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Abstract 

n- 
I-Lecent progress in semiconductor growth and fabrication techniques has allowed 

semiconductor structures of increasing dimensional confinement to be realized. In 

quantum dot structures carriers are confined in all three dimensions and therefore 

exhibit a discrete set of energy levels. It is expected that optoelectronic devices 

incorporating these structures will have improved performance. This study focusses 

on self-assembled quantum dot structures. In this growth technique, the quantum 

dots are formed on top of a thin quantum well wetting layer which has been de- 

posited on top of a bulk substrate. The whole structure is finally overgrown by bulk 

material. The wetting layer plays a crucial role in the operation of quantum dot op- 

toelectronic devices. Initially carriers diffuse into the 2D wetting layer before either 

recombining or being captured by the self-assembled quantum dots. Once captured 

in the dots, they either relax into lower energy levels or are re-excited back to the 

wetting layer. Therefore the wetting layer supplies the quantum dots with a carrier 

reservoir and hence plays a large part in the carrier dynamics. 

In this thesis, we calculate the scattering rates for capture from the wetting layer 

into the quantum dots and the reverse process, the emission of a carrier from the 

dot into the wetting layer. We also calculate the carrier relaxation rates between 

quantum confined energy levels in the quantum dots. Using these scattering rates, 

we construct a rate equation model in order to describe the carrier dynamics of 

quantum dot structures. The model is used to predict the occupancy of the quan- 
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tum dots as a function of time, and this allows us to calculate the time-varying 

optical gain and spontaneous emission rates. This type of model enables us to 

predict quantum dot laser dynamics including non-linear effects such as gain satu- 

ration and spectral hole burning. We also compare the results obtained from our 

model with time resolved photoluminescence experiments and see good qualitative 

agreement. 
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Chapter 1 

Introduction 

The research described in this thesis was carried out in the School of Informatics, 

at the University of Wales, Bangor. The focus of this work was to model the carrier 

dynamics and optical properties of semiconductor quantum dot structures. The 

objective of the project was to develop a theoretical model in order to determine 

the carrier occupation probability in the dots. This involved the construction of a 

set of rate equations to describe the carrier number in each quantum confined state 

of each quantum dot. This allows us to describe the optical gain and spontaneous 

emission rates and therefore the photon dynamics in optoelectronic devices incor- 

porating a quantum dot active medium. 

The acronym LASER stands for Light Amplification by Stimulated Emission of 

Radiation. It refers to a device which produces a source of coherent, monochro- 

matic and directional light. The laser was first developed in 1960 by the physicist 

Theodore Harold Maiman by using ruby as the active medium [3]. Shortly after the 

invention of the laser, the possibility of using a semiconductor, such as GaAs as the 

active medium for a laser was considered. The active medium of a semiconductor 

laser consists of atoms whose electrons can be excited into higher allowed energy 
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CHAPTER 1. INTRODUCTION 3 

bands by absorbing a photon of light, the energy of the incident photon being equal 

to the difference in energy between the initial and final states- When an electron 

in a high energy band interacts with an incident photon, it causes the electron to 

make a downward transition to a lower energy band. As a result, a photon of the 

same wavelength as the incident one is emitted. This process, known as stimulated 

emission, is the amplification process necessary for the lasing. A second requirement 

for a Laser is an optical resonant cavity which increases the number of stimulated 

emission events due to multiple passes of the photons through the gain medium. 

Chapter 2 introduces the relevant theory of semiconductor lasers characteristics 

which is required for an understanding of the research carried out in this thesis. 

It has been demonstrated that reducing the thickness of the active region of the 

laser to below the de-Broglie wavelength of the carriers significantly improves the 

operating characteristics of a semiconductor laser. In quantum well lasers [1], the 

active region thickness is reduced in one direction, so that carriers inside the active 

region have energies quantized in one direction. This reduction in dimensionality 

can be extended to 2 directions as in quantum wire lasers, or 3 directions, as in 

quantum dot lasers. As a result of this confinement of carriers, a quantum dot 

laser presents the advantages of a gas laser (atomic properties), i. e., a quantized 

electronic structure and thus discrete optical transitions, but with the flexibility of 

a semiconductor laser (i. e., it can be electrically pumped). 

Early attempts at fabricating quantum dot structures involved complicated growth 

and lithographic techniques and were largely unsuccessful [2]. However an important 

breakthrough came with the development of the self-assembled growth technique [4]. 

A typical growth method known as the Stranski-Krastanov (SK) technique [6] relies 

on the growth of a highly strained epitaxial layer onto the surface of a semicon- 

ductor substrate. The strain between the substrate and the grown film leads to an 

instability which results in a transition from an uniform layer to clusters of material 

in order to minimize the energy of the system. These clusters are small enough to 

confine electrons in three dimensions if surrounded by a material of higher bandgap. 
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The three dimensional quantum confinement of carriers gives rise to discrete energy 

level analogous to an atom. The resulting discrete density of states gives rise to 

high gain in semiconductor devices using these structures. However, in contrast 

to atoms, quantum dots can be electrically pumped, giving rise to a wide range 

of applications for optoelectronic devices. Consequently, the use of quantum dots 

for semiconductor lasers is expected to have superior operational characteristics, in 

contrast to other less confined structures, such as quantum wells (1D confinement) 

and quantum wires (2D confinement). 

The thin epitaxial layer used to form the quantum dots is called the wetting layer 

(WL) and itself acts as a quantum well to confine carriers in two dimensions. The 

process by which a carrier is captured from the wetting layer into the quantum dot is 

critical for the operation of the optoelectronic device and is the subject of this thesis. 

There are several scattering mechanisms which must be considered when studying 

the carrier dynamics of quantum dot structures. Carriers can be captured from 

the wetting layer by scattering with other carriers (both in the wetting layer and 

in the quantum dot) or lattice phonons. The excitation of carriers from individual 

quantum dots is also possible via the same mechanisms. 

In chapter 3 we calculate the scattering rates for typical capture and relaxation pro- 

cesses between the quantum dot and the wetting layer. The approach we take is to 

extend a semi-analytical analysis given by A. V. Uskov [7] and [8] to calculate these 

scattering rates for realistic quantum dot structures. We use these calculations to 

explore the region of validity for the assumptions made in the semi-analytical ap- 

proach. Our results show that the assumptions are not valid for the high carrier 

densities present in optoelectronic devices. 

The major limitation of the semi-analytical approach is the assumption of a Boltz- 

mann [5] distribution for carriers in the wetting layer, arising from the assumption 

of low carrier densities (the Boltzmann distribution being a good approximation to 
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the Fermi-Dirac distribution at low carrier densities). In chapter 4 we derive ex- 

pressions for the capture and relaxation rates including a Fermi-Dirac distribution 

for carriers within the wetting layer. These expressions take the form of multiple 

integrals and we outline the method of solving them. Using these expressions we 

show explicitly the values of carrier density where the semi-analytical approach is 

valid. 

In order to describe the dynamics of carriers in the quantum dot, in chapter 5 we 

derive a set of rate equations to describe the population of electrons and holes in the 

quantum confined states. As will be described in chapter 5 this novel approach al- 

lows us to correctly determine the occupation-dependent scattering processes. This 

allows us to investigate quantum dot optoelectronic devices in a non-thermal equi- 

librium regime. Once the occupancies of the quantum confined electron and hole 

energy levels are known we are in a position to calculate the optical gain and spon- 

taneous emission rates for the quantum dot structures. Chapter 5 concludes with a 

simulation of time resolved photoluminescence experiments on quantum dot lasers, 

where a non-equilibrium treatment is essential. 

Finally chapter 6 summarizes the main results of the thesis and alludes to further 

work which could be instigated as a result of this study. 
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2.1 Semiconductor Lasers 

8 

In this project, we study semiconductor lasers where the active region consists of 

InGaAs self-assembled quantum dots. A laser requires: (a) a source of pumping 

energy in order to establish a population inversion between the chosen energy levels 

(when more carriers are in higher states of excitation than in the lower ones below, 

making the production of stimulated photons possible, as we will explain later in 

the chapter), (b) an active medium, where the confinement of carriers can occur 

and hence electrons and holes can recombine in this region producing photons with 

energies equal to the band gap of the material, as will be commented in detail in the 

next section, and finally (c) an optical resonant cavity, in order to obtain optical 

feedback and hence preserve the gain of the system above the losses. This last 

requirement ensures that the number of photons created by stimulated emission 

(we will explain in detail in further sections) exceeds all other mechanisms. It 

usually consists of two cleaved mirrored facets, with a reflectivity of approximately 

30% which ensures that only the correct wavelength of photons will reflect back and 

forward along the cavity while those photons which are not of the selected frequency 

remain lost, as the laser wavelength will be in relation with the length of the cavity. 

2.2 Transverse confinement of carriers and pho- 

tons 

Since the first semiconductor laser was demonstrated in 1960 [11] huge advances 
in fabrication have been made, allowing highly efficient low current devices to be 

produced. In a semiconductor laser stimulated emission of radiation occurred as a 

consequence of recombination processes of carriers injected across the p-n junction. 

A p-n junction consists of a semiconductor layer doped with acceptor impurities (p- 
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Figure 2.1: When a semiconductor is doped by donor and acceptor atoms, donor 

and acceptor energy levels, ED and EA respectively, appeared inside the energy gap, 

hence, donahng an electron (in donor atoms case) or a hole (the acceptor energy 

level EA accepts an electron creating (donating) a hole in the valence band. 

doped semiconductor layer) placed in contact with a n-doped semiconductor layer 

(a semiconductor layer doped with donor impurities). The impurities introduced 

incorporate an extra energy level in the bandgap. Donor impurities produce the 

so-called donor energy levels close to the conduction band, whereas acceptor impu- 

rities create acceptor energy levels near the valence band, as shown in figure 2.1. 

When n-type and p-type semiconductors are brought into contact, the conduction 

electrons diffuse across the junction into the p-doped medium in order to populate 

the holes created by those valence band electrons in the p-doped material that have 

occupied the acceptor energy level. Holes do the opposite. As a consequence of 

charged carriers transport, the n-doped material becomes positively charged while 

the p-doped one becomes negatively charged around the junction. In the vicinity 

of the junction, a region depleted of electrons and holes appears as an electric field 

opposing the electrons diffusion from the n-type material to the p-type one arises, 

illustrated in figure 2.2. The electric field arising from the positively charged donors 
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(a) p-doped n-doped 
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EF 
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E 

EFC 

EFV 
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10 

Figure 2.2: Energy band structure for the conduction and valence band edges in 

a p-n junction (a) when there is no applied voltage in the structure, hence, the 

Fermi energy is constant. (b) The electron energies are altered when a voltage is 

applied, confining carriers within the active region in the junction characterized by 

quasi-Fermi levels EFC, EFv respectively. In both pictures, the uppermost band 

represents the conduction band while the lowest one features the valence band. 

v-doved n-doiDed 
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on the n-side and negatively charged acceptors on the p-side, opposes further diffu- 

sion of carriers causing a steady state to be reached. Thermal equilibrium is achieved 

establishing a Fermi level that is independent on the position in the structure. 

In nonequilibrium situations, when a positive voltage is applied to the p-side of 

the junction (under forward bias), the depletion becomes narrower (as the built- 

in voltage of the junction becomes smaller), allowing a current to flow along the 

junction, illustrated in figure 2.2(b). This current causes electrons to populate the 

conduction band and holes to populate the valence band. In these nonequilibrium 

situations, separate Fermi levels for each of the two bands (conduction and valence 

bands) called quasi-Fermi levels are used, as it was explained previously. 

Until now, we have considered semiconductor lasers which are formed by adjoin- 
ing same material semiconductor crystals, hence, structures (generally referred as 
homostructures) where the energy gap remains constant. However, it has been 

proven to be more useful for optoelectronic devices to adjoin semiconductor crystals 

with different bandgap energies. In the so-called double heterostructure, a smaller 

energy band gap (- 0.1 - 0.2pm) material is sandwiched between two regions of 
higher bandgap energy (see Fig. 2.3). The electrons injected from the n-type semi- 

conductor material by a applying a positive bias to the device as well as holes, 

injecting the carriers from the p-side, will tend to be confined in the lower band gap 

active region. The difference in the bandgap between the two materials prevents 

electrons/holes to diffuse into the p-type/n-type semiconductor material. Therefore 

the probability of electron-hole recombination processes in this region will increase 

substantially in this type of semiconductor structures. The lower bandgap active 

region has a higher refractive index than the outer materials, therefore the light 

emitted in this region can be guided along the transverse direction (see Fig. 2.3(b) 

and 2.3(c) ). The most important semiconductor lasers are those formed with alloys 

of elements from the columns III-V in the Periodic table of elements. When the 

center region is made so thin that quantum confinement effects become significant, 
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Figure 2.3: (a) Band diagram of forward biased double-heterosturcture 

GaAs/GaAlAs laser diode. The subscripts x, y refer to the fraction of Ga atoms in 

GaAs which are replaced by Al ones. The active region, Le, where carrier recom- 

binations contributing to photon emission into the desired wavelength and hence 

to gain are confined, is based on GaAs. (b) The refractive index along the cavity 

making the waveguiding possible through the cavity. (c) The confinement of the 

optical mode. 
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we have an extension of the double- heterostructure so-called quantum well laser, 

which has been demonstrated to have enormous advantages [11] (the confinement 

of carriers and of the optical mode enhances the interaction between carriers and ra- 

diation). In these kind of heterostructures, the center active region has thicknesses 

below 10 to 20 nm (see Fig. 2.5), so that the carriers are confined in one dimension 

and their discrete energies can be calculated solving the Schr6dinger Equation for 

a particle in a quantum well [7]. 

Further developments have been made in order to fabricate optical devices with su- 

perior operational characteristics, such as reducing the carrier's environment from 

a two-dimensional quantum well ( two-dimensional refers to the number of degrees 

of freedom in the carrier momentum) to a one-dimensional so-called quantum wire 

and finally, to a zero-dimensional quantum dot, where the electron is confined in all 

three-dimensions. Three dimensional quantum confinement of carriers in semicon- 

ductor structures, known as quantum dots, has been of major interest due to their 

promising superior operational characteristics. As in an atom, the lowest part of the 

electronic structure in a quantum dot, becomes quantized due to the confinement 

of electrons. The discrete density of states obtained gives rise to high gain in semi- 

conductor devices using these structures. However, in contrast to atoms, quantum 

dots can be electrically pumped, giving rise to a wide range of applications for opto- 

electronic devices. Consequently, the use of quantum dots for semiconductor lasers 

is expected to have superior operational characteristics, in contrast to other less 

confined structures, such as quantum wells (ID confinement) and quantum wires 

(2D confinement) - 
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2.3 Electrons in a semiconductor laser 

14 

There are significant differences between semiconductor lasers and other classes of 

lasers, such as, gas lasers and solid-state lasers. The major advantage of semi- 

conductor lasers is the use of direct electrical pumping. In atomic laser material, 

electrons surrounding a ion do not interact with neighbouring electrons, whilst elec- 

trons in a semiconductor crystal share the whole crystal volume. This is because 

when two atoms are covalently bonded (as in a semiconductor crystal), the valence 

electrons of each of the atoms are considerably attracted by the positively charged 

neighboring nucleus. The electrons position themselves between the atomic cores 

that compound the bond, organizing (provided they have opposite spin) into the 

lower energy distribution between the two nuclei. Hence, electrons in semiconduc- 

tors share the whole crystal occupying allowed bands of states, low-energy valence 
bands and higher energy ones called conduction bands. In thermal equilibrium and 

at a temperature of 0 K, conduction bands consist of unoccupied states while valence 
bands remain occupied by electrons. The energy difference between the two bands 

is known as the bandgap labelled as Egap in figure 2.4. When thermal excitation is 

included into the system, partial transfer of electrons from the uppermost valence 
band into the lowest conduction band occur, resulting in the ability of the crystal 

to conduct electricity. 

Each electron within the crystal has a unique spatial wavefunction which defines 

the motion and properties of the electron and a total energy associated with each 

allowed state. The electron wavefunctions in the conduction and valence bands of a 

semiconductor are obtained by solving the Schr6dinger equation where the system 

Hamiltonian, HO, of the crystal lattice and the energy of the electron E, are related 

by: 
2 

Hoo -+ V(r)] V) = Eo 
2mo 
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where r is the position vector, p is the momentum operator (p = -ihV where 
V2 = -ý12-2 + -! 

ý2-- 
+ -! 

2- 
[2], mo is the free electron mass and V(r) is the potential dx dy2 dZ2 

the electron experiences due to the crystal lattice. The solution of equation 2.1 

representing the electron wavefunction can be written as: 

O(r) = u(r)F(r) (2.2) 

where u(r) is a Bloch function which repeats in each unit cell of the crystal due to 

its periodicity with the crystal lattice (rapidly varying on the scale of the crystal 

lattice) [2]. 

F(r), is a slowly varying function known as the envelope function. The envelope 

function can be obtained by solving the Schr6dinger equation for the macroscopic 

potential. This macroscopic potential is due to the spatial dependence of the con- 

duction and valence band edge within the semiconductor heterostructure. This 

solution of the Schr6dinger equation is called the envelope approximation. In order 

to calculate the wavefunctions and energy levels of the electrons in the conduction 

band and holes in the valence band, we need to solve the Schr6dinger equation; 
h2 

_ 
V2,0 

= Eo 
2m* 

(2.3) 

Working in the effective mass approximation, the electrons and holes can be de- 

scribed by a constant effective mass, m*, depending on the semiconductor material. 

From Eq. 2.3 we obtain the carrier energy E and the momentum k in a particular 

band are related as follows: 

h2k 2 h2 
22 2) E (k) -- = -(k + ky + kz 

2m* 2m* ' 
(2.4) 

where m* is effective mass of the carrier for a particular band and k is the momentum 

of the carrier. 

Therefore a parabolic E-k relationship is associated with the behavior of electrons 

within a crystal, as illustrated in figure 2.4. Figure 2.4 shows the uppermost valence 

bands, i. e., heavy-hole (HH) and light-hole (LH) as well as the sptn-orbitlsplit-off 
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16 

Figure 2.4: A schematic illustration of the heavy-hole (HH), light-hole (LH) and 

the spin-orbit (SO) valence bands and the lowest conduction band (CB) of a typical 

semiconductor, as well as their energy separations. 
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(SO) band. The lowest conduction band (CB) is described too. Hence as equation 
2.4 represents, the electron will move much like a free particle in these parabolic 

bands, but with an effective mass W. 

2.3.1 DensitY of states 

In order to calculate the number of electrons within the conduction and valence 
band it is necessary to determine the number of electronic states in the solid. From 

the properties of the Bloch wavefunction that describes the motion of the electron 
in a given band (Eq. 2.2) and considering a crystal of finite dimensions L, Lyl L, 

the wavefunction must have periodicity within the lattice, hence: 

, O(x, y, z) =, O(x + L., y+ Ly, z+ Lz) (2.5) 

Following [6], the wavefunction of a carrier in bulk material can be described as 

0 (X, Y, Z) -1 
i[k., x+k, y+k�z] (2.6) 

9 
O(x+Lx, y+Lylz+Lz) e 

i[k., (x+L. �, )+ky (y+L, )+k, (z+L, )] 

e i[kýx+kvy+k, z] e 
i[k. Lýý+kyLy+k�L, ] (2.7) 

where Q is the normalization volume of the semiconductor crystal. Taking into 

account 2.5, the boundary conditions imposed on the wavefunction O(x, y, z) means 

e 
i[k., L.,, +kyLv+k. ýL, ] 

=1 (2.8) 

then 

ki 
27r 

(2.9) 
Li 

for i=x, y, z. Therefore the discrete values of the k vector in k-space are given by 

k=n,, k,, + nyky + n, k, (2.10) 
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for n, ny and n, in 2.10 integers. Hence the whole crystal volume might be divided 

into cells each state occupying a volume Vcell in k-space given by equation 2.11: 

Vcell 
(27r )3 

L,, LyLz 
(2.11) 

and consequently we can now associate an electronic state to each differential volume 

given by Eq. 2.11. Once we have determined the volume occupied by an electronic 

state, it can provide an expression for the total number of electronic states in the 

solid per unit energy per unit volume, i. e., the so-called density of states (DOS) 

p(E). In order to calculate an expression for the bulk material DOS, we calculate 

the number of states in k-space (p(k)) within a spherical cell of radius Jkl considering 

a momentum range k and k+ dk, which is obtained dividing the volume of the shell 

in that momentum range ((47rk 2 )dk) by the volume occupied by one electronic state 

(Eq. 2.11), giving: 

p(k)dk = 
(47rk 2 )dk 

(2.12) 
(27r)- 

L, r, Ly L, 

From equation 2.4 which relates the electron energy in the band with its momentum 

and taking into account the spin degeneracy factor to allow for the two spin states 

of each electron, equation 2.12 can be rewritten as follows: 

p(E) =1( 
2m* ) 

3/2 
El/2 

27r2 h2 
(2.13) 

This density of states function, Le, the number of electronic states per unit energy 

interval per unit crystal volume is proportional to the square root of the energy, as 

can be seen in figure 2.6 (blue line). 

However, in quantum well systems where one dimension of the crystal, i. e., L, 

decreases to the order of the electron wavelength, i. e., the de Broglie wavelength 

A= h[ý/-3m-kBT [6] where h [Js] is the Planck's constant [6], T is the temperature 

of the crystal, m is the particle mass and kB [J/K] is the Boltzmann's constant [6]. 

The electronic structure is modified as a result of this reduction in dimensionality. 
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Figure 2.5: The one-dimensional potentials V(z) in the conduction and valence 

bands which occurs at a heterojunction when two different band-gap materials (E' gap 

and E' respectively) are joined together. gap 
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In these kind of crystals, the electron can freely move in 2 directions (Le, in a 2D 

plane), while the component of its momentum in the reduced dimension (normal 

plane of the layers that constitute the semiconductor structure) acquires discrete 

(quantified) values. The electron is said to be confined in the region of lower poten- 

tial as shown in figure 2.5. In this case, the energy bands of the semiconductor are 

called sub-bands. Hence from equation 2.11, the area occupied in the k -plane by 

a cell within the crystal will be given by equation 2.14, as follows 

Acell 
- 

(27r )2 

L, 
ýLy 

(2.14) 

Following the previous approach, in order to calculate the number of states per unit 

energy per unit area for a quantum well system, we need to determine the total 

number of states N 2D per unit cross-sectional area in the k-plane. This is given 

by the product of the area occupied by a circle of radius k (i. e., 7rk 2) and the spin 

degeneracy factor (2) divided by the area occupied by each cell (each electronic 

state, given by Eq. 2.14) and divided again by the total area of the real space (the 

area occupied by the crystal, i. e., L,, Ly), then 

N 2D 
= 2(7rk 2) 

11_ 7rk 
2 

(2.15) (27r) 2 L, 
ýLy 

(21r )2 
T. -LV 

Making use of equation 2.4, where the electron momentum and the energy of the 

electron in the sub-band are related, and also equation 2.15, the density of states 

for a quantum well system, i. e., the number of electronic states per energy (for a 

single sub-band) per unit volume for a quantum well of width L, may be calculated 

as follows: 

2D (E) dN 2D m* 

dE L, 7r h2 
(2.16) 

In this equation 2.4 the electron momentum and the energy of the electron in the 

sub-band are related. Figure 2.6 (black color line) shows the density of states for a 

quantum well active region, per unit volume for 3 sub-bands. In order to calculate 
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the density of states, p2D (Ei) at a particular energy Ej, hence, the number of elec- 

tronic states at that energy per unit volume of real space (the crystal dimensions), 

the contributions from all confined energy levels must be considered, as is shown in 

figure 2.6. 

p(E) 

lulk 

ýuantum 
rell 

Figure 2.6: Density of states for a bulk material (blue line) and an infinite-barrier 

quantum well material (black line), showing the first 3 confined states for this last 

case. 

The discrete energy levels Ej shown in figure 2.6, correspond to the solution of the 

Schr6dinger equation given by 2.1 for an infinite-barrier quantum well pictured in 

figure 2.7. The electron is confined in the z-direction into a potential V(z) =0 

region. The envelope function in an infinite-barrier potential, is obtained by solving 

the differential equation given by Eq. 2.3, hence, the sum of plane waves [2]: 

, O(Z) = Ae ikz + Be -ikz 

where 

k 2_ 2m* E r, 2 

(2.17) 

(2.18) 

E, E2 E3 
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Figure 2.7: Infinite- barrier quantum well. 

rewriting the wavefunction given by equation 2.17 [2] 

A cos kz (symmetric solutions) 

A sin kz (antisymmetric solutions) 

22 

(2.19) 

and taking into account that the wavefunction has to be zero at the boundaries, 

i. e., O(L, /2) =0 (see figure 2.7), for both symmetric and antisymmetric solutions, 

then 

kL, 
=nil for n 22 

(2.20) 

where even quantum numbers correspond to antisymmetric states while odd quan- 

tum numbers refer to symmetric ones. Hence, the corresponding discrete energy 

levels pictured in figure 2.6, i. e., Ej may be obtained by substituting each discrete 

value of k in equation 2.20 back into equation 2.18, hence 

-2 
h2 k? 

Ei =iZ 2m* 
(2.21) 

1 h2k2 
for i 2,.... Therefore, El in figure 2.6, El and k, (Eq. 2.20 for L, t 
n=1). 

-Lz/2 Lz/2 
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New techniques in semiconductor growth and fabrication have allowed researchers 

to reduce the dimensionality of the confinement further. By confining carriers in 

2 directions we obtain a quantum wire and confining in all 3 spatial directions we 

obtain a quantum dot. 

The lowest part of the electronic structure in a quantum dot becomes quantized 

p(E) 

Figure 2.8: Density of states as a function of energy for a quantum dot. The energy 
levels are quantized in all 3-directions, hence, appearing discrete energy levels. 

due to this confinement of electrons. A three dimensional quantum confinement 
implies a delta like density of states of the lasing material, hence, the electron can 
be localized inside the quantum dot in a set of different discrete energy states, or 

energy levels (see figure 2.8). 

The use of quantum dots for semiconductor lasers is expected to have superior 

operational characteristics, in contrast to the continuous DOS of the bulk semicon- 

ductor (Eq. 2.13) or to the other less confined structures as quantum wells (ID 

confinement) or quantum wires (2D confinement). A narrow density of states of a 

structure with very little variation in quantum dot sizes, may be driven to couple 

modes of Fabry-Perot cavity, resulting in a narrow gain which improves significantly 

Ei E2 E 
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the performance of optical devices. 

2.3.2 Occupancy of the electronic states 

In order to calculate the optical /electrical properties of semiconductor structures, it 

is necessary to determine how electrons occupy the available density of states. Elec- 

trons, being fermions, obey Fermi-Dirac statistics. The probability of an electronic 

state of energy Eb in the valence band (see figure 2.9) to be occupied by a hole is 

given by Fermi-Dirac statistics [6] as follows: 

f, (Eb) :: 
1 

e(Eb-EF,, )IkBT + 

while in the conduction band, the occupancy probability function for an electron is 

24 

(2.22) 

written as 

f, (E,, ) = 
1 

(2.23) 
e(E, -EF, )IkBT +1 

where EF,, in Eq. 2.22 and EF, in Eq. 2.23 are the quasi-Fermi levels under 

conditions in which thermal equilibrium happens to be disturbed, such as, with 

photoexcitation where a large population of carriers (conduction electrons and holes) 

is created as pictured in figure 2.9. All energies in equation 2.23 and 2.22 are relative 

to the band edge and assumed positive into the band. In thermal equilibrium (when 

no pumping is injected to the semiconductor medium) a single Fermi energy level 

applies to both valence and conduction bands, located in the middle, EF" = EF 
'C 

EF as illustrated in figure 2.10. 

2.4 Optical transitions in a semiconductor 

Up until now, we have studied how electronic states in a semiconductor may be de- 

scribed by an energy band structure consisting of one conduction band and several 
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Figure 2.9: A schematic representation of the electronic structure of a pumped 

semiconductor medium by an external intensity I at 0 K. Quasi-Fermi levels are 
illustrated for nonequilibriurn carrier densities. A transition betvveen two energy 

states, a and b with the same k value. i. e., a state in the conduction band at eneru 

F, and b state in the %-alence band at energy Eb = 
A2k' is highlighted. The 2 2m,, 

lowest energ-, N- in the conduction band. i. e. E, is called the conduction band edge 

wherews the highest energy in the valence band, Le, E, is referred &s the valence 

band edge. 
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Figure 2.10: Energy band of a semiconductor at 0K under thermal equilibrium. 

valence bands (see Fig 2.4). In order to describe the physics of the optical transitions 

in semiconductors we will focus on a simple two-band model (one conduction band 

and one valence band) as pictured is figure 2.11, where a refers to the electronic 

state in the conduction band at energy Ea previously pictured in figure 2.9, and b 

represents the electronic state in the valence band at energy Eb- In the absence of 

thermal or other energy pumping processes, the semiconductor appears to have a 

completely empty conduction band, while the valence band remains full of electrons. 

If an electron in the valence band absorbs light, it is excited into the empty conduc- 

tion band creating a hole (missing electron) in the valence band (see figure 2.11 (a)), 

hence, a charge carrier in the conduction band and a positively charge carrier (a 

hole) in the valence band, allowing electrical conduction. However, only transitions 

where the momentum (=- hk) of the involved initial and final electronic states are 

equal will be allowed, i. e., the total momentum must be conserved. The difference 

in the electron momentum (initially in the valence band and in the conduction band 
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Figure 2.11: A schematic representation of the three types of band to band op- 

tical transitions, i. e., spontaneous emission (R"), stimulated emission (Rab) and ab 

stimulated absorption (Rba)i involving a single level pair a-b with the same k value 

pictured in figure 2.9. 

finally) must be equal to the momentum of the photon involved in the transition 

(Fig. 2.11(a)). As the momentum of the photon can be neglected comparing to 

the momentum of the carrier, only vertical transitions (optical transitions) will be 

allowed (transitions involving electronic states with the same k value as pictured in 

figure 2.9). This is called the k-selection rule. 

However, when a downward transition is induced by an electromagnetic field, i. e., 

when an electron in a E,, electronic state undergoes a transition into another elec- 

tronic state Eb in the valence band as a result of the presence of an electromagnetic 

field hl, 'ab (see Fig. 2.11(b)), another photon identical to the incident is generated. 

This process is called the stimulated recombination process (or stimulated emission) 

and in contrast with the previously explained reverse process, i. e., the stimulated 

absorption process (Fig. 2.11(b)) which creates a hole in the valence band, the 

stimulated emission process instead generates a hole in the conduction band. 
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Figure 2.11(c) describes the spontaneous emission process, where an electron in 

the state a in the conduction band undergoes a transition into the valence band 

state b, emitting in the process a photon of energy hl"ab = Ea + Eb + Egap = Eab (see 

Fig. 2.9). This process happens as a result of no inducement of a radiation field 

(no classical field stimulation). 

Both the stimulated emission rate, Rab (described in Fig. 2.11(b)) as well as the 

spontaneous emission rate, R'P (Fig. 2.11 (c)) will be proportional to the probability ab 

of finding an electron at the energy Ea (Eq. 2.23) and the probability of finding a 

hole (an unoccupied state) in the energy Eb (Eq. 2.22) in the valence band (see Fig. 

2.11(b), (c)), while the stimulated absorption process, Rba (Fig. 2.11(a)) requires 

the presence of an electron in the valence band state Eb, hence: 

Rab OC fc (Ea) fv (Eb) (2.24) 

R' oc f, (E�)f, (Eb) (2.25) 
ab 

Rba 0( [1- fv (Eb)1 [l 
- fc(Ea)1 (2.26) 

2.4.1 Reduced density of states 

As previously mentioned, only transitions which satisfy both momentum (hk) and 

energy conservation are allowed, i. e. transitions involving electron and hole states 

with the same k-vector and where the transition energy Eab is equal to the involved 

photon energy hl"ab- Consequently, it is more appropriate to consider the number of 

allowed state pairs (transitions) in a semiconductor material, the so-called reduced 

density of states (Pr(E)). Rather than use the single carrier density of states for 

electrons and holes, we use the reduced density of states in order to calculate the 
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transition rates previously described. 
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The density of states referring to the transitions described in figure 2.11, P, (Eab) 

where Eab = Ea + Eb + Eqap (see Fig. 2-9) can be obtained for each semiconductor 

structure (bulk, quantum well, quantum wire and quantum dot) by replacing the 

effective mass in the previously given formulas (Eq. 2.13 for bulk material, Eq. 2.16 

for quantum well structures) by the reduced mass m; [21 

m*m* 
cv 

Mr 
M* +, M* cv 

(2.27) 

Therefore taking into account this equation and also the expression for total tran- 

sition energy Ezb, given by 

Eab '--: Ea +Eb +Egap (2.28) 

the energies of the conduction and valence band states, i. e., E,, and Eb, relative to 

the conduction and valence band-edges respectively, may be described as a function 

of the energy and the masses as follows; 

E,, - 
h2k 2 

rnr* (Eab 
-Egap) (2.29) 

2m* M* cc 
Eb - 

h2k 2 
Mr* (Eab 

-Egap) (2.30) 
m* 2mV v 

For example, taking into account the expression for the density of states for a bulk 

semiconductor given by equation 2.13 in section 2.3.1, the reduced density of states 

function for a bulk semiconductor can be given by 

* 3/2 mr )1/2 P(E -E (2.31) ab) -2 h2 
(Eab 

gap 47r 

2.5 Gain and absorption 

In this section we will describe how gain, absorption and spontaneous emission 

can be calculated for a semiconductor structure. Considering the optical processes 
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described in section 2.4, the transition rates per unit volume per unit time for a 

single optical mode at the energy hl"abi for the processes illustrated in figure 2.11 

described in equations (2.24), (2.25) and (2.26) can be rewritten as follows [2]: 

Rab= BabPr (Eab) fc (Ea)fv(Eb)p,, pt(hl"ab) (2.32) 

Rba= BbaPr (Eab) [1- f, (Eb)] [1 - f, (Ea)] p,, pt(hl-'ab) (2.33) 

R' = AabPr(Eab)fc(Ea)fv(Eb) (2-34) 
ab 

where A and B are the Einstein coefficients [3], ppt(hlýab) is the photon density of 

the optical mode (the number of photons into the optical mode hV"b), f, (Ea) and 

f, (Eb) are the occupation probabilities given by Eq. 2.23 and Eq. 2.22 respectively, 

and p, (Eab) is the reduced density of states for a transition energy Eab- 

It has to be highlighted that Rab and Rba are competing processes as R"b generates 

a photon while Rba absorbs one, therefore the net decrease rate of photons in a 

semiconductor (ne-tba) is given by; 

netba = Rba 
- 

Rab 

The absorption of photons into the mode hOab in a semiconductor material can be 

(2.35) 

described as [21 

(hVab) = neth,,, (2.36) 
Pphot (hVab) 

where Pphot(hVab) is the density of photons into the optical mode hl, ýab [2]. Therefore 

the fractional decrease of photons (at energy rUA)ab) per unit length of the semicon- 

ductor material may be written as follows [21 

eh2 (2-37) a(rUA)ab) : -- 2com 2cfi (hWab) 
I MT I Pr (rU4)ab) [1- fe (Ea) 

- 
fv(Eb)] 

0 

where IM T2 is the momentum matrix element (related to the interaction of the 

electron with the electromagnetic wave) [2]. The gain of the semiconductor material 
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which refers to the net downward transitions of an electron producing a photon will 

be the negative absorption. However, when a high carrier density is injected into the 

system in order to obtain gain, it produces as well an increase in the spontaneous 

emission rate. The spontaneous emission rate, R'P' for the process described in 

figure 2.11(c) into the mode &4)abi per unit volume may written as follows [2] 

R'P'(ýIWab) 
---::: 

4 he2 4Wab) 7r (I 
MT 12 Pr (IýWab) fc (Ea)fv(Eb) (2.38) 

IEOM 
2h 2C3 
0 

2.6 Threshold gain 

A laser requires a gain medium to provide amplification of light. We discussed in the 

previous section that while stimulated emission increases the number of photons in 

the cavity, stimulated absorption (Eq. 2.37) decreases them. In order to have light 

amplification in the cavity, we need to have a surplus of electrons in higher energy 

levels, i. e., the so-called population inversion achieved by pumping so that more 

electrons can be stimulated to undergo a downward transition producing photons. 

However, as we have previously explained, photons will eventually be absorbed 

resulting in the attenuation of the optical field (absorption losses). Consequently, an 

optical field which can be amplified propagating through the cavity, is not sufficient 

to make a laser. It is necessary to have a resonator, consisting of two parallel mirrors 

separated by a distance L and each of them with equal facet reflectivities R in order 

to enforce the propagating field to traverse repeatedly the amplifying medium (the 

gain medium). The gain necessary to overcome the material losses, ceo (optical mode 

losses of the laser cavity) and the mirror losses is known as the threshold material 

gain, Gth, given by [11] 

Gth 
--: -: 010 +I In [11R] (2.39) 

L 
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Equation 2.39 actually represents the threshold modal gain of the laser. This can 

be related to the threshold material (or local) gain [111,9th by the expression; 

Gth Fgth (2.40) 

Here IF is the optical confinement factor, and gives a measure of the overlap of 

the optical field and the gain producing region of the laser. It should be noted 

that the gain/absorption calculated using equation 2.37 is the material gain of the 

semiconductor. 

2.7 Self-assembled quantum dot lasers 

Since quantum dot structures started to draw the attention of researchers [4], there 

have been substantial improvements in the fabrication of quantum dot semiconduc- 

tors for lasers. For device applications, it may be advantageous to place the quantum 

dots in a quantum well as in self-assembled quantum dot structures (SADs) [9], [1]. 

Self-assembled In(Ga)As quantum dots are formed on a single-crystal GaAs sub- 

strate via Stranski-Krastanov [10] epitaxial growth [5] which is described in the 

introduction. In this structure, the highly strained quantum well, known as the 

wetting layer, aids the capture of charge carriers into the dot. Dots are grown on 

top of the wetting layer while the whole structure is covered by bulk material (Fig. 

2.12). The confining potential of the carriers in the wetting layer (of the 2D carri- 

ers) results from the different band gaps between the wetting layer material and the 

surrounding bulk material. Initially, carriers diffuse in the lower-band gap 2D WL 

before either recombining or being captured by the SADs, where they can either 

relax into lower energy levels or re-excite back to the wetting layer. Once in the 

wetting layer they can diffuse and be captured by other quantum dots within the 

ensemble. Hence the wetting layer supplies the quantum dots with carriers, appear- 

ing as a carrier reservoir. 
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Figure 2.12: Illustration of a self-assembled quantum dot on top of the wetting layer, 

both embedded in bulk material. 

The ensemble of quantum dots formed on the wetting layer usually consists of 

different sized quantum dots as a result of the difficulties in controlling the growth 

conditions of these structures. Consequently the energy level structure of each quan- 

tum dot will vary from that of a different size quantum dot structure, resulting in 

a broadening of the delta-like density of states of the quantum dots throughout the 

ensemble. This kind of broadening is often described by a Gaussian distribution 

function and it is known as inhomogeneous broadening. However as will be dis- 

cussed in chapter 5 the model we construct does not use this approximation but 

considers individual fluctuations in dot sizes. 

There is also a broadening of each individual quantum dot state due to carrier 

scattering mechanisms as a consequence of the Heisenberg uncertainty principle. 

We will study these different scattering mechanisms responsible for carrier capture 

and relaxation in the dots and their effect in optical transitions, in detail in fur- 

InGaAs 
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Figure 2.13: Schematic representation of the typical spectral broadening processes 
in quantum dot lasers, where Egi i=1,2 

... 5 represents the ground state energy 

for 5 different sizes of quantum dots [8]. 
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Figure 2.14: Illustration of a self-assembled quantum dot on top of the wetting layer, 

featuring only the conduction band states [8]. 

ther chapters. Carrier-carrier and carrier-phonon scattering mechanisms deal to a 

broadening of the quantum dot discrete energy levels. This so-called homogeneous 

broadening is described as a Lorentzian function with a width of tens of meV. 

Both inhomogeneous and homogeneous broadening are represented in figure 2.13. 

It shows the lowest energy level for five different sizes of quantum dots, all of them 

being homogenously broadened. Because of the difference in size of the dots within 

the ensemble, the difference in energy of the plotted ground states, may be described 

as a gaussian envelope function. 
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2.8 Role of the wetting layer in quantum dot pop- 

ulation 

As mentioned in the previous section, when self-assenbled quantum dot structures 

are grown by Stranski-Krastanov [10] epitaxy, the dots are formed on top of a two- 

dimensional quantum well (2D) wetting layer (WL). Carriers within a QW sub-band 

are distributed as a 2D gas in a Fermi-Dirac distribution. In quantum dot lasers, 

the injected carriers into the quantum well wetting layer embedding the quantum 
dots, will eventually be captured into the quantum dots' excited states, and then 

relax to the fundamental lasing state. The captured carriers within the quantum 
dot can be re-excited into the wetting layer states, and be captured again by other 

quantum dots within the ensemble. Hence the wetting layer, has a very important 

role in the performance of quantum dot based optical devices, as it determines the 

population statistics of a quantum dot laser. 

Figure 2.14 [8] describes the energy representation (for conduction band states only) 

of the wetting layer and quantum dot system. AE in figure 2.14 describes the en- 

ergy difference between the highest electron energy level within the quantum dot 

(dependent on the quantum dot size) and the lowest electron energy state in the 

wetting layer. As a result of the band gap difference between the wetting layer ma- 

terial and the surrounding bulk material (previously pictured in figure 2.12), there 

is a confining potential for both the 2D electrons and the OD electrons, represented 

by AEWL in figure 2.14. 

The performance of optical devices based on quantum dot lasers critically depends 

on the capture of carriers into the quantum dots, as well as the relaxation of carriers 

through the localized quantum dot states. As we will see in chapters 3 and 4, the 

population of quantum dots is governed by the efficient scattering mechanisms of 

carriers between the 2D de-localized quantum well states and the discrete localized 
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quantum dot states, as a consequence of the Coulomb interaction. 

In chapter 5 rate equations for the carrier occupation probabilities will be derived 

in order to study the carrier dynamics within the quantum dots. 

2.9 Summary 

In this chapter a general description of a semiconductor laser has been given. In a 

semiconductor crystal, electrons occupy allowed states. The total number of states 

available for occupation by an electron at a particular energy is given by the density 

of states function. However, in order to calculate the optical/electrical properties 

of semiconductor structures, it is also necessary to determine the probability of oc- 

cupation of the allowed states in a crystal. Given that carriers are fermions, the 

probability of occupation of a state is given by Fermi-Dirac statistics. In this chap- 

ter, we have described the density of states for different semiconductor structures, 

also determining the expressions for the Fermi-Dirac distribution functions of the 

semiconductor conduction and valence bands. We have emphasized the advantages 

of a delta like density of states of quantum dot based structures; the electron can 

be localized in the quantum dot in a discrete set of energy states, therefore this 

confinement of carriers enhances the chances of recombination processes, improving 

significantly the performance of devices based on quantum dot structures. 

We have also described the different optical transitions in order to determine an 

expression for the optical gain and spontaneous emission rate. Finally, we focus 

on self-assembled quantum dot structures formed via Stranski-Krastanov epitaxial 

growth as explained in 1. We have also described the crucial role of the wetting 

layer as supplies the quantum dots with a carrier reservoir therefore playing a large 

part in the carrier dynamics. 
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3.1 Introduction 

The aim of this work was to develop a model to describe the time dependent occu- 

pancy of the quantum states of the QD ensemble. In order to do this, we need to 
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calculate the scattering rates between the various energy levels of the dots and the 

wetting layer. The scattering rates, are determined using Fermi's Golden Rule [21 

and require summation over all possible scattering states. This calculation, which 

is described in full in chapter 4 is highly computer intensive. In order to reduce 

the computational times, we' first investigate the semi-analytical approach to cal- 

culating these Auger scattering rates outlined by A. V. Uskov [5], [4]. In these 

two papers, A. V. Uskov, makes use of the assumption of moderate densities of 

the carriers in the wetting layer, describing the carriers in the wetting layer by a 

2D Boltzmann distribution, which significantly simplifies the required mathematical 

calculations. In the next chapter (chapter 4), the Auger scattering rates have been 

calculated without making use of the assumption of low carrier densities. Instead a 

2D Fermi-Dirac distribution is utilized in order to describe carriers in the 2D wet- 

ting layer. A comparative study between the semi-analytical approach implemented 

in this chapter, and the results obtained by the formulas derived in chapter 4, will 
'The results given in this chapter have been calculated in conjunction with I Domfnguez. 

QD 
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be accomplished. 
In InAs/GaAs self-assembled quantum dot structures, QDs are grown on top of a 

narrow quantum well (2D wetting layer) while both structures are embedded in 

bulk material. Carriers in the 3D bulk states are first captured by the wetting layer 

and then scattered into the SADs, where they may recombine either radiatively or 

non-radiatively before relaxing into OD lower energy states (see figure 3.3). In this 

chapter, 3 scattering processes are described; 

Figure 3.2(a) describes an Auger like relaxation processes. A OD carrier col- 

lides with another carrier in the wetting layer (2D electron). The OD carrier 

is scattered into a lower state in the dot losing energy while the 2D carrier is 

scattered to a higher energy state in the wetting layer. 

Figure 3.2(b) represents a capture type I process, where 2D carriers in the 

wetting layer collide, one of them is scattered into the quantum dot state 

while the 2D carrier, is scattered into a higher energy state in the wetting 

layer. 

41 Figure 3.2(c) describes a capture type II process. In this occasion, a 2D carrier 

is captured into the quantum dot due to scattering with a previously captured 

OD carrier, which is itself scattered into the wetting layer. 

The calculation of the scattering coefficients in [4] and [5] has been followed as- 

suming that SADs have a cylindrical shape of height H=4 nm and diameter 

D=8.0 nm [1], furthermore, in order to simplify the calculation of the scattering 

coefficients, relatively low temperatures and densities of the 2D and 3D carriers 

(n2 and n3 respectively, see figure 3.3) have been considered. Consequently, carriers 

in the wetting layer are considered to be at the lowest confined 2D energy state 

(z-direction) before the scattering process. 
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Figure 3.2: E-k curve, featuring only the conduction band states. (a) Relaxation 

of a OD carrier into a lower energy level in the quantum dot via scattering with 

a 2D carrier in the wetting layer. (b) Capture of a carrier into the quantum dot 

via an Auger type I process. (c) Capture of a carrier into the quantum dot via an 

Auger type I process. 
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Bulk states, n3density of carriers 

n2density of carriers 

Kation in the QD 

Captures QD 

Figure 3.3: Energy diagram of the quantum dot structure. Bulk carriers (an initial 

n3 carrier density) are captured by the wetting layer (WL), represented by an initial 

carrier density of n2, before being captured into the quantum dot (QD), where 

relax into a lower energy level. The Coulomb interaction between the QD carriers 

(OD carriers) and the WL ones (2D carriers) is screened by the bulk carriers (3D 

carriers). 

3.2 Auger relaxation coefficient in SADs 

In order to describe the semi-analytical calculation of Auger relaxation rate (Fig. 

3.2(a)), we have assumed a carrier has already been captured from the 2D wetting 

layer into an excited OD energy state in the SAD. Once in the quantum dot, it will 

follow a relaxation process into the OD ground state (see figure 3.3). 

Making use of Fermi's Golden Rule [2], the probability of a carrier transition from 

an initial OD state i scattering to a final energy state f within the quantum dot 

because of Coulomb interaction between a QD carrier and a 2D carrier, which is 
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scattered within the angle 0 to 0+ dO in the x-y plane, may be written as in [4]: 

dWfkl, ik : -:: 
mc Jýf, kjjUji, k) 12 dO 

21rh3 

where 

(3.1) 

* k, k, are the in-plane wave vectors in the lowest sub-band of the scattered 

carrier in the initial and final 2D states respectively in the wetting layer. 

* m, is the mass of the 2D scattered carrier. The subscript c=e for electrons 

and c=h for holes. 

* The letters i and f refer to initial and final states in the quantum dot respec- 

tively. The energy difference between the initial and final state within the 

quantum dot, is considered to be: 
h2 

(k 2-k 2) 
= Ei - Ef 

2m, 1 (3.2) 

o Jýf, k, JUýi, k)j is the matrix element of the screened Coulomb interaction. 

The Screened Coulomb interaction between carriers at ro (position vector of 

the 2D carrier) and r (position vector of the carrier inside the quantum dot) 

is given by the expression [4]: 

U(Ir - rol) = 
62 exp(-kD Ir- rol) 

c1r- ro 
(3-3) 

where c is the dielectric constant of the material and kD is the 3D Debye 

screening wave number 
2 

ý7r ý, 

kD 
e2nbulk 

6 kB Tjbulk 
(3.4) 

In this last formula, Tb,, Ik is the temperature of the 3D carriers, kB is the 

Boltzmann constant [3] (kB = 1.3807 x 10-23 J/K) and nbulk is the 3D carrier 

density. Making use of the dipole approximation, Le r> ro the screened 

Coulomb interaction (Eq. 3.3) can be rewritten as follows 

e2 r-ro + 
kD ) 

U= U(Ir - roý) e-.., U(ro) + (3-5) 
.32 70 r. 
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Including Eq. 3.5 in Eq. 3.1 gives the differential cross section as a function of 

velocity v for the scattering process of a 2D carrier with a OD carrier within the 

quantum dot which is relaxed from an initial i state to a final f, i. e. [4] 

dor' (v, 0) = 
27re 4 me [(D'i )212 + (D'i )2J22 

1 

d0 (3-6) 1 if 
e2 h3 ff1v 

where 

DI and Dý are the z and x components respectively of the dipole moment. fi fi 
As we have previously mentioned, a cylindrical shape for the SADs has been 

assumed in [4], i. e., the wave function of a carrier inside an infinite potential 

quantum dot, characterized by the three quantum numbers n, 11 m can be 

expressed as follows: 

, P. i. (Z, P, 0) = P. (Z) lp i (p) eime 

x72-7r 
(3.7) 

Taking into account the orthogonality properties of the wave function compo- 

nents in z and p directions, i. e. 

0, 
dz (z) T,,, (z) 

'o 

00 

00 
dppTl*i(p)TI(p) 

then the z and x components of the dipole moment in 3.6, i. e., Dzfi and Dfxi 

may be written in a more accessible way as follows [4]: 

Dý=D,,, drxFý(r)zTj(r) = dz fi n'IIm', n1m 

ff,, 
n6I'16m'm 

(3.8) 

where 
f 00 

dzI dzzýP*, (Z)'I'n (Z) '0 

- 00 

and 

01 dr%P*(r)xTi(r)=d',,, 6n'n-(6m'm+1+6m', m-1) (3.9) 
nlm 

ff2 
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where 

f 00 
d'l,, --= dpp"Pl*l(p)TI(p) 

* I, and 12 [4] are the values of the integrals given by 

du u3 (1 + kDh%l-l + U2) e 
(-kD hv/-l-+-P* )J, 

-, 
(qhu) (3.10) 

(1 + U2) 2 

In the last equation, J, is the Bessel function of order 1, h is the distance from 

the center of the dot to the wetting layer, hence, the height of the dot, H is 

H= 2h. kD is the 3D Debye screening wave number given by (3.4), q is the 

magnitude of the wave vector q=k, - k. As a consequence of assuming a 

moderate carrier density and temperature, the initial carrier state energy is 

assumed to be at the bottom of the quantum well sub-band, hence, ki > k. 

Consequently, and making use of Eq. 3.2, the magnitude of the wave vector 

q in 3.10 can be rewritten as 

ki -, 
ým-. (Ei - Ef) (3.11) 

Because of the assumption of moderate carrier densities of the 2D carriers in [4], 

carriers in the wetting layer have been described by a 2D Boltzmann distribution 

f, (v) as a function of the initial velocity of the scattered 2D carrier [4], i. e., 

fc (v) = 
n2M, V mcv 2 

kBT2 2kBT2 
(3-12) 

Hence, the carrier relaxation rate from an initial Z OD energy state to a final f state 

in the quantum dot is given in [4] as 
00 00 mcv - 

-CV2 
2kBT2 V gif -4cf 

fo 
dvf, (v) v aicf = 

fo 
dv n2 

kBT2 ec (v) = Bicf n2 (3-13) 

where uicf (v) is the integrated cross section of the scattering process given by Eq. 

3.6, hence, 
7r 47r 2e4 Me 

)212 + )2J22] 
1 

Orif dor' (v, 0) = [(D'i 
1 (D-' (3-14) (v) =f 

Ir 
if 

lE2 h3 f fi 
v 
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Including this last equation into (3.13), we can write the analytical expression for 

the Auger Relaxation coefficient as in [41: 

47r2e4 m222 2] B' c [(D'i) 1ý + (D-) 12' (3-15) if 2h3 f fi 

where c is the dielectric constant of the material and m, is the carrier mass. 

3.2.1 Numerical Results 

We have implemented the equation 3.15 in order to calculate the temperature de- 

pendence of the Auger relaxation coefficient on the 3D carrier density in the bulk 

material, as in [4]. To evaluate the integral given by Eq. 3.10, we make use of the 

trapezoidal rule method with 1000 partitions, constructing the variable u in (3.10) 

as follows: 

00)( 

Ui = 10 

('- 102 

--T-- 

for i=1, .. 1000. 

The values of the parameters in (3.15) have been taken from [4], i. e., 

(3-16) 

e m, = O. Imo andMh = 0.34mo for the electron and hole masses respectively. 

ee= 13 for the dielectric constant. 

(Ei - Ef) = O. 1eV for the separation between the energy levels Ej and Ef in 

the quantum dot. 

H= 4nm, D= 8nm are the height and diameter of the InAs/GaAs self- 

assembled quantum dots. 

* It has been assumed (as in [4]) that the temperatures of the 3D and 2D 

carriers are equal to each other, hence, T3 = T2 = T. 
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Figure 3.4: Auger Relaxation rate dependence on the 3D bulk carrier density for 

different temperature values. 
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* In the following numerical result, interband transitions of the form n' =n±1 
have been considered as in [4], so that the z component of the dipole moment, 

)2 h2 
assuming infinite barriers for the QD, may be estimate as (d', nn 

Figure 3.4 shows the dependence of the Auger relaxation coefficient on the 3D carrier 

density for these parameters. It shows that the dependence of the Auger relaxation 

coefficient on n3may be neglected for temperatures larger than 100 K and relatively 

moderate carrier densities (< 5x 10" cm-'). The temperature dependence on the 

Auger Relaxation coefficient comes from the screening potential as can be seen from 

equation 3.4 where the Coulomb interaction between the 2D carriers and the OD 

quantum dot carrier is screened by the 3D carriers, with a density of n3 as plotted 

in figure 3.3 (see equations 3.3 and 3.4). The Auger Relaxation coefficient becomes 

larger for higher temperatures, as the screening effect of the 3D carriers becomes less 

important (see equation 3.4). In addition, a much more efficient Coulomb interaction 

between carriers in the wetting layer and the relaxing ones within the quantum dot 

may occur. For the quantum dot structure shown in figure 3.4 with temperatures of 

300 K for the 3D and 2D carriers, a relaxation rate of - 1.3 x 1011 s-1 is obtained for 

2D carrier densities of n2 ý 1.0 X loll CM-2. It is important to emphasize the linear 

relationship between the 2D carrier density n2 and the relaxation rate in equation 

3.13. This comes from the assumption of low carrier densities, hence, describing the 

carriers in the 2D wetting layer by a Boltzmann distribution (see equation 3.12). In 

chapter 4, a comparison between the results obtained making use of this assumption, 

and those achieved by full derivation from Fermi's Golden Rule [2] and Fermi-Dirac 

statistics, will be accomplished. 

In this work we consider n3 and n2 to be independent variables as is common in 

the literature. However, n3 and n2 can usually be related by considering a common 

Fermi level for the semiconductor structure. 
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3.3 Auger Capture type I and type II coefficients 

in SADs 

In this section, we calculate the Auger capture type I and II coefficients as de- 

scribed in [5]. The calculation makes the same approximations as those previously 

described, i. e., considering relatively moderate carrier densities and temperatures. 

Again we model the self-assembled quantum dots as cylinders of height H=5 nm 

and diameters varying from -I nm to 50 nm. The values for the lowest confined 

energies for electrons and holes in the quantum dot (EDe and CDh respectively) and 

quantum well (ew, for electrons and CWh for holes) have been taken from [5] (see Fig. 

3.5), taking into account that in the considered InAs/GaAs structures [51 IEDh > CDe 

and A(h > ACe (see Fig. 3.5), 

QW 
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where 

, ýý6e (EDe 
- 6We) 

and 

, ýýEh -7:::: 
(CDh 

- CWh) 

3.3.1 Auger Capture type I coefficient in SADs 

52 

(3-17) 

(3-18) 

We have calculated the four possible Auger Capture type I coefficients (see Fig. 

3-6) making use of the formula derived by A. V. Uskov in [5]. In this kind of 

processes (capture type I scattering processes) a carrier in the wetting layer (a 2D 

carrier) is captured by the SAD as a consequence of the Coulomb interaction with 

another 2D carrier, which is itself scattered into a higher energy level in the wetting 

layer. Depending on the carriers taking part in the scattering process, there are 

four different capture type I scattering coefficients possible, i. e., C, Cehl Che and 

Chh as shown in figure 3.6. Following [51, the Auger capture type I coefficients may 

be calculated as follows: 

7rm e4D2 kw(kD + 2kw + 2q, )2 
ccs 

4ý021h3IE02C2 H q, 52(kw + qs )2 (kD + kw + qs )2 

j 2(qsD) 

x0 
)2 

22 (3-19) 
(q, D 

)2 (2Col 

where 

a G, = 2.4 is the value of the first root of the zero order Bessel function Jo(x). 

*s and c subscripts refer to the scattered and captured carriers respectively, 

consequently, m, represents the effective mass of the scattered carrier (s =e 

when the scattered carrier is the electron, and s=h when the scattered carrier 
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Figure 3.6: Schematic picture of Auger Capture Type I processes. (a) C, where a 

2D electron is captured by the SAD after scattering with another 2D electron. (b) 

Cehi where a 2D electron is captured by the SAD after scattering with another 2D 

hole. (c) Ch, where a 2D hole is captured by the SAD after scattering with another 

2D electron. (d) Chh, where a 2D hole is captured by the SAD after scattering with 

another 2D hole in the wetting layer. 
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is a hole). Again the values for the electrons and holes effective masses have 

been taken from [5]. 

* refers to the wave number of the scattered carrier, taking into account the 

energy increase after the scattering process. Using (3.17) and (3.18), q, kD 

and kw wave numbers are given by: 

- When the scattered and captured carriers are both electrons, ix. ý Cee 

(see Fig. 3.6(a)): 

kD = 
V2 -mcD, 

kw = 
V2- -mc w, qs 

c, 

- When the scattered carrier is a hole and the captured one an electron, 
Ceh (see Fig. 3.6(b)): 

kD = \/2-mCDe kw = 
\/-2mhiEwh 

qs VF2 
-mhAce 

hhh 

- When the scattered carrier is an electron and the captured one a hole, 

i. e., Ch, (see Fig. 3.6(c)): 

kD V2rnhfDh kw = 
OMefWe 

qq hh 
, /-2-m-Ar,. 

n 

- When the scattered and captured carriers are both holes, i. e., Chh (see 

Fig. 3.6(d)): 

V22- V2-- N/2MhfDh MhCWh MhAfh 
kD 

-'h kw =-hq, h 

eD and H are the diameter and height of the dot. 

Figure 3.7 shows the results of solving equation 3.19 for the calculation of the capture 

coefficient type I making use of the parameters utilized in [5], i. e., for dot heights 

of H5 nm and the lowest confined energies such as, CDe = 0.2 eV, EDh = 0.3 eV, 

Ewe 0.03 eV and CWh = 0.05 eV, considering moderate carrier densities in the 
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wetting layer (densities of 1X 1015 M-2). 

There is a strong dependence of the Auger capture type I coefficient on the diameter 

of the quantum dot and a oscillating nature as a result of the Bessel function of 

the first kind, i. e., Jo(x) dependence, as can be observed in figure 3.8. As shown 

in figure 3.7, those capture processes involving electrons are much faster than those 

involving holes. However, the capture of a hole from the wetting layer after colliding 

with a 2D electron (Ch, in figure 3.7) occurs more efficiently than the capture of 

a 2D electron after scattering with a 2D hole (Ch, in figure 3.7). The reason for 

this can be seen in equation 3.19, where we observe that Cc, oc q, being the 
q, 4 

wave number of the scattered carrier. Hence, as holes are heavier than electrons and 

q, (X Mscattered carrier 
1/2 

, those carrier capture processes where the scattered carrier is 

the electron, occur more rapidly. 

However this semi-analytical approach does not give a realistic view of the scattering 

rates. In reality, holes are captured more efficiently than electrons because the heavy 

effective mass gives rise to a large number of states for scattering [2]. 

In the next chapter, a full derivation from Fermi's Golden Rule [2] will be performed 

in order to determine the different scattering rates explained in this chapter (chapter 

3). A comparison between the scattering rates obtained making use of the formulas 

described in this chapter and the ones derived in chapter 4 will be accomplished. 

3.3.2 Auger Capture type Il coefficient in SADs 

In this section we implement the equation given by [5] in order to calculate the 

Auger capture type 11 coefficient, Bhe. This coefficient refers to the Auger capture 

type II process where a 2D hole in the wetting layer is captured by the SAD due to 

the Coulomb interaction with a previously captured OD electron, which is scattered 

into a 2D state in the wetting layer (see Fig. 3.9). In order to get the results plotted 

in figure 3.10, we solve the equation for the calculation of the Auger Capture type 
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Figure 3.8: The square of the Bessel function of the first kind, i. e., Jý'(x) plotted on 

a linear scale (top figure) and on a logarithmic scale (bottom figure). 
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Figure 3.9: Auger capture type II process characterized by Bhe where a 2D carrier 

in the wetting layer is captured by the SAD because of the Coulomb interaction 

with a previously captured OD electron, which is itself scattered into a 2D state in 

the wetting layer. 

II coefficient Bhe given in [5], i. e., 

Me e- 4D2 (kD + kw )2 j0 2(qhD) 

Bhe - 4ý41h36()2C2 H2k2k2 (qh, D) 22-xF2 
(3.20) 

[ 

(2eol)2 
11 

where 

* ý01 = 2.4 is the value of the first root of the zero order Bessel function Jo(x) 

as in Eq. 3.19. 

* Me is the mass of the scattered carrier, i. e., the electron effective mass, taken 

from [5]. 

* qh, refers to the wave number of the scattered carrier, Le, the electron, which 

is excited from the quantum dot into the wetting layer, after scattering with 

a 2D hole. Hence, taking into account (3-17) and (3.18), qhe, as well as kD 
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and kw wave numbers in (3.20) may be calculated as follows: 

V2-mhcDh V2 -mc w, 7nhCDh kD 
h 

kw qhe 

e The function F is given by 

A, /2m, (, ýýfh 
h 

59 

F= 
00 

du 
Jo (U) I+ [2u/(kD+ k, )] D_ (3.21) 

fo 

[(U/ý 
01)2 - 1] [1 + (2u/(kDD))] [i + (2u/(kwD))] 

eD and H are the diameter and height of the dot as in 3.19. 

Figure 3.10 shows the strong dependence on the dot diameter of the Auger capture 

type II coefficient, Bhe, as can be observed from equation 3.20. The different in 

shape comparing to the plot obtained for the capture type I coefficient (figure 3.7) 

comes from the factor F (see Eq. 3.20 and Eq. 3.21) that appears in equation 3.20 

which limits the periodic contribution to the value of Bhe coming from the bessel 

function pictured in figure 3.8. 

3.4 Summary 

In this chapter we have implemented the semi-analytical expressions for the cal- 

culation of the scattering capture and relaxation rates in cylindrical self-assembled 

quantum dot structures. An increase of the Auger relaxation rate for larger temper- 

atures has been observed as the screening effect of the 3D carriers on the Coulomb 

interaction between the wetting layer and quantum dot carriers acquires less impor- 

tance. Therefore, faster Auger relaxation rates are obtained for larger temperature 

values. 

We have also discussed the strong dependence of both Auger capture type I and II 

processes on the dot radius, and noted the oscillating nature of the capture type I 

coefficient, as a result of underlying Bessel function dependence. 
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However in the next chapter, we will compare the scattering rates obtained by ex- 

tending the semi-analytical formulas described in this chapter and those given by 

a full derivation from the Fermi's Golden Rule. Note that in the next chapter, we 

extend the results of A. V. Uskov in [4] and [5], accounting for intraband transitions 

by explicitly calculating the wavefunctions and energies and properly evaluating the 

dipole moment components (equations 3.8 and 3.9) for each dot radius. 
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In this chapter we derive equations to calculate the Auger capture and relaxation 

processes in InAs/CaAs quantum dot structures. The derivation starts from Fermi's 

Golden rule [3] and includes a Fermi-Dirac distribution for carriers in the wetting 
layer. We will compare the scattering rates obtained with those achieved by making 

use of the scattering formulas derived by A. V. Uskov (chapter 3). 

We consider the three Auger scattering processes; 

Type I capture process (see Fig. 4.1) involves a 2D carrier (either an electron 

or a hole in the wetting layer) capture/ejection by the QD structure, after 

scattering with another 2D carrier which is scattered to another higher/lower 

energy state in the wetting layer. 

e Type Il capture process instead (see Fig. 4.2), refers to transitions in which a 

2D carrier is captured inside the quantum dot due to carrier-carrier Coulomb 

scattering with a previously captured carrier. This carrier is excited from the 

quantum dot to a 2D state within the wetting layer. 

* The Auger relaxation between QD energy levels (Fig. 4.3) is due to the 

Coulomb interaction between carriers in the wetting layer. In this process, a 

carrier inside the dot, is relaxed/excited to a lower/higher energy state due to 

the Coulomb-like interaction with a 2D carrier in the wetting layer. This 2D 

carrier will go to a higher/lower energy level. 

We present a model for the calculation of Auger capture and relaxation rates in 

self-assembled InAs/GaAs quantum dots, considering a lens-shaped quantum dot 

with height h (as pictured in figure 4.4) and radius values varying between 5 nm 

and 40 nm approximately. 

The chapter is organized as follows, we first calculate the wavefunction for a car- 
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Figure 4.2: Auger Capture process type II 
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rier within the SAD and quantum well (wetting layer) structure, for a quantum dot 

in the shape of spherical lenses shown in figure 4.4, formed on a narrow wetting 

layer. In the following sections the derivation of the Auger capture type 11 and type 

I rates are described. Then we calculate the Auger relaxation rate and finally we 

compare the results obtained with the semi-analytical expressions used in chapter 3. 
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4.2 Analysis of the wavefunctions and wave vec- 

tors in the QD and QW 

4.2.1 Quantum dot wavefunctions and energies 

Carriers in a QD are confined in all three directions. We have considered " lens)) 

shaped quantum dot structures, which have much bigger radii than heights (Fig. 

4.4) typical of those formed by the self-assembled growth process. The quantum 
dots are formed at the top of a narrow wetting layer of thickness, t,, ", t, and covered 
by GaAs bulk material. Consequently, electrons are confined in the quantum well 
in order to lower their energies, and they are further localized in the area of the 

quantum dot as the thickness of the the layer increases (Fig. 4.4). Due to the 

previously mentioned cylindrical symmetry of these quantum dots, a carrier in the 

quantum dot is confined in 3 directions within a cylindrical symmetry effective 

QD 
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potential, V(p, z), pictured in figure 4.5. The motion of a carrier of mass m* inside 

I 

Figure 4.5: Effective 2D potential assuming cylindrical symmetry [5]. 

the quantum dot in a potential field V(r, z) (Fig. 4.5) is described by the Schr6dinger 

Equation in cylindrical coordinates as follows [5]: 
92 ) 02 )Vq, 

D [(-1(r '9 r -9 + (r, z) (r, 0, z) r2 Or Or 1902 0Z2 

1 

=ED 
qID (r, 0, Z) 

As pictured in figure 4.5, the carrier inside the quantum dot is confined in all three 

directions by the potential V(r, z), schematically represented in figure 4.5, hence 

V(r, Z) -0 
inside the self-assembled quantum dot 

(4.2) 
I 

VO outside the self-assembled quantum dot 

Note that V(r, z) (figure 4.5) is independent of 0. 

Taking account of the fact that each dot within the ensemble has much bigger radius 

than height, we make use of the adiabatic approximation [5] in order to separate 

the Hamiltonian for the electrons into a function along the radial direction r and 

another one perpendicular to the growth plane as in [5], therefore, the wavefunction 

in equation 4.1 can be written as follows: 

ýV ' (z, r, 0) -- g., (z) f. (r) (4-3) 
v72-7r 

t 
%i, et 
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for an integer momentum m and g,,, (z) a slowly varying function of r. As previously 

mentioned, we have made use of this approximation taking advantage of the fact 

that carriers in the narrow wetting layer, are strongly confined to the lowest energy 

level in the z direction, as well as the fact that the potential changes slowly in the 

r direction (Fig. 4.5) [5]. From equation 4.1 the functions gnr(z) and f,,, (r) satisfy: 

[Hý, 0 +V (z, r) ] gnr (Z) = En (r) gnr (Z) (4.4) 

[H' D+ E� (r) ] f�, (r) =ED fm (r) (4.5) 

Introducing the expressions for the Hamiltonian in both z and r directions, equations 

(4.4) and (4-5) become 

02 
+V (r, z) gnr (Z) ý En (r) gnr (Z) (4-6) 

1 
az2 

1 

[-1 
(r '9 

ra-m 
2) 

+ E� (r) f�, (r) =ED f�, (r) (4.7) 
r2 ar (9r 

1 

where E,,, (r) is the effective lateral confining potential. As previously mentioned, 

carriers are strongly confined to the lowest sub-band in the narrow wetting layer, 

hence, we can considerate Eo (r) = E,, =, 
(r) to be the potential energy profile. 

In order to calculate the energy states E,, =, 
(r) and the corresponding wavefunction 

g,, =lr 
(equation 4.6), we divided the SAD into a number of segments (see figure 

4.7), each of them corresponding to a finite potential well of width L, (r) and depth 

VO, given by the band offset, as pictured in figure 4.6. Because of the symmetry of 

the potential, the wavefunctions posses even or odd parity. As we are considering 

strong confinement in the z-direction, we only calculated the ground state energy 

level (even parity) along the radius ri. The width of each potential well, L., (r) was 

calculated for each radius r making use of the fact that the quantum dot has an 

elipsoidal shape, hence 

L., (r) twet+ HDOT IV/1 - (rIRDOT )2 (4.8) 
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Following [6], we solved the Schr6dinger equation 4.6 in each of the 3 regions pic- 
tured in figure 4.6, by making use of exponentially decaying solutions for the regions 

outside the well, i. e., regions II and III, and travelling wave solutions for the region 
inside the quantum well, i. e., region I. Matching the wavefunctions and their deriva- 

tives at the boundaries of the regions, gives (for only the even solution): 

k, tan(kL, (r)/2) = kjj (4.9) 

where 

k2=E (4-10) 

k2 I, = Vo -E (4.11) 

In order to calculate the confined solutions in the wetting layer, i. e. E,, =, 
(r), for 

each radius r, we numerically solved the equation 4.9. We considered a range of 

energies, starting from zero to VO. The corresponding confined ground state energy 
levels E,, =, 

(r) for each r, were those energy values that satisfied the equation 4.9. 

The corresponding wavefunction for each radius value r is given by equation 4.12 

[6] 

A, cos (k, L, (r) / 2) e 
kiiz 

region 11 

gn=lr(Z) Ar cos (k, (z - Lz (r) / 2)) region 1 (4.12) 

Ar cos(kjLz(r)/2)e-kjj(z-Lý(r)) region III 

where A, can be calculated by the normalization condition f'2 
. 

jg,, 
=j, (z)j dz 

In order to calculate the wavefunction along the radial direction, r (Eq. 4.7) and 

the total energy of the dot, E', we have followed the method explained in [5]. Ap- 

proximating the potential E, #), to a n-step function, then, the confining potential 

energy at each radial position ri will be defined as E,, (r) = vi (see figure 4.8). As 

a result, the wavefunction corresponding to a particular energy E' and angular 

momentum m, at a determined position in the radial direction, r, can be written as 
[6]: 

f, (ri) = Ai F (ki ri) + Bi G (ki ri) (4.13) 
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Figure 4.8: (a) Potential energy representation for the solution of the quantum dot 

wavefunctions in the radial direction. (b) Splitting the potential energy into a n-step 

potential function. (c) Schematic representation of one of the i-th confined regions. 

where k2= ýE - vi ý, (F(kiri), G(kiri) are cylindrical Bessel functions, which are i 
defined appropriately depending on which region i of the confined potential plotted 

in figure 4.8(c) is being considered. Hence, 

F(kiri) = J,, (kiri) 

G(kiri) = Y, (kiri) 

(4.14) 

(4.15) 
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when E' > vi and 

F(kiri) = 

G(kiri) = I,,, (kiri) 

when E' < vi. 
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(4.16) 

(4.17) 

Taking into account that the wavefunctions and their derivatives have to be contin- 

uous at the boundaries of the dot: 

Ai-, Fi-l + Bi-, Gi-l = AiFi + BiGi (4.18) 

Ai-, VFi-l + Bi-, VGi-l = AiVFi + BiVGi (4.19) 

where (Fi-1, Gi-1) = (F(ki-lri), G(ki-lri)) and (Fi, Gi) = (F(kiri), G(kiri)). 

Rewriting equations 4.18 and 4.19 making use of a matrix notation, hence 

Ai 
Ti 

Ai-1 
(4.20) 

Bi 

( 

Bi-, 

) 

where from equations 4.18 and 4.19, Ti may be written as 

-1 
Ti 

Fi Gi Fj_j Gi-1 
(4.21) 

VFi VGi VFj_j VGi_j 

In order to obtain the confined dot energies, it is necessary to solve the set of 

equations 4.18 and 4.19, which is equivalent to finding the total transfer matrix T, 

defined as: 
An n Ao Ao 

Ti T (4.22) 
Bn 

)( 

Bo 

( 

Bo 

) 

Taking into account that the wavefunctions need to be finite at the origin, it is 

necessary to set the coefficient B0 to zero, hence, B0 = 0. On the other hand, at 

large values of r, the wavefunction vanish, thus, B,, in equation 4.22 must also be 

zero, i. e., B,, = 0. Under these conditions, equation 4.22 may be written as: 

An= TI, Ao (4.23) 

0= T2, Ao (4.24) 
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As AO : ý6 0, the energies of the bound states EbDmay be obtained from 4.24 as 
follows) 

T21 (E D) 
b (4.25) 

We solve equation 4.25 by first obtaining rough values of the roots by using a set 

of trial energies, starting from E,,, (r = 0) to Vo (the potential well depth, see figure 

4.5). The accuracy of these roots is improved using a Newton-Raphson routine [7]. 

D The confined energy states of the dot, E, ' , were those energy values for which the 

element of the transfer matrix T21 was zero. As expected, it was found that the 

number of energy levels increases when increasing the dot size. 

Taking into account the wavefunction component g,, =j, 
(z) is a slowly varying func- 

tion of r, we simplify the calculations by assuming gn=lr(Z) is independent of r; 

=, OD gn=lr=O(Z) z gn=lr (Z) (4.26) 

Denoting as OD , the solution of the equation 4.7, hence, making use of this notation, xy 
the wavefunction of a carrier within the QD can be expressed as: 

TD = V)DOD 
z xy 

(4.27) 

As an example, considering a "lens" -shaped quantum dot of height 5 nm and radius 

18 nm as well as a potential barrier VO = 0.244 eV, the obtained confined electron 

(of mass m, = 0.0445mo [5]) energy levels are; 

EOD = 0.0974eV 

ED=0.1234eV 1 
E2D = 0.153leV 

E3D = 0.192leV 
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The associated wavefunctions for the ground state TO and the excited state T, have 

been plotted in figure 4.9 and figure 4.10 respectively. 
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4.2.2 Wetting layer wavefunctions and energies 

76 

As a consequence of the strong carrier confinement in z-direction in the wetting 
layer, we are allowed to separate the carrier wavefunctions in the wetting layer, into 

a product of an envelope function along the growth axis and an in-plane travelling 

wave, i. e. 
-ik'"7 r 

Tw (r, kw) = Ow (z, kw) 
p xy XY 

zz 
v/-A 

(4.28) 

In order to simplify the notation when referring to the wave functions of the carriers 

within the quantum dot and quantum well, functions used in further calculations, 

equations 4.27 and 4.28 are rewritten as follows: 
imo 

(OD OD (Z» = (ýbD (p) 
,0D 

(Z» (4.29) xy 
(r., 

y), mp 
7r 

for the equation given by (4.27) and as 

-i 
NN* 

r., . 
Tw(r) = Ow(z) e xy (4.30) 

z -v/-, 4 
for the quantum well wave function given by (4.28). 

4.3 Auger capture process type II 

In this kind of capture process, a hole within the 2D wetting layer is captured by the 

SAD due to the Coulomb interaction with a previously captured OD electron, which 

is excited from the SAD into the wetting layer (see figure 4.11). The probability of 

finding a 2D carrier which it is initially in state Ij > in the wetting layer, captured 

by the SAD into a discrete state Ig > due to Coulomb interaction with a OD carrier 

in an initial OD state Ii >, which is excited from the SAD into a 2D state If > 

within the the wetting layer is given by Fermi's Golden Rule [3]: 
27r Z1<f ljjli > 126(EFtotal ttal 

1 (4.31) 
rg =h 

kxf Y, kjx Y 

Ej 
fi 
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Figure 4.11: Auger Capture process type 11 

where: 

11 

* ýZ is the product of the initial state of the scattered carrier in the QD 

OP (z), OP (r,, y) and the initial state of the captured carrier in the QW z2 
-V ---, Oýv (zt) eJ fl, 

I vý-A- 

> is the product of the final state of the scattered carrier in the QW 
OW (Z) e- 

kxfy xy 

and the final state of the captured carrier in the QD f VA- 

OD (ZI) D (r' ) 
9 091 \ xy/ 

H is the 3D Screened Coulomb interaction [4]. We consider the 3D Screened 

Coulomb interaction because the carriers in the whole structure contribute to 

the Coulomb interaction in the scattering process. This interaction between 

carriers at r and r' can be written as 

e2e-kD 
r-r' 

cIr rlý 
(4.32) 
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where c is the dielectric constant of the material and kD is the 3D Debye 

screening wave number, i. e., 

2 
kD 

ý7r ýenbulk: 

(4.33) 
ckB Tjbulk 

However, using the 3D Fourier 'Iýransforrn 

fd3 

rf (r)e -ik. r 
P 

where f (r) ':::::: f eik. rl we make use of the expression for the Screened ' 
Ek 

k 

Coulomb interaction given in [4], therefore 

e2e-kDlr-r'l 

cIr- rl 
v I keik 

k 

47re 2 eik. 
(r-r') 

EV 
Ek2 

+k 2 
kD 

(4.34) 

This will be the expression used for the Screened Coulomb interaction in this 

study. We will make use of the notation kr when referring to the scalar 

product of k-r. 

Using the Screened Coulomb potential given in (4.34), the matrix element in Fermi's 

Golden Rule (equation 4.31) may be written as: 

f IfIli > Tw (r, kw) Xp D (r', kD ffg9 

42 7re e 

z+ 
k2 2 ev k2 

k.,,,, kz xy + kD 

DD) 
i (r, ki xFjw (r', kjw) (4.35) 

Introducing the expressions for the carriers' wavefunctions within the quantum dot 

(4.27) and well (4.28), we obtain: 

00 (X 
f 

47re2 c, 
dzdz' 

C, 
ow 

9w 
(Z') 

VAC 
f-00 1-00 

f 

YOD 
-ikjct'r', eD ik2ý'yr., v x dr�ydr' (r' e (r., 

y) xgx 

ikxy (rxy -r' iký(z-z') 

xe XY)e (4.36) F.. 
i k2 + k2 +k2 kxy, ký z XY D 
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In order to obtain a more manageable expression, we convert the summation over 

the wave vectors k,, y and k, into integrals. Taking into account that the area in 

k-space occupied by one state in the quantum well is ( ? 7r )2. We need to include a L 
factor of when changing the summation over the wave vector kx to an integral, (27r)2 Y 

as well as a factor of L for the summation over the z component of the wave vector, 27r 

hence: 

e2 fc)o 
dz 

fc'o 
dz'OW (Z) * eD (Z1) *, OD (Z) OjW (Z1) 

2AC1r2 f9i 

, OD -i(kjx'Y+k., y)r., yeD i(k'Y+k., V)r. �v x drý, 
ydr'xy g 

(r' 
y)*e 

f 
11 

xi 
(rxy) e 

00 
x 

0<o, 
dk, e 

ik. (z-z') 
1 

dkxy 
k2+k2+ k2 

(4.37) 
Z XY D 

where A is the normalization area of the 2D gas. Changing the order of the inte- 

grations so that we perform first integration over r,, y, i. e. 

dz dz'ew (Z)*OD(ZI)*OD(Z)ej e2 00 '>O 

2A1E7r2 f9 

" 
f"odk, 

eiký(z-z')ldk., 
1 

Yk2+k 2 +k 2 
Z XY D 

" 
fdr' 

y 
0gD (r'Y)*e -i(kjxy +kxy 1 

xx 
)r� 

d OD )ei(kxy+kýy)rxy r, ýy i 
(r., 

y 
f 

so 

e2 00 0, 

<flftli> 2Ac7r 
dz dz'Ofw (Z) *, 0, W) *, Oi 2f 

00 

f- 

000 
9 

(Z) ojw W) 

x 
00 

dke ik, (z-z') dk,, y 
Gg (kj'y, k,,, y) Gi (k'fy, k 

0,0, 

fz 

XY D 

_, y) 

k2+ k2 +k2 

where the form factors Gg (kj'y, k., y) and Gi (k'fy, k-, y) are given by: 

, OD i(kxy+k--y)r'xy xy i G. 9 
(kj 

, 
kxy) 

f 
drxy 

. rxy)*e 

(4.38) 

(4.39) 

(4.40) 
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Gi (k", k., y) dr., y 
OD (r.,, 

y) ei(k' fY +kxy)rxy (4.41) 
ffi 

Changing the order of the integrations, we obtain 

f ljilz >e220 dk, &, y 
Gg (kj 1, k, ýy) Gi (k'fy, ký, y) 

2Ac7r 
f-000 

k2+k2 +k 2 

11Z 

XY D 
00 

x dzew (Z)* ý)D (Z) eikz z 
f 

-00 

x dz' OD (Z1) *, ojW (Z') e -iktz' (4.42) "0 
9 

So the matrix element in this Scattering process (Eq. 4.35) may be expressed in a 

more accessible way as 

00 e20 G(kjy, k'fy, k., ýy) f JH1i > 2Ac7r 2 

i_C, 

0 
dk, G, (k, ) 1 

dk 'ýy k2 

if 
(4.43) 

+ k2 +k2 Z XY D 

where A is the area of normalization of the 2D gas and G, (k, ) and G (kj'y, k; y, ký, v) f 
are the form factors given by: 

Gif (k, )Gjg(k�) 

00 W(Z)*OD(Z) iký, z D (z') * ojw (Z1)e-iktzl 00 '<> 100 
dzof ie 

1-00 
dz'O., (4.44) 

G(kj", k", k,, y) 
Gg(kj'y, k.,, y)Gi(k'y, 

k., y) ff 
I 

YV)D 
-i(k, 2: y+k.,,, )r' 

dr (r' 
Y) e ,y 

fxgx 

OD x drx-y i (rxy) e' f (4.45) 

If we now include the matrix element for this type of Scattering process, given by 

Eq. 4.43, into Eq. 4.31, we obtain an expression to calculate the scattering rate for 

this type of Coulomb interaction, hence 

27r e2 
00 

E 
2Ac7r2 

-0,0 7g 
k; ", kjx f 

x ý(E total E total 
FI 

dk, G, (k, ) 
f 

dk., y 
G(k", k" k, ýy) 

2 ifI 

k2+k2+k2 z xy D 

(4.46) 
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otal where the EFt and Ejtota' are the total energy after and before the scattering process 
respectively 

6(E total E total 6 E' + 
h2 

02 +f DOT 
F-I(f -2m, f9 

[CDOT 
ji2 

y2] 
i+ Ej' + 2m, 

kj' (4.47) 

DOT y2 CPOT 
2 y2 where c El + -L! -kx and P+ -1--kx are th 99 2m, 9zz 2ma ie energies of the final 

Ig) state for the captured carrier inside the quantum dot, and the initial ji) state of 

the scattered carrier in the dot. 

k'f" and k; y are the modulus of the wave vectors in the xy plane, for the scattered i 

and captured carrier respectively, trapped in the wetting layer. 

Eq. (4.47) can be simplified rearranging its components in a suitable way by defining 

a constant A as follows: 

2m, DOT 
_E 

DOT + E' - E'] (4.48) 
h2 9ifi 

then Eq. (4.47) becomes: 

6(EFtotat 
-Etotal) 

6( 
h2 

xy2 xy2 
- [kf - kj + A]) 
2m, 

2m'6 (kxy 2 Ms y2 
-kx + A) (4.49) h2 f 
mc 

i 

Following the approach of Paul Harrison [3], the argument of the &function (Eq. 

4.49) may be factorized into: 

6(EFtotal _Etotal 
2m, 

6(k'y2 - 
ms k xy2 + A) 

ji2 f 
mc i 

2m, 6 ((kxy -ý (kxy)) (kxy +3 (kxy))) (4-50) h2 fifi 

where 

( x') Ms xY2 kj 
mc 

k3ý (4.51) 
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has to be real and positive. Returning to equation 4.50 we may emphasize the 

fact that around the solution 3(kj") = kf' the term (ý(kj'y) + k'fy) is finite and 3fif 

can be extracted from the &function. The same applies for the solution around 

, 3(kj'y) = -k'fy and the factor (, 3(k, 'Y) - kf Y) is finite and can also be extracted from 3 

the 6-function- 

)2 xy2) 6(, 3(k'y) - k'y) ý(ý(k") + k'y) 
6 (0 (k'y -kifif (4.52) if 3(kxy) + kxy o(kjxy) - kxv iff 

As the modulus of the wave vector k'Y has to be a positive value, only the term f 
6(kjY)-k2: Y) 

4 of the &function will provide a contribution when: O(kjýy)+kýv if 

, 3(kj'y) = k'' f 

then, the expression for the energy conservation within the equation (4.46) can be 

replaced as follows: 

6(E total 
-E 

total 2m, 
, (k xy2 

_ 
ms 

kxy2 + A) 
FI h2 f 

me 
i 

2m, 6(, 3(k"y) - k'y) 
- ji2 

if (4.53) 
0(kjxy) + kxfy 

We will make use of this expression for the 6-function in (4.46) further on in our 

calculations. 

Returning to the Eq. (4.46) and converting the summation over wave vectors k" f 

and kj'y into integrals as we have previously done in Eq. 4.36, thus introducing a 

factor of (_L)4 we obtain: 27r 

I_ 27r L 
)4 dk'ydk'y e2f 00 

dk, G, (k, ) f dk, ýy 
G (kj'y, kf'l k,, 

y) 
2 

Tg 
if 2Af7r2 k2+k2 2 h 27r 

ff 

z XY + kD 

xý(E. total 
-Etotal) (4.54) 

or 

1 00 G (kjx", kxfYI kxy) 2 

Tg 
r 

ff 
dkxydkx' 

f- 

C)OO 
dk, G, (k, ) f dkx 

z XY D 
ifY k2+k2 +k2 

7total total) 
xý(EF -EI (4.55) 
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where rl =e4 32h7r7f2 

Changing the two-dimensional integrals over the Cartesian in-plane carrier wave 

vectors k, "', k" and k,, y into polar coordinates, with radii the modulus-es k", k" fif 
and k,, y along with angles aj, af I a,, y respectively as well as introducing the expres- 

sion calculated in (4.53) for the conservation of the energy, the previous equation 

may be written as follows: 

t, 

r 
127r 27r oc 

"k" (X) 
d ozj daf d k3ý dk'yk'y 

79 0 

10 10 

i 

10 

ff)2 

00 27r 00 G(kjy, Zfy, k., y, aj, cef, a., y x ký, y 2+ k2+k2 
1- 

oco, 
dk, G, (k, ) 10 da, 

ýy 
10 

dk., 
y kz 

xy D 

x 
2m, d(»jy) - k'fy) 

(4.56) 
h2 g(kjy) + Zfy 

As we have explained in the scattering captured rate type I, carriers within a QW 

sub-band are distributed as a 2D gas and hence, they follow a 2D Fermi-Dirac [8] 

distribution. 

fD (f) (4.57) 
eKT +1 

where (see appendix B) 

A 7rrt2 N 
eKT= e ;; i-KT 

- (4.58) 

and N is the carrier density within the wetting layer. 

Hence, assuming a thermal equilibrium, Fermi-Dirac distribution function can be 

included in Eq. 4.56 as follows: 

1 127r 12" 00 
fFD r daj daf 

1 
dkj'kj' j (kj') 

7g 0 ý3 A 
27r 00 

x dk, G, (k, ) daý, y dk. �yký, y 
oco, 

10 

x2m, 
6 (0 (kj y) - k'fy) 

h2 »jy) + kfy 

f 00 
dk"k" (I - 

fFD (k")) 
offff 

G(kj", kf', k, ýy, aj, cef 7 axy) 12 

k2+ k2 2 
z XY + kD 

(4.59) 
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Taking into account the &function only gives contribution to the integral over the 

modulus of the in-plane wave vector k" when: f 

xy2 A 0(kxy) = kxf" 
mc jA ký' (4.60) 

with A taken from equation 4.48. We can finally give an equation to calculate the 

probability of finding a 2D carrier captured by the SAD due to Coulomb interaction 

with a previously captured OD carrier, which is excited from the SAD into the 

wetting layer, may be given by: 

1- ms 
IP 

21r 

daj 
27r 

daf 
00 

dkj'kj' fFD (kj') (1 _ fFD (kj'» 
79 h2 

10 10 10 

jf 

00 '0 
dk, G�(k, ) 

2, r 
da., 

ýy 
00 

dký, yk, ýy, 
G(kjy, ký, y, cej, of , cexy) 

2 f-oc, 
k2+ k2 2 

fo 10 

Z xy + kD 

4.3.1 Numerical Implementation 

(4.61) 

In order to resolve numerically the equation above, we rearrange and group the 

terms in the equation as follows: 

MS IF 
00 

1-9 ji2 

fo 

0 

27r 00 

da-, 
y 

f 

21r 27r 

j 
kxyfFD fFD dkxy ,j (k'y) (I (kj'y)) dcej daf if 

dkxyk, ýYG(k", k, ýy, aj, af I axy) I. 

10 J0 
00 

dk-, 
G, (k,, ) 2 

(4.62) f 
T? - ý- k2 -2 

00 z xy + kD 

fz (ix, ) 

We first resolve the integral represented by the function f, (ký, 
y) on the equation 

above as: 
1 0( 

fz (k, 
ýy) 

-00 
dk, k2 

G, (k, ) 

z+ 
k2 +k2 XY D 

(4.63) 

In order to solve the equation (4-63) and hence, equation 4.62 it is necessary to 

first calculate the form factors G, (k, ) (see Eq. 4.44) which is dependent on the 

z-component of the wave vector k= (k., 
7y, 

k, ). 
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Numerical Implementation of the Form Factor G, (k-, ) 

To solve equation 4.44 we consider an integration range, L= 32 xh where h= 50A 

is the height of the dot. Equation (4.44) may be expressed as 

G, ý(ký, ) = Gif (k, )Gjg(k, ) 
L 

f2 

dzOw (Z) *, OD (Z) eiký z 
-+L2 

fi 

+L f2 

dZ/V)D (Z/)*V), W (ZI)e-ik;, /z' (4.64) 
9 

-. L 2 

To perform the integral above, we need to solve two integrals of the form 

L 

gz(kz) dzf (Z)e-ik., z (4.65) 
2 

= OD (ZI) *, OW (ZI) where f (z) = ow (z) * Oi' (z) when solving Gif (k., ) and f (z) j for f9 
Gjg(kz). In order to implement the code to calculate the equation 4.65, we define a 

z variable to store the different values (we have considered a set of n=28 points) 

to represent the z-axis within a range 
zMax zMax ] for a separation between the [- 

212 

2 2-- 
points of Az zrný'x+zm". (see picture 4.12). Hence, each of the points which form 

n 

the z-axis may be implemented following the equation 

Zi 
Zmax 

+ AZ(Z 
2 

(4.66) 

for i= 11 .. In and n= 2' the number of points considered. In order to construct 

a variable to store a set of values for the implementation of the z-component of 

the wave vector in equation 4.65, we have followed a similar approach as the one 

explained above for the z-axis, taking into account that kzmax OC We use an 

interval of: 

[-kz max, kzmax] - 
[-1095 1091 (4.67) 

taking nk, =28 points, in order to obtain a numerically accurate representation for 

kz. Taking into account that fz(k., Y) oc -I- in (4.63), we calculate each value of k, k2 
z 
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Zrnax = 

86 

Figure 4.12: A function with a similar shape to the ones included in the calculation 

of the form factor g, (k, ). 

parabolicallY as follows: 

k, i = 2kax 
2i - nk, -I 

abs [ 
2i - nk,, - 

2(nk,, - 1) 2(nk, - 1) 
(4.68) 

Once we have established a set of values to represent k, and z, we can calculate the 

integral in Eq. 4.65 
L 

gz (kzi) = 
f- 2 

dzf (z)e-ikiz - 

-L 

dzf (z) (cos(kziz) -i sin(k, iz)) (4.69) 

for each value k, ýj from Eq. 4.68. We calculate the integral along the z-axis con- 

structed following (4.66) making use of the trapezoidal rule method [71 considering 

a number of partitions equal to the total number of points assumed for the repre- 

sentation of the z-axis, hence, 28 partitions. 

Numerical Implementation of the Form Factor G(kj'y, k'fy, k-, y) 

In order to calculate the form factor G(kj'y, k'fy, k, ýy) in Eq. 4.45, we calculate each 

of the terms G., (kj'y, k,, y) and Gi (k'fy, k, ýy) in (4.45) separately. The same procedure if 

-Zmax/2 = -L/2 Zmax/2 = U2 f- 
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is used to calculate both functions Gg (ký'Y, k., y) and Gi (k'fy, k, ýy), so we will only if 
described the procedure to calculate one of them, e. g. Gj(k'Y 

, k'ýy) - We can rewrite f 
the form factor Gi(k'Y, k., y) in (4.45) as follows: f 

Gi (p) dr,, y 7pD (r,,, )e'pr., y 
fi 

(4-70) 

where p, = k'y + k,, y. Separating the above integral into one along the x-axis and f 

another one along the y-axis, gives: 

1 L. Ly 
Gi (p, py) = dx e'P-'ýx dy Op (x, y) e'P'y Y (4.71) 

- L. 

1- 

Ly 

for p= (px, py), r.,, y = (x, y) and OiD (x, y) represents the radial component of the 

carrier in the discrete state iý within the quantum dot (see Eq. 4.29) written in 

Cartesian coordinates. We have previously calculated the wavefunction associated 

with the Schr6dinger equation in cylindrical coordinates, 0'(rxy), so we may cal- 

culate the wavefunction of the carrier within the discrete state ji) inside the dot in 

Cartesian coordinates as follows: 

e imo 
Oi x, y) =t (rxy) 

-ý, 
72-7r (4.72) 

for m=0,1,2.... 0= arctan (! ý) and r., the polar variable p in (4.29) which satisfies xy 
the equation rxy = VFX-2-+y2. 
In order to solve equation 4.71, and hence the integral along the k,, y vector in (4.62), 

we need to determine the upper and lower limits for the integrals along the x and 

y-axis. Taking into account that we have previously implemented the wavefunction 

of a carrier within the quantum dot along the radial coordinate r"y (see section 4.2) 

with np =28 number of considered samples and within an interval [-2R, 2R] for 

R= 150 A the dot radius (see Fig. 4.13). As figure 4.13 shows, for values of the 

Cartesian coordinates x, y that V, 
ýP -+y2 > 2R (pictured in blue color in Fig. 4.13), 

the wavefunction OD(X, y) is assumed to be zero. Once we have set up the intervals 

to represent the Cartesian coordinates x and y, hence, [-L,, = -2R, Lx = 2R] 

and [-Ly = -2R, Ly = 2R] respectively, we need to define the wave vector p 
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Figure 4.13: Representation of the quantum dot in the Cartesian Plane. 
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from Eq. 4.70. In order to determine two variables to store a set of values for the 

implementation of the x and y components of the wave vector p in 4.70, we have 

completed a similar approach as the one explained above for the calculation of the 

form factor G, (k,, ). To establish the upper and lower limits for the intervals where 

each of the components of p, i. e., px, py is going to be defined, we have taken into 

account that p. kxl'+ kxy (Eq. 4.70) and consider equal maximum and minimum f 
limits for p., and p. to be = 2k'Y 

. 
In order to estimate a maximum = PYmax i max 

value for the modulus of in-plane wave vector for a carrier in ýj) state (see Fig. 4.2) 

kxy we observe that the wetting layer Fermi-Dirac distribution (plotted in figure 
i max' 

4.14) is zero for energy values greater than 0.2 eV. As a consequence, in order to 

implement the integrals for the calculation of the form factor Gj(p) (Eq. 4.71) as 

well as for the calculation of equation 4.62, we have considered that: 

vlr2--rnEmax k'y =k (4.73) i max xYmax 
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where the value considered for E,,,,, is 1 eV (0.2 eV x5). The minimum value 

considered for the implementation of the wave vector modulus. i. e., k" 
. 

has been 
,i min 

calculated from equation 4.51. Because the function Nkryý Vy has to be positive iI 11V 
and real, we determine the minimum value in order to implement the wave vector 

modulus k; y, then 

ms 
k xy2 > 

mc i 

kj'y 
min 

= 
Ms 

(4.74) 

where m,, m, are the effective masses of the captured and scattered carriers respec- 

tively and A is given by equation 4.48. 

Taking account of the equation 4.73 and of the fact that p= k" + k, ýy (4.70), we f 
have considered an interval of 

[-Pxmax, Pxmax] = 
[-2kxy 

, 2kxy (4.75) i max i max] 

in order to determine a set of values (we have considered np., = np,, = np =28 values) 

for the implementation of the wave x-component of the vector p and another interval 

= -2kx' = 2kx' I for the implementation of the y-component I-PYmax j max ý PYmax j max 
of the wave vector in order to calculate the integrals in Eq. 4.71. In order to make 

the calculation of the form factor in (4.71) easier, we have calculated each integral 

in (4.71) for positive values of the px, py, each value, pxi, pyi has been calculated 

as follows: 

Pxi - 
2Pxmax (4.76) 

(np, - 1) 

for i=1, 
---, npx where npx = np., = 2' as we have previously mentioned. 

pyj = 
2pymax 

U- 1) (4.77) 
(npy - 1) 

for i=1, ..., np, - 
Once we have defined the variables to represent the x and y-axis 

in (4.71), and also each of the components of the wave vector p, i. e., p., py (see 
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Fermi Dirac Distribution T=300K 
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Figure 4.14: Fermi-Dirac distribution for a carrier of mass m, in the wetting layer 

at a temperature of 300 K, where Energy =E- EF eV, for E the electron kinetic 

energy relative to the conduction band edge. 
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Eq. 4.76 and Eq. 4.77 above) we can proceed to calculate the form factor in (4-71). 

The integral in (4.71) may now be solved for each of the positive values p, ýj and pyj 

given by equations 4.76 and 4.77 as follows: 

Lx 
Gi(p-, i, pyj) 

f- 
dx (cos(pxix) +i sin(pxix)) 

Ly 
x dy OiD (x, y) (cos (pyj y) +i sin (pyj y)) 

f-Ly 
i (4.78) 

for i=1, ..., npx = 2' and jn28- The wave function OP (x, y) is given py t 
in (4.72). Each of the two integrals is solved following the trapezoidal rule method 
[7] considering n,, = ny =28 number of sample points. Once we have calculated 
Gi (p., j, pyj) for each of the positive values p,, i and pyj (4.76), (4.77) we can make 

use of some trigonometrical manipulations to calculate Gi (-p.,, -py), Gi (-px, py) 

and Gi (px, -py) from Gi (px, py) as follows: 

Gj(-pý,, -py) = e"'Gi(ppy) 

Gi(p,,, -py) = eim? rGi*(p-,, py) 

Gi(-p, py) = Gi*(p.,,, py) (4.79) 

Finally we calculate Gg(k, ", k., y) using exactly the same method outlined above 

for the calculation of Gi(k"', k,, y), which allows us to calculate the form factor f 
G (kxY 

I 
Vfy 

I kxy) in (4.6 2). 

Returning to to the calculation of the integral in Eq. 4.63, we proceed with the 

implementation of the values, kxYi and 09. for the modulus of the wave vector kxy 

as well as the modulus of the wave vector for the carrier in state Ij) (see Fig. 4.2)1 

kxy respectively, within an interval [kxy kxy (see equations 4.73 and 4.74) as ii min' i max] 

kj"i = kj" 
min + (kj'y 

max - kxy 
min) 

i1 (4.80) 
samples - I] 

kxYi =0+ 
kxymax 

i1] 

(4-81) 
[samples 

-1 
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Figure 4.15: Auger Capture Rate type II dependence with dot diameter. 
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for i=1, .., samples = 2'. Note that the lower limits for the integration in (4.62) 

for the modulii kj" and k,, y, have been taken from zero (the minimum energy value 

for the subband), and the upper limits for both modulii have calculated from Eq. 

4.73. The integrals around the angles %, af and a,, y, have been numerically solved 

for 28 number of partitions. In order to obtain a solution for the capture type II rate 

(Eq. 4.62), we numerically solve the integrals inside the square modulus in (4.62) 

for each value of kj' (Eq. 4.80), aj, af as previously explained. 

(30nm, 5.365xlO 10 1/s) 
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Figure 4.16: A schematic picture of the conduction (CB) and valence band (VB) of a 

self-assembled quantum dot on top of a wetting layer. The depth of the confinement 

potential is approximately 244 meV for electrons and 253 meV for holes. 

Figure 4.15 describes the Auger Capture type II rate when a 2D hole of effective 

mass Mh ::::::: 0-08 X MO [5] is captured into the lowest energy level within the quantum 

dot, due to the Coulomb interaction with a OD electron of effective mass m, = 

0.0445 x mo [5], which is itself scattered into the wetting layer. The electron and 

hole potentials considered for InGaAs quantum dots are shown in figure 4.16. 

As a comparison, figure 4.17 shows the results when calculating the Auger Capture 

type II rate of a 2D hole of the same effective mass as previously mentioned, i. e. 

Mh --:::: 0.08 x mo [5], into the lowest energy level of a quantum dot (Fig. 4.16) 

after scattering with a OD electron of effective mass m, = 0.0445 x mo [5], which is 

scattered into a 2D energy state in the wetting layer, calculated using the formula 

given by equation 3.20 in chapter 3 for a carrier density of n"' =1x 10'5M-2 
. 

For a quantum dot of height H=5 nm and diameter D= 30 nm, a much faster 

scattering rate, i. e., 2.69 x 1013S-1 has been obtained (see Fig. 4.17), comparing 

to the one given by equation 4.62, i. e. 5.365 x 1010s-' as can be seen from figure 

4.15. In this last figure, the increase of the Auger Capture type II rate with the 



CHAPTER 4. SCATTERING PROCESSES IN SADS 

tn 

m 2.5 
Of 

a) 
a- 

F >1 

1011 

94 

3.5 

3 

D 
CD- 
cc 

1.5 

1 

0.5 

(30nm, 2.6914xl 013 /S) 

0 L- 

10 20 30 40 50 60 70 80 

Dot Diameter, nm 

Figure 4.17: Auger Capture Rate type II dependence with dot diameter making use 

of the formula given by A. V. Uskov in [10]. 
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Figure 4.18: Auger Capture Process type I 

5 

dot diameter is much slowlier than in figure 4.17. This behavior can be explained 

by the strong dependence on the dot radius in the formula given by A. V. Uskov in 

[10] (see Eq. 3.20 in chapter 3). 

We note that using the semi-analytical approach outlined in chapter 3 the Auger 

capture type 11 rate tends to zero at large values of radius whereas for our approach 

the capture rate tends to a non-zero value of 1.17 x 101's-'. For such a large dot 

radius it is reasonable to expect a non zero tendency of the capture rate, as the dot 

becomes similar to a quantum well structure. 

4.4 Auger capture process type I 

In the following section, we describe the procedure to the Auger like capture pro- 

cess, i. e., capture type I. This scattering process (see Fig. 4.18) involves the cap- 

ture/ejection of a 2D carrier (either an electron or a hole in the wetting layer) 
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by/from the QD structure, after scattering with another 2D carrier which is scat- 
tered to another higher/lower energy state in the wetting layer- Following the same 

procedure as described for the Auger capture type 11 process, the carrier capture 

probability from a state Ij > in the QW into any other state ýg > in the QD by 

scattering with another carrier in state Ii>, which is itself scattered into If > within 
the QW, is given by Fermi's Golden Rule [3]: 

1- 27r EI<f If-Ili > 126(EFtotat ' tal (4.82) 
-rg 

kT', k; ll, k; l 
E, 

fj 

where: 

Ii > is the product of the initial state of the scattered carrier in the QW 
OYV (Z) e and the initial state of the captured carrier in the QW VA 

V I' rl (Zi) e3 'v 

v/A- 

If > is the product of the final state of the scattered carrier in the QW 

--+ 10T (Z) 
-, /-A- and the final state of the captured carrier in the QD ---+ 

OD (Z1), OD (r' 
9 XY) 

H is the 3D Screened Coulomb interaction given by equation 4.34. 

First we will calculate, the matrix element in Fermi's Golden Rule (equation 4.82) 

introducing the expression calculated for the Screened Coulomb interaction in equa- 

tion 4.34: 

f IfIli > Tw (r, kw) jpD (r, k D) 
ffg9 

42 ik. �p (r.. � -r' re e �), ik. (z-z) 

ev k2 22 
k., y, ký z+ kxy + kD 

Tw(r, kw)Tw(r', kw) (4-83) 
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Introducing the expressions for the carriers' wavefunctions inside the quantum dot 

(equation 4.27) and well (equation 4.28), we obtain: 

0 oo 

f lilýi > -- 
41rp2 0 

dz 
0 

dz'OW (z)*0' (z')*Oiw (z)Ojw (z') 
V, 4-v/-A-iE 

1-Ooo f-oo 
f9 

yeD 
-ikjxyr', y ei(k"'u x x dr., ydr' 

(r'Y)*e f xgx 
'k., (r., y -rl,, ) ik,, (z-z') 

ei x 
k2+ k2 +k2 kxy, ký z XY D 

(4.84) 

The summation over the wave vectors k,, y and k, can be converted into integrals 

introducing factors A 
and L respectively, from the density of states, giving: ? 2ý-)2 27r I 

47re' AL 
dz dz'OW (Z) * OD (Z1) * OW (Z) OjW (Z1) 

f9 (27r)2 27r 
-. -0. 

OD * -ik? r'� ei(k'y -ki Y)r., y x 
ff 

dr�ydr'y (r' 
y) exf xgx 

x dkz eik, (z-z') f 
dkx e 

ikxyr., ýy e- 
ik�r.. 

(4.85) Y k2+k2 2 
Z xy + kD 

Changing the order of the integrals in order to perform the integration over r.,,, y first, 

i. e. 

e20, 
oý 

ViE(27r2) 
dz dz'ow (z) * 0' (z') * Oiw (z) Ojw (z') 

oco, 00 
f9 

C, 

w 
dkeik. ý(z-z') dk., 

1 
Yk2+k2 

+k 2 
Z XY D 

x dr' OD (r' 
y) 

* e-i(kj 
Y +k., y)r' v 

1 

xy gx 

i(k., y+k; y-kj'y)rý: y xf dr,, 
ye f (4-86) 

Converting the integral over the xy plane into a 6-function, thus, introducing a 

factor of 27r per dimension, then gives: 

f 
2e 2f 00 

dz 
f 00 

dz'Ow (Z) * OD (ZI) * OW (Z) OjW (ZI) 
f9i VIE 

00 -, )o 

x 
foodkeiký(z-z)fdk, 

ýy[ 2 k2+k2 +k z XY D 

YV)D 
-i(k"oy+k.,,, )r', 

x dr' (r' )*e y]6 (k., y + kxy - k'y) (4-87) fx9 
XY fi 
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Performing the integration over k,, y, the &function then limits the contribution to 

the point where k,, y + k; y - k'iy = 0, thus, when k,, y = ki'y - kxfy. Making use of f 
this last result: 

00 00 2e 20 
dz 

c 
dz'Ofw 

f (Z) * 0, (Z') (Z) ojw (Z') vel-oo f- 
w9 00 dkze iký (z - z') 

G j', ki ', kf') 
(4-88) x 

0, 

>O 

k2 
_q 
(kj 

12 2 

z+ 
lkiy - Zy k f+D 

where the form factor Gg (k", k"Y, k") is given by: jif 

G, q (kj", ki", k; ') G9 (kj" + ki" - kf') f3z 

YOD 
-i(kjf"+kj'y-k; y)r' 

.TV dr' (r' 
Y) ef (4.89) 

fxgx 

Changing the order of the integrations, i. e. 

w 2e 2 

Gg (kj', ki 1, kf Y) >O 
dk, 

1 
Ve f 

1-00 
k2+1 k` - k` 12 

+k2 ZifD 

xf dz', OqD (z) *, Ow (z /), -ikýz' 

C, o 
xf dzoý'(Z)V)W(Z)*eikýz (4.90) 

tf 
--Oo 

we can finally write an expression for the matrix element in this scattering process, 

i. e. 

2e 2 00 Gj 
f jftýi >= Gg (k'y, Vy, k'y) dk, _9(k, 

)Gif (-k, ) f- 
k2 +I Vy - k'y 12 +k2 Ve jififD 

where Gjg(k, ) and Gif (-k, ) are the form factors given by: 

OD (Z1) * OjW (Z') e -iký z' Gjg (kz) dz' 

00 
Gif (-kz) = dzOw (Z) OW (Z) * ik� z f 

00 
if 

(4.91) 

Including the form factors into the calculation of the matrix element, into Fermi's 
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Golden Rule( equation 4.82), we obtain the probability of having a captured carrier 
in a particular state( i. e., g state) inside the quantum dot, after scattering with 

another carrier, in whichever i state in the quantum well; which is itself scattered 

to any other f state within the same quantum well, gives: 
oý 1_ 27r 2e 2 

Gg (kj ', kfy, k'y) 
0 

dk, 
Gjq(kjGif (-kj 2 

VIE jif k2 + ý2 2 
k'Y, k'V, kj l' Z 

ýkiy-k'y +k 
iff 

X d(EFtotal 
_Ejtotal (4.92) 

where the &function represents the conservation of the energy, 

ý(E total 
-E 

total 
FI 

where c 
DOT 

= E' + 
"2 k'y2 

9 2m, 9 

ý(E' + 
K2 

k'y2 + CDOT _ [Ef + 
h2 

k xy2 
f -2m, f 2m, 

+Ez + 
h2 

k xy2 
i 2m, iI) (4.93) 

n- 
Rearranging the terms in a suitable way and defining a constant A as follows: 

2MI 
DOT 

- Ej] (4.94) 
h2 

IIE 

then the equation (4.93) becomes: 

ý(E total 
_Ejtotal 

h2 
[k xy2 

- 
kTy2 

-k 
xy2 +A F 2m, fii 

2m, xy2 xy2 xy2 + - kz - 
m'k, 

h2 '5 
(kf 

mc 
(4.95) 

Again, we will make use of this last result, further in the derivation, in order to 

reduce the size of the expressions. 

Returning to the equation (4.92) and converting the summation over wave vectors 

k"I k", k'Y into inte rals, introduces a factor of L per dimension, consequently, iif9 27r 

a factor of ('ýL)6 needs to be included in this equation, thus: 27r 

1 27r 
(L)6 Ndki"dkj'ydkf' 

Tg h 27r 

x 
2e 2 

Gg (k'y, Vy, k") 
" 

dk, 
Gjg(k, )Gif (k, ) 2 

VIE jif 
Oo 

k2 + IVY - k" 12+k2 
zifD 

X6(EFtotal -Etotal) (4.96) 
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This last equation may be written as: 

I=FNdk'ydk"dk'y I Gq (k'y, k XY kxy) 12 
Tg 

iifji7f 

00 Gjg (k, ) Gif (k, ) 2 

x 
f- 

c . 

00 
dk, 

k2 22 

z+ 
jkx' - kxy +k ifD 

X6(E 
total E total 
F-I 

100 

(4.97) 

where F='4 8h, ff5f2 

Changing the three two-dimensional integrals over the Cartesian in-plane carrier 

wave vectors ki'yl kj'y and k; y into polar coordinates, the above equation may be f 

written as follows: 

tj 00 

r, 
f2g 

daj 
f2" 

daf 
f 21r 

dai 
00 

dk, "k" 
Tg 000 

fo 

ff 

xy 2 
xf dkjxykjxyf dkix'ki IGq(kjxy, kixy, kxfy, cei, cej, cef)I 

00 00 

00 

xf 
"0 

dkz 
Gjg(k, )Gif (k, ) 

22 (k2+ P(k", k"', ai, af) +k zifD 
x6(E 

total 
_Ejtotal (4.98) F 

where 

P(k", k", ai, af) =I k" - k" 12 
=k 

xy2 + kxy2 - 2kxykxy cos(af - ozi) ifififif 

Carriers within a QW sub-band are distributed as a 2D gas and hence, they follow 

a 2D Fermi-Dirac distribution [8]. 

fD (f) 
C-A 

1 (4.99) 
eKT + 

where (see appendix B) 

7rh2N 
eKT= e;; iKT (4.100) 

and N is the carrier density within the wetting layer. 

Assuming thermal equilibrium, the Fermi-Dirac distribution function can be in- 
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cluded in eq. 4.98 as: 
27r 27r 27r 

dcej daf dcei 
7g 

fo fo fo 

C, o 
fFD (kxy) f 

00 
xf dkjx'kjxy j 

f 00 
dk"'k"(1 - fFD (k'y)) 

offff 
dk'yVyf! 7D (k'y) iIii 

101 

)12 
00 

dk, 
Gjg(ký, )Gif (k, ) 

22 xI Gg (kj'y, kify, k'fy, ai, aj, af k2 + P(k'y, k'y, ai, af) + kD 

f 

00 zif 
xoEFtotal -Etotal) (4.101) 

Following the approach of Paul Harrison [247], the argument of the 6-function, 

previously calculated (equation 4.95), can be factorized into: 

( 7totat otal 2m, y2 + y2 y2) 
F-t 

m' kj' A] - kf E E, h2 6 ([ki' 
mc J 

2m, 6((ý(k'y, k'y)-k'fy)(O(k'y, kj'y)+k'y)) (4.102) h2 iiif 

where 

o(kxi' , kj'y) = + 
rkxjyýý Tl y12 kjx-ý (4.103) 

r nc 

and has to be real and positive. Around the solution ý(kj", kj") = k; Y, the other f 
factor in the &function in Eq. 4.102, i. e., (O(ki", kj") +k'fy) is a constant, and hence, iif 
may be taken out from the J-function, using the J-function property, i. e., 6(ax) 

-IJ(x). Around the solution ý3(k", kxy) = -kxY the factor (ý(kfy, kxI) - kxy) is also aiifiif 

constant, therefore the same property of the &function can be applied. Therefore 

the 6-function in Eq. 4.102 may be rewritten as follows: 

d(»i Y, kjy )2 
- Zfy 2 

== iif) 
(k", kj") - k'y) ý(O(kfy, kj'y) + k'y) ifIif 

xy xy 
,3 (ki , kl' + kxy f 

1 
0(ki", kj") - k'fy 

(4.104) 

As the modulus of the wave number has to be a positive value, only the term 
6(, 3(ki'y k'z')-kxl') 

i ; 41 of the 6-function will provide a contribution when: xl')+k 
,3 

(ki kj f 

0 (ki'y, kj'y) = kf Y 
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Including eq. (4.104) into equation (4.101), we obtain: 

r 
21r 27r 27r 00 

ii 
fFD (ki Y) 

7q 

10 

daj 
10 

daf 
fo 

dai 
fo 

dk'yk'y 

fFD (kXY) 1 )12 , >O 
x dkj'kj' jj Gg (kj ', ki ', ai, cej, cef 

Gjg (k, ) Gif (kj 2 
x dk"k'Y(l - (k'Y» dk, 

10 

fff fF 
Df 

1- 

0<o, k2+ P(k'y, kjy, ceil af) + k2 
ZiD 

2m,. 6(O(k'iy, kj'y) - k'fy) 
h2 0(ki'y, kj'y) + k'fy 

102 

(4.105) 

Taking into account the fact that the 6-function only gives contribution to the 

integral over the modulus of the in-plane wave vector k'y when: f 

0 (ki', kj") = kf' 

The probability of capturing a carrier in a particular state (i. e., state Ig)) inside the 

quantum dot, after scattering with another carrier, in a state Ii) in the quantum 

well; which itself is scattered to any other final state If) within the quantum well, 

may be given by: 

ms 1,2" daj 
12" 

daf 
12" 

dai 
f"o 

dk'yk'y fFD (k'y) 10 

000 
i Tg h2 00 

fFD 
j 

fFD x dk"k'y (VY (k'y, k'Y» 1 Gg (k", k'y, ai, Cej, Cef ) 12 "0 
iijf 

00 Gjg (k, ) Gif (kj 2 

x 
1- 

oco, 
dk, 

k2+ P(Vy, kjyl ceil cef) +k2 
(4.106) 

ZiD 

4.4.1 Difficulties with the numerical implementation 

There are two major obstacles to the numerical implementation of the equation 

4.106. 

* The first point to note is that the integral with the respect to k, is dependent 

on the variables af, ai, ki" and kj'y. Therefore in the numerical implementa- 

tion this integral must be calculated each time we calculate an integral with 
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respect to these variables. Previously, when calculating the Auger process 
type II (equation 4.62), the integral with the respect to k, was only depen- 

dent on the variable k,, y, so the calculation of this integral is independent of 

the integrals over the other variables. 

The second point is more subtle and is due to the fact that the function ý3 is 

dependent on ki" and k4". Therefore using the previous approach for Auger 

process type II in order to find the maximum and minimum for the limits of 
the integral with respect to k, 'y by using the function ý3 cannot be used. This 

is because 3 varies with the respect to kiy and therefore the limits for the 

integral are also dependent on the variable k'jY. 

These two difficulties unfortunately meant that the time taken to calculate equation 

4.106 using the available 2.00 GHz AMD Athlon processor was prohibitively long. 

Therefore in our model we made the decision to instead use the semi-analytical 

approach described in chapter 3 to calculate the Auger process type I. This approach 

does cause some problems for the calculation of the occupancy of an ensemble of 

quantum dots and these will be alluded to in chapter 5. 

4.5 Carrier Auger relaxation in quantum dots 

This Coulomb scattering process is characterized by a transition between two differ- 

ent OD states and a further excitation (relaxation) of a 2D carrier within the wetting 

layer (see figure 4.19). We start describing the Coulomb interaction between the 

OD system and a 2D electron (hole) gas. Considering an excitation of wave vector 

ki -k (boldface indicates a bidimensional vector, defined in the xy plane) for a 

carrier in a 2D energy state followed by a transition from the OD state ýi), to if) ( 

lateral quantum numbers of the OD states) within the quantum dot (see Fig. 4.19), 
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0 ki : wave vector after scattering 

0 k: wave vector before scattering Ewe I- 
E2e 

Eiý 

Ewh 

104 

Figure 4.19: Auger relaxation process. A carrier in ýZ > state in the quantum dot, 

relaxes into If > quantum dot state, after scattering with a 2D carrier in wetting 

layer, considering an excitation of wave vector k, - k. 
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the interaction may be written as follows: 

f Ifili > Tw (r', kw) TD (r, k D) 
11ff 

q, DD Tw (r, kw) i (r, ki 

47re 2eik., , 
(r.,,., 

- ", 0e ik,, (z - z') 

Ev k2 +k 2 +k 2 
z XY D 

(4.107) 

Introducing the carrier wavefunctions given by Eq. 4.29 for the dot and Eq. 4.30 

for the well, 
47r e2 0, 

f IfIli > -- VAc 
f 

00 
dzdz' OD* (Z), OW*(Z/)V)Di(Z), OW(Z/) 

f- 

oco, 
f1 

YOD* 
ikjrý, -ikr', x dr dr' f (rxy)e ey OD 

"y , 
(r., 

y) 

ff 

xi 

e 
ik:,: y(rýy -r,,, ), ik, (z-z') 

k2+k2 2 
k,, y, k, z xy + kD 

(4.108) 

Changing the summation over the bidimensional vector defined in the xy plane, kxy 

and the one-dimensional vector k, by integrals, introduces a factor of -L from the 27r 

density of states, as we have explained in the previous section for the Auger Capture 

type II, therefore the above expression can be written as follows: 

f lftli > -- 
e2 100 

dzdz' 
IcýC 

OD*(Z)OW*(Z1)oDi(Z)OW(Z1) 
2AC7r2 f 

YOD* 
iklr' ikr' " 

ff 
dr�ydr' (r., 

y) e xye- -YOP(r�, y) fZ 

ik�, r� - ik. �r' 
" 

1. 
dkze ikz(z-z') 

1 
dkxy eye , ýv (4.109) 

"0 

k2+k2 +k2 Z XY D 

If we change the order of the integrals in order to calculate the integral over r' X1, 
first, we obtain: 

dzdz' OD * (Z) OW * (Z1) OD 
i 
(Z) OW (Z1) f 2AC7r2 

0c) 
f 

dk, ik, (z - z) 
1 

dk, ýy k2 + k2 + k2 
Z XY D 

dr�y OD* (r�y) OD (r�y) e ik. �, r�, 
fi 

f 
dr' e-i 

(k -k1+ ky) r'xy (4.110) 
XY 
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The integral over the xy plane is a 6-function which introduces a factor of 27r per 
dimension, gives 

2e 2 00 
f 1HIi > -- - Ac 

f 

00 

f 
00 

- 00 

00 dzdz' OD* (Z)OW*(Z1)oDi(Z)OW(, Zt) 
1-00 

f 

ir r 
dkZe ik, ý (z-z') dk, ýy 

1 ýV+ 
k2 +k2 z xy D 

f 
dr,, 

y 
V)D* (r,,, )OD (r,,, ) e 

ik.., r. y 6(k - k, + k, y) fiI 

Calculating the integral over k,, y, the 6-function limits the contribution to the point 

where k,, y = ki - k, consequently the above equation becomes: 

oý 

f lftli >- 
2e 2 00 

dzdz' 
' OD* (Z)OW*(Z1)oDi(Z)OW(Z1) 

Ae 
f 

00 

1-00 
f 

f c>O 
dk� ik, (z-z') G(k, ki) 

2 (4.113) 
k2 + lk, -k 

12 +k ZD 
where the form factor G(k, ki) is given by: 

G(k, ki) dr,, y 
OD* (r,, 

y) 
OD (r,, 

y) ei(ki -k)rxl, (4.114) 
ffi 

Changing the order of the integrations as we have done before, we can finally give 

an expression for the matrix element in this Scattering process, i. e. 

2e 2 00 Gif (k, ) G' (k, ) 
f IfIli > Ac 

G(k, ki) 
f- 

000 
dk, 

zD 
(4.115) 

12 2 k2 + Iki-k +k 

where Gif (k, ) and Gw(k, ) are the form factors given by: 

1 00 
Gif (k, ) dZOD * (Z) OD 

i 
(Z) eiký z (4.116) 

,0 

-00 

oý 

G' (k, ) 
oco, 

dz'Ow *, (ZI)OW (Z1) e-ik, z' (4.117) 

Once we have calculated the Coulomb interaction between the OD system and a 2D 

carrier within the wetting layer, we make use of this last expression (Eq. 4.115) in 
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order to calculate the Auger like relaxation rate of a carrier in SAD structures, Lel 

the probability of having a carrier relaxed from any possible Ii) OD state into any 

other If ý OD energy state (see Fig. 4.3) as a consequence of an excitation of wave 

vector k, -k of the 2D electron-hole plasma, is given by Fermi's Golden Rule: 

I 27r 2e2 
G(k, ki) 

00 
dk, 

Gif (ký, ) G' (k, ) 2 

Ti fhE Ac 
f 

k2 + ýk, -k 
12 +k2 ki, k 

-C)o 
zD 

x6 (EFtotal 
- Etotal) (4.118) 

where the total energy exchange during this scattering process, i. e., 6(E'O"' - Etotal FI) 

may be written as follows, 

ý(E total 
_Etotal) =ý 

DOT_ DOT 
fi2 

12 
2)) 

F (ff ci +-(k -k 2m, 
2m, 

ý (k 12 -k2+ 
A) 

h2 

where 0" =P+ -4Lk 
xy2 

and CDOT = E' + AL k xy2 
are the total energies of the z% 2mc iff 2ms i 

initial ji) and final ýf) OD states respectively for the carrier inside the quantum dot, 

and A is the total energy exchange inside the quantum dot, hence, 

- 

2M, 
DOT_ DOT) A 

ji2 
(ff Ei (4.120) 

Note that the total energy of the scattered carrier in the wetting layer before and 

after scattering with a OD carrier, is the result of adding its potential and kinetic 

components, hence, Ez + -ýýk 
2 before the scattering event, and Ez + -ýLk 12 after 2m, I 2m, 

the scattering process. The terms related to the potential energy before and after 

scattering, do not appear in (4.119) because we are considering that the carrier is 

strongly confined to the lowest energy level in the z direction, so El = E'. 

Returning to equation 4.115, and following the technique used by P. Harrison in 

[3] dealing with a similar 6-function as the one given in Eq. 4.119, we can rewrite 
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the equation 4.119 as follows, 

6(EFtotal 
-Etotal 

2m, 6(k 12 -k2 +A) ji2 

2m.,, ((ki -0 (k) (ki + ý3 (k))) (4.121) 
h2 

where 

0 (k) = vlk--2-A (4.122) 

As explained in [3], the equation 4.121 may be approximated to 

ý(Etotal - Etotal) 
2m, 

ý((kj - 0(k))(ki + O(k))) FI ji2 

2m, ý(kj - O(k)) 
h2 O(k) + k, 

(4.123) 

Returning to Eq. 4.118 and changing the summation over wave vectors k, and k 

into integrals, and replacing these vector integrals by the corresponding polar coor- 

dinates. We can now write a more manageable expression for the Auger relaxation 

rate, 

F 
21r 

da 
21r 

da, 
00 

dkk dk, ki 1G (k, ki, al al) 12 

Ti f 

10 10 10 

dk, 
Gif (k, ) Gw (k, ) 2 2m, d(ý(k) - kl) 

(4.124) 
k2+ P(k, ki, a, al) +k2 h2 + kl 
ZD 

where 
e4 

2h7r3jE2 

and 

P(k, ki, a, a, ) = Iki -k 
12 

=k 12 +k2- 2k, k cos (a - a, ) 

(4.125) 

(4.126) 

Taking into account the &function only gives a contribution to the integral over the 

modulus of the in-plane wave vector k' when: 

ki 
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as well as including the Fermi-Dirac distributions for the carriers in the quantum 

well (Eq. 4.57) assuming thermal equilibrium, we can finally give a mathematical 

expression to calculate the probability for transition from the OD state ýi) to ýf) 

state within the quantum dot after an excitation of wave vector k, -k for a carrier 
in a 2D energy state has been taken, hence 

mq 12" 12" "0 
fFD 

_ 
fFD (k» IG(k, al al) 12 r da da, dkk (k) (1 

7i f h2 
0 

00 Gif (ký, ) G' (k, ) 
dk, 

k2+ P(ký a, cel) + 13 za 
(4.127) 

where G (k, a, ozi), Gif (ký, ) and Gw (k, ) are the form factors given by equations 
4.114,4.116 and 4.117 respectively, F is the constant given by (4.125) and the term 

P(k, a, a, ) can be calculated following (4.126). 

4.5.1 Numerical Implementation 

Equation 4.127 has been solved numerically following the same procedures as for 

the calculation of Auger type II processes (section 4.3). We first calculate the 

form factors inside the integral with respect to the z-component of the wave vector 

k= (k_, y, k, ) (4.34), i. e., Gif (kz) and Gw(kz). In order to calculate the integral with 

respect to k., in (4.127) we use the same limits as those considered in the previous 

Auger capture type II process, given by Eq. 4.67. 

Again in order to determine the limits for the integral with respect to k in 4.127, 

we make use of the function 0 given by equation 4.122. 

We have also calculated the form factor G(k, a, a, ) in (4.127) given by Eq. 4.114, 

following the same steps as previously explained for the calculation of the form fac- 

tor G (kj", k; ', k.,,, y) in (4.62). 
f 

The integrals with respect to the angles a and a,, have been numerically solved for 

28 partitions as for the Auger Capture type II rate (Eq. 4.62). In order to give a 

solution for the relaxation rate (Eq. 4.127), we have numerically solved the integral 
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Figure 4.20: Auger Relaxation Rate dependence on the 3D carrier density, plot- 

ted for different temperatures, numerically solving the analytical formula given by 

equation 4.127. We have considered a 2D carrier density of 1X 1015rn-2. 

inside the square modulus in (4.127) for each value of k (Eq. 4.80), oz and ce, as 

previously explained. 

T=300 K 
T=100 K 
T=50 K 
T=25 K 
T=15 K 

Figure 4.20 shows the results of numerically solving equation 4.127 considering the 

self-assembled quantum dots pictured in figure 4.16 of radii R= 15 nm and heights 
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H == 5 nm. It illustrates the dependence on the 3D carrier density of the Auger 

relaxation rate of a OD electron of effective mass m, = 0.0445 x mo [51, into the 

ground energy state of the quantum dot, after scattering with a 2D electron, which 

is scattered into a higher energy level within the quantum well. We have considered 
different temperatures for the carriers and a carrier density in the wetting layer of 

n,,,, =1X 1015M-2. 

Figure 4.21 shows the same results over the shorter range of [1 X 1020,1 X 1025]M-3. 

It can be observed from these results that the Auger relaxation rate is larger for 

higher temperatures. This temperature dependence comes from the screening poten- 

tial (see Eq. 4.34). For higher temperatures the 3D screening wave number kDin the 

potential (Eq. 4.33) is reduced and therefore the OD carriers interact more efficiently 

with the 2D carrier in the wetting layer. It is interesting to note that the Auger 

relaxation rate for relatively small 3D carrier densities, i. e., 1X 1020 _IX 1025M-3, 

is practically independent of the 3D carrier densities. 

As a comparison, figures 4.22 and 4.23 show the Auger relaxation rate calculated 

using the semi-analytical approach given in chapter 3. All the parameters used are 

identical to those for the calculation of the Auger relaxation rate illustrated in fig- 

ures 4.20 and 4.21. 

In both graphs the Auger relaxation rate exhibits similar behavior, i. e., the rate 

remains constant for low values of 3D carrier densities but for high 3D carrier den- 

sities the Auger relaxation rate decreases with the increasing carrier density. It 

is interesting to note that in figure 4.22 the Auger relaxation rate is independent 

on the temperature of the carriers for low carrier densities, however our results in 

figure 4.20 clearly shows that the Auger relaxation rate increases with increasing 

temperature. 

The magnitude of the Auger relaxation rate also differs depending on which calcu- 

lation is used. For example in figure 4.22 we observe for a 3D carrier densities of 

n3 =1X 1017M-3and temperatures of the carriers of 300 K, an Auger relaxation rate 

of 1.283 x 1012S-1 using the semi-analytical approach given in chapter 3. Whereas 
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Figure 4.21: Auger Relaxation Rate dependence on the 3D carrier density, plotted 

for different temperatures considering a 2D carrier density of IX 1015rn-2. 
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Figure 4.22: Auger Relaxation Rate dependence on the 3D carrier density consid- 
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ering A. V. Uskov calculation given in [9], plotted for different temperatures and 

considering a 2D carrier density of IX 1015rn-2. 
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Figure 4.24: Auger Relaxation Rate dependence on the 3D carrier density, plotted 

for different temperatures and considering a 2D carrier density of 1X 1018rn-2. 

from figure 4.20 for the same parameters the lifetime obtained is 2.590 x 101's-1. 

Performing the same calculations at a higher 2D carrier density of 1018M-2, we 

obtain the results given in figure 4.24 and figure 4.25 for the semi-analytical approach 

described in chapter 3. Again as an example, an Auger relaxation rate of 1.14 x 

10'5s-1 is obtained for a 3D carrier density of 1X 1017M-3 using the semi-analytical 

approach (figure 4.25). Whereas implementing equation 4.127 we obtain a much 
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Figure 4.25: Auger Relaxation Rate dependence on the 3D carrier density calcu- 

lated making use of the semi-analytical approach described in chapter 3, plotted for 
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slower value of 4.89 x 1013S-1 (see Fig. 4.24). 

From these graphs it is clear that the results obtained from the semi-analytical 

calculation are in reasonable agreement with the full derivation given by equation 
4.127 for low wetting layer carrier densities. However, for high carrier densities. 

typical of those seen in optoelectronic devices the semi-analytical approach gives 

unrealistically short Auger relaxation times. The full derivation which includes the 

Fermi-Dirac distribution in the 2D wetting layer predicts carrier relaxation times 

of the order of ps which are similar to those obtained in experiments [1]. 

4.6 Summary 

We have derived an equation in order to calculate the Auger like scattering pro- 

cesses in self-assembled quantum dot structures. We have started considering an 

Auger capture type II process where a wetting layer hole is captured into the lowest 

confined quantum dot energy level, after scattering with a OD electron, this last one 

being scattered into a 2D energy state in the wetting layer. We compare the results 

obtained for the calculation of the Auger capture type II rate for this process, mak- 

ing use of the semi-analytical approach explained in chapter 3 and those given by 

equation 4.62. We observe a more rapid increase of the Auger capture type II rate 

with the dot diameter when calculating the capture rate using the semi-analytical 

approach. This behavior is a result of the strong dependence on the dot diameter in 

the formula given by equation 3.20 in chapter 3. It is also highlighted in this chap- 

ter that the Auger capture type II rate obtained making use of the semi-analytical 

approach tends to zero for large values of dot diameter whereas a non-zero tendency 

is observed in the results given by equation 4.62. For very large dot radius it is rea- 

sonable to expect a non zero tendency of the capture type II rate, as the quantum 

dot becomes similar to a quantum well structure. 
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In this chapter, we have also studied an Auger relaxation process where an elec- 

tron in the first excited confined state in a quantum dot structure relaxes into the 

ground energy level after scattering with a wetting layer electron, which is scat- 

tered into a higher energy level within the quantum well. We compare the results 

obtained for the calculation of the Auger relaxation rate for the described process, 

making use of the semi-analytical approach explained in chapter 3 and those given 

by equation 4.127. We commence comparing the dependence on the 3D carrier 

density of the Auger relaxation rates for an initial carrier density in the wetting 

layer of n,, =1X 1015M-2 and for different temperature values of the carriers in the 

structure. The results obtained by making use of the formula 4.127 and those given 

by the semi-analytical approach illustrate similar behavior. The Auger relaxation 

rate remains constant for low values of 3D carrier densities but for high 3D carrier 

densities the Auger relaxation rate decreases with the increasing carrier density. We 

observe that the Auger relaxation rate calculated by the semi-analytical approach 

explained in chapter 3 is independent on the temperature of the carriers for low 

carrier densities whereas an increase on the rate with increasing temperature is ob- 

tained when the Auger relaxation rate is calculated using equation 4.127. A faster 

relaxation rate is also obtained using the semi-analytical approach given in chapter 

3 comparing to the values obtained using equation 4.127. We have performed the 

same calculations at a higher 2D carrier density Of 1018M-2 . 
As previously, much 

slower values of the Auger relaxation rate have been obtained when implementing 

equation 4.127 than those given by the semi-analytical approach. 

We can conclude that for low wetting layer carrier densities, the results obtained 

from the semi-analytical calculation are in reasonable agreement with the full deriva- 

tion given by equation 4.127 for low wetting layer carrier densities. However, for high 

carrier densities, typical of those seen in optoelectronic devices the semi-analytical 

approach gives unrealistically short Auger relaxation times. The full derivation 

which includes the Fermi-Dirac distribution in the 2D wetting layer predicts carrier 

relaxation times of the order of ps which are similar to those obtained in experiments 
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5.1 Introduction 

This chapter focuses on the study of carrier transport in Self-assembled In(Ga)As 

quantum dot structures, where In(Ga)As quantum dots are formed on a single- 

crystal GaAs substrate via Stranski-Krastanov [10] epitaxial growth [4]. In this 

kind of structures, a quantum well, known as the wetting layer, aids the capture 

of charge carriers into the dots. As explained in previous chapters, these dots are 

grown on top of the wetting layer while the whole structure is covered by bulk ma- 

terial (Fig. 5.1). 

We present a theoretical model to calculate the energy level occupation probability 

of each dot within a self-assembled ensemble which then allows us to model the gain 

and spontaneous emission spectra on these quantum dot structures. The ensemble 

considered consists of a number of different sized dots with randomly varying radii 

between 18 nm to 20 nm and equal heights of 5 nm. As we have previously men- 

tioned, we consider that the quantum dots (QD) are grown on top of a 1.6 nm-thick 

quantum well, also known as wetting layer (WL). Initially, carriers diffuse in the 

lower-band gap 2D WL before either being captured by the SADs or recombining 

either radiatively or non-radiatively. 

Dividing the dot ensemble into N different groups depending on their radii, the aim 

of the model we present is to be able to determine the state (each dot type energy 

level occupation probability) for all different dot types as a function of time, as well 

as the gain spectra of the self-assembled quantum-dot structures. Therefore, the 

carrier occupation of the confined states of each dot type, may be established as a 
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=5nm 
InGaAs-Qý 

Ga. A. 

Figure 5.1: Illustration of a self-assembled quantum dot on top of the wetting layer, 

both embedded in bulk material. 

function of time. 

5.2 Representation of the dot occupancy 

In order to define our model, we will first analyze the different mechanisms in- 

volved in the change of carrier populations within the quantum dot. Carriers diffuse 

through the WL before being captured by the quantum dot due to carrier-carrier 

Coulomb scattering. Once within the quantum dot these carriers may recombine 

either radiatively or nonradiatively. Auger-like energy transfer between carriers will 

describe the intraband relaxation of carriers into different energy levels (see Fig. 

5.2). 

We consider the Auger capture and relaxation processes in InAs/GaAs quantum 

dot structures previously described in chapter 4(see Fig. 5.2). We observed that 

among the Auger capture processes we might distinguish between two types. Type 

QD 
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Figure 5.2: A schematic picture of the different scattering mechanisms involved in 

the carrier dynamics within the SAD structure. E,,,, Ewh are the lowest electron 

energy levels in the conduction and valence bands respectively. 

Auger capture type I 
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I capture process involved a 2D carrier (either an electron or a hole in the wetting 
layer) capture /ejection by the QD structure, after colliding with another 2D carrier 

which is scattered to another higher/lower energy state in the wetting layer (see 

chapter 4, section 4.4). Type II capture processes, refer to transitions where a 2D 

carrier is captured inside the quantum dot due to carrier-carrier Coulomb scatter- 

ing with a previously captured one. This carrier was excited from the quantum dot 

to a 2D state within the wetting layer (chapter 4, section 4.3 ). Auger relaxation 
between QD energy levels was due to the Coulomb interaction between carriers in 

the wetting layer. In this process, a carrier inside the dot, is relaxed/excited to a 

lower/higher energy state due to the Coulomb-like interaction with a 2D carrier in 

the wetting layer. This 2D carrier will be scattered to a higher/lower energy level 

(chapter 4, section 4.5). 

5.2.1 Labelling of the quantum confined carrier states 

We model an ensemble of quantum dots preserving the individual nature of each 

dot, considering that the occupation dynamics each of the dots has no effect on 

neighboring dots. Taking into account the fact that there is quantum confinement 

in the three dimensions, discrete energy levels for the carriers exist within the struc- 

ture. The Pauli exclusion principle only allows one electron per state, therefore, we 

make use of a binary notation to describe the state of each quantum dot (a factor 

of 2 is included in all calculations to allow for spin up and spin down electrons). 

While the existence of a carrier in a particular energy state of the dot is represented 

by a 1, a0 will symbolize its absence. Consequently, the number of confined energy 

levels in each dot will determine the number of possible 'binary states' where the 

dot might be found within the structure. The least significant digits will represent 

energy levels for the electrons (starting from the lowest energy level), whereas there 

will be as many binary digits for electrons/holes as electron/hole-energy-levels in 
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each dot. Figure 5.3 shows how a recombination process for a five- energy-level dot 

(2 energy levels for electrons and 4 for holes) may be described by the use of binary 

notation. This dot with an initial pair of electron-hole in E2, and E2h energT levels 

respectively, thus in noololo binary state, remains empty, Le in n0000oo state, after a 
E2, - E2h recombination process. For simplicity, in this chapter we give an example 

of the calculation of the dynamics of a 3-energy-level quantum dot amid the ensem- 
ble as shown in figure 5.4. 

Ewe Ewe -7 E2e 

i- El e 

Recombmation 

Ewh 

QD in 

El h 
E2 

h 
E3 

h 

Ewh 
E4h 

QD in 
nomio state nooww state L 

-No electron in El e 

An electron in E2e 

-No hole in El h 

-A hole in E2h 

-No hole in E3h 

- No hole in E4h 

Figure 5.3: Explanation of a recombination process for a six-energy-level quantum 

dot, making use of binary notation. 
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00 
E2h ý--O-ýEn 0 

E2h 

Figure 5.4: The 8 possible binary states for a 3-energy-level QD. 

5.2.2 Labelling possible scattering mechanisms 

In order to consider all the intraband scattering mechanisms that induce a binary 

state change for this type of dot (to pass from one particular state to another), we 

construct a 'scattering matrix', M, rows and columns represent the dot's energy 

levels as well as the the electron and hole lowest confined energies in the wetting 

layer, described with the subscript 'we', 'wh' for electron and hole respectively. In 

this example, for a 3-energy-level quantum dot, the scattering matrix M, may be 

written as follows: 

M=[ 

alewe alelh ale2h alewh 

awele 0 awelh awe2h awewh 

alhle alhwe 0 alh2h alhwh 

a2hle a2hwe a2hlh 0 a2hwh 

awhle awhwe awhlh awh2h 

(5.1) 

where aEFROmETO represents the total scattering rate for a carrier transition involv- 

ing EFROm and ETo energy levels, taking into account both type I and II capture 
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processes, as well as intraband relaxation. The letters welwh refer to the elec- 

tron/hole lowest confined energies in the wetting layer. In this study, zc refers to 

the i-th energy level, i=1,2.. numE where numE is the dot's total number of en- 

ergy levels, for electrons if c=e or for holes if c=h. For example, a2h1h represents 

the total scattering rate, accounting for all the scattering processes where initially 

there is a hole in E2h state and after a certain scattering process, another hole is 

found in Elhdiscrete state. In this case, two scattering process could be responsible 

of this transition. One could be a relaxation process, where a hole relaxes from E2h 

to Elh energy level. The other could be a capture type II process, where a hole 

in E2h is scattered into the wetting layer while another hole is captured into Elh 

energy level. 

Taking into account the different binary states for a 3-energy-level quantum dot 

(Fig. 5.4), the scattering processes involved in the transition from nloo state to nolo 

and viceversa are (see Fig. 5.5): 

1. A relaxation process from E2h to Elh (figure 5.5 (a)) 

2. A capture type II process, where a hole is captured into energy level E2h, due 

to a scattering process with a previously captured hole in energy level Elh 

(process described in figure 5.5(b)) 

It should also be noticed that LO-phonon-carrier capture processes have also been 

considered in the calculation of all the scattering mechanisms responsible for binary 

state change of the quantum dot. In a LO-phonon-carrier capture/escape process, a 

wetting layer carrier is captured/escape by/from the dot by scattering with a bulk 

LO-phonon (see appendix A). For example, awele represents the total scattering 

rate, accounting for all the scattering processes where initially there is a en electron 

in the wetting layer which gets captured by the quantum dot into El, energy level. 

In this case, two scattering process could be responsible of this transition. One could 
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Figure 5.5: (a) Binary state transition after a carrier relaxation process. (b) Binary 

state transition after a type II capture process. Here a 2D hole is captured by the 

dot, after scattering with a previously captured hole, which is excited from the dot 

into the wetting layer 

be a capture type I process, where a 2D electron, after scattering with a 2D carrier 

is captured into El, OD state. The other could be aL O-phonon- carrier scattering 

process, where a 2D electron is captured into El, OD state after after scattering 

with a with a bulk LO-phonon. The calculation for the L 0- phonon- carrier capture 

rates have been carried out by J. Dominguez [8] (see appendix A). 
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5.3 Rate equations for carrier occupation 

132 

In order to calculate the number of dots of radii D (type D dots) in any given 

binary state s, we need to solve a set of rate equations which need to incorporate 

terms to account for capture/escape and radiative recombination processes. In this 

section, we will construct the necessary rate equations, step by step introducing 

those processes. To determine the carrier occupation probability of each dot type 

within the ensemble, we have considered a high constant 2D carrier density of 1x 

iol5m-2. 

5.3.1 Carrier capture/escape by Auger processes 

Considering any one particular dot with a radius D within the ensemble, we may 

calculate the probability of finding this type of dots in a particular 8 binary state 

taking into account all the different Auger capture/escape processes responsible for 

obtaining this considered binary representation s. The rate equation for the number 

of dots represented by in a binary state represented by s is: 

dNr D 

dt = -Ný' 
Z aij +Z aijNkij (5 
ij i, j, kij 

where N' is the number of dots within the ensemble, which have radii equal to 
8 

D in the s binary state. s refers to the decimal number corresponding to the 

binary representation. The indices z, j correspond to the different energy levels 

of the dot type D, so that, for the 3-energy-level dot pictured in figure 5.5, i, j 

le, 1h, 2h, we, wh (Eq. 5.1). Note i ýý I 
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The second term on the right in Eq. 5.2, symbolizes all different binary states from 

which the state s could be reached, after a number of scattering processes involving 

energy levels. 

5.3.2 Photon interaction 

If we now consider only those processes where photons are involved, the number a 
D radius quantum dots within the ensemble in a particular s binary state, may be 

given as follows: 

dN, ' 
-ER 

spon +ZR spon 
ND, M dt q 

ND, m 
MEMD J, MEMD 

C]p F 
gNP, m 

1 Sm +C gNd�n 
ý 

SIT, (5.3) 
nr 

MEMD nr 1, MCMD 

where r' is the optical confinement factor and n, is the refractive index. The terms 

and R'P" represent the contribution to the optical gain and spontaneous NSD, M 

emission respectively, that D-type group of dots in binary state 8 contribute to 

photons of transition energy m. Note that only recombination processes involving 

electron and hole energy levels with the same quantum numbers are allowed. The 

index I in the summations denotes the number of different binary states the dot 

may be found in. For example, 1=0,1,... 2' for the 3-energy-level quantum dot 

pictured in figure 5.5. 

The first term on the right in Eq. 5.3, describes the number of final binary states that 

could be arrived at from an initial binary state s after spontaneous recombination 

process. While the second term describes the number of initial states which the 

final state s might be attained from. In the same way, the last two terms on the 

right represent the radiative recombinations due to stimulated emission as a result 
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of gain in the semiconductor structure. In the next section we describe how the 

optical gain and spontaneous emission terms can be calculated. 

5.3.3 Optical gain and spontaneous emission 

In chapter 2a derivation of the optical gain and spontaneous emission was described. 

Following reference [9] and using our binary representation for the quantum confined 

states in each dot within the ensemble, we calculate the optical gain as follows: 

21re2h IP u ehl 
2Z [Nýeh 

(f Eeh98 + fhEg-hiS 
2E e cn, "'MO e, h 

Eeh 
8 

x 
fc* Bh(E 

- E')dE' (5.4) 

for n, refractive index. The subscripts e, h refer to the discrete states in the conduc- 

tion and valence band respectively and Eh represents the energy of the interband 

transition between the discrete energy levels e and h. POh' is the transition matrix 

element [1]. feEeh, " and f Eeh9S 
terms represent the existence (1) or absence (0) of an 

electron or a hole respectively in the discrete state in the conduction band e and 

in the valence band h. N E, 
-h is the number of dots in binary state s which have 

S 
an interband transition energy between e and h energy levels of Eeh. For example, 

supposing we consider a dot with an energy structure consisting of 1-energy-level 

for the holes and 1-energy-level for electrons, then the interband transition energy 

between the electron/hole ground-energy levels would be Eeh= Elelh (as pictured in 

figure 5.6). For this 2-energy-level quantum dot in s=1 binary state, i. e., no, state 
Elelhil= 1 and 

Elelhil 0. 

using binary representation, pictured in figure 5.6, fel fý 

The total optical gain for a given energy E, has been calculated taking into ac- 

count the contribution of all dots within the ensemble as a Lorentzian homogeneous 

broadening Beh(E - E) (see Eq. 5.4) around that energy, due to carrier scattering. 
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The Lorentzian linewidth broadening is given in terms of a convolution as [9] 
hreh 

Beh(E - E) 7r (5.5) 
(E - 

EI)2 + (rtr', 
h) 

2 

Here 2hFeh is the lifetime broadening factor, E is the center energy of the optical 

mode, 17eh is the scattering rate taking into account all the scattering processes 

which involved carrier transitions between e and h quantum dot energy levels, so 

that, using the notation explained in Eq. 5.1, for a 3-energy-level dot( 2 for the 

holes, 1 for the electrons) with an interband transition energy Ejelh, involving Ele 

and Elh energy levels and a scattering matrix M (Eq. 5.1), r1elh would be calculated 

as follows: 

Ie1h ali 
5 

ail + a3i ai3 all - a33 

Note that we sum over all the quantum confined states of the quantum dot and the 

two wetting layer levels (for our 3-energy-level dot the summation is over 5 states). 

Using the same notation as the one adopted for the calculation of the optical gain, 

we can determine the spontaneous emission for a given energy E [9] considering the 

Lorentzian broadening of the optical transitions given by Eq. 5.5, as follows: 

4n, 7re 
2 

12 
[NSEeh 

(feEehi'f Eehi') R'P'(E) - EoC3M2h2 
E 1POreh Eh 

h 
0 e, h 

xf 
00 

B, h(E - E')dE' (5.6) 

0' Eeh)S f Eeh Eeh 

where n, P 
eh ý 

fe 
Ih and N. are exactly the same terms as the ones in A 

Eq. 5.4. 

5.3.4 Photon Rate Equation 

We have now completely described the rate equation for the carriers in the system. 

Now, we need to take account of the contribution of all the quantum dots within 
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the structure to each of the energy transitions. The photon density in a particular 

energy transition ml Sm within the structure, may be calculated by solving a rate 

equation of the form 

dSm 
R'P' Nd, M dt I, d 

i 

CIF E 
9Nd, 

msm - 

sm 

n, I, d 
7p 

(5.7) 

where IF in equations 5.3 and 5.7, is the optical confinement factor, 0 is the sponta- 

neous emission coupling efficiency to the lasing mode and7P is the photon lifetime 

in the cavity. In order to calculate the contribution to each energy transition of all 

the quantum dots within the structure, we may calculate using Eq. 5.4 and Eq. 

5.6, each type contribution at a particular energy transition m (i. e. E R'P' and , I, d Nd, M 

E1, d 9Nd, m) taking into account all the different binary states I that each dot type 

d may be found in the ensemble. 

5.3.5 Final rate equations 

The final set of rate equations for the carrier population within the quantum dot 

of radius D including both capture/escape processes and radiative recombination 

processes is given by 

dN, ' DZD-ZR spon + Y"' R spon 

dt - N, ' aij +Z aijNk� NP, m '-. ' 
DN1D, 

M 
ij i, j, kij MEMD I'Mem 

C]p 
IP 

-- 
E 19Np, 

ml 
Sm +CZý gNID, 

M 

ý 
SM (5.8) 

nr 
MCMD 

nr j, MEMD 

and the rate equation for the photon density at the energy transition m is given by 

dSm 
= 01: R ,, n + 

CIF E gNd, MSM 

sm 

(5.9) 
dt I, d 

Nld, M nr 
l, d 

TP 

In order to determine the energy level population probability of each of the dot 

types within the ensemble, we need to solve a rate equation as the one given by 

Eq. 5.8 for each type of dot (for all different radii in the ensemble) and for all the 
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different binary states where each type of dot may be found within the ensemble. 

Hence, for a 8-energy-level quantum dot type, we will need to solve 2' different rate 

equations of the form of Eq. 5-8. 

In a laser cavity the Fabry-Perot etalon defines a set of wavelengths which can lase. 

In this study we have ignored this complication and we simply assume that lasing 

occurs at the peak of the gain spectrum. Since we are studying the properties of 

the material gain this has no bearing on the results in this thesis. 

5.3.6 Example of the calculation 

Ewe 
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noo Elelh 

Elh 
Ewh 

Ewe------, 
Eie 

no, ýElelh 

Elh 
Ewh- 
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Ele 

nio Elelh 

Elh -- 
Ewh- 0 

Ewe 
Ele 0 

ni, ýElelh 

Elh 
Ewa 0 

Figure 5.6: Binary state representation of a single electron-hole energy-level quan- 

turn dot. We have 2' different binary states, i. e., noo, no,, nio and nil. 
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In order to illustrate the calculation of the rate equations (5-8) and (5.7) for aND 

number of dots with radii equal to D nm within the ensemble, assuming that this 

type of dots have an energy structure consisting of a single electron /hole-energy- 

level, with an interband transition energy of Ell eV ( see figure 5.6). Hence the dots 

of radius D may be found in 22 different binary states depending on the existence 

or absence of a carrier in their two discrete OD states (see Fig. 5.6). Therefore 

we can denote nij for i, i=0,1 as the number of dots within the ensemble with i 

electrons in El, electron-energy-level (see Fig. 5.6) and j holes in Elh hole-energy- 

level. Figure 5.6 shows the 4 different situations that type D dots may be found 

within the ensemble. Taking into account Eq. 5.1, the scattering matrix for this 

type of dots may be written as follows: 

0 alewe alelh alewh 

MD 
awele 0 awelh awewh 

(5.10) 
alhle alhwe 0 alhwh 

awhle awhwe awhlh 0 

where the subscript ic represents the i-th quantum dot energy level (i = 1,2.. numE 

where numE is the dot's total number of energy levels) for electrons if c=e or for 

holes if c=h. Subscripts we and wh are the electron and hole lowest confined energy 

levels in the wetting layer (see Fig. 5.6). As explained in previous section, each of the 

matrix element aEFROmETO represents the total scattering rate considering both type 

I and 11 capture processes, LO-phonon-carrier capture [81 and intraband relaxation 

processes (chapter 4) for a carrier transition where initially there is a carrier in 

EFROm energy level (either a OD or 2D energy level) and after the scattering event, 

an initially empty energy level ETo is filled with a carrier. The elements in the 

scattering matrix (Eq. 5.1) which represent transitions involving energy levels for 

electrons and holes, Le, a1h1e, alhwe, ale1h, alewh, awelh, awewh, awhie, awhwe, refer to 

Auger capture type II scattering processes. aEFROmETO I when referring to type II 

capture processes, represents a capture type II process where a 2D carrier in the 
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wetting layer is captured by the quantum dot into ETo energy level, after scattering 

with a previously captured OD carrier in EFROM, this last one being scattered into 

the wetting layer. Only the coefficients alhle and alelh in equation 5.10 describe a 

possible capture type II process. The rest, are set to zero. These coefficients may 

be calculated either semi- analytically following the equation given for the capture 

type II scattering process in chapter 3 (Eq. 3.20) or following the equation 4.62 

derived in chapter 4. 

Using equations 5.8 and 5.9, the set of rate equations required in order to calculate 

the energy level occupation probability of this type of quantum dots (Fig. 5.6), as 

well as their contribution at the energy transition m= Elelhi may be written as 

follows: 

dnoo 
dt 

dno, 
dt 

dnio 
dt 

dni, 
dt 

spon aleweno, + alhwhnio - noo [alwele + awhlhl+ Rnii, 
m 

+ 
C]p [lgnll, 

ml - 
Ignoo, 

mll 
Sm 

nr 

= alhwhnil + awelenoo - no, 
[awhlh+ alewel 

= aleweni, + awhlhnoo - nio [awele + alhwhl 

awhihno, + awelenio - nil [alewe+ alhwh] - RnP, 'l 

CIF [- ýgnii, 
ml + Ignoo, 

mll 
Sm 

n, 

and this type of dots will contribute to the m-th mode as follows: 

(5.11) 

dSm 
Nd 

nn c]F 
- 

Ignoo, 
mll 

Sm 

dt 
3 

[JE 
R"', 

m 
+ Rn'l, ' �M] + 

nr 

[Z 
gNd, M + [ýgnll, 

ml 
, d: OD 1, dOD 

sm 

Tp 
(5.12) 

using (5.4) and (5.6) we can calculate the gain and spontaneous emission coefficients 

in the equations above as follows: 
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(5-13) 

In order to make computational calculations much faster, we have not included the 

homogeneous broadening in the calculation of each dot type binary state contribu- 

tion into each mode when solving the rate equations for the calculation of 

the lasing spectra and energy level occupation probability. However, it has been 

considered to calculate the total optical gain of the structure. 

5.3.7 Comparison with other quantum dot models 

Several other models describing the carrier dynamics of quantum dot structures 

have been reported in the literature. One type of model treats the distribution 

of dot sizes as an inhomogeneous broadening of the discrete density of states (e. g. 

[9]). This type of model inherently assumes a global thermal equilibrium and that 

all dots can be described by one Fermi-Dirac distribution. However, calculations 

of this kind cannot describe non-equilibrium effects, for example the simulation of 

time resolved photoluminescence. 

Rate equation models are often used to describe the dynamics of quantum dot 

lasers and calculations with different degrees of complexity have been reported in 

the literature. Simple rate equations for the population of a quantum dot usually 

ignore the effect that different dot sizes contribute to different optical transition 

wavelengths. Therefore spectral hole burning can not be accurately predicted (for 

example [7]). 
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Another common problem with certain rate equation models is that the occupancy 

of the levels is calculated using continuous variables rather than discrete occupancy 
factors of 0 and 1. This can lead to problems with the prediction of dynamics in 

non-equilibrium regimes. 
Our model includes occupancy dependent scattering rates in a rate equation model 

so that capture and emission processes are calculated correctly (e. g. an electron 

is more likely to be captured by a dot which has already captured a hole). Even 

the most complicated models reported to date (for example [5], [3]) neglect this 

important phenomenon. 

5.3.8 Numerical results 

The numerical results we present in this chapter have been obtained by integrating 

the rate equations described in section 5.3 for 1000 ps. As previously mentioned, 

we have considered an ensemble consisting of 5x 10" 'lens'-shaped dots per M3 

where 30 different dot types (depending of their radii) may be found. Therefore, 

5x 1022 /30 would be the number of dots per m' belonging to a particular dot type, 

although a more realistic Gaussian distribution of radii could have been considered 

instead. The Scattering rates used have been calculated following the derived for- 

mulas for the calculation of the Auger capture type II and Auger relaxation rates, 

previously formulated in chapter 4 (see Eq. 4.62 and Eq. 4.127). We have consid- 

ered the semi-analytical formula given in chapter 3 (see Eq. 3.19) for the calculation 

of the Auger capture type I rates and the LO-phonon-carrier capture rates carried 

out by I Dominguez [8]. 

The parameters we have used are as follows; m, = 0.0445 mo and m, = 0.08 mo, 

the effective masses for electrons and holes respectively [6]. We have estimated 

equal values of temperatures of the 2D wetting layer and 3D barrier carriers, i. e., 

T2= T3= 300 K. For the parameters of the cavity we have considered a confinement 
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Figure 5.7: Schematic representation of the transition energies of a particular type 

of dot within the ensemble of radius 19.6 nm and 5 nm height. 
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factor IF = 6%, the refractive index n, = 3.5, the spontaneous emission coupling 

efficiency to the lasing mode 3= 10' and the photon lifetime 7p = 8.8 ps [9]. 

Running our model for a time interval of 1000 ps, we analyze the effect of the car- 

rier dynamics on the optical gain characteristics and allude to the consequences of 

using quantum dot structures for the active regions of semiconductor laser diodes 

and optical amplifiers. 

Figure 5.8, shows the energy level occupation probability for the quantum dot 

within the 30-dot ensemble depicted in figure 5.7. Figure 5.8(a), represents the car- 

rier occupation probability of the quantum dot 3-electron-energy-levels, while figure 

5.8(b) describes the occupation probability of the 4-hole-energy-levels. 

In order to calculate the occupation probability of each electron and hole energy 

level of this quantum dot we required 27= 128 rate equations (see section 5.3). 

This is the reason why we have considered an ensemble of 30 different dot series 

instead of a larger distribution. For each of the quantum dots within the ensemble, 

the total scattering rate responsible for the filling and emptying of each of the dot 

energy levels, have to be calculated, in order to analyze its dynamics. As we previ- 

ously mentioned in chapter 4, these calculations are highly computer intensive. For 

example, it took us 10 days on a 2.00 GHz AMD Athlon processor, to obtain the 

Auger capture type II rates considering each possible carrier transition of each of 

the quantum dots within the 30 dots ensemble. Running our rate equation model 

for 1000 ps, required 3 days. 

As can be seen in figure 5.8, each energy level of the quantum dot plotted in Fig. 

5.7 starts filling with carriers during the first - 20 ps. 

The highest electron-energy-level, E3, starts first filling with carriers, as the energy 

separation between the wetting layer state and the highest confined quantum dot 

level is smaller, making the capture of carriers more probable than capture to lower 

energy levels. Then, the discrete state E2, starts to fill with carriers by scattering 

from E3, and finally Ej, 
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This phenomenon is due to the fact that carriers relax to lower energy states faster 

than they are excited to higher energy states. This effect can be observed in figure 

5.8(a). The occupation probability is higher for lowest energy levels than for the 
highest ones, as once the carriers are captured into the highest energy levels, they 

quickly relax into the lower energy levels. 

The same trend may be observed for holes in figure 5.8(b). As we mentioned pre- 

viously, both relaxation and capture type II rates have been calculated making use 

of the formulas derived in chapter 4, whereas capture type I rates, were obtained 
by making use of the semi-analytical approach explained in chapter 3. The tremen- 
dous computational time required for the analytical calculation of the capture type 

I rate (see equation 4.106 in chapter 4), was the reason for our choice. As a result 
the electron energy levels (figure 5.8(a)) start filling with carriers earlier than hole 

energy levels (figure 5.8(b)). 

This is confirmed by the results plotted in figure 3.7 where we see that the Auger 

capture type I processes due to scattering by electrons are more effective than those 

involving holes. In reality, as holes are heavier than electrons and have a larger den- 

sity of states, they are captured into the quantum dot faster than electrons. This 

problem with our model arises because of the use of the semi-analytical approach 

to calculating the Auger capture type I process. Using this approach we ignore the 

Fermi-Dirac distribution for the carriers in the wetting layer, so the influence of the 

mass of the carriers is less important. As explained earlier a full calculation of this 

capture process requires a prohibitively high level of computing and it is left for 

future work. 

After 40 ps, the occupancy of the lowest energy levels is sufficient to give enough 

gain to overcome the cavity losses. At this point, photons build up (see figure 5.9(a)) 

in the laser cavity due to stimulated emission. The transition energies of this quan- 

tum dot (19.6 nm radius and 5 nm height), i. e., E,, Elh = 210 meV, E2eE2h = 251 

meV and E3eE3h = 294 meV, have been represented in figure 5.7. Note that all the 
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energy values in this chapter, are relative to the 1.074 eV bandgap. Consequently, 

this quantum dot will contribute to the photon densities at those transition energies, 

as pictured in figure 5.9. Ej, Elh energy levels, have occupancy high enough for 

gain to overcome cavity losses, hence as seen from the high photon density value at 

E,, Elh = 210 meV (figure 5.9(a)), stimulated emission occurs at 210 meV (radia- 

tive recombination processes involving El, and Elh energy-levels), while the much 

lower photon densities obtained in figure 5.9(b) and figure 5.9(c), represent photon 

densities obtained as a result of spontaneous emission processes involving E2, and 

E2h energy levels (figure 5.9(b)) and E3, and EM (figure 5.9(c)). The large increase 

of photons for E,, Elh = 210 meV transition energy due to stimulated emission (fig- 

ure 5.9(a)), coincides with the depletion of carriers in El, and Elh energy levels in 

figure 5.8 (spectral hole burning). Stimulated emission, is a very fast process (- I 

ps) and this depletes carriers in the energy levels efficiently. The remaining empty 

states are rapidly filled by carriers captured from E2, E3, and E2h, EM etc. This 

can be observed by the reduction of the spontaneous emission of the transitions at 

E2, E2h = 251 meV (figure 5.9(b)) and E3, E3h = 294 meV (figure 5.9(c)). 

Figure 5.10 shows the absorption spectra obtained for the previously described quan- 

tum dot ensemble. Because of the high computational times needed to calculate all 

the Auger scattering rates responsible of carrier dynamics within the dots, as well 

as to implement the rate equations describing these dots dynamics, we have only 

considered an ensemble consisting of 30 different dot types. Hence the optical gain 

at each transition energy, has been calculated by collecting the individual contri- 

butions of all dots within the ensemble, a rather spiky absorption spectra plot is 

obtained, as pictured in figure 5.10. 

As seen in figure 5.9, a maximum photon density is obtained at a transition energy 

value of 210 meV (figure 5.9(a)). This coincides with the transition energy at which 

the maximum value for the gain is obtained, i. e., 1.447 x 10' M-3 (Fig. 5.10(a)). 

Figure 5-10(a) describes the absorption spectra until the gain reaches its maximum 
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Figure 5.9: (a) Time evolution of the photon mode at the interband transition 

energy of 212 meV. (b) Time evolution of the photon mode at 251 meV. (c) Time 

evolution of the photon mode at 294 meV. 
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value, while figure 5.10(b) shows its evolution until it saturates after spectral hole 

burning. Initially there is a broad absorption spectra when we turn the injection 

current on. The dots start populating with carriers and recombination processes 

start to happen, reaching the gain its maximum value after the first - 18 ps (see 

Fig. 5.10(a), (b)). However, as previously mentioned, stimulated emission is a very 
fast process which depletes carriers from the energy levels that give gain. Hence 

the depletion of carriers in those energy levels (spectral hole burning), implies a 

reduction in the stimulated emission processes and as a result, a reduction in the 

gain peak (see figure 5.11). 

5.4 Time Resolved Photoluminescence 

In the last section, we have presented a laser which could predict capture and escape 

rates for electron and hole states in a quantum dot semiconductor laser. It allows us 

to determine the occupancy of the quantum dots states within the ensemble, which 

enables us to calculate the optical gain of the structure as well as the spontaneous 

recombination rates. 

Among the methods for probing radiative recombination of carriers in quantum dot 

systems, the time resolving photoluminescence (TRPL) method is one of the most 

popular [2]. In TRPL experiments, the radiative emission from the quantum dots 

is measured by optically pumping the material. An optical pulse is used to pump 

carriers into the quantum dots. Therefore, in order to obtain information about 

the carrier capture, relaxation and emission rates for the energy levels within the 

quantum dots, time resolved photoluminescence (TRPL) experiments, make use of 

a spectrometer to spectrally resolve the device luminescence. Our model, can also 

be used to simulate TRPL experiments. 
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Figure 5.12: Schematic representation of a 2-electron /hole-energy- levels quantum 
dot. 

In an experiment performed by the optoelectronic group at Cardiff university, the 

researchers measured time resolved photoluminescence on a laser diode structure 

which was electrically pumped. Our model can be used to simulate these results. 

Figure 5.13 gives a schematic of the time resolved photoluminescence experiment 

with electrical pumping. By a continuous electrical injection of carriers (blue ar- 

row), they get captured into the quantum dot energy levels, where they can either 

relax into a lower energy level or radiative recombine, resulting in a luminescence 

signal. We have considered an ensemble which consists of I dot of 4-energy-levels (2 

electron-energy- levels and 2 hole-energy-levels) with transition energies Elelh = 212 

meV and E2e2h 251 meV, as pictured in figure 5.12. After running our model 

to steady state 200 ps), we introduced a pulse of photons to simulate the laser 

pumping. Figure 5.14, shows the photon intensity achieved by transitions involving 

the ground state (red line) and the excited state (blue line). However, a different 

behavior in decay times appears depending on which state it is being pumped. It 
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can be observed that the decay time is longer (- 60 ps) than the extremely short 
duration (- 4 ps) obtained when pumping the system with photons of energies 

equal to transition energies involving the excited state, i. e., E2e2h = 251 meV (see 

figure 5.12), as shown in figure 5.14 (blue line). This is due to the fact that when 
introducing a pulse of photons of energies equal to the transition energy between the 

excited energy levels E2, E2h= 251 meV (see figure 5.12), carrier occupation prob- 

ability of the excited energy levels E2, (for electrons) and E2h (for holes) increases. 

Carriers in higher energy levels because of their proximity to the wetting layer, can 

easily escape into the wetting layer or efficiently relax into the lowest energy level, 

than those in the ground state. 
These results are in good agreement with the experiments carried out by [7], plot- 

ted in figure 5.15. It shows the experimentally obtained luminescence decay curves 

for low-energy (red line) and high-energy (blue line) at temperature of 50 K. The 

decay times for high-energy transitions are shorter than those measured for low- 

energy transitions. This is mainly due to carrier relaxation from higher QD energy 

levels to lower-energetic levels, mediated by OD - 2D Coulomb scattering, as ex- 

plained in chapter 4. As can be observed from figure 5.14, this decay time for high 

energy transitions (blue line) is -4 ps, which is in good agreement with the result 

previously obtained when plotting the relaxation rates for a similar size quantum 

dot (see figure 4.20, chapter 4). Under the same initial conditions, i. e., 2D carrier 

densities of n,, =1X 1015M-2 , 
3D carrier densities of n,, =IX 1017M-3 and equal 

temperatures for the 3D and 2D carriers of 300 K, we obtained an Auger relaxation 

lifetime of 3.86 ps (see figure 4.20, chapter 4). 

The difference in the decay times in both figures (figure 5.14 and figure 5.15) comes 

from the fact that both models have been performed under different circumstances. 

For instance, our model has been run considering a single quantum dot and tem- 

perature of 300 K, while figure 5.15 shows the results obtained for a dot density of 

2x 102 CM-2 at 50 K. Carriers can be captured and relax more efficiently at higher 

temperatures, hence, decreasing the duration of the decay time. However a quali- 
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Figure 5.15: Luminescence decay transients, varying injection levels, measured at 

50 K, for detection energy El (red line) and E2 (blue line). [7] 
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tative comparison of both figures, shows that both results are in good agreement. 

5.5 Summary 

In this chapter a numerical method has been developed in order to determine the 
dynamics of an ensemble of 'lens' shaped quantum dots. The optical gain of the 

considered structure has also been calculated. It has been shown that the very fast 

scattering processes, cause the QD energy levels to fill with electron and holes. At 

this point, there are enough carriers to give sufficient gain (Fig. 5.10) to overcome 
the cavity losses. Once the cavity losses are overcome, the optical output is domi- 

nated by stimulated emission, as seen in figure 5.9(a). On the onset of stimulated 

emission, carriers are depleted from the quantum dots, which gives the maximum 

gain. 
This model simplifies the problem of studying the occupation of different quantum 
dot types for a considered ensemble of dots. Furthermore, as no Fermi-Dirac dis- 

tribution functions (see chapter 2 equations 2.22 and 2.23) are included, we may 

deal with situations of non-thermal equilibrium. As can be observed from figures 

5.8 and 5.9, once the energy levels acquire enough occupancy for gain, the very fast 

stimulated emission processes depletes these carriers in the energy levels leading to 

the so-called spectral hole burning. 

We have also presented a comparison with time resolved photoluminescence experi- 

ments obtained by researchers at Cardiff University showing that the experimental 

and theoretical results agree qualitatively. 
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Chapter 6 

Conclusions 

The aim of this work was to calculate capture/escape and relaxation rates of carriers 
in self-assembled quantum dot structures. Making use of these calculations, it was 

possible to determine the carrier occupancy of the quantum dot states within the 

ensemble, which allowed us to calculate the optical gain and spontaneous emission 

rate. 

In chapter 3, we carried out a semi-analytical calculation of the Auger cap- 

ture/escape and relaxation rates of carriers in a quantum dot embedded in a two 

dimensional wetting layer. We find there is a strong temperature dependence of 

the scattering rates, which is due to the screening effect of the bulk carriers on the 

interaction between carriers in the wetting layer and in the quantum dots. This 

screening effect becomes less significant at higher temperatures leading to much 

higher scattering rates as shown in figure 3.4. We note a major limitation of the 

semi-analytical approach is the assumption of a Boltzmann distribution for carriers 

in the wetting layer, arising from the assumption of low carrier densities. 

In chapter 4 we derive more rigorous expressions for the capture and relaxation rates. 

158 



CHAPTER 6. CONCLUSIONS 159 

Instead of making use of a Boltzman distribution (as used for the semi- an alyt ical 

calculations) in order to describe the carriers in the quantum well wetting layer, 

Fermi-Dirac statistics are utilized. Under these circumstances, more realistic relax- 

ation lifetimes of -4 ps and type II capture lifetimes of - 20 ps were obtained for 

2D carrier densities of 1.0 x 1015 M-2. 

Once the capture and escape rates for electrons and holes in a quantum dot semi- 

conductor structure have been determined, we present in chapter 5a model which 
describes the carrier occupancy of the quantum dot states within an ensemble of 
30 different quantum dots. Knowing the carrier occupancy allows us to calculate 

the optical gain and spontaneous emission of the quantum dot structure. Under 

electrical injection the carriers are initially captured into the highest energy levels 

(as a consequence of the small energy difference between the highest confined en- 

ergy state and the wetting layer), and subsequently relax to lower energy levels. 

Once the occupancy of the lowest energy levels provides enough gain to overcome 

the cavity losses, the optical output is governed by stimulated emission. Stimulated 

emission is a relatively fast process compared to the carrier capture rate and this 

leads to a depletion of carriers in the energy levels which take part in the stimulated 

emission event. This depletion of carriers leads to reduction of the peak gain known 

as spectral hole burning. 

A simulation of a time resolved photoluminescence experiments on a quantum dot 

structure is also described in chapter 5. A qualitative comparison was made with 

experimental results obtained by researchers at Cardiff University. The experimen- 

tal and theoretical results agree qualitatively. The decay times appear to be longer 

when pumping the lower energy levels than the higher levels. This is due to pho- 

togenerated carriers in the higher energy levels escaping to the wetting layer faster 

than those in the ground state. As a result, when the excited state is pumped with 

carriers, it gets depleted faster than when pumping the ground state. This can be 



CHAPTER 6. CONCLUSIONS 160 

explained by the energy difference between the confined quantum dot states and 

the two dimensional wetting layer. Electrons in the higher energy levels can escape 

quicker because the energy difference between the confined state and the wetting 
layer sub-band is smaller. 

During the course of this research we derived an expression for the Auger type 

I capture process. However, given the computer resources we were unable to im- 

plement this calculation and this is left for future work. Other future work could 

include increasing the number of different dot sizes considered in the ensemble to 

give a more realistic representation of the optical spectra. Also when considering the 

photon dynamics we neglected the effect of the wavelength selection of the cavity 

and again this would make an interesting addition to this research. 



Appendix A 

L O-phonon- carrier capture 

processes 

Carriers within the wetting layer may be captured into the quantum dots by scat- 

tering with bulk LO-phonons (see figure A. 1). The probability of carrier capture 

LO-phonon 
Bulk 

ri *'N* 

10 electron 

WL QD 

Figure A. I: Carrier-phonon scattering. 

from any possible state in the quantum well (wetting layer) into the quantum dot 
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by emitting or absorbing a bulk LO-phonon, is given by Fermi's Golden Rule [1]: 

21r 
f JH1i >ý d(Ef (A. 1) 

where 

i> is the carrier initial state 

> is the carrier final state 

H is the interaction between an electron and a LO-phonon [1] 

6WLOP 1/2 e-qf- 
2q2 V1/2 

q' is the phonon wave vector 

P is a factor 

P=1-1) (No + 1/2:: F 1/2) 
( 

coo 60 

(A. 2) 

the upper sign of the :F refers to the absorption of a phonon while the lower 

sign instead, represents emission of a phonon. 

No is the phonon density within the crystal. As bosons, phonons follow Bose- 

Einstein distribution 

No =I hu)LO e_ KT - JL 

c,,,, and co are the high- and low-frequency permittivities of the material. 

Following J. Dominguez mathematical approach [21, the final expression for the 

probability of carrier capture into the quantum dot by LO-phonon scattering is 

given by 

00 dq f 7r 

dOýY71G(ozcos(Ow) + q.,, a sin (0') + qy, q, ) 12 (A 
-3) 2 xy xy 

q- 'r 

where 
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Me2 WLOPID r=2 
rL2 (27r) 4 

fD = fD( r22) is the 2D Fermi-Dirac distribution where for ED and E" the 2m In 

carrier energies in the QD and in the QW sub-band respectively, a= k" 
XY 

V/2_m_A/h2 and A=ED± rlWLO- Er. 

k' is the carrier wave vector within the QW xy 

q is the phonon wave vector 

G (k' + q, q, ) xy = G, (q, ) G,, y (kw + xy q., y) where G, (q, ) = 
fOO OD* NN, -iq,. z 

-Co z iý)z e dz 

and Gxy (k' + xy 
V) D*- qxy) ff 'e 

00 xy 
i(kw + 

xy q, y )rxydr., 
y 

, OD OD 
xy and z are the x-y and z components respectively of the carrier wave- 

function within the QD given by equation 4.29 in chapter 4. 

V)' is the z component of the carrier wavefunction within the wetting layer z 
given by equation 4.30 chapter 4. 
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Appendix B 

Fermi Level 

Considering a quantum well structure, the Bloch wavefunction for an electron in a 

crystal given by equation 2.2 in chapter 2, the slowly varying plane-wave envelope 
F(r) describing the motion perpendicular to the well (z-direction), can be replaced 
by a quantized wave ýojz) as follows: 

0 (r) ýA (Z) e 
u(r) (B. 1) 

where A the area of normalization of the 2D gas and n=1,2,... is the quantum 

number. The free translational motion is described by a 2-dimensional k,, y wave 

vector. Making use of the notation k to denote the wave vector, then the sum over 

this wave vector can be written as an integral as follows [1] 

F-W 
= 

Yýý AkxAky 
=L 

12 f 
dk (B. 2) 

kk 
AkxAky 

[27r 

n- 

. Rewriting the integral above in polar coordinates then 

IL12 fo 27r 

dO 
fo 00 

kdk =L12 
(27r) 

fo 3c 

kdk (B. 3) 
27r 

[27r 

k 
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Taking into account that E= 
ý'2k2 (see equation 2.4, chapter 2), equation B. 3 may 2m 

be transformed into an energy integral, hence: 

[L ]2 
(27r) 

f 00 vý-2 -mE 2m 
-dE -L 

2M 

dE (B. 4) 27r 242 nElh) 7r 42 
k 

(-v/2r 
fo oc 

Including the occupation probability for all those available states, we will get the 

total number of carriers (N2) injected into the energy E, we get 

N2 
L2 rn f 00 

f, (E)dE 
0 7rh2 0 

(B-5) 

where f, (E) is the Fermi-Dirac distribution given by equation 2.22 (for holes) or 

2.23 (for electrons) described in chapter 2. 

Denoting as n2= N21L 2, 
equation B. 5 can be rewritten as follows: 

n2 
E-mf 00 

E-EFdE 
7r h2 (I k0+e 

ýBT 

(B. 6) 

Denoting z -- 
E-EF the integral above can be solved in order to determine the kBT I 

Fermi level EF, hence: 

n2 ::::::::: 
m 

kBT In + e-EF'kBT (B. 7) 
7rh2 e-EFIkBT 

so the Fermi level EFcan be determined from: 

EF1kj3T 
=e 

n2rh 
2 /mkBT 

_I (B. 8) 
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