus on the 

ecosystem service of climate regulation (through carbon storage) presents a direct link to 

forest biomass, a variable that is far more amenable to measurement and monitoring. 

Moreover, although a formal definition has not yet been adopted, it is clear that under 
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REDD+ a narrow definition of degradation is likely to be used since the emphasis in this 

policy is on carbon stocks and change in carbon stocks (Goetz et al., 2015).  

Numerous studies have demonstrated the link between lower forest biomass (a surrogate 

for carbon stocks ) and disturbance processes that lead to forest degradation (Gerwing, 2002; 

Urquiza-Haas et al., 2007; Álvarez-Yépiz et al., 2008; Lawrence et al., 2010). It has been 

demonstrated that, on average, undisturbed forests have larger carbon stocks than degraded 

ones, and maintain these stocks during the cycle or mortality of individual trees and their 

replacement through natural regeneration (Luyssaert et al., 2008; Rutishauser et al., 2010). 

As there is increasing evidence that forest biomass takes decades to recover after human-

induced disturbance (Martin et al., 2013; Poorter et al., 2016), degraded forest can be 

defined as a state of lower forest biomass (or carbon) stock resulting from-human induced 

disturbance of natural forests. With this definition, the forest carbon stock is lower than what 

would be expected for the same area if the disturbance process had not occurred. As the 

carbon stock is directly linked to forest structure, using it as a variable to measure forest 

degradation would provide an indirect measurement of the structural state of the forest 

including canopy cover, tree density and other attributes, all indicators that have commonly 

been included in definitions of forest and forest degradation and are related to the habitat 

quality of the forest for biodiversity (Grainger, 1996; Simula, 2009; Thompson et al., 2012). 

As with any other definition of forest degradation, such an approach is not without problems, 

nor is it likely to be adequate for all applications. Nonetheless, it has the advantage that it is 

linked to the disturbance processes, making possible its integration within decision-making 

processes. Also, it can be spatially modelled and therefore monitored, allowing the areal 

extent of forest degradation to be estimated. Therefore, the conceptualization of degradation 

as a forest state with lower levels of carbon stock as a consequence of human-induced 

disturbance is used in this thesis as the definition of forest degradation. 

1.3. What are degraded forests in tropical landscapes? 

Forest degradation in tropical countries is caused both by natural and human-induced 

disturbance processes. The most conspicuous and widespread of the former are wildfires 

(Alencar et al., 2015), and the latter includes shifting cultivation, selective logging, and 

extraction of fuelwood and non-timber forests products (Murdiyarso et al., 2008a). Although 

the importance of natural disturbance in the tropics must be acknowledged, and it is 

recognized that there is feedback between natural and anthropogenic disturbances that makes 

this division artificial, this work is limited to forest degradation caused by human-induced 

disturbances. These disturbances reduce the structural complexity and alter the composition 

of tropical forests, and their biomass density (Kauffman et al., 2003; Chazdon, 2008; 
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Gourlet-Fleury et al., 2013; Chazdon et al., 2016). At the landscape scale they result in 

vegetation loss, transitions in vegetation type and reductions in vegetation cover and density 

(Lambin, 1999; Joseph et al., 2010). Consequently, human-modified landscapes are usually 

composed of agricultural and forest land areas under different levels of human use (Fig. 1), 

that are difficult to quantify and categorize (Putz & Redford, 2010). Although most of the 

literature and policy making has focused on defining forest degradation as a reduction in 

ecosystem services (e.g. Thompson et al., 2013), in practice attempts at categorizing tropical 

forests by this criterion have generally used the type of disturbance processes that act over an 

area to define forest degradation. For example, Grainger (1996) proposed that tropical 

degraded forests should be grouped as: a) selectively logged forests and forests used for 

other extractive purposes; b) regenerated forests, defined as short- and long-rotation shifting 

cultivation, and forests managed to increase the production of commercial timber; c) 

damaged forests, areas that suffer unusual disturbances such as fire, drought, and pollution; 

d) planted forests, which include tree plantations and agroforestry; e) arrested succession 

forests; and f) dispersed forests, which include all the other categories but at a landscape 

level.  

Likewise, the International Timber Organization (ITTO) (2002) provides what is perhaps 

the most comprehensive framework for categorizing tropical forest landscapes that can be 

applied to conceptualize forest degradation as a state, by characterizing tropical forest lands 

into three broad main categories: primary forests, modified natural forests and planted 

forests. Within modified natural forests, two types are recognized: primary forest areas under 

improved management and degraded forest lands; this thesis focuses on this latter category 

(Fig. 1.1). Degraded forest lands include secondary forests (areas of forest regrowth) and 

exploited natural/primary forests (i.e. forests without any management or only poor 

management that results in a loss of carbon stocks and delivery of other ecosystem services). 

Secondary forests, in this framework, are those areas dominated by woody vegetation that 

grows back (from now on called regrowth in this thesis) after clearance of their original 

forest cover, due to intensive disturbance processes such as shifting cultivation, conversion 

to pasture or failed tree plantations. Forests without management are those that, due to 

disturbance (mainly intense harvesting of timber and non-timber products or other extractive 

activity), have their structure, and ecological processes and functions, altered to a point that 

compromises their capacity to fully recover from exploitation in the short-medium term. 

Under this model, forests well managed for timber production, should not fit into the 

degraded land category (Fig 1). Although, from a carbon perspective, such forests have 

reduced carbon content and an altered structure, this will be a temporary state, as it has been 

shown that under improved forest management such as reduced-impact logging forests will 
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recover carbon and generate about 30% less emissions than under conventional logging 

practices (Putz et al., 2008b). Hence, such improved logging practices will most likely be 

considered under the category of sustainable forest management within the REDD+ context, 

not under the category of forest degradation that is restricted to forest subjected to poor 

management (as indicated, for instance, by bad management plans, illegal logging, 

uncontrolled harvesting, premature reentry logging), which compromises the recovery 

capacity of forest ecosystems (Putz et al., 2012) and causes a more permanent state of low 

carbon content. 

 

 

1.4. The importance of degraded tropical forest areas  

Degraded tropical forests can provide multiple benefits to society, and are particularly 

important to local populations that depend on them for their livelihoods (van Vliet et al., 

2012; Edwards et al., 2014a; FAO, 2014). Activities which enable humans to benefit from 

 

Figure 1.1. Scheme of a tropical forest landscape showing the classification of 

forestland uses.  

Trees with white crowns represent under-stocked forests and small trees represent re-

growth after disturbance 
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forest resources, but which in turn lead to their degradation in the tropics, include selective 

logging, shifting cultivation, cattle grazing, charcoal production, large-scale forest fires and 

sub-canopy fires, fuelwood collection, and extraction of other non-timber forest products 

(NTFPs) (Murdiyarso et al., 2008a; Hosonuma et al., 2012). Most of the approximately 20% 

of the world's population that depends on forests for their livelihoods, building material for 

shelter and food security (Chao, 2012), and the 12% that use fuelwood as their main source 

of energy (FAO, 2014), are located in the tropical belt (Chao, 2012). Moreover, one quarter 

of the global forest area is designated as production forest (Blaser et al., 2011). 

Consequently, it is foreseeable that degraded tropical and subtropical forest landscapes will 

continue to increase in the future, which will have important consequences for biodiversity 

conservation, ecosystem resilience, livelihoods and climate change.  

As noted at the outset of this chapter, estimates of the global extent of degraded forests 

are highly uncertain (Asner et al., 2009; Potapov et al., 2009), probably due to the 

difficulties of defining and measuring forest degradation. Although only coarse estimates are 

available, it is commonly stated that in the tropics the area covered by degraded forests is 

large (Herold et al., 2011) and increasing. In the tropics the areas that experienced canopy 

cover reduction > 20% between 2000 and 2012 have been estimated to be 6.5 times higher 

than that deforested since 1990 (Sloan & Sayer, 2015) and logging alone affects 20% of the 

tropical forest biome (Asner et al., 2009). Moreover, while emissions from deforestation are 

decreasing, those from forest degradation have increased from an average of 0.4 Gt CO2 yr
-1

 

for 1991-2000 to 1.1 Gt CO2 yr
-1

 for 2011-2015 (Federici et al., 2015). However, these 

estimates do not separate natural from anthropogenic causes, thus new analysis is needed 

that is focused on human causes of forest degradation at a regional or country level to 

provide a more accurate picture of its magnitude and causes. For the Amazon, it has been 

estimated that carbon emissions from selective logging represent 60-123% of the carbon 

emissions due to deforestation (Asner et al., 2005). Annual forest degradation rates during 

2005-2010 in the Democratic Republic of Congo (which holds about 60% of the forest of the 

Congo Basin, the second largest tropical forest in the world) have been estimated to be 2%, 

which is double the deforestation rate for that area (Zhuravleva et al., 2013). 

Even though the above estimates need to be improved, it is clear that forest degradation 

affects vast areas of the tropics, which in addition to generating carbon emissions can result 

in species loss due to alteration of the natural habitat (Stickler et al., 2009; Strassburg et al., 

2010; Barlow et al., 2016). The extent of degraded forest areas, in conjunction with the 

magnitude of rural populations that depend on them, and its importance for biodiversity 

conservation, have led to the inclusion of avoiding and reversing forest degradation as one of 

the goals of multiple global agreements, including the Aichi Biodiversity Targets, the Four 
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Global Objectives on Forests, and REDD+ (CBD, 2010; UNFCCC, 2010; FAO, 2011; 

Parrotta et al., 2012). Advances in the assessment of tropical forest degradation are a high 

priority (GFOI, 2013), and are particularly urgent in the context of this last policy. 

1.5. Forest degradation on the global international stage: REDD+ 

The role of tropical forests in the global carbon cycle has long been recognized 

(Houghton et al., 1993; Defries et al., 2002), as well as the need for policies to regulate 

carbon emissions from tropical deforestation and forest degradation to mitigate climate 

change (Brown et al., 1993). Assessing tropical forest degradation is particularly important 

in the context of climate change mitigation for two reasons. Firstly, disturbance processes 

such as logging, shifting cultivation and forest clearing are widespread throughout the tropics 

(Blaser et al., 2011; FAO, 2014) and, as explained in section 3, they generate important 

quantities of carbon emissions (van der Werf et al., 2009; Houghton, 2013). Secondly, 

avoiding further degradation of tropical forests by achieving sustainable use, has the 

potential to turn tropical forests from carbon sources into carbon sinks for long time periods 

(Grace et al., 2014). Indeed, to reduce greenhouse gas (GHG) emissions from the land use, 

land-use change and forestry sector (AFOLU), parties to UNFCCC are currently developing 

and implementing REDD+, which was included in the new international climate change 

agreement signed in December of 2015
4
. REDD+ is an international mechanism in which 

economic remuneration will be paid to landowners, projects, or countries in tropical regions, 

if they demonstrate that GHG emissions are reduced below a reference level, i.e. the level 

that could be expected if the mechanism was not in place (Angelsen et al., 2012).  

In 2013, the use of the latest Inter-governmental Panel on Climate Change (IPCC) 

guidelines to measure and monitor carbon stocks and carbon stock changes became official 

within the Warsaw Framework for REDD+ (the Warsaw Agreement)
5
. The IPCC Good 

Practice Guidance (IPCC, 2006) describes a methodology to account for emissions coming 

from the five carbon pools defined for areas classified as forest. These five carbon pools in 

the ecosystem are: above-ground biomass (AGB), below-ground biomass, litter, deadwood, 
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 Article 5 of the Paris Agreement. 

https://unfccc.int/files/meetings/paris_nov_2015/application/pdf/paris_agreement_english_.pdf 

5
 Decision 11/CP.19 .https://unfccc.int/resource/docs/2013/cop19/eng/10a01.pdf 

http://unfccc.int/resource/docs/2013/cop19/eng/10a01.pdf
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and soil organic carbon, that are normally converted into carbon stock estimates considering 

that biomass comprises 47-50% carbon (GOFC-GOLD, 2013). 

To determine the carbon stocks associated with forest degradation and deforestation, the 

IPCC methodology states that their estimation for a specific region or country is the result of 

a simple equation that multiplies the activity data by the emission factor (IPCC, 2003). The 

emission factor refers to how much carbon is found per area; it quantifies the 

emissions/removals per unit area (t C ha
-1

) of the different carbon pools found in the 

ecosystem. The activity data is defined as the change in extent (ha) between land cover 

categories, for instance from forest to degraded forest. This implies that a pre-requisite for 

any carbon stock accounting is a spatially-explicit identification of the forest area that was 

cleared in the case of deforestation or in the case of degradation the extent of degraded forest 

lands. Although the rules for carbon stock accounting are well established, in reality 

determining activity data and emission factors to acceptable levels of certainty is extremely 

challenging (Pelletier et al., 2011; Pelletier & Goetz, 2015; Reimer et al., 2015), especially 

for forest degradation (Herold et al., 2011; Pearson et al., 2014). Until recently, studies that 

measured emission factors or the forest carbon stocks of tropical forests subjected to 

different levels of human disturbance were rare (Berenguer et al., 2014; Griscom et al., 

2014; Pearson et al., 2014). In addition, the land cover dynamics of tropical forest 

ecosystems are complex, particularly for degraded landscapes that are formed by forest 

patches at different stages of disturbance and recovery that create large variability in carbon 

stocks within the landscape (Eckert et al., 2011; Mertz et al., 2012; Pelletier et al., 2012b; 

Miettinen et al., 2014).  

The IPCC suggest three methodological levels that are defined according to the data 

quality and level of accuracy that is produced. Tier 1 uses default values for emission factors, 

while Tiers 2 and 3 provide greater accuracy of carbon stock estimates by using more 

detailed mapping and modelling approaches for carbon stocks and forest cover change 

(Gibbs et al., 2007; Goetz et al., 2009; Birdsey et al., 2013). Given that REDD+ is 

performance-based, national and sub-national level initiatives would benefit from reporting 

at higher tiers, as Tier 1 will assign a conservative carbon value per ha that will be lower 

than local estimates obtained from forest inventories and spatial modelling (GOFC-GOLD, 

2013; Langner et al., 2014). 

Reporting using Tier 2 and 3 implies that countries and/or projects will need to define in a 

measurable, meaningful, but also practical manner, what will be included as forest 

degradation. For this, the activities that are reducing the carbon density of their forest 

ecosystems need to be properly characterized, which means defining the temporal and spatial 

scales over which the reduction of carbon density in the forest is happening. This will require 
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countries to improve the detection of the area affected by disturbance, in order to improve 

their estimates of activity data both on degradation and on deforestation, as a large 

proportion of the uncertainty in REDD+ relates to the spatial distribution of forest cover 

(Mitchard et al., 2013; Goetz et al., 2015). 

Apart from the accounting of forest carbon stocks, any REDD+ project or action needs to 

address 'safeguards'. This means that any reduction of emissions should avoid negative 

effects on local communities and on biodiversity (Gardner et al., 2012), or that it should seek 

to achieve co-benefits in addition to carbon mitigation, e.g. by empowering local people, 

enhancing their livelihoods and conserving biodiversity, in addition to carbon emissions 

mitigation (Visseren-Hamakers et al., 2012). Maintaining forest carbon stocks is often 

regarded as an umbrella-approach since, if achieved, it will at the same time preserve other 

ecosystem services (e.g. forest biodiversity and hydrological regulation functions) 

(Strassburg et al., 2010; Donato, 2014). Even though there is considerable debate about this 

(Venter et al., 2009; Phelps et al., 2012; Martin et al., 2013), increasing the delivery of 

ecosystem services and fostering healthier and more resilient tropical forest ecosystems are 

ultimately what should be achieved by enhancing carbon stocks in degraded natural forests 

and by avoiding forest degradation. 

1.6. Theoretical framework: the interface between disturbance ecology, 
landscape ecology and land use change science to study forest degradation 

The study of tropical forest degradation is grounded in the interaction/interface of three 

closely related disciplines: land cover change science, landscape ecology and disturbance 

ecology. Disturbance ecology studies disturbance processes that are the cause of forest 

degradation (Attiwill, 1994). These processes are reflected in the landscape patterns of land 

use and land cover (Lambin, 1999), and the study of spatial patterns caused by disturbances 

is one of the main streams of landscape ecology and land cover change science (Müller & 

Munroe, 2014). Forest degradation, as well as deforestation, are determined by a series of 

socio-economic factors and environmental policies (e.g. REDD+ and payment for ecosystem 

services) that interact in numerous ways with the ecological characteristics of forest 

ecosystems (Lambin, 1997). Land cover change science and landscape ecology are applied 

to monitor those interactions by extracting and analyzing spatial patterns that are created by 

deforestation, forest degradation and other disturbance processes (Lambin, 1999; Lambin & 

Meyfroidt, 2010). However, these three disciplines have only recently been integrated, due 

to the need to understand complex transitions in tropical ecosystems in human-dominated 

landscapes or socio-ecological systems (Uriarte et al., 2010). 
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The level of forest degradation observed in a tropical forest landscape depends on the 

intensity, frequency and extent of the disturbance events that have affected the area. 

Disturbance events, either natural or human-caused, by definition result in removal of 

biomass from the forest ecosystem hence reducing carbon storage. Along with 

environmental factors, disturbance processes are responsible for the spatial and temporal 

heterogeneity of forest cover and biomass found in degraded forest landscapes (Chazdon, 

2003; Berenguer et al., 2014). In particular, two forms of human-induced disturbance events, 

shifting cultivation and logging, create complex forest landscape mosaics that differ in their 

structure, composition and biomass content (Mertz et al., 2012). The reduction in carbon 

storage in complex landscape mosaics, as a result of shifting cultivation or logging alone or 

in combination with other disturbance events, has been relatively well documented in the 

tropics (Marín-Spiotta et al., 2008; Ziegler et al., 2012; Delang & Li, 2013). It has been 

estimated that, on average, each cycle of agricultural cultivation reduces biomass 

accumulation by 9.3%, and that secondary forest may not re-grow after approximately 10 

cycles (50-200 years), although this will be very site-dependent (Lawrence et al., 2010). 

Factors such as soil, climate, disturbance intensity and fallow length affect the rate of 

recovery of biomass and the ecological characteristics of the forest regrowth (Kauffman et 

al., 2009; Dalle et al., 2011; Becknell & Powers, 2014). In the case of logging the loss of 

biomass and the recovery time are also very variable depending on its intensity and the 

techniques used (Berry et al., 2010; Putz et al., 2012; Edwards et al., 2014a; West et al., 

2014; Rutishauser et al., 2015). For instance, it has been estimated that conventional logging 

can damage, for every tree logged, 10-20 surrounding trees (Putz et al., 2008a), which 

produces substantial loss of biomass. In most tropical forests, above-ground biomass (AGB) 

is the carbon pool most affected by both shifting cultivation and logging (Thompson et al., 

2012), and is also the one that produces the most detectable spatial patterns. It is therefore 

the only carbon pool included in this thesis. 

Spatial patterns and processes are not directly "interchangeable". Nonetheless, 

understanding and linking the temporal and spatial characteristics of disturbance events 

caused by human activities, such as shifting cultivation or selective logging, provides an 

indicator of ecological processes, such as carbon sequestration. Remote sensing has provided 

a way to estimate approximately the spatial and temporal characteristic of deforestation and 

forest degradation by providing data on the frequency and extent of these disturbance 

processes and the associated spatial patterns that they produce (Joseph et al., 2010). It is an 

essential tool for forest monitoring and a key element in any forest carbon management 

strategy (Petrokofsky et al., 2012). 
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1.7. Background on measuring and monitoring the extent of forest degradation 
in the tropics  

It is generally considered that monitoring and measuring forest degradation is more 

difficult, and thus substantially less accurate, than monitoring deforestation (Mertz et al., 

2012; Bustamante et al., 2016). Ambiguity in the definition of forest degradation, along with 

the variety of human activities that can lead to forest degradation, are the reasons behind this 

difficulty (GOFC-GOLD, 2013). Despite this wide variability in activities, that range from 

timber harvesting in moist forest to fuelwood collection in dry areas; assessment of the 

extent of forest degradation has been done through various combinations of remote sensing 

analysis and field-based measurements.  

1.7.1. Remote sensing  

There are a number of reviews of the application of different remote sensing data to the 

monitoring of deforestation, forest degradation and carbon stocks, particularly in the context 

of REDD+ (Gibbs et al., 2007; Goetz et al., 2009, 2015; Joseph et al., 2010; De Sy et al., 

2012; Petrokofsky et al., 2012). Other reviews have focused on methodological 

considerations for monitoring and reporting requirements within REDD+ (Herold et al., 

2011; Birdsey et al., 2013). New guidance on quantification of land cover and carbon stocks 

has been recently developed and is being constantly updated (e.g. GOFC-GOLD, 2013; 

GFOI, 2014). Thus, in this section I do not aim to provide an exhaustive review of remote 

sensing techniques applied to land cover change assessment but rather I focus on relevant 

studies that have applied these techniques to the study of forest degradation in the tropics. 

The general consensus of these reviews is that, although significant advances in remote 

sensing have been achieved in terms of forest cover change, monitoring the different types of 

forest degradation is still at an early stage. Furthermore, these reviews suggest that to 

advance forest degradation monitoring innovative methods are needed that couple satellite 

data with ground-based observations to produce spatially explicit information in accordance 

with the type of disturbance that is leading to forest degradation. 

1.7.1.1.  Remote sensing for assessment of forest cover and forest cover change  

Land cover and land-cover change are two variables that can be estimated with remote-

sensing techniques (from now on called remote sensing in this thesis), which provide critical 

information about land-management activities and natural disturbances, and are fundamental 

to estimate emissions and removal of CO2 at regional and national scales (Gibbs et al., 2007; 

GOFC-GOLD, 2013). Analysis of land cover change through remote sensing is commonly 

used for forest monitoring in the tropics, mainly focusing on deforestation processes (Achard 



 

16 

et al., 2007; Hansen et al., 2013). Satellite data is arguably the most consistent source for the 

derivation of activity data and to improve the precision of emissions factors by means of 

stratification of the landscape into more homogeneous units (Gibbs et al., 2007; Goetz & 

Dubayah, 2011; Joseph et al., 2013). Moreover, it is considered to be the most cost-effective 

way of measuring and monitoring forest cover and forest carbon stocks over large 

geographical regions (Strand et al., 2007; Böttcher et al., 2009), although there are important 

differences between results obtained through different approaches to classify satellite data 

(Olofsson et al., 2014). 

1.7.1.2. Remote sensing of tropical forest degradation 

Monitoring of forest degradation with remote sensing is challenging for several reasons, 

as mentioned above. Unlike deforestation, forest degradation is a continuous variable, so its 

spectral variability within forest areas is not as contrasting as the differences between areas 

covered by forest and bareland areas. Therefore, different approaches are needed either to 

enhance the spectral variability to assess degraded areas directly or to determine human 

activities to estimate the approximate extent of degraded areas indirectly (Herold et al., 

2011; GOFC-GOLD, 2013). The latter approach is based on image interpretation, and 

degraded areas are most commonly inferred as a function of the distance from roads (or other 

infrastructure). This approach has been applied, for example, by mapping logging roads and 

estimating landscapes that have been transformed from intact or undisturbed forest to logged 

forest (Laporte et al., 2007; Gaveau et al., 2014; Kleinschroth et al., 2015). Although this 

non- automated approach can be effective, its main disadvantage is that it is subjective, as it 

depends on the decision of the distance of the edge of the buffer area from the road, and on 

the interpreter’s capacity to delineate roads. 

More sophisticated techniques, such as sub-pixel analysis and the fusion of data from 

various types of sensors, have emerged in the last decade enabling spectral information to be 

used to model forest degradation directly. All these analyses seek to detect small clearings 

and gaps within the canopy and/or a reduction of canopy cover (e.g Negrón-Juárez et al., 

2011; Langner et al., 2012), and attempt to link them to the human activity causing the 

disturbance. Time series of yearly Landsat data have been successfully used to detect forest 

degradation caused by logging operations and fire in the Brazilian Amazon, by analyzing the 

different materials that compose a pixel ‒subpixel analysis (Asner et al., 2002, 2005, Souza 

et al., 2005, 2013; Matricardi et al., 2010; Alencar et al., 2011). However, these approaches 

have rarely been applied in other tropical areas and require further testing. Subpixel analysis 

of optical data, in combination with active sensors (e.g. Lidar), is a promising approach to 

improve the detection of forest degradation resulting from logging, fires and mining, because 
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such methods provide data on forest height and can indirectly estimate forest carbon stocks 

(Asner et al., 2010; Birdsey et al., 2013), and is an area of active research (De Sy et al., 

2012). In general, for the detection of forest degradation the availability of remote sensing 

data with adequate temporal, spectral and spatial resolution is critical (Joseph et al., 2010). 

Nonetheless, this is seldom the case, as data with higher resolution are usually much more 

expensive to obtain, and tropical forest areas are characterized by high cloud cover, at least 

for much of the year, which often hampers data acquisition. To date, the main limitation of 

combining data from active and optical sensors to monitor forest degradation due to logging 

is cost (De Sy et al., 2012). Lidar data acquisition is especially expensive, therefore it is 

usually only obtained for small regions, and used for calibration and validation, in 

combination with data from optical sensors (Tokola, 2015). The other problem is that since 

their use is very recent, there are no historical Lidar data for analyzing forest cover change 

dynamics. It is highly probable that their use will increase in the near future, but as most 

tropical regions do not have any data from active sensors, they are not yet an available option 

for regular forest monitoring (De Sy et al., 2012; Zolkos et al., 2013; Pfeifer et al., 2016). 

While the use of remote sensing methods to assess forest degradation caused by logging 

has had some positive results, as outlined in the paragraph above, development of new 

methods for analyzing forest degradation resulting from other drivers such as shifting 

cultivation has not been so successful (Mertz et al., 2012). Therefore, regrowth dynamics 

associated with shifting cultivation continues to be a major source of uncertainty in 

quantification of activity data in the tropics (Houghton, 2012; Berry & Ryan, 2013). A major 

constraint on method development has been the lack of availability of frequent high 

resolution spatial data (10 X 10 m or less) able to capture the complex dynamic features of 

shifting cultivation systems (Li et al., 2014). Nevertheless, time series analysis of medium-

resolution multispectral data has been applied to map dynamics associated with shifting 

cultivation, using subpixel analysis techniques developed for logging by Pelletier et al. 

(2012b). Image analysis of single-date high spatial resolution data, in combination with 

indices based on image texture, has been used to delineate shifting cultivation landscapes 

(Hurni et al., 2013). Delineation of shifting cultivation landscapes has also been attempted 

using coarse optical satellite data (250 m X 250 m); in this case dense time series provided 

information on the dynamics of shifting cultivation by linking its presence to fire occurrence 

(Müller et al., 2013). Different degrees of success have been achieved with these methods, 

indicating the need for further research into this approach, particularly in drier environments 

where leaf phenology further affects the detection of small clearings. 

The availability of remote sensing data with higher resolution, different sensors and more 

frequent data acquisition is expected to keep increasing in the near future, becoming key for 
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tropical forest monitoring systems (Mora et al., 2012; Goetz et al., 2015). There are several 

planned satellites specially designed for monitoring vegetation, (e.g. the first Sentinel-2 

satellite was launched in 2015) that will provide continuity with previous satellite sensors 

(e.g. Landsat 8) (GFOI, 2014). With the availability of new data and new research methods, 

improvements in the detection of forest degradation are expected. Detection of forest 

degradation based on multi-date analysis that incorporates information on land use history, 

such as the approaches presented in this thesis, are of particular interest. As more frequent 

images become freely available, coupled with better image analysis methods, they will 

enable improvements in the temporal characterization and in the assessment of activity data 

of forest degradation (Joseph et al., 2010). Improvements in the activity data will provide a 

better basis for land cover stratification, which will improve precision in biomass estimation 

at the landscape scale (Gibbs et al., 2007; Goetz & Dubayah, 2011). Nonetheless, a 

prerequisite for making use of all this newly available information to improve activity data is 

to understand the types of disturbance that are acting on the forest system, their frequency 

and the scale at which the effects are happening. 

1.7.2. Forest inventories 

Field-based forest inventory using sample plots has been the traditional technique for 

monitoring forest resources, especially for the assessment of forest biomass (Brown, 1997). 

Ground-based measurements are also used to provide information to calibrate and validate 

remote sensing analyses (GOFC-GOLD, 2013; Hill et al., 2013). Field-based assessment 

over a range of scales is important for collecting data on forest biodiversity and on 

disturbances occurring over an area (Thompson et al., 2013; Berenguer et al., 2014). Thus, 

they are an essential component of forest monitoring systems, especially for quantifying 

forest degradation (e.g. as indicated by the amount of timber extracted or fuelwood 

collected) (Herold et al., 2011; GFOI, 2014; Salvini et al., 2014). While ground-based forest 

inventories provide the only means of obtaining direct information on forest carbon stocks or 

other changes occurring below the main canopy, they are expensive, time consuming, and 

therefore restricted in terms of the area they can cover (Birdsey et al., 2013). Moreover, most 

tropical countries lack a comprehensive programme of forest inventory, although this 

situation has improved in the last few years (Mora et al., 2012). Having forest inventories 

performed by communities or through a citizen science approach can make an important 

contribution to overcoming these limitations (Danielsen et al., 2011; Skutsch et al., 2011). 

As communities are often the end users of tropical forest resources, and dependent on the 

sustainability of their production, community monitoring can potentially provide a direct link 

to locally-based project interventions directed to reduce forest degradation. However, 
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questions remain about how to integrate local community monitoring, particularly data about 

disturbances, into quantification of rates of forest degradation over larger areas and national-

level accounting systems (Skutsch & Balderas-Torres, 2012; Pratihast et al., 2013). 

Integration will require the development of better links between remote sensing and ground 

inventories that include data on the effects of disturbance on biomass and on drivers of 

biomass loss (Salvini et al., 2014). 

1.7.3. Non spatial approaches 

It has also been suggested that forest degradation can be modeled by using socioeconomic 

variables, such as population density or timber exports, to predict biomass density (Grainger, 

1999). However, such an approach is based on aggregated country data (Tier 1) and 

therefore will not represent an improvement towards more accurate methods (Tier 2 and 3) 

that are based on spatial analysis of forest degradation. 

1.8. Research statement 

From a methodological perspective I have identified, that there are currently three major 

approaches in which forest degradation in tropical areas can be measured and monitored. 

First, there is the "theoretical" oriented approach, in which the focus is on the reduction in 

forest stocks and functions that are likely to reduce the delivery of ecosystem services (FAO, 

2011; Thompson et al., 2013) The limitation here is that, while there can be consensus that 

reduction in the capacity to retain forest carbon and biodiversity stocks, and regulate water 

cycling, is degradation, it cannot be directly quantified. Models based on indicators that can 

relate ecosystem stocks and functions to readily measurable forest attributes need to be 

developed in order to assess the state and change of forest capacity to deliver ecosystem 

services. Development of models designed to meet this need requires understanding of the 

context of the disturbance processes causing the reduction, but model uncertainty is normally 

high and models are usually context-specific. 

A second approach is based on defining forest degradation based on biophysical 

parameters and tracking their changes over time. On-the-ground forest inventories, repeated 

over time, are needed to monitor changes in forest attributes (Birdsey et al., 2013; 

Chidumayo, 2013). This approach tends to be costly and time consuming, and can therefore 

only assess a very small proportion of the landscape. Depending on the inventory design, it 

may or may not be possible to link it to the causes of forest degradation. Through spatial 

modelling, forest attributes such as canopy cover can also be assessed with remote sensing, 

at least to some extent. However, the success of such an approach is highly dependent on the 

remote sensing resources that are available, and model uncertainty tends to be high. Most 
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importantly this approach does not necessarily provide a link to human activities that cause 

the disturbances leading to forest degradation.  

A third approach is based on land-use change, with forest degradation only being 

assessed as changes in the land cover matrix, for example as changes from old-growth to 

post-agricultural secondary forests, or from forests classified spatially as intact to non-intact 

(Mollicone et al., 2007; Bucki et al., 2012). This approach relies almost entirely on remote 

sensing to provide information on activity data and changes in forest cover. Nonetheless, if 

this approach is used in isolation its resolution is too spatially coarse to improve estimations 

of forest degradation, as changes within forest classes are ignored.  

To date, none of these three approaches is without limitations, hence a compromise is 

needed between how forest degradation is conceptualized, what evidence is required for 

policy making and implementation, and what can be measured and monitored with available 

technological resources and capacity. A new way forward to improve current capacity to 

measure and monitor forest degradation within the science-policy interface, is therefore to 

better integrate these three approaches.  

This research is based on the practical consideration that our capacity to conceptualize, 

measure, monitor and ultimately avoid forest degradation is highly determined by the type of 

use that human populations make of tropical forest resources at the landscape level. Hence, 

for both scientific and policy reasons, measurement of degradation should take into account 

the drivers that cause the disturbances. To explore the temporal and spatial dynamics of 

forest degradation, I used a land cover change science approach in combination with 

elements of landscape and disturbance ecology to forest degradation. The combination of 

these approaches enables: (i) detection of spatial patterns in forest cover over time, (ii) 

linking of patterns of change in forest cover to forest condition, (iii) linking of spatio-

temporal patterns to disturbance agents, (iv) exploration of the implications of scale in the 

detection of spatial patterns and forest condition. The approach adopted in this study 

involves exploring forest cover and condition within two different types of human-modified 

landscapes (or socio-ecological systems), as well as conceptualizing forest degradation as the 

state of the forest, rather than just a process, that is tightly coupled with the disturbance 

history of an area. 

Through the use of these closely related approaches the following overarching questions 

are addressed throughout the thesis: 

1. How does the most appropriate operational definition of forest degradation vary with the type 

of landscape dominated by different socio-ecological systems? 
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2. To what extent is focusing on human-induced disturbance processes at the landscape level 

useful both to conceptualize and measure forest degradation? 

3.  Given the spatial and temporal heterogeneity of tropical forests, how can multiple scales be 

integrated to provide effective measurement and monitoring of forest degradation?  

1.9. Study areas 

In this thesis I study forest degradation in two human-modified landscapes, one located in 

the dry forest of western Mexico (in the Ayuquila Watershed, Jalisco, near the Pacific coast) 

and the other in the moist forest of the southern Pacific coast of Costa Rica (Osa Peninsula, 

Puntarenas) (Fig. 1.2). Both countries share several characteristics that have partly defined 

their forest monitoring needs and strategies. Mexico and Costa Rica both have well-

established Payment for Ecosystem Services (PES) programmes, clearly defined land tenure 

systems and legal frameworks that regulate forest land use change (FONAFIFO & 

CONAFOR, 2012). Both countries are well advanced in developing and implementing their 

REDD+ strategies, and have submitted reference emission levels to the UNFCCC.
6
 

Analysis of forest degradation due to shifting cultivation is studied in dry forests in 

Mexico, while disturbance due to logging was researched in moist forests in Costa Rica (Fig 

2). Both study areas are complex landscapes comprising forest mosaics, where patches of 

old-growth forest are found alongside areas under different levels of forest degradation due 

to human use. Further description of the study areas are provided in each chapter. Here I 

described general characteristics of these forest types, focusing on the neotropics because 

this is the most relevant context for this study. 

                                                      

 

 

6
 http://redd.unfccc.int/fact-sheets/forest-reference-emission-levels.html 
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Figure 1.2. The study sites in Mexico and Costa Rica illustrating the vegetation type 

in each area: a. tropical dry forest landscape, b. tropical moist forest landscape 

(photos credit: L Morales). 

 

 

1.9.1. Tropical dry forests 

Over 42% of tropical forests globally are classified as tropical dry forests (TDF) (Murphy 

& Lugo, 1986). The definition, and therefore the extent, of this vegetation type varies 

depending on the environmental threshold values used, mainly mean annual precipitation 

and length of the dry season (Miles et al., 2006). Dry forests can be defined as tropical 

forests characterized by having several months of drought (between 4-8) due to pronounced 

rainfall seasonality, with an annual precipitation range that varies between 500 and 2000 mm 

and annual potential evapo-transpiration greater than one (Holdridge, 1967; Martinez-Yrizar, 

1995). Unlike open woodlands and savannas, TDF have a continuous tree cover layer 

(Hughes et al., 2013; Dexter et al., 2015; Banda-R et al., 2016). Most TDF are dominated by 

deciduous trees, but there are extensive areas of dry evergreen forest (Murphy & Lugo, 

1986). The main TDF areas are found in western Mexico extending through Central 

America, the Brazilian caatinga, the dry forests of India, and parts of the miombo woodland 

of central-southern Africa that are dominated by tree cover. The majority of TDF globally, 
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about 60%, is in the Neotropics (Olsen et al. 2001, Miles et al. 2006). The above-ground 

biomass of neotropical mature TDF ranges from 39 to 334 Mg ha
-1

, with the lowest value 

found in Chamela-Cuixmala Mexico and the highest in Guanacaste, Costa Rica (Becknell et 

al. 2012). 

It is commonly stated that TDF are critically endangered ecosystems (Miles et al., 2006; 

Portillo-Quintero et al., 2014); it has been estimated that about 48.5% of their area has been 

converted to other land uses (Becknell et al. 2012). Tropical dry forests have had a long 

history of human use (Murphy & Lugo 1986); they are three times more densely populated 

than moist and wet forests probably because of their seasonal climate and fertile soils. As a 

source of food, medicine, building and handicraft material, and most importantly of 

fuelwood, TDF are crucial to sustain the livelihoods of their local populations (Dirzo et al., 

2011). Thus, degradation and conversion processes are more widespread in TDF than in 

moist forests, and very few areas remain that serve as examples of relatively undisturbed 

TDF (Sanchez-Azofeifa et al., 2014b). Unlike savannas, fire is not a natural disturbance 

agent, but shifting cultivation, cattle grazing, fence post extraction and fuelwood collection 

are prevalent processes that have altered the structure of this vegetation type resulting in 

degraded forests (Dirzo et al., 2011; Dexter et al., 2015) (Fig. 1.3.b). 

1.9.1.1. The dry forests of western Mexico  

The TDF of western Mexico are characterized by a mean annual rainfall of 750 mm, 

concentrated in a period of four to six months. Located at the most northern boundary of the 

range of TDF these forests are amongst the driest of its type. In undisturbed areas the 

estimated mean canopy height is 10 m and average basal area 23 m
2
 ha

-1
 (Castellanos et al. 

1991, Martinez-Yrizar et al. 1992). With a density of 790 trees ≥ 10 cm DBH per hectare, 

these forests are described as dense (Gentry, 1995). They have amongst the highest plant 

species density over small scales in the Neotropics, having on average 940 plant species > 

2.5 cm DBH per ha, which is double the amount found in other dry forests with the same 

precipitation (Lott et al., 1987). Throughout western Mexico the vast majority of areas of 

TDF have been heavily used for shifting cultivation (Trejo & Dirzo, 2000), thus they consist 

of forest patches at different levels of degradation and recovery (Fig. 1.3)  
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a. b. 

 

Figure 1.3 Examples of tropical dry forest in western Mexico: a. undisturbed with a 

largely closed canopy; b. degraded forest subject to shifting cultivation and grazing with 

a more open canopy (photo credits L Morales). 

1.9.2. Tropical rain forests 

Lowland tropical rainforests are closed canopy forests with canopy heights generally 

between 30 and 60 m. They are structurally complex ecosystems, in which three or four 

strata may be recognised in their vertical profile, with a generally sparse understory, high 

abundance of epiphytes, lianas and, in many sites, emergent trees above the main canopy 

(Whitmore, 1998). Tropical rainforests are considered to be the most species rich ecosystem 

in the world having, for example, an average 1520 plant species >2.5 cm per 1 ha (Gentry, 

1995). Except on very unfertile soils, these are highly productive ecosystems (carbon sinks), 

leading to a high carbon stock density (e.g. Langner et al. (2014) reported an average of 

273+ 25 Mg ha
-1

 for undisturbed rainforests using global estimates). As a consequence 

deforestation or degradation of tropical rain forests through conversion to agricultural land, 

logging, mining, shifting cultivation, grazing and fire is a major source of global C emissions 

(Defries et al., 2002; van der Werf et al., 2009; Houghton, 2012). Many classifications have 

been applied to tropical rainforests categorising them on the basis of floristic, phenological 

and/or bioclimatic characteristics. Here we followed the life zone system of Holdridge 

(1967) to characterize the study area, as it is the most commonly used system in Central 

America.  

1.9.2.1. The tropical moist forest in the southern Pacific coastal zone of Costa Rica 

These forest ecosystems of the southern Pacific coastal zone of Costa Rica are 

characterized by a very humid and warm climate, having a mean annual precipitation of 
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5500 mm and an average temperature of 25 °C. The young soils have a high nutrient content, 

which enhance the productivity of the forests. These forests harbour a particularly high 

biological diversity, a total of approximately 750 tree species have been recorded in the Osa 

Peninsula (Quesada et al., 1997). The tree flora is notable for its high levels of  endemicity to 

the southern part of Mesoamerica (Costa Rica and Panama) (Quesada et al., 1997; Thomsen, 

1997; Cornejo et al., 2012). With emergent trees often exceeding 60 m in height, these 

forests are unusually tall for the neotropics (Taylor et al., 2015). These forests experienced a 

high rates of deforestation during the 1980s and 1990s due to conversion for cattle ranching 

and agricultural production (Vaughan, 2012). Subsequently government policy greatly 

reduced the rate of deforestation but it was replaced by selective timber harvesting in many 

areas as the main human impact on the forests (Barrantes et al., 1999; Lobo et al., 2007; 

OTS, 2008). As a result the area is a mosaic of forests subject to different levels of 

degradation (Fig. 1.4). 

  
a. b. 

 

Figure 1.4 Examples of tropical rain forest in the southern Pacific coastal zone of Costa 

Rica: a. undisturbed forests with dense closed canopy cover; b. forest that had been 

logged 15 years previously (photo credits L Morales). 

1.10. Thesis structure 

This thesis presents research into the definition, measurement and monitoring of forest 

degradation linked to human activities. It develops methods based on spatial analysis of the 

disturbance processes through combining field-based measurements, historical data and 

remote sensing data. It analyses forest degradation from the perspective of the disturbance 
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agents, rather than just the quantification of carbon stocks per se. The thesis is organized into 

four central chapters that have been prepared as stand-alone research papers. Each of these 

chapters is self-contained, having an introduction that provides its background information 

and detailed methodology. Chapters 2 and 3 have already been published (the references are 

provided below), while chapters 4 and 5 are in preparation to be submitted for publication. 

Chapter 1 provides an overview of the context of this study, introducing key concepts of the 

main disciplines integrated in the research. The last chapter (6) reflects critically on the 

results and provides some overarching conclusions. 

Chapter 1: Introduction  

Chapter 2:"Operationalizing the Definition of Forest Degradation for REDD+, with 

Application to Mexico" (paper published in Forests)  

Chapter 2 analyses the context in which forest degradation has been internationally 

defined and evaluates the utility of field-based forest inventory and remote sensing data for 

detecting degradation of tropical forests. The idea that forest degradation can only be defined 

using local reference conditions is introduced. In order to obtain meaningful estimates of 

these local reference conditions for forest carbon stocks, an approach that links the potential 

biomass of a landscape with the common degradation agents acting on that landscape is 

proposed. 

Morales-Barquero, L. et al. 2014. Operationalizing the definition of forest degradation for 

REDD+, with application to Mexico. Forests 5(7):1653–81. 

Chapter 3: "Identification and quantification of forest degradation drivers in 

seasonally tropical dry forests: a case study in Western Mexico" (paper published to 

Land Use Policy) 

Chapter 3 evaluates the factors that can be linked to forest degradation in TDF landscapes 

that are used for shifting cultivation. It explores the approach of measuring and monitoring 

the local communities’ livelihood activities that can be associated with a decrease in forest 

biomass (rather than focusing exclusively on forest carbon stocks). It also elaborates on the 

need for analysis to be carried out at a sufficient landscape spatial scale to characterize the 

phenomena associated with forest degradation. From this, the importance and challenges of 

incorporating complex mosaic landscapes in TDF biomes into REDD+ are assessed. The 

study of forest degradation in TDF is then developed further in chapter 4. 

Morales-Barquero, L. et al. 2015. Identification and quantification of drivers of forest 

degradation in tropical dry forests: a case study in western Mexico.” Land Use Policy 

49:296–309.  
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Chapter 4: "Assessing forest degradation on the ground and from space: Developing 

indicators to evaluate the state of tropical dry forests in Mexico"  

In chapter 4 I focus on how variation in forest structure and composition that result from 

human-induced disturbance can be assessed to establish levels of forest degradation, and 

their utility for monitoring. It explores the use of locally relevant indicators measured in the 

field that are clearly linked to the human activities causing disturbance processes, in order to 

determine degrees of forest degradation. Then, it assess if the degree of forest degradation 

determined in the field can be modelled at the landscape level by using remote sensing 

indices as predictor variables. The approach presented in this chapter associates measures of 

disturbance with more conventional measures of forest degradation, with the aim of 

providing methods to monitor forest degradation that are directly linked to interventions that 

can avoid degradation and enhance recovery in TDF. 

Chapter 5: Forest degradation and deforestation dynamics in a tropical moist forest 

over 40 years: a case study of the Osa Peninsula, Costa Rica  

In Chapter 5 I further develop practical approaches to assessment of forest degradation 

through comparison with undisturbed forests, in this case in a closed-canopy moist forest 

landscape subject to commercial selective logging. Following the approach of analysing the 

human activities that cause forest degradation, inventory and mapping data from historic 

forest management plans are used to determine degraded areas, and to track the conversion 

of an undisturbed forest landscape into a series of degraded patches, using medium-

resolution satellite data. 

Chapter 6: Discussion and synthesis  

Chapter 6 synthesises the main findings, conclusions and implications of the preceding 

chapters.  

 

Together these chapters present an overview of the main issues surrounding the concept 

of forest degradation and provide a new framework to guide the development of 

methodology for assessment of forest degradation caused by a range of human activities, 

using the range of data sources that are currently widely available for evaluating human 

modified landscapes. 
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Chapter 2. Operationalizing the definition 
of forest degradation for REDD+, with 
application to Mexico
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Healey J (2014) Operationalizing the definition of forest degradation for REDD+, with 
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Abstract  

The difficulty of defining and quantifying forest degradation is a major constraint in the 

implementation of the international mitigation mechanism Reduced Emissions from 

Deforestation and forest Degradation (REDD+). Our aim is to develop an operational 

framework for defining and measuring forest degradation at a local level for early 

REDD+ projects and for national REDD+ programmes, through a ground level approach. 

We critically review and discuss national and international definitions of forest and of 

forest degradation, and then analyse the main difficulties in making these operational, 

evaluating the key elements and threshold values that are used and contextualizing them 

using Mexico as a case study. We conclude that given the lack of historical biomass data 

and the limited capability for monitoring degradation using remote sensing, forest 

degradation is best measured against a local benchmark that represents areas of low or no 

degradation that have comparable biophysical characteristics. Use of benchmarks of this 

type could offer a quick-start option for local assessment and construction of reference 

levels for forest degradation. These could be refined as more data become available and 

could eventually be integrated into national monitoring systems. 

 

Keywords: forest monitoring; Mexico; community-based monitoring; remote sensing; 

tropical dry forests; deforestation; benchmark 

 

2.1. Introduction 

There has been considerable debate about how to define and measure forest degradation 

in the context of the United Nations Framework Convention on Climate Change (UNFCCC) 

policy on Reduced Emissions from Deforestation and forest Degradation (REDD+) (Simula, 

2009; FAO, 2011). Many contrasting views have been presented on this subject (IPCC, 

2003; Cadman, 2008; Sasaki & Putz, 2009; Putz & Redford, 2010) and it has even been 

suggested that a definition is not required (Guariguata et al., 2009). 

An important part of the discussion on the definition of forest degradation at the 

international level has assumed that it is necessary to establish thresholds and/or indicators 

that allow forests in non-Annex I countries to be classified as degraded or non-degraded; on 

the grounds that such a system is required for the purpose of generating carbon credits under 

REDD+ (Bucki et al., 2012). However, the estimation of net greenhouse gas (GHG) 

emissions implies not only the identification of areas that have been subject to degradation in 

a given period but also the assessment of the annual rate of loss of carbon stocks within these 
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forests, which requires more than simple thresholds, as it implies quantification of 

degradation over space and time. In addition, REDD+ schemes are required to assess more 

than just carbon stocks, so projects are expected to demonstrate positive outcomes in terms 

biodiversity and local livelihoods. 

Thompson et al. (2013) have called for a broad definition of degradation that includes 

five criteria, of which carbon storage is only one. They emphasize that forest degradation is a 

wide and complex concept, that can be quantified using several indicators that range from 

those focused on biodiversity to those most linked to stored carbon. Variation in the 

definitions proposed for forest degradation is highly dependent on the interests of the 

corresponding stakeholders. Until now, the climate change mitigation aims of REDD+ have 

given the highest priority to carbon storage, even though concerns have been raised that if 

this is the sole focus of REDD+ it could promote actions that have a negative effect on 

biodiversity (Gardner et al., 2012). Even though a more integrated approach is desirable, it is 

not clear that a multi-criteria definition of degradation, with the associated complexity of its 

indicators, would satisfy the requirements for monitoring REDD+ projects in which funding 

is primarily linked to demonstrated improvements in carbon stocks compared with the case 

of “business-as-usual”. Therefore, in this paper we focus on the application of the kind of 

broad framework proposed by Thompson et al. (2013) for an operational definition relevant 

to the less developed countries that have an immediate need to develop quantitative carbon-

based forest degradation methods applicable at the landscape level. 

Considerable uncertainty remains about the amount of GHG emissions that can be linked 

to forest degradation and the amount of degraded forest worldwide. It is estimated that 

around 850 million hectares of tropical forests are degraded (ITTO, 2002). Depending on 

how it is defined and what drivers are considered in the analysis, forest degradation was 

estimated to represent a wide range of between 10 and 40% of the 1.4 PgC y
-1

 of the 

estimated net carbon emissions from tropical forests between 1990 and 2010 (Houghton, 

2012). By analyzing regional-scale emissions derived only from wildfires and unsustainable 

logging, several other studies have estimated values over a similar range between 22% and 

57% of the total forest GHG emissions (Asner et al., 2010). These estimates would probably 

further increase if other degradation processes such as extensive cattle grazing and 

unsustainable fuel wood collection were also included, indicating that forest degradation 

could be an even larger source of GHG emissions. These figures must be regarded with some 

skepticism; mainly because the methodology used by individual countries to calculate area 

of forest degradation varies greatly. Also, most countries have very poor data on carbon 

stocks, as few have carried out systematic national forest inventories. 



 

31 

Even though its contribution to GHG emissions is probably substantial, degradation has 

implicitly been held to be of secondary importance compared with deforestation and most 

early REDD+ projects have focused on avoiding deforestation (Lin et al., 2012). In general, 

deforestation and forest degradation result from very distinct drivers, and are brought about 

by different groups of actors (Hosonuma et al., 2012). Typically, deforestation occurs when 

a single actor makes a conscious decision to change forest to another land use. While it is 

wrong to make an inherent link between logging and degradation (as there is evidenced that 

planned forest management using reduced-impact logging recover carbon and will reduce 

carbon emissions (Putz et al., 2008a; West et al., 2014), degradation does often result from 

poorly regulated or managed logging, or other unregulated extractive activity often carried 

out at a small-scale by many actors. In the context of REDD+ degradation has been grouped 

together with deforestation, but in terms of monitoring it has more features in common with 

other "within-forest" activities (sustainable forest management and enhancement of forest C 

stocks) (Herold & Skutsch, 2011). In some cases degradation and deforestation are causally 

linked, e.g. creation of access routes for either illegal or legal timber extraction can increase 

the probability of subsequent deforestation through conversion of forest to agricultural land. 

The availability of forest monitoring methods suitable to assess forest degradation is 

especially critical in certain countries. For instance, Mexico has experienced a much reduced 

deforestation rate during the last five years but has very high levels of human disturbance in 

its forests. The field survey of the National Forest Inventory of Mexico records indicators of 

human or natural disturbance for each plot in the field (e.g. stem damage due to fire, 

presence of tree stumps, grazing, illegal logging). In a simple analysis of these data we have 

found that a very high proportion of the inventory plots (70-80%) do have one or more of 

these disturbance indicators recorded. Although this does not provide a reliable 

quantification of the intensity or extent of degradation, it does provide evidence of how 

important it is for countries such as Mexico to monitor forest degradation. As forest 

degradation may contribute to an increasing proportion of net GHG emissions from forest 

land there is an urgent need for the development of operational approaches to quantify 

degradation for incorporation into REDD+ schemes. This will depend on having an 

unambiguous and operational definition of degradation based on measurable indicators. 

However, it has proven extremely difficult to find a definition that meets this criterion and 

that is appropriate to different geographical scales, as well as satisfying the perspectives and 

needs of different actors (IPCC, 2003). 

This paper therefore aims to advance the definition and measurement of forest 

degradation within the context of the REDD+ discussions, following three main ideas: 
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1. Assessing the gap between international discourse on forest degradation and the 

practicalities involved in monitoring it at national and local levels. 

2. Identifying the key elements that are necessary to assess forest degradation in both the 

national and the local contexts. 

3. Proposing a new framework for the operationalization of a definition and quantification 

approach to forest degradation at a local level for early REDD+ projects and for national 

REDD+ programmes. 

The approach taken in this study is first to examine the reasons why forest degradation 

has not yet been clearly defined and how this contributes to the considerable difficulties in 

finding adequate methods to measure it (section 2.2). After reviewing the international 

attempts at reaching a definition, in section 2.3, we take the case of Mexico and discuss what 

is possible both for definition and measurement of degradation (sections 2.4 and 2.5), 

summarising our conclusions in section 2.6. 

2.2. The challenges involved in defining forest degradation 

The absence of agreed definitions and clear criteria hinders global capacity for REDD+ 

policy and project development, as countries have not been able to assess the area of 

degraded forest or the level of its degradation in consistent ways. There are a number of 

reasons for the difficulties in adopting clear and consistent definitions, including the 

differences in perspectives and management goals amongst actors, the challenge of defining 

the counter-factual (what would the biomass density be if the forest were not degraded) 

when the natural condition and dynamics of forest ecosystems are so variable, and human 

disturbance impacts on forest vary so much in their intensity, spatial extent and frequency. 

An underlying challenge is the fact that ecosystems vary greatly in their capacity to recover 

to a pre-disturbance state, and complex transitions occur throughout the disturbance phases 

(Baker et al., 2010).  

2.2.1.  Forest degradation can only be defined relative to a benchmark 

An assessment of forest degradation necessarily implies a comparison, either with a 

previous state or with a contemporaneous reference condition (a benchmark), as proposed by 

Thompson et al.(2013). The first is analogous to standard measures of deforestation that 

compare forest cover at the end of a period with that at the beginning. However, in a 

practical project context, it is very rare that data are available of earlier biomass stock levels, 

or the condition of the forest during a previous period or before any human impacts took 

place. In the case of comparison with a contemporaneous benchmark, the problem for 
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degradation assessment is to define, identify and measure an appropriate benchmark or 

reference condition; a challenge directly analogous to that faced in ecological restoration or 

when trying to determine the degree of “naturalness“ of managed forests. 

There is a lot of subjectivity and assumptions in the use of concepts such as “natural”, 

“primary”, "intact", “pristine” or “virgin” forests, all of which are associated with the 

concept of a reference condition (Bradshaw et al., 2011). For example, Cadman (2008) 

proposed using "intact forest" as the reference (for any given ecotype/species mix), in which 

case any forest that has a carbon stock lower than that of "intact forest" should be considered 

degraded. However, use of this term does nothing to solve the fundamental problem of 

defining which forest falls within this category: in reality there are huge natural spatial and 

temporal variations in carbon stocks within forests in the same region or landscape, linked to 

differences in structure, productivity and species composition, due to variation in biophysical 

conditions (hydrology, soil etc.) and long-term natural, as well as anthropogenic, disturbance 

regimes. In addition such terms as “naturalness” or "intact" are likely to be very difficult to 

apply in practice: they have been a highly contested concepts, with some observers arguing 

that none of the world’s forests are natural (on the basis that all global forest has a history of 

human influence to a greater or lesser degree (White & Oates, 1999)). It seems very unlikely 

that adequate agreement could be reached about which indicators or thresholds should be 

used to define whether a given area of forest should be classified as “natural”, "intact" or 

"primary". 

Definition of reference conditions or benchmarks using more pragmatic criteria needs to 

be based on understanding of the properties, patterns and processes of forest ecosystems, 

taking into account their complex dynamics. At a landscape level forests both heavily and 

lightly influenced by humans exist in a shifting mosaic of patches with variation in species 

composition, structure and biomass-carbon stocks. To some extent these patches may 

represent the successive phases of forest stand development (Oliver & Larsen, 1990) 

(Fig.2.1). An analysis of this mosaic and its land-use history should enable identification of 

areas that have been least subject to human disturbance for the longest time and which 

contain patches representing the range of forest development phases including old-growth, 

which would then be appropriate to use as the reference condition or benchmark. These can 

then be contrasted with the areas subject to greater human impact. The furthest extreme will 

be those areas that, while still meeting the criteria of being “forest”, have been most recently 

subject to intensive or frequent human disturbance and show attributes that depart widely 

from the benchmark. It is important to recognize that, while this approach assumes that the 

landscape includes areas with a range of levels of degradation, it does not depend on the least 

degraded areas being completely free of human impact.  
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A requisite for the selection of benchmarks based on chronosequences, - is to have an 

indication of the range of natural variation (RONV) of carbon stocks and other forest 

attributes, i.e. the range of values that would occur even without major human disturbance. 

Benchmarks should reflect the variation in potential stocking rates of different non-degraded 

areas. For example, even within a given vegetation type, sites higher up the slope with 

thinner soils, and those with an aspect receiving lower rainfall or greater wind exposure, are 

likely to have lower potential stocking levels than those in sheltered sites at the base of 

slopes receiving higher rainfall. Once the natural range of variation is known, information on 

land-use history and degradation agents that are acting locally should be used to classify 

areas into degradation level categories, and to estimate which areas are gaining or loosing 

carbon stocks. It is key to understand the processes and landuse history that are acting over 

the forest, to avoid for example misclassifying areas under reduced impact logging as 

degraded when compared with the benchmark, when in reality they are areas that are gaining 

carbon (West et al., 2014).  

The identification of a range of possible values by comparing forest stands over space, is 

interpreted as corresponding to the changes that may occur in a single stand over time 

(chronosequence). While this classical approach to research on vegetation succession is 

subject to serious criticism because of its underlying assumptions (Chazdon et al., 2007; 

Feldpausch et al., 2007; Johnson & Miyanishi, 2008), there is good empirical evidence that it 

can work in tropical forest landscapes (e.g. Chai et al. (2012)). Even if it depends on 

potentially unreliable assumptions, as pointed out by Johnson and Miyanishi (2008) and 

Quesada et al.(2009), the chronosequence is the most suitable approach for assessing the 

relation of current forest state and attributes to land use history in the usual situation where 

long-term monitoring has not been carried out. The relationship is especially strong for basal 

area and biomass accumulation, as demonstrated by Chazdon et al. (2007), suggesting its 

potential usefulness (provided that the assumptions are carefully considered) in assessing and 

predicting carbon stocks. 

In its application, this approach leads to the assumption that there is a convergence of 

forest condition during the process of recovery: if a degraded area (as shown on the left hand 

side of the succession curve, Fig 2.1) is not further disturbed but allowed to recover 

naturally, it will eventually store similar amounts of carbon, and be able of delivering the 

same level of other ecosystem services, as areas of this forest type under similar biophysical 

conditions that have never been disturbed. While the uncertainty in this assumption must be 

acknowledged, it may offer the only realistic option to evaluate what carbon sequestration 

gains will result from elimination or reduction of human practices that are causing biomass 

loss. 
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There is likely to be a strong scale-dependency in these applications. While stage of forest 

recovery can be assessed for a given patch or stand of forest, this is much harder at the scale 

of a landscape, which will be composed of patches of a wide range of degradation/recovery 

states. If the landscape is clearly sub-divided into a defined classification system of 

degradation and recovery states, it would then be possible to use a threshold to classify the 

landscape as a whole based on the proportion of its patches/area that is in a degraded state. 

However, there may be a problem with applying the same threshold level between different 

landscapes. With increasing knowledge of the complex properties of ecosystem dynamics it 

is clear that forest recovery may not be a linear process over time and landscapes may be 

subject to regime shifts, following which they may remain in an altered state for a long time 

(Hobbs et al., 2006). It is also important to recognize that the process of forest recovery is 

not simply the inverse of degradation, it may follow a different trajectory (e.g. towards a 

novel ecosystem state). 
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Figure 2.1 Forest succession curve (modified from Eckert et al. (2011)) 

 

2.2.2. Degradation is a process which is best assessed at the level of the landscape 

Forest degradation is both a state (“degraded forest”) and a process (“degradation of 

forest”) (FAO, 2011), and in reality it can only be assessed adequately over whole 

landscapes (or series of management units), that could be defined in terms of property 

boundaries or coherent landscape units, depending on the activities involved. In many 

tropical areas, much of the forest is in a state of transition as a result of the combination of 

human activities and natural processes. This means that some areas may be recovering and 

increasing their carbon stocks, while others are losing them, as a result of cyclical 

agricultural practices, which include a woody fallow (i.e. secondary forest) phase or 

sustainable timber management, or as a result of periodic natural events such as fires. Such 

mosaics are very common in populated tropical forests (Mertz et al., 2012). It is the overall 

carbon budget of each coherent landscape/management unit that should be assessed, not 

individual patches of forest within the unit, so that the temporary losses and gains are 

averaged out. 
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A wider geographical scale encompassing the range of management activities across the 

landscape needs to be used to assess whether it is suffering from net degradation, but 

defining the scale and boundaries of such units is very difficult, as the team charged by the 

IPCC with defining degradation has reported (IPCC, 2003). It would require on-the-ground 

knowledge of the organization of forest use, specific to each area. It is partly for this reason 

that it has been suggested that, not only degradation, but all forest carbon budgeting should 

be done at a landscape level, in a nested system of MRV) (Minang & van Noordwijk, 2013). 

In areas dominated by small-scale peasant agriculture, particularly shifting agriculture, 

where formal property boundaries may be difficult to map, it may make more sense to assess 

degradation over landscape units that represent the typical agricultural practices; these would 

be on the order of +/- 5000 ha (Thompson et al., 2013). In areas that are subject to timber 

extraction (sustainably managed or not), an approach using property or concession 

boundaries may give a more accurate picture. 

2.2.3.  Biomass loss is difficult to quantify 

In strict carbon accounting terms, degradation will only occur in a forest area if its rate of 

biomass loss is higher than the natural re-growth rate. As is well known, biomass assessment 

per se is an inaccurate and imprecise process unless very expensive, detailed inventory is 

conducted (Petrokofsky et al., 2012). Determining loss and re-growth rates is a complex task 

that requires long-term observations and intensive research which are not usually available in 

developing countries (Herold et al., 2011), or alternatively good statistical records (the 

"gain-loss" method). Unsustainable selective logging, slash-and-burn agriculture, fuel-wood 

collection, charcoal extraction and grazing, that are the main activities that induce gradual 

loss of carbon stocks, vary greatly and render generalizations difficult (Murdiyarso et al., 

2008a). 

2.2.4. Fluctuations in forest carbon also reflect natural causes 

Tropical forests are dynamic systems, that gain and loose biomass as part of natural 

cycles driven by disturbance events (fires, storms, floods, droughts and pests etc), that makes 

it difficult to establish strictly which losses are due to the influence of human activities 

(Herold & Skutsch, 2011). During these cycles there will be temporary reduction in carbon 

stocks that do not imply persistent loss (Attiwill, 1994). However, there can also be positive 

feedback between natural and anthropogenic disturbances, which can promote further loss of 

carbon stocks. Establishing whether or not this loss is human-induced is difficult in many 

cases, for example, there is often a higher frequency of forest fires and increased 

vulnerability to drought after logging events, related to forest fragmentation (Cochrane & 
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Barber, 2009). International negotiations and voluntary markets related to REDD+ will have 

to deal with the fact that there is an intrinsic level of uncertainty due to such natural causes 

(Grassi et al., 2008; Baker et al., 2010; Barlow et al., 2012).  

2.2.5. Gray areas between deforestation and degradation 

It is not clear if some effects of human interventions should be considered to be 

deforestation or forest degradation or a component of normal forest management. For 

example, if trees are clear-felled but forest immediately starts to regrow, this would generally 

be classified as degradation. However, if crops are temporarily cultivated and then farming is 

abandoned, for what length of time would this need to occur before the impact is classified 

as deforestation? Then, if classified as deforestation, at what point during subsequent 

secondary forest regrowth would the area be classified as degraded forest? This is an 

extremely critical point, especially in terms of slash-and-burn agricultural systems, because it 

seriously affects carbon accounting statistics. Depending on how woody fallow lands are 

viewed in this regard, forest degradation may account for anything between 10 and 40% of 

forest carbon emissions, while deforestation will represent between 10 and 90% (Houghton, 

2012). If an area is defined as deforested only if it remains without trees for at least 20 years, 

then a great deal of what has been labelled "deforestation" should instead be categorised as 

"degradation". 

2.2.6.  Lack of historical data on forest carbon stocks for baselines  

In order to evaluate possible reduction in GHG emissions both for deforestation and 

forest degradation, a baseline is required. A baseline or reference emissions level (REL) is 

built on rates of degradation (and deforestation) over a given historical period against which 

emissions due to future degradation can be compared. To build a baseline both emission 

factors (which for REDD+ are estimated as the amount of carbon that is lost per hectare per 

year as a result of degradation (IPCC, 2003) and activity data (i.e. the area that is affected by 

degradation and changes in this area over time) are needed. 

In the case of deforestation, emission factors are calculated by assessing the total carbon 

stock per hectare that would be lost, in one go, if the area were deforested. With degradation, 

estimation of the emission factors is more complicated, as illustrated in recent work by 

Pearson et al. (2014) that developed an accounting method to estimate emission factors from 

selective logging of tropical forests. To this complexity, it must be added that baselines will 

require knowledge of the past annual rate of loss of carbon stock due to degradation in any 

given forest (e.g. in tonnes per hectare per year), so that the reduction due to the 

corresponding REDD+ activities can be compared with this. 
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Although significant advances have been (see for current status of methods (Herold et al., 

2011; Petrokofsky et al., 2012; GOFC-GOLD, 2013)), determining activity data for 

degradation remains challenging, as explained in the next section.  

2.2.7. The capability of remote sensing for detection of forest degradation is limited 

Methods have long been developed using remote sensing to classify forest cover change 

between forest and non forest at a large scale, as for example required for reporting to the 

FAO’s decadal Forest Resources Assessment. There has been no comparable development of 

methods to meet the greater challenge of quantifying forest degradation, and this inertia has 

led institutions to stick to the tried-and-tested approach of basing forest change assessments 

solely on deforestation. The spatial extent of degradation, and thus the rate of its expansion, 

is much more difficult to observe than deforestation using remote sensing data (GOFC-

GOLD, 2013). It is particularly challenging to detect the intensity of degradation at any 

given point and assess the rate at which forests are losing carbon. Optical remote sensing 

faces a fundamental problem, that is that changes in canopy cover are not a direct measure of 

total biomass, or of degradation that is occurring to the forest below the canopy surface level 

(e.g. fuelwood collection or grazing) (Lambin, 1999; Peres et al., 2006). Important advances 

have been made in detecting the area impacted by selective logging in the Brazilian Amazon, 

by means of spectral mixture analysis (SMA) (Asner et al., 2005; Souza et al., 2005). This 

method allows detection of canopy damage by assessing the combination of green 

vegetation, soil and non-photosynthetic vegetation found in each pixel. However, such 

studies have mostly been performed in Brazil on relatively flat and extensive terrain, with 

logging predominantly carried out at an intensity of 10- 40 m
3
ha-1. Such conditions strongly 

enhance the detectability of the signal, and the success of these techniques where logging has 

occurred in more topographically complex terrain or in other types of forests, with less 

uniform canopy or with a more patchy or diffuse pattern has not been demonstrated.  

 A further constraint with low frequency monitoring using these optical remote sensing 

methods is that the kind of activities that cause detectible changes to the canopy cover, e.g. 

selective logging, may be missed or under-estimated if the resulting canopy gaps are rapidly 

filled within a few years (at least in part) by in-growth of the canopies of the adjacent trees 

or recovery of a lower stature of canopy through natural regeneration (but without full 

recovery to previous biomass levels, which will take several decades). Calculating 

degradation based on area estimates of logging or other degradation activity may also lead to 

underestimates since tree density change might exceed area change (le Polain de Waroux & 

Lambin, 2012). Monitoring systems need to take such factors into account, e.g. in terms of 

their frequency. Integrating optical remote sensing with lidar (which is discussed in section 
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4.1.3) has produced interesting results, however its cost is currently prohibitive. None of 

these remote sensing methods will meet the degradation monitoring need without having 

sufficient ground data and information on the historical context. 

2.3. Definitions of forest degradation in the international context  

A pre-requisite to defining forest degradation in the international context is an accepted 

definition of "forest". There are many (hundreds of) forest definitions, in part because of the 

wide range of purposes for which they are designed, from administrative-legal to land use 

planning, forest cover monitoring, biodiversity conservation and carbon budgeting (Lund, 

1999). What should and should not be considered to be a forest is controversial (Schoene et 

al., 2007). International organizations have produced a series of definitions to meet their own 

needs, and individual countries and institutions have adjusted definitions to their specific 

interests as illustrated by the case of Mexico in Table 2.1. 

Most countries, for purposes of international agreements, follow the FAO definition 

(Simula, 2009). In this, forests are defined on the basis of thresholds values for three 

quantitative criteria: crown cover, area and height, all of which can be related to biomass and 

carbon stocks. However, the reference area to measure such criteria, mainly canopy cover, is 

usually not defined which results in major uncertainty in forest cover estimates (Magdon & 

Kleinn, 2013). Another problem with thresholds is that some tree-dominated land uses are 

classified as forest whereas others are classified as non-forest, through the application of 

commodity-based definitions of “land use” by FAO and other organizations. Thus tree 

plantations whose primary use is timber are classified as forest; but tree plantations whose 

primary use is harvesting of fruit (e.g. orchards or oil palm) are classified as non-forest, even 

though there may be no biophysical difference between these types of plantation. In the case 

of agroforestry systems, which involve joint production of timber and agricultural products, 

the classification by land use is particularly arbitrary. For the purposes of REDD+ there has 

been controversy about whether the increase in carbon stocks in such agroforestry systems, 

e.g. planting of shade trees, should be eligible for credits or not, and therefore whether 

increases in trees in such systems should count as a reduction in forest degradation. As a 

further complication, actions that increase the agricultural productivity of agroforestry 

systems can contribute positively to REDD+ by reducing pressure for additional 

deforestation to increase agricultural land area (Noponen et al., 2013). There are many other 

examples of such grey areas about what should be classified as forest under REDD+ (and 

therefore would need to be monitored for degradation), that have not yet been resolved. 
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It is evident that improvements in the clarity and completeness of forest definitions are 

needed in the context of international climate change mitigation programmes because this 

has a major impact on the estimation of the areas that are reported as deforested or degraded 

(Romijn et al., 2013). The same holds for defining forest degradation. As we explained in 

section 2.2.2, there is no easy way of fixing temporal or spatial criteria for degradation 

Table 2.1 Forest attributes used to define what is classified as "Forest" by relevant 

international policy bodies and Mexican national entities. 

Institution 
Minimum 

crown cover (%) 
Minimum area  

(ha) 
Minimum tree 

height (m) Species/vegetation type 

IPCC GHG for 

land use, land-

use change and 

forestry 

(LULUCF) 

Countries can 

decide on a 

threshold 

between 10-30% 

(or similar 

stocking level) at 

maturity. 

≥0.05-1.0 

Countries can 

decide on a value 

above ≥ 2-5 (at 

maturity in situ) 

Includes closed or open 

forest, young natural  

stands and forest 

plantations that have the 

potential to reach 2- 5 m  

Includes harvested forest, 

that is below 10-30% 

canopy cover where they 

are considered to be 

temporarily unstocked. 

FAO  
≥10% (at 

maturity) 
≥0.5 

≥5 (at maturity in 

situ) 

Does not include areas 

predominantly under “non-

forest” land use such as 

agriculture or urban 

CBD- 

Convention for 

Biological 

Diversity 

≥10% ≥0.5 ≥5 

Only includes “natural” 

forest. Excludes areas 

under “non-forest” land 

use such as agriculture. 

Mexico (under 

the Kyoto 

Protocol) 

≥30% 

 
≥1.0 ≥4 

Includes agricultural land 

and tree plantations  

INEGI- 

Mexican 

National 

Institute of 

Statistics and 

Geography  

>10% 

≥25 

(medium resolution, most 

of the country)  

≥1.6 (area detectable using 

high resolution) 

Not specified Not clearly specified 

CONAFOR-

Mexican 

National 

Forestry  

Commission  

>10% (at 

maturity) 
≥0.5 >5 

Excludes trees in 

agricultural lands, parks 

and gardens 
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without specific reference to individual management units. The result is that it is generally 

agreed among parties that for the purposes of climate change mitigation, forest degradation 

simply involves lowering of carbon stocks in forests, in areas that are classified as forests 

(Simula, 2009). 

Definitions of degradation used by the major agencies involved in REDD+, however, 

vary widely (Table 2.2). At one extreme the Convention for Biological Diversity (CBD) 

considers loss of biodiversity as the main sign of degradation. At the other end of the scale 

organizations directly concerned with carbon crediting systems (such as Voluntary Carbon 

Standard (VCS) and UNFCCC) favour definitions based solely on carbon stock loss. This 

relates to the need for a water-tight accounting system if credits are to be marketed. A 

possible resolution to this difficulty may be provided by the promulgation of "safeguards" 

tailored to the requirements of REDD+. Safeguards have received considerable attention in 

recent negotiations in response to concerns that other environmental and social values might 

be sacrificed to maximize carbon values. Conditions might be introduced such that 

degradation may be officially defined in terms of carbon loss, but credits would not be issued 

if there is evidence that there have been large biodiversity losses (or negative social impacts) 

associated with REDD+ interventions. This does not, however, resolve the problem of 

whether the definition of degradation should be based solely on carbon loss, or also include 

some reference to the "naturalness" of the forest (Guariguata et al., 2009), which in the end 

is largely a political decision. 
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7
 The parameters X , Y and T were left open, no agreement was reached in IPCC 2003a. As pointed out by Penman (2008) in (Murdiyarso et al., 2008a) 

defining X, Y and T will be extremely difficult; mainly because these parameters depend on the activity causing degradation and on the particular  ecosystem.   

Table 2.2. Definitions of forest degradation proposed by relevant international policy bodies concerned with forestry. 

Agency Definition Source  Main focus 

FAO Reduction in the capacity of forest to provide goods and services FAO 2002 & FAO 

2008 

Ecosystem services 

approach  

SBSTA/UNFCCC workshop on 

defining and measuring 

degradation for REDD 

Proposal that degradation should be defined in terms of comparison with 

intact forest of the same vegetation type: “Forest degradation is the 

reduction of the carbon stock in a natural forest, compared with its natural 

carbon carrying capacity, due to the impact of all human land-use activities." 

 

Cadman (2008/2009)  Carbon content  

IPCC A direct human-induced long-term loss (persisting for X years or more) of at 

least Y% of forest carbon stocks (and forest values) since time T and not 

qualifying as deforestation or an elected activity under Article 3.4 of the 

Kyoto Protocol
7
 

IPCC 2003. Carbon content  
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ITTO Long-term reduction of the overall potential supply of benefits from the 

forest, including wood, biodiversity and other products or services. Also, a 

direct human-induced loss of forest values (particularly carbon), likely to be 

characterized by a reduction of tree crown cover. Routine management from 

which crown cover will recover within the normal cycle of forest 

management operations is not included. 

ITTO 2002 

 

ITTO 2005 

 

Ecosystem services 

CAN From a climate change perspective, forest degradation needs to be defined to 

include the impact of all human land-use activity that reduces the current 

carbon stock in a natural forest compared with its natural carbon carrying 

capacity.  

Mackey et al. (2008)  

 

Carbon content 

VCS The persistent reduction of canopy cover and/or carbon stocks in a forest 

due to human activities such as animal grazing, fuelwood extraction, timber 

removal or other such activities, but which does not result in the conversion 

of forest to non-forest land (which would be classified as deforestation), and 

falls under the IPCC 2003 Good Practice Guidance land category of “forest 

remaining forest”. 

VCS 2011 Carbon content  
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2.4. Definitions of forest degradation for Mexico  

In Mexico, as mentioned above, a large part of both the temperate and the tropical forests 

appears to be, to a greater or lesser extent, degraded. Much of the degradation is the result of 

unsustainable extraction of wood products, shortening of slash-and-burn cycles, and 

allowing cattle to graze within the forests. These drivers of degradation typically result in a 

landscape mosaic in which part of the forest area has lost biomass stock, part is depleted but 

stable, and other parts are recovering their biomass stocks, with the net result that the 

landscape’s average stock is at levels below those expected in forests undisturbed by human 

uses. 

Mexico has adopted the agreements and definitions established by FAO in the context of 

the Kyoto protocol, but has also made important advances towards developing a legal 

framework to regulate climate change related activities, including those in the forestry 

sector. In this context two different regulatory frameworks have proposed definitions relating 

to forest degradation: the Law on Climate Change and the Law on Sustainable Development 

of Forests
8
. 

Both of these laws refer to forest degradation as a reduction in delivery of ecosystem 

services, however the Climate Change Law only refers clearly to carbon sequestration 

services in relation to a reference value that reflects conditions in areas where no human 

interventions have occurred. On the other hand, the amendments to the Sustainable 

Development of Forests Law, which were made in the same year, present a wider view, 

referring to a reduction in the capacity to deliver ecosystem services, which is likely to be 

more difficult to measure and evaluate. To our knowledge, there have as yet been no 

challenges to this inconsistency in definitions, and we therefore have to assume that for 

purposes of reporting to UNFCCC, Mexico will apply the definition made in the Climate 

Change Law. There are, however, also inconsistencies relating to other aspects of the 

Mexican definition of forests and degradation, which we consider in discussing the 

operationalization of the degradation element of REDD+ below. 

                                                      

 

 

8
 Ley General de Cambio Climatico and Ley General de Desarrollo Forestal Sustentable, both 

promulgated in 2012 
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2.4.1.  Elements to be considered in the definition and measurement of forest 
degradation in Mexico 

2.4.1.1. The Canopy Cover Element in the Definition of Forest  

As noted section 2.3, UNFCCC requires a definition of forest that relies on threshold 

values, of which canopy cover is the key element. The choice of a threshold value for canopy 

cover will, to a large extent, determine which areas in Mexico are allowed to participate in 

REDD+ activities. Mexican forest law states that a vegetation type is considered forest until 

the point at which it falls below a tree canopy cover threshold of 10%, while for the purposes 

of the Kyoto Protocol, it has adopted a 30% canopy cover threshold. This was probably to 

enable the promotion of CDM projects, which can only be carried out in areas which are not 

forest. This difference in definitions has so far not been resolved and it is not clear which one 

will pertain for the case of REDD+. 

In the context of REDD+, however, the definition of canopy cover threshold has 

important implications (Romijn et al., 2013). If Mexico assumes a 30% threshold, any open 

forests and woody vegetation formations with canopy cover below this level (such as 

matorrales (scrubland) would be ineligible. By the same reasoning, clearance of such open 

formations would not be counted as deforestation, and loss of biomass density within them 

would not be counted as degradation, against the national reference emissions level. A key 

question in this regard is whether areas that currently have a tree canopy cover between 10% 

and 30% do so as a result of past degradation processes (which could perhaps be reversed) or 

as a result of natural ecological characteristics. This has important implications for the 

selection of the minimum canopy cover threshold for REDD+. It would be important first to 

consider whether low carbon density ecological zones such as the matorrales offer any real 

opportunities to increase Mexico´s carbon stocks. Because of the cost of monitoring land 

areas for carbon stock changes in national REDD+ inventories it would be efficient to 

exclude from the forest definition those ecosystems with low potential for loss or gain in 

carbon stocks associated with changes in tree canopy cover. However, for the case of 

degraded ecosystems that currently have a low tree canopy cover, but have good potential for 

increase in carbon stocks through project interventions (e.g. tree planting or forest 

protection) it would be useful to include them within the forest definition so that such 

projects can be monitored as part of the REDD+ process. Additional information on the rate 

of potential carbon stock gains and monitoring costs is required to assess this trade-off. If 

areas with canopy cover down to 10% are included in the area to be monitored for REDD+ 

this would approximately double the area to be monitored compared with a minimum 

threshold of 30%. Knowledge of the proportion of total project costs comprised by 

monitoring (Rendón Thompson et al., 2013) would then enable calculation of what value 
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from carbon stock gain from these areas would be required to generate a net benefit. It may 

well be that some ecosystems with 10-30% tree canopy cover are in biodiversity hotspots 

and should in any case be protected for that reason, but it is questionable whether REDD+ is 

the most appropriate instrument to do this. 

2.4.1.2. The area element and the estimation of degradation activity data 

In Mexico, as in many other countries, there is a mismatch between what area is actually 

observed and what is defined as forest by law. At a national scale and on an annual basis 

forest areas are mapped based on coarse resolution images (i.e. MODIS). This implies that 

the minimum area that can be identified is 6.25 ha, which is validated with mid-resolution 

imagery (i.e. Landsat or SPOT data) (Meneses-Tovar, 2011). The minimum forest area 

defined by law (1 ha, Table 2.1) cannot therefore be observed using this technology, 

although with the use of high resolution images, the area observable could be brought down 

to 0.5 ha (Velazquez et al., 2011). When resolution is increased, the forest loss estimates 

may change significantly. For example, when comparing deforestation estimates between 

1993 and 2010 derived from mid-resolution Landsat data with aerial photos for 2003 and 

high resolution SPOT 5 images for 2007 in a small area in Northwestern Mexico, the 

estimates of deforested area were increased by a factor of three, because many smaller 

patches of forest clearance could be seen when using higher resolution technology (Ghilardi 

et al., 2012). The same general effect will hold for estimates of areas that are degraded. 

However, use of higher resolution technology implies much higher costs, not only for the 

images but for the skilled work in analysis (Böttcher et al., 2009).  

In the near future, a finer scale approach may be feasible using very high resolution 

images such as those from the RapidEye satellite, because Mexico, through its National 

Commission for Knowledge and Use of Biodiversity (CONABIO), has recently obtained full 

national coverage for 2010 and 2011. It is expected that with the higher spatial resolution of 

RapidEye data (> 6.5 m) it will be possible to map areas where canopy cover is increasing or 

decreasing (i.e. to obtain the activity data for degradation) (Franke et al., 2012; Magdon et 

al., 2014). Mexico plans to continue to receive updated RapidEye image data, but it will be 

at least 10 years before enough images are acquired in order to be able to construct baselines 

at a national scale for changes in area of deforestation and degradation (CONAFOR et al., 

2012). Thus in the short term, Landsat, in combination with MODIS and SPOT, will 

continue to be the backbone of national monitoring systems for land cover change detection, 

since it provides data over the last four decades at medium resolution and is relatively cheap 

(Birdsey et al., 2013). This means that, for the time being, the de facto minimum measurable 

unit that could potentially be used in the construction of a baseline for change in area of 
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degradation will be based on pixel size that range between 10-250 m, that  is probably too 

coarse to detect most degradation activities.  

Although interesting results have been achieved for the impacts of logging and fires in 

rainforest by combining different remote sensing data sources (Souza et al., 2005; Asner et 

al., 2010; Franke et al., 2012; Langner et al., 2012), it is still challenging to identify and 

estimate the areas of forest that are losing carbon stocks due to other types of degradation, 

such as slash-and-burn agriculture, grazing within the forest, and extraction of fencing poles 

and fuelwood, which are the most common causes of degradation in Mexico (Bonilla-

Moheno et al., 2013). Considerable uncertainty remains in assessing activity data on forest 

degradation due to activities that do not produce obvious changes on canopy cover (Plugge 

& Köhl, 2012). 

Meneses-Tovar (2011) attempted to define the areal extent of forest degradation in 

Mexico using the changes in NDVI from low resolution imagery (500x500 m MODIS data) 

and the plots from the National Forest Inventory. This work first obtained an average NDVI 

value over a five year period (2000-2005) for each vegetation type to derive a regression 

model using the above-ground biomass values from more than 15,000 National Forest 

Inventory Plots. Dry season (15 February -15 April) NDVI values for subsequent years were 

calculated for each plot. An increase, decrease or stable value of the dry NDVI was 

associated with biomass gains or loss. Although this study was valuable for establishing 

trends that helped understanding which plots have suffered biomass loss or gains and where 

these areas were located, due to its coarse spatial resolution it does not allow a proper 

quantification of biomass change nor to establish if these losses were due to human-related 

activities. 

Bonilla-Moheno et al. (2013) used the EVI (enhanced vegetation index) derived from 

MODIS (at 250 m resolution) to assess biomass losses at the level of municipalities in 

Mexico. Although time series comparison of these indices allowed the identification of broad 

areas with reduced biomass levels, the resolution level is coarse (too coarse to superimpose 

an overlay for management units, for example). Moreover, it is not possible to distinguish 

clearly losses that are due to degradation from those that are due to deforestation, nor to 

directly quantify the biomass changes involved. 

Other efforts have been made with medium spatial image resolution to make the 

quantification on the basis of changes in canopy cover. Velazquez et al. (2011) proposed the 

definition of areas subjected to degradation in Mexico as those in which tree canopy cover 

had dropped by more than 30%, e.g. from 70% to 40% (Velazquez et al., 2011), simply 

because this is the minimum which they felt could be reliably detected using a sequential 
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series of Landsat images. However, the difference in biomass levels between a forest with 

70% cover and one with 40% is huge. If degradation is to be included in REDD+, a much 

finer approach would be needed. 

2.4.1.3. The ability to detect changes in biomass stocks over time and data availability 
for baseline  

As explained in section 2.6, there is a lack of historical data for forest degradation on 

emissions factors (losses of biomass per hectare overtime). It is doubtful whether the losses 

of biomass per hectare over time (emissions factors) due to forest degradation can be 

accurately quantified solely using optical or radar remote sensing, even with high resolution 

data, since optical data do not measure biomass directly and tend to saturate on high biomass 

ecosystems (Gibbs et al., 2007; Zolkos et al., 2013). The same would hold for aerial photos, 

even high resolution photos taken from low flying unmanned aircraft (UAVs). 

Recently, however, the remote sensing field has seen advances in assessing AGB by 

combining different types of optical sensors with lidar and/or radar data, which are able to 

sense and record forest structure metrics (e.g. maximum canopy height) and penetrate both 

cloud and canopy cover. Such surveys have been made at a national level for relatively small 

countries (e.g. Panama) with a high level of accuracy (Asner et al., 2013) and allow 

quantification of a reference level of forest carbon stocks. This offers great potential for 

future monitoring of stock level change, although carrying this out for large areas of forest 

would be very expensive with current technology (Böttcher et al., 2009). 

Mexico would, ideally, need to carry out regular lidar surveys in combination with 

intensive field sampling to calibrate the lidar data in order to assess changes in carbon 

stocks. The costs of such a monitoring system will be large, but need to be compared with 

the benefit of improved assessment not only of changes in carbon stock, but also for other 

ecosystem services that could be linked to this remote sensing data. However, it will be 

many years before enough data are generated to create a credible baseline or reference 

emissions level, and therefore before carbon credits could be claimed for avoided or reduced 

degradation on this basis. 

The best current approach to gathering adequate emissions factor data would be to base 

biomass density assessments largely on ground-level measurements that can later be used to 

analyse remote sensing data. Mexico has a well developed framework for monitoring its 

forest resources. The National Forest Inventory is based on 23,000 permanent plots, set out 

on a regular grid of 5 km across all forests in the country, i.e. an average of one plot per 2500 

ha of forest. The plots are sampled once every five years and provide invaluable data on the 

forest attributes, structure, composition and state of the different types of forest at a national 
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level. When averaged over whole ecosystems, these data provide a good picture of national 

trends of losses and gains of biomass within forests, and set the distribution of biomass 

values that occur in each ecozone. However, the Inventory  does not provide sufficient data 

to gain a definitive picture of degradation at local (landscape) levels. For this, much more 

intensive ground-level survey work would be needed. 

2.5. Operationalizing the assessment of degradation at the landscape level 

2.5.1. Use of local forest inventories  

In areas where REDD+ pilot actions will be implemented intense monitoring will be 

required to access their impact (Herold & Skutsch, 2011). Accounting for carbon emissions 

coming from forest degradation could require methods that are extremely time consuming 

and complicated, especially those related to timber harvesting as explained in Griscom et al. 

(2014) and Pearson et al. (2014). Such detailed accounting, though desirable, will not be 

feasible to implement at a landscape level at different sites across the country, because it 

requires a high level of expertise. However, the results of local forest inventories done by 

communities have proved to be of comparable quality to those done by experts (Danielsen et 

al., 2011) and could be used to assess forest degradation. 

Forest owners could be expected to carry out regular ground-level surveys of biomass 

stock in the forests which they register under the REDD+ programme; monitoring could be 

considered as part of the management requirements. In Mexico, around 59% of all forest is 

owned by ejidos (communal agrarian settlements) or communities (Skutsch et al., 2013), and 

is (at least in principle) managed communally; most of the remainder is in the hands of small 

property owners. It is hoped that the management practices they would need to follow under 

REDD+ would first reduce rates of degradation and then reverse them as forest enhancement 

takes place. Therefore, these surveys need to be designed to enable a sufficiently accurate 

assessment of the levels of degradation and enhancement within the property boundaries to 

quantify these management effects as a basis for reporting and payments. To enable this, 

communities and other land owners participating in REDD+ activities could be trained to 

carry out simplified forest surveys of aboveground biomass. Several projects, such as the 

"Kyoto: Think Global, Act Local" (Skutsch, 2011) have provided data and experienced to 

developed detailed field manuals (e.g. Honorio Coronado & Baker (2010), GOFC-GOLD 

(2013)) on how to design surveys and which variables to measure to assess forest resources, 

however there also need to be mechanisms to verify the resulting data (Larrazábal et al., 

2012; Pratihast et al., 2013). Such extensive community-based monitoring would give a 

much denser coverage of data than is currently available from the National Forest Inventory, 
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and enable an analysis at the level of management units, of which areas are losing carbon 

stocks, which are degraded but stable and which areas are gaining stocks (Table 2.3). 

At a national level, this information would not only be useful to assess current emission 

rates, but also to help determine the relative success of different REDD+ interventions in 

reducing emissions, because it can be directly linked to the drivers. Ground surveys could 

include information on land use history and the current use, such as amount of cattle, 

unsustainable logging or estimates of fuelwood collection, which could improve knowledge 

of the relationship between human activities and the observed biomass in an area. In addition 

to quantifying carbon stocks, ground surveys have the potential to informed national policy 

on the state of other ecosystems services, that are lost when forests become degraded.  

Although it may be many years before the entire forest area of Mexico is included under 

REDD+ (since participation is voluntary) such local surveys would strongly reinforce 

knowledge about biomass stock levels and how they are changing as a result of REDD+, 

both at the local and, when summed, at the national level. Given adequate quality filters, 

local inventories could also serve as ground truth data for remote sensing analysis that will in 

turn reduce the uncertainty of the carbon estimates at regional and national levels. The 

combination of local inventories with high resolution remote sensing or lidar could help to 

develop a nested national MRV system. There is, however, no way that a historical baseline 

or reference emission level for degradation could be developed from these contemporary 

data. Rather, their value would be in creating the baseline for future assessment of carbon 

stock changes and calculation of resulting carbon credits. Given that such a large proportion 

of Mexico´s forests are degraded, this "room-to-grow" may in reality be the country´s 

greatest opportunity for carbon crediting under REDD+. 

This kind of community-based “bottom-up” analysis of forest degradation would greatly 

benefit from the establishment of benchmarks which provide locally relevant indicators of 

carbon stocks for natural forest and forest under different conditions of contemporary or 

previous use and disturbance which lead to degradation of carbon stocks. 
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2.5.2. The benchmark approach 

As described in more detailed in section 2.2, we propose that a degradation scale could be 

made for regions that are relatively homogeneous in terms of natural ecosystem, biophysical 

conditions and land use, using a chronosequence approach. A gradient from least-degraded 

areas (the benchmark) to highly disturbed sites, with some range of uncertainty for each level 

can be established (as illustrated for two contrasting cases in figure 2.2). The range in values 

for the benchmark is important to reflect the variation with site environment (e.g. linked to 

vegetation type, topography and soils) in potential above-ground biomass stocking rates of 

areas without major human disturbance impacts. 

The first step in operationalizing this approach would be to decide on the size of the 

region within which the benchmark would be applied. For Mexico, a possible approach 

would be to work at the watershed level, as watersheds tend to be made up of landscape units 

with relatively similar sets of biophysical characteristics, and moreover in some cases they 

Table 2.3. Suggested activities under REDD+ appropriate to counter different phases of 

forest degradation 

Category

  
Process  REDD+ mitigation aim Means of achieving this goal 

Degrading 

Losing biomass and carbon 

annually due to human 

activities in which 

extraction or loss exceeds 

natural growth rates 

Avoid further degradation  

 

When this is achieved, 

forest enhancement 

 

Sustainable forest 

management, conservation, 

extended slash-and-burn 

cycles (especially woody 

fallow phase), restriction of 

off-take of different forest 

products, e.g. through quotas, 

removal of cattle. 

Degraded but 

stable 

With a low level of carbon, 

but small rate of losses or 

gains 

Forest enhancement 

Possibly through replanting if 

insufficient soil seed bank, 

seed rain or root stock exists 

for natural regeneration or 

sprouting. Fencing, removal of 

cattle. 

Degraded or 

deforested but 

already 

recovering 

naturally 

Forest re-growth or 

secondary succession.   

In principle, this may not 

be credited under REDD+ 

because it is occurring 

naturally (it is not 

additional). However, rate 

of C accumulation may be  

increased through 

additional REDD+ 

measures 

Stimulate faster re-growth by 

forest protection from further 

disturbance, eliminating 

sources of loss, enrichment 

planting etc. 
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are the spatial basis of governance units, e.g. in Jalisco State where a number of inter-

municipal juntas uniting up to 20 spatially contiguous municipalities have been created. 

These associations are already taking a strong lead in early actions for REDD+ in Mexico, 

particularly in Jalisco and Yucatán. A second step is to stratify the landscape into 

homogeneous units based on biophysical characteristics and then carry out the local forest 

inventories (see section 2.5.1). Selecting an adequate number of strata is not straightforward 

in most cases and it requires an in-depth knowledge of the area characteristics. 

In Jalisco a first attempt to apply the benchmark concept was undertaken for the Junta 

Intermunicipal de la cuenca del Rio Ayuquila (JIRA), one of the REDD+ demonstrative 

actions selected by the Mexican Government. In this case a detailed forest inventory was 

carried out in the tropical dry forests area ("selva baja") (Jardel-Peláez et al., 2013), where 

the main forest degradation drivers are shifting cultivation agriculture and grazing. Before 

the communities (ejidos), used to practice slash and burn all over the communal area. 

Currently only the specific areas are allocated for this type of agriculture, this has allowed 

forest regrowth, but at the same time has intensified the use of certain areas. If the data from 

four communities’ plots are classified based on the land use history and altitude, as the basis 

to create homogeneous units, it is possible to distinguish four levels of degradation as shown 

in Figure 2.2. In this case it will be feasible to distinguish highly degraded areas in 

comparison with the benchmark; assessing intermediate categories (D2-D3) will be more 

difficult because there is a notable overlap between categories as shown by the error bars, 

especially for lower altitudes. This indicates that a more detailed classification, using 

biophysical variables such as slope, aspect or smaller altitudinal ranges, should be attempted, 

to reduce this variability.  

The complexity of ecosystems and their dynamics makes the establishment of 

benchmarks difficult. However, with limited current capabilities and data constraints, the 

benchmark approach is still likely to be the best to help assessment of degradation and forest 

enhancement for the early implementation of REDD+. This will enable the design and 

monitoring of REDD+ activities to tackle the anthropogenic disturbance processes causing 

degradation, either through interventions to stop the processes or through behaviour change 

of the actors involved (Hosonuma et al., 2012; Olander et al., 2012). By using local 

inventories linked to degradation drivers, a benchmark system could also serve to scale up 

evaluation of the performance of REDD+ actions to evaluate the impact of REDD+ policy 

interventions on carbon stock changes (Skutsch & Balderas-Torres, 2012). 

. 
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Figure 2.2 Aboveground biomass for tropical dry forests grouped in four land use 

categories according to altitude:  

a) 1200-1700 (n=47) b) 900-1200 (n=54) for the Junta Intermunicipal de la cuenca del Rio 

Ayuquila, Jalisco, Mexico. Land use categories are defined according to time since last 

cleareance: Control= no clearance (Benchmark), Old Growth= more 40 years (D1), 

Medium= 10-20 years (D2), Young= less than 6 years (D3-highly degraded). The error 

bars showed the maximum and minimum value for each category and the box corresponds 

to first and third quartile, the centerline is the median value. 

Finally, as more information becomes available, benchmarks can be compared and 

refined and historical baselines could, in the long run, be developed using them. Simple 

characteristics can be used by projects as guidelines for classifying areas into different 



 

55 

degradation levels, e.g. the percentage of the forest that is under slash-and-burn agriculture. 

For logged forests, Sasaki et al. (2011) have proposed that the number of trees above the 

minimum diameter at breast height for legal harvesting that are found in an area could be 

used as an indicator of the state of degradation. Recent evidence has shown how important 

are large trees (Sist et al., 2014) 

2.6. Conclusions  

There are a number of reasons why defining forest degradation in a consistent and 

operational manner is complex. As a consequence, the result of any assessment of 

degradation is likely to be very dependent on the scale to which the definition applies. Given 

the multiple temporal scales of natural change in forest condition, the absence of adequate 

historical data with which to define the range of conditions that may exist in the  non-

degraded counter-factual is a particular constraint. The efficacy of a definition will depend 

on the consistent reliability of the indicators that can be applied to it, but there has been a 

serious lack of research to test this. Thus, all the definitions present challenges and 

stakeholders in the international policy development process and the voluntary carbon 

markets will have to deal with the intrinsic level of uncertainty associated with the process of 

forest degradation and continuously seek improvements in the operational definition. In the 

absence of a perfect system, practical solutions need to be developed that will enable 

countries such as Mexico at least to get started with the process of national scale REDD+ 

monitoring. To assist with this, the primary goal of this paper was to propose an operational 

definition and system of measurement, contextualized for the case of Mexico. 

Assessment of degradation (as well as deforestation) for REDD+ requires a definition of 

forest in terms of thresholds, and we suggest that the minimum threshold for tree canopy 

cover should be 30% because this encompasses the types of degraded forest which have the 

most chance of increased carbon stocks with improved management. Although there is 

undoubtedly a need in Mexico for habitat protection and restoration of some areas with a 

lower level of tree canopy cover, we believe that this could be better achieved by other 

conservation instruments and policies. Mexico´s forest law is clear that agricultural 

plantations do not count as "forests", but it is not yet clear whether trees introduced as a 

result of the promotion of sustainable agroforestry practices will be eligible for crediting 

under a national REDD+ programme. 

When it comes to identifying areas that are degraded, and change in these areas over time 

(i.e. "degradation activity data"), we suggest that it is not possible at present to construct a 

baseline or reference emission level, relevant to most types of degradation in Mexico, based 



 

56 

solely on remotely sensed data. This is primarily because the available high resolution 

images, although they are useful in identifying areas which appear to be degraded now, and 

have good potential to track changes in these in the future, are too recent to provide 

sufficient historical coverage. In addition, data from the national forest inventory are also of 

too recent to be used to determine past degradation levels. Meanwhile, low- and mid-

resolution remotely sensed images, which have been available for longer, are far too coarse 

in resolution to allow sufficiently accurate identification of areas that are degrading. As 

degradation frequently occurs as a cyclic phenomenon over a management unit (e.g. over 

forest areas used by a community of small farmers for slash-and-burn agriculture or for 

repeated commercial unsustainable timber harvesting) it needs to be assessed in an 

aggregated way at the management unit level or over the whole landscape. In Mexico 

appropriate units could be an ejido, community or small private property, or perhaps a 

landscape unit that captures a relatively homogeneous pattern of local forest uses across 

multiple ejidos. 

Current available remote sensing data and methodological approaches do not permit 

accurate quantification of the rate of loss of biomass within degrading forests (which would 

form the basis for the estimate of emission factors), as they only observe canopy cover. 

Historical optical satellite data can only estimate activity (area) data, not tree biomass stock 

per hectare. Biomass stocks can be estimated with lidar and intense field sampling, but as 

there are no historical lidar images available it is not yet possible to construct a baseline 

against which to compare future measurements to assess loss and gain of forest biomass. The 

Mexican national forest inventory, which does provide data on biomass stocks, has records 

going back only to 2004 or 2007 with only one re-measurement in most cases. Currently, this 

is not sufficient for construction of a baseline for degradation emissions data (for which data 

from more than 10 years would be needed). Moreover, the inventory plots are so widely 

spaced that they cannot be used to assess stock change at the forest management unit level. 

At this scale the best future solution may be inventories made by landowners or communities 

themselves, as an integral component of their REDD+ management activities. 

At present it will be very difficult for Mexico to make claims for reduction in emissions 

from degradation. This will have to wait until sufficient data are available to construct an 

appropriate baseline or reference emission level. However, to the extent that technology 

permits assessment of increases in forest biomass over the coming decade (e.g. evidence at 

national level from the national forest inventory, and possibly lidar data from particular sites 

of REDD+ interventions), these could be expressed in terms of tonnes of carbon and credited 

as forest enhancement, that does not fundamentally require a baseline. 
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We propose that, in the meantime, a local level, bottom-up approach will be needed, not 

only to assess forest degradation emissions effectively, but more importantly to assess the 

effectiveness of different REDD+ interventions which aim to reduce degradation. For this, 

the setting up of benchmarks, which reflect local conditions over relatively homogeneous 

areas, would be invaluable. The use of benchmarks needs to be well informed by an 

understanding of the dynamic processes that are occurring in each forest assessed in order to 

prevent the unjustified assumption that if the degradation agent is removed forest will follow 

a determined successional path. Under current capabilities the use of benchmarks is likely to 

offer the only realistic option for evaluation of the impacts of REDD+ activities on forest 

degradation. 
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Abstract 

The intensity of forest degradation is linked to landowners´ decisions on management of 

their shifting cultivation systems. Understanding the processes involved in this land use type 

is therefore essential for the design of sustainable forest management practices. However, 

knowledge of the processes and patterns of forest transition that result from this practice is 

extremely limited. In this study we used spatially-explicit binary logistic regression to study 

the proximate factors that relate to forest degradation by combining biophysical and socio-

economic variables. Our study region is within the Ayuquila Basin, in Western Mexico, a 

typical fragmented tropical dry forest landscape dominated by shifting cultivation. Through a 

survey and semi-structured interviews with community leaders we obtained data on the 

forest resources and on the uses that people make of them. Detailed forest cover maps for 

2004 and 2010 were produced from high-resolution SPOT 5 data, and ancillary geographical 

data were used to extract spatial variables. The degree of social marginalization of each 

community and the ratio of forest area to population size were the main factors positively 

correlated with the probability of the occurrence of forest degradation. Livestock 

management and use of fence posts by the communities were also positively associated with 

forest degradation. Among biophysical factors, forest degradation is more likely to occur in 

flatter areas. We conclude that local drivers of forest degradation include both 

socioeconomic and physical variables and that both of these factors need to be addressed at 

the landscape level while developing measures for activities related to REDD+.  

 

Keywords: forest degradation, drivers, shifting cultivation, logistic regression, ejido, 

tropical dry forests, REDD+, forest cover change 

 

3.1. Introduction  

Determining the proximate and underlying causes of deforestation and forest degradation 

of tropical forests is a key prerequisite for the development of activities for REDD+ 

(Reducing Emissions from Deforestation and Forest Degradation) (Salvini et al., 2014). 

Developing countries participating in REDD+ are encouraged to report on human-induced 

activities that are linked to greenhouse gas (GHG) emissions from forest land (UNFCCC, 

2010; Hosonuma et al., 2012). The identification of these activities and locating them in a 

spatially explicit manner may be of utmost importance for effective REDD+ interventions 

(Kissinger et al., 2012). While there is considerable understanding of the processes causing 
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deforestation (Geist & Lambin, 2002), knowledge of drivers that cause changes in forest 

carbon stocks in forests that remain forests (i.e. degradation) is quite limited, especially for 

tropical dry forests (TDFs) (Murdiyarso et al., 2008a).  

Tropical dry forests have not received as much attention as humid forests in the context of 

REDD+, mainly because they have lower carbon stocks and increments per area (Blackie et 

al., 2014). Nonetheless, TDFs cover extensive areas (approx. 42% of the tropics and 

subtropics worldwide (Murphy & Lugo, 1986; Miles et al., 2006), and may potentially play 

an important role in climate change mitigation. They are notably important ecosystem in the 

Neotropics, where they cover an area of approx. 520,000 km
2
 (Portillo-Quintero & Sánchez-

Azofeifa, 2010), that corresponds to more than half of the global total extent of TDFs (Miles 

et al., 2006). Moreover, TDFs provide a variety of ecosystem services (Maass et al., 2005) 

and although holding lower values of species richness than rainforests, they have particularly 

high levels of endemism and beta biodiversity (Gentry, 1995).  

Despite their importance in providing ecosystem services, TDFs are among the most 

threatened ecosystems in the Neotropics (Miles et al., 2006). They have suffered high 

conversion rates and the remaining areas are heavily degraded and fragmented (Trejo & 

Dirzo, 2000; Sánchez-Azofeifa et al., 2005). This is because TDFs often support high human 

population densities, with many people depending on forest land and forest resources 

(hereafter forest resources) for their livelihoods (Sunderlin et al., 2008); particularly through 

shifting cultivation (Saikia, 2014), but also to provide fuelwood, charcoal, house-building 

materials, fence posts and non-timber forest products (NTFP) (Maass et al., 2005). In 

addition, commercial logging and cattle grazing frequently affect the structure and 

composition of TDFs (Sanchez-Azofeifa & Portillo-Quintero, 2011). 

This paper presents an analytical framework to identify drivers of forest degradation in 

TDFs and other variables that are correlated with it. Satellite imagery that provides data at a 

scale fine enough to detect forest degradation due to shifting cultivation is used together with 

on-the-ground data on the local use of forest resources. It is important to stress that, in our 

analysis, shifting cultivation (here meaning slash-and-burn agriculture, subsistence farming 

and swidden cultivation, following the terminology of Mertz (2009) is considered to cause 

forest degradation rather than deforestation because its cycle of operation involves clearance 

followed by regrowth of forest that creates a landscape with lower biomass density that still 

qualifies as forests, in contrast to deforestation that implies a permanent conversion of land 

cover from forest to non-forest (Houghton, 2012). As a result, landscapes where shifting 

cultivation is practiced are complex mosaics made up of patches that are losing or gaining 

forest carbon stocks (Mertz et al., 2012). However, although there can be carbon gains at the 

landscape level during particular periods of time, in their early development stages the 
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resulting secondary forests on average usually hold lower carbon stocks than mature forests 

(Read & Lawrence, 2003; Lawrence et al., 2005; Becknell et al., 2012). Furthermore, lower 

capacity to store carbon and modified species composition have been observed in secondary 

forests as an area is subject to more cycles of clearance and recovery (Lawrence et al., 2010). 

Therefore, they must be considered as degraded forests in the REDD+ context, both in terms 

of carbon stocks and regarding their ecological characteristics. However, since most of the 

discussion on forest degradation has been on selective logging (Putz & Redford, 2010); the 

inclusion of shifting cultivation as a driver of forest degradation within REDD+ is unclear, 

and this has significant consequences on countries carbon stock estimations (Pelletier et al., 

2011). The core questions relies on whether fallows are classified or not as forest land; while 

the IPCC (IPCC, 2003) considered fallows as land under predominantly agricultural use, in 

reality it is a stage of forest re-growth. Most importantly, the methods used by most countries 

do not distinguish secondary growth due to shifting cultivation from other types of secondary 

forest (Houghton 2012). Consequently, we argue that these stage of secondary re-growth 

should be considered degraded forest, because it is not a permanent loss of forest cover to be 

classified as deforestation and it holds less carbon density. 

In order to capture the pattern of forest clearance and subsequent regrowth of forests 

carbon stocks, observations and analysis at suitably fine spatial and temporal scales are 

required. Previous studies which analysed multiple dates are limited by coarse and medium 

spatial resolution (Pelletier et al., 2012a; Li et al., 2014) and may not be adequate to detect 

patches of small-area agriculture (+2 ha) with short cycles of forest clearance and regrowth 

(3-6 years). Many studies have used spatial scales that are too coarse to detect degradation 

related to shifting cultivation, e.g. Bonilla-Moheno et al., (2013) used data from MODIS 

with a pixel size of around 250 m. Multi-date medium resolution Landsat data (30 m) have 

been used in combination with detailed field inventories to detect shifting cultivation in 

rainforests where clearings are on average 2 ha (Pelletier et al., 2012a). Clearings and 

fallows were classified using spectral unmixing analysis, a technique that has been 

successfully applied to the detection of selective logging mostly in moist and wet tropical 

forests (Asner et al., 2005; Souza et al., 2005). However, in TDF coarser spatial and 

temporal resolution limits the capacity to differentiate between natural open forest areas that 

have never been cleared and degraded forest or forest recovering after clearance via 

secondary regrowth, because of overlapping spectral signatures. So far, to the best of our 

knowledge, only one study Hurni et al (2013) has managed to delineate landscape units in 

which shifting cultivation prevails, by using higher spatial resolution (10 m pixel) satellite 

data. Nonetheless, this analysis was only done for a single date, i.e. it does not examine 

change over time. 
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The scale of analysis is also extremely important in evaluating the human factors that 

could potentially influence the observed patterns of forest degradation defined by cycles of 

regrowth and clearance. Typically, proximate causes of forest cover change are hypothesized 

and tested from national census datasets or data that are aggregated at regional or municipal 

level because they are readily available. As a result, these analyses may be of limited utility 

in evaluating local processes in dynamic socio-ecological systems such as shifting 

cultivation landscapes (Geoghegan et al., 2004). Only a few studies (e.g. Roy Chowdhury, 

2006; Getahun et al., 2013) have integrated community-level information or analysed it 

across scales from household to regional (e.g. Overmars and Verburg 2005). Likewise, 

regional studies that evaluate factors that affect forest degradation at a landscape level are 

rare (Saikia, 2014). 

This situation is not desirable in the context of REDD+ because on-the-ground projects 

are implemented at a landscape level, and activities are undertaken by individuals and 

communities on their own parcels of land. To tackle efficiently the causes and consequences 

of forest degradation, analysis at a scale compatible with the degradation processes is 

needed. For example, in Mexico, where some studies have claimed that as much as 80% of 

the forest area is on communal land managed by rural agrarian communities (Bray et al., 

2006), data at the community level is required (Skutsch et al., 2013). These agrarian 

communities are in any case the target group of most REDD+ programs in Mexico (Corbera 

& Estrada, 2010) since the policy of the Mexican government is to use REDD+ as a strategy 

to promote cross-sectoral rural development, as well as to foster the sustainable management 

of forest ecosystems (SEMARNAT, 2010).  

In this paper we use as a case study a landscape in Western Mexico that contains large 

areas of TDF in which shifting cultivation is the traditional way of growing crops. We 

address three main questions: 1. Can the patterns of forest cover change in TDF be 

associated with forest degradation at the landscape scale? 2. Which factors determine forest 

degradation in a TDF landscape under a shifting cultivation system? 3. Can variation in the 

use of, or demand for, forest resources and forest land by communities provide an indication 

of the probability of forest degradation in a TDF socio-ecological landscape? To explore 

these questions, a detailed forest cover map was produced through an approach that allows 

land cover changes due to shifting cultivation to be tracked. Next, the information derived 

from the interpretation of this map was used in a statistical model that allows the 

identification and quantification of the probability of forest degradation from an integrated 

set of biophysical and socio-economic variables. Finally, we further explore the relationship 

between the use of forest resources such as firewood and poles, and forest degradation 
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associated with shifting cultivation, to explore the utility of using demand for forest 

resources as an indicator for monitoring forest degradation in the context of REDD+. 

3.2. Materials and Methods  

3.2.1. Study Site  

The study was carried out in the Ayuquila Watershed (~19°25' - 20°10.0"N, 

104°3' - 103°3'W), in the state of Jalisco, Mexico. The study area embraces 10 

municipalities and has an area of about 4,000 km². The southern boundary of the 

study area is formed by the Sierra de Manantlán Biological Reserve (Fig. 3.1), which 

is known for its high biodiversity and which protects a water catchment providing 

water for more than 400,000 people (Cuevas et al., 1998). Due to its importance for 

water, biodiversity and other ecosystem services, and because the municipalities are 

already working together on environmental planning under a Junta Intermunicipal 

del Rio Ayuquila (JIRA), the area was selected as a REDD+ Early Actions Area by 

the Mexican government (SEMARNAT, 2010). 

 

Figure 3.1 Regional map of the study area showing the 29 sampled communities 

(“ejidos”) within Ayuquila Watershed, Jalisco, Mexico. 
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The study area has a complex topography that ranges from 260 m to 2500 m above sea 

level. The average annual precipitation is 800-1200 mm, and occurs mainly between June 

and October; and the range of average monthly temperatures is 18-22 °C (Cuevas et al., 

1998). The topographical and climatic conditions have created a variety of vegetation 

formations. High altitude areas are dominated by pine and oak-pine forests. At intermediate 

elevations, and where appropriately moist conditions are present, small patches of cloud 

forest are found. Lower elevations are dominated by TDF (selva baja (Rzedowski, 1978)). 

Trees in this vegetation type typically lose their leaves in the long dry season. In the 

undisturbed state, these deciduous and semi-deciduous forests have a height range of 4-15 m 

and a high number of endemic plant species (Gentry, 1995). In terms of population 

dynamics, the XI, and XII Population Censuses of Mexico show that the communities within 

the study area have not experienced major population changes in the last two decades 

(INEGI, 2000, 2010a).  

3.2.2. Description of the land use system  

The landscape is composed of a mosaic of TDF patches within a matrix of agricultural 

land. Most of the tropical dry forest is found within ejidos, which are settlements with a 

communal land tenure system. Ejidos implement a type of decentralized forest management 

where decisions regarding land use and management of common resources are taken in a 

General Assembly, which is chaired by the ejido leader and is composed of all those people 

in the community that have rights to the land (ejidatarios). Generally, rights to the land are 

established when the ejido is formed and can only be inherited by one person in a family. All 

the activities are discussed and approved in a General Assembly and, therefore, ejido leaders 

can be seen as key informants with respect to the use of resources in the ejido. 

Land is, in principle, a communal resource. Within each ejido, there is an agreed division 

of land uses with defined areas for permanent agriculture and for shifting cultivation, as well 

as areas of forest. Forest is usually managed communally, although in some ejidos an 

informal privatization of this common land has occurred with each ejidatario 

managing several parcels. The main agricultural products in the ejidos in the study area is 

maize (which is either produced in the shifting cultivation system within the forested areas or 

in areas which have been permanently cleared for agriculture), and to a lesser extent sugar 

cane, avocado, and agave (all of which are planted exclusively in permanent agricultural 

lands).  

Allocation of land use within the ejido is partly related to topography: permanent 

agriculture takes place in the low and flat areas, while hilly and stony areas are commonly 
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used for shifting cultivation. The parcels under shifting cultivation, known as coamiles, have 

an average size of 2.5 ha and the majority of the crops are grown for subsistence (i.e. maize 

production is primarily for consumption within the household). Coamiles are typically 

cultivated for two-three years and then left abandoned for a fallow period that varies from 

three to eight years (Borrego & Skutsch, 2014). During this fallow period secondary 

vegetation regenerates naturally, as a mixture of shrubs and trees. When a patch of land is 

selected again at the start of a cultivation cycle, this secondary vegetation is cleared. Crops 

are then sown when the rainy season starts (June/July) and harvested six months later. 

Afterwards, livestock are kept on the land and fed with the crop residues before the land is 

abandoned to the fallow period. During the wet season, cattle move around the ejido, 

browsing on the regenerating fallows and forest lands. Consequently, there is a relationship 

between the number of cattle that an ejidatario can own and the area of shifting cultivation. 

In some cases, ejidos may only be able to support that quantity of cattle that can be 

maintained during the dry season fed on the crop residues of shifting cultivation areas. In 

addition to cattle grazing, regenerating fallows and forest areas are also the source of fence 

posts and fuelwood (Fig. 3. 2). 

 

Figure 3.2 Illustration of the shifting cultivation system practiced within tropical dry 

forests in western Mexico, based on information from field interviews.  

The grey boxes show a typical sequence of land cover changes in a parcel found in the 

area, and the white boxes show the location of the livestock. 

3.2.3. Data 

To investigate the relationship between different factors involved in forest degradation we 

conducted a community-level survey (described in section 3.2.3.2 below), together with a 

parallel analysis of TDF cover change. Our method to assess the probability of forest 
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degradation uses two sets of data: 1) biophysical variables derived from remote-sensing 

image analysis; 2) socio-economic variables derived from the community-level survey and 

ancillary information. The independent variables described in Table 3.1 are hypothesized to 

be explanatory of forest cover change, which we consider to be a proxy response variable 

representing forest degradation in shifting cultivation landscapes. The selection of these 

variables was based on previous participatory mapping exercises done in five of the surveyed 

ejidos and field interviews. 

3.2.3.1.  Spatial variables 

Forest Cover Change map as a proxy of forest degradation 

Temporary forest cover change was analysed to provide an indirect measure of forest 

degradation. We assumed that having excluded permanent agriculture, this map reflected the 

temporary forest cover changes in TDF that are indicative of a shifting cultivation system 

with clearance and regrowth, and that this regime as a whole can represents a form of forest 

degradation. 

This forest cover map was based on SPOT 5 imagery for the years 2004 and 2010. The 

study area was covered by four scenes corresponding to the dry season (Table S 3.1), when 

there is the best discriminatory capacity for change detection in dry forests (Kalacska et al., 

2008). The images were atmospherically and geometrically corrected to facilitate detection 

of change over time. Atmospheric correction was performed using FLAASH as implemented 

in Envi 4.7 (Envi 2006). The geometric correction achieved an accuracy of less than one 

pixel (10 x 10 m) and images were re-sampled using the nearest neighbour method. Images 

were mosaicked and co-registered to obtain a pixel-to-pixel correspondence between the two 

dates (Table S 3.1). 

The classification of tropical dry forests and shifting cultivation landscapes is a difficult 

task, because of the overlapping spectral signature that these land covers have as well as the 

temporal dimension. Therefore, a previous step was to mask out land cover types not of 

interest for this study, mainly permanent agriculture and vegetation types different from 

TDF. This mask was created by segmenting the 2010 image (criteria minimum region size of 

1500 pixels, using the mean shift segmentation algorithm). Firstly, segments that match what 

was classified as permanent crop, urban, bare, permanent pasture, or pine and oak forest land 

according to maps produced by the National Institute for Geography and Statistics 

(1:250,000) (INEGI, 2010b) were excluded. This allowed us to remove the bulk of the 

permanent agricultural areas. Then, any segments found above 1500 m.a.s.l. were removed, 

because they are outside the distribution range of TDF in the study area. To further refine the 
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mask, we used image visual interpretation in combination with random field GPS points and 

ancillary data. Segments were checked against Google Earth historical images (2000-2012), 

and if the segment had no visible vegetation over that period it was excluded. Segments were 

differentiated based on their spatial context: permanent agriculture usually covers large 

continuous areas of flat land (<10° slope) that is usually planted with agave, sugar cane or 

maize; whereas shifting cultivation is carried out on hilly areas and on smaller parcels that 

are embedded in forest vegetation. The visual interpretation of the images was ground-

truthed during one year of fieldwork in 2011-12.  

The final mask was applied to the 2004 and 2010 images. Masked images were classified 

using the Random Forests algorithm (Liaw & Wiener, 2002; Horning, 2012), because of its 

outstanding performance (Rodriguez-Galiano et al., 2012; Mellor et al., 2013). For the image 

classification, the following vegetation and textural indices were calculated: a) Homogeneity 

index of band 2 and 3 using a 3 X 3 pixel moving window; b) Normalized Vegetation Index 

(NDVI), c) Canopy Index (CI) and d) Soil Modified Adjusted Index (SAVI) (Table S 3.2). 

The final images used as input for the Random Forests model consisted of the four SPOT5 

bands, three spectral indices (NDVI, CI, SAVI) and the homogeneity index for band 2 and 

band 3. The selected spectral indices, mainly NDVI and SAVI, are widely used to enhance 

the contrast between soil and vegetation, while CI which includes the short wave infrared 

band (SWIR) has been shown to be suitable for estimating vegetation biophysical 

characteristics especially above-ground biomass (Eckert & Engesser, 2013). The use of the 

homogeneity index based on the Red and Near Infrared Band has proved useful for 

estimating successional stages in TDF (Gallardo-Cruz et al., 2012), and was therefore used 

in our analysis. Each image was classified into three classes: tropical dry forests (>10% 

crown cover); shifting cultivation (<10% crown cover), i.e. land that was actively being used 

for the cultivation phase; and others (shadows and clouds). Training samples were selected 

on each of the classes based on 243 random GPS field points acquired during field work 

during 2011-2012.The classified images from 2010 were validated with 94 randomly 

selected field points. All the image classification and validation procedures were carried out 

using a combination of Qgis 2.2 (QGIS Development Team, 2013) and R 3.0.0 (R Core 

Team, 2013).  

Finally, the area of regrowth and clearance of TDF was estimated for the whole landscape 

and for each community. The information derived from this map was used to extract the 

response variable used in the statistical model. 
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Other biophysical variables 

Other potential explanatory variables were derived from ancillary data, namely altitude, 

slope, distance to the closest major town (population > 3000) and distance to the nearest 

road. These variables were selected because they have been used in the identification of 

factors associated with vegetation changes in previous studies (Crk et al., 2009). Both 

altitude and slope were derived from a 30 X 30 m resolution digital elevation model (CEM 

2.0 from INEGI) and slope percentage was mapped using a 3 X 3 pixel moving window. The 

distance to the nearest main town was calculated for each point using the tool Hubdistance, 

available in Qgis 2.2 This tool iterates until it finds the shortest ellipsoidal distance to the 

closest hub (a town in this case) from a defined point (see sampling procedure in the next 

section). The distance to the nearest road was calculated as the perpendicular distance 

between a defined sampling point and the road, this was done using the Near Tool in 

ArcMap10.0.  

3.2.3.2. Socio-economic variables 

The socio-economic data were acquired through a survey carried out in 2012 in 29 ejidos 

of the Ayuquila basin (Fig. 3.1). The selected ejidos were those with ≥ 20% TDF cover as 

reported in the INEGI IV Vegetation Map (INEGI, 2010b); their mean TDF cover was 

43.6% (+ S.D. 18%). The boundary of the land area of each ejido was obtained from the 

National Rural Agrarian Registry (RAN). 

Socio-economic variables were obtained by household surveys and semi-structured 

interviews. The survey was informed by previous fieldwork in the area that included 

participatory mapping in five communities and informal interviews with community leaders. 

This previous work provided information on how the population of the ejidos used their 

forest land and what resources were obtained from this forest that could potentially be 

associated with forest degradation. A detailed description of how the survey was designed 

and applied is provided in Borrego & Skutsch (2014). Over the 29 ejidos, the survey of 300 

households provided data from which a number variables could be calculated at ejido level, 

namely parcel size cultivated per year, total number of livestock, fuelwood loads and number 

of fence posts used per year (Table 3.1). The semi-structured interviews with the ejido 

leaders included questions on management practices, main economic activities and the 

farming system. Information on the population size and marginalization index of each ejido 

was derived from the national Census of Households and Population 2010 (CONAPO, 

2012). Marginalization index variables were used as dummy variables (Table 3.1).  



 

70 

Table 3.1 Description of the explanatory variables tested in the statistical model for 

prediction of forest degradation (bold letters indicate the variables included in the final 

model). 

Variable Description (Unit) Mean S.D. 
Spatial 

Unit 

Elevation
1 

Metres above sea level (m.a.s.l) 1163.4 261.5 Pixel 

Slope
1
 Slope percentage (%) 35.2 18.0 Pixel 

Slope_Elev
1
 Slope*Elevation (interaction variable) 42959.2 27363.1 Pixel 

Dist
2
 

Topographic distance to nearest main 

town (km) 
10.6 4.9 Pixel 

Road
3
 

Topographic distance to nearest road 

(m) 
947.8 721.7 Pixel 

Livestock
4
 

Number of cows 

 
1991.8 1743.7 Ejido 

Fence
4
 

Number of posts harvested per year (a 

post length is about 1.5 m) 
1467.2 1032.1 Ejido 

Fuel
4
 

Average number of fuelwood loads 

harvested (a load comprises ca. 50-60 

small branches) 

392.0 408.7 Ejido 

Parcel_S
4
 

Average parcel size cultivated (ha) 

 
6.2 2.9 Ejido 

Ejidatarios
4
 

Number of registered farmers with land 

rights 

 

107 97.8 Ejido 

Parcel_T
4
 

Number ejidatarios  x parcel size 

(interaction variable, proxy for total  

cultivated land) 

 

836.9 775.2 Ejido 

TDF:Pop
5&6

 

Ratio between total TDF area and the 

total population  in the ejido 

 

9.6 14.2 Ejido 

MMI
6
 

Medium Marginalization Index: an 

indicator based on income, education, 

housing, and population density 

 

9.7 2.1 Ejido 

HMI
6
 

High Marginalization Index: an 

indicator based on income, education, 

housing, and population density 

6.8 0.4 Ejido 

Data Sources: 1 = CEM-DEM- Instituto Nacional Estadística y Geografía (INEGI) (30 X 30 m), 2 = Population 

map from Instituto Nacional Estadística y Geografía (INEGI) (1:50,000); 3= Road Network from INEGI (1:50 

000); 4 = Questionnaire survey (this study); 5 = Land Use and Vegetation Map (2010) from INEGI (1:250 000); 

6 = Household census (CONAPO 2010). 
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3.2.4. Sampling procedure for analyses 

A total of 2000 random points were established within the 29 selected ejidos to derive 

both dependent and explanatory variables for the statistical model. The number of sampling 

points selected for each ejido was proportional to its estimated TDF area according to the 

INEGI Vegetation Map (INEGI, 2010b). We used a random sampling procedure (so that the 

distance between neighboring pairs of points varies) and evaluated spatial autocorrelation of 

the dependent variable in our statistical model using three tests: Moran I, a geographical 

representation of model residuals and a semi-variogram of model residuals. To test if there 

was any spatial autocorrelation, these tests were run for both the random grid and for a set of 

2000 points selected randomly from a 300 m X 300 m grid. No difference in the value of the 

three tests was found, therefore the random points data set was used for the remaining 

analyses. Sampling points that fall in areas with cloud cover were eliminated from the 

analysis, therefore the model was developed using 1952 points. Sampling points were 

selected using the Research Analysis Tool available in Qgis 2.2 and spatial autocorrelation 

was analysed using the ape (Paradis et al., 2004), gstat (Pebesma, 2004) and sp (Pebesma & 

Bivand, 2005) packages in R 3.0.0. 

3.2.5. Data analyses 

For each of the 1952 sample points the environmental/socio-economic variables 

described in Table .3 1 and the response variable were extracted to model the probability of 

forest degradation in TDF. The probability that a pixel will be degraded depends on choices 

made by the ejidatarios within a decision context (e.g. farmers’ preferences, economic 

returns etc.) so the dependent variable can be considered an unobserved variable 

*

iy
 

corresponding to the observed outcomes, in this case TDF cover change per pixel, that do not 

directly reveal information on farmers' preferences or economic returns. Consequently in this 

analysis there are two possible outcomes: a) forest degradation (coded as 1), i.e. there has 

been a change between cover classes from TDF to shifting cultivation (or vice versa) and b) 

no change in cover class (coded as 0). As was explained in the introduction section above, 

due to the complex mosaic landscape of the study area we considered any change in a pixel, 

both TDF cover clearance and regrowth, as an indicator of forest degradation. The outcome 

is a discrete dependent variable measured on a nominal scale. Statistically, the output 

corresponds to a binary model in which the unit of observation is a pixel 
*y and is assumed 

to be a linear function of a set of explanatory variables as follows:   
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*

            (1) 

 

where 

*

iy
 is the probability of a pixel being degraded; 0  is the intercept capturing 

features that do not depend on a given pixel’s characteristics; n ,..., 21  represent 

coefficients estimated through regression analysis; nxxx ,..., 21  are explanatory variables; and 

  is the residual error. 

If we assume that the residuals have a logistic distribution the probability of forest 

degradation 1Y  can be written as: 
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and the model can be estimated with the maximum likelihood approach (Menard, 2010).   

The use of logistic regression to model probability of land cover changes is a well-

established technique (Overmars & Verburg, 2005; Roy Chowdhury, 2006). The magnitude 

and direction of n ,..., 21  indicate the importance and effect of each factor in the 

probability of forest degradation.  

One potential source of error in logistic regression analysis is collinearity of variables. 

We tested for correlation between independent variables (Table S 3.3), and in cases where 

correlations > 0.8 were detected between a pair of variables, only the variable with the 

strongest impact on the model was retained, as recommended by (Menard, 2010).  

Models were evaluated by tests of goodness of fit by using log-likelihood, based on 

deviance residuals of the null and fitted models and the Akaike Information Criteria (AIC) to 

compare between models and select the final one. Prediction accuracy of the model was 

evaluated by estimating the area under the receiver’s operational curve (AUC-ROC) using an 

independent dataset (Pontius & Schneider, 2001). The magnitude of the effect of each 

variable on the probability of forest degradation was estimated using marginal effects based 

on the mean values of each variable. Finally, we evaluated the relative importance of each of 

(2) 
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the variables in the final model by comparing the difference in the values of log-likelihood. 

All the statistical analyses were performed in R 3.0.0., using the ROCR package for ROC 

analysis.  

Pearson correlation analysis was used to explore how the variation in the use/demand of 

forest resources by the ejidos (i.e. input variables for the model) related to the change in TDF 

cover. This analysis was done to further evaluate if a higher intensity of demand for forest 

resources is linked with regrowth or clearance of TDF cover and therefore whether these 

variables can be used as a practical indicator in this context.  

3.3. Results  

3.3.1. Patterns of regrowth and clearance for the tropical dry forest cover 

Approximately 65% of the study area showed no change in TDF cover between 2004 and 

2010, and was therefore presumed not to have been used for shifting cultivation at all. About 

35% of the study area (which was made up of 20 936 ha of TDF clearance, 24 090 ha of 

regrowth, and the areas under shifting cultivation (Table 3.3)) can be considered as degraded 

TDF. From this, 24% underwent transition (cover clearance or gain) (Fig 3.3 & Table 3.2), 

indicating that it had been used for shifting cultivation between these dates but was not being 

cultivated in these particular years and 11% was classified as under the cultivation phase of 

shifting cultivation in both dates (Table 3.3). The areas classified as shifting cultivation on 

both dates (i.e 11% of the study area), most probably were cultivated in 2004, then left to 

rest and started a new cultivation cycle shortly before 2010. As the area of clearance and 

gain of forest cover is similar (Table 3.3), forest cover in the region may be considered stable 

in the long run, despite the fact that at least 24% of the area was undergoing cover change. 

This highly dynamic pattern of TDF cover is replicated in most of the 29 individual ejido: 

with 17 experiencing a transition in TDF cover on more than 20% of their area, a further six 

on 15-20% of their area, but none experiencing a net loss of TDF cover of more than 15% of 

their total area, and only four having a net loss between 10 and 15% (Table S 3.4).  
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Figure 3.3 Tropical dry forest (TDF) and shifting cultivation (SC) land cover in the 

Ayuquila Basin, Jalisco, Mexico.  

a) TDF and shifting cultivation cover in 2004, b) TDF and shifting cultivation cover in 

2010, c) Change in cover between TDF and shifting cultivation 2004-2010. Overall 

accuracy for 2010 = 98%, kappa coefficient equals 0.973, Minimum mapping Unit 

(MMU) = 0.9 ha (3 X 3 pixels) 
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Table 3.2. Estimated areas of tropical dry forest (TDF) and shifting cultivation 

cover for 2004 and 2010 in the Ayuquila Basin, Jalisco, Mexico. 

Land Cover Type 2004 (Ha) 2010 (Ha) 

TDF 140 836 143 990 

Shifting cultivation 44 583 41 429 

 

3.3.2. Factors influencing and related to forest degradation  

Alternative models using socioeconomic and biophysical data for the 29 ejidos as 

explanatory variables for the probability of TDF degradation were developed. The variables 

livestock and fuelwood were highly correlated (r= 0.81, p <0.001) (Table S 3.3), therefore 

only livestock number was used for model development. We selected the model that had the 

highest log-likelihood ratio and lowest AIC and residual deviance. The selected model 

included eight variables, plus an interaction term between slope and elevation (Table 3.4). 

The evaluation of model residuals showed a slightly positive spatial autocorrelation (Moran's 

I = 0.015, p <0.001). However, as the model residuals and semi-variogram revealed no 

spatial structure (Fig. S 3.1 & Fig. S 3.2), no further adjustment of the model was made to 

account for spatial structure, as the use of spatial autoregressive models is not recommended 

for logistic regression (Dormann, 2007). 

Both biophysical and socioeconomic variables were significantly associated with the 

probability of TDF degradation (Table 3.4). The model results indicated that for every 1% 

increase in slope there is a decrease of 0.84% in the probability of forest degradation and that 

slope is the most important biophysical factor for determining if an area will be used for 

shifting cultivation. In the case of distance from a parcel of land to nearest main town, for 

every increase of one kilometer, there is a decrease in the probability of forest degradation of 

Table 3.3. Area estimated for each transition between land cover types in the 

Ayuquila Basin, Jalisco, Mexico 

Transition 2004-2010 Area (Ha)  %  

No change, TDF 119 901 64.7 

No change, shifting cultivation 20 493 11.1 

Change, shifting cultivation to TDF (forest 

regrowth) 

24 090 13.0 

Change TDF to shifting cultivation (forest 

clearance) 

20 936 11.3 
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almost 0.5%. There is interaction between slope and elevation; although probability of forest 

degradation decreases with slope, it increases at higher elevations with small slopes angles, 

which may be linked to the use of flat areas on hilltops for shifting cultivation which is 

common in our study area. Of the socioeconomic variables, the one with the strongest 

relationship to the probability of forest degradation was found to be “high degree of 

marginalization” of the community. Comparison of the relative size of the marginalization 

index variables, showed that both highly marginalized communities and medium 

marginalized communities have a greater probability of forest degradation (12.3% and 8.4% 

respectively) than communities with a low index of marginalization. The model showed that 

a higher ratio of TDF to population size decreased the probability of degradation; this means 

that the more TDF that is available person, the lower the pressure will be on TDF (Table 

3.4). The results also revealed that the number of fence posts used per year and the number 

of livestock were both positively correlated with the likelihood of forest degradation. The 

value of the livestock and fence coefficients (0.002% and 0.005%) indicate the marginal 

impact of one unit change in these variables.  

Table 3.4. Model results and estimated probability of occurrence of TDF 

degradation as a function of a series of potentially explanatory variables in the 

Ayuquila Basin, Jalisco, Mexico (for variable names see Table 3.1). 

 

Variable Name Estimated coefficient (b) S.E. p Marginal effect 

 

Slope -0.06121 0.01119 0.0000 -0.8424 

 

Dist -0.03539 0.0161 0.0281 -0.4870 

 

Road -0.00036 0.0001 0.0010 -0.0050 

 

TDF:Pop -0.01778 0.0067 

 

0.0075 -0.2447 

Fence  0.00033 0.0001 0.0001 0.0046 

 

Livestock 0.00017 0.0001 0.0032 0.0024 

 

HMI  0.89220 0.2189 0.0000 12.2787 

MMI  0.61050 0.2498 0.0145 8.4019 

Parcel_T -0.000415 0.0002 0.0180 -0.0057 

Slope_Elev 0.00004 0.00001 0.0000 0.0005 
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Constant -1.38800 0.3052 0.0000 -19.1020 

n = 1952, S.E. = standard error of estimation of the model, model log likelihood ratio = -763.76 (df = 11); 

AUC = 66.35; residual deviance = 1527.5; null deviance = 1605.2;AIC = 1549.5 

 

Variables were ranked according to their importance (i.e. their contribution to the log-

likelihood value of the model estimation). The relative effect showed that the biophysical 

variables, which were observed at pixel level, contributed altogether to 39% of the log-

likelihood value of TDF degradation, and community-level information explained around 

61% (Table 3.5). Among the biophysical variables Slope and Slope_Elev combined 

explained 34 % of the variance of the model; while among the socio-economic variables, the 

number of fence posts ranked highest, accounting for 21% of the log-likelihood value, 

followed by the high marginalization index (17%). 

 

Table 3.5. Contribution of explanatory power for each variable in the 

statistical model in the Ayuquila Basin, Jalisco, Mexico (for variable names 

see Table 3.1). 

Variables 
Change in Log 

Likelihood (df) 

% Explained by 

each Variable 

 

Variable 

Importance 

Rank 

Intercept 
-802.6 

 
  

Slope + Slope_Elev 
-789.3 (3) 

 
34.1 1 

Fence 

 
-768.9 (9) 20.8 2 

HMI -780.8 (6) 
17.1 

 
3 

Parcel_T 

 
-763.7 (11) 7.6 4 

TDF:Pop 

 
-777.0 (8) 7.0 5 

Livestock 

 
-766.71 (10) 5.7 6 

Dist -788.0 (4) 
3.2 

 
7 

MMI -779.7(7) 
2.8 

 
8 

Road -787.47 (5) 1.6 9 

Total  100  
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The model’s goodness of fit (AUC = area under the curve) was 0.66 (Fig. 3.4), which 

means that it can correctly predict changes from TDF to shifting cultivation and vice versa 

with a probability of 0.66, which is better than that predicted only by chance (AUC =0.5) 

(Gellrich et al., 2007).  

 

Figure 3.4 Receivers operating characteristic (ROC) curve for the probability 

of TDF degradation in the Ayuquila Basin, Jalisco, Mexico.  

Overall model  prediction accuracy evaluated by AUC = 66%. 

 

The number of livestock observed in each ejido correlated positively with the amount of 

TDF regrowth and TDF clearance (Fig 3.5), although its contribution to the log-likelihood 

value is less important than the number of fence posts (Table 3.4). There are around 6 ejidos 

that have large amounts of TDF change (points that deviate strongly from the regression 

line), as well as high levels of both livestock and fuelwood loads (Fig. 3.5a & 3.5b), which 

implies that these communities have a greater demand for forest resources and forest land. 

The observed positive association between TDF change and livestock suggests that the 

number of livestock is a good indicator of the intensity of use of the forest resources and 

might be a proxy that could be used in monitoring forest degradation in this type of socio-

ecological landscape. 
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Figure 3.5 Correlations between the resources used and the amount of TDF cover change for 29 

ejidos in the Ayuquila Basin, Jalisco, Mexico.  

a) number of livestock versus forest clearance; b) number of livestock versus forest regrowth; c) 

number of fuelwood loads extracted per year versus forest clearance; d) number of fuelwood loads 

harvested per year versus forest regrowth; e) number of fence posts harvested per year versus 

clearance; f) number of fence posts harvested per year versus regrowth (* p<0.05, df = 27). 
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3.4. Discussion  

3.4.1. Monitoring and detection of forest degradation in shifting cultivation 
landscapes  

In this study we characterized changes in TDF cover, showing that they can be 

statistically associated with forest degradation caused by the practice of shifting cultivation. 

The fact that there were similar amounts of forest regrowth and clearance over a 6-year 

period, both at the community and landscape levels, suggests that these landscapes under 

shifting cultivation are essentially sustainable, at least in terms of forest cover area and thus 

levels of above-ground carbon stock that can be associated with forest cover. However, the 

total carbon balance of shifting cultivation systems, will depend on many factors, some 

related to management practices, such as the use of fire for clearing, and other ecological 

factors like the carbon sequestration capacity of forest regrowth. Several authors have 

reported rapid accumulation rates of above-ground biomass (AGB) during TDF regrowth 

after complete clearance (Lawrence et al., 2005; Álvarez-Yépiz et al., 2008; Lebrija-Trejos 

et al., 2008); and age of land abandonment has been found to explain up to 46% of the 

variation in AGB for TDF (Becknell & Powers, 2014). Recent studies indicate, furthermore, 

that shifting cultivation can conserve and even increase carbon stocks in the soil (Salinas-

Melgoza et al., 2015). On the other hand, in terms of their structure and composition of 

species (and also probably functional traits), secondary TDFs formed after clearance are very 

different from their old-growth counterparts (Chazdon et al., 2007) with a much lower 

average biomass density (Marín-Spiotta et al., 2008; Kauffman et al., 2009). In this sense 

they can be considered degraded, although their delivery of ecosystem services and value as 

habitat for biodiversity is still higher than many other land cover types. 

We have provided evidence that shifting cultivation, as practiced within the ejidos, 

contributes to forest degradation but not to a net loss of forest cover. In our  study area, 

shifting cultivation systems represent a form of local equilibrium, with a balance in rates of 

forest degradation (clearance) and recovery at the landscape scale, and as a result the 

potential for no net carbon emissions being produced in the long-term (Houghton, 2012). 

However, this situation could easily change if management practices within the ejido, 

government policies or markets favor an intensification of the agricultural practices, causing 

a shortening of the fallow periods or the cultivation of cash crops as has occurred in other 

areas (Dalle et al., 2011; van Vliet et al., 2012).  

The methodology of the present study, a combination of high resolution image 

segmentation and a robust classification method (Rodriguez-Galiano et al., 2012) based on 

spectral-textural information from the image, was successful in detecting small patches 
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under shifting cultivation and enabling quantification of both the clearance and regrowth 

transitions of TDF subject to shifting cultivation management. As such, we suggest it might 

be a valuable tool for more widespread use to quantify forest degradation. Nevertheless, we 

recognize that using forest area cover change as a proxy of forest degradation could lead to 

underestimation, because further reductions in tree density can happen within the forest area, 

as has been found in arid and semi-arid ecosystems (le Polain de Waroux & Lambin, 2012). 

To improve the analysis, a classification of the canopy cover density could be integrated with 

the forest cover change analysis, however this will require even higher resolution data (~1 

m) and the development of algorithms that can count tree crowns for TDF, which can be 

challenging due to seasonal leaf phenology and variability of forest structure (Arroyo-Mora 

et al., 2005).  

The difficulties of detecting forest degradation that occurs under the canopy, such as 

overgrazing, excessive fuelwood collection and small-scale selective harvesting for timber, 

with satellite data have been widely acknowledged (GOFC-GOLD, 2013). We tried to 

overcome this limitation by associating the effect of these factors with the cycles of 

clearance and regrowth within a shifting cultivation landscape. These activities are possibly 

occurring in those parts of the TDF that showed no change in forest cover (65%), therefore 

part of this area could be considered low degradation. It is possible that the estimate of 

degradation that our method produces is not well correlated with these below-canopy 

impacts. Ideally, measurements of the amount of biomass actually extracted should be made. 

Though challenging, further research should be undertaken to investigate on-the-ground data 

of spatial variation in rates of grazing and wood extraction (ideally at a pixel level) with 

satellite data, to find out whether the latter detects the impact on forest structure and 

composition of the former (Romero-Duque et al., 2007; Chaturvedi et al., 2012). This is 

especially important in the context of REDD+, since avoiding degradation should not 

prohibit the use of forest resources but rather encourage change towards sustainable use.  

The landscape-scale forest cover dynamics observed in the present study might have 

important implications for national and international forest environmental policy. In Mexico, 

there is a financial incentive for farmers to continue to clear regenerating forest from 

previously cultivated land because of the rules of the subsidy Program of Direct Payments to 

the Countryside (PROCAMPO), which makes payments per hectare of agricultural land. If 

the fallows are left uncut and advanced secondary forest develops, the government will 

classify it as abandoned land that is no longer used for agriculture and therefore the 

ejidatarios will lose their subsidies from PROCAMPO. Moreover, according to the 

modification of the legal Mexican Forest Code, once the land is designated as forest (when it 

is an advanced regenerated state), any tree harvesting in such areas will require a 
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management plan (Román-Dañobeytia et al., 2014). However, in addition to that, leaving the 

fallow to recuperate for long periods is not favored by farmers for logistical/labor reasons. 

As several farmers mentioned during our field interviews: "We need to clear the area 

because it grows too fast, in two-three years it is too tall, and then we cannot clear it". 

However, more detailed socio-economic and policy-oriented research is required to 

determine the effects of current forest and agricultural policies on the shifting cultivation 

cycles observed in complex TDF landscapes, such as those of the current study, and how 

they will affect the sustainability of shifting cultivation systems.  

3.4.2. Drivers of forest degradation in tropical dry forest  

We examined the importance of different biophysical and socio-economic variables to 

explain change in forest cover, which itself can be used as a proxy for forest degradation in a 

mosaic landscapes with shifting cultivation. Amongst the tested biophysical variables, slope 

was most closely related to forest degradation. Flatter areas had a higher probability of being 

used for shifting cultivation, but this is slightly influenced by elevation, such that there is a 

higher probability of degradation in flat areas on hilltops. Several studies have reported 

greater forest clearance on areas with less steep slopes (e.g. Newton & Echeverria, 2014), 

which can be attributed to better soil quality and less investment in labor than for steep 

slopes, where indeed most of the remaining unconverted TDF is found (Becknell et al., 

2012). This might have implications for management decisions related to land use planning 

that aim to enhance carbon stocks and avoid forest degradation in the landscape, because 

better environmental conditions that might increase net carbon sequestration of the landscape 

will be found on less steep terrain. 

With reference to the tested socio-economic variables, as with all explanatory models, 

care needs to be taken not to confuse correlation with cause. The modeling results 

demonstrated that areas with a higher degree of marginalization had a higher probability of 

forest degradation. The marginalization index, which is a standard tool used to guide social 

policy in Mexico, is built on eight variables related to economic factors and education level 

of the entire population living in an ejido (CONAPO, 2012). Our findings suggest that ejidos 

characterized by lower incomes and low education levels, as well as less available TDF per 

person (those with higher population densities), are more dependent on clearing land for 

shifting cultivation. However, the causal order here needs to be considered carefully. Are 

communities carrying out shifting cultivation because they are marginalized (poor) and 

depend on it for subsistence, or are they poor because they are carrying out shifting 

cultivation? This question cannot be answered from our data but is important for the 

development of policy. In order for ejidos to participate in carbon mitigation projects the 
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opportunities and constraints of each community should be carefully evaluated, so that 

poorer communities can also benefit from projects (Tschakert et al., 2006). Furthermore, as 

discussed by Borrego & Skutsch (2014), there are marked differences within an ejido 

population in the proportion of income obtained from shifting cultivation and benefits 

derived from the TDF, by larger and by smaller operators. 

Individual tests found evidence of significant positive correlation between the number of 

livestock or of fuelwood loads or (less strongly) fence posts and TDF cover change per ejido. 

Again, the relationship between number of cattle and fence post extraction with area 

dedicated to shifting cultivation should not necessarily be seen as causal since these could 

also be by-products (effects) of other processes. Moreover, the model selection procedure for 

probability of TDF cover change per sample pixel showed that these variables only had a 

weak relationship (and because of its high correlation with the number of livestock, 

fuelwood was not included as a separate explaining variable). It is possible that the effect of 

these variables is confounded with other variables included in the model, especially those 

related to socio-economic characteristics that distinguish the ejidos. In this area, livestock are 

used as a liquid asset that can be converted in an emergency; owning cattle requires capital 

and therefore only higher-income ejidatarios will be able to own several animals (Borrego & 

Skutsch, 2014), and the proportion of community members in this group are reflected in the 

marginalization indexes evaluated.  

Statistical models are useful to determine the relative importance and interaction of 

possible agents of forest degradation, especially because it is feasible to incorporate many 

context-specific data, in this case information on livestock, harvested forest products, the 

ratio between TDF area and local population size etc. (Roy Chowdhury, 2006). However, 

there are many factors that interact and which together have an influence on the socio-

ecological systems shaping the use of TDF resources. As with any model, the initial set of 

factors to be included will determine the outcome. For this reason, it is crucial that the 

context in which forest degradation is taking place is well understood on the ground (Mon et 

al., 2012). For Mexico, future assessment of drivers of forest degradation and appropriate 

interventions to address it should include information on the different types of payment for 

ecosystem services and on other major market and subsidy incentives influencing decisions 

by land users, as well as factors influencing rural population density, e.g. through migration, 

that might be important in certain areas.  

In Mexico REDD+ interventions promoting maintenance or enhancement of carbon 

stocks will probably be directed to ejidos, and there will therefore be a need for monitoring 

protocols that can effectively evaluate local interventions (Danielsen et al., 2011; Mertz et 

al., 2012) and that do not themselves impose major costs (Morales-Barquero et al., 2014). 
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The approach of collecting field data through interviews in combination with analysis of 

remotely sensed data, as tested in the present study, can be used to support the evaluation of 

REDD+ or other policy interventions. At a regional level keeping records of activities related 

to agriculture that drive forest degradation, such as the density of livestock, human 

populations and the size of agricultural parcels, is easier and less costly than obtaining 

precise estimates of AGB.  It is important that if monitoring of land use activities is used 

instead of, or complementary to, AGB measurements, that such an analysis include both 

biophysical and socioeconomic data. This is important as these two types of information 

contributed almost equally to the explanation of spatial variation in the occurrence of forest 

degradation, in our study.  

3.4.3. Shifting cultivation in the context of REDD+ 

Views on the sustainability of shifting cultivation are contested (Sunderlin et al., 2008; 

Mertz et al., 2012; Fox et al., 2014) and this debate needs to be revisited in the context of 

REDD+ and the opportunities for climate change mitigation offered by modification of 

shifting cultivation practices acknowledged. Traditionally, shifting cultivators have been 

blamed for deforestation and there is a negative view towards this type of agriculture that 

argues in favor of land allocation to more intense agricultural systems in order to spare other 

land for conservation (Chandler et al., 2013). However, secondary forests that derive from 

fallow systems recover carbon stocks and foster natural regeneration of some commercial 

TDF species (Valdez-Hernández et al., 2014). Moreover shifting cultivation is the source of 

livelihoods for many smallholder farmers and represents the primary source of food security 

for many rural households (Padoch & Pinedo-Vasquez, 2010; Fox et al., 2014). Therefore, in 

many circumstances prohibiting shifting cultivation and promoting a transition to a 

combination of intensified permanent agriculture systems and set-aside protected forest land 

is not socially nor environmental desirable (van Vliet et al., 2012).  

To maintain or enhance the sustainability of these systems, REDD+ interventions should 

target areas with higher potential for carbon sequestration for protection or, where necessary, 

active restoration (Hardwick et al., 2004). Promoting longer fallow periods may be valuable 

to avoid the depletion of the carbon sequestration capacity of shifting cultivation systems 

(Lawrence et al., 2010). The restriction of livestock browsing to certain areas within the 

shifting cultivation landscape would promote forest regrowth and carbon stock enhancement 

in other protected areas, though with a high risk of spillover leakage effects to other areas 

(Hett et al., 2012). Incentives that seek to increase yield from shifting agricultural systems 

through improve management practices and new technologies without increasing carbon 

emissions (e.g. climate smart agriculture) should also be part of REDD+ interventions 
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(Olander et al., 2012), as has been demonstrated in the case of coffee agroforestry systems 

by Noponen et al.(2013). If, as a result, ejidatarios are able to produce enough maize for their 

own consumption and to feed their cattle on a smaller area of cultivated land, it is likely that 

a greater land area within the ejido can be allocated to carbon sequestration and fallow 

periods will be longer. This change could be incentivized, for example, by credit programs 

and subsidized fertilizers and seeds, and promoted through agricultural extension programs 

(Angelsen & Rudel, 2013).  

Although there are options by which shifting cultivation can contribute to climate change 

mitigation, designing REDD+ payments to include shifting cultivation schemes poses 

multiple challenges. First, the consideration of shifting cultivation as a contributor to forest 

degradation will depend on the definition of forest that is applied in each country (Houghton, 

2012), and on the time period at which the baseline is set. Second, designing payment 

systems for REDD+ to compensate for avoiding degradation by removing shifting 

cultivation is likely to run into problems in fulfilling the criterion of equity; unless they are 

well designed they risk removing the source of food security and livelihood of the most 

vulnerable community members without adequate compensation, especially in highly 

marginalized ejidos. Third, the impacts on the overall carbon budget of applying alternative 

agriculture management practices needs to be better understood, as well as the effects of 

such practices on local livelihoods, because so far there is little empirical evidence of effects 

of alternative management practices (Palm et al., 2010). Fourth, including shifting 

cultivation in REDD+ interventions will require cross-sectoral coordination. For instance 

Mexico already has in place a system that subsidizes agriculture (PROCAMPO) and a 

payment for ecosystem services program. Both have potential for use in REDD+, but this 

will mean a joint work plan from institutions involved in the agriculture and the forestry 

sector. Despite these challenges, shifting cultivation has the potential to provide a good 

synergy between carbon, biodiversity and food security, if policies are well designed and 

take into consideration the above mentioned factors  among other issues. 

3.5. Conclusions  

This study illustrates the value of integrating socio-economic and biophysical information 

to model potential drivers and correlates of forest degradation. Human decisions on how to 

use forest resources shape TDF landscapes, and form patterns that can be linked to specific 

activities. The assessment of patterns of forest change with high resolution satellite imagery 

allowed determination of the dynamics of small-scale agriculture in the area, and revealed 

that, over the time period studied, clearance and regrowth of TDF was balanced. This implies 

long-term sustainability and no net carbon emissions, although a large proportion of the 
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existing TDF is, to a certain extent, degraded and will differ in structure, composition and 

carbon content from the old-growth forests of the area. 

The approach of collecting field data through interviews and combining these with spatial 

analysis of remotely sensed data at the appropriate scale can be used to develop monitoring 

protocols aimed at evaluating REDD+ or other policy interventions at a landscape level. By 

identifying the activities that are linked to forest degradation, easy-to-measure indicators can 

be developed. Once the appropriate scale of analysis has been identified, this approach can 

be extended to other areas of TDF with a mosaic landscape structure dominated by cyclical 

patchy forms of land use (e.g. many African woodlands, (Lambin, 1999)) and similar types 

of degradation process (e.g. selective logging or fuelwood collection). The integration of 

socio-economic and biophysical variables, as carried out in the present study, is essential to 

understand the impact of the use of the land and forest resources of TDF landscapes. Finally, 

socio-ecological landscapes such as TDF dominated by shifting cultivation are complex to 

analyse and there are still important knowledge gaps as regard to their dynamics. These 

interesting socio-ecological systems will continue to be a challenge for carbon mitigation 

policies for some time.  
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3.6. Appendices  

 

 

 

 

Table S 3.1. Spot 5 image data used in the study. 

Image Reference Name 
Row - 

Path 

Date of 

acquisition 

RMSE  

(pixels) 

Number of 

Ground Control 

Points 

E55773100401311J2A00009 577-310 31.01.2004 0.66 45 

E55783100401212J2A09009 578-310 21.01.2004 0.47 14 

E55783110401212J2A05007 578-311 04.01.2004 0.42 13 

E55793110403282J2A08002 579-311 28.03.2004 0.92 16 

E55773101001282J2A06002 577-310 28.01.2010 0.86 13 

E55783101002242J2A09017 578-310 24.02.2010 0.23 52 

E55783111002242J2A06020 578-311 24.02.2010 0.19 31 

E55793111011162J2A00035 579-311 11.16.2010 0.18 25 

Table S 3.2 . Vegetation indices used in the study. 

Index Algorithm Reference 

Homogeneity 

Index * 
 

   

        

   

     

 Haralick et 

al.,(1973) 

Canopy 

Index** 
          Vescovo & 

Gianelle (2008) 

Normalized 

Difference 

Vegetation 

Index** 

     
     

     
  Rouse et al. (1973) 

Soil Adjusted 

Vegetation 

Index ** 

     
    –  

            
          Huete (1988) 

* Is calculated based on the grey level co-occurrence matrix (GLCM), each element of the GLCM indicates the 

relationship between grey levels of pixels in specific directions or distances.  Pij indicates the probability in that 

cell of finding the reference value i in combination with a neighbour pixel. j. 

** G = green band (Spot 5 band 1), R = red band (Spot 5 band 2), NIR = near infrared band (Spot 5 band 3) and 

SWIR = short wave infrared (Spot 5 band 4).  
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Table S 3.3 Pearson correlation coefficient values (r) for the numeric variables used in the statistical  model for estimating probability of forest 

degradation in Ayuquila Basin, Jalisco, Mexico  (Variable explanations and names are provided in Table 1) . 

 Elevation Fuelwood Fence Livestock Dist Slope Ejidatarios Pop:TDF Parcel_ S Road 

Elevation 1.000 -0.207 -0.299 -0.249 0.119 0.356 -0.145 -0.070 -0.313 0.460 

Fuelwood -0.207 1.000 0.442 0.811 -0.351 -0.171 0.571 -0.231 0.635 -0.143 

Fence -0.299 0.442 1.000 0.399 -0.260 -0.031 0.580 -0.183 0.623 0.011 

Livestock  -0.249 0.811 0.399 1.000 -0.309 -0.212 0.581 0.054 0.672 -0.169 

Dist  0.119 -0.351 -0.260 -0.309 1.000 0.141 -0.523 0.113 -0.466 0.096 

Slope 0.356 -0.171 -0.031 -0.212 0.141 1.000 -0.147 -0.076 -0.196 0.384 

Ejidatarios -0.145 0.571 0.580 0.581 -0.523 -0.14 1.00 -0.286 0.052 -0.135 

Pop:TDF -0.070 -0.231 -0.183 0.054 0.113 -0.076 -.286 1.000 -0.270 -0.099 

Parcel _S -0.313 0.635 0.623 0.672 -0.466 -0.196 0.052 -0.270 1.000 -0.194 

Road 0.460 -0.143 0.011 -0.169 0.096 0.384 -0.135 -0.099 -0.194 1.000 
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  Table S 3.4.  Area (ha) of tropical dry forest found in each community of the Ayuquila Basin, Jalisco, Mexico. 

ID Name 
Area analysed 

(ha) 
Ejidatarios 

Number of 

Households 
Population 

No land 

cover 

change (ha) 

TDF cover 

lost (ha) 

TDF cover gain 

(ha) 

Net change in 

TDF cover 

(2004-2010) 

1 Agua Hedionda y Anexos 902 57 

 

50 237 531.3 220.4 91.1 -129.2 

2 Ahucapan  841 129 271 985 668.5 79.9 89.7 9.8 

3 Ayuquila 456 60 230 862 341.6 49.0 64.4 15.4 

4 Ayutita 614 40 98 334 390.9 139.7 74.7 -64.9 

5 Chiquihuitlan y Agua Salada 3724 148 

 

60 237 2507.4 681.5 343.6 -337.9 

6 Coatlancillo  1558 45 159 565 1112.3 226.3 212.7 -13.6 

7 El Ahucate 291 23 72 242 245.0 25.0 20.0 -5.0 

8 El Chante 1074 240 524 1880 853.5 112.0 105.9 -6.2 

9 El Jardin  577 45 40 175 435.8 61.2 75.3 14.1 

10 El  Limon 1360 450 961 3102 1099.0 89.0 169.0 80.0 

11 El Palmar 322 90 15 234 286.5 23.7 11.3 -12.4 

12 El Rodeo 1502 32 41 161 1174.7 101.9 175.8 73.9 

13 El Temazcal  5403 81 33 116 4469.1 475.5 443.3 -32.1 

14 La Laja 1591 50 114 454 1168.9 182.4 210.2 27.8 

15 Lagunillas 808 98 242 836 694.4 74.9 37.2 -37.6 

16 Las Pilas 456 47 94 387 325.4 45.0 85.0 40.0 

17 Los Mezquites 1427 57 72 301 1109.0 135.0 159.0 24.0 

18 Mezquitan 500 64 230 885 416.8 19.2 62.1 42.9 

19 San Agustin 935 140 102 342 762.7 139.9 28.8 -111.2 

20 San Antonio 1650 90 158 669 1211.5 194.4 233.2 38.8 

21 San  Buenaventura  1267 26 46 158 1178.0 14.7 74.3 59.7 

22 San Clemente 1328 212 310 1182 960.2 264.7 99.6 -165.0 

23 San Jose de las Burras  2494 150 134 541 1876.8 176.3 415.9 239.6 
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24 San Juan Jiquilpan  1144 130 455 1789 881.7 106.1 140.1 34.0 

25 San Miguel  668 45 132 446 626.7 18.1 21.3 3.2 

26 Tecomatlan  802 53 35 129 710.0 41.0 45.0 4.0 

27 Tonaya 4826 282 955 3497 3823.4 505.1 446.1 -59.0 

28 Tuxcacuesco  2051 165 405 1538 1380.0 404.0 203.0 -201.0 

29 Zenzontla 2400 67 60 381 1943.0 231.0 194.0 -37.0 

 

Total  42971.0 3116  6098  22665 33184.2 4836.6 4331.6 -505.0 
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Figure S 3.1. Geographic representation of residuals for the probability model 

of forest degradation for the Ayuquila Basin, Jalisco, Mexico 

 

Figure S 3.2. Semivariogram of residuals for the probability model of forest 

degradation for the Ayuquila Basin, Jalisco, Mexico 
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Chapter 4. Assessing forest degradation on 
the ground and from space: developing 
indicators to evaluate the state of tropical 
dry forests in Mexico 
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Abstract 

The assessment of forest degradation is a complex task, for which methods are poorly 

developed, although it is recognized as a key element within forest-related climate change 

mitigation policy. Forest degradation can be related to capacity of forest to conserve 

biodiversity and deliver a wide range of ecosystem services; but in the recent context of 

global climate change policy it has tended to be defined as a state of reduced forest carbon 

stocks that can be clearly linked to human activities that cause forest disturbance. In 

Mesoamerica, human-induced disturbance processes that lead to forest degradation in 

tropical dry forests (TDF) are predominantly related to the use of the forest for cattle 

grazing, as a source of fuelwood and selective harvesting of fence posts. In this study a 

disturbance index that can provide an approximate measure of forest degradation based on 

these processes is proposed. For this, in situ variables related to the presence of cattle and 

removal of trees and branches are quantified in a western Mexican landscape in 106 plots, 

and the degree of disturbance is then compared with the potential stocking level of above-

ground biomass (AGB) that can be expected for the area. The disturbance index is highly 

correlated with field estimates of AGB (r = -0.62, P < 0.001), basal area (r = -0.59, P < 

0.001) and to a lesser extent canopy cover (r = -0.49, P < 0.001), suggesting that it has 

potential value for monitoring and to inform restoration of this type of forest. To investigate 

the potential to extend this analysis to assess forest degradation at the landscape level, 

vegetation and texture indices derived from SPOT 5 and RapidEye data of wet and dry 

seasons were used as predictor variables of the levels of forest degradation. For this, the 

disturbance index obtained from the field data was used to generate classification into four, 

three and two levels of forest degradation. Then, two statistical methods (random forests and 

linear discriminant analysis), which used the remote sensing data as input variables, were 

applied to model these three classifications categories of forest degradation levels and the 

accuracy of each model was evaluated. The remote sensing data had a moderate potential to 

predict the classification categories of levels of degradation at the landscape level, as show 

by the different model's accuracy that range between 44 and 72%. Nonetheless, the analysis 

highlighted the value of including texture indices for the assessment of the state of TDF. 

This research provides evidence of the utility of in situ disturbance indicators as 

complementary measures that present a clear link between management practices and AGB 

in TDF, which can be particularly important in the context of carbon emissions mitigation 

schemes, to advance understanding of how to measure and monitor forest degradation and 

enhance forest recovery in TDF. 
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Keywords: disturbance indicators, texture indices, grazing, forest monitoring, forest 

structure, forest carbon stocks, REDD+ 

4.1. Introduction 

Despite reducing forest degradation being a key part of REDD+ (Reduced Emissions 

from Deforestation and Forest Degradation) mechanism of the United Nations Framework 

Convention on Climate Change (UNFCCC) and central to achieve the objectives of the 

Convention on Biological Diversity (CBD 2010), it remains poorly understood (Murdiyarso 

et al., 2008b; Guariguata et al., 2009; Sasaki & Putz, 2009) and largely unmeasured. The 

estimates of carbon emissions attributed to forest degradation vary greatly, but they are 

thought to be substantial, between 10-40% of the net global carbon emissions (Houghton, 

2012) and increasing (Federici et al., 2015). Moreover, understanding where and how forest 

degradation is occurring is essential for the success of forest restoration, which is generally 

dependent on achieving a cessation of the activities causing degradation, that could 

potentially change degraded tropical forest lands into carbon sinks (Grace et al., 2014), and 

achieve sustainable landscape management (DeFries & Rosenzweig, 2010).  

Even though, its importance, the current capacity to identify, measure and monitor the 

different aspects of forest degradation is still very limited (Herold et al., 2011; Goetz et al., 

2015). We argue that in any operational assessment of forest degradation, potential field-

based indicators should be tailored to the specific characteristics of that forest’s ecosystem, 

as well as to the type of disturbance that is being evaluated (Ahrends et al., 2010; Chaturvedi 

et al., 2012; Dons et al., 2015). For instance, a different set of indicators would be needed to 

define degradation due to logging in a rainforest than for fuelwood collection in a dry forest. 

Despite these obvious differences, there has been a tendency to define and measure forest 

degradation only in terms of forest attributes such as above-ground biomass (AGB) or 

canopy cover (Schoene et al., 2007; Simula, 2009). Where forests are subject to chronic 

disturbance due to continuous activities (e.g. fuelwood extraction, cattle grazing and 

harvesting timber for posts), which do not result in such obvious changes in AGB and 

canopy cover as when a large tree is logged in a rainforest; underpinning the definition and 

measurement of forest degradation solely on AGB and/or canopy cover is problematic. 

Above ground biomass, as a simple indicator of forest degradation is of limited utility in that 

it presents a wide variability range related to environmental factors and land use history 

(Chazdon, 2003; Becknell & Powers, 2014).Thus, it is also practically difficult to determine 

true changes in AGB due to human activities between measurements over time with an 

acceptable degree of certainty, particularly if the changes are small (Chidumayo, 2013). 

Moreover, in a policy or project context, without a clear link to human activities, changes in 
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AGB will not provide an equitable basis for any consequent enforcement action or payment 

for ecosystem services (Skutsch et al., 2013). Furthermore, limiting monitoring of forest 

degradation only to forest attribute indicators does not provide information on the 

management of an area, thus it is of limited use for designing intervention actions to avoid 

forest degradation and promote forest recovery.  

Increase or decrease in canopy cover is another commonly used indicator of forest 

degradation as it can be evaluated through remote sensing analysis and consequently it is 

used in almost all international definitions on the topic (FAO, 2007). However, this approach 

has the limitation that, contrary to selective timber extraction, many degradation processes 

occur below the canopy, without producing immediate changes in canopy cover. These 

processes cause a more gradual and less noticeable type of forest degradation, that may only 

alter the canopy cover and forest structure in the long term (De Sy et al., 2012; GOFC-

GOLD, 2013; Miettinen et al., 2014). In addition, canopy cover varies significantly 

throughout the year in deciduous forests, thus techniques developed to monitor the 

degradation of evergreen forests cannot reliably be extrapolated to such deciduous forest 

types (Blackie et al., 2014; Hesketh & Sanchez-Azofeifa, 2014). A major contribution to 

overcoming these problems in assessing forest degradation would be made by new methods 

that clearly link the state of forest attributes, particularly AGB as well as canopy cover, to 

the effects of human-induced disturbance processes. Furthermore, monitoring of forest 

degradation at the landscape level could be improved by methods that indirectly link the 

effects of human activities to remote sensing variables through the changes in forest structure 

that are reflected on the satellite data (Joseph et al., 2010; Herold et al., 2011). Assessing 

these links is of particular importance for improving the management of tropical dry forests 

(TDF) in developing countries that are subject to high levels of degradation due to high 

dependency on forests as a source of fuelwood, building materials, grazing and crop lands.  

Background 

a. Forest degradation processes in tropical dry forests  

In comparison with moist and wet tropical forests, the potential to apply carbon emissions 

mitigation measures has received considerable less attention in TDF (Blackie et al., 2014). 

This can be attributed to assumptions that TDF hold lower carbon stocks and are a lower 

priority for global biodiversity conservation (which has often been the underlying motivation 

for REDD+ and other carbon-linked payment for ecosystem services projects) (Becknell et 

al., 2012; Portillo-Quintero et al., 2014). Nonetheless, TDF landscapes; are among the most 

threatened and least studied forest ecosystems (Janzen, 1988; Sánchez-Azofeifa et al., 2005; 

Miles et al., 2006). Tropical dry forests used to cover extensive areas in Mesoamerica, 
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however between the 1930’s and 1970's most of them were cleared for agricultural 

cultivation and pasture. The remaining areas, 27% of its original cover in the case of Mexico, 

are very fragmented and confined mainly to less accessible sites (Miles et al., 2006; Portillo-

Quintero & Sánchez-Azofeifa, 2010) that commonly have poor soils and low water 

availability (Dupuy et al., 2012).  

These remaining TDF typically experience a form of "cryptic" forest degradation, due to 

their use for low intensity grazing and fuelwood and timber harvesting. This form of cryptic 

forest degradation may not cause immediate detectible loss of canopy cover; but is chronic 

and spatially pervasive (Guariguata et al., 2009). In addition, TDF are used for shifting 

cultivation practices, and consequently a high proportion of the remaining area is now 

secondary forest regrowth (Marín-Spiotta et al., 2008; Dirzo et al., 2011). The common 

response of TDF to disturbance is marked by a higher rate of coppicing or resprouting, than 

moist forest types, which affects forest structure. and the temporal trend of AGB recovery 

(Ewel, 1980; Chazdon et al., 2007). The combination of all these degradation and recovery 

processes has lead to a simplification of forest structure and loss of ecological functions in a 

substantial part of TDFs (Griscom & Ashton, 2011), which results in lower AGB values and 

differences in structure and composition compared with those expected for old growth TDF 

under similar environmental conditions (Larkin et al., 2012).  

The effect of disturbance in TDF has been studied most commonly by using 

chronosequences. This approach has provided valuable information on the dynamics of 

secondary succession but it also has several limitations (Chazdon et al., 2007). Firstly, it is 

based on the assumption that the observed differences in structure and composition are 

explained by the stand age and that the forest will follow a determined recovery path (i.e. 

succession curve) (Johnson & Miyanishi, 2008; Quesada et al., 2009). Although this 

assumption might hold in some cases, recovery processes are highly dependent on site 

biophysical characteristics and land use history (Chazdon, 2003) and, therefore, there is 

important variability in AGB, structure and composition within successional stages (Fig. 

2.2). Secondly, the majority of chronosequence studies in TDF were carried out using plots 

located within protected areas, e.g. Chamela-Cuixmala, in Mexico and Santa Rosa in Costa 

Rica (Sanchez-Azofeifa et al., 2014a), thus they are usually not further subjected to any 

major human disturbance. Consequently, there remains an important gap in knowledge of the 

most appropriate methods to study disturbance processes in TDF socio-ecological systems.  

b. Analysis of forest structure in tropical dry forests with remote sensing  

Another commonly used approach to study changes in TDF structure and composition 

due to disturbances processes is combining chronosequences with remote sensing and 
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additional ground based data (Dupuy et al., 2012; Gallardo-Cruz et al., 2012; Hernández-

Stefanoni et al., 2012; Martinuzzi et al., 2013; Hesketh & Sanchez-Azofeifa, 2014). 

Vegetation and texture indices derived from images obtained from satellite medium (30 x 30 

m) and high resolution sensors (< 10 x 10 m) have been used to characterize and map the 

extent of secondary succession stages. As vegetation indices provide information on the 

quality of green vegetation, and texture indices take also into account the spatial 

configuration of the vegetation, they are often combine in vegetation monitoring assessments 

(Jones & Vaughan, 2010). For example, Arroyo Mora et al. (2005) found that it was possible 

to distinguish early stages from mid-late stages of succession in TDF by using vegetation 

indices derived from satellite images, demonstrating that forest structural characteristics, e.g. 

basal area (BA) and canopy cover, can be linked with medium- and high-resolution spatial 

remote sensing data. Using a combination of the Normalized Difference Vegetation Index 

(NDVI) with texture indices calculated from Landsat data, Hartter et al. (2008) obtained an 

accurate separation of succession stages that were identified based only on BA, i.e. early 

(BA < 15 m
2
) and mid-late succession (BA 15-30 m

2
). Further research has demonstrated the 

correlation between texture indices and forest stand attributes in different successional stages 

(Gallardo-Cruz et al., 2012). As these previous studies provide evidence that spatial variation 

caused by disturbances can be linked to remote sensing, its potential for assessments of 

degradation in TDF should be further explored.  

So far, most research on the degradation of TDF has focused on acute disturbance events 

such as fires and on the dynamics of secondary succession; and only a few studies have dealt 

with forest degradation processes that are less conspicuous (Griscom & Ashton, 2011). The 

effects of processes that lead to cryptic forest degradation (namely fuelwood collection, 

grazing and selective logging) need better characterization, particularly if remote sensing 

techniques are used to identify their incidence and severity. The long-term effect of these 

processes might be reflected in the canopy cover and, with the availability of new algorithms 

and data sources that provide greater spatial and spectral details, new insights for evaluating 

cryptic forms of forest degradation might be gained. In order to achieve this, remote sensing 

data need to be referenced with field-based data that provide clear evidence of human-

induced disturbance processes and its effects on forest structure.  

Aim: 

In the present study we used locally relevant indicators that are clearly linked to human 

activities causing forest degradation and that are easy to measure in the field, to explore the 

relation between forest attributes, forest degradation and remote sensing data. Therefore, the 

first objective is to test whether an index of locally relevant disturbance measures (such as 

the presence of cattle dung, evidence of cut of stems, bare soil and a low proportion of large 
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stems) are associated with other conventional forest attributes that are more commonly used 

to assess forest degradation (AGB, basal area, canopy cover and species richness), but that 

are not directly linked with management and hence are of limited utility to assess forest 

degradation. The second objective is to test whether remote sensing can discriminate 

between areas that are classified by this index along a scale of increasing disturbance. The 

aim was to access the potential use of remote sensing in modelling forest degradation at the 

landscape level for the purpose of monitoring, by means of classifying the landscape into 

different degradation levels.  

4.2. Methods  

4.2.1.  Study site description 

 The research was conducted in the Ayuquila Watershed (~19°25' - 20°10.0"N, 

104°3' - 103°3'W), an area of approximately 4000 km
2 

located 
 
in Jalisco, Mexico. It is 

limited to the south by the Sierra de Manantlán Biological Reserve (Fig. 4.1), recognized as 

a UNESCO Biosphere Reserve. The watershed is part of the early REDD+ actions selected 

by the Mexican government to tackle forest degradation (SEMARNAT, 2010).  

 The average annual precipitation varies between 800 and 1200 mm, with a distinct dry 

season from November to May, and the average temperature ranges between 18 and 22 °C 

(Cuevas et al., 1998). The elevation range is 260-2500 m above sea level. The complex 

topographic and climatic conditions have created a variety of vegetation formations. High 

altitude areas are dominated by oak-pine forests and small patches of evergreen cloud forest. 

In the lowland areas, where the research was focused, tropical deciduous and semi-deciduous 

dry forests, a form of known in Mexico as selva baja, are found (Rzedowski, 1978). In their 

mature-undisturbed state these TDFs have closed canopies during the wet season, with the 

top of the canopy ranging between 4 and 15 m height, and a dense understory layer 

dominated by shrubs , and a poor developed herbaceous cover. For the TDFs of the Pacific 

coast of Mexico it has been estimated that 75% of tree species shed their leaves during the 

dry period (Lott et al., 1987). When, undisturbed, these Mexican Pacific coast TDFs have 

very high levels of plant endemism and beta biodiversity (Balvanera et al., 2002; Linares-

Palomino et al., 2011); with an estimated average of 94 species per 0.1 ha plot (Lott et al., 

1987; Gillespie et al., 2000).  

As in many other TDFs in the neotropics, in the study area cattle grazing is a common use 

of the forest during the rainy season, as well as extraction of fuelwood and fence posts. 

Natural fires are considered to be rare in the study area, thus conforming to the general 

condition of TDF (Murphy & Lugo, 1986; Janzen, 1988; Vieira et al., 2006; Hughes et al., 
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2013; Dexter et al., 2015), but burning an area to use it for shifting cultivation is a common 

practice (Maass, 1995). Some of these areas are converted to permanent pasturelands for 

cattle after several shifting cultivation cycles (Sanchez-Azofeifa & Portillo-Quintero, 2011; 

Borrego & Skutsch, 2014).  

 

 

Figure 4.1 Location of the study area and field plots 

4.2.2. Field data collection  

A total of 106 field plots were sampled in areas of TDF, within the land of four 

communities, during May-August 2012. A systematic random sampling design was used, 

were sample points were randomly selected from a 500 X 500 m grid. They covered areas 

with different land use intensities, from low-disturbance areas to those that are more 

intensively used by communities. Although our approach was not focused on understanding 

the relationship between forest attributes and land use history, this is an important factor in 

prediction of forest structure in TDF (Dupuy et al., 2012; Becknell & Powers, 2014), and 

therefore, information on stand age was incorporated into the analysis. The stand age was 

defined as the time since abandonment from agricultural land use, as determined by 

interviews and participatory mapping with local residents who have been living in the 

community for more than 50 years. Four stand age classes were determined: young (<10 

years), medium (10–20 years), old-growth (>40 years) and control (areas that have never 

been cleared). It was not possible to obtain age information for five plots. 
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At each of the 106 sample points a circular concentric plot with 2 subplots was 

established. In the 500 m
2 

(radius = 12.62 m) subplot tree stems with a DBH > 5 cm and in 

the 100 m
2
 (radius = 5.65 m) subplot tree stems with a DBH > 2.5 and < 5 cm were 

measured. Tree height and species was determined for each tree and DBH was measured for 

each tree stem. If identification to species or genus level was not possible in the field, a 

sample was taken to be identified by J.A. Solis, of the herbarium of the Department of 

Ecology and Natural Resources at the University of Guadalajara. Number of tree stumps (i.e 

dead trees (>10 cm DBH) that were harvested presumably for fence posts), as well as the 

number of stems of living trees that were observed to have stems cut by machete, (hereafter 

number of machete cuts), which is the usual method for fuelwood collection, were recorded 

in the 500 m² subplot. 

In addition, at each sample point two perpendicular 10 m line-intercept transects were 

established and the length (cm) covered by the following variables were recorded: (a) cow 

trails, (b) cow, horse or goat dung (hereafter manure), (c) bare soil, (d) herbaceous plants 

other than pasture grasses (hereafter herbaceous), (e) shrubs and (f) pasture grasses (hereafter 

pasture) (Fig. 4.2). Transect lines were also used to estimate tree canopy cover per plot by 

recording the presence or absence of canopy cover every 0.5 m with a vertical densitometer 

(Geographic Resource Solutions (Stumpf, 1993)The AGB per tree was obtained using the 

allometric model of Martínez-Yrizar et al. (1992), which was developed using data on the 

TDF of the Chamela-Cuixmala region. The AGB per tree was summed to obtain the total 

AGB for each plot.  
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Figure 4.2 The analytical approach used in this study to link disturbance processes 

with forest structure in order to assess forest degradation through the development 

of a disturbance index.  

Variables selected as disturbance indicators that were directly measured in the field and 

those obtained from remote sensing data are defined in the text and here presented in 

white boxes with a black solid boundary, while the disturbance index that was derived 

from the field variables is shown in the dark grey box. The variables recorded in the field 

at the plot level provide evidence of the link between changes in forest structure (which 

are the conventional indicators of forest degradation) and disturbance processes (i.). These 

changes in forest structure due to disturbance processes are reflected in the remote sensing 

indices that could potentially be used to discriminate between the degradation levels at the 

landscape scale (ii.).  

4.2.3. Calculation of disturbance index 

To assess the extent of disturbance we developed a disturbance index (Fig.4. 2) that 

enables comparison of the forest condition amongst the plots, and groups them into 

disturbance levels (for subsequent comparison with a remote sensing index – see next 

section). Ten equally weighted disturbance indicator variables were combined to obtain the 

overall disturbance index. The variables used were selected based on the following three 

criteria: (i) the knowledge about the activities that communities carry out in the forest from 
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previous participatory mapping exercises and field interviews, complemented by relevant 

information about the impact of these activities in the literature. For instance, previous 

studies have found that grazing and/or selective harvesting of posts in TDF commonly 

results in an increase in the number of small stems (DBH < 10 cm) (Vieira & Scariot, 2006); 

(ii) an increase or decrease in the values of the variables should be clearly an outcome from 

human activities, e.g. standing dead trees and rock cover were excluded because they could 

also result from natural causes; (iii) the variables should not be an input for AGB calculation, 

so tree DBH, height and wood specific gravity were excluded; (iv) variables should be easy 

to understand and to measure in the field. The following disturbance indicator variables were 

therefore used to generate the index: cow trails, manure, bare soil cover, herbaceous cover, 

shrub cover, pasture cover; number of machete cuts, number of tree stumps, percentage of all 

stems that were small (DBH 5-10 cm) and percentage of all stems that were large (DBH > 20 

cm). All these variables were summed except those that are characteristic of undisturbed 

tropical dry forest, namely percentage of large stems and shrub cover, which were 

subtracted, to obtain the overall disturbance index. As this set of variables is associated with 

the effects of fuelwood collection, cattle grazing and/or extraction of forests resources 

(mainly fence posts), they serve as proxy measures of disturbance. Thus, the values of the 

disturbance index will be higher in plots that are more intensively used as grazing areas 

and/or sources of fuelwood, while values will be lower in less disturbed areas characterised 

by larger stems and greater shrub cover. 

After the disturbance index values was calculated, we divided its range (18.6 - 104.9) into 

two, three and four degradation levels, as to represent classification categories of forest 

degradation. The classification categories were as follows: a) a two level category, low 

(18.6-61.8) versus high (61.9-104.9); b) a three level category, low (18.6-47.4) vs medium 

(47.4-76.2) vs high (76.3-104.9); c) a four level category, low (18.6-40.2), medium (40.3-

61.8), high (61.9-83.3), very high (83.4-104.9). For each of these three classification 

categories each plot was then assigned to one of the forest degradation levels to be used in 

the analysis that are explained in the following sections.  

4.2.4. Calculation of the remote sensing indices 

 Two types of satellite image data were used for the analysis: SPOT 5 and RapidEye. 

Although RapidEye records in five spectral bands and SPOT 5 in four bands, they have three 

bands in common: Green (G), Red (R) and Near Infrared (NIR). Two SPOT 5 (level 2A, 10 

x 10 m spatial resolution) scenes acquired in the dry season of 2010 were used to create a 

mosaic of the entire study area. With the RapidEye images (ortho product 3A, 5 X 5 m 

spatial resolution), two mosaics were created for the study area, one for the wet season 
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(April-October) and a second for the dry season (November-May) of 2011/2012, using a 

total of five scenes to cover the area for each season (Table 4.1). For RapidEye data, 

preference was given to images acquired in 2012, because they were contemporary with the 

plot inventory; if no suitable image was found in this year, it was replaced by one from 2011.  

All the images were atmospherically corrected using the FLAASH module in Envi 4.7 

(ENVI, 2006). In addition, the SPOT 5 data were ortho-rectified using ground control points 

(Table S 3.1). For each mosaic, vegetation and texture indices were calculated (Table 4.1). 

Co-occurrence textural indices were used because they can be related to the spatial 

distribution of the vegetation as they evaluate statistically the relationship between the grey 

tones of neighbouring pixels. In other words, these indices provide a measurement of the 

heterogeneity or similarity amongst pixels found within a defined area, which is an indicator 

of the spatial structure of the vegetation (Jones & Vaughan, 2010; Beckschäfer et al., 2014). 

Moving windows of 3 X 3 and 7 X 7 pixels were used to calculate textural indices at two 

different spatial scales for the R and NIR bands of both sensors. With RapidEye images, 

texture indices were also calculated using the RedEdge (ED) band.  

For both image types a similar set of vegetation indices was derived (Table 4.2), with two 

exceptions: a) for the RapidEye data, two extra spectral indices, based on the ED band were 

included (NDVI_ED, SR_ED), and b) the Canopy Index (CI) that uses the short wave 

infrared was included for the SPOT 5 data. In addition, for both data sets, a principal 

components analysis was performed and the first two components were included in the 

analysis; as well as data from 30 X 30 DEM (Digital Elevation Model for Mexico v.2). All 

the vegetation indices and band images were aggregated to 20 m, to account for 

misregistration effects between images and field data. The calculation of the indices was 

performed in OTB (Inglada & Christophe, 2009) and Envi 4.7 (ENVI, 2006). A detailed 

description of the indices used is provided in Table S 4.1. 

 

Satellite Date Tile_ID 

SPOT 5 28.01.2010 577-310 

SPOT 5  24.02.2010 578-311 

RapidEye-1 04.02.2012 1348217 

RapidEye-4 15.11.2012 1348217 

RapidEye-3 28.01.2012 1348218 

RapidEye-4 16.10.2011 1348218 

RapidEye-3 28.01.2012 1348117 

RapidEye-4 20.08.2011 1348117 

RapidEye-3 31.01.2011 1348118 

RapidEye-2 12.11.2011 1348118 

Table 4.1 Acquisition date of the RapidEye and Spot 5 data 
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RapidEye-2 08.01.2012 1348119 

RapidEye-4 08.09.2011 1348119 

4.2.5. Data Analysis 

a. Analysis of the disturbance index and its relationship to forest attributes  

Regression analysis was used to test if the degree of forest degradation, as measured by 

the disturbance index, effectively explained the response of forest attributes. The forest 

attributes that were analysed included: a) AGB, b) BA, c) forest cover (defined as the 

percentage of canopy cover/plot), and d) woody plant species richness (defined as the 

rarefied number of woody plant species/plot) e) species density ( number of woody plant 

species/plot). The rarefied woody plant species richness, that represents an area independent 

estimate of species richness, was calculated using the Vegan package in R, based on a 

sample of 4398 individuals across 106 plots. Pearson's correlation coefficient was used to 

evaluate the relationship between the forest attributes and disturbance index. To determine 

which disturbance variables have greater importance for assessing the forest attributes, a 

stepwise regression using backward elimination was carried out. One-way ANOVA and post 

hoc Tukey HSD tests were used to examine the possible differences in forest attributes 

between the category of four levels of degradation obtained from the index. This analysis 

was also done to provide an indication of the usefulness of this index in separating the data 

into levels of disturbance.  

To approximate the effects that disturbance intensity has on AGB, the difference between 

observed and potential AGB stocking levels was evaluated. A simple regression analysis was 

done between the disturbance index and the arithmetic difference between the potential and 

observed AGB. The potential AGB values (for undisturbed conditions) were obtained by 

averaging values determined for old-growth forests of the Chamela-Cuixmala region in two 

previous studies (Martinez-Yrizar et al., 1992; Jaramillo et al., 2003). The AGB values 

reported in each study were averaged and used to obtain a potential AGB value. The 

Chamela Cuixmala region area is located approximately 150 km west of the site of the 

present study. It was selected because it is a Biosphere Reserve with large areas of 

undisturbed TDF that have been well documented by four decades of monitoring (carry out 

by the Autonomous Mexico National University) to have low levels of human disturbance 

impact, and it has similar soil and rainfall characteristics to the study site (Quesada et al., 

2009). Because of its long history of agriculture and human settlement, such undisturbed 

TDF sites are extremely rare in Mesoamerica (Portillo-Quintero & Sánchez-Azofeifa, 2010). 

The Chamela-Cuixmala Reserve is the only site in Mexico where large areas of old-growth 

TDF occur (Murphy & Lugo, 1986; Sanchez-Azofeifa et al., 2014a). Even though it is 150 
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km distant from the study site, Chamela-Cuixmala provides a good representation of the 

structure and composition of western Mexican TDF in the absence of human disturbance 

processes. 

Table 4.2 Remote sensing data and indices used in the analysis to classify forest 

degradation levels. Abbreviations used for variable names are given in parenthesis 

 SPOT 5 RapidEye 

Spatial Resolution 10 m 5 m 

Spectral Bands 

Green (G), Red (R), Near Infrared 

(NIR), Short wave Infrared 

(SWIR) 

 

Blue (B), Green (G), Red (R), Red 

Edge (ED), Near Infrared (NIR) 

 

PCA 

1st Principal Component (PC1), 

2nd Principal Component (PC2) 

 

1st Principal Component (PC1),  

2nd Principal Component (PC2) 

  

Vegetation Indices 

Canopy Index (CI), Enhanced 

Vegetation Index 2 (EVI2), Green 

Normalized Difference Vegetation 

Index (GNDVI), Modified Soil 

Adjusted Vegetation Index 2 

(MSAVI2), Normalized Difference 

Vegetation Index (NDVI), 

Optimized Soil-Adjusted 

Vegetation Index (OSAVI), Soil 

Adjusted Vegetation Index (SAVI), 

Simple Ratio (SR) and 

Transformed Normalized 

Difference Vegetation Index 

(TNDVI) 

 

Enhanced Vegetation Index 2 

(EVI2), Green Normalized 

Difference Vegetation Index 

(GNDVI), Modified Soil Adjusted 

Vegetation Index 2 (MSAVI2), 

Normalized Difference Vegetation 

Index (NDVI), NDVI Red Edge 

(NDVI_ED), Optimized Soil-

Adjusted Vegetation Index 

(OSAVI), Soil Adjusted Vegetation 

Index (SAVI), Simple Ratio (SR), 

Simple Ratio Red Edge (SR_ED) 

and Transformed Normalized 

Difference Vegetation Index 

(TNDVI) 

 

Texture Indices 

Co-Occurrence Measures calculated 

with the R and NIR bands: Mean 

(MEAN), Variance (VAR), 

Homogeneity (HOMO), Contrast 

(CON), Dissimilarity (DISS), 

Second Angular Movement (SEC), 

Correlation (CORR), and Entropy 

(ENT) 

Co-Occurrence Measures calculated 

with the R, ED and NIR bands: 

Mean (MEAN), Variance (VAR), 

Homogeneity (HOMO), Contrast 

(CON), Dissimilarity (DISS), 

Second Angular Movement (SEC), 

Correlation (CORR), and Entropy 

(ENT) 
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b. Predictability of disturbance levels using remote sensing indices: linking ground 

assessment of forest degradation with remote sensing indices  

To test if it was possible to predict the level of disturbance at the landscape scale, the 

relationship between forest degradation levels (obtained from categorising the continuous 

disturbance index into groups each covering an equal proportion of its range) and satellite 

image data (Table 4.2) was evaluated using two statistical methods, linear discriminant 

analysis (LDA) and random forests (RF). These two methods were chosen because, while 

they are both classification methods, they differ in the approach that they use to discriminate 

between predictor variables and thus how the greatest separation between groups or classes 

is achieved. Linear discriminant analysis is a multivariate statistical method that assumes that 

all the variables are normally distributed within the groups and its applicability is limited 

where there are complex dependent interactions between explanatory variables (Zuur et al., 

2007). In contrast, RF is a non-parametric method that can handle collinearity between 

variables (Breiman & Cutler, 2004), which inherently occurs in remote sensing analysis, 

since all indices are derived from a limited number of image bands. Moreover, RF is 

relatively robust to noise and outliers, and it handles large data sets efficiently (Rodriguez-

Galiano et al., 2012). Random Forests is an ensemble of many classification trees; to build 

each tree 2/3 of the data and a set of predictor variables to test in each node of the tree are 

randomly selected. The trees are then aggregated and a majority vote rule is applied to 

decide on the final classification. The rest of the data that were not used in each tree (1/3) is 

used to provide an internal accuracy measure known as out-of-the-bag error (OOB) 

(Breiman & Cutler, 2004). The decrease in OOB that results from the predictor variable 

permutation is used to provide a measure of the importance of the variables called mean 

decrease in accuracy (Rodriguez-Galiano et al., 2012; Grinand et al., 2013) 

To evaluate the discriminatory capacity of remote sensing indices (Fig 4.2) to separate 

degradation levels, we grouped the disturbance index based on the field data into two, three 

and four classification categories of degradation levels. The degradation levels were 

obtained, as described in section 4.2.3 above. Then, LDA and RF were used independently to 

test how well remote sensing indices used as predictor variables, could separate the 

degradation levels within the three categories of classifications. Each RF and LDA statistical 

model was developed using three types of image datasets (RapidEye data for the dry and for 

the wet season, and SPOT5 data only for the dry season), thus a total of 18 models were 

produced.  

For both the RF and LDA methods 80% of the data were used to train the model and 20% 

were left as independent validation data. The validation data was used to provide a measure 

of the accuracy achieved by each model in the prediction of the degradation levels in each 
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classification category In the case of RF, each of the models had two accuracy measures: the 

out-of-the-bag error (OOB) and the model accuracy (ACC) based on the independent data 

set. Model development was carried out in two steps. First, for the RF models once the 

parameters were optimized (using the tuneRF function implemented in randomForests (Liaw 

& Wiener, 2002)), twenty classification models were developed for the two, three and four 

categories of levels of forest degradation using a different starting point for each run. For 

LDA, the models were developed using a different set of training and validation data sets in 

each run (i.e. cross-validation). This allowed evaluation of consistency in the accuracy that 

resulted from both methods. In a second step, for each of the three classification categories, 

the model that achieved the highest accuracy in the first step (the “best fit” model) was 

selected as the final model and its accuracy was evaluated using a 10-fold cross-validation of 

the test data. To show which bands and indices of the satellite data were the most important 

predictor variables in each classification category, the mean decrease in accuracy was 

extracted for the first six most important predictor variables. The analysis was done using the 

MASS package (Venables & Ripley, 2002) and randomForest package (Liaw & Wiener, 

2002) as implemented in R (R Core Team, 2013). 

4.3. Results  

4.3.1. Characterization of forest structure and composition  

 The mean (± SD) plot AGB value was 21.9 (±13.2) Mg ha
-1

 and, although it was 

smaller for plots with a stand age < 10 years, there was no clear distinction between groups 

based on stand age (Table 4.3, F(4,101) = 1.34, P = 0.25). Likewise, no differences were found 

between the groups defined by stand age, for BA (F(4,101) =1.34, P = 0.26), height (F(4,101)= 

1.44, P = 0.22), woody plant species richness (F(4,101) = 0.75, P= 0.52), tree density (F(4,101)= 

1.23, P = 0.30) and canopy cover (F(4,101)=1.09, P = 0.36). The lack of differences suggest 

that factors other than previous land use (i.e. time since abandonment) might explain the 

variability in forest attributes amongst the plots.  

 

 

 

 



 

108 

Table 4.3 Mean (± SD) values of forest structure and composition by stand age for 106 

field plots sampled in the tropical dry forest of Ayuquila Watershed, Jalisco, Mexico. 

Attributes Overall  

Mean  

n=106 

Young 

(< 10 

years) 

n= 13 

Medium 

(10-20 years) 

n=29 

Old-growth 

(< 40 years) 

n=22 

Control 

n=37 

Mean AGB (Mg ha
-1

) 21.9 

(±13.2) 

14.7 

(±11.2) 

21.0 

(±11.1) 

23.1 

(±12.4) 

22.8 

(±14.9) 

Mean BA (m
2
 ha

-1
) 9.8 

(±5.2) 

6.8 

(±5.6) 

9.1 

(±4.5) 

8.5 

(±5.0) 

10.2 

(±5.6) 

Mean height (m) 9.0 

(± 2.9) 

7.9 

(±2.1) 

8.7 

(±3.0) 

10.6 

(±3.3) 

8.8 

(±2.7) 

Woody plant species 

richness (> 2.5 cm 

DBH) 

5.2 

(±1.1) 

4.9 

(±1.0) 

5.2 

(±1.0) 

5.5 

(±1.3) 

5.3 

(±1.1) 

Woody plant species 

density (number of 

species > 2.5 cm DBH 

in 0.05 ha plot) 

8.8 

(±2.8) 

7.0 

(±2.3) 

8.8 

(±2.6) 

9.14 

(±3.1) 

9.2 

(±2.6) 

Density (number of 

trees ha
-1

) 

1302.8 

(±598.8) 

1170.8 

(±608.1) 

1226.2 

(±546.7) 

1258.1 

(±531.6) 

1471.3 

(±666.7) 

Canopy cover (%) 70.1 

(±19.5) 

59.9 

(±25.6) 

71.1 

(±20.1) 

71.2 

(±18.8) 

71.4 

(±17.1) 

4.3.2. Relationship between disturbance index and forest attributes 

Strong negative correlations were found between the disturbance index and the forest 

attributes AGB, BA and forest cover (Table 4.4), suggesting that the variables from which 

the disturbance index was derived can be effectively used as proxy measures of forest 

degradation in TDF that are undergoing similar disturbance processes to those found in our 

study area. The percentage of small stems was negatively correlated with all four forest 

attributes and was the variable that consistently had the largest correlation coefficient (Table 

4.5); it was also selected in all the final multiple regression models (Table 4.4), except for 

the species richness model, where the percentage of large stems was the most important 

variable. Other variables that were important in the models of AGB and BA were bare soil, 

herbaceous and shrub cover. While the relationship was not so strong, plant species density 

was significantly negatively correlated with the disturbance index. 

Further analysis of the relationships between the individual disturbance indicator 

variables and the forest attributes confirmed that, as expected, the cover of bare soil 

increased with the abundance of cattle (Table 4.5), while shrubs and herbaceous cover 
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decreased. The negative association with the percentage of small stems was stronger for BA 

and AGB than for forest cover and plant species richness. The density of tree stumps and the 

number of machete cuts were only weakly associated with the forest attributes, suggesting 

that they are of lesser value as disturbance indicators in TDF. A strong negative relation   

(r=-0.58)was found between the percentage of large stems and small stems (Table 4.5)  

The tested forest attributes were found to decrease significantly with increasing levels of 

forest degradation of the plots (Fig 4.3). For AGB (F (3,102) = 24.25, P < 0.001), the difference 

was especially significant between the very high disturbance index plots and those that were 

low or medium (Tukey HSD; P < 0.001); but not between the low and medium plots (post 

hoc Tukey HSD; P = 0.77) (Fig. 4.3). The same pattern is observed for BA (F (3,102) = 21.13, 

P < 0.001). For forest cover (F (3,102) = 10.03, P < 0.001), differences between both the low 

and medium degradation level plots (post hoc Tukey HSD; P = 0.54), and medium and high 

level plots (post hoc Tukey HSD; P = 0.61) were not significant. Species richness of woody 

plants (> 2.5 cm DBH) calculated based on a sample of 4398 individuals across 106 plots, 

showed no significant reduction with higher levels of forest degradation (F(3,102) = 0.68, P = 

0.57) (Fig 4.3); or correlation with the disturbance index (Table 4.4). However, species 

richness had a strong positive correlation with the proportion of large stems and a negative 

one with the proportion of small stems (Table 4.5). 
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Table 4.4 Correlation coefficients for the relationships between forest attributes and 

disturbance index values for 106 field plots sampled in the tropical dry forest of 

Ayuquila Watershed, Jalisco, Mexico, and multiple regression models for forest 

attributes and individual disturbance variables. 

Forest 

attribute 

response 

variable 

Correlation 

with 

disturbance 

index 

Multiple regression model with individual disturbance 

indicator variables 

 r 
§
 Model disturbance variables r

2
 RMSE

†
 

Estimate  ( + Std. Error) 

AGB -0.62***  

Intercept 

 

54.51 (+ 4.07) 

0.48*** 9.38 

bare soil cover -0.97 (+ 0.22) 

small stems 

 

-0.40 (+ 0.06) 

 

Basal area -0.59*** Intercept 23.48 (+ 1.73) 0.49*** 3.62 

bare soil cover -0.38 (+ 0.09) 

herbaceous cover -0.17 (+ 0.06) 

shrub cover 0.21 (+ 0.13) 

small stems 

 

-0.17 (+ 0.02) 

 

Forest cover -0.49*** Intercept 83.70 (+ 7.78) 0.27*** 16.35 

herbaceous cover 0.91 (+ 0.27) 

shrub cover 1.44 (+ 0.54) 

small stems 

 

-0.34 (+ 0.09) 

 

Woody plant 

species 

richness 

-0.10 Intercept 4.70(+0.16) 0.16*** 1.00 

bare soil cover 0.06 (+0.02) 

large stems 

 

0.07(+0.02) 

Woody plant 

species 

density  

-0.36***  

Intercept 

 

15.50 (+ 1.39) 

0.20*** 2.43 

manure -1.24 (+ 0.58) 

small stems  -0.08 (+ 0.02) 

large stems 

 

0.09 (+ 0.04) 

 

§ 
Pearson correlation coefficients for the relationship between individual forest 

attributes and the disturbance index for each plot. Disturbance indicator variables = 

cow trails + manure cover + bare soil cover + herbaceous cover + shrub cover + pasture 

cover + number tree stumps + number of machete cuts + small stems + large stems 

*** all linear relationships are significant at P < 0.001 

†
 Root-mean-square error 
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Table 4.5 Pearson correlation coefficient matrix of forest attribute and disturbance indicator variables. Shades of grey show the absolute strength of the 

correlations 

 

A
G

B
 

B
A

 

F
o
re

st
 

co
v
er

 

P
la

n
t 

sp
ec

ie
s 

ri
ch

n
es

s 

C
o
w

 t
ra

il
 

co
v
er

  

M
a
n

u
re

 

co
v
er

  

B
a
re

 

so
il

 c
o
v
er

 

H
er

b
a
ce

o
u

s 

co
v
er

  

 

S
h

ru
b

 c
o
v
er

 

 

P
a
st

u
re

  
  

co
v
er

 

 

 S
tu

m
p

s 

M
a
ch

et
e 

cu
ts

 

S
m

a
ll

 

S
te

m
s 

L
a
rg

e 

S
te

m
s 

AGB 1 

             BA 0.93 1 

            Forest cover 0.62 0.56 1 

           Plant species richness 0.10 0.12 0.19 1 

          Cow trail cover -0.14 -0.22 -0.01 0.19 1 

         Manure cover -0.34 -0.32 -0.29 0.06 0.21 1 

        Bare soil cover -0.51 -0.5 -0.36 0.17 0.22 0.65 1 

       Herbaceous cover 0.14 0.05 0.41 -0.04 0.19 -0.32 -0.35 1 

      Shrub cover 0.10 0.13 0.27 -0.05 -0.26 -0.42 -0.31 0.22 1 

     Pasture cover 0.22 0.21 0.10 0.04 -0.08 0.03 -0.21 0.07 -0.21 1 

    Stumps  0.19 0.14 0.14 0.11 0.22 -0.11 -0.06 0.06 0.05 0.18 1 

   Machete cuts -0.07 -0.13 0.03 -0.06 0.21 0.22 0.13 0.22 -0.2 -0.07 0.10 1 

  Small stems -0.63 -0.61 -0.34 -0.22 0.04 0.14 0.36 -0.22 0.1 -0.32 -0.14 0 1 

 Large stems 0.33 0.27 0.15 0.34 0.09 -0.07 -0.19 0.27 -0.1 0.24 0.07 0.11 -0.58 1 

  1-0.8   0.8-0.6   0.6-0.4   0.4-0.2   0.2-0 
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Figure 4.3 Box plots of the values of forest attributes of 106 field plots classified into four levels 

of forest degradation: a) Total AGB, b) BA, c) Forest cover, d) Plant species richness.  

The boundaries of each box show the first and third quartile and the central line corresponds to the 

median value. The length of the whiskers corresponds to 1.5 times the interquartile range (IQR) and 

the outliers are plotted as black points outside the box. Bars tagged with different letters are 

significantly different within each panel (P < 0.05). 
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4.3.3. Difference between potential and current above-ground biomass stocking     
levels as an indicator of forest degradation  

Higher values of the disturbance index were positively associated with a larger difference 

between the potential and current AGB stocking levels (linear regression model   r
2 
= 0.38, P 

< 0.05, Fig. 4.4). The majority of plots had an AGB 20-40% lower than the potential value. 

Only four plots, which are located near the Biosphere Reserve, had AGB values greater than 

the potential values (those reported from the reference site of undisturbed mature TDF). At 

high levels of forest degradation (disturbance index > 61.8), there is less scatter of points 

from the linear regression line. This might indicate that higher levels of disturbance reduce 

the natural spatial variability of AGB in heterogeneous TDF landscapes. 
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Figure 4.4 Relationship of the difference between potential and current above-

ground biomass stocking levels with disturbance index value for 106 field plots.  

The horizontal dashed line represent zero difference between the current and maximum 

potential AGB value (75.3 Mg ha
-1

). The plots are classified into five groups (shown by 

different symbols) according to their recent land use history: control is areas of forest 

that have never been cleared, old-growth is forest that were last cleared more than 40 

years ago, medium 10-20 years ago, young less than 10 years ago, and ND indicates that 

for five plots it was not possible to obtain age information.  

4.3.4. Relationship between ground assessment of forest degradation and remote 
sensing (spectral and texture) indices  

The potential to classify disturbance by remote sensing was evaluated using RapidEye 

data for wet and dry seasons and SPOT 5 data for only the dry season. For each image data 

set, models were constructed using RF and LDA for each classification category of forest 

degradation levels based on the field data. The discriminatory power of these models to 

predict the classification of different levels of forest degradation in TDF varied between 

methods (Fig. 4.5). The accuracy of the RF models was consistently higher than the LDA 

models, except for those developed based on SPOT 5 data where it was similar, based on the 

out-of-the bag error (OOB). In the tests for all three remote sensing data sets, higher 

accuracy in predicting the classification categories of degradation levels was always 

achieved for the independent test data (ACC) with the RF models than for the LDA models, 

while OOB showed lower accuracy than ACC for the RF models (Fig. 4.5).  

y =-4.08-0.38 x 

r
 2

= 0.38 
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Figure. 4.5 Mean accuracy (+/- SD) of RF and LDA models based on three types of 

remote sensing dataset (a) RapidEye for the wet season, b) RapidEye for the dry 

season, c) SPOT 5 for the dry season); obtained in the classification of 106 field plots 

a) 

b) 

c) 
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into two, three and four categories of forest degradation levels.  

The x-axis shows the three classification categories of forest degradation levels based on the 

disturbance index derived from field data: l-m-h-vh is a four-way category between low, 

medium, high and very high; l-m-h is a three-way category between low, medium and high; 

l-h is a two-way category between low and high. Accuracy of the RF classification model 

was measured using an independent validation data set (ACC) of 20% of the data and out-of-

the-bag error (OOB). For the LDA models, accuracy was calculated using a 10-fold cross 

validation as the test data set. The error bars represent 95% confidence intervals. 

 

The four-way classification category of degradation levels showed low accuracy for both 

classification methods and all three data sets. For the three-way classification of the field 

data, the best result was obtained using the dry season SPOT 5 data and the RF model (65% 

+ 3.5%) (Fig. 4.5c). The highest accuracy for the two-way classification category was 

achieved with wet season RapidEye data using the RF model (76 % + 3.1%, Fig. 4.5a). 

However, models developed with dry season data had slightly less variability within each 

classification type (Fig. 4.5 b & c). As RF performed better than LDA, the RF models with 

the highest accuracy for each classification category were selected for further analysis. 

Further evaluation of the selected models, using a 10-fold cross-validation, showed 

marginally better results than  the accuracy expected for a completely random classification 

(Fig. 4.6). The much greater accuracy obtained in predicting the three-way classification 

category with either dry season SPOT 5 data (72 % + 2%), dry season RapidEye (44% + 2%) 

or wet season RapidEye data (57% + 4%), compared with the accuracy of the random 

classification of only 33%, suggests that the best potential of modelling of the levels of forest 

degradation based on remote sensing data is found in a three-way classification system. The 

two-way classification performed well, with all three data sets producing accuracies far 

greater than the random classification (average 20% greater). However, the prediction of the 

four-way classification category was unsuccessful, achieving accuracies for the three data 

sets on average only 12% better than the random classification. 
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Figure 4.6 Comparison between the accuracy of the RF models based on three types 

of remote sensing datasets and the expected accuracy from a random classification 

(as a control). 

The accuracy of each model was based on a 10-fold cross validation and is shown as 

mean (+/- SD). The x-axis shows the three categories of classification of forest 

degradation based on the field data of 106 field plots. In the x-axis l=low, m=medium, 

h=high, and vh=very high.  

No consistent pattern was observed among the remote-sensing image derived predictor 

variables across the RF models (Fig. 4.7). However, in all the models, texture indices were 

ranked amongst the six most important predictor variables. The exception to this pattern was 

the prediction of the two-way classification based on RapidEye wet season data, which is 

noteworthy as this was the one that achieved the highest accuracy using the independent 

validation data set. In this case, vegetation indices, mainly GNDVI and NDVI_RE, were the 

most important predictor variables and only one textural variable was included (ENT_ED) 

(Fig. 4.7a). 

It is also noteworthy that for the prediction of the three-way classification category by the 

model based on dry season SPOT 5 data (which achieved the greatest improvement in 

accuracy over the random classification), principal component 1 (PC1) and the red band 
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(RED) were ranked second and third amongst the variables contributing to the classification 

model. These two variables were only important for the model based on SPOT 5 data. For 

the two- and four-way classification categories with both dry season data sets (in contrast to 

the wet season Rapid Eye data), texture indices derived from the NIR band appear to be 

more important than the ones from the RED or ED bands. Amongst the texture indices two 

variables stand out as most important in the prediction of the classifications, namely 

correlation (CORR, both R & NIR) and entropy (ENT, mainly NIR) which ranked high in 7 

and 6 of the 9 models respectively (Fig. 4.7). 
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Figure 4.7 Relative contribution of the predictor variables derived from three types of remote sensing data (a) 

wet season Rapid Eye, b) dry season Rapid Eye and c) dry season SPOT5) to the accuracy of each RF model 

developed in the classification of 106 field plots into two, three and four classification categories of forest 

degradation levels. 

The units of importance are the percentage reduction, in accuracy of predicting the classification, that would result from 

removing a given predictor variable. The definition of the remote sensing indices shown in the y-axis labels are given in 

Table 4.2. The symbols used for these indices distinguish those that are spectral bands or principal components analysis axis 

scores, a digital elevation model (not derived from remote sensing data, see section 4.2.4), texture indices and vegetation 

indices).Variables with a 7 at the end of the name indicate texture measures derived on a 7x7 pixel window; if no number is 

given texture measures refer to a 3x3 pixel window. 
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4.4. Discussion  

4.4.1. Evaluating levels of forest degradation based on the relationship between 
indicators of human disturbance and forest attributes 

This study confirmed that there was a strong significant relationship between measured 

indicators that were used to calculate a disturbance index and the AGB (relative to the 

potential stocking level) of TDF plots in the Mexican study site (Table 4.4, Fig. 4.4). This 

showed that the variation in current plot AGB is not only a consequence of stand age, or 

environmental factors, but that it is also clearly correlated with the ongoing human 

disturbance regime. Stand age is commonly cited as the main factor explaining the 

variability in AGB in TDF (Martinez-Yrizar, 1995; Becknell & Powers, 2014), however that 

finding is based mostly on studies of secondary forests that are recovering in protected areas, 

and are thus experience minimal further human disturbance. Our study provide a slightly 

different picture, as it is focus on unprotected TDF that is subject to on-going use by people, 

as is the case for the majority of TDF in Mesoamerica (Chazdon et al., 2009a). It is likely 

that, although accumulation of AGB is occurring as the forests age, ongoing human-induced 

disturbances impede recovery. This lack of recovery is supported by the low absolute 

measured values of AGB and BA, in combination with the evidence of multiple human-

induced disturbances found in most plots. 

A limitation of our study was the use of a non-local reference value of potential AGB, 

however the land use dynamics of the study area mean that there are no large patches of 

comparable undisturbed forest where cattle have not been present in the long term. Although 

the data that we used from Chamela-Cuixmala provided a fair reference of estimated 

potential AGB for a first comparison, further work should focus on refining this by assessing 

the less disturbed forests of the region outside protected areas that span a wider range of 

environmental conditions. Regardless of the reference value used, previous work has 

suggested that, in contrast to wet forests, TDF can recover more rapidly from disturbance as 

they have a relatively simple structure at maturity (Ewel, 1980; Murphy & Lugo, 1986; 

Vieira & Scariot, 2006). The relatively high rates of AGB productivity have been reported 

for TDF, 6-16 Mg ha
-1

y
-1

 (Murphy & Lugo, 1986; Martinez-Yrizar, 1995; Jaramillo et al., 

2011; Becknell et al., 2012); imply that our study area, and Mexican western Pacific TDF in 

general, have the potential for relatively fast accumulation of AGB, if human-induced 

disturbance was limited. 

This study provides statistical evidence of the relationship between an increase in human 

activities that cause forest degradation in TDF and the changes in forest attributes such as 

basal area, AGB and forest cover. This is important for the objectives of the study because it 
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shows that in situ indicators of human activities can be used to evaluate the causes of forest 

degradation signified by a reduction in the values of these attributes. Testing with the 

resulting index, that is based on the indicators of human disturbance activities that are 

characteristic of TDF, showed statistically that disturbed TDF landscapes can be classified 

into three levels of forest degradation (Fig.4.3). There was no clear distinction between areas 

classified as having low and medium disturbance levels for all the forest attributes studied, 

which showed a very high variability amongst plots (potentially reflecting high natural 

variability linked to the environmental heterogeneity characteristic of TDF (Balvanera et al., 

2002)). Furthermore, areas with high levels and those with very high levels of human 

disturbance were both much less variable in their forest attributes (potentially linked to the 

structural simplification that occurs in high disturbance regimes (Chazdon et al., 2007; 

Griscom et al., 2011), and the three classes of low/medium, high and very highly disturbed 

areas were clearly distinct. Even though indices and classification systems have limitations, 

they are of high value for modelling using remote sensing data, which greatly increases the 

potential to extend from plot to landscape scales. Our study suggests that these tools have 

applicability for a monitoring method based on site indicators, which are measurable and 

transparent, that can bridge between the level of disturbance, management practices and 

AGB, and thus have great potential for evaluating interventions designed to reduce carbon 

emissions from forest degradation. 

The strong correlation obtained between the disturbance indicators and AGB, BA and, to 

a lesser degree, canopy cover (Table 4.4) suggests that the variables selected for use in the 

disturbance index are useful proxy measures for estimating the level of forest degradation in 

areas of TDF associated with shifting cultivation and cattle grazing regimes. From the 

variables included in this study to assess forest degradation, the percentage of small stems 

(5-10 cm DBH), along with bare soil cover, had the highest explanatory power to predict 

forest AGB and the other forest attributes (Table 4.4). The proportion of small stems has 

been suggested as a major structural factor explaining variation in TDF AGB (Martinez-

Yrizar, 1995). The mean proportion of small stems (< 5 cm DBH) in the undisturbed 

Chamela-Cuixmala forests used as a one of the references for the present study is only 23% 

while its mean AGB is 84 Mg ha
-1

 (Martinez-Yrizar et al., 1992), while in the Guarnica 

forest in Puerto Rico, the proportion of small stems is 85% and the biomass is only 49 Mg 

ha
-1

 (Murphy & Lugo, 1986). In our study site, that also had a low mean AGB value (21.9 

Mg ha
-1

), the average proportion of small stems was 71%. Hence, the high proportion of 

small stems (< 10 cm DBH) in TDF, suggest that monitoring AGB measuring only large 

trees, as has being suggested for moist forests (Slik et al., 2013; Sist et al., 2014), although 
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practical might not adequately estimate the changes in AGB during the forest degradation-

recovery cycle in TDF.  

The value of the proportion of small stems as a disturbance indicator in TDF can be 

attributed to the strong capacity for re-sprouting after disturbance that is a distinctive feature 

of TDF (Ewel, 1980; Kennard, 2002; Vieira et al., 2006; McDonald et al., 2010; Lévesque et 

al., 2011), which has been interpreted as an evolutionary response to disturbance in water-

limited environments, where there is a high rate of mortality of seedlings and saplings 

(Vieira & Scariot, 2006; Griscom et al., 2011). Álvarez-Yépiz et al. (2008) found that the 

proportion of small stems in TDF increases under higher grazing intensities, Kennard (2002) 

reported 90% resprouting of individuals < 2.5 m tall after moderate fire and plant removal 

treatment in Bolivia, while McLaren and McDonald (2003) showed that 81% of species in a 

Jamaican TDF will resprout after cutting treatments. Then McDonald et al. (2010) concluded 

that resprouting decreases with time since disturbance. All of this evidence points to the 

value of the abundance of small stems as an indicator of forest degradation in TDF that are 

subject to a range of impacts including grazing, tree cutting fuelwood collection and 

clearing.  

The indicator value of bare soil cover is illustrated by its strong positive correlation with 

manure cover and negative correlation with AGB (Table 4.5). Thus, higher grazing intensity 

is linked to a greater cover of bare soil, which is linked to lower AGB. In fact, many of the 

plots with low AGB are located to the west of the study area (Fig. 4.1), where higher 

densities of cattle have been reported at the community level (Chapter 3). In contrast, in the 

central area, near the boundary of the Manantlan Biosphere Reserve, the four plots with the 

highest AGB have levels similar to the potential values of the mature undisturbed forest at 

the reference site. In field interviews, local community leaders indicated that in the area 

close to the Manantlan Biosphere Reserve efforts have been made, as part of a payment for 

ecosystem services project, to eliminate cattle grazing, mainly by constructing fences around 

some sections of forest.  

The use of TDF for livestock grazing has not been extensively studied in comparison with 

other types of disturbance (mainly shifting cultivation or tree harvesting) and little is known 

about the effect that it has on forest structure in combination with other forms of disturbance 

(Cantarello et al., 2011). Lower AGB and BA have been reported in TDF areas under high 

grazing intensity in comparison with moderate grazing intensity (Sagar & Singh, 2006; 

Álvarez-Yépiz et al., 2008). Other studies have found that grazing significantly changes 

forest structure in TDF, mainly because it removes non-woody vegetation promoting greater 

abundance of less palatable shrubs that may inhibit the establishment of new trees leading, in 

the long term, to a reduction in tree canopy cover (Stern et al., 2002; Chaturvedi et al., 2012; 
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Larkin et al., 2012). As the forest canopy becomes more open after prolonged intensive 

grazing, there is a reduction in the benefit of canopy shade in retaining higher moisture 

levels, which reduces the rate of tree seed germination and seedlings survival, especially in 

drier TDF sites (Stern et al., 2002; Vieira & Scariot, 2006; Derroire et al., 2016a). 

There is a complexity of factors influencing the species richness, density, and floristic 

composition of TDF, including environmental factors, and past disturbances and specific site 

(plot)-level factors (Chazdon et al., 2007; Powers et al., 2009; Norden et al., 2015), thus 

establishing the value of disturbance indicators to assess forest degradation in relationship 

with biodiversity species is challenging. In the present study, the relationship of species 

richness of woody plants (> 2.5 cm DBH) with the disturbance index was lower, while for 

species density its relationship was stronger with the disturbance index. Our results showed a 

positive correlation of woody plant species richness with the proportion of large stems and a 

negative one with the proportion of small stems. These findings suggest that a the subset of 

woody plant species that are most likely to competitively exclude other species in these TDF 

are the ones that dominate the small stem size class, e.g. through a high capacity for re-

sprouting. Moreover, grazing promotes the establishment of a few shrubby species, which 

may competitively exclude (at least in the short-term) the regeneration of tree species 

capable of growing to larger stem sizes that are characteristic of mature TDF (Gillespie et 

al., 2000; Stern et al., 2002; Romero-Duque et al., 2007; Lebrija-Trejos et al., 2008; Rojas-

Sandoval et al., 2014), thus increasing the proportion of small stems. In fact, visual 

inspection of the woody species composition of our plots showed that a high abundance of 

shrub species (particularly of Lysiloma microphyllum) occurs in the plots with high and very 

high degradation levels.  

Another issue to consider is that across our study plots woody plant species richness 

showed a slight trend to increase with forest stand age, in accordance with the findings of 

(Derroire et al., 2016b). This finding suggests that in addition to the effects of grazing, the 

legacy of clearing on species richness and density is stronger than for attributes related to 

forest structure (Chazdon et al., 2007; Martin et al., 2013; Poorter et al., 2016). All these 

findings indicates that future work should focus more on the ecological characteristics of the 

species composition and abundance (including whether they are characteristic of mature 

forests, their growth form, their drought and fire tolerance and the capacity to regenerate 

after disturbance), rather than the simply abstract measure of species richness. Such a 

functional characterisation of the species is likely to generate more insight into the combine 

effects of disturbance due to grazing, fuelwood collection and shifting cultivation, which are 

the dominant activities that occur in the majority of TDF left in Mesoamerica  (De Clerck et 

al., 2010; Dirzo et al., 2011).  
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While we have not found good evidence that species richness can be strongly linked to 

indicators of disturbance, it remains a characteristic of forests’ natural capital of high value 

to many stakeholders and indeed for REDD+ programmes and other payment for ecosystem 

services schemes. Nonetheless, we recommend that the relative importance of species 

density (per area) and area-independent estimates of total species richness should be 

considered carefully. From the perspective of TDF conservation, we consider our result that 

woody plant species density was negatively correlated with the disturbance index developed 

in the study to be a finding of potential importance. However, in terms of cost-effectiveness, 

plant identification is complex, so it might not be a practical aspect to include it in routine 

monitoring of forest degradation unless local project requirements placed a high emphasis on 

biodiversity. 

The moderately strong (and highly significant) correlations found between the 

disturbance index and AGB, BA and forest cover (Table 4.4) provide evidence that the 

selected variables can be used in the monitoring of forest degradation within sub-national 

level projects designed to reduce TDF degradation. Assessment that links levels of forest 

degradation to its underlying causes is of particular importance for the successful adaptive 

management and external evaluation of such projects, e.g. for carbon-based payment 

schemes that seek to link actions to results (Salvini et al., 2014). Such assessment of forest 

degradation is a complex task, because it requires monitoring schemes that are at least 

precise enough to determine if AGB loss (due to human disturbance activities) exceeds AGB 

growth (Clark & Kellner, 2012). Conventional approaches to monitor changes in AGB are 

usually based on the repeated detailed measurement of permanent sample plots, which is 

costly and time-consuming, e.g. Chidumayo (2013). However, because of the high 

variability in AGB (Read & Lawrence, 2003; Balvanera & Aguirre, 2006; Urquiza-Haas et 

al., 2007), it is difficult to determine true changes in carbon stocks across a forest over time, 

and conventional monitoring methods provide no basis to attribute these changes to natural- 

or human-induced disturbance.  

By using indicators that are problem-oriented, because they focus on human-caused 

change, direct evidence is provided about the effect of the management of a forest area 

(Lindenmayer et al., 2011a). This is essential for the monitoring component that is central to 

adaptive management, informing what changes are needed to overcome shortcomings in the 

management of an area (Lindenmayer et al., 2011b). In addition, if indicators are selected 

that are relatively inexpensive to measure, are easy to understand, and can be complementary 

to more formal forest inventory efforts, they could be incorporated successfully into 

monitoring schemes carried out by members of the community (Danielsen et al., 2011; 

Pratihast et al., 2013). The clarity of the link that they provide to the community’s 
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management decisions should help to motivate this (Garcia & Lescuyer, 2008). Community-

based adaptive management informed by this monitoring would result in changes to forest 

management practices, such as exclusion of cattle and prohibition of tree cutting in certain 

areas. The subsequent monitoring would inform the community whether this has produced 

the anticipated change in both the selected indicator variables and consequently the priority 

forest attributes (e.g. AGB linked to carbon stocks).  

In addition, further research should investigate the linkage between the approaches to 

monitor forest degradation using the disturbance indicator level approach developed in the 

present study, to the stock-difference method of monitoring carbon stocks based on the 

average changes in carbon stocks per unit area between the start and end of each accounting 

period, that is one of the standard approach used in international forest carbon stock change 

assessment (GOFC-GOLD, 2013). 

4.4.2. Potential of remote sensing data for classification of forest degradation 

The potential of remote sensing data analysis to detect levels of forest degradation was 

evaluated using two statistical modelling methods with high spatial resolution images from 

the dry and wet seasons. The accuracy of both methods was limited, but the non-parametric 

method, RF, outperformed the traditional LDA statistical model. The superior performance 

of RF provides a good basis for improving methods to relate changes in forest structure 

detectable by remote sensing indices to the effects of on-going disturbance processes in 

TDF. These offer the potential to extrapolate from local-scale field assessment of forest 

degradation processes to landscape-scale monitoring. However, the encouraging findings of 

the present study are just preliminary and these relationships still need to be verified using 

larger and more balanced training and validation datasets from a wider range of sites.  

Specific limitations of the present study were that the training data sites for the low 

disturbance level were fewer in number than for the other three classes. Magdon et al. (2014) 

pointed out that with RF models a limited number of training samples for a class could result 

in a reduced predictive capacity for that class, affecting overall model performance. 

However, the nature of our study area, that included communities that rely heavily on tree 

harvesting and grazing in forest areas, meant that patches of undisturbed forest were overall 

less frequent. This situation was reflected in the use of a random systematic sampling, which 

meant that at the end the model tend to over fit towards classes with more training data, in 

this case areas of higher disturbance. As a result of the lower number of training data for low 

disturbance classes, plots with low disturbance levels were commonly misclassified using 

the remote sensing data in all of the models. The effect of the number of training data for 

each class probably had less impact on the three-way classification, because it assigned 
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lower values in the medium class to the low class and a better differentiation was achieved. 

This is in accordance with the ground data, for which three disturbance levels were also 

clearly differentiated based on AGB and BA (Fig. 4.3a & b).   

Particular attention should be given to the result that texture indices have such an 

influential role as predictor variables in seven out of nine models, because it indicates the 

link between disturbance and spatial distribution of the vegetation. Our result is in 

accordance with other empirical studies that have found good correlations of AGB, basal 

area and, to a less extent, canopy cover with texture indices based on red and NIR bands 

(Barbier et al., 2010; Gallardo-Cruz et al., 2012; Ploton et al., 2012). The importance of 

texture indices as predictor variables might be related to disturbance processes creating more 

open canopies, causing a higher proportion of soil- versus tree-cover pixels, which have very 

different reflectance values. Consequently, these areas appear more heterogeneous than a 

closed canopy, which has neighbouring pixels with more similar values. Second order 

texture indices, including ENT, CON and CORR, evaluate the spatial relationship between 

pixels, as they are based on the probability of neighbouring pixels in the four directions 

having a similar grey level (Haralick et al., 1973). In the present study the texture indices 

correlation (CORR, both R & NIR), entropy (ENT, mainly NIR) and its counterfactual 

second-angle movement (SEC), that stand out as dominant variables in most of the models, 

are all measures of the degree of spatial orderliness (Jones & Vaughan, 2010). In other 

words, they measure how homogeneous the neighborhood of a pixels is. Forest stands 

dominated by trees with small canopies generally have higher values for these texture 

indices, indicating that such areas are less homogeneous (Ozdemir & Karnieli, 2011). The 

RF models provide evidence of the potential of texture indices for linking TDF structure 

with remote sensing, which could provide the basis for mapping the state of forest 

degradation in a landscape. However, further work should focus on using higher resolution 

imagery and/or multi-date images to further explore how the magnitude of the variance in 

texture indices is related to forest structural characteristics and spatial configuration of TDF. 

Vegetation indices were of greater importance in the models using remote sensing data 

acquired during the wet season than those based on dry season data. The model that 

classified wet season RapidEye data into two classes, which achieved high accuracy with the 

independent test data, was based mostly on vegetation indices, including the red edge bands 

(Fig. 4.7a). A tangible explanation of this seasonal effect is that the information provided by 

vegetation indices gives a better indication of the tree canopy cover (and thus, in disturbed 

TDF, AGB) when there are leaves on the crowns of deciduous trees rather than just bare 

branches (Beckschäfer et al., 2014). As pointed out by Gallardo-Cruz et al. (2012), the 

calculation of vegetation indices actually reduces the internal variability of the image data, in 
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contrast to texture indices that provide information on the spatial arrangement of pixels. 

Thus, texture indices can be crucial for differentiation of the amount of vegetation during the 

dry season for TDF, which is important because during dry season in tropical areas cloud 

cover is low and therefore higher image quality is available. 

In our study all the field plots were located in TDF, therefore the spectral variability was 

less than would be the case over a wider range of land cover types (i.e. from bare land or 

recently burned areas to old-growth forests), as is usually analysed in this type of study (e.g. 

Arroyo-Mora et al., 2005). A consequence of reduced variability in reflectance values is that 

the models are not dominated by extreme values, which tends to enhance the model fit. It is 

possible that the models developed in the present study could achieve a better fit if, for 

instance, bare land was included as another level of extreme disturbance. However, this does 

not resolve the main issue that within forests there is significant variability in disturbance 

levels on the ground that is not properly accounted for with remote sensing data. In this 

study, other types of analysis that could take advantage of the reduced spectral variability by 

incorporating indicators of disturbance from ground survey were explored and showed only 

limited potential. Further development of this approach could be achieved by changing the 

scale of analysis to even finer-scale resolution, and by increasing the amount of sample data 

from intact or well conserved forest that is made available for training. Also, as argued by 

Clark & Kellner (2012), remote sensing models will never be accurate until plot-level 

estimates of AGB are used, and the proper scale to link ground and remote sensing measures 

is used. Further work is needed to advance the evaluation of forest degradation with remote 

sensing, but the present study has demonstrated the importance of future studies 

incorporating available ecological and social information on disturbance processes. 

4.5. Conclusions 

Assessing forest degradation is widely acknowledged to be a complex task. In general, 

indicators of forest degradation will be useful if they are capable of assessing natural capital 

(e.g. biodiversity), ecosystem function (e.g. carbon storage) and even delivery of ecosystem 

services, over time. For this, locally relevant indicators, that produce repeatable results and 

are easy to measure in the field, are needed. The information provided by such indicators, 

combined with reference to the potential AGB stocking levels found in mature undisturbed 

forests, provides a more complete picture and better understanding of the degradation 

processes in TDF. 

In this study we tested an empirical method to evaluate forest degradation due to the most 

common drivers of disturbance in TDF in Mesoamerica, mainly cattle grazing, fuelwood 
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collection, and selective tree harvesting, using indicators that are directly linked to these 

activities. We found that the level of these indicators in a plot correlated well with the forest 

attributes that are commonly associated with forest degradation, mainly AGB, BA and, to a 

lesser extent, canopy cover. Even if it is broadly recognized that these human activities 

causing disturbance to TDF have detectible effects on forest structure, these effects are 

seldom evaluated using remote sensing, because they are difficult to detect. In this study we 

have built upon the association between forest structure and remote sensing, which had been 

demonstrated by previous research that evaluated the detectability of different successional 

stages of secondary forests, therefore areas with different forest structure, to test the extent to 

which new analytical methods with higher resolution data can provide evidence of the level 

of forest degradation. Our results indicated that the use of the RF classification algorithm 

applied to texture indices has potential to stratify TDF landscapes into at least two levels of 

forest degradation, which could enable the mapping of degraded forests and support the 

monitoring of changes in forest carbon stocks linked to forest degradation. 

Although the results obtained have only a limited power of these methods, it showed the 

potential through further research to link analysis of remote sensing data to assessment of the 

levels of degradation of TDF attributable to its management. This would enable 

improvement of the cost-effective planning and monitoring of forest restoration; and 

management linked to policy processes such as payment for ecosystem services and REDD+. 

.
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4.6. Appendices 

 

Table S 4.1Vegetation indices used in the study. For variable names refer to Table 4.2.  

Index Algorithm Reference 

Canopy Index           
(Vescovo & 

Gianelle, 2008) 

Enhanced 

Vegetation Index 2 
     

     

           
     (Jiang et al., 2008) 

Green Normalized 

Difference 

Vegetation Index 

      
     

     
 

(Gitelson et al., 

1996) 

Modified Soil 

Adjusted 

Vegetation Index 2 

      

 
                          

 
 

(Qi et al., 1994) 

Normalized 

Difference 

Vegetation Index 

     
     

     
 (Rouse et al., 1973) 

NDVI Red Edge         
    

    
 

(Gitelson & 

Merzlyak, 1997) 

Optimized Soil 

Adjusted 

Vegetation Index 

      
     

            
  

      

(Rondeaux et al., 

1996) 

Soil Adjusted 

Vegetation Index 
     

    –  

            
         (Huete, 1988) 

Simple Ratio    
   

 
 

(Birth & McVey, 

1968) 

Transformed 

Normalized 

Difference 

Vegetation Index 

      
     

               
     

(Bannari et al., 

2002) 
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Chapter 5. Forest Degradation and 
Deforestation dynamics in a tropical moist 
forest over 40 years: a case study of the Osa 
Peninsula, Costa Rica 
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Abstract  

Although Costa Rica has high forest cover, the quality of its forests varies greatly across 

the country. Two past disturbance processes that have affected current forest condition are 

logging and forest clearance for agriculture. Further understanding is needed of these 

processes and how to quantify and monitor them in order to implement policies to reduce 

forest degradation, and promote forest restoration and improved forest management. This 

study aims to present a new method to quantify the change in cover between undisturbed and 

degraded forests, comprising logged areas and secondary regrowth forests, by analyzing a 

long time series (1975-2014) of medium-resolution satellite data in combination with 

historical data on logging concessions in the Osa Peninsula. A new approach to map 

disturbed forest is presented based on comparing the ratio of endmembers (the reference 

materials into which each pixel of a satellite image can be decomposed) between logged and 

undisturbed forests. The analysis showed that at the beginning of the study period the Osa 

Peninsula was 80% covered by forests that were largely undisturbed. Total forest cover 

declined to 71% by 2000 and recovered to 76% by 2014. The majority of loss and gain of 

forest cover occurred at low elevations (100-200 m asl) and on flat terrain with slopes less 

than 5°. About half of the 7419 ha of forest cover recovered by 2014 comprised areas that 

had been classified as secondary regrowth in 2000. Through the analysis of endmembers it 

was estimated that logging affected about 18% of forest area. In total, secondary growth and 

logged areas comprise 38 160 ha of degraded forest that represented 30% of the forest cover 

in 2014. These results and the method presented can potentially inform decision-making 

process for forest management, as they incorporate the legacy of past disturbances to assess 

forest quality. Understanding how the landscape is transformed from old growth to degraded 

forests is important within the REDD+ context to improve spatial planning and forest 

monitoring. This will be important to ensure that future disturbances, such as any resumption 

of selective logging in the area, will be made compatible with biodiversity conservation, 

carbon storage and improvements to the livelihoods of local communities. 

 

Keywords: degraded forests, secondary growth, Landsat, selective logging, endmember, 

linear unmixing analysis. 
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5.1. Introduction 

In tropical landscapes undisturbed, primary forests play a very important role in the 

provision of ecosystem services, especially carbon retention, biodiversity conservation, and 

the maintenance of ecosystem processes (Gibson et al., 2011; Thompson et al., 2012). 

However, most forests within the tropics considered to be “old-growth” and “primary” have 

in fact been disturbed by human activities and are to some extent degraded (Defries et al., 

2002; Achard et al., 2007; Asner et al., 2009). The contribution of forest degradation to 

global emissions of greenhouse gases (GHGs) is highly uncertain and depends on how it is 

defined (Houghton, 2012, 2013). However, it has recently been estimated that in countries 

with low deforestation rates, GHG emissions from forest degradation due only to logging 

represent more than half of those produced by deforestation (Pearson et al., 2014) and that 

timber harvesting has affected at least 20% of the humid tropical forest biome between 2000 

and 2005 (Asner et al., 2009). Thus, improving the quantification and monitoring of forest 

degradation in tropical regions is crucial for the implementation of international agreements 

on climate change mitigation such as REDD+, as well as for achieving biodiversity 

conservation goals such as the Aichi targets (Gardner et al., 2012). 

While definitions of forest degradation vary, international policy generally includes 

within the category of “degraded forests” both the secondary forests that regrow after the 

abandonment of agricultural land and old-growth forests that have been used for selective 

timber exploitation without adequate management to ensure forest recovery (ITTO, 2002). 

Taking both carbon stocks and biodiversity into account, degraded forests are likely to have 

a reduced capacity to provide most ecosystem services compared with old-growth forests, 

which is how forest degradation is, at least in policy terms, commonly defined (ITTO, 2002; 

Simula, 2009; FAO, 2011). However, because such a definition is difficult to quantify/apply, 

we argue that an approximation to mapping degraded forest over a landscape can be 

achieved by studying the recent disturbances that have transformed previously old-growth 

forests into secondary and logged forests.  

For the above mentioned reason, in this study we use a broad definition of degraded 

forest, and define it as those forest areas that have undergone disturbance processes of 

clearance and poorly managed selective timber exploitation in the recent past (<40 years). 

Such forests have had their structure and composition altered by human-induced disturbance, 

hence we assumed that their carbon stocks and biodiversity are different from their original 

undisturbed state. We think this is a valid assumption, as it has been estimated that secondary 

forests take on average 66 years to recover 90% of the original above-ground biomass after 

clearance (Poorter et al., 2016), and more than 100 years to reach a similar plant species 

composition (Chazdon et al., 2009b; Gibson et al., 2011; Martin et al., 2013). Regarding 
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logged forests, recovery time of carbon stocks and biodiversity will depend on the logging 

intensity. For example, it has been estimated that removing 25-50% of above-ground carbon 

stocks will require between 40 and 75 years to recover to pre-logging values (Rutishauser et 

al., 2015); furthermore, Putz et al. (2012) stated that a decrease in timber volumes after the 

first logging cycle is inevitable. Impacts on biodiversity may take longer to recover due to 

their effects on key ecosystem functions and processes, which may reduce forest resilience 

(Ewers et al., 2015; Chaudhary et al., 2016).  

It should be acknowledged that a more appropriate term for such areas would probably be 

“human-induced disturbed forests areas” or “natural forest areas subject to human 

intervention”, since “degraded forests” implies a judgment about the quality of the forest, 

that varies depending on the beholder. Using the term forest degradation does not imply that 

such areas should be regarded as lacking conservation value (Berry et al., 2010; Edwards et 

al., 2011) or that they are in a permanent static state of degradation, as clearly tropical forest 

has a strong capacity to recover from disturbance given sufficient time and provided that its 

resilient capacity is not affected (Ghazoul et al., 2015). However, as has been done in other 

mapping studies (e.g. Souza, 2003; Shearman et al., 2009; Matricardi et al., 2010; Franke et 

al., 2012; Margono et al., 2012; Bryan et al., 2013; Souza et al., 2013; Zhuravleva et al., 

2013), and because the aim of the present study is to spatially analyze the extent of alteration 

that is found in a tropical forest landscape, we use the term degraded forests. 

In this chapter we will focus on devising an efficient and effective way of mapping 

changes in forest indicative of forest degradation over a long time period, by coupling 

remotely-sensed satellite images and field (historical) data analysis. In the following 

subsections, we provide background information important to further understand why we are 

doing this. We first provide an overview of remote sensing approaches for quantifying and 

monitoring forest degradation, and a justification for using the method we chose. Finally, we 

present background information on logging in our case study region, Osa, Costa Rica. 

Background 

a. The use of remote sensing to map degraded forest areas in the tropics  

Despite the importance of monitoring forest degradation, countries have focused their 

monitoring processes mostly on the extent of deforestation, thus overlooking the condition of 

tropical forest when assessing their forest resources (Peres et al., 2006; GOFC-GOLD, 

2013). This is probably because of the technical difficulties that are still associated with 

measuring forest degradation, despite the emergence of techniques such as advanced remote 

sensing analysis (FAO, 2007; Petrokofsky et al., 2012). The differences in spectral 

information between logged and undisturbed forests are very subtle, in comparison with the 



 

134 

clear signal that is usually produced when an area is deforested (GOFC-GOLD, 2013; GFOI, 

2014). Nonetheless, with the publically-available Landsat Archive spanning more than 30 

years and the continuous acquisition of new satellite data with Landsat 8 and Sentinel 2, 

unprecedented opportunities are becoming available to explore effective and efficient ways 

to monitor forest dynamics, and particularly advance the study of forest degradation (Turner 

et al., 2015).  

Remote sensing-based methods that use multi-year Landsat data have been developed to 

map tropical forest degradation mainly due to selective logging. They have improved 

detailed understanding of forest cover dynamics and associated changes in forest carbon 

stocks. Recent studies have applied visual interpretation of Landsat images to: a) map 

logging roads, b) detect the extent of logged forest in combination with coarse resolution 

canopy cover data, and c) estimate the extent of forest degradation when combined with 

ancillary data on infrastructure (Margono et al., 2012; Zhuravleva et al., 2013; Gaveau et al., 

2014; Kleinschroth et al., 2015). Other studies have used sub-pixel analysis, that 

decomposes the pixel into a series of reference materials, known as endmembers to trace 

canopy damage due to selective logging in the Amazon (Asner et al., 2005, 2010; Souza et 

al., 2005; Matricardi et al., 2010). Such studies are based on the principle that areas where 

logging has occurred will have higher cover of certain reference materials, such as soil, and 

lower values of others, such as green vegetation. Although limited by the fast regrowth of 

tropical forests that affects the detection of degradation, the combination of these analyses 

with field data and historical sources has in some case studies enabled the tracking of areas 

that have undergone selective logging. These methodologies have been developed and 

applied in the Brazilian Amazon (Souza et al., 2013), Congo Basin (Laporte et al., 2007) and 

Borneo (Gaveau et al., 2014); studies of logging based on remote sensing are rare for other 

regions. 

b. Current situation of selective logging in Costa Rica  

Costa Rica is aiming to become carbon neutral by 2021 and the government’s strategy 

relies heavily on mitigation from the forest sector by participating in REDD+ (MINAET, 

2012). As the forest cover of the country is increasing, incentives are most appropriately 

focused on reducing the causes of continuing forest degradation (especially of old-growth 

forest), through implementation of sustainable forest management, and promoting restoration 

(enhancement of carbon stocks) of previously degraded forest, rather than primarily on 

avoiding conversion of forest to other land uses (Angelsen & Rudel, 2013). 

Selective logging in Costa Rica is regulated by the Forestry Law 7575, approved in 1996. 

This law established that timber harvesting in natural forests requires a forest management 
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plan, a technical study that basically describes what will be harvested and where it will be 

done. This law set the minimum cutting diameter for trees to 60 cm DBH and a maximum 

harvesting intensity of 60% of trees above this diameter limit that are of species classified as 

commercial. Another important modification introduced by the new law, is that it permits 

forest harvesting on untitled land (land that is assumed to be under private ownership but 

lacks a legally recognised property title). This opened up the possibility for logging 

companies and landowners to profit from a large stock of highly valuable timber that was 

previously not accessible. 

Logging intensity in Costa Rica varies from 2-3 trees/ha to more than 10 trees/ha in some 

areas; timber is generally extracted using a skidding system (Quesada et al., 2012; Arroyo-

Mora et al., 2014). Consequently, the rate of forest recovery after logging varies greatly 

across the country. A fifteen years polycyclic cutting cycle was defined in Forestry Law 

7575, but this is arguably too short for many forests to recover from the permitted intensity 

of logging, as multiple studies have indicated longer recovery times for timber stocks (from 

30-100 years) for conventionally logged tropical forests (Keller et al., 2007; Huang & Asner, 

2010; Hawthorne et al., 2012; Gourlet-Fleury et al., 2013; Osazuwa-Peters et al., 2015; 

Rutishauser et al., 2015).  

Although important efforts have been made in the past to generate information to improve 

selective logging practice in Costa Rica (e.g. the Boscosa project, Fundecor (Howard, 1993; 

Donovan, 1994), it still faces multiple challenges (Camacho, 2015). Despite the existence of 

a legal framework to regulate selective logging which aims to meet international standards of 

sustainable forest management, experience has shown that its application has being limited 

(OTS, 2008; Quesada et al., 2010). Country-specific information for decision making is 

scarce, particularly in relation to timber stocks, spatial distribution and planning of logging, 

logging intensity, impacts of logging on biodiversity and forest recovery time. In addition, 

logging has a bad reputation in the country, and is seen as a threat to biodiversity 

conservation (Sáenz-Faerrón et al., 2010; Camacho, 2015). Recognizing these limitations, as 

is further explained in the next section, logging in natural forests is banned in many parts of 

the country. Nonetheless, currently there is pressure to remove these bans, since there is an 

increasing demand for wood and it is believed that bans foster illegal logging (Chavarria & 

Castillo, 2011). Thus, Costa Rica now seeks to increase wood production through sustainable 

forest management (SFM), as part of the country's REDD+ strategy, while continuing its 

existing forest conservation policies (Sáenz-Faerrón et al., 2010). This creates, among other 

things, the need for monitoring protocols that can evaluate the state of forest resources by 

quantifying the extent of old-growth forest, degraded forest and forest re-growth at the 

landscape scale. 
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c. History of land use change and logging in the Osa Peninsula 

The Osa Peninsula represents the largest lowland rainforest remnant of the Pacific coast 

in the Neotropics (De Clerck et al., 2010) and hence is considered as a key site to maintain 

viable populations of many animal species (e.g. jaguar) (Sanchez-Azofeifa et al., 2002). The 

forests of Osa are unique from a pantropcial perspective, because they contain some of the 

tallest stature forests in the Neotropics with tree heights of up to 60 m, compared with the 

Neotropical norm of 35-45 m; in this way they are more similar to African and Southeast 

Asia tropical rain forests (Taylor et al., 2015). Also, because of its location and geological 

history, the Osa Peninsula forests are particularly rich in tree species (162 species/ha on 

average) (Thomsen, 1997), with a species assemblage including elements from both South 

and North America with about 5% of tree species being endemic to the peninsula (Cornejo et 

al., 2012). 

The Osa Peninsula has a complex history of human colonization that has shaped forest 

cover dynamics. It is outside the scope of this study to detail this history, so here only the 

most important events that are relevant to the study, are outlined
9
. During the 1970's, the area 

formed an unfragmented block of tropical moist forest, with more than 80% of forest cover 

categorized as intact (Vaughan, 2012), and a very low (about 2.8 persons/km
2
) human 

population density (INEC, 1973; Rosero-Bixby et al., 2002). To protect these natural 

resources, two national parks and a forest reserve were established during this decade. The 

establishment of these protected areas that covered most of the Peninsula, led to land use 

restrictions, particularly through stipulating that land within the Peninsula could not be titled. 

Despite this, with the increase in accessibility when the main road was opened in 1974, 

agricultural expansion, mainly for cattle ranching, increased exponentially. In 1983, with the 

closing of the banana company, which provided a major source of employment in a nearby 

region, unemployment increased and many people migrated to Osa to search for gold. About 

2000 miners became active in the Peninsula, and after mining for gold largely failed, many 

of these people cleared state-owned forest land to establish new farms.  

Forest clearing and migration to the Peninsula continued until slowing down in the late 

1990's, when it was replaced by intensive logging as the main impact on the remaining 

forests. With the approval of Forestry Law 7575, in 1996 logging was permitted in untitled 
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 Readers are referred to Cuello et al. (1998) and Vaughan (2012) for a complete overview  
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land, which represented 80% of the forest area in Osa. Therefore, between 1997 and 1999, 

164 logging concessions were approved and extracted all of their allowed timber in one or 

two years (Barrantes et al., 1999). During this period of logging activity and shortly 

afterwards, high soil erosion levels were reported (up to 50 tons/month/ha during rainy 

season) (Lang, 2000). 

As in other regions, selective logging created a complex landscape of patches of 

undisturbed forest, degraded forest and logging roads (Barrantes et al., 1999; Lang, 2000). 

The large number of logging plans being executed across the landscape, along with reported 

inconsistencies in the forest management plans and a low capacity of the state to monitor 

them, led to a period of seriously unregulated forest exploitation, with low adherence to 

sustainable forest management practices, in the area (Barrantes et al., 1999). Eventually, the 

obvious negative effects on the region’s ecosystems related to this logging activity led to 

conflicts between the forest management authorities, local communities, loggers and 

conservation groups. By the end of 1999, the national government, recognizing that the 

logging activities were a cause of major concern for the conservation value of the area, 

enacted a logging ban.  

Today, the area has a high density of payment for ecosystem service schemes, and 

although there are multiple conservation initiatives that seek to protect the forest and create 

sustainable economic activities for local communities, the area continues to be one of the 

poorest in the country. Oil palm plantations have been expanded significantly, and bush meat 

hunting and illegal logging continue to be major threats to the forest ecosystems (J J 

Jimenez, pers. comm.)
10

. 

Aim: 

The aim of this study is to develop methods to quantify and monitor the combined 

dynamics of deforestation and forest degradation in complex forest landscapes and test their 

application to improve understanding of the impact of past policy changes on forest 

condition. In order to do this, we analysed forest cover dynamics in the Osa Peninsula over a 

40 year period, focusing on the conversion of old growth to degraded forest by remote 

sensing analysis of a long time series of data coupled with documentary data on disturbance 

processes, namely historical forest management plans. We focus specifically on three aspects 
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 Jimenez, Juan Jose, Director of the Golfo Dulce Forest Reserve, Osa Conservation Area. 



 

138 

of forest cover dynamics: i) the conversion from undisturbed forest to other land uses, ii) the 

spatial modelling of forest degradation, iii) disturbance and the recovery of forest after 

logging. The implications of the results are discussed in the context of structuring new 

incentive mechanisms related to forest management within the country’s strategy to reduce 

carbon emissions from forest.  

5.2. Methods 

5.2.1. Description of the study site 

The Osa Peninsula (from now on called Osa) is found on the south Pacific coast of Costa 

Rica. The study area covers approximately 1730 km
2
 located between 83° 43’56” - 83°14’ 

33” W and 8° 52’ 8” - 8° 22’ 34” N (Fig. 5.1). The climate is very humid and warm, with a 

mean annual precipitation of 5500 mm and an average temperature of 25 °C. The topography 

is complex (Fig. S1), with an average slope of 7.2° ± 8.7° (SD), as calculated from a 30 m 

spatial resolution Digital Elevation Model, and elevations that range from sea level to 782 m 

a.s.l. (Kappelle et al., 2002).  

The majority of the area (approx. 90%) is categorized as very humid tropical forest, with 

a much smaller area classified as premontane very humid forest, according to the Holdridge 

system (Cornejo et al., 2012). This humid rainforest develops on the ultisols found in most 

of the area, with small patches of inceptisols and entisols. The northern boundary is marked 

by the biggest wetland area of Costa Rica, the Térraba-Sierpe National Wetland.  

The land of Osa is divided into several management categories (Fig. 5.1). Much of the 

peninsula has been designated as the Osa Biological Corridor, which is a conservation 

initiative aimed at maintaining connectivity amongst the ecosystems of the area. The species 

density in Osa is probably one of the highest in the world, as it is estimated that it is home to 

about 50% of flora and fauna species found in Costa Rica, which is considered to be one of 

the most biodiverse countries in the world (Kappelle et al., 2002). The area has more than 2 

200 native vascular plant species, many of which have a clustered distribution being found 

only in small patches within the peninsula (Quesada & Castillo, 2010).  

The human population of Osa has steadily increased over the last forty years (Rosero-

Bixby et al., 2002) and is currently approximately 14,500 people (INEC, 2011). At present, 

the main economic activity is cultivation of oil palm and to a lesser extent rice. Previously 

cattle, banana, rice and timber production were the main sources of income for the 

population. Ecotourism is growing in the area, and there are several initiatives that link 

conservation and community development (Hunt et al., 2014).  
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Figure 5.1 Map of the Osa Peninsula study area showing the different land management 

categories and main protected forest areas. 

Boundaries of the management categories are based on Ortiz (2008). 

5.2.2. Description of datasets 

5.2.2.1. Satellite data 

The satellite data used in the study included inputs from four Landsat sensors: Landsat 2 

Multispectral Scanner (MSS), Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced 

Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI). Images were 

downloaded via the Glovis platform (http://glovis.usgs.gov/) from the US Geological Survey 

National Center for Earth Resources Observation Images for four defined years (1975, 1998, 

2000 and 2014) (Table 5.1). For each year, the image with the best quality and lowest cloud 

cover over the study area was used as the main input and another image, separated by + one 

year from this main image, was used to fill in the parts with cloud cover. Data on image 

quality and cloud cover were provided in the image metadata.  

 

http://glovis.usgs.gov/
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5.2.2.2. Data to determine disturbed and undisturbed forest areas  

 a. Historical photography: Aerial photography taken over the study area between 1975 

and 1978 was used as a reference for undisturbed forest cover. These photographs 

correspond with the period shortly after the opening of the main road. The historical digital 

photographs were obtained through the National Geographic Institute of Costa Rica (IGN) 

and included four flight campaigns: a) 1975 (at a scale 1:20,000), b) 1976 (1:40,000),           

c) 1977 (1:20,000), and d) 1978 (1:35,000); each campaign covered different areas of the 

Osa. All aerial photographs were georectified. 

  b. Forest Management Plan (FMP) and land tenure data: Information contained in 

the forest management plans (FMPs) for logging concessions drawn up between 1997 and 

1999 in the Osa Conservation Area (ACOSA) was used as inputs to map disturbed areas. 

Two sources of information about these FMPs were used: a) the National System of 

Conservation Area - Forest Geographical Information Systems project (SINAC-FGIS), 

which is described in detail by Svob et al. (2014), and b) the study by Barrantes et al. (1999). 

Both these sources only provide general coordinates of the location of the property area 

covered by each FMP and no maps of the area planned for forest production. We therefore 

used the recently completed land tenure database of the Inter-American Development Bank 

cadastral project (BID-Catastro, 2012) to locate property boundaries and link them with the 

FMPs using the landowner information. Hereafter, the term FMP refers to one property, for 

which a logging concession was planned and registered in the Osa Conservation Area 

between 1997 and 1999. Despite the limitations of the geographical information available, it 

Table 5.1 Satellite data used in the study (Landsat Scene Path 54 Row 14). 

Year Day Description Landsat  

sensor 

Image 

Quality
§ 

Cloud % 
§ 

1975 79* Initial state of undisturbed forest. 

Images from before the forest 

conversion that started after the 

opening of the main road in 1974  

L2 High 3 

1979 22** L2 Moderate 0 

1997 316** Initial period of logging 

concessions  

L5 Moderate 0 

1998 47* L5 High 0.4 

1999 66** One year after logging was banned  

 

L5 High 0.4 

2000 45* L7 High 1.1 

2013 280** Current state of forest cover 

 

L8 High 13.6†
 

2014 043* L8 High 45.9† 

*Main image of each pair, ** image to fill cloud gaps, § as described in the image metadata, cloud cover 

estimation for the lower left corner that covers the study area, except for years marked with †, where cloud 

cover estimation is for the whole scene.
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was possible by combining the data of Barrantes et al. (1999) and that of SINAC FGIS to 

associate with certainty 85 FMPs to a property defined in the land tenure database. This 

represents about 51% of the FMPs that, according to Barrantes et al. (1999), were registered 

for the area during 1997-1999. They are distributed across the study area and are mostly 

located within the forest reserve (Fig. S 5.2). 

Guidelines on the information that should be provided in a FMP, as well as any 

procedures related to logging of natural forests, are described in the Costa Rica Forest Law 

7575 (OTS, 2008). This standardized protocol established that a FMP should include a pre-

logging inventory and a tree survey, which should be completed by a certified forester. Pre-

logging inventories are done using 3000 m
2
 (30 m X 100 m) plots distributed over the whole 

forest area of a property, in which all trees with a diameter at breast height (DBH ) ≥ 30 cm 

are recorded. The area sampled in the pre-logging inventory should produce an error 

variance not greater than the 20% of the mean basal area (>30 cm DBH). A separate survey 

of all trees ≥ 60 cm DBH, classifying them into trees to be harvested and those to be 

retained, is carried out in the whole area of the property that is classified as productive, from 

which trees will be extracted for timber. In practice, sometimes the tree survey is not carried 

out and in such cases trees ≥ 60 cm DBH that were sampled in the pre-logging inventory 

plots were classified into trees to be harvested or retained. In some other cases only the tree 

survey was carried out, without the required pre-logging inventory (Svob et al., 2014). 

5.2.3. Mapping of forest cover, forest cover change and forest disturbance 

5.2.3.1. Methodological approach 

To determine changes in forest cover and state throughout the four decades, we first 

performed a land cover classification of satellite images from four different years (1975, 

1998, 2000 and 2014) (Fig. 5.2 section II; methods section 5.2.3.3). Then, the forest area 

determined for 1998/2000 was further analysed to map disturbance, which was mainly due to 

logging (Fig. 5.2 section III, methods section 5.2.3.4) by combining image analysis with the 

FMPs. Together, these two analyses allowed us to evaluate the transformation of the intact 

forest landscape and assess the extent of degraded forests in the area. The next sections 

describe the image analysis process used to obtain the forest cover maps and the forest 

disturbance map, as well as to calculate the change in forest cover (as summarized in Fig. 

5.2). 
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Figure 5.2 Scheme of the methodology used to map forest cover and forest cover change, 

including undisturbed and degraded forest areas, from 1975 to 2014, based on Landsat images.  

Grey boxes are used to indicate processes and white boxes represent image data or a product of the 

analysis.   GV = green vegetation, UF = undisturbed forest, LF = logged forest, FMPs = forest 

management plans; refer to section 5.2.3.2 for the image processing acronyms. 
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5.2.3.2. Image pre-processing and transformation  

To remove the effects of atmospheric contamination and improve the comparison 

between dates, each Landsat scene was atmospherically corrected using FLAASH as 

implemented in Envi 4.7 (ENVI, 2006). The 1975 and 1979 scenes were resampled from 60 

to 30 m, so that the whole image data set had the same spatial resolution. Using the year 

2000 image as a reference, all images were co-registered to obtain a pixel-to-pixel 

correspondence between dates, obtaining an accuracy of less than one pixel (30 X 30 m). For 

each year (1975, 1998, 2000 and 2014), images were segmented and the segments that 

corresponded with cloud cover were removed from that image. To fill the gaps caused by 

removed areas, images were mosaicked with another scene from the closest available date 

(Table 5.1), if an area was covered by clouds in both dates, the information from the main 

image was retained. This procedure resulted in almost cloud free image mosaics, that were 

used as the input for the rest of the analyses (Fig. 5.2, section I) and they are referred to by 

using the year of the main image only (i.e. 1975, 1998, 2000 or 2014). 

A series of radiometric indices were calculated and image transformations carried out for 

each image, to enhance the information available to differentiate between land cover 

categories for the purposes of classification. Not all indices were calculated for all images 

since the spectral information differs between sensors. Vegetation indices included the 

Normalized Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI) and 

Brightness Index (Bi). Two image transformation techniques were applied: principal 

component analysis (PCA), and tasseled cap transformation (TC) (Crist & Cicone, 1984). 

Vegetation indices and TC have been widely used to characterize vegetation conditions 

through time, as they related to the level of greenness of the vegetation (Healey et al., 2005). 

Texture indices were calculated using the Near Infrared Band (NIR), and they provide 

information on the spatial distribution of the vegetation, as they evaluate the relation 

between grey tones of neighbouring pixels. This analysis was done in Envi 4.7 (ENVI, 2006) 

and OrfeoToolBox (Inglada & Christophe, 2009). 

5.2.3.3. Mapping the extent of undisturbed forest (through time)  

The extent of undisturbed forest was mapped using the 1975 image as a baseline. The 

training samples for the classification and validation were guided by historical aerial 

photographs acquired between 1975 and 1978. The input image used for the supervised 

classification with the random forests (RF) algorithm consisted of the four image spectral 

bands, NDVI, TC green band and TC soil band (Fig 5.2, section II). This resulted in a 

classification of land cover in the 1975 image into the following classes: forest, non-forest, 

mangrove, palm forest ("yolillo"), clouds and shadow. We have assumed that all of the area 
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classified as forest was subject to very low levels of human-induced disturbance or none at 

all, as before the opening of the main road into the Osa Peninsula in 1974 there was little 

human activity in the area (Vaughan, 2012). 

To analyse the changes in forest cover through time, forest cover from the 1998, 2000 and 

2014 images was mapped. For this, images were individually classified using RF (Breiman 

& Cutler, 2004) as implemented in R (Horning, 2012; R Core Team, 2013). To increase the 

information available for the classifier to distinguish between land cover classes, the input 

data for the 1998 and for the 2000 images included, in addition to the six image bands, 

several vegetation indices, texture indices, and band transformations: Bi, NDVI, SAVI, 

Homogeneity, Mean and Entropy indices of the NIR, the first three principal components of 

the PCA (PC1, PC2 and PC3) and three TC bands (Greenness, Brightness, and Wetness). 

The input data for the 2014 image included the same bands plus the Correlation Index of 

NIR and, in this case only, the TC Greenness and TC Brightness were used (Fig. 5.2, section 

II).  

To extract training samples for classification and validation of the 1998 and the 2000 

images, we used the ECOMAPAS map (Kappelle et al., 2002). This is a detailed map of 

spatial ecological units produced by the National Institute of Biodiversity (INBio) using 

aerial photographs taken between 1995 and 1998 with a scale of 1:40,000. In contrast, the 

training and validation samples for the 2014 forest cover map were based on field data, that 

we collected in July 2013, complemented by high resolution data available through Google 

Earth. The classification of the 1998 and the 2000 images included the following land cover 

classes: forest, non-forest, mangrove, palm forest ("yolillo"), forest plantation, secondary 

regrowth forest ("matorral"), clouds and shadow. In addition to these classes, for the 2014 

classification, oil palm plantations were added as another class (Table 5.2).  

Change in the extent of forest was assessed by comparing the extent of the forest cover 

class in the classified images (post-classification approach) for the periods 1975-2000 and 

2000-2014 (Fig 5.2, section II). The forest cover extent was found to differ little (less than 

1.1% of the forest area) between the 1998 and 2000 images, therefore for simplicity forest 

cover changes were assessed using only the classification result for 2000.  
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5.2.3.4. Mapping of forest disturbance  

To map disturbed forest areas, a spectral linear unmixing approach was used on the 1998 

and 2000 images in combination with the FMPs that could be located using the land tenure 

database (see 5.2.2.2 b, Fig S 5.2). We analysed images from two dates (1998 and 2000) 

separately in order to detect the disturbance signal more easily by using the closest date to 

when the logging might have occurred. Once analysed, the information obtained was 

combined into a single disturbance map (Fig. 5.2, section III). The details of the mapping 

procedure are described below.  

The linear unmixing approach is based on decomposing each pixel into a series of spectra 

that correspond with the pure reference materials that are found in each pixel; these spectra 

are known as endmembers (Jones & Vaughan, 2010). Spectral endmembers were derived 

from two image subsets (that included different land cover classes) for each image using the 

Vertex Component Algorithm (Nascimento & Dias, 2005) available in the OrfeoToolBox 

(Inglada & Christophe, 2009). As proposed by Souza et al. (2005) we derived the four 

endmembers expected for logged forest pixels: Green Vegetation (GV), Non-Photosynthetic 

Vegetation (NPV), Soil and Shadow. The fraction of each endmember found in each pixel 

Table 5.2 Description of the land cover and the years that the class was included in the 

land cover classification.  

Class Description and definition Years  

Forest (Undisturbed 
Forest) 

Natural lowland tropical moist forest. In 1975, the whole 
forest area was assumed to be undisturbed forest 

1975-2014 

Non-Forest Includes urban, bare, pasture and agricultural land 1975-2014 

Mangrove Coastal forest that is located in the intertidal zone 1975-2014 

Palm Forest Inland wetland dominated by Raphia taedigera (yolillo) 1975-2014 

Cloud/Shadow Areas covered by clouds and cloud shadows 1975-2014 

Secondary Regrowth Forest regrowth after forest clearance (matorral) 2000-2014 

Forest Plantation 
Areas where teak and gmelina have been planted in 
monocultures for wood production 

2000-2014 

Oil Palm Areas where oil palm has been planted as a monoculture 2014 
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was mapped using the Hyperspectral Unmixing algorithm in unconstrained mode, which is a 

type of linear unmixing model (Jones & Vaughan, 2010) implemented in OrfeoTool Box 

(Inglada & Christophe, 2009). The values of the fraction image provides the amount of each 

endmember found in each pixel. To calculate image fractions, those areas that were not 

classified as forest in the 1998 and 2000 images were masked out, so fraction images for 

each year were calculated only for the forest area. 

To establish a threshold value for classifying the potential disturbed forest area, random 

points were used to extract the values for GV, soil and shadow for undisturbed forests (UF) 

and forests subject to logging (LF) from the fraction images for 1998 and 2000 separately 

(Fig. 5.2, section III). The points were extracted from areas defined by the property 

boundaries of the FMPs for LF and from polygons defined within the two National Parks 

(Fig. 5.1) for UF. For the UF, it was assumed that in general these areas within the National 

Parks have experienced no human disturbance (logging, fire or clearance); nonetheless, no 

polygons were taken from the southern part of the Corcovado National Park, because gold 

mining activities occurred there in the 1980s. The exact location of these polygons was 

supported by the author's knowledge of the area and a total of 5600 random points were 

extracted for UF. In the case of LF, 5300 random points were extracted from the fraction 

images of 1998, which coincided with FMPs that were registered during 1997-1998 (51 

FMPs); and 5700 points were extracted from FMPs that were registered during 1999-2000 

(34 FMPs) from the fraction images derived from the 2000 image data.  

Since the post-harvesting data available per individual FMP area was in many cases 

incomplete, the parsimonious assumption, necessary to classify the area for this analysis, was 

made that all the FMPs were subject to logging, and that logging activity was carried out in 

the vast majority (if not all) of them. While this creates an associated error, this assumption 

is supported by the analysis of 136 FMPs carried out by Barrantes et al. (1999), that reported 

65 054 m
3
 harvested between 1997 and 1999. The same authors evaluated in 1999 the 

correspondence in the field between trees that had been felled and those that had been 

marked for harvesting in eight randomly selected FMPs. They found evidence of over-

harvesting in the FMPs, rather than under-harvesting, as about 16% more trees had been 

felled than the numbers specified in the FMPs. This observation is in accordance with what I 

observed during the field work in July 2013, during which the locations of multiple-tree 

logged areas were observed in all the FMP areas that I visited, and is also supported by my 

knowledge of the area, since I have worked in the Osa forests since 2005. Taken together 

this evidence indicates that at least as much volume of timber as specified was harvested in 

at least a large majority of the FMP areas. Therefore, the use of FMP areas as having been 

subject to logging for the sampling carried out in the present study is most likely to 
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correspond to reality in a large majority of cases. Moreover, as the linear unmixing model 

uses the image data directly, not a classification, the use of FMP areas for the sampling 

should not result in a major constraint, because if an area was not harvested at all it will just 

have higher values in the image, as explained in the next paragraph. 

As logging will cause openings in the canopy, areas disturbed by logging will have higher 

values in the soil and shadow endmembers, while undisturbed areas will have higher values 

in the green vegetation component (GV). Therefore for each random point extracted for UF 

and LF the ratios of GV:shadow and GV:soil were calculated. The distributions of ratio 

values for each forest type (UF and LF) were compared using Kolmogorov–Smirnov (K–S) 

two-sample tests, for each year. The average of the median value determined from these 

ratios for LF for each year was used as a threshold value to map disturbed forest using a 

decision tree classifier applied to each year (Fig S 5.3). Using the tree classifier, the areas 

were classified into UF and LF (Table 5.3). The classifications obtained for 1998 and 2000 

were overlaid and combined to obtain one forest disturbance map based on the FMPs (Fig 

5.2., section III). This map was then overlaid with the forest cover of 2014, and only areas 

that were within the forest cover of 2014 were kept, therefore areas that were deforested 

either 1998-2014 or 2000-2014 were removed. This layer was then combined with the 

information on forest gains, obtained from the forest cover change analysis (see 5.2.3.6) for 

the whole 1975-2014 period (also only keeping areas that were within the forest cover of 

2014), in order to obtain the current extent of degraded forests (Table 5.3). This combined 

final map provides an overview of the degradation due to logging and clearance in the study 

area. 

Table 5.3 Description of the classes included in the forest disturbance map and in the 

current state map. 

Class Description 

Degraded 

Forest  

Areas that have experienced disturbance due to logging or forest 

clearance since 1975. It includes two categories: a. logged forests 

(LF), areas determined to have been logged based on the threshold 

analysis of fraction images (see 5.2.3.4); b. forest gain, areas of 

regrown secondary forest determined from the forest cover change 

analysis (see 5.2.3.6). 

Undisturbed 

Forest  

Areas of continuous forest cover that have not been disturbed by 

logging or clearance since 1975. This means areas that were 

classified as forest in 1975, 1998, 2000 and 2014; and were not 

classified as disturbed areas in 1998 or 2000. 
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5.2.3.5. Map validation  

Map accuracy for the image classification of forest in 1975, 1998, 2000 and 2014 was 

evaluated using a confusion matrix based on the out-of-the-bag error (OOB) that is provided 

by the RF classifier. The OOB is an accuracy measure based on the mean square error of the 

cross validation (Breiman & Cutler, 2004; Rodriguez-Galiano et al., 2012). 

For the disturbance map, validation was done using 157 random field points distributed 

across the whole study area that were collected in December 2012 (B. Yapp unpublished 

data) and between April and July 2013. Secondary and logged forests identified in the field 

were classified as Degraded Forest, and forests that have not experienced any logging or 

clearance were classified as Undisturbed Forest, based on the previous land use history 

determined with the help of local field assistants (Table 5.3).  

5.2.3.6. Forest cover change estimation and calculation of rates of forest conversion 

and forest degradation 

The rate of conversion from forest to non-forest land cover, r, was calculated using the 

formula proposed by Dirzo & Garcia (1992):  

       
     

  
 
   

 

 

where A1 is the area (ha) of forest cover at the beginning of the period, A2 is the area (ha) 

at the end of the period, and the parameter t corresponds to the number of years being 

evaluated. The same formula was applied to calculate the rate of conversion from 

undisturbed to degraded forest for the period 1975-2014. 

To evaluate if certain elevations or slopes have experienced more forest cover change 

(either loss or gain) than others, we evaluated if the actual change was proportional to the 

forest area found in that elevation or slope range at the beginning of the period. Hence, 

expected change is defined as the change that will be proportional to the forest cover at the 

beginning of the period analysed in a specific elevation range. 

5.2.4. Evaluation of disturbance intensity based on forest management plans 

To make an approximate estimate of the logging intensity in the Osa Peninsula and its 

effects on forest carbon stocks, the information from the prelogging inventories (which 

correspond to trees > 30 cm DBH) and from the tree surveys (which include only trees > 60 
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cm DBH) of the FMPs was used. Tree basal area and above-ground biomass values were 

calculated from the pre-logging forest inventories, which had a mean (+ SD) number of plots 

sampled of 6.3 (+ 4.8) per FMP. Using the information from the tree survey, logging 

intensity was evaluated by estimating the ratio between logged and retained trees, the 

percentage of the AGB in harvested trees per ha, and the volume and number of trees per ha. 

To estimate AGB the equation developed by Brown (1997) for tropical forests (with > 4000 

mm annual rainfall), which estimates AGB based only on the DBH, was used (Pearson et al., 

2005). To further evaluate logging intensity, emissions due to collateral damage were 

estimated using the equation proposed by Pearson et al. (2014). The impact of logging on the 

overall AGB carbon stocks was calculated using the FMPs that have both pre-logging 

inventory and tree survey data (n=47). The study of Barrantes et al. (1999) summarised in 

section 5.2.3.4 above provides independent evidence that the logging intensity that we have 

calculated with this approach is a reasonable but conservative estimate for this study area. 

5.2.5. Evaluation of forest recovery after 14-16 years 

To evaluate forest recovery after selective logging, in 2013 two areas (Rancho Quemado 

and Mogos) were sampled. According to Barrantes et al. (1999) these two areas were the 

focus of intensive logging activities during 1997-1999. The sample plots were located within 

two FMPs in the Mogos area and four FMPs in the Rancho Quemado area. The undisturbed 

forests were located in adjacent properties that have had no FMPs (Fig. S 5.2) and have 

experimented no known human intervention (i.e. logging or forest clearance). A total of 15, 

500-m
2 

circular plots were sampled in forest logged between 1997 and 1999 (n=11) and in 

undisturbed forests (n=4).  

To locate the sample points, first the coordinates of logged and unlogged areas were 

identified in the field with the assistance of local guides, who have lived in the area for more 

than 25 years and some of whom had participated in the logging activities. The points were 

widely dispersed around each area, with a minimum separation distance of 400 m. Then, to 

determine the exact location of the sample plot at each of these points, a buffer of 20 m was 

drawn around the point, and a random location was then established within this buffer using 

the random point generator available in Qgis 2.6. This random location was used as the 

centre of the 12.62 m radius (500 m
2
) sample plot. 

Within each 500 m
2
 main sample plot, the DBH of all tree stems ≥10 cm DBH was 

measured at 1.3 m height using a tape, following the protocols described in Pearson et al. 

(2005) to correctly measure DBH for tropical trees. Tree height was recorded for each tree 

using a clinometer (Suunto PM5). Trees were identified in the field to genus or, where 

possible, species levels by two taxonomist P. Juarez and M. Fernandez, PhD. When field 
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identification was not possible, a specimen was taken to be identified in the National 

Museum Herbarium of Costa Rica. Other data recorded in the field were: slope, aspect, 

altitude and canopy cover. Slope was measured with the clinometer from the centre of the 

plot. Canopy cover was measured from a height of 1.5 m above ground, at every 2 m along 

two perpendicular transects of 20 m that crossed the plot centre. At every 2 m closed canopy 

was recorded using a vertical densitometer (GRS) as described by Stumpf (1993). The AGB 

of each plot was calculated using the allometric equation by Brown (1997) that is based only 

on DBH for tropical forests (with > 4000 mm annual rainfall) (Pearson et al., 2005). To 

obtain an indication of the forest’s recovery the difference in the values per plot of number 

of trees (tree density), mean tree DBH, total tree basal area and estimated AGB between the 

logged and undisturbed forests was tested using a t-test.  

5.3. Results  

5.3.1. Mapping forest cover extent and rate of change 

The observed changes in forest cover in the Osa Peninsula revealed a dynamic landscape. 

In 1975, about 80% of Osa was estimated to be covered by undisturbed forests, the forest 

extent declined to 71% in 2000 and recovered slightly, to 76%, by 2014 (Table 5.4). The rate 

of change was not constant during these four decades, the majority of forest was cleared 

before 2000 (at a rate of -0.41% yr
-1

). In contrast, after 2000 forest cover increased at a rate 

of 0.43% yr
-1

. A significant amount (more than 7000 ha) of this gain in forest cover by 2014 

resulted from land that had been classified as “secondary regrowth (matorral)” in 2000 (Fig. 

5.3, Table 5.4). Other natural ecosystems, mainly mangrove and palm forests, maintained a 

relatively constant area throughout the time period (about 7%) (Table 5.4). Oil palm 

plantations have increased in area, and the extent of forest plantations has not changed 

notably during the time period studied. In terms of map quality, the land cover classification 

achieved high accuracy, above 92% for the forest, in all the years analysed (Table S 5.1). 
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Table 5.4 Extent of forest and other land cover types, and area changes in land cover, for the 

Osa Peninsula between 1975 and 2014 (areas are given in ha). 

Land 

Cover 

Category* 

Year 1975 
Change 1975-

2000 
Year 2000 

Change 2000-

2014 
Year 2014 

Total Change 

over period 

Forest 131 676 -12 207 119 469 7419 126 888 -4788 

Non-Forest 22 766 -3848 18 919 -1130 17 789 -4978 

Mangrove 6604 41 6645 -292 6353 -250 

Water 946 245 1191 -284 907 -38 

Palm 

Forest 
4387 86 4462 -787 3676 -711 

Secondary 

Regrowth 
1110 15 103 16 213 -7393 8821 7710 

Plantation 0 591 591 668 1258 1258 

Oil Palm 0 0 0 1797 1797 1797 

Total Area 167 490 
 

167 490 
 

167 490 
 

*Class description is given Table 5.2 
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Figure 5.3 Forest cover trajectory over four decades in the Osa Peninsula, Costa Rica.  

Land cover classification for three years: a) 1975, b) 2000, c) 2014. Land cover change maps for the 

periods 1975-2000 (d) and 2000-2014 (e); the red colour correspond to areas that have lost forest 

cover and purple to areas that have gained forest cover during each of the two periods.  
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Forest cover change, both loss and gain, has occurred primarily in lowland areas (< 200 m 

a.s.l.) and areas with flat terrain (< 5º slope angle) (Table 5.5, Table S 5.2). Whereas only 

55% of the 1975 forest area was on land < 200 m a.s.l. about 86% of the loss in forest cover 

from 1975 to 2000 and 94% of the gain in forest cover from 2000 to 2014 occurred on this 

lower altitude land (Table 5.5). Similarly, only 53% and 50% of the 1975 and 2000 forest 

area (respectively) was on land with slopes < 5º, whereas 80% and 76% of the forest cover 

change in these periods (respectively) occurred on this land, clearly indicating that these flat 

terrain areas were far more subjected to forest cover change than land with steeper slopes 

(Table 5.5).  

 

Table 5.5 Percentage of forest area change during the time periods 1975-2000 and 

2000-2014 in sites of different elevation and slope.  

 1975-2000 2000-2014 

Elevation 

Class (m a.s.l.) 

Expected forest 

cover change 

(%)* 

Actual forest 

cover change 

(%)* 

Expected forest 

cover change 

(%)* 

Actual forest 

cover change 

(%)* 

0-100 7.3 14.1 6.5 16.8 

100-200 47.6 71.9 44.7 77.1 

200-400 34.3 11.5 36.5 6.0 

>400 10.8 2.5 12.2 0.0 

Slope 

(degrees)  
 

  

0-5 53.1 80.7 50.3 76.2 

5-10 16.9 11 17.5 12.8 

10-20 17.8 6.2 18.9 8.9 

20-30 8.7 1.7 9.4 1.8 

>30 3.5 0.4 3.8 0.3 

*Expected change is the change that will be proportional to the forest cover in each elevation class, at the 

beginning of the period analysed, while actual change is the result from our analysis.  

5.3.2. Mapping of degraded forest and its rate of change  

The distributions of values for both the GV:Soil and GV:Shadow ratios were statistically 

different between forest types (LF and UF) (K-S test; P <0.001) (Fig. 5.4). We then used the 

average median of each ratio for logged forests (LF) as threshold values in subsequent 

analyses; these were 0.44 for GV:Soil and 0.34 for GV:Shadow. Pixels with values below 

these thresholds were classified as degraded forest (Fig. S 5.3). The use of these threshold 
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values to map degraded and undisturbed forests (Fig. 5.5) yielded a mapping accuracy of 

77% based on the 157 field points (Table S 5.3). The total area mapped as LF using these 

threshold values on the 1998 and 2000 image data was 21 548 ha, which represents 18.1% of 

the area classified as forest in 2000. The sum of the area classified as degraded forest using 

this method, and the area classified as degraded forest on the basis of it being forest that had 

regrown during either the 1975-2000 or the 2000-2014 periods, was 38 160 ha. This 

indicates a coarse estimate of conversion from undisturbed to degraded forests of about 1.1% 

yr
-1

 between 1975 and 2014 for the whole Osa study area. 

 

Figure 5.4 Distribution of the values for the GV:soil and GV:shadow ratios, used to 

determine the threshold values to map forest disturbance, for undisturbed and 

logged forests in 1998 and 2000 Landsat images.  

The central line corresponds to the median, the ends of the boxes correspond to the 25th 

and 75th percentiles, and the dots represent outliers; values were rescaled 0-1.  

UF = undisturbed forest and LF = logged forest 
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Figure 5.5 Extent of undisturbed forest and degraded forest in the Osa Peninsula, 

Costa Rica in 2014.  

Degraded forests include the area of LF modelled using the information from the FMPs 

from 1997-1999 and areas of secondary forest regrowth determined from the forest change 

detection between 1975 and 2000 images, and between 2000 and 2014 images. Greater 

detail of the map for two areas showing some of the FMPs is given in the boxes marked 

with 1) and 2) Logging trails in 1, were mapped from GPS field data acquired in July 

2013. 
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5.3.3. Approximation of disturbance intensity using pre-logging inventories and 
surveys 

The weighted mean AGB of undisturbed forest, determined from the 3000 m
2
 sample 

plots used in the pre-logging inventory of each FMP during 1997-1999, which recorded all 

trees > 30 cm DBH, was estimated to be 145.47 (+ 55.72 SD) Mg ha
-1

. There is considerable 

variation in this estimate (Fig. 5.6), as well as that of the number of trees > 30 cm DBH per 

hectare. The average number of trees (≥ 60 cm DBH) marked to be harvested per ha was 

5.27 (+2.68 SD) (Fig 5.7 a), with an estimated volume of 25.53 m
3
 ha

-1
 + (15.01 SD) (Fig. 

5.7 b).On average FMPs retained 4.77 (+ 1.79 SD) trees ≥ 60 cm DBH per ha (Fig. 5.7d, 

Table S 5.4). Logging removed on average 52.91% (+ 8.30 SD) of the EAGB of trees > 60 

cm DBH (Fig. 5.7 c) per ha, with higher removal percentages concentrated in specific areas 

across Osa (Fig S. 5.4). In addition to the removal of an average of 8.72 (+ 2.49 SD)        

(Mg ha
-1

 of above-ground carbon stock in the harvested trees (> 60 cm DBH), emissions due 

to collateral damage were estimated to be 1.49 (+ 0.12 SD) (Mg C m
-3

). Logged forests 

retained on average 72% of the above-ground carbon stock (trees > 30 cm DBH) after the 

first harvest.  
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Figure 5.6 Frequency distribution of estimated above-ground biomass (EAGB) from 

pre-logging inventory plots sampled for the forest management plans (FMPs) 

registered during 1997-1999 in the Osa Peninsula, Costa Rica (n=421).  

The red dashed vertical line is the weighted mean (145.47 (+ 55.72 SD) Mg/ha)  
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Figure 5.7 Frequency distribution of the number of forest management plan (FMP) 

areas by number, timber volume, estimated above-ground biomass and ratio of trees 

> 60 cm DBH marked for harvesting or for retention based on the tree surveys of 79 

FMPs registered during 1997-1999 in the Osa Peninsula, Costa Rica.  

a) number of trees marked for harvesting per ha, b) timber volume of trees marked for 

harvesting per ha, c) percentage of the total estimated above-ground biomass (EAGB) of 

trees > 60 cm DBH represented by trees marked for harvest , d) ratio between the number 

of trees > 60 cm DBH marked for harvesting and for retention. Each FMP refers to one 

property.  

5.3.4. Evaluation of forest recovery 14-16 years after logging 

In 2013 we measured a total of 429 trees in 11 plots in forest that were selectively logged 

during the 1997-1999 period and 4 plots in undisturbed forest to estimate AGB in order to 
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evaluate the current state of the forest carbon stocks. Although these results should be 

interpreted with caution given the small sample and plot size, no significant difference was 

found between logged and undisturbed forests for any of the variables tested, except for 

canopy cover (Fig 5.8, Table S 5.5). For trees ≥ 10 cm the median EAGB was 291.1 Mg ha
-1

 

in the undisturbed forest plots and 258.0 Mg ha
-1

 in the logged forest plots (a difference of 

about 12%) (Fig. 5.8). In both, approximately 72% of the EAGB was found in trees > 30 cm 

DBH (UF, 74.1% and LF, 71.4%) (Table S 5.5). Logging was restricted to trees ≥ 60 cm 

DBH and, as expected, there was evidence of a greater difference in basal area for trees in 

this size class: in logged forest the basal area of 15 m
2 

ha
-1

 was 20% lower than that in 

undisturbed forest of 19 m
2 

ha
-1

 (Table S 5.5).The mean values of all the other calculated 

forest stand characteristics (density of tree stems, DBH and BA) were also very similar 

between the plots in logged forest and those in undisturbed forest (Table S 5.5). 
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5.4. Discussion 

5.4.1. The transformation from an undisturbed to a degraded forest landscape  

In this study, we obtained estimates of land cover change that are comparable to previous 

studies in areas that partially overlap our study area. Thus, we consider our results to provide 

a good estimation of land cover dynamics in the area. For example, Sanchez-Azofeifa et al. 

 

Figure 5.8 Forest structural characteristics of sample plots located in logged (LF) and 

undisturbed (UF) forest 14-16 years after the occurrence of logging. Values are reported 

for all trees ≥ 10 cm DBH and only for trees ≥ 30 cm DBH.  

a) Density of trees, b) average tree DBH per plot, c) estimated above-ground biomass 

(EAGB), d) basal area; n = 11 plots for LF and 4 plots for UF. The central line corresponds to 

the median, the ends of the boxes correspond to the 25th and 75th percentiles, and the dots 

represent outliers. 

 



 

161 

(2002) reported high deforestation rates (approx. 1.5% yr
-1

 between 1979 and 1987), which 

decreased towards the end of the 1990's (approx. 0.83% yr
-1

 between 1987 and 1997) for the 

southern part of the Osa Peninsula excluding Corcovado National Park. Although we 

obtained lower deforestation rate estimates for a similar study period (0.41% yr
-1

 between 

1975 and 2000), these results are compatible since we included in our analysis the area of 

two National Parks, which have experienced little deforestation. Thus, we would expect the 

deforestation rates to be lower in our study. On the other hand, we found an increase in forest 

cover of 0.43% yr
-1

 for the period 2000-2014, a similar trend to the result of Algeet-

Abarquero et al. (2014) who found an increase in forest cover between 1998 and 2009 (and a 

decrease between 1987 and 1998), although their study covered only the northern part of the 

Osa Peninsula. Both Algeet-Abaraquero et al. (2014) and our study observed that the 

increase in forest cover during this period is linked to regrowth rather than a complete 

cessation of the deforestation process, and that almost half of the secondary regrowth 

("matorral") reported at the beginning of the 2000's was classified as forest approximately 

ten years later. 

Our results, as well as those of the above mentioned studies, confirm that approximately 

one-third of the Osa Peninsula forest cover has been altered, as it was either classified as 

secondary regrowth forest, or has been logged within the past 15 years. We estimated that 

undisturbed (old-growth) forests changed to degraded areas at a rate of 1.1% per year. This 

conversion of old growth forests is a cause of concern for biodiversity conservation, 

particularly of forest-dependent species that are sensitive to disturbance (Edwards et al., 

2014a), since these forests have different ecological characteristics than undisturbed ones 

(Gardner et al., 2009; Brown & Zarin, 2013; Ewers et al., 2015; Chaudhary et al., 2016). At 

the landscape level, the combined effects on biodiversity of converting old-growth forests 

into secondary and logged forests are often overlooked and not well understood (Barlow et 

al., 2016). They rarely occur in isolation, and effects on forest state are often magnified over 

time. For example, logging has been shown to produce fine-scale fragmentation within forest 

patches that, depending on the harvest intensity, could last for between 5 and 50 years, hence 

increasing further the edge effects caused by deforestation within the landscape (Broadbent 

et al., 2008). 

Our results showed, furthermore, that most of the forest cover change was concentrated in 

lowland flat areas, increasing forest fragmentation there, which could potentially exacerbate 

the negative effects of cover change on biodiversity and ecosystem processes. The observed 

change in land cover produced a forest cover with lower connectivity between protected 

forest areas, and between them and the palm forest located in the northern part of the Osa 

Peninsula (Fig. 5.5). This connectivity has been shown to be important for the movement of 
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many large mammal species in the area (Yaap et al., 2014). Loss of connectivity through 

changes in forest cover and quality at the landscape level can also have direct effects on 

timber species’ populations. In Osa many tree species characteristic of old-growth forests, 

including endemic species, have low population densities (< 0.2 individuals per hectare) 

and/or a complex reproductive biology (e.g. dioeciousness) (Quesada et al., 2010).The 

observed clustering of logging concessions in a number of adjacent properties (or forest 

patches) together with clearance that occurred in the area of Mogos (Fig 5.5.subset 2) may 

fragment the populations of certain trees (e.g Peltogyne purpurea). to the extent of reducing 

their viability (Lobo et al., 2007).  

We estimated that approximately 18% of the forest area found in the year 2000 within 

Osa had been disturbed by logging, and that on average 53% of the EAGB of commercial 

trees > 60 cm DBH was removed during these activities. Arguably, taking these extraction 

estimates into account, these areas could still be considered altered in structure and species 

composition, and hence as degraded when compared with old-growth forest. There is 

evidence that some logged areas can take up to 100 years to recover their timber stocks (Sist 

et al. 2003). That being said, there has been a major shift in perceptions of the impact of 

selective logging of tropical forests on their biodiversity and ecosystem services. Evidence of 

high rates of AGB recovery after logging (Gourlet-Fleury et al., 2013), and of the use by 

fauna of logged areas (Sheil et al., 1999; Edwards et al., 2014a), indicate that to an extent 

significant impacts of logging may only be temporary, especially if carried out according to 

careful guidelines, such as reduced impact logging (Putz et al., 2008b; Burivalova et al., 

2014; Bicknell et al., 2015; Rutishauser et al., 2015; Kleinschroth et al., 2016). However, 

while the increasing similarity with old-growth forests in forest structure and biodiversity 

during recovery after logging is well documented for some case studies, these studies do 

generally still find detectable differences between logged and unlogged forests (Chapman & 

Chapman, 2004; Edwards et al., 2011, 2014a; Putz et al., 2012; Cazzolla Gatti et al., 2014; 

Osazuwa-Peters et al., 2015).  

Despite the limitation of the small sample size used in our study, our field observations 

suggested an agreement with studies indicating rapid AGB recovery after logging (but not of 

forest structure). After only 14-16 years since logging the field plots have on average similar 

level of EAGB to unlogged forest, though there was evidence that basal areas of trees > 60 

cm DBH may not yet have fully recovered (TS 5.5). Similarly, Quesada et al. (2012) found 

using four 1-ha experimental monitoring plots in Osa, that 19 years after logging, basal area 

(> 10 cm DBH) was similar to pre-logging values, however the density and basal area of 

trees ≥ 70 cm DBH was still lower in all the plots. Rutishauser et al. (2015) provided 

evidence that recovery of AGB is highly dependent on the initial AGB lost by timber 
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harvesting. We estimated from the FMPs that 72% of the overall above-ground carbon 

stocks was retained after selective logging that removed on average 25 m
3 

ha
-1

 of timber 

volume. At similar logging intensities in Brazil (23 and 30 m
3 
ha

-1
) retained AGB was found 

to be 63% and 88% respectively (Asner et al., 2005; Miller et al., 2011), while it has been 

estimated that logged tropical forests retained on average 76% (Putz et al., 2012). Applying 

the Rutishauser et al. (2015) model to our data, with an average of 25 m
3 

ha
-1

 extracted 

volume, AGB will require approximately 16 years to recover, thus explaining our field 

results. Caution is needed to interpret these results, as clearly larger replication and size of 

sample plots distributed over the whole study area is required to overcome the effects of 

patchy distribution of large trees, environmental variability, natural canopy gaps etc., and so 

improve the reliability of our results on the recovery of AGB (and other variables) after 

logging. Nonetheless, the estimates of approximate recovery from our results coincide with 

those in the literature, showing a rapid recovery of forest carbon stocks after logging but a 

slower recovery of stocks of timber in larger diameter trees. 

The potential negative effects highlighted above are the reason why it is important that 

monitoring is not limited to forest cover but that it includes monitoring of forest quality. As 

suggested by our results, the quality and characteristics of forest areas varies greatly across 

the landscape, due to either previous clearing or selective logging, creating a mosaic of forest 

patches under different degrees of forest degradation. The common approach to obtain forest 

cover statistics with the use of remote sensing in many tropical regions is just to classify the 

images between forest and non-forest (GOFC-GOLD, 2013). By incorporating information 

on previous disturbances our study provided additional information on the quality of the 

forest of this key area for biodiversity conservation in Costa Rica.  

5.4.2. Methodology for assessing forest degradation in combination with 
deforestation 

Our study evaluates the state of forest cover in Osa by combining supervised image 

classification techniques with existing data from FMPs. Our results showed that mapping 

forest disturbance based on decomposing the best available satellite images into a series of 

reference materials (linear spectral unmixing), although limited in its precision, is a feasible 

method. This is particularly valuable given its suitability for Landsat data that are, in most 

areas, the only satellite data available for previous decades to study disturbance processes 

over a sufficiently long time period to quantify trends over time. The study of forest 

degradation with remote sensing is very challenging, particularly because the disturbance 

signal caused by logging is hard to detect after 42 months following selective logging 

because of rapid forest regrowth, and as in any remote sensing analysis this detectability is 
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also affected by topography (Asner et al., 2002, 2005, 2013; Souza et al., 2005). Contrary to 

studies carried out in large flat areas of the Amazon or the Congo Basin, Osa has a complex 

topography with about 30% of the area having slopes greater than 10º (Fig S 5.1), which 

makes disturbance to the canopy cover even harder to detect. In combination with the hilly 

terrain, the lack of higher resolution data for the area constrains the mapping of logging 

roads based only on image interpretation, as has been attempted in other studies (e.g. Gaveau 

et al. 2014; Kleinschroth et al. 2015; Margono et al. 2012).  

The method presented here builds on previous research that demonstrated the utility of 

analyzing fraction images to map disturbed areas in tropical forests (Souza et al., 2005; 

GOFC-GOLD, 2013). Considering the accuracy obtained here, and comparing with other 

studies, indicates that the estimate obtained with our model of the forest area disturbed most 

likely due to logging (18.1%) is reasonable. In just a sub-set of the total study area, the 

Reserva Forestal Golfo Dulce (Fig. 5.1), Barrantes et al. (1999) analysing only the area given 

on the FMPs reported that 8.5% of the forest was demarcated for logging. Nonetheless their 

field evaluation revealed that 16% more trees were harvested than reported in the FMPs. 

This suggests that the area affected by logging was in fact larger. Although there are limited 

studies to compare with, and logging intensities vary widely from region to region, in a study 

area in the Brazilian Amazon Matricardi et al. (2010), also using linear spectral unmixing 

analysis, reported that about 31% of the area was affected by logging, with removal of 

around 40-50% of the tree canopy cover. 

Although our approach achieved a classification accuracy for the disturbance map of 

77%, and its estimate of the logging area is reasonable, the approach is subject to a series of 

limitations, particularly linked with the available data. Firstly, the lack of data on the exact 

location of the logging concessions precludes establishing a more precise threshold of values 

to extract from the image fractions. This limits the precision of differentiation between 

logged and undisturbed areas. Instead, we had to use an indirect approach, based on the 

observation that the GV component is higher in undisturbed areas (Souza et al., 2005), and 

rely on comparing the distributions by using the median value as a threshold, which clearly 

has an associated error where values of UF and LF overlapped (Fig 5.4). Secondly, the 

method makes no direct distinction between anthropogenic and natural disturbances when 

analyzing the ratios GV:Soil and GV:Shadow. As a result the differentiation is based on the 

context, i.e. whether the pixel is inside or outside a protected area versus an area subject to 

recent logging. However, the assumption that forest within protected areas is not subject to 

notable anthropogenic disturbance will not always hold since, in Costa Rica, although 

protected areas are less disturbed than unprotected areas, they are not completely unaffected 

by human impacts (Sanchez-Azofeifa et al., 2002).  
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The image classification of the present study showed that some areas found inside the 

national parks, particularly the Corcovado National Park, were classified as degraded (Fig. 

5.5). The evidence does not enable determination of the extent to which this degradation was 

due to human activity, as many of these areas are adjacent to a river course, and might 

naturally have a more open canopy. However, human disturbance of forest connected with 

illegal gold mining that has been practiced inside the national park is also concentrated on 

land adjacent to rivers (Vaughan, 2012). The other national park in the study area (Piedras 

Blancas National Park) had a smaller percentage of its forest area classified as degraded, 

coinciding with human incursions being known to be less frequent in this protected area 

(Sierra et al., 2003). The difficulty of separating natural from anthropogenic disturbance is 

not exclusive to the method applied in this study; it has also been discussed in other studies 

that have mapped forest degradation (Matricardi et al., 2010; Negrón-Juárez et al., 2011; 

Gaveau et al., 2014), and remains one of the biggest challenges in monitoring forest 

degradation (Birdsey et al., 2013; GOFC-GOLD, 2013). Despite these limitations, we 

believed that our approach is an improvement over existing methods for determining 

degraded areas, such as the use of visual interpretation of roads to determine logged areas or 

degraded areas (e.g. Mollicone et al. 2007), mainly because it is derived directly from the 

spectral values of the forests that vary according to forest structural characteristics.  

Future improvements to detect areas affected by logging will benefit from including other 

data sources that are now available, such as LiDAR and higher resolution data. LiDAR has 

the potential to improve logging detection because it provides direct information on forest 

structure comparable to that obtained from field plots. For instance, its use in combination 

with optical data to model AGB over regional scales has resulted in models with substantial 

lower errors than those derived using optical data alone (Zolkos et al., 2013; Vaglio Laurin 

et al., 2014; Marvin & Asner, 2016). Nonetheless, LiDAR data is relatively recent, therefore 

no long-term historical data is available; moreover, it is currently only available via airborne 

sensors, thus it can only provide data for small areas. For these reasons, it needs to be used in 

conjunction with optical satellite data to cover larger areas.  

An important remaining benefit of time series of optical data is their value to provide 

information on forest disturbance legacy (the process of degradation) with which to interpret 

the forest attributes obtained with LiDAR data. A recent study by Taylor et al. (2015) carried 

out in Osa provides an example of this benefit. Their study used LiDAR in combination with 

topographic and geological information to study the factors determining AGB, and found 

that abiotic factors explained only 34% of the variation in AGB. It is highly likely that most 

of the remaining variation in AGB is explained by disturbance history, in particular by the 

logging and the regrowth processes that have occurred in the area, which are the focus of our 
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study. Furthermore, the classes defined in our study can potentially be used as strata for 

multistage sampling, to select sampling points for field plots and LiDAR flights stratified 

between undisturbed, logged and secondary forests to improve AGB estimates. 

In addition to the inclusion of other data sources, future research to improve the detection 

of degraded forests in Osa should attempt to make the separation between natural and 

human-induced disturbance more efficient, for which further field work using stratified 

sampling between areas of logged and undisturbed forests is also required. The classes 

defined in this research (LF and UF) can potentially be used as strata for selecting sampling 

points, which could include undisturbed areas outside protected areas, that might help refine 

this analysis. Additional priorities for future research should further explore the temporal 

dimension of forest degradation with the aim of understanding how forests recover in the 

area, the spatial variability that results from logging, and potential impacts that logging 

might have on forest quality at the landscape level (Pfeifer et al., 2016). 

5.4.3. Implication for policy of improved methods to assess forest degradation  

In Costa Rica there has been little assessment of the effects of logging and secondary 

forest regrowth on carbon stocks and biodiversity conservation at the landscape scale. This is 

a major gap and challenge for a small-area country, given its commitments to sustain and 

improve forest-based ecosystem services, while both sustainable management of natural 

forests and an increase in consumption of wood are included within the proposed national 

REDD+ forest strategy (Sáenz-Faerrón et al., 2010). Two main issues should be addressed to 

move forward towards achieving these commitments: development of a landscape level 

spatial planning of forest uses and improvements in the forest monitoring capacity.  

Our approach of combining historical data on FMPs, field-evaluation of recovery and 

long-time-series Landsat data provides an example of the kind of integrated methodology 

required to monitor forest-based ecosystem services and to improve spatial planning of forest 

management at a landscape scale, in areas with poor data sources. Mapping degraded forests 

can specifically provide information for decisions about where, when, and with what 

intensity, new logging cycles should be permitted, and where to spare large areas from 

logging (Edwards et al. 2011). Although we could not identify all the management plans in 

the cadastral database, visually inspecting our results in combination with the author's 

knowledge of the area, suggested some degree of clustering of logging concessions. As the 

impacts on biodiversity at a larger scale and within the context of heterogeneous landscapes 

are different from those at the scale of a single forest management unit (in Osa, the property) 

(Chaudhary et al., 2016), coordinating logging operations based on spatial planning using 

information of the extent of degraded areas, is clearly needed. Such coordination should aim 
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to reduce the risks of harming the delivery of ecosystem services, biodiversity, and 

specifically the populations of timber species. Moreover, mapping the extent of degraded 

areas can support the much needed evaluation of tradeoffs between logging and other land 

uses for biodiversity conservation, which is key in the study area because of the increasing 

importance of nature-based tourism.  

Low capacity for monitoring selective logging in Costa Rica is one of the arguments 

against the country’s forest policy allowing a continuation of logging activities (Sáenz-

Faerrón et al., 2010), and is one of the reasons why FMPs were banned in Osa after 1999 

(Barrantes et al., 1999; Arroyo-Mora et al., 2014). However, information sources and 

monitoring capabilities to which forest and conservation managers have access are now 

substantially better than when logging was last carried out in Osa 15 years ago. Most 

importantly, information availability and new analyses, such as that presented in this study, 

can facilitate spatial planning of logging and restoration at the landscape level. This is 

particularly true now with the availability of an updated cadastral database, high resolution 

remote sensing data and the higher accuracy of current GPS technologies, as well as the 

improved capacity to systematize this information in consistent databases (Svob et al., 2014). 

Besides improvement in monitoring methodology, access to better information sources 

and the planning of forest uses at the landscape scale is needed. A major difficulty in 

performing the analyses in the present study was the use of historical data that were not 

systematically collected (e.g. the data from the tree surveys and forest inventories carried out 

as part of the previous prescribed forest management planning process). This situation is not 

restricted to Costa Rica: in many other places in Latin-America reliable data on past forest 

management is limited (Nasi et al., 2011). Many of the legal requirements for selective 

logging are often not being enforced, thus the information that would be required to provide 

good evidence of the actual forest exploitation carried out is not systematically documented 

and contains major irregularities (Barrantes et al. 1999). This lack of well-documented 

information on logging concessions makes it difficult to evaluate in more detail than the 

present study the variability in forest quality and the legacy of past disturbances across the 

landscape.  

The need for adequate landscape planning for implementation of REDD+ is evident, 

particularly if forest management is incorporated as a mitigation activity, or if enhancing 

carbon sequestration at the landscape level by avoiding forest conversion to competing land 

uses is attempted (Sayer et al., 2013; Venter et al., 2013). The type of spatial information on 

the extent of degraded forests presented in this study could play a valuable role in targeting 

priority areas for forest restoration, but also as reference information for monitoring future 

changes in the spatial distribution of degraded areas. This would be relevant, for example if 
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permission is given to resume selective logging in an area after a period of time during 

which it has been prohibited (such as in Osa) and for evaluating policy interventions (e.g. 

effectiveness of PES schemes) (Rosendal & Schei, 2014). Through the methodology 

developed and tested in this paper, we hope to provide an approach that can be used to 

produce data on the state and changes of both forest cover and degradation level that is 

needed to improve landscape planning processes towards sustainble forest management and 

enhancing the delivery of forest ecosystem services.  

5.5. Conclusions 

Our study sought to map degraded forest areas by combining the limited available 

information on previous selective logging activities with a spatial analysis to detect both 

secondary regrowth and areas that could have been potentially affected by logging. Four 

decades ago, about 80% of the landscape of the Osa Peninsula was covered by an almost 

continuous block of undisturbed tropical moist forest. High conversion rates of forest cover 

were experienced until two decades ago, when a process of forest recovery started. Our study 

estimated that about 30% of the forest of the Osa Peninsula is to some extent degraded 

because it has been logged in the past or is the result of secondary regrowth after clearance. 

This implies that the current landscape is formed by a mosaic of forest patches that differ in 

their level of degradation, and presumably in their structure and composition, connected to 

the past and present distribution of human activities.  

Mapping degraded areas with optical remote sensing is challenging, and is a process that 

commonly relies on secondary data sources such as records of logging concessions, which 

were not specifically designed for this purpose, thus increasing the difficulty of applying 

them in spatial analysis. Despite these methodological challenges, it is important to 

understand the history of disturbance that an area has been subject to in a spatially explicit 

manner. Commonly, the effects of disturbance history go unnoticed, because remote sensing 

analysis is limited to assessing only the extent of forest against non-forest cover. In the case 

of the Osa Peninsula, one application of the information on the extent of degraded areas 

presented in this study is to serve as the input for a stratification process to improve the 

precision of forest carbon inventories. In turn, this would allow identification of synergies 

between carbon and biodiversity conservation initiatives.  

The transformation of undisturbed tropical forest landscapes into other land cover/land 

uses is the result of complex interactions between multiple processes. The observed extent of 

degraded forest in the Osa Peninsula has resulted from changes in forest policies that first 

promoted forest clearing for agriculture, and then opened up the possibility of extensive 
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logging activities. Our satellite data analysis showed that forest cover has recovered at least 

in terms of area. However, at present, the circumstances of the Osa Peninsula are changing 

again, with the opening of a new highway in 2010, real estate development and an increase 

in the area of oil palm, all processes that can potentially affect forest ecosystems negatively. 

Therefore, it is important that government incentives, in particular through its REDD+ 

strategy, can provide attractive options to conserve forest and its carbon stocks, and enhance 

the conservation of biodiversity and delivery of other ecosystem services, and thus promote 

sustainable development. Two such alternatives could be providing incentives for applying 

reduced impact logging and for accelerating the recovery of secondary forest. If such options 

are to be attempted in the near future as part of REDD+ or the national PES scheme, their 

design and implementation could benefit greatly from the landscape-scale forest cover and 

degradation change assessment methods presented in this paper. 
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5.6. Appendices  

Table S 5. 1 Confusion matrix at pixel level from the random forests classification for each year based on out-of-bag error. Classification results are the 

columns, and reference categories are the rows. Accuracy refers to the number of correctly classified pixels relative to all reference pixels in that class, 

Reliability refers to the number of correctly classified pixels relative to all pixels classified as that class. Overall accuracy is equal to the number of 

correctly classified pixels with respect to the total number of pixels. 

1975 Forest  

Non-

forest Mangrove 

Cloud/ 

shadow Water 

Palm 

forest 

   

Total Accuracy 

Forest 1978 4 2 0 0 29 

   

2013 0.98 

Non-forest 1 1001 1 1 0 6 

   

1010 0.99 

Mangrove  0 0 912 0 0 0 

   

912 1.00 

Cloud/shadow 0 0 0 2005 0 0 

   

2005 1.00 

Water 0 0 0 0 1000 0 

   

1000 1.00 

Palm forest 15 5 1 0 0 984 

   

1005 0.98 

Total  1994 1010 916 2006 1000 1019 

   

7945 0.99 

Reliability 0.992 0.991 0.996 1.000 1.000 0.966 

     Overall accuracy 

         

7880 0.99 

            

1998 Forest  

Non-

forest Mangrove 

Cloud/ 

shadow Water 

Palm 

forest 

Secondary 

regrowth 

Forest 

plantation 

 

Total  Accuracy 

Forest 1391 1 7 5 0 40 17 6 

 

1467 0.95 

Non-forest 3 678 0 0 0 1 26 1 

 

709 0.96 

Mangrove  8 0 684 0 0 3 0 4 

 

699 0.98 

Cloud/shadow 0 0 0 1381 0 1 0 0 

 

1382 1.00 

Water 0 0 0 0 69 0 0 0 

 

69 1.00 

Palm forest 5 1 10 0 0 687 2 0 

 

705 0.97 

Secondary regrowth 8 8 0 0 0 13 675 2 

 

706 0.96 

Forest plantations  4 0 1 0 0 0 0 689 

 

694 0.99 

Total  1419 688 702 1386 69 745 720 702 

 

6431 

 Reliability 0.98 0.99 0.97 1.00 1.00 0.92 0.94 0.98 

   Overall accuracy 

         

6254 0.97 
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2000 Forest  

Non-

forest Mangrove 

Cloud/ 

shadow Water 

Palm 

forest 

Secondary 

regrowth 

Forest 

plantation 

 

Total Accuracy 

Forest 1582 3 29 1 0 24 21 7 

 

1667 0.95 

Non-forest 0 785 0 0 0 0 20 4 

 

809 0.97 

Mangrove  12 0 791 0 0 2 0 0 

 

805 0.98 

Cloud/shadow 0 0 0 1418 0 0 0 0 

 

1418 1.00 

Water 0 0 0 0 609 0 0 0 

 

609 1.00 

Palm forest 11 0 11 0 0 777 4 0 

 

803 0.97 

Secondary regrowth 10 9 0 0 0 9 778 0 

 

806 0.97 

Forest plantations  8 0 0 0 0 0 2 787 

 

797 0.99 

Total  1623 797 831 1419 609 812 825 798 

 

7714 

 Reliability 0.97 0.98 0.95 1.00 1.00 0.96 0.94 0.99 

   Overall accuracy 

         

7527 0.98 

2014 Forest  

Non-

forest Mangrove 

Cloud/ 

shadow Water 

Palm 

forest 

Secondary 

regrowth 

Forest 

plantation 

Oil palm 

plantation Total Accuracy 

Forest 1551 2 23 22 0 25 6 11 27 1667 0.93 

Non-forest 1 701 0 0 0 1 8 3 0 714 0.98 

Mangrove  2 0 798 0 0 0 0 0 0 800 1.00 

Cloud/shadow 9 0 0 1583 0 0 0 0 1 1593 0.99 

Water 0 0 0 0 68 0 0 0 0 68 1.00 

Palm forest 11 0 0 2 0 777 0 0 4 794 0.98 

Secondary regrowth 7 5 0 0 0 4 776 0 2 794 0.98 

Forest plantations  3 0 0 0 0 0 0 637 0 640 1.00 

Oil palm plantation 25 5 0 0 0 2 2 0 737 771 0.96 

Total 1609 713 821 1607 68 809 792 651 771 7841 

 Reliability 0.96 0.98 0.97 0.99 1.00 0.96 0.98 0.98 0.96 

  Overall accuracy 

         

7628 0.97 
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Table S 5.2 Proportion of forest area change by elevation and slope. 

 Forest cover (ha) 
Forest cover change (%) 

 during periods 

 
1975 2000 2014 

1975- 

2000 

2000-

2014 

1975- 

2014 

 

Elevation (m a.s.l.) 

0-100 9614 7800 9049 -18.9 16 -5.9 

100-200 62 648 53 400 59 127 -14.9 10.8 -5.6 

200-400 45 131 43 652 44100 -3.3 1.0 -2.3 

>400 14 283 14 610 14 612 2.3 0 2.3 

 

Slope (degrees) 

0-5 69 847 59 974 65 614 -14.1 9.4 -6.1 

5-10 22 193 20 851 21 799 -6.0 4.5 -1.8 

10-20 23 336 22 581 23 239 -3.2 2.9 -0.4 

20-30 11 470 11 262 11 396 -1.8 1.2 -0.7 

>30 4574 4520 4541 -1.2 0.5 -0.7 

 

Table S 5.3 Validation results for the disturbance map based on the classification of 157 random 

field data points between degraded forest, which was identified in the field as areas of logged 

forest and secondary regrowth forest, and undisturbed forest, which was identified in the field 

as areas that had not been logged or cleared.  

Classification results 

/Ground truth points 

Undisturbed  

forest  

Degraded  

forest 

 

Total  Accuracy* 

Undisturbed forest  76 29 105 72.4 

Degraded forest  7 45 52 62.5 

Total  83 74 157 

 Reliability** 91.6 60.8  

 Overall accuracy 

  

 77.1 

*Accuracy (producer's accuracy) refers to the number of correctly classified pixels relative to all the pixels of the 

ground points in that class, **Reliability (user's accuracy) refers to the number of correctly classified pixels 

relative to all pixels classified as that class. Overall accuracy is equal to the number of correctly classified pixels 

with respect to the total number of pixels. 
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Table S 5.4 Summary statistics from pre-logging inventory and survey data from the forest 

management plans registered for the period 1997-1999 in the Osa Peninsula, Costa Rica. 

 Mean (+SD) Min Max 

AGB (Mg ha
-1

)§ 142.50 + 61.07 15.07 413.74 

Number trees ha
-1

§ 70.26 + 23.67 26.67 170 

AGB of harvested 

trees (Mg ha
-1

) 
17.45+4.98 9.13 35.52 

Basal Area of 

harvested trees (m
2
 

ha
-1

)*† 

2.07 + 0.56 1.11 4.07 

Number of 

harvested trees ha
-

1
*† 

5.27 + 2.68 0.25 13.16 

AGB of retained 

trees**†(Mg ha
-1

)  
16.19 + 8.34 2.31 63.47 

Basal Area of 

retained trees (m
2
 

ha
-1

)**† 

1.96 + 1.00 0.28 7.62 

Number of retained 

trees ha
-1
*† 

4.77 + 1.79 0.89 10.02 

FMP = forest management plan, each FMP corresponds to a property;
 §
 based on inventory data (trees > 30 cm 

DBH, n = 421 plots); 
* 
harvested trees refers to trees marked for harvesting in the survey; 

**
 retained trees refers 

to the marked as retained in the survey; 
† 
based on FMP pre-logging survey data (trees > 60 cm DBH, n = 79 

FMPs). 

 

Table S 5.5 Comparison of the mean value of the plots located in undisturbed (UF, n = 4) and 

logged (LF, n = 11) forest in the Osa Peninsula, Costa Rica. 

Parameter Mean UF + 

(SD) 

Mean LF + 

(SD) 

t-value d.f. P 

Number of trees >10 

cm DBH ha
-1 

492.5 + 78.0 501.3 + 171.4 0.135 12 0.89 

Number of trees > 30 

cm DBH ha
-1 127.5 + 22.2 121.8 + 55.19 -0.284 13 0.78 

Mean DBH > 10 cm 25.4 + 3.2 25.8 + 5.4 0.150 9 0.88 

Mean DBH > 30 cm
 48.9 + 13.8 48.9+ 8.7 0.001 4 0.99 

BA of trees >30 cm 

DBH (m
2
 ha

-1
) 

37.25 + 13.9 38.4+ 18.5 0.130 7 0.89 
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BA of trees > 60 cm 

DBH (m
2
 ha

-1
) 

18.9+ 24.2 14.7 + 17.8 -0.315 5 0.76 

EAGB (Mg ha
-1

) 278.3 + 128.6 291.8 + 156.1 0.169 7 0.87 

Percentage of EAGB 

in trees > 30 cm DBH
 74.1 + 20.4 71.4 + 20.4 -0.223 5 0.83 

Elevation (m a.s.l.) 317.8 + 166.3 220.3 + 104.9 -1.095 4 0.34 

Slope (º) 31.2 + 30.6 20.36 + 15.57 -0.680 4 0.54 

Canopy cover (%) 89.12+1.7 62.8 + 7.8 -10.470 12 < 0.001
* 

BA = basal area, EAGB = estimated above ground biomass, 
*
 denotes significant difference (P < 0.05) between 

UF and LF. 

 

 

Table S 5.6 Comparison of the mean estimated above-ground biomass (EAGB) from field 

plots with other studies conducted in the region. Piro and La Gamba are within the Osa 

Peninsula.  

Site Basal Area 

(m
2
 ha

-1
) 

EAGB (Mg ha
-1

) Method DBH 

range  

Reference 

Osa region NA 25 - 225 
Remote 

sensing  

 Taylor et al. 

(2015) 

Lowland rainforests  for 

the whole of Costa Rica 
32.4 244 

Field plots  > 10 cm NFI (2015) 

Piro-Friends of the Osa 

reserve 
NA 260 

Field plots   > 10cm Winrock 

(2006) 

La Gamba NA 218.46 ± 29.01 
Field plots ≥ 30 cm Hofhansl et al. 

(2012) 

This study (Osa 

Peninsular) 

37.25 + 13.9 

38.4 + 18.5 

278.3 + 128.6 

(UF) 

291.8 + 156.1 

(LF) 

Field plots > 10 cm  
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Figure S 5.1 Terrain elevation (top panel) and slope (bottom panel) in the study area 

region, as obtained through the Digital Elevation Model (30-m resolution) from the 

Digital Atlas of Costa Rica (ITCR, 2008). 
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Figure S 5.2 Distribution of the forest management plans registered between 1997 

and 1998, and the field plots sampled in July 2013, in the Osa Peninsula.  

 

 

 

Figure S 5.3 Decision tree classifier used to classify the 1998 and 2000 fraction images 

into logged and undisturbed forests based GV (green vegetation). Soil and shadow 

refer to the image endmembers obtained through the linear unmixing analysis.  
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Figure S 5.4 Spatial distribution of the percentage of the total estimated above-

ground biomass (EAGB) of harvested trees (> 60 cm DBH) based on the forest 

management plans registered during 1997-1999 in the Osa Peninsula, Costa Rica.  
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Chapter 6. Synthesis and Conclusions 
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There is a consensus about the difficulty of measuring and monitoring tropical forest 

degradation in comparison with deforestation, particularly with remote sensing, which is 

reflected in most of the literature on this topic (Joseph et al., 2010; Herold et al., 2011; 

GOFC-GOLD, 2013; Goetz et al., 2015). Particular attention has been given to measuring 

and monitoring forest degradation with respect to above-ground biomass (AGB), due to the 

international priority of implementing climate change agreements(Gibbs et al., 2007; 

Tyukavina et al., 2015). Nonetheless, multiple challenges remain in improving 

understanding of the full range of processes that affect AGB dynamics at the scale of human 

modified landscapes and methods to monitor them (Mertz et al., 2012; Birdsey et al., 2013; 

Houghton, 2013; Thompson et al., 2013; Dons et al., 2015). Dealing with these challenges is 

likely to require different approaches to conceptualize forest degradation, and for these 

approaches to be effective in reducing forest degradation they should be clearly linked to the 

type of human activity that is causing it (Skutsch & Balderas-Torres, 2012; Salvini et al., 

2014). 

The research presented in this thesis aimed to address these challenges from a technical 

perspective, by characterizing the spatial and temporal patterns of the extent of forest 

degradation at a landscape scale in relation to disturbance caused by shifting cultivation and 

logging. This study analysed forest degradation with respect to the disturbance agents, rather 

than limiting its analysis to the quantification of carbon stocks. Overall my research has 

substantially advanced methodology to use remote sensing to evaluate landscapes 

continuously subject to the degradation processes of grazing, fuelwood collection and small-

scale logging. This topic has previously been neglected in the literature. My method to 

evaluate the impacts of selective logging through the use of historical logging information in 

order to provide a landscape-scale approach is an innovative new contribution to the 

assessment of degradation in tropical moist forests. I hope that this research will contribute 

to a far more comprehensive discussion of how best to integrate evaluation of the specific 

effects of different types of disturbance into the monitoring of tropical forest degradation in 

the socio-ecological landscapes. Such a discussion should be based on three elements: 

monitoring aims, current ecological knowledge and available data sources, which I sought to 

integrate in the methodology developed in this study. 

In this chapter, I refer to the main findings of the preceding chapters and discuss their 

combined significance for future research directions and for policy formulation, particularly 

in relation to carbon mitigation schemes and tropical forest conservation. I reflect  as well on 

some the limitations of the research. 



 

180 

6.1.  Use of benchmarks as a way of bridging the gap between policy and 
ecological science to measure tropical forest degradation 

 

Carbon mitigation schemes have tended to define forest degradation as a loss of forest 

biomass below a reference condition (Cadman, 2008; Simula, 2009; FAO, 2011). Clearly, 

such an approach responds to a carbon-trading perspective, which attempts to deal with 

tropical forest carbon and other ecosystem services as a commodity. This has transformed 

the concept of forest degradation, fabricating the term within a geo-political context 

specifically related to climate mitigation, drawing attention away from the original 

ecological context, in which changes in forest ecosystems arising from anthropogenic 

disturbances were studied (Chazdon et al., 2007). This discrepancy between the political and 

ecological dimensions of forest degradation is what motivated Chapter 2 of this thesis. 

In Chapter 2, a detailed literature-based analysis of the technical and political capabilities 

of assessing forest degradation was carried out, using Mexico as an example. Mexico, in 

contrast to most other tropical countries, has much better developed forest monitoring 

systems and institutional frameworks to assess forest resources (Bucki et al., 2012; Skutsch 

et al., 2013). Nonetheless, my analysis concluded that there is limited capacity to assess 

forest degradation in the country. Therefore, recognizing the limitations in the potential to 

detect forest degradation with available remote sensing data, and that there is a lack of 

historical biomass data in most developing countries for setting reference levels (Skutsch et 

al., 2011; Olander et al., 2012), in Chapter 2 I advocated the use of local benchmarks as a 

quick-start option to measure forest degradation. Local benchmarks refer to undisturbed 

areas or areas with minimum human intervention that represent the potential AGB against 

which to compare, in order to establish levels of forest degradation, within landscapes which 

have comparable biophysical characteristics. 

One potentially cost-effective solution to the setting of benchmarks, that I proposed on 

the basis of this research, is to base them on the disturbance history of the area. In the case of 

the shifting cultivation TDF landscapes used as an example in Chapter 2, the stand age, 

defined as the number of years since an area was cleared for the last time, was used as an 

explanatory variable for AGB, as it has been observed that it is a strong predictor of biomass 

in other TDF (Laurance, 2005; Kauffman et al., 2009; Dupuy et al., 2012; Aryal et al., 2014; 

Becknell & Powers, 2014). The analysis based on land-use history of TDF within two 

elevation gradients (Fig. 2.1) showed that there is a high degree of overlap between 

degradation levels that are adjacent in the classification. This supports the widely 

acknowledged finding that multiple factors control/determine AGB in TDF (Kauffman et al., 
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2003; Baker et al., 2004; Poorter et al., 2016). Some of these factors are related to the 

current use that communities make of the TDF resources, which are further explored in 

Chapter 4, where a strong correlation (r = -0.62, P < 0.001) was found between AGB and 

indicators of cattle grazing, logging and fuelwood collection. These findings, on the one 

hand, support the possibility of using the least disturbed areas in the TDF landscape (those 

with the lowest levels of disturbance indicators) as a reference against which to measure 

forest degradation. On the other hand the findings also showed that setting local benchmarks 

in tropical forest landscapes is a complex process. Within the site of my study all of the plots 

had some degree of disturbance, including low biomass values in many of the least disturbed 

plots. The AGB values for undisturbed TDF reported in the literature, along with the 

measured in situ indicators, suggested that the use of these least disturbed plots as 

benchmarks will imply setting the reference level below that which it could be (for truly 

undisturbed forest). Therefore, as in the case of this study, the nearest examples of 

undisturbed forest that are suitable for use as a reference may be a considerable distance 

away, and therefore stretch the definition of local. This raises more questions, and as 

explained below the need for further research.  

These analyses illustrate the complex reality that tropical forests are inherently dynamic 

systems that lose and gain biomass constantly (Attiwill, 1994; Cole et al., 2014; Ghazoul et 

al., 2015), and that AGB is influenced by a series of environmental, biophysical and 

disturbance-history related factors that are not well understood, including unexplained 

variation (Chazdon et al., 2007; Asner et al., 2008; Norden et al., 2015). They also show that 

AGB variability within landscapes is large (as shown for example in Fig. 2.2 and Fig 5.8 c) 

(Chave et al., 2003; Mitchard et al., 2013) and as a result it is difficult to detect changes in 

biomass due to management interventions. The few studies that have attempted long-term 

monitoring of changes in estimated biomass using permanent plots in the context of carbon 

emissions reduction, e.g. Chidumayo (2013), have shown that changes tend to fall within the 

uncertainty limits of the estimates. However, policy design tends to overlook these realities 

in its simplification of the definition, measurement and monitoring of forest degradation to a 

carbon accounting approach. By failing to quantify and monitor losses of AGB more 

precisely, this simple accounting approach risks a failure to detect the changes in carbon 

stocks that do result from successful interventions designed to avoid forest degradation. 

Given the high uncertainty range of biomass accounting (Avitabile et al., 2012; Langner et 

al., 2012), such subtle changes will often go unnoticed. As a result the opportunity for new 

sources of funding (Venter & Koh, 2012) linked to avoided forest degradation that could be 

used to enhance tropical forest ecosystems and improve livelihoods will be lost. To avoid 

this, consistent, yet simple, protocols, to define and measure forest degradation within 
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countries, such as the benchmark approach presented here, need to be developed further, and 

included within policy frameworks, acknowledging the several limitations of such an 

approach. Then, basing carbon accounting on biomass losses or gains becomes more 

reasonable and less isolated. This approach has the potential to improve equitability and 

long-term sustainability, as the socio-economic dimension of natural resource utilization and 

ecological characteristics of forests need to be incorporated in order to decide on benchmarks 

and to identify the management alternatives that create least risk of forest degradation. 

6.2.  The measurement of forest degradation should be guided by the spatial 
and temporal scales 

 

The study of the patterns of shifting cultivation landscapes in western Mexico presented 

in Chapter 3 provided evidence of the importance of conceptualizing forest degradation as a 

landscape process, instead of limiting it to a stand level process or analyzing it only at a 

national scale. By using high spatial resolution data (10 x 10 m), I found similar amounts of 

TDF clearance and regrowth over the study period, both at a regional and at a community 

level. This may indicate indirectly that at the landscape level no net carbon emissions are 

being produced if emissions due to clearance are offset by secondary regrowth. This implies 

that the estimated carbon balance of the landscape would be very different if such an analysis 

is carried out at different spatial and temporal scales. At lower spatial resolutions (> 30 m), 

which are normally used for mapping forest cover at national and global levels, clearings due 

to shifting cultivation (approximately 2 ha) will not be detected and are therefore are ignored 

in the overall carbon budget. 

In areas where small-scale agriculture is the predominant form of land use, cycles of 

forest clearance and regrowth are a major component of the uncertainties in the overall 

carbon budget (Defries et al., 2002; Houghton, 2012; Pelletier et al., 2012b) and create 

challenges for setting baselines (Grainger, 2008). Two recommendations for monitoring can 

be derived from my research to detect small clearings and regrowth that was reported in 

Chapter 3. Firstly, to fully capture the dynamics of forest degradation occurring due to 

shifting cultivation, assessments should be made at the landscape level, or at the 

management unit level, and to achieve consistent results the limits should be clearly defined. 

Secondly, to improve monitoring of forest cover and consequently of activity data, there is a 

need for spatially explicit linkage of coarser estimations of clearance-regrowth done at 

national or even global scales, with those obtained locally using higher spatial resolution. 
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Similar considerations apply to assessment of the impacts of selective logging. Carbon 

emissions from selective logging clearly vary depending on the temporal and spatial scales 

that are used in the carbon accounting. In Chapter 5 I found that the area affected by logging 

compromises a substantial proportion of the studied landscape (approx. 18%), however the 

field data suggested , despite the small sample size, that AGB had recovered in the 

approximately 15 years since logging was carried out. As discussed in chapter 5, other recent 

studies provide evidence that the time required for tropical forests to recover their AGB will 

vary depending on the logging intensity. Under most common timber extraction rates, 

recovery of AGB will take between more than decade and 75 years (Rutishauser et al., 

2015). After the first decade logged areas generally become a carbon sink (Blanc et al., 

2009; Gourlet-Fleury et al., 2013), suggesting that assessed over a sufficient temporal and 

spatial scale forest subject to selective logging could even be carbon neutral. However, this 

will vary depending on the spatial unit used as the basis for the carbon accounting. Given 

that the effect of spatial scale has received relatively little attention in the context of carbon 

emissions from selective logging there is no basis for a more detailed evaluation of the 

specific effects of the scale of evaluation on the results of the carbon accounting. This issue 

is therefore a priority for future research, e.g. to compare the relative net emissions (and 

other environmental impacts) resulting from low intensity logging carried out over a wide 

area with those from higher intensity logging carried out in smaller areas (Healey et al., 

2000; Edwards et al., 2014b)  

These findings raise the difficult question of what is the appropriate scale for monitoring 

the dynamics of carbon stocks for REDD+ projects, or other payment for ecosystem services 

schemes. Firstly, the appropriate scale should be directly linked to the type of disturbance 

activity that has been causing carbon emissions. Secondly, the scale should be appropriate 

for the detection of change, which is clearly limited by data availability. Thirdly, any 

incentive program should considered explicitly the constraints on efficient monitoring of 

outcomes due to practical limitations of the temporal and spatial resolution at which change 

can be measured. 

6.3.  Disturbance type and data availability as limiting factors for methods 
to monitor the extent of forest degradation 

In this study I evaluated, both at the ground level and with remote sensing, the 

detectability of the area of degraded forest in two different ecosystem types. Despite the 

context of the two analyses being different, some general conclusion can be drawn. The 

performance of remote sensing in monitoring forest degradation seems to be higher for moist 

forest than for dry forests. While in moist forest mapping degraded areas based on historical 
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information, achieved a relatively high accuracy (Chapter 5); the remote sensing analysis of 

dry forests presented in Chapter 4 achieved only limited success. This suggests that in dry 

forest ground-level measurements might play a more important role than purely remote 

sensing-based methods, and therefore monitoring of forest degradation might benefit from 

more indirect approaches (as further discussed in 6.4 below). However, this situation might 

change in the near future for dry forests, as better data become available enabling multi-

temporal analyses to be made using reliable field data on carbon stocks. Nonetheless, remote 

sensing and ground measurements should not be seen as separated competing monitoring 

systems but as complementary ones (Herold et al., 2011; Birdsey et al., 2013; Tokola, 2015).  

Analyzing the above-mentioned findings in a broader context, and from a practical 

perspective, the definition and capacity to monitor tropical forest degradation is to a great 

extent determined by the type of disturbance, and this affects how forest degradation is 

defined. The majority of the research on forest degradation had focused on moist forests, 

mostly analyzing discrete disturbance events, in particular logging (De Sy et al., 2012; Dons 

et al., 2015; Goetz et al., 2015). This is despite the suggestion that the area of dry forests that 

are degraded could be greater than the area affected by logging in moist forests (Herold et 

al., 2011). While it is possible to use historical satellite data to establish baselines or 

reference conditions in moist forests, as I did in Chapter 5, my results in dry forest and other 

recent work suggest (Ryan et al., 2012; Dons et al., 2015), that this is not the case in that 

biome . 

The more gradual and persistent changes that characterize forest degradation in TDF are 

difficult to relate to a specific date in order to compare with any available satellite data. 

Thus, in the case of TDF, gathering information on the current state in order to set a 

reference condition, as I carried out in Chapter 4, seems to be of the utmost important. 

Although having a series of generic guidelines for measuring forest degradation in all types 

of forest for all types of disturbances (e.g. FAO 2011) would be ideal as a basis for 

comparison between forest types, and to maximise credibility amongst stakeholders, this is 

not yet possible with current knowledge and technology. In the meantime, monitoring 

methods that are feasible and achieve sufficient accuracy to meet their purposes will need to 

be fitted to the characteristics of each biome and critically assessed before being used for any 

comparison between systems. 
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6.4. The use of alternative methods to measure forest degradation that are 
linked with the type of disturbance  

 

The difficulties of detecting changes in tropical forests AGB with enough precision 

(Chidumayo, 2013; Aryal et al., 2014; Cartus et al., 2014; Marvin & Asner, 2016), 

motivated my research into understanding which factor and/or indicators can link, 

simultaneously, biomass and management practices in an area, as a potentially efficient 

solution to monitor forest degradation. The research presented in Chapters 3 and 4 explores 

this idea for TDF. In Chapter 3, I found that the use of forest resources by communities, 

along with socio-economic and biophysical factors, can predict the changes in forest cover 

related to shifting cultivation systems, which I used as a proxy of forest degradation in TDF. 

One of the main drivers of forest degradation in this study site was the degree of 

marginalization, which is a measure of the socioeconomic level of a community. Another 

important factor was the amount of forest area available for each person in the community, 

and to a lesser extent the amount of livestock and of fence posts harvested. In particular, the 

community’s socioeconomic level will have an effect on the dependency or use that it makes 

of forest resources. This suggests that highly marginalized communities will rely more on 

shifting cultivation, while also using the forest as a source of fuelwood and land for livestock 

grazing. Therefore, at the community level, measuring these factors might be an efficient 

way to monitor forest degradation once projects are implemented that can complement field 

inventories and remote sensing analysis (Skutsch, 2011; Skutsch & Balderas-Torres, 2012). 

The importance of the use of forest resources by communities is further explored in 

Chapter 4. In this Chapter the relationship is explored between forest attributes and 

indicators of state that are linked with the use of forest for livestock grazing, as a source of 

fuelwood and for building materials. A series of ecologically meaningful indicators that can 

be associated with disturbance process, such as the percentage of small and large stems, and 

the type and quantity of ground cover, were combined and correlated with the estimated 

actual AGB and potential AGB of the area. This provided evidence that supported the utility 

of in situ indicators that are easy to measure for the monitoring of forest degradation in TDF. 

Taken together these in situ indicators provide an assessment of the disturbance intensity of 

an area and how this has affected the AGB. Although I recognized that repeated 

measurements as part of longer monitoring efforts are needed to come to definitive 

conclusions; in the case of the TDF of the Ayuquila Watershed, indicators related to the 

impact of livestock seem to be the most important to monitor, especially the cover of bare 

soil and the density of small stems. 
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Taken together these findings have interesting implications for policy design, since they 

suggest that it will be advantageous and feasible to design monitoring protocols that directly 

measure the use of forest resources as an alternative and/or complementary measures to the 

time-consuming and costly process of measuring AGB using forest inventories (Böttcher et 

al., 2009; Birdsey et al., 2013). Countries are encouraged to use monitoring systems that are 

most appropriate to their national circumstances (Mora et al., 2012). For countries with large 

areas of TDF this represents a major challenge, since disturbances in TDF tend to be gradual 

and persistent, thus there is little information on their effects on AGB and consequently 

designing monitoring efforts, or establishing any type of baseline, is difficult (Kalacska et 

al., 2008; Dons et al., 2015). In this regard, protocols that collect data on the disturbance and 

management of an area, such as the one presented in Chapter 4, will provide much needed 

information for detecting the effect of project activities implemented for REDD+, and in 

identifying which interventions have the biggest impact on AGB or other forest attributes. In 

this way, including indicators related to disturbance and management represent an efficient 

way to assess degradation in TDF where changes in AGB between measurements tend to be 

small, often within a wide uncertainty range (Ryan et al., 2012; Chidumayo, 2013). They 

will provide the evidence needed to link any changes in AGB to management and therefore 

justify any carbon payment. 

To make the use of disturbance indicators in forest monitoring more cost-effective, a 

possible way forward could be to perform complete forest inventories, including information 

on disturbance indicators on a set of field plots. In order to increase the sampling area 

measurement of just disturbance indicators could also be made in a larger set of plots. This 

sampling effort could greatly benefit from involving communities in the monitoring (Skutsch 

et al., 2011; Pratihast et al., 2013), as discussed below. If communities are involved, not only 

can this reduce costs but it can also potentially improve management as communities could 

identify activities that are degrading their forests (Skutsch et al., 2013). For the latter purpose 

indicators related to activities such as livestock grazing or fuelwood collection are likely to 

be easier to understand than more abstract concepts as biomass (Skutsch et al., 2015). 

6.5. Multi-temporal analysis as a way to define forest strata and to guide 
carbon accounting in the landscape 

 

The results of multi-temporal analysis of cover with remote sensing data in dry and moist 

forest presented in Chapters 3 and 5 respectively have important applications for evaluating 

the heterogeneity found within landscapes and for developing stratification systems that can 

assist with better monitoring of forest resources. In Chapter 5 specifically, I found that 
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through the combination of long time series of medium-resolution satellite data with 

historical sources of data on logging concessions it was possible to distinguish degraded 

forests from undisturbed forest within the landscape with a 77% accuracy (Fig. 5.5). A 

potential application of these result is to use the determined areas of degraded and 

undisturbed forest as strata for future assessment of forest resources and to derive the activity 

data for degraded areas. 

To monitor forest degradation at the landscape level, it would be ideal to map using 

remote sensing, the areas that are expected to be gaining carbon and those losing carbon due 

to human activities, and those that are not affected. Such an approach would allow the 

application of the IPCC’s carbon stock accounting methods to estimate the effects of forest 

degradation which, as far as I know, has not previously been achieved. Therefore, using 

multi-temporal analysis as input for the stratification can offer an approximation to this, 

mainly because it is incorporating information on disturbance processes (Mohren et al., 

2012). In the case of the Osa Peninsula moist forest study area, the combination of change 

detection analysis to determine areas of secondary regrowth and the mapping of logging 

activity based on the management plan records allowed the determination of the areas within 

the forest that are in a recovery phase and therefore presumably sequestering carbon. It also 

allowed the differentiation, to a great extent, of undisturbed areas that can be considered 

comparatively 'stable' in terms of carbon, because their carbon gains or losses will be linked 

only to natural processes. Similarly, the detailed mapping of shifting cultivation in TDF 

landscapes that was presented in Chapter 3 can be used to define strata. The detection of the 

areas that have undergone shifting cultivation can be used to define the areas that are gaining 

carbon, as well as those that are losing carbon, due to human activities. 

Defining land cover strata can be very important, particularly if default values are being 

used to establish the amount of carbon that is present per land cover class (as specified in the 

IPCC Tier 1 approach to emission estimation (Pearson et al., 2005; GOFC-GOLD, 2013; 

Langner et al., 2014)). Refining these land cover classes can potentially increase accuracy, 

but a default value for this needs to be determined accordingly (Gibbs et al., 2007; Langner 

et al., 2014); for this the use of half of the total forest carbon stocks found in undisturbed 

areas has been proposed by Mollicone et al (2007) and Bucki et al. (2012). The use of strata, 

however, is really an (over-) simplification of the heterogeneity revealed by the spatial 

variability of the AGB that is seen on the "ground" throughout a landscape. For instance, the 

results obtained from the field plots in logged and undisturbed forests in Chapter 5, contrary 

to my expectations, showed similar values of the measured forest attributes (Fig. 5.8), 

suggesting that the logged forest has already recovered after approximately 15 years and that 

these two strata are not different enough to be usefully distinguished. This result must, 
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however, be treated with considerable caution because of the limited number of plots, along 

with potential problems of spatial autocorrelation that are commonly reported in 

comparisons between logged and undisturbed forests (Ramage et al., 2013). The spatial 

variability in the distribution of harvested trees (Fig S 5.4) and in the AGB estimated from 

the pre-logging inventories (Fig. 5.6) suggests that there is actually a large range of variation 

in the state of the forest across the Peninsula since the logging intensity was much higher in 

some areas than in others. 

6.6.  A retrospective look at categorizing forest as degraded 

As discussed in several parts of this thesis, defining tropical forest degradation is 

extremely problematic (Putz & Redford, 2010). Thus, it has even been argued that due to this 

difficulty no definition is needed (Guariguata et al., 2009; Goetz et al., 2015)or that no forest 

that is able to recover without human intervention should be classified as degraded (Ghazoul 

et al., 2015). All these arguments have validity in many respects. Once the degradation 

process stops, the inherent resilience of tropical forests means that tree biomass and cover 

will recover, though the rate is highly dependent on the intensity of the disturbance 

(Kauffman et al., 2009; d’Oliveira et al., 2011; Rutishauser et al., 2015). Where the soil and 

sources of tree propagules have remained sufficiently intact the recovery could be relatively 

rapid (e.g. over one or two decades) (Chazdon, 2003; Chazdon et al., 2016). Therefore, the 

categorization of a forest as degraded or not degraded will be highly dependent on when the 

assessment of the state of a forest is carried out, if the criteria used is restricted to AGB. This 

is particularly evident for logging, where there is usually a discrete identifiable disturbance 

event. In this case, whether a forest is classified as degraded is likely to depend on whether 

the assessment is made shortly after timber was harvested or a decade later (Putz & Romero, 

2015). As an example, the results presented in Chapter 5 of my assessment showed similar 

AGB values between plots in forest logged 15 years previously and unlogged forest, despite 

my small sample and plot size. This assessment suggests that AGB did recover quickly after 

logging, and some stakeholders would therefore consider that these forests should not be 

classified as degraded. 

Such grey areas are inherent when we try to apply a purely ecological-biophysical 

definition to categorize forest degradation. Thus, given that production of timber from 

tropical forest is going to continue over large areas (Blaser et al., 2011; Putz & Romero, 

2015), and the difficulties of establishing clear guidelines to operationalize forest 

degradation (discussed in detail in Chapter 2), incorporating a forest spatial planning and 

management perspective in the categorization of degraded forests might be a sensible and 

pragmatic path to move this issue forward. There is substantial evidence that under certain 
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logging practices (e.g. reduced impact logging) loss of carbon stocks is only temporary 

(Miller et al., 2011; Putz et al., 2012) and that its extent and duration can be estimated with 

reasonable accuracy (Griscom et al., 2014; Pearson et al., 2014). Therefore, within the 

context of carbon markets, payments can be allocated based on the desired management 

outcomes that could be predicted with reasonable certainty, supported by the use of a 

benchmark approach (i.e. comparing areas under improved management against areas that 

are not managed). Outcomes of alternative forms of forest management should be assessed 

considering spatial aspects of planning as well as the management practices. Integrating this 

information into monitoring systems, such as that developed in Chapter 5, could help in 

systematic planning of when, how and where logging is carried out. This should enable a 

clear distinction to be made between sustainable forest management (as a well-planned land 

use) and forest exploitation that results in degradation. 

6.7. Limitations of the study and suggestions for future research 

6.7.1.  Limitations 

 

In my research two main limitation are found. First in chapter 4, a limitation of the 

analysis was that, the closest available site with a suitable area of comparable undisturbed 

forest was located 150 km away from the study site. This selection of the comparator site 

was based on the best available data of the distribution in the region of intact forests of the 

study type (western Mexico TDF). For this selection it was necessary for the site to have a 

well-documented history, so there was certainty that the forest was undisturbed and had well 

documented (and peer reviewed) measurement of its AGB. Even though the selected 

comparator site had similar bio-physical characteristics to my study area, it would have been 

preferable if it had been much closer, to provide a genuinely local value for potential forest 

AGB. In this respect, further research is needed on the criteria use to select benchmarks and 

their effects, and how big the contribution of distance is as a source of error. It will be 

particularly valuable to focus research efforts on modelling approaches that could evaluate 

potential AGB under different management scenarios and environmental characteristics, and 

use this to set benchmarks at a local level. Future availability of AGB estimates from new 

planned satellites (Goetz et al., 2015) could support such modelling approaches and 

consequently the approach of using local benchmarks of least-disturbed forest, as advocated 

in this study.  

The second limitation is the sample number and plot size used to evaluate forest recovery 

after logging. As discussed in Chapter 5, one limitation of that study was that the field 
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assessment of recovery from logging was based on very few plots of inadequate size. Future 

work to evaluate the state of forest resources in the Osa Peninsula should use a much larger 

number of larger plots distributed across the peninsula. The spatial analysis of degraded 

areas presented in Chapter 5 would be of value to guide the sampling design for such a future 

forest inventory. 

6.7.2. Recommendations for future research 

 

Given the complexity of factors that interact to determine the distribution of AGB, and 

the widespread occurrence of forest degradation, particularly in TDF, there is a clear need 

for effective forest monitoring, which is likely to involve repeated field inventories over 

large areas. A cost-effective way to collect such information on AGB and disturbance-related 

indicators, such as the ones that I tested in Chapter 4, is through the involvement of 

communities in the monitoring process (Skutsch et al., 2011; Larrazábal et al., 2012). While 

substantial recent work has demonstrated the utility and benefits of involving communities in 

forest monitoring, and its importance in the context of REDD+ has been discussed 

(Danielsen et al., 2011), the integration of local community- (or any other citizen-science-) 

based monitoring into national monitoring has not, as far as I know, been properly addressed. 

Therefore, the design of monitoring systems that can successfully link the information 

collected by communities at the local project or subnational scale , with national scales at 

which reporting to the UNFCCC process occurs remains a major challenge (Skutsch & 

Balderas-Torres, 2012). The collection and analysis of more data over larger areas would 

enable better calibration and validation of remote sensing models, which may be key to the 

integration of local, sub-national and national scales of assessment. Therefore, this is a 

priority for future research. 

With the availability of higher resolution satellite images (in particular the 10 x 10 m 

resolution of Sentinel-2) that allow the crowns of individual trees to be distinguished, are 

acquired with a higher frequency, and are free, will enable improvements in local-scale 

models. Specifically, it will be possible to develop models, similar to the one I presented in 

chapter 3, to predict the likelihood of change in tree cover and the density of trees. Other 

approaches that need to be tested with higher resolution data include the feasibility of 

developing models that link canopy gaps caused by logging activity and (short-term) AGB 

loss. Thus development of methods that can improve the linkage between the location of 

AGB loss across the landscape and the location of human activities, making use of newly 

available satellite data, is also a priority for future research. 
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Methodology to assess forest degradation would be improved by better methods to 

stratify forest landscapes by AGB, with the aim of refining benchmark reference values for 

undisturbed areas. In the last five years many tropical countries that are implementing 

REDD+ have developed, or are developing, national forest inventories (Mora et al., 2012; 

Tokola, 2015). This will make it feasible to estimate emissions more accurately by 

determining activity data for degraded forests through methods similar to the ones developed 

in this thesis, in combination with default values of AGB for the different strata (Langner et 

al., 2014). Therefore, more work is needed on analyzing the spatial variability of AGB in the 

different strata at different scales and also on determining benchmark reference values. 

More research effort should be focused on the effects of combined disturbances, 

particularly in TDF, in areas that are actively used by communities. Such research is difficult 

to carry out since many factors (e.g. the number of livestock) cannot easily be controlled, but 

is clearly needed for designing effective interventions to reduce forest degradation. 

Finally, now that REDD+ has been implemented on the ground for more or less five 

years, this provides a valuable opportunity for comparative analysis on the definitions of 

forest degradation that projects/countries that are being used, as well as how it is being 

measured by different projects/countries are measuring it. 

6.8. Final comments on the capacity to monitor forest degradation in the 
context of REDD+ 

 

In the context of REDD+ projects, it is possible that monitoring requires reframing to 

enable development and application of methods that are more precise, pragmatic and 

produce more consistent results through time. It is expected that technological improvements 

will solve, or at least make a substantial contribution to, the need for an accurate accounting 

method for carbon emissions. This may make an important contribution to increasing 

investment in forest-based emissions reduction projects through carbon market mechanisms. 

Even if technological advances improve the accuracy of carbon stock and emissions 

estimates in the near future, the cost and feasibility of applying such new technologies at 

project and regional levels still needs to be seen (Böttcher et al., 2009; De Sy et al., 2012). 

Appropriate methods to deal with generation of reference or baseline data will remain an 

additional challenge. 

It has recently been suggested that the planned new satellites will enable direct 

operational monitoring of AGB, and that such monitoring will be independent of any 

definition of forest and/or forest degradation (Goetz et al. 2015). While it is true that 
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improvements in AGB estimation will be important, this does not address the root of the 

problem, which relates to understanding the causes and/or factors that account for the 

temporal and spatial variation of AGB in tropical forest landscapes, and how to counteract 

the most important causes of forest degradation.  

The context of current international REDD+ policy dictates that payments will be made at 

the national level. However, countries have the right to decide what type of activities will be 

included in REDD+ and how they will evaluate performance of those activities. 

Furthermore, countries are encouraged to develop monitoring systems that are appropriate 

for their particular circumstances and sub-national monitoring systems are acceptable 

(UNFCCC 2010). This is where the methods presented in this thesis can make an important 

contribution, by providing alternative approaches for countries to evaluate the state of their 

forest resources, that take into consideration previous use of the forest. 

Combining conditionality with equitability in local REDD+, or other payment for 

ecosystem services schemes, depends on sufficiently accurate monitoring methods to allow, 

for instance, a positive change of X Mg of carbon stocks in a pixel to be translated into a 

payment to a community at the local level. Of even more importance for communities in 

poverty, would be the reliability of negative carbon stock change evidence used to justify 

depriving them of an expected payment following their forest management actions that 

caused an opportunity cost to the community. Solving this is a complex issue that requires an 

interdisciplinary perspective to be used in monitoring tropical forests. This could be key to 

reduce the gap between science and policy. 

Although it is challenging, to overcome forest degradation and restore the ecosystem 

services delivered by tropical forest landscapes, the effects that the different causes of forest 

degradation have on forest ecosystem structure and processes needs to be better 

characterized. Therefore, advances on the methods currently available for the assessment of 

forest degradation are urgently needed. I have made new contributions to conceptualizing 

'degraded tropical forests' within the context of the monitoring required for carbon emissions 

mitigation schemes, to the process of determining, measuring and monitoring forest 

degradation with remote sensing techniques, and to establishing a link between human 

activities and the state of forest resources. Forest degradation is an extremely complex topic 

that is full of unresolved questions, contradictory perspectives and a diversity of expectations 

by different stakeholders. However, it is important not to lose within all this complexity the 

main objective of improving the state of tropical forest landscapes. 

 



 

193 

R EF ER EN C ES   

Achard F, DeFries R, Eva H, Hansen M, Mayaux P, Stibig H-J (2007) Pan-tropical monitoring 

of deforestation. Environmental Research Letters, 2, 45022. 

Ahrends A, Burgess ND, Milledge SAH et al. (2010) Predictable waves of sequential forest 

degradation and biodiversity loss spreading from an African city. Proceedings of the 

National Academy of Sciences of the United States of America, 107, 14556–61. 

Alencar A, Asner GP, Knapp D, Zarin D (2011) Temporal variability of forest fires in eastern 

Amazonia. Ecological Applications, 21, 2397–2412. 

Alencar AA, Brando PM, Asner GP, Putz FE (2015) Landscape fragmentation, severe drought, 

and the new Amazon forest fire regime. Ecological Applications, 25, 1493–1505. 

Algeet-Abarquero N, Sánchez-Azofeifa A, Bonatti J, Marchamalo M (2014) Land cover 

dynamics in Osa region, Costa Rica: secondary forest is here to stay. Regional 

Environmental Change, 1–12. 

Álvarez-Yépiz JC, Martínez-Yrízar A, Búrquez A, Lindquist C (2008) Variation in vegetation 

structure and soil properties related to land use history of old-growth and secondary 

tropical dry forests in northwestern Mexico. Forest Ecology and Management, 256, 355–

366. 

Angelsen A, Brockhaus M, Sunderlin WD, Verchot L V (eds.) (2012) Analysing REDD+: 

Challenges and choices. CIFOR, Bogor, Indonesia. 

Angelsen A, Rudel T (2013) Designing and implementing effective REDD+ policies: a forest 

transition approach. Review of Environmental Economics and Policy, 7, 91–113. 

Arroyo-Mora JP, Sanchez-Azofeifa GA, Kalacska M, Rivard B, Calvo-Alvarado JC, Janzen DH 

(2005) Secondary forest detection in a neotropical dry forest landscape using Landsat 7. 

Biotropica, 37, 497–507. 

Arroyo-Mora J, Svob S, Kalacska M, Chazdon R (2014) Historical patterns of natural forest 

management in Costa Rica: the good, the bad and the ugly. Forests, 5, 1777–1797. 

Aryal DR, De Jong BHJ, Ochoa-Gaona S, Esparza-Olguin L, Mendoza-Vega J (2014) Carbon 

stocks and changes in tropical secondary forests of southern Mexico. Agriculture, 

Ecosystems and Environment, 195, 220–230. 

Asner GP, Keller M, Pereira R, Zweede JC (2002) Remote sensing of selective logging in 

Amazonia. Remote Sensing of Environment, 80, 483–496. 

Asner GP, Knapp DE, Broadbent EN, Oliveira PJC, Keller M, Silva JN (2005) Selective 

logging in the Brazilian Amazon. Science, 310, 480–2. 

Asner GP, Hughes R., Varga TA, Knapp DE, Kennedy-Bowdoin T (2008) Environmental and 

biotic controls over aboveground biomass throughout a tropical rain forest. Ecosystems, 

12, 261–278. 

Asner GP, Rudel TK, Aide TM, Defries R, Emerson R (2009) A contemporary assessment of 

change in humid tropical forests. Conservation Biology, 23, 1386–1395. 

Asner GP, Powell GVN, Mascaro J et al. (2010) High-resolution forest carbon stocks and 

emissions in the Amazon. Proceedings of the National Academy of Sciences of the United 

States of America, 107, 16738–42. 

Asner GP, Mascaro J, Anderson C et al. (2013) High-fidelity national carbon mapping for 

resource management and REDD+. Carbon Balance and Management, 8, 7. 

Attiwill PM (1994) The disturbance of forest ecosystems: the ecological basis for conservative 



 

194 

management. Forest Ecology and Management, 63, 247–300. 

Avitabile V, Baccini A, Friedl MA, Schmullius C (2012) Capabilities and limitations of Landsat 

and land cover data for aboveground woody biomass estimation of Uganda. Remote 

Sensing of Environment, 117, 366–380. 

Baker T, Phillips O, Malhi Y et al. (2004) Variation in wood density determines spatial patterns 

in Amazonian forest biomass. Global Change Biology, 10, 545–562. 

Baker TR, Jones JPG, Rendón Thompson OR et al. (2010) How can ecologists help realise the 

potential of payments for carbon in tropical forest countries? Journal of Applied Ecology, 

47, 1159–1165. 

Balvanera P, Aguirre E (2006) Tree diversity, environmental heterogeneity, and productivity in 

a Mexican tropical dry forest. Biotropica, 38, 479–491. 

Balvanera P, Lott E, Segura G, Siebe C, Islas A (2002) Patterns of β-diversity in a Mexican 

tropical dry forest. Journal of Vegetation Science, 13, 145. 

Banda-R K, Delgado-Salinas A, Dexter KG et al. (2016) Plant diversity patterns in Neotropical 

dry forests and their conservation implications. Science, 353, 1383–1387. 

Bannari A, Asalhi H, Teillet PM (2002) Transformed difference vegetation index (TDVI) for 

vegetation cover mapping. In: International Geoscience and Remote Sensing Symposium, 

pp. 3053–3055. 

Barbier N, Couteron P, Proisy C, Malhi Y, Gastellu-Etchegorry JP (2010) The variation of 

apparent crown size and canopy heterogeneity across lowland Amazonian forests. Global 

Ecology and Biogeography, 19, 72–84. 

Barlow J, Parry L, Gardner TA et al. (2012) The critical importance of considering fire in 

REDD+ programs. Biological Conservation, 154, 1–8. 

Barlow J, Lennox GD, Ferreira J et al. (2016) Anthropogenic disturbance in tropical forests can 

double biodiversity loss from deforestation. Nature, 535, 144–7. 

Barrantes G, Jiménez Q, Lobo J, Maldonado T, Quesada M, Quesada R (1999) Evaluación de 

los planes de manejo forestal autorizados en el periodo 1997-1999 en la Península de 

Osa. Cumplimento de normas técnicas, ambientales e impacto sobre el bosque natural. 

Fundación Cecropia: San José, Costa Rica, 94 pp. 

Becknell JM, Powers JS (2014) Stand age and soils as drivers of plant functional traits and 

aboveground biomass in secondary tropical dry forest. Canadian Journal of Forest 

Research, 44, 604–613. 

Becknell JM, Kissing Kucek L, Powers JS (2012) Aboveground biomass in mature and 

secondary seasonally dry tropical forests: A literature review and global synthesis. Forest 

Ecology and Management, 276, 88–95. 

Beckschäfer P, Fehrmann L, Harrison R, Xu J, Kleinn C (2014) Mapping Leaf Area Index in 

subtropical upland ecosystems using RapidEye imagery and the randomForest algorithm. 

iForest - Biogeosciences and Forestry, 7, 1–11. 

Berenguer E, Ferreira J, Gardner TA et al. (2014) A large-scale field assessment of carbon 

stocks in human-modified tropical forests. Global Change Biology, 2005, 1–14. 

Berry NJ, Ryan CM (2013) Overcoming the risk of inaction from emissions uncertainty in 

smallholder agriculture. Environmental Research Letters, 8, 11003. 

Berry NJ, Phillips OL, Lewis SL et al. (2010) The high value of logged tropical forests: Lessons 

from northern Borneo. Biodiversity and Conservation, 19, 985–997. 

Bicknell JE, Struebig MJ, Davies ZG, Baraloto C (2015) Reconciling timber extraction with 

biodiversity conservation in tropical forests using reduced-impact logging. Journal of 

Applied Ecology, 52, 379–388. 



 

195 

BID-Catastro (2012) Regularización de los derechos de propiedad inmueble en áreas bajo 

regímenes especiales. Programa de Regularización de Catastro y Registro. San José, 

Costa Rica. 

Birdsey R, Angeles-Perez G, Kurz WA et al. (2013) Approaches to monitoring changes in 

carbon stocks for REDD+. Carbon Management, 4, 519–537. 

Birth GS, McVey G (1968) Measuring the color of growing turf with a reflectance 

spectroradiometer. Agronomy Journal, 60, 640–643. 

Blackie R, Baldauf C, Gautier D et al. (2014) Tropical dry forests: the state of global knowledge 

and recommendations. CIFOR, Bogor, Indonesia. 

Blanc L, Echard M, Herault B, Bonal D, Marcon E, Chave J, Baraloto C (2009) Dynamics of 

aboveground carbon stocks in a selectively logged tropical forest. Ecological Applications, 

19, 1397–1404. 

Blaser J, Sarre A, Poore D, Johnson S (2011) Status of Tropical Forest Management 2011. 

ITTO Technical Series, Vol. 38. International Timber Organization, Yokohama, Japan, 

418 pp. 

Bonilla-Moheno M, Redo DJ, Aide TM, Clark ML, Grau HR (2013) Vegetation change and 

land tenure in Mexico: a country-wide analysis. Land Use Policy, 30, 355–364. 

Borrego A, Skutsch M (2014) Estimating the opportunity costs of activities that cause 

degradation in tropical dry forest: implications for REDD+. Ecological Economics, 101, 

1–9. 

Böttcher H, Eisbrenner K, Fritz S, Kindermann G, Kraxner F, Mccallum I, Obersteiner M 

(2009) An assessment of monitoring requirements and costs of “Reduced Emissions from 

Deforestation and Degradation.” Carbon Balance and Management, 14, 1–14. 

Bradshaw RHW, Josefsson T, Clear JL, Peterken GF (2011) The structure and reproduction of 

the virgin forest: a review of Eustace Jones (1945). Scandinavian Journal of Forest 

Research, 26, 45–53. 

Bray DB, Antinori C, Torres-Rojo JM (2006) The Mexican model of community forest 

management: the role of agrarian policy, forest policy and entrepreneurial organization. 

Forest Policy and Economics, 8, 470–484. 

Breiman L, Cutler A (2004) Random forests : classification manual. 

http://www.stat.berkeley.edu/~breiman/RandomForests/cc_manual.htm (accessed on 

29.01.15). 

Broadbent EN, Asner GP, Keller M, Knapp DE, Oliveira PJC, Silva JN (2008) Forest 

fragmentation and edge effects from deforestation and selective logging in the Brazilian 

Amazon. Biological Conservation, 141, 1745–1757. 

Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. Rome, 

Italy. 

Brown S, Zarin D (2013) What does zero deforestation mean? Science, 342, 805–7. 

Brown S, Hall C, Knabe W, Raich J, Trexler M, Woomer P (1993) Tropical forests: Their past, 

present, and potential future role in the terrestrial carbon budget. An International Journal 

of Environmental Pollution, 70, 71–94. 

Bryan JE, Shearman PL, Asner GP, Knapp DE, Aoro G, Lokes B (2013) Extreme differences in 

forest degradation in Borneo: comparing practices in Sarawak, Sabah, and Brunei. PLoS 

ONE, 8, e69679. 

Bucki M, Cuypers D, Mayaux P, Achard F, Estreguil C, Grassi G (2012) Assessing REDD + 

performance of countries with low monitoring capacities: the matrix approach. 

Environmental Research Letters, 14031. 



 

196 

Burivalova Z, Sekercioğlu CH, Koh LP (2014) Thresholds of logging intensity to maintain 

tropical forest biodiversity. Current Biology, 24, 1893–8. 

Bustamante MMC, Roitman I, Aide TM et al. (2016) Toward an integrated monitoring 

framework to assess the effects of tropical forest degradation and recovery on carbon 

stocks and biodiversity. Global Change Biology, 22, 92–109. 

Cadman S (2008) Defining forest degradation for an effective mechanism to reduce emissions 

from deforestation and forest degradation (REDD). Paper prepared for SBSTA workshop 

on forest degradation (Bonn, 21-22 October 2008). 

Camacho AM (2015) Diagnóstico corto sobre las barreras que desalientan el manejo de 

bosques naturales en Costa Rica y propuestas de solución. Fondo Nacional de 

Financiamiento Forestal: San José, Costa Rica. 

Cantarello E, Newton AC, Hill RA et al. (2011) Simulating the potential for ecological 

restoration of dryland forests in Mexico under different disturbance regimes. Ecological 

Modelling, 222, 1112–1128. 

Cartus O, Kellndorfer J, Walker W, Franco C, Bishop J, Santos L, Fuentes J (2014) A national, 

detailed map of forest aboveground carbon stocks in Mexico. Remote Sensing, 6, 5559–

5588. 

Castellanos J, Maass M, Kummerow J (1991) Root biomass of a dry deciduous tropical forest in 

Mexico. Plant and Soil, 131, 225–228. 

Cazzolla Gatti R, Castaldi S, Lindsell JA et al. (2014) The impact of selective logging and 

clearcutting on forest structure, tree diversity and above-ground biomass of African 

tropical forests. Ecological Research, 30, 119–132. 

CBD (2010) Outcomes of the global expert workshop on biodiversity benefits of Reducing 

Emissions from Deforestation and Forest Degradation in Developing Countries. 

Convention on Biological Diversity, UNEP/CBD/WS-REDD/1/3. Nairobi, Kenya. 

Chai S, Healey JR, Tanner EVJ (2012) Evaluation of forest recovery over time and space using 

permanent plots monitored over 30 years in a Jamaican montane rain forest. (ed Swenson 

NG). PloS ONE, 7, e48859. 

Chandler RB, King DI, Raudales R, Trubey R, Chandler C, Chávez VJA (2013) A small-scale 

land-sparing approach to conserving biological diversity in tropical agricultural 

landscapes. Conservation Biology, 27, 785–95. 

Chao S (2012) Forest peoples: numbers across the world. Forest Peoples Programme, Moreton-

in-Marsh,UK, 25 pp. 

Chapman CA, Chapman LJ (2004) Unfavorable successional pathways and the conservation 

value of logged tropical forest. Biodiversity and Conservation, 13, 2089–2105. 

Chaturvedi RK, Raghubanshi AS, Singh JS (2012) Effect of grazing and harvesting on 

diversity, recruitment and carbon accumulation of juvenile trees in tropical dry forests. 

Forest Ecology and Management, 284, 152–162. 

Chaudhary A, Burivalova Z, Koh LP, Hellweg S (2016) Impact of forest management on 

species richness: global meta-analysis and economic trade-offs. Scientific reports, 6, 

23954. 

Chavarria MI, Castillo M (2011) Reporte estadistico forestal 2011. SIREFOR-SINAC: San 

José, Costa Rica, 45 pp. 

Chave J, Condit R, Lao S, Caspersen JP, Foster RB, Hubbell SP (2003) Spatial and temporal 

variation of biomass in a tropical forest: results from a large census plot in Panama. 

Journal of Ecology, 91, 240–252. 

Chazdon RL (2003) Tropical forest recovery: legacies of human impact and natural 

disturbances. Perspectives in Plant Ecology, Evolution and Systematics, 6, 51–71. 



 

197 

Chazdon RL (2008) Beyond deforestation: restoring forests and ecosystem services on degraded 

lands. Science, 320, 1458–60. 

Chazdon RL, Letcher SG, van Breugel M, Martínez-Ramos M, Bongers F, Finegan B (2007) 

Rates of change in tree communities of secondary Neotropical forests following major 

disturbances. Philosophical Transactions of the Royal Society of London. Series B, 

Biological Sciences, 362, 273–289. 

Chazdon RL, Harvey CA, Komar O et al. (2009a) Beyond Reserves: a research agenda for 

conserving biodiversity in human-modified tropical landscapes. Biotropica, 41, 142–153. 

Chazdon RL, Peres CA, Dent D et al. (2009b) The potential for species conservation in tropical 

secondary forests. Conservation Biology, 23, 1406–17. 

Chazdon RL, Broadbent EN, Rozendaal DMA, Bongers F, et al. (2016) Carbon sequestration 

potential of second-growth forest regeneration in the Latin American tropics. Science 

Advances, 2, e1501639. 

Chidumayo EN (2013) Forest degradation and recovery in a miombo woodland landscape in 

Zambia : 22 years of observations on permanent sample plots. Forest Ecology and 

Management, 291, 154–161. 

Clark DB, Kellner JR (2012) Tropical forest biomass estimation and the fallacy of misplaced 

concreteness. Journal of Vegetation Science, 23, 1191–1196. 

De Clerck FA, Chazdon RL, Holl KD et al. (2010) Biodiversity conservation in human-

modified landscapes of Mesoamerica: Past, present and future. Biological Conservation, 

143, 2301–2313. 

Cochrane MA, Barber CP (2009) Climate change, human land use and future fires in the 

Amazon. Global Change Biology, 15, 601–612. 

Cole LES, Bhagwat S, Willis KJ (2014) Recovery and resilience of tropical forests after 

disturbance. Nature Communications, 5. 

CONAFOR, PNUD, FAO (2012) Caracterización de los enfoques metodológicos utilizados en 

México para el mapeo de los cambios de uso de suelo. Mexico, 24 pp. 

CONAPO (2012) Indices de marginalizacion 2010. National Population Council. México, 

México. 

Corbera E, Estrada M (2010) Mexico. In: REDD , forest governance and rural livelihoods: the 

emerging agenda (eds Springate-Baginski, Wollenberg E), pp. 95–109. CIFOR, Bogor, 

Indonesia. 

Cornejo X, Mori S, Aguilar R, Stevens H, Douwes F (2012) Phytogeography of the trees of the 

Osa Peninsula, Costa Rica. Brittonia, 64, 76–101. 

Crist EP, Cicone R. (1984) A physically-based transformation of Thematic Mapper data-the TM 

Tasseled Cap. IEEE Transactions on Geoscience and Remote Sensing, 22, 256–263. 

Crk T, Uriarte M, Corsi F, Flynn D (2009) Forest recovery in a tropical landscape: what is the 

relative importance of biophysical, socioeconomic, and landscape variables? Landscape 

Ecology, 24, 629–642. 

Cuello C, Brandon K, Margoluis R (1998) Costa Rica: Corcovado National Park. In: Parks in 

peril: people, politics, and protected areas (eds Brandon K, Redford KH, Sanderson S), 

pp. 143–1991. Island Press, Washington, DC. 

Cuevas R, Nuñez NM, Guzman F, Santana M (1998) El bosque tropical caudcifolio en la 

Reserva de la Biosfera Sierra Manantlan, Jalisco-Colima, Mexico. Boletin Instituto de 

Botanica Universidad de Guadalajara, 5, 445–491. 

d’Oliveira MVN, Alvarado EC, Santos JC, Carvalho JA (2011) Forest natural regeneration and 

biomass production after slash and burn in a seasonally dry forest in the Southern 



 

198 

Brazilian Amazon. Forest Ecology and Management, 261, 1490–1498. 

Dalle SP, Pulido MT, De Blois S (2011) Balancing shifting cultivation and forest conservation: 

Lessons from a “sustainable landscape” in southeastern Mexico. Ecological Applications, 

21, 1557–1572. 

Danielsen F, Skutsch M, Burgess ND et al. (2011) At the heart of REDD+: A role for local 

people in monitoring forests? Conservation Letters, 4, 158–167. 

DeFries R, Rosenzweig C (2010) Toward a whole-landscape approach for sustainable land use 

in the tropics. Proceedings of the National Academy of Sciences of the United States of 

America, 107, 19627–32. 

Defries RS, Houghton RA, Hansen MC, Field CB, Skole D, Townshend J (2002) Carbon 

emissions from tropical deforestation and regrowth based on satellite observations for the 

1980s and 1990s. Proceedings of the National Academy of Sciences of the United States of 

America, 99, 14256–14261. 

Delang CO, Li WM (2013) Ecological succession on fallowed shifting cultivation fields. 

Springer Netherlands, Dordrecht,The Netherlands, 127 pp. 

Denslow JS (1987) Tropical rainforest gaps and tree species diversity. Annual Review of 

Ecology and Systematics, 18, 431–451. 

Derroire G, Tigabu M, Odén PC, Healey JR (2016a) The effects of established trees on woody 

regeneration during secondary succession in tropical dry forests. Biotropica, 48, 290–300. 

Derroire G, Balvanera P, Castellanos-Castro C et al. (2016b) Resilience of tropical dry forests - 

a meta-analysis of changes in species diversity and composition during secondary 

succession. Oikos, 1386–1397. 

Dexter KG, Smart B, Baldauf C et al. (2015) Floristics and biogeography of vegetation in 

seasonally dry tropical regions. International Forestry Review, 17, 10–32. 

Dirzo R, Young HS, Mooney HA, Ceballos G (eds.) (2011) Seasonally dry tropical forests 

ecology and conservation, 1st edn. Island Press, Washington, 392 pp. 

Dirzo R, García M (1992) Rates of deforestation in Los Tuxtlas, a Neotropical area in southeast 

México. Conservation Biology, 6, 84–90. 

Donato DC (2014) Perspective and parsimony in forest carbon management. Carbon 

Management, 3, 227–230. 

Donovan R (1994) Boscosa: forest conservation and management through local institutions. In: 

Natural connections: perspectives in community-based conservation (eds Western D, 

Wright M), pp. 215–233. Island Press, Washington, DC. 

Dons K, Smith-Hall C, Meilby H, Fensholt R (2015) Operationalizing measurement of forest 

degradation: identification and quantification of charcoal production in tropical dry forests 

using very high resolution satellite imagery. International Journal of Applied Earth 

Observation and Geoinformation, 39, 18–27. 

Dormann CF (2007) Assessing the validity of autologistic regression. Ecological Modelling, 

207, 234–242. 

Dupuy JM, Hernández-Stefanoni JL, Hernández-Juárez RA et al. (2012) Patterns and correlates 

of tropical dry forest structure and composition in a highly replicated chronosequence in 

Yucatan, Mexico. Biotropica, 44, 1–12. 

Eckert S, Engesser M (2013) Assessing vegetation cover and biomass in restored erosion areas 

in Iceland using SPOT satellite data. Applied Geography, 40, 179–190. 

Eckert S, Ratsimba HR, Rakotondrasoa LO, Rajoelison LG, Ehrensperger A (2011) 

Deforestation and forest degradation monitoring and assessment of biomass and carbon 

stock of lowland rainforest in the Analanjirofo region, Madagascar. Forest Ecology and 



 

199 

Management, 262, 1996–2007. 

Edwards DP, Larsen TH, Docherty TDS et al. (2011) Degraded lands worth protecting: the 

biological importance of Southeast Asia’s repeatedly logged forests. Proceedings. 

Biological sciences / The Royal Society, 278, 82–90. 

Edwards DP, Tobias JA, Sheil D, Meijaard E, Laurance WF (2014a) Maintaining ecosystem 

function and services in logged tropical forests. Trends in Ecology & Evolution, 29, 511–

520. 

Edwards DP, Gilroy JJ, Woodcock P et al. (2014b) Land-sharing versus land-sparing logging: 

reconciling timber extraction with biodiversity conservation. Global Change Biology, 20, 

183–91. 

ENVI (2006) Environment for Visualising Images. ITT industries Inc., USA. 

Ewel J (1980) Tropical succession: manifold routes to maturity. Biotropica, 12, 2–7. 

Ewers RM, Boyle MJW, Gleave RA et al. (2015) Logging cuts the functional importance of 

invertebrates in tropical rainforest. Nature Communications, 6, 6836. 

FAO (2007) Manual on deforestation, degradation and fragmentation using remote sensing and 

GIS. Food and Agriculture Organization of United Nations, Rome, Italy, 49 pp. 

FAO (2011) Assessing forest degradation: towards the development of globally applicable 

guidelines. Food and Agriculuture Organization of United Nations, Rome, Italy, 87 pp. 

FAO (2014) State of the world’s forests. Food and Agriculture Organization of United Nations, 

Rome, Italy, 133 pp. 

Federici S, Tubiello FN, Salvatore M, Jacobs H, Schmidhuber J (2015) New estimates of CO2 

forest emissions and removals: 1990–2015. Forest Ecology and Management, 352, 89–98. 

Feldpausch TR, Prates-Clark C da C, Fernandes ECM, Riha SJ (2007) Secondary forest growth 

deviation from chronosequence predictions in central Amazonia. Global Change Biology, 

13, 967–979. 

FONAFIFO, CONAFOR (2012) Lessons learned for REDD + from PES and Conservation 

Incentive Programs. Examples from Costa Rica, Mexio and Ecuador. The World Bank, 

164 pp. 

Fox J, Castella J-C, Ziegler AD (2014) Swidden, rubber and carbon: can REDD+ work for 

people and the environment in montane mainland Southeast Asia? Global Environmental 

Change, 29, 318–326. 

Franke J, Navratil P, Keuck V, Peterson K, Siegert F (2012) Monitoring fire and selective 

logging activities in tropical peat swamp forests. IEEE Journal of Selected Topics in 

Applied Earth Observations and Remote Sensing, 5, 1811–1820. 

Gallardo-Cruz JA, Meave JA, González EJ et al. (2012) Predicting tropical dry forest 

successional attributes from space: is the key hidden in image texture? PLoS ONE, 7, 

e30506. 

Garcia CA, Lescuyer G (2008) Monitoring, indicators and community based forest management 

in the tropics: pretexts or red herrings? Biodiversity & Conservation, 17, 1303–1317. 

Gardner TA (2010) Monitoring forest biodiversity: improving conservation through 

ecologically responsible management. Earthscan, London, 360 pp. 

Gardner TA, Barlow J, Chazdon R, Ewers RM, Harvey CA, Peres CA, Sodhi NS (2009) 

Prospects for tropical forest biodiversity in a human-modified world. Ecology Letters, 12, 

561–582. 

Gardner TA, Burgess ND, Aguilar-Amuchastegui N et al. (2012) A framework for integrating 

biodiversity concerns into national REDD+ programmes. Biological Conservation, 154, 

61–71. 



 

200 

Gaveau DLA, Sloan S, Molidena E et al. (2014) Four decades of forest persistence, clearance 

and logging on Borneo. PLoS ONE, 9, e101654. 

Geist HJ, Lambin EF (2002) Proximate causes and underlying driving forces of tropical 

deforestation. BioScience, 52, 143. 

Gellrich M, Baur P, Koch B, Zimmermann NE (2007) Agricultural land abandonment and 

natural forest re-growth in the Swiss mountains: a spatially explicit economic analysis. 

Agriculture, Ecosystems & Environment, 118, 93–108. 

Gentry AH (1995) Diversity and floristic composition of neotropical dry forests. In: Seasonally 

Dry Tropical Forests (eds Bullock SH, Mooney HA, Medina E), pp. 146–190. Cambridge 

University Press, Cambridge. 

Geoghegan J, Schneider L, Vance C (2004) Temporal dynamics and spatial scales: modeling 

deforestation in the southern Yucatan peninsular region. GeoJournal, 61, 353–363. 

Gerwing JJ (2002) Degradation of forests through logging and fire in the eastern Brazilian 

Amazon. Forest Ecology and Management, 157, 131–141. 

Getahun K, Van Rompaey A, Van Turnhout P, Poesen J (2013) Factors controlling patterns of 

deforestation in moist evergreen Afromontane forests of Southwest Ethiopia. Forest 

Ecology and Management, 304, 171–181. 

GFOI (2013) Review of priority research & development topics: R&D related to the use of 

remote sensing in national forest monitoring. Group on Earth Observations (GEO), 

Geneva,Switzerland, 159 pp. 

GFOI (2014) Integrating remote-sensing and ground- based observations for estimation of 

emissions and removals of greenhouse gases in forests: methods and guidance from the 

global forests observations initiative. Group on Earth Observations (GEO), 

Geneva,Switzerland, 197 pp. 

Ghazoul J, Burivalova Z, Garcia-Ulloa J, King LA (2015) Conceptualizing forest degradation. 

Trends in Ecology and Evolution, 30, 622–632. 

Ghilardi A, Jardel E, Skutsch M et al. (2012) Análisis de cambio de cobertura y uso del suelo, 

escenario de referencia de carbono y diseño preliminar del mecanismo de Monitoreo, 

Reporte y Verificación en los diez municipios de la Junta Intermunicipal del Río Ayuquila, 

Jalisco. Morelia, Michoacan. 

Gibbs HK, Brown S, Niles JO, Foley JA (2007) Monitoring and estimating tropical forest 

carbon stocks: making REDD a reality. Environmental Research Letters, 2, 45023. 

Gibson L, Lee TM, Koh LP et al. (2011) Primary forests are irreplaceable for sustaining tropical 

biodiversity. Nature, 478, 378–81. 

Gillespie TW, Grijalva A, Farris CN (2000) Diversity, composition, and structure of tropical dry 

forests in Central America. Plant Ecology, 147, 37–47. 

Gitelson AA, Merzlyak MN (1997) Remote estimation of chlorophyll content in higher plant 

leaves. International Journal of Remote Sensing, 18, 2691–2697. 

Gitelson A, Kaufman Y, Merzlyak M (1996) Use of a green channel in remote sensing of global 

vegetation from EOS-MODIS. Remote Sensing of Environment, 58, 289–298. 

Goetz S, Dubayah R (2011) Advances in remote sensing technology and implications for 

measuring and monitoring forest carbon stocks and change. Carbon Management, 2, 231–

244. 

Goetz SJ, Baccini A, Laporte NT et al. (2009) Mapping and monitoring carbon stocks with 

satellite observations: a comparison of methods. Carbon Balance and Management, 4, 2. 

Goetz SJ, Hansen M, Houghton RA, Walker W, Laporte N, Busch J (2015) Measurement and 

monitoring needs, capabilities and potential for addressing reduced emissions from 



 

201 

deforestation and forest degradation under REDD+. Environmental Research Letters, 10, 

123001. 

GOFC-GOLD (2013) A sourcebook of methods and procedures for monitoring and reporting 

anthropogenic greenhouse gas emissions and removals associated with deforestation, 

gains and losses of carbon stocks in forests remaining forests, and forestation. Report 

version COP19-2,. Wageningen,The Netherlands. 

Gourlet-Fleury S, Mortier F, Fayolle A, Baya F, Ouédraogo D, Bénédet F, Picard N (2013) 

Tropical forest recovery from logging: a 24 year silvicultural experiment from central 

Africa. Philosophical transactions of the Royal Society of London. Series B, Biological 

sciences, 368, 20120302. 

Grace J, Mitchard E, Gloor E (2014) Perturbations in the carbon budget of the tropics. Global 

Change Biology, 20, 3238–55. 

Grainger A (1996) The degradation of tropical rain forest in Southeast Asia: taxonomy and 

appraisal. In: Land Degradation in the Tropics (eds Eden M, Parry J), pp. 61–75. Mansell, 

London. 

Grainger A (1999) Constraints on modelling the deforestation and degradation of tropical open 

woodlands. Global Ecology and Biogeography, 8, 179–190. 

Grainger A (2008) Difficulties in tracking the long-term global trend in tropical forest area. 

Proceedings of the National Academy of Sciences of the United States of America, 105, 

818–23. 

Grassi G, Monni S, Federici S, Achard F, Mollicone D (2008) Applying the conservativeness 

principle to REDD to deal with the uncertainties of the estimates. Environmental Research 

Letters, 3, 35005. 

Grinand C, Rakotomalala F, Gond V, Vaudry R, Bernoux M, Vieilledent G (2013) Estimating 

deforestation in tropical humid and dry forests in Madagascar from 2000 to 2010 using 

multi-date Landsat satellite images and the random forests classifier. Remote Sensing of 

Environment, 139, 68–80. 

Griscom HP, Ashton MS (2011) Restoration of dry tropical forests in Central America: a review 

of pattern and process. Forest Ecology and Management, 261, 1564–1579. 

Griscom HP, Connelly AB, Ashton MS, Wishnie MH, Deago J (2011) The structure and 

composition of a tropical dry forest landscape after land clearance; Azuero Peninsula, 

Panama. Journal of Sustainable Forestry, 30, 756–774. 

Griscom B, Ellis P, Putz FE (2014) Carbon emissions performance of commercial logging in 

East Kalimantan, Indonesia. Global Change Biology, 20, 923–37. 

Guariguata MR, Nasi R, Kanninen M (2009) Forest degradation: it is not a matter of new 

definitions. Conservation Letters, 2, 286–287. 

Hansen MC, Potapov P V, Moore R et al. (2013) High-resolution global maps of 21st-century 

forest cover change. Science, 342, 850–3. 

Haralick R, Shanmugan K, Dinstein I (1973) Textural features for image classification. IEEE 

Transactions on Systems, Man and Cybernetics, 3, 610–621. 

Hardwick K, Healey JR, Elliott S, Blakesley D (2004) Research needs for restoring seasonal 

tropical forests in Thailand: accelerated natural regeneration. New Forests, 27, 285–302. 

Hartter J, Lucas C, Gaughan AE, Lizama Aranda L (2008) Detecting tropical dry forest 

succession in a shifting cultivation mosaic of the Yucatan Peninsula , Mexico. Applied 

Geography, 28, 134–149. 

Hawthorne WD, Sheil D, Agyeman VK, Abu Juam M, Marshall C a M (2012) Logging scars in 

Ghanaian high forest: towards improved models for sustainable production. Forest 

Ecology and Management, 271, 27–36. 



 

202 

Healey JR, Price C, Tay J (2000) The cost of carbon retention by reduced impact logging. 139. 

Healey S, Cohen W, Zhiqiang Y, Krankina O (2005) Comparison of tasseled cap-based Landsat 

data structures for use in forest disturbance detection. Remote Sensing of Environment, 97, 

301–310. 

Hernández-Stefanoni JL, Gallardo-Cruz JA, Meave JA, Rocchini D, Bello-Pineda J, López-

Martínez JO (2012) Modeling α- and β-diversity in a tropical forest from remotely sensed 

and spatial data. International Journal of Applied Earth Observation and Geoinformation, 

19, 359–368. 

Herold M, Skutsch M (2011) Monitoring, reporting and verification for national REDD + 

programmes: two proposals. Environmental Research Letters, 6, 14002. 

Herold M, Román-Cuesta RM, Mollicone D et al. (2011) Options for monitoring and estimating 

historical carbon emissions from forest degradation in the context of REDD+. Carbon 

Balance and Management, 6, 13. 

Hesketh M, Sanchez-Azofeifa GA (2014) A review of remote sensing of tropical dry forests. In: 

Tropical Dry Forests in the Americas (eds Sanchez-Azofeifa GA, Powers JS, Fernandes 

GW, Quesada M), pp. 83–97. CRC Press, Boca Raton, FL,USA. 

Hett C, Castella J-C, Heinimann A, Messerli P, Pfund J-L (2012) A landscape mosaics approach 

for characterizing swidden systems from a REDD+ perspective. Applied Geography, 32, 

608–618. 

Hill TC, Williams M, Bloom AA, Mitchard ETA, Ryan CM (2013) Are inventory based and 

remotely sensed above-ground biomass estimates consistent? PLoS ONE, 8. 

Hobbs RJ, Arico S, Aronson J et al. (2006) Novel ecosystems: theoretical and management 

aspects of the new ecological world order. Global Ecology and Biogeography, 15, 1–7. 

Holdridge LR (1967) Life zone ecology. Tropical Science Center, San Jose, Costa Rica. 

Honorio Coronado EN, Baker. TR (2010) Manual para el monitoreo del ciclo del carbono en 

bosques amazónicos. Instituto de Investigaciones de la Amazonia Peruana / Universidad 

de Leeds. Lima, Perú, 54 pp. 

Horning N (2012) Training Guide for Using Random Forests to Classify Satellite Images - v8. 

American Museum of Natural History, Center for Biodiversity and Conservation. 

Available from http://biodiversityinformatics.amnh.org/. (accessed on 14.03.2013). 

Hosonuma N, Herold M, De Sy V et al. (2012) An assessment of deforestation and forest 

degradation drivers in developing countries. Environmental Research Letters, 7, 44009. 

Houghton RA (2012) Carbon emissions and the drivers of deforestation and forest degradation 

in the tropics. Current Opinion in Environmental Sustainability, 4, 597–603. 

Houghton RA (2013) The emissions of carbon from deforestation and degradation in the 

tropics: past trends and future potential. Carbon Management, 4, 539–546. 

Houghton RA, Unruh JD, Lefebvre PA (1993) Current land cover in the tropics and its potential 

for sequestering carbon. Global Biogeochemical Cycles, 7, 305–320. 

Howard AF (1993) A linear programming model for predicting the sustainable yield of timber 

from a community forest on the Osa Peninsula of Costa Rica. Forest Ecology and 

Management, 61, 29–43. 

Huang M, Asner GP (2010) Long-term carbon loss and recovery following selective logging in 

Amazon forests. Global Biogeochemical Cycles, 24, 3028. 

Huete A (1988) A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25, 

295–309. 

Hughes CE, Pennington RT, Antonelli A (2013) Neotropical plant evolution: assembling the big 

picture. Botanical Journal of the Linnean Society, 171, 1–18. 



 

203 

Hunt CA, Durham WH, Driscoll L, Honey M (2014) Can ecotourism deliver real economic, 

social, and environmental benefits? A study of the Osa Peninsula, Costa Rica. Journal of 

Sustainable Tourism, 23, 339–357. 

Hurni K, Hett C, Epprecht M, Messerli P, Heinimann A (2013) A texture-based land cover 

classification for the delineation of a shifting cultivation landscape in the Lao PDR using 

landscape metrics. Remote Sensing, 5, 3377–3396. 

INEC (1973) Censo Nacional de Poblacion 1973. Instituto Nacional de Estadistcias y Censos. 

INEC (2011) Censo general de Poblacion 2011. Instituto Nacional de Estadistica y Censos. San 

Jose, Costa Rica. 

INEGI (2000) XII Censo General de Población y Vivienda. 2000. Instituto Nacional de 

Estadística y Geografía. Aguascalientes, México. 

INEGI (2010a) XIII Censo General de Población y Vivienda. 2010. Instituto Nacional de 

Estadística y Geografía. Aguascalientes, México. 

INEGI (2010b) Conjunto Nacional de Uso del Suelo y Vegetación a escala 1:250,000, Serie IV; 

DGG-INEGI. Aguascalientes, México. 

Inglada J, Christophe E (2009) The Orfeo toolbox remote sensing image processing software. 

In: IEEE International Geoscience and Remote Sensing Symposium. Cape Town, South 

Africa. 

IPCC (2003) Definitions and Methodological Options to Inventory Emissions from Direct 

Human-induced Degradation of Forests and Devegetation of Other Vegetation Types (eds 

Penman J, Gytarsky M, Krug T, Kruger D, Pipatti R, Buendia L, Miwa KL, Ngara T, 

Tanabe K, Wagner F). IPCC-IGES, Kanagawa, Japan. 

IPCC (2006) Guidelines for national greenhouse gas inventories 2006. Prepared by the 

National Greenhouse Gas Inventories Programme (eds Eggleston H, Buendia L, Miwa K, 

Ngara T, Tanabe K). IPCC-IGES, Kanagawa, Japan. 

ITTO (2002) ITTO guidelines for the restoration , management and rehabilitation of degraded 

and secondary tropical forests. ITTO, Yokohama, Japan, 86 pp. 

Janzen DH (1988) Tropical dry forests the most endangered major tropical ecosystem. In: 

Biodiversity (ed Wilson EO), pp. 130–137. National Academy Press, Washington, DC. 

Jaramillo VJ, Kauffman JB, Renteria-Rodriguez L, Cummings DL, Ellingson LJ (2003) 

Biomass, carbon, and nitrogen pools in Mexican tropical dry forest landscapes. 

Ecosystems, 6, 609–629. 

Jaramillo VJ, Martinez-Yrizar A, Sanfrod Jr R (2011) Primary productivity and 

biogeochemistry of seasonally dry tropical forests. In: Seasonally dry tropical forests 

ecology and conservation, 1st edn (eds Dirzo R, Young H, Mooney H, Ceballos G), pp. 

109–128. Island Press, Washington. 

Jardel-Peláez EJ, Morfín-Ríos J, Ghilardi A et al. (2013)   al a     del estado de  o ser a     

de la sel a  a a  ad   fol a de la   e  a  ed a del   o       la. Autlan, Jalisco. 

Jiang Z, Huete A, Didan K, Miura T (2008) Development of a two-band enhanced vegetation 

index without a blue band. Remote Sensing of Environment, 112, 3833–3845. 

Johnson E, Miyanishi K (2008) Testing the assumptions of chronosequences in succession. 

Ecology Letters, 11, 419–431. 

Jones HG, Vaughan RA (2010) Remote sensing of vegetation: principles, techniques, and 

applications. Oxford University Press, 380 pp. 

Joseph S, Murthy MSR, Thomas A (2010) The progress on remote sensing technology in 

identifying tropical forest degradation: a synthesis of the present knowledge and future 

perspectives. Environmental Earth Sciences, 64, 731–741. 



 

204 

Joseph S, Herold M, Sunderlin WD, Verchot L V (2013) REDD+ readiness: early insights on 

monitoring, reporting and verification systems of project developers. Environmental 

Research Letters, 8, 34038. 

Kalacska M, Sanchez-Azofeifa GA, Rivard B, Calvo-Alvarado JC, Quesada M (2008) Baseline 

assessment for environmental services payments from satellite imagery: a case study from 

Costa Rica and Mexico. Journal of environmental management, 88, 348–59. 

Kappelle M, Castro M, Acevedo H, González L, Monge H (2002) Ecosistemas del Área de 

Conservación Osa. INBio, Heredia, CR, 500 pp. 

Kauffman J., Steele M., Cummings D., Jaramillo V. (2003) Biomass dynamics associated with 

deforestation, fire, and, conversion to cattle pasture in a Mexican tropical dry forest. 

Forest Ecology and Management, 176, 1–12. 

Kauffman JB, Hughes RF, Heider C (2009) Carbon pool and biomass dynamics associated with 

deforestation, land use, and agricultural abandonment in the neotropics. Ecological 

Applications, 19, 1211–1222. 

Keller M, Asner GP, Blate G, McGlocklin J, Merry F, Pe a-Claros M, Zweede J (2007) Timber 

production in selectively logged tropical forests in South America. Frontiers in Ecology 

and the Environment, 5, 213–216. 

Kennard DK, Gould K, Putz FE, Fredericksen TS, Morales F (2002) Effect of disturbance 

intensity on regeneration mechanisms in a tropical dry forest. Forest Ecology and 

Management, 162, 197–208. 

Kissinger G, Herold M, De Sy V et al. (2012) Drivers of deforestation and forest degradation: a 

synthesis report for REDD+ policymakers. Lexeme Consulting, Vancouver Canada, 

August 2012., Lexeme Consulting, Vancouver, Canada. 

Kleinschroth F, Gourlet-Fleury S, Sist P, Mortier F, Healey JR (2015) Legacy of logging roads 

in the Congo Basin: how persistent are the scars in forest cover? Ecosphere, 6, art64. 

Kleinschroth F, Healey JR, Sist P, Mortier F, Gourlet-Fleury S (2016) How persistent are the 

impacts of logging roads on Central African forest vegetation? Journal of Applied 

Ecology, 53, 1127–1137. 

Lambin EF (1997) Modelling and monitoring land-cover change processes in tropical regions. 

Progress in Physical Geography, 21, 375–393. 

Lambin EF (1999) Monitoring forest degradation in tropical regions by remote sensing: some 

methodological issues. Global Ecology and Biogeography, 8, 191–198. 

Lambin EF, Meyfroidt P (2010) Land use transitions: socio-ecological feedback versus socio-

economic change. Land Use Policy, 27, 108–118. 

Lang SB (2000) Effects of logging roads on erosion in a wet tropical forest in the rio Riyito 

Watershed. Colorado State University, 87 pp. 

Langner A, Samejima H, Ong RC, Titin J, Kitayama K (2012) Integration of carbon 

conservation into sustainable forest management using high resolution satellite imagery: A 

case study in Sabah, Malaysian Borneo. International Journal of Applied Earth 

Observation and Geoinformation, 18, 305–312. 

Langner A, Achard F, Grassi G (2014) Can recent pan-tropical biomass maps be used to derive 

alternative Tier 1 values for reporting REDD+ activities under UNFCCC? Environmental 

Research Letters, 9, 124008. 

Laporte NT, Stabach JA, Grosch R, Lin TS, Goetz SJ (2007) Expansion of industrial logging in 

Central Africa. Science, 316, 1451. 

Larkin CC, Kwit C, Wunderle JM, Helmer EH, Stevens MHH, Roberts MTK, Ewert DN (2012) 

Disturbance type and plant successional communities in Bahamian dry forests. Biotropica, 

44, 10–18. 



 

205 

Larrazábal A, McCall MK, Mwampamba TH, Skutsch M (2012) The role of community carbon 

monitoring for REDD+: a review of experiences. Current Opinion in Environmental 

Sustainability, 4, 707–716. 

Laurance D (2005) Biomass accumulation after 10-200 years of shifting cultivation in Bornean 

Rainforest. Ecology, 86, 26–33. 

Lawrence D, Suma V, Mogea JP (2005) Change in species composition with repeated shifting 

cultivation: limited role of soil nutrients. Ecological Applications, 15, 1952–1967. 

Lawrence D, Radel C, Tully K, Schmook B, Schneider L (2010) Untangling a decline in 

tropical forest resilience : constraints on the sustainability of shifting cultivation across the 

globe. Biotropica, 42, 21–30. 

Lebrija-Trejos E, Bongers F, Pérez-García EA, Meave JA (2008) Successional change and 

resilience of a very dry tropical deciduous forest following shifting agriculture. Biotropica, 

40, 422–431. 

Lévesque M, McLaren KP, McDonald MA (2011) Recovery and dynamics of a primary tropical 

dry forest in Jamaica, 10 years after human disturbance. Forest Ecology and Management, 

262, 817–826. 

Li P, Feng Z, Jiang L, Liao C, Zhang J (2014) A review of swidden agriculture in Southeast 

Asia. Remote Sensing, 6, 1654–1683. 

Liaw A, Wiener M (2002) Classification and regression by randomForest. R News, 2, 18–22. 

Lin L, Pattanayak SK, Sills EO, Sunderlin WD (2012) Site selection for forest carbon projects. 

In: Analysing REDD+: Challenges and choices. (eds Angelsen, A., Brockhaus M, 

Sunderlin WD, Verchot LV), pp. 210–230. CIFOR, Bogor, Indonesia. 

Linares-Palomino R, Oliveira-Filho AT, Toby Pennington R (2011) Neotropical seasonally dry 

forests: diversity, endemism, and biogeography of woody plants. In: Seasonally Dry 

tropical forests ecology and conservation (eds Dirzo R, Young HS, Mooney HA, Ceballos 

G), pp. 3–21. Washington, DC. 

Lindenmayer DB, Margules CR, Botkin DB (2011a) Indicators of biodiversity for ecologically 

sustainable forest management. Conservation Biology, 14, 941–950. 

Lindenmayer DB, Likens GE, Haywood A, Miezis L (2011b) Adaptive monitoring in the real 

world: proof of concept. Trends in Ecology & Evolution, 26, 641–6. 

Lobo J, Fuchs EJ, Barrantes G, Castillo M, Quesada R (2007) Effects of selective logging on 

the abundance, regeneration and short-term survival of Caryocar costaricense 

(Caryocaceae) and Peltogyne purpurea (Caesalpinaceae), two endemic timber species of 

southern Central America. Forest Ecology and Management, 245, 88–95. 

Lott E, Bullock S, Solis-Magallanes A (1987) Floristic diversity and strutcture of upland and 

arroyo forests of coastal Jalisco. Biotropica, 19, 228–235. 

Lund HG (1999) A “forest” by any other name. Environmental Science & Policy, 2, 125–133. 

Luyssaert S, Schulze E-D, Borner A et al. (2008) Old-growth forests as global carbon sinks. 

Nature, 455, 213–215. 

Maass J (1995) Conversion of tropical dry forests to pasture and agriculture. In: Seasonally Dry 

Tropical Forests (eds Bullock SH, Mooney HA, Medina E), pp. 399–422. Cambridge 

University Press, Cambridge, UK. 

Maass JM, Balvanera P, Castillo A et al. (2005) Ecosystem services of tropical dry forests: 

insights from long-term ecological and social research on the Pacific Coast of Mexico. 

Ecology and Society, 10, 17. 

Mackey B, Keith H, Berry SL, Lindenmayer DB (2008) Green Carbon: the role of natural 

forests in carbon storage. Canberra, Australia. 



 

206 

Magdon P, Kleinn C (2013) Uncertainties of forest area estimates caused by the minimum 

crown cover criterion -a scale issue relevant to forest cover monitoring. Environmental 

monitoring and assessment, 185, 5345–5360. 

Magdon P, Fischer C, Fuchs H, Kleinn C (2014) Translating criteria of international forest 

definitions into remote sensing image analysis. Remote Sensing of Environment, 149, 252–

262. 

Margono BA, Turubanova S, Zhuravleva I, Potapov P, Tyukavina A (2012) Mapping and 

monitoring deforestation and forest degradation in Sumatra (Indonesia) using Landsat time 

series data sets from 1990 to 2010. Environmental Research Letters, 7, 34010. 

Marín-Spiotta E, Cusack D, Ostertag R, Silver WL (2008) Trends in above and belowground 

carbon with forest regrowth after agricultural abandonment in the neotropics. In: Post-

Agricultural Succesion in the Neotropics (ed Myster R), pp. 22–72. Springer, New York. 

Martin PA, Newton AC, Bullock JM (2013) Carbon pools recover more quickly than plant 

biodiversity in tropical secondary forests. Proceedings Biological Sciences / The Royal 

Society, 280, 20132236. 

Martinez-Yrizar A (1995) Biomass distribution and primary productivity of tropical dry forests. 

In: Seasonally Dry Tropical Forests (eds Bullock SH, Mooney HA, Medina E), pp. 326–

341. Cambridge University Press, Cambridge, UK. 

Martinez-Yrizar AA, Sarukhan J, Perez-Jimenez A, Maass JM, Solis-Magallanes A, Cervantes 

L, Rincon E (1992) Above-ground phytomass of a tropical deciduous forest on the coast of 

Jalisco, Mexico. Journal of Tropical Ecology, 8, 87–96. 

Martinuzzi S, Gould WWA, Vierling LA LA, Hudak AT, Nelson RF, Evans JS (2013) 

Quantifying tropical dry forest type and succession: substantial improvement with LiDAR. 

Biotropica, 0, 1–12. 

Marvin DC, Asner GP (2016) Spatially explicit analysis of field inventories for national forest 

carbon monitoring. Carbon Balance and Management, 11, 9. 

Matricardi EAT, Skole DL, Pedlowski MA, Chomentowski W, Fernandes LC (2010) 

Assessment of tropical forest degradation by selective logging and fire using Landsat 

imagery. Remote Sensing of Environment, 114, 1117–1129. 

McDonald M, McLaren KP, Newton AC (2010) What are the mechanisms of regeneration post-

disturbance in tropical dry forest? CEE Review, 7, 13. 

McLaren K, McDonald M (2003) Coppice regrowth in a disturbed tropical dry limestone forest 

in Jamaica. Forest Ecology and Management, 180, 99–111. 

Mellor A, Haywood A, Stone C, Jones S (2013) The performance of random rorests in an 

operational setting for large area sclerophyll forest classification. Remote Sensing, 5, 

2838–2856. 

Menard S (2010) Logistic Regression: from introductory to advanced concepts and 

applications. SAGE Publications, 377 pp. 

Meneses-Tovar CL (2011) NDVI as indicator of degradation. Unasylva, 62, 39–46. 

Mertz O (2009) Trends in shifting cultivation and the REDD mechanism. Current Opinion in 

Environmental Sustainability, 1, 156–160. 

Mertz O, Müller D, Sikor T et al. (2012) The forgotten D: challenges of addressing forest 

degradation in complex mosaic landscapes under REDD+. Geografisk Tidsskrift-Danish 

Journal of Geography, 112, 63–76. 

Miettinen J, Stibig H-J, Achard F (2014) Remote sensing of forest degradation in Southeast 

Asia: aiming for a regional view through 5-30 m satellite data. Global Ecology and 

Conservation, 2, 24–36. 



 

207 

Miles L, Newton AC, DeFries RS et al. (2006) A global overview of the conservation status of 

tropical dry forests. Journal of Biogeography, 33, 491–505. 

Miller SD, Goulden ML, Hutyra LR et al. (2011) Reduced impact logging minimally alters 

tropical rainforest carbon and energy exchange. Proceedings of the National Academy of 

Sciences of the United States of America, 108, 19431–5. 

MINAET (2012) Decreto Ejecutivo para establecer y regular el mercado voluntario de carbono. 

DAJ-62. 

Minang PA, van Noordwijk M (2013) Design challenges for achieving reduced emissions from 

deforestation and forest degradation through conservation: leveraging multiple paradigms 

at the tropical forest margins. Land Use Policy, 31, 61–70. 

Mitchard ET, Saatchi SS, Baccini A, Asner GP, Goetz SJ, Harris NL, Brown S (2013) 

Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-

tropical maps. Carbon Balance and Management, 8, 10. 

Mohren GMJ, Hasenauer H, Kohl M, Nabuurs G (2012) Forest inventories for carbon change 

assessments. Current Opinion in Environmental Sustainability, 1–10. 

Mollicone D, Achard F, Federici S et al. (2007) An incentive mechanism for reducing emissions 

from conversion of intact and non-intact forests. Climatic Change, 83, 477–493. 

Mon MS, Mizoue N, Htun NZ, Kajisa T, Yoshida S (2012) Factors affecting deforestation and 

forest degradation in selectively logged production forest: a case study in Myanmar. 

Forest Ecology and Management, 267, 190–198. 

Mora B, Herold M, Sy V De, Wijaya A, Verchot L, Penman J (2012) Capacity development in 

national forest monitoring experiences and progress for REDD +. CIFOR, Bogor, 

Indonesia. 

Morales-Barquero L, Skutsch M, Jardel-Peláez E, Ghilardi A, Kleinn C, Healey J (2014) 

Operationalizing the definition of forest degradation for REDD+, with application to 

Mexico. Forests, 5, 1653–1681. 

Müller D, Munroe DK (2014) Current and future challenges in land-use science. Journal of 

Land Use Science, 9, 133–142. 

Müller D, Suess S, Hoffmann AA, Buchholz G (2013) The value of satellite-based active fire 

data for monitoring, reporting and verification of REDD+ in the Lao PDR. Human 

Ecology, 41, 7–20. 

Murdiyarso D, Skutsch M, Guariguata M, Kanninen M, Luttrell C, Verweij P, Stella O (2008a) 

How do we measure and monitor forest degradation ? In: Moving Ahead with REDD (ed 

Angelsen A), pp. 99–155. CIFOR, Bogor, Indonesia. 

Murdiyarso D, Skutsch M, Guariguata M, Kanninen M, Luttrell C, Verweij P, Stella O (2008b) 

Measuring and monitoring forest degradation for REDD: implications of country 

circumstances. In: Moving Ahead with REDD (ed Angelsen A). CIFOR, Bogor, Indonesia. 

Murphy PG, Lugo AE (1986) Ecology of tropical dry forests. Annual Review of Ecology and 

Systematics, 17, 67–88. 

Nascimento JMP, Dias JMB (2005) Vertex component analysis: a fast algorithm to unmix 

hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 43, 898–910. 

Nasi R, Putz F, Pacheco P, Wunder S, Anta S (2011) Sustainable Forest Management and 

Carbon in Tropical Latin America: The Case for REDD+. Forests, 2, 200–217. 

Negrón-Juárez RI, Chambers JQ, Marra DM, Ribeiro G, Rifai SW, Higuchi N, Roberts D 

(2011) Detection of subpixel treefall gaps with Landsat imagery in Central Amazon 

forests. Remote Sensing of Environment, 115, 3322–3328. 

Newton AC, Echeverria C (2014) Analysis of anthropogenic impacts on forest biodiversity as a 



 

208 

contribution to empirical theory. In: Forests and Global Change (eds Coomes DA, 

Burslem D, Simonson W), pp. 417–446. Cambridge University Press, Cambridge, UK. 

Noponen MRA, Haggar JP, Edwards-Jones G, Healey JR (2013) Intensification of coffee 

systems can increase the effectiveness of REDD mechanisms. Agricultural Systems, 119, 

1–9. 

Norden N, Angarita HA, Bongers F et al. (2015) Successional dynamics in Neotropical forests 

are as uncertain as they are predictable. Proceedings of the National Academy of Sciences 

of the United States of America, 1500403112-. 

Olander LP, Galik CS, Kissinger GA (2012) Operationalizing REDD+: scope of reduced 

emissions from deforestation and forest degradation. Current Opinion in Environmental 

Sustainability, 4, 661–669. 

Oliver CD, Larsen BC (1990) Forest stand dynamics. John Wiley, New York, United States of 

America, 467 pp. 

Olofsson P, Foody GM, Herold M, Stehman S V., Woodcock CE, Wulder MA (2014) Good 

practices for estimating area and assessing accuracy of land change. Remote Sensing of 

Environment, 148, 42–57. 

Osazuwa-Peters OL, Chapman CA, Zanne AE (2015) Selective logging: does the imprint 

remain on tree structure and composition after 45 years? Conservation Physiology, 3. 

OTS (2008) El abastecimiento sostenible de madera en Costa Rica, 1st edn. CRUSA CATIE, 

San José, Costa Rica., 120 pp. 

Overmars KP, Verburg PH (2005) Analysis of land use drivers at the watershed and household 

level: Linking two paradigms at the Philippine forest fringe. International Journal of 

Geographical Information Science, 19, 125–152. 

Ozdemir I, Karnieli A (2011) Predicting forest structural parameters using the image texture 

derived from WorldView-2 multispectral imagery in a dryland forest, Israel. International 

Journal of Applied Earth Observation and Geoinformation, 13, 701–710. 

Padoch C, Pinedo-Vasquez M (2010) Saving slash-and-burn to save biodiversity. Biotropica, 

42, 550–552. 

Palm CA, Smukler SM, Sullivan CC, Mutuo PK, Nyadzi GI, Walsh MG (2010) Identifying 

potential synergies and trade-offs for meeting food security and climate change objectives 

in sub-Saharan Africa. Proceedings of the National Academy of Sciences of the United 

States of America, 107, 19661–6. 

Paradis E, Claude J, Stimmer K (2004) APE: analyses of phylogenetics and evolution in R 

language. Bioinformatics, 20, 289–290. 

Parrotta JA, Wildburger C, Mansourian S (2012) Understanding relationships between 

biodiversit ,  ar o , forests a d people : The ke  to a h e   g   DD + o  e t  es, Vol. 

31 (eds Parrotta JA, Wildburger C, Mansourian S). IUFRO, Vienna, Austria, 161 pp. 

Pearson TRH, Walker S, Brown S (2005) Sourcebook for land use, land use change and 

forestry projects. Winrock International and the BioCarbon Fund of the World Bank, 

Washington, DC, 57 pp. 

Pearson TRH, Brown S, Casarim FM (2014) Carbon emissions from tropical forest degradation 

caused by logging. Environmental Research Letters, 9, 34017. 

Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Computers & 

Geosciences, 30, 683–691. 

Pebesma EJ, Bivand RS (2005) Classes and methods for spatial data in R. R News, 5. 

Pelletier J, Goetz SJ (2015) Baseline data on forest loss and associated uncertainty: advances in 

national forest monitoring. Environmental Research Letters, 10, 21001. 



 

209 

Pelletier J, Ramankutty N, Potvin C (2011) Diagnosing the uncertainty and detectability of 

emission reductions for REDD + under current capabilities: an example for Panama. 

Environmental Research Letters, 6, 24005. 

Pelletier J, Codjia C, Potvin C (2012a) Traditional shifting agriculture: tracking forest carbon 

stock and biodiversity through time in western Panama. Global Change Biology, 18, 

3581–3595. 

Pelletier J, Kirby KR, Potvin C (2012b) Significance of carbon stock uncertainties on emission 

reductions from deforestation and forest degradation in developing countries. Forest 

Policy and Economics, 24, 3–11. 

Peres CA, Barlow J, Laurance WF (2006) Detecting anthropogenic disturbance in tropical 

forests. Trends in Ecology & Evolution, 21, 227–229. 

Petrokofsky G, Kanamaru H, Achard F et al. (2012) Comparison of methods for measuring and 

assessing carbon stocks and carbon stock changes in terrestrial carbon pools. How do the 

accuracy and precision of current methods compare? A systematic review protocol. 

Environmental Evidence, 1, 6. 

Pfeifer M, Kor L, Nilus R et al. (2016) Mapping the structure of Borneo’s tropical forests across 

a degradation gradient. Remote Sensing of Environment, 176, 84–97. 

Phelps J, Webb EL, Adams WM (2012) Biodiversity co-benefits of policies to reduce forest-

carbon emissions. Nature Climate Change, 2, 1–7. 

Ploton P, Pélissier R, Proisy C, Flavenot T, Barbier N, Rai SN, Couteron P (2012) Assessing 

aboveground tropical forest biomass using Google Earth canopy images. Ecological 

Applications, 22, 993–1003. 

Plugge D, Köhl M (2012) Estimating carbon emissions from forest degradation: implications of 

uncertainties and area sizes for a REDD + MRV system. Canadian Journal of Forest 

Research, 42, 1996–2010. 

le Polain de Waroux Y, Lambin EF (2012) Monitoring degradation in arid and semi-arid forests 

and woodlands: the case of the Argan woodlands (Morrocco). Applied Geography, 32, 

777–786. 

Pontius RG, Schneider LC (2001) Land-cover change model validation by an ROC method for 

the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems & Environment, 85, 

239–248. 

Poorter L, Bongers F, Aide TM et al. (2016) Biomass resilience of Neotropical secondary 

forests. Nature, 1–15. 

Portillo-Quintero CA, Sánchez-Azofeifa GA (2010) Extent and conservation of tropical dry 

forests in the Americas. Biological Conservation, 143, 144–155. 

Portillo-Quintero C, Sanchez-Azofeifa GA, Calvo-Alvarado J, Quesada M, do Espirito Santo 

MM (2014) The role of tropical dry forests for biodiversity, carbon and water conservation 

in the neotropics: lessons learned and opportunities for its sustainable management. 

Regional Environmental Change, 15, 1039–1049. 

Potapov PV, Laestadius L, Yaroshenko A, Turubanova S (2009) Case studies on measuring and 

assessing forest degradation. Global mapping and monitoring the extent of forest 

alteration: the intact forest landscape method. Food and Agriculture Organization of 

United Nations, Rome,Italy, 12 pp. 

Powers JS, Becknell JM, Irving J, Pèrez-Aviles D (2009) Diversity and structure of regenerating 

tropical dry forests in Costa Rica: geographic patterns and environmental drivers. Forest 

Ecology and Management, 258, 959–970. 

Pratihast AK, Herold M, De Sy V, Murdiyarso D, Skutsch M (2013) Linking community-based 

and national REDD+ monitoring: a review of the potential. Carbon Management, 4, 91–



 

210 

104. 

Putz FE, Redford KH (2010) The importance of defining “forest”: tropical forest degradation, 

deforestation, long-term phase shifts, and further transitions. Biotropica, 42, 10–20. 

Putz FE, Romero C (2015) Futures of tropical production forests. Occasional Paper 143. 

CIFOR, Boca Raton, FL,USA, 40 pp. 

Putz FE, Sist P, Fredericksen T, Dykstra D (2008b) Reduced-impact logging: challenges and 

opportunities. Forest Ecology and Management, 256, 1427–1433. 

Putz FE, Zuidema PA, Pinard MA et al. (2008a) Improved tropical forest management for 

carbon retention. PLoS Biology, 6, 1368–1369. 

Putz FE, Zuidema PA, Synnott T et al. (2012) Sustaining conservation values in selectively 

logged tropical forests: the attained and the attainable. Conservation Letters, 5, 296–303. 

QGIS Development Team (2013) QGIS Geographic Information System. 

Qi J, Chehbouni A, Huete AR, Kerr YH, Sorooshian S (1994) A modified soil adjusted 

vegetation index. Remote Sensing of Environment, 48, 119–126. 

Quesada R, Castillo M (2010) Demografía de Especies Maderables de la Península de Osa. 

Cartago, Costa Rica, 132 pp. 

Quesada F, Jimenez Q, Zamora N, Aguilar-Fernandez R, Gonzalez-Ramirez J (1997) Arboles de 

la Pe ı s la de Osa. INBio, Heredia, Costa Rica, 411 pp. 

Quesada M, Sanchez-Azofeifa GA, Alvarez-Añorve M et al. (2009) Succession and 

management of tropical dry forests in the Americas: review and new perspectives. Forest 

Ecology and Management, 258, 1014–1024. 

Quesada R, Castillo M, Lobo J, Barrantes G (2010) Informe Final Proyecto de Investigación 

Demografía de especies maderables de la Península de Osa Codigo 5402-1401-8401. 

Cartago, Costa Rica, 132 pp. 

Quesada R, Acosta L, Garro M, Castillo-Ugalde M (2012) Dinámica del crecimiento del bosque 

húmedo tropical , 19 años después de la cosecha bajo cuatro sistemas de aprovechamiento 

forestal en la Península de Osa , Costa Rica. Tecnología en Marcha, 25, 56–66. 

R Core Team (2013) R: A language and environment for computing. R Foundation for 

Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 

Ramage BS, Sheil D, Salim HMW et al. (2013) Pseudoreplication in tropical forests and the 

resulting effects on biodiversity conservation. Conservation Bology, 27, 364–72. 

Read L, Lawrence D (2003) Recovery of biomass following shifting cultivation in dry tropical 

forests of the Yucatan. Ecological Applications, 13, 85–97. 

Reimer F, Asner GP, Joseph S (2015) Advancing reference emission levels in subnational and 

national REDD+ initiatives: a CLASlite approach. Carbon balance and management, 10, 

5. 

Rendón Thompson OR, Paavola J, Healey JR, Jones JPG, Baker TR, Torres J (2013) Reducing 

Emissions from Deforestation and Forest Degradation (REDD+): transaction costs of six 

Peruvian projects. Ecology and Society, 18. 

Rodriguez-Galiano VF, Ghimire B, Rogan J, Chica-Olmo M, Rigol-Sanchez JP (2012) An 

assessment of the effectiveness of a random forest classifier for land-cover classification. 

ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93–104. 

Rojas-Sandoval J, Meléndez-Ackerman EJ, Fumero-Cabán J et al. (2014) Effects of hurricane 

disturbance and feral goat herbivory on the structure of a Caribbean dry forest. Journal of 

Vegetation Science, 25, 1069–1077. 

Román-Dañobeytia F, Levy-Tacher S, Macario-Mendoza P, Zúñiga-Morales J (2014) 

Redefining secondary forests in the Mexican forest code: implications for management, 



 

211 

restoration, and conservation. Forests, 5, 978–991. 

Romero-Duque LP, Jaramillo VJ, Pérez-Jiménez A (2007) Structure and diversity of secondary 

tropical dry forests in Mexico, differing in their prior land-use history. Forest Ecology and 

Management, 253, 38–47. 

Romijn E, Ainembabazi JH, Wijaya A, Herold M, Angelsen A, Verchot L, Murdiyarso D 

(2013) Exploring different forest definitions and their impact on developing REDD+ 

reference emission levels: a case study for Indonesia. Environmental Science & Policy, 33, 

246–259. 

Rondeaux G, Steven M, Baret. F, Baret F (1996) Optimization of soil-adjusted vegetation 

indices. Remote Sensing of Environment, 55, 95–107. 

Rosendal GK, Schei PJ (2014) How may REDD+ affect the practical, legal and institutional 

framework for “Payment for ecosystem services” in Costa Rica? Ecosystem Services, 9, 

75–82. 

Rosero-Bixby L, Maldonado T, Bonilla-Carrión R (2002) Bosque y población en la Península 

de Osa , Costa Rica. Revista de Biología Tropical, 50, 585–598. 

Rouse JW, Haas RH, Schell JA, D.W. Deering D (1973) Monitoring vegetation systems in the 

Great Plains with ERTS. In: Third ERTS Symposium, NASA SP-351 I, pp. 309–317. 

Roy Chowdhury R (2006) Landscape change in the Calakmul Biosphere Reserve, Mexico: 

Modeling the driving forces of smallholder deforestation in land parcels. Applied 

Geography, 26, 129–152. 

Rutishauser E, Wagner F, Herault B, Nicolini E-A, Blanc L (2010) Contrasting above-ground 

biomass balance in a Neotropical rain forest. Journal of Vegetation Science, 21, 672–682. 

Rutishauser E, Hérault B, Baraloto C et al. (2015) Rapid tree carbon stock recovery in managed 

Amazonian forests. Current Biology, 25, 787–788. 

Ryan CM, Hill T, Woollen E et al. (2012) Quantifying small-scale deforestation and forest 

degradation in African woodlands using radar imagery. Global Change Biology, 243–257. 

Rzedowski I (1978) La vegetacion de Mexico. Limusa, Mexico D.F., Mexico, 431 pp. 

Sáenz-Faerrón A, Rodríguez-Zúñiga, J. M., Herrera ME, Ortiz-Malavassi E, Borge C, Obando 

G (2010) Country submitting the proposal: Costa Rica readiness preparation proposal. 

Forest Carbon Partnership Facility (FCPF). Presented at the Forest Carbon Partnership 

Facility (FCPF). 

Sagar R, Singh JS (2006) Tree density, basal area and species diversity in a disturbed dry 

tropical forest of northern India: implications for conservation. Environmental 

Conservation, 33, 256. 

Saikia A (2014) Conceptualizing drivers of forest loss. In: Over-Exploitation of Forests, 1st 

edn, pp. 19–24. Springer International Publishing, Cham, Germany. 

Salinas-Melgoza MA, Skutsch M, Lovett CJ (2015) Shifting cultivation in the context of 

REDD+: a case study of Mexican tropical dry forest. Land Use Policy, submitted. 

Salvini G, Herold M, De Sy V, Kissinger G, Brockhaus M, Skutsch M (2014) How countries 

link REDD+ interventions to drivers in their readiness plans: implications for monitoring 

systems. Environmental Research Letters, 9, 74004. 

Sanchez-Azofeifa A, Fernandes W, Powers J, Quesada M (eds.) (2014a) Tropical dry forests in 

the Americas: ecology, conservation and management. CRC Press, Boca Raton, FL,USA. 

Sanchez-Azofeifa GA, Portillo-Quintero C (2011) Extent and drivers of change of Neotropical 

dry forests. In: Seasonally Dry Tropical Forests (eds Dirzo R, Young HS, Mooney HA, 

Ceballos G), pp. 45–59. Island Press, Washington, DC. 

Sanchez-Azofeifa GA, Rivard B, Calvo J, Moorthy I (2002) Dynamics of tropical deforestation 



 

212 

around national parks: remote sensing of forest change on the Osa Peninsula of Costa 

Rica. Mountain Research and Development, 22, 352–358. 

Sanchez-Azofeifa GA, Calvo-Alvarado J, Espírito-Santo M, Fernandes G, Powers J, Quesada M 

(2014b) Tropical dry forests in the Americas: the Tropi-Dry endeavor. In: Tropical Dry 

Forests in the Americas (eds Sanchez-Azofeifa GA, Fernandes GW., Powers JS., Quesada 

M), pp. 1–13. CRC Press. 

Sánchez-Azofeifa GA, Quesada M, Rodríguez JP et al. (2005) Research priorities for 

Neotropical dry forests. Biotropica, 37, 477–485. 

Sasaki N, Putz FE (2009) Critical need for new definitions of “forest” and “forest degradation” 

in global climate change agreements. Conservation Letters, 2, 226–232. 

Sasaki N, Asner G, Knorr W, Durst P, Priyadi H, Putz F (2011) Approaches to classifying and 

restoring degraded tropical forests for the anticipated REDD+ climate change mitigation 

mechanism. iForest - Biogeosciences and Forestry, 4, 1–6. 

Sayer J, Sunderland T, Ghazoul J et al. (2013) Ten principles for a landscape approach to 

reconciling agriculture, conservation, and other competing land uses. Proceedings of the 

National Academy of Sciences of the United States of America, 110, 8349–56. 

Schoene D, Killmann W, Lüpke H von, Wilkie M (2007) Definitional issues related to reducing 

emissions from deforesation in developing countries (ed Food and Agriculture 

Organization of the United Nations). Rome, Italy. 

SEMARNAT (2010) Visión de México sobre REDD+: hacia un estrategia nacional. 

CONAFOR, Zapopan, Mexico. 

Shearman PL, Ash J, Mackey B, Bryan JE, Lokes B (2009) Forest conversion and degradation 

in Papua New Guinea 1972 – 2002. Biotropica, 41, 379–390. 

Sheil D, Sayer J, O’Brien T (1999) Tree species diversity in logged rainforests. Science, 284, 

1587–1587. 

Sierra C, Vartanián D, Polimeni J (2003) Caracterización social, económica y ambiental del 

Area de Conservación Osa, Costa Rica. Dirección de la sociedad civil, Programa Agenda 

21 ACOSA. Ministerio del Ambiente y Energia, San Jose, Costa Rica. 

Simula M (2009) Towards defining forest degradation: Comparative analysis of existing 

definitions. Food and Agriculture Organization of United Nations, Rome, Italy, 59 pp. 

Sist P, Mazzei L, Blanc L, Rutishauser E (2014) Large trees as key elements of carbon storage 

and dynamics after selective logging in the Eastern Amazon. Forest Ecology and 

Management, 318, 103–109. 

Skutsch M (2011) Community forest monitoring for the carbon market: Opportunities under 

REDD, 1st edn (ed Skutsch M). Routledge, London, 208 pp. 

Skutsch M, Balderas-Torres A (2012) Expanding MRV for assessment of policy effectiveness 

and as a basis for benefit distribution. In: Capacity Development in National Monitoring 

Systems., pp. 77–81. CIFOR, Bogor, Indonesia. 

Skutsch M, Balderas-Torres A, Mwampamba TH, Ghilardi A, Herold M (2011) Dealing with 

locally-driven degradation: a quick start option under REDD+. Carbon Balance and 

Management, 6, 16. 

Skutsch M, Simon C, Velazquez A, Fernández JC (2013) Rights to carbon and payments for 

services rendered under REDD+: options for the case of Mexico. Global Environmental 

Change, 23, 813–825. 

Skutsch M, Borrego A, Morales-Barquero L et al. (2015) Opportunities, constraints and 

perceptions of rural communities regarding their potential to contribute to forest landscape 

transitions under REDD+: case studies from Mexico. International Forestry Review, 17, 

65–84. 



 

213 

Slik JWF, Paoli G, Mcguire K et al. (2013) Large trees drive forest aboveground biomass 

variation in moist lowland forests across the tropics. Global Ecology and Biogeography, 

22, 1261–1271. 

Sloan S, Sayer JA (2015) Forest Resources Assessment of 2015 shows positive global trends 

but forest loss and degradation persist in poor tropical countries. Forest Ecology and 

Management, 352, 134–145. 

Souza C (2003) Mapping forest degradation in the Eastern Amazon from SPOT 4 through 

spectral mixture models. Remote Sensing of Environment, 87, 494–506. 

Souza CM, Roberts DA, Cochrane MA (2005) Combining spectral and spatial information to 

map canopy damage from selective logging and forest fires. Remote Sensing of 

Environment, 98, 329–343. 

Souza CM, Siqueira J V, Sales MH et al. (2013) Ten-year landsat classification of deforestation 

and forest degradation in the Brazilian Amazon. Remote Sensing, 5, 5493–5513. 

Stern M, Quesada M, Stoner KE (2002) Changes in composition and structure of a tropical dry 

forest following intermittent cattle grazing. Revista de Biología Tropical, 50, 1021–1034. 

Stickler CM, Nepstad DC, Coe MT et al. (2009) The potential ecological costs and cobenefits of 

REDD: a critical review and case study from the Amazon region. Global Change Biology, 

15, 2803–2824. 

Strand H, Höft R, Strittholt J, Miles L, Horning N, Fosnight E, Turner W (2007) Sourcebook on 

remote sensing and biodiversity indicators, Technical edn. Secretariat of the Convention 

on Biological Diversity, Technical Series 32 Montreal,Canada, 203 pp. 

Strassburg BBN, Kelly A, Balmford A et al. (2010) Global congruence of carbon storage and 

biodiversity in terrestrial ecosystems. Conservation Letters, 3, 98–105. 

Stumpf K (1993) The estimation of forest vegetation cover descriptions using a vertical 

densitometer. Geographic Resource Solution. Presented at the Joint Inventory and 

Biometrics Working Groups session at the Society of American Foresters Annual 

Conference, Indianapolis, IN, November 8–10, 1993. Available 

at:http://www.grsgis.com/publications/saf_93.html. 

Sunderlin W, Dewi S, Puntodewo A, Muller D, Angelsen A, Epprecht M (2008) Why forests 

are important for global poverty alleviation: a spatial explanation. Ecology and Society, 13, 

24. 

Svob S, Arroyo-Mora JP, Kalacska M (2014) The development of a forestry geodatabase for 

natural forest management plans in Costa Rica. Forest Ecology and Management, 327, 

240–250. 

De Sy V, Herold M, Achard F, Asner GP, Held A, Kellndorfer J, Verbesselt J (2012) Synergies 

of multiple remote sensing data sources for REDD+ monitoring. Current Opinion in 

Environmental Sustainability, 4, 696–706. 

Taylor P, Asner G, Dahlin K et al. (2015) Landscape-Scale Controls on Aboveground Forest 

Carbon Stocks on the Osa Peninsula, Costa Rica. PloS ONE, 10, e0126748. 

Thompson ID, Ferreira J, Gardner T et al. (2012) Forest biodiversity, carbon and other 

ecosystem services: relationships and impacts of deforestation and forest degradation. In: 

Understanding relationships between biodiversity, carbon, forests and people: the key to 

achieving REDD+ objectives. (eds Parrotta JA, Wildburger C, Mansourian S), pp. 21–52. 

IUFRO World Series, Vienna,Austria. 

Thompson ID, Guariguata MR, Okabe K, Bahamondez C, Nasi R, Heymell V, Sabogal C 

(2013) An operational framework for defining and monitoring forest degradation. Ecology 

and Society, 18, 20. 

Thomsen K (1997) Potential of non timber forest products in a tropical rainforests in Costa 



 

214 

Rica. PhD Thesis. University of Copenhagen, Denmark. 

Tokola T (2015) Remote sensing concepts and their applicability in REDD+ monitoring. 

Current Forestry Reports, 1, 252–260. 

Trejo I, Dirzo R (2000) Deforestation of seasonally dry tropical forest a national and local 

analysis in Mexico. Biological Conservation, 94, 133–142. 

Tschakert P, Coomes OT, Potvin C (2006) Indigenous livelihoods , slash-and-burn agriculture , 

and carbon stocks in Eastern Panama. Ecological Economics, 60, 807–820. 

Turner W, Rondinini C, Pettorelli N et al. (2015) Free and open-access satellite data are key to 

biodiversity conservation. Biological Conservation, 182, 173–176. 

Tyukavina A, Baccini A, Hansen MC et al. (2015) Aboveground carbon loss in natural and 

managed tropical forests from 2000 to 2012. Environmental Research Letters, 10, 74002. 

UNFCCC (2010) Outcome of the work of the Ad Hoc working group on long-term cooperative 

action under the convention.Draft decision CP.16. Cancun. 

Uriarte M, Schneider L, Rudel TK (2010) Land transitions in the tropics: going beyond the case 

studies. Biotropica, 42, 1–2. 

Urquiza-Haas T, Dolman PM, Peres CA (2007) Regional scale variation in forest structure and 

biomass in the Yucatan Peninsula, Mexico: effects of forest disturbance. Forest Ecology 

and Management, 247, 80–90. 

Vaglio Laurin G, Chen Q, Lindsell JA et al. (2014) Above ground biomass estimation in an 

African tropical forest with lidar and hyperspectral data. ISPRS Journal of 

Photogrammetry and Remote Sensing, 89, 49–58. 

Valdez-Hernández M, Sánchez O, Islebe GA, Snook LK, Negreros-Castillo P (2014) Recovery 

and early succession after experimental disturbance in a seasonally dry tropical forest in 

Mexico. Forest Ecology and Management, 334, 331–343. 

Vaughan C (2012) Creating wildlands in Costa Rica : Historical ecology of the creation of 

Corcovado National Park. Cuadernos de Investigacion UNED, 4, 55–70. 

Velazquez A, Nuñez Hernandez JM, Andre Couturier S, Bocco Verdinelli G (2011) Propuesta 

Metodológica para Normar la Evaluación de la Tasa de Deforestación y Degradación 

Forestal en México. Mexico, 1-25 pp. 

Venables WN, Ripley B. (2002) Modern Applied Statistics with S, Fourth edn. Springer, New 

York. 

Venter O, Koh LP (2012) Reducing emissions from deforestation and forest degradation 

(REDD+): Game changer or just another quick fix? Annals of the New York Academy of 

Sciences, 1249, 137–150. 

Venter O, Laurance WF, Iwamura T, Wilson KA, Fuller RA, Possingham HP (2009) 

Harnessing carbon payments to protect biodiversity. Science, 326, 1368. 

Venter O, Possingham HP, Hovani L et al. (2013) Using systematic conservation planning to 

minimize REDD+ conflict with agriculture and logging in the tropics. Conservation 

Letters, 6, 116–124. 

Vescovo L, Gianelle D (2008) Using the MIR bands in vegetation indices for the estimation of 

grassland biophysical parameters from satellite remote sensing in the Alps region of 

Trentino (Italy). Advances in Space Research, 41, 1764–1772. 

Vieira DLM, Scariot A (2006) Principles of natural regeneration of tropical dry forests for 

regeneration. Restoration Ecology, 14, 11–20. 

Vieira DLM, Scariot A, Sampaio AB, Holl KD (2006) Tropical dry-forest regeneration from 

root suckers in Central Brazil. Journal of Tropical Ecology, 22, 353–357. 

Visseren-Hamakers IJ, Gupta A, Herold M, Peña-Carlos M, Marjanneke J V (2012) Will REDD 



 

215 

+ work? The need for interdisciplinary research to address key challenges. Current 

Opinion in Environmental Sustainability, 4, 590–596. 

van Vliet N, Mertz O, Heinimann A et al. (2012) Trends, drivers and impacts of changes in 

swidden cultivation in tropical forest-agriculture frontiers: a global assessment. Global 

Environmental Change, 22, 418–429. 

van der Werf GR, Morton DC, DeFries RS et al. (2009) CO2 emissions from forest loss. Nature 

Geoscience, 2, 737–738. 

West TAP, Vidal E, Putz FE (2014) Forest biomass recovery after conventional and reduced-

impact logging in Amazonian Brazil. Forest Ecology and Management, 314, 59–63. 

White LJT, Oates JF (1999) New data on the history of the plateau forest of Okomu, southern 

Nigeria: an insight into how human disturbance has shaped the African rain forest. Global 

Ecology and Biogeography, 8, 355–361. 

Whitmore TC (Timothy C (1998) An introduction to tropical rain forests, 2nd ed. . edn. Oxford, 

Oxford. 

Yaap B, Watson H, Laurance WF (2014) Mammal use of Raphia taedigera palm stands in Costa 

Rica’s Osa Peninsula. Mammalia, 79, 357–362. 

Zhuravleva I, Turubanova S, Potapov P et al. (2013) Satellite-based primary forest degradation 

assessment in the Democratic Republic of the Congo, 2000–2010. Environmental 

Research Letters, 8, 24034. 

Ziegler AD, Phelps J, Yuen JQ et al. (2012) Carbon outcomes of major land-cover transitions in 

SE Asia: great uncertainties and REDD+ policy implications. Global Change Biology, 18, 

3087–3099. 

Zolkos SG, Goetz SJ, Dubayah R (2013) A meta-analysis of terrestrial aboveground biomass 

estimation using lidar remote sensing. Remote Sensing of Environment, 128, 289–298. 

Zuur A, Ieno EN, Smith GM (2007) Analysing Ecological Data. Springer, New York, 672 pp. 

 


