

Bangor University

DOCTOR OF PHILOSOPHY

The biology of reproduction in two British pulmonate slugs.

Nicholas, J.

Award date: 1984

Awarding institution: Bangor University

Link to publication

General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
You may not further distribute the material or use it for any profit-making activity or commercial gain
You may freely distribute the URL identifying the publication in the public portal ?

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

THE BIOLOGY OF REPRODUCTION IN TWO BRITISH PULMONATE SLUGS

by

Jane Nicholas

A thesis submitted in partial fulfilment of the requirements for the degree of Philosophiae Doctor in the University of Wales.

In three volumes

VOLUME II

School of Animal Biology, University College of North Wales, Bangor, Gwynedd, United Kingdom.

October 1984.

KEY

а	acinus	agđ	albumen gland ducts
ah	anterior, slender region	al	ascending limb of
	of hermaphrodite duct		carrefour loop
alb	albumen gland	am	apical membrane
ap	apices	at	atrium
ax	axon		
b	bursa copulatrix	BM	basement membrane
br	brain	bs	blood sinus
bv	blood vessel	bw	body wall
С	carrefour	Ca	calcium cell
cc	cell cluster	CD	common duct
cg	carrefour gland	cil	cilated cells
cl	clear vesicles	Cm	circular muscle
со	core vesicles	coll	collagen
СТ	connective tissue	су	cytoplasm
đ	desmosome	div	carrefour diverticulum

.

•

đl	descending limb of	đu	ductule
	carrefour loop		
ec	cone of epiphallus	eđ	electron-dense granules
Ep	epithelium	epi	epiphallus
F	fibroblast	f	lateral foot
Fd	finger-like diverticulum	fo	focus of multiplication
foll	follicle		
g	granular connective	gl	gland
	tissue cells		
Gly	glycogen	gr	granules
hđ	hemidesmosome		
iv	intercellular vacuole	IV	intracellular vacuole
j	jelly layer		
Ŧ	duch lunch		1
Ц	ouer rumen	LA	lower atrium
T.M	longitudinal muscle	T.V	lycocome
2.1	iongicudinai mabere	Бү	172020me
м	mitochondria	mc	muscle
mf	microfibrils	mt	microtubules
mu	mucocvtes	mv	microvilli
		••• •	

MVB multivesicular body

N	nucleus	Ne	neuron
nt	neurotransmitter	nu	nucleolus
	granules		
Nv	nerve		
0	oviducal gland of	00	oocyte
	common duct		
Ov	oviduct		
Р	polysome	pap	papilla
pb	polar body	Pđ	pouched diverticulum
ph	posterior, slender	pig	pigment
	region of hermaphrodite		
PM	penial mass	po	pore cell
pr	prostate gland	Ps	penial sac
Psp	phagocytosed sperm	pvf	perivitelline
			fluid
r	ciliary rootlet	rER	rough endoplasmic
			reticulum
S	sarcobellum	SC	secretory cells
sđ	septate desmosomes	sER	smooth endoplasmic
			reticulum
Sg	sarcobellum gland cells	Sh	shell
sn	secretion	Sp	sperm

•

Sph	spermatophore	SR	sarcoplasmic .
			reticulum
sv	seminal vesicle	Syn	synapse
t	tubule	ta	trifid appendage
tER	transitional endoplasmic		
	reticulum		
UA	upper atrium	uncil	unciliated cells
V	vacuoles	Vđ	vas deferens
za	zonula adhaerens		
		4	
Q	female duct	Q.	male duct
-	1		
T	type 1 secretory cell	ΤŢ	type 11 secretory
			cell

Fig. 1 External appearance of adult <u>D.reticulatum</u> (a) and <u>A.hortensis</u> (b).

-

Fig. 1

Fig. 2 Diagrams of the reproductive tracts of <u>D.reticulatum</u> (a) and <u>A.hortensis</u> (b).

a) <u>D.reticulatum</u>

b) <u>A.hortensis</u>

Fig. 2

Fig. 3 Interpretatiion of cell activity.

Key: rER rough endoplasmic reticulum

- tER transitional endoplasmic reticulum
- MVB multivesicular body
- PV phagocytotic vacuole
- CV condensing vacuole
- 2^y secondary lysosome
- primary lysosome
- primary lysosome with clathrin coat
- **O** clathrin-coated vesicles
- O uncoated vesicles
- → flow demonstrated
- ----> possible flow
- (a) to (s) see text

- Fig. 4 Diagram of the morphology of the mature hermaphrodite duct.
- Fig. 5 T.S. through the seminal vesicle and posterior slender region of the hermaphrodite duct in <u>D.reticulatum</u> (x 150). The arrows indicate the transition from ciliated to unciliated cells.
- Fig. 6 T.S. through the seminal vesicle in <u>A.</u> <u>hortensis</u> (x300). The arrows indicate the transition from ciliated to unciliated cells.
- Fig. 7 T.S. through the anterior slender region of the hermaphrodite duct in <u>D.reticulatum</u> (x250).

Fig. 8 Diagram of the carrefour region in <u>D.</u> reticulatum (a) and <u>A.hortensis</u> (b). .

- Fig. 9 Diagram of the mature carrefour of <u>D.reticulatum</u>, front and rear views. Sections through this structure are illustrated in the following figures.
 - A-A Fig. 10
 B-B Fig. 11
 C-C Fig. 12
 D-D Fig. 14

- Figs. 10-14 Transverse sections at different levels (see Fig. 9) through the mature carrefour of <u>D.</u> reticulatum (x180).
- Fig. 15 T.S. through the posterior region of the common duct (x60).

Fig. 16 Vascularization of the carrefour and albumen gland of <u>D.reticulatum</u>. Drawn from dissection. Blood vessels injected with Indian ink by A. Duval.

- -

- Fig. 17 Diagram of the mature carrefour of <u>A.hortensis</u>, front and rear views. Sections through this structure are illustrated in the following figures.
 - A-A Fig. 18
 B-B Fig. 19
 C-C Fig. 20
 D-D Fig. 21

Figs. 18-22 Transverse sections at different levels (see Fig. 17) through the mature carrefour of <u>A</u>. <u>hortensis</u> (x160).

Fig. 23 Vascularization of the carrefour and albumen gland of <u>A.hortensis</u>. Drawn from dissection. Blood vessels injected with Indian ink by A. Duval.

.

Fig. 23

D.reticulatum, T.S. through the reproductive tract in the region of the carrefour.

Fig. 24 Early A-stage (x500).

•

Fig. 25 Late A-stage (x800).

Fig. 26 Diagrams of immature carrefours in D.reticulatum, front and rear views.

(a) Early B-stage.Sections through this structure are illustrated in the following figures.

A-A Fig. 27
B-B Fig. 28
C-C Fig. 29
D-D Fig. 30

 (b) Late B-stage.
 Sections through this structure are illustrated in the following figures.

> A-A Fig. 32 B-B Fig. 33 C-C Fig. 34

Figs. 27-30 D.reticulatum, transverse sections at different levels (see Fig. 26a) through an early B-Stage carrefour (x310).

- Fig. 31 <u>D.reticulatum</u>, T.S. through the hermaphrodite duct of a late B-stage animal (x310).
- Figs 32-34 D.reticulatum, transverse sections at different levels (see Fig. 26b) through a late B-stage carrefour (x310).

.

<u>A.hortensis</u>, T.S. through the reproductive tract in the region of the carrefour.

Fig. 35 Early A-stage (x560).

Fig. 36 Late A-stage (x400).

Fig. 37 Diagrams of immature carrefours in <u>A.hortensis</u>, front and rear views.

- (a) Early B-stage.Sections through this structure are illustrated in the following figures.
 - A-A Fig. 38
 B-B Fig. 39
 C-C Fig. 40
 D-D Fig. 41
- (b) Late B-stage.

Sections through this structure are illustrated in the following figures.

A-A Fig. 42
B-B Fig. 43
C-C Fig. 44
D-D Fig. 45

-

Figs. 38-41 <u>A.hortensis</u>, transverse sections at different levels (see Fig. 37a) through an early B-stage carrefour (x250).

Figs. 42-45 <u>A.hortensis</u>, transverse sections at different levels (see Fig. 37b) through a late B-stage carrefour (x250).

D.reticulatum, reproductive tract of a newly-hatched animal.

- Fig. 46 Transverse section (xlK).
- Fig. 47 Longitudinal section (x1.5K).
- Fig. 48 Transverse section (x6K).

D.reticulatum, hermaphrodite duct, epithelial cells lining the seminal vesicle.

- Fig. 49 Transition between the ciliated and unciliated cells (arrowed) (x250).
- Fig. 50 General view of the ciliated cells (x3.5K). The arrow indicates the position of a Golgi body.
- Fig. 51 Detail of the Golgi region in the ciliated cells (x37.5K).

D.reticulatum, hermaphrodite duct, ciliated epithelial cells lining the seminal vesicle.

Fig. 52 Detail of the apices (x15K). Arrows indicate the position of desmosomes.

Fig. 53 Detail of the sub-apical region (x15K).

D.reticulatum, hermaphrodite duct, unciliated epithelial cells lining the seminal vesicle.

- Fig. 54 Columnar epithelial cells (x3.5K).
- Fig. 55 Squamous epithelial cells (x3.5K).
- Fig. 56. Detail of the Golgi region (x27.5K). Arrows indicate coated vesicles.

D.reticulatum, hermaphrodite duct, unciliated epithelial cells lining the seminal vesicle.

- Fig. 57 Detail of the cell apex (x22.5K). Arrows indicate desmosomal junctions.
- Fig. 58 Detail of the phagocytosed sperm (x21K).
- Fig. 59 Epithelium with intercellular vacuoles (x8.5K). Large arrows indicate MVBs, small arrows indicate pinocytotic vesicles.

D.reticulatum, hermaphrodite duct.

- Fig. 60 The connective tissue underlying the epithelium of the seminal vesicle (x19.5K).
- Fig. 61 Muscular and nervous components of the connective tissue sheath (x6K).

.

D.reticulatum, epithelial cells lining the anterior, slender region of the hermaphrodite duct.

- Fig. 62 General view of the epithelium (x3.75K).
- Fig. 63 Detail of the cell apices (x9K).
- Fig. 64 General view of the epithelium near the carrefour (x3.75K).

(arrows indicate Golgi bodies)

D.reticulatum, hermaphrodite duct.

- Fig. 65 The epithelial cells lining the anterior, slender region of the hermaphrodite duct at its junction with the carrefour (x22.5). Large arrows indicate MVBs, small arrow indicates vesicle chain.
- Fig. 66 The muscular and nervous components of the connective tissue sheath surrounding the anterior, slender region of the hermaphrodite duct (x9K).
- Fig. 68 Axons lying in grooves in the bases of the epithelial cells lining the anterior, slender region of the hermaphrodite duct (x9K).

Fig. 67 Diagram illustrating the distribution of the neurons and nerves observed in a section through the anterior, slender region of the hermaphrodite duct in <u>D.reticulatum</u>.

Fig. 67

D.reticulatum, carrefour diverticula.

- Fig. 69 The epithelial cells lining the immature carrefour diverticula (x3.75K). Arrows indicate developing cilia.
- Fig. 70 The epithelial cells lining the pouched diverticulum in a mature animal (x1.5K).
- Fig. 71 Horizontal section through the epithelial cells lining the pouched diverticulum in the region of the Golgi apparatus (x9K). Arrows indicate electron-dense vesicles.

<u>D.reticulatum</u>, epithelial cells lining the pouched diverticulum of the carrefour.

- Fig. 72 Detail of the Golgi region (x22.5K). Arrows indicate microtubules.
- Fig. 73 Detail of the cell apices (x15K).
- Fig. 74 Detail of an omega body in the apical (inset) membrane (x56.25K).
- Fig. 75 Detail of the unciliated epithelial cells along the lateral edges of the pouch (x15K). Arrows indicate vesicle chains.

D.reticulatum, carrefour diverticula.

- Fig. 76 Detail of the unciliated epithelial cells at the junction with the hermaphrodite duct (x9K). Arrows indicate vesicle chains.
- Fig. 77 Detail of the highly folded basal membranes of the epithelial cells lining the pouched diverticulum (x9K). Arrows indicate hemidesmosomes.
- Fig. 78 The epithelial cells lining the finger-like diverticulum (x3.75K).

D.reticulatum, connective tissue surrounding the carrefour diverticula in an immature animal.

- Fig. 79 The connective tissue at the outer surface of the pouched diverticulum (x2.1K). The arrow indicates a cell in the later stages of cell division.
- Fig. 81 The connective tissue at the inner surface of the pouched diverticulum (x1.8K). The arrow indicates the neuron seen in Fig. 82.

Fig. 80 Diagram illustrating the distribution of the neurons and nerves observed in a section through the immature pouched diverticulum of D.reticulatum.

🖉 nerves

Fig. 80
<u>D.reticulatum</u>, connective tissue surrounding the carrefour diverticula in an immature animal.

Fig. 82 Immature neuron seen in Fig. 81 (x9K).

Fig. 83 Immature nerve (x18K).

<u>D.reticulatum</u>, connective tissue surrounding the carrefour diverticula in a mature animal.

- Fig. 84 The connective tissue at the outer surface of the pouched diverticulum (x3.4K).
- Fig. 85 The connective tissue at the inner surface of the pouched diverticulum (x1.5K).

Fig. 86 Diagram illustrating the distribution of the neurons and nerves observed in a section through the mature pouched diverticulum of D.reticulatum.

🐼 nerves

Fig. 86

Fig. 87 <u>D.reticulatum</u>, neuron with three axonal processes (1, 2 and 3) within the connective tissue surrounding the carrefour diverticula in a mature animal (x9K).

<u>D.reticulatum</u>, detail of neurons observed in the connective tissue surrounding the carrefour diverticula in a mature animal.

Fig. 88 General view of the cytoplasm in the region of the Golgi apparatus (22.5K). Arrow indicates cored vesicle.

.

Fig. 89 Accumulation of lysosomes in a neurone from a stage E animal (x22.5K).

D.reticulatum, connective tissue surrounding the carrefour diverticula in a mature animal.

- Fig. 90 Three nerve layers (1, 2 and 3) in the connective tissue sheath (x9K).
- Fig. 91 T.S. through axons, showing the variety of cytoplasmic inclusions (x22.5K).

,

D.reticulatum, connective tissue surrounding the carrefour diverticula in a mature animal.

- Fig. 92 Detail of a probable synapse (x22.5K).
- Fig. 93 Detail of possible neuromuscular junctions (x15K). Arrows indicate possible release sites.
- Fig. 94 Detail showing the intimate relationship of axons with the epithelial cells lining the pouched diverticulum (x22.5K).

<u>D.reticulatum</u>, connective tissue surrounding the carrefour diverticula in a mature animal.

- Fig. 95 Muscle cells (x15K). Arrows indicate intercellular junctions.
- Fig. 96 Detail of muscle cells (x37.5K). Small arrow indicates thin filaments, large arrow indicates thick filaments.

D.reticulatum, connective tissue surrounding the carrefour diverticula in a mature animal.

- Fig. 97 Pore cell (x3.75K). Arrows indicate pores in the cell membrane.
- Fig. 98 Pore cell with large accumulation of lysosomes.
 - a. Detail of the Golgi region (x10K). Arrow
 indicates region of cell membrane seen in
 (b).
 - b. Detail of the pores (x22.5K).

D.reticulatum, carrefour gland.

- Fig. 99 Sub-epithelial secretory cells opening into the carrefour (x1.5K).
- Fig. 100 T.S. through the base of a typical secretory cell (x2.25K).
- Fig. 101 Detail of the rER cisternae containing rod-like granules (x37.5K). Arrows indicate the relationship of granules with ribosomes.

D.reticulatum, carrefour gland.

- Fig. 102 Detail showing the Golgi-rER relationship and the formation of secretion granules (x15K). Arrows indicate confluence of rER cisternae and secretion granules.
- Fig. 103 Typical cup-shaped Golgi bodies (x10K).
- Fig. 104 Detail showing the relationship between the tubules of the transitional ER and the Golgi cisternae (x36K).

Fig. 105 Diagram showing the different phases of albumen gland development in <u>D.reticulatum</u>.

- a. undifferentiated epithelium.
- b. proliferation phase.
- c. accumulation phase (developing gland cells shaded).
- d. secretory phase.

Ъ.

•

.

ن ک

Fig. 105

D.reticulatum, albumen gland.

- Fig. 106 Undifferentiated epithelial cells (x6K).
- Fig. 107 Proliferation phase (x280).
- Fig. 108 Accumulation phase (x280).
- Fig. 109 Secretory phase (x280).

D.reticulatum, albumen gland, proliferation phase.

- Fig. 110 Section through tubule and main collecting duct (x1.5K).
- Fig. 111 T.S. through tubules (x1.5K). The arrow indicates a cell undergoing mitosis.
- Fig. 112 Formation of sub-epithelial cell clusters around a tubule (x1.5K).

D.reticulatum, albumen gland, proliferation phase.

- Fig. 113 Detail of sub-epithelial cell at the completion of cell division (x3.75). The arrow indicates the cell plate.
- Fig. 114 a. T.S. through a tubule showing the accumulation of glycogen in the apices of the secretory cells (x1.5K).

b. Detail of cell cluster (x3.75K).

D.reticulatum, albumen gland, accumulation phase.

- Fig. 115 Secretory cell opening into the lumen of the tubule (x3.9K).
- Fig. 116 Detail of the Golgi apparatus and early secretion granules (x15K).

.

D.reticulatum, albumen gland, accumulation phase.

- Fig. 117 Detail of a secretion granule with electrondense core (x37.5K).
- Fig. 118 Detail of the cell apex of a secretory cell (x22.5K).
- Fig. 119 Detail of the junctional complexes along the longitudinal membrane (xllK). Arrows indicate zonulae adhaerentes.

D.reticulatum, albumen gland, secretory phase.

- Fig. 120 Detail of the rough endoplasmic reticulum at the periphery of a secretory cell (x22.5K).
- Fig. 121 Detail showing the Golgi-rER relationship and the formation of secretion granules (x37.5K). Arrows indicate vesicles budding from rER.

D.reticulatum, albumen gland, secretory phase.

- Fig. 122 Secretory cell opening into a tubule (x2.25K). Arrow indicates electron-dense spot.
- Fig. 123 T.S. through a tubule filled with secretion (x1.8K).
- Fig. 124 Detail of the cell apex of a secretory cell (x22.5K). Small arrows indicate zonulae adhaerentes, large arrow indicates vesicle chain.

D.reticulatum, albumen gland, secretory phase.

- Fig. 125 Main collecting duct filled with secretion (x2.2K).
- Fig. 126 The apex of an epithelial cell lining the main collecting duct (x22.5K).
- Fig. 127 Detail of the junctional complex at the apex of epithelial cells (x45K).

D.reticulatum, albumen gland, secretory phase.

,

- Fig. 128 Section through the bases of mature secretory cells showing the thin connective tissue sheath which surrounds each acinus (x1.5K).
- Fig. 129 Nerve and muscle found near the base of the tubule epithelium (x9K). Detail of Fig. 122.

A.hortensis, hermaphrodite duct, epithelial cells lining the seminal vesicle.

- Fig. 130 Transition between ciliated and unciliated cells (x2.25K).
- Fig. 131 The ciliated cells (x3.75K).
- Fig. 132 Detail of the apices of the ciliated cells (x15K).

<u>A.hortensis</u>, hermaphrodite duct, epithelial cells lining the seminal vesicle.

- Fig. 133 The unciliated cells (x3.75K). N.B. the cells are columnar.
- Fig. 134 The unciliated cells (x3.75K). N.B. the cells are cuboidal.
- Fig. 135 Detail of the apices of the unciliated cells (x15K). Arrows indicate vesicle chains.

A.hortensis, hermaphrodite duct, epithelial cells.

- Fig. 136 Detail of phagocytosed sperm (x25.5K).
- Fig. 137 Detail of cell bases (x22.5K).
- Fig. 138 The ciliated cells lining the anterior, slender region of the hermaphrodite duct (x1.8K).

.

A.hortensis, carrefour loop, epithelial cells.

Fig. 139 General view (x2.4K).

Fig. 140 Detail of a Golgi body (x37.5K).

Fig. 141 Detail of a cell apex (x15K).

A.hortensis, carrefour loop, epithelial cells.

- Fig. 142 Detail of the sub-apical region (x9K). Stage E.
- Fig. 143 Detail showing the relationship of axons with the epithelial cells (x15K).

A.hortensis, carrefour gland.

- Fig. 144 Sub-epithelial secretory cells (x1.5K).
- Fig. 145 The bases of secretory cells (x6K).

.

Fig. 146 Detail showing the Golgi-rER relationship and the formation of secretion granules (x16K).

A.hortensis, carrefour gland.

- Fig. 147 Secretory cell opening into the carrefour (x3.4K).
- Fig. 148 Apical detail of a secretory cell (x14K).

•

A.hortensis, carrefour at the junction of the albumen gland ducts and the common duct.

Fig. 149 General view of lining epithelium (x2K). Stars indicate the position of neurons.

Fig. 150 Detail of epithelial cell bases (x6K).

A.hortensis, carrefour at the junction of the albumen gland ducts and the common duct.

Fig. 151 Detail of epithelial cell apices (x15K).

Fig. 152 Sensory neuron in epithelium (x10K).

A.hortensis, albumen gland.

- Fig. 153 Epithelial cells lining the collecting duct (x7K).
- Fig. 154 T.S. through a tubule (*3.75K).

Fig. 155 <u>A.hortensis</u>, pore cell in the connective tissue surrounding the hermaphrodite duct (x5K). Arrow indicates region of cell membrane detailed in Fig. 156.

Fig. 156 Detail of Fig. 155 (x25K).

- Fig. 157 Diagram illustrating the distribution of the neurons and nerves observed in a section through the mature carrefour loop of <u>A.</u> <u>hortensis.</u>
 - a. descending limb.
 - b. ascending limb.

-

c. ascending limb in the region of the carrefour gland.

neurons Fig. 157

d

ם.

<u>A.hortensis</u>, connective tissue surrounding the carrefour loop.

- Fig. 158 Arrangement of muscle and nervous tissue in the connective tissue surrounding the descending limb (x10K).
- Fig. 159 Arrangement of muscle and nervous tissue in the connective tissue surrounding the ascending limb (x10K).
- Fig. 160 Detail showing the intimate relationship of nerves with the epithelial cells lining the ascending limb (x15K).

A.hortensis, connective tissue surrounding the carrefour gland.

- Fig. 161 Arrangement of muscle and nervous tissue (x2.8K).
- Fig. 162 Detail showing the intimate relationship of nerves with the epithelial cells (x4K).
- Fig. 163 Detail of the nerve ring surrounding the neck of a secretory cell (x16K).

<u>A.hortensis</u>, connective tissue surrounding the carrefour at the junction of the albumen gland ducts and common duct.

- Fig. 164 Nerve, muscle and pigment cells (x6K). Arrows indicate possible neuromuscular junctions.
- Fig. 165 Neuromuscular junction indicated by the left arrow in Fig. 164 (x35K).
- Fig. 166 The relationship of the nerves and epithelial cells (x9K).

<u>A.hortensis</u>, connective tissue surrounding the carrefour at the junction of the albumen gland ducts and common duct.

- Fig. 167 Relationship of sensory neuron with underlying nerve plexus (x9K).
- Fig. 168 Detail of a typical neuron in the region of the Golgi apparatus (x37.5K).
- Fig. 169 Detail of a typical nerve (x22.5K).

Fig. 170 Diagram showing the variety of form of the stylommatophoran carrefour.

- a. <u>D.reticulatum</u>
- b. <u>Helix pomatia</u>
- c. <u>Pellicula depressa</u>
- d. Succinea putris
- e. <u>Succinea pfeifferi</u>
- f. Trichia hispida
- g. Triodopsis multilineata
- h. <u>A.hortensis</u>
- i. Aillya camerunensis
- Key: F = finger-like diverticulum in <u>D.</u>
 reticulatum and its equivalent
 structure in other Stylommatophora.
 - p = pouch-like diverticulum in <u>D.</u>
 reticulatum and its equivalent
 structure in other Stylommatophora.

arrows indicate the level of section.

Fig. 171 Diagram of the penial mass and anterior genital ducts of <u>D.reticulatum.</u>

Fig. 171

- Fig. 172 Longitudinal section through the trifid appendage of <u>D.reticulatum</u> (x100).
- Fig. 173 Diagram showing the variety of form of the trifid appendage in <u>D.reticulatum</u>.

.

Fig. 173

C.

Fig. 174 <u>D.reticulatum</u>, typical form of trifid appendage (x250).

Fig. 175 Drawing of the dissected penial mass and anterior gential ducts of <u>D.reticulatum</u>. Arrows indicate point of dissection.

.

Fig. 175

D.reticulatum, penial mass and anterior genital ducts.

Fig. 176 L.S. through the penial mass (x42). Stage D.

Fig. 177 L.S. through the penial mass (x34). Stage F.

- Fig. 178 T.S. through the bursa copulatrix, oviduct and vas deferens (x160).
- Fig. 179 T.S. through the bursa copulatrix and common duct (x34).

- Fig. 180 Vascularization of the penial mass and anterior genital ducts of <u>D.reticulatum</u>, front (a) and rear (b) views. Drawn from dissection. Blood vessels injected with Indian ink by A. Duval. Regions of the penial mass are labelled in Fig. 171.
- Fig. 181 Innervation of the penial mass and anterior genital ducts of <u>D.reticulatum</u>. Drawn from dissection. Regions of the penial mass are labelled in Fig. 171.

•

Fig. 181

D.reticulatum, penial mass and anterior genital ducts.

- Fig. 182 T.S. through the reproductive tract in the region of the genital atrium (arrowed) (x550). Early A-stage.
- Fig. 183 T.S. through the genital atrium (x550). Late A-stage.
- Fig. 184 T.S. through the genital atrium and penial mass (x150). Early B-stage.
- Fig. 185 T.S. through the penial mass and anterior genital ducts (x150). Early B-stage.

D.reticulatum, penial mass and anterior genital ducts.

- Fig. 186 T.S. through the common duct (arrowed) (x150). Early B-stage.
- Fig. 187 L.S. through the penial mass and genital atrium (x180). Late B-stage.
- Fig. 188 L.S. through the trifid appendage (x158). Late B-stage.

Fig. 189 Diagram of the anterior genital ducts of <u>A.hortensis.</u>

Fig. 189

Fig. 190 L.S. through the lower and upper atria (x26).

Fig. 191 T.S. through the lower atrium (x34).

Fig. 192 T.S. through the upper atrium (x50).

Fig. 193 T.S. through the thick oviduct (x120).

٠

Fig. 194 T.S. through the thin oviduct (x120).

- Fig. 195 T.S. through the epiphallus (x190).
- Fig. 196 L.S. through the epiphallus (x125).
- Fig. 197 L.S. through the cone at the entrance of the epiphallus (x112).

- Fig. 198 T.S. through the vas deferens (x288).
- Fig. 199 T.S. through the duct of the bursa copulatrix (x124).
- Fig. 200 L.S. through the bursa copulatrix (x42).

Fig. 201 Vascularization of the anterior genital ducts of <u>A.hortensis</u>, front (a) and rear (b) views. Drawn from dissection. Blood vessels injected with Indian ink by A. Duval. Regions of the anterior genital ducts are labelled in Fig. 189.

Fig. 201

٠

- Fig. 202 T.S. through the reproductive tract in the region of the genital atrium (arrowed) (x680). Early A-stage.
- Fig. 203 T.S. through the genital atrium (x680). Late A-stage.
- Fig. 204 T.S. through the genital atrium (x180). Early B-stage.
- Fig. 205 T.S. through the anterior genital ducts (x680). Early B-stage.

- Fig. 206 T.S. through the anterior genital ducts (x250). Late B-stage.
- Fig. 207 T.S. through the common duct (x250). Late B-stage.
- Fig. 208 T.S. through the anterior genital ducts (x100). Early C-stage.

.

