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Overall Thesis Summary 

 

In light of recent upward trends in atmospheric carbon dioxide concentration, efforts have turned to 

methods of sequestering atmospheric carbon into other stable carbon sinks.  Enhancing carbon 

sequestration by natural systems is an effective way of managing carbon sequestration.  Due to high 

productivity and high sedimentation rates, salt marshes are extremely efficient at capturing and 

storing carbon, and provide the ideal environment for enhancing carbon sequestration rates through 

the management of livestock grazing, a common use of salt marshes.  However, salt marshes are 

subject to a range of environmental stressors, which can vary considerably over a large spatial scale.  It 

is therefore important to understand the implications of environmental and contextual variability on 

the use of livestock grazing as a carbon management tool.  Twenty-two salt marshes were selected 

along the coasts of north Wales and north-west England to assess the impact of grazers on above and 

below-ground carbon stocks and processes in relation to broader contextual variables.  The impacts of 

seasonality on carbon sequestration rates were also assessed by investigating a salt marsh carbon 

budget over the course of one year.  Grazing was found to have a negative impact on several above-

ground plant characteristics, but no impact on soil carbon stocks or overall carbon sequestration rates.  

Instead, below-ground processes were explained more by the broader environmental variables and 

seasonal changes.  While this study does not discount the fact that grazing may affect soil carbon 

stocks on the small-scale, or after initial introduction, it shows that grazing impacts are insignificant 

relative to broader contextual factors on marshes with well-established grazing regimes. 
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Chapter 1: General Introduction: The Role of Coastal Wetlands in 

Mitigating Climate Change 

 

In the context of climate change adaptation and mitigation, this thesis addresses how the grazing 

regime of salt marshes influences above-ground vegetation patterns, and whether this has any 

influence on ecosystem services, particularly those below-ground such as carbon sequestration.  

Such carbon sequestration may also be important in mitigating climate change by targeted 

management of wetlands and other grazed pastoral ecosystems.  The remainder of this chapter sets 

the scene by briefly reviewing climate change, the role of wetlands in carbon sequestration, and 

basic salt marsh ecology before considering the importance of grazing in salt marshes.  The aims and 

rationale of the rest of the thesis are then outlined. 

 

1.1 A Changing Climate 

The words ‘climate change’ have woven themselves into the consciousness of the general public 

worldwide (Lorenzoni & Pidgeon, 2006); the familiar graphs depicting an increase in global 

temperatures (Crowley, 2000; Hansen et al., 2006; Mann, Bradley, & Hughes, 1999; Trenberth et al., 

2007) have increased awareness and concern for environmental issues (Bord, Fisher, & O'Connor, 

1998).  According to the Intergovernmental Panel for Climate Change (IPCC 2007) temperatures have 

risen 0.76ºC ± 0.19°C since the western industrial revolution, and warming over the past 50 years is 

nearly twice that of the last 100 years (Trenberth et al., 2007).    

 

The causes of climate change have been extensively researched (Lindzen, 1997) and it is widely 

accepted that both natural and anthropogenic factors contribute to climate change (Prentice et al., 

2001).  Before 1850 (pre-industrial times in Europe and the USA) regional warming or cooling events 

could be explained by natural variations in environmental forcings:  the Little Ice Age in the 1500s is 

thought to be linked to increased volcanic activity, whereas a warm period in the Middle Ages is 

believed to be linked to solar variation (Crowley, 2000).  However, Crowley (2000) states that 

volcanism and solar radiation only contribute to a quarter of the increase in temperatures over the 

20th century.  Ice cores have shown that carbon dioxide (CO2) levels have increased since pre-

industrial times (Neftel, Moor, Oeschger, & Stauffer, 1985); this is chiefly due to anthropogenic 

activities such as the burning of fossil fuels (Marland, Rotty, & Treat, 1985; Raupach et al., 2007) 

made worse by deforestation (van de Werf et al., 2009) and other land use change (Bernoux, Da 

Conceicao Santana Carvalho, Volkoff, & Cerri, 2001).  CO2 is one of the major greenhouse gases (Lal, 

2008; Lashof & Ahuja, 1990) that contribute to the ‘greenhouse effect’ (Schneider, 1989) and thus 
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the increase in CO2 levels is thought to be the main contributor to this recent rise in global 

temperature (Crowley, 2000; Meehl et al., 2005; Prentice et al., 2001; Trenberth et al., 2007).  

Furthermore, the situation is exacerbated by a positive feedback loop between CO2 and global 

temperature: an increase in temperature causes more CO2 to be released from natural systems 

through respiration, which then feeds back into the warming of the greenhouse effect (Scheffer, 

Brovkin, & Cox, 2006).   

 

Another significant greenhouse gas is methane (Forster et al., 2007).  Although the lifetime of 

methane in the atmosphere (around 10 years) is much shorter than that of carbon dioxide, it is 

approximately 25 times more potent over a 100 year period (Lelieveld, Crutzen, & Dentener, 1997).  

The largest natural source of methane is produced naturally from terrestrial wetlands, but there are 

also other natural methane sources such as termites, volcanoes, and oceans (Lal, 2008).  However, 

around 60% of total methane emissions come from human activities such as natural gas and 

petroleum production, agricultural practices, and waste (Forster et al., 2007).   

 

Carbon sequestration is the locking away of atmospheric carbon by biological or geological processes 

into other long-term carbon sinks, from which it cannot be easily re-emitted (Lal, 2008).  There are 

five major long-term carbon stores: the oceans, the atmosphere (from which carbon needs to be 

removed), fossil fuels (which are being consumed), biotic (living organisms) and soils (Lal, 2008).  

These sinks have a finite capacity for carbon uptake (Chmura, 2009; Forster et al., 2007; Lal, 2008; 

Sabine et al., 2004) and carbon is in constant flux between atmospheric, oceanic and terrestrial sinks 

(Falkowski et al., 2000).  Consequently measures can be taken to enhance the capacity of the biotic, 

oceanic and soil sinks to remove carbon from the atmosphere (Chmura, 2009; Falkowski et al., 2000).  

In terrestrial and coastal systems, sequestration of carbon into the biotic and soil sinks via natural 

processes, such as sedimentation and afforestation, is a simple and effective way of storing carbon 

(Lal, 2008; Milne & Brown, 1997).  Despite a high carbon stock in soils (1462-1548 pita-grams (Pg) of 

organic matter in the top metre (Batjes, 1996), and a further 842 Pg in the second and third metres 

(Jobbagy & Jackson, 2000)), soils allow for only relatively low rates of carbon sequestration (0.4 

x1015 g C yr-1) particularly in land used for agriculture (Schlesinger, 1990).  The biotic sink has a 

much higher rate of carbon sequestration (Schlesinger, 1990), yet carbon is also emitted at high rates 

and turnover is fast – on the decadal scale – rather than long-term (Falkowski et al., 2000).  

Vegetation, however, plays a key linking role in transferring carbon from the biotic pool into the 

more stable pool in soils through root biomass and litter from vegetation (Bardgett & Wardle, 2003; 

De Deyn, Cornelissen, & Bardgett, 2008; Yu & Chmura, 2010).   
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Terrestrial wetlands have a huge potential for sequestering carbon due to high plant productivity and 

high organic content of the soils.  For example, peatlands only occupy 3% of the terrestrial global 

surface, yet they contain 16-33% of the global soil carbon pool (Bridgham, Maegonigal, Keller, Bliss, 

& Trettin, 2006).  Terrestrial wetlands, however, also act as a significant source of carbon by the 

production of carbon dioxide and methane through aerobic and anaerobic decay of organic matter 

(Baird, Holden, & Chapman, 2010; Wang, Zeng, & Partrick, 1996).   

 

1.2 The Role of Coastal Wetlands 

Coastal saline wetlands, including tidal salt marshes and mangroves, sequester carbon at an overall 

average rate of 210 grams of carbon per metre squared per year (g (C) m-2 y-1 (Chmura, Anisfeld, 

Cahoon, & Lynch, 2003), which is an order of magnitude greater than that of peatlands (20-30 g (C) 

m-2 y-1) (Chmura, 2009).  Plant productivity is the main contributor to these high rates of carbon 

sequestration (Chmura et al., 2003; Niering & Scott Warren, 1980), and salt marshes have an 

estimated net primary production and carbon output of 100-200 g (CO2) m-2 y-1 (Boorman, 2000; 

Hussein & Rabenhorst, 2002).  The majority of this productivity is channeled below-ground, with root 

production being roughly 1.6 times that of above-ground production (Schubauer & Hopkinson, 1984). 

Below-ground production is particularly important for carbon sequestration: roots can be deeper 

than one metre (Saunders, Megonigal, & Reynolds, 2006) and are not easily broken down in the 

anoxic conditions of a salt marsh or mangrove (Hussein & Rabenhorst, 2002; Scanlon & Moore, 

2000); thus carbon stores in below-ground biomass are long-term (Boorman, 2000; De Deyn et al., 

2008; Yu & Chmura, 2010).   

 

Coastal wetlands are regularly waterlogged and anoxic conditions prevail in the low marsh where 

tidal inundation is frequent (Pennings & Callaway, 1992).  Anaerobic soils favour methane-producing 

microbial communities (methanogens), a significant factor affecting the carbon output of terrestrial 

wetlands and other terrestrial soils (W. H. Schlesinger & J. A. Andrews, 1999).  In coastal wetlands, 

however, the presence of sulphates in the soil deposited by tidal inundation significantly inhibits the 

production of methane (Chmura et al., 2003; Magenheimer, Moore, Chmura, & Daoust, 1996) as 

methane-producing bacteria are inhibited by sulphate-reducing bacteria due to competition for the 

products of anaerobic fermentation: hydrogen and acetate (Winfrey & Ward, 1983).  As coastal 

wetlands are regularly inundated with sea water, the sulphate levels of the soil are regularly 

replenished (Winfrey & Ward, 1983), thus methane production by coastal wetlands is significantly 

lower than that by terrestrial wetlands (Magenheimer et al., 1996; Yu & Chmura, 2010).   

 



 Chapter 1: General Introduction 

 

28 
 

Saline marshes sequester on average 2.5 mm sediment per year from marine fluvial and tidal 

processes, (Flessa, Constantine, & Cushman, 1977).  This high rate of sedimentation is mainly due to 

vegetation, which traps particles otherwise too small to settle out of the water (Brix, 1997; Stumpf, 

1983).  These particles are then transported into the soil by rain water, invertebrate detrivores or 

grazers, or by the plants decomposing (Stumpf, 1983). The trapped sediment is often rich in inorganic 

carbon thus sediment trapping significantly contributes to carbon sequestration by salt marshes 

(Connor, Chmura, & Beecher, 2001).  Marshes with denser and taller vegetation trap more sediment 

and thus contribute more to carbon sequestration (Chmura, 2009; Chmura et al., 2003; Woodwell, 

Whitney, Hall, & Houghton, 1977).   

 

1.3 The Salt Marsh Environment 

Salt marshes are areas dominated by halophytic herbs, grasses or low shrubs bordering saline water 

bodies, which are exposed to the air for the majority of the time but are periodically inundated with 

saline water (Adam, 1990b).  These occur worldwide in temperate areas; there are extensive salt 

marshes across Europe and the UK (Figure 1.1), with large expanses in the Wadden Sea and in the 

large estuaries of the UK (Boorman, 2003).  Salt marshes form in low energy environments, limiting 

them to sheltered environments such as estuaries or behind barrier islands where fine sediment 

accumulates, providing a suitable substrate for pioneer plant species (Adam, 1990b; Boorman, 2003). 

 

 

Figure 1.1 | Salt marsh distribution.  European (a) and UK (b) salt marsh distribution based on (Boorman, 2003). 
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Spartina species are typical pioneer salt marsh plants that colonise mudflats in circular patches; these 

patches eventually join up forming a uniform sward (D.S. Ranwell, 1964a; Sanchez, SanLeon, & Izco, 

2001).  Once established, rhizome root structures ensure the stability of these Spartina patches and 

sediment trapping by the roots leads to elevation of the marsh surface (D.S. Ranwell, 1964a; Sanchez 

et al., 2001; Stumpf, 1983).  Shading by the plants slows evaporation and thus reduces soil salinity, 

allowing less salt-tolerant but competitively superior species to colonise (Adam, 1990b; Sanchez et 

al., 2001; Shumway & Bertness, 1994).   

 

Continuing salt marsh growth often results in distinct zonation according to tidal elevation, each zone 

representing a different stage of salt marsh succession, with the most mature marsh at the highest 

elevations (Adam, 1990b; Boorman, 2003; Chapman, 1940; Feagin et al., 2011; Weisbrod, 1964).  The 

plant species that dominate these zones are ultimately determined by a variety of physical stress 

factors, the nature and severity of which depends on geographical location (Pennings & Bertness, 

2001).  Competition and facilitation can be important proximate factors in settling zonation patterns 

on a marsh (Bertness & Ellison, 1987; Bertness & Hacker, 1994; Bertness & Shumway, 1993).  All salt 

marshes are frequently inundated with saline water, resulting in waterlogged soils with little oxygen, 

yet due to the nature of tidal cycles, high marsh areas are flooded less frequently than lower marsh 

areas.  As a consequence the soils in high marsh areas are less waterlogged than low marsh soils 

(Adam, 1990b; Chapman, 1938; Pennings & Bertness, 2001).  Accumulation of organic matter, either 

by deposition of material by tides or breakdown of in-situ plant material, leads to further depletion 

of oxygen in the soil by decomposition and microbial activity and, subsequently, the soil becomes 

anoxic (Bertness & Ellison, 1987; Pennings & Bertness, 2001; Pennings & Callaway, 1992).  In warmer 

regions, evaporation of saline water results in higher soil salinities in the high marsh where 

inundation is infrequent and freshwater influence is minimal, whereas at lower elevations inundation 

is frequent enough to dilute the salinity of the soil (Adam, 1990b; Chapman, 1939; Parrondo, 

Gosselink, & Hopkinson, 1978; Pennings & Bertness, 2001; Pennings & Callaway, 1992).  Salt marsh 

plants are also subject to direct physical stress from water movement and, in the northern latitudes, 

ice scour (Adam, 1990b; Belanger & Bedard, 1994; Pennings & Bertness, 2001).  It is due to these 

harsh physical conditions that salt marsh plants have developed various coping strategies including 

additional surface roots to facilitate oxygen transport to deeper roots, aerenchyma tissue to 

transport oxygen directly to the roots, and osmotic adaption of cell cytoplasm to counteract high 

salinity (Burdick, 1989; Flowers, 1985; Parrondo et al., 1978).  In general, the lower limits of species 

in salt marshes are set by physical disturbance or stress, and in the upper limits by biological 

interactions such as competition.  Facilitation can, however, enable species to extend further into 
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hostile conditions in the lower marsh (Bertness & Ellison, 1987; Bertness & Hacker, 1994; Bertness & 

Shumway, 1993). 

 

Although the specialised vegetation is the primary defining factor of a salt marsh, another distinctive 

feature of most salt marshes is a network of creeks across the marsh, often occupying a large part of 

the total marsh area (Adam, 1990b; Boorman, 2003).  These creeks are formed as the marsh is 

developing: pioneer plant species develop around existing creeks on the mudflats or new channels 

are cut between vegetation stands by tidal flow (Adam, 1990b; Chapman, 1939; Perillo & Iribarne, 

2003).  Although very stable, salt marsh creeks are not static: creeks can continue to extend through 

the marsh, joining up with other creeks and salt pans, and in the case of extreme storm events 

smaller creeks may change position completely (Adam, 1990b; Perillo & Iribarne, 2003).  Creek 

networks are the primary pathways for both tidal flooding and drainage of the marsh, and well-

drained soils can be found on the creek banks, while waterlogged conditions persist in areas furthest 

from the creeks (Pennings & Bertness, 2001; Pennings & Callaway, 1992; Temmerman, Bouma, 

Govers, & Lauwaet, 2005).  Creeks also play an important role in sediment and nutrient transport 

into and out of the marsh; heavier coarse sediment and organic material is deposited on the creek 

banks and finer sediment is transported in suspension beyond the creeks, with the finest particles 

only settling at slack water (Stumpf, 1983).   

 

Salt pans are another common feature of salt marshes and there are many ways in which these small 

pools can be formed (Adam, 1990b).  Vegetation may form around a depression in the initial stages 

of salt marsh formation, leaving a bare patch that remains waterlogged, making it difficult for plants 

to colonise (Yapp, Johns, & Jones, 1917).  Salt pans may also develop on a mature marsh due to 

disturbance by tidal litter or ice floes, seasonal waterlogging of depressions in the marsh surface, or 

subsidence of the marsh surface after sub-surface drainage (Boston, 1983).  Elongated salt pans can 

be formed by the blockage of creeks, either by vegetation growth or the accumulation or sediment 

or tidal litter; these elongated pans have sloping banks and more vegetation growth due to the 

invasion of vegetation at the shallower edges (Yapp et al., 1917).    

 

Salt marshes provide many ecosystem goods and services from direct provisioning services, such as 

harvesting of salt marsh plants for food, animal fodder, grazing and thatch, to regulating services 

such as nutrient filtering, carbon sequestration and coastal defence (Costanza et al., 1997; Gedan, 

Silliman, & Bertness, 2009; Krutilla, 1967).   
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1.4 The Importance of Grazers 

Salt marshes are natural grazing grounds, and evidence of large herbivores on salt marshes can be 

found as far back as the late Pleistocene (Koch, Hoppe, & Webb, 1998; Levin, Ellis, Petrik, & Hay, 

2002).  It is possible that salt marshes, like many terrestrial grasslands, have evolved alongside large 

herbivores (Milchunas, Sala, & Laurenroth, 1988; Olff & Ritchie, 1998).  Early human settlers were 

drawn to these natural grazing grounds and salt marshes have been grazed by domestic herbivores 

since the Bronze Age (Britton, Muldner, & Bell, 2008).    

 

Grazing has a significant impact on both vegetation and soil characteristics (Jensen, 1985).  Loss of 

vegetation height and density occurs under all grazing regimes (Andresen, Bakker, Brongers, 

Heydenmann, & Irmler, 1990; V.  Bouchard et al., 2003; Jensen, 1985; Kiehl, I., Gettner, & Walter, 

1996), but different grazer species affect the vegetation in different ways (Jensen, 1985).  Sheep are 

selective grazers and create patchy vegetation; they preferentially select grazing patches, plant 

species and individual plants within an area, and are even selective over different leaves on an 

individual plant (J. P. Bakker, de Leeuw, & van Wieren, 1984; Parsons, Newman, Penning, Harvey, & 

Orr, 1994).  Geese are also selective grazers and many species graze only on plant roots leaving the 

rest of the plant on the marsh surface; this is destructive to individual plants but like sheep they can 

create patchiness (Smith III & Odum, 1981).  In contrast, cows are generalist grazers and continually 

graze as they move across the turf, regardless of vegetation type; this results in a more uniform 

vegetation cover (Jensen, 1985; Wallis De Vries, Laca, & Demment, 1999).  Preferential sheep grazing 

leads to stands of ungrazed undesirable plant species such as Juncus maritimus or Atriplex 

portulacoides, which are denser and taller than the surrounding vegetation (J. P. Bakker et al., 1984; 

D. S. Ranwell, 1961).  Grazing in shorter vegetation patches is easier than in taller vegetation, 

resulting in a higher grazing intensity in the shorter patches and an increased difference between the 

patches of desirable and undesirable species (Wallis De Vries et al., 1999).  If the same area was 

grazed by cattle however, this patchiness is less likely to arise and vegetation height and density will 

be more uniform across the turf (Wallis De Vries et al., 1999).  Furthermore, the intensity of grazing 

has a significant impact on the effects of grazing: intense grazing generally leads to very a short, 

uniform vegetation sward, while light grazing often results in an uneven patchy sward (Table 1.1) 

(Jensen, 1985; Kiehl et al., 1996).   

 

Grazing significantly influences species richness (the number of species) (Sala et al., 2000)): on an un-

grazed sward, species richness is low due to the dominance of one competitively dominant species, 

but light grazing opens up the sward for less competitively dominant, more opportunistic species, 

and thus increases species richness (Table 1.1) (Augustine & McNaughton, 1998; V.  Bouchard et al., 
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2003; Marty, 2004).  This does not occur in all cases as the increase in species richness depends on 

the initial plant community (Schroder, Kiehl, & Stock, 2002) and the above process occurs only if the 

dominant species is a palatable species.  If the dominant species is an unpalatable species, less 

dominant species are grazed, decreasing competition for the dominant species, further reducing 

species richness (Lubchenco, 1978).  Under an intense grazing regime species richness will decrease 

regardless of preferential grazing, resulting in a less diverse sward of grazing-resistant species 

(Fleischner, 1994; Olff & Ritchie, 1998).  

 

The opening up of the sward under a light grazing regime results in reverse succession, as more 

resilient, earlier successional species invade open patches (Andresen et al., 1990; J. P. Bakker, 1985; 

Fleischner, 1994).  Smaller herbivores such as hares have a preference for these opportunistic 

species, that would otherwise be unavailable (Hewson, 1989), thus large herbivores facilitate for 

small herbivores (Kuijper, 2004a, 2004b; Kuijper, Beek, & Bakker, 2004).  In the absence of large 

herbivores salt marsh succession would continue towards a monoculture of an apex species despite 

the presence of the small herbivores, which can only slow vegetation succession (Kuijper, 2004a, 

2004b; Kuijper et al., 2004).   

 

Grazing has a detrimental effect on root systems (Table 1.1) (Schuster, 1964) but the extent of root 

damage depends on the grazer species: cows damage and deracinate roots both by grazing and by 

trampling (Wallis De Vries et al., 1999) whereas sheep have a less destructive method of grazing, and 

the impact of trampling is less due to their smaller size (Parsons et al., 1994).  Geese feed on root 

structures and can often leave large open patches resembling salt pans (Belanger & Bedard, 1994; 

Pedersen, Speed, & Tombre, 2013; Smith III & Odum, 1981), especially in stands of desirable plant 

species such as Scirpus maritimus in soft sediments (Jensen, 1985).  Despite the damage caused by 

grazers, light levels of grazing often lead to increased root density in the upper layers of sediment 

due to changes in the allocation of plant productivity from above-ground to below-ground, however 

these roots are finer and shallower than those found in un-grazed areas (J. N. Holland, Cheng, & 

Crossley, 1996).  Intense grazing significantly reduces both root depth and root density at all depths, 

and ultimately sediment stability is significantly reduced (Schuster, 1964).   

 

A less obvious but equally substantial effect of large herbivores is trampling (Jensen, 1985), and in 

high stocking densities this can be more detrimental than grazing (Turner, 1987).  The primary effect 

of trampling is the compaction of the soil (Table 1.1), which results in reduced root growth and 

reduced pore size; consequently soil moisture and temperature are altered, water infiltration rates 

are reduced as drainage is poor, and ultimately anoxic conditions prevail (Fleischner, 1994; Yates, 
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Norton, & Hobbs, 2000).  The anoxic conditions created by soil compaction create harsh conditions 

across the marsh akin to those found in the lower elevations and thus trampling causes an upward 

shift of zonation boundaries (Kiehl et al., 1996; Schroder et al., 2002).   

 

These primary impacts of grazing have knock-on effects on the ecosystem services salt marshes 

provide.  Saltmarsh vegetation plays an important role in coastal defence by attenuating waves 

(Moeller, 2006), and stabilising the coastal fringe by accreting sediment and reducing erosion 

(Moeller & Spencer, 2002).  Therefore, reduction of vegetation height and density by grazing has a 

significant impact on wave attenuation across a marsh (Moeller, 2006).  Taller and denser vegetation 

provides shading reducing soil temperature and moisture loss from the soil through evaporation and 

consequently prevents an increase in soil salinity, which has significant impacts on saltmarsh flora 

and fauna (Andresen et al., 1990).  Tall vegetation also provides habitat for invertebrates, which are 

an important food source for many bird and small mammal species (Andresen et al., 1990; Vickery et 

al., 2001).  These are perhaps arguments against any grazing on salt marshes, but there are several 

advantages to a light grazing regime.  An uneven vegetation height provides habitat for breeding 

birds (Vickery et al., 2001), and an in increase in species richness increases the potential for the 

presence of plant species that contribute to ecosystem services, such as those with woody stems that 

effectively attenuate waves, those with complex root systems that trap sediment, or those with high 

rates of carbon allocation to their root systems (Adler, Raff, & Lauenroth, 2001).  Despite the 

ecological benefits of an ungrazed or lightly grazed regime, the capital generated from livestock is 

greatest under an intense grazing regime.  There is, therefore, a fine balance between finding the 

best ecological solution and the best economical solution. 

 

Table 1.1 | Grazing impacts.  Summary of the effects of different grazing intensities on vegetation height, species richness, 

soil compaction and root biomass, with relevant citations. 

Effects Un-grazed Lightly Grazed Intensively Grazed Citations 

Vegetation Height Tall 
 
 

Mixed 
 

Short 
 

Jensen 1985 
Andresen et al. 1990 
Kiehl et al. 1996 
Bouchard et al 2003 

Species Richness Low 
 
 

High Low Fleischner 1994 
Augustine and McNaughton 1998 
Olaf and Ritchie 1998 
Adler 2001 
Bouchard et al. 2003 
Marty 2004 

Root Biomass 
 

Dense 
 
 

Very Dense Low Schuster 1964 
Jensen 1985 
Smith III and Odum 1981 
Parsons et al. 1994 
Wallis de Vries et al. 1999 

Soil Compaction Low 
 
 

High Very High Jensen 1985 
Turner 1987 
Fleischner 1994 
Yates et al. 2000 
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1.5 Thesis Aims and Overarching Hypotheses 

The overall aim of this thesis was to investigate how grazing influenced the goods (i.e. livestock 

production) and services (e.g. carbon sequestration) provided by salt marshes.  The main focus has 

been on how grazing influences above-ground vegetation patterns, and the consequences of this for 

below-ground processes involved in carbon sequestration.  A broad-scale comparative approach 

using the marshes of west Wales and north-west England has been adopted.  The overarching 

hypotheses were: 

H1: Livestock grazing significantly reduces plant biomass on salt marshes 

H2a: Salt marsh species richness is highest under a light grazing regime 

H2b: Species richness does not significantly differ between un-grazed and intensively grazed salt 

marshes 

H3: Livestock grazing results in reverse vegetation succession on salt marshes 

H4a: Root biomass is greatest under a light grazing regime 

H4b: Root biomass is lowest under an intensive grazing regime 

H5: Salt marsh carbon sequestration rates are lower on a grazed marsh than on an un-grazed marsh 

 

The following chapters have addressed these overarching hypotheses in turn.  The thesis starts by 

describing study sites and general methods used throughout the subsequent chapters (Chapter 2).  

The thesis then addresses potential influence of livestock grazing on above-ground patterns in the 

context of broad-scale environmental variation (Chapter 3).  This chapter investigates whether the 

impacts of grazing override the impacts of environmental variables, as shown in previous small-scale 

studies (Jensen, 1985; Kiehl et al., 1996), but on the broad-scale.   

 

Chapter 4 tests whether the above-ground impacts of grazing translate to below-ground carbon 

stocks, to inform potential management schemes for optimising the ecosystem service of carbon 

sequestration.  This chapter specifically asks the question: how do grazing impacts compare with 

other environmental variables in determining below-ground carbon stocks? 

 

Chapter 5 builds on Chapter 4 by quantifying carbon fluxes and pools, and building a carbon budget 

model for an un-grazed salt marsh, to further understanding of the processes associated with carbon 

sequestration rates on salt marshes.  Chapter 6 extends the modelling approach to grazed marshes 

to explore the impact of grazing in the context of multiple environmental variables on salt marsh 

carbon budgets.  Chapters 5 and 6 address the main factors contributing to soil carbon sequestration 

on salt marshes, and Chapter 6 quantifies the relative importance of grazing as a disturbance on 
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carbon sequestration rates in relation to broad-scale contextual variables.  Finally, the discussion 

integrates the thesis and briefly explores the management implications of the work.   
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Chapter 2: General Methods and Study Sites 

 

2.1 Study Region and Site Selection 

 

Figure 2.1 | Study area and site locations.  Twenty-two salt marshes were selected across the ~650 km coastline between 

the Dyfi Estuary, Mid Wales, and Morecambe Bay, NW England. 

 

An approximately 650 km stretch of coastline between the Dyfi Estuary, Mid Wales, and Morecambe 

Bay, NW England was selected for study (Figure 2.1).  The study area was defined by biogeographical 

limits.  Salt marshes in the UK occur in one of four biogeographical regions characterised by distinct 

vegetation communities: south eastern, western, western Scottish and eastern Scottish regions 

(Adam, 1990g).  To reduce variability in the data, the 22 study sites were selected to be within the 

western biogeographical region.  The northern sites in Morecambe Bay (Figure 2.1) were near the 

northern limit of the western biogeographical region.  The southern limit of the study area was in the 

Dyfi Estuary (Figure 2.1).  The western biogeographical zone extends further south than the Dyfi 

Estuary, but sites were selected to be within a three-hour drive from Bangor, Gwynedd.  There were 

approximately 35 salt marshes within the study area.  Only 22 were sampled, however, the 

remaining marshes were either unsuitable for the study (i.e. too small or too freshwater dominated), 

or access was refused by the land owner.  Table 2.1 lists the general characteristics of each site.   
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Table 2.1 | Study site details.  Environmental and grazing characteristics for the 22 study sites. Marsh area was measured using ArcGIS software (ArcMap 10) and Ordnance Survey 1:25,000 Land 

Ranger maps from Edina Digimaps (EDINA, 2010).  Marsh geomorphology was classified according to Allen (2000).  The grain size was determined as a mean for all marsh zones within each marsh, 

where clay = 0.2-2 μm silt = 2-20 μm, fine sand = 20-200 μm, and coarse sand = 200-2000 μm.  Grazing intensity was determined for each site using the calculated stocking density per hectare per 

year.  Historical grazing information is also shown for each marsh.   

Marsh 
Name 

BNG Grid 
Reference 

Thesis 
Chapters 
Featuring 
the Site 

Area 
(ha) 

Marsh 
Geomorphology 

Zones 
Sampled 

NVC Plant 
Community 

by Zone 

Average 
Marsh  

Grain Size  
(5-7cm depth) 

Grazing 
Intensity 
Category  

Current 
Stocking 

Rate 
(LSU/ha/yr) 

Livestock 
Type 

Livestock 
Numbers 

Grazing 
Duration 
per year 

Historical 
Grazing 
Details 

Dyfi West SN 62749  
93642 

3, 4, 5 & 6 134 Estuarine back-
barrier 

Mid 
Low 

Pioneer 

SM16c 
SM13a 

SM9 

Silt + Fine Sand  
 

Intensively 
Grazed 

0.79 Sheep        
(Geese) 

200               
2500 

All year As current 

Ynys Hir SN 67857  
97121 

3, 4, 5 & 6 225 Estuarine fringing High 
Mid 

SM16b 
SM13 

 

Silt + Fine Sand  
 

Lightly 
Grazed 

0.26 Sheep        
(Geese) 

500              
2500 

140 
days/year 

Intensive 
sheep and 

cattle grazing 
before 2000 

Dyfi North SN 68761  
97392 

3 & 4 54 Estuarine fringing High SM13 Silt  Intensively 
Grazed 

3.45 Sheep    
Cattle    

(Geese) 

400              
50              

2500 

All year As current 

Fairbourne SH 61474  
13776 

3, 4, 5 & 6 41 Estuarine back-
barrier 

Mid 
Low 

Pioneer 

SM13d 
SM13a       
SM10 

Silt  Moderately 
Grazed 

0.70 Sheep 270            
108 

Aug-Mar        
Mar-Jul 

As current 

Shell Island SH 56065  
26477 

3 & 4 60 Restricted-entrance 
embayment 

High 
Mid 
Low 

SM15      
SM13d         
SM12a 

Silt  Un-grazed 0.00 N/A N/A N/A As current 

Morfa 

Harlech 

SH 57690  

35232 

3, 4, 5 & 6 236 Estuarine back-

barrier 

High 

Mid 

Low 

Pioneer 

SM18a            

SM13a           

SM13a              

SM6 

Silt + Fine Sand  
 

Moderately 

Grazed 

0.40 Sheep    

Cattle 

200                       

20 

May - 

October 

As current 

Y Foryd  SH 44482  

58512 

3, 4, 5 & 6 111 Restricted-entrance 

embayment 

High 

Mid 

Low 

Pioneer 

SM16d                          

SM16d 

SM13d 

SM6 

Silt (2-20μm) Un-grazed 0.00 N/A N/A N/A As current 

Malltraeth SH 39742  

66134 

3, 4, 5 & 6 80 Restricted-entrance 

embayment 

High 

Mid 

Low 

Pioneer 

SM8           

SM13d           

SM13a             

SM16d 

Fine Sand  

 

Un-grazed 0.00 N/A N/A N/A As current 

Four Mile 

Bridge 

SH 28148  

78038 

3 & 4 5 Restricted-entrance 

embayment 

High 

Mid 

Low 

Pioneer 

SM15 

SM13d 

SM16d 

SM15 

Fine Sand  Un-grazed 0.00 N/A N/A N/A As current 
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Table 2.1 (Cont.) | Marsh details.   

Marsh 
Name 

BNG Grid 
Reference 

Thesis 
Chapters 
Featuring 
the Site 

Area 
(ha) 

Marsh 
Geomorphology 

Zones 
Sampled 

NVC Plant 
Community 

by Zone 

Average 
Marsh  

Grain Size  
(5-7cm depth) 

Grazing 
Intensity 
Category  

Current 
Stocking 

Rate 
(LSU/ha/yr) 

Livestock 
Type 

Livestock 
Numbers 

Grazing 
Duration 
per year 

Historical 
Grazing 
Details 

Morfa 

Madryn 

SH 66919 

74629 

3, 4, 5 & 6 14 Open coast back-

barrier 

Mid SM13a Silt + Fine Sand  
 

Moderately 

Grazed 

0.70 Sheep 60-70 All year As current 

Talacre SJ 12550 

84799 

3 & 4 11 Estuarine back-

barrier 

Mid 

Low 

SM14a  

SM10            

Silt  Un-grazed 0.00 N/A N/A N/A As current 

Oakenholt SJ 25667  

72756 

3, 4, 5 & 6 63 Estuarine fringing Mid 

Low 

SM13                

SM13 

Silt  Lightly Grazed 0.29 Sheep 120 All year As current 

Widnes 

Warth 

SJ 52747  

84954 

3 & 4 41 Estuarine fringing High SM28 Silt  Un-grazed 0.00 N/A N/A N/A Light cattle 

grazing 

before 

1999 

Crossens* SD 36189 

21676 

3, 4, 5 & 6 58 Open coast High 

Mid 

Low 

SM16a/SM28 

SM16d    

SM13a        

Silt  Lightly Grazed 

/ Un-grazed 

0.1                  

(high marsh 

only) 

Cattle / 

N/A 

25 / N/A May - 

October 

As current 

Banks 

Marsh† 

SD 39078  

23861 

3 & 4 704 Estuarine fringing Mid SM13/SM13a Silt  Intensively 

Grazed /  

Un-grazed 

0.82 Cattle 575 All year As current 

Longton SD 45374  

25461 

3 & 4 312 Estuarine fringing High SM16d Silt  Lightly Grazed 0.24 Sheep      

Cattle 

400          

40-50 

Cattle on  

Dec - Mar 

As current 

Warton 

Bank 

SD 40208  

26614 

3, 4, 5 & 6 237 Estuarine fringing High 

Mid 

SM13                 

SM13a 

Silt + Fine Sand  
 

Lightly Grazed 0.19 Cattle 80-100 April - 

September 

As current 

 

*   Crossens is a large marsh which is mostly un-grazed.  The top of the marsh (the landward side of the high marsh zone) is fenced off and is lightly grazed by 100 cattle for half of 

the year.  The seaward half of the high marsh zone, the mid and the low marsh zones all remain un-grazed.  The community composition in the grazed high marsh is SM16a and 

the community composition in the un-grazed high marsh is SM28. 

†  Banks Marsh is a large marsh that is intensively grazed by sheep and cattle along the landward edges.  An extensive creek system makes access to the seaward edge of the 

marsh difficult for livestock; as such the seaward edge of the marsh remains un-grazed.  The community composition in the grazed area is SM13 and the community 

composition in the un-grazed area is SM13a.  
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Table 2.1 (Cont.) | Marsh details.   

Marsh 
Name 

BNG Grid 
Reference 

Thesis 
Chapters 
Featuring 
the Site 

Area 
(ha) 

Marsh 
Geomorphology 

Zones 
Sampled 

NVC Plant 
Community 

by Zone 

Average 
Marsh  

Grain Size  
(5-7cm depth) 

Grazing 
Intensity 
Category  

Current 
Stocking 

Rate 
(LSU/ha/yr) 

Livestock 
Type 

Livestock 
Numbers 

Grazing 
Duration 
per year 

Historical 
Grazing 
Details 

Stanah SD 35472  

43247 

3 & 4 21 Estuarine fringing Mid 

Low               

SM14a           

SM13a 

Silt  Un-grazed 0.00 N/A N/A N/A As current 

Glasson SD 43981  

56127 

3 & 4 35 Open embayment High 

Mid 

Low 

Pioneer 

SM16d                        

SM16d                

SM6                 

SM6 

Silt  Intensively 

Grazed 

2.26 Sheep      

Cattle 

1000 

10-100 

140 days 

per year 

As current 

Conder 

Green 

SD 45673 

56416 

3 & 4 26 Estuarine fringing High 

Mid 

Low 

Pioneer 

SM28              

SM16d          

SM13a               

SM6 

Silt  Un-grazed 0.00 N/A N/A N/A Light sheep 

grazing 

before 1990 

Sunderland SD 41860 

56333 

3, 4, 5 & 6 53 Open coast High 

Mid 

Low 

Pioneer 

SM16c                 

SM16c                  

SM13a                 

SM8 

Silt  Intensively 

Grazed 

0.82 Cattle 50-80 March - 

September 

As current 

Carnforth SD 47808  

71776 

3, 4, 5 & 6 110 Open coast High 

Mid 

SM16e                 

SM16d 

Fine Sand  

 

Intensively 

Grazed 

0.72 Sheep 650                  

400 

Mar - Sept       

Sept - Mar 

As current 
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2.2 Grazing Regimes 

 

2.2.1 Site grazing information 

Information on current and historical livestock density for each marsh was obtained from Natural 

England (NE), Natural Resources Wales (NRW, formerly Countryside Council for Wales), and 

individual landowners.  The sites were subject to a range of grazing regimes (Table 2.1).  Most 

marshes had had a consistent grazing regime for the past 30 years or more (Table 2.1).  Three 

marshes had been previously grazed at a different grazing intensity than the current grazing regime: 

Ynys Hir, Widnes Warth and Conder Green.  Conder Green was grazed more than 20 years before the 

study was conducted.  Ynys Hir was intensively grazed until 10 years before the study.  Widnes Warth 

was lightly grazed until 11 years before the study.   

 

2.2.2 Quantifying grazing regimes 

Marshes were grazed by cattle and sheep (Table 2.1).  The study used Livestock Units per hectare per 

year (LSU ha-1 yr-1) to standardise livestock density across grazer types where one LSU = 1 cow or 6.6 

sheep (DEFRA guidelines; (Woodend, 2010)).  Governmental grazing regulators, such as NRW, 

typically distinguish four levels of grazing intensity: un-grazed, lightly grazed, moderately grazed and 

intensively grazed.  To make the study comparable to management schemes and other grazing 

studies, we categorized our marshes into un-grazed (0 LSU ha-1yr-1), lightly grazed (<0.3 LSU ha-1yr-1), 

moderately grazed (0.3-0.7 LSU ha-1yr-1) and intensively grazed (>0.7 LSUha-1yr-1) using a scale 

adapted from Tir Gofal, an agri-environment scheme in Wales (Table 2.2).  Grazing intensity 

categories of the marshes surveyed were comparable to those observed in the general literature on 

grazing (Appendix 1: Grazing Intensities in Other Studies).  There was no systematic geographical 

pattern in grazing intensities across the study area.   

 

Table 2.2 | Total number of marshes and zones sampled within each grazing intensity category.  Two marshes (Crossens 

and Banks Marsh) had distinct un-grazed and grazed areas (Table 2.1) and thus are included in two grazing intensity 

categories.   

 
Un-grazed 

Lightly 

Grazed 

Moderately 

Grazed 

Intensively 

Grazed 

Total Marshes 10 4 5 6 

High Marsh Zones 7 4 1 4 

Mid Marsh Zones 9 2 4 5 

Low Marsh Zones 8 0 3 3 

Pioneer Marsh Zones 5 0 2 3 
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Figure 2.2 | Zonation in a salt marsh.  a) A diagrammatic representation of a salt marsh showing zonation according to 

tidal inundation: extreme high water spring (EHWS), mean high water spring (MHWS), mean high water (MHW) and mean 

high water neap (MHWN).  Only the pioneer, low, mid and high zones were sampled in this study.  Grazer preference is 

indicated showing decreased grazing activity in the lower zones.  b) An example of clear zonation between a low marsh 

zone and a pioneer marsh zone.  The edge of the zone is indicated by a change in elevation, a strand line and a change in 

plant community composition. 
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2.3 Determination of Vertical Marsh Zones 

Saltmarsh vegetation composition, flooding frequency and sedimentation rates change relative to 

shore elevation from seaward to landward edges of the marsh (Moeller, Spencer, French, Leggett, & 

Dixon, 1999; Stumpf, 1983).  As such, four distinct marsh zones are classically recognised in the 

literature (pioneer, low, mid and high) (Figure 2.2a) (Adam, 1990b).  The extent of each zone was 

determined using a combination of strand line position, marsh topography, tidal inundation 

observations, and vegetation community composition characteristics (Figure 2.2b).  More emphasis 

was put on the first three techniques as grazing alters community composition (Jensen, 1985) and 

can cause reverse succession (J. P. Bakker, 1985; Kuijper & Bakker, 2004a); therefore on a grazed 

marsh, a higher marsh zone may be colonized by species from lower marsh zones.  Fifteen of the 22 

sites did not have all four zones present due to embankments at the landward edge of the marsh, or 

saltmarsh cliffs or riverbanks at the seaward edge of the marsh (Table 2.1).   

 

 

2.4 General Sampling Design 

The same general sampling design was used for each experimental chapter, thus some quadrats 

were sampled both above-ground and below-ground.  The direct coupling of above and below-

ground observations facilitated evaluations of above-below-ground relationships in Chapters 4, 5 and 

6.  Chapters 3 and 4 used all 22 study marshes in the study area to investigate the broad-scale 

impacts of livestock grazing on above-ground plant community characteristics and below-ground 

carbon stocks.  A sub-set of 12 marshes were used to investigate the processes related to a salt 

marsh carbon budget and the effects of grazing and environmental context on salt marsh carbon 

budgets.  The 12 sites were selected to incorporate a range of grazing intensities and contextual 

environmental variables as part of a balanced experimental design.  Chapter 5 only used the three 

un-grazed marshes of the 12-marsh sub-set to construct a carbon budget for un-grazed salt marshes 

and to investigate the effects of seasonality and environmental setting on salt marsh carbon budgets.  

Chapter 6 used the nine grazed marshes in the sub-set to investigate the impact of livestock grazing 

on salt marsh carbon budgets in relation to environmental setting and seasonality.   

 

2.4.1 Sample size and power 

A priori power analyses using G*Power 3.1.5 (Faul, Erdfelder, Lang, & Buchner, 2007) were used to 

determine the required sample size per group (grazing intensity category) for each of the targeted 

predictor variables.  The analysis used data from previous Masters projects from the study region 

(Honey, 2009; Lundquist, 2010) and data from comparable studies in the literature (Andresen et al., 

1990; J. P. Bakker, 1985; Jensen, 1985; Kiehl et al., 1996).  Effect size calculations predicted that the 
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study data set was likely to show very large effect sizes (F>0.40) for each predictor variable (Cohen, 

1988) (Table 2.3).  The total number of samples taken in the study for above and below-ground 

sampling is shown in Table 2.4.  The minimum total sample size for soil organic carbon (36 samples, 

Table 2.3) could not be met in lightly grazed and moderately grazed marshes due to regional scarcity 

in the numbers of marshes with these grazing intensity categories. 

 

Table 2.3 | Effect sizes of simulated data.  Simulated data set estimated from previous Masters projects and the literature 

with predicted effect size (Cohen’s F) for each predictor variable by grazing intensity. 

Predictor variable 

Un-grazed 
Lightly 

Grazed 

Moderately 

Grazed 

Intensively 

Grazed 

 Effect 

Size 

(F) 

Minimum 

Sample 

Size (n)        𝒙 SD        𝒙 SD        𝒙 SD        𝒙 SD 

Species richness (d) 0.9 0.1 1.2 0.1 1.3 0.10 0.6 0.1  2.74 8 

Overall % cover 100.0 10.0 95.0 10.0 75.0 10.0 50.0 10.0  1.97 12 

Vegetation height (cm) 17.9 4.6 15.5 2.75 10.6 1.25 7.5 1.2  1.66 12 

Above-ground biomass (g cm-

3) 1.5 0.5 1.0 0.3 0.7 0.3 0.5 0.2 

 

1.16 16 

Vegetation litter (g cm-3) 0.5 0.2 0.1 0.1 0.0 0.0 0.0 0.0  2.38 8 

Root biomass (g cm-3) 3.2 1.3 2.7 0.1 3.0 0.6 4.8 1.9  0.79 32 

Maximum root depth (cm) 40.0 20.0 30.0 15.0 25.0 10.0 10.0 7.0  0.83 24 

Soil organic carbon (%) 22.7 1.2 14.6 6.7 15.8 10.3 23.1 1.6  0.78 36 

 

Table 2.4 | Study sample size.  Total number of above-ground (AG) and below-ground (BG) samples per grazing intensity in 

the study followed by total number of above and below-ground samples per zone (pioneer, low, mid and high) per grazing 

intensity.  Overall total number of above-ground and below-ground samples and totals for each zone are shown in the 

bottom row. 

Grazing Intensity 

Total 

AG 

Total 

BG 

 Pioneer  Low  Mid  High 

 AG BG  AG BG  AG BG  AG BG 

Un-grazed 280 112  40 16  80 32  90 36  70 28 

Lightly grazed 90 32  0 0  10 4  30 12  40 16 

Moderately grazed 80 32  20 8  20 8  30 12  10 4 

Intensively grazed 150 60  30 12  30 12  50 20  40 16 

Overall Total 600 236  100 36  140 56  200 80  160 64 

 

 

2.4.2 Sampling design  

Sampling was stratified by the four marsh zones (pioneer, low, mid and high) (Adam, 1990b).  A 

representative 100 metre cross shore belt was selected within each marsh zone.  Salt marsh 

vegetation can be patchy across large areas (van de Koppel, van der Wal, Bakker, & Herman, 2005), 

and on some marsh sites, the cross shore belts had to be split into two sections to more accurately 

represent the overall vegetation community within a zone.  A random number generator was used to 

place ten 2×2 metre plots along each cross-shore belt.  Salt pans, pools and areas less than 2 metres 
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from creek edges were excluded from the sample belt.  All 10 plots were used for the study 

investigating the impacts of grazing on above-ground plant community characteristics (Chapter 3).  

Four of the ten plots per zone (plot numbers 1, 4, 7 and 10) were selected for the broad-scale below-

ground measurements (Chapter 4).  This was to reduce the number of soil cores sampled, minimizing 

the risk of root matter degradation before the laboratory analysis was complete.  The carbon budget 

study (Chapters 5 & 6) focused on the mid marsh exclusively.  The mid marsh was considered 

representative of the whole marsh; it is not subject to the extremes wave and tidal disturbance of 

the pioneer zone or the terrestrial influences of the high marsh, yet it is still subject to regular tidal 

flooding and it is colonized by halophytic plants from across all the marsh zones (Adam, 1990b).  

There were also more than two mid marsh zones within each grazing intensity category (Table 2.3).  

The four below-ground plots (plot numbers 1, 4, 7 and 10) from the broad-scale study were used in 

the carbon budget study so that comparisons could be drawn to both above and below-ground 

parameters in the broad-scale study. 

 

 

2.5 Sampling of Contextual Environmental Variables 

The study collected the following contextual environmental variables as indicators of contextual 

drivers of salt marsh productivity and carbon storing processes.   

 

2.5.1 Marsh size and geomorphology  

The size and geomorphology of a marsh are determined by the physical setting of the marsh and the 

relative impact of tidal range and wave exposure.  Several contextual variables depend on marsh 

area and geomorphology, such as wave stress, nutrient regimes and sediment regimes (Allen, 2000).  

These contextual variables all potentially impact soil organic carbon stocks; wave stress is directly 

related to sedimentation and erosion rates across a marsh (Spencer, Moeller, & French, 1995), 

nutrient regimes affect plant growth rates (Anisfeld & Hill, 2012; Loomis & Craft, 2010), and the 

sediment regime dictates several below-ground processes (Warnaars & Eavis, 1972).  The area of 

each study site was calculated in ArcGIS software (ArcMap 10) based on Ordnance Survey 1:25,000 

Landranger maps from Edina Digimap (EDINA, 2010).  Marsh morphology was classified into seven 

marsh types (open coast, open coast back-barrier, open embayment, restricted entrance 

embayment, estuarine fringing, estuarine back-barrier, ria/loch-head) according to the 

geomorphological classifications from Allen (2000) (Table 2.4). 
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2.5.2 Wave fetch   

Wave fetch is directly related to wave height and energy; the greater the fetch, the greater the wave 

height and energy (Burrows, Harvey, & Robb, 2008).  Wave energy is an environmental stress for the 

salt marsh plant community (Spencer et al., 1995), and is related to small and large-scale erosion on 

salt marshes (Moeller, Spencer, French, Leggett, & Dixon, 2001), which can be a significant output of 

carbon from salt marshes to the marine system (Boorman, 2000; Chalmers, Wiegert, & Wolf, 1985; 

Marani, D'Alpaos, Lanzoni, & Santalucia, 2011; van de Koppel et al., 2005).  Wave fetch was 

measured according to methods outlined by Burrows et al. (2008): using Ordnance Survey 1:25,000 

Landranger maps and UK and Ireland coastal outlines in ArcGIS software (ArcMap 10), the maximum 

potential wave fetch was calculated by measuring the greatest uninterrupted distance to land from 

the low intertidal edge of each marsh.  Wave fetch was also calculated from the direction of the 

prevailing wind.  The prevailing wind direction was calculated from daily weather data from nearby 

weather stations for each marsh (Steremberg, 2010); the distance to the nearest coastline in the 

direction of the prevailing wind was calculated.  In some cases the prevailing wind was an offshore 

wind (i.e. came from the landward edge of the marsh, rather than the seaward edge) and thus 

prevailing wave fetch was recorded as zero. 

 

2.5.3 Tidal range 

Tidal range determines the relative size of each salt marsh zone, the upper and lower limits of each 

zone and marsh, and thus determines many of the soil and plant properties across the marsh (Adam, 

1990a). Tidal range was calculated using Tide Plotter 2010-13 from Belfield Software 

(BelfieldSoftware, 2010).   

 

2.5.4 Particle size distribution 

Particle size distribution (grain size) is a soil physical parameter that can affect several below-ground 

processes, such as soil porosity, root growth rates, and soil stability (Warnaars & Eavis, 1972).  Grain 

size samples were taken from the soil cores taken at each study site.  The 5-7 cm depth sample was 

analysed for all cores to give an estimation of the soil grain size in the depth with the highest root 

biomass.  A range of depths (0-2cm, 5-7cm, 11-13cm, 22-24cm and 44-46cm) were analysed from a 

sub-set of cores to give a general overview of how grain size changes down the soil profile.  Samples 

were dried at 30°C for ~ 1 week and then broken up gently using a small pestle and mortar.  

Approximately three grams of each sample was used and organic matter was removed by adding 5ml 

of 6% Hydrogen Peroxide (H2O2) followed by 1-5 drops of 30% H2O2 until the supernatant of each 

sample was clear; samples were heated to 80°C for 1.5 hours each time H2O2 was added.  A 

Mastersizer 2000 laser particle sizer was then used to measure the grain size of each sample: 99 
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grain size fractions were measured on a logarithmic scale from 0.2-2000μm and the percentage of 

each fraction within each sample was recorded.   

 

2.5.5 Water quality 

Water quality and nutrient variables were obtained from the Environment Agency.  These included 

nutrients that relate to plant productivity (dissolved inorganic nitrogen, orthophosphate and 

silicates), plant stressors (water pH and water salinity) and physical parameters (suspended solids) 

(Howard & Mendelssohn, 1998; Parrondo et al., 1978; Valiela, Teal, & Persson, 1976).  The data did 

not cover all marshes, as it was available only for those situated in large estuaries.  These data were 

therefore only used in models with a reduced number of marshes throughout the data analyses.    
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2.6 The Study Site Details 

 

Dyfi West (Dyfi Estuary) 

 

Figure 2.3 | Map of Dyfi West marsh.  Ordnance Survey Map OL23 (2010k) showing start and end points of mid, low and 

pioneer zone cross-shore sample belts. 

 

Grid Reference (BNG): SN 627 936 

Used in Chapters: 3, 4, 5 & 6 

Marsh Type: Estuarine back-barrier 

Zones Present: Mid, Low & Pioneer 

Grazing Intensity: Intensive (0.79 LSU ha-1 yr-1) 

 

Situated at the seaward end of the Dyfi Estuary on the south bank, Dyfi West is owned by a local 

farmer and managed by Natural Resources Wales (NRW) below mean high water neap (below the 

pioneer zone).  The marsh is grazed by sheep and geese.  The Dyfi Estuary hosts the largest 

population of Canada geese in the UK so in this estuary alone, geese have been included in the LSU 

calculations where 1 LSU = 22 geese.  There is no high marsh zone due to the presence of an 

embankment.  The mid marsh zone is intermittent and situated along the southern edge of the 

marsh, next to the embankment; it consists of a closely grazed Puccinellia maritima sward and 

patches of Juncus maritimus with Atriplex prostrata.  The low marsh is fairly extensive, particularly 

further east, and is broken up by several small creeks.  It is dominated by Puccinellia maritima and 

Suaeda maritima.  The pioneer zone is more extensive to the west and consists mainly of Spartina 

anglica and Suaeda maritima.  
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Ynys Hir (Dyfi Estuary) 

 

Figure 2.4 | Map of Ynys Hir marsh. Ordnance Survey Map OL23 (2010k) showing start and end points of high and mid 

zone cross-shore sample belts. 

 

Grid Reference (BNG): SN 678 971 

Used in Chapters: 3, 4, 5 & 6 

Marsh Type: Estuarine fringing 

Zones Present: High & Mid 

Grazing Intensity: Light (0.26 LSU ha-1 yr-1) 

 

Ynys Hir is situated on the south bank of the Dyfi Estuary between Afon Clettwr and Glandyfi.  It is 

owned by the RSPB and hosts the bulk of the largest population of Canada geese in the UK (around 

2,500), as well as Greenland White Fronted geese and Barnacle geese.  For this reason, the marshes 

on the Dyfi Estuary have geese included in the LSU calculations (where 22 geese = 1 LSU).  This marsh 

is lightly grazed by sheep, but until 2001 there were up to 2,500 sheep on the marsh.  High and mid 

marsh zones are present, with some Glaux maritima (<5% cover) on the sand flats in front of the 

marsh.  The mid marsh consists of heavily grazed Armeria maritima and Puccinellia maritima 

between Juncus maritimus patches, while the high marsh is more evenly grazed with a relatively tall 

Festuca rubra sward.  Due to the heterogeneity of the vegetation in the mid marsh, the cross-shore 

sample belt was split into two parts to best represent the marsh vegetation.  The mid marsh is 

truncated by the estuarine channel, with cliffs at the seaward edge of the marsh.    
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Dyfi North (Dyfi Estuary) 

 

Figure 2.5 | Map of Dyfi North marsh. Ordnance Survey Map OL23 (2010k) showing start and end points of high zone cross 

shore sample belt. 

 

Grid Reference (BNG): SN 687 973 

Used in Chapters: 3 & 4 

Marsh Type: Estuarine fringing 

Zones Present: High 

Grazing Intensity: Intensive (3.45 LSU ha-1 yr-1) 

 

Situated on the north (Gwynedd) bank of the Dyfi Estuary, this marsh is owned by Montgomery 

Wildlife Trust and a local land owner who leases it out to a local farmer as grazing pasture.  It is 

grazed by cattle, sheep and geese, which have been included in the LSU calculations.  The salt marsh 

only occupies the fringe of the marsh area; the rest of the marsh area is a brackish marsh, which only 

occasionally gets flooded.  Only the high marsh zone is present and it is dominated by a closely 

cropped Puccinellia maritima sward with small Juncus maritimus patches.  The marsh is truncated by 

the estuarine channel, with cliffs at the seaward edge of the marsh.    
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 Fairbourne (Mawddach Estuary) 

 

Figure 2.6 | Map of Fairbourne marsh. Ordnance Survey Map OL23 (2010k) showing start and end points of mid, low and 

pioneer zone cross-shore sample belts. 

 

Grid Reference (BNG): SH 614 137 

Used in Chapters: 3, 4, 5 & 6 

Marsh Type: Estuarine back-barrier 

Zones Present: Mid, Low & Pioneer 

Grazing Intensity: Moderate (0.70 LSU ha-1 yr-1) 

 

This is a patchy and diverse marsh that has formed behind a spit of land at the end of the Mawddach 

Estuary near Fairbourne.  It is managed by NRW and it is moderately grazed by sheep.  There are 

some high marsh Festuca rubra patches along the west edge of the marsh but the marsh is truncated 

by an embankment around most of the marsh, limiting the extent of any high marsh vegetation 

communities.  There is a narrow strip of mid marsh along the southern edge of the marsh, which is 

dominated by a closely cropped Armeria maritima sward.  To the north of this is an extensive low 

marsh area dominated by Spartina anglica and Festuca rubra.  Much of this area remains relatively 

un-grazed as deep creeks hinder access by sheep.  The pioneer zone extends across the sand flats at 

the northern edge of the marsh and is dominated by Salicornia europaea.   
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Shell Island 

 

Figure 2.7 | Map of Shell Island marsh. Ordnance Survey Map OL18 (2010j) showing start and end points of high, mid and 

low zone cross-shore sample belts. 

 

Grid Reference (BNG): SH 560 264 

Used in Chapters: 3 & 4 

Marsh Type: Restricted entrance embayment 

Zones Present: High, Mid & Low 

Grazing Intensity: Un-grazed  

 

This marsh is situated in an enclosed embayment behind Shell Island.  The marsh is bisected by an 

access road to the island.  The island and the salt marsh are both owned by the campsite on Shell 

Island.  At the top of the marsh there is a narrow Phragmites australis stand, below which is a narrow 

band of high marsh dominated by Juncus maritimus and Atriplex prostrata.  The extensive mid marsh 

is diverse with relatively tall Aster tripolium and Limonium humile.  Atriplex portulacoides bushes can 

be found along the banks of the large creeks, particularly in the mid and lower marsh.  The low marsh 

on the northern edge of the marsh consists of Spartina anglica and Suaeda maritima.  There is no 

pioneer zone and the marsh is bounded by a large creek.    
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 Morfa Harlech 

 

Figure 2.8 | Map of Morfa Harlech marsh.  Ordnance Survey Map OL18 (2010j) showing start and end points of high, mid, 

low and pioneer zone cross-shore sample belts. 

 

Grid Reference (BNG): SH 576 352 

Used in Chapters: 3, 4, 5 & 6 

Marsh Type: Estuarine back-barrier 

Zones Present: High, Mid, Low & Pioneer 

Grazing Intensity: Moderate (0.40 LSU ha-1 yr-1) 

 

This is a large marsh situated to the south of the Glaslyn Estuary, just north of Harlech.  It is bordered 

by a large sand dune system to the south and west and it is owned by a local farmer and managed by 

NRW.  Morfa Harlech is grazed mostly by cattle but there is also a small flock of sheep.  The high 

marsh consists of extensive Juncus maritimus patches, while the mid marsh consists of a closely 

cropped yet highly diverse vegetation sward.  There is little poaching (damage caused by trampling) 

in the mid marsh, possibly due to high levels of soil compaction.  The low marsh also has a highly 

diverse sward but there is intensive poaching by the livestock, providing a very heterogeneous soil 

surface.  The pioneer zone is an extensive, well-developed Spartina anglica sward.  There are many 

large creeks and the marsh is difficult to cross in places; however, the presence of hoof prints 

indicates that the cattle seem to be able to reach all areas of the marsh. 
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Y Foryd 

 

Figure 2.9 | Map of Y Foryd marsh.  Ordnance Survey Map OL18 (2010i) showing start and end points of high, mid, low and 

pioneer zone cross-shore sample belts. 

 

Grid Reference (BNG): SH 444 585 

Used in Chapters: 3, 4, 5 & 6 

Marsh Type: Restricted entrance embayment 

Zones Present: High, Mid, Low & Pioneer 

Grazing Intensity: Un-grazed  

 

This is a large marsh situated in the sheltered Afon Gwyrfai estuary west of Caernarfon.  It is owned 

and managed by Gwynedd Council.  On the eastern side of the river in the south-eastern corner 

there is a small patch of high marsh dominated by Festuca rubra and Juncus maritimus.   The narrow 

mid marsh to the west of the river is truncated by an embankment on the western side and 

dominated by a diverse Festuca rubra community.  The low marsh consists of a narrow band of a 

diverse Plantago maritima community along the eastern edge of the mid marsh zone.  The pioneer 

zone covers a large area to the north of the mid and low marsh zones and is largely dominated by 

Spartina anglica.     
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Malltraeth 

 

Figure 2.10 | Map of Malltraeth marsh (Cefni Saltmarsh).  Ordnance Survey Map 263 (2010b) showing start and end points 

of high, mid, low and pioneer zone cross-shore sample belts. 

 

Grid Reference (BNG): SH 397 661 

Used in Chapters: 3, 4, 5 & 6 

Marsh Type: Restricted entrance embayment 

Zones Present: High, Mid, Low & Pioneer 

Grazing Intensity: Un-grazed  

 

This marsh is situated just north-west of Newborough, Anglesey.  It is owned and managed by NRW.  

The marsh is dominated by brackish water plants along the eastern edge, and west of this is an 

extensive high marsh, dominated by Juncus maritimus and Festuca rubra.  The mid marsh zone is 

west of the high marsh zone and is more extensive to the south.  It is dominated by a short, diverse 

sward punctuated by Atriplex portulacoides and Juncus maritimus patches.  The low marsh is found 

along the western fringes of the marsh with more extensive patches to the south.  It consists of a 

patchy sward dominated by Spartina anglica and Puccinellia maritima.  The pioneer zone consists of 

large patches of Salicornia europaea on the sand flats to the north-west of the main marsh.    
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Four Mile Bridge 

 

Figure 2.11 | Map of Four Mile Bridge marsh. Ordnance Survey Map 262 (2010a) showing start and end points of high, mid, 

low and pioneer zone cross-shore sample belts. 

 

Grid Reference (BNG): SH 281 780 

Used in Chapters: 3 & 4 

Marsh Type: Restricted entrance embayment 

Zones Present: High, Mid, Low & Pioneer 

Grazing Intensity: Un-grazed  

 

This is a small marsh situated on the edge of Holy Island, Anglesey, just north-west of RAF Valley.  It is 

owned by a local farmer.  The high marsh is a narrow strip near the footpath to the west of the 

marsh; it is dominated by Juncus maritimus.  The low marsh is a small patch to the north of the marsh 

and is dominated by a short, diverse Plantago maritima sward.  The mid marsh forms a sandy ridge 

running roughly south-west to north-east on the southern edge of the marsh and it is dominated by 

Festuca rubra.  The pioneer zone is a large patch of Spartina anglica to the south of the main marsh.    
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Morfa Madryn 

 

Figure 2.12 | Map of Morfa Madryn marsh. Ordnance Survey Map OL17 (2010i) showing start and end points of mid zone 

cross-shore sample belt. 

 

Grid Reference (BNG): SH 669 746 

Used in Chapters: 3, 4, 5 & 6 

Marsh Type: Open coast back-barrier 

Zones Present: Mid 

Grazing Intensity: Moderate (0.70 LSU ha-1 yr-1) 

 

This is a small marsh situated behind a small spit of land to the south-east of Llanfairfechan.  It is 

owned by Conwy Council and a local farmer has grazing rights.  The marsh is bisected by an 

embankment and tidal flooding in the area to the south-east of the embankment occurs only via one 

large creek.  Morfa Madryn is moderately grazed by sheep throughout the year.  The marsh consists 

only of a mid marsh zone dominated by Puccinellia maritima but there are some patches of Juncus 

gerardii on the south-eastern section of the marsh.  
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Talacre (Dee Estuary) 

 

Figure 2.13 | Map of Talacre marsh. Ordnance Survey Map 265 (2010c) showing start and end points of mid and low zone 

cross-shore sample belts. 

 

Grid Reference (BNG): SJ 125 847 

Used in Chapters: 3 & 4 

Marsh Type: Estuarine back-barrier 

Zones Present: Mid & Low 

Grazing Intensity: Un-grazed  

 

Talacre is a small marsh developed behind a sand spit and dune system at the end of the Dee estuary 

on the Welsh (western) bank.  It is owned and managed by Environment Agency Wales and the 

nearby gas plant (BHP Billiton).  As the marsh is truncated by a steep embankment at the top, there is 

no high marsh present.  The mid marsh is dominated by large Atriplex portulacoides bushes with 

some small patches of Festuca rubra.  The low marsh is dominated by Spartina anglica and Salicornia 

europaea.  In some raised areas of the marsh, the soil is very sandy, suggesting the marsh was 

formed over old sand dunes.   
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Oakenholt (Dee Estuary)  

 
Figure 2.14 | Map of Oakenholt marsh.  Ordnance Survey Map 266 (2010d) showing start and end points of mid and low 

zone cross-shore sample belts. 

 

Grid Reference (BNG): SJ 256 727 

Used in Chapters: 3, 4, 5 & 6 

Marsh Type: Estuarine fringing 

Zones Present: Mid & Low 

Grazing Intensity: Light (0.29 LSU ha-1 yr-1) 

 

Oakenholt marsh is a long and narrow salt marsh situated on the Welsh bank of the Dee Estuary just 

south of Fflint.  The southeastern area of the marsh is owned by the Royal Society for the Protection 

of Birds (RSPB) and the north-western part of the marsh, where this study was conducted, is owned 

by a local farmer.  Oakenholt is moderately grazed by sheep.  The high marsh consists only of a few 

isolated Juncus maritimus patches along the landward edge of the marsh.  The extensive mid marsh 

consists of a short Puccinellia maritima community and is separated from the low marsh by a small 

salt marsh cliff.  The low marsh is a narrow band along the seaward edge of the marsh dominated by 

Spartina anglica and Puccinellia maritima. 
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Widnes Warth (Mersey Estuary) 

 
Figure 2.15 | Map of Widnes Warth marsh.  Ordnance Survey Map 275 (2010e) showing start and end points of high zone 

cross-shore sample belt. 

 

Grid Reference (BNG): SJ 527 849 

Used in Chapters: 3 & 4 

Marsh Type: Estuarine fringing 

Zones Present: High 

Grazing Intensity: Un-grazed (at time of survey) 

 

This is a small marsh situated on the north bank of the Mersey at Widnes.  It is owned by Halton 

Borough Council and is currently part of the Mersey Gateway Project, a construction program for a 

new bridge in 2012-14.  As part of this project, six long-horn cattle were introduced to half of the 

marsh in 2011 for half the year, resulting in an intensive regime. The sampling on this site was 

completed in 2010, a year before the long-horned cattle were initially introduced.  At the time of 

sampling the marsh was un-grazed and had not been grazed for 11 years.  The site consists of a high 

marsh zone only, which is dominated by Elymus repens and Atriplex prostrata.  There is a steep river 

bank at the edge of the marsh. 
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Crossens (Ribble Estuary) 

 

Figure 2.16 | Map of Crossens marsh.  Ordnance Survey Map 286 (2010f) showing start and end points of high, mid and 

low zone cross-shore sample belts. 

 

Grid Reference (BNG): SD 361 216 

Used in Chapters: 3, 4, 5 & 6 

Marsh Type: Open coast 

Zones Present: High, Mid & Low 

Grazing Intensity: Light (0.10 LSU ha-1 yr-1) – part of high marsh only 

 

This is a large marsh situated on the end of the Ribble Estuary just north of Southport.  It is owned 

and managed by Natural England.  Apart from a small area lightly grazed by cattle at the top (east) of 

the marsh, this marsh is un-grazed.  The grazed high marsh is dominated by a diverse Puccinellia 

maritima community while the more extensive un-grazed high marsh to the west of the fence line is 

dominated by tall Elymus repens.  The mid marsh covers most of the marsh and consists of several 

large patches either dominated by Aster tripolium or Puccinellia maritima.  The low marsh forms an 

approximately 100 metre wide band towards the west of the marsh, which becomes more extensive 

to the south.  It is dominated by a diverse Puccinellia maritima and Suaeda maritima sward.  There is 

a steep salt marsh cliff separating the low marsh from the extensive mud flats to the west.    



Chapter 2: General Methods and Study Sites 

62 
 

Banks Marsh (Ribble Estuary)  

 

Figure 2.17 | Map of Banks Marsh.  Ordnance Survey Map 286 (2010f) showing start and end points of mid zone cross-

shore sample belts. 

 

Grid Reference (BNG): SD 390 238 

Used in Chapters: 3 & 4 

Marsh Type: Estuarine fringing 

Zones Present: Mid 

Grazing Intensity: Intensive (0.82 LSU ha-1 yr-1) – only in the southern half of the marsh 

 

Banks Marsh is a large marsh situated on the south bank of the Ribble estuary.  It is owned and 

managed by RSPB and Natural England.  There is intensive sheep grazing to the east, and intensive 

cattle grazing along the south-east edge of the marsh.  The livestock are not cut off from the rest of 

the marsh by fences but several large creeks make it difficult for livestock to reach the seaward 

(northern) half of the marsh.  As a result, the northern part of the marsh is un-grazed.   The upper 

marsh has been reclaimed as farm land and the main marsh consists of a large mid marsh zone north 

of a large embankment.  The northern edge of the marsh is truncated by the estuarine channel, with 

cliffs at the seaward edge of the marsh.  Samples were taken in both the grazed and the un-grazed 

areas of the marsh.  The southern half of the marsh (grazed area) is dominated by Puccinellia 

maritima, and the bottom of the marsh (un-grazed area) is dominated by diverse Atriplex 

portulacoides and Puccinellia maritima swards.  
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Longton (Ribble Estuary) 

 

Figure 2.18 | Map of Longton Marsh.  Ordnance Survey Map 286 (2010f) showing start and end points of high zone cross-

shore sample belt. 

 

Grid Reference (BNG): SD 453 254 

Used in Chapters: 3 & 4 

Marsh Type: Estuarine fringing 

Zones Present: High 

Grazing Intensity: Light (0.24 LSU ha-1 yr-1) 

 

This marsh is situated on the south bank of the Ribble along one of its tributaries (River 

Asland/Douglas).  The south of the marsh (the sample area) is owned by the RSPB and a local farmer, 

and a large area to the north is owned by a local wildfowlers association. Longton Marsh is currently 

lightly grazed by sheep and it has been grazed at this, or a similar stocking density for at least 150 

years.  There is an extensive high marsh dominated by Festuca rubra, but steep river cliffs to the west 

truncate the marsh so there are no lower marsh zones. 
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Warton Bank (Ribble Estuary)  

 

Figure 2.19 | Map of Warton Bank marsh.  Ordnance Survey Map 286 (2010f) showing start and end points of high and 

mid zone cross-shore sample belts. 

 

Grid Reference (BNG): SD 402 266 

Used in Chapters: 3, 4, 5 & 6 

Marsh Type: Estuarine fringing 

Zones Present: High & Mid 

Grazing Intensity: Light (0.19 LSU ha-1 yr-1) 

 

Warton Bank marsh is situated on the north bank of the Ribble Estuary opposite Banks Marsh.  It is 

owned and managed by Lytham & District Wildfowlers Association and thus access is restricted 

during winter months due to wildfowl shooting.  Warton Bank is lightly grazed throughout the 

summer months by cattle and has been grazed at a similar stocking density for at least 80 years.  The 

mid marsh runs along the south edge of the marsh where many deep creeks make some areas 

difficult for livestock to access.  It is dominated by a diverse Puccinellia maritima and Spartina anglica 

sward, and Atriplex portulacoides bushes can be found along the edges of the creeks.  The high 

marsh is heavily poached (damage caused by the feet of livestock) in some areas, particularly around 

the access track.  It is dominated by a diverse Puccinellia maritima sward interspersed with large 

patches of Festuca rubra and Atriplex prostrata.  Due to this heterogeneity in the high marsh, the 

cross-shore sample belt was split into two sections to more accurately represent the vegetation 

composition of the marsh.   
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Stanah 

 

Figure 2.20 | Map of Stanah marsh.  Ordnance Survey Map 296 (2010g) showing start and end points of mid and low zone 

cross-shore sample belts. 

 

Grid Reference (BNG): SD 354 432 

Used in Chapters: 3 & 4 

Marsh Type: Estuarine fringing 

Zones Present: Mid & Low 

Grazing Intensity: Un-grazed 

 

Stanah is a small, narrow marsh situated on the western bank of the Wyre Estuary, just south of 

Fleetwood.  It is owned and managed by the Wyre Estuary Country Park and Wyre Borough Council.  

The mid marsh is dominated by large Atriplex portulacoides bushes and it is truncated by a large 

embankment at the land-ward edge of the marsh.  The low marsh is situated along the river edge of 

the marsh and is dominated by a diverse Puccinellia maritima/Suaeda maritima sward.   
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Glasson (Lune Estuary)  

 

Figure 2.21 | Map of Glasson Marsh.  Ordnance Survey Map 296 (2010g) showing start and end points of high, mid, low 

and pioneer zone cross-shore sample belts. 

 

Grid Reference (BNG): SD 439 561 

Used in Chapters: 3 & 4 

Marsh Type: Open embayment 

Zones Present: High, Mid, Low & Pioneer 

Grazing Intensity: Intensive (2.26 LSU ha-1 yr-1) 

 

Glasson Marsh is situated on the southern bank of the Lune Estuary, south of Lancaster.  It is owned 

by two local farmers and is intensively grazed by both sheep and cattle.  However, these livestock 

have access to adjacent terrestrial land so it is hard to quantify the stocking density of the marsh with 

confidence.  There is an extensive high marsh zone below a steep hill (Tithe Barn Hill) to the east of 

the marsh.  This high marsh is dominated by a diverse Festuca rubra sward interjected with large 

Juncus maritimus patches; the cross-shore sample belt was bisected to compensate for this 

heterogeneity.  The mid marsh forms a sandy ridge in the middle of the low marsh zone and is 

dominated by low Atriplex portulacoides bushes.  Due to an extensive creek system, the low marsh 

covers most of the marsh, starting just below the high marsh zone; it is dominated by a short 

Puccinellia maritima sward.  The pioneer zone is a narrow band on the edge of the sand flats and is 

dominated by a sparse Spartina anglica sward.     
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Conder Green (Lune Estuary) 

 

Figure 2.22 | Map of Conder Green.  Ordnance Survey Map 296 (2010g) marsh showing start and end points of high, mid, 

low and pioneer zone cross-shore sample belts. 

 

Grid Reference (BNG): SD 456 564 

Used in Chapters: 3 & 4 

Marsh Type: Estuarine fringing 

Zones Present: High, Mid, Low & Pioneer 

Grazing Intensity: Un-grazed 

 

Conder Green is a small marsh situated on the south bank of the Lune Estuary along one of the 

tributaries.  It is owned by a local land owner and has not been grazed in 20-30 years; before that it 

was lightly grazed by sheep. The high and mid marsh are truncated by a large embankment and are 

therefore within ten metres of the upper marsh edge.  The high marsh along the south-east edge of 

the marsh is dominated by Elymus repens, and the mid marsh along the north-east edge of the marsh 

is dominated by a diverse Festuca rubra sward.  The high and mid marsh drop down sharply to an 

extensive pioneer zone dominated by Spartina anglica.  The low marsh forms a ridge on the river 

edge of the marsh and is truncated by a steep river bank; it is dominated by a diverse Puccinellia 

maritima/Suaeda maritima sward.    
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Sunderland (Morecambe Bay) 

 

Figure 2.23 | Map of Sunderland marsh. Ordnance Survey Map 296 (2010g) showing start and end points of high, mid, low 

and pioneer zone cross-shore sample belts. 

 

Grid Reference (BNG): SD 418 563 

Used in Chapters: 3, 4, 5 & 6 

Marsh Type: Open coast 

Zones Present: High, Mid, Low & Pioneer 

Grazing Intensity: Intensive (0.82 LSU ha-1 yr-1) 

 

Sunderland is a long and relatively narrow marsh situated on the coast to the north of the Lune 

Estuary.  It is owned by a local farmer and heavily grazed by young cattle.  The high marsh to the 

north of the marsh is dominated by a short Festuca rubra sward.  The extensive mid marsh covers 

most of the marsh area and is also dominated by a short Festuca rubra sward; however it is broken 

up by several large Juncus maritimus patches.  The low marsh is a narrow strip along the western 

edge of the marsh and consists of many hummocks that are dominated by a diverse Puccinellia 

maritima sward.  The pioneer zone is a sparse but expansive Salicornia patch on the sand flats to the 

west of the marsh.  
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Carnforth (Morecambe Bay) 

 

Figure 2.24 | Map of Carnforth marsh.  Ordnance Survey Map OL7 (2010h) showing start and end points of high and mid 

zone cross-shore sample belts. 

 

Grid Reference (BNG): SD 478 717 

Used in Chapters: 3, 4, 5 & 6 

Marsh Type: Open coast 

Zones Present: High & Mid 

Grazing Intensity: Intensive (0.72 LSU ha-1 yr-1) 

 

Carnforth marsh (also known as Warton Marsh) is a large marsh situated just north of Carnforth, 

near Lancaster.  It is mostly owned by a local farmer and managed by Morecambe Bay Wildfowlers 

Association, but the RSPB also own a section of the marsh to the north.  It is intensively grazed by 

sheep throughout the year.  The extensive high marsh is dominated by a closely cropped Festuca 

rubra and Agrostis stolonifera sward with extensive Juncus maritimus patches to the north.  The mid 

marsh extends to the west and is dominated by a sparse and short Festuca rubra sward.  This marsh 

is very sandy and highly dynamic in places. 
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Chapter 3: The Importance of Context – The Above-Ground Impacts of 

Grazers in a Naturally Variable System 

 

3.1 Introduction 

 

3.1.1 The impacts of grazers on above-ground plant communities 

Livestock grazing is a common disturbance in grasslands and wetlands as livestock are used for both 

meat production and for management of vegetated landscapes (Reid, Galvin, & Kruska, 2008).  

Disturbance by livestock grazing has significant above-ground impacts on vegetation community 

characteristics such as vegetation height and biomass, species diversity, and community composition 

(Jensen, 1985) (Figure 3.1).  Grazing disturbance can thus have significant knock-on effects on several 

ecosystem functions such as carbon sequestration (R. Conant, Paustian, & Elliott, 2000; R. T. Conant 

& Paustian, 2002; Reeder & Schuman, 2002), biodiversity (Kruess & Tscharntke, 2002; Loucougaray, 

Bonis, & Bouzille, 2004; Olff & Ritchie, 1998) and habitat provision (Baldi, Batary, & Erdos, 2005; 

Schmidt, Olsen, Bildsoe, Sluydts, & Leirs, 2005; Vickery et al., 2001).  Loss of vegetation height, 

biomass and cover occurs under all grazing regimes (Hayes & Holl, 2003; Jensen, 1985; Jones, 2000; 

H.-L. Zhao, Zhao, Zhao, Zhang, & Drake, 2005) and the overall stocking density of livestock 

determines the extent of this loss.  A high stocking density is likely to lead to a short and uniform 

sward with low vegetation cover, as grazing disturbance significantly reduces plant biomass and 

height across all species (Jensen, 1985; Kiehl et al., 1996).  In contrast, a low stocking density is likely 

to lead to a patchy vegetation sward, as grazing disturbance reduces above-ground biomass of 

grazer-sensitive and palatable species, giving opportunity for grazer resilient species to thrive with 

reduced interspecific competition (Grime, 1974; Jensen, 1985; Kiehl et al., 1996).  Different grazer 

species affect vegetation structure in different ways (Jensen, 1985).  Sheep are selective grazers; they 

preferentially select grazing patches, plant species and even individual plants within an area, which 

can result in a patchy vegetation sward (Adler et al., 2001; J. P. Bakker et al., 1984; Parsons et al., 

1994; D. S. Ranwell, 1961).  It is easier for sheep to graze short vegetation patches than tall 

vegetation, resulting in a higher grazing intensity and frequency in shorter vegetation patches and an 

increased difference between the patches of desirable and undesirable species (Graff, Aguiar, & 

Chaneton, 2007; Wallis De Vries et al., 1999).  In contrast, cows are generalist grazers and tend to 

continually graze as they move across the turf, regardless of vegetation type, resulting in a more 

uniform sward (Jensen, 1985; Wallis De Vries et al., 1999).   

 

Livestock grazing can significantly influence the species richness of vegetation communities (Sala et 

al., 2000).  Species richness is often low in un-grazed swards due to the dominance of one 
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competitively dominant species, while light grazing can open up the sward, allowing less 

competitively dominant, more opportunistic species to grow, and thus increase species richness 

(Augustine & McNaughton, 1998; V.  Bouchard et al., 2003; Marty, 2004).  The latter may not occur in 

all cases as the increase in species richness depends on the palatability of the initial plant community 

(Graff et al., 2007; Schroder et al., 2002).  If the dominant species are unpalatable, less dominant 

species may then be preferentially grazed, decreasing competition for the dominant species and 

further reducing species richness (Lubchenco, 1978; Olff & Ritchie, 1998; Parsons et al., 1994).  Under 

an intense grazing regime species richness will decrease regardless of preferential grazing, resulting 

in a low-diversity sward dominated by grazing-resistant species (Fleischner, 1994; Olff & Ritchie, 

1998).   

 

3.1.2 The salt marsh environment 

Salt marshes are at the interface of the marine and terrestrial systems; they are subjected to 

stressors and disturbances from both the marine environment, such as tidal inundation, salinity 

gradients and wave action, and the terrestrial environment, such as herbivory, freezing and 

dessication (Adam, 1990a; Jimenez, Lugo, & Cintron, 1985).  Salt marshes are frequently inundated 

with saline water resulting in waterlogged soils with little oxygen (Adam, 1990a, 1990b; Chapman, 

1938).  High marsh areas are flooded less frequently than lower marsh areas (Adam, 1990b; 

Chapman, 1938) (Figure 3.2); as a consequence the soils in high marsh areas are less waterlogged 

than low marsh soils (Adam, 1990b; Chapman, 1938; Pennings & Bertness, 2001).  In warmer regions, 

evaporation of saline water results in high soil salinities in the high marsh, where inundation is 

infrequent and freshwater influence is minimal; at lower marsh elevations water inundation is 

frequent enough to dilute the salinity of the soil (Adam, 1990b; Chapman, 1939; Parrondo et al., 

1978; Pennings & Bertness, 2001; Pennings & Callaway, 1992).  Salt marsh plants are also subject to 

direct physical stress from water movement and, in northern latitudes, ice scour (Adam, 1990b; 

Belanger & Bedard, 1994; Pennings & Bertness, 2001).   

 

3.1.3 Above-ground impacts of grazing on salt marshes 

Livestock grazing is used both as a conservational management tool and for agricultural production 

on salt marshes (Adam, 1990c).  Conservation management usually necessitates an absence of 

grazers or a low to moderate livestock density, while agricultural production typically requires high 

stocking densities (Andresen et al., 1990; J.P. Bakker, De Bie, Dallinga, Tjaden, & De Vries, 1983; 

Jensen, 1985; Kiehl et al., 1996).  Because of this range in stocking densities and environmental stress 

gradients, salt marshes provide an ideal environment for studying the relative importance of grazing 

disturbance in relation to environmental stressors.   
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Figure 3.1 | The impacts of livestock grazing.  a) The contrast between an un-grazed (left) and an intensively grazed (right) 

salt marsh.  b) Predicted effects of a range of grazing intensities on vegetation height, above-ground biomass, species 

richness and plant litter biomass according to the literature (Andresen et al., 1990; Augustine & McNaughton, 1998; Jensen, 

1985; Kiehl et al., 1996).  Grazing is shown as ‘Grazing Intensity’ category (un-grazed, lightly grazed, moderately grazed and 

intensively grazed) and Livestock Units per hectare per year (LSU ha-1 yr-1).   

 

Grazers are likely to have significant impacts on salt marsh vegetation.  Plant height, biomass and 

cover will decrease with an increase in stocking density (Andresen et al., 1990; V.  Bouchard et al., 

2003; Jensen, 1985; Kiehl et al., 1996).  Species richness is likely to peak under a light grazing regime 

as an intensively grazed sward will consist of only disturbance-resistant species, and an un-grazed 

sward will be dominated by a competitively dominant monoculture, particularly in the higher marsh 

zones where soil physical conditions are more favourable (Adam, 1990a; Kiehl, Schroder, & Stock, 

2007; Pennings & Callaway, 1992).  In the absence of grazing, salt marshes have distinct zonation of 

the vegetation according to elevation (Adam, 1990b).  Each zone represents a different stage of salt 
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marsh succession, with the pioneer zone at the seaward edge of the marsh representing the newest, 

early-successional vegetation communities, and higher marsh zones representing increasingly later 

successional vegetation communities as shore elevation increases (Adam, 1990b; Boorman, 2003; 

Davy, Brown, Mossman, & Grant, 2011; Krull & Craft, 2009; Packham & Liddle, 1970; Pennings & 

Callaway, 1992; D.S. Ranwell, 1964a) (Figure 3.2).  Under the influence of large herbivores, 

community composition is likely to revert to an earlier successional stage; higher marsh zones will 

become dominated by the communities found lower down the shore, as disturbance will open up the 

sward and facilitate for more robust, competitively inferior species (J. P. Bakker, 1985; Bos, Bakker, 

De Vries, & van Lieshout, 2002).  The relative impact of grazers is likely to differ between marsh 

zones; livestock normally avoid the pioneer marsh zone (Figure 3.2) as it is dominated by unpalatable 

species and can be difficult to reach, due to complex creek systems (Adam, 1990b; Boorman, 2003; 

Kiehl et al., 1996).   

 

 

Figure 3.2 | Zonation on a salt marsh.  A diagrammatic representation of a salt marsh showing zonation according to tidal 

inundation: extreme high water spring (EHWS), mean high water spring (MHWS), mean high water (MHW) and mean high 

water neap (MHWN).  Only the pioneer, low, mid and high zones were sampled in this study.  Grazer preference is indicated 

showing decreased grazing activity in the lower zones.   

 

3.1.4 The importance of environmental setting 

Environmental context is known to moderate grazer control of vegetation composition in a range of 

ecosystems (Chaneton, Perelman, Omacini, & Leon, 2002; Ren, Schonbach, Wan, Gierus, & Taube, 

2012; Stohlgren, Schell, & Vanden Heuvel, 1999).  Salt marshes, being intertidal systems, are 

naturally exposed to a large variety of environmental stressors and are, as a consequence, spatially 

and temporally highly variable (Adam, 1990b).  As yet, no study has investigated how broad-scale 
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environmental context affects grazing impacts on salt marsh vegetation.  In natural systems, plant 

community composition, diversity and morphology are determined by a combination of stress 

gradients, and inter and intraspecific competition (Grime, 1974).  Variation in such stressors naturally 

increase with an increase in spatial and temporal scales (Sprugel, 1991).  In small-scale studies, the 

impact of grazing is clearly detectable (Jensen, 1985; Kiehl et al., 1996), however, over a large spatial 

scale, the impact of grazers on above-ground processes would have to be substantial and consistent 

enough to overcome the large-scale natural variation to be detectable.  In the higher marsh zones, 

where livestock preferentially graze, the impact of grazing is likely to be substantial enough to be 

detectable over the impacts of environmental stressors. However, due to preferential grazing (Figure 

3.2), the impact of grazers is less likely to be detectable over the impacts of environmental stressors 

in the lower marsh zones.  

 

3.1.5 Study aims 

The overall aim of this study was to examine the broad-scale relationships between livestock grazing 

and above-ground plant community characteristics in relation to large-scale environmental variation.  

The overarching hypothesis was that grazing has consistent effects on salt marsh plant communities, 

as indicated in previous small scale-studies (Jensen, 1985; Kiehl et al., 1996), and that these effects 

are detectable across a large spatial scale.  To address this hypothesis, above-ground plant 

morphology and community characteristics were sampled across 22 salt marshes along the north-

west coast of Wales and the north-west coast of England.  Sites had a large range of livestock 

stocking densities and environmental settings (Chapter 2).  Plant height, live biomass, litter biomass 

and percent cover were all expected to show a significant negative response to an increase in 

livestock density.  Species diversity was expected to peak under a light grazing regime and 

community composition was expected to revert to that of a lower marsh zone community with an 

increase in stocking density.  The study also investigated the interaction between grazing and the 

impact of tidal elevation (zone) on plant community characteristics.  Plant height, live biomass, litter 

biomass and percent cover were all expected to be greatest in the high marsh, where physical stress 

and disturbance levels are lowest, regardless of grazing intensity (Adam, 1990b).  Community 

composition was expected to significantly differ between marsh zones; the lower marsh zones were 

expected to be dominated by halophytic, early successional species, while the higher marsh zones 

were expected to be dominated by less salt-tolerant, competitively dominant species.  Species 

diversity was expected to be lowest in the pioneer zone where physical stress and disturbance is 

highest (Adam, 1990b).  Finally, the study contrasted the influence of livestock grazing with the 

influence of environmental contextual variables such as wave exposure, tidal range and marsh 

geomorphology on above-ground plant community characteristics.  Tidal range was expected to be a 

significant driver of plant community characteristics in un-grazed marshes as tidal range dictates 
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many of the physical stresses and disturbances on a salt marsh and defines the position and extent of 

the marsh zones (Adam, 1990b).  It was expected that the impact of livestock grazing would be 

detectable above the impacts of environmental stressors in the higher marsh zones but not in the 

lower marsh zones.   
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3.2 Materials and Methods 

 

3.2.1 Site selection, determination of zones and quadrat selection 

The study sites and sampling design are described in detail in Chapter 2.  Twenty-two salt marshes 

were selected between the Dyfi Estuary, Mid Wales, and Morecambe Bay, NW England (Chapter 2).  

Marshes varied in grazing intensity from un-grazed to intensively grazed (Chapter 2: Table 2.1).  

Marsh zones were determined using a combination of strand line position, marsh topography, and 

direct observations of tidal inundation (Chapter 2).  Each zone was sampled by ten 2 x 2 metre plots 

that were randomly placed along a representative cross-shore 100m belt (Chapter 2). 

 

 

3.2.2 Sampled response variables 

 

3.2.2.1 Total vegetation cover and community composition:  Total vegetation cover and community 

composition were recorded according to the National Vegetation Classification (NVC) guidelines 

(Rodwell et al., 2000): the total percentage cover of bare ground and of vegetation in each 2 x 2 

metre plot (Figure 3.3a) was assessed by eye; 5-10 minutes were then spent identifying each species 

within the plot before the percentage cover of each species was estimated.   

 

3.2.2.2 Vegetation height:  Five measurements of vegetation height were taken from each plot 

(Figure 3.3b), one from each corner and one from the middle; the five observations were then 

averaged.  To measure vegetation height, a flat surface was placed level with 80% of the vegetation 

and a ruler was used to measure the height according to the direct vegetation height method by 

Stewart, Bourn, and Thomas (2001).  The maximum vegetation height was also measured for each 

plot and the species of the tallest plant was recorded.  

 

3.2.2.3 Above-ground live biomass and litter biomass:  Above-ground live biomass and litter biomass 

were measured using a 25 x 50cm quadrat placed in a representative area of each plot, defined by 

the spread and abundance of each species present within the plot (Figure 3.3c).  Any vegetation litter 

within the quadrat was collected.  The living vegetation was then cut down to the soil and also 

collected.  In the laboratory, both above-ground and litter samples were placed in pre-weighed paper 

bags, dried at 80°C for 3 days, and weighed.  Total dry weight was calculated and expressed per 

centimetre squared. 

 

3.2.2.4 Species diversity: Species diversity takes into account both species richness (number of 

species) and species evenness (how evenly individuals are distributed among different species).  
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Species diversity was calculated from the community composition data matrix using DIVERSE in the 

PRIMER statistical package (K. R. Clarke & Warwick, 2001).  Species diversity was recorded as the 

Shannon-Wiener Diversity Index (H’ loge):  

 

H’ = −∑i  pi  loge(pi) 

 

where pi was the proportion of the total count arising from the ith species (K. R. Clarke & Warwick, 

2001).   

 

 

Figure 3.3 | The quadrat and the measurements.  a) The 2 x 2m quadrat used for the above-ground measurements.  b) 

Taking a vegetation height measurement at a plot corner.  c) Clipping the vegetation after having collected any vegetation 

litter within the 25 x 50cm quadrat.   

 

3.2.3 Determination of stocking density and contextual environmental variables 

The method of quantifying livestock density is outlined in Chapter 2 (Section 2.2).  The stocking 

density was expressed as livestock units (Woodend, 2010) per hectare per year (LSU ha-1 yr-1) 

(Chapter 2).  As well as considering grazing as a continuous variable, the marshes were also 

categorised into four grazing intensities: un-grazed, lightly grazed, moderately grazed and intensively 

grazed. This was to relate to local management schemes and grazing intensities used in other studies 

(Chapter 2).  Several contextual environmental variables were sampled as indicators of 

environmental drivers of salt marsh productivity and carbon storing processes (Chapter 2). 

 

3.2.4 Statistical analysis 

Due to the considerable differences between saltmarsh zones, separate analyses were used for each 

zone as well as the overall data set (all zones).  As management schemes stipulate grazing pressure 

by categorizing sites into a range of grazing intensities, the data were analysed with grazing as both a 

continuous variable (LSU) and as an ordinal categorical variable (four categories of grazing intensity).  

LSU is a continuous measurement of stocking density; however, it does not lend itself to factorial-
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type analyses such as ANOVA.  Grazing intensity categories are arbitrary and somewhat subjective 

classifications of grazing regime.  They were included in this analysis to relate to current 

management schemes that use these categories.  The data analysis was divided into three parts:  

i) Regression analyses with grazing intensity as a continuous variable (LSU ha-1 yr-1) for a 

continuous determination of grazing impacts on below-ground measures (Section 3.2.4.1). 

ii) An analysis of grazing impacts using categorical levels of grazing intensity (un-grazed, lightly 

grazed, moderately grazed, or intensely grazed), as stipulated by management schemes, using 

ANOVAs (Section 3.2.4.2), PERMANOVA (Section 3.2.4.3), and ANCOVA (Section 3.2.4.4). 

iii) Analyses of the impacts of grazing in relation to a series of environmental variables (3.2.4.5 

DistLM; 3.2.4.6 Mixed effects model). 

 

3.2.4.1 Regression:  A series of regression analyses investigated the effect of livestock stocking 

density (LSU ha-1 yr-1) on the above-ground response variables.  Analyses were run on the overall 

data set (all marshes, all zones) and separately for each zone (high, mid, low or pioneer).  False 

discovery rate (FDR) control p-values were calculated to compensate for the large number of tests.  

FDR control is similar to a Bonferroni correction as it reduces the risk of a Type I error by lowering the 

p-value threshold; but instead of lowering the p-value threshold by a set amount, FDR control takes 

into account the rank order of the tests (Verhoeven, Simonsen, & McIntyre, 2004).  Partial eta 

squared effect size was calculated for each test where ≥0.0099 (0.99% of the variation explained) 

was a small effect, ≥0.0588 (5.88% of the variation explained) was a medium effect, and ≥0.1379 

(13.79% of the variation explained) was a large effect (Cohen, 1988; Richardson, 2011).  Square root 

and log10 transformations were used when necessary to meet the test assumptions. 

 

3.2.4.2 ANOVA: Analyses of variance (ANOVAs) were run alongside the regression analyses to 

investigate the impact of categorical levels of grazing intensity on the above-ground response 

variables (plant height, biomass, percentage cover, and species richness) and their coefficients of 

variation (spread in the data).  To analyse the impact of grazing on plant structure and species 

richness in the overall data set, a three-way, between-group factorial ANOVA was run with the model 

Grazing Intensity | Zone + Marsh(Grazing Intensity).  This model determined both independent 

effects of grazing, zone and marsh, as well as interaction effects of grazing and zone.  Marsh a 

random factor and was nested within grazing intensity so no interaction terms could be determined 

for marsh.  To analyse the impact of grazing on plant structure and species richness within each zone, 

a 2-way ANOVA was run for each zone (high, mid, low and pioneer) with the model Grazing Intensity 

+ Marsh(Grazing Intensity).  This model determined the independent effects of grazing and marsh 

within each zone.  Tukey HSD post hoc tests were used to determine where any between-group 

significant differences lay.  False discovery rate control p-values were calculated for the main factor, 
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‘Grazing’, to compensate for the large number of analyses.  Partial eta squared effect size was 

calculated for each test.  For non-parametric analyses (litter biomass in all zones, and overall 

percentage cover in the high and mid zones), a Kruskal-Wallis multiple Comparisons test was used.   

 

3.2.4.3 PERMANOVA: A permutational analysis of variance (PERMANOVA) (Anderson, 2005) was 

used to analyse the effects of grazing on community composition.  The PERMANOVA design included 

the factors: 

i) Grazing intensity (GI): Fixed factor; 4 levels (un-grazed, lightly grazed, moderately grazed, 

intensively grazed) 

ii) Marsh: Random factor; 22 marshes; nested in GI 

iii) Zone: Fixed factor; up to 4 levels per marsh (pioneer, low, mid, high) 

The PERMANOVA was run with 9999 permutations on a log transformed Bray-Curtis similarity matrix.  

A permutational analysis of dispersions (PERMDISP) was used to analyse heterogeneity of the spread 

of the data between groups (grazing intensities) within each zone. 

 

3.2.4.4 MDS and SIMPER:  Community composition of marsh zones were compared using multi-

dimensional scaling (MDS) plots on log transformed Bray-Curtis similarity matrixes (K. R. Clarke & 

Warwick, 2001).  MDS analyses were followed by SIMPER analyses to establish which species best 

explained the similarities or dissimilarities between the grazing intensity categories and between the 

zones.   

 

3.2.4.5 Mixed Effects Model:  A mixed effects model was used to analyse the impact of multiple 

environmental and contextual factors (including LSU) on above-ground response variables.  The 

model was run on the overall data set for un-grazed marshes, the combined high zone and mid zone 

data for grazed marshes (zones most likely to be influenced by grazers), and the combined low zone 

and pioneer zone data for grazed marshes (zones least likely to be influenced by grazers).   

 

3.2.4.6 DistLM: A distance based linear model (DistLM) (Anderson, 2005) was used to determine the 

relative impacts of grazing and several environmental variables on community composition using 

multiple regression techniques.  A Best selection procedure was used and an AICc (Akaike’s 

Information Criterion (AIC corrected for data sets with a small ‘number of samples –number of 

variables’ ratio) selection criterion was used.  A reduced model (fewer marshes) was used to test for 

effects of environmental variables for which data was not available for all marshes. 
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3.3 Results 

 

3.3.1 The impact of grazing on vegetation structure 

Vegetation height decreased significantly in response to an increase in stocking density (LSU), 

irrespective of whether analyses were done collectively across all zones (the overall marsh), or 

separately for each zone; only in the pioneer zone was there no significant relationship between 

grazing and vegetation height (Regression analyses: Table 3.1; Figure 3.4).  Vegetation height varied 

significantly between the four categorical levels of grazing but there was also significant variation 

between marsh sites (ANOVA Table 3.2).  Overall, and in the high and mid marsh zones, the mean 

and maximum vegetation height in un-grazed and lightly grazed marshes was significantly higher 

than that in moderately and intensively grazed marshes (post hoc Tukey HSD tests: Table 3.2).  

Vegetation height was not significantly affected by grazing in the low and pioneer zones (Table 3.2).   

 

Above-ground live biomass showed a significant but weak negative relationship with livestock 

stocking density across the marsh as a whole (Regression: Table 3.1; Figure 3.4).  Above-ground live 

biomass did not significantly differ between grazing intensity categories but there were significant, 

large effects of marsh site (ANOVA: Table 3.2).  Considering the zones separately, above-ground live 

biomass decreased with an increase stocking density in the high, mid and low marsh zones 

(Regression: Table 3.1; Figure 3.4).  Interestingly, there was a significant positive relationship with 

grazing in the pioneer zone (Regression: Table 3.1; Figure 3.4).   

 

There was a significant effect of grazing on litter biomass both collectively across all marsh zones (the 

overall marsh) and within each zone (Kruskal-Wallis multiple comparisons: Table 3.3, Figure 3.4).  

Overall and in the high, mid and pioneer marsh zones, there was significantly more litter biomass in 

un-grazed marshes than in grazed marshes (Kruskal-Wallis multiple comparisons: Table 3.3).  In the 

high marsh, there was a more gradual reduction of litter biomass with grazing than in the other 

zones as there was significantly more litter in the lightly grazed marshes than in moderately and 

intensively grazed marshes (Kruskal-Wallis multiple comparisons: Table 3.3).  In the mid and pioneer 

zones, however, litter biomass did not significantly differ between grazed treatments, and in the low 

marsh, litter biomass was significantly greater in intensively grazed marshes than in lightly grazed 

marshes (Kruskal-Wallis multiple comparisons: Table 3.3).   

 

3.3.2 Changes in vegetation structure across the salt marsh zones 

Vegetation height significantly differed between marsh zones (ANOVA Table 3.2).  Vegetation height 

was significantly greater in the high zone (𝑥̅ = 22.33, SE = 1.51) than in the mid (𝑥̅ = 11.94, SE = 0.73) 

low (𝑥̅ = 16.06, SE = 0.88) and pioneer zones (𝑥̅ = 11.40, SE = 1.18) (post hoc Tukey HSD tests).   
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Above-ground live biomass significantly differed between marsh zones (ANOVA: Table 3.2.  Above-

ground biomass was greater in the high marsh zone (𝑥̅ = 0.044, SE = 0.002) than in the pioneer zone 

(𝑥̅ = 0.031, SE = 0.003) (post hoc Tukey HSD tests).  Litter biomass also significantly differed between 

marsh zones (Kruskal-Wallis multiple comparisons: H3 = 34.57, p <0.001).  The high marsh had 

significantly more litter biomass (𝑥̃= 0.0001, IQR = 0.0167) than mid (𝑥̃= 0.0000, IQR = 0.0012), low 

(𝑥̃= 0.0000, IQR = 0.0000) and pioneer zones (𝑥̃= 0.0000, IQR = 0.0000), and there was significantly 

less litter biomass in the low marsh than in the pioneer marsh (Kruskal-Wallis multiple comparisons). 

 

Table 3.1 | Regression analyses for above-ground variables against LSU.  Results of regression analyses for each predictor 

variable vs. LSU ha-1 yr-1 for overall data set followed by analysis by zone (high, mid, low and pioneer).  Results of ANOVA 

(df, F and p) are shown along with FDR p-value thresholds (FDR p(i)).  An emboldened p-value denotes a significant effect.  

The results of the regression are shown in the last three columns: R2, Intercept (b) and Slope (m). 

Predictor Variable df F p FDR p(i) R2 b m 

Overall 
Sqrt Average Plant Height (cm) 1, 598 84.04 <0.001    0.033 12.3 3.920 -0.892 

Maximum Plant Height (cm) 1, 598 52.19 <0.001    0.025 8.0 42.000 -9.930 

Sqrt Above-ground Biomass (g cm-2) 1, 598 15.73 <0.001    0.008 2.6 0.202 -0.021 

Overall % Cover 1, 598 19.50 <0.001    0.017 3.2 88.800 -5.930 

Species Diversity (H' loge) 1, 598 2.59 0.108 0.042 0.4   

High Marsh 
Ln10 Average Plant Height (cm) 1, 158 75.86 <0.001    0.030 32.4 1.290 -0.303 

Maximum Plant Height (cm) 1, 158 40.99 <0.001    0.020 20.6 55.700 -14.100 

Above-ground Biomass (g cm-2) 1, 158 15.13 <0.001    0.010 8.7 0.049 -0.009 

Species Diversity (H' loge) 1, 158 1.25 0.265 0.040 0.8   

Mid Marsh 
Average Plant Height (cm) 1, 198 47.29 <0.001    0.030 19.3 15.300 -8.450 

Maximum Plant Height (cm) 1, 198 46.43 <0.001    0.020 19.0 38.500 -17.400 

Sqrt Above-ground Biomass (g cm-2) 1, 198 10.56 0.001    0.010 5.1 0.211 -0.041 

Species Diversity (H' loge) 1, 198 0.01 0.936 0.050 0.0   

Low Marsh 
Average Plant Height (cm) 1, 138 4.29 0.040 0.042 3.0   

Maximum Plant Height (cm) 1, 138 0.50 0.479 0.050 0.4   

Above-ground Biomass (g cm-2) 1, 138 10.65 <0.001    0.008 7.2 0.061 -0.019 

Overall % Cover 1, 138 23.94 <0.001    0.025 14.8 93.700 -5.770 

Species Diversity (H' loge) 1, 138 32.89 <0.001    0.033 19.2 1.440 -0.317 

Pioneer Marsh 
Average Plant Height (cm) 1,98 3.95 0.050 0.033 3.9   

Maximum Plant Height (cm) 1,98 0.14 0.708 0.042 0.1   

Above-ground Biomass (g cm-2) 1,98 14.95 <0.001    0.008 13.2 0.022 0.017 

Overall % Cover 1,98 9.83 0.002    0.017 9.1 54.600 -14.000 

Species Diversity (H' loge) 1,98 0.00 0.994 0.050 0.0   
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Figure 3.4 | Above-ground variables vs. livestock units by zone.  Scatter plots showing the relationships between the above-ground variables (plant height and plant biomass) and grazing intensity 

(LSU ha-1 yr-1) for each zone.  The marsh with the highest grazing intensity had only a high marsh zone, so these data are missing from the mid, low and pioneer plots.  The results (R2, p and F) of a 

regression analysis are also shown for parametric analyses, while Kruskal-Wallis multiple comparisons p-values and H-values are shown for non-parametric analyses.   
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Figure 3.4 (cont) | Above-ground variables vs. livestock units by zone.  Scatter plots showing the relationships between the above-ground variables (litter biomass, percent vegetation cover, and 

species diversity) and grazing intensity (LSU ha-1 yr-1) for each zone.  The marsh with the highest grazing intensity had only a high marsh zone, so these data are missing from the mid, low and pioneer 

plots.  The results (R2, p and F) of a regression analysis are also shown for parametric analyses, while Kruskal-Wallis multiple comparisons p-values and H-values are shown for non-parametric 

analyses.   
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Table 3.2 | ANOVA results of above-ground variables by grazing intensity.  Results of a factorial ANOVA for the overall data set (‘Overall’) with the model Grazing | Zone + Marsh(Grazing), and a 2-way 

ANOVA for each zone (‘High’, ‘Mid’, ‘Low’, and ‘Pioneer’) with the model Grazing + Marsh(Grazing).  Column headers depict degrees of freedom (df: numerator, denominator), F-values (F), p-values (p), 

False Discovery Rate control thresholds (FDR p(i)), and partial eta squared effect size (ηp2).  An emboldened p-value denoted a significant effect.  Means (x̅) and Standard Deviation (SD) are shown by 

Grazing for each predictor variable with the results of Tukey HSD post hoc tests (superscript); groups that share the same number are significantly different. 

Predictor Variable 

ANOVA  Un-grazed  Light  Moderate  Intensive  

   df       F      p FDR p(i) ηp
2       𝒙         SE      𝒙          SE       𝒙         SE       𝒙          SE  

   Overall 

Average Plant Height (cm) Grazing 3, 9 17.67 <0.001  0.010 0.494  24.045 0.914    123 10.072 0.748  14 9.766 0.977    245 6.195 0.506 35 

 Marsh(Gr) 21, 9 17.33 <0.001 0.030 0.381              
 Zone 3, 9 23.99 <0.001 0.040 0.263              
 Gr x Zo 9, 9 19.97 <0.001 0.030               

Ln10 Maximum Plant Height (cm) Grazing 3, 9 15.14 <0.001 0.020 0.403  50.320 1.450    123 28.300 1.870  1 29.090 2.400    24 23.600 1.460 34 
 Marsh(Gr) 21, 9 13.83 <0.001 0.040 0.329              
 Zone 3, 9 69.61 <0.001 0.020 0.197              
 Gr x Zo 9, 9 22.66 <0.001 0.020               

Above-ground Biomass (g cm-2) Grazing 3, 9 3.29 0.040  0.040 0.181  0.059 0.003  0.044 0.003  0.026 0.002  0.03 0.002  
 Marsh(Gr) 21, 9 21.14 <0.001 0.020 0.428              
 Zone 3, 9 6.68 <0.001 0.051 0.046              
 Gr x Zo 9, 9 7.42 <0.001 0.050               

Overall Percent Cover Grazing 3, 9 6.96 0.002 0.030 0.198  91.579 0.941    12 85.520 3.200   1 82.560 2.410    3 78.430 2.360 23 
 Marsh(Gr) 21, 9 10.87 <0.001 0.050 0.278              
 Zone 3, 9 419.51 <0.001 0.010 0.708              
 Gr x Zo 9, 9 26.81 <0.001 0.010               

Species Diversity (H’ loge) Grazing 3, 9 1.06 0.387 0.050 0.072  1.128 0.032  0.766 0.036  1.359 0.042  1.041 0.034  

 Marsh(Gr) 21, 9 22.98 <0.001 0.010 0.449              
 Zone 3, 9 31.38 <0.001 0.030 0.244              
 Gr x Zo 9, 9 14.99 <0.001 0.040               

   High Marsh 

Average Plant Height (cm) Grazing 3, 12 26.68 <0.001 0.013 0.770  40.020 1.730    123 11.370 1.160    14 14.350 2.740    25 4.350 0.733 345 

 Marsh(Gr) 12, 12 6.03 <0.001 0.038 0.334              

Maximum Plant Height (cm) Grazing 3, 12 20.71 <0.001  0.025 0.718  72.280 2.270    12 31.480 2.580    134 61.500 4.510    35 19.820 2.910 245 

 Marsh(Gr) 12, 12 5.90 <0.001 0.050 0.330              

Above-ground Biomass (g cm-2) Grazing 3, 12 2.44 0.115 0.038 0.326  0.054 0.004  0.048 0.005  0.047 0.006  0.021 0.003  

 Marsh(Gr) 12, 12 9.52 <0.001 0.025 0.442              

Species Diversity (H’ loge) Grazing 3, 12 1.57 0.248 0.050 0.388  1.165 0.067  0.818 0.050  1.627 0.092  1.240 0.042  

 Marsh(Gr) 12, 12 19.41 <0.001 0.013 0.618              
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Table 3.2 (Cont.) | ANOVA results of above-ground variables by grazing intensity. 

                    

Predictor Variable 

ANOVA  Un-grazed  Light  Moderate  Intensive  

   df       F      p FDR p(i) ηp
2         𝒙       SE     𝒙       SE       𝒙        SE       𝒙           SE  

   Mid Marsh 

Sqrt Average Plant Height (cm) Grazing 3, 16 7.91 0.002  0.013 0.663  18.660 1.100  123 10.780 1.070  145 4.210 1.100    24 5.180 0.770  35 

 Marsh(Gr) 16, 16 14.90 <0.001 0.038 0.570              

Maximum Plant Height (cm) Grazing 3, 16 5.30 0.010  0.025 0.457  43.870 1.990  123 30.480 3.070  145 14.100 2.240    24 20.540 2.800  35 

 Marsh(Gr) 16, 16 9.53 <0.001 0.050 0.459              

Sqrt Above-ground Biomass (g cm-2) Grazing 3, 16 1.92 0.167 0.038 0.445  0.070 0.007   0.044 0.005   0.022 0.003  0.026 0.003   

 Marsh(Gr) 16, 16 25.03 <0.001 0.025 0.690              

Species Diversity (H’ loge) Grazing 3, 16 0.84 0.491 0.050 0.261  0.957 0.050   0.825 0.072   1.349 0.086  1.006 0.070   

 Marsh(Gr) 16, 16 25.27 <0.001 0.013 0.692              

   Low Marsh 

Average Plant Height (cm) Grazing 3, 10 1.04 0.418 0.040 0.401  19.760 1.180   12.770 1.570   11.780 2.040  10.150 1.400  

 Marsh(Gr) 10, 10 27.13 <0.001 0.020 0.683              

Maximum Plant Height (cm) Grazing 3, 10 0.36 0.784 0.050 0.281  45.030 2.510  35.200 4.410  36.250 5.070  31.130 2.780  

 Marsh(Gr) 10, 10 45.72 <0.001 0.010 0.784              

Above-ground Biomass (g cm-2) Grazing 3, 10 1.46 0.283 0.020 0.474  0.070 0.005  0.077 0.004  0.027 0.002  0.026 0.003  

 Marsh(Gr) 10, 10 25.94 <0.001 0.050 0.673              

Overall Percent Cover Grazing 3, 10 1.95 0.186 0.030 0.349  94.737 0.763  94.000 1.450  85.500 2.810  85.970 1.590  

 Marsh(Gr) 10, 10 11.54 <0.001 0.030 0.478              

Species Diversity (H’ loge) Grazing 3, 10 5.23 0.020 0.010 0.698  1.510 0.040  0.434 0.051  1.435 0.061  1.058 0.051  

 Marsh(Gr) 10, 10 18.52 <0.001 0.040 0.595              

   Pioneer Marsh 

Sqrt Average Plant Height (cm) Grazing 3, 6 1.01 0.453 0.030 0.789  16.780 2.310  0.070 0.040  13.800 1.760  6.400 1.10  

 Marsh(Gr) 6, 6 111.39 <0.001 0.010 0.881              

Maximum Plant Height (cm) Grazing 3, 6 0.81 0.535 0.050 0.714  36.950 3.710  2.150 0.107  28.200 0.350  26.200 2.440  

 Marsh(Gr) 6, 6 93.03 <0.001 0.020 0.861              

Above-ground Biomass (g cm-2) Grazing 3, 6 4.22 0.063 0.010 0.418  0.029 0.004  <0.001 <0.001  0.022 0.004  0.049 0.006  

 Marsh(Gr) 6, 6 49.70 <0.001 0.030 0.584              

Overall Percent Cover Grazing 3, 6 2.08 0.205 0.020 0.690  64.500 4.090  2.300 0.300  55.500 5.420  33.830 4.510  

 Marsh(Gr) 6, 6 32.18 <0.001 0.040 0.682              

Species Diversity (H’ loge) Grazing 3, 6 0.89 0.497 0.040 0.391  0.680 0.054  0.710 0.063  1.163 0.052  0.819 0.086  

 Marsh(Gr) 6, 6 21.56 <0.001 0.050 0.590              
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Table 3.3 | Kruskal-Wallis multiple comparisons results non-parametric results.  H-values, degrees of freedom and p- 

values from Kruskal-Wallis multiple comparisons test between grazing intensities for the non-parametric predictor variables 

for the overall data set (‘Overall’) and for each zone (‘High’, ‘Mid’, ‘Low’, and ‘Pioneer’).  Means ( x̅) and Standard Deviation 

(SD) are shown by Grazing for each predictor variable with the comparison results of the Kruskal Wallis multiple 

comparisons tests (superscript); groups that share the same number are significantly different. 

Predictor 
Variable 

Kruskal-Wallis Un-grazed  Light  Moderate  Intensive 

H df p 𝒙̃ IQR  𝒙̃ IQR  𝒙̃ IQR  𝒙̃ IQR  

Overall 

Litter Biomass 135.12 3 <0.001 0.001 0.015 123 0.000  <0.001 14 0.000 <0.001   245 0.000 <0.001   35 

High Marsh 

Litter Biomass 76.86 3 <0.001 0.015 0.025 123 0.000 0.015 145 0.000 <0.001   24 0.001 <0.001   35 

Overall % Cover 4.23 3 0.238 100.0 5.000  100.0 4.500  99.50 0.000    99.50 5.00    

Mid Marsh 

Litter Biomass 83.97 3 <0.001 0.002 0.012 123 0.000 <0.000 1 0.000 <0.000   2 0.000 <0.000   3 

Overall % Cover 10.47 3 0.015 100.0 5.000 12 100.0 6.250  95.00 15.00   1 99.50 16.25   2 

Low Marsh 

Litter Biomass 11.85 3 0.008 0.000 <0.001 1 0.000 <0.001 12 0.000 <0.001   3 0.000 0.009   23 

Pioneer Marsh 

Litter Biomass 20.14 3 <0.001 0.000 0.022 123 0.000 <0.001 1 0.000 <0.001   2 0.000 <0.001   3 

 

 

3.3.3 The impact of grazing on percentage vegetation cover 

Percentage vegetation cover had a significantly negative response to an increase in stocking density 

when considering all the marsh zones combined, and when considering the low and pioneer zones 

separately (Regression; Tables 3.1;  Figure 3.4).  However, an analysis with grazing as a categorical 

factor showed a significant effect of grazing  on vegetation cover across the combined marsh zones 

(the overall marsh) and in the mid marsh, but no significant impact of grazing in the high, low and 

pioneer zones (ANOVA; Kruskal-Wallis multiple comparisons: Tables 3.2 & 3.3).  Across the overall 

marsh and in the mid marsh, vegetation cover was greater on un-grazed marshes than on grazed 

marshes but vegetation cover was also high in moderately and lightly grazed marshes respectively 

(post hoc Tukey HSD tests; Kruskal-Wallis multiple comparisons: Tables 3.2 & 3.3) 

 

3.3.4 Changes in percentage vegetation cover across the salt marsh zones 

Percentage cover significantly differed between zones (Table 3.2).  Vegetation cover decreased down 

the shore: vegetation cover was significantly greater in the high marsh (𝑥̅ = 96.44, SE = 0.65) than in 

the mid marsh (𝑥̅ = 93.71, SE = 0.87), which had significantly greater vegetation cover than the low 

marsh (𝑥̅ = 91.49, SE = 0.77), which had significantly greater vegetation cover than the pioneer zone 

(𝑥̅ = 47.28, SE = 3.08).  
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3.3.5 The impact of grazing on community composition and species diversity 

There was a significant impact of grazing on community composition in the mid marsh (PERMANOVA: 

Pseudo F(3) = 2.071, P(perm) = 0.029) but grazing did not have a significant impact on community 

composition in the high, low or pioneer marsh zones (Figure 3.5).  SIMPER analyses showed that 

Puccinellia maritima, Festuca rubra, Plantago maritima, Atriplex portulacoides and Salicornia 

europaea contributed to most of the dissimilarity between grazing intensities in the mid marsh zone 

(Table 3.4).  Puccinellia maritima largely dominated lightly grazed and moderately grazed plots, 

Festuca rubra largely dominated un-grazed and intensively grazed plots, Plantago maritima 

dominated mostly un-grazed plots but also a small number of intensively grazed plots, Atriplex 

portulacoides dominated only un-grazed and some lightly grazed plots, and Salicornia europaea 

dominated only moderately grazed plots (Figure 3.6; Table 3.4).   

 

Species diversity was not significantly affected by stocking density when considering the zones 

combined, or in the high and mid marsh zones, but there was a significant negative response in the 

low marsh zone, and a significant positive response to grazing in the pioneer marsh zone (Regression: 

Table 3.1; Figure 3.4).  When considering grazing as a categorical factor there was no impact of 

grazing on species diversity in any zone but there were significant, large effects of marsh site 

(ANOVA: Table 3.2).   

 

3.3.6 Changes in community composition and diversity across the salt marsh zones 

Community composition depended heavily on marsh zone (PERMANOVA: Pseudo F(3) = 11.809, 

P(perm) = 0.001) and marsh site (PERMANOVA: Pseudo F(8) = 55.325, P(perm) = 0.001).  Pioneer 

marsh zones had a higher abundance of Spartina anglica than other zones, low marsh zones had a 

higher abundance of Puccinellia maritima than other zones and a higher abundance of Spartina 

anglica than mid and high marsh zones, mid marsh zones had a higher abundance of Plantago 

maritima than other marsh zones and a higher abundance of Festuca rubra than pioneer and low 

marsh zones, and high marsh zones had higher abundances of Festuca rubra and Atriplex prostrata 

than other marsh zones (SIMPER: Table 3.5).   

 

Species richness significantly differed between marsh zones (Table 3.2).  Species diversity in the low 

marsh zone (𝑥̅ = 1.33, SE = 0.04) was significantly higher than in the mid (𝑥̅ = 1.01, SE = 0.03) and 

pioneer marsh zones (𝑥̅ = 0.82, SE = 0.04) but did not significantly differ from the high marsh (𝑥̅ = 

1.13, SE = 0.04).  Species diversity was significantly higher in the mid marsh zone than in the pioneer 

marsh zone.   
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Figure 3.5 | MDS plots for each marsh zone with grouping by grazing intensity.  Multi-dimensional scaling (MDS) 

representations of community compositions on each marsh zone based on a Bray-Curtis similarity matrix.  Each of the four 

categorical grazing intensities are indicated: un-grazed (red diamonds), lightly grazed (dark blue triangles, point down), 

moderately grazed (light blue squares) and intensively grazed (green triangles, point up). 
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Figure 3.6 | MDS plots for the mid marsh zone showing distribution of key species.  Multi-dimensional scaling (MDS) 

representations of community compositions on the mid marsh zone based on a Bray-Curtis similarity matrix with overlays 

of the four key species contributing to dissimilarities between plots.  Each of the four categorical grazing intensities are 

indicated: un-grazed (red diamonds), lightly grazed (dark blue triangles, point down), moderately grazed (light blue squares) 

and intensively grazed (green triangles, point up).  The abundance of each species is indicated by the size of each gray circle 

overlay.   
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Table 3.4 | Species contributing to dissimilarities between grazing intensity categories.  Results of a SIMPER analysis showing the total dissimilarity between grazing intensities (groups: UG = 

un-grazed, LG = lightly grazed, MG = moderately grazed, IG = intensively grazed) per zone, and the species that contribute to the dissimilarities between grazing intensities within each zone.  

The average abundance is shown for each species for each grazing intensity category.  The percent contribution of each species (Contr.) to the total dissimilarity between groups is also shown. 

High Marsh Zone Mid Marsh Zone Low Marsh Zone Pioneer Marsh Zone 

Species 
Average 

Abundance Contr. Species 
Average 

Abundance Contr. Species 
Average 

Abundance Contr. Species 
Average 

Abundance Contr. 

 UG LG   UG LG   UG LG  

No lightly grazed pioneer marsh zones 

Festuca rubra 28.16 46.00 23.08 Puccinellia maritima 2.94 69.67 34.03 Puccinellia maritima 28.00 87.50 38.54 

Juncus gerardii 7.11 23.97 14.14 Festuca rubra 31.06 0.00 15.61 Suaeda maritima 14.83 2.50 9.18 

Elymus repens 21.24 0.00 11.42 Atriplex portulacoides 22.76 11.23 15.01 Spartina anglica 13.30 7.60 8.77 

Atriplex prostrata 20.16 0.13 11.28         

Average dissimilarity 79.73   Average dissimilarity 90.03   Average dissimilarity 69.07   

 UG MG   UG MG   UG MG   UG MG  
Festuca rubra 28.16 23.00 15.57 Festuca rubra 31.06 18.00 16.64 Puccinellia maritima 28.00 55.00 21.57 Spartina anglica 42.08 24.70 41.68 

Plantago maritima 5.37 32.00 15.06 Puccinellia maritima 2.94 31.33 16.49 Spartina anglica 13.30 22.80 13.47 Puccinellia maritima 6.85 19.90 21.03 

Juncus maritimum 16.46 28.70 14.40 Plantago maritima 25.34 10.50 13.18 Suaeda maritima 14.83 2.45 9.98     

Atriplex prostrata 20.16 8.60 11.31 Atriplex portulacoides 22.76 0.00 12.48 Botrychia scorpioides 9.21 11.75 9.29     

Average dissimilarity 76.67   Average dissimilarity 82.50   Average dissimilarity 59.19   Average dissimilarity 70.24   

 UG IG   UG IG   UG IG   UG IG  
Festuca rubra 28.16 46.88 22.10 Festuca rubra 31.06 46.20 25.75 Puccinellia maritima 28.00 54.53 22.09 Spartina anglica 42.08 13.53 58.79 

Elymus repens 21.24 0.00 11.12 Plantago maritima 25.34 7.46 15.93 Spartina anglica 13.30 19.63 13.89     

Atriplex prostrata 20.16 0.58 11.00 Atriplex portulacoides 22.79 0.06 15.72 Suaeda maritima 14.83 1.70 10.39     

Glaux maritima 1.34 16.88 8.36     Salicornia europaea 10.54 12.47 9.32     

Average dissimilarity 79.92   Average dissimilarity 73.52   Average dissimilarity 63.50   Average dissimilarity 73.43   

 LG MG   LG MG   LG MG  

No lightly grazed pioneer marsh zones 
Festuca rubra 46.00 23.00 20.06 Puccinellia maritima 69.67 31.33 28.58 Puccinellia maritima 87.50 55.00 36.36 

Plantago maritima 3.63 32.00 16.53 Festuca rubra 0.00 18.00 10.58 Spartina anglica 7.60 22.80 19.61 

Juncus maritimum 0.00 28.70 16.23 Salicornia europaea 0.27 16.30 10.24     

Average dissimilarity 72.39   Average dissimilarity 71.22   Average dissimilarity 38.69   

 LG IG   LG IG   LG IG  

No lightly grazed pioneer marsh zones 
Festuca rubra 46.00 46.88 27.38 Puccinellia maritima 69.67 15.16 35.25 Puccinellia maritima 87.50 54.53 45.14 

Juncus gerardii 23.97 4.03 17.13 Festuca rubra 0.00 46.20 26.89 Spartina anglica 7.60 19.63 23.39 

Puccinellia maritima 5.17 14.50 12.08         

Average dissimilarity 61.19   Average dissimilarity 83.70   Average dissimilarity 38.69   

 MG IG   MG IG   MG IG   MG IG  
Festuca rubra 23.00 46.88 22.65 Festuca rubra 18.00 46.20 25.66 Spartina anglica 22.80 16.63 25.22 Spartina anglica 24.70 13.53 31.41 

Juncus maritimum 28.00 3.95 17.12 Puccinellia maritima 31.33 15.16 21.08 Puccinellia maritima 55.00 54.53 22.04 Puccinellia maritima 19.90 0.87 23.89 

Plantago maritima 32.00 11.58 14.78 Salicornia europaea 16.30 1.24 10.08 Botrychia scorpioides 11.75 3.37 14.27     

Average dissimilarity 62.62   Average dissimilarity 74.71   Average dissimilarity 35.99   Average dissimilarity 72.59   
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Table 3.5 | Species contributing to dissimilarities between zones.  Results of a SIMPER analysis showing the species 

associated with the pairwise dissimilarities between marsh zones.  The average percent abundance of each species within 

each zone is recorded along with the percent contribution of each species to the total percent dissimilarity between the 

zones and the cumulative percent difference between zones.  Only species contributing to the top 50% dissimilarity 

between groups are included.  Total dissimilarity between zones is also recorded.   

Species Average Abundance Contribution (%) Cumulative % 

 Pioneer Low   

Puccinellia maritima 7.76 41.79 28.73 28.73 

Spartina anglica 28.70 15.61 19.05 47.78 

Salicornia europaea 6.53 10.67 7.89 55.67 

Total dissimilarity between zones 78.87    

 Pioneer Mid   

Festuca rubra 0.00 28.08 18.32 18.32 

Spartina anglica 28.70 0.69 15.67 33.99 

Puccinellia maritima 7.76 21.17 14.87 48.86 

Plantago maritima 0.00 14.71 8.95 57.80 

Total dissimilarity between zones 94.75    

 Pioneer High   

Festuca rubra 0.00 36.37 21.23 21.23 

Spartina anglica 28.70 0.01 14.33 35.55 

Atriplex prostrata 0.00 10.16 6.19 41.74 

Puccinellia maritima 7.76 5.47 6.02 47.76 

Elymus repens 0.00 9.91 5.71 53.48 

Total dissimilarity between zones 98.58    

 Low Mid   

Puccinellia maritima 41.79 21.17 21.43 21.43 

Festuca rubra 0.00 28.08 15.40 36.83 

Plantago maritima 7.30 14.71 9.86 46.69 

Spartina anglica 15.61 0.69 8.41 55.10 

Total dissimilarity between zones 81.20    

 Low High   

Puccinellia maritima 41.79 5.47 18.67 18.67 

Festuca rubra 0.00 36.37 16.57 35.24 

Spartina anglica 15.61 0.01 7.07 42.31 

Plantago maritima 7.30 8.45 5.90 48.20 

Atriplex prostrata 1.01 10.16 5.00 53.20 

Total dissimilarity between zones 93.38    

 Mid High   

Festuca rubra 28.08 36.37 20.86 20.86 

Puccinellia maritima 21.17 5.47 12.83 33.69 

Plantago maritima 14.71 8.45 9.10 42.79 

Atriplex portulacoides 11.37 0.04 6.48 49.26 

Atriplex prostrata 2.24 10.16 6.41 55.67 

Total dissimilarity between zones 80.20    
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3.3.7 The impact of grazing on the spread of the data 

There was considerable spread in the data for each above-ground variable; however, there was no 

effect of grazing on the coefficients of variation (spread of the data around the mean) for vegetation 

height, plant biomass, or species diversity.  Grazing did however significantly impact the coefficients 

of variance for litter biomass (ANOVA: F3,24 = 2.95, p = 0.047, ηp
2 = 0.229) and percent vegetation 

cover (ANOVA: F3,32 = 3.01, p = 0.042, ηp
2 = 0.327) with large effect sizes.  The spread of data for litter 

biomass in moderately grazed marshes (𝑥̅ = 0.395, SE = 0.395) was significantly higher than those in 

un-grazed (𝑥̅ = 0.605, SE = 0.116), lightly grazed (𝑥̅ = 0.320, SE = 0.163), and intensively grazed 

marshes (𝑥̅ = 0.174, SE = 0.174) (post hoc Tukey HSD test).  The spread of data for percentage 

vegetation cover in intensively grazed marshes (𝑥̅ = 0.172, SE = 0.053) was significantly higher than 

that in un-grazed marshes (𝑥̅ = 0.077, SE = 0.025) but neither significantly differed from that in lightly 

grazed (𝑥̅ = 0.101, SE = 0.041) or moderately grazed marshes (𝑥̅ = 0.074, SE = 0.020) (post hoc Tukey 

HSD test).  When considering the zones separately, there was a significant effect of grazing on the 

coefficient of variation for average vegetation height in the low marsh (ANOVA: F3,10 = 7.09, p = 

0.008, ηp
2 = 0.680).  The coefficient of variation for average vegetation height was significantly higher 

in moderately grazed marshes (𝑥̅ = 0.632, SE = 0.175) than in un-grazed marshes (𝑥̅ = 0.202, SE = 

0.051) (post hoc Tukey HSD test). 

 

Grazing also impacted the dispersions (a multivariate measure of the spread of the data) of 

community composition in the high (PERMDISP: F2,146 = 37.32, p = 0.001), mid (PERMDISP: F2,186 = 

26.72, p = 0.001) and low (PERMDISP: F2,136 = 121.25, p = 0.001) marsh zones but the pioneer zone 

showed no differences between the dispersions of each group (PERMDISP: F2,87 = 2.78, p = 0.178).  In 

the high marsh, un-grazed marshes (𝑥̅ = 56.58, SE = 0.87) showed a significantly greater dispersion 

than lightly grazed (𝑥̅ = 41.40, SE = 2.23), moderately grazed (𝑥̅ = 26.54, SE = 2.20) and intensively 

grazed (𝑥̅ = 40.01, SE = 2.44) marshes.  Lightly grazed marshes also showed significantly greater 

dispersion than moderately grazed marshes.  In the mid marsh, un-grazed marshes (𝑥̅ = 52.36, SE = 

1.11) showed significantly greater dispersion than lightly grazed (𝑥̅ = 29.75, SE = 2.56) and intensively 

grazed (𝑥̅ = 43.81, SE = 2.16) marshes, and lightly grazed marshes showed significantly less dispersion 

than un-grazed, moderately grazed (𝑥̅ = 49.26, SE = 1.58) and intensively grazed marshes.  In the low 

marsh, un-grazed marshes (𝑥̅ = 46.22, SE = 0.93) showed significantly greater dispersion than lightly 

grazed (𝑥̅ = 9.29, SE = 2.19), moderately grazed (𝑥̅ = 23.12, SE = 1.29) and intensively grazed (𝑥̅ = 

25.15, SE = 1.46) marshes, and lightly grazed marshes showed significantly less dispersion than un-

grazed, moderately grazed and intensively grazed marshes.   

 

 



Chapter 3: Grazing and Above-ground Plant Characteristics 
 

96 
 

3.3.8 Changes in variation across the salt marsh zones 

The coefficients of variation for percentage vegetation cover significantly differed between zones 

(ANOVA: F3,32 = 17.61, p <0.001, ηp
2 = 0.775).  The spread of data for percentage vegetation cover was 

significantly higher in the pioneer zone (𝑥̅ = 0.345, SE = 0.065) than in the high (𝑥̅ = 0.050, SE = 0.017), 

mid (𝑥̅ = 0.060, SE = 0.018) or low marsh zones (𝑥̅ = 0.057, SE = 0.012).   

 

3.3.9 The impact of environmental variables 

On the un-grazed marsh sites, community composition, soil grain size, tidal range, marsh 

geomorphology, marsh size and wave fetch (wave exposure) had significant associations with plant 

height, plant biomass, vegetation cover and species diversity, (Mixed effects model: Table 3.6a).   

 

The community composition in the high marsh zones on un-grazed marshes was best explained by a 

combination of marsh size, marsh geomorphology, percent clay, and percent sand (DistLM: AICc = 

479.53, R2 = 0.735).  In the mid marsh, community composition was best explained by a combination 

of marsh size, tidal range, wave fetch, percent clay, and percent sand (DistLM: AICc = 473.24, R2 = 

0.882).  In the low marsh community composition was best explained by a combination of marsh 

size, tidal range, maximum fetch, marsh geomorphology, and percent sand (DistLM: AICc = 482.18, R2 

= 0.786), and in the pioneer marsh zone, community composition was best explained by a 

combination of tidal range, wave fetch and marsh geomorphology (DistLM: AICc = 265.14, R2 = 

0.710).  Each environmental factor had a significant effect on community composition within each 

zone, and tidal range, percent sand, wave fetch, marsh geomorphology and marsh size explained the 

highest proportions of the variation in the community composition data (DistLM, Marginal tests; 

Table 3.6).  A reduced model with additional environmental factors could not be run on the un-

grazed marshes due to a low sample size of only 2 marshes.   

 

On grazed marshes, in the higher marsh zones, stocking density explained a significant amount of the 

variation for both average plant height and species diversity (Mixed effect model: Table 3.6b).  Marsh 

geomorphology, community composition, soil grain size, tidal range and wave fetch had significant 

associations with plant height, plant biomass, vegetation cover, and species diversity (Mixed effect 

model: Table 3.6b).   

 

In the lower marsh zones on grazed marshes, stocking density (LSU) only explained a significant 

amount of the variation for maximum vegetation height (Mixed effects model: Table 3.6b).  

Community composition, soil grain size, marsh size, tidal range and wave fetch had significant 
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associations with plant height, plant biomass, vegetation cover and species diversity (Mixed effect 

model: Table 3.6b).   

 

The community composition in the high marsh was best explained by a combination of stocking 

density, tidal range, wave fetch, marsh geomorphology, and percent clay (AICc = 498.47, R2 = 0.743). 

In the mid marsh, community composition was best explained by a combination of all the 

environmental factors and stocking density (AICc = 710.25, R2 = 0.784).  In the low marsh, community 

composition was best explained by stocking density, tidal range, wave fetch, marsh geomorphology, 

and percent sand (AICc = 353.67, R2 = 0.569), and in the pioneer zone, community composition was 

best explained by tidal range, marsh geomorphology, percent clay, and percent sand (AICc = 319.65, 

R2 = 0.755).  Stocking density and all environmental factors had a significant effect on community 

composition, and tidal range, grain size, marsh size, marsh geomorphology and wave fetch explained 

the highest proportions of the variation in the community composition data (DistLM, Marginal tests; 

Table 3.6).    

 

A reduced 7-marsh model with additional environmental factors showed that community 

composition in the high marsh was best explained by a combination of percent sand and water pH  

(DistLM; AICc = 498.47, R2 = 0.743), in the mid marsh, community composition was best explained by 

percent clay (DistLM; AICc = 231.13, R2 = 0.861), in the low marsh, community composition was best 

explained by percent clay and percent sand (DistLM; AICc = 120.67, R2 = 0.360), and in the pioneer 

marsh, community composition was best explained by percent coarse sand (DistLM; AICc = 122.36, R2 

= 0.714).  Stocking density and all environmental factors had a significant effect on community 

composition, and percent clay (Pseudo-F = 24.12, p = 0.001, ∝ = 0.463), water salinity (Pseudo-F = 

21.33, p = 0.001, ∝ = 0.432) and wave fetch (Pseudo-F = 20.81, p = 0.001, ∝ = 0.426) explained the 

highest proportions of the variation in the community composition data in the high marsh.  In the 

mid marsh, percent clay (Pseudo-F = 65.60, p = 0.001, ∝ = 0.633), dissolved orthophosphate (Pseudo-

F = 64.72, p = 0.001, ∝ = 0.630) and dissolved inorganic nitrogen (Pseudo-F = 61.133, p = 0.001, ∝ = 

0.617) explained the highest proportions of the variation in the community composition data.  Due to 

the low number of pioneer and low marsh zones in the reduced model, marginal tests did not 

produce viable results.   
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Table 3.6a | Impacts of environmental factors on plant characteristics in un-grazed salt marshes.  Results of a mixed effects model analyzing the impacts of environmental factors on above-

ground variables across the marsh as a whole and in the lower (low and pioneer) and higher (mid and high) marsh zones on un-grazed salt marshes.  Environmental variables that were 

included in the models are listed in the foremost column.  Community composition (Comm. Comp.) and livestock stocking density (LSU) are also included.  Significance level is indicated by *, 

where * = p<0.050, ** = p<0.010, and *** = p<0.001.   

 
Effect df 

Average 
Vegetation Height  

Maximum 
Vegetation Height  

Live Above-ground 
Plant Biomass  

Percent 
Vegetation Cover  Species Diversity 

F p   F p   F p   F p   F p  

Un-grazed Marshes - Overall 

Marsh Size 1,3 4.15 0.134  7.16 0.075  21.38 0.019 * 0.24 0.658  0.04 0.856  

Tidal Range 1,3 119.88 0.002 ** 153.80 0.001 ** 163.50 0.001 ** 3.87 0.144  7.48 0.072  

Wave Fetch 1,3 9.13 0.056  35.60 0.009 ** 1.10 0.372  2.13 0.241  0.72 0.458  

Marsh Geomorphology 3,3 2.71 0.217  10.05 0.045 * 31.22 0.009 ** 0.52 0.699  0.03 0.993  

Comm. Comp. 9,257 18.92 <0.001 *** 20.51 <0.001 *** 22.49 <0.001 *** 37.81 <0.001 *** 49.05 <0.001 *** 

Percent Clay 1,257 29.28 <0.001 *** 6.77 0.010 * 0.42 0.516  3.39 0.067  28.43 <0.001 *** 

Percent Sand 1,257 0.63 0.427  15.20 <0.001 *** 0.50 0.480  6.32 0.013 * 47.17 <0.001 *** 

Un-grazed Marshes – Lower Marsh 

Marsh Size 1,4 14.41 0.019 * 13.27 0.022 * 3.14 0.151  1.02 0.369  2.39 0.197  

Tidal Range 1,4 50.66 0.002 ** 52.00 0.002 ** 11.87 0.026 * 0.61 0.478  0.65 0.464  

Wave Fetch 1,4 0.05 0.840  0.01 0.929  0.04 0.850  1.09 0.356  0.56 0.496  

Comm. Comp. 3,107 2.06 0.109  9.16 <0.001 *** 3.64 0.015 * 36.76 <0.001 *** 91.45 <0.001 *** 

Percent Clay 1,107 0.07 0.785  7.27 0.008 ** 0.97 0.327  4.81 0.031 * 17.79 <0.001 *** 

Percent Sand 1,107 19.26 <0.001 *** 22.99 <0.001 *** 3.90 0.051  14.25 <0.001 *** 23.08 <0.001 *** 

Un-grazed Marshes – Higher Marsh 

Marsh Size 1,3 5.29 0.105  8.54 0.061  16.28 0.027 * 0.50 0.531  1.48 0.311  

Tidal Range 1,3 20.68 0.020 * 33.92 0.010 * 50.75 0.006 ** 10.02 0.051  99.93 0.002 ** 

Wave Fetch 1,3 8.51 0.062  46.77 0.006 ** 5.15 0.108  3.17 0.173  27.49 0.013 * 

Marsh Geomorphology 3,3 4.23 0.133  0.91 0.530  55.23 0.004 ** 23.52 0.014 * 15.53 0.025 * 

Comm. Comp. 6,142 28.91 <0.001 *** 17.94 <0.001 *** 11.29 <0.001 *** 13.59 <0.001 *** 32.05 <0.001 *** 

Percent Clay 1,142 0.79 0.377  4.18 0.043 * 0.23 0.630  3.75 0.055  8.96 0.003 ** 

Percent Sand 1,142 0.26 0.609  0.21 0.650  1.60 0.209  12.75 0.001 ** 30.40 <0.001 *** 
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Table 3.6b | Impacts of environmental factors on plant characteristics in grazed salt marshes.  Results of a mixed effects model analyzing the impacts of environmental factors on above-

ground variables across the marsh as a whole and in the lower (low and pioneer) and higher (mid and high) marsh zones on grazed salt marshes.  Environmental variables that were included 

in the models are listed in the foremost column.  Community composition (Comm. Comp.) and livestock stocking density (LSU) are also included.  Significance level is indicated by *, where * = 

p<0.050, ** = p<0.010, and *** = p<0.001.   

 
Effect df 

Average 
Vegetation Height  

Maximum 
Vegetation Height  

Live Above-ground 
Plant Biomass  

Percent 
Vegetation Cover  Species Diversity 

F p   F p   F p   F p   F p  

Grazed Marshes – Overall 

Stocking Density (LSU) 1,5 1.49 0.874  0.23 0.806  2.06 0.211  2.37 0.184  3.56 0.118  

Marsh Size 1,5 0.03 0.277  0.07 0.654  0.53 0.501  0.44 0.539  4.18 0.096  

Tidal Range 1,5 0.62 0.465  0.31 0.603  15.41 0.011 * 0.59 0.478  35.95 0.002 ** 

Wave Fetch 1,5 0.36 0.572  3.24 0.132  14.53 0.013 * 0.04 0.856  2.68 0.163  

Marsh Geomorphology 4,5 5.25 0.049 * 3.95 0.082  34.05 0.001 ** 0.55 0.706  9.83 0.014 * 

Comm. Comp. 13,291 9.96 <0.001 *** 12.48 <0.001 *** 18.05 <0.001 *** 40.15 <0.001 *** 14.10 <0.001 *** 

Percent Clay 1,291 0.45 0.502  0.72 0.397  8.46 0.004 ** 0.15 0.700  0.59 0.444  

Percent Sand 1,291 0.98 0.322  10.24 0.002 ** 1.09 0.298  <0.01 0.984  22.22 <0.001 *** 

Grazed Marshes – Lower Marsh 

Stocking Density (LSU) 1,2 14.06 0.064  25.07 0.038 * 5.47 0.144  9.67 0.090  3.12 0.220  

Marsh Size 1,2 2.64 0.246  105.02 0.009 ** 43.35 0.022 * 7.20 0.115  55.08 0.018 * 

Tidal Range 1,2 6.90 0.119  2.33 0.266  55.83 0.017 * 10.19 0.086  131.94 0.008 ** 

Wave Fetch 1,2 24.43 0.039 * 46.13 0.021 * 4.13 0.180  11.17 0.079  16.27 0.056  

Comm. Comp. 5,106 26.72 <0.001 *** 41.51 <0.001 *** 10.43 <0.001 *** 211.47 <0.001 *** 33.46 <0.001 *** 

Percent Clay 1,106 18.93 <0.001 *** 6.67 0.011 * 11.13 0.001 ** 275.34 <0.001 *** 1.69 0.197  

Percent Sand 1,106 0.01 0.959  0.37 0.544  41.67 <0.001 *** 3.13 0.080  1.06 0.305  

Grazed Marshes – Higher Marsh 

Stocking Density (LSU) 1,5 9.63 0.027 * 5.12 0.073  3.11 0.138  4.62 0.084  6.87 0.047 * 

Marsh Size 1,5 4.08 0.099  5.24 0.071  1.29 0.307  6.69 0.049 * 4.89 0.078  

Tidal Range 1,5 5.29 0.070  11.52 0.019 * 9.21 0.029 * 0.12 0.740  63.54 0.001 ** 

Wave Fetch 1,5 2.90 0.149  9.00 0.030 * 13.44 0.015 * 4.39 0.090  2.86 0.152  

Marsh Geomorphology 4,5 18.78 0.003 ** 7.06 0.027 * 30.80 0.001 ** 11.04 0.012 * 36.62 0.001 ** 

Comm. Comp. 9,175 4.91 <0.001 *** 8.12 <0.001 *** 13.68 <0.001 *** 29.08 <0.001  16.90 <0.001 *** 

Percent Clay 1,175 2.08 0.151  8.23 0.005 ** 4.67 0.032 * 0.06 0.808  13.65 <0.001 *** 

Percent Sand 1,175 1.27 0.261  0.04 0.836  3.05 0.082  2.16 0.143  16.17 <0.001 *** 
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Figure 3.7 | Above-ground variables vs. environmental variables.  Scatter and bar plots showing the relationships between the above-ground variables (plant height, plant biomass, percent 

vegetation cover, and species diversity) environmental variables (percent clay, tidal range, and marsh geomorphology). The marsh geomorphology codings represent the following: REE = 

restricted entrance embayment, OE = open embayment, OCBB = open coast back-barrier, OC = open coast, EF = estuarine fringing and EBB = estuarine back-barrier.  The results (R2, p and F) of 

associated regression and ANOVA tests are also shown.   
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Figure 3.7 (cont) | Above-ground variables vs. environmental variables.  Scatter plots showing the relationships between the above-ground variables (plant height, plant biomass, percent 

vegetation cover, and species diversity) environmental variables (marsh size, wave fetch and stocking density). The results (R2, p and F) of associated regression analyses are also shown.   
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Table 3.7 | The impacts of environmental variables and grazing on community composition.  Results of marginal tests 

from a DistLM analysis from un-grazed and grazed marshes for the overall data set and analysis per zone.  Pseudo-F and 

associated p-values are shown for each environmental variable along with the proportion (∝) of the variation explained by 

that variable in the community composition data set. 

 

  

 Un-grazed Marshes  Grazed Marshes 

Effect Pseudo-F p ∝  Pseudo-F p ∝ 

Overall 

Stocking Density (LSU) N/A N/A N/A  3.03 0.016 0.010 

Zone 60.54 0.001 0.184  110.92 0.001 0.271 

Marsh Size 6.18 0.001 0.023  3.32 0.015 0.011 

Tidal Range 24.48 0.001 0.084  12.82 0.001 0.041 

Wave Fetch 15.78 0.001 0.056  7.20 0.001 0.024 

Marsh geomorphology 9.54 0.001 0.034  16.62 0.001 0.053 

Percent Clay 8.35 0.001 0.030  15.59 0.001 0.050 

Percent Sand 11.65 0.001 0.042  11.64 0.001 0.038 

High 

Stocking Density (LSU) N/A N/A N/A  7.06 0.001 0.083 

Marsh Size 3.92 0.008 0.055  8.09 0.001 0.094 

Tidal Range 21.60 0.001 0.241  19.56 0.001 0.200 

Wave Fetch 12.47 0.001 0.154  9.14 0.001 0.105 

Marsh geomorphology 3.18 0.014 0.045  9.38 0.001 0.107 

Percent Clay 8.29 0.001 0.109  10.90 0.001 0.122 

Percent Sand 21.61 0.001 0.241  7.62 0.001 0.089 

Mid 

Stocking Density (LSU) N/A N/A N/A  7.06 0.001 0.208 

Marsh Size 9.39 0.001 0.107  8.09 0.001 0.074 

Tidal Range 32.91 0.001 0.297  19.56 0.001 0.099 

Wave Fetch 12.74 0.001 0.140  9.14 0.001 0.087 

Marsh geomorphology 23.71 0.001 0.233  9.38 0.001 0.092 

Percent Clay 3.44 0.007 0.024  10.90 0.001 0.062 

Percent Sand 7.83 0.002 0.091  7.62 0.001 0.211 

Low 

Stocking Density (LSU) N/A N/A N/A  6.71 0.001 0.104 

Marsh Size 4.61 0.005 0.056  10.47 0.001 0.153 

Tidal Range 34.24 0.001 0.305  10.92 0.001 0.158 

Wave Fetch 19.50 0.001 0.200  10.47 0.001 0.153 

Marsh geomorphology 4.32 0.004 0.052  6.80 0.001 0.105 

Percent Clay 17.86 0.001 0.186  7.87 0.001 0.120 

Percent Sand 21.15 0.001 0.213  6.33 0.001 0.098 

Pioneer 

Stocking Density (LSU) N/A N/A N/A  6.34 0.002 0.117 

Marsh Size 13.68 0.001 0.265  7.25 0.001 0.131 

Tidal Range 5.38 0.007 0.124  13.30 0.001 0.217 

Wave Fetch 4.90 0.013 0.114  11.22 0.001 0.190 

Marsh geomorphology 5.52 0.007 0.127  12.28 0.001 0.204 

Percent Clay 5.49 0.010 0.126  12.88 0.001 0.212 

Percent Sand 5.94 0.005 0.135  14.06 0.001 0.227 
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3.4 Discussion 

 

3.4.1 Grazing impacts plant community composition and structure 

There were significant negative effects of grazing on plant height, live biomass, litter biomass and 

overall percentage cover in all marshes and all zones except the pioneer zone.  The effects of grazing 

on vegetation in the higher marsh zones were expected and have been well documented throughout 

the salt marsh literature (Andresen et al., 1990; Jensen, 1985; Kiehl et al., 1996).  However, this study 

found the broad-scale effects of grazing on vegetation diversity in salt marshes were inconsistent and 

weaker than expected from small-scale studies.  Species diversity was expected to be highest under a 

lightly grazed regime, as documented by several terrestrial (Adler et al., 2001; J.P. Bakker et al., 1983; 

Jones, 2000) and small-scale saltmarsh studies (Andresen et al., 1990; J. P. Bakker, 1985; Kiehl et al., 

1996).  However, this study found no response of species diversity to grazing in the high and mid 

marsh zones.  Community composition was also not affected by grazing in the high, low or pioneer 

zones, although grazing did show a significant effect on community composition in the mid marsh.  

Conversely, environmental variables such as tidal range, marsh geomorphology and grain size, were 

consistently good predictors of community composition and species diversity.  The implications of 

this are that environmental context has an overridingly stronger impact on vegetation community 

composition and diversity than grazing intensity.   

 

The effect of grazing on species diversity was also inconsistent between marsh zones; species 

diversity declined with increased stocking density in the low marsh, but rose with increased stocking 

density in the pioneer zone.  The zones of salt marshes represent different stages of succession; the 

pioneer zone is the youngest part of the marsh, whereas the high marsh is the most mature part of 

the marsh, and the low and mid marsh zones are representative of intermediate successional stages 

(Adam, 1990b; Boorman, 2003; Davy et al., 2011; Krull & Craft, 2009; Packham & Liddle, 1970; D.S. 

Ranwell, 1964a).  Grazing on salt marshes typically facilitates earlier successional species (Andresen 

et al., 1990; J. P. Bakker, 1978; Kuijper & Bakker, 2004a, 2004b).  It is possible that, in the mid and 

high marsh zones, plant species that were lost due to increased grazing pressure were replaced by 

earlier successional plant species from the lower marsh zones that were resilient to physical 

disturbance; thus an increase in grazing pressure would not lead to a loss of species diversity, but 

merely a change in species composition.  In the low marsh zone, reverse succession may occur to a 

certain extent.  However, the low marsh is subject to harsher physical conditions than both the mid 

and high marsh zones (Adam, 1990a, 1990b; Langlois, Bonis, & Bouzille, 2003) and as few salt marsh 

plants can withstand both grazing pressure and physical disturbance (Adam, 1990a), there are few 

plant species to replace those lost in the low marsh as grazing pressure increases.  Therefore an 
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increase in grazing pressure is likely to cause a loss of species diversity in the low marsh, as observed 

here.  Species diversity in the pioneer zone is lower than the other marsh zones and it is typically 

dominated by only a small number of highly resilient species (Adam, 1990a).  If grazers can reach the 

pioneer zone, they could create more favourable conditions by compacting soil (Bezkorowajnyj, 

Gordon, & McBride, 1993) and introducing nutrients through defecation (Bhogal et al., 2010; 

Buschbacher, 1987; Sheldrick, Syers, & Linguard, 2003).  It is possible that some species from the low 

marsh zone may colonise areas of the pioneer zone, where conditions would have previously been 

too harsh, and thus significantly increase species diversity.  For example, Puccinellia maritima 

typically dominates the low marsh (Table 3.5) but this species contributes to the differences between 

the pioneer zones in moderately and un-grazed marshes, with a greater proportion of Puccinellia 

maritima in moderately grazed marshes (Table 3.4).  This suggests that conditions in the pioneer 

zone under a moderately grazed regime may have facilitated for the colonisation of this low marsh 

species in the pioneer zone.   

 

In the pioneer zone, vegetation height showed no significant response to grazing, and above-ground 

biomass showed a significant positive response to an increase in stocking density.  The pioneer zone 

is subject to greater physical stresses than the higher marsh zones, and the substrate of the pioneer 

zone can be highly dynamic as it is exposed to greater wave and tidal disturbance than the higher 

marsh zones (Adam, 1990a, 1990b; Langlois et al., 2003).  As grazers only minimally graze the pioneer 

zone due to the difficulty of access (Adam, 1990b; Kiehl et al., 1996), it is likely that the lack of a 

relationship between vegetation height and grazing is due to the relative influence of physical stress 

outweighing the impacts of livestock grazing in the pioneer marsh.  However, as species diversity and 

above-ground biomass both increased with grazing, it is likely that grazing has some impact on the 

pioneer zone vegetation community.  This suggests that grazing pressure in the pioneer zone is 

insufficient to reduce above-ground biomass, yet it is sufficient to facilitate favourable conditions for 

the plant community, similar to those created under a light grazing regime (Adler et al., 2001; J.P. 

Bakker et al., 1983; Jones, 2000). 

 

The plant communities of un-grazed mid marsh zones were highly variable, but were dominated by 

one of three main community types: a Festuca rubra dominated community, an Atriplex 

portulacoides dominated community, or a diverse mixed sward dominated by Plantago maritima.  

Lightly and moderately grazed marshes were dominated by the low-marsh species Puccinellia 

maritima, suggesting that reverse succession occurred under these grazing regimes, as observed 

elsewhere (J. P. Bakker, 1978, 1985; Kiehl et al., 1996; Kuijper & Bakker, 2004a).  The plant 

community in intensively grazed marshes, however, was dominated by Festuca rubra.  Festuca rubra 
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is particularly stress-tolerant and is normally found in the higher marsh zones where evaporation 

rates are high and tidal inundation is infrequent (Adam, 1990e). High evaporation rates in the high 

marsh result in highly saline conditions and low soil moisture leads to hard, compact soils (Pennings 

& Callaway, 1992).  Intensive livestock grazing significantly compacts the soil (Bezkorowajnyj et al., 

1993), and reduced vegetation biomass and cover is likely to increase evaporation rates, thus 

reducing soil moisture and increasing soil salinity (Shumway & Bertness, 1994).  It is therefore 

feasible that an intensive grazing regime may create conditions in which Festuca rubra can out-

compete resilient, but competitively inferior species from lower marsh zones, such as Puccinellia 

maritima.     

 

3.4.2 Changes in plant community composition and structure across the zones 

There were consistent patterns of above-ground plant characteristics with marsh zone: vegetation 

height, above-ground biomass, litter biomass, percent vegetation cover and species diversity were all 

greatest in the high marsh and lowest in the pioneer marsh.  Physical stresses and disturbances are 

the main drivers of plant community characteristics in the lower marsh, which leads to a more 

sparse, low diversity sward in low marsh zones (Adam, 1990a; Huiskes et al., 1995; Pennings & 

Callaway, 1992).  As the conditions become more favourable in the mid and high marsh zones, plants 

can grow larger and more extensively, and inter- and intraspecific competition become more 

dominant drivers of the plant community characteristics (Grime, 1974; Pennings & Callaway, 1992).   

 

There was a clear differentiation between the community compositions of each zone, as expected 

(Adam, 1990e; Pennings & Bertness, 2001; Pennings & Callaway, 1992).  The pioneer marsh was 

typically differentiated from the other zones by the presence and abundance of Spartina anglica, the 

low marsh was typically differentiated from the other zones by the presence and abundance of 

Puccinellia maritima, the mid marsh was typically differentiated from the other zones by the 

presence and abundance of Plantago maritima, and the high marsh was typically differentiated from 

the other zones by the presence and abundance of Festuca rubra or Atriplex portulacoides.  Spartina 

anglica and Puccinellia maritima are tolerant of the saline and waterlogged conditions of the lower 

marsh zones but are competitively inferior species; as such Spartina anglica and Puccinellia maritima 

are found in high abundance in the lower marsh zones but not in the higher marsh zones, where 

inter- and intraspecific competition are dominant drivers of community competition (Adam, 1990e; 

Pennings & Bertness, 2001; Pennings & Callaway, 1992).  Plantago maritima and Festuca rubra, while 

still tolerant of saline conditions, are less tolerant of prolonged waterlogged conditions and are thus 

found only in the higher marsh zones where tidal flooding is not frequent enough to facilitate 
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prolonged waterlogged conditions (Adam, 1990e; Pennings & Bertness, 2001; Pennings & Callaway, 

1992).   

 

3.4.3 The influence of environmental context 

The study area had considerable variation in environmental variables, and the contextual setting of 

each marsh site had a significant impact on all above-ground plant community characteristics across 

each marsh.  Most of the variation in plant community characteristics across un-grazed marshes was 

explained by tidal range and a combination of other environmental stressors and contextual 

variables.  On grazed marshes, the impact of livestock grazing was significant in both high and low 

marsh zones.  However, the impacts of grazing did not outweigh the impacts of environmental 

factors in any zone.  This suggests that the impact of environmental context on plant community 

characteristics, highlighted in the analysis on un-grazed marshes, was equal to or greater than the 

impact of livestock grazing.   

 

The relative impacts of the environmental factors varied between the zones.  The community 

compositions in the higher marsh zones were most strongly influenced by tidal range.  Tidal range 

directly influences the extent of each zone and dictates physical stressors such as salinity, soil redox 

potential and soil moisture content across the marsh (Adam, 1990b; Allen, 2000; Boorman, 2003).  

Community composition and plant morphology are determined by the ability to tolerate or adapt to 

these physical stressors, thus it is unsurprising that tidal inundation is a major driver of plant 

community characteristics (Adam, 1990a, 1990d; Grime, 1974).    

 

Marsh geomorphology and wave fetch were significant drivers of community composition and plant 

morphology across all marsh sites.  The geomorphology of the marsh encompasses the physical 

setting of the marsh, such as whether a marsh is situated on an open coast, behind a land barrier, or 

along the edge of an estuary.  The geomorphology can be influenced by a number of contextual 

parameters such as freshwater influence, nutrient availability and sediment regime (Allen, 2000).  

The geomorphology of a marsh also determines the relative wave exposure of a marsh; an open 

coast marsh is likely to have a higher exposure to waves than one situated behind a spit of land 

(Adam, 1990b; Allen, 2000).  The wave exposure of a marsh is an indicator of the maximum wave 

disturbance that is likely to impact each marsh; the greater the fetch the greater the potential wave 

disturbance may be across the marsh (Burrows et al., 2008).  Wave disturbance is a significant driver 

of plant community composition and morphology in the lower marsh zones and plant communities 

have to tolerate or adapt to high physical disturbance levels (Adam, 1990a, 1990d; Boorman, 2003).  

In the higher marsh, however, physical stress is typically not a significant driver of plant community 
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characteristics, as wave and tidal energy dissipates in the lower marsh zones (Moeller & Spencer, 

2002; Moeller et al., 1999; Spencer et al., 1995).  Greater wave exposure may however increase the 

likelihood of flooding during storm events (Allen, 2000), which can result in increased salinity stress 

in the higher marsh zones; thus greater wave exposure may reduce plant growth rates in higher 

marsh zones (L. D. Clarke & Hannon, 1970; Howard & Mendelssohn, 1998; Pennings & Callaway, 

1992).  Grazing pressure could potentially alter the impacts of wave disturbance.  In the lower marsh 

zones, compaction by livestock may stabilize the soil, creating a more favourable environment for the 

plant community.  In the higher marsh zones, lower vegetation cover may increase evaporation rates 

and thus reduce the potential for waterlogged conditions (Pennings & Callaway, 1992; Shumway & 

Bertness, 1994), however, increased evaporation rates lead to higher soil salinities (Shumway & 

Bertness, 1994), which can significantly impair plant growth (C. L. Richards, Pennings, & Donovan, 

2005).   

 

The community compositions of the pioneer marsh zone on un-grazed marshes were most strongly 

influenced by marsh area.  Marsh area also influenced community composition and morphology 

across all marsh sites, but had a stronger influence in the lower marsh zones than in the higher marsh 

zones.  Tidal range is the main factor influencing marsh area; the larger the tidal range, the larger the 

marsh can potentially become (Allen, 2000).  Wave exposure is a limiting factor in salt marsh 

formation; the greater the wave exposure, the greater the magnitude and frequency of erosion is 

across the marsh, particularly at the marsh seaward edge (Moeller & Spencer, 2002; Yang, Shi, 

Bouma, Ysebaert, & Luo, 2011).  The presence of embankments at the landward edge and riverbanks 

at the seaward edge of a marsh also limit marsh size.  Marsh area is therefore representative of a 

combination of contextual variables, and it may be this combination of variables that is describing 

plant community characteristics, rather than marsh area itself.   

 

The community compositions of the pioneer and mid marsh zones on grazed marshes were most 

strongly influenced by soil grain size, although soil grain size also influenced plant community 

characteristics across all zones and marshes.  Several soil properties, such as pore space, soil 

moisture, and soil organic content are directly correlated with soil grain size (Evans, Gill, & 

Robotham, 1990; Gupta & Larson, 1979; Juang & Holtz, 1986).  A soil comprised mostly of clay 

typically has very small pore spaces, high moisture content and high nutrient retention due to the 

small particle sizes (Gupta & Larson, 1979).  These conditions can be good for root growth but if the 

pore size is too small (i.e. the soil is too dense), root growth is reduced and above-ground plant 

growth can be stunted (Warnaars & Eavis, 1972).  Furthermore, reduced pore size and increased 

moisture levels are more likely to lead to anaerobic conditions in the soil, leading to a community 
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comprised only of species that can tolerate anaerobic conditions (Torbert & Wood, 2008).  

Conversely, a soil comprised mostly of sand typically has large pore spaces, low moisture content and 

low nutrient retention due to large particle sizes (Juang & Holtz, 1986).  While the larger pore size 

favours root growth, sandy soils drain quickly, and due to the smaller surface area to volume ratio of 

the large particles, organic content of the soil is lower (Evans et al., 1990); this can create a stressful 

environment for the plants and reduce plant growth (Warnaars & Eavis, 1972).  Furthermore, the 

large pore size makes sandy soils less stable, and in a physically disturbed environment, these soils 

can be very dynamic, resulting in a plant community dominated by species tolerant of, or adapted to, 

physical disturbance (Adam, 1990a).  Intermediate soil grain sizes, such as those comprised mainly of 

silt, provide optimal growing conditions for plants (Adam, 1990a).  It is possible that the impacts of 

soil grain size on plant community properties may conflict with or enhance the impacts of grazing.  

For example, in clay soils, soil compaction by livestock may further reduce pore size and thus create a 

more stressful environment for the plant community (Adam, 1990a; Armstrong, Justin, Beckett, & 

Lythe, 1991; Bezkorowajnyj et al., 1993; Warnaars & Eavis, 1972).  Conversely, in sandy soils, soil 

compaction by livestock may be beneficial for the plant community as soil stability will increase and 

soil moisture loss will decrease as pore size decreases (Gupta & Larson, 1979).   

 

Although livestock grazing has significant impacts on plant community characteristics, it is perhaps 

unsurprising that grazing impacts do not outweigh the impacts of environmental stressors in salt 

marshes.  Salt marshes are naturally stressful environments, so conceivably, salt marsh plant 

communities can tolerate and adapt to stresses caused by grazing as well as the environmental 

stresses they naturally experience.  As above-ground processes are likely to link to below-ground 

processes (Bardgett & Wardle, 2003; Bardgett, Wardle, & Yeates, 1998; Wardle et al., 2004), it is 

likely that grazers will influence below-ground carbon stocks.  However, this study suggests the 

influence of grazers is likely to be, at best, equal to, or possibly less than, the impact of 

environmental contextual variables.   

 

3.4.4 Study implications 

This study was the first to examine the impact of grazing on above-ground vegetation on salt 

marshes in the context of wider environmental settings.  Grazers have been used as a management 

tool on salt marshes for biodiversity protection and habitat provision for bird species such as 

redshank (Adam, 1990c; V.  Bouchard et al., 2003; Gedan et al., 2009; Norris, Cook, O'Dowd, & 

Durdin, 1997).  Previous grazing research in salt marshes has focused on relatively small scales, and 

not considered the influence of the large-scale geographical variation in environmental context that 

most governmental management schemes operate across.  While this study supports small-scale 
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studies in the observation that grazing significantly impacts plant height and biomass (Andresen et 

al., 1990; Jensen, 1985; Kiehl et al., 1996), it shows that the broad-scale impact of grazing on 

vegetation diversity is less consistent than that indicated by small-scale studies.   

 

As this study was conducted over a large spatial scale, it is possible that the sample size was not 

sufficient to find strong effects of grazing due to the considerable natural variation across the study 

sites.  While grazing effects were found, these effects were weaker than expected and the impact of 

grazing was equal to or weaker than the effects of several environmental drivers.  Despite these 

limitations, this study is the first to look at above-ground grazing impacts on salt marshes in the 

context of wider environmental settings, and therefore it makes an important contribution to the 

literature.  Further research into the broad-scale impacts of grazing would need to take into account 

the considerable impacts of environmental setting.  By conducting more detailed studies over a 

range of marshes with known environmental influences, the interaction between livestock grazing 

and these environmental variables can be determined.  This will benefit management schemes 

hoping to manage grazing to enhance carbon sequestration across several variable sites.   
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Chapter 4: To Graze or Not To Graze: The Impact of Livestock Grazing 

on Below-ground Salt Marsh Carbon Stocks 

 

4.1 Introduction 

 

4.1.1 Natural carbon capture and storage 

Environmental policies and management seek to optimise natural carbon capture and storage (CCS) 

across exploited and near-pristine landscapes to mitigate climate change (K. R. Richards, 2004).  

Highly productive systems such as forests, peatlands and coastal wetlands  have become the focal 

point for optimising natural CCS (Amundson, 2001; Chmura et al., 2003; Dalal & Allen, 2008; Lal, 

2004).  Ecosystem management and restoration provide relatively cheap ways of increasing natural 

carbon sequestration rates (Crooks, Herr, Tamelander, Laffoley, & Vandever, 2011; Jandl et al., 2007; 

Vasander et al., 2003).  These natural systems are often exploited or disturbed by human activity, for 

example, deforestation, peat mining, or livestock grazing (Fearnside & Barbosa, 1998; Reid et al., 

2008; Rodhe & Svensson, 1995).  Effective management of CCS relies on understanding the nature of 

the relationship between CCS and intensity of exploitation, as well as the consistency of this 

relationship across environmentally variable landscapes.   

 

4.1.2 The impact of grazers on carbon stocks 

Globally, more than 40% of grasslands are grazed by livestock (Reid et al., 2008).  Management of 

stocking density provides an opportunity to positively influence carbon sequestration (Tanentzap & 

Coomes, 2012).  Grazers have a negative above-ground impact on vegetation (Chapter 3) that in turn 

provides a major input of carbon into the below-ground stores (Jobbagy & Jackson, 2000): grazing 

alters community composition, reduces vegetation biomass and minimizes litter production (Chapter 

3; Figures 4.1a, 4.1b) (Facelli & Pickett, 1991; Jensen, 1985; Kiehl et al., 1996).  Livestock can increase 

carbon inputs through manure (Bhogal et al., 2010; Sheldrick et al., 2003).  This input, however, can 

be offset by significant carbon dioxide and methane emissions from livestock respiration, digestion, 

and faecal decomposition (Murray, Gill, Balsdon, & Jarvis, 2001; Pinares-Patino, D'Hpur, Jouany, & 

Martin, 2007).  Livestock indirectly alter soil properties by trampling, which in turn reduces root 

growth and decomposition rates and increases gas effluxes from the soil (Cao et al., 2004; Ford, 

Garbutt, Jones, & Jones, 2012; McNaughton, Banyikwa, & McNaughton, 1998; Olofsson & Oksanen, 

2002; Turner, 1987).  The intensity of grazing dictates the direction and magnitude of these effects.  

For example, moderate grazing can result in a resilient, fast growing plant community, increased root 

growth and carbon allocation to the roots, whereas intense grazing results in stunted root growth, 
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low species richness and minimal above-ground biomass (Jensen, 1985; Kiehl et al., 1996; 

McNaughton, 1979; Schuster, 1964).   

 

 

Figure 4.1 | Salt marsh ecology and impacts of grazing.  a) The contrast between an un-grazed marsh (left) and an 

intensively grazed marsh (right).  b) A diagrammatic representation of a salt marsh showing zonation according to tidal 

inundation: extreme high water spring (EHWS), mean high water spring (MHWS), mean high water (MHW) and mean high 

water neap (MHWN).  Only the pioneer, low, mid and high zones were analysed in this study.  Grazer preference is 

indicated showing decreased grazing activity in the lower zones.  c) Predicted effects of a range of grazing intensities on 

vegetation height, above-ground biomass, species richness and root biomass according to the literature (Facelli & Pickett, 

1991; Jensen, 1985; Kiehl et al., 1996; McNaughton et al., 1998; Stumpf, 1983).  Grazing is shown as ‘Grazing Intensity’ 

category (un-grazed, lightly grazed, moderately grazed and intensively grazed) and Livestock Units per hectare per year (LSU 

ha-1 yr-1).  d) Location of the 22 study sites along the west coast of Wales and northwest England. 

 

Grazing impacts on the above and below-ground vegetation are likely to link to changes in below-

ground processes such as microbial activity, mineralization rates and decomposition rates (Bardgett 

& Wardle, 2003; Bardgett et al., 1998).  Furthermore, the main input of carbon into the soil carbon 

stocks is organic matter (e.g. plant litter) (Elsey-Quirk, Seliskar, Sommerfield, & Gallagher, 2011), 

therefore it would be expected that an increase in stocking density will lead to a reduced input of 

organic matter, which may negatively impact below-ground soil carbon stocks.  Conversely, plant 

compensatory responses to grazing, such as stimulated root growth (J. N. Holland et al., 1996; 

Schuster, 1964), may counter the above-ground impact of grazers on carbon storing and possibly 
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impact below-ground carbon stocks (Tanentzap & Coomes, 2012).  The few studies that have 

investigated the impacts of grazers on soil carbon stocks have focused at a local scale, on only a 

limited number of sites (R. T. Conant & Paustian, 2002; Klumpp et al., 2009; Schuman, Reeder, 

Manley, Hart, & Manley, 1999) and broad-scale empirical studies of carbon responses to variation in 

grazing intensity are lacking (Tanentzap & Coomes, 2012).  As grazing management schemes tend to 

stipulate a range of grazing intensities, depending on the aim of the scheme, it is important to 

understand the impact of a range of stocking densities on soil organic carbon stocks, particularly in 

naturally carbon rich systems that are impacted by grazing.   

 

4.1.3 Carbon capture and storage in coastal wetlands 

Coastal wetlands, such as salt marshes, provide greater long-term carbon stores per-area than most 

terrestrial systems (Chmura, 2009; Chmura et al., 2003) due to high below-ground productivity 

(Adam, 1990f), high sedimentation rates (Stumpf, 1983), and slow decomposition rates in 

sulphurous, anaerobic sediments (Dalal & Allen, 2008; Freeman, Ostle, & Kang, 2001).  Salt marshes 

are characterised by highly productive halophytic herbs, grasses and low shrubs that are periodically 

inundated with saline water  (Adam, 1990b) (Figure 4.1b).  Continuing salt marsh expansion and 

accretion results in distinct zonation according to elevation, each zone representing a different stage 

of salt marsh succession, with the most mature marsh at the highest elevations (Figure 4.1b) (Adam, 

1990b; Armstrong, Wright, Lythe, & Gaynard, 1985; Bertness & Ellison, 1987).  The presence and 

extent of each of these zones depends on the tidal range at the marsh (Adam, 1990b; Boorman, 

2003; Chapman, 1940; Feagin et al., 2011; Weisbrod, 1964).  All salt marshes are frequently 

inundated with saline water resulting in waterlogged soils with little oxygen, yet due to the nature of 

tidal cycles high marsh areas are flooded less frequently than lower marsh areas (Adam, 1990b); as a 

consequence the soils in high marsh areas are less waterlogged than low marsh soils (Adam, 1990b; 

Chapman, 1938; Pennings & Bertness, 2001).   

 

Salt marsh carbon stocks vary considerably with marsh maturity, geomorphology and environmental 

setting (Sousa, Lillebo, Pardal, & Cacador, 2010).  On un-grazed marshes the main inputs to soil 

carbon are sedimentation (Stumpf, 1983), degradation of root matter, and plant litter deposition 

(Saunders et al., 2006); the main losses of carbon are through gas emissions (Dalal & Allen, 2008; 

Freeman et al., 2001) and sediment loss from wave, and tidal erosion (Chalmers et al., 1985).  Soil 

carbon stocks are likely to vary between the marsh zones; due to the nature of salt marsh growth 

and succession, the most mature high marsh zones will have accumulated carbon over a considerable 

period of time through growth and degradation of organic matter and accretion of sediment, while 

the youngest, pioneer marsh zones are unlikely to have accumulated large soil carbon stores (Adam, 
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1990b; Allen, 2000; Chmura, 2009; van der Wal, Pye, & Neal, 2002).  However, sedimentation rates 

are highest in the pioneer marsh zones due to a higher tidal inundation frequency, so although large 

carbon stocks may not have accumulated, the rate of carbon accumulation is likely to be highest in 

the lowest marsh zones (Bartholdy, Bartholdy, & Kroon, 2010; Bricker-Urso, Nixon, Cochran, 

Hirschberg, & Hunt, 1989; de Groot, Veeneklaas, Kuijper, & Bakker, 2011; Shi, 1992; Stoddart, Reed, 

& French, 1983; Stumpf, 1983). 

 

4.1.4 Grazing impacts on salt marsh carbon stocks 

Salt marshes are natural grazing grounds (Koch et al., 1998) and globally, many salt marshes are 

grazed by livestock for agricultural production and conservation management purposes (Adam, 

1990c).  Grazing centres on mid and high marsh zones (Figure 4.2a) (Wallis De Vries et al., 1999) as 

access to the lower zones is cut off by creeks on high tides (Adam, 1990b).  Introducing livestock is 

likely to have conflicting effects on salt marsh carbon stocks (Jensen, 1985; Kiehl et al., 1996; 

McNaughton et al., 1998; Schuster, 1964).  For example, plant litter and above-ground biomass are 

likely to decrease under all grazing regimes (J. P. Bakker, 1985; Jensen, 1985; Kiehl et al., 1996) and 

consequently less sediment, and associated carbon, will be trapped by the vegetation during flooding 

(Neuhaus, Stelter, & Kiehl, 1999).  Conversely, soil compaction by livestock reduces soil pore size and 

induces anaerobic conditions (Tanner & Mamaril, 1958).  Anaerobic conditions result in slower 

decomposition rates and reduced carbon dioxide emissions (Freeman et al., 2001; Hussein & 

Rabenhorst, 2002; Scanlon & Moore, 2000).  In terrestrial wetlands, the microbial communities 

associated with anaerobic conditions (methanogens) increase methane emissions (Wang et al., 

1996).  Methane is a potent greenhouse gas as it absorbs infra-red radiation ~25 times more 

effectively than carbon dioxide (Lelieveld et al., 1997).  Consequently the greenhouse gas benefit of 

reduced carbon dioxide emissions in anaerobic terrestrial wetlands can be offset by an increase in 

methane production (Bridgham et al., 2006).  This offset is less important in salt marshes, where 

abundant sulphates brought in by the tide inhibit methane production (Winfrey & Ward, 1983).  Soil 

compaction by grazers might therefore boost carbon storage in salt marshes by lowering overall gas 

emissions.  In summary, grazing is likely to reduce above-ground inputs of carbon through the 

removal of vegetation biomass and, as a consequence, reduce carbon input through sediment 

trapped by vegetation; however, plant compensation and induced anaerobic conditions through soil 

compaction might counter the above-ground effects of grazing on carbon accumulation.   

 

4.1.5 The importance of environmental setting 

Carbon management schemes are likely to encompass large geographical areas, which are subject to 

significant environmental variation (Laffoley & Grimsditch, 2009).  Salt marshes are subject to a wide 
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range of environmental stressors such as water salinity, wave exposure, and nutrient limitations 

(Adam, 1990a).  Spatial variation in these stressors can lead to spatial variation in above-ground 

processes, which in turn may impact soil carbon stocks (Wardle et al., 2004).  In Chapter 3 grazing 

was shown to have a strong effect on above-ground vegetation characteristics and assemblage 

composition acting in context with other environmental factors.  The influence of environmental 

context on above-ground vegetation, such as root growth rates or degradation of plant litter, is likely 

to translate to below-ground carbon stocks (Elsey-Quirk et al., 2011).  Thus it is probable that 

environmental context will play a role in carbon sequestration.  The impact of livestock grazing on 

below-ground saltmarsh carbon stocks has only been studied on a small scale (Yu & Chmura, 2010) 

and it is unclear how environmental variability across a large area will interact with, or possibly 

compensate for, the effects of grazing on soil carbon.  If ecosystems are to be managed effectively 

for CCS, broad-scale data is essential for assessing the continuity of trends and patterns found on a 

small scale, as scaling up from one or two sites can lead to considerable inaccuracies (Harvey, 2000; 

Jarvis, 2006).   

 

4.1.6 Study aims 

The overall aim of this chapter was to examine the broad-scale influence of livestock grazing on root 

biomass and below-ground soil carbon stocks.  Root biomass was expected to peak under moderate 

grazing intensities as plants compensate for grazing pressure by increased growth rates, but 

significantly decrease under intensive grazing regimes due to high stress levels and highly compact 

soils (Kiehl et al., 1996; McNaughton, 1983; Schuster, 1964; Tanentzap & Coomes, 2012).  Although 

root biomass is likely to increase under moderate grazing regimes (Kiehl et al., 1996; McNaughton, 

1983; Schuster, 1964), litter biomass shows a significant negative response to an increase in stocking 

density (Chapter 3) and thus it is likely that the input of organic matter to soil carbon stocks will 

decrease with an increase of stocking density.  Soil carbon stocks are therefore likely to show a 

significant negative response to increasing stocking density, as organic matter is a major input of 

carbon into the salt marsh soil carbon stock (Elsey-Quirk et al., 2011). Furthermore, live above-

ground biomass of plants significantly decreases with an increase in stocking density, and thus it is 

likely that the amount of sediment trapped on a marsh will be reduced (Neuhaus et al., 1999; 

Stoddart et al., 1983; Stumpf, 1983).  Marshes were sampled at all four intertidal, vegetated marsh 

zones (Figure 4.1b) to examine the influence of marsh zone on root biomass and soil organic carbon 

to reduce variation in the data set.  Root biomass was expected to be lowest in the pioneer marsh 

zone, where physical stress and disturbance were greatest, and highest in the high marsh, where 

physical stress and disturbance were lowest (Adam, 1990b).  Soil carbon was expected to be lowest 

in the pioneer marsh zone and greatest in the high marsh zones, as the zonation of a marsh 
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represents the succession of a marsh: the higher the zone, the older it is, and therefore the more 

time it has had to accumulate carbon (Adam, 1990b; Allen, 2000; Chmura, 2009; van der Wal et al., 

2002).  The study also contrasted the influence of livestock grazing with the influence of 

environmental context on above-ground plant community characteristics.  Tidal range, wave fetch 

and marsh geomorphology were expected to be significant drivers of carbon stocks as they dictate 

sedimentation rates on salt marshes (Allen, 2000; Stumpf, 1983) and can be significant drivers of 

above-ground plant characteristics (Chapter 3).  Root biomass and soil organic carbon were analysed 

across a broad spatial scale (22 salt marshes) along the west coast of Wales and north-west England 

(Chapter 2), covering a range of livestock stocking densities and environmental stress gradients.  A 

stratified sampling technique was used to differentiate between salt marsh zones where necessary 

on each site.  
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4.2 Materials and Methods 

 

4.2.1 Site selection, determination of zones and quadrat selection 

The study sites and sampling design are described in detail in Chapter 2.  Twenty-two salt marshes 

were selected between the Dyfi Estuary, mid Wales, and Morecambe Bay, NW England (Chapter 2).  

Marshes varied in grazing intensity from un-grazed to intensively grazed (Chapter 2: Table 2.1).  

Marsh zones were determined using a combination of strand line position, marsh topography, and 

direct observations of tidal inundation (Chapter 2).  Each zone was sampled by ten 2 x 2 metre plots 

that were randomly placed along a representative cross-shore 100m belt (Chapter 2). 

 
4.2.2 Sampled response variables 

One 46 cm deep, 4.6 cm diameter soil core was taken from four quadrats per zone using a split tube 

corer based on a smaller model design by Eijkelkamp (Figure 4.2 a, b).  The cores were kept in 

labelled 46cm lengths of 4.6 diameter plastic tubing (inserted into the corer prior to sampling), and 

wrapped in tin foil to minimise damage and moisture loss prior to laboratory analysis (Figure 4.2).  In 

the laboratory, the soil cores were cut in half lengthways; half of the core was used for root biomass 

analysis, the other for soil organic carbon and grain size analysis (Figure 4.2d).  Three bulk density 

samples and soil strength measurements were taken from the surface surrounding the soil core 

(Figure 4.2e) 

 
4.2.2.1 Root biomass:  Root matter is one of the main inputs of carbon into the soil carbon stocks. 

The root biomass half-core was divided into 5cm depth segments down the entire length of the core 

(Figure 4.2d).  These segments were washed free of sediment using a gentle flow of water from a 

showerhead over a 0.5mm meshed metal sieve to catch root and particulate organic matter.  The 

root matter was then dried in pre-weighed, labelled paper bags at 80°C for 3 days and the dry 

weights were recorded for each depth.  

 
4.2.2.2 Bulk density:  Bulk density is a measurement of soil density; it is dependent on soil moisture 

content, soil grain size, organic matter content and soil compaction (Emmet et al., 2008).  Bulk 

density can be used to calculate the concentration of soil components in terms of volume (Emmet et 

al., 2008).  Samples were taken using 4.8 cm diameter, 2.5 cm deep metal rings (total volume = 42.24 

cm3) and placed in pre-weighed, labelled oven-proof bags (Figure 4.2e).  The samples were taken 

from 2 cm depth to avoid the vegetation litter layer.  Three bulk density samples per quadrat were 

pooled (total volume = 135.72 cm3), homogenised and all root material was removed.  The samples 

were heated in pre-weighed trays at 105°C for 16 hours to remove all moisture.  
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 The samples were then weighed and bulk density was calculated as according to the Soils Manual of 

the Countryside Survey (Emmet et al., 2008):  

 
Bulk Density = Soil Dry Weight 

            Total Volume 

 

 

4.2.2.3 Soil organic carbon:  The remaining soil organic carbon half-core was sampled at five depths: 

0-2 cm, 5-7 cm, 11-13 cm, 22-24 cm and 44-46 cm depths (Figure 4.2d).  Each sample was 

homogenised, root material was removed and an approximately ten gram sample was used to 

determine the soil organic carbon content by using loss on ignition techniques based on Ball (1964) 

and Schumacher (2002). Percentage soil organic matter was calculated using methods outlined in the 

Soils Manual of the Countryside Survey (Emmet et al., 2008):  

 
Organic Matter Concentration (OMC) = 100 ×  (Dry Soil Weight – Combusted Soil Weight) 

(Dry Soil Weight – Crucible Weight) 
 

Carbon density is normally used in the CCS literature (Chmura, 2009; Chmura et al., 2003), but it is 

affected by soil compaction by livestock, and thus can mask a reduction in carbon deposition.  

Percentage soil organic carbon (soil organic carbon concentration) is not impacted by soil bulk 

density, however, it does not give an absolute value for soil carbon content.  Both carbon 

concentration and carbon density measures were used in this study.  Organic carbon concentration 

was estimated using a conversion formula devised by Craft, Seneca, and Broome (1991): 

 
Soil Organic Carbon Concentration = (0.4 × OMC) + (0.0025 × OMC2) 

 

This formula was used because Craft found that a quadratic equation best described the relationship 

between organic carbon and organic matter, rather than the linear relationship that is used in other 

literature.  Soil organic carbon concentration was then converted into soil organic carbon (SOC) per 

volume (soil organic carbon density) using bulk density.   

 
SOC (g cm-3) = Bulk Density × Soil Organic Carbon Concentration 

        100 

 

4.2.2.4 Soil strength and compaction:  To measure the impact of livestock on soil compaction, three 

surface soil compaction measurements were taken per plot using a hand held penetrometer and 

three sub-surface soil strength measurements were taken per plot using a soil shear vane (Figure 

4.3).   
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Figure 4.2 | Soil coring and the soil corer.  a) The soil corer used in this study.  Based on a model by Eijkelkamp, this split 

tube corer has an internal length of 46cm and an internal diameter of 4.6cm.  b) The corer components: the main corer is 

split in two and held together by a pin.  The plastic piping fits inside the corer and can be labelled.  c) The Eijkelkamp corer 

in use at Morfa Harlech.  A lump hammer had to be used in most cases, particularly in heavily compacted or sandy marshes.  

d) The division of the core for root biomass and soil organic carbon analysis.  Soil organic carbon samples (top half) were 

taken at 0-2cm, 5-7cm, 11-13cm, 22-24cm and 44-46cm, while root biomass samples were taken from 5cm depth block 

down the length of the core.  e) Bulk density samples were taken using a 4.8cm diameter, 2.5cm deep metal ring.  Three 

samples were taken per plot and pooled.  Samples were placed in pre-weighed, labelled oven-proof plastic bags, ready for 

drying in the laboratory. 

 

 

Figure 4.3 | Soil strength and compaction.  a) Measuring surface soil compaction using a hand held penetrometer.  The top 

of the penetrometer is pushed down until the red tip on the end of the penetrometer is pushed fully into the soil.  The 

white ring then remains at the recorded value on the scale. b) The penetrometer (left) and the soil shear vane (right).  c) 

Measuring sub-surface soil strength using a soil shear vane.  The vane is inserted into the soil to approximately 10cm depth.  

The dial is then turned clockwise on a spring mechanism until the soil gives way and the vane snaps around.  There are two 

different sizes of vane; a wide vane is for measurement in soft soils and a narrow vane is for use in hard, compact soils.   
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4.2.3 Determination of stocking density and contextual environmental variables 

The stocking density of each marsh was calculated as livestock units (Woodend, 2010) per hectare 

per year (LSU ha-1 yr-1) (Chapter 2).  The marshes were then categorised into four grazing intensities: 

un-grazed, lightly grazed, moderately grazed and intensively grazed, to conform with local 

management schemes and grazing intensities in other studies (Chapter 2).  A series of contextual 

environmental variables were analysed as indicators of contextual drivers of salt marsh productivity 

and carbon storing processes (Chapter 2). 

 

4.2.4 Statistical analysis 

Based on regional records of sediment accumulation rates, the top 6-15 cm of soil represents 

approximately the last 30 years of salt marsh accumulation, for which grazing intensity was well 

documented (Appendix 3: Accretion Rates in Other Studies).  As such, evaluation of grazer-carbon 

relationships took into consideration three depth layers in the soil: 0-2 cm, 0-10 cm and 0-50 cm.  

The top soil depth profile (0-2 cm) was regarded to be indicative of the present flux of material from 

above-ground biomass (e.g. litter) to the below-ground carbon pool.  This top layer was expected to 

show a strong relationship between above and below-ground processes, and to be representative of 

the current grazing regime.  The middle depth profile (0-10 cm) included most of the root biomass 

and was used to analyse more long-term grazing impacts on the organic layer of the soil (including 

the 0-2 cm depth profile), as this depth reflected the 30-year time scale for which there was reliable 

grazing data.  It was expected that this depth profile would be less representative of the current 

above-ground processes than the 0-2 cm depth profile but still show a weak coupling between above 

and below-ground processes.  The deepest profile (0-50 cm) was considered an integrator of the 

broader contextual influences.  This holistic approach enabled comparison of current and past (last 

30 years) grazing regimes with the deeper, older layers associated with past environmental settings.  

Due to the considerable differences between saltmarsh zones, an analysis including all zones would 

invariably add variance to the data set, which could over-ride any effects of grazing; therefore, 

separate analyses were used for each zone as well as the for overall data set (all zones combined).   

 

As management schemes stipulate grazing pressure by categorizing sites into a range of grazing 

intensities, the data were analysed with grazing as both a continuous variable (LSU) and as an ordinal 

categorical variable (four categories of grazing intensity).  LSU is a continuous measurement of 

stocking density; however, it does not lend itself to factorial-type analyses such as ANOVA.  Grazing 

intensity categories are arbitrary and somewhat subjective classifications of grazing regime.  It was 

included in this analysis to relate to current management schemes that use these categories.  The 

data analysis was divided into three parts:  
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i) Regression analyses with grazing intensity as a continuous variable (LSU ha-1 yr-1) for a 

continuous determination of grazing impacts on below-ground measures (Section 4.2.4.1). 

ii) Factorial analyses with categorical levels of grazing intensity (un-grazed, lightly grazed, 

moderately grazed, or intensely grazed), as stipulated by management schemes, using ANOVA 

(Section 4.2.4.2), PERMANOVA (Section 4.2.4.3), and ANCOVA (Section 4.2.4.4). 

iii) Analyses of the impacts of grazing in relation to a series of environmental variables (3.2.4.5 

DistLM; 4.2.4.6 Mixed effects model). 

 

4.2.4.1 Regression:  A series of regression analyses investigated the effect of livestock density (LSU 

ha-1 yr-1) on root biomass and soil organic carbon.  Analyses were run for the overall data set (all 

zones) and separately for each zone (high, mid, low or pioneer).  False discovery rate (FDR) control p-

values were calculated to compensate for the large number of tests (Verhoeven et al., 2004). Partial 

eta squared effect size (ηp
2) was calculated for each test where ≥0.0099 was a small effect, ≥0.0588 

was a medium effect, and ≥0.1379 was a large effect (Cohen, 1988; Richardson, 2011).  Square root 

and log10 transformations were used when necessary to meet test assumptions.  

 

3.2.4.2 ANOVA: A series of analyses of variance (ANOVAs) were run alongside the regression analyses 

to investigate the impact of categorical levels of grazing intensity on the below-ground response (soil 

organic carbon, root biomass, root depth, and soil compaction) variables and their coefficients of 

variation (spread in the data).  To analyse the impact of grazing on soil organic carbon and root 

biomass in the overall data set, a three-way, between-group factorial ANOVA was run with the model 

Grazing Intensity | Zone + Marsh(Grazing Intensity).  This model determined both independent 

effects of grazing, zone and marsh, as well as interaction effects of grazing and zone.  Marsh a 

random factor and was nested within grazing intensity so no interaction terms could be determined 

for marsh.  To analyse the impact of grazing on soil organic carbon and root biomass within each 

zone, a 2-way ANOVA was run for each zone (high, mid, low and pioneer) with the model Grazing 

Intensity + Marsh(Grazing Intensity).  This model determined the independent effects of grazing and 

marsh within each zone.  Tukey HSD post hoc tests were used to determine where any between-

group significant differences lay.  False discovery rate control p-values were calculated for the main 

factor, ‘Grazing’, to compensate for the large number of analyses.  Partial eta squared effect size was 

calculated for each test  

 

4.2.4.3 PERMANOVA: A permutational analysis of variance (PERMANOVA) (Anderson, 2005) was used 

to analyse the effects of grazing on soil organic carbon, and root biomass.  The PERMANOVA design 

included the factors: 
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i) Grazing intensity (GI): Fixed factor; 4 levels (un-grazed, lightly grazed, moderately grazed, 

intensively grazed) 

ii) Marsh: Random factor; 22 marshes; nested in GI 

iii) Zone: Fixed factor; up to 4 levels per marsh (pioneer, low, mid, high) 

The PERMANOVA was run with 9999 permutations on a log transformed Bray-Curtis similarity matrix. 

 

4.2.4.4 ANCOVA: An analysis of covariates (ANCOVA) was run on both root biomass and soil organic 

carbon (SOC) with depth as a covariate.  This was to analyse the impact of grazing intensity (four 

categorical levels: un-grazed, lightly grazed, moderately grazed, intensively grazed) on the depth 

profile of both root biomass and soil carbon.   

 

4.2.4.5 Mixed Effects Model:  A mixed effects model was used to analyse the impact of multiple 

environmental and contextual factors (including LSU) on both root biomass and soil organic carbon.  

The model was run on the overall data set, the combined high zone and mid zone data (zones most 

likely to be influenced by grazers), and the combined low zone and pioneer zone data (zones least 

likely to be influenced by grazers).    
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4.3 Results 

Grazing had no single or interactive effects on below-ground soil organic carbon (SOC) (PERMANOVA 

Factor: Grazing – Pseudo F = 1.18, P(perm) = 0.327) or root biomass (PERMANOVA Factor: Grazing – 

Pseudo F = 1.35, P(perm) = 0.235) for any of the sediment depths analysed (Tables 4.1 & 4.2; Figures 

4.4 & 4.5).  SOC did decrease significantly with soil depth (ANCOVA: F1,1093 = 219.96, p <0.001, ηp
2 = 

0.166).  The rate of SOC decrease with depth did not, however, vary significantly between grazing 

intensities (ANCOVA: F3,1093 = 0.64, p = 0.597, ηp
2 = 0.009) (Figure 4.6).  This finding was unaffected by 

whether carbon content was expressed in units of carbon density (g(C) cm-3) or in units of percent 

carbon concentration (g(C) g(soil)-1 (%)).  Despite no overall (all zones) significant relationship 

between root biomass and stocking density, livestock grazing had a significant positive impact on 

root biomass in the surface soil of the high marsh (Table 4.1; Figure 4.5).  

 

Soil organic carbon (PERMANOVA Factor: Zone – Pseudo F = 5.19, P(perm) = 0.001) and root biomass 

(PERMANOVA Factor: Zone – Pseudo F = 4.60, P(perm) = 0.002) did differ between marsh zones Table 

4.2).  SOC in the top 10 cm for both the pioneer (𝑥̅ = 0.009, SD = 0.007) and low (𝑥̅ = 0.014, SD = 

0.008) marsh zones were significantly lower than in the mid (𝑥̅ = 0.019, SD = 0.008) and high (𝑥̅ = 

0.017, SD = 0.008) zones (Tukey HSD post hoc tests).  Overall SOC (0-50 cm) in the pioneer zone (𝑥̅ = 

0.007, SD = 0.005) was significantly lower than in the other three zones (low: 𝑥̅ = 0.012, SD = 0.007; 

mid: 𝑥̅ = 0.014, SD = 0.005; high: 𝑥̅ = 0.012, SD = 0.005) (Tukey HSD post hoc tests).  A similar pattern 

was found for root biomass.  Root biomass in the top 10 cm for the pioneer zone (𝑥̅ = 0.003, SD = 

0.005) was significantly lower than in the low (𝑥̅ = 0.011, SD = 0.007) and mid (𝑥̅ = 0.015, SD = 0.011) 

zones.  Root biomass in the top 10 cm for the high marsh (𝑥̅ = 0.021, SD = 0.015) was also 

significantly higher than in the other three zones.   

 

There were consistent significant between-marsh differences in SOC (ANOVA factor: Marsh – F3,18 = 

7.95, p <0.001, ηp
2 = 0.315) and root biomass (ANOVA factor: Marsh – F3,18 = 7.14, p <0.001, ηp

2 = 

0.392).  Several contextual and environmental variables explained more variation in the data than did 

grazing.  Plant community composition was found to have a significant impact on SOC in the surface 

layers, but this generally did not translate to the deeper soil profiles (Mixed effects model: Table 4.3).  

Tidal range, wave fetch and marsh geomorphology were significant drivers of SOC in the deeper soil 

profiles in the higher zones, while grain size was a significant driver of SOC in the deeper profiles in 

the lower marsh zones (Table 4.3).  Stocking density had no overall effect when all zones were 

considered together, but considered separately stocking density had a significant impact on SOC in 

deepest soil profile of the higher marsh zones and the shallowest soil profile in the lower zones 

(Table 4.3).    
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Figure 4.4 | Soil organic carbon vs. grazing intensity by zone for three soil depth profiles.  Scatter plots showing the relationship between soil organic carbon (carbon density: g (C) cm-3) and 

grazing intensity (LSU ha-1 yr-1) for each zone and for each of the depth profiles analysed: top 2cm, top 10cm and top 50cm.   
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Figure 4.5 | Root biomass vs. grazing intensity by zone for three soil depth profiles. Scatter plots showing the relationship between root biomass (g cm-3) and grazing intensity (LSU ha-1 yr-1) for 

each zone and for each of the depth profiles analysed: top 5cm, top 10cm and top 50cm.   
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Table 4.1 | Regression analyses for below-ground variables against LSU. Results of regression analyses for each predictor 

variable vs. LSU ha-1 yr-1 for overall data set followed by analysis by zone (high, mid, low and pioneer).  Results of ANOVA 

(df, F and p) are shown along with FDR p-value thresholds (p(i)).  An emboldened p-value denotes a significant effect.  The 

results of the regression are shown in the last three columns: R2, Intercept (b) and Slope (m). 

Predictor Variable df F p p(i) R2 b m 

Overall 
Root Biomass (Top 5cm) (g cm-3) 1, 222 5.19 0.024 0.018 0.023   

Root Biomass (Top 10cm) (g cm-3) 1, 222 4.80 0.029 0.023 0.021   

Root Biomass (Top 50cm) (g cm-3) 1, 222 5.86 0.016 0.014 0.026   

Maximum Root Depth (cm) 1, 222 4.30 0.039 0.032 0.019   

Soil Organic Carbon Density (Top 2cm) (g cm-3) 1, 222 1.78 0.183 0.041 0.008   

Soil Organic Carbon Density (Top 10cm) (g cm-3) 1, 222 0.34 0.562 0.045 0.002   

Soil Organic Carbon Density (Top 50cm) (g cm-3) 1, 222 0.10 0.750 0.050 0.000   

Soil Organic Carbon Concentration (Top 2cm) (%) 1, 222 6.55 0.011 0.009 0.029   

Soil Organic Carbon Concentration (Top 10cm) (%) 1, 222 4.83 0.029 0.027 0.021   

Soil Organic Carbon Concentration (Top 50cm) (%) 1, 222 3.77 0.053 0.036 0.017   

Soil Shear Strength 1, 222 40.07 <0.001 0.005 0.153 24.200 8.440 

High Marsh 
Root Biomass (Top 5cm) (g cm-3) 1,54 9.58 0.003 0.009 0.151 0.021 0.007 

Root Biomass (Top 10cm) (g cm-3) 1,54 5.96 0.018 0.018 0.099   

Root Biomass (Top 50cm) (g cm-3) 1,54 3.51 0.066 0.032 0.061   

Maximum Root Depth (cm) 1,54 14.02 <0.001 0.005 0.206 32.300 3.950 

Soil Organic Carbon Density (Top 2cm) (g cm-3) 1,54 1.10 0.299 0.041 0.020   

Soil Organic Carbon Density (Top 10cm) (g cm-3) 1,54 0.21 0.649 0.045 0.004   

Soil Organic Carbon Density (Top 50cm) (g cm-3) 1,54 0.00 0.994 0.050 0.000   

Soil Organic Carbon Concentration (Top 2cm) (%) 1,54 3.60 0.063 0.027 0.062   

Soil Organic Carbon Concentration (Top 10cm) (%) 1,54 2.09 0.154 0.032 0.037   

Soil Organic Carbon Concentration (Top 50cm) (%) 1,54 1.64 0.205 0.036 0.030   

Soil Shear Strength 1,54 8.09 0.006 0.014 0.130 31.600 6.320 

Mid Marsh 
Root Biomass (Top 5cm) (g cm-3) 1, 74 1.04 0.311 0.032 0.014   

Root Biomass (Top 10cm) (g cm-3) 1, 74 0.30 0.588 0.045 0.004   

Root Biomass (Top 50cm) (g cm-3) 1, 74 1.25 0.268 0.023 0.017   

Maximum Root Depth (cm) 1, 74 0.36 0.551 0.041 0.005   

Soil Organic Carbon Density (Top 2cm) (g cm-3) 1, 74 0.00 0.964 0.050 0.000   

Soil Organic Carbon Density (Top 10cm) (g cm-3) 1, 74 0.84 0.363 0.036 0.011   

Soil Organic Carbon Density (Top 50cm) (g cm-3) 1, 74 5.57 0.021 0.009 0.070   

Soil Organic Carbon Concentration (Top 2cm) (%) 1, 74 3.10 0.083 0.014 0.040   

Soil Organic Carbon Concentration (Top 10cm) (%) 1, 74 2.26 0.137 0.018 0.030   

Soil Organic Carbon Concentration (Top 50cm) (%) 1, 74 1.07 0.305 0.027 0.014   

Soil Shear Strength 1, 74 31.35 <0.001  0.005 0.298 25.100 14.700 

Low Marsh 
Root Biomass (Top 5cm) (g cm-3) 1, 54 1.02 0.318 0.032 0.018   

Root Biomass (Top 10cm) (g cm-3) 1, 54 0.00 0.948 0.050 0.000   

Root Biomass (Top 50cm) (g cm-3) 1, 54 0.27 0.608 0.036 0.005   

Maximum Root Depth (cm) 1, 54 0.25 0.621 0.041 0.005   

Soil Organic Carbon Density (Top 2cm) (g cm-3) 1, 54 2.65 0.110 0.018 0.047   

Soil Organic Carbon Density (Top 10cm) (g cm-3) 1, 54 1.09 0.301 0.027 0.020   

Soil Organic Carbon Density (Top 50cm) (g cm-3) 1, 54 0.17 0.684 0.045 0.003   

Soil Organic Carbon Concentration (Top 2cm) (%) 1, 54 4.86 0.032 0.009 0.083   

Soil Organic Carbon Concentration (Top 10cm) (%) 1, 54 2.75 0.103 0.014 0.048   

Soil Organic Carbon Concentration (Top 50cm) (%) 1, 54 2.26 0.138 0.023 0.040   

Soil Shear Strength 1, 54 15.62 <0.001  0.005 0.224 21.200 10.500 
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Table 4.1 (Cont.) | Regression analyses for below-ground variables on LSU. 

Predictor Variable df F p p(i) R2 b m 

Pioneer Marsh 
Root Biomass (Top 5cm) (g cm-3) 1, 34 2.28 0.140 0.023 0.063   

Root Biomass (Top 10cm) (g cm-3) 1, 34 2.46 0.126 0.018 0.067   

Root Biomass (Top 50cm) (g cm-3) 1, 34 1.51 0.227 0.032 0.043   

Maximum Root Depth (cm) 1, 34 0.61 0.440 0.045 0.018   

Soil Organic Carbon Density (Top 2cm) (g cm-3) 1, 34 0.82 0.372 0.041 0.024   

Soil Organic Carbon Density (Top 10cm) (g cm-3) 1, 34 0.08 0.776 0.045 0.002   

Soil Organic Carbon Density (Top 50cm) (g cm-3) 1, 34 0.00 0.981 0.050 0.000   

Soil Organic Carbon Concentration (Top 2cm) (%) 1, 34 3.84 0.058 0.014 0.101   

Soil Organic Carbon Concentration (Top 10cm) (%) 1, 34 1.73 0.197 0.027 0.048   

Soil Organic Carbon Concentration (Top 50cm) (%) 1, 34 1.17 0.287 0.036 0.033   

Soil Shear Strength 1, 34 17.86 <0.001  0.009 0.344 12.700 4.680 
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Table 4.2 | ANOVA table of below-ground variables by grazing intensity.  Results of a factorial ANOVA for the overall data set (‘Overall’) with the model: Grazing Intensity | Zone + Marsh(Grazing 

Intensity), and a 2-way ANOVA for each zone (‘High’, ‘Mid’, ‘Low’, and ‘Pioneer’) with the model: Grazing Intensity + Marsh(Gr)(Grazing Intensity).  Column headers depict degrees of freedom (df: 

numerator, denominator), F-values (F), p-values (p), False Discovery Rate control thresholds (FDR p(i)).  An emboldened p-value denotes a significant effect.  Means (x̅) and Standard Error (SE) are 

shown by Grazing Intensity for each predictor variable. 

Predictor Variable 

ANOVA Un-grazed Light Moderate Intensive 

df F p FDR p(i) ηp
2 𝒙 SE 𝒙 SE 𝒙 SE 𝒙 SE 

Overall 
Root Biomass (Top 5cm) (g cm-3) Grazing 3, 18 1.96 0.152 0.018 0.112 0.016 0.001 0.015 0.002 0.016 0.002 0.020 0.002 
 Marsh(Gr) 18, 18 5.48 <0.001 0.036 0.332         
 Zone 3, 18 32.80 <0.001 0.036 0.326         

Root Biomass (Top 10cm) (g cm-3) Grazing 3, 18 1.62 0.218 0.036 0.131 0.013 0.001 0.012 0.002 0.014 0.002 0.016 0.002 
 Marsh(Gr) 18, 18 8.03 <0.001 0.014 0.421         
 Zone 3, 18 45.57 <0.001 0.014 0.390         

Root Biomass (Top 50cm) (gcm-3) Grazing 3, 18 1.86 0.170 0.027 0.134 0.005 0.001 0.005 0.001 0.006 0.001 0.007 0.001 
 Marsh(Gr) 18, 18 7.14 <0.001 0.032 0.392         
 Zone 3, 18 41.47 <0.001 0.018 0.365         

Maximum Root Depth (cm) Grazing 3, 18 0.44 0.725 0.050 0.020 29.110 1.040 31.070 1.630 30.340 1.850 30.850 1.710 
 Marsh(Gr) 18, 18 3.81 <0.001 0.045 0.256         
 Zone 3, 18 39.10 <0.001 0.027 0.387         

Soil Organic Carbon Density (Top 2cm) (g cm-3) Grazing 3, 18 0.52 0.672 0.045 0.021 0.021 0.001 0.023 0.002 0.024 0.002 0.018 0.002 
 Marsh(Gr) 18, 18 3.40 <0.001 0.050 0.235         
 Zone 3, 18 26.61 <0.001 0.041 0.298         

Soil Organic Carbon Density (Top 10cm) (g cm-3) Grazing 3, 18 1.82 0.173 0.032 0.080 0.015 0.001 0.016 0.001 0.019 0.002 0.014 0.001 
 Marsh(Gr) 18, 18 3.92 <0.001 0.041 0.262         
 Zone 3, 18 13.91 <0.001 0.045 0.221         

Soil Organic Carbon Density (Top 50cm) (g cm-3) Grazing 3, 18 1.59 0.221 0.041 0.088 0.011 0.001 0.013 0.001 0.015 0.001 0.011 0.001 
 Marsh(Gr) 18, 18 9.17 <0.001 0.005 0.315         
 Zone 3, 18 5.09 <0.001 0.050 0.193         

Soil Organic Carbon Concentration (Top 2cm) (%) Grazing 3, 18 1.93 0.158 0.023 0.157 6.514 0.596 4.860 0.529 5.400 1.080 3.256 0.528 
 Marsh(Gr) 18, 18 8.35 <0.001 0.009 0.430         
 Zone 3, 18 54.64 <0.001 0.005 0.426         

Soil Organic Carbon Concentration (Top 10cm) (%) Grazing 3, 18 2.18 0.123 0.009 0.167 4.504 0.427 3.363 0.278 3.970 0.782 2.301 0.287 
 Marsh(Gr) 18, 18 7.94 <0.001 0.023 0.418         
 Zone 3, 18 41.30 <0.001 0.023 0.360         

Soil Organic Carbon Concentration (Top 50cm) (%) Grazing 3, 18 2.03 0.143 0.014 0.157 3.042 0.271 2.554 0.182 2.892 0.509 1.708 0.180 
 Marsh(Gr) 18, 18 7.95 <0.001 0.018 0.418         
 Zone 3, 18 38.53 <0.001 0.032 0.339         

Soil Shear Strength (Pa) Grazing 3, 18 6.39 0.003 0.005 0.355 20.056 0.780 27.200 1.580 33.820 2.910 39.780 2.470 
 Marsh(Gr) 18, 18 7.41 <0.001 0.027 0.401         
 Zone 3, 18 49.24 <0.001 0.009 0.424         
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Table 4.2 (Cont.) | ANOVA table of below-ground variables by grazing intensity 

Predictor Variable 

ANOVA Un-grazed Light Moderate Intensive 

df F p FDR p(i) ηp
2 𝒙 SE 𝒙 SE 𝒙 SE 𝒙 SE 

High Marsh 

Root Biomass (Top 5cm) (g cm-3) Grazing 3, 10 2.73 0.100 0.014 0.317 0.020 0.003 0.017 0.003 0.034 0.010 0.036 0.004 
 Marsh(Gr) 10, 10 2.38 0.025 0.045 0.362         

Root Biomass (Top 10cm) (g cm-3) Grazing 3, 10 0.81 0.517 0.045 0.275 0.020 0.003 0.014 0.003 0.027 0.009 0.028 0.003 
 Marsh(Gr) 10, 10 6.56 <0.001 0.027 0.610         

Root Biomass (Top 50cm) (g cm-3) Grazing 3, 10 0.76 0.544 0.050 0.304 0.009 0.002 0.006 0.001 0.011 0.004 0.013 0.002 
 Marsh(Gr) 10, 10 8.10 <0.001 0.018 0.658         

Maximum Root Depth (cm) Grazing 3, 10 5.13 0.021 0.005 0.528 30.460 1.510 30.830 2.520 41.000 2.350 42.000 1.200 
 Marsh(Gr) 10, 10 3.06 0.005 0.036 0.421         

Soil Organic Carbon Density (Top 2cm) (g cm-3) Grazing 3, 10 2.57 0.113 0.018 0.283 0.025 0.003 0.030 0.003 0.039 0.010 0.018 0.002 
 Marsh(Gr) 10, 10 2.16 0.041 0.050 0.339         

Soil Organic Carbon Density (Top 10cm) (g cm-3) Grazing 3, 10 2.02 0.175 0.023 0.277 0.017 0.002 0.019 0.001 0.027 0.008 0.013 0.001 
 Marsh(Gr) 10, 10 2.66 0.013 0.041 0.388         

Soil Organic Carbon Density (Top 50cm) (g cm-3) Grazing 3, 10 1.17 0.369 0.036 0.219 0.011 0.001 0.013 0.001 0.017 0.005 0.010 0.001 
 Marsh(Gr) 10, 10 3.35 0.003 0.032 0.444         

Soil Organic Carbon Concentration (Top 2cm) (%) Grazing 3, 10 1.95 0.185 0.027 0.518 11.160 1.440 7.593 0.485 14.050 4.190 4.166 0.939 
 Marsh(Gr) 10, 10 7.69 <0.001 0.023 0.647         

Soil Organic Carbon Concentration (Top 10cm) (%) Grazing 3, 10 1.28 0.332 0.032 0.509 7.700 1.140 4.735 0.245 9.560 3.370 3.100 0.694 
 Marsh(Gr) 10, 10 11.31 <0.001 0.009 0.729         

Soil Organic Carbon Concentration (Top 50cm) (%) Grazing 3, 10 1.00 0.431 0.041 0.447 4.998 0.771 3.291 0.220 5.910 2.100 2.227 0.418 
 Marsh(Gr) 10, 10 11.26 <0.001 0.014 0.728         

Soil Shear Strength (Pa) Grazing 3, 10 4.04 0.040 0.009 0.856 24.160 2.160 30.970 1.830 50.750 1.300 51.560 4.700 
 Marsh(Gr) 10, 10 20.66 <0.001 0.005 0.831         

Mid Marsh 
Root Biomass (Top 5cm) (g cm-3) Grazing 3, 15 0.58 0.637 0.041 0.138 0.017 0.002 0.013 0.002 0.022 0.002 0.022 0.004 
 Marsh(Gr) 15, 15 5.24 <0.001 0.036 0.580         

Root Biomass (Top 10cm) (g cm-3) Grazing 3, 15 0.57 0.645 0.045 0.175 0.014 0.002 0.010 0.002 0.018 0.002 0.018 0.003 
 Marsh(Gr) 15, 15 7.11 <0.001 0.014 0.652         

Root Biomass (Top 50cm) (g cm-3) Grazing 3, 15 0.64 0.600 0.036 0.192 0.005 0.001 0.004 0.001 0.007 0.001 0.007 0.001 
 Marsh(Gr) 15, 15 7.02 <0.001 0.018 0.649         

Maximum Root Depth (cm) Grazing 3, 15 0.05 0.985 0.050 0.019 33.220 1.520 33.830 1.840 31.830 1.750 32.750 1.670 
 Marsh(Gr) 15, 15 7.37 <0.001 0.009 0.660         

Soil Organic Carbon Density(Top 2cm) (g cm-3) Grazing 3, 15 0.98 0.427 0.032 0.113 0.026 0.001 0.019 0.002 0.031 0.003 0.027 0.005 
 Marsh(Gr) 15, 15 2.46 0.008 0.045 0.393         

Soil Organic Carbon Density(Top 10cm) (g cm-3) Grazing 3, 15 2.14 0.138 0.009 0.215 0.018 0.001 0.015 0.001 0.025 0.003 0.019 0.002 
 Marsh(Gr) 15, 15 2.43 0.008 0.050 0.390         
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Table 4.2 (Cont.) | ANOVA table of below-ground variables by grazing intensity 

Predictor Variable 

ANOVA Un-grazed Light Moderate Intensive 

df F p FDR p(i) ηp
2 𝒙 SE 𝒙 SE 𝒙 SE 𝒙 SE 

Mid Marsh 
Soil Organic Carbon Density(Top 50cm) (g cm-3) Grazing 3, 15 1.18 0.351 0.027 0.182 0.012 0.001 0.013 0.001 0.017 0.002 0.014 0.001 
 Marsh(Gr) 15, 15 3.58 <0.001 0.041 0.485         

Soil Organic Carbon Concentration (Top 2cm) (%) Grazing 3, 15 1.24 0.330 0.023 0.291 8.280 0.944 2.912 0.417 7.310 1.720 5.060 1.230 
 Marsh(Gr) 15, 15 6.29 <0.001 0.023 0.623         

Soil Organic Carbon Concentration (Top 10cm) (%) Grazing 3, 15 1.60 0.230 0.014 0.320 5.106 0.499 2.292 0.288 5.440 1.260 3.184 0.527 
 Marsh(Gr) 15, 15 5.75 <0.001 0.032 0.594         

Soil Organic Carbon Concentration (Top 50cm) (%) Grazing 3, 15 1.41 0.279 0.018 0.317 3.420 0.283 1.835 0.193 3.642 0.773 2.335 0.315 
 Marsh(Gr) 15, 15 6.27 <0.001 0.027 0.623         

Soil Shear Strength (Pa) Grazing 3, 15 4.61 0.018 0.005 0.799 21.710 1.280 28.180 1.660 38.750 3.800 44.040 3.780 
 Marsh(Gr) 15, 15 16.41 <0.001 0.005 0.812         

Low Marsh 
Root Biomass (Top 5cm) (g cm-3) Grazing 3, 10 0.08 0.972 0.045 0.034 0.015 0.002 0.013 0.005 0.012 0.003 0.013 0.002 
 Marsh(Gr) 10, 10 6.50 <0.001 0.018 0.608         

Root Biomass (Top 10cm) (g cm-3) Grazing 3, 10 0.02 0.995 0.050 0.011 0.012 0.002 0.010 0.003 0.011 0.002 0.012 0.001 
 Marsh(Gr) 10, 10 6.75 <0.001 0.014 0.617         

Root Biomass (Top 50cm) (g cm-3) Grazing 3, 10 0.08 0.971 0.041 0.019 0.004 0.001 0.004 0.001 0.005 0.001 0.005 <0.001 
 Marsh(Gr) 10, 10 3.53 0.002 0.041 0.457         

Maximum Root Depth (cm) Grazing 3, 10 0.56 0.651 0.014 0.098 30.840 1.480 23.500 5.780 30.250 1.660 29.920 1.220 
 Marsh(Gr) 10, 10 2.69 0.012 0.050 0.390         

Soil Organic Carbon Density (Top 2cm) (g cm-3) Grazing 3, 10 0.63 0.611 0.009 0.166 0.019 0.001 0.013 0.001 0.016 0.002 0.014 0.002 
 Marsh(Gr) 10, 10 4.42 <0.001 0.036 0.513         

Soil Organic Carbon Density (Top 10cm) (g cm-3) Grazing 3, 10 0.36 0.780 0.032 0.099 0.016 0.002 0.013 0.001 0.011 0.001 0.012 0.001 
 Marsh(Gr) 10, 10 6.43 <0.001 0.023 0.500         

Soil Organic Carbon Density (Top 50cm) (g cm-3) Grazing 3, 10 0.11 0.953 0.036 0.021 0.012 0.002 0.012 0.001 0.013 0.004 0.010 0.001 
 Marsh(Gr) 10, 10 2.78 0.010 0.045 0.399         

Soil Organic Carbon Concentration (Top 2cm) (%) Grazing 3, 10 0.55 0.660 0.018 0.422 3.900 0.632 2.503 0.192 2.542 0.313 1.501 0.233 
 Marsh(Gr) 10, 10 18.59 <0.001 0.005 0.816         

Soil Organic Carbon Concentration (Top 10cm) (%) Grazing 3, 10 0.41 0.749 0.023 0.198 3.277 0.696 2.459 0.049 1.774 0.176 1.318 0.169 
 Marsh(Gr) 10, 10 8.42 <0.001 0.009 0.667         

Soil Organic Carbon Concentration (Top 50cm) (%) Grazing 3, 10 0.39 0.761 0.027 0.131 2.361 0.425 2.504 0.306 2.242 0.879 1.103 0.127 
 Marsh(Gr) 10, 10 5.37 <0.001 0.027 0.561         

Soil Shear Strength (Pa) Grazing 3, 10 5.45 0.018 0.005 0.673 19.146 0.774 12.920 2.640 34.380 7.080 39.180 3.670 
 Marsh(Gr) 10, 10 5.29 <0.001 0.032 0.557         
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Table 4.2 (Cont.) | ANOVA table of below-ground variables by grazing intensity 

Predictor Variable 

ANOVA Un-grazed Light Moderate Intensive 

df F p FDR p(i) ηp
2 𝒙 SE 𝒙 SE 𝒙 SE 𝒙 SE 

Pioneer Marsh 
Root Biomass (Top 5cm) (g cm-3) Grazing 2, 6 0.99 0.426 0.027 0.169 0.008 0.003 - - 0.003 0.001 0.002 0.001 
 Marsh(Gr) 6, 6 2.79 0.030 0.041 0.383         

Root Biomass (Top 10cm) (g cm-3) Grazing 2, 6 1.05 0.406 0.023 0.159 0.005 0.002 - - 0.003 0.001 0.001 0.001 
 Marsh(Gr) 6, 6 2.42 0.053 0.045  0.350         

Root Biomass (Top 50cm) (g cm-3) Grazing 2, 6 0.70 0.535 0.032 0.249 0.002 0.001 - - 0.002 0.001 0.001 <0.001 
 Marsh(Gr) 6, 6 6.41 <0.001 0.032 0.588         

Maximum Root Depth (cm) Grazing 2, 6 0.27 0.773 0.045 0.167 15.380 2.940 - - 22.880 5.710 13.750 4.880 
 Marsh(Gr) 6, 6 10.05 <0.001 0.009 0.691         

Soil Organic Carbon Density (Top 2cm) (g cm-3) Grazing 2, 6 1.90 0.230 0.005 0.195 0.010 0.001 - - 0.014 0.003 0.008 0.001 
 Marsh(Gr) 6, 6 1.73 0.153 0.050 0.278         

Soil Organic Carbon Density (Top 10cm) (g cm-3) Grazing 2, 6 1.30 0.341 0.014 0.397 0.007 0.001 - - 0.015 0.004 0.008 0.001 
 Marsh(Gr) 6, 6 6.85 <0.001 0.027 0.603         

Soil Organic Carbon Density (Top 50cm) (g cm-3) Grazing 2, 6 1.31 0.338 0.009 0.489 0.005 0.001 - - 0.012 0.003 0.006 0.001 
 Marsh(Gr) 6, 6 9.88 <0.001 0.014  0.687         

Soil Organic Carbon Concentration (Top 2cm) (%) Grazing 2, 6 0.61 0.575 0.036 0.173 1.241 0.197 - - 1.072 0.196 0.787 0.133 
 Marsh(Gr) 6, 6 4.65 0.002 0.036 0.508         

Soil Organic Carbon Concentration (Top 10cm) (%) Grazing 2, 6 0.26 0.782 0.050 0.141 0.953 0.168 - - 1.160 0.337 0.749 0.109 
 Marsh(Gr) 6, 6 8.66 <0.001 0.023 0.658         

Soil Organic Carbon Concentration (Top 50cm) (%) Grazing 2, 6 0.28 0.769 0.041 0.202  0.714 0.128 - - 0.908 0.254 0.574 0.057 
 Marsh(Gr) 6, 6 12.44 <0.001 0.005 0.734         

Soil Shear Strength (Pa) Grazing 2, 6 1.18 0.370 0.018 0.457 12.410 1.050 - - 17.420 1.280 17.570 1.960 
 Marsh(Gr) 6, 6 9.63 <0.001 0.018 0.682         

 

 

 



 

132 
 

 

Figure 4.6 | Soil organic carbon density vs. depth for four different grazing intensities.  The mean soil organic carbon (carbon density: g C cm-3) ± standard error vs. soil depth for each marsh 

within each ‘Grazing Intensity’ category classified according to a Welsh Assembly Grazing Management Scheme: un-grazed (n=8), lightly grazed (n=5), moderately grazed (n=3) and intensively 

grazed (n=6).  Each line represents one salt marsh. 
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Table 4.3 | Results of mixed effects models for below-ground parameters. Results of a mixed effects model with soil 

organic carbon as a response variable and zone, grazing and several environmental variables as predictor variables.  Column 

headers depict the effect, degrees of freedom (df: numerator, denominator), F-values (F) and p-values (p).  Significant 

results are indicated by a series of asterisks, where * denotes p<0.05, ** denotes p<0.01 and *** denotes p<0.001. 

  0-2cm depth  0-10cm depth  0-50cm depth 

Effect   df F p m  F p m  F p m 

  Overall 
Carbon Density (gC cm-3) 

Zone 3,181 28.11 <0.001 ***  23.58 <0.001  ***  8.77 <0.001 *** 

Grazing (LSU) 1,181 2.78 0.097   0.44 0.505   0.04 0.851  

Marsh Area (ha) 1,12 9.52 0.010 *  2.94 0.112   1.99 0.184  

Tidal Range (m) 1,12 12.00 0.005 **  1.80 0.204   5.58 0.036 * 

Wave Fetch (m) 1,12 0.68 0.426   10.15 0.008  **  11.56 0.005 ** 

Marsh geomorphology 5,12 1.61 0.231   2.99 0.056   2.38 0.101  

Community Composition 16,181 3.10 <0.001 ***  1.67 0.057   1.17 0.292  

Percent Clay 1,181 2.28 0.133   2.64 0.106   <0.01 0.984  

Percent Coarse Sand 1,181 2.52 0.114   0.07 0.798   4.95 0.027 * 

  High and Mid Zones 
Carbon Density (gC cm-3) 

Grazing (LSU) 1, 96 0.29 0.592   0.87 0.353   5.51 0.021 * 

Zone 1, 96 1.02 0.315   0.29 0.592   0.06 0.800  

Marsh Area (ha) 1, 12 8.73 0.012 *  4.75 0.050   2.88 0.115  

Tidal Range (m) 1, 12 7.20 0.020 *  2.40 0.147   11.86 0.005 ** 

Maximum Fetch (m) 1, 12 0.29 0.602   10.71 0.007  **  21.69 0.001 ** 

Marsh geomorphology  5, 12 2.42 0.098   3.34 0.040  *  3.92 0.024 * 

Community Composition 11, 96 4.15 <0.001 ***  3.02 0.002  **  2.18 0.021 * 

Percent Clay 1, 96 0.01 0.935   2.26 0.136   0.11 0.740  

Percent Coarse Sand 1, 96 5.05 0.027 *  0.71 0.402   4.95 0.029 * 

  Low and Pioneer Zones 
Carbon Density (gC cm-3) 

Zone 1, 69 26.83 <0.001 ***  20.81 <0.001 ***  35.17 <0.001 *** 

Grazing (LSU) 1, 5 6.97 0.046 *  1.91 0.225   0.07 0.799  

Marsh Area (ha) 1, 5 0.20 0.674   0.05 0.825   0.37 0.570  

Tidal Range (m) 1, 5 8.50 0.033 *  2.48 0.176   13.53 0.014 * 

Maximum Fetch (m) 1, 5 0.11 0.725   3.00 0.144   11.27 0.020 * 

Marsh geomorphology  4, 5 3.21 0.117   4.34 0.069   14.77 0.006 ** 

Community Composition 6, 69 3.90 0.002 **  1.55 0.175    1.42 0.219  

Percent Clay 1, 69 2.24 0.139   4.45 0.038  *  4.88 0.031 * 

Percent Coarse Sand 1, 69 5.53 0.022 *  27.38 <0.001 ***  19.26 <0.001 *** 
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4.4 Discussion 

Significant effects of grazing on soil organic carbon (SOC) and root biomass were expected, as there 

were marked above-ground effects on plant characteristics (Chapter 3: Tables 3.3 & 3.4).  Instead the 

study found no single or interacting impacts of grazing on either SOC or root biomass.  The study did 

find significant effects of ‘Zone’ and ‘Marsh’, and the mixed effects model showed significant impacts 

of several environmental drivers.  This suggests that both micro- and macro-environmental variation 

are important drivers of SOC and root biomass.  Salt and tidal stress increases down the marsh and 

the vegetation community strongly reflects this stress gradient (Adam, 1990a).  As SOC and root 

biomass in the top layers of the soil depend strongly on the above-ground plant community 

composition (Table 4.3), it is understandable that there is a significant effect of zone on both SOC and 

root biomass.  However, this does not translate to the deeper layers of soil, which were influenced 

predominantly by the broader environmental setting of the marsh (Table 4.3).  Salt marshes are at 

the interface between terrestrial and marine environments (Adam, 1990b) and are subjected to 

greater variation in environmental conditions than many grazed terrestrial grasslands (Adam, 1990a).  

Environmental context determines external carbon inputs on salt marshes; for instance, 

sedimentation rates are linked to the local tidal regime (Stumpf, 1983).  Arguably, the impact of 

grazing on carbon in salt marshes is comparatively weak relative to the influence of sharp 

background environmental gradients (Grime, 1974).  Therefore, the assumption that CCS benefits 

from management of grazing is tenuous in naturally variable and disturbed systems, such as salt 

marshes.   

 

A strong coupling between above and below-ground processes was anticipated.  However, grazing 

has complex influences on system abiotic and biotic conditions that influence CCS.  As a result, an 

increase in stocking density can initiate compensatory responses by the vegetation community, such 

as increased root growth or carbon allocation to the roots, although only some studies have shown 

this (J. N. Holland et al., 1996; McNaughton, 1983; J. H. Richards, 1984; Tanentzap & Coomes, 2012; 

Wardle et al., 2004).  It is possible that these compensatory responses counter any impact of grazing 

on soil organic carbon stocks.  A recent meta-data analysis of grazer exclusion studies found that 

after a small reduction of soil carbon storing in the early years after grazer addition, soil carbon 

stocks recovered when study systems had sufficient time to develop compensatory responses to 

herbivory (Tanentzap & Coomes, 2012).  The study found that livestock grazing weakly stimulated 

root content in soils (Table 4.1; Figure 4.5).  This suggests that there is some compensation by the 

vegetation community, which may have mitigated any negative impact of grazing on carbon stocks.  

In salt marshes, above-ground plant adaptation to grazing occurs within a few years to a decade 

(Kuijper & Bakker, 2004a).  This study could not detect any mean effect across marshes and soil 
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depths of any carbon loss associated with the early periods of grazer introduction to sites.  The study 

sites had been grazed at the observed levels for a minimum of 20 years, so it is likely that soil carbon 

stocks would have fully recovered, or that grazer introduction might have occurred in soil layers that 

were older (deeper) than the ~100 year top layer we sampled.  The study does not dismiss that 

grazers might have diminished annual carbon storing at some point.  However, over long time scales 

this early impact on soil carbon stocks is likely to have been diluted into insignificance by decades of 

compensation by the whole plant community (Tanentzap & Coomes, 2012).   

 

The expectations of negative impacts on soil carbon by grazing were based on a combination of 

single-site studies on salt marshes that showed little variation in environmental context (Ford et al., 

2012; Yu & Chmura, 2010), meta-data analyses showing carbon loss from complete habitat loss 

(Chmura et al., 2003), and small-scale studies from terrestrial grasslands (J. N. Holland et al., 1996; 

Klumpp et al., 2009; Schuster, 1964).  None of these studies incorporated a full range of stocking 

densities, as was done here, nor did they contrast the influence of grazing with the influence of 

natural contextual variation.  The present study does not dismiss the idea that grazing can have an 

effect on carbon stocks; rather it shows that the effect of grazing is insufficiently strong to be 

detectable above the influence of environmental variation and vegetation compensation on the 

broad-scale.  The work demonstrates that a grazing management scheme involving multiple sites is 

unlikely to enhance CCS in a predictable manner.  There are, however, still many other reasons to 

manage grazing on salt marshes for conservation purposes (Norris et al., 1997), and to enhance other 

services they provide, such as meat production and coastal defense (Adam, 1990c; Moeller et al., 

2001). 

 

Finally, this study did not explore any fluxes of carbon, only carbon stocks.  Grazers may feasibly alter 

carbon fluxes but only have minimal impact on carbon stocks if both carbon inputs and losses are 

influenced at an equal rate.  For example, grazers reduce carbon inputs through vegetation litter (J. 

P. Bakker, 1985; Jensen, 1985; Kiehl et al., 1996) but this may be countered by the reduction of 

carbon loss through gas effluxes (Scanlon & Moore, 2000; Tanner & Mamaril, 1958; Winfrey & Ward, 

1983).  However, livestock contribute significantly to the total carbon emissions from a salt marsh 

through respiration, digestion, and faecal decomposition (Murray et al., 2001; Pinares-Patino et al., 

2007).  These emissions are only indirectly linked to carbon already assimilated in below-ground soil 

carbon stocks (Byrne, Kiely, & Leahy, 2007).  To fully understand the nature and magnitude of grazing 

effects on salt marsh carbon, a more holistic approach needs to be taken to incorporate the various 

pathways of carbon sequestration and loss in the salt marsh environment. 
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Chapter 5: Determining the Main Drivers of Carbon Sequestration on 

Un-grazed Salt Marshes 

 

5.1 Introduction 

It has been established that carbon sequestration into the soil carbon sink is a reliable means of 

trapping atmospheric carbon (Lal, 2004).  Highly productive natural systems, such as salt marshes, 

are a focal point for the management of carbon sequestration as they are generally thought to be 

long-term carbon sinks (Amundson, 2001; Chmura et al., 2003; Kalaugher, 2011; Laffoley & 

Grimsditch, 2009).  Models have shown, however, that an increase in global temperatures is likely to 

lead to a global loss of soil carbon back into the atmosphere through increased soil respiration 

(Jenkinson, Adams, & Wild, 1991; Kirschbaum, 1995; Schimel, Braswell, & Holland, 1994).  It is 

therefore important to understand the impacts of environmental variation on carbon sequestration 

rates in natural systems, and to establish current trends in carbon sequestration rates to predict 

what might happen to these natural carbon stocks in the future, considering potential changes in 

climate.   

 

There are two approaches to determine carbon sequestration over time: chronosequences measure 

soil carbon stocks in soils of different ages (i.e. different depths) to determine changes over time, 

using isotope analysis or deep core analysis.  Mass balance approaches or carbon budget models 

measure carbon cycling rates and can provide data on soil responses to environmental changes 

(Amundson, 2001).  In salt marshes, chronosequence approaches have been conducted using 

radioisotope analyses in shallow soils (up to 1 m depth) (DeLaune, Patrick, & Buresh, 1978; Fox, 

Johnson, Jones, Leah, & Copplestone, 1999; Marshall et al., 2007).  Deep core analyses do not work 

well on salt marshes, as it is difficult to determine the true depth of the salt marsh.  Since salt 

marshes develop over sand or mud flats rather than over bedrock and salt marsh formation can be 

patchy, it is difficult to tell where the mudflats ends and the salt marsh starts (Adam, 1990b; Allen, 

2000; Davy, 2002; van de Koppel et al., 2005).  The mass balance approach is perhaps more 

appropriate for salt marshes; but while some studies investigate one component of a carbon budget 

such as gas effluxes (Ford et al., 2012; Lipshultz, 1981; Magenheimer et al., 1996; Morris & Whiting, 

1986) or sediment accretion (Allen & Rae, 1988; Andersen, Svinth, & Prejrup, 2010; Bricker-Urso et 

al., 1989; Harrison & Bloom, 1977), no study has delivered a ‘total carbon budget’ of a salt marsh – 

investigating all of the carbon fluxes into and out of the soil carbon stocks –  or how the contributions 

of different carbon budget components might vary between seasons and locations.  Furthermore, no 

study has used a mass balance approach to predict future carbon stocks on salt marshes.   
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5.1.1 Salt marsh carbon fluxes 

The main inputs of carbon into salt marsh soil carbon stocks are degradation of organic matter 

(degraded plant litter and root matter) (Coûteaux, Bottner, & Berg, 1995; Sollins, Homann, & 

Caldwell, 1996; Trumbore, 1997) and marine sediment trapped by plants (Connor et al., 2001; Flessa 

et al., 1977; Stumpf, 1983), while the main outputs of carbon are soil respiration and erosion (Morris 

& Whiting, 1986) (Figure 5.1).  These carbon fluxes are all influenced by, or directly related to other 

carbon stocks and flows in the carbon budget (Figure 5.1).  Litter production and root biomass are 

directly linked to plant productivity (Facelli & Pickett, 1991; Valiela et al., 1985), which in turn is 

driven by the plant community composition (Naeem, Hakansson, Lawton, Crawley, & Thompson, 

1996; Wardle et al., 2004) and soil characteristics such as soil compaction, nutrient availability, and 

soil moisture (Bedford, Walbridge, & Aldous, 1999; Davidson, 1969; Gomez, Powers, Singer, & 

Horwath, 2002).  The degradation of plant litter has been extensively studied in the literature 

(Coûteaux et al., 1995; Giese et al., 2009; Olofsson & Oksanen, 2002; Valiela et al., 1985), however, 

the degradation of root matter has not been studied to the same extent.  Litter degradation has two 

components: (1) the breakdown (mineralization and humification) of cellulose, lignin and other 

compounds by a succession of microorganisms; (2) the leaching downward in the soil of soluble 

compounds (Coûteaux et al., 1995).  Decomposition is impacted by soil temperature; enzyme and 

metabolic activity increase with increasing temperature and rapidly falls if the temperature rises 

above a critical level (Coûteaux et al., 1995).  Metabolic activity also increases with soil moisture until 

the soil becomes anaerobic, at which point the decomposition of biological compounds is reduced or 

completely suppressed (Coûteaux et al., 1995; Freeman et al., 2001; Freeman, Ostle, Fenner, & Kang, 

2004). 

 

On an accreting salt marsh, sedimentation can be a major input of carbon, particularly if there is a 

high plant biomass to trap incoming sediment (Allen & Rae, 1988; Huckle, Marrs, & Potter, 2004; F. J. 

Richards, 1934; Shi, 1992; Stumpf, 1983).  When erosion is greater than accretion, large amounts of 

carbon can be lost from a salt marsh (Cooper, Cooper, & Burd, 2001; Greensmith & Tucker, 1965; 

Ravens, Thomas, Roberts, & Santchi, 2009).  The accretion/erosion rate on a salt marsh depends on 

the environmental setting of the marsh where wave exposure, marsh size, marsh geomorphology 

and tidal range are significant drivers (Adam, 1990b; Allen, 2000).  Extreme events such as large 

storms also play a significant role in the accretion or erosion of a marsh (Boorman, 2003), although 

they are very difficult to predict (Elsner & Kocher, 2000; Hecht, 2007; G. J. Holland & Webster, 2007; 

Kim, Cairns, & Bartholdy, 2011; Schuerch, Rapaglia, Liebetrau, Vafeidis, & Reise, 2012), so large scale 

erosion can by hard to quantify.  A large-scale erosion event (the loss of large blocks of soil or the 

movement of large creeks) would be a mass export of carbon from the salt marsh environment to 
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the marine environment, which is considered another long-term carbon sink, so although carbon is 

lost from the soil carbon sink, it is still considered to be sequestered (Lal, 2008).   

 

Figure 5.1 | A salt marsh carbon budget model for an un-grazed salt marsh.  The main carbon stocks (solid outlines) and 

fluxes (dashed outlines) on a salt marsh and the links between them.  The main inputs of carbon into the soil carbon stock 

are organic matter (litter and root material) and sedimentation, and the main output of carbon from the soil carbon stock is 

heterotrophic respiration (Coûteaux et al., 1995; Morris & Whiting, 1986; Sollins et al., 1996; Stumpf, 1983).   

 

Gas efflux can be a significant output of carbon from salt marsh soils (Ford et al., 2012; Magenheimer 

et al., 1996).  Methane (CH4) and carbon dioxide (CO2) are the most significant gases produced by 

natural systems (Dalal & Allen, 2008) and the mean methane emissions in the northern hemisphere 

are 5-6% higher than in the southern hemisphere due to the 3 times larger methane source strength 

in the northern hemisphere (Lelieveld et al., 1997).  Methane is produced in many natural wetlands 

due to anaerobic conditions, which facilitate for methanogenic microorganisms that are capable of 

producing methane gas (Lai, 2009).  In salt marshes, abundant sulphates brought in by the tide can 

inhibit methane production (Winfrey & Ward, 1983), so methane emissions are likely to be minimal.  

Carbon dioxide effluxes are derived from root respiration (autotrophic respiration) and the aerobic 

decomposition of soil carbon by microorganisms (heterotrophic respiration) (Pendall et al., 2004).  

Carbon dioxide produced through autotrophic respiration comes directly from the roots of plants and 

the organisms directly associated with the rhizosphere and is therefore not associated with the soil 
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carbon stock (Bond-Lamberty, Wang, & Gower, 2004; Hanson, Edwards, Garten, & Andrews, 2000).  

Carbon dioxide produced through heterotrophic respiration comes from the soil microbial 

communities, which are actively breaking down the soil carbon stock and are therefore directly 

contributing to the loss of carbon through respiration (Bond-Lamberty et al., 2004; Hanson et al., 

2000).  Soil respiration varies with soil temperature and soil moisture, as well as the nature of the 

carbon pool, which has active, slow-turnover and passive components (Amundson, 2001; Pendall et 

al., 2004); the active carbon pool receives inputs from the roots and plant litter and has a turnover 

time of up to a few years, the slow turnover soil carbon pool receives inputs from the active pool and 

has a turn over time of decades or centuries, and the passive carbon pool consists of very stable 

organo-mineral complexes with a turn over time of millennia (Amundson, 2001; Pendall et al., 2004). 

 

5.1.2 The effects of seasonality 

It is assumed that salt marsh carbon accumulation by high plant productivity and sedimentation 

outweigh carbon losses through erosion and gas effluxes, and therefore salt marshes generally 

accumulate carbon (Chmura, 2009; Chmura et al., 2003; Kalaugher, 2011).  However, the anaerobic 

conditions that inhibit carbon dioxide production (Pendall et al., 2004) may also slow decomposition 

rates and therefore reduce the input of carbon through decomposition of organic matter (Coûteaux 

et al., 1995).  Soil conditions may vary between seasons and lead to seasonal fluctuations in carbon 

flux rates.  In the winter months, it is likely that soil moisture will be high, soil temperatures will be 

low and anaerobic conditions will dominate.  Therefore, gas emissions will be lower (Pendall et al., 

2004), and degradation rates of some biological components, such as lignin, are likely to be slower 

during winter than during summer (Coûteaux et al., 1995; Freeman et al., 2004).  Storms, and 

affiliated erosion events, are more likely during autumn and winter than during spring and summer 

(Hurrell & Deser, 2009).  Because both output of carbon through gas efflux and input of carbon 

through organic matter follow the same pattern (low in winter, high in summer), the overall carbon 

sequestration rate could feasibly remain constant over the year.  Nevertheless, there may still be a 

significant difference between winter and summer months.  This seasonal change may not be 

important if looking just at soil carbon stocks, but if a carbon flux was being used as a proxy for total 

soil carbon stock estimations or predictions, seasonality may result in significant errors. 

 

5.1.3 Study aims 

The overall aim of this chapter was to determine which of the main carbon fluxes best determines 

the soil carbon stock on an un-grazed salt marsh by constructing a carbon budget model for an un-

grazed salt marsh using annual averages of several carbon fluxes calculated from field measurements 

taken over the course of 1 year.  Organic matter degradation and sedimentation were expected to be 

large inputs of carbon into the soil carbon stocks, while gas efflux was expected to be a small output 
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of carbon.  As the study area was along the west coast of the UK, where salt marshes are generally 

accreting (Adam, 1990b; Boorman, 2003) sedimentation on the mid marsh was expected to be 

greatest in the winter and autumn months when storm surges were more likely.  Degradation of 

organic matter was expected to be lowest in winter when anaerobic conditions were likely to prevail 

and input of fresh organic matter was likely to be minimal.  Gas effluxes were expected to be 

greatest in the summer when aerobic conditions and warmer soil temperatures would facilitate 

greater CO2 production.   

 

Un-grazed salt marshes were used to investigate the role of environmental drivers and contextual 

setting on natural carbon sequestration rates in a system with minimal anthropogenic disturbance.  

The impacts of several environmental and abiotic soil parameters on the carbon stocks and fluxes 

were measured each month to investigate the effect of seasonal changes and environmental 

variability on the carbon stocks and fluxes.  Soil moisture and soil temperature were expected to be 

significant drivers of organic matter degradation and gas efflux.  Marsh setting, tidal range and wave 

exposure were expected to be significant drivers of carbon accretion rates.  Carbon stocks and fluxes 

were measured monthly and seasonally across three un-grazed salt marshes along the west coast of 

Wales and north-west England (Chapter 2) over the course of 13 months. 
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5.2 Materials and Methods 

 

5.2.1 Empirical study 

 

5.2.1.1 Site selection, determination of zones and quadrat selection: Within the study area, three un-

grazed marshes were selected for sampling empirical data (carbon parameters and environmental 

variables) (Chapter 2).  The three sites were Y Foryd, Malltraeth and Crossens (see Chapter 2 for full 

site details).  These sites were selected from the nine un-grazed marshes in the study area as they 

represented the three main community types of un-grazed marshes in the area (Chapter 3), and 

exhibited a wide range of sediment and tidal regimes.  Y Foryd, was chosen for a more detailed 

analysis of the salt marsh carbon budget.  Y Foryd was an un-grazed marsh that was easily accessible 

from Bangor, Gwynedd.  Soil redox potential and gas emissions were measured on Y Foryd at high 

frequency (4 measurements per month).  At other sites, measurements were only taken seasonally 

due to logistical constraints (travel time, sample processing time, and difficulty of transporting 

equipment over long distances and difficult terrain).  Sediment deposition patterns over a tidal cycle, 

autotrophic-heterotrophic respiration ratios, and litter degradation rates were only measured at Y 

Foryd as time constraints made these measurements impossible across all sites.  The study focused 

on the mid marsh exclusively.  The mid marsh was considered representative of the whole marsh; it 

was not subject to the extreme wave and tidal disturbance of the pioneer zone or the terrestrial 

influences of the high marsh, yet it was still subject to regular tidal flooding and it is colonized by 

halophytic plants from across all the marsh zones (Adam, 1990b).  Observations per site were made 

in the same four 2 x 2 metre ‘below-ground plots’ used in the broad-scale study (Chapters 2 & 4). 

 

5.2.2 Carbon response variables 

Samples were taken in four plots per sample site either at monthly, seasonal (every 3 months) or 

annual (one-off measurement) frequency between November 2011 and November 2012.  Sampling 

frequency depended on growth and degradation rates, ease of sampling technique, and logistical 

constraints (ability to take field equipment to the plots).  All carbon stocks were converted into 

metric tonnes of carbon per hectare (t (C) ha-1) and all rates were converted into metric tonnes of 

carbon per hectare per year (t (C) ha-1 yr-1).  The following were sampled. 

 

5.2.2.1 Above-ground live and litter biomass:  Above-ground biomass and litter biomass were 

measured using a 25 x 50cm quadrat placed in a representative area of each plot.  Any vegetation 

litter within the 25 x 50cm quadrat was collected and put in a labelled plastic bag.  Above-ground 

biomass and litter biomass were sampled in a 25 x 50cm quadrat placed in a representative area of 

each plot.  Vegetation litter was collected and bagged before the living vegetation (above-ground 
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biomass) was cut down to the soil.  Samples were dried in the laboratory at 80°C for 3 days, and 

weighed.  The carbon content of the above-ground vegetation was derived using loss on ignition 

techniques based on Ball (1964): dry samples were weighed, ashed at 550°C for 5 hours and weighed 

again.  The organic content was calculated by subtracting the ashed weight from the dry weight and 

converted to organic carbon content using using a conversion formula devised by Craft et al. (1991): 

 
Soil Organic Carbon Concentration = (0.4 × OMC) + (0.0025 × OMC2) 

 

This formula was used because Craft found that a quadratic equation best described the relationship 

between organic carbon and organic matter, rather than the linear relationship that is used in other 

literature. 

 

5.2.2.2 Above-ground plant growth rates:  Above-ground plant growth was measured throughout 

the 2012 growing season (March to September).  Vegetation was clipped and re-clipped from two 25 

x 50cm quadrats in each plot; one for seasonal growth measurements and one for overall growth 

measurements.  The overall growth quadrats were initially clipped only in February, before the start 

of the growing season, and re-clipped in September, at the end of the growing season.  This was to 

account for the production rates of species sensitive to clipping, as well as total community growth 

rates.  The seasonal measurements were re-clipped every three months throughout the growing 

season (March, June and September); vegetation was cut down to the soil.  This was to account for 

seasonal changes in community growth rates.  The differences between each seasonal clipping were 

used to calculate an average growth rate per month during the growing season, and the differences 

between overall growth quadrats were used as the annual growth rate. 

 

5.2.2.3 Litter production rates: In the literature, litter production rates are sampled using litter traps 

placed on the marsh surface and emptied weekly to prevent litter decay (V. Bouchard & Lefeuvre, 

2000).  Weekly sampling was beyond the scope of this study due the distance between sites.  

Instead, litter production rates were predicted from the above-ground live biomass based on litter 

fall rates calculated by V. Bouchard and Lefeuvre (2000): it was assumed that 55% of the above-

ground live plant biomass per year would fall as litter and approximately 15% of the live plant 

biomass per year would be washed off the marsh as detritus. 
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Figure 5.2 | The monthly and seasonal measurements.  a) The root growth core before re-sampling.  The core has had all 

root matter removed and the remaining sediment was placed back into the core hole to re-create a natural and realistic 

substrate for new root growth.  b) Inserting the root bags into the sidewall of a 20cm deep trench.  The soil clods were then 

placed back into the trench and the root bags were sampled seasonally.  c) Using the EGM-4 infrared gas analyser to 

measure soil carbon dioxide flux rates.  d) Measuring monthly accretion rates using two permanently placed wooden posts 

and a 2m garden pole marked at 10cm increments.  The distance from the pole to the soil surface was measured at each 

white marker.   

 

5.2.2.4 Root biomass: A 25cm deep, 4.6cm diameter soil core was taken from each plot in October 

2011 using a split tube corer based on a smaller model by Eijkelkamp.  The core was divided into 5cm 
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depth segments down the entire length of the core.  Live roots were removed from the core 

segments by hand dry weights were expressed per volume of soil.  Root carbon content was derived 

after loss on ignition at 550°C for 5 hours using techniques based on Ball (1964).  The organic content 

was the ashed weight subtracted from the dry weight.   

 

5.2.2.5 Root growth rates:  Root growth rates were measured in each plot seasonally (every 3 

months) in January, April, July and October 2012 using methods based on in-growth cores in 

Steingrobe, Schmid, and Claassen (2000).  A 15cm deep 4.6cm diameter sediment core was taken in 

each plot and all root material was removed.  Root-free sediment was then replaced into the hole 

left by the corer and marked (Figure 5.2a).  Although this method was time consuming, this provided 

a natural and realistic substrate for new root growth.  The core was then re-sampled after 3 months 

to assess the root growth rate over the season.  The core was washed free of sediment over a 0.5mm 

meshed metal sieve.  Root matter was then dried at 80°C for 3 days and the dry weights were 

recorded.  

 

5.2.2.6 Litter and root degradation:  Litter and root degradation rates were sampled based on litter 

bag methods in Olofsson and Oksanen (2002).  Litter material was collected from a strand line on 

Warton Bank marsh on the Ribble Estuary, and root material was collected from the high marsh zone 

on Malltraeth marsh in August 2011.  The same litter and root material was used on each marsh to 

enable reliable comparisons between marshes.  Both root and litter material was washed free of 

sediment and dried at 80°C for 5 days.  Litter and root samples were placed in 5mm mesh, plastic 

Netlon bird feeder bags.  The dry weight of each sample was recorded on waterproof paper and 

placed in the sample bag with the sample.  Eight root bags were then buried at each plot in October 

2011 by digging a 20cm deep trench and using a knife to insert the sample bag into a narrow hole in 

the side wall of the trench approximately 10cm from the top of the trench (Figure 5.2b).  The dry 

weight and position of each sample was recorded as the samples were buried.  The ends of the 

sample bags were then left protruding from the trench wall and soil clods were returned to the 

trench to cover the bags fully.  Litter bags were only buried on Y Foryd due to logistical restraints.  To 

account for potential loss of litter and root matter, 20 dummy root bags and ten dummy litter bags 

were buried in using the method described above.  These bags were then immediately removed and 

the average percent weight loss was calculated; this was used to account for any matter lost while 

deploying and retrieving the experimental litter and root bags.  Twelve litter bags and twelve root 

bags were buried at each plot on Y Foryd and eight root bags were buried per marsh on the other 

marsh sites.  Root and litter bags were retrieved seasonally in January, April, July and October 2012; 

three litter bags and three root bags were retrieved per plot on Y Foryd, and two root bags were 

retrieved from each plot from the other marsh sites.  The root and litter material was washed free of 
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sediment and new roots that had grown into the samples were removed.  The samples were then 

dried at 80°C for 3 days and the dry weights were recorded and compared to the original dry weights 

to determine seasonal rates of decomposition. 

 

5.2.2.7 Carbon dioxide emissions and heterotrophic respiration:  Total carbon dioxide emission rates 

from the soil were measured at each plot using an EGM-4 infra red gas analyser (PP-Systems, 2010) 

(Figure 5.2c).  Measurements were taken monthly at Y Foryd and seasonally (February, May, August 

and November 2012) on the other study sites.  The total carbon dioxide emitted from the soil surface 

is a combination of carbon dioxide derived from both autotrophic respiration and heterotrophic 

respiration (Bond-Lamberty et al., 2004).  The autotrophic-heterotrophic respiration ratio was 

determined in the mid marsh zone on Y Foryd in July 2012 based on Carbone and Trumbore (2007).  

A paired experimental design was used to test the difference between carbon dioxide emissions in 

ten 20 x 20cm clipped and ten 20 x 20cm un-clipped plots.  Plots were clipped one week prior to the 

experiment to avoid any immediate disturbance effects of the clipping.  The EGM-4 was used to 

measure carbon dioxide emission rates from both clipped and un-clipped plots and the soil 

temperature and moisture were measured within each plot.  From the total and heterotrophic gas 

measurements, carbon dioxide produced from autotrophic respiration was estimated and the 

percentage contribution of heterotrophic and autotrophic respiration to the total soil carbon dioxide 

efflux was calculated. 

 

5.2.2.8 Accretion rate:  Accretion rates were sampled using the a method based on sediment poles 

used in Stock (2011).  Two permanent wooden posts were inserted into the marsh approximately 2m 

apart at each plot in October 2011 and the height of each post was recorded.  Sediment accretion 

rates were the measured monthly at each plot on each marsh using a 2.2m garden pole marked at 

10cm increments (Figure 5.2d).  The distance between the pole and the marsh surface was measured 

at each marker along the pole except the two markers closest to each post; this was to avoid any 

micro sedimentation patterns caused by the posts.  The accretion rate readings were compared with 

the base line data taken in November 2011 to determine the annual accretion rate and monthly 

readings were used to determine monthly and seasonal variations in accretion rates.  Accretion rates 

were converted from centimeters per year to grams per square centimetre using bulk density 

measurements: 

Accretion rate (g cm-3 yr-3) = Accretion rate (cm yr-1) × Bulk density (g (soil) cm-3) 
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This was then converted in to tones of sediment per hectare per year by multiplying by 100, and 

organic carbon content was calculated from loss on ignition analysis of suspended sediment (see 

5.2.2.9). 

 

5.2.2.9 Whole-marsh particulate organic matter fluxes: Salt marshes along the west coast of the UK 

are generally accreting and it is therefore assumed that small scale erosion during large tidal cycles is 

outweighed by sediment deposition (Adam, 1990b; Boorman, 2003).  This assumption was tested on 

Y Foryd during an equinoctial spring tide in September 2012.  It is difficult to test for small-scale 

erosion or sediment movement within each zone as it is likely that particulate organic matter (POM) 

moves between zones before leaving the marsh (Stock, 2011; Stumpf, 1983).  As such, a whole-marsh 

approach was more insightful: measurements of suspended matter in the water column before it 

reached the marsh were compared to measurements of suspended matter in the water column as it 

left the marsh to determine if there was a net gain (erosion) or loss (sedimentation) of sediment 

from the water column as the water passed over the marsh.  This was refined by measuring 

suspended matter in the water column over each zone to determine where on the marsh suspended 

matter was deposited or picked up.  The suspended sediment in the water column was measured on 

the mudflat (before and after it passed over the marsh) and on each marsh zone both on the 

incoming tide and the outgoing tide.  Water samples were collected in plastic bottles attached to the 

end of a 2m pole to reduce disturbance of the marsh surface near the sample collection point.  Five 

water samples were collected above each of the mudflat and the four marsh zones (pioneer, low, 

mid and high) on the incoming tide as it flooded the marsh, and a further five water samples were 

collected from each zone and from the mudflat on the ebb tide.  In the laboratory, the water samples 

were filtered through pre-sterilized filter papers of a known weight to collect any suspended matter.  

The samples were then dried at 105°C for three hours and weighed to determine the weight of 

suspended matter.  The samples were then ashed at 550°C for three hours to remove any organic 

matter, and weighed again to determine the weight of organic matter in each sample.  The weight of 

organic matter was then converted into organic carbon content using the formula from Craft et al. 

(1991): 

 

Sample Organic Carbon Content = (0.4 × Organic Matter) + (0.0025 × Organic Matter2) 

 

A 2-way ANOVA (Factor: tide, with two levels: flood and ebb; Factor: zone, with five levels: mudflat, 

pioneer, low, mid and high) with post hoc Tukey HSD tests was used to determine the difference in 

suspended particulate organic carbon (POC) between the flooding and the ebbing tides.  If 

suspended POC was greater on the flow tide than the ebb tide, it was assumed that accretion was 
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occurring, and if suspended POC was greater on the ebb tide than the flow tide, it was assumed that 

erosion was occurring.   

 

To determine sediment deposition rates in the mid marsh relative to the other marsh zones, the 

pattern of sedimentation across the marsh was also measured.  Prior to tidal flooding, sediment 

traps were laid out in the mud flat and within each zone.  The traps were laid out nearby the sample 

plots from chapters 3 and 4 to ensure they were in a representative area of each zone.  Pre-weighed, 

labeled filter papers were used to trap any sediment deposited on the marsh surface; the filter 

papers were held off the marsh surface using an upside down petri dish and held in place using tent 

pegs (Figure 5.3).  Nine sediment traps were deployed on the mudflat and in each marsh zone in a 3 x 

3 grid covering an approximately 3 x 3m area.  The sediment traps were left over the course of one 

spring equinox tide and re-sampled at low tide.  In the laboratory, the filter papers were dried at 

105°c for 24 hours and re-weighed to determine the weight of sediment deposited by area within 

each zone.  A one-way ANOVA (Factor: ‘Zone’ with five levels: mudflat, pioneer, low, mid and high) 

with post hoc Tukey HSD tests was used to determine the difference in sediment deposition between 

zones. 

 

 
 

Figure 5.3 | The sediment trap.  Filter papers were used to trap any sediment deposited on the marsh surface.  The filter 

papers were held off the marsh surface using an upside down petri dish and held in place using tent pegs.   

 

5.2.2.10 Soil organic carbon:  A 25 x 4.6cm soil core was taken from each plot in November 2011 

using a split tube corer based on a smaller model by Eijkelkamp.  The core was divided into 5cm 

depth segments down the entire length of the core.  Each segment was homogenised, root material 

was removed and an approximately ten gram sample was used to determine the soil organic carbon 

content by using loss on ignition techniques described in Ball (1964).  The percentage soil organic 

matter content was calculated using methods outlined in the Soils Manual of the Countryside Survey 

(Emmet et al., 2008):  

 

Organic Matter Concentration (OMC) = 100 ×  (Dry Soil Weight – Combusted Soil Weight) 
                (Dry Soil Weight – Crucible Weight) 
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The percentage of soil organic carbon (soil organic carbon concentration) was estimated using a 

conversion formula (Craft et al., 1991): 

 

Soil Organic Carbon Concentration = (0.4 × OMC) + 0.0025 × OMC2) 

 

This was then converted into soil organic carbon (SOC) per volume (soil organic carbon density) using 

bulk density figures from summer 2011: 

 

SOC (g cm-3) = Bulk Density × Soil Organic Carbon Concentration 
             100 

 

To determine the actual change in soil organic carbon over the course of a year, a second 25 x 4.6cm 

soil core was taken from each plot on each marsh in November 2012 and soil organic carbon content 

was calculated using the above technique.   

 

5.2.2.11 Soil inorganic carbon and nitrogen content: A sub-set of soil samples was used to 

determine the total carbon and nitrogen content of the soil (CN analysis).  Soil nitrogen is an 

important driver of plant productivity and may explain some patterns in plant growth rates.  Soil 

samples from a depth of 5-10 cm were taken from the same core as the organic carbon samples, and 

soil samples from 0-5, 10-15, 15-20 and 20-25 cm depths were taken from one representative core 

per marsh.  The soil samples were dried at 105°C for 16 hours and ground up using a pestle and 

mortar.  Between 0.1 and 0.2 grams of soil was used for the CN analysis.  Combustion CN analysis 

was run using a Leco Instruments, Truspec CN analyser; carbon content was detected using infrared 

sensors, and nitrogen content was detected using thermal conductivity.  EDTA and blank standards 

were run alongside the sample soils.  Soil inorganic carbon content was then calculated by 

subtracting the soil organic carbon content from the total carbon content of each sample.   

 

5.2.2.12 Carbon mineralization: Carbon mineralization is the conversion of organic carbon to 

inorganic carbon and represents carbon moving from the active carbon pool to the slow turn over 

carbon pool (Pendall et al. 2004).  This was not directly measured in this study but a conservative 

estimate of carbon mineralization rate of 10% of soil organic stocks was used as a rate constant 

based on measurements by Howes, Dacey, and Teal (1985). 

 

 

5.2.3 Abiotic contextual variables 

In order to investigate the influence of soil conditions and environmental variation on the carbon 

budget, a series of abiotic factors were measured monthly or seasonally at each plot on each marsh.  
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These abiotic variables, collectively, were assumed to be the predominant variables that affect the 

measured carbon fluxes, as outlined in the introduction. 

 

5.2.3.1 Soil temperature:  A digital thermometer was used to measure soil temperature monthly at a 

depth of 10cm at one point per plot per marsh.  In addition air temperature was recorded at each 

site once a month.   

 

5.2.3.2 Soil moisture and water table depth:  A theta probe was used to measure surface soil 

moisture content monthly at each plot per marsh.  As theta probes measure moisture using electrical 

resistance, saline soils can cause inaccuracies in soil moisture readings (Miller & Gaskin, 1999).  For 

this reason, water table depth was also recorded as proxy for soil water content.  Water table depth 

was recorded using water-permeable dip wells (50 cm deep, 5 cm diameter, water-porous PVC cores) 

inserted into the marsh to a depth of approximately 45 cm.   

 

5.2.3.3 Soil pH and salinity:  Soil samples were taken monthly for pH and salinity analyses from a 

depth of 7-10 cm using a 2 cm diameter half corer.  In the laboratory, soil pH was measured within 24 

hours of sampling using an IQ soil pH meter.  Soil salinity was measured using ten gram of each 

homogenized soil sample.  The samples were diluted to a 1 to 2.5 ratio using 10g of each sample with 

25ml of deionised water; samples were then well mixed and allowed to settle.  The electrical 

conductivity of the supernatant of each sample and the temperature at time of sampling were then 

measured using a Jenway Conductivity Meter 4320 and the conductivity of each sample was 

calculated using the dilution ratio.  Salinity was then calculated as practical salinity units (S) (Lewis, 

1980) using an online calculator (Tomczak, 2000).   

 

5.2.3.4 Soil redox: To determine potential methane production levels from soil microbial 

communities, an Eijkelkamp Ag 3 mol/l KCl combination glass electrode was used to measure soil 

redox (anaerobic state) at each plot monthly at Y Foryd and seasonally (November 2011, February, 

May, August and November 2012) on other marsh sites.  Measurements were taken at depths of 2.5, 

7.5, 12.5, 17.5, 22.5 and 27.5 cm using a 2 cm diameter half corer.  Soil temperature readings were 

taken at each depth alongside each redox reading.  The standard measurement of redox (mV) is that 

measured by a standard hydrogen electrode (Eh) (Eijkelkamp, 2009).  Standard hydrogen electrodes 

are difficult to use in the field, and several alternative redox electrodes can be used; however, field 

readings from these alternative electrodes must be converted back to standard readings (mV) 

(Eijkelkamp, 2009).  This study used an Ag 3 mol/l KCl electrode (Em) so a conversion factor (Eref) 

was used to convert field redox readings (Em) to standard redox measurements: 
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Standard measurement (Eh) = Field measurement (Em) + Eref 

 

Eref depends on the reference electrode used in the field and the soil temperature at the time of the 

field reading (Eijkelkamp, 2009) (Table 5.1).   

 
Table 5.1 | Eref values for redox conversion. Eref values for different temperatures for the Ag 3 mol/l KCl reference 

electrode. 

Temperature (°C) Eref 

0 224 

5 221 

10 217 

15 215 

20 211 

25 207 

30 200 

 

Once calculated, the standard redox potential measurement (Eh) was used to determine the 

anaerobic state of the soil.  Below 250 mV, soil begins to become anaerobic as nitrogen is reduced 

(Table 5.2) (Mitsch & Gosselink, 2000).  The redox potential has to reach less than -200mV before 

carbon dioxide can be reduced to methane (Table 5.2) (Mitsch & Gosselink, 2000). 

 
Table 5.2 | Oxidised and reduced forms of elements.  The oxidised and reduced forms for elements in the anaerobic chain 

against the standard redox potential (mV). Adapted from Mitsch and Gosselink (2000). 

Element Oxidised Form Reduced Form 

Redox Potential 

Required for 

Transformation (mV) 

Oxygen O2 (Oxygen) H2O (Water) +400 → +600 

Nitrogen NO3
-
 (Nitrate) N2O, N2, NH4

+ (Nitrous Oxide, 

Nitrogen, Ammonium) 

+225 → +250 

Manganese Mn4+ (Manganic) Mn2+ (Manganous) +100 → +225 

Iron Fe3+ (Ferric) Fe2+ (Ferrous) -100 → +100 

Sulphur SO4
2- (Sulphate) S2- (Sulphide) -200 → -100 

Carbon CO2 (Carbon dioxide) CH4 (Methane) Below -200 

 

 

5.2.3.5 Daily tidal height:  Predicted times and heights of low and high tides were derived from 

Tideplotter (BelfieldSoftware, 2011).  The tidal height at the time of sampling, the time and height of 

the last high tide, and the date and height of the last spring tide were also recorded monthly for each 

site. 

 

5.2.3.6 Daily weather: Observations of air temperature, wind speed, atmospheric pressure and rain 

fall near each site were derived from local weather stations using the Weather Underground 
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database (Steremberg, 2010).  The weather conditions and air temperature at each site were also 

recorded during monthly sampling. 

 

5.2.3.7 Broader contextual environmental variables:  A series of contextual environmental variables 

were analysed as indicators of contextual drivers of salt marsh productivity and carbon storing 

processes (Chapter 2) including tidal range, marsh geomorphology and wave fetch (exposure). 

 

5.2.4 Statistical analysis 

The following analyses were run to determine which factors were the main drivers of soil carbon 

stocks in an un-grazed salt marsh: 

 

5.2.4.1 Determining the relative differences between carbon fluxes: Kruskal-Wallis Multiple 

Comparisons tests were used to evaluate the relative differences between salt marsh carbon input 

(litter degradation, root degradation and sediment accretion) and output (heterotrophic respiration) 

fluxes.  The post hoc comparisons and the group medians and interquartile ranges indicated the 

comparative size of each carbon flux.  From this, the relative size of carbon inputs could be compared 

to the relative size of carbon outputs to indicate whether salt marshes were likely to be long-term 

carbon sinks or sources.  Analyses were run separately for the annual dataset and for each season in 

turn to determine seasonal differences in carbon flux relationships.  Kruskal-Wallis multiple 

comparisons tests were used in place of ANOVA because some of the data (litter degradation, 

sediment accretion and heterotrophic respiration) did not meet ANOVA test assumptions.   

 

5.2.4.2 Determining carbon flux influences on empirical soil carbon stocks:  A series of distance-

based linear models (DistLM’s) and regression analyses were used to determine the possible 

relationships between empirically measured carbon fluxes with empirically measured soil carbon 

stocks.  Analyses were run for both soil organic carbon and soil inorganic carbon over three depth 

profiles (0-5 cm, 0-10 cm and 0-25 cm).  Based on regional records of sediment accretion rates, the 

top 6-15 cm of soil was assumed to represent approximately the last 30 years of salt marsh accretion 

(Appendix 3: Accretion Rates in Other Studies).  As with the previous study (Chapter 4), the top soil 

depth profile (0-5 cm) was regarded to be indicative of the present flux of material from above-

ground biomass (e.g. litter) to the below-ground carbon pool, the middle depth profile (0-10 cm) 

included most of the root biomass and was used to analyse more long-term processes relating to soil 

carbon stocks, and the deepest profile (0-25 cm) was considered an integrator of the broader 

contextual influences.  
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5.2.4.3 Carbon flux relations with contextual variables: A series of mixed effects models were run to 

determine which environmental variables and abiotic soil variables were the best predictors of soil 

carbon stock.  ANOVA’s with post hoc Tukey HSD tests, and Kruskal-Wallis Multiple Comparisons 

tests were used to test the effect for season (4 levels) on the environmental and abiotic soil variables 

to determine the variation of these parameters over the seasons.  These analyses were done on 

empirical data collected over the year-long study period.     

 

5.2.4.4 Constructing a carbon budget: A carbon budget was constructed using modeling software to 

predict possible future changes in carbon stocks and to determine the validity of the annual 

measurements of carbon stocks and fluxes.  The annual means ± standard errors were calculated for 

each carbon flux and stock component.  A carbon budget model based on the mean values was then 

constructed using the Simile v5.96 program.  The model was constructed using the carbon stocks and 

fluxes shown in Figure 5.1.  In this case, the stocks were carbon stocks such as soil carbon stock, plant 

biomass or root biomass, and the flows were carbon fluxes such as litter degradation, plant growth 

rates and soil respiration.  The stocks were used as an initial starting figure for the model (i.e. year 0), 

and the fluxes indicated changes to these stocks.  For example the above-ground biomass stock may 

start at 1.9 t C ha-1 in year 0.  The plant growth flux would add 2.4 t C ha-1 y-1, and the litter 

production flux would take away 1.1 t C ha-1 yr-1, so after year 1, the above-ground biomass stock 

would be 2.4-1.9+1.1 = 3.2 t C ha-1.  The Simile uses a graphical interface to build up a model diagram 

consisting of stocks and flows, and can calculate future stocks given the relationships between all the 

fluxes and stocks in the diagram.  To determine the confidence limits for the mean carbon stock 

predictions, the model was re-run to determine the lowest possible carbon stock predictions 

according to the data means (𝑥̅ – 1 SE for inputs; 𝑥̅ + 1 SE for outputs) and the highest possible 

carbon stock predictions according to the data means (𝑥̅ + 1 SE for inputs; 𝑥̅ − 1 SE for outputs).  The 

model was then run for a 1-year, and a 50-year time scale to predict future carbon stocks on an un-

grazed salt marsh. 

 

5.2.4.5 Comparing model predictions to empirical data:  The results from the modeling were 

compared to empirical data taken from the field to test the predicting power of the carbon budget 

model.  A soil core from each experimental plot was collected in November 2011; the plots were 

then re-sampled a year later in 2012.  The soil organic carbon content for each core was calculated 

using loss on ignition techniques and a paired t-test was used to determine the in situ changes in soil 

carbon stocks over the course of one year.  The model created in Simile was then run for one year 

and compared to the empirical soil carbon data results from the paired T-test on the two soil core 

samples.   
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5.3 Results 

 

5.3.1 The empirical carbon budget  

Figure 5.4 shows the patterns of the measured carbon fluxes over time and the related change in 

carbon stock over the course of one year for each site.  There were significant differences in fluxes 

over the seasons.  Of the main carbon fluxes, sedimentation, soil respiration and root growth 

significantly varied over the seasons (Table 5.3).  Sediment accretion was significantly highest in the 

winter and significantly lowest in the autumn when the marshes generally eroded (Kruskal-Wallis 

multiple comparisons: Table 5.3).  Soil respiration was significantly higher in the summer than in the 

winter and significantly lower in the autumn than in the spring (Table 5.3).  Root growth was 

significantly lower in the winter than in the summer and autumn (Table 5.3). 

 

Table 5.3 | Differences between seasons for the main carbon fluxes. Results of Kruskal-Wallis multiple comparisons tests 

for the main carbon fluxes comparing between seasons. Emboldened p-values indicate a significant effect.  Medians (𝑥̃) and 

Interquartile Range (IQR) are shown by season for each predictor variable.  Significant differences between variables within 

each season are indicated by superscript numbers: variables that share a number are significantly different.  Units for each 

variable are tons of carbon per hectare per year. 

Carbon 
Flux 

Kruskal-Wallis Winter  Spring  Summer  Autumn 

df H p    𝒙 IQR     𝒙 IQR     𝒙 IQR     𝒙 IQR  

Litter  

Degradation 
3 0.14 0.987 0.00 0.20  0.00 0.24  0.00 0.24  0.00 0.27  

Root  

Degradation 
3 2.97 0.397 0.06 0.07  0.06 0.08  0.05 0.06  0.09 0.09  

Sediment  

Accretion 
3 11.77 0.008 6.34 17.56 12 3.36 5.63 3 2.02 13.51 1 -5.07 6.20 23 

Soil  

Respiration 
3 22.41 <0.001 3.23 7.06 1 6.11 5.91 2 11.00 5.35 13 2.47 2.10 23 

Root 

Growth 
3 11.33 0.010 0.01 0.01 12 0.02 0.02  0.03 0.04 1 0.03 0.09 2 

 

Over the year, losses of carbon through heterotrophic soil respiration and carbon input through 

sediment accretion were significantly greater than carbon inputs through litter and root degradation 

(Kruskal-Wallis Multiple Comparisons: Table 5.4).  This pattern was consistent throughout the winter 

and spring (Table 5.4), however, in the summer and autumn, loss of carbon through heterotrophic 

soil respiration was greater than carbon inputs through sediment accretion, litter degradation and 

root degradation, and sediment accretion rates did not significantly differ from carbon inputs 

through litter and root degradation (Table 5.4).  It is therefore suggested that salt marshes generally 

accrete carbon during the winter and spring, but may lose carbon during the summer and autumn 

when soil respiration rates outweigh sediment accretion rates.  
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Figure 5.4 | Patterns of measured carbon fluxes over time by marsh.  Bar and line charts showing the patterns of the measured carbon fluxes (above-ground growth, root growth, root degradation, 

soil respiration and accretion rate) alongside the empirical measurements of soil organic carbon in November 2011 and November 2012 for the three un-grazed salt marshes (Y Foryd, Malltraeth and 

Crossens).  Data is presented as tonnes of carbon per hectare, except for root degradation, which is recorded as a percentage loss of mass. 
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Table 5.4 | Differences between carbon inputs and outputs by season. Results of Kruskal-Wallis multiple comparisons 

tests for annual data set and by season comparing the main inputs and outputs of carbon, averaged over the three 

marshes, (t (C) ha-1 yr-1) according to the salt marsh carbon budget model (Figure 5.1). Emboldened p-values indicate a 

significant effect.  Medians (𝑥̃) and Interquartile Range (IQR) are shown by season for each predictor variable.  Significant 

differences between variables within each season are indicated by superscript numbers: variables that share a number are 

significantly different.   

 

Kruskal-Wallis 

Litter  

Degradation 
 

Root 

Degradation 
 

Sediment 

Accretion 
 

Heterotrophic  

Soil Respiration 

Season df H p    𝒙 IQR     𝒙 IQR     𝒙 IQR     𝒙 IQR  

Annual 3 99.88 <0.001 0.00 0.23 12 0.06 0.22 34 4.61 12.00 13 6.61 2.28 24 

Winter 3 29.90 <0.001 0.00 0.20 12 0.06 0.07 34 6.34 17.56 13 3.23 7.06 24 

Spring 3 30.82 <0.001 0.00 0.24 12 0.06 0.08 34 3.36 5.63 13 6.11 5.91 24 

Summer 3 25.08 <0.001 0.00 0.24 1 0.05 0.06 2 2.02 13.51 3 11.00 5.35 123 

Autumn 3 23.00 <0.001 0.00 0.27 1 0.09 0.09 2 -5.07 6.20 3 2.47 2.10 123 

 

Salt marsh study sites were assumed to be generally accreting, with minimal erosion during large 

spring tidal cycles.  Sampling at Y Foryd marsh showed that there was a significant difference in the 

amount of suspended organic carbon in incoming water (flooding) and outgoing water (ebbing) 

(ANOVA: F1,40 = 70.02, p < 0.001, ηp
2 = 0.637); Tukey HSD tests showed that the there was more 

suspended organic carbon on the flooding tide (𝑥̅ = 0.0032, SD = 0.0011 (g (C) cm-3)) than on the 

ebbing tide (𝑥̅ = 0.0022, SD = 0.0004 (g (C) cm-3)).  Suspended organic carbon in the water column 

also varied between marsh zones (ANOVA: F4,40 = 21.39, p < 0.001, ηp
2 = 0.682); Tukey HSD test 

showed that there was significantly more suspended organic carbon over the pioneer zone (𝑥̅ = 

0.0034, SD = 0.0013) than over the mudflat (𝑥̅ = 0.0027, SD = 0.0007), the mid marsh (𝑥̅ = 0.0026, SD 

= 0.0005) or the high marsh (𝑥̅ = 0.0017, SD = 0.0004), and there was significantly less suspended 

organic carbon over the high marsh than the other zones.  There was a significant difference in the 

amount of sediment deposited on the deployed sediment traps between the marsh zones (ANOVA: 

F4,40 = 29.17, p < 0.001, ηp
2 = 0.745).  A Tukey HSD test showed that sediment deposition on the 

pioneer zone (𝑥̅ = 0.0034, SD = 0.0012) was higher than on the mudflat (𝑥̅ = 0.0021, SD = 0.0003), the 

low marsh (𝑥̅ = 0.0015, SD = 0.0001), the mid marsh (𝑥̅ = 0.0012, SD = 0.0001), and the high marsh (𝑥̅ 

= 0.0007, SD = 0.0003).  Sediment deposition on the mudflat was significantly greater than in the mid 

and high marsh zones, and sediment deposition in the low marsh zone was greater than in the high 

marsh zone.   

 

5.3.2 The main carbon flux predictors of soil organic and inorganic carbon 

A combination of root growth rates, litter degradation rates and heterotrophic soil respiration best 

described the spatial variation in soil organic carbon in un-grazed marshes (DistLM: AICc = 55.10, R2 = 

0.840).  Soil organic carbon stocks at 0-5 cm depth had a significant negative relationship with 

vegetation growth rate, and significant positive relationships with both litter and root degradation 
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rates (Regression: Table 5.5).  Soil organic carbon stocks at 0-15cm depth showed a significant 

negative relationship with both vegetation growth rate and litter degradation rate, and a significant 

positive relationship with root degradation rate (Table 5.5).  When considering the core as a whole 

(0-25cm depth), soil organic carbon stocks had a significant positive relationship with both root 

growth and root degradation rates (Table 5.5). 

 

A combination of sediment accretion, and vegetation and root growth rates best described the 

variation in soil inorganic carbon (DistLM: AICc = 65.97, R2 = 0.673).  Soil inorganic carbon stocks at 0-

5 cm and 0-15 cm depth had a significant positive relationship with root growth rate (Regression: 

Table 5.6).  When considering the core as a whole (0-25 cm depth), soil organic carbon stocks had no 

significant relationship with any individual carbon flux variable (Table 5.6). 
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Table 5.5 | Regression analysis for carbon fluxes against soil organic carbon.  Regression analyses were made for three 

different depth profiles (0-5cm, 0-10cm and 0-25cm).  An emboldened p-value denotes a significant effect.  R2, Intercept (b) 

and Slope (m) values for regression lines are shown. 

Predictor Variable df F p R2 b m 

Soil Organic Carbon (t (C) ha-1 yr-1) – 0-5cm Depth Layer 
Vegetation Growth (t (C) ha-1 yr-1) 1,10 12.22 0.006 0.550 2.900 -0.395 

Litter Degradation (t (C) ha-1 yr-1) 1,10 18.76 0.001 0.652 2.510 5.620 

Root Growth (t (C) ha-1 yr-1) 1,10 2.62 0.137 0.207   

Root Degradation (t (C) ha-1 yr-1) 1,10 8.17 0.017 0.450 1.390 5.210 

Sediment Accretion (t (C) ha-1 yr-1) 1,10 0.29 0.601 0.028   

Heterotrophic Soil Respiration (t (C) ha-1 yr-1) 1,10 2.38 0.154 0.192   

Soil Organic Carbon (t (C) ha-1 yr-1) – 0-15cm Depth Layer 
Vegetation Growth (t (C) ha-1 yr-1) 1,10 10.14 0.010 0.504 1.740 -0.218 

Litter Degradation 1,10 13.60 0.004 0.576 1.520 -3.050 

Root Growth (t (C) ha-1 yr-1) 1,10 4.35 0.064 0.303   

Root Degradation (t (C) ha-1 yr-1) 1,10 9.76 0.011 0.494 0.878 3.150 

Sediment Accretion (t (C) ha-1 yr-1) 1,10 0.22 0.647 0.022   

Heterotrophic Soil Respiration (t (C) ha-1 yr-1) 1,10 2.93 0.118 0.226   

Soil Organic Carbon (t (C) ha-1 yr-1) – 0-25cm Depth Layer 
Vegetation Growth (t (C) ha-1 yr-1) 1,10 6.37 0.030 0.389   

Litter Degradation 1,10 8.07 0.018 0.447   

Root Growth (t (C) ha-1 yr-1) 1,10 6.17 0.032 0.382 0.636 5.560 

Root Degradation (t (C) ha-1 yr-1) 1,10 11.64 0.007 0.538 0.617 2.13 

Sediment Accretion (t (C) ha-1 yr-1) 1,10 0.43 0.525 0.042   

Heterotrophic Soil Respiration (t (C) ha-1 yr-1) 1,10 2.62 0.137 0.179   

 

Table 5.6 | Regression analysis for carbon fluxes against soil inorganic carbon.  Regression analyses were made for three 

different depth profiles (0-5cm, 0-10cm and 0-25cm).  An emboldened p-value denotes a significant effect.  R2, Intercept (b) 

and Slope (m) values for regression lines are shown. 

Predictor Variable df F p p(i) R2 b m 

Soil Inorganic Carbon (t (C) ha-1 yr-1) – 0-5cm Depth Layer 
Vegetation Growth (t (C) ha-1 yr-1) 1,10 <0.01 0.954 0.050 <0.001   

Litter Degradation (t (C) ha-1 yr-1) 1,10 0.35 0.566 0.029 0.034   

Root Growth (t (C) ha-1 yr-1) 1,10 55.71 <0.001 0.007 0.848 0.239 9.86 

Root Degradation (t (C) ha-1 yr-1) 1,10 3.41 0.094 0.014 0.255   

Sediment Accretion (t (C) ha-1 yr-1) 1,10 0.45 0.517 0.021 0.043   

Heterotrophic Soil Respiration (t (C) ha-1 yr-1) 1,10 0.16 0.694 0.036 0.016   

C Mineralization (t (C) ha-1 yr-1) 1,10 0.08 0.787 0.043 0.008   

Soil Inorganic Carbon (t (C) ha-1 yr-1) – 0-15cm Depth Layer 
Vegetation Growth (t (C) ha-1 yr-1) 1,10 <0.01 0.971 0.050 <0.001   

Litter Degradation 1,10 0.14 0.720 0.029 0.013   

Root Growth (t (C) ha-1 yr-1) 1,10 23.04 0.001 0.007 0.697 0.322 4.32 

Root Degradation (t (C) ha-1 yr-1) 1,10 1.02 0.337 0.014 0.092   

Sediment Accretion (t (C) ha-1 yr-1) 1,10 0.01 0.940 0.043 0.001   

Heterotrophic Soil Respiration (t (C) ha-1 yr-1) 1,10 0.16 0.700 0.021 0.016   

C Mineralization (t (C) ha-1 yr-1) 1,10 0.13 0.722 0.036 0.013   

Soil Inorganic Carbon (t (C) ha-1 yr-1) – 0-25cm Depth Layer 
Vegetation Growth (t (C) ha-1 yr-1) 1,10 3.04 0.112 0.014 0.233   

Litter Degradation 1,10 1.92 0.196 0.029 0.161   

Root Growth (t (C) ha-1 yr-1) 1,10 3.58 0.088 0.007 0.264   

Root Degradation (t (C) ha-1 yr-1) 1,10 0.14 0.715 0.050 0.014   

Sediment Accretion (t (C) ha-1 yr-1) 1,10 0.46 0.511 0.043 0.044   

Heterotrophic Soil Respiration (t (C) ha-1 yr-1) 1,10 0.50 0.497 0.036 0.047   

C Mineralization (t (C) ha-1 yr-1) 1,10 2.61 0.137 0.021 0.207   
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5.3.4 The influence of environmental setting and soil parameters carbon fluxes 

Table 5.7 shows the results of several mixed effects models testing for associations of environmental 

and soil parameters with each of the main carbon flux parameters identified in previous sections as 

being main drivers of soil carbon stocks.  Soil temperature was a significant predictor of litter in the 

winter, root degradation in the winter, spring and autumn, and soil respiration in the autumn.  Soil 

moisture was a significant predictor of litter degradation in the winter, and soil respiration in the 

winter and autumn.  Water table depth was a significant predictor of root degradation in the winter 

and soil respiration in the winter.  Generally, the measured environmental variables were more likely 

to be predictors of carbon fluxes in the winter and autumn months than in the spring and summer 

months, particularly when considering soil heterotrophic respiration.   

 

Several environmental and abiotic soil parameters varied between seasons (Tables 5.8, 5.9).  Soil 

moisture was significantly higher in the winter and spring than it was in summer, soil temperature 

significantly differed between each season with the lowest temperatures in winter and the highest in 

the summer, and soil salinity was significantly higher in the spring and summer than in the autumn 

(ANOVA; Table 5.8).  Tidal height when sampling was higher in the autumn than in the winter, the air 

temperature was significantly higher in the summer than in winter, spring and autumn, and the wind 

speed was higher in the winter and autumn than the spring and summer (Kruskal-Wallis multiple 

comparisons; Table 5.9) 
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Table 5.7 | Variation in carbon fluxes with variation in environmental and soil parameters.  Results of mixed effects models comparing testing for association of variation in the main (identified 

from the DistLM and regression analyses) carbon fluxes (vegetation growth, litter degradation, root growth, root degradation, heterotrophic soil respiration and sediment accretion) with variation in 

environmental and abiotic soil parameters.  Column headers depict the effect, degrees of freedom (df: numerator, denominator), F-values (F), p-values (p) and slopes of linear relationships (m). 

 

  Winter  Spring  Summer  Autumn 

Predictor Variable df     F  p  m     F  p m    F  p m    F  p  m 

Vegetation Growth 

Soil Moisture (θ) 1,2 - -   5.21 0.150   12.34 0.072   - -  

Soil Temperature (°C) 1,2 - -   4.14 0.179   4.70 0.162   - -  

Water Table Depth (cm) 1,2 - -   16.22 0.057   7.23 0.115   - -  

Soil pH 1,2 - -   4.89 0.158   1.81 0.311   - -  

Soil Salinity (S) 1,2 - -   0.03 0.883   0.17 0.722   - -  

Soil Redox Potential (mV) 1,2 - -   0.14 0.742   0.68 0.496   - -  

Community Composition (NVC) 1,1 - -   3.44 0.315   0.06 0.847   - -  

Soil Nitrogen (t (N) ha-1 yr-1) 1,2 - -   3.13 0.219   0.20 0.698   - -  

Litter Degradation 

Soil Moisture (θ) 1,3 14.57 0.032 -0.019  1.71 0.283   1.95 0.257   0.74 0.452  

Soil Temperature (°C) 1,3 11.20 0.044 0.082  1.67 0.286   1.30 0.338   3.26 0.169  

Water Table Depth (cm) 1,3 2.05 0.248   4.86 0.115   1.14 0.364   2.77 0.195  

Soil pH 1,3 2.68 0.200   1.35 0.329   2.14 0.240   0.21 0.679  

Soil Salinity (S) 1,3 2.06 0.246   0.17 0.705   0.15 0.725   0.54 0.516  

Soil Redox Potential (mV) 1,3 0.69 0.466   0.95 0.402   0.02 0.896   0.17 0.707  

Root Growth 

Soil Moisture (θ) 1,1 0.04 0.871   4.13 0.291   0.02 0.905   1.75 0.412  

Soil Temperature (°C) 1,1 0.38 0.649   10.77 0.188   0.01 0.973   2.04 0.389  

Water Table Depth (cm) 1,1 11.59 0.182   1.96 0.395   0.08 0.825   0.32 0.673  

Soil pH 1,1 0.22 0.722   0.05 0.866   1.35 0.452   1.63 0.423  

Soil Salinity (S) 1,1 1.25 0.465   1.07 0.490   0.03 0.893   2.46 0.361  

Soil Compaction (pa) 1,1 0.03 0.889   1.39 0.448   0.05 0.856   0.06 0.846  

Percent Clay  1,1 0.01 0.950   0.19 0.741   0.07 0.834   0.23 0.714  

Community Composition (NVC) 1,1 0.06 0.848   0.63 0.573   0.33 0.668   0.69 0.559  

Soil Nitrogen (t (N) ha-1 yr-1) 1,1 0.06 0.842   0.50 0.609   0.10 0.804   0.04 0.880  
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Table 5.7 (Cont.) | Variation in carbon fluxes with variation in environmental and soil parameters. 
 

  Winter  Spring  Summer  Autumn 

Predictor Variable df     F  P  m     F  p  m    F  p m    F  p  m 

Root Degradation 

Soil Moisture (θ) 1,3 0.01 0.933   4.96 0.112   0.11 0.766   5.71 0.097  

Soil Temperature (°C) 1,3 48.84 0.006 -7.359  13.64 0.034 4.615  1.45 0.315   75.04 0.003 4.356 

Water Table Depth (cm) 1,3 19.29 0.022 3.302  0.60 0.497   1.77 0.275   4.94 0.113  

Soil pH 1,3 0.04 0.861   2.32 0.226   4.09 0.136   0.20 0.688  

Soil Salinity (S) 1,3 3.71 0.150   1.07 0.380   1.28 0.340   1.41 0.320  

Soil Redox Potential (mV) 1,3 0.03 0.873   <0.01 0.985   0.67 0.473   0.07 0.808  

Heterotrophic Soil Respiration 

Soil Moisture (θ) 1,2 28.31 0.034 0.318  1.61 0.332   4.34 0.173   263.13 0.039 0.043 

Soil Temperature (°C) 1,2 14.44 0.063   3.91 0.187   12.82 0.070   177.58 0.048 1.230 

Water Table Depth (cm) 1,2 87.03 0.011 1.419  1.71 0.321   0.79 0.469   6.53 0.238  

Soil pH 1,2 232.54 0.004 41.466  0.09 0.793   6.92 0.119   57.07 0.084  

Soil Salinity (S) 1,2 81.83 0.012 -2.125  0.20 0.700   1.09 0.407   1.32 0.456  

Soil Redox Potential (mV) 1,2 12.02 0.074   3.36 0.208   1.85 0.307   583.94 0.026 -0.017 

Soil Organic Carbon (t (C) ha-1 yr-1) 1,2 45.52 0.021 9.495  1.68 0.325   3.09 0.221   53.27 0.087  

Tidal Height 1,1 767.44 0.023 -1.464  1.86 0.403   4.56 0.279   1494.82 0.012 2.383 

Air Temperature 1,1 58.13 0.083   0.16 0.758   13.66 0.168   89.76 0.067  

Sediment Accretion 

Tidal Range (m) 1,1 35.68 0.106   0.75 0.546   8.91 0.206   0.92 0.513  

Wind Speed (Gust) (kmph) 1,1 2.77 0.344   0.04 0.874   2.05 0.388   0.51 0.605  

Percent Clay 1,4 0.07 0.801   3.99 0.102   0.01 0.947   0.39 0.558  

Soil Compaction (pa) 1,4 1.69 0.250   13.90 0.014 -11.491  1.08 0.347   3.51 0.120  

Vegetation Height (cm) 1,4 0.31 0.601   1.31 0.305   1.89 0.228   2.71 0.161  

Vegetation Cover (%) 1,4 5.54 0.065   0.60 0.475   0.25 0.638   0.09 0.781  
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Table 5.8 | ANOVA analysis of seasonal differences in soil properties.  Results of 1-way ANOVA’s showing differences between seasons for several soil properties.  Column headers depict degrees of 

freedom (df: numerator, denominator), F-values (F), p-values (p) and partial eta squared effect size (ηp2).  An emboldened p-value denotes a significant effect.  Means (𝑥̅) and Standard Error (SE) are 

shown by season for each predictor variable.  Significant differences between variables within each season are indicated by superscript numbers: variables that share a number are significantly 

different. 

 ANOVA  Winter  Spring  Summer  Autumn 

Variable df F p ηp
2  𝒙 SD   𝒙 SD   𝒙 SD   𝒙 SD  

Soil Moisture (θ) 3,44 7.69 <0.001 0.344  973.17 4.98 1  972.72 6.83 2  956.08 17.45 12  965.63 4.84  

Soil Temperature (°C) 3,44 268.51 <0.001 0.948  4.74 1.01 123  9.17 0.39 145  16.28 1.44 246  10.53 0.83 356 

Water Table Depth (cm)  3,44 1.60 0.204 0.098  8.59 8.36   13.12 9.11   14.80 5.53   11.03 5.76  

Soil pH 3,44 0.45 0.716 0.030  6.62 0.21   6.62 0.35   6.53 0.18   6.63 0.23  

Soil Salinity (S) 3,44 8.25 <0.001 0.360  8.94 2.28   11.24 2.46 1  11.47 2.95 2  7.12 2.19 12 

Soil Redox (mV) 3,44 1.64 0.194 0.101  292.2 110.6   260.0 126.9   206.1 87.6   272.0 60.3  

 
 
 
Table 5.9 | Kruskal-Wallis multiple comparisons tests of seasonal differences in soil properties.  Results of Kruskal-Wallis multiple comparisons tests showing differences between seasons for 

several environmental parameters.  Column headers depict degrees of freedom (df), H-values (H) and p-values (p).  An emboldened p-value denotes a significant effect.  Medians (𝑥̃) and Interquartile 

Range (IQR) are shown by season for each predictor variable. Significant differences between variables within each season are indicated by superscript numbers: variables that share a number are 

significantly different. 

 Kruskal-Wallis  Winter  Spring  Summer  Autumn 

Variable df H p  𝒙 IQR   𝒙 IQR   𝒙 IQR   𝒙 IQR  

Tidal Height when Sampling (m) 3 9.69 0.021  2.60 2.97 1  2.65 3.26   3.31 2.03   4.29 1.36 1 

Air Temperature (°C) 3 42.34 <0.001  3.60 3.37 123  12.57 1.20 14  21.80 4.93 245  14.10 2.70 35 

Wind Speed (Gust) (kmph) 3 21.01 <0.001  17.66 14.71 12  15.74 13.67 1  5.58 10.67 23  16.01 14.00 3 
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5.3.3 Comparing the model predictions to observed soil carbon stocks 

There was no significant gain or loss of soil organic carbon over the course of 1 year in any of the soil 

depths sampled when comparing 2011 and 2012 data (t-test: Table 5.10).  This was compared to 

predictions of future carbon stocks based on the changes in, and relationships between, the 

measured carbon stocks and fluxes using a carbon budget model.  This carbon budget model was 

constructed based on overall averages and standard errors calculated from the empirical carbon flux 

and stock data shown in Figure 5.5.  The model predicted that soil organic carbon for the 0-25 cm 

depth profile would decrease slightly over one year, although any significant difference between 

Time 0 and Time 1 (1 year) was unlikely to be significant due to large error margins (Table 5.10, 

Figure 5.6).  This indicates that the model is unsuitable for predictions in its current state. 

 

 

Figure 5.5 | A calculated carbon budget for an un-grazed salt marsh. Annual means ± one standard error are shown for 

each carbon stock (solid boarder) and flux (dashed boarder) variable based on empirical observations from three un-grazed 

salt marshes.  Carbon flow rates recorded as tonnes of carbon per hectare per year (t (C) ha-1 yr-1) and carbon stocks are 

recorded as tonnes of carbon per hectare (t (C) ha-1 yr-1).  Figures in red are principal stocks, inputs or outputs of soil organic 

carbon or soil inorganic carbon based. 
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Table 5.10 | Comparison between soil organic carbon content in 2011 and 2012.  Results of a two-sample t-test 

comparing the soil organic content of November 2011 with November 2012 for soil depths 0-5cm, 0-10cm and 0-25cm.  

Means and standard errors are shown after the test results. 

 T-Test  2011  2012 

Depth Profile N T p  𝒙 SE  𝒙 SE 

0-5cm 12 -1.35 0.205  1.710 0.260  1.957 0.289 

0-15cm 12 0.12 0.907  1.243 0.172  1.223 0.167 

0-25cm 12 0.58 0.574  0.923 0.125  0.849 0.108 

Model Predictions - - -  0.849 0.108  0.400 3.400 

 

 

 

Figure 5.6 | Model predictions for soil organic carbon stocks over 1 year.  Model outputs of an un-grazed salt marsh 

carbon budget model showing results for soil organic carbon stocks for a 1-year prediction showing mean and upper and 

lower confidence intervals (based on standard error). 

 

Longer term (50-year) model predictions of soil organic carbon showed that mean soil organic and 

inorganic carbon were likely to increase with time although the confidence in this prediction reduced 

considerably with time (Figure 5.7).  Carbon mineralization is a constant; over time soil organic 

carbon is mineralized.  Thus, after an initial increase, soil organic plateaus off and the increase in soil 

carbon stocks is shown more in the soil inorganic carbon stocks.   
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Figure 5.7 | Model predictions of future carbon SOC and SIC for an un-grazed salt marsh.  Model outputs of an un-grazed 

salt marsh carbon budget showing results for soil organic (blue) and inorganic carbon (red) stocks for a 50-year prediction.  

The means and upper and lower confidence intervals (based on standard error) are shown for both soil organic and 

inorganic carbon stocks. 
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5.4 Discussion 

 

5.4.1 Comparing the carbon fluxes 

It was expected that inputs of carbon through sedimentation and the degradation of organic matter 

would be greater than the outputs of carbon through soil heterotrophic respiration.  This was not the 

case, as heterotrophic respiration rates were consistently higher than litter and root degradation 

rates. Sedimentation rates were variable between seasons; during the winter and spring, 

sedimentation rates were equal to soil respiration rates but during the summer and autumn, soil 

respiration rates were greater than sedimentation rates.  However, on average over the year, 

sedimentation rates balanced out soil respiration.  It is perhaps not surprising that soil respiration is 

greater than inputs of carbon through degradation of organic matter: organic matter is broken down 

by the soil microbial community (Coûteaux et al., 1995), which respire and can emit considerable 

amounts of carbon dioxide (W. H. Schlesinger & J. Andrews, 1999).   

 

Litter degradation rates, soil respiration, and root growth rates were important predictors of 

empirical soil organic and inorganic carbon data collected in November 2011.  Litter degradation 

showed a positive relationship with soil organic carbon stocks in the shallow soil profile, and root 

degradation showed a positive relationship with soil organic carbon stocks in the deeper soil profiles.  

This implies that inputs through organic matter were important for soil carbon storing, despite their 

apparently small contribution.  With the balance between sedimentation rates and soil respiration, it 

is feasible that the small inputs of organic matter through litter and root degradation may lead to an 

increase in soil carbon stocks over a long period of time.   

 

5.4.2 Seasonal changes in carbon fluxes 

It was predicted that degradation rates would be lower in the winter than in the summer due to 

waterlogged conditions and low temperatures in winter.  However, litter and root degradation rates 

did not differ between the seasons.  Soil redox potential has to be below 250mV for nitrogen to be 

reduced and aerobic conditions to prevail (Mitsch & Gosselink, 2000).  The average redox potential of 

the study sites remained above this threshold, except in the summer when the average redox 

potential was 206.1mV.  So, although soil moisture was higher in winter and spring than in summer, 

it was not low enough for anaerobic conditions to prevail.  As degradation rates increase with an 

increase in soil moisture and temperature (Coûteaux et al., 1995), it is likely that degradation rates 

remained relatively high in the winter due to high moisture levels, despite low soil temperatures, and 

also remained high in the summer due to high soil temperatures. 
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Sediment accretion varied between the seasons; accretion was greatest in the winter and low in the 

spring and summer, as expected.  Erosion generally occurred in the autumn.  This seasonal pattern in 

sedimentation has been found in previous studies (Adam, 1990b; Frostick & McCave, 1979; D.S. 

Ranwell, 1964b).  During the autumn, equinox tides coupled with more frequent storms result in a 

transport of sediment away from both high and low areas of the marsh (Adam, 1990b; Frostick & 

McCave, 1979; D.S. Ranwell, 1964b).  During winter, the tides are not great enough to cover the 

whole marsh, so storms wash sediment up from the lower marsh zones to the higher marsh zones, 

resulting in high sedimentation rates in the higher marsh zones (D.S. Ranwell, 1964b).  Here, wind 

gusts were greatest in the winter and autumn, suggesting a greater frequency of storms.  As this 

study was situated on the mid marsh, it is likely that sediment was washed up the marsh during the 

winter storms.  During the spring and summer, algal mats and vegetation growth stabilize the 

sediment so less is lost to large tides and storms, but also less is transported up the marsh to the 

higher marsh zones (Frostick & McCave, 1979; D.S. Ranwell, 1964b) where this study was situated. 

 

Soil heterotrophic respiration also varied between seasons: respiration rates were high in the 

summer and spring, and low in the autumn and winter, as predicted.  Aerobic soil respiration 

increases with soil temperature and soil moisture (Pendall et al., 2004).  It is likely that soil 

respiration rates increased in the summer due to higher soil temperatures.  Soil moisture, however, 

may not have an effect on soil respiration in the salt marsh environment.  Previous studies on the 

mechanisms of soil respiration have been conducted in terrestrial systems where soil moisture is 

generally much lower (Cao et al., 2004; Dalal & Allen, 2008; Pendall et al., 2004).  In the salt marsh 

environment, soil moisture is always relatively high due to frequent tidal flooding (Adam, 1990b); 

therefore soil moisture is unlikely to become low enough to reduce soil respiration rates.  Despite 

high soil moisture levels, the soils were generally not anaerobic: the high soil redox potential 

indicated that soils were mostly aerobic and that methane production was unlikely, as carbon is 

reduced at a redox potential of less than -200mV (Lai, 2009; Mitsch & Gosselink, 2000).   

 

5.4.3 The impact of environmental variables on carbon sequestration  

Soil moisture, temperature, pH and salinity were predictors of degradation rates and soil respiration 

during the winter and autumn, but during the summer, the main carbon fluxes were not affected by 

any of the measured soil or environmental variables.  It is possible that during the spring and 

summer, the increased plant cover and higher temperatures facilitate for a larger soil microbial 

community than in the winter.  Bardgett, Leemans, Cook, and Hobbs (1997) and Bardgett, Lovell, 

Hobbs, and Jarvis (1999) found that across several managed and un-managed grasslands, microbial 

biomass showed consistent summer maxima and winter minima.  If this is the case in salt marshes, 
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perhaps in the summer soil microbial communities may be large enough to remain active regardless 

of small changes in temperature and moisture, whereas in the winter soil microbial communities are 

small enough to react to small changes in soil conditions.  As such, soil respiration and degradation 

rates could correlate with soil conditions during the winter but not during the summer.   

 

5.4.4 Predictions of future carbon stocks  

There was no significant change in carbon stocks over the course of one study year when looking at 

carbon stocks measured in November 2011 and November 2012.  This is perhaps unsurprising as 

there is a general balance between the two largest inputs and outputs of carbon (sediment accretion 

and soil respiration), and inputs through organic carbon were very low in comparison.  It is also 

possible that the two cores taken a year apart were not entirely comparable.  The cores sampled a 

set depth below the marsh surface; yet, the marsh surface elevation can change over the course of 

the year due to marsh accretion, erosion, or soil compaction (Stock, 2011).  It is possible that one 

core may consist of a different layer of sediment than the other.  Although this is unlikely to have let 

to any considerable inaccuracies over the course of just one year, it highlights the problems 

associated with carbon sequestration predictions based on shallow cores.   

 

The model predictions were used as a ‘first-look’ at modeling techniques for salt marsh soil carbon 

stocks.  When run for one year, the model predicted a slight decrease in soil carbon stocks.  

However, this prediction lacked statistical confidence and it conflicted with the no-change empirical 

observations from the two soil cores taken a year apart.  The error associated with the model 

predictions after just one year was too great to make the model useful for predicting carbon stocks in 

its present state.  Prediction error was amplified when the model was run over a 50-year time scale, 

although there was a slight increase in mean soil carbon, as expected.   

 

5.4.5 Study implications 

Modelling techniques have been used extensively throughout climate-change science as means to 

predict future scenarios based on current trends and predictions of environmental drivers (Moss et 

al., 2010).  In light of the uncertain future of soil carbon stocks, modelling can prove a useful tool to 

examine how carbon sequestration rates may change in the future (Jenkinson et al., 1991; 

Kirschbaum, 1995; Schimel et al., 1994).  This study was the first to take a mass balance approach to 

measure salt marsh carbon sequestration rates over a broad-scale.  As such, the model forms a 

useful starting point for future modelling of salt marsh carbon stocks.  Further research into salt 

marsh carbon stocks would need to take into account seasonal and spatial variation, and ideally 

studies would be run over several years to build up a reliable long-term data set.  With time, carbon 



  Chapter 5: Carbon fluxes in un-grazed salt marshes 

 

171 
 

budget models may be able to more accurately determine likely impacts of climate change on soil 

carbon stocks in natural, carbon-rich systems 
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Chapter 6: Carbon Sequestration on a Grazed Salt Marsh: Does Grazing 

Really Matter? 

 

6.1 Introduction  

The previous three chapters have established that salt marshes are highly variable systems subject to 

a range of environmental disturbances and stresses.  Grazing is a common disturbance in salt 

marshes; 64% of the study marshes in Chapters 3 and 4 were grazed by livestock for management or 

farming purposes.  Although Chapters 3 and 4 showed that the effects of grazing can be outweighed 

by the effects of several environmental contextual variables, grazing-carbon relationships in salt 

marshes are still important to investigate, given that grazing management is considered a promising 

route to enhance grassland carbon sequestration (V.  Bouchard et al., 2003; R. Conant et al., 2000; 

Gedan et al., 2009).  Chapter 5 took a ‘mass balance’ approach (Amundson, 2001) to construct a 

carbon budget model for un-grazed salt marshes; the purpose was to identify the most important 

sources of carbon fluxes in the carbon budget in the absence of grazing.  Grazing might not affect soil 

carbon stocks in the long-term (Tanentzap & Coomes, 2012; Yu & Chmura, 2010) (Chapter 4).  

However, grazing may influence several carbon fluxes associated with carbon sequestration, such as 

soil respiration, input of organic matter and sedimentation rates, and these effects need to be 

considered when using livestock grazing as a management tool.  In order to examine how grazing 

might influence the relative partitioning between carbon budget components, this study builds on 

the model created in Chapter 5 by investigating grazer influences on carbon fluxes and soil abiotic 

factors that drive them.  

  

6.1.1 Carbon fluxes on grazed salt marshes 

As with un-grazed marshes, the main inputs of carbon into soil carbon stocks on grazed salt marshes 

are sedimentation and degradation of organic matter (Coûteaux et al., 1995; Flessa et al., 1977; 

Stumpf, 1983; Trumbore, 1997), and the main output from the soil carbon stock is heterotrophic 

respiration (Morris & Whiting, 1986; Pendall et al., 2004) (Figure 6.1).  In grazed marshes, however, 

the above ground biomass is removed and vegetation changes to a more robust, earlier successional 

community (Chapter 3) (J. P. Bakker, 1978; Jensen, 1985; Jones, 2000; Kiehl et al., 1996).  Loss of 

above ground biomass and plant community changes are likely to influence several carbon fluxes; 

litter production will dramatically decrease, as plant biomass is consumed rather than being left to 

degrade (Chapter 3) (Jensen, 1985).  Sedimentation may decrease as there is less plant biomass to 

trap sediment (Neuhaus et al., 1999; Stumpf, 1983), and soil properties may change due to the 

opening up of the sward and changes in plant carbon allocations (Bardgett et al., 1998; Holt, 1997; 
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Ingram et al., 2007).  Grazers will also create a new input of carbon into the soil carbon stocks 

through production of faeces and its subsequent degradation that can act as a plant fertilizer and 

alter the nutrient regime (Bhogal et al., 2010; Sheldrick et al., 2003).  As a result, grazers may 

enhance plant productivity, although this will depend on the response and sensitivity of the 

vegetation community to grazing (Hilbert, Swift, Detling, & Dyer, 1981; McNaughton, 1979; J. H. 

Richards, 1984).  Under an intensive grazing regime, grazers are likely to reduce plant productivity 

regardless of plant resilience, thereby reducing the input of carbon through the root system 

(McNaughton, 1979; Schuster, 1964).  Although grazing is likely to alter the amount of organic 

material available for degradation, it is unlikely that grazing will alter actual decomposition rates, as 

these are governed more by seasonal changes in soil parameters, particularly soil moisture (Chapter 

5) (Giese et al., 2009).  Similarly, grazing does not seem to have an impact on soil carbon dioxide and 

methane effluxes, which depend on soil moisture, soil temperature and the presence of certain plant 

species that form aerenchyma tissue (Ford et al., 2012; Ma, Wang, Wang, Jiang, & Nyren, 2010).  It 

can be argued, however, that grazers alter soil conditions by trampling and removal of vegetation (J. 

P. Bakker, 1985), and thus may indirectly impact soil gas effluxes.   

 

 

Figure 6.1 | A salt marsh carbon budget model for a grazed salt marsh.  The main carbon stocks (solid outlines) and flows 

(dashed outlines) on a salt marsh and the links between them.  The main inputs of carbon into the soil carbon stock are 

organic matter (litter, root and faecal material) and sedimentation, and the main output of carbon from the soil carbon 

stock is heterotrophic respiration, although gas efflux from the livestock is also likely to be a significant output of carbon 

from the system (Coûteaux et al., 1995; Morris & Whiting, 1986; Sollins et al., 1996; Stumpf, 1983). 
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6.1.2 The impact of grazers on salt marsh carbon balances  

It is likely that grazers may increase the inputs of carbon through the degradation of organic matter.  

Although the input of carbon through litter degradation is reduced (Kiehl et al., 1996), the input 

through degradation of faeces may be substantial enough to compensate for this (Bhogal et al., 

2010).  An increase in plant productivity under light and moderate grazing regimes (Hilbert et al., 

1981; J. H. Richards, 1984) may also result in greater root biomass and, although the proportion of 

root matter degraded will not change (Giese et al., 2009), the total carbon input through root 

degradation may increase.  Conversely, grazers are likely to reduce the input of carbon through 

sedimentation by diminishing the above ground biomass of particle trapping vegetation; this effect 

would be particularly important in the winter months when sedimentation is highest (Chapter 5) 

(Havaren, 1983; Neuhaus et al., 1999; Stumpf, 1983).  Given the observed no grazing effect on soil 

carbon stocks (Chapter 4) (Tanentzap & Coomes, 2012; Yu & Chmura, 2010), perhaps the increased 

input of carbon through organic matter may be sufficient to counter the lower sedimentation rates.  

While livestock grazing is not expected to impact overall soil carbon stocks, direct production of 

carbon dioxide and methane by grazers (Johnson & Johnson, 1995; Murray et al., 2001; Pinares-

Patino et al., 2007) might constitute a substantial enough output of carbon from the salt marsh 

system to tip the overall saltmarsh carbon balance from a sink to a source. 

 

6.1.3 Study aims 

The overall aim of this chapter was to explore the influence of grazing on the carbon stocks and 

fluxes over an annual cycle, relative to the influence of environmental contextual variables.  Empirical 

data consisted of carbon stocks and fluxes measured monthly and seasonally across nine grazed 

marshes along the coast of west Wales and north-west England (Chapter 2) over the course of 13 

months.  Input of carbon through sedimentation was expected to be lower in grazed than in un-

grazed marshes.  The output of carbon through gas emissions was not expected to differ between 

grazed and un-grazed marshes.  Seasonal patterns in carbon fluxes and stocks in the modelled grazed 

marshes were expected to be similar to those in un-grazed marshes (Chapter 5).  Stocking density 

was expected to impact sedimentation rates, but not degradation rates or gas effluxes.   
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6.2 Materials and Methods 

 

6.2.1 Empirical Study 

 

6.2.1.1 Site selection, determination of zones and quadrat selection: Within the study area, nine salt 

marshes were selected for sampling empirical data (carbon parameters and environmental variables) 

(Chapter 2).  The nine sites were selected to incorporate a wide range of grazing intensities and 

contextual environmental variables as part of a balanced experimental design (Chapter 2).  

Measurements were only taken seasonally due to logistical constraints.  The study focused on the 

mid marsh exclusively.  The mid marsh was considered representative of the whole marsh; it is not 

subject to the extremes of wave and tidal disturbance of the pioneer zone or the terrestrial 

influences of the high marsh, yet it is still subject to regular tidal flooding and it is colonized by 

halophytic plants from across the marsh (Adam, 1990b).  Observations per site were made in the 

same four 2 x 2 metre ‘below-ground plots’ used in the broad-scale study (Chapters 2 & 4). 

 

6.2.2 Carbon response variables 

Samples were taken in four plots per sample site either at monthly, seasonal (every 3 months) or 

annual (one-off measurement) frequency between November 2011 and November 2012.  Sampling 

frequency depended on growth and degradation rates, ease of sampling technique, and logistical 

constraints (ability to take field equipment to the plots).  All carbon stocks were converted into 

metric tonnes of carbon per hectare (t (C) ha-1) and all rates were converted into metric tonnes of 

carbon per hectare per year (t (C) ha-1 yr-1).  The following were sampled. 

 

6.2.2.1 Above ground live and litter biomass:  Above ground live and litter biomass were measured 

both in summer 2010 and in winter 2011-12 to determine the difference between summer and 

winter live biomass and litter biomass.  Aboveground biomass and litter biomass were sampled in a 

25 x 50cm quadrat placed in a representative area of each plot.  Vegetation litter was collected and 

bagged before the living vegetation (above ground biomass) was cut down to the soil.  Samples were 

dried in the laboratory at 80°C for 3 days, and weighed.  The carbon content of the aboveground 

vegetation was derived using loss on ignition techniques based on Ball (1964): dry samples were 

weighed, ashed at 550°c for 5 hours and weighed again.  The organic content was calculated by 

subtracting the ashed weight from the dry weight.   

 

6.2.2.2 Aboveground plant growth rates:  Aboveground plant growth was measured throughout the 

2012 growing season (March to September).  Vegetation was clipped from two sample areas in each 
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plot; one for seasonal growth measurements and one for overall growth measurements.  The 

samples were taken from either a 39.5cm diameter or 34cm diameter circular area (Figure 6.2a).  

These circular sample areas were then covered with upside down hanging baskets to protect the 

vegetation from the grazers.  The overall measurements were clipped only in February, before the 

start of the growing season, and in September, at the end of the growing season.  This was to 

account for the production rates of species sensitive to clipping, as well as total community growth 

rates.  The seasonal measurements were taken every three months throughout the growing season 

(March, June and September); vegetation was cut down to the soil.  This was to account for seasonal 

changes in community growth rates.  Samples were dried at 80°C for 3 days and the total dry weight 

(g cm-2) was determined.  

 

6.2.2.3 Litter production rates: Litter production rates are usually sampled using litter traps placed 

on the marsh surface and emptied weekly to prevent litter decay (V. Bouchard & Lefeuvre, 2000).  

Weekly sampling throughout the study period was beyond the scope of this study due to the 

distance between sites.  Instead, litter production rates were predicted from the above ground live 

biomass based on litter fall rates calculated by V. Bouchard and Lefeuvre (2000): it was assumed that 

55% of the above ground live plant biomass per year would fall as litter and approximately 15% of 

the live plant biomass per year would be washed off the marsh as detritus.   

 

6.2.2.4 Root biomass: A 25cm deep, 4.6cm diameter soil core was taken from each plot in October 

2011 using a split tube corer based on a smaller model by Eijkelkamp.  The core was divided into 5cm 

depth segments down the entire length of the core.  Live roots were removed from the core 

segments by hand and dry weights were expressed per volume of soil.  Root carbon content was 

derived after loss on ignition at 550°c for 5 hours using techniques based on Ball (1964).  The organic 

content was the ashed weight subtracted from the dry weight.   

 

6.2.2.5 Root growth rates:  Root growth rates were measured in each plot seasonally (every 3 

months) in January, April, July and October 2012, using approaches based on Steingrobe et al. (2000).  

A 15cm deep 4.6cm diameter sediment core was taken in each plot and all root material was 

removed.  Root-free sediment was then replaced into the hole left by the corer and marked.  

Although this method was time consuming, this provided a natural and realistic substrate for new 

root growth.  The core was then re-sampled after 3 months to assess the root growth rate over the 

season.  The core was washed free of sediment over a 0.5mm meshed metal sieve.  Root matter was 

then dried at 80°C for 3 days and the dry weights were recorded.  
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6.2.2.6 Litter and root degradation:  Litter and root degradation rates were sampled based on 

methods by Olofsson and Oksanen (2002).  Litter material was collected from a strand line on 

Warton Bank Marsh and root material was collected from the high marsh zone on Malltraeth Marsh 

in August 2011.  The same litter and root material was used on each marsh to enable reliable 

comparisons between marshes.  Both root and litter material was washed free of sediment and dried 

at 80°C for 5 days.  Litter and root samples were placed in 5mm mesh, plastic Netlon bird feeder 

bags.  The dry weight of each sample was recorded on waterproof paper and placed in the sample 

bag with the sample.  Eight root bags were then buried at each plot in October 2011 by digging a 

20cm deep trench and using a knife to insert the sample bag into a narrow hole in the side wall of the 

trench approximately 10cm from the top of the trench (Figure 6.2b).  The dry weight and position of 

each sample was recorded as the samples were buried.  The ends of the sample bags were then left 

protruding from the trench wall and soil clods were returned to the trench to cover the bags fully.  To 

account for potential loss of litter and root matter, 20 dummy root bags were buried in using the 

method described above.  These bags were then immediately removed and the average percent 

weight loss was calculated; this was then used to account for any matter lost while deploying and 

retrieving the experimental root bags.  Litter bags were only buried on Y Foryd, an un-grazed marsh, 

due to logistical constraints (Chapter 5) and litter degradation rates were extrapolated from y Foryd.  

Two root bags were retrieved seasonally from each plot in January, April, July and October 2012 from 

each plot at each marsh.  The root material was washed free of sediment and new roots that had 

grown into the samples were removed.  The samples were then dried at 80°C for 3 days and the dry 

weights were recorded and compared to the original dry weights to determine seasonal rates of 

decomposition:  

 
Percent degradation = 100  x    Mass at time 2 (re-sample) 

        Mass at time 1 (deployment) 

 

6.2.2.7 Faeces biomass, defecation rate, and degradation:  Faeces were counted in each plot and in 

four 10 x 10 m areas within each zone.  The diameters of ten samples of each sheep, cow and goose 

faeces were measured; samples were then dried at 80°C for 3 days and dry weight was determined 

before organic carbon content of each faeces type was determined using loss on ignition techniques.  

The total faeces carbon stock per marsh was scaled up from the faeces count, the dry weight and the 

organic carbon content.  Faeces defecation rates were calculated from Rollins, Bryant, and 

Montandon (1984) and Buschbacher (1987).  A defecation rate of 7.5 times per day was used for 

sheep (Rollins et al., 1984).  This was converted in to grams per day using average faeces biomass.  A 

defecation rate of 23.43 grams per animal per day was used for cattle (Buschbacher, 1987).  Total 

faeces defecation rates per year were calculated using the stocking density of each marsh. Faeces 
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degradation rates were determined from the faeces carbon stock using figures calculated in Allard et 

al. (2004). 

 

6.2.2.8 Carbon loss through gas emissions from livestock:  Carbon dioxide and methane emissions 

per head of livestock (kg per head) were obtained from (Kupfer & Karimanziara, 2007).  Carbon 

dioxide emissions per head were 238 kg per year for sheep and 1697 kg per year for cattle (Kupfer & 

Karimanziara, 2007).  Methane emissions per head were 8 kg per year for sheep and 57 kg per year 

for cattle (Kupfer & Karimanziara, 2007).  Kilograms of carbon dioxide and methane emissions per 

hectare per year were calculated using livestock numbers per hectare per year:  

 

Total gas (CO2 or CH4) emissions (kg ha-1 yr-1) = Number of livestock (ha-1 yr-1) x Gas emissions per head (kg) 

 

Total carbon release from livestock gas emissions were calculated using the atomic weight of each 

compound compared to the atomic weight of carbon: 

 

Atomic weight of C = 12 

 

Atomic weight of CO2 = 44  Ratio of CO2 to C = 12/44 = 0.25 

Atomic weight of CH4 = 16  Ratio of CH4 to C = 12/16 = 0.75 

 

Total C release through CO2 (kg ha-1 yr-1) = Total CO2 emissions (kg ha-1 yr-1) x 0.25 

Total C release through CH4 (kg ha-1 yr-1) = Total CH4 emissions (kg ha-1 yr-1) x 0.75 

 

This was then up-scaled to tonnes of carbon per hectare per year by multiplying by 0.001. 

 

6.2.2.9 Carbon dioxide emissions and heterotrophic respiration:  Total carbon dioxide emission rates 

from the soil were measured at each plot using an EGM-4 infra red gas analyser (PP-Systems, 2010) 

(Figure 6.2c).  Measurements were taken seasonally (February, May, August and November 2012).  

The total carbon dioxide emitted from the soil surface is a combination of carbon dioxide derived 

from both autotrophic respiration and heterotrophic respiration (Bond-Lamberty et al., 2004).  

Carbon dioxide produced through autotrophic respiration can account for up to 80% of the total 

carbon dioxide flux in some systems and comes directly from the roots of plants and the organisms 

directly associated with the rhizosphere (Bond-Lamberty et al., 2004; Hanson et al., 2000).  

Therefore, carbon released from the system through the autotrophic pathway is not associated with 

the soil carbon stock (Bond-Lamberty et al., 2004; Hanson et al., 2000).  Carbon dioxide produced 

through heterotrophic respiration comes from the soil microbial communities, which are actively 
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breaking down the soil carbon stock and are therefore directly contributing to the loss of carbon 

through respiration (Bond-Lamberty et al., 2004; Hanson et al., 2000).  The autotrophic-

heterotrophic respiration ratio was determined in the mid marsh zone on Y Foryd in July 2012 based 

on Carbone and Trumbore (2007).  A quasi-experimental design was used to test the difference 

between carbon dioxide emissions in ten 20 x 20cm clipped and ten 20 x 20cm un-clipped plots.  

Plots were clipped one week prior to the experiment to avoid any immediate disturbance effects of 

the clipping.  The EGM-4 was then used to measure carbon dioxide emission rates from both clipped 

and un-clipped plots, and the soil temperature and moisture was measured within each plot.  The 

autotrophic-heterotrophic respiration ratio was determined from the averages of clipped 

(heterotrophic respiration) and unclipped plots (total respiration).  The respiration in un-clipped plots 

was assumed to represent only heterotrophic respiration and respiration in un-clipped plots was 

assumed to represent both autotrophic and heterotrophic respiration (Carbone & Trumbore, 2007). 

 

Total carbon release from soil respiration was calculated using the atomic weight of each compound 

compared to the atomic weight of carbon.  This was then up-scaled to tonnes of carbon per hectare 

per year by multiplying by 0.001. 

 

6.2.2.10 Accretion rate:  Accretion rates were sampled using methods based on  Stock (2011).  Two 

permanent wooden posts were inserted approximately two metres apart at each plot into the marsh 

in October 2011 and the height of each post was recorded.  Sediment accretion rates were the 

measured monthly at each plot on each marsh using a 2.2m garden pole marked at 10cm increments 

(Figure 6.2d).  The distance between the pole and the marsh surface was measured at each marker 

along the pole except the two markers closest to each post; this was to avoid any micro 

sedimentation patterns caused by the posts.  The accretion rate readings were compared with the 

base line data taken in November 2011 to determine annual accretion rates and monthly readings 

were used to determine monthly and seasonal variations in accretion rates. 

 

6.2.2.11 Whole-marsh particulate organic matter fluxes: Salt marshes along the west coast of the 

UK are generally accreting and it is therefore assumed that small scale erosion during large tidal 

cycles is outweighed by sediment deposition (Adam, 1990b; Boorman, 2003).  This assumption was 

tested on Y Foryd during an equinoctial spring tide in September 2012.  It is difficult to test for small-

scale erosion or sediment movement within each zone as it is likely that particulate organic matter 

(POM) moves between zones before leaving the marsh (Stock, 2011; Stumpf, 1983).  As such, a 

whole-marsh approach is more insightful: measurements of suspended matter in the water column 

before it reaches the marsh can be compared to measurements of suspended matter in the water 
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column as it leaves the marsh to determine if there is a net gain (erosion) or loss (sedimentation) of 

sediment as the water passes over the marsh.  This can be refined by measuring suspended matter in 

the water column over each zone to determine where on the marsh suspended matter is deposited 

or picked up.  The suspended sediment in the water column was measured on the mudflat (before 

and after it passed over the marsh) and on each marsh zone both on the incoming tide and the 

outgoing tide.  This was to determine if the marsh was generally accreting or losing sediment; if the 

amount of suspended matter was greater on the incoming tide than the outgoing tide, it was 

assumed that the marsh was accreting sediment.  Water samples were collected in plastic bottles 

attached to the end of a 2m pole to reduce disturbance of the marsh surface near the sample 

collection point.  Five water samples were collected above each of the mudflat and the four marsh 

zones (pioneer, low, mid and high) on the incoming tide as it flooded the marsh, and a further five 

water samples were collected from each zone and from the mudflat on the ebb tide.  In the 

laboratory, the water samples were filtered through pre-sterilized filter papers of a known weight to 

collect any suspended matter.  The samples were then dried at 105°C for three hours and weighed to 

determine the weight of suspended matter.  The samples were then ashed at 550°C for three hours 

to remove any organic matter, and weighed again to determine the weight of organic matter in each 

sample.  The weight of organic matter was then converted into organic carbon content using the 

formula from Craft et al. (1991): 

 
Sample Organic Carbon Content = (0.4 × Organic Matter) + (0.0025 × Organic Matter2) 

 
To determine sediment deposition rates in the mid marsh relative to the other marsh zones, the 

pattern of sedimentation across the marsh was also measured.  Prior to tidal flooding, sediment 

traps were laid out in the mud flat and within each zone.  Pre-weighed, labeled filter papers were 

used to trap any sediment deposited on the marsh surface; the filter papers were held off the marsh 

surface using an upside down petri dish and held in place using tent pegs.  Nine sediment traps were 

deployed on the mudflat and in each marsh zone in a 3×3 grid covering an approximately 3×3m 

area.  The sediment traps were left over the course of one spring equinox tide and re-sampled at low 

tide.  In the laboratory, the filter papers were dried at 105°c for 24 hours and re-weighed to 

determine the weight of sediment deposited by area within each zone. 

 

6.2.2.12 Soil organic carbon:  A 25×4.6cm soil core was taken from each plot in November 2011 

using a split tube corer based on a smaller model by Eijkelkamp.  The core was divided into 5cm 

depth segments down the entire length of the core.  Each segment was homogenised, root material 

was removed and an approximately 10g sample was used to determine the soil organic carbon 

content by using loss on ignition techniques based on Ball (1964).  The percentage soil organic matter 
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content was calculated using methods outlined in the Soils Manual of the Countryside Survey (Emmet 

et al., 2008):  

 

Organic Matter Concentration (OMC) = 100 ×  (Dry Soil Weight – Combusted Soil Weight) 
(Dry Soil Weight – Crucible Weight) 

 

The percentage of soil organic carbon (soil organic carbon concentration) was estimated using a 

conversion formula (Craft et al., 1991): 

 
Soil Organic Carbon Concentration = (0.4 × OMC) + 0.0025 × OMC2) 

 

This was then converted into soil organic carbon (SOC) per volume (soil organic carbon density) using 

bulk density figures from summer 2011: 

 
SOC (g cm-3) = Bulk Density × Soil Organic Carbon Concentration 

        100 

 

To determine the actual change in soil organic carbon over the course of a year, a second 25×4.6cm 

soil core was taken from each plot on each marsh in November 2012 and soil organic carbon content 

was calculated using the above technique.   

 

6.2.2.13 Soil inorganic carbon and nitrogen content: A sub-set of soil samples was used to 

determine the total carbon and nitrogen content of the soil (CN analysis).  Soil samples from a depth 

of 5-10cm were taken from the same core as the organic carbon samples, and soil samples from 0-5, 

10-15, 15-20 and 20-25cm depths were taken from one representative core per marsh.  The soil 

samples were dried at 105°C for 16 hours and ground up using a pestle and mortar.  Between 0.1 and 

0.2g of soil was used for the CN analysis.  Combustion CN analysis was run using a Leco Instruments, 

Truspec CN analyser; carbon content was detected using infra red and nitrogen content was detected 

using thermal conductivity.  EDTA and blank standards were run alongside the sample soils.  Soil 

inorganic carbon content was then calculated by subtracting the soil organic carbon content from the 

total carbon content of each sample.   

  

6.2.2.14 Carbon mineralization: Carbon mineralization is the conversion of organic carbon to 

inorganic carbon and represents carbon moving from the active carbon pool to the slow turn over 

carbon pool (Pendall et al. 2004).  This was not directly measured in this study but a conservative 

estimate of carbon mineralization rate of 10% of soil organic stocks was used as a rate constant 

based on measurements by Howes et al. (1985). 
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Figure 6.2 | The monthly and seasonal measurements.  a) The overall (left) and seasonal (right) vegetation growth plots on 

a grazed marsh.  b) Inserting the root bags into the side wall of a 20cm deep trench.  The soil clods were then placed back 

into the trench and the root bags were sampled seasonally.  c) Using the EGM-4 infra red gas analyser to measure soil 

carbon dioxide flux rates.  d) Measuring monthly accretion rates using two permanently placed wooden posts and a 2m 

garden pole marked at 10cm increments.  The distance from the pole to the soil surface was measured at each white 

marker.  e) Measuring the water table depth using a 50cm deep dip well.  Hanging baskets were used to protect the dip well 

from grazers.  f) Measuring soil redox potential at different depths using a narrow half corer.  Soil temperature was 

measured alongside each redox reading.  A soil sample was also taken from the core in a centrifuge pot for soil pH and 

salinity measurements.   

 

6.2.3 Abiotic contextual variables 

In order to investigate the influence of soil conditions and environmental variation on the carbon 

budget, a series of abiotic factors were measured monthly or seasonally at each plot on each marsh.  

These abiotic variables, collectively, were the predominant variables that affect the measured carbon 

fluxes, as outlined in the introduction. 

 

6.2.3.1 Soil temperature:  A digital thermometer was used to measure surface soil temperature 

monthly at one point per plot per marsh.  In addition air temperature was recorded once monthly at 

each site.   
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6.2.3.2 Soil moisture and water table depth:  A theta probe was used to measure surface soil 

moisture content monthly at each plot per marsh.  As theta probes measure moisture using electrical 

resistance, saline soils can cause inaccuracies in soil moisture readings (Miller & Gaskin, 1999).  For 

this reason, water table depth was also recorded as proxy for soil water content.  Water table depth 

was recorded using water-permeable dip wells (50cm deep, 5cm diameter, water-porous PVC cores) 

inserted into the marsh to a depth of ~45cm (Figure 6.2e).  The distance from the top of the dip well 

tube to the water surface within the tube was measured and actual water table depth was calculated 

by subtracting the measured water depth from the height of the tube protruding from the marsh 

surface.   

 

6.2.3.3 Soil pH and salinity: Soil samples were taken monthly for pH and salinity analyses from a 

depth of 7-10cm using a 2cm diameter half corer (Figure 6.2f).  In the laboratory, soil pH was 

measured within 24 hours of sampling using an IQ soil pH meter.  Soil salinity was measured using 

10g of each homogenized soil sample.  The samples were diluted to a 1:2.5 ratio using 10g of each 

sample with 25ml of deionised water; samples were then well mixed and allowed to settle.  The 

electrical conductivity of the supernatant of each sample and the temperature at time of sampling 

were then measured using a Jenway Conductivity Meter 4320 and the conductivity of each sample 

was calculated using the dilution ratio:  

 
Sample Conductivity (mS) = Supernatant Conductivity (mS) 

                                   2.5 

 
Salinity was then calculated as practical salinity units (S) (Lewis, 1980) using an online calculator 

(Tomczak, 2000).   

 

6.2.3.4 Soil redox: To determine potential methane production levels from soil microbial 

communities, an Eijkelkamp Ag 3 mol/l KCl combination glass electrode was used to measure soil 

redox (anaerobic state) at each plot monthly at Y Foryd and seasonally (November 2011, February, 

May, August and November 2012) on other marsh sites.  Measurements were taken at depths of 2.5, 

7.5, 12.5, 17.5, 22.5 and 27.5cm using a 2cm diameter half corer (Figure 6.2f).  Soil temperature 

readings were taken at each depth alongside each redox reading (Figure 6.2f).  The standard 

measurement of redox (mV) is that measured by a standard hydrogen electrode (Eh) (Eijkelkamp, 

2009).  Standard hydrogen electrodes are difficult to use in the field, and several alternative redox 

electrodes can be used; however, field readings from these alternative electrodes must be converted 

back to standard readings (mV) (Eijkelkamp, 2009).  This study used an Ag 3 mol/l KCl electrode (Em) 
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so a conversion factor (Eref) was used to convert field redox readings (Em) to standard redox 

measurements: 

 
Standard measurement (Eh) = Field measurement (Em) + Eref 

 

Eref depends on the reference electrode used in the field and the soil temperature at the time of the 

field reading (Eijkelkamp, 2009); the appropriate conversion (Eref) was used to convert the field 

measurements into standard measurements.   

 

Once calculated, the standard redox potential measurement (Eh) was used to determine the 

anaerobic state of the soil.  Below 250 mV, soil begins to become anaerobic as nitrogen is reduced 

(Table 6.1) (Mitsch & Gosselink, 2000).  The redox potential has to reach less than -200mV before 

carbon dioxide is reduced to methane (Table 6.1) (Mitsch & Gosselink, 2000). 

 

Table 6.1 | Oxidised and reduced forms of elements.  The oxidised and reduced forms for elements in the anaerobic chain 

against the standard redox potential (mV). Adapted from Mitsch and Gosselink (2000). 

Element Oxidised Form Reduced Form 

Redox Potential 

Required for 

Transformation (mV) 

Oxygen O2 (Oxygen) H2O (Water) +400 → +600 

Nitrogen NO3
-
 (Nitrate) N2O, N2, NH4

+ (Nitrous Oxide, 

Nitrogen, Ammonium) 

+225 → +250 

Manganese Mn4+ (Manganic) Mn2+ (Manganous) +100 → +225 

Iron Fe3+ (Ferric) Fe2+ (Ferrous) -100 → +100 

Sulphur SO4
2- (Sulphate) S2- (Sulphide) -200 → -100 

Carbon CO2 (Carbon dioxide) CH4 (Methane) Below -200 

 

 

6.2.3.5 Daily tidal height:  Predicted times and heights of low and high tides were derived from using 

Tideplotter Belfield Software (BelfieldSoftware, 2011).  The tidal height at the time of sampling, the 

time and height of the last high tide, and the date and height of the last spring tide were also 

recorded monthly for each site. 

6.2.3.6 Daily weather: Observations of air temperature, wind speed, atmospheric pressure and rain 

fall near each site were derived from local weather stations using the Weather Underground 

database (Steremberg, 2010).  The weather conditions and air temperature at each site were also 

recorded during monthly sampling. 
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6.2.4 Modelling components and statistical analysis 

The following analyses were run to determine which factors were the main drivers of soil carbon 

stocks in a grazed salt marsh and whether salt marshes were likely to be a carbon sink or source: 

 

6.2.4.1 Determining the relative differences between carbon fluxes: Kruskal-Wallis Multiple 

Comparisons tests were used to evaluate the relative differences between salt marsh carbon input 

(litter degradation, root degradation and sediment accretion) and output (heterotrophic respiration) 

fluxes.  The post hoc comparisons and the group medians and interquartile ranges indicated the 

comparative size of each carbon flux.  From this, the relative size of carbon inputs could be compared 

to the relative size of carbon outputs to indicate whether salt marshes were likely to be long-term 

carbon sinks or sources.  Analyses were run separately for the annual dataset and for each season in 

turn to determine seasonal differences in carbon flux relationships.  Kruskal-Wallis multiple 

comparisons tests were used in place of ANOVA because some of the data (litter degradation, 

sediment accretion and heterotrophic respiration) did not meet ANOVA test assumptions.   

 

6.2.4.2 Determining carbon flux influences on empirical soil carbon stocks:  A series of distance-

based linear models and regression analyses were used to determine the possible relationships 

between empirically measured carbon fluxes and empirically measured soil carbon stocks.  Analyses 

were run for both soil organic carbon and soil inorganic carbon over three depth profiles (0-5 cm, 0-

10 cm and 0-25 cm).  Based on regional records of sediment accretion rates, the top 6-15 cm of soil 

was assumed to represent approximately the last 30 years of salt marsh accretion (Appendix 3: 

Accretion Rates in Other Studies).  As with the previous study (Chapter 4), the top soil depth profile 

(0-5 cm) was regarded to be indicative of the present flux of material from above ground biomass 

(e.g. litter) to the below ground carbon pool, the middle depth profile (0-10 cm) included most of the 

root biomass and was used to analyse more long-term processes relating to soil carbon stocks, and 

the deepest profile (0-25 cm) was considered an integrator of the broader contextual influences.   

 

6.2.4.3 Carbon flux relations with contextual variables: A series of mixed effects models were run to 

determine which environmental variables and abiotic soil variables were the best predictors of soil 

carbon stock.  ANOVA’s with post hoc Tukey HSD tests, and Kruskal-Wallis Multiple Comparisons 

tests were used to test the effect for season (4 levels) on the environmental and abiotic soil variables 

to determine the variation of these parameters over the seasons.  These analyses were done on 

empirical data collected over the year-long study period.   
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6.2.4.4 Constructing the carbon budget model: The annual means ± standard errors were calculated 

for each carbon flux and stock component.  A carbon budget model based on the mean values was 

then constructed using the Simile v5.96 program.  The model was parameterised using the terms 

shown in Figure 5.1.  Simile uses a graphical interface to build up a model diagram consisting of 

stocks, flows and influences.  In this case, the stocks were carbon stocks such as soil carbon stock, 

plant biomass or root biomass, and the flows were carbon fluxes such as litter degradation, plant 

growth rates and soil respiration.  The influences were other carbon stocks; for example a certain 

percentage of root biomass was broken down each year (root degradation) but the actual amount of 

carbon degraded depended on how much root biomass there was, and thus root biomass had an 

influence on root degradation.  To determine the confidence limits for the mean carbon stock 

predictions, the model was re-run to determine the lowest possible carbon stock predictions 

according to the data means (𝑥̅ – 1 SE for inputs; 𝑥̅ + 1 SE for outputs) and the highest possible 

carbon stock predictions according to the data means (𝑥̅ + 1 SE for inputs; 𝑥̅ − 1 SE for outputs).  The 

model was then run for a 1-year, and a 50-year time scale to predict future carbon stocks on an un-

grazed salt marsh. 

 

6.2.4.5 Comparing model predictions to empirical data:  A soil core from each experimental plot was 

collected in November 2011; the plots were then re-sampled a year later in 2012.  The soil organic 

carbon content for each core was calculated using loss on ignition techniques.  A paired t-test was 

used to determine the in situ changes in soil carbon stocks over the course of one year.  The model 

created in Simile was then tested by running it for one year and comparing the results to the 

empirical soil carbon data results from the paired T-test on the two soil core samples.   

 

6.2.4.6 Comparisons with un-grazed salt marshes:  A Mann-Whitney U test was used to compare the 

main carbon flux components of grazed marshes with those of un-grazed marshes.  The model 

prediction outputs from Simile were similarly compared to that from un-grazed marshes. 
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6.3 Results 

 

6.3.1 The empirical carbon budget  

Figure 6.4 shows the patterns of the measured carbon fluxes over time and the related change in 

carbon stock over the course of one year for each site.  There were significant differences in fluxes 

over the seasons.  Of the main carbon fluxes, sedimentation, soil respiration and root growth 

significantly varied over the seasons (Table 6.2).  Sediment accretion was significantly highest in the 

winter, and significantly lowest in the autumn when the marshes generally eroded (Kruskal-Wallis 

multiple comparisons: Table 6.2).  Soil respiration was significantly higher in the summer and spring 

than in the autumn and winter (Table 6.2).  Root growth was significantly lower in the winter than in 

the other seasons and higher in the summer and autumn than in the spring (Table 6.2). 

 

Table 6.2 | Differences between seasons for the main carbon fluxes. Results of Kruskal-Wallis multiple comparisons tests 

for the main carbon fluxes comparing between seasons. Emboldened p-values indicate a significant effect.  Medians (𝑥̃) and 

Interquartile Range (IQR) are shown by season for each predictor variable.  Significant differences between variables within 

each season are indicated by superscript numbers: variables that share a number are significantly different.   

Carbon Flux Kruskal-Wallis Winter  Spring  Summer  Autumn 

df H p    𝒙̃ IQR     𝒙̃ IQR     𝒙̃ IQR     𝒙̃ IQR  

Faeces 

Degradation 
3 3.94 0.268 0.06 0.08  0.08 0.10  0.09 0.07  0.09 0.11  

Root  

Degradation 
3 4.78 0.189 0.04 0.13  0.05 0.11  0.06 0.14  0.13 0.19  

Sediment  

Accretion 
3 17.32 0.001 7.23 9.87 12 2.63 6.01  2.73 5.81 1 -2.35 14.59 2 

Soil  

Respiration 
3 73.64 <0.001 1.84 1.86 12 6.09 3.54 13 8.92 6.43 24 2.24 2.45 34 

Root  

Growth 
3 39.93 <0.001 0.01 0.01 123 0.02 0.03  145 0.03 0.06 24 0.04 0.08 35 

 

Over the year, loss of carbon through heterotrophic soil respiration and carbon input through 

sediment accretion were significantly greater than carbon inputs through faeces, litter and root 

degradation (Kruskal-Wallis Multiple Comparisons; Table 6.3a,b).  This pattern was consistent 

throughout the winter and spring (Table 6.3b), but in the summer and autumn, loss of carbon 

through heterotrophic soil respiration was greater than carbon inputs through sediment accretion, 

faeces degradation, litter degradation and root degradation, and sediment accretion rates did not 

significantly differ from carbon inputs through faeces and root degradation (Table 6.3b).  Litter 

degradation rates were consistently significantly lower than any other carbon flux (Table 6.3b).  It is 

therefore suggested that salt marshes generally accrete carbon during the winter and spring, but 

may lose carbon during the summer and autumn when soil respiration rates outweigh sediment 

accretion rates. 
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Figure 6.3 | Patterns of measured carbon fluxes over time by marsh.  Bar and line charts showing the patterns of the measured carbon fluxes (above-ground growth, root growth, root 

degradation, soil respiration and accretion rate) alongside the empirical measurements of soil organic carbon in November 2011 and November 2012 for the eight grazed salt marshes 

(Oakenholt, Warton, Fairbourne, Morfa Harlech, Morfa Madryn, Dyfi West, Sunderland and Carnforth).  Data is presented as tonnes of carbon per hectare, except for root degradation, which is 

recorded as a percentage loss of mass. 
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Table 6.3a | Kruskal-Wallis multiple comparisons comparing the main carbon fluxes.  Results of Kruskal-Wallis multiple 

comparisons tests for annual data set and by season, comparing the main inputs and outputs of carbon (t (C) ha-1 yr-1) 

according to the salt marsh carbon budget model. Emboldened p-values indicate a significant effect.   

 

 Kruskal Wallis 

Season df H p 

Annual 4 102.17 <0.001 

Winter 4 100.68 <0.001 

Spring 4 120.38 <0.001 

Summer 4 101.76 <0.001 

Autumn 4 59.25 <0.001 

 

Table 6.3b | Descriptive statistics and statistical grouping of main inputs and outputs of carbon.  Medians (𝑥̃) and 

Interquartile Range (IQR) are shown by season for each predictor variable.  Significant differences between variables within 

each season are indicated by superscript numbers: variables that share a number are significantly different.   

 Faeces 

Degradation 
 

Litter  

Degradation 

 Root  

Degradation 
 

Sediment  

Accretion 
 

Heterotrophic  

Soil Respiration 

Season  𝒙 IQR   𝒙 IQR   𝒙 IQR     𝒙 IQR   𝒙 IQR  

Annual 0.03 0.04  123 0.00 0.00  1456 0.06 0.12 478 6.67 14.77 257 5.13 2.77 368 

Winter 0.06 0.08  123 0.00 0.00  1456 0.04 0.13 478 7.23 9.87 257 1.84 1.86 368 

Spring 0.08 0.10  123 0.00 0.00  1456 0.05 0.11 478 2.63 6.01 257 6.09 3.54 368 

Summer 0.09 0.07  12 0.00 0.00  1345 0.06 0.14 36 2.73 5.81 47 8.92 6.43 2567 

Autumn 0.09 0.11  12 0.00 0.00  1345 0.13 0.19 36 -2.35 14.59 47 2.24 2.45 2567 

 

 

6.3.2 The main carbon flux predictors of soil organic and inorganic carbon 

A combination of sediment accretion, vegetation growth and heterotrophic soil respiration best 

described the variation of soil organic carbon in un-grazed marshes (DistLM: AICc = 165.72, R2 = 

0.281).  Soil organic carbon stocks at 0-5cm and 0-15 depth showed significant a negative 

relationship with sediment accretion rates (Regression: Table 6.4).  When considering the core as a 

whole (all depths pooled: 0-25cm depth), soil organic carbon stocks had no significant relationship 

with any of the measured carbon fluxes (Table 6.4). 

 

A combination of faeces degradation, litter production and sediment accretion rates best described 

the variation in soil inorganic carbon in un-grazed marshes (DistLM: AICc = 206.68, R2 = 0.289).  Soil 

inorganic stocks in the top 5cm soil profile showed a significant positive relationship with faeces 

degradation rate, but in the deeper soil profiles (0-15cm and 0-25cm), soil inorganic carbon stocks 

showed no significant response to any individual carbon flux (Regressions: Table 6.5). 
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Table 6.4 | Regression analysis of empirical measurements of carbon fluxes vs. SOC.  Regression analyses were made for 

three different depth profiles (0-5cm, 0-10cm and 0-25cm).  An emboldened p-value denotes a significant effect.  R2, 

Intercept (b) and Slope (m) values for regression lines are shown. 

Predictor Variable df F p R2 b m 

Soil Organic Carbon (t (C) ha-1 yr-1) – 0-5cm Depth Layer 
Vegetation Growth (t (C) ha-1 yr-1) 1,34 1.76 0.194 0.049   

Litter Degradation (t (C) ha-1 yr-1) 1,34 0.42 0.522 0.012   

Faeces Degradation (t (C) ha-1 yr-1) 1,34 <0.01 0.981 <0.001   

Root Growth (t (C) ha-1 yr-1) 1,34 0.34 0.565 0.010   

Root Degradation (t (C) ha-1 yr-1) 1,34 0.13 0.721 0.004   

Sediment Accretion (t (C) ha-1 yr-1) 1,34 11.73 0.002 0.257 2.190 -0.017 

Heterotrophic Soil Respiration (t (C) ha-1 yr-1) 1,34 0.16 0.689 0.005   

Soil Organic Carbon (t (C) ha-1 yr-1) – 0-15cm Depth Layer 
Vegetation Growth (t (C) ha-1 yr-1) 1,34 0.39 0.537 0.011   

Litter Degradation 1,34 2.24 0.144 0.062   

Faeces Degradation (t (C) ha-1 yr-1) 1,34 0.02 0.899 <0.001   

Root Growth (t (C) ha-1 yr-1) 1,34 0.77 0.387 0.022   

Root Degradation (t (C) ha-1 yr-1) 1,34 1.58 0.217 0.044   

Sediment Accretion (t (C) ha-1 yr-1) 1,34 4.20 0.048 0.110 1.63 -0.008 

Heterotrophic Soil Respiration (t (C) ha-1 yr-1) 1,34 0.11 0.744 0.003   

Soil Organic Carbon (t (C) ha-1 yr-1) – 0-25cm Depth Layer 
Vegetation Growth (t (C) ha-1 yr-1) 1,34 0.40 0.531 0.012   

Litter Degradation 1,34 2.64 0.114 0.072   

Faeces Degradation (t (C) ha-1 yr-1) 1,34 <0.01 0.970 <0.001   

Root Growth (t (C) ha-1 yr-1) 1,34 0.06 0.804 0.002   

Root Degradation (t (C) ha-1 yr-1) 1,34 0.79 0.382 0.023   

Sediment Accretion (t (C) ha-1 yr-1) 1,34 3.81 0.059 0.101   

Heterotrophic Soil Respiration (t (C) ha-1 yr-1) 1,34 0.95 0.337 0.027   
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Table 6.5 | Regression analysis of empirical measurements of carbon fluxes vs. SIC.  Regression analyses were made for 

three different depth profiles (0-5cm, 0-10cm and 0-25cm).  An emboldened p-value denotes a significant effect.  R2, 

Intercept (b) and Slope (m) values for regression lines are shown. 

Predictor Variable df F p R2 b m 

Soil Inorganic Carbon (t (C) ha-1 yr-1) – 0-5cm Depth Layer 
Vegetation Growth (t (C) ha-1 yr-1) 1,34 0.62 0.437 0.020   

Litter Degradation (t (C) ha-1 yr-1) 1,34 0.35 0.559 0.011   

Faeces Degradation (t (C) ha-1 yr-1) 1,34 21.67 <0.001 0.417 0.388 22.800 

Root Growth (t (C) ha-1 yr-1) 1,34 0.79 0.381 0.026   

Root Degradation (t (C) ha-1 yr-1) 1,34 0.51 0.482 0.017   

Sediment Accretion (t (C) ha-1 yr-1) 1,34 1.47 0.236 0.047   

Heterotrophic Soil Respiration (t (C) ha-1 yr-1) 1,34 0.75 0.393 0.024   

C Mineralization (t (C) ha-1 yr-1) 1,34 0.66 0.424 0.021   

Soil Inorganic Carbon (t (C) ha-1 yr-1) – 0-15cm Depth Layer 
Vegetation Growth (t (C) ha-1 yr-1) 1,34 0.85 0.365 0.027   

Litter Degradation 1,34 0.54 0.466 0.018   

Faeces Degradation (t (C) ha-1 yr-1) 1,34 0.23 0.636 0.008   

Root Growth (t (C) ha-1 yr-1) 1,34 0.15 0.703 0.005   

Root Degradation (t (C) ha-1 yr-1) 1,34 2.48 0.126 0.076   

Sediment Accretion (t (C) ha-1 yr-1) 1,34 <0.01 0.987 <0.001   

Heterotrophic Soil Respiration (t (C) ha-1 yr-1) 1,34 0.64 0.431 0.021   

C Mineralization (t (C) ha-1 yr-1) 1,34 0.60 0.443 0.020   

Soil Inorganic Carbon (t (C) ha-1 yr-1) – 0-25cm Depth Layer 
Vegetation Growth (t (C) ha-1 yr-1) 1,34 0.63 0.4.35 0.020   

Litter Degradation 1,34 0.40 0.533 0.013   

Faeces Degradation (t (C) ha-1 yr-1) 1,34 0.09 0.767 0.003   

Root Growth (t (C) ha-1 yr-1) 1,34 0.10 0.749 0.003   

Root Degradation (t (C) ha-1 yr-1) 1,34 3.86 0.059 0.114   

Sediment Accretion (t (C) ha-1 yr-1) 1,34 0.59 0.447 0.019   

Heterotrophic Soil Respiration (t (C) ha-1 yr-1) 1,34 0.41 0.529 0.013   

C Mineralization (t (C) ha-1 yr-1) 1,34 0.36 0.554 0.012   
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6.3.5 The impacts of abiotic factors on carbon budget parameters 

Table 6.8 shows the results of several mixed effects models analyzing the impact of environmental 

and soil parameters with each of the main carbon fluxes identified in previous sections as being main 

drivers of soil carbon stocks.  Water table depth was a significant predictor of litter and root 

degradation in the spring, and soil respiration in the summer and autumn.  Soil salinity was a 

significant predictor of root degradation in the spring and soil respiration in the spring and summer.  

Soil redox was a significant predictor of litter degradation in the spring and soil respiration in the 

summer.  Generally, the measured environmental variables were more likely to be predictors of 

carbon fluxes in the spring and summer months than in the winter and autumn months, particularly 

when considering soil heterotrophic respiration.   

 

Several environmental and abiotic soil parameters changed between seasons (Tables 6.6, 6.7).  Soil 

salinity was significantly higher in the spring and summer than in the autumn and winter (ANOVA; 

Table 6.6).  Soil moisture was significantly lower in the autumn than it was in winter and spring, soil 

and air temperatures were lowest in winter and highest in the summer, water table depth was 

significantly higher in the autumn than in the winter, soil redox potential was significantly higher in 

the winter than in summer and autumn, and wind gust speeds were significantly higher in the winter 

and autumn than in the spring and summer (Kruskal-Wallis multiple comparisons; Table 6.7). 

 

Stocking density had a significant relationship with some of these soil variables; soil moisture showed 

a significant positive response to an increase in stocking density in summer, soil temperature showed 

a significant positive response to increased stocking density in the winter, water table depth showed 

a significant negative response to stocking density sin the winter, spring and autumn, soil pH showed 

a significant negative response in the winter, summer and autumn but a significant positive response 

in the spring, and soil salinity showed a significant positive response throughout the year 

(Regression; Table 6.8).   
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Table 6.6 | Comparing environmental and soil parameters with main carbon fluxes.  Results of mixed effects models comparing testing for association of variation in the main (identified from 

the DistLM and regression analyses) carbon fluxes (litter degradation, root degradation, heterotrophic soil respiration and sediment accretion) with variation in environmental and abiotic soil 

parameters.  Column headers depict the effect, degrees of freedom (df: numerator, denominator), F-values (F), p-values (p) and slopes of linear relationships (m). 

   Winter  Spring  Summer  Autumn 

Predictor Variable df  F p m  F p m  F p m  F p m 

 Litter Degradation 

Stocking Density (LSU ha-1 yr-1) 1,6  0.55 0.489   0.50 0.501   0.73 0.421   0.54 0.492  

Soil Moisture (θ) 1,18  0.15 0.701   22.96 <0.001 -0.001  1.89 0.183   0.67 0.424  

Soil Temperature (°C) 1,18  <0.01 0.953   0.15 0.707   0.42 0.520   3.01 0.100  

Water Table Depth (cm) 1,18  3.71 0.070   10.92 0.004 -0.001  1.11 0.304   0.88 0.359  

Soil pH 1,18  3.71 0.070   15.59 0.001 -0.046  6.66 0.017 -3.019  2.91 0.105  

Soil Salinity (S) 1,18  0.02 0.896   0.05 0.822   <0.01 0.976   0.10 0.758  

Soil Redox Potential (mV) 1,18  3.58 0.075   8.28 0.010 -0.001  0.01 0.927   2.95 0.103  

 Root Degradation 

Stocking Density (LSU ha-1 yr-1) 1,6  0.57 0.480   0.15 0.709   0.60 0.463   0.03 0.858  

Soil Moisture (θ) 1,18  0.58 0.457   0.01 0.919   0.05 0.824   0.71 0.411  

Soil Temperature (°C) 1,18  0.16 0.695   0.07 0.801   2.81 0.109   0.18 0.677  

Water Table Depth (cm) 1,18  0.02 0.886   6.11 0.024 -0.001  1.40 0.250   0.22 0.642  

Soil pH 1,18  0.45 0.512   3.05 0.098   0.11 0.744   1.88 0.187  

Soil Salinity (S) 1,18  0.45 0.511   5.88 0.026 -0.014  1.32 0.264   0.37 0.552  

Soil Redox Potential (mV) 1,18  0.87 0.363   0.97 0.338   0.13 0.721   0.18 0.678  

 Heterotrophic Soil Respiration 

Stocking Density (LSU ha-1 yr-1) 1,4  2.53 0.187   1.12 0.350   32.91 0.002 0.725  1.43 0.318  

Soil Moisture (θ) 1,17  0.10 0.756   0.40 0.534   2.38 0.140   1.27 0.284  

Soil Temperature (°C) 1,17  1.47 0.241   6.07 0.025 0.752  14.16 0.001 -0.431  0.07 0.801  

Water Table Depth (cm) 1,17  0.24 0.631   3.58 0.076   9.22 0.007 0.098  14.61 0.003 -0.045 

Soil pH 1,17  0.53 0.477   0.45 0.512   4.32 0.051   0.07 0.796  

Soil Salinity (S) 1,17  0.02 0.903   17.73 0.001 0.676  5.62 0.028 1.115  1.46 0.252  

Soil Redox Potential (mV) 1,17  0.06 0.815   <0.01 0.990   5.95 0.024 0.017  0.83 0.382  

Soil Organic Carbon (g (C) ha-1 yr-1) 1,17  0.42 0.528   0.06 0.814   5.40 0.031 0.564  8.55 0.014 3.122 

Tidal Height (m) 1,4  0.19 0.688   5.49 0.079   4.57 0.086   1.87 0.265  

Air Temperature (°C) 1,4  1.20 0.335   0.75 0.435   22.59 0.005 -1.810  0.34 0.601  
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Table 6.6 (Cont.) | Comparing environmental and soil parameters with main carbon fluxes. 

 

   Winter  Spring  Summer  Autumn 

Predictor Variable df  F p m  F p m  F p m  F p m 

 Sediment Accretion 

Stocking Density (LSU ha-1 yr-1) 1,2  5.15 0.151   0.30 0.638   0.29 0.629   0.67 0.499  

Tidal Range (m) 1,2  0.79 0.467   10.86 0.081   0.35 0.594   3.26 0.213  

Wind Speed (Gust) (kmph) 1,2  2.93 0.229   0.15 0.740   0.30 0.623   0.02 0.907  

Percent Clay 1,2  1.02 0.419   2.07 0.286   0.37 0.587   5.79 0.138  

Soil Compaction (pa) 1,2  2.96 0.227   14.85 0.061   0.67 0.473   0.01 0.945  

Vegetation Height (cm) 1,22  5.84 0.024 -0.333  1.66 0.211   0.19 0.667   0.05 0.818  

Vegetation Cover (%) 1,22  9.81 0.005 -0.257  13.43 0.001 -0.333  0.14 0.713   10.48 0.004 -1.338 
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Table 6.7 | ANOVA analysis of seasonal differences in soil properties.  Results of 1-way ANOVA’s showing differences between seasons for several soil properties.  Column headers depict 

degrees of freedom (df: numerator, denominator), F-values (F), p-values (p) and partial eta squared effect size (ηp
2).  An emboldened p-value denotes a significant effect.  Means (𝑥̅) and 

Standard Error (SE) are shown by season for each predictor variable.  Significant differences between variables within each season are indicated by superscript numbers: variables that share a 

number are significantly different. 

 

 ANOVA  Winter  Spring  Summer  Autumn 

Variable df F p ηp
2  𝒙 SD   𝒙 SD   𝒙 SD   𝒙 SD  

Soil pH 3,168 2.53 0.059 0.043  7.02 0.05   6.80 0.06   6.83 0.05   6.90 0.06  

Soil Salinity (S) 3,168 17.76 <0.001 0.241  5.29 0.46 12  8.89 0.40 13  8.70 0.49 24  6.03 0.39 34 

 

 

Table 6.8 | Kruskal-Wallis multiple comparisons tests of seasonal differences in soil properties.  Results of Kruskal-Wallis multiple comparisons tests showing differences between seasons for 

several environmental parameters.  Column headers depict degrees of freedom (df), H-values (H) and p-values (p).  An emboldened p-value denotes a significant effect.  Medians (𝑥̃) and 

Interquartile Range (IQR) are shown by season for each predictor variable. Significant differences between variables within each season are indicated by superscript numbers: variables that share 

a number are significantly different. 

 Kruskal-Wallis  Winter  Spring  Summer  Autumn 

Variable df H p  𝒙 IQR   𝒙 IQR   𝒙 IQR   𝒙 IQR  

Soil Moisture (θ) 3 11.50 0.009  964.33 39.25 12  959.83 37.58 3  951.00 38.25 1  942.00 36.25 23 

Soil Temperature (°C) 3 121.35 <0.001  5.33 1.76 123  9.55 0.97 145  16.18 1.71 246  10.66 0.91 356 

Water Table Depth (cm)  3 8.28 0.041  24.47 17.80 1  26.85 19.21   26.12 12.65   31.69 12.68 1 

Soil Redox (mV) 3 9.63 0.022  403.20 140.10 12  368.50 120.90   336.30 61.90 1  343.90 91.10 2 

Air Temperature (°C) 3 115.78 <0.001  7.13 0.68 123  11.32 1.33 14  17.93 2.37 245  12.50 1.17 35 

Tidal Height when Sampling (m) 3 3.23 0.357  4.24 2.22   3.49 2.43   3.20 0.63   2.96 1.70  

Wind Speed (Gust) (kmph) 3 24.87 <0.001  30.27 8.22 12  22.90 5.63 1  20.58 6.41 23  29.32 8.61 3 
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6.3.3 Comparing model predictions to observed soil carbon stocks 

There was no significant gain or loss of carbon over the course of one year in any of the soil depths 

samples when comparing 2011 and 2012 data (t-test: Table 6.9).  This was compared to predictions of 

future carbon stocks based on the changes in, and relationships between, the measured carbon stocks 

and fluxes using a carbon budget model.  This carbon budget model was constructed based on overall 

averages and standard errors calculated from the empirical carbon flux and stock data shown in Figure 

6.4.  In contrast to the empirical observations, the model predicted that soil organic carbon for the 0-

25cm depth would increase considerably over one year, despite large error margins (Figure 6.5).  The 

large error margins, coupled with the mismatch with empirical observations, indicate that the model is 

unsuitable for predictions in its current state. 

 

 

 Figure 6.4 | A calculated carbon budget for a grazed salt marsh. Annual means ± one standard error are shown for each 

carbon flux variable based on empirical evidence from nine grazed salt marshes.  Figures in red are principal stocks, inputs or 

outputs of soil organic carbon or soil inorganic carbon. 
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Table 6.9 | Comparison between empirical soil organic carbon content in 2011 and 2012.  Results of a two-sample t-test 

comparing between November 2011 and November 2012 for soil depths 0-5cm, 0-10cm and 0-25cm.  Means and standard 

errors are shown after the test results. 

 T-Test  2011  2012 

Depth Profile N T p  𝒙 SE  𝒙 SD 

0-5cm 44 0.79 0.435  2.001 0.115  1.911 0.128 

0-15cm 44 0.45 0.657  1.455 0.078  1.415 0.087 

0-25cm 44 0.38 0.705  1.125 0.062  0.101 0.070 

Model Predictions - - -  1.217 0.079  9.400 4.600 

 

 

 

Figure 6.5 | Model predictions for soil organic carbon stocks over 1 year.  Model outputs of a grazed salt marsh carbon budget 

model showing results for soil organic carbon stocks for a 1-year prediction showing mean and upper and lower confidence 

intervals (based on standard error). 

 

6.3.4 Comparing grazed with un-grazed 

Litter degradation rates were significantly lower on grazed marshes than on un-grazed marshes, and 

faeces degradation rates were significantly higher on grazed marshes than on un-grazed marshes 

(Mann-Whitney U: Table 6.10).  Root degradation rates, sediment accretion rates and soil respiration 

rates did not differ between grazed and un-grazed marshes (Table 6.10).  Carbon input through litter 
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degradation in un-grazed marshes did not significantly differ from carbon inputs through faeces 

degradation in grazed marshes (Mann-Whitney U: W = 258.0, p = 0.398). 

 

Table 6.10 | The differences between grazed and un-grazed empirical salt marsh carbon fluxes.  Results of Mann-Whitney U 

tests for the main carbon fluxes associated with soil carbon stocks, comparing between grazed and un-grazed salt marshes.  

Column headers depict the test results (W) and associated p-value (p), followed by the sample size (n), median (𝑥̃) and 

interquartile range (IQR) for both grazed and un-grazed salt marshes.  Units for each variable are tons of carbon per hectare per 

year. 

Carbon Flux Mann-Whitney  Grazed  Un-grazed 

W p  n    𝒙̃ IQR  n    𝒙̃ IQR 

Faeces Degradation 1098.0 <0.001  36 0.03 0.04  12 0.00 <0.01 

Litter Degradation 797.5 0.046  36 0.00 <0.01  12 0.00 0.23 

Root Degradation 926.0 0.300  36 0.06 0.12  12 0.06 0.22 

Sediment Accretion 920.5 0.366  36 6.67 14.77  12 4.61 12.00 

Soil Respiration 800.0 0.052  36 5.13 2.77  12 6.61 2.28 

 

Carbon dioxide emissions from livestock were significantly lower than outputs of carbon through 

heterotrophic soil respiration, but significantly higher than carbon inputs through faeces and litter 

degradation.  Methane emissions from livestock were significantly lower than carbon input by sediment 

accretion and carbon loss through soil respiration, but significantly higher than carbon inputs through 

litter degradation.  Methane emissions were significantly lower than carbon dioxide emissions (Kruskal-

Wallis multiple comparison: df = 6, H = 158.64, p <0.001) (Table 6.11).  

 

Table 6.11 | Statistical grouping of livestock gas effluxes and the main carbon fluxes.  Descriptive statistics and grouping 

according to Kruskal-Wallis multiple comparisions tests for empirical livestock gas emissions and empirical carbon fluxes.  

Medians (𝑥̃) and Interquartile Range (IQR) are shown for each variable.  Significant differences between variables within each 

season are indicated by ‘Grouping’: variables that share a number are significantly different.  Units for each variable are tons of 

carbon per hectare per year. 

  𝒙 IQR Grouping  

CO2 Emissions (t(C) ha-1 yr-1) 0.166 0.177 1, 2, 3, 4 

CH4 emissions (t(C) ha-1 yr-1) 0.011 0.019 1, 5, 6, 7 

Faeces Degradation (t(C) ha-1 yr-1) 0.035 0.028 2, 8, 7, 10, 11, 12 

Litter Degradation (t(C) ha-1 yr-1) 0.000 0.000 3, 5, 8, 10, 13, 14, 15 

Root Degradation (t(C) ha-1 yr-1) 0.060 0.119 13, 16, 17 

Sediment Accretion (t(C) ha-1 yr-1) 6.670 14.770 6, 9, 11, 14  

Soil Respiration (t(C) ha-1 yr-1) 5.130 2.773 4, 7, 12, 15 

 

Livestock grazing had significant impacts on several abiotic soil characteristics, although the influence of 

grazers varied between seasons (Table 6.12). 
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Table 6.12 | Regression analysis of soil parameters vs. stocking density.  Results of a regression analysis for each measured soil 

parameter vs. stocking density (LSU) for each season.  Results of ANOVA (df, F and p) are shown.  An emboldened p-value 

denotes a significant effect.  The results of the regression are shown in the last three columns: R2, Intercept (b) and Slope (m). 

Predictor Variable df F p R2 b m 

Winter 

Soil Moisture (θ) 1,30 2.68 0.112 0.082   

Soil Temperature (°C) 1,30 20.11 <0.001 0.461 4.370 1.910 

Water Table Depth (cm) 1,30 8.41 0.007 0.219 28.700 -14.200 

Soil pH 1,30 6.62 0.015 0.181 7.190 -0.370 

Soil Salinity (S) 1,30 5.67 0.024 0.159 3.900 2.980 

Soil Redox (mV) 1,30 0.15 0.700 0.005   

Spring 

Soil Moisture (θ) 1,30 1.49 0.231 0.047   

Soil Temperature (°C) 1,30 1.76 0.194 0.056   

Water Table Depth (cm) 1,30 7.93 0.009 0.209 31.200 -14.500 

Soil pH 1,30 7.19 0.012 0.193 7.080 0.461 

Soil Salinity (S) 1,30 9.50 0.004 0.241 6.600 3.030 

Soil Redox (mV) 1,30 4.14 0.051 0.121   

Summer 
Soil Moisture (θ) 1,30 8.48 0.006 0.200 930.000 32.400 

Soil Temperature (°C) 1,30 0.36 0.554 0.010   

Water Table Depth (cm) 1,30 0.47 0.498 0.014   

Soil pH 1,30 11.50 0.002 0.253 7.140 -0.523 

Soil Salinity (S) 1,30 11.24 0.002 0.248 6.280 3.620 

Soil Redox (mV) 1,30 0.84 0.366 0.250   

Autumn 

Soil Moisture (θ) 1,30 3.59 0.067 0.096   

Soil Temperature (°C) 1,30 2.49 0.124 0.068   

Water Table Depth (cm) 1,30 11.49 0.002 0.253 34.500 -14.000 

Soil pH 1,30 11.13 0.002 0.247 7.210 -0.544 

Soil Salinity (S) 1,30 11.83 0.002 0.258 4.010 3.980 

Soil Redox (mV) 1,30 0.64 0.429 0.021   
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6.4 Discussion 

 

6.4.1 Grazing influence on the mass balance of carbon 

A mass balance carbon budget based on empirical data showed grazing had little impact on the total 

carbon balance in salt marshes, although it did affect the relative contributions by different budget 

components.  As on un-grazed marshes, sedimentation and soil respiration were higher than inputs 

through organic matter, and sedimentation and soil respiration did not differ between grazed and 

un-grazed marshes.  Input of carbon through the degradation of litter matter in grazed marshes was 

approximately zero, due to the fact there was no litter present.  Carbon input through faeces 

degradation in grazed marshes was not significantly different from carbon inputs through litter 

degradation in un-grazed marshes.  In terms of the overall carbon balance, therefore, carbon input in 

grazed marshes through degradation of faeces compensated for the loss of litter-derived inputs in 

un-grazed marshes.  As overall degradation rates did not differ between grazed and un-grazed 

marshes, it is perhaps unsurprising that soil respiration also did not differ between grazed and un-

grazed marshes.  Ford, Rousk, Garbutt, Jones, and Jones (2013) found that, although grazing had 

small effects on the composition of the soil microbial community, the total microbial biomass was 

not affected by grazing, and therefore, grazing is unlikely to affect soil respiration rates (Ford et al., 

2012; Ma et al., 2010).  It was expected that, as grazers reduce above ground biomass, less sediment 

would be accreted on grazed marshes.  However, French and Spencer (1993) found that 

sedimentation across a marsh depended more on direct settling rather than the retention of 

sediment on plant surfaces.  The present results suggest that the above ground plant biomass had 

little to do with the process of sedimentation in mid marsh, and instead sedimentation across the 

study plots was more likely due to direct settling from the water column. 

 

Gas emissions from livestock were lower than soil respiration rates and sedimentation rates, but 

higher than inputs of carbon through faeces degradation; they did not differ from root degradation 

rates.  It is therefore likely, that carbon dioxide and methane gas emissions from livestock do not 

result in salt marshes becoming a net source of carbon, but instead slightly offset salt marsh carbon 

storing.   

 

Sediment accretion was an important predictor of empirical soil organic carbon stock.  Sediment 

accretion showed a negative relationship with soil organic carbon in the top two soil profiles (0-5 and 

0-15 cm depth).  If sedimentation was chiefly by means of direct settlement, rather than being 

trapped by plants (French & Spencer, 1993), the constant high sedimentation rates coupled with a 

loss in plant biomass (Chapter 3) could lead to a change in inorganic to organic carbon ratio in the soil 
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carbon stock with an increase in grazing and thus lead to a relative decrease in soil organic carbon 

stocks.  Livestock grazing showed a positive relationship with heterotrophic soil respiration in the 

summer.  An increase in grazing leads to a decrease in vegetation cover (Chapter 3), which is likely to 

lead to higher soil temperatures (Oliver, Oliver, Wallace, & Roberts, 1987), and therefore higher soil 

respiration rates (Amundson, 2001; Pendall et al., 2004).  Livestock grazing did alter soil properties; 

grazing showed a positive relationship with soil temperatures in the winter but this relationship was 

not evident in the other seasons, suggesting that grazing impact on soil temperature may be minor.  

Furthermore, soil compaction by livestock leads to higher soil moisture levels (Jensen, 1985), as 

observed here, which increases soil respiration rates (Amundson, 2001; Pendall et al., 2004). 

 

6.4.2 Seasonal changes in carbon fluxes 

Grazing did not affect the seasonal patterns of salt marsh carbon fluxes.  As with un-grazed marshes, 

there were no seasonal patterns with degradation of organic matter (faeces and roots), and soil 

respiration was greatest in the summer and lowest in the winter.  Sediment accretion was greatest in 

the winter, lower in the spring and summer, and again erosion generally occurred in the autumn.     

 

6.4.3 The impact of environmental variables on carbon sequestration  

As predicted, soil moisture and temperature were significant predictors of degradation rates and soil 

respiration.  However, unlike on un-grazed marshes, which showed stronger effects of soil 

characteristics in the winter, the effects of soil moisture and temperature were significant only in the 

summer.  Soil temperature showed a negative relationship with soil respiration in the summer, while 

soil moisture parameters showed a positive relationship with soil respiration in the summer.  

Although it has been established that both grazed and un-grazed grasslands show a summer maxima 

and a winter minima of microbial biomass (Bardgett et al., 1997), there is no difference in microbial 

biomass or fungi:bacteria ratios between grazed and un-grazed salt marshes (Ford et al., 2013).  The 

difference in seasonal effects of soil conditions is therefore unlikely to be due to differences between 

grazed and un-grazed microbial communities.  Instead, it is possible that grazers alter soil abiotic 

factors indirectly by removing above ground vegetation, which has knock-on effects on degradation 

rates and respiration rates.  For example, elevated soil temperatures in the summer may reach a 

threshold point and inhibit soil respiration (Couteaux et al 1995).  Furthermore, soil moisture showed 

a positive relationship with grazing during the summer; on intensively grazed marshes where soil 

compaction was greatest (Chapter 4), soil moisture, and therefore soil respiration was high 

(Amundson, 2001; Jensen, 1985; Pendall et al., 2004).  No seasonal changes in degradation rates or 

soil respiration rates were recorded in this study, however, so seasonal changes in soil abiotic 

parameters are likely only to have marginal impacts on carbon fluxes.   
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6.4.4 Predictions of future carbon stocks  

As with the un-grazed marshes, there was no significant change over the course of one year when 

looking at actual carbon stocks from 2011 vs. 2012.  This observation was expected, as Chapter 4 

showed that there was no difference in the carbon stocks of grazed and un-grazed marshes.  When 

comparing one year of data with a one year model prediction, however, the model showed a large 

increase in carbon (just less than 6 tonnes of carbon per hectare), and the confidence intervals 

seemed to show that this was a significant increase.  This implies that the model is not a good 

predictor of future carbon stocks, as it overestimated carbon flux increases and showed large error 

margins.   

 

6.4.5 Study implications 

Livestock grazing does not impact the overall carbon budget model, but it does alter some of the 

carbon fluxes both directly and indirectly.  Management schemes need to keep in mind that loss of 

litter and above ground biomass by grazing can result in changes in soil conditions, which will alter 

some carbon fluxes.  Soil respiration is a considerable output of carbon from salt marshes, and 

grazers could enhance this output during the summer months.  This may add to concerns of rising 

soil temperatures and loss of soil carbon in the future (Jenkinson et al., 1991; Kirschbaum, 1995; 

Schimel et al., 1994).  Furthermore, although gas effluxes from livestock were smaller than soil 

respiration and sedimentation fluxes, they are another carbon output from salt marshes, which 

cannot be ignored when looking at a total mass balance of salt marsh carbon. 

 

As livestock grazing is a common use of salt marshes, it is important to consider both grazed and un-

grazed salt marshes when studying carbon sequestration over a large spatial area.  This study showed 

that, on the whole, grazing does not impact the total carbon budget on a salt marsh.  However, 

future studies will need to take into account the small differences between grazed and un-grazed 

marshes when investigating carbon sequestration on salt marshes, particularly as there is a definite 

shift between carbon inputs through litter and faeces degradation.  Management schemes wishing to 

focus on the mechanisms of carbon sequestration on salt marshes should therefore consider the 

impacts of livestock grazing. 
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Chapter 7: General Discussion 

 

7.1 Overall Conclusions 

There were clear effects of grazing on above ground plant communities in salt marshes, which also 

related to some carbon fluxes: there was a direct effect of grazing on litter, and perhaps indirect 

effects of grazing on degradation rates and soil respiration.  However, the effects of grazing did not 

translate to effects on below ground soil carbon stocks, as predicted in small-scale studies.  This 

disconnection between above and below ground processes was corroborated by Chapters 5 and 6, 

where carbon budget models showed that there was no overall effect of grazing on the salt marsh 

carbon budget.  Environmental and seasonal variation generally influenced above and below ground 

processes to a greater extent than grazing, suggesting that environmental setting is the most 

important predictor of salt marsh carbon capture and storage processes.   

 

The disconnection between above and below ground processes may be a question of relative time 

scales.  Below ground turnover of carbon stocks occurs on the decadal, century or even millennial 

scale (Pendall et al., 2004), while above ground changes occur within a few years (Bos et al., 2002; 

Kuijper et al., 2004).  Furthermore, grassland systems are known to adapt to grazing disturbance over 

the course of decades through plant compensation techniques (Tanentzap & Coomes, 2012), so any 

impact of grazing is perhaps unlikely to reflect in the soil carbon stores.   

 

The below ground soil profile is a collective history of several decades, intertwined in current physical 

and above ground processes; all layers, as they are laid down, are a product of present processes, 

such as root growth, mixed with past conditions (Parton, Schimel, Cole, & Ojima, 1987).  If soil builds 

up approximately 0.4 cm a year in salt marshes (Appendix 2) and the top layer of soil is affected by 

current above ground processes, then this top layer of soil is a product of both past conditions and 

current processes (Parton et al., 1987).  This mixing of current and past conditions is likely to obscure 

any impact of the current above ground status on the below ground environment.   

 

7.2 Study Limitations 

Another possible explanation for the disconnection between above and below ground processes is 

that sample size may not have been big enough to detect an effect.  The effect of grazing on below 

ground carbon stocks was expected to be large (Chapter 2: Table 2.3), but the effect of grazing may 

have been smaller than expected.  A priori power analyses showed that a minimum sample size of 36 

was needed to detect the expected large effect of grazing (Chapter 2: Table 3.2); the minimum 
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sample size would have been larger if a small effect was expected (Cohen, 1988).  Sample size in un-

grazed (n=112) and intensively grazed (n=60) may have been large enough to detect an effect of 

grazing, but sample sizes in lightly grazed (n=32) and moderately grazed (n=32) would have been too 

small to detect an effect.  If grazing had a small impact on soil carbon stocks, it is likely that the 

effects of grazing would have been outweighed by the larger impacts of environmental factors.   

 

Over such a large spatial scale, the variation between sites was greater than any grazing impacts 

(Chapters 3 and 4).  This problem may have been solved by taking more replicates and measuring 

more environmental parameters at each site, for example nutrient balances.  However, this quickly 

becomes logistically impossible without considerable and frequent sampling efforts from several 

research groups across the study area.  Another alternative would have been to reduce the number 

of sites for detailed measurements, such as in Chapters 5 and 6, but much of the environmental 

variation would then have been lost, reducing the value of the broad-scale aspect of the study.  The 

effects of grazing on salt marsh carbon stocks have not been studied in the context of broader-scale 

contextual variables in the past, so this data set, although not detailed, provides a good baseline data 

set upon which to build.   

 

The model predictions in Chapters 5 and 6 showed considerable error when predicting future carbon 

stocks.  This variation was perhaps inevitable, as the models were based on annual means.  As the 

data were collected over the course of just one year, seasonal variation would have contributed to a 

significant amount of variation in the model.  If this project had the scope to do so, data would have 

been collected over the course of several years in order to reduce this variation.   

 

One of the main outputs of carbon from the soil stocks was heterotrophic respiration.  The ratio of 

heterotrophic respiration to autotrophic respiration was measured in July 2012 on Y Foryd, an un-

grazed marsh.  Autotrophic respiration rates increase with increased plant productivity (Bond-

Lamberty et al., 2004) and, as productivity rates in spring and summer are high, it is likely that 

autotrophic respiration rates are higher in the summer than in the winter.  As the heterotrophic to 

autotrophic respiration ratio was calculated from summer readings, it is possible that autotrophic 

respiration contributed more to the total gas efflux than readings taken during the winter would 

have done.  This may have led to an underestimation of soil heterotrophic respiration rates during 

the winter.  However, heterotrophic respiration depends on the soil microbial community, which was 

likely to show a summer maxima and a winter minima (Bardgett et al., 1997; Bardgett et al., 1999).  

Although this study did not have the scope to investigate soil microbial communities, Chapter 5 and 6 

showed seasonal changes in soil respiration rates, which supports the theory that soil microbial 
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biomass showed a summer maxima and a winter minima.  It is therefore possible that, alongside 

autotrophic respiration rates, heterotrophic rates may also have been lower in the winter, and thus 

the autotrophic to heterotrophic ratio would have remained unchanged.   

 

Faeces biomass was a small input of carbon on grazed marshes, and was thought to compensate for 

the loss of litter-derived inputs found in un-grazed marshes.  However, it can be problematical 

measuring faeces degradation in the salt marsh environment, as faecal matter is moved around or 

lost from the marsh due to tidal water movements.  As such, faeces degradation rates were 

estimated from figures calculated in the terrestrial literature (Allard et al., 2004), which may not bear 

accurate comparisons to the salt marsh environment.  Although this is unlikely to impact the results 

of this study, future studies may wish to explore the process of faeces degradation on salt marshes 

further.   

 

7.3 Study Implications 

In the past, livestock grazing on salt marshes has been used as a management tool for several 

ecosystem services.  The most frequent uses for livestock grazing on salt marshes are meat 

production, biodiversity protection, and habitat provision for wetland bird species such as redshank 

(Adam, 1990c; Kuijper et al., 2004; Norris et al., 1997).  The use of livestock grazing as a management 

tool for carbon sequestration is a relatively new concept and has generally been used only in 

terrestrial systems (Bhogal et al., 2010; Ma et al., 2010; Reeder & Schuman, 2002; Schuman et al., 

1999).  A recent study on salt marshes in Canada has now shown that livestock grazing can boost 

carbon stocks on salt marshes, and livestock can be used on marshes to benefit both meat 

production and carbon storing services (Yu & Chmura, 2010).  

 

While this study does not discount the fact that grazing may affect soil carbon stocks on the small-

scale, or after initial introduction, it shows that grazing impacts are insignificant next to broader 

contextual factors on marshes with well-established grazing regimes.  The drivers of soil carbon 

stocks are difficult to differentiate in a complex and environmentally variable system, such as salt 

marshes.   Therefore, it is perhaps naive to assume a constant effect of grazing on below ground, or 

even above ground variables.  This will have an impact on grazing management schemes that employ 

a broad-sweep policy over a large area; these schemes would need to take into account 

environmental variables, plant community responses, and seasonality effects as well as grazing. 
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7.4 Possible Directions for Future Studies 

This study has provided a good baseline data set upon which to build.  In the future, salt marsh 

carbon stocks and fluxes can be better understood through more detailed, empirical, broad-scale 

studies.  For example, to fully investigate the relative importance of grazing in relation to 

environmental factors, several paired experiments could be set up on a range of different marshes.  

Grazers could be introduced to small areas of un-grazed marshes, or exclosures could be set up on 

currently grazed sites, as in previous studies in The Netherlands (J. P. Bakker, 1978; Kuijper & Bakker, 

2004a; Kuijper et al., 2004).  These studies would have to be run over a period of several years to 

account for initial ecosystem responses to a change in disturbance levels (Dormaar, Smoliak, & 

Willms, 1989; Tanentzap & Coomes, 2012).  Grazer introduction studies would be useful to 

investigate initial changes in soil carbon stocks within the few years of grazing, and a broad-scale 

aspect would inform on the relative importance of these initial changes in relation to the broader 

contextual setting of each site.   

 

To fully understand the broad-scale processes relating to carbon sequestration on salt marshes, and 

to build more reliable carbon budget models, further data needs to be collected over the course of 

several years.  Although a broad-scale study adds substantial variation to a data set, it is important to 

keep the broad-scale aspect to fully understand the importance of marsh environmental setting, and 

to better inform management schemes over a large spatial scale.  Further understanding of the salt 

marsh carbon budget may lead to easier holistic approaches in the future, and eventually, more 

accurate calculations of carbon stocks and carbon sequestration rates in naturally carbon rich 

environments.   
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Appendix 1: Grazing Intensities in Other Studies 

The grazing intensity thresholds in this study are adapted from Tir Gofal, a Welsh Assembly 

Government guideline: light grazing <0.3 Livestock Unit (LSU) hectare-1 year-1 (ha-1 yr-1), moderate 

grazing = 0.3-0.7 LSU ha-1 yr-1 and intensive grazing >0.7 LSU ha-1 yr-1, where 1 LSU = 1 cow, 6.6 sheep 

or 22 geese (Woodend, 2010).  This table shows how the grazing intensities in this study compare 

with those in studies from salt marshes and terrestrial ecosystems.  For the most part the grazing 

intensities of our sites are comparable to other salt marsh studies and many non-salt marsh studies.  

Some of our intensively grazed marshes show considerably higher grazing intensities than other salt 

marsh studies (although, the thresholds remain the same).  We believe this is due to the fact that 

many salt marshes are grazed purely for management purposes (particularly in mainland Europe) and 

thus such high grazing intensities are deemed un-necessary, while many of our study sites are 

extensions to farm land with no stocking density restrictions in place. 

 

Table A1.1 | Grazing intensities in other studies.  Grazing intensity for salt marsh and terrestrial studies showing system 

type, study location, grazing intensity categories, number and type of grazing animal per hectare per year (ha-1 yr-1), 

calculated Livestock Units (LSU) per ha-1 yr-1, and reference details. 

System Location 

  Grazing Information   

Reference   
Grazing 

Intensity 
Animals 
(ha-1 yr-1) 

LSU 
(ha-1 yr-1) 

  

Salt Marsh 
Salt marsh German  

Wadden Sea 

  Intensive grazing 10 sheep >1.5   (Stock, 2011) 

Salt marsh German  

Wadden Sea 

  Moderate grazing                              

Intensive grazing 

0.75-1.5 sheep                                     

10 sheep 

0.1-0.2                         

>1.5 

  (Kiehl et al., 2007) 

Salt marsh Marais Poitevin,               

Western France 

  Extensive grazing 0.6-1.3 cattle/horses 0.6-1.3   (Loucougaray et al., 

2004) 

Salt marsh Schiermonnikoog 

(NL), Skallingen (DK) 

and Terschelling (NL) 

    0.08-0.5 cattle/sheep 0.08-0.5   (Bos et al., 2002) 

Salt marsh Schleswig-Holstein, 

Northern Germany 

  Un-grazed                                             

Moderate grazing                              

Intensive grazing 

-                                                          

3 sheep                                                  

10 sheep 

0                                      

0.45                                 

1.5 

  (Neuhaus et al., 1999) 

Salt marsh German  

Wadden Sea 

  Un-grazed 

Moderate grazing                              

Intensive grazing 

-                                                     

1.5-4.5 sheep                                       

10 sheep 

0                                       

0.2-0.7                               

1.5 

  (Berg, Esselink, 

Groeneweg, & Kiehl, 

1997) 

Salt marsh German  

Wadden Sea 

  Un-grazed 

Moderate grazing                              

Intensive grazing 

-                                 

1.5-4.5 sheep                 

10 sheep 

0                 

0.2-0.7           

1.5 

  (Kiehl et al., 1996) 

Salt marsh Leybucht, 

Niedersachsen, 

Northern Germany 

  Un-grazed  

Lightly grazing                                

Moderate grazing                           

Intensively grazing 

-                                                     

0.5 cattle                                        

1 cow                                                

2 cattle 

0                                       

0.5                                        

1                                        

2 

  (Andresen et al., 1990) 

Salt marsh Schiermonnikoog,  

The Netherlands 

  Intensive grazing 1.3-1.7 cattle,         

June - October 

1.3-1.7   (J. P. Bakker, 1985) 

Salt marsh Westerholt,  

The Netherlands 

    3 sheep    0.45   (J. P. Bakker et al., 1984) 

Salt marsh Schiermonnikoog,  

The Netherlands 

  Intensive grazing 1.3-1.7 cattle,        

June - October 

1.3-1.7   (J. P. Bakker, 1978) 
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Table A1.1 (cont) | Grazing intensities in other studies. 

System Location 

 Grazing Information  

Reference 

 Grazing 
Intensity 

Animals 
(ha-1 yr-1) 

LSU 
(ha-1 yr-1) 

 

Non-Salt Marsh 

Grassland Patagonian Steppe   Moderate grazing                              

Intensive grazing 

0.2 sheep                                                 

0.4 sheep    

0.03                                  

0.06 

  (Graff et al., 2007) 

Grassland Eastern Inner Mongolia   Light grazing                                      

Moderate grazing                              

Intensive grazing 

0.5 sheep                                                 

1.2 sheep                                                  

2 sheep    

0.08                                  

0.18                                  

0.30 

  (Y. Zhao et al., 2007) 

Grassland Great Plain, Hungary   Light grazing                                     

Intensive grazing 

0.5 cattle                                       

1 cattle    

0.5                                     

1 

  (Baldi et al., 2005) 

Meadow Fussingø manor, Denmark   Light grazing                                           

Intensive grazing 

4.5 sheep                                                         

4.8 cattle    

0.68                                                          

4.8 

  (Schmidt et al., 2005) 

Grassland Northern Chinese steppe   Light grazing                                      

Moderate grazing                              

Intensive grazing 

0.5 sheep                                                

0.5-1 sheep                                              

>1 sheep    

0.08                                 

0.08-0.15                              

>0.15 

  (Xie & Wittig, 2004) 

Grassland Tibetan Plateau   Light grazing                                           

Intensive grazing 

2.55 sheep                                 

5.35 sheep    

0.38                                   

0.81 

  (Cao et al., 2004) 

Grassland Schleswig-Holstein, North 

Germany 

  Light grazing                                           

Intensive grazing 

1.4 ± 0.1 cattle                                        

5.5 ± 1.4 cattle    

1.4 ± 0.1                                      

5.5 ± 1.4 

  (Kruess & Tscharntke, 2002) 

Grassland Kansas Prairie   Light grazing                                      

Moderate grazing                              

Intensive grazing 

0.26 cattle                                  

0.36 cattle                                  

0.56 cattle    

0.26                                   

0.36                                  

0.56 

  (Hickman & Hartnett, 2000) 

Woodland Haweswater, Cumbria, UK   Light grazing                                      

Moderate grazing                              

Intensive grazing 

0.6-1.2 sheep                                 

1.2-2 sheep                                     

2.1-3.8 sheep    

0.09-0.18                           

0.18-0.30                          

0.32-0.58 

  (Hester, Mitchell, & Kirby, 

1996) 

Grassland Great Plains, Montana   Light grazing                                      

Moderate grazing                              

Intensive grazing 

0.32 cattle                                    

0.43 cattle                                 

0.53 cattle    

0.32                                   

0.43                                   

0.53 

  (Olson, White, & Sindelar, 

1985) 

Grassland Great Plains, Colorado   Light grazing                                      

Moderate grazing                              

Intensive grazing 

0.25 cattle                                  

0.32 cattle                                  

0.56 cattle    

0.25                                   

0.32                                   

0.56 

  (Havaren, 1983) 

Grassland Great Plains, Colorado   Light grazing                                      

Moderate grazing                              

Intensive grazing 

0.24 cattle                                  

0.32 cattle                                  

0.56 cattle    

0.24                                   

0.32                                   

0.56 

  (Bement, 1968)  

Grassland Kansas Rangeland   Light grazing                                      

Moderate grazing                              

Intensive grazing 

0.20 cattle                                 

0.29 cattle                                   

0.50 cattle    

0.20                                      

0.29                                    

0.50 

  (Launchbaugh, 1967) 

Grassland South Dakota Rangeland   Light grazing                                      

Moderate grazing                              

Intensive grazing 

0.31 cattle                                 

0.41 cattle                                 

0.74 cattle    

0.31                                                       

0.41                                                     

0.74 

  (Rauzi & Hanson, 1966) 
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Appendix 2: Accretion Rates in Other Studies. 

The accretion rate on salt marshes is an important component in understanding past carbon 

dynamics.  The deeper the soil, the older it is, and thus soil at a certain depth will reflect the 

conditions and grazing regime at one particular time.  The accretion rate can be used to estimate 

this, so for example if there was grazing 30 years ago and the accretion rate is on average 0.5 

centimetres per year; one would have to sample soil at 15 centimetres (30 yr x 0.5 cm) depth to take 

soil from that period.  Due to the short term nature of the broad-scale study (Chapters 3 & 4), it was 

impossible to estimate accretion rates for each site so an extensive literature study was used to 

estimate likely accretion rates for (a) the study sites, (b) other UK sites, (c) other European sites and 

(d) American sites.  Accretion rates can vary considerably over one marsh, depending on tidal 

inundation frequency and marsh geomorphology (Adam, 1990b).  The lower, younger zones are 

inundated frequently and sedimentation rates can be much greater than higher, more mature zones 

that are flooded only a few times a year.  This is evident when looking at the two studies from the 

Dyfi Estuary: the earlier study (1934) finds high accretion rates (2.1-7.8 cm yr-1) while a later study on 

the same marsh finds much lower accretion rates (1-1.15cm yr-1).  The initial high accretion rates on 

the lower marsh zones elevated the marsh surface, creating higher, more mature zones that are 

seldom inundated and show lower accretion rates.  When estimating an average accretion rate for 

our sites, we placed more emphasis on recent studies and ignored studies looking only at the lower 

marsh zones.  We estimated a conservative average accretion rate of 0.4cm per year for our study 

sites. 

 

Table A2.1 | Accretion rates in different regions.  Sedimentation rates for study sites (a), other UK marshes (b), other 

European marshes (c) and American marshes (d) showing marsh location, accretion rate in cm per year, methods used to 

collect the data, and the reference details.  

Marsh Location 
Accretion Rate 

(cm/yr) Method Used 
 

Reference 

(a) Study Sites 

Ribble Estuary 0.5 Historical mapping   (van der Wal et al., 2002) 

Mersey Estuary: 

 Widnes Warth 

 Ince Bank 

 

0.6                               

0.8-3          

Isotope analysis   (Fox et al., 1999) 

Dyfi Estuary 1.00-1.15          Marker layer +  

X-ray laminae counts 

  (Shi, 1992) 

Dyfi Estuary 2.1-7.8         Marker layer   (F. J. Richards, 1934) 
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Table A3.1 (cont) | Accretion rates in different regions 

Marsh Location 
Accretion Rate 

(cm/yr) Method Used 
 

Reference 

 (b) Other UK 

Blackwater Estuary,  Essex 0.4 Modelling   (Shepherd et al., 2007) 

Southampton, Hampshire 0.4-0.5 Isotope analysis   (Cundy & Croudace, 1996) 

North Norfolk coast 0.1-0.8        

(mean=0.39) 

Marker layer   (French & Spencer, 1993) 

The Wash, Essex 0.5 Sediment poles   (Reed, 1988) 

North Norfolk  

coast 

0.21-0.51          Marker layer   (Stoddart et al., 1983) 

Somerset and Poole, Dorset  2.6-10.2          Marker layer and 

bamboo canes 

  (D.S. Ranwell, 1964b) 

(c) Other Europe 

Sylt, Germany 0.1-1.6          Pb-210 dating    

Cs-137 dating     

aerial photographs 

  (Schuerch et al., 2012) 

Skallingen, Denmark 0.34 Cs-137 dating   (Andersen et al., 2010) 

Hamburger Hallig, 

Schleswig-Holstein, 

Northern Germany 

0.62 Sedimentation     

erosion table 

  (Stock, 2011) 

Schleswig-Holstein, 

Northern Germany 

1.2-2.1          Sedimentation 

erosion table 

  (Neuhaus et al., 1999) 

Leybucht, Niedersachsen, 

Germany 

1.7-2.3          Sediment plates   (Andresen et al., 1990) 

(d) America 

Orleans and Eastham, 

Massachusetts 

0.22-2.4                    

0.38-0.45                         

0.26-0.42                       

Marker layer      

Cs-137 dating        

Pb-210 dating       

C-14 dating 

  (Roman, Peck, Allen, King, & 

Appleby, 1997) 

Narragansett Bay,  

Rhode Island 

0.15-0.60          Pb-210 dating   (Bricker-Urso et al., 1989) 

Mississippi River Delta, 

Louisiana 

0.59-0.94          Cs-137 dating   (Hatton, DeLaune, & Patrick, 

1983) 

Lewes, Delaware 0.5     (Stumpf, 1983) 

Sapelo Island, Georgia 0.2-0.65              (Letzsch & Frey, 1980) 

Louisiana 0.75-1.35          Cs-137 dating   (DeLaune et al., 1978) 

Long Island Sound, 

Connecticut 

0.20-0.66              (Harrison & Bloom, 1977) 

Long Island Sound, 

Connecticut 

0.47-0.64          Pb-210 dating   (Armentano & Woodwell, 1975) 

Long Island Sound, 

Connecticut 

0.15 Radiocarbon in peat   (Bloom, 1964) 

Lewes, Delaware 0.6 Marker layer   (Stearns & MacCreary, 1957) 

 

 

 


