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Executive Summary 

This thesis aimed to develop models for the natural regeneration of Sitka spruce that could be 

applied to stands under continuous cover forestry in the UK. The models followed the 

development of Sitka spruce seedlings from the establishment phase until their recruitment to 

the overstorey. 

First, I prepared models for estimating the presence and density of Sitka spruce seedlings under 

canopy cover. I simulated the likelihood of seedling presence according to a combination of 

stand and site characteristics, and stand management history. I estimated the seedling density 

by generating random numbers from a Weibull distribution. The calibration data came from an 

existing dataset extensively collected all around the UK, and I carried out an independent 

validation with newly collected data in two sites in Wales and England.  

Then, I modelled the early height and diameter growth of Sitka spruce and western hemlock, 

and the early growth of Douglas fir, as a function of light availability. I compared light-growth 

models based on non-linear asymptotic functions, including tree size and intra-regeneration 

competition as predictors. Results showed that different non-linear structures best simulated 

the growth of different species. I carried out an analysis of the crown plasticity, observing that 

both the apical dominance and live crown ratios were negatively correlated with light 

availability for all species, although with some species-specific differences. Overall, I defined 

a shade-tolerant ranking as Douglas fir ≤ Sitka spruce < western hemlock. For this study I 

collected data across several forests in Wales, England and Scotland. 

Given the importance of the below-canopy light regime analysis in this study, I investigated a 

possible technological improvement for its assessment. I demonstrated that hemispherical 

photography carried out with smartphone cameras equipped with fish-eye lenses can be an 

adequate alternative to traditional cameras, with cheaper equipment and faster methods. The 

data were collected during the above field campaign. 

Finally, I tested the feasibility of using the models aforementioned for simulating Sitka spruce 

natural regeneration in a continuous cover forestry scenario in the UK. I integrated the Sitka 

spruce regeneration presence, density, and early growth models into MOSES_GB, a forest 

growth simulator under development by the Forestry Commission. I simulated the development 

over 15 years of a regeneration layer under an overstorey layer, the development of which was 

simulated by MOSES_GB. I simulated two different virtual stands, and followed the 
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establishment, growth, and recruitment of the regeneration into the overstorey, comparing two 

different spatial modelling approaches and two thinning regimes. A spatially-explicit approach, 

which considered the local variability in the light-availability, seemed to be more accurate. 

Some issues and potential problems in the simulations were identified, together with the future 

studies that can address them. 
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1 Introduction 

Forest modelling has always accompanied forest management (Robinson & Ek 2000). It is 

widely accepted that modern forestry sciences originated in 18th century Europe. Hartig (1764-

1837) and Cotta (1763-1844) first proposed forest management approaches aimed at stabilising 

the annual yield by regulating either the harvestable volume or the felled area. Those objectives 

were more easily achieved with the establishment of even-aged, single species forests that soon 

became widespread. In the late 18th and early 19th centuries, forestry scientists in Central 

Europe prepared the first models to predict the development of those relatively simple 

ecosystems, structured as yield tables simulating growth regarding general stand-level 

parameters (Pretzsch et al. 2008). Forest managers could use yield tables as a support tool to 

plan activities, but the silvicultural options available were very limited (von Teuffel et al. 

2006). 

Since the 19th century, the development of British forestry has followed the same trends as 

Continental Europe. In 1827, David Douglas (1799-1834) introduced to the United Kingdom 

(UK) the first conifer species from Western North America, the aptly named Douglas fir 

(Pseudotsuga menziesii (Mirb.) Franco), then followed by Sitka spruce (Picea sitchensis 

(Bong.) Carr) and other conifers from the same region (James 1981). Those exotic species 

performed very well, and a century later, at the time of the first modern UK forest census in 

1924 (Forestry Commission 1928), the area covered by conifers or mixed conifers/broadleaves 

was almost 70% of all productive high stands. British foresters started publishing yield tables 

for such stands at the beginning of the 20th century (Maw 1912). Presently, the main modelling 

reference in the UK is the yield tables produced by the Forestry Commission for pure, even-

aged stands of the major native and exotic forest species (Edwards & Christie 1981). The only 

silvicultural variables that forest managers can consider are the density of planted seedlings, 

the intensity of thinning treatments, and the timing of the final clear-cut. 

During the last century, concerns over worldwide environmental degradation and unsustainable 

use of natural resources led to the 1992 Earth Summit in Rio de Janeiro. The summit initiated 

a process that brought profound transformations to the forestry sector (Forestry Commission 

2017). To face such concerns, forest ecosystems were now expected to fulfill simultaneously a 

wider array of functions to varying extents: not only wood production, but other ecosystem 
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services such as biodiversity conservation, hydrological and soil protection, carbon 

sequestration, and recreation, just to name a few (Führer 2000). Many studies have indicated 

that an increase in the diversity of the forest structure is one possible way to obtain multiple 

benefits from managed stands (Malcolm, Mason & Clarke 2001; Spiecker 2003; Gamfeldt et 

al. 2013; Macpherson et al. 2017). Thus, to increase such diversity, forestry research 

increasingly focused on what are now called close-to-nature or nature-oriented forestry 

approaches (Koch & Skovsgaard, 1999; Motta 2000; O’Hara, 2001; Mielikäinen & Hynynen, 

2003). Those approaches propose a shift from the traditional methods of clear-felling and 

artificial regeneration to smaller interventions and natural restocking. These nature-oriented 

methods have the potential to lead to uneven-aged, multi-species stands without interrupting 

the forest cover of the area (Mason & Kerr 2004; Pukkala et al. 2011). Even if such approaches 

are the target of newly rediscovered interest, it is important to remember that they have old 

historical roots. The method of control, originally applied to the futaie jardinées to ensure a 

permanent forest cover, was introduced by Gurnaud in France already in 1878 (Pardé 1991), 

while Möller proposed the idea of Dauerwald (or permanent forest) in Germany at the 

beginning of the 20th century (Pignatti 2012).  

Today, all the approaches based on the use of continuous natural regeneration can be classified 

as Continuous Cover Forestry (CCF) (von Gadow et al. 2002; Ní Dhubháin 2003; Pignatti 

2012). Mason et al. (1999), reminding us that CCF “is more than a silvicultural system”, 

indicates the following guiding principles: management of the forest ecosystems rather than 

just the trees; use of natural processes as the basis for stand management; adaptation to the site 

limitations; and the creation of a diverse stand structure with a range of species. It is important 

to remember that although CCF can be considered closer to nature than other approaches, it is 

still an anthropic management. Failing to understand that point may lead to many 

misconceptions (Davies et al. 2008). First of all, irregularity is not necessarily the norm in 

European forests, which most of the times tends, in the long-term, towards a homogenous state, 

particularly where a species is growing in its optimum site (Schütz 2002; Paci 2004). Moreover, 

CCF can be applied not only to stands of native species but also to exotic trees as long as they 

are site-adapted, as happens in the UK (Davies, Haufe & Pommerening 2008; Kerr et al. 2012), 

and some of the historical CCF methods, such as the already mentioned method of control and 

Dauerwald forest, are based on a strict anthropic control of the tree sizes distribution in the 

forest (Susmel 1980; Schütz 2006).  
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Under CCF management, forest development has no beginning nor end, and in uneven-aged 

forests, the traditional yield tables that estimated forest parameters based only on the age of 

pure stands cannot be used (von Gadow & Hui 1999). New forest growth simulators are 

required to satisfy the new user needs, and to move from estimating aggregated parameters for 

homogenous stands to studying the growth of individual trees in irregular situations (von 

Teuffel et al. 2006). At the same time, there is a need to link models simulating the 

establishment and early growth of regeneration with models simulating the growth of 

overstorey trees, so that the continuous stand development could be simulated (Miina & Saksa 

2006). Various challenges are present for this latter objective. As it will become clear 

throughout this study, models predicting the regeneration processes are especially difficult to 

prepare since several factors involved: from seed production through seedling establishment, 

growth and survival until recruitment to the overstorey. Light is considered one of the main 

factors affecting regeneration under forest cover (Oliver & Larson 1996; Lieffers et al. 1999), 

so there will be a particular focus in this thesis on studying the specific light-growth responses 

of various tree species that are potential components of future mixed-species forests in the UK. 

1.1 Continuous cover forestry in the United Kingdom 

The road to CCF in the UK has been slow but steady. The UK Forestry Standard (Forestry 

Commission 2017) defines CCF as a “silvicultural system whereby the forest canopy is 

maintained at one or more levels without clearfelling”, and suggests its implementation as an 

alternative to clearfelling (i.e. the “cutting down of an area of woodland … greater than 0.25 

ha” regardless of whether a few scattered or clumped trees are retained), where “suitable sites 

and species combinations are allowed, and management objectives are compatible”. This 

approach is explicitly promoted in the United Kingdom Woodland Assurance Scheme 

(UKWAS 2012): “lower impact silvicultural systems shall be increasingly favoured where they 

are suited to the site and species”, and “where appropriate and possible use should be made of 

natural regeneration”. Recently, Mason (2015) noted that while the area actively managed for 

CCF is just around 3% of the total forest area, there were aspirations to transform 20% of public 

forests to irregular structures in the future. He also observed that there were few examples of 

CCF being implemented in single-species conifer plantations, particularly in the extensive 

forests dominated by Sitka spruce. This species accounts in the UK for around half of the total 

standing coniferous volume (Forestry Commission 2011b) and for almost 23% of the total 

forest cover (Forestry Commission 2011a). Sitka spruce natural regeneration can establish 

abundantly and grow well under canopy cover, and its potential for CCF has already been 
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positively tested in various experiments (Malcolm et al. 2001; Mason 2015). Western hemlock 

(Tsuga heterophylla (Raf.) Sarg.) and Douglas fir, both associates of Sitka spruce in its natural 

range, are other successfully-introduced coniferous species in the UK that could be companions 

of Sitka spruce in mixed-species, uneven-aged forests (Cameron 2015). 

As the basis of a national forest growth simulator to be used to support CCF management, the 

Forestry Commission is developing MOSES_GB (Forest Research 2010) from the original 

concept of MOSES (MOdeling Stand rESponse) (Hasenauer et al. 2006). Calibrated for the 

main forestry species in Austria, MOSES includes components to simulate i) overstorey trees 

growth and mortality; and ii) natural regeneration occurrence, growth, and mortality. The 

Forest Research agency is currently re-calibrating the components for the overstorey trees of 

Sitka spruce in the UK, although no work has been done on the regeneration components.  

1.2 Aims and objectives 

The overall aim of this thesis was the development of models for Sitka spruce regeneration 

in continuous cover forestry scenarios in the UK. After the literature review (Chapters 2 and 

3) was carried out, I decided to model the stages of regeneration occurrence and regeneration 

early growth separately, and for the latter to focus especially on the relationship between light 

availability and growth. Thus, I posed the following main research questions. 

1. What are the best structures for Sitka spruce natural regeneration occurrence and 

density models? 

What are the stand and site characteristics that significantly affect the occurrence and 

density of Sitka spruce seedlings under canopy cover? What are the best structures for 

empirical predictive models of those processes? 

2. Can the early growth of Sitka spruce, western hemlock, and Douglas fir be modelled 

as a function of the light environment under canopy cover? 

Can light-growth models, both for height and diameter, be calibrated for those species? 

How do the regeneration size and the intra-regeneration competition affect the species-

specific light-growth responses? Which are the best non-linear functions for modelling 

those processes? 

Interspecific differences in shade tolerance significantly affect stand dynamics (Finzi & 

Canham 2000). Therefore, the third research question directly follows from the above question. 
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3. Can the light-growth responses, regarding growth and canopy architecture, for Sitka 

spruce, western hemlock, and Douglas fir be used to define a shade tolerance 

ranking? 

Do light-growth responses inform us about the shade tolerance of these species? Do these 

species modify their canopy architecture under different light levels? Can we define a shade 

tolerance ranking using all this information?  

Given the importance of the forest light environment analysis in this research, I also decided 

to explore a possible technological improvement for its assessment in the fourth research 

question. 

4. Can the light environment under canopy cover be adequately described using 

smartphone technology? 

Can hemispherical photography, a widely-used method for assessing light availability 

under canopy cover, be carried out in a faster and cheaper way with smartphone cameras? 

What are the differences between values obtained by traditional and smartphone cameras? 

What systems could be employed to reduce such possible differences? 

Finally, I decided to test if the above models for regeneration occurrence and early growth can 

be integrated into MOSES_GB, leading to the last research question. 

5. Can the models for regeneration occurrence and early growth developed in this thesis 

be integrated into MOSES_GB? 

Can the models developed in this thesis be integrated as they are in the MOSES_GB 

framework? What is the best strategy for their integration? What are the steps required and 

what could be the main sources of problems? 

1.3 Thesis structure 

I have introduced the background, aim and research questions of the thesis in this chapter. In 

Chapter 2 I present a literature review on forest regeneration modelling, and in Chapter 3 on 

the ecology of Sitka spruce natural regeneration (both in its natural range and in the UK).   

I present the experimental work in the following three chapters. In Chapter 4 I describe a 

model simulating the regeneration presence and density of Sitka spruce in stands dominated by 

the same species (answering research question number 1). In Chapter 5 I present height and 

radial growth models as functions of light availability, tree size and intra-regeneration 

competition for regenerating trees of Sitka spruce, western hemlock, and Douglas fir. I also 
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investigate the light response of crown architectural parameters and then use all the results to 

compare the shade tolerance of these species (answering research questions number 2 and 3). 

In Chapter 6 I investigate the use of smartphone technology to estimate the forest canopy 

openness and the light regime under canopy cover (answering research question number 4). 

In the following two chapters I describe attempts to integrate the models prepared here into 

MOSES_GB (answering research question number 5). In Chapter 7 I compare various 

approaches that could be used in MOSES_GB to model the diameter growth of regenerating 

Sitka spruce trees until they move up into the overstorey class. In Chapter 8 I describe 

simulations of a forest stand development produced by integrating into MOSES_GB the 

regeneration presence, density and early growth models described in the previous chapters. 

Finally, in Chapter 9, I summarise the findings of this thesis, draw general conclusions and 

suggest future research objectives. 
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2 An overview of forest regeneration 

modelling  

In this chapter, I introduce first some general principles about forest growth simulation, and 

then in more detail, I review how the natural regeneration modelling has been addressed. 

2.1 Forest growth modelling approaches 

From the first examples of the 18th-century yield tables, there is now in the literature a vast 

number of forest growth models prepared according to different approaches and objectives: 

Porté & Bartelink in 2002 reviewed almost 200 models. Many authors have prepared different 

classification systems, from the first attempt of Munro (1974), to Vanclay (1994), the already-

mentioned Porté & Bartelink (2002), Monserud (2003), Pretzsch et al. (2006) and more 

recently Salas et al. (2016). As a general basis for this chapter, I will refer to the system 

suggested by Peng (2000), shown in Figure 2.1. As in all the systems, the classes are not totally 

distinct, and it is not always possible to draw clear borders between them. It is beyond the scope 

of this thesis to expand on the complex issue of classification: “labels are more often used by 

those who discuss models than those who construct them” (Robinson & Ek 2000). Still, a short 

description of the main classification criteria will help identify the best modelling 

methodologies to be applied in the context of the present thesis. 

 

Figure 2.1. Classification method from Peng (2000) for forest growth models 
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The first discrimination level shown in Figure 2.1, between empirical and mechanistic models, 

depends on the conceptual basis of their preparation. Empirical models describe the observed 

phenomena as regression functions usually based on stand and site variables (Peng 2000), while 

mechanistic models consider their underlying physiological processes, such as photosynthesis, 

respiration and the allocation of photosynthates within the plant (Vanclay 1994). Robinson & 

Ek (2000) argued that even mechanistic models are based at a certain level on descriptive 

relationships between the environmental agents and the modelled process, and empirical model 

assumptions can be directly linked to the underlying physiological processes. The two model 

classes have clearer differences in their practical applications. Empirical models are focused 

more on description and management objectives; they are strongly dependent on the calibration 

data and so using them outside the original range may lead to extrapolation errors (Huang et 

al. 2003). Mechanistic models are focused more on explanatory and research objectives, have 

a wider applicability, and so they can be used for more research purposes, such as long-term 

successional studies or the potential effects of climate change on forest stands (Kellomäki et 

al. 1992; Peng 2000; Tchebakova & Parfenova 2003). At the same time, empirical models 

usually require as input more data than are usually available to forest managers and are 

considered not suitable for all end-users (Porté & Bartelink 2002). Still, some authors advocate 

a better integration of the two methods, especially through the incorporation of climatic 

variables in empirical models (Battaglia & Sands 1998; Price et al. 2001; Miina et al. 2006). 

The second discrimination level shown in Figure 2.1 is based on the spatiophysical resolution, 

defined as “the dominant unit of interest or replication in the model” by Robinson & Ek (2000). 

From the lowest to the highest resolution we can broadly discriminate between: i) yield tables, 

which consider only aggregated stand-level statistics; ii) size-class models, which group 

together trees of similar diameter; iii) gap models, which consider the dynamics of a small 

collection of individual trees; and iv) individual tree models, which consider the growth of 

individual trees with respect to the competition with their neighbours (von Teuffel et al. 2006). 

MOSES, and in turn MOSES_GB, follows the individual tree approach, which has long been 

recognized as the best approach for simulating the growth of irregular stands (Curtis 1972). 

Already in the 1980s, there was an estimated number of several hundred individual tree digital 

computer models (Dale et al. 1985). The increasing availability of computers has been 

recognized as one of the driving factors of this fast development (Pretzsch 2009). Individual 

tree models can be defined as models that “describe and keep track of each individual in the 

stand”, and are further classified as distance-dependent if each tree location is explicitly known, 
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or distance-independent where it is unspecified (Porté & Bartelink 2002). In the former, the 

availability of resources is computed for each tree according to the specific competition exerted 

by its neighbours, while in the latter all trees are subject to an average competition estimated 

at stand level. In this thesis, I will from now on refer to the distance-dependent attribute using 

the more compact and immediate spatial adjective, and non-spatial for the distance-

independent, following the suggestion of Robinson & Ek (2000). 

It must be noted that most of the forest growth models focus on the simulation of the growth 

of mature or overstorey trees. These trees are usually defined as being bigger than a specific 

artificial size threshold for each model, such as a height of 1.30 m or a particular minimum 

DBH, chosen with arbitrary and practical aspects like the design of inventory used for the 

calibration and the future application of the model (Vanclay 1994; Miina et al. 2006). 

Estimating if and how many new trees reach the overstorey class after the death or the cut of 

the overstorey is however crucial for CCF stands (Hasenauer 2006). 

2.2 Simulating forest regeneration 

Unfortunately, the simulation of natural regeneration has been found unsatisfactory in many 

forest growth models (Price et al. 2001; Porté & Bartelink 2002). There are many practical 

difficulties in the calibration of regeneration models due to the unpredictability and randomness 

of the several processes involved (from seed production, dispersal and germination, to seedling 

establishment, growth and survival), and the impossibility of measuring all the ecological 

factors affecting them (Curtis 1972; Vanclay 1994; Miina et al. 2006; Kerr & Mackintosh 

2012). A classification of natural regeneration models can follow the definition of Vanclay 

(1994): regeneration models sensu strictu, which predict the development of trees from seed or 

seedlings, and recruitment models (sometimes called ingrowth by other authors, e.g. Miina et 

al. 2006), which simply predict the number of trees reaching the overstorey class in the time 

interval studied. Recruitment models are considered to lack details of regeneration dynamics 

that may be important for CCF (Ferguson 1996) and are therefore not of further interest in this 

thesis1. 

Regeneration models usually simulate separately the different stages of i) regeneration 

occurrence, and then ii) early growth and iii) mortality of the seedlings, until they reach the 

                                                 
1 As will become clear in the next chapter, there was anyway a lack in the UK of the data necessary to calibrate 

recruitment models, and it was impossible to collect them in the timeframe of the thesis. 
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overstorey size threshold. Then, seedlings are moved to the overstorey class and become 

subject to its different modelling procedures. An exception is the model SORTIE (Pacala et al. 

1996), which applies to the overstorey the same growth and mortality models prepared for the 

juvenile trees. The developers believed that the ability of juvenile trees to survive and grow is 

crucial for understanding forest successions, and so they focused on the regeneration 

components (Kobe et al. 1995). Most regeneration models easily allow enrichment planting: 

artificial seedlings can be added to the simulated forest stand and they will then follow the 

same rules for early growth and survival of natural seedlings (Kellomäki et al. 1992; Hasenauer 

et al. 2006). Throughout this thesis I will use “regeneration models” to refer to models that 

predict the development of trees from seed or seedlings until they reach the overstorey class, 

considering the different stages of regeneration occurrence, early growth and survival. 

2.2.1 Regeneration occurrence 

For the first step, regeneration occurrence, models generate new trees by predicting either the 

number of seed germinated or seedlings established, the latter being when the trees have passed 

the very first phase of growth and reached an arbitrary size threshold (e.g. 10 cm height, as in 

Schweiger & Sterba (1997)). Seed germination models are usually mechanistic, describing the 

phases of seed production, dispersal and germination, while seedling establishment models are 

generally empirical. 

In the seedling establishment models, the process is often split into two stages: i) determining 

if regeneration is successfully occurring during the time interval studied, and if so ii) defining 

the species composition and density of the established seedlings (Miina et al. 2006). For the 

first stage, logistic equations with binomial distribution are often calibrated on various stand 

and site characteristics to estimate the probability of regeneration occurrence in a forest plot, 

considered to have a binary status of absence or presence, such as in PROGNOSIS (Ferguson 

& Carlson 1991), MOSES (Hasenauer & Kindermann 2006) and other models (Schweiger & 

Sterba 1997; Pausas, Ribeiro & Dias 2006). Stochastic approaches are common since forest 

regeneration, particularly in boreal and temperate regions, tends to be sporadic (Miina, 

Eerikäinen & Hasenauer 2006). Then, the species composition and density are defined using 

different statistical approaches, often based on the Weibull or Poisson distribution. The 

prediction of seedling density has been defined as “the most difficult part in assessing 

regeneration establishment” due to the many random factors involved (Ferguson 1996). A 

different approach is used in the model family originated by SORTIE (Pacala et al. 1996; then 
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LePage et al. 2000 for SORTIE-BC), which is based only on the seed production potential of 

mother trees. The model estimates in each simulation cycle the number of one-year old 

seedlings produced by mature trees as a direct function of their size, then distributes them 

stochastically around the source (Ribbens et al. 1994). 

Imputation is another methodology sometimes used for empirically estimating the regeneration 

occurrence. Imputation involves replacing the missing (not sampled) regeneration 

measurements for any unit in the population with measurements from one or more units with 

similar characteristics (Ek et al. 1997; Hassani et al. 2004 for PROGNOSISBC). This method 

has some advantages, such as not requiring any distributional assumption of the errors and 

being multivariate (that is, it may estimate several variables at the same time, such as 

regeneration presence, species, and density) (Miina et al. 2006). 

2.2.2 Early growth 

For the second step, early growth, specific growth models developed for juvenile trees are often 

used because models for mature trees may involve different processes and tend to have lower 

accuracy for smaller size classes (Boisvenue et al. 2004). 

Some empirical models for juvenile trees follow the potential growth approach, such as 

FOREST (Monserud & Ek 1977) and MOSES (Hasenauer & Kindermann 2006). The 

assumption is that the potential growth of a tree of a certain dimension, defined as the growth 

that the same tree would have in the open, is reduced in the forest by the competition exerted 

by the neighbouring trees (Newnham 1964). In simple terms, this relationship is shown in 

Equation 2.1. 

Equation 2.1: 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑔𝑟𝑜𝑤𝑡ℎ =  
𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑔𝑟𝑜𝑤𝑡ℎ

𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟
 

Widely used for overstorey trees, when this approach is applied to regenerating trees, the 

competition factor is generally an indication of the competition exerted by the overstorey 

crowns, calculated in different ways in the different studies. Other empirical early growth 

models not based on the potential growth approach fit the observed growth measurements 

directly to different combinations of stand characteristics (generally indications of the 

overstorey tree density), site characteristics (such as slope, aspect, site fertility, forest type) and 

silvicultural characteristics (such as thinning interventions) (Boisvenue et al. 2004; Eerikäinen 

et al. 2014). 
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As previously discussed, borders between models are blurred. Many empirical growth models 

use light availability, a basic ecological variable employed in mechanistic approaches (e.g. 

Kellomäki et al. 1992), as their main input (Pacala et al. 1994 for SORTIE; Wright et al. 1998; 

Finzi & Canham 2000; Wagner et al. 2009; Ligot et al. 2013). In those cases, non-linear 

asymptotic functions are often used to describe the light-growth responses. While for the 

practical application of this approach there is a need to use an additional model to estimate the 

light availability under canopy cover (such as the SORTIE-ND light model, described by 

Beaudet et al. (2011)), its applicability is less dependent on the overstorey characteristics used 

for calibration. The inclusion of other resources as additional growth predictors in the light-

growth non-linear functions, such as soil moisture and nitrogen content, sometimes 

significantly improved the fit but not always with strong results (Finzi & Canham 2000; 

Wagner, Madsen & Ammer 2009). 

2.2.3 Regeneration mortality 

The third step, mortality, predicts how many regenerating trees will be removed by the 

simulation, although few examples are present in the literature. Empirical approaches usually 

consider density-induced mortality alone, i.e. establishing relationships between mortality and 

indices describing the competition from the overstorey (e.g. Eerikäinen et al. 2014), or together 

with random mortality as in MOSES (Hasenauer & Kindermann 2006). In many cases the 

forest simulators use the same mortality model for both the overstorey and regenerating trees 

(Ferguson & Crookston 1991 for PROGNOSIS; Hasenauer & Kindermann 2006 for MOSES; 

Dixon 2015 for FVS).  

Other studies have built growth-mortality functions, using the recent growth history of 

regenerating trees to estimate their mortality probability (Kobe et al. 1995 for SORTIE; Kobe 

& Coates 1997; Wyckoff & Clark 2000; Kunstler et al. 2005). Growth-mortality functions can 

be defined as the “empirical summary of the complex relationship involving environmental 

stress, growth, and mortality risk” (Wyckoff & Clark 2000). Usually they are species-specific 

negative exponential relationships between the growth and the saplings’ mortality probability, 

built thanks to the analysis of the growth of recently deceased seedlings and a count of live and 

dead seedlings in the area (Kobe et al. 1995). These functions can then be used together with 

existing light-growth functions to link directly light availability and mortality (Pacala et al. 

1996). 
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In a forest growth simulator aimed at practical silvicultural applications, the harvesting damage 

on the existing regeneration should be considered. For example, in a model for regeneration 

development in uneven-aged, Norway spruce (Picea abies K.) dominated forests in Finland, a 

harvesting event reduced the probability of seedling survival (Eerikäinen, Miina & Valkonen 

2007). 

2.3 Conclusions 

The main approaches for forest growth modelling, and for the integration of the simulation of 

natural regeneration in those models, were described in this chapter. The present thesis aims at 

producing tools for simulating regeneration that could be used for practical operative 

applications in continuous cover forestry situations. Thus, I selected as the approach for this 

research the regeneration model sensu strictu, with the aim of preparing different components 

for simulating regeneration occurrence, early growth and mortality. In the following chapter, I 

review the existing knowledge of Sitka spruce natural regeneration and the data available for 

the UK according to those three main modelling steps, to better identify the research framework 

and methods to be employed. 
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3 On the natural regeneration of Sitka 

spruce 

In this chapter, I summarize all the published studies that I could retrieve on Sitka spruce 

natural regeneration both in the UK and in North America, grouped according to the main 

modelling steps indicated in Chapter 2 (regeneration occurrence and density, early growth, and 

mortality). 

3.1 Introduction 

Sitka spruce is a prolific seed producer with abundant natural regeneration after clear-cutting 

both in its natural range (Peterson et al. 1997) and in the UK, where it is the commercial conifer 

with the highest potential for natural regeneration: up to 400,000 seedlings per ha on favourable 

sites after clearcutting or wind-throw, although with high variation between and within sites 

(Nixon & Worrell 1999). Various reviews of the factors influencing the natural regeneration of 

Sitka spruce in the British Isles have been carried out, focusing on obtaining natural 

regeneration as a substitute for artificial planting in clear-felled areas (Clarke 1992; von Ow et 

al. 1996; Nixon & Worrell 1999). Sitka spruce also proved to have the potential for 

regeneration under canopy cover in the UK, and more recent studies researched how to obtain 

and use natural regeneration to transform even-aged, mono-specific conifer forests into 

irregular stands (Malcolm et al. 2001; Mason & Kerr 2004). Mason (2015) recently carried out 

an exhaustive review of the factors influencing Sitka spruce natural regeneration under canopy 

cover in the UK, summarized in Table 3.1. However, the UK has been defined “data-poor” 

regarding natural regeneration by Kerr et al. (2011), and even if the qualitative information is 

extensive, there are no existing models to quantitatively predict the regeneration occurrence of 

Sitka spruce. 

The studies reviewed here carried out in forests managed using either with the shelterwood 

systems or the group selection system, both identified as possible CCF management methods 

for Sitka spruce forests (Malcolm et al. 2001). In the shelterwood systems mature trees are 

removed in a series of cuts to achieve regeneration under the protection of remaining trees, 

while the group selection system removes all the trees in a defined patch thus creating stand 

openings (generally with a width less than two times the height of adjacent mature trees) for 
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the establishment of the seedlings. The research frameworks therefore reflected the differences 

between these silvicultural practices and the results were not easily comparable. In addition, I 

present some studies carried out in nurseries or glasshouses. 

Table 3.1. Some of the crucial factors influencing Sitka spruce natural regeneration, the general conclusions drawn in the 

literature about them, and the evidence quality of such conclusions. Adapted from Mason (2015). 

Factor Conclusions Evidence Quality 

Seed availability Mast years very important, in British Sitka spruce 

stands happening every 4-5 years 

Good-Moderate 

Germination 

conditions 

Favourable seedbed conditions: moist soils with 

needle litter or light moss cover 

Moderate-Poor 

Vegetation 

competition 

Avoid fertile sites or competition from ericaceous 

vegetation 

Moderate 

Understorey 

microclimate 

Retain some canopy cover to limit frost damage but 

provide adequate light 

Moderate 

Light requirements for 

growth 

At least 20% of full light, plus an overstorey with 

basal area of 30 m2/ha and reduced tree density 

Good 

Browsing pressure Keep deer population below 5 animals per 100 ha Moderate 

 

3.2 Regeneration occurrence 

For the occurrence of regeneration, seed availability is undoubtedly crucial. Sitka spruce seeds, 

like those of most temperate forest tree species, have a low survival rate in the forest soil and 

do not produce a viable seed bank. Sitka spruce in the UK starts to have a good seed crop at 

25-35 years, after which the seed production increases with age and can reach high levels 

already at 35-40 years, depending also on the stand density (Nixon & Worrell 1999). Years of 

heavy cone production tend to be synchronised amongst trees and to happen at periodic 

intervals called mast years, that in the UK can happen every 3-6 years (Clarke 1992; Mason 

2015). 

Seed germination is then highly dependent on the seedbed characteristics. Nixon & Worrell 

(1999) indicated as the most favourable seedbed soils with low fertility (because they have less 

competing vegetation), with the presence of adequate moisture (neither too dry nor too wet), 

and without too much brash or needle litter (considered unfavourable due to low water 

retention). However, von Ow et al. (1996) found litter favourable to germination in Ireland, 

maybe because the very wet conditions addressed in their study improved the water retention. 

Low-growing mosses are generally considered favourable for regeneration (Mason 2015) due 

to good water retention, while taller mosses seemed to have a negative effect likely because 

they prevent the seedlings’ root from reaching the mineral soil (von Ow  et al. 1996). In the 
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coastal forests of North America, decayed logs are considered the most favourable seedbed for 

Sitka spruce seedlings (Harmon & Franklin 1989; Taylor 1990). 

Stand structure can affect regeneration through different mechanisms. A certain level of 

overstorey cover was found to be beneficial for Sitka spruce regeneration both in its natural 

range (Greene et al. 1999; Burton 2016) and in the UK (Mason, Edwards & Hale 2004). The 

positive effect is likely to be due to the control of the growth of competing ground vegetation 

(Nixon & Worrell 1999), and the influence on the microsite temperature and moisture 

(Fairbairn & Neustein 1970). However, Mason (2015) found only one work (by Sellars 2005) 

studying how the understorey temperature and wind speed change under different Sitka spruce 

stand densities. On the other hand, the presence of overstorey trees reduces the light availability 

for seedlings. 

Thinning interventions in shelterwood systems have been shown to have a positive effect by 

creating a favourable light environment. Studies carried out both in the UK and in North 

America generally compared a few stands with different stand densities. They generally found 

more Sitka spruce seedlings in the stands with lower densities, which were either more recently 

or more heavily thinned (Deal & Farr 1994; Page et al. 2001; Herd 2003; Glendinning 2014), 

but differences were not always observed between silvicultural treatments (Bertin et al. 2011). 

Nixon & Worrell (1999) observed that even if well-thinned according to the standard practices 

indicated in the UK yield tables (Edwards & Christie, 1982), Sitka spruce even-aged stands 

reaching maturity may have light levels under canopy cover not favourable for regeneration. 

Most of the studies in the UK considered stands originated from artificial planting. 

Regeneration density in such pure Sitka spruce stands after thinning varied from 4,500 to 

70,000 seedlings per ha, but when small germinants under 20 cm height were considered the 

density could go up 270,000 seedlings per ha (Page et al. 2001; Herd 2003; Bertin et al. 2011; 

Glendinning 2014). In contrast, studies in North America focused on natural mixtures of Sitka 

spruce and western hemlock, and Sitka spruce regeneration occurred with lower densities 

(1,900-22,000 seedlings per ha) (Deal & Farr 1994). Mason et al. (2011) found even fewer 

Sitka spruce seedlings regenerating under Scottish larch stands (280-560 seedlings per ha), 

likely due to the lower seed availability and different ground vegetation conditions. When 

comparing local overstorey variables to seedling density, contrasting results were found: either 

no relationship was observed (Glendinning 2014), or only a weak positive correlation with 

basal area (Page et al. 2001), or a weak negative correlation with stems per ha (Deal & Farr 

1994). 
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After a group felling, natural regeneration in gaps was observed with higher densities than in 

the shelterwood systems, with values more similar to those found after clearfelling (20,000-

350,000 seedlings/ha) (McNeill & Thompson 1982; Page & Cameron 2006). Generally, the 

seedling density was higher in the northern side of the gap likely due to the higher light 

availability. Malcolm et al. (2001) suggested keeping the ratio of gap diameter to height of 

surrounding trees between 1 and 2 to obtain successful natural regeneration in Sitka spruce 

stands, but without establishing any quantitative relationship.  

Comeau et al. (2010) investigated the relationship between understorey light and regeneration 

presence in many Sitka spruce plantations across different stands and treatments in the UK, 

assessing both areas where regeneration was present and where it was absent. The authors 

suggested a minimum threshold of 30% canopy gap fraction (the proportion of the overtopping 

hemisphere that is sky, calculated in a 90˚ overhead cone) necessary for Sitka spruce 

regeneration to establish and survive. 

In order to overcome the problem of the paucity of regeneration data, Kerr et al. (2011a) 

constructed a Decision Support System (DSS) based on a combination of published literature 

and their own silvicultural experience: REGGIE, or REGeneration GuIdancE. The DDS 

estimates the “probability that successful natural regeneration will be achieved during a five 

year period” (considered as a density of 2,500 seedlings per hectare taller than 50 cm). A further 

analysis of the silvicultural experts’ opinions led to the preparation of an improved DSS, 

described in Kerr et al. (2011b), that is based on (with decreasing order of importance): (i) 

density of existing regeneration; (ii) percentage of ground that is bare or covered by mosses; 

(iii) level of coning; (iv) time since last thinning. REGGIE has a strong biological validity and 

an ease of application that makes it very useful for real practice by any end user. On the other 

hand, it has never been validated and because of the importance given to advance regeneration, 

it relies on a field survey to estimate those variables; in addition, it does not give indications of 

how to obtain the initial stage of regeneration. 

3.3 Early growth  

Consistently with general plant biology, in most of the studies carried out in stands managed 

using shelterwood systems, height growth was reduced in denser stands, which were the ones 

with lower light availability on the forest floor (Page et al. 2001; Mason et al. 2011; Black 

2013). However, only weak negative relationships were found between height growth and 

simple stand parameters such as stand basal area, and few situations were considered. Stronger 

relationships were found by Herd (2003) and Bertin et al. (2011) using light availability as 
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predictor for height growth, but again they considered only a few isolated cases or a few 

seedling size classes. When both the height and radial growth were analysed, sometimes 

contrasting results were found. In different controlled experiment (Brix 1972; Mason et al. 

2004; Bertin 2009), light availability significantly increased diameter and/or biomass growth, 

but not height growth, while in another (Fairbairn & Neustein 1970) both diameter and height 

growth increased with higher light availability. Hale et al. (2004) ran a seedling biomass 

growth model to simulate Sitka spruce seedlings growing under different levels of below-

canopy radiation. They found out that seedlings under a 20% relative light intensity (compared 

to full light) experienced a growth about half of that under full sunlight, and thus defined this 

light level as the minimum for good growth. Studies of regeneration in gaps have focused on 

the relationship between the gap size and seedling growth, comparing also the different areas 

within the gap. Both McNeill & Thompson (1982) and Page & Cameron (2006), found that 

seedlings of Sitka spruce grew taller in the central areas of the gap than in the shaded edge 

areas. In North America, Taylor (1990) observed that the radial growth rate of Sitka spruce 

increased with larger gaps, suggesting a minimum gap-size of 0.1 ha for good growth. 

Mason (2015) in his review concluded that there is good evidence that Sitka spruce 

regeneration under canopy cover requires at least 20-25% of full light for adequate growth, and 

that such a light regime can be obtained with a basal area less than 30 m2 ha-1 and stem density 

less than 460 trees ha-1 (according to Hale et al. 2009). As a comparison in Canada, Carter & 

Klinka (1992) found that Douglas fir reached a growth of about half that under full sunlight at 

values of 20-40% of full light, and western hemlock reached this level at 10-20% of full light 

(variable with soil moisture). Findings were similar for both height and diameter growth. Still 

in Canada, Wright et al. (1998), found that western hemlock reached about half of its growth 

under full sunlight at around 20% of full light for diameter growth and already at 5% of full 

light for height growth. Sitka spruce was considered by Minore (1979) to be more shade-

tolerant than Douglas fir in its native habitat, while in the UK the reverse is reported by 

Malcolm et al. (2001) and Mason et al. (2004) consider them to have almost similar light 

requirements. Western hemlock was considered undoubtedly the most shade-tolerant species 

by all those authors. 

3.4 Regeneration mortality  

Few studies have attempted to measure the seedling survival rate, particularly past the 

establishment phase. As previously mentioned, in shelterwood systems a certain level of cover 

may be beneficial, and mortality was sometimes found to be higher in both very dense and 
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open conditions than in medium conditions of cover (Fairbairn & Neustein 1970; Mason et al. 

2004). In contrast, Herd (2003) found that mortality increased significantly with stand density. 

Regarding studies of regeneration after group felling, McNeill & Thompson (1982) found 

uneven mortality across different positions in the gaps, and that the survival rate was not related 

to the growth rate (gap areas where the seedlings grew more were not the same as those where 

they survived best). Competing ground vegetation and drought were the major causes of death, 

both varying according to the position in the gap due to different light and solar energy levels. 

Mortality by browsing has been studied only a few times, with low observed levels in the field 

(McNeill & Thompson 1982; Page & Cameron 2006; Mason et al. 2011). Nixon & Worrell 

(1999) state that Sitka spruce is a relatively unpalatable species for deer, but it can be still 

damaged heavily. Butler (2016) carried out a growth-mortality study for Sitka spruce seedlings 

in one stand. He measured for both alive and recently deceased seedlings their relative height 

and diameter growth (respectively to their total height and diameter), averaged over their last 

three vegetative seasons. He found that the recently deceased seedlings had relative height 

growth of 15% and a relative diameter growth of 12%, significantly lower than for the alive 

seedlings. However, the study was carried out in only one study site and limited regarding the 

seedling size range and replicates. 

Stokes, Kerr & Ireland (2009) studied harvesting damage on Sitka spruce regeneration, after 

thinning of mature crop trees in two Sitka spruce dominated stands. They found 49%-65% of 

regenerating trees taller than 200 cm with signs of heavy damage, while 45%-65% of the 

smaller trees were lost. Both the harvesting methods used (motor-manual felling and harvester 

felling) resulted in heavy losses and heavy damage, which happened mostly in the extraction 

racks. However, they found that despite the high losses, seedling density was likely to be 

sufficient to restock all sites.  

3.5 Conclusions  

In the UK, continuous cover forestry is still not widely developed and most of the examples 

available for Sitka spruce are from traditional artificially-planted stands at different stages of 

transformation towards more complex structures. Most of the studies carried out focused on 

comparing a few stands managed with different silvicultural treatments to provide broad 

guidance for forest managers. The situations covered were limited and may be different from 

the future and possibly more irregular forest structures. For these reasons, and considering also 

the literature review carried in the previous Chapter, I defined the following framework for the 

experimental work of this Thesis. 
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For regeneration occurrence, I selected the two-stage approach as described for the original 

MOSES. I decided to employ empirical methods to establish meaningful quantitative 

relationships between Sitka spruce regeneration occurrence and density and the wide range of 

stand and site characteristics found to be affecting those processes. Existing examples of 

predictive models in the UK, based on only few stand or management characteristics, have had 

little success in describing the complex regeneration processes. It is thus important to include 

the various key factors identified in this review (such as a combination of variables addressing 

seed availability, germination conditions, micro-climate and competition from the overstorey). 

For the regeneration occurrence, plots or stands where regeneration was not present were either 

not selected or not highlighted in most of the reviewed studies. The only example was from 

Comeau (2010), who defined a threshold in the overstorey gap fraction necessary for 

regeneration by comparing areas with presence and absence of regeneration. A regeneration 

occurrence model must include in its calibration situations with the absence of seedlings, 

otherwise it will be critically flawed (Miina et al. 2006).  

Better results are found in literature for regeneration early growth modelling when a basic 

ecological variable such as light availability was considered as the main predictor, instead of 

simple stand or management characteristics. Thus, I decided to adopt a more mechanistic 

approach by investigating light-growth functions. I can calibrate such functions by sampling 

regeneration present in the few existing forest structures, and they will still have a wider range 

of application in the potentially-different future structures. For the time being, the existing 

model of light availability prepared for Sitka spruce stands in the UK by Hale et al. (2009) can 

be used as input, but for the future a light model with a wider range of use will also be required. 

The contrasting results sometimes found between height and diameter or biomass growth 

suggest the need to further study more growth parameters at the same time. 

Regarding mortality, due to the lack of existing data, only the growth-mortality approach would 

have been possible, expanding for example on the work from Butler (2016). However, there 

was not enough time or resources to carry out this on the present study. 
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4 Predicting Sitka spruce natural 

regeneration presence and density 

In this chapter, I investigate a model for estimating the likelihood of Sitka spruce regeneration 

presence, and one for simulating the seedling density in the plots with regeneration. I used for 

calibration a dataset from an existing survey. I tested the models’ performances first by a cross-

validation process, and then by an independent validation with newly collected plots. 

4.1 Introduction 

The aim of the work described in this chapter was to prepare predictive empirical models for 

the presence and density of Sitka spruce regeneration under canopy cover, by investigating as 

main predictors the factors previously identified (Chapter 3) as affecting such processes. 

In the absence of studies following the development of such regeneration over time, the dataset 

generated by Kerr et al. (2011) is the most comprehensive regeneration survey of coniferous 

forests available in the UK to date, covering a wide range of forest structures and geographical 

areas. They recorded a wide range of variables known to be associated with Sitka spruce 

regeneration occurrence, from stand characteristics to site characteristics and management 

information. I thus decided to use this dataset for calibration. However, there were some 

limitations. The dataset was produced by a one-off sampling, including neither detailed 

information on the timing of the regeneration establishment nor on its size. A model calibrated 

on such data could not have a clear temporal horizon for past regeneration events whereas, for 

example, the MOSES regeneration tool was calibrated with seedlings that were no more than 

five years old (Hasenauer & Kindermann 2006). The age of the regenerating trees could have 

been highly variable, and so could the biological processes they had been through. For example, 

if seedlings had just recently germinated, they had undergone only the germination and 

establishment phases, but for older seedlings the long-term survival processes could have been 

important as well.  

The only possible approach using such a dataset was to model the regeneration “presence”, and 

not the regeneration “occurrence”, the latter defined as the seedling establishment within a time 

interval. I calibrated models that could generate a regeneration tally like one produced from a 

field survey, for stands which do not have this information. I applied a two-stage approach like 

the one described in Chapters 2 and 3. First, I modelled the likelihood of Sitka spruce seedling 
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presence, then its density. For each stage I identified the significant variables within the wide 

range of those included in the original survey. I could not prepare models predicting the size of 

the established regeneration, as described for example by Ferguson et al. (1986), due to the lack 

of this information in the dataset. I considered plots as modelling units to allow the predictions 

to be sensitive to within-stand variations, as recommended by Miina et al. (2006). The models 

prepared were then validated with an independent dataset. 

4.2 Methodology 

4.2.1 Calibration dataset  

Kerr et al. (2011) carried out multi-level sampling during 2008/09 in 129 stands of coniferous 

species located in 38 forests across most of Great Britain. From this, I extracted information on 

34 artificially–planted, Sitka-spruce-dominated stands, located in 13 forests evenly distributed 

across most areas of Great Britain where Sitka spruce is present (see Figure 4.1). In the original 

survey, ten 0.01 ha circular plots (radius 5.6 m) were laid out in each stand, recording diameter 

at breast height (DBH, measured at 1.30 m above ground) and species for all trees more than 7 

cm DBH. In a 2 m x 2 m square located at the centre of the circular plot, the number and species 

of all trees less than 7 cm DBH were recorded, differentiating between seedlings (height less 

than 1.30 m) and saplings (height more than 1.30 m). From the 340 plots retrieved, 138 showed 

at least one Sitka spruce seedling or sapling (40% of the total). I considered those plots to have 

presence of regeneration. Since saplings occurred in only four plots, in which seedlings were 

also present, I decided not to differentiate between them. From now on in this chapter, I will 

refer to all regenerating trees as seedlings. The main characteristics of the calibration dataset 

are indicated in Table 4.1. 
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Figure 4.1. Location of study areas and number of stands sampled in each 

 

Table 4.1. Details of calibration dataset. Values at stand (Age, Quadratic Mean Diameter, Soil nutrient regime, Time after last 

thinning and Deer Impact Index) and plot level (the remaining parameters). 

Variable Min. 1st Qu. Mean 3rd Qu. Max. 

Age (years) 32 39 54.5 64 85 

Basal area (m2 ha-1) 1.6 43.6 58.0 70.0 196.0 

Stems per hectare (n ha-1) 0 400 700 900 2,200 

Quadratic mean diameter (cm) 17.3 21.1 27.9 31.9 51.9 

Maximum diameter breast height (cm) 0 36.0 45.3 52.0 90.0 

Gap fraction (%) 1.1 11.6 19.2 24.5 79.5 

Global Site Factor 0.02 0.16 0.21 0.26 0.55 

Bare ground (%) 0 0 1.2 0 85.0 

Mosses (%) 0 5.0 41.6 80.0 95.0 

Seedling density (ha-1) 0 0 20,780 10,000 450,000 

Soil Nutrient Regime  Very 

Rich 

Rich Medium Poor Very poor 

Plots (n) 10 10 130 180 10 

Time after last thinning Class 1 

(1-5 years) 

Class 2 

(6-10 years) 

Class 3 

(10+ years) 

Plots (n) 170 90 80 

Deer Impact Index Low Moderate High 

Plots (n) 10 290 40 
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Age of the plantation in years (from now on simply Age), Soil Nutrient Regime (SNR), time 

after last thinning, and Deer Impact Index (DII) were recorded at stand level. I calculated from 

the original inventory the plot level values for basal area (BA), stems per ha (SPH), and the 

maximum DBH (maxDBH). Then, from those values I calculated the quadratic mean diameter 

(QMD, the diameter of a tree considered as having the average basal area) at stand level; the 

canopy gap fraction (GF) at plot level, using the relationship established from Comeau, Kerr & 

Hale (2010); and the Global Site Factor (GSF) at plot level, an indication of the canopy light 

transmittance, using the relationship established from (Hale et al. 2009).  

As an indication of seed availability, I investigated the use of Age and two possible alternatives.   

Hasenauer & Kindermann (2006) for MOSES used maxDBH (at plot level) to represent a 

mother-tree effect, while Schweiger and Sterba (1997) used QMD (at stand level) as a substitute 

for age; both were positively correlated with regeneration occurrence in mixed-species, uneven-

aged forests. However, in this dataset both maxDBH and QMD were negatively correlated with 

regeneration presence (preliminary results not shown). For this reason, maxDBH was 

considered as a possible indicator of local overstorey competition (see later) while QMD was 

discarded.  

The SNR was estimated by the original field surveyor from analysis of the ground vegetation 

following the Ecological Site Classification criteria (Pyatt, Ray & Fletcher 2001). Most of the 

stands were located on sites with either medium or poor SNR (respectively 38% and 53% of 

the total plots). Those two classes did not show a significant difference from each other in terms 

of regeneration presence frequency (Fisher’s exact test, two-sided: p=0.556, n=310), and only 

9% of the plots were in other SNR classes, so I excluded this factor from further analysis. The 

SNR class indirectly influences regeneration due to its effect on ground vegetation, as described 

previously. Since the dataset included for the 2 m x 2 m plots the percentage of ground covered 

by different classes of vegetation, I decided to use as candidate variables the favourable ground 

cover classes of Mosses and Bare Ground, instead of SNR, consistent with the model prepared 

by Kerr et al. (2012). 

I considered the plot-level stand density measures of BA, SPH and maxDBH as a negative 

proxy for the light regime under the forest cover (higher stand density, lower light level) and 

so expected to be negatively correlated with regeneration presence. On the other hand, both GF 

and GSF are a more direct indication the light regime under the forest cover, so I expected them 

to be positively correlated with regeneration presence. The time since the last thinning was 

estimated for each stand using both historical records and evidence on the ground; the expected 
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effect was a negative correlation between the time since the intervention and the likelihood of 

regeneration. I divided the stands in the present study into three different Thinning Classes (TC) 

as in Kerr et al. (2011): TC1, thinned in the last 1-5 years; TC2, thinned 6-10 years before; 

TC3, thinned more than 10 years before or never. I used discrete classes since there was often 

an uncertainty in the precise timing of the thinning. In some cases, it was observed that a 

thinning was carried out only in a fraction of the stand. Since I could not identify which specific 

plots were affected, I assigned an approximate thinning class to the whole stand with a 

subjective decision (for example, when only half of the stand was reported to be affected by a 

recent thinning as in TC1, and the rest by none, a TC2 was assigned to all the plots). I considered 

this variable as numeric. 

The Deer Impact Index (DII) was visually estimated as low (no browsing observed), moderate 

(browsing damage on up to 25% of the regeneration) and high (browsing damage on more than 

25% of the regeneration). Because of the unbalanced distribution (see Table 4.1) and the lack 

of significant differences in regeneration presence frequency between the moderate and high 

impact classes (Fisher’s exact test, two-sided: p=0.611, n=330), this factor was discarded from 

further analysis.  

Additionally, I retrieved stand-level geographical variables from topographic maps, namely 

northing, easting, elevation and aspect, and stand-level climatic variables from the Forestry 

Commission’s decision support system ESC-DSS (Pyatt, Ray & Fletcher 2001), namely 

accumulated temperature above 5 ˚C, moisture deficit, Conrad continentality index and total 

summer and winter rainfall. Preliminary analysis (not shown) revealed that none of those 

variables was significant when included in a model and they were all discarded.  

The density of Sitka spruce seedlings per plot was very different between the Thinning Classes, 

as shown in Figure 4.2, where only values from the plots with presence of regeneration are 

presented. Almost 97% of the seedlings in the study stands were Sitka spruce and different 

species were sporadic (present in only 2% of the plots); for simplicity the latter was ignored 

during the analysis. At stand level, considering all the plots with or without regeneration, there 

were on average of 20,740 seedlings per ha, with a minimum of 0 and a maximum of 250,000. 
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Figure 4.2. Frequency of seedlings per hectare in different Thinning Classes (TC1, TC2 and TC3), only plots with presence of 

regeneration, for the calibration dataset. 

4.2.2 Independent validation dataset 

For independent validation, I assessed in 2016 four Sitka spruce dominated stands in Clocaenog 

forest, Denbighshire, Wales (53° 04′ N, 3° 25′ W, 390-430 m altitude), and four in Kielder 

forest, Northumberland, England (55° 10′ N, 2° 29′ W, 200-250 m altitude). Both forests were 

originally artificial plantations, but have been managed in recent years according to different 

CCF principles, using silvicultural systems ranging from irregular shelterwood to group 

selection. All stands belonged to Thinning Class 2, but most of them were thinned more 

frequently or with higher intensity in the past than stands in the calibration dataset. The situation 

in all stands was generally a lower tree density than under the traditional management (as 

defined by Edwards & Christie 1981), leading to a larger amount of natural regeneration. In 

each stand, I laid out ten plots with a random-systematic approach. I drew random non-parallel 

transects on a desktop map and placed on them evenly spaced plots, later located in the field 

using a GPS receiver. The distance between plots varied with the size of the stand. I followed 

the same data collection protocol used for the calibration dataset and collected in this way 78 

plots. The main characteristics of this dataset are shown in Table 4.2 for a comparison with the 

calibration dataset. SNR, DII and QMD were not considered, as in the calibration dataset. 

Again, I considered all seedlings and saplings as “seedlings”, and a total of 62 plots (about 80% 

of the total) had at least one of these. At stand level, considering all the plots with or without 
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regeneration, there were on average 46,940 seedlings per ha, with a minimum of 4,500 and a 

maximum of 171,800. 

Table 4.2. Details of validation dataset. Values at stand (Age and Time after last thinning) and plot level (the remaining 

parameters). 

Variable Min. 1st Qu. Mean 3rd Qu. Max. 

Age (years) 60 65 69 77 80 

Basal area (m2 ha-1) 7.6 28.8 41.4 53.8 107.2 

Stems per hectare (n ha-1) 50 200 284 400 1,100 

Maximum diameter at breast height (cm) 35 44 50.6 55.8 85 

Gap fraction 4.8 23.1 32.9 39.6 66.0 

Global site factor 0.08 0.22 0.28 0.34 0.49 

Bare ground (%) 0 0 0.1 0 4 

Mosses (%) 0 70.6 82.3 99.7 100 

Seedling density (ha-1) 0 2,500 48,460 52,500 417,500 

Time after last thinning Class 1 

(1-5 years) 

Class 2 

(6-10 years) 

Class 3 

(10+ years) 

Plots (n) 0 78 0 

 

 

Figure 4.3. Frequency of seedlings per hectare, only plots with presence of regeneration, for the validation dataset. 

4.2.3 Statistical analysis 

4.2.3.1 Regeneration presence 

I carried out all the analyses using the R Statistical Software (R Core Team 2017). To estimate 

the probability of regeneration presence, I used a Generalized Linear Mixed Model (GLMM) 

fit by maximum likelihood (Laplace Approximation) with Binomial function and Logit link, 

from the package lme4 (Bates et al. 2014). Possible autocorrelation effects were considered 
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using the stand and forest levels as random “nesting” effects. The candidate fixed effects for 

the model were Age, BA, SPH, GF, GSF, maxDBH, Thinning Class, Mosses and Bare Ground. 

I included a quadratic term for BA, SPH, and maxDBH to check if the relationship between 

stand density and regeneration was non-linear, as a certain level of canopy cover can be 

beneficial to natural regeneration. Then I removed non-significant parameters using a step-wise 

approach aimed at reducing the Akaike Information Criterion (AIC) to select the final model 

(Yamashita, Yamashita & Kamimura 2007). I then re-calibrated the selected model structure 

on standardized variables. Standardization means rescaling the variables so that their new mean 

is equal to zero and the standard deviation to 1. This process transforms all the variables with 

different orders of magnitude to a similar scale, still maintaining their variability, and so also 

the magnitude of the model coefficients becomes directly comparable. 

After I identified the best model, I assessed its accuracy with a cross-validation technique 

(Bennett et al. 2013). I re-calibrated the coefficients of the best model structure by removing 

all the plots belonging to one stand from the calibration dataset. Then I validated it on the plots 

belonging to the left-out stand and calculated their likelihood of regeneration presence. I 

repeated the process 34 times, once for each stand. After I estimated in such a way the 

likelihood of regeneration for each plot, to determine which ones the model would predict to 

have regeneration, I used two methods. 

In the first method, I defined a cut-off likelihood value using the Receiver Operator 

Characteristics (ROC) curve method with the package pROC (Robin et al. 2011). I assigned 

the presence of regeneration to all plots with a likelihood above the cut-off, and otherwise the 

absence of regeneration. I estimated this cut-off as the likelihood value that would maximise 

the sum of sensitivity (the proportion of correctly identified positive plots, that is in this case 

with presence of regeneration) and specificity (the proportion of correctly identified negatives, 

that is with absence of regeneration). Once each plot was assigned its simulated status, I built 

a contingency table to compare the predictions with the observations. In the second method, I 

used a stochastic approach (e.g. as used in MOSES). I generated for each plot a pseudo-random 

number between 0 and 1. If that number was lower than the regeneration likelihood, the plot 

was considered to have regeneration; other plots were considered to be without regeneration. I 

ran the simulation 10,000 times, averaged the results, and built another contingency table. For 

both methods, I analysed the results also at stand level in the following way. For each stand, I 

calculated the difference between the total of all simulated regeneration plots minus the total 

observed ones. Then I checked the field notes to subjectively investigate why predictions were 
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in error for the stands with the worst results (as in Ferguson et al. 1986). For this analysis, I did 

not consider it important if individual plots were wrongly simulated if the overall predictions 

at stand level were accurate. 

4.2.3.2 Regeneration density 

I used two approaches. First, I investigated GLMMs using the same random and fixed effects 

as described above, using the sub-dataset for plots with presence of regeneration (n = 138). A 

Gamma distribution with log-link was the function best approximating the seedling 

distribution. Preliminary models based on all plots with presence of regeneration (n = 138) 

could not converge regardless of the combination of variables used (results not shown). The 

importance of the Thinning Class was evident from the sharp difference in seedling distribution 

amongst the classes, so I decided to calibrate separate models for TC1 and TC 2 & 3 (pooled 

together due to the lower number of observations). For those two subsets of data, I prepared 

GLMMs using the same random and fixed effects as described above (excluding obviously 

Thinning Class). Then I removed non-significant parameters using a step-wise approach aimed 

at reducing the AIC. I evaluated the accuracy of the resulting best GLMMs through comparing 

predicted and observed values at plot and stand level.  

For the second approach, I simulated the seedling density simply by generating random 

numbers that approximated the observed density distribution for each Thinning Class. This 

method in its simpler form is as old as the model JABOWA (Botkin et al. 1972), and suggested 

with more refinement by PROGNOSIS (Ferguson & Carlson 1993; Schweiger & Sterba 1997) 

and MOSES (Hasenauer & Kindermann 2006). I fitted Weibull distribution functions to 

simulate the distribution pattern of the seedlings in each Thinning Class group using the 

package MASS (Venables & Ripley 2002). I used the values of seedlings per ha observed at 

plot level transformed to units of 1,000 for simplifying the calculations. For validation, in each 

plot observed with regeneration, I generated a random number 10,000 times from the resulting 

functions and averaged the results. I then compared the observations and simulations averaged 

at stand level. I did not compare results at plot level analysis since the random generation of 

numbers makes this analysis impossible. 

4.2.3.3 Independent validation 

With the resulting version of the model for regeneration presence as above, calibrated on the 

full dataset, I calculated the likelihood of regeneration presence in the independent validation 

plots. Then, I again used the same two methods as before to assign the presence of regeneration. 



30 

 

First, I considered the same cut-off likelihood value previously determined with the ROC 

method and I assigned the status of presence of regeneration to all plots above that threshold. 

Second, I used the stochastic method to randomly determine the presence or absence of 

regeneration. I built contingency tables for both methods for the results at plot level, and 

examined the performance at stand level by comparing the total numbers of simulated and 

observed plots with regeneration, with the same procedures described above for the cross-

validation. 

Then, I used both seedling density modelling methods prepared with the calibration dataset to 

simulate the density in the plots of the independent datasets with observed presence of 

regeneration. The simulated seedling density was compared with the observed values. 

4.3 Results 

4.3.1 Regeneration presence 

The model structure after the step-wise AIC reduction process is shown in Model 4.1, with 

more details of the coefficients shown in Table 4.3. 

Model 4.1: pregen = 
1

1+𝑒2.693+1.864∗𝑇𝐶−0.087∗𝐴𝑔𝑒−0.020∗𝑀𝑜𝑠𝑠𝑒𝑠+1.569∗(𝐵𝐴/100)^2
 

The model did not converge when the forest-level random effect was included, so I maintained 

only the stand-level effect. The effect of bare ground was not significant, and it had a weak 

negative relationship with regeneration, contrary to the hypothesis. Only the quadratic term for 

BA remained in the best model structure amongst the stand density indicators. Note that values 

of BA were divided by 100 since they were on a different scale from the other variables. 

Table 4.3. Details of coefficients of Model 4.1, estimating the likelihood of Sitka spruce regeneration presence at plot-level. 

Fixed Effects Value St. Err p-value 

(Intercept) -2.693 1.703 0.114 

Thinning class -1.864 0.556 0.001 

Age 0.087 0.030 0.003 

Mosses 0.020 0.007 0.005 

(Basal area/100)2 -1.569 0.886 0.076 

Random Effects 

(intercept) 
Variance 

Standard 

Deviation 

Stand 3.726 1.93 

 

Figure 4.4 displays how the probability of regeneration changes according to variation in the 

model variables. Using Model (4.1), I calculated the likelihood of regeneration presence for 
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new virtual datasets. In Figure 4.3 a, I used a dataset where I allowed only TC to vary (from 1 

to 3) while the other fixed effects were kept at the mean values of the calibration dataset (as 

seen in Table 4.1). In Figure 4.3 b, c and d, I allowed respectively Age, BA and Mosses to vary 

across the full range observed in the calibration dataset, while I kept the other fixed effects at 

their means except for TC. I repeated the analysis changing the Thinning Class, represented by 

the different lines (decreasing from 1 to 3 from top to bottom). Generally, from TC 1 to 2 there 

was a stronger decrease in regeneration likelihood than from TC 2 to 3. For TC 1, regeneration 

probability decreases more sharply for Age less than 60 years and BA more than 60 m2 ha-1. 

For TC 2, only in old stands (more than 70 years old) was the probability of regeneration above 

0.5, while for TC 3 the likelihood was always low. The effect of mosses on regeneration 

likelihood was more linear. 

 

Figure 4.4. Regeneration presence likelihood (pregen) as a function of the model variables. In each graph, the likelihood was 

estimated with only one variable varying across all its range (plotted on the x-axis), while the others were kept at the calibration 

population mean. Multiple lines indicate the analysis used different values of Thinning Class 
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Figure 4.5 shows the coefficient values for the model shown in Equation (4.1) when it was 

calibrated on the standardized variables. TC had the highest coefficient (i.e most influential) in 

absolute terms (1.522), followed by Age (1.255), Mosses (0.701) and BA (0.533). 

  

Figure 4.5. Coefficient values after standardization of the model variables (BA = Basal area, TC= Thinning class). The dot 

corresponds to the mean values, the wider blue line to the 90% confidence interval, the narrower blue line to the 95% 

confidence interval 

After the cross-validation analysis, with the ROC method, the cut-off likelihood value for the 

regeneration presence probability was 0.3. Figure 4.6 shows the ROC curve, that is all the 

combinations of specificity and sensitivity values obtained by using all the possible cut-off 

values. The chosen cut-off was the one that maximised their sum and corresponded to the point 

on the curve closest to the upper left corner, which would be to the ideal case of both specificity 

and sensitivity equal to 1. For the ROC method, the plots that had an estimated likelihood above 

0.3 were considered by the model to have presence of regeneration. For the stochastic method, 

the pseudo-random generated numbers were checked with the likelihood values for each plot. 

Table 4.4 shows the contingency table of using both methods. For the ROC method, the plots 

correctly predicted (true positives plus true negatives) amounted to 73% of the total. The model 

estimated with similar accuracy plots with or without presence of regeneration (respectively 

76% and 71%). For the stochastic method, there was a markedly lower accuracy in sensitivity 

(55%) and only a slightly better specificity (74%), bringing the overall accuracy lower than in 

the ROC method (66%). 
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Figure 4.6. Receiver Operator Characteristics (ROC) curve for the cross-validation method. The dot represents the point with 

the highest sum of the specificity and sensitivity values (presented between parentheses) and shows the corresponding cut-off 

likelihood value. 

Table 4.4. Contingency tables for the cross-validation results using the Response Operator Curve (ROC) method and stochastic 

method. YES indicates the presence of regeneration, NO the absence. 

ROC method 
Predictions Partial 

YES NO Total Accuracy 

Observations 

YES 105 33 138 0.76 

NO 58 144 202 0.71 

Total 162 178 340  

 Overall accuracy 0.73 

 ` 

Stochastic method 
Predictions Partial 

YES NO Total accuracy 

Observations 

YES 76 62 138 0.55 

NO 52 150 202 0.74 

Total 128 212 340  

 Overall accuracy 0.66 

 

The results aggregated at stand level for both methods are shown in Figure 4.7. Stands with 

negative values had fewer simulated regenerating plots than observed, and vice versa. For the 

ROC method, 21 stands out of 34 had a difference between total observed and predicted 

regeneration plots equal to or lower than 20% (11 with no difference), while five had a 
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difference equal to or larger than 50% (worse than chance). For the stochastic method, very 

similar results were obtained: 22 stands out of 34 had a difference between total observed and 

predicted regeneration plots equal to or lower than 20% (10 with no difference), while five had 

a difference equal to or larger than 50%.  

The worst simulated stands were almost the same stands in both methods. The field notes 

provided additional insights about them, showing that they were generally the ones subjected 

to heterogeneous thinning interventions within the same stand, suggesting that the TC class was 

inaccurate. In stand with fewer simulated regenerating plots than observed, it was also observed 

that windblow events had opened gaps comparable to a thinning, or that there was precocious 

cone production in young stands. In stands with more simulated regenerating plots than 

observed, it was noted that in stands favourable for regeneration according to all the model 

variables, the limiting factors were likely to be: competing ground vegetation; presence of deer 

browsing; and lack of cone production. In the two worst over-simulated stands for both 

methods, the field notes declared that everything seemed suitable for regeneration and its total 

absence was inexplicable for the surveyor too. 
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Figure 4.7. Differences between the total number of simulated and observed plots with regeneration presence at stand level 

for the Response Operator Curve (ROC) method (above) and for the stochastic method (below). Stands with negative 

differences had less simulated regenerating plots than observed, and vice versa. 

4.3.2 Regeneration density 

In the GLMMs calibrated for TC 1 and TC 2 & 3, only the effect of BA was significant, but 

with a positive relationship with seedling density in the former class (TC 1) and a negative 

relationship for the latter group (TC 2 & 3). However, both models showed a very poor fit 

between the simulated and observed density values and they were discarded (results not 

shown). 

The Weibull distributions fitted to seedling density distribution in each TC are described by the 

parameters in Table 4.5. Figure 4.8 shows the comparison between the distribution of simulated 

values of seedlings per ha and the distribution of the observed values, considering all plots with 

regeneration. While the fit was adequate at whole-population level for each Thinning Class, at 
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stand level it did not provide good results: Figure 4.9 shows the comparison of the simulated 

values when aggregated at stand level. Generally, there was a poor correspondence between 

those values: only two stands had a simulated density ± 20% of the observed density. On 

average, the difference between simulated and observed values was 770 seedlings ha-1, but with 

extremes of -177,500 and 59,000 seedlings ha-1. 

Table 4.5. Parameters for the Weibull distributions fitted to seedling density per ha (thousands) 

 Shape Rate 

Thinning Class 1  0.696 52.555 

Thinning Class 2 0.871 14.134 

Thinning Class 3 1.834 4.651 

 

Figure 4.8. Weibull distributions (lines) vs observed number of seedlings per ha at plot level (bars), according to Thinning 

Class (TC). 
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Figure 4.9. Left (a): scatterplot of Weibull simulated and observed seedlings per ha at stand level, plotted on logarithmic 

scales, using the calibration dataset. Right (b): distribution of differences between Weibull simulated and observed seedlings 

per ha at stand level, using the calibration dataset. 

4.3.3 Independent validation 

I used Model 4.1 to calculate the likelihood of regeneration presence in the independent dataset. 

Using the ROC method, I considered regeneration to be present only in the plots with a 

likelihood greater than the same cut-off likelihood value of the cross-validation process (p = 

0.3). The resulting contingency matrix is shown in Table 4.6, together with the results of the 

stochastic method. For the ROC method, while the total accuracy was 82%, this was because 

almost all plots (76 out of 78) were predicted to have regeneration, giving a sensitivity of 100% 

and a specificity of only 12%. For the stochastic method, the overall accuracy was again lower 

than for the ROC method (64%), although there was a slightly more even balance between 

sensitivity and specificity. After aggregating the results at stand level, however, worse results 

were found for the ROC method than for the stochastic method: out of eight stands, respectively 

four for the ROC method and six for the stochastic method had a difference between total 

observed and predicted plot with regeneration equal to or lower than 20%. In both methods, 

two stands had no difference between total observed and predicted plots with regeneration, and 

none had a difference equal to or larger than 50%. 
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Table 4.6. Contingency tables for Independent validation results using the Response Operator Curve (ROC) method and the 

stochastic method. YES indicates the presence of regeneration, NO the absence. 

ROC method 
Predicted Partial 

YES NO Total accuracy 

Observed 

YES 62 0 62 1.00 

NO 14 2 16 0.12 

Total 76 2 78  

 Overall accuracy 0.82 

   

Stochastic method 
Predicted Partial 

YES NO Total accuracy 

Observed 

YES 44 18 62 0.71 

NO 10 6 16 0.39 

Total 54 24 78  

 Overall accuracy 0.64 

 

Regeneration density was then estimated in the plots with observed regeneration presence 

(n=62). Only the Weibull distribution approach was used, with the function previously 

calibrated for Thinning Class 2. The GLMM approach was already deemed too inaccurate. 

After averaging the results, there was no good correspondence between the simulated and 

observed values, and no stands had a simulated density ± 20% of the observed value (see Figure 

4.10). On average, the difference between simulated and observed values was -34,570 seedlings 

ha-1, with extremes of -155,800 and 4,500 seedlings ha-1. 

 

Figure 4.10. Left (a): scatterplot of Weibull simulated and observed seedlings per ha at stand level, plotted on logarithmic 

scales, using the validation dataset. Right (b): distribution of differences between Weibull simulated and observed seedlings 

per ha at stand level, using the validation dataset. 
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4.4 Discussion 

A very important limitation of both models was the lack of data on the regeneration size or age. 

The latter could have been highly variable, and so too the biological processes they had been 

through. For example, if seedlings just recently germinated, they had undergone only the 

germination and establishment phases, but for older seedlings the long-term survival processes 

had been important as well. The stand characteristics at the moment of the regeneration event 

could have been very different from the survey data. Both the regeneration presence and density 

model did not consider the possibility of other tree species germinating and competing with 

Sitka spruce. This would likely be another crucial limitation of the use of these models in mixed 

forest stands resulting from continuous cover forestry practices. Presence of deer browsing, 

although not statistically significant in this analysis, was found in the field notes as a possible 

cause of limiting factor for regeneration in some sites where all the model variables were at a 

beneficial level for regeneration. 

4.4.1 Regeneration presence 

The model was based on the established knowledge of the biological and ecological 

characteristics of Sitka spruce described previously (Chapter 3). The effect of time since the 

last thinning showed the strongest significance in the model, and the largest coefficient after 

standardization. Consistently with Kerr et al. (2012), the model showed that probability of 

regeneration presence is high after an intervention, but it decreases rapidly and there is no 

positive effect after 10 years. If the operations are not repeated, the canopy can revert quickly 

to a closed status and small seedlings die off (Hale 2003). The field notes showed that 

inaccuracies in the thinning regime information, or the presence of windblown gaps not 

considered in the model, were likely causes of the errors in the worst-simulated stands. To 

improve the accuracy, it is necessary for the model to know which plots are affected by a tree 

removal, irrespective of whether it is due to natural mortality or timber extraction. In a 

continuous cover forestry scenario this is likely to be a priority. 

The age of the plantation emerged as the second most important factor. Such a positive effect 

in the artificial plantations of the present study can be explained by the larger seed production 

of older trees, and possibly also by the higher number of gaps that can naturally occur in a 

mature canopy past the self-thinning stage. I tested the use of maximum DBH (at plot level) 

and quadratic mean diameter (at stand level) as possible alternatives to age, but in this research, 

they were both negatively correlated with regeneration presence. For maximum DBH, it is 
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likely that large trees present in the small study plots (5.6 m radius) were shading the ground 

and dispersing their seed outside the plots. Schweiger and Sterba (1997) considered quadratic 

mean diameter to be a compound measure of age, density and site quality, and here it seems 

the density effect was predominant. Sitka spruce is a prolific seeding species (up to 20 million 

seed per ha released under canopy) with an estimated dispersal distance of 60-80 m (von Ow 

et al. 1996; Nixon & Worrell 1999). In pure, even-aged stands seed availability is likely to be 

a factor not associated with the trees present at local level but with the general production at 

stand level, with little spatial variation (Malcolm et al. 2001). This may change in mixed-

species, uneven-aged stands. In those situations, especially since age will not anymore be a 

suitable measure to describe the stand correctly, better studies on the role of mother trees and 

seed availability will be necessary. After checking the field notes, cone production that was 

exceptionally higher or lower than expected for that age of stand was a possible cause of error 

in the worst-simulated stands, suggesting that seed availability is not only controlled by age, 

even in single-species plantations. 

Mosses showed a positive effect on regeneration, consistent with previous findings. A thin layer 

of moss cover is favourable for germination due to their water retention capacity, but heavy 

moss cover can prevent roots from reaching the mineral soil (von Ow et al. 1996). LePage et 

al. (2000) found that the same ground cover can have different effects on regeneration 

according to the overstorey characteristics: for example, the positive effects of moss cover 

decreased with an increase in canopy cover. These various aspects could be the cause of the 

relatively low effect of mosses in the model. The cover of mosses was also strongly and 

negatively correlated with the extent of what were considered negative ground cover classes, 

such as grasses, other herbs and ferns (results not shown). Still, in some stands the combined 

presence of competing ground vegetation and mosses seems to have affected the accuracy of 

the simulation. Further studies may be necessary, considering also the use of more specific 

classes (such as light and heavy mosses, deadwood in various stage of decomposition). 

Increasing competition from the overstorey, expressed here as the quadratic term of basal area, 

influenced the regeneration negatively, although at low overstorey levels the effect was almost 

flat. This seemed to confirm the positive effect of a certain amount of shading. The same levels 

of basal area can be obtained with different numbers of trees, resulting in different canopy 

structures and thus light availability on the ground. When the number of trees is lower for a 

given basal area, there are likely to be more gaps between crowns and significantly more light 

at ground level (Hale et al. 2009). However, it is possible that the number of stems per ha was 
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not significant in the present study because both age and Thinning Class were already partially 

describing the reduced number of trees resulting from natural mortality and anthropic removals.  

None of the topographic and climatic variables tested showed significance. The climatic data 

were interpolations for 10 km grid squares of average climatic data collected during 1960-90. 

They had already been found in another study to lack the precision needed for stand analysis 

(Moore et al. 2009). The under-canopy climate is also generally different from the climate of 

open sites, with a degree of variation according to the stand characteristics (Sellars 2005). 

Significant differences between forest districts were not identified in this study. Foresters have 

not observed regional differences in the occurrence of Sitka spruce natural regeneration across 

the UK (B. Mason, pers. comm.). 

The cross-validation process with the use of the Response Operator Characteristics curve 

showed satisfactory statistical results at plot level: 73% of plots were correctly simulated, with 

similar values for specificity and sensitivity. The stochastic method, such as is employed by 

various models, showed worse results: 66% of total plots correctly simulated, with a larger 

difference between sensitivity and specificity. However, when aggregating the results at stand 

level and considering the difference between the total simulated and total observed plots with 

regeneration, the results were similar between methods: around two-thirds of the stands showed 

an acceptable error (simulated values within ± 20% of observed values). In a non-spatial forest 

growth simulator (sensu Robinson & Ek 2000) such as MOSES_GB, the accuracy at stand level 

may be more important than at plot level since the actual positions of the trees are not known.  

The results of the independent validation with the Response Operator Characteristics curve 

method were not satisfactory since the model predicted regeneration in almost all plots, even if 

the total accuracy was 82%. Using the stochastic method, the total accuracy was worst (64%), 

although there was a slightly better balance between sensitivity and specificity. It is evident 

that the independent dataset is describing a situation largely different from the calibration 

dataset, noting the differences both in the stand variables (Tables 4.1 and 4.2) and the high 

frequency of plots with regeneration presence (about 80% in the independent dataset versus 

40% of the calibration). The independent validation stands surveyed have been managed 

specifically to obtain natural regeneration. All the stands belonged to the Thinning Class 2, but, 

as already mentioned, most of them had been thinned more regularly and with higher intensity 

than those in the calibration dataset. When I aggregated the results at stand level and considered 

the difference between the total simulated and total observed plots with regeneration, the results 

were better for the stochastic method: two-thirds of the stands showed an acceptable error 
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(simulated values within ± 20% of observed values), against half for the Response Operator 

Characteristics curve method. It seems that the cut-off calculated for the cross-validation 

process cannot be applied to the independent dataset, and although the model still presents 

problems in its application to continuous cover forestry situations, the stochastic method gave 

better results in this case. 

4.4.2 Regeneration density 

Due to the many random factors involved, estimating the regeneration density is extremely 

difficult (Ferguson 1996). The models tested here did not give results of acceptable accuracy. 

Generating random numbers from Weibull distributions was, in the present study, the only 

option found and still produced inadequate results both during the auto-validation and 

independent validation. 

Nonetheless, even if the models were deemed too inaccurate, it is interesting to note that the 

effect of basal area was significant and positive in the seedling density model based only on 

plots belonging to Thinning Class 1, suggesting a possible mother-tree positive effect. In the 

model for Thinning Class 2 & 3, basal area had a negative effect, maybe because the already-

lower light availability is aggravated by bigger tree size and the overstorey competition effect 

becomes predominant. Similar results were observed by Page et al. (2001) in Sitka spruce 

forests in the UK.  
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5 Light-growth responses of Sitka 

spruce, Douglas fir and western 

hemlock regeneration 

In this chapter, I prepare light-growth functions for various conifer species’ regeneration, 

analyse their crown plasticity at variable light levels, and compare their differences in shade 

tolerance ranking. 

5.1 Introduction 

Continuous cover forestry (CCF), a range of different silvicultural approaches that involve 

uninterrupted maintenance of forest cover and avoidance of clearcutting (Pommerening & 

Murphy 2004), is becoming increasingly important worldwide (Schütz et al. 2011). Mason et 

al. (1999) indicated the following principles for CCF: management of the forest ecosystem 

rather than just the trees; use of natural processes as the basis for stand management; adaptation 

to site limitations; and creation of a diverse stand structure with a range of species. Amongst 

the consequences of those principles, there is an increasing focus on the use of natural 

regeneration to develop uneven-aged and mixed-species stands (Pommerening & Murphy 

2004).  

Light is considered one of the main factors affecting tree regeneration under forest cover 

(Oliver & Larson 1996; Lieffers et al. 1999). Measurements of the light regime under canopy 

have been widely used as main inputs for regeneration growth models, especially in uneven-

aged and mixed-species stands (Pacala et al. 1996; Wright et al. 1998; Finzi & Canham 2000; 

Duchesneau et al. 2001; Grassi & Giannini 2005; Ligot et al. 2013). Canopy characteristics, 

and in turn light analysis based on those characteristics, are better predictors for regeneration 

growth models than traditional stand parameters, such as stem density or tree volumes, 

especially in those with uneven stands such as in CCF (Peng 2000; Chrimes & Nilson 2005). 

There is a growing consensus that theoretically justified non-linear models are best suited to 

describe plant growth (Paine et al. 2012). Such models are based on specific hypotheses 

regarding the phenomenon to be described and use parameters that have a clear biological 

meaning (Fekedulegn, Siurtain & Colbert 1999). In the case of the light-growth response of 

regenerating trees, asymptotic non-linear functions have been commonly used, such as the 

Michaelis-Menten and the Logistic (Pacala et al. 1996; Paine et al. 2012; Ligot et al. 2013): 
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with increasing values of input (light), the response (growth) increases but eventually saturates 

and reaches a maximum value at a certain level of input. The two functions differ in the way 

the growth rate reaches the asymptote. The Michaelis-Menten always has a concave-down 

shape that passes through the origin (growth is zero at no light). The Logistic, in its “three-

points” form, has a sigmoid shape that confers better flexibility, but while it has a lower 

asymptote set to zero, it is not constrained to pass through the origin (growth can be positive at 

zero light). Ecological theory suggests that trees under declining levels of light could reach a 

compensation point at which the photosynthesis equals the respiration costs, thus showing no 

growth at positive light levels (Givnish 1988). The asymptotic function with an offset (Pinheiro 

et al. 2016), from here on called Asymptotic-with-offset, can resolve this issue: it is an always 

concave-down function (in this regard similar to the Michaelis-Menten) but is not constrained 

to pass through the origin. See Figure 5.1 for examples of the three different equations. 

 

Figure 5.1. Examples of a Michaelis-Menten (dashed line), Logistic (continuous line) and Asymptotic-with-offset (dotted-

continuous line) functions reaching similar asymptotic responses towards high values of input. The slope of the curves, that is 

the growth rate at which the asymptote is reached, could be different in each case. 

Most previous non-linear light-growth studies have assumed the same response curve for trees 

of different size by using the relative growth rate, that is by scaling the absolute growth by the 

tree size (e.g. Pacala et al. 1996). However, relative growth rate usually decreases with 

increasing tree size due to biological and geometrical issues (Paine et al. 2012). Photosynthetic 

efficiency is also expected to change with tree height: taller trees can have an advantage in 

better exploiting light resources, but that ability comes with higher respiration maintenance 

costs (Givnish 1988; King 1990). Claveau et al. (2002) reported that the way in which tree size 
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affects light-growth responses has not been widely studied, and they suggested incorporating it 

as a predictor in future studies. The presence of intra-regeneration competition could be another 

factor significantly affecting the light-growth response. Intra-regeneration competition was 

found to significantly affect growth either only at higher light levels (Duchesneau et al. 2001), 

only the radial but not the height growth (Collet & Chenost 2006; van Couwenberghe et al. 

2013), only if the trees were overtopped (Hasenauer & Kindermann 2002; Ligot et al. 2013), 

or not at all (Monserud & Ek 1977; Grassi & Giannini 2005). As far as I am aware only Ligot 

et al. (2013) used specific non-linear models where tree size and intra-regeneration competition 

were included as additional variables modifying the asymptote of the functions, albeit not the 

growth rate to reach it. 

Interspecific differences in shade tolerance significantly affect stand dynamics (Finzi & 

Canham 2000). As mentioned in Chapter 3, of the three species studied in this thesis, western 

hemlock was considered the most shade-tolerant by all authors, while Sitka spruce was found 

to be either more than, less than or equally shade-tolerant to Douglas fir (Minore 1979; 

Malcolm, Mason & Clarke 2001; Mason, Edwards & Hale 2004). Shade tolerance, the ability 

to grow and survive under low levels of light, is an elusive property; ecologists have not yet 

agreed on a standardized method for its quantification (Lusk & Jorgensen 2013), and many 

characteristics have been used to define a shade tolerance ranking amongst species. More 

shade-tolerant species usually show a relatively faster growth at low light and a slower growth 

at high light than less shade-tolerant species, although this trade-off is not necessarily clear-cut 

(e.g. Pacala et al. 1996). Usually shade-tolerant species also show a complementary trade-off 

between higher capacity for surviving at low light with lesser growth at high light (Kobe & 

Coates 1997). Other authors define as more shade-tolerant the species that reach the whole-

plant compensation point at lower light levels (Lusk & Jorgensen 2013). Crown plasticity is 

another characteristic usually associated with shade tolerance. More shade-tolerant trees 

growing under low light levels can modify their crown architecture to a more efficient shape 

for light absorption, by expanding it more horizontally than vertically, and by limiting the 

number of living lower branches, which are generally more shaded (Lieffers et al. 1999; 

Williams, Messier & Kneeshaw 1999; Claveau et al. 2002). In more shade-tolerant trees this 

would result in a reduction in the apical dominance ratio (ADR), the ratio between the length 

of the leader and of the lateral shoots of the same year, and also a reduction in the live crown 

ratio (LCR), the ratio between the height of the live crown and the tree height. In other words, 

more shade-tolerant trees tend to form an “umbrella-shaped” crown under low levels of light 
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(e.g. O’Connell & Kelty 1994), which allow them to survive long periods of shading from the 

overstorey.  

5.1.1 Objectives 

The general aim was to expand the knowledge of the light-growth response of Sitka spruce, 

western hemlock and Douglas fir in the understorey and to provide modelling tools for forestry 

operators interested in CCF. To do so, I investigated regenerating trees growing under canopy 

cover to evaluate: 

1) The species-specific light-growth responses (in both height and diameter), under the 

range of light regimes encountered in CCF systems, comparing different non-linear 

models that include also tree size and intra-regeneration competition; 

2) The species-specific crown plasticity (in terms of apical dominance ratio and live crown 

ratio) under different light levels, and how this process is affected by tree size and intra-

regeneration competition; 

3) If the above light-growth and crown plasticity responses can be used to identify a shade 

tolerance ranking. 

5.2 Methodology 

5.2.1 Data collection 

The study areas included a wide range of forests across the UK, divided into various stands 

dominated by different overstorey species (see Table 5.1 for more details). For each stand, I 

laid out ten plots with a random-systematic approach. I drew random non-parallel transects on 

a desktop map and placed on them evenly-spaced plots, later located in the field using a GPS 

receiver. The distance between plots varied with the size of the stand. For each plot, I selected 

the closest Sitka spruce (SS), western hemlock (WH) and/or Douglas fir (DF) naturally 

regenerating tree, excluding trees with evident sign of browsing or other kinds of damage. Trees 

were classified into broad height classes, and for subsequent plots I chose trees belonging to a 

different class to ensure a balanced sample range. However, the patchy occurrence of natural 

regeneration forced me frequently to have to walk away from the planned transects. Recent 

silvicultural management in each stand varied from no intervention to thinning of different 

intensity and type, but purposely I selected no stand thinned in the last two years. I also 

relocated plots that fell in areas with recent windblow events if possible; otherwise, I discarded 

them. While all SS and WH seedlings were natural regeneration, one-third of the DF seedlings 

measured were artificially under-planted (all those in Clocaenog and some of those in 

Wykeham). Data collection was carried out from February to November 2016. 
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On each selected tree, I measured the height growth (Hg) as the length of the last complete 

leader shoot, and the tree height previous to that growth (Hp) as the total height minus the 

height growth. I calculated the apical dominance ratio for SS and DF (not for WH due to its 

different canopy architecture) as the ratio between the corresponding leader and lateral shoots 

for both the last complete vegetative season and the previous one (called respectively ADR and 

ADRp). I calculated the live crown ratio (LCR) as the ratio between the length of the stem from 

the top to the lowest live green branch and the total height. In all cases I discarded from the 

measurements any incomplete shoots found if the survey was carried out during 

spring/summer. The tree measurement schematics are displayed in Figure 5.2. For SS and WH 

trees, I collected a stem sample at 10 cm above the root collar, unless the tree presented an 

evident swelling, a common occurrence for large saplings, in which case no sample was 

collected. For SS trees, I also collected a stem sample at breast height (130 cm) if the height of 

the previous year was above that height; otherwise no sample was collected. For DF, I could 

not collect any stem samples due to particular forest management prescriptions. For each stem 

sample, I measured with an optical microscope the diameter growth as twice the width of the 

last annual wood ring (called respectively DRCg for the diameter at 10 cm above root collar 

and DBHg for the diameter at breast height), and the diameter previous to that growth 

(respectively DRCp and DBHp), as the total diameter under bark minus the diameter growth. 

As above, I discarded from the measurements any incomplete rings if the survey was carried 

out in spring/summer. I took all the measurements in two directions (the shortest and longest 

diameter for each sample) and averaged the values.  
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Figure 5.2. Schematics of tree height and crown measurements. Hg, height growth; Hp, tree height before that growth; ADR 

and ADRp, the apical dominance ratio respectively of the current vegetative season and of the previous one (the two arms of 

the arrows show which leader and lateral shoots were considered). Live crown ratio (LCR) was calculated as the ratio between 

live crown and total height. 

I considered neither the relative growth rate, because of the problems identified in the 

introduction, nor the average of the leader length of more than one season, sometimes used to 

smooth possible yearly variations, (e.g. Grassi & Giannini 2005). The last leader length is the 

variable best correlated with the present stand characteristics (Page et al. 2001). Preliminary 

results (not shown) confirmed that the correlation between past leader lengths and current light 

availability was lower. 

I assessed the intra-regeneration competition by counting the number of regenerating trees of 

all species around the subject tree. If the subject tree was under 130 cm height, to count the 

competition I used a circle of 80 cm radius from its stem (around 2 m2), if 130-250 cm height, 

a circle of 120 cm radius (around 4.5 m2), and if above 250 cm height a circle of 160 cm (around 

8 m2). I then added one and log-transformed the number, to create the variable comp. While 

circular 2 m2 plots have been previously used for seedlings 20-180 cm (van Couwenberghe et 

al. 2013), I decided to compensate for the increasing crown radius of bigger trees by using 

larger circles based on empirical observations on the ground (i.e. a circle of radius 80 cm 

centred on a stem of a 5 m tall tree in most cases did not extend beyond its crown). 

5.2.1.1 Hemispherical photography  

At the top of the selected trees, I took hemispherical photography (HP) images using a Nikon 

Coolpix (4500 or 990 model), equipped with Nikon FC-E8 183˚ FOV Fish-Eye Converter Lens. 
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I carried out the circular HP image acquisition on windless days, under overcast sky conditions 

or after sunset (Fournier et al. 1996). In stands with the presence of broadleaved trees, I 

acquired the images during summer to have the full foliar development of the overstorey. I 

positioned the camera on a telescopic pole, oriented to the North using a compass and upwards 

to the zenith using a level. I took one picture using the automatic exposure and then some more 

in quick succession with reduced exposure bias to obtain at least one picture with good contrast 

(Hale et al. 2009). For image processing, I used the protocol of Bianchi et al. (2017). I 

automatically thresholded the pictures using the function enhanceHemiphoto of the package 

Caiman (Diaz & Lencinas 2015) from the R Statistical Software (R Core Team 2017). Using 

CIMES-FISHEYE (Gonsamo, Walter & Pellikka 2011), I estimated: Canopy Openness (CO), 

the unobstructed fraction of the sky hemisphere viewed from a single point (Gonsamo, Walter 

& Pellikka 2011); Indirect Site Factor (ISF) and Direct Site Factor (DSF), respectively the 

transmittance through the canopy of the diffuse light from an overcast sky (considering a 

Standard Overcast Sky model) and of the direct light from a clear sky (Hale et al. 2009). I 

calculated the Global Site Factor (GSF), the total radiation that comprises both those 

components, as shown in Equation 6.1. 

Equation 6.1 ∶ 𝐺𝑆𝐹 = 0.65 ∗ 𝐼𝑆𝐹 + 0.35 ∗ 𝐷𝑆𝐹 
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Table 5.1. Details of study areas and tree measured. Values of light (GSF, Global Site Facto) and size are given as minimum-mean-maximum. Height, height before the last growth season, DRC, 

diameter at 10 cm above root collar; DBH, diameter at breast height; n, the sample size. Larch, Larix spp.; Spruce, Picea abies and Picea sitchensis, Douglas fir, Pseudotsuga menziesii, Scots 

pine, Pinus sylvestris; mixed broadleaves, Acer spp, Fagus sylvatica and Quercus spp. 

Forest Coordinate

s 

(WGS84) 

Canopy 

species 

Light (GSF) 

 

 

Sitka spruce Western hemlock Douglas fir 

Height (cm)  n DRC 

(mm) 

n DBH 

(mm) 

n Height (cm) n DRC 

(mm) 

n Height (cm)  n 

Aberfoyle 

(Scotland) 

56˚ 13’ N 

4˚ 21’ W 

Larch, spruce 0.13-0.25-0.39 25-151-410 31 2-14-25 19 3-18-38 10 - -  - - - 

Clocaenog 

(Wales) 

53˚ 04’ N 

3˚ 24’ W 

Spruce, Larch 0.12-0.41-0.95 21-184-607 89 1-12-30 34 4-33-76 27 27-108-407 20 2-9-27 18 

 

61-116-230 18 

Coed-Y-

Brenin 

(Wales) 

52˚ 48’ N 

3˚ 53’ W 

Douglas fir, 

mixed 

broadleaves 

0.13-0.18-0.25 - - - - - - 112-137-188 4 17-21-26 4 31-137-322 18 

Gwydyr 

(Wales) 

53˚ 05’ N 

3˚ 48’ W 

Douglas fir, 

mixed 

broadleaves, 

Scots pine 

0.07-0.18-0.38 45-124-200 16 - - - - 83-138-190 10 - - 41-76-133 11 

Kielder 

(England) 

55˚ 13’ N 

2˚ 27’ W 

Spruce 0.16-0.24-0.38 15-87-241 49 3-10-27 33 4-12-30 8 75-175-271 6 5-13-24 6 - - 

Lakes 

district 

(England) 

54˚ 30’ N 

3˚ 09’ W 

Douglas fir 0.12-0.24-0.83 34-133-243 18 3-15-31 5 3-9-15 2 79-175-271 5 12-14-16 3 29-130-301 25 

Mortimer 

(England) 

52˚ 21’ N 

2˚ 45’ W 

Mixed 

broadleaves, 

Douglas fir 

0.07-0.15-0.34 - - - - - - 91-191-376 10 11-23-45 9 34-170-286 13 

Wykeham 

(England) 

54˚ 16’ N 

0˚ 33’ W 

Larch, Scots 

pine, spruce 

0.11-0.28-0.53 16-113-320 30 2-12-33 26 2-13-34 8 33-157-422 11 2-13-35 11 41-113-272 16 

Total 
 

 0.07-0.40-0.95 15-140-607 187 2-12-33 117 2-23-76 55 27-145-422 66 2-12-45 51 29-125-322 101 
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5.2.2 Statistical analysis 

I carried out all the analyses with the package nlme (Pinheiro et al. 2016) of the R Statistical 

Software (R Core Team 2017).  

5.2.2.1 Height and diameter growth models 

I modelled growth, either Hg (for all species), DRCg (for SS and WH) or DBHg (for SS), as a 

function of light, the GSF estimated from HP, comparing three asymptotic non-linear functions 

based on the Michaelis-Menten (Equation 6.2), the 3-points Logistic (Equation 6.3), and the 

Asymptotic-with-offset (Equation 6.4).  

Equation 6.2: 𝐺𝑟𝑜𝑤𝑡ℎ =
𝑟 + 𝐴𝑠𝑦𝑚 ∗ 𝑙𝑖𝑔ℎ𝑡

𝑥𝑚𝑖𝑑 + 𝑙𝑖𝑔ℎ𝑡
  

Equation 6.3: 𝐺𝑟𝑜𝑤𝑡ℎ =
𝑟 + 𝐴𝑠𝑦𝑚

1 + 𝑒(𝑥𝑚𝑖𝑑−𝑙𝑖𝑔ℎ𝑡)/𝑠𝑐𝑎𝑙𝑒
  

Equation 6.4: 𝐺𝑟𝑜𝑤𝑡ℎ = (𝑟 + 𝐴𝑠𝑦𝑚) ∗ (1 − 𝑒−𝑒𝑥𝑝(𝑙𝑐𝑟)∗(𝑙𝑖𝑔ℎ𝑡−𝑐𝑝) ) 

 

Where: 

𝐴𝑠𝑦𝑚 = (𝐴 + 𝐴2 ∗ 𝑐𝑜𝑚𝑝) ∗ 𝑠𝑖𝑧𝑒𝑃𝑎 

𝑥𝑚𝑖𝑑 =  
𝐾 − 𝐾2 ∗ 𝑐𝑜𝑚𝑝

𝑠𝑖𝑧𝑒𝑃𝑘
 

𝑙𝑐𝑟 =  (𝐾 + 𝐾2 ∗ 𝑐𝑜𝑚𝑝) ∗ 𝑠𝑖𝑧𝑒𝑃𝑘 

𝑠𝑐𝑎𝑙𝑒 =  
𝑆

𝑠𝑖𝑧𝑒𝑃𝑠
 

𝑐𝑝 =
𝐶

𝑠𝑖𝑧𝑒𝑃𝑐
 

In all equations, Asym indicates the asymptotic maximum growth that is reached at high light 

levels, and xmid and lcr how fast the growth reaches this asymptote (i.e. the growth rate). In 

Equation 6.2 and 6.3, xmid represents the value of light about which the growth is half of the 

asymptotic growth, or simply half-maximum-growth. Then, scale in Equation 6.3 represents 

the steepness of the curve around the sigmoid inflection point, and cp in Equation 6.4 the 

compensation point, the level of light corresponding to zero growth. I included size, either the 

height or diameter before the growth (Hp, DRCp, or DBHp), in each of those terms, with an 

effect mediated by the coefficients Pa, Pk, Ps and Pc. I included competition (comp), only in 

the terms related to the asymptotic growth and the growth rate, with an effect mediated by A2 

and K2. I did not include a competition effect for scale in Equation 6.3 since it would not have 

had any biological validity, or for cp in Equation 6.4 for computational simplicity. I included 
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r, a random factor at forest level affecting the value of asymptotic growth, to take into 

consideration the possible auto-correlation of the plots in the same forest due to the site fertility 

or local climatic conditions. It must be noted that the growth rate increases with lower values 

of xmid, and the opposite for lcr. In other words, the asymptote is reached faster in Equations 

6.2 and 6.3 for lower values of xmid, and in Equation (6.4) for higher values of lcr. The sign 

on the K2 parameter and the inclusion of size (as multiplicator or dividend) were adjusted to 

ensure a consistent direction of response for the xmid and lcr variables. The summary of the 

biological implications of each coefficient is shown in Table 5.2. I also tested equations in 

which size had opposite effects on xmid/lcr, scale, and cp than indicated on the table but the 

models did not fit. 

Table 5.2. Summary of the biological effects of the various coefficients used in the non-linear functions 

Asym 
All 

equations 

A 
Value of maximum growth (in cm or mm). 

A2 
Effect of competition on the maximum growth: if 0, it is null; if 

negative, it decreases the maximum growth.  

Pa 

Effect of tree size on the maximum growth: null at 0, then 

increases the maximum growth with a stronger effect as this 

parameter increases.  

xmid/lcr 
All 

equations 

K 

Correlated to the growth rate to reach the maximum growth: for 

xmid, the higher the value, the slower the rate; for lcr, the 

opposite. Also, different scale for the different equations. 

K2 
Effect of competition on the growth rate: if 0, it is null; if 

negative, it decreases the growth rate, both in xmid and rate. 

Pk 

Effect of tree size on the growth rate: null at 0, then increases 

the growth rate with a stronger effect as this parameter 

increases, both in xmid and lcr. 

scale Logistic 

S 
Positively correlated to the steepness of the sigmoid curve. 

Ps 

Effect of tree size on the steepness of the sigmoid curve: null at 

0, then increases the steepness with a stronger effect as this 

parameter increases. 

cp  
Asymptotic-

with-offset 

C 
Light level (GSF) equivalent to null growth (compensation 

point).  

Pc 

Effect of tree size on the compensation point: null at 0, then 

decreases the compensation point with a stronger effect as this 

parameter increases. 

 

For each combination of growth and species, I tested the three base functions, and all their 

possible combinations where some or all the main coefficients (A, K, S and/or C) were not 

affected by size (setting Pa, Pk, Ps and/or Pc to 0) or by competition (setting either A2 and/or 
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K2 to 0). Preliminary results showed that when the competition was affecting both asymptotic 

growth and growth rate (by setting both A2 and K2 to non-zero values) it led to unrealistic 

biological responses, so I discarded such models. There were 12 models belonging to the family 

originated from the Michaelis-Menten function, and 24 each for the Logistic and Asymptotic-

with-offset, a total of 60. To consider the heteroscedasticity of the data, I modelled the variance 

as a power of the fitted values, with the power determined during model fitting. 

For each combination of species and type of growth, I pooled together all the models belonging 

to the different families. I selected as candidates the model with the lowest Akaike Information 

Criterion (AIC) and those within two AIC units. Then, I chose the best model as the one with 

the highest parsimony (fewest parameters affected by size and competition), and in one case of 

a tie, with the best prediction performance (lowest AIC) and better biological validity (by 

observing the simulated growth pattern). For each best model, I calculated the Pearson’s 

correlation coefficient r between simulations and observations, and the simulation errors in 

terms of Root-Mean-Square-Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute 

Percentage Error (MAPE), that is the MAE relative to the observed growth (Hyndman & 

Koehler 2006). 

To compare growth patterns across species, I also calculated the light level necessary to obtain 

the half-maximum-growth for all best models. In case of the Michaelis-Menten and the 

Logistic, that was directly equal to the coefficient K, considering the influence of K2 and/or 

Pk. For the Asymptotic-with-offset, it was calculated empirically by observing the maximum 

value of the predictions at full light and estimating the light level necessary for its half growth. 

5.2.2.2 Apical Dominance Ratio (ADR) and Live Crown Ratio (LCR) analyses 

Using a dataset where all species were combined, I calibrated Generalized Linear Mixed 

Models (GLMMs) for ADR (only for SS and DF) and LCR. In both cases I used as predictor 

variables species, light (GSF), size (Hp) and competition (comp), including two-ways 

interaction terms between all variables. I included a random intercept effect at forest level to 

account for spatial autocorrelation. After observations of the data distribution and preliminary 

modelling results, I decided to use log-transformed GSF and Hp for a better fit. From the global 

model with all variables, I then tested structures with fewer fixed effects, and selected as the 

best model the one with lowest AIC. In the cases where models had differences of less than 2 

points, I chose the model with fewer explanatory variables. 
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I then modelled the height growth (Hg) as a function of the previous year’s apical dominance 

ratio (ADRp) and tree height (Hp). For DF, I used a GLMM including both those predictors 

and a two-way interaction term. I included a random intercept effect at forest level for spatial 

autocorrelation, and carried out a model selection procedure as above. For SS I observed a 

different data distribution, and after preliminary modelling results, I used a simplified version 

of Equation 6.2 without the competition effect, as shown in Equation (6.5). 

 Equation 6.5: 𝐻𝑔 =
𝑟 + 𝐴 ∗ 𝐻𝑝𝑃𝑎

1 + 𝑒(𝐾−𝐴𝐷𝑅𝑝)/𝑆
  

5.3 Results 

5.3.1 Growth models 

For SS, I selected as best a model from the Logistic family in all cases (height, DRC and DBH); 

for WH, from the Michaelis-Menten in both cases (height and DRC); and for DF/Height, from 

the Asymptotic-with-Offset. Table 5.3 presents the coefficient values of those models, showing 

the main model components (asymptotic growth, growth rate, scale and/or compensation point) 

affected either by the tree size (if Pa, Pk, Ps and/or Pc ≠ 0) or by the intra-regeneration 

competition (if A2 or K2 ≠ 0). The estimated growth patterns for each model versus the 

observations are shown in Figure 5.3. See Annex I for the AIC values of all the models fitted, 

and supplementary information on the results. In all cases but for the WH/Height model, tree 

size affected the asymptotic growth (Pa > 0) and consequently, the absolute growth was higher 

for bigger trees at all light levels. Absolute growth was higher for taller trees also for the 

WH/Height model, even if Pa = 0, due to Pk > 0. However, the smaller data range in terms of 

light availability may have affected the model fit (i.e., the curve did not reach an asymptote 

within the data range for this case). For SS/Height and WH/Height, tree size also affected the 

growth rate (Pk > 0): bigger trees had a higher growth rate than smaller trees, more markedly 

at lower light levels. Trees growing at GSF 0.5 reached a growth that was equal to 70-75% of 

the maximum growth at full-light in the WH/Height model (increasing with tree height), 75% 

in the SS/DRC, 80% in the WH/DRC and DF/Height, and more than 95% in the SS/Height and 

SS/DBH models. Note that the growth at full-light (GSF 1) in all cases was considered as the 

one estimated by the models. 

Only for DF/Height was the best model based on the Asymptotic-with-offset, with the same 

compensation point around GSF 0.08 for trees of all sizes. Since both the WH models were 

based on Michaelis-Menten, the compensation point was set at zero light for that species. Sitka 

spruce, since Logistic was selected for all the best models, had an estimated positive growth at 
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zero light in all cases. While this effect was almost negligible in the SS/DRC and SS/DBH 

models, it was more evident in the SS/Height model (see Figure 5.3). 
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Table 5.3. Best growth model for each case, showing the family of the equation. SS, Sitka spruce; DF, Douglas fir; WH, western hemlock; H, height; DRC, diameter above root collar; DBH, 

diameter at breast height. Empty cell: the coefficient was excluded in the best model. NA: the coefficient does not appear in the equation used. Then, r is the Pearson correlations coefficient 

between simulations and observations; RMSE, the Root-Mean-Square-Error (in cm for height and mm for diameter); MAE, the Mean Absolute Error (in cm for height and mm for diameter); 

MAPE, the MAE relative to the observations. 

Model 
Coefficient       

A K A2 K2 C S Pa Pk Ps Pc r RMSE MAE MAPE 

SS/HEIGHT (n=187) - Logistic       

Value 5.624 0.340 - -0.043 NA 0.117 0.430 0.101 - NA 0.88 9.5 7.1 37.6% 

p-value 0.003 0.003 - 0.014 NA 0.000 0.000 0.106 - NA     

SS/DRC (n=117) - Logistic       

Value 2.406 0.369 -0.369 - NA 0.118 0.581 - - NA 0.94 0.9 0.6 39.0% 

p-value <0.001 <0.001 <0.001 - NA <0.001 <0.001 - - NA     

SS/DBH (n=55) - Logistic       

Value 4.561 0.210 - -0.025 NA 0.078 0.252 - - NA 0.81 2.5 1.8 42.9% 

p-value <0.001 <0.001 - 0.039 NA <0.001 <0.001 - - NA     

WH/HEIGHT (n=66) - Michaelis-Menten       

Value 170.9 7.033 - - NA NA - 0.476 NA NA 0.79 11.6 8.8 27.0% 

p-value 0.005 0.048 - - NA NA - <0.001 NA NA     

WH/DRC (n=51) - Michaelis-Menten       

Value 1.936 0.308 -0.161 - NA NA 0.666 - NA NA 0.76 1.5 1.1 32.5% 

p-value 0.003 0.055 0.070 - NA NA <0.001 - NA NA     

DF/HEIGHT (n=101) - Asymptotic-with-offset       

Value 10.809 1.219 - - 0.083 NA 0.390 - NA - 0.84 12.5 9.6 61.6% 

p-value 0.061 0.010 - - <0.001 NA <0.001 - NA -     

-
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Figure 5.3. Simulated (lines) and observed (points) growth as a function of light (GSF, Global Site Factor), for trees of different 

sizes and in the absence of competition. SS, Sitka spruce; DF, Douglas fir; WH, western hemlock; H, Height; DRC, Diameter 

above Root Collar; DBH, Diameter at Breast Height. In each graph: top dashed line, simulated growth for a tree having size 

(height or diameter) equal to the 95% quantile of the population, medium continuous line, to the mean, and bottom dotted line, 

to the 5% quantile. 
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Table 5.3 presents the Pearson correlation coefficient between simulations and observations 

(quite high for all models), and the various measured errors. In Figure 5.4 and Figure 5.5 the 

standardized residuals of the simulations are plotted versus the observations, and the model 

predictors (tree size, light availability, and competition, even if the latter was not included in 

all models). There were some signs of heteroscedasticity in all models when the residuals were 

plotted versus the observations, specifically a tendency of decreasing accuracy and 

underprediction towards high values of observed growth. Considering the residual distribution 

versus the model predictors, there were fewer signs of heteroscedasticity: overprediction only 

for the biggest trees for SS/Height and SS/DRC; underprediction for SS/DRC and WH/DRC 

at mid-light availability; and underprediction towards higher light for WH/Height and 

DF/Height. A closer inspection of the residuals showed that, often, the underpredictions 

towards high values of observed growth happened for medium/large-sized trees growing at 

low/medium levels of light. Some of those trees showed a considerable growth, comparable to 

trees either of bigger size or growing at higher light availability, that was underpredicted by 

the models. The resulting values of Mean Absolute Percentage Error (MAPE) were lowest for 

the western hemlock models (27% and 32% for height and DRC), then higher for the Sitka 

spruce models (38-39% for height and DRC, and higher for DBH, 43%), and highest for the 

Douglas fir height model (62%). It must be noted that the MAPE was influenced in all cases 

by few but very large relative errors for the trees showing limited growth. 
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Figure 5.4. Standardized residuals plotted against the observed growth, the size previous to the growth, the light availability (GSF, Global Site Factor) and the intra-regeneration competition 

(log-transformed plus 1). SS, Sitka spruce; DRC, diameter above root collar; DBH, diameter at breast height. Continuous lines, LOESS (Locally Weighted Scatterplot Smoothing) curves. 
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Figure 5.5. Standardized residuals plotted against the observed growth, the size previous to the growth, the light availability (GSF, Global Site Factor) and the intra-regeneration competition 

(log-transformed plus 1). DF, Douglas fir, WH, western hemlock; DRC, diameter above root collar; DBH, diameter at breast height. Continuous lines, LOESS (Locally Weighted Scatterplot 

Smoothing) curves.
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Intra-regeneration competition was included in four models, affecting the growth rate for the 

SS/Height and SS/DBH models (K2 < 0), and the asymptotic growth for the SS/DRC and 

WH/DRC models (A2 < 0) (see Figure 5.6). The resulting effect in the first two models was to 

decrease the absolute growth especially at lower light levels, with a reduced impact as the light 

availability increases, while in the last two models the reduction was the same in relative terms 

across all light levels. It must be noted that in all the diameter growth models, the effect of 

competition in reduction either of the asymptotic growth or of the growth rate had a very low 

impact on the AIC (see Supplementary Information) and the other statistical diagnostics, but a 

more drastic impact on the shape of the light-growth curve. 

 

Figure 5.6. Predicted values of growth as a function of light (GSF, Global Site Factor) under different competition levels. SS, 

Sitka spruce; WH, western hemlock; H, Height; DRC, Diameter above Root Collar; DBH, Diameter at Breast Height. For 

height growth, a tree of height of 130 cm was considered; for DRC growth, of DRC 12 mm; for DBH growth, of DBH 25 mm. 

Continuous lines, no competition; dashed lines, low competition (5 trees/plot); dotted lines, high competition (25 trees/plot). 
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Figure 5.7 shows the species-specific differences in absolute growth at low and high light, 

simulating values for a medium-sized tree (height = 130 cm, DRC = 12 mm) in the absence of 

competition (a and b), or under strong competition, 25 trees per plot (c and d). For height 

growth, WH had the highest absolute values at almost all light levels for both scenarios. In the 

absence of competition, for height SS had higher absolute growth below GSF 0.2 than DF, 

while above it was the opposite; for DRC, WH had higher absolute growth than SS below GSF 

0.4, and the opposite above. With strong levels of competition, at low light the advantage in 

height growth of SS over DF decreased markedly, and at high light the advantage in DRC of 

SS over WH totally disappeared. For trees of increasing sizes, SS had a slightly increasing 

advantage for growth at low light over Douglas fir (results not shown). 
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Figure 5.7. Comparison of species-specific simulated growth as a function of light (GSF, Global Site Factor), in the absence 

of competition (a and b) and under strong competition (25 trees/plot, c and d). DF, Douglas fir; SS, Sitka spruce; WH, western 

hemlock. The height growth was simulated for trees of 130 cm height; the diameter above root collar (DRC) growth for trees 

of DRC 12 mm. 

Figure 5.8 shows how tree size affected the growth rate in the height models for all species, by 

plotting the light level necessary to reach the half-maximum-growth in the absence of 

competition. For SS/Height and WH/Height, this light level decreased with increasing tree size 

because of the effect of Pk. For Sitka spruce, it decreased from around GSF 0.25 for a small 

(20 cm height) tree, to GSF 0.18 for a big (400 cm height) tree. For western hemlock, from 

around GSF 0.35 for a small tree, to around GSF 0.20 for a big tree, always higher than for 

Sitka spruce. The analysis for western hemlock could have been biased due to the lack of 

sampled trees growing at high light levels and of an asymptote within the data range. For 
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DF/Height, SS/DRC, SS/DBH and WH/DRC, the light necessary for half-maximum-growth 

was respectively GSF 0.27, 0.37, 0.21 and 0.17, in the absence of competition, for trees of all 

sizes.  

 

Figure 5.8. Light level (GSF, Global Site Factor) necessary for height growth equal to half the maximum growth, as a function 

of tree size. DF, Douglas fir; SS, Sitka spruce; WH, western hemlock. 

5.3.2 Crown plasticity analyses 

Table 5.4 presents the best models describing ADR and LCR as a function of light. The final 

model for ADR included only light availability with a positive effect (Figure 5.9, graph a). 

There were no significant differences between SS and DF, so the same model was fitted to both 

species. The threshold of 20-25% of full light indicated in the literature for good growth of 

Sitka spruce would correspond to an ADR of 1.2-1.4. For the LCR model (Figure 5.9, graph 

b), light had again a positive effect, but that was mediated by species-specific differences (a 

significant interaction term between light and species). WH had the highest LCR values, and 

LCR had a practically flat relationship with light. SS had significantly higher LCR than DF, 

but the difference decreased towards higher light levels. 

Table 5.4 also presents the details for the species-specific models simulating height growth as 

a function of the previous year’s apical dominance ratio (ADRp). The resulting GLMM for DF 

also included tree height as an interaction term, although its fit was relatively poor (Figure 5.9, 
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graph c). Better results were found for the non-linear model fitted for SS, where again the 

height growth significantly increased with ADRp and tree height (Figure 5.9, graph d). The 

model shows that trees of ADRp around 1.2 (the value of the coefficient K) had growth the 

following year equal to half the maximum growth at full light.  

Table 5.4. Details for the models describing (a) apical dominance ratio (ADR) as a function of light (GSF, Global Site Factor); 

(b) Live Crown Ratio (LCR) as a function of light and species; (c) and (d), the height growth respectively of Douglas fir and 

Sitka spruce as a function of ADR of the previous year (ADRp). It is indicated whether the model is based on a Generalized 

Linear Mixed Model (GLMM) or on the non-linear Logistic equation. Hp, is the height of the tree in the previous year, SS is 

Sitka spruce, WH is western hemlock. 

(a) ADR = f(light) (n=284) - GLMM 

Coefficient Intercept log(GSF)   

Value 2.254 0.641   

p-value <0.001 <0.001   

(b) LCR = f(light) (n=331) - GLMM 

Coefficient Intercept log(GSF) log(GSF):SS log(GSF):WH 

Value 0.921 0.121 -0.043 -0.123 

p-value <0.001 <0.001 <0.001 <0.001 

(c) DF/Height = f(ADRp) (n=180) - GLMM 

Coefficient Intercept ADRp ADRp:Hp  

Value 5.247 9.033 0.035  

p-value 0.060 <0.001 <0.001  

(d) SS/Height = f(ADRp) (n=180) - Logistic 

Coefficient A K S Pa 

Value 4.033 1.232 0.582 0.501 

p-value <0.001 <0.001 <0.001 <0.001 
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Figure 5.9. Predictions (lines) and observations (points) for: graph a, Apical Dominance Ratio (ADR) as a function of light 

availability (GSF, Global Site Factor), the continuous black line is for both Douglas fir (DF) and Sitka spruce (SS); graph b: 

Live Crown Ratio (LCR) as a function of light availability (GSF, Global Site Factor) and species; graphs c and d, respectively 

for Douglas fir and Sitka spruce height growth as a function of Apical Dominance Ratio of the previous year (ADRp), from 

top to bottom in both graphs, the lines are for trees respectively having height equal to the 95% quantile of the population 

considered, to the mean, and to the 5% quantile. 
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5.4 Discussion 

Objective 1. To evaluate the species-specific light-growth responses (both height and 

diameter), under the range of light regimes encountered in continuous cover forestry systems, 

comparing different non-linear models that include also tree size and intra-regeneration 

competition. 

The growth models presented here can be used to support planning in CCF management, by 

simulating the potential growth response of natural regeneration to different levels of light 

under a canopy. The use of light availability as the main predictor makes these models suited 

to describing the regeneration growth in those future uneven-aged, mixed-species forest stands 

that could be the result of continuous cover forestry management in the UK. The simulated 

values of each model were biologically sound and fitted well the observations, although in all 

models there was a tendency to under-predict the growth of medium/large-sized trees growing 

at low/medium levels of light. I demonstrated that different non-linear structures are best suited 

to simulating different species-specific light-growth relationships. These relationships may 

also vary for the height and diameter growth in the same species. 

For western hemlock, and to some extent also for Douglas fir, there was lack of data on seedling 

growing at full light, which especially for the former may have affected the analysis. However, 

I covered the critical range of low-medium light levels most likely to be encountered in 

continuous cover forestry stands, and where the growth performance is more influenced by 

light and less by other environmental factors (Carter & Klinka 1992). It was observed in other 

studies that the net photosynthesis in western hemlock and Douglas fir, already reached 

saturation towards light levels of 30-40% full sunlight (Leverenz & Jarvis 1980; Carter & 

Klinka 1992; Grossnickle & Arnott 1992). All the models in this research already predicted 

values close to maximum growth at light levels equal to half of full sunlight. For the Sitka 

spruce height model only, the final structure based on the Logistic function showed an unlikely 

positive growth at zero light, even if it was very limited. I did not sample Sitka spruce trees 

growing at very low levels of light, but due to the sampling design followed I cannot 

conclusively state that there were none growing and surviving in those conditions. A more 

thorough sampling at those critical levels of light would be necessary to improve the model. It 

must also be noted that hemispherical photography has been shown to be a poor predictor of 

light transmitted through dense canopies, i.e. at values of GSF 0.1 and less (Hale et al. 2009). 

The inclusion of tree size as an additional predictor always improved the fit, and had a 

significant effect in increasing the maximum growth in all models, both for height and 
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diameter. Larger trees as a consequence had a greater absolute growth at all light levels, due 

mostly to an increased capacity for light absorption and partly to an increased efficiency of 

light use (Binkley et al. 2013). I observed that for height growth in Sitka spruce and western 

hemlock, bigger trees compared to smaller trees had an even more marked higher growth at 

low light than at high light. However, according to Givnish (1988), maintenance and 

construction costs should increase with plant height because taller plants have a higher 

proportion of non-photosynthetic tissues, and this should result in a disadvantage for bigger 

trees especially at low light (when the effect of competition is excluded). It is possible that 

shade-tolerant species could still build large crowns with increased light absorption capacity 

and efficiency (see also the results on the live crown ratio) without being overburdened by 

maintenance costs, or that the effect described by Givnish (1988) applies only to trees above 

the dimensions I considered. Larger regenerating trees have been also observed to be able to 

use their accumulated reserves to survive short periods of reduction in light when compared to 

smaller ones (Delagrange et al. 2004), and this could contribute to their growth advantage over 

small trees at low light. 

Intra-regeneration competition significantly decreased the growth in all Sitka spruce height and 

diameter models, and in the western hemlock diameter model. The negative effect of 

competition in the Sitka spruce height and diameter at breast height models decreased at higher 

light levels, consistent with the findings of Hasenauer & Kindermann (2006) and Collet & 

Chenost (2006), while for both the Sitka spruce and western hemlock diameter above root 

collar models the growth was reduced similarly at all light levels. The results suggest that 

height growth of seedlings may be less affected by competition than diameter growth (Collet 

& Chenost 2006; van Couwenberghe et al. 2013). Trees growing in dense patches but with 

almost full sunlight above them may have vertical growth that is not affected by competition 

while reducing their radial growth. I am aware of studies where only the radial and not the 

seedling height growth was affected by intra-regeneration competition (Collet & Chenost 2006; 

van Couwenberghe et al. 2013), but not of the contrary. However, the inconsistency between 

diameter above root collar and at breast height for Sitka spruce does not have an obvious 

explanation. On the question of why some combinations of species and growth were affected 

by competition and others not, the results did not shed more light on the already mixed review 

presented in the introduction. Further work, such as improving the measure of competition by 

considering the size, distance and species of the competitors, is needed to clarify the effects of 

intra-regeneration competition. 
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Objective 2. To evaluate the species-specific crown plasticity (in terms of apical dominance 

ratio and live crown ratio) under different light levels, and how this process is affected by tree 

size or the intra-regeneration competition 

For Douglas fir and Sitka spruce, both the apical dominance ratio and the live crown ratio 

increased with increasing light, with a pattern similar to that observed for other conifer species 

by Duchesneau et al. (2001) and Grassi & Giannini (2005). This confirmed the ability of these 

species to react to low light levels by changing their crown architecture. I did not observe 

species-specific differences between Sitka spruce and Douglas fir when modelling the apical 

dominance ratio as a function of light availability. However, there were significant differences 

in the live crown ratio: Douglas fir maintained a shorter crown than Sitka spruce especially at 

lower light levels. Conversely, western hemlock seemed almost unaffected by light availability 

and maintained a full live crown at all levels of light. Grassi & Giannini (2005) suggested that 

the apical dominance and live crown ratio patterns may shift as the trees gain in size, but this 

was not observed in this study, consistent with the results of Williams et al. (1999). I found 

intra-regeneration competition significant neither for the apical dominance nor for the live 

crown ratio.  

For both Douglas fir and Sitka spruce, I could fit models of height growth as a function of the 

apical dominance ratio of the previous year, even if for the former the results were not very 

accurate. For Sitka spruce, a value of apical dominance ratio of 1.2 corresponded to half of the 

maximum potential height growth in the next year. This result is similar to those of Grassi & 

Giannini (2005) (for Picea abies and Abies alba) and Page et al. (2001) (for Sitka spruce), who 

considered trees with an apical dominance ratio equal to or less than 1 to be “in check”. 

Applying the threshold (Mason 2015) of 20-25% of full light for good growth in Sitka spruce 

to the model of apical dominance ratio as a function of light gives an apical dominance ratio of 

1.2-1.4. I thus suggest using as a quick assessment tool in the field an apical dominance ratio 

of 1.5 (more conservative and simpler to measure) for identifying Sitka spruce seedlings with 

an adequate growth potential. 

Objective 3: To evaluate if the above light-growth and crown plasticity responses can be used 

to identify a shade tolerance ranking. 

Overall, observing all the parameters considered in this study, I define a shade tolerance 

ranking as Douglas fir ≤ Sitka spruce < western hemlock, similar to the one identified by Mason 

et al. (2004). However, considering only one parameter could be misleading. 
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Douglas fir compared to Sitka spruce had only slightly slower growth at low light but more 

evident faster growth at high light. Western hemlock had the greatest hight growth at all light 

levels, maybe due to an intrinsic difference in the canopy architecture: a very thin, drooping, 

and elongated leader, with no clear lateral shoots. Kunstler et al. (2005) also showed that a 

more shade-tolerant species (Fagus sylvatica L.) had height growth higher at all light levels 

than a less shade-tolerant one (Quercus pubescens Willd.). When comparing the diameter 

growth, the higher shade-tolerance of western hemlock was evident: it had a faster radial 

growth than Sitka spruce at low light and the opposite at high light, as observed in their natural 

range (Minore 1979; Taylor 1990). The fact that under high intra-regeneration competition the 

Sitka spruce advantage at high light disappeared may be another indication of higher shade 

tolerance in western hemlock, which can better resist the lateral shading from other 

regenerating trees. 

For the three species, the best growth models belonged to different families, reflecting their 

different growth patterns. Only for Douglas fir was the Asymptotic-with-offset equation 

selected, showing a compensation point at around 8% of full light, indicative of lower shade 

tolerance than Sitka spruce and western hemlock (even if, as discussed already, some lack of 

sampling at very low light levels may have affected the analyses). 

According to traditional shade tolerance definitions (e.g Messier et al. 1999), the observed 

pattern for the apical dominance ratio as a function of light availability would indicate a 

increasing shade tolerance ranking from Douglas fir (with lower live crown ratio a low light) 

to Sitka spruce to western hemlock (with higher live crown ratio at low light). On the contrary, 

the results of the present study indicate that at low light the more shade-tolerant species 

(western hemlock and then Sitka spruce) could maintain a longer live crown than the less 

shade-tolerant Douglas fir. This is likely to be because the former suffered less from self-

shading and their shade-acclimated lower branches managed to maintain a positive carbon-

balance, at least in the light range analysed in this study. The observations of the apical 

dominance ratio did not suggest any difference in shade tolerance between Sitka spruce and 

Douglas fir. 

Considering the light level necessary for half-maximum-growth, the results for western 

hemlock in terms of height were likely affected by the lack of asymptote in the range of light 

considered (up to Global Site Factor 0.5). Excluding that case, the comparison of height growth 

suggested a shade tolerance ranking of Douglas fir < Sitka spruce, and for the diameter (above 

root collar) growth, a ranking of Sitka spruce < western hemlock. For Sitka spruce, the light 
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levels necessary for half-maximum-growth for both height and diameter at breast height were 

consistent with the 20-25% light threshold identified by Mason (2015), but a much higher value 

(Global Site Factor 0.37) was identified for the diameter above root collar. 

All the species, however, seem to thrive relatively well at the light levels that can be commonly 

achieved in conifer stands managed with shelterwood systems (GSF 0.20-0.30). Foresters 

aiming at mixed-species stands in the UK could obtain an adequate regeneration growth of all 

these species at the same time, even considering the higher light requirements of Douglas fir 

when compared to western hemlock. It is likely that successional dynamics in a mixed-stand 

of species with such similar light requirements may be affected more crucially by variations in 

regeneration occurrence and survival (Wright et al. 1998), which could not be addressed in this 

study
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6 Rapid assessment of forest canopy 

and light regime using smartphone 

hemispherical photography 

In this chapter, I present a novel method for carrying out hemispherical photography analyses 

with smartphone cameras. I collected images with a smartphone and a traditional camera both 

equipped with fish-eye lenses. I processed the smartphone images with different protocols, and 

compared their results with the traditional camera pictures. 

The study has been published as: “Bianchi S., Cahalan C., Hale S., and Gibbons J.M. (2017). 

Rapid assessment of forest canopy and light regime using smartphone hemispherical 

photography. Ecology and Evolution. DOI: 10.1002/ece3.3567”. I present the same text, tables, 

figures of the published paper in this chapter, and the supplementary information for the online 

version in Annex II. 

The study has been designed also with the objective of engaging citizen scientists within this 

thesis. If the methods were adequate, I would have tried to recruit volunteers across all the 

country for a crowd-sourced data collection campaign. More details about this are in Annex 

III. 

6.1 Abstract 

Hemispherical photography (HP), implemented with cameras equipped with “fisheye” lenses, 

is a widely used method for describing forest canopies and light regimes. A promising 

technological advance is the availability of low-cost fisheye lenses for smartphone cameras. 

However, smartphone camera sensors cannot record a full hemisphere. We investigate whether 

smartphone HP is a cheaper and faster but still adequate operational alternative to traditional 

cameras for describing forest canopies and light regimes. 

We collected hemispherical pictures with both smartphone and traditional cameras in 223 

forest sample points, across different overstory species and canopy densities. The smartphone 

image acquisition followed a faster and simpler protocol than that for the traditional camera. 

We automatically thresholded all images. We processed the traditional camera images for 

Canopy Openness (CO) and Site Factor estimation. For smartphone images, we took two 

pictures with different orientations per point and used two processing protocols: (i) we 
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estimated and averaged total canopy gap from the two single pictures, and (ii) merging the two 

pictures together, we formed images closer to full hemispheres and estimated from them CO 

and Site Factors. We compared the same parameters obtained from different cameras and 

estimated generalized linear mixed models (GLMMs) between them. 

Total canopy gap estimated from the first processing protocol for smartphone pictures was on 

average significantly higher than CO estimated from traditional camera images, although with 

a consistent bias. Canopy Openness and Site Factors estimated from merged smartphone 

pictures of the second processing protocol were on average significantly higher than those from 

traditional cameras images, although with relatively little absolute differences and scatter. 

Smartphone HP is an acceptable alternative to HP using traditional cameras, providing similar 

results with a faster and cheaper methodology. Smartphone outputs can be directly used as they 

are for ecological studies, or converted with specific models for a better comparison to 

traditional cameras. 

KEYWORDS 

canopy openness, light regime, site factors, total gap fraction 

6.2 Introduction 

Solar radiation is fundamental in forest ecosystems as it drives plant photosynthesis, 

morphogenesis, and fluxes of carbon, water and energy between soil, vegetation, and the 

atmosphere (Ligot & Balandier 2014). The analysis of the light intercepted by the tree crowns 

has been the basis for various ecological studies, especially for the dynamics of the vegetation 

growing under canopy cover (e.g. Pacala et al. 1996; Finzi & Canham 2000; Duchesneau et al. 

2001; Coates et al. 2003). Evans & Coombe (1959) started using hemispherical photography 

(HP) for light analysis in forest research after they discovered the “ingenious ‘fish-eye’ 

camera” developed by Hill (1924) for cloud observations. Later, Anderson (1964a; 1964b; 

1966) made a crucial contribution to the computation of light transmittance through tree crowns 

by using such photographs. HP is now considered the most widely-used ground-based method 

for describing both canopy characteristics and forest light regimes (Promis et al. 2011; 

Chianucci & Cutini 2013). It is an indirect method for measuring the light transmittance with 

an associated level of error that can occasionally be substantial (Ligot & Balandier 2014).  

However, its advantage over instantaneous light measurement is that its results do not 

inherently vary with time of day, time of year, or cloud cover. Direct measurements of light, 

such as quantum sensors,  can be heavily affected by the conditions at the time of the 
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observations (Anderson 1966), requires longer and more expensive data collection and are 

more difficult to be linked to stand conditions (Čater, Schmid & Kazda 2013). Another 

photographic method used in forested environments is cover photography, which does not use 

a fish-eye lens and is focused more on canopy parameters analysis such as the leaf area index 

(Macfarlane, Grigg & Evangelista 2007; Chianucci & Cutini 2013).  

Hemispherical photography is commonly implemented with analogue or digital cameras 

equipped with 180° field-of-view (FOV) “fish-eye” lenses pointing upwards. The first 

processing step is to estimate the amount of sky visible through the canopy, by classifying each 

pixel of the photo as belonging either to the sky or to any blocking element from the vegetation 

(canopy, leaf, branches or stems) (Gonsamo, Walter & Pellikka 2011). This is usually carried 

out by thresholding the image, which is done by selecting a brightness value and considering 

the image pixels above this as belonging to the sky and below to vegetation. Thresholding can 

be manual, if the operator visually decides the best brightness value to use, or automatic, if 

software-based techniques are applied to make the process objective and reproducible (Nobis 

& Hunziker 2005). Photo exposure, by affecting the quality of the image, can strongly affect 

the thresholding process (Rich 1990). Specifically, over-exposure can lead to overestimation 

of the sky fraction, but there are various methods available to tackle this issue (Beckschäfer et 

al. 2013). 

From a thresholded HP image, various methodologies and software have been developed to 

estimate several variables, sometimes leading to a confusion in terminology (see Gonsamo et 

al. 2013). For canopy structural characteristics, canopy openness (usually defined as proportion 

of sky visible from a point) is one of the most common parameters estimated with this 

technology. The light transmittance of the canopy has been described largely using the Site 

Factor definition from Anderson (1966): the percentage of incident solar radiation at a given 

site compared to the total incident solar radiation in the open over the same period. This 

analysis requires the knowledge of the position of each gap on the hemisphere and the 

geographical location of the photo so that the sun track can be superimposed onto the 

hemisphere.  

Film handling and processing constraints slowed the widespread adoption of HP until digital 

photography and computer software become available, leading to an increase in the use of this 

methodology (Chianucci & Cutini 2012). Today, another potential technological advance in 

this field is the availability of low-cost fish-eye lenses for smartphone and tablet cameras. One 

published case has already shown that for canopy cover analysis, the proportion of the forest 
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floor covered by the vertical projection of the tree crowns (Korhonen et al., 2006), smartphone 

HP is comparable to HP using traditional cameras (Tichý 2015). However, that study involved 

the use of a specific smartphone app (GLAMA - Gap Light Analysis Mobile Application) that 

is useful for on-the-fly analysis in the field but less so for larger-scale studies, due to reduced 

processing options. Another smartphone app, HabitApp (McDonald & McDonald 2016; 

Deichmann et al. 2017) allows a quick analysis of canopy cover but again with limited 

processing options. 

Cameras traditionally employed for HP record circular photos, while smartphone cameras take 

only diagonal photos, following the definition of Schneider et al. (2009) (Figure 1). Circular 

HP records the full hemisphere visible from the lens, while the diagonal photos consider a 

smaller rectangular area.  

 

Figure 6.1. Circular HP with a full-frame camera (left) versus diagonal smartphone HP (right). Adapted from Schneider, 

Schwalbe & Maas (2009) 

The fish-eye lenses available for smartphones at the beginning of this study only provided a 

FOV of up to 160°, thus reducing even further the view compared to circular HP. Both these 

issues will surely lead to different estimations of canopy openness between the cameras. The 

bias is expected to be towards higher values of openness in the smartphone HP since it excludes 

some of the peripheries of the image, the areas of the hemisphere usually more prone to be 

obscured. We are not aware of any studies where Site Factors are calculated from diagonal 

pictures. A sun track could be still laid on the pictures but there will be portions of the 

hemisphere where the computation of the light transmittance will not be possible. However, in 

circular HP studies the area at higher zenith angles (closer to the horizon) has sometimes been 

excluded from either canopy openness or light transmittance computations, for exactly the 

reason that is more likely to be obscured (Machado & Reich 1999) or because is prone to many 
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sampling and optical errors (Gonsamo, Walter & Pellikka 2010). Sky areas located at the 

periphery have also less luminosity and a lower contribution to the Site Factor than areas 

located close to the zenith (Anderson 1964a). Thus, it is possible that even if less accurate, 

smartphone diagonal HP could provide adequate information and in more quantity on both 

canopy structure and Site Factors, and, if a bias is present, it could be individuated and 

corrected. The challenge is to verify that the potential reduced accuracy of such measurements 

does not outweigh the benefits of using a cheaper, faster, less encumbering, more wide-spread 

technology with internet connectivity. With smartphone HP, every forestry practitioner (or 

citizen scientists following the recent trends) could carry out quick canopy or light analysis 

without the need for extra tools other than a small fish-eye lens that fits in a pocket. This could 

potentially lead to an amount of data substantially larger than in the traditional studies with 

smoothing of the probable errors present in the single measurements. 

The main objective of the present research is to determine if smartphone HP is an adequate 

operational alternative to traditional circular HP in describing canopy structural parameters and 

the light regime under canopy cover. For smartphone images, we will take two pictures with 

different orientations per sample point and use two processing protocols: i) we estimate total 

canopy gap from the two single pictures, and average the values; ii) by merging the two pictures 

together, we form images closer to full hemispheres, so that we will be able to estimate from 

them canopy openness and Site Factors as in circular HP. We verify if smartphone values can 

be directly compared to circular HP ones, or, if a bias is present, whether models can be applied 

to transform and remove the bias. The values estimated from traditional circular HP images 

will be considered in our study the “ground truth” data against which we compare the 

smartphone HP estimates. 

6.3 Methodology 

6.3.1 Canopy and light parameter definitions 

Of the various structural canopy parameters, we considered in this study: Canopy Openness 

(CO), the area fraction of the sky hemisphere that is unobstructed by canopy or other blocking 

elements when viewed from a single point; and Total Gap (TG), the ratio of the number of sky 

pixels to the total number of pixels in a hemispherical image (Gonsamo, Walter & Pellikka 

2011). The difference between the two parameters is that the Canopy Openness calculation 

weights the gaps according to their position on the hemisphere, due to the geometric distortion 

produced by the fisheye lens (Gonsamo, Walter & Pellikka 2011). This process assigns a lower 
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weight to sky pixels located in the portions of the hemisphere with lower zenith angles, which 

are closer to the top of the hemisphere. For light regime measurements, we considered the 

Indirect Site Factor (ISF) as the transmittance through the canopy of the diffuse solar radiation 

generated by an overcast sky, the Direct Site Factor (DSF) as the transmittance of the direct 

solar radiation from a clear sky, and the Global Site Factor (GSF) as the total radiation that 

comprises both those components (Hale et al. 2009). All the Site Factors were considered 

averaged over one-year period. Indirect Site Factor is thus independent of the location and 

orientation of the photo: it is necessary only to know the zenith angle of the gaps (Anderson 

1966). To calculate DSF and subsequently GSF, a sun track is overlaid on the photo to analyse 

how each gap interacts with the direct sunlight at different moments of the day and of the year 

(Anderson 1964a). In all cases, the values range from zero (fully closed canopies and no light) 

to one (no canopy cover and full light). 

6.3.2 Study sites 

We collected data from 223 sample points distributed in 24 stands located in eight forests across 

the UK to consider different species, overstorey and geographical conditions (see Table 1). For 

each stand, we laid out ten sample points with a random-systematic approach. We drew random 

transects on a desktop map and placed on them evenly-spaced points, later identified in the 

field using a GPS receiver. The distance between points varied with the size of the stand. Since 

most of the stands were originated by artificial planting, transects were not laid out parallel to 

each other to avoid following the planting lines. When carrying out the field survey, if a sample 

point fell in an open gap with no overstorey we relocated it under canopy cover if possible, 

otherwise it was discarded (thus some stands had less than 10 sample points). 
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Table 6.1. Overview of the study sites 

Forest Location (WGS84) 
Overstorey 

type 
No. of stands No. of sample points 

Clocaenog 

(Wales) 
53˚ 04’ N, 3˚ 24’ W 

spruce 4 39 

larch 1 10 

Kielder 

(England) 
55˚ 13’ N, 2˚ 27’ W spruce 4 37 

Aberfoyle 

(Scotland) 
56˚ 13’ N, 4˚ 21’ W 

larch 2 20 

spruce 1 9 

Treborth 

(Wales) 
53˚ 13’ N, 4˚ 10’ W broadleaves 1 10 

Newborough 

(Wales) 
53˚ 09’ N, 4˚ 20’ W pine 2 20 

Mortimer 

(England) 
52˚ 21’ N, 2˚ 45’ W 

broadleaves 1 8 

douglas 1 9 

Coed-Y-

Brenin 

(Wales) 

52˚ 48’ N, 3˚ 53’ W douglas 2 17 

Wykeham 

(England) 
54˚ 16’ N, 0˚ 33’ W 

pine 4 36 

spruce 1 8 

Total 24 223 

 

We assigned to each compartment a categorical variable named OV according to the overstorey 

main species, with the following levels: “broadleaves” for mixed stands composed mainly of 

European beech (Fagus sylvatica L.) and oaks (Quercus petraea (Matt.) Liebl. and Q. robur 

L.); “douglas” for Douglas fir (Pseudotsuga menziesii (Mirb.) Franco), sometimes associated 

with broadleaves; “larch” for European and Japanese larch (Larix kaempferii (Lamb) Carr. and 

L. decidua Mill.); “pine” for Corsican and Scots pine (Pinus nigra subsp. laricio Maire and P. 

sylvestris L.); and “spruce” for Sitka spruce (Picea sitchensis (Bong.) Carr.). 

6.3.3 Data collection 

At each sample point we took circular hemispherical colour photos in quick succession, under 

overcast sky or beneath a clear sky after sunset (Fournier et al. 1996). We employed either a 

Nikon Coolpix 4500 or a Nikon Coolpix 990 equipped with Nikon FC-E8 183° Fish-Eye 

Converter Lens with azimuthal equidistant projection. Of the 223 sample points, in 145 we 

took hemispherical photos at a fixed height of 130 cm, while in 78 points (the ones in 

Newborough, Mortimer and Wykeham forests) we took them above a regenerating seedling or 

sapling which varied from 30 cm to 200 cm, as part of another research (data unpublished). 
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The camera was positioned on a tripod and oriented to the North using a compass and upwards 

to the zenith using a level. We took a picture using the automatic exposure and then three more 

with respectively -0.3, -0.7 and -1 Exposure Values (EV) to obtain at least one picture with 

good contrast between sky and canopy (Hale et al. 2009). The Nikon Coolpix 4500 recorded 

pictures of 2048 x 1536 pixels, the Nikon Coolpix 990 pictures of 2272 x 1704 pixels. Due to 

this difference, we had to keep the pictures separated during some of the processing steps, but 

the results (see later) did not differ between the two cameras, simply called “circular HP” from 

here onwards.  

In the same spot as each circular HP, and at the same height, we collected diagonal 

hemispherical colour photos with a Samsung Galaxy Grand Prime smartphone, equipped with 

a built-in CMOS 8.0 MP camera and a 150° Aukey fish-eye lens with azimuthal equidistant 

projection. We took the pictures immediately after reaching the point and with fewer 

precautions regarding the sky conditions (i.e. sometimes we waited for overcast sky conditions 

for the circular HP acquisitions, but never for the smartphone). We held the smartphone by 

hand, keeping it levelled and pointing upwards as best as we could. We took two pictures, once 

aligning the smartphone North-South and once East-West with the aid of a compass, always 

using the automatic exposure. The smartphone pictures had pixel dimensions of 3264 x 1836. 

We purposely followed a faster protocol and used less equipment (no tripod and no level) for 

collecting the smartphone HP. 

6.3.4 Image processing 

We automatically classified all the circular HP images using two systems. The first was the 

Ridler & Calvard (1978) iterative selection method applied to the blue channel of the pictures, 

where differences between sky and vegetation pixels are most evident. We used this method 

with the function IsoData from the software Fiji (Schindelin et al. 2012). For the second 

method, we used the colour-based algorithm enhanceHemiphoto (from now on called 

EnhanceHP) from the package Caiman (Diaz & Lencinas 2015) in R (R Core Team 2017). The 

EnhanceHP function combines the Ridler & Calvard (1978) method with a fuzzy pixel-based 

classification based on the colour attributes of hue, lightness and chroma, working more 

efficiently where differences between sky and vegetation pixels are less evident. More 

documentation is available in Diaz & Lencinas (2015). We applied the CIMES-FISHEYE 

software package (Gonsamo, Walter & Pellikka 2011) to the outputs of both classification 

methods. We extracted the gap fraction information for each portion of the hemisphere with 

the function GFA, using a grid of 24 azimuth sectors and 18 zenith annuli. This information 
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was the input for the following functions of the package: OPENNESS to obtain the Canopy 

Openness, PARSOC for the Indirect Site Factors (using the Standard Overcast Sky model) and 

PARCLR for the Direct Site Factor. Using the same procedure as Hale et al. (2009), which in 

turn followed the recommendations of the Met Office (2006), we calculated the Global Site 

Factor as in Equation 6.1. 

Equation 6.1: GSF = 0.65 × ISF + 0.35 × DSF 

We repeated the above estimations simulating a FOV of 150° by considering all the area 

comprised between the zenithal angles 75°-90° as obstructed, and obtained the same 

parameters, named CO150, ISF150, DSF150, and GSF150. 

For processing the smartphone pictures, we used two approaches. The first was to obtain Total 

Gap separately from the East-West (E-W) and North-South (N-S) pictures in each sample 

point. After classifying each image with both the IsoData and EnhanceHP functions as above, 

we used the package Raster (Hijmans 2016) of the R Statistical Software to calculate Total 

Gap as the ratio of white pixels (gaps) to the total pixels. We estimated Total Gap for both the 

N-S and E-W smartphone photos, and then the average for each pair.  

The second approach was to merge the two original pictures in each sample point and create a 

new one with the largest possible visible portion of the full hemisphere. We merged the images 

with the open source software ‘Hugin’, which automatically aligns and blends two or more 

images. The main use of Hugin is producing panoramic views but we developed scripts to batch 

process our canopy photos. Minor deviations from the N-S and E-W axes were frequent with 

the handheld smartphone, and we arbitrarily decided to use the E-W picture as the reference 

image for correct alignment. We thresholded all merged images with both the IsoData and 

Enhance function as above. 

Using CIMES-FISHEYE as above, we estimated COsm, ISFsm, DSFsm and GSFsm (“sm” for 

smartphone) for each picture and each classification method. We carried out the calculations 

considering a full 180° FOV hemisphere, by setting up the GFA function of CIMES to extract 

the gap fraction of a larger circle than just the area covered by the merged images. Given that 

the diagonal length of one smartphone HP corresponds to 150°, we used a circle having a 

diameter equal to the diagonal length multiplied by the ratio 150°/180°. The software 

considered the portions of the hemisphere not covered by the merged images as obstructed 

(specifically, the area between the zenithal angles 75°-90° and the corners not covered by 
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merging the two pictures; in total around half of a full circular HP image. See online 

supplementary information for more details). 

We carried out all the image processing with automatic and repeatable batch scripts. Figure 2 

shows the workflow of the image processing. The original and merged pictures were JPG 

format and were transformed during the thresholding into TIFF. The free software IrfanView 

was then used to batch convert all the files to BMP format for CIMES-FISHEYE. The online 

supporting information shows examples of the circular, single smartphone and merged 

smartphone HP images, highlighting the corresponding coverage. 

 

Figure 6.2. Simplified workflow of the various steps of image processing, from the original pictures to the output values. 

6.3.5 Statistical analysis 

To determine if there were significant differences between the thresholding methods, we 

compared the TG and CO estimations of the two methods when applied to the same camera 

pictures. To assess the differences between the estimations from circular images when different 

FOV were considered, we compared the respective CO and Site Factor estimations. 
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Then we compared the following parameters estimated from the different cameras but using 

the same thresholding method: CO from circular HP images (only FOV 180°) and TG from 

smartphone HP images (both single orientation and average values); CO, ISF, DSF, and GSF 

from circular HP images (only FOV 180°) and from merged smartphone HP images. We 

estimated Generalized Linear Mixed Models (GLMMs) of circular HP parameters as functions 

of the corresponding smartphone HP values. We tested as fixed effects the overstorey type both 

as a main term and as an interaction, to account for differences between species. We also 

included terms related to the different circular camera (“camera_type”, with the values of either 

“N990” or “N4550”) and the data collection methodology (“height_from_ground”, with the 

values of either “130cm” or “variable”), to verify if such differences were significantly 

affecting the relationship. We used a random effect of compartments nested within forests, to 

account for the sampling structure. From a global model including all the above effects, we 

then assessed reduced models with fewer effects using the Aikake Information Criteria (AIC), 

and selected the one with the lowest AIC as the best model for each analysis (Symonds & 

Moussalli 2011). We carried out all analyses using the packages nlme (Pinheiro et al. 2016) 

and stats in R (R Core Team 2016). 

6.4 Results 

Figure 3 shows the value distribution for GSF calculated from the circular HP images, using 

the EnhanceHP method, to provide a reference for the range of data. The areas surveyed in this 

research varied from low light transmittance (GSF around 0.05) to medium-high level of 

transmittance (GSF around 0.60), with most of them falling in the range GSF 0.20-0.30. 

However, the range was not even across different overstorey types. 
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Figure 6.3. Boxplots of Global Site Factor (GSF) from circular HP images for different overstorey species. The horizontal 

line shows the median value, the boxes the values between the first and third quartile, the vertical lines are an additional 1.5 

Inter Quartile Range above and below them. 

6.4.1 Comparison of thresholding methods 

Canopy parameters estimated from the pictures taken by the same camera (respectively the 

averaged Total Gap for smartphone and Canopy Openness for circular HP images), but 

classified with the different methods, were slightly lower for the EnhanceHP method than the 

IsoData (mean of differences respectively -0.023 for TG and -0.027 for CO, p-value < 0.001 

for both). This means that more pixels were classified as canopy elements with EnhanceHP. A 

visual analysis of the thresholded images confirmed that EnhanceHP correctly identified as 

vegetation many elements that were mistaken for sky by the IsoData method. That was true not 

only in the few obvious cases of high exposure images but also for small vegetation elements 

under good contrast. Since all the following analyses showed better correlations between the 

values from the circular and smartphone cameras when EnhanceHP was applied to both rather 

than the IsoData method, we present here only the former. Additional results for the IsoData 

method can be found in the online supporting information. 

6.4.2 Comparison of different FOVs for circular HP 

Values of CO, DSF and GSF when estimated from circular HP images with FOV 150° were 

significantly lower than from FOV 180° (p < 0.001) although the difference was very small in 

absolute terms: the mean of the differences between the different FOV estimations were, 
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respectively, -0.001 (standard deviation, st.dev., 0.009), -0.013 (st.dev., 0.022) and -0.004 

(st.dev., 0.010). No significant difference was present for ISF. 

6.4.3 Comparison of circular HP with non-merged smartphone HP  

The comparison of Canopy Openness from circular HP images and Total Gap from smartphone 

HP images (averaged between the two pictures), using the EnhanceHP method, is shown in 

Figure 4. TG values from the smartphone pictures were higher than CO values from circular 

HP images: mean of differences 0.12, st.dev. 0.04. In relative terms, TG values from the 

smartphone pictures on average were 165% of the CO values from circular HP images. The 

GLMM structure with lowest AIC maintained overstorey type only as interaction term, while 

both the differences in the circular camera type and the height from the ground did not affect 

the relationship. See Table 2 for the AIC comparison between model structures, and Table 3 

for more details of the selected model. The effect of the overstorey type was that for the same 

increase in the values of observed TG, the predicted CO values increased more rapidly for larch 

and pine than for broadleaves, with Sitka spruce and Douglas fir having an intermediate effect. 

 

Figure 6.4. Scatterplot of Canopy Openness (CO) from circular image with Total Gap (TG) from smartphone, showing the 

line of identity (dashed black line), both estimated using the EnhanceHP method. Smartphone values were obtained by 

averaging the single images results for each plot 
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Table 6.2. Aikake Information Criteria comparison between different generalized linear mixed model structures for all 

analyses. TG is Total Gap, CO is Canopy Openness, ISF, DSF and GSF are respectively Indirect, Direct and Global Site 

Factor (“sm” for smartphone HP). In the formulas, y and x are the respective circular HP and smartphone HP parameter 

considered, OV is the overstorey type, camera is the type of Nikon Coolpix used for circular images, and HFG is the height 

from the ground at which the pictures were taken (see Methodology). The lowest AIC values are shown in bold. 

Model CO ~ TG CO ~ COsm ISF ~ ISFsm 

DSF ~ 

DSFsm 

GSF ~ 

GSFsm 

y ~ x + x:OV + 

OV + camera + 

HFG -984 -980 -852 -761 -877 

y ~ x + x:OV + 

OV + camera -991 -988 -861 -768 -885 

y ~ x + x:OV + 

OV -999 -997 -869 -776 -894 

y ~ x + x:OV -1019 -1016 -891 -792 -916 

y ~ x + OV -990 -980 -869 -780 -894 

Y ~ x -1009 -997 -885 -795 -908 

 

The TG values from Smartphone pictures taken with different orientation in the same point, 

both classified with EnhanceHP, were not statistically significant (p = 0.53). However, when 

we used the TG values estimated only from the E-W and N-S pictures, instead of the averages, 

in the above model the results were slightly less accurate in both cases, although better for the 

E-W than the N-W pictures (results not shown).  

6.4.4 Comparison of merged Smartphone HP with circular HP 

The comparisons between the outputs estimated from the circular and the merged smartphone 

HP images, using the EnhanceHP method, are shown in Figure 5. The smartphone values were 

on average significantly different from the circular ones (p < 0.05 in all cases): mean of 

differences respectively 0.004 for CO (st.dev. 0.031), 0.042 for ISF (st.dev. 0.037), -0.012 for 

DSF (st.dev. 0.047), and 0.023 for GSF (st.dev. 0.040). In relative terms, the smartphone values 

on average were respectively the 102% (for CO), 115% (for ISF), 93% (for DSF), and 109% 

(for GSF) of the values of the circular HP values. For the CO, ISF and GSF models, the GLMM 

structure with lowest AIC maintained overstorey type as interaction term, while for the DSF 

both the main and interaction term were dropped. In all cases, the differences in the circular 

camera type and the height from the ground did not affect the relationship. See Table 2 for the 

AIC comparison between model structures, and Table 3 for more details of the selected models. 

When the effect of the overstorey type was present, it meant again that for same increase in the 

values of observed smartphone HP values, the predicted circular HP values increased more 



86 

 

rapidly for larch and pine than for broadleaves, with Sitka spruce and Douglas fir having an 

intermediate effect. 

 

Figure 6.5. Scatterplots of Canopy Openness and Site Factors (respectively ISF for Indirect, DSF for Direct, and GSF for 

Global Site Factor) estimated from different cameras, using EnhanceHP method, showing the line of identity (dashed black 

line). Smartphone values were obtained from merged images. 
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Table 6.3. Results of generalized linear mixed models between the outputs estimated by circular and smartphone HP pictures, using the EnhanceHP method. CO is Canopy Openness, TG is Total 

Gap, ISF, DSF and GSF are respectively Indirect, Direct and Global Site Factor (“sm” for smartphone outputs). For the fixed effects, “x” indicates the smartphone HP parameter used in the 

model, and OV is the overstorey type. 

  CO ~ TG CO ~ COsm ISF ~ ISFsm DSF ~ DSFsm GSF ~ GSFsm 

Fixed Effects Value St. Err p-value Value St. Err p-value Value St. Err p-value Value St. Err p-value Value St. Err p-value 

(Intercept) 0.025 0.010 0.013 0.032 0.009 0.001 0.042 0.012 0.000 0.049 0.011 0.000 0.049 0.011 0.000 

x 0.275 0.082 0.001 0.309 0.118 0.009 0.355 0.095 0.000 0.764 0.046 0.000 0.292 0.104 0.002 

x:OV(douglas) 0.197 0.080 0.014 0.386 0.120 0.002 0.347 0.094 0.000 - - - 0.376 0.107 0.001 

x:OV(sitka) 0.228 0.081 0.005 0.437 0.112 0.000 0.341 0.086 0.000 - - - 0.384 0.097 0.000 

x:OV(larch) 0.398 0.083 0.000 0.694 0.118 0.000 0.471 0.090 0.000 - - - 0.542 0.101 0.000 

x:OV(pine) 0.267 0.081 0.001 0.610 0.113 0.000 0.487 0.088 0.000 - - - 0.560 0.096 0.000 

Random 

Effects 

(Intercept) Standard Deviation Standard Deviation Standard Deviation Standard Deviation Standard Deviation 

Forest   0.018    0.012    0.008    0.000    0.009  
Stand (in 

Forest)  0.011    0.012    0.019    0.038    0.019  
Residual  0.020    0.020    0.031    0.034    0.028  
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6.5 Discussion 

The results of the study suggest that smartphone-based hemispherical photography can be used 

as a faster and cheaper alternative to traditional camera sets. We demonstrate methods to obtain 

canopy structural parameters and Site Factors with the advantage of less expensive equipment 

and faster data collection time. We purposely carried out the smartphone image acquisition 

with a simpler protocol that does not need extra tools (such as a tripod or a level) or to wait for 

the best sky conditions. The rationale was to test a methodology that could be applied by any 

forest practitioner in a speedier way, potentially obtaining a higher amount of data. In this case 

study, a smartphone is used only for the image acquisition, while the processing is done 

subsequently in a computer. Thus, for example, in a crowd-sourcing project various operators 

can acquire the images in the field and, using other smartphone applications, upload them to a 

central server where the more advanced processing here described can take place. 

While we carried out the smartphone pictures acquisition with fewer precautions, generally the 

images showed an acceptable quality in terms of exposure and contrast between sky and canopy 

and in turn the thresholding process gave good results. This is likely due to a combination of 

factors. The new sensors and in-camera processing of the smartphones are likely better than 

the now almost 20-years-old Nikon Coolpix. The smaller FOV of the smartphone fisheye lens 

may have reduced the direct sunlight hitting the sensor. The generally favourable sky 

conditions of the UK (high latitude, cloudy climates) have likely also played an important role, 

so that in other geographical areas the same precautions regarding direct sunlight may have to 

be applied also to smartphone hemispherical photography. However, where sub-optimal 

contrast between sky and canopy occurred in some of our smartphone pictures, the EnhanceHP 

function from the Caiman package gave good results during the thresholding. This method was 

designed to work with sub-optimal images, while the IsoData function requires good contrast 

pictures. 

The small differences between parameters estimated from circular HP images with a FOV of 

150° and 180° demonstrate that the reduced FOV of the smartphone fisheye lens could not be 

the main source of difference between the two cameras, which most likely are the diagonal 

character of the camera sensors and the lower quality of the images. New smartphone camera 

sensors and lenses are likely to be developed continuously, influencing both issues due to 

changes in the resolution of sensors and the quality and FOV of the lens, and then in turn 

affecting the analyses carried out in this study with our particular combination of smartphone 

and fish-eye lens. However, given that the same fisheye lens is used, the smartphone camera 
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used can be considered representative of the average sensor resolution and quality nowadays 

available, and if only new sensors will have likely better characteristics. In any case, we suggest 

verifying the real FOV of the conversion lens. 

Total Gap, obtained from the simple processing protocol of single smartphone pictures, was 

consistently higher than the Canopy Openness values from circular hemispherical images, as 

expected. The bias between those values in this study was consistent and with a reduced 

deviation, suggesting that there is still potential to use Total Gap from smartphone pictures in 

ecological study as a substitute to traditional circular camera analysis, either as it is or 

transformed by using the model provided. Taking two pictures in the same point and averaging 

the results improved the results without significantly increasing the time required for data 

collection and processing, so we advise this operation for future studies.  

Through the more advanced merging protocol we obtained processed smartphone pictures that 

could be used for estimation of Canopy Openness and Site factors. The mean differences and 

standard deviations between the parameters from different cameras were relatively small. This 

suggests that the smartphone camera outputs could be used in place of those from a circular 

camera. As already discussed, the areas close to the horizon not covered by the smartphone HP 

images did not greatly affect the Canopy Openness and Indirect Site Factor estimation. 

However, the different coverage was expected to give poorer results in the estimation of Direct 

Site Factor, which is a function also of the location of the gaps in relation to the sun track. 

Particular gaps with a large contribution to this Site Factor in circular hemispherical images 

might be excluded from merged smartphone images. In addition, the handheld alignment of 

the smartphone in the field are likely to have introduced additional errors in the sun track 

overlay. However, for the Direct Site Factor the mean difference between the circular and 

smartphone cameras were even lower than for other parameters. For the Global Site Factor, 

which in the UK depends more from the Indirect than Direct Site Factor, the differences 

between cameras were similar to the former. The best model structures for Canopy Openness, 

Indirect and Global Site Factor, included the overstorey type as interaction term, i.e. the 

relationship was affected by the different species’ foliar and crown architecture. Overstorey 

type was not included in the model for Direct Site Factor, which is likely more affected by 

large gaps falling around the sun track, and less by the overall fine gap structure. However, 

there were few replicates for some classes (i.e. only two broadleaved stands out of 24), and the 

range of canopy openness sampled within classes was not equal (i.e. for broadleaved stands it 

was lower than for pine and larch stands). 
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In conclusion, we believe that the cheaper and faster methodologies here described for 

smartphone-based hemispherical photography provide reliable parameters that can be used as 

substitutes for those estimated from circular cameras. Smartphone outputs could be employed 

as they are in forest ecology studies, such as for assessment of different sites or as inputs for 

ecological modelling, or converted with specific transformation models for a better comparison 

between cameras. The range of application of the models provided here outside the forest and 

sky conditions and smartphone specifications considered in this study has not been tested. 

Since we first designed this study, new smartphone fish-eye lenses promising wider angles (up 

to 180° and even more) are available on online marketplaces, providing different but hopefully 

more accurate results when applying the methodologies here described. Due to rapid 

technological development, smartphone hemispherical photography could potentially gain 

increasing importance in future years. 
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7 Simulations of Diameter at Breast 
Height growth for Sitka spruce 
regenerating trees 

In this chapter, I investigate some challenges related to DBH growth modelling for Sitka spruce 

regeneration, necessary for the integration of the regeneration models presented previously into 

the framework of MOSES_GB. 

7.1 Introduction  

MOSES_GB follows the same structure of the original MOSES: trees with DBH above 7 cm 

belong to the overstorey class, and below to the regeneration class (Hasenauer, Kindermann & 

Steinmetz 2006). To integrate the regeneration models described in the previous Chapters into 

MOSES_GB, the models should simulate the growth of regenerating trees until they reach 7 

cm at which point the trees would be moved to the overstorey class. 

First, the problem of the starting DBH must be solved. The models for regeneration occurrence 

described in Chapter 4 generates trees with height less than 130 cm, so DBH is null. After a 

tree grows above that height, or if for any reason a tree is manually added to the simulation, a 

DBH value must be assigned to it. Using the trees measured for the previous chapter, a total 

height-total DBH relationship, or total H-DBH, can be built. This relationship can be used to 

generate a starting DBH value as a function of height for all trees that surpass the height 

threshold of 130 cm at the end of any growing cycle. 

Second, both the height and DBH growth for each new growth cycle must be modelled until 

the tree reaches the threshold of 7 cm DBH. For the height, the light-growth model presented 

in Chapter 5 can be used. For the DBH, there are three different possible approaches. 

1) Use the light-DBH growth model presented in Chapter 5; 

2) After estimating the height growth as above, simulate the DBH growth as a function 

of the height growth; 

3) After estimating the height growth as above, assign a new total DBH as a function 

of the new total height. 
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The second and third approach are height-driven. Their rationale is that height growth for 

seedlings and saplings is the most crucial developmental force as trees compete for light and 

vertical growing space, which in turn determines the diameter growth (Crookston & Dixon 

2005). For approach 2, it is necessary to build a new height growth-DBH growth relationship, 

or growth H-DBH, again using the trees measured for the previous chapter. For approach 3, the 

same total H-DBH model aforementioned can be used. 

The specific objectives of this chapter were: i) to build a total H-DBH function, simulating the 

DBH of Sitka spruce regenerating trees taller than 130 cm as a function of total height; ii) to 

build a growth H-DBH function, simulating the DBH growth of Sitka spruce regenerating trees 

as a function of height growth; and iii) to compare the three different aforementioned 

approaches for modelling the DBH growth. 

7.2 Methodology 

7.2.1 Tree measurements  

For each Sitka spruce tree assessed for DBH in Chapter 5 (n=55), I took additional 

measurements following the same methodology described there. On each tree, I measured the 

leader shoots of two additional past vegetative seasons, all called Hgi (height growth at year i), 

as long as the beginning of the shoots were above 130 cm height. On each DBH stem section, 

I measured the corresponding growth rings of those additional vegetative seasons (on two 

diameters and averaged the values), all called DBHgi (DBH growth at year i). Then I assessed 

the corresponding total tree height and diameter at the end of each growth period (Hti and 

DBHti respectively total height and total DBH at year i). See Figure 7.1 for a summary of the 

tree measurement schematics. I created new datasets for each analysis with the replicated 

measurements on each tree, keeping track of the tree identity and the year of the corresponding 

growing season. I used the Hgi and DBHgi data for the growth H-DBH model (n=127), and the 

Hgt and DBHgt for the total H-DBH relationship (n=182). From the 55 original individual trees, 

I obtained more data points for the latter since I could use the measurements from an extra past 

growing season (i-3). 
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Figure 7.1. Schematics of tree height and diameter measurements. Hgi is the height growth at year i; Hti is the total height at 

year i; DBHgi is the diameter at breast height growth at year i, DBHti is the total diameter at breast height at year i. Please 

note that the arrows for DBHgi indicate the extent of the radius, thus half the diameter growth. DBHgi has been measured on 

two different diameters and the result averaged. 

7.2.2 Statistical analysis 

I carried out all the analyses using the package nlme (Pinheiro et al. 2016) from R Statistical 

Software (R Core Team 2017). 

7.2.2.1 Height-DBH relationships 

I estimated Generalized Linear Mixed Models (GLMMs) fitted by maximum likelihood of 

DBH (growth or total) as a function of height (growth or total), intra-regeneration competition 

(as estimated in the previous Chapter), and a 2-way interaction term between height and 

competition. I included as a random effect the tree ID, to account for repeated measurements 

being taken on the same individual. After a preliminary observation of the data and of the 

Akaike Information Criteria (AIC) results of preliminary models, I decided to include tree ID 

as a random intercept in the growth H-DBH model, and as a random slope in the total H-DBH. 

I excluded light availability as a fixed effect since I could not be sure if and how it changed in 

the last 3-4 years. The correlation between light availability, estimated at the time of the survey, 



94 

 

and both height & diameter growth decreased going from the current season to the previous 

ones (results not shown). Preliminary results showed that neither a spatial autocorrelation effect 

due to the stand or forest surveyed, or a temporal autocorrelation effect due to the year of the 

growing season significantly improved the AIC, so they were excluded. To better model the 

heteroscedasticity of the data, I considered the variance as a function of the fitted values. Then, 

from both the global growth H-DBH and total H-DBH models with all the variables, I tested 

all the possible nested sub-models with fewer fixed effects and selected as the best model the 

one with the lowest AIC. In case there were models with differences of less than 2 AIC units, 

I chose the one with fewest explanatory variables. 

7.2.2.2 Comparisons of DBH growth simulation approaches 

I estimated the accuracy of the three modelling approaches for DBH growth by cross-validating 

the light-DBH growth model calibrated in Chapter 6, and both the growth H-DBH and total H-

DBH models calibrated as above. 

I used the same dataset with the original 55 Sitka spruce trees measured for DBH. First, using 

the light-height growth model described in Chapter 5, I simulated the height growth of the last 

growing season (Hg) and added it to the observed height previous to the growth (Hp) to 

simulate the total Height (Ht). Then, I applied the following procedures: 

1) Using the light-DBH growth model described in Chapter 5, I simulated the DBH 

growth of the last growing season (DBHg) and added it to the observed DBH 

previous to the growth (DBHp) to simulate the total DBH (DBHt). 

2) Considering the simulated Hg as input, I used the growth H-DBH model to simulate 

DBHg, then added it to DBHp to simulate DBHt. 

3) Considering the simulated Ht as input, I used the total H-DBH model to simulate 

directly DBHt. 

I used a cross-validation technique during all the simulations steps, specifically a leave-one-

out cross-validation (LOOCV), which has been shown to provide an almost unbiased estimate 

of the true generalisation ability of a model (Cawley & Talbot 2004). When using any of the 

models indicated in the above procedures for a certain tree (either the light-height growth, the 

light-DBH growth, the growth H-DBH or the total H-DBH model), I recalibrated it beforehand 

without the data from that tree and then predicted the values for that tree. I compared the results 

of the total DBH simulations from the three approaches with the observed values using 

scatterplots and calculating the residual errors. The summary of the validation process 
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procedures is shown in Figure 7.2. For the light-DBH growth and growth H-DBH approaches, 

I also calculated the residuals of the DBH growth simulation obtained during the intermediated 

steps, and plotted against the observed values. 

 

Figure 7.2. Summary of the validation procedures for the three approaches for DBH growth simulation. DBHp, diameter at 

breast height previous to the growth; Hp height previous to the growth; GSF (Global Site Factor), light availability. Circles, 

the models used during the process for each tree with a leave-one-out cross-validation process, or simple algebraic operations. 

Exagons, outputs of such models or operations (DBHg and Hg are respectively DBH and height growth). DBHt, the final 

simulated total DBH for a certain tree n. 
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7.3 Results 

7.3.1 Height-DBH relationships 

The best model (lower AIC, least explanatory variables) for both the growth H-DBH and the 

total H-DBH relationships included only height growth as a fixed term (see Table 7.1). 

Competition and the two-way interaction term were excluded in both cases. Figure 7.3 shows 

the simulated versus the observed values for both models, and the standardized residuals 

plotted against the fitted values, which were both homogenously distributed.  

Table 7.1. Details for the fixed and random effects of the best growth H-DBH and total H-DBH models. 

growth H-DBH model 

Fixed terms Value Standard Error p-value 

(Intercept) 0.901 0.310 0.005 

Height growth 0.125 0.008 <0.001 

Random terms (Intercept) Standard Deviation Residual  

tree.id  0.972 0.290  

total H-DBH model 

Fixed terms Value Standard Error p-value 

(Intercept) -17.868 1.010 0.000 

Height 0.154 0.005 <0.001 

Random terms (slope) Standard Deviation Residual  

tree.id  0.034 0.305  
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Figure 7.3. Graph a and b, observed values (points, tree measurements on the same tree are connected by lines) versus 

simulation results (grey lines), respectively for the growth H-DBH model and the total H-DBH model. Graph c and d, 

standardized residuals plotted against the fitted values respectively for the growth DBH-Height model and total H-DBH model. 

7.3.2 Comparisons of DBH growth simulation methods 

The results of the cross-validation procedures for all methods are summarised in Figure 7.4, 

which displays the simulated versus observed DBH values, and in Table 7.2, which shows the 

Root-Mean-Square-Error (RMSE), the Mean Absolute Error (MAE), and the Mean Absolute 

Percentage Error (MAPE). The light-DBH growth and the growth H-DBH approaches were 

the most accurate, and very similar in their error distribution, while the total H-DBH was the 

least accurate. 

a b 

b d 
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Table 7.2. Summary of the errors (in mm) for the total DBH after the cross-validation procedure for each approach. RMSE is 

the Root-Mean-Square Error. MAE is the mean absolute error. MAPE is the MAE relative to the observed total DBH.  

 
RMSE MAE MAPE 

Light-growth DBH 2.75 2.01 0.09 

Growth H-DBH 2.82 2.04 0.11 

Total H-DBH 6.46 4.15 0.16 

 

 

Figure 7.4. Scatterplot of the predicted versus observed total DBH for each approach. Blue square, using approach 1 (DBH 

light-growth); red triangles, approach 2 (growth H-DBH); dark green circles, the approach 3 (total H-DBH). 

Moreover, when using the total H-DBH model, all trees would reach the 7 cm DBH threshold 

at the same height (around 580 cm). On the other hand, with the growth H-DBH model, trees 

would reach 7 cm DBH at different total heights according to their growth history. Specifically, 

a tree growing faster in height would reach 7 cm DBH at a higher total height than a tree 

growing slower in height (see an example in Figure 7.5). Similarly, in the case of the light-

DBH growth model, each tree would reach 7 cm DBH at a different height according to its 

specific growth history, influenced not only by light availability but also by the competition. 
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Figure 7.5. Simulation of DBH as a function of height for trees growing at different and constant yearly rates, using the growth 

H-DBH model. The horizontal dashed line is the 7 cm DBH threshold, each point on the line corresponds to one growing 

season. 

Figure 7.6 shows the residuals analysis of the simulated DBH growth for the light-DBH growth 

and growth H-DBH approaches, plotted against the observed DBH growth. The same tendency 

of decreasing accuracy for higher growth values observed in Chapter 5 for the light-DBH 

growth model, was here observed for both approaches. 

 

Figure 7.6. Standardized residuals of the light-DBH growth (blue squares and blue line) and growth Height-DBH (red 

triangles and red dashed line) models after the cross-validation process, plotted against observed values of DBH growth. The 

lines are LOESS smoothers. 
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7.4 Discussion 

I prepared here some tools necessary for the DBH growth simulation and the integration of the 

regeneration models presented so far in this thesis into a forest growth simulator such as 

MOSES_GB. I calibrated a model of total DBH as a function of total height, which can be used 

to simulate the initial DBH of Sitka spruce trees surpassing the 130-cm height threshold during 

the regeneration development simulation, or that are manually added by an operator. 

After comparison of the different approaches for simulating the DBH increment, the light-DBH 

growth and the growth Height-DBH models were found to be very similar in accuracy. This 

confirms a close relationship between height and diameter growth. The results were interesting 

especially since the two modelling steps necessary for the growth Height-DBH approach were 

expected to introduce more errors. The total Height-DBH approach showed errors of a greater 

magnitude which is likely to be because it was predicting a new total DBH value (a parameter 

with relative larger variability), instead of starting from the known DBH of the previous year 

and adding the DBH growth (a parameter with relative smaller variability). Moreover, when 

using the total Height-DBH approach, all trees of a certain height would automatically have 7 

cm DBH, regardless of their growing history. This would not happen in any of the other 

approaches. 

Therefore, discarding the total Height-DBH model, the remaining two approaches both seem 

suitable to the same degree for modelling DBH growth. However, due to the small number of 

trees measured for DBH in this thesis (n=55), and the tendency towards lower accuracy at 

higher values of DBH growth in both approaches, there could be the need to expand the sample 

size to improve the models. This study suggests that in such a case, the growth Height-DBH 

approach would require a simpler data collection: only height and diameter growth sampling, 

with the possibility of repeated measurements on each tree, and without the need of assessing 

the light availability. 
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8 Integrating the Sitka spruce natural 

regeneration models into 

MOSES_GB 

In this chapter, I investigate the integration of the regeneration models for Sitka spruce prepared 

so far (Chapters 4, 5 and 7) into MOSES_GB. I compare different modelling options, and test 

them under different forest characteristics and silvicultural managements. 

8.1 Introduction 

It is important for this thesis, to test the feasibility of integrating the regeneration models I 

prepared so far into a forest growth simulator that includes an overstorey trees layer, so that 

the continuous stand development desired in CCF scenarios could be modelled (Miina & Saksa 

2006). To do so, I decided to simulate the development over many years of an overstorey layer 

by using MOSES_GB, together with a regeneration layer by using the models prepared in this 

thesis. The regeneration layer is affected by the characteristics of the overstorey layer and in 

turn, provides information on if, when and how many new trees are recruited to the overstorey. 

However, the lack of long-term regeneration studies in the UK made it impossible to validate 

the results of such a simulation with existing data. 

I focused on verifying the sensitivity of the regeneration simulation when all the components 

were brought together into MOSES_GB. I considered two different stands each under two 

different thinning regimes. In each of the above cases, I tested two different modelling 

approaches in terms of spatial information. The overstorey components of MOSES_GB are 

non-spatially-explicit, that is even if a complete tree tally with spatial information is provided, 

the simulation considers a competition effect for each tree that is independent of its location in 

the stand (it is based only on the number and size of all trees larger than the subject tree at stand 

level). For the regeneration components, I compared a non-spatially-explicit approach as above 

(all regeneration was affected by a homogenous overstorey competition) with a spatially-

explicit approach. In the latter the positions of both the overstorey and regenerating trees were 

known, and within-stand variations affected the regeneration processes at local level, as 

recommended by Miina et al. (2006). For the eight different scenarios (two stands × two 

thinning regimes × two simulation approaches), I determined when and how many regenerating 

trees were recruited into the overstorey after a medium-term simulation. 
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8.2 Methodology 

8.2.1 General workflow of the simulation 

I considered two virtual one-hectare Sitka spruce pure stands, both of mature age but with 

different tree densities and past management. The first, Clocaenog or stand A, was based on a 

structure already on the way to transformation to CCF, with a relatively low tree density due 

to a past thinning regime aimed at achieving natural regeneration. The second, Grizedale or 

stand B, represented a more traditional stand, not recently managed and with a higher tree 

density. The characteristics of both stands were obtained from Chapter 4 (more details are given 

there on the survey methodologies employed), specifically age (in years), years after last 

thinning, moss cover (in %), basal area (BA, m2 ha-1), stems per hectare (SPH, n ha-1), and 

DBH distribution (Table 8.1). As described in Chapter 4, I assigned to both stands a Thinning 

Class, as a numeric value and homogenous at stand level, according to the years since the last 

thinning: TC1, 1-5 years; TC2, 6-10 years; TC3, 10+ years or never. I considered the moss 

cover also to be homogenous at stand level. I collected the data for Clocaenog, while the 

Grizedale data come from the dataset of Kerr et al. (2011). 

Table 8.1. Summary of stands characteristics at the beginning of the simulation. 

Forest name Clocaenog (A) Grizedale (B) 

Area (hectares) 1 1 

Age (years) 65 60 

Years after last thinning 6 20+ 

Moss cover (%) 90 39 

Basal area (m2 ha-1) 38.2 84.4 

Minimum DBH (cm) 40 8 

Average DBH (cm) 49 33 

Maximum DBH (cm) 57 57 

Stems per hectare 200 900 

 

For technical details on the MOSES_GB overstorey modelling components, see the prototype 

manual from Hale, Jenkins & Arcangeli (2012). I compared the application of two thinning 

regimes for each stand: no intervention, denominated “Control”, and a thinning of 20% of the 

stems at the beginning of each five-year period, denominated “Thinned”. MOSES_GB carried 

out a random selection of trees to be removed during each thinning. After each 5-year growth 

period, I updated the age and the Thinning Class for each scenario. I assumed the moss cover 

to be constant throughout the years. 
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The general workflow of the simulation, summarized in Figure 8.1, was as follows: 

1) generate the stand characteristics at year 0; 

2) generate a first Sitka spruce regeneration layer with the models of regeneration presence 

and density prepared in Chapter 4, using as inputs the corresponding stand 

characteristics; 

3) simulate the overstorey growth and mortality after 5 years using MOSES_GB, with or 

without the thinning event; 

4) estimate the average light availability under canopy cover for this five-year period (see 

later for model details and averaging methods); 

5) simulate the regeneration growth in one-year steps for this five-year period according 

to the light availability, using the height and DBH growth models prepared in Chapter 

5 and 7, and the regeneration mortality (see later for model details); 

6) generate a new wave of regeneration, as in step 2 above; 

7) check if any regenerating tree reached the 7-cm DBH threshold, and if so move it to the 

overstorey; 

8) and then repeat from point 3 to 6 above for a new five-year period. 

I simulated in this way three five-year periods, from year 0 to year 15. Figure 8.1 shows some 

of the main issues that were encountered during the simulation, for example the lack of a 

dedicated model for a step (namely for the starting regeneration height and the regeneration 

mortality), the lack of a proper validation for a model (namely for the light availability model), 

or uncertainties about when to activate a step (namely for step 6). 
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Figure 8.1. General workflow of the simulations, indicating some of the possible problems (circles). 

To determine the light availability below canopy cover, I used Model 8.1 from Hale et al. 

(2009), which estimates the Global Site Factor (GSF) from stand characteristics in pure stands 

of Sitka spruce in the UK that originated as artificial plantations.  

Model 8.1: 𝐺𝑆𝐹 = 𝑒  −0.5710 − 0.0178 ∗ BA −0.0011 ∗ SPH 

The model was designed to estimate the average light availability at stand-level, and its use at 

plot level (see later in the spatially-explicit approach) was not tested in the original study. To 

verify the feasibility to use this model at plot-level, I carried an independent validation in 

Annex IV.  



105 

 

For the regeneration mortality, the only available growth-mortality relationship was from 

Butler (2016). He observed that the relative height growth (RHG, the height growth relative to 

the total height of the plant) for recently-deceased Sitka spruce seedlings was on average 15%, 

a value significantly lower than the average for the live seedlings in the same study area. 

However, he studied only seedlings ranging from 20 cm to 130 cm in height. For the trees 

sampled in Chapter 5, the average RHG decreased sharply with increasing height, almost 

threefold from seedlings 75 cm tall to saplings 600 cm tall (results not shown), indicating that 

this threshold could not be used for bigger trees. In any case, there was no information on the 

likelihood of seedlings dying when their growth was below that threshold. Arbitrarily, I decided 

that if a seedling (considered to have height ≤ 130 cm, and therefore DBH = 0) experienced a 

RHG below 15%, it had a 50% chance of mortality. For saplings (considered to have height > 

130 cm, with DBH > 0), I used a density-induced mortality function like the one MOSES_GB 

applies to the overstorey. I calculated the Stand Density Index of regeneration (SDIr), applying 

Equation 8.1 to the regenerating trees. 

Equation 8.1: 𝑆𝐷𝐼𝑟 = ∑(
𝐷𝐵𝐻𝑖

25
)1.6614  

where DBHi is the DBH in cm of a certain sapling i present in the simulation unit. If the SDIr 

per hectare was higher than the maximum value of 1,476 (as used by MOSES_GB for Sitka 

spruce mature trees) at any given time, the number of regenerating trees was reduced until the 

maximum SDIr was obtained. 

I considered harvesting damage to happen immediately after each thinning, with rates based on 

the study from Stokes, Kerr & Ireland (2009). For simplicity, I considered only the mortality 

for regenerating trees less than 200 cm, as a 50% rate after each thinning event. It was assumed 

here that the damage to the bigger regenerating trees could not lead to mortality and removal 

of the trees from the simulation. 

More details on how I carried out all the above steps in the non-spatially-explicit and spatially-

explicit approaches are described in the next sections. I used the base tools of R Statistical 

Software (R Core Team 2017) for all steps involving the regeneration modelling, and the 

packages raster (Hijmans 2016), rgdal (Bivand, Keitt & Rowlingson 2017) and rgeos (Bivand 

& Rundel 2017) for the spatially-explicit analyses. Due to the stochastic methods employed in 

the regeneration presence and density models (see later), I employed the same set of pseudo-

randomly generated numbers for all the simulations. 
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8.2.2 Non-spatially-explicit approach: 

Year 0. For step 1, I used the module STANDGEN (Kitterberger 2003) within MOSES_GB 

to create a tree tally that had the same total BA, same total SPH and same DBH distribution (in 

terms of standard deviation) of the original stand. The spatial location of the trees was ignored. 

I assumed that within each stand the characteristics (Table 8.1) were homogenous across all 

the area, in terms of age, TC, moss cover, BA and SPH. 

For step 2, I used Model 4.1 to estimate the likelihood of regeneration presence (pregen) at stand 

level, using as input the stand average characteristics. In each scenario, I considered the 1 ha 

stands to be divided into 2,500 virtual 4 m2 regeneration plots (the simulation unit of the 

regeneration presence and density models). Again, their spatial location was ignored. Using a 

stochastic method, I checked the regeneration presence for each plot. To do so, I generated 

2,500 pseudo-random values between 0 and 1. The number of virtual plots assigned as having 

regeneration was set to be equal to the number of pseudo-random values below pregen. For each 

virtual plot with regeneration presence, I simulated the seedling density by generating a random 

number from the Weibull distribution functions presented in Chapter 4 (see Table 4.5), using 

the function for the specific TC in each scenario. Those functions generated density values per 

hectare that had to be transformed to seedlings per plot. 

I considered all the seedlings in one plot to have the same height, determined by generating in 

each case a pseudo-random number from a normal distribution with mean 75 cm and standard 

deviation 15 cm (a distribution roughly encompassing the full seedling height range, 20-130 

cm). 

Year 5. For step 3, I used MOSES_GB to simulate the development of the overstorey trees for 

a five-year period (considering growth, mortality and, where appropriate, thinning), obtaining 

a new tree list for each scenario. From that I calculated the new stand-level values of SPH and 

BA at year 5, and updated age and TC as appropriate. In the thinned regime, I halved (rounded 

to the closest integer) the number of regenerating trees in all plots with height less than 200 

cm, to account for the harvesting damage. 

For step 4, I estimated the average light availability for this five-year period with Model 8.1, 

which was assumed to be homogenous across all the stand. I used the stand-level characteristics 

as inputs and applied the following averaging methods according to the thinning regime: 

1) Control = average of light availability estimated at year 0 and at year 5. 
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2) Thinned = average of light availability estimated at year 0 immediately after the 

thinning (i.e. the tree removal) and at year 5. 

For simplicity, I assumed that the light availability was constant throughout each year in both 

regimes, and that the thinnings were carried out at the very beginning of the five-year period. 

To estimate the light availability at year 0 and at year 5, I used the corresponding stand-level 

characteristics. For the light availability immediately after the thinning, I retrieved from 

MOSES_GB the list of trees cut during the thinning, removed the number of trees and the sum 

of their basal areas from the stand SPH and BA of year 0, and applied again Model 8.1. 

For step 5, I used the above light availability as input for the regeneration height growth 

simulation in all virtual plots. I applied the light-growth Model 8.2 to each virtual plot five 

times in a row to represent each one-year simulation within the five-year period, updating every 

year the total height with the new growth (source: Chapter 5).  

Model 8.2: 𝐻𝑔𝑡 =  
5.264∗𝐻𝑡

0.430

1+𝑒
(0.339+0.043∗COMP)∗𝐻𝑡

0.101
−𝐺𝑆𝐹

0.117

  

 

where Hgt is the height growth in year t, Ht the height (before the growth) in year t, COMP the 

competition factor, GSF the light availability estimated by Model 8.1. I considered the 

competition for trees less than 130 cm height to come from half of the number of trees in each 

virtual plot, minus one to exclude the subject tree, to consider a 2 m2 area as in Chapter 5. For 

taller trees, I considered the competition to come from the total number of trees in each virtual 

plot (a 4 m2 area), again minus one. For trees taller than 250 cm, the 4 m2 area was smaller than 

the one considered in Chapter 5, but this approach was the only one possible due to the lack of 

spatial information. In both cases, I log-transformed plus 1 the number of trees considered to 

obtain COMP, as in the method described in Chapter 5. 

For trees that surpassed 130 cm height at the end of any one-year simulation, I used Model 8.3 

to calculate their initial DBH as a function of the height (H) (source: Chapter 7).  

Model 8.3: 𝐷𝐵𝐻 = −17.868 +  0.154 ∗  𝐻 

For trees that were already above 130 cm in height at the beginning of any one-year simulation, 

I calculated their DBH growth (DBHg) after their height growth (Hg) using Model 8.4 (source: 

Chapter 7). 

Model 8.4: 𝐷𝐵𝐻𝑔 = 0.901 +  0.125 ∗  𝐻𝑔 
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The Live Crown Ratio (LCR), information that is used in MOSES_GB for modelling the 

growth of mature trees, was estimated for regenerating trees using Model 8.5 (source: Chapter 

5, note that the coefficient for log(GSF) is adjusted for Sitka spruce).   

Model 8.5: 𝐿𝐶𝑅 = 0.921 +  0.078 ∗ log(𝐺𝑆𝐹)  

Since all the regenerating trees in the same plot had the same starting height, throughout the 

simulation they all grew in the same way and thus always have the same height, diameter and 

LCR. 

For mortality, I used different methodologies for plots containing seedlings or saplings. For 

plots with seedlings (height < 130 cm), in each one-year simulation that they experienced an 

RHG less than 15%, half of the trees died (rounded down). For plots with saplings (height > 

130 cm), every year I calculated the SDIr at plot-level using Equation 8.2, a modification of 

Equation 8.1, since all trees had the same DBH in a plot. 

Equation 8.2: 𝑆𝐷𝐼𝑟 = (𝑛 ∗ 2500) ∗ (
𝐷𝐵𝐻

250
)1.6614  

where n is the number of trees in the plot (multiplied by 2,500 since SDIr is a per-hectare index) 

and DBH is in mm. If for any given year, the SDIr for any given virtual plot with saplings was 

higher than the maximum value of 1,476, the number of regenerating trees was reduced until a 

new SDIr value no higher than 1,476 was obtained. To do so, Model 8.7 was resolved for n, 

assuming SDIr was equal to 1,476 and DBH equal to the value for that plot. This value of n, 

the number of surviving trees, was rounded down to the nearest integer and considered the new 

number of saplings in the plot. For both seedlings and saplings, if a plot had no trees at the end 

of any given year, it was reset and considered empty. 

For step 6, I checked if new regeneration would occur in the empty virtual plots. I re-assessed 

the regeneration probability using Model 4.1 with the new stand-level characteristics at year 5. 

Then, I used the same stochastic method as above for all the virtual plots without regenerating 

trees that were still alive (otherwise they were considered fully occupied and unavailable to 

new regeneration). If there were new virtual plots with presence of regeneration, I generated 

the tree density and height as above. 

For step 7, at the end of the five-year period, I checked if there were regenerating trees that 

surpassed the 7 cm DBH threshold. If so, those trees were added to the overstorey tree list, 

maintaining their information on height, DBH and LCR, to be used for the next simulation 
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cycle with MOSES_GB. Any virtual regeneration plots with trees more than 7 cm DBH were 

then reset and considered empty. 

Year 10 and 15. I repeated all the above simulations steps 3 to 7 for two more five-year periods. 

8.2.3 Spatially-explicit approach: 

Year 0. For step 1, I used the module STANDGEN as above, obtaining for both stands the 

same tree tallies as in the non-spatially-explicit approach. Additionally, I used STANDGEN to 

assign to each tree spatial coordinates within the 1 ha square. From the various options available 

I considered a regular tree distribution, since both the stands were originally artificial 

plantations. Note that this distribution is not perfectly homogenous but maintains a certain 

degree of randomness, creating areas with different tree densities and gaps of various sizes. I 

thus created tree maps for both stands, and overlaid them with a grid of 2 m × 2 m squares to 

create 2,500 spatially-located regeneration plots. For each plot, I calculated the local BA and 

SPH by identifying all the overstorey trees within 5.6 m from its centre (for BA, I summed up 

the BA of each tree, and for SPH, I counted the number of trees). I considered the same area 

used for the calibration of Model 4.1. However, the same values of age, TC and moss cover 

(Table 8.1) were assigned to all plots. 

For step 2, I used Model 4.1 to estimate the likelihood of regeneration presence (pregen) for each 

specific plot, using as inputs the stand-level values of age, TC and moss cover, and the plot-

level values of BA. I generated, as in the non-spatially-explicit approach, a pseudo-random 

number for each plot to determine the regeneration presence. For all plots where the number 

was below the local pregen, I generated the seedling density and height as above. 

Year 5. For step 3, I used MOSES_GB as in the non-spatially-explicit approach, obtaining 

both a new tree list and a new tree map for each scenario (after the growth, mortality and, where 

appropriate, thinning). I then recalculated the BA and SPH values at plot level for year 5 using 

the new tree maps, and updated the stand-level age and TC as appropriate. In the thinned 

regime, I accounted for the harvesting damage as in the non-spatially-explicit scenario. 

For step 4, I estimated the light availability for this period by applying Model 8.1 to each plot, 

using the plot-level values of BA and SPH, and the same averaging method depending on the 

thinning regime as in the non-spatially-explicit approach. 

For step 5, I carried out all the modelling of growth and mortality (height growth, DBH 

development, LCR estimation, mortality) using the same methods as in the non-spatially-
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explicit approach, but using as inputs for Model 8.2 and Model 8.5 plot-level values of light 

availability. Also in this case, all the regenerating trees in a plot had the same height, diameter 

and LCR throughout the simulation. 

For step 6, I again checked if new seedlings would occur in empty plots, according to the new 

plot-level characteristics at year 5, and then generated seedling density and height as in step 2 

above. 

For step 7, at the end of the five-year period, I checked if there were plots with regenerating 

trees that surpassed the 7 cm DBH threshold, as above. If so, all those trees were added to the 

overstorey tree list for the next cycle of MOSES_GB, maintaining not only their information 

on height, DBH and LCR, but also the spatial coordinates. For simplicity, all the trees in a plot 

were assigned the spatial coordinates of the centroid of the regeneration plot. Any plots with 

trees more than 7 cm DBH were then reset and considered empty. 

Year 10 and 15. I repeated all the above simulation steps 3 to 7 for two more five-year periods. 

8.3 Results 

Table 8.2 shows how many trees reached the 7-cm DBH threshold in each scenario at the end 

of every five-year period, and their contribution in terms of BA when recruited in the 

overstorey. There were differences between the simulation approaches (recruitment started 

earlier in the spatially-explicit simulation), thinning regimes (higher values for the thinned), 

and stands (higher values for stand A). However, in stand A, all scenarios after 15 years showed 

a relatively similar high number of regenerating trees recruited into the overstorey (around 

1,500-2,000 trees per ha and BA 9-11 m2 ha-1) except for the non-spatially-explicit scenario, 

control regime, where it was very low. For stand B, only in one scenario (thinned regime, 

spatially-explicit approach) did regeneration recruitment occur, although very sporadic and 

almost negligible. 
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Table 8.2. Number of regenerating trees per hectare recruited in the overstorey for each scenario, and their total basal area 

(BA, m2 ha-1). 

Method Non-spatial 

Stand Stand A Stand B 

Thinning Control Thinned Control Thinned 

Value n BA n BA n BA n BA 

Year 05 0 0 0 0 0 0 0 0 

Year 10 0 0 0 0 0 0 0 0 

Year 15 126 0.534 2,088 10.912 0 0 0 0 

TOTAL 126 0.534 2,088 10.912 0 0 0 0 

Method Spatial 

Stand Stand A Stand B 

Thinning Control Thinned Control Thinned 

Value n BA n BA n BA n BA 

Year 05 0 0 0 0 0 0 0 0 

Year 10 466 2.206 571 2.674 0 0 0 0 

Year 15 1,100 6.741 1,349 8.321 0 0 51 0.254 

TOTAL 1,566 8.947 1,920 10.995 0 0 51 0.254 

 

Figure 8.2 shows the development over time of the overstorey layer in each scenario. The BA 

and SPH (graphs a to d) for each stand were modelled in the same way with MOSES_GB in 

both simulation approaches; only the regeneration had a spatially-explicit approach. Thus, 

those characteristics were the same for the same stand and thinning regime in the two 

simulation approaches until regeneration was recruited to the overstorey. Only in stand A were 

these changes consistent.  

Figure 8.2 (graphs e and f), shows the mean light availability below canopy at each stage for 

all scenarios, after the recruitment of the regeneration. For the non-spatially-explicit approach, 

the figure displays the homogenous stand-level estimate, while for the spatially-explicit 

approach, the mean of all local plot-level values is known. Due to the methods used for of the 

calculations (discussed later), for the same stand and thinning regime the average GSF was 

always slightly higher using the spatially-explicit than the non-spatially-explicit approach, until 

the regeneration was recruited to the overstorey layer. This effect was more evident for stand 

A, but it was present in both stands and thinning regimes. In the spatially-explicit tree maps, 

several gaps and the stands edges (the stands were considered surrounded by an open area) 

contributed with higher values of light availability (Figure 8.5). Note that even in the absence 

of any tree (BA and SPH equal to 0), Model (8.1) returns a maximum value of 0.56 GSF (see 

Annex IV). However, in the three scenarios which resulted in thousands of regenerating trees 

being recruited into the overstorey of stand A (both spatial scenarios, and the thinned non-
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spatial), the light availability dropped to values less than 0.1, due to very high values of SPH 

then used in Model (8.1).  
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Figure 8.2. Stand basal area (BA, graph a and b), stems per hectare (SPH, graphs c and d), and mean stand light availability 

(GSF, Global Site Factor, graphs e and f), for each scenario, from year 0 to 15. 
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Figure 8.3 (graphs a and b) shows how the regeneration presence likelihood, averaged at stand 

level, changed in each scenario over time. There were only very small differences between the 

spatially-explicit and non-spatially-explicit approach for the same stand and thinning regime. 

In the control regime, the regeneration presence likelihood decreased sharply for stand A 

passing from TC2 to TC3 after the first five-year period, and then increased again due to the 

increasing age. For stand B, the regeneration likelihood was generally low throughout all the 

simulation, reaching a maximum of 0.31 only after 15 years due to the positive effect of age. 

In the thinned regime, the regeneration presence likelihood increased sharply in both stands 

after the first five-year period, when they both passed to TC1 for the rest of the simulation. 

Then it keeps increasing due to the increasing age, reaching almost 100% (almost all cells had 

regeneration of some size) even if there were hundreds of new trees recruited in the overstorey 

(in the case of stand A) or the values of BA were still high (in case of stand B). The effect of 

TC and age were the most important in determining the regeneration presence likelihood in all 

scenarios.  

Figure 8.3 (graphs c and d) shows the total area within the stand with presence of regeneration 

for each scenario over time. Again, differences were generally small between the spatially-

explicit and non-spatially-explicit approaches. Under the thinned regime, for both stands A and 

B, all the area became covered with regeneration in 15 years, due to the constantly high 

regeneration presence likelihood, even considering mortality and ingrowth. Stand A, control 

regime, showed the only difference between the different simulation approaches: at year 15, 

the coverage was lower in the spatially-explicit, due to higher regeneration ingrowth in this 

scenario. 

Figure 8.3 (graphs e and f) shows the total regeneration density for each scenario over time. 

The higher number of regenerating trees in stand B than stand A under thinning, from year 5 

and onwards, is due to their differences in the first regeneration layer (year 0). In stand A, the 

starting regeneration was generated using the Weibull distribution for TC2, resulting in most 

of the available plots being occupied with the relatively lower densities generated this way 

(almost 70% of the total area, see graph c), while stand B was practically devoid of 

regeneration, due the very low likelihood of regeneration. After the first thinning (year 5), in 

stand A, an additional 29% of the total area was covered with regeneration generated with the 

Weibull distribution for TC1 (which produces considerably higher densities), while around 

75% of the total area for stand B. The high regeneration density of stand B however did not 

provide a high recruitment due to the low growth rates in all its scenarios. Seedling mortality 
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and ingrowth reduced the number of seedlings in each scenario, slightly more so in the 

spatially-explicit than in the non-spatially-explicit approach, consistent with the trends in the 

area covered. 
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Figure 8.3. Regeneration characteristic at stand level for each scenario, simulated from year 0 to 15. Mean regeneration 

likelihood (graphs a and b), total area covered by regeneration (graphs c and d), total regeneration density (graphs e and f). 

regime 

stand 
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Figure 8.4 shows the regeneration size development for each scenario, in terms of mean DBH 

(graphs a and b) and maximum DBH (graphs c and d), only for saplings (height > 130 cm, 

DBH > 0). When comparing the different simulation approaches, the maximum DBH was 

higher in the spatially-explicit then in the non-spatially-explicit approaches due to the 

regeneration growing in the high-light gaps and edges considered in the former, for both stands 

and thinning regimes. The differences in the mean DBH were less evident: only in stand A was 

it slightly higher in the spatially-explicit approach, at least until year 10 when the recruitment 

process started. When comparing the different thinning regimes, few differences in mean DBH 

could be observed for both stands and approaches. The increase in DBH growth after thinning 

due to the higher light availability was counterbalanced by the higher presence of new trees 

with lower DBH values, hence the small differences in the means. Greater differences between 

the different thinning regimes (higher values in the thinned stands) were seen in the maximum 

DBH for all scenarios except the stand A, spatially-explicit approach. In this case, the similar 

values in the control and thinned regimes were due to trees originated in the same high-light 

(GSF 0.566) gaps and edges generated in the tree maps of year 0 for both cases, and which 

were then unaffected by the tree removals. In all other cases, tree removals increased light 

availability and so the regeneration maximum height. Particularly in stand B, for the spatially-

explicit approach, some large gaps were created in the canopy that were instrumental in few 

regenerating trees reaching 7 cm DBH.  
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Figure 8.4. Development of regeneration DBH in all simulation scenarios. The dashed black horizontal line corresponds to 

the 7-cm threshold.  

The starting random height of the regeneration crucially affected its growth. A tree of 20-cm 

height generated at year 0, with no competition, took a full five-year period to reach the height 

of 130 cm if growing at an average light level of GSF 0.34. During the same time, a tree 

generated with 130 cm height, with no competition and with the same light, was already 347 

cm tall. 

Another problem related to the starting height was identified when considering the regeneration 

generated at the end of the subsequent five-year periods. Such regeneration would have had no 

more than 4 growing seasons available to grow, if we consider at least a one-year delay for 

regime 

stand 
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seedling establishment (defined as reaching 20 cm, the entry point of the simulation). In other 

words, we must assume that if new regeneration is created at year 5, it would have passed the 

establishment phase and reached 20 cm height no earlier than year 1 (since it was absent at year 

0), and then had no more than 4 years to grow. However, the new seedlings were created with 

the same random starting height distribution, possibly up to 130 cm. Only regeneration growing 

in canopy gaps with GSF > 0.50 could reach 130 cm in just 4-years, while new regeneration 

created at lower light should surely have had lower heights. 

There were inconsistencies between the regeneration and overstorey growth models that led to 

unrealistic outcomes. For trees of the same size, the former tended to simulate much higher 

growth, especially for DBH. As an example, a tree 6 m tall and with DBH 7 cm, after 5 years 

in MOSES_GB with no competition at all, could grow to 9.7 m height and DBH 10.1 cm. The 

same tree with the regeneration growth models presented here, at GSF 0.56 (such as in a gap) 

and no intra-regeneration competition, could grow to 10.7 m height and DBH 13.3 cm in 5 

years. The regeneration growth models were likely to be less accurate in this case because they 

were not calibrated for trees above 7 cm DBH. This problem was important in the simulations, 

since regenerating trees that reached 7 cm DBH before the end of a five-year cycle could not 

be moved immediately to the overstorey layer and modelled with MOSES_GB for the rest of 

the period. Figure 8.4 (graph c) shows a maximum DBH of more than 13 cm reached by the 

saplings in stand A at year 15, for the spatially-explicit approach in both thinning regimes, 

before being recruited in the overstorey. Those trees were saplings of just a few mm below 7 

cm DBH at year 10 that grew more than 6 cm in the next five-year period, thanks to the high 

light environment in gaps. However, overstorey trees that were already recruited into the 

overstorey layer of stand A at year 10 (with a mean DBH of 7.7 cm for both thinning regimes), 

grew only 0.6 cm DBH in the control regime and 1.1 cm in the thinned regime in the same 

five-year period. On top of the aforementioned growth overestimation of the regeneration 

models, there was a stark contrast in the competition considered. When thousands of saplings 

moved to the overstorey layer at the same time, the non-spatial simulation of MOSES_GB 

considered all of them to be subject to a much higher competition than before (which was on 

average 1.8 trees per plot, for both thinning regimes). 

The high density of seedlings per plot generated in both stands after a thinning (up to 30 

seedlings per plot) decreased due to the combined use of the various mortality tools. Harvesting 

damage greatly was instrumental in stand A in reducing the number of trees recruited in the 

thinned regime to values more like the control regime. In all scenarios, when the regeneration 
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plots with trees above 7 cm DBH reached the recruitment stage at the end of a five-year period, 

they had on average around 2 saplings that moved to the overstorey (except for stand A, 

thinned, non-spatially explicit approach, where it was on average 1.2). However, I could not 

validate such mortality rates due to lack of existing data.  

8.3.1 Spatially-explicit approach 

The following maps show the within-stand variations considered in the spatially-explicit 

approach. Figure 8.5 displays how the local light availability changed in stand A, under the 

different thinning regimes. In year 0, before the first thinning happened, the situation was the 

same for both the control and thinning regimes (hence only one map is shown). It possible to 

identify the gaps in the canopy and the edge effect, which led to high values of light. With the 

passage of time, there was a negative effect of the local overstorey tree growth that led to higher 

BA values and so less light, and a positive effect of tree removals. In this simulation, gaps of 

any size did not ever close until the ingrowth of the regeneration, quite an unrealistic scenario. 

It is possible to note that most of the recruitment in year 10 (new trees present in the maps) 

happened in the gap and edge areas, as expected in a real situation. 
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Figure 8.5. Maps of light availability (GSF, Global site factor) of stand A under different thinning regimes, from year 0 to 10, 

spatially-explicit approach. The legend is displayed in the scaled colour bar. The small squares represent the regeneration 

plots. The black points represent the overstorey trees, including those recruited from the regeneration. 
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Figure 8.6 displays how the local regeneration presence likelihood changed in stand A, under 

the different thinning regimes. In year 0, before the first thinning, the likelihood was mostly 

0.6-0.8 (stand mean 0.69) in both regimes. Then, in year 5, control regime, the likelihood 

decreased to a stand mean of 0.34, with higher values in the gaps and edges (around 0.4-0.5), 

while with the thinning regime it was homogenously high in all the stand (stand mean 0.96). 

In year 10 the likelihood generally increased in the control regime to a mean of 0.53, again 

with some differences in the gaps and edges, while in the thinning regime stayed homogenously 

at values near 1. Note that in the maps for year 10 the new ingrowth trees in the overstorey 

layer are not displayed. In the simulation, the generation of a new wave of regeneration (step 

6) happened before moving the regeneration recruit to the overstorey (step 7). Note also that 

these maps do not display which plots were actually occupied by regeneration.  

  



123 

 

 

  

 

Figure 8.6. Maps of regeneration presence likelihood (Reg. prob.) of stand A under different thinning regimes, from year 0 to 

10, spatially-explicit approach. The legend is displayed in the scaled colour bar. The small squares represent the regeneration 

plots. The black points represent the overstorey trees. 
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Figure 8.7 displays the differences in the local regeneration DBH for both stands and both the 

different thinning regimes, at year 10, before the trees with DBH above 7 cm were moved to 

the overstorey class. As previously mentioned, the gap and edge effects were crucial to promote 

the regeneration growth, and they were the areas were most of the recruitment eventually 

occurred. However, the local stand density did not influence the regeneration presence as much. 

Particularly in the thinned regime, stand A, it occurred more evenly in all the area.  

 

Figure 8.7. Maps of regeneration DBH for different spatially-explicit scenarios. The legend is displayed in the scaled colour 

bar. The small squares represent the regeneration plots. The black points with red filling represent existing overstorey trees. 
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8.4 Discussion 

There were differences in the overall recruitment process between simulation approaches (it 

started earlier in the spatially-explicit simulation), between thinning regimes (more trees were 

recruited in the thinned), and between stands (more trees were recruited for stand A). The 

regeneration presence and density processes, dependent mainly on the starting stand 

characteristics and then on the thinning regime, were generally similar between the simulation 

approaches. The regeneration growth, dependent mainly on the light availability, were affected 

by the thinning regimes and the spatial simulation approach. For stand A, after 15 years a 

similar number of trees were recruited in the overstorey in all scenarios except for the control 

regime, non-spatially-explicit approach, where it was lower mostly due to the lower light 

availability simulated in that case. For stand B, the recruitment process after 15 years was null 

or negligible in all scenarios. 

The similarities in regeneration likelihood, coverage and density at stand-level between the 

simulation approaches, until ingrowth was considered, were due to the original structure of the 

models. The local variations of basal area in the spatially-explicit approach did not much affect 

the regeneration presence because basal area is the weakest predictor of the regeneration 

likelihood model (see Chapter 4). Stand density is not even considered in the regeneration 

density model. Thinning Class, age and moss are the most important factors for regeneration 

presence, and density simulations use only Thinning Class as a predictor. All these variables 

were considered homogenous within each stand and the same in both approaches, hence the 

similar results. The models for regeneration presence and density, considering years after the 

last thinning as the most important factor, or the only one, and regardless of the intensity of 

such thinning, led to unrealistic results where the denser stand B had higher seedling densities 

in the thinned regime, for both simulation approaches. However, that abundant regeneration 

failed to reach the overstorey class because the environment of stand B was not favourable to 

regeneration growth, an indication of inconsistency between the models. 

One of the problems already identified at the beginning of the study, the lack of a proper model 

for the starting regeneration height, clearly influenced the simulations, but because of the lack 

of validation data it was not possible to analyse its long-term effect. Generating additional 

regeneration at the end of each 5-year period did not much change the situation in the control 

regime scenarios, due to the low regeneration presence likelihood, but led to stands fully 

covered by regeneration after 1-2 cycles under thinning. Another problem in generating 
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additional regeneration, was that it could have had too high a starting height for its young age. 

As stated in Chapter 4, the regeneration presence and density models were calibrated without 

a clear temporal horizon, and so were less appropriate to be used in such short five-years cycles. 

Regeneration mortality due to timber extraction influenced the simulation by reducing the 

number of the recruited trees in the thinned regime to values like the control. The same Stokes, 

Kerr & Ireland (2009) study that I used as the basis for the mortality rates, stated that after 

harvesting damage the natural regeneration density could be still likely enough to restock their 

study sites. 

There were differences between the simulation approaches for the regeneration growth, which 

was faster in the spatially-explicit due to the higher light availability due to the presence of 

gaps and edges in the tree maps. Gaps in the canopy due to small disturbances, such as can be 

considered the small random gaps here created at year 0 or after the thinning events in 

subsequent years, have an important role in stand dynamics where stand-replacing disturbances 

are absent, due to the localised increase of light reaching the forest floor (e.g. Schneider & 

Larson 2017). The positive edge effect for regeneration growth was recognised in MOSES and 

included in the early growth models for all species (Hasenauer & Kindermann 2006). These 

local areas of higher light availability could be necessary when modelling mixed-species 

forests for the development of more light-demanding species, which could maybe not survive 

at all in the lower and homogenous light levels estimated in the non-spatially-explicit approach. 

However, even if with a five-year delay, the recruitment process in stand A, thinned regime 

and non-spatially-explicit approach, was eventually equivalent to both the thinning regimes in 

the spatially-explicit approach. This is because the very open forest structure considered in the 

former (at year 10, only around 128 overstorey trees per hectare were present) still provided 

relatively high-light estimates at stand level even without considering gaps and edges. In the 

denser stand B, the differences between approaches were more evident: the maximum DBH 

was higher in the spatially-explicit approach, even if no regenerating trees reached 7 cm DBH 

in the simulation timeframe. Although the spatially-explicit approach seemed more realistic in 

considering within-stand variations in the canopy, various issues were identified in the 

estimation of light availability. First, the light model provided maximum values of only 0.56 

even in the absence of any canopy trees at local level. For the Sitka spruce height model used 

here, at this value the growth was already very close to the maximum possible at full light, but 

this might not be the case for other species. Second, without tree removal, the local light 

availability was affected only by the DBH growth of mature trees within the 5.6 m radius, 
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which could be relatively slow, and gaps never closed. However, especially after thinning, the 

canopy could revert quickly to a closed status by extending branch growth to close the gaps 

(Hale et al. 2009). Third, the model was developed to be used at stand-level, where it gave 

reliable results, while the predictions for the 5.6 m plot used in this study were quite discordant 

with the observations (see Annex IV). Fourth, the response of existing regeneration to 

overstorey removals can be affected by several factors, such as its shade-tolerance and vigour 

before the release, and be different between height and DBH growth (the former may be lower) 

(Ruel et al. 2000; Metslaid et al. 2007). There could also be a delay of some years before 

suppressed regeneration can get acclimated to the new light level and exploit the higher light 

availability (Eerikäinen, Valkonen & Saksa 2014). In this simulation, I assumed that as soon 

as a gap is created due to a thinning, the height growth increased directly with the increase in 

light availability.  

A major inconsistency was found for the simulated DBH growth of trees around or bigger than 

the 7-cm threshold, between the MOSES_GB growth module for the overstorey and the 

regeneration early growth models prepared here. The latter provided much higher results than 

the former. A possible solution for saplings around or above the 7 cm DBH but still in the 

regeneration class, would be to use the existing MOSES_GB growth functions, or average the 

results of the two system like in the forest growth simulator FVS (Crookston & Dixon 2005).  

The methods used to estimate the mortality in the simulations led to biologically-consistent 

values of saplings recruited in the overstorey for each plot (on average only 1-2 for a 4 m2 plot). 

However, such values could not be verified. Better light-growth mortality functions for 

regeneration should be developed, maybe together with additional random mortality tools for 

all regenerating trees. 
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9 Conclusions 

In this chapter, I summarise the findings of this thesis according to the original research 

questions, identify some of the limitations of the studies, suggest areas for further development, 

and highlight the novel contributions made by the study. 

9.1 Summary of findings 

The overall aim of this thesis was the development of natural regeneration models for Sitka 

spruce and other companion species, which could be applied to stands managed using 

continuous cover forestry approaches in the UK. I followed the development of Sitka spruce 

seedlings from their establishment until their recruitment to the overstorey. There was a special 

focus on the light-growth responses of regeneration, and on the assessment of the below-

canopy light regime. In this section I summarize the main findings of the thesis and how they 

answer the research questions originally posed. 

1. What are the best structures for Sitka spruce natural regeneration occurrence and 

density models? 

I developed models for estimating the presence and density of Sitka spruce natural regeneration 

under canopy cover. I used as a calibration dataset an existing regeneration survey carried out 

in traditionally-managed Sitka spruce dominated stands, covering a wide range of forest 

structures and geographical areas. As independent validation, I used plots newly collected in 

different Sitka spruce dominated stands, which were, however, managed for transformation to 

continuous cover forestry. The likelihood of regeneration presence was estimated using a 

Generalized Linear Mixed Model with Binomial function and Logit link. The selected variables 

were a combination of stand characteristics (age of the plantation and local basal area), 

management history (years since the last thinning) and site characteristics (percentage of plot 

area covered by moss). If regeneration was present, the density of seedling was estimated by 

generating random numbers from a Weibull distribution function. Such functions were fitted 

to the observed data, grouped into different classes according to the years since the last 

thinning. The model of regeneration presence correctly simulated most of the plots after a 

cross-validation process with the calibration dataset. However, it had lower accuracy in the 

independent validation. The model for seedling density did not have a good performance in 

both the cross-validation and independent validation. 
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2. Can the early growth of Sitka spruce, western hemlock, and Douglas fir be modelled 

as a function of the light environment under canopy cover? 

I modelled, as a function of light availability, the early growth of Sitka spruce regeneration in 

continuous cover forestry stands, and of possible companion species, namely western hemlock 

and Douglas fir. I developed light-growth models, for the height of all species, and for the 

diameter of Sitka spruce and western hemlock. I tested different model structures based on 

three non-linear asymptotic functions (namely the Michaelis-Menten, the 3-points Logistic and 

the Asymptotic-with-offset). I included tree size and intra-regeneration competition, which 

affected some or all the non-linear parameters of the original functions. I tested a total of 60 

different model structures for each species and growth variable considered.  

The results showed that for each species, a different non-linear function best simulated the 

growth (namely the 3-points Logistic for Sitka spruce, the Michaelis-Menten for western 

hemlock, and the Asymptotic-with-offset for Douglas fir). For Sitka spruce and western 

hemlock, there were differences in the model structures for the height and diameter growth. 

Tree size affected the maximum growth in all models, and in some cases also the growth rate 

(i.e. the speed at which the maximum growth was reached). The intra-regeneration competition 

seemed to have a stronger effect in reducing the diameter than the height growth. Douglas fir 

compared to Sitka spruce had a slightly slower height growth at low-light, and a markedly 

higher growth at high-light. Western hemlock had the highest height growth at all light levels. 

Sitka spruce compared to western hemlock had slower diameter growth at low-light, and higher 

growth at high-light. 

3. Can the light-growth responses, regarding growth and canopy architecture, for Sitka 

spruce, western hemlock and Douglas fir be used to define a shade tolerance 

ranking? 

I carried out an analysis of the crown plasticity of these species. I modelled the apical 

dominance and live crown ratios as functions of light availability, tree size and intra-

regeneration competition. For all species, only light availability was statistically significant and 

negatively correlated with those ratios. In the case of the apical dominance ratio, there were no 

species-specific differences between Sitka spruce and Douglas fir (western hemlock was not 

analysed due to differences in its crown architecture). For the live crown ratio, I observed that 

at all light levels, western hemlock maintained the longest live crown, followed by Sitka spruce 

and then Douglas fir. I fitted a model of height growth for Sitka spruce as a function of the 
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apical dominance ratio. From the results, I suggested an apical dominance ratio of 1.5 as a 

quick field indicator for defining Sitka spruce seedlings with an adequate growth potential. 

Overall, considering both the comparisons in the light-growth and crown plasticity responses, 

I defined an increasing shade tolerance ranking as Douglas fir ≤ Sitka spruce < western 

hemlock. However, using only one parameter to define the ranking could have been 

misleading. 

4. Can the light environment under canopy cover be adequately described using 

smartphone technology? 

Given the importance of the forest light environment analysis in this research, I explored a 

possible technological improvement for its assessment. I carried out hemispherical 

photography with a smartphone camera equipped with a fish-eye lens and demonstrated that it 

can be an adequate alternative to hemispherical photography with traditional cameras. 

Smartphone equipment is cheaper, easier to carry, widely available, and with internet 

connectivity. The data collection can be carried out in a shorter time. I showed methods for 

processing single smartphone images, and for merging two images with different orientations 

to obtain an image closer to a full hemispherical picture. The various parameters calculated 

from smartphone camera images (related to canopy openness and light availability) were 

always on average significantly higher than those from traditional cameras images, although 

with relatively little absolute differences and scatter. I fitted Generalized Linear Mixed Models 

to remove such differences and transform the smartphone outputs to values closer to those 

obtained by traditional camera ones. I proved that values estimated from smartphone cameras 

could be used as they are in ecological studies, or after being transformed with the models that 

I provided. The study has been published as: 

Bianchi S., Cahalan C., Hale S., and Gibbons J.M. (2017). Rapid assessment of forest canopy 

and light regime using smartphone hemispherical photography. Ecology and Evolution. DOI: 

10.1002/ece3.3567.  

The study was developed for a possible crowd-sourced data collection, where forestry 

practitioners or citizen scientists could have collected regeneration growth information with 

quick smartphone hemispherical photography images. Unfortunately, the project was not 

successful in recruiting enough participants. 
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5. Can the models for regeneration occurrence and early growth prepared in this thesis 

be integrated into MOSES_GB? 

I integrated the Sitka spruce regeneration presence, density, and early growth models into 

MOSES_GB, an existing forest growth simulator in development by the Forestry Commission. 

For this study, I needed to model the growth of regeneration until it reached a size threshold of 

7 cm DBH when it is technically classified as overstorey. 

First, I developed new methods for simulating the DBH development, namely a model of total 

DBH as a function of total height and a model of DBH growth as a function of height growth, 

and compared them with the light-DBH growth model already developed. I selected the model 

of DBH growth as a function of the height growth for the use in the following simulations. 

Next, I simulated the development of a regeneration layer under an overstorey layer over 15 

years, using the models so far prepared to simulate the regeneration layer, and MOSES_GB to 

simulate the overstorey layer. I simulated two different virtual stands and followed the 

regeneration establishment and growth until it was recruited into the overstorey, comparing 

different spatial modelling approaches and two thinning regimes. In this way, I tested the 

feasibility of integrating the models prepared in this thesis into MOSES_GB and the best 

methods to do so. Thus, the results of this chapter provided some insights to the overall aim of 

this thesis. 

The spatially-explicit approach, which considers the local variability in the light-availability, 

seemed to be more accurate for the growth modelling. However, there is still room for 

improvement in the simulation of light-availability below the canopy, and some issues to 

address in this step were identified. The regeneration presence and density models, on the 

contrary, were less affected by the differences in the spatial modelling approaches. Other issues 

and potential problems in the simulations were identified, that will be highlighted in the 

following section. 

9.2 Limitations 

A critical evaluation of the study is necessary to identify limitations that affected the results, 

and so the areas where further work may be most needed.  

For the regeneration presence and density models, the most important limitation was the lack 

of information on the size or age of the seedlings surveyed. This made it impossible to define 

a clear temporal horizon for the regeneration establishment. The stand characteristics at the 

time of the survey could have been different from those when the regeneration establishment 
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occurred, and the regeneration presence could have been affected by mortality processes. The 

same lack of data made it impossible to prepare a model for the initial height, which ranged 

from 20 cm to 130 cm. Those problems, together with the poor performance of the density 

model, led to some problematic issues during the integration of the models with MOSES_GB. 

Moreover, the models did not address the local seed availability, and thus will likely not be 

appropriate for uneven-aged, mixed-species stands. 

For the light-growth models, the comparison between species was not complete because of the 

lack of diameter growth data for Douglas fir. There was also a lack of trees sampled at high-

light levels, especially for western hemlock and to some extent for Douglas fir, and this may 

have influenced the model fitting through a wrong identification of the asymptotic maximum 

growth. The analysis at low-light may have been affected by a non-optimal sampling, and by a 

lower accuracy of hemispherical photography at those levels. However, I covered the light-

range most commonly present in continuous cover forestry stands. 

Intra-regeneration competition was significant in improving the fit in many cases, but its 

measurement did not consider some variables that could have been useful to obtain more 

precise results, such as the distance, the height and the species of the competitors. 

Regeneration mortality studies were not carried out due to a lack of time and resources. This 

most crucially affected the overall simulations during the integration of the models with 

MOSES_GB. However, even if not verified against existing data, the resulting density outputs 

of such simulations seemed biologically valid. 

Climatic variables were not considered in any model. Even if hybrid models with climatic 

inputs can be useful in climate change scenarios, collecting micro-climatic information within 

the stands considered was not possible due to lack of time and resources. As demonstrated by 

Sellars (2005), the climate below a canopy can vary from open conditions according to the tree 

density. 

9.3 Future developments 

Given these limitations, I suggest the following areas of future studies to complement and 

improve on the results of this thesis. 

• Regeneration presence and density studies for Sitka spruce and companion species, in 

mixed-species stands and in advanced stages of transformation to CCF. Such studies 

can follow the data collection and analysis framework used here, with the following 

improvements: 1) detailed assessment of size and/or age of seedlings; 2) better analysis 
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of the interaction between intensity of thinning events and regeneration; 3) improved 

analysis of the effect of local seed sources (e.g. mother trees). 

• Establishment of permanent sample plots to study regeneration dynamics, to 

complement or substitute for the above studies. 

• Diameter growth studies for Douglas fir regeneration, necessary for its future 

integration into MOSES_GB, and to complement the comparisons with the other 

species considered here. 

• Definition of a simple but effective indicator of intra-regeneration competition that can 

be used during regeneration growth surveys, and be easily integrated into a forest 

growth simulator such as MOSES_GB. 

• Growth-mortality studies for regenerating trees of Sitka spruce, western hemlock and 

Douglas fir. Since I present light-growth functions in this thesis, only the analysis of 

growth and frequency of deceased seedling are required to develop light-mortality 

functions. 

• More studies of damage and mortality on existing regeneration during thinning and 

timber extraction activities. 

• Development of a spatially-explicit model of light availability below canopy cover, 

starting in pure Sitka spruce stands, and then moving on to mixed-species situations. 

• Design of a crowd-sourcing data collection campaign for regeneration growth studies, 

with better engagement of the potential citizen-scientists. To make the data collection 

easier, the preparation of a better smartphone application for taking hemispherical 

images could be explored. For example, the compass and level bubble could be 

displayed live on the screen when taking a picture, and, if the merging processing 

method is desired, also a 90° angle feature for rotation.  

• Measurement of micro-climatic conditions under canopy cover with meteorological 

stations, and test which are the ones most affecting the regeneration processes. Then, 

more focused studies can be carried out on how to model those variables under canopy 

cover from general meteorological data collected in open conditions. 
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9.4 Novel contributions 

The most important novel contributions of this thesis, are: 

• The development of Sitka spruce regeneration presence and density models, which can 

be used to simulate the regeneration establishment in Sitka spruce dominated stands in 

the UK, under a wide range of forest conditions. 

• The development of light-growth functions for Sitka spruce, western hemlock and 

Douglas fir, which can be used as supporting tool for practical applications in stands 

under continuous cover forestry. 

• Demonstrating that different non-linear functions, customized in their parameters to 

include additional predictors, may best describe species-specific light-growth 

responses. 

• The use of smartphone cameras as an adequate alternative to traditional cameras and 

methods for hemispherical photography studies, such as the rapid assessment of forest 

canopy and light regime. 

• The integration of regeneration models in MOSES_GB for continuous cover forestry 

scenarios in the UK, with suggestions on the best methods to use and the issues that 

still need to be resolved. 
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ANNEX I: Supplementary information for Chapter 5 

I show here the full list of Akaike Information Criteria (AIC) values for each model tested 

(Table 10.1) the distribution of the standardized residuals according to the forest areas used as 

random effects (Figure 10.1); and the 95% prediction intervals for each model (Figure 10.2). 

The standardized residuals were generally homogenously distributed across all forest areas, 

except for two forests for the WH/Height models, that anyway comprised few observations 

each. The prediction intervals for each model were calculated for each model by i) resampling 

1,000 times the coefficients according to a multivariate distribution using the same variance-

covariance of the calibrated model; ii) calculating the predictions using all the new 

combinations of coefficients; iii) identify the 97.5% and 2.5% quantiles of those predicted 

values as upper and lower boundaries. 

Table 10.1. Akaike Information Criteria (AIC) for all light-growth models. SS, Sitka spruce; DF, Douglas fir; WH, western 

hemlock; DRC, diameter above root collar; DBH, diameter at breast height. Under Size and Competition, indication of main 

parameters influenced by respectively tree size and intra-regeneration competition. AIC values: bold, all the models 

considered in the group of best candidates (difference in AIC less than 2 points from the model with lowest AIC, models with 

no biological validity discarded); bold and italicized, the best model selected for each combination growth/species empty, a 

model could not be successfully calibrated.  

Equation Size Competition 
SS/ 

Height 

SS/ 

DRC 

SS/ 

DBH 

WH/ 

Height 

WH/ 

DRC 

DF/ 

Height 

Logistic None None 1509 - 276 - - 830 

Logistic None A 1512 - 273 - - 831 

Logistic None K - - - - - - 

Logistic A None 1357 315 253 - 173 794 

Logistic A A 1345 283 249 - 171 795 

Logistic A K 1345 284 248 - 171 796 

Logistic K None 1406 333 263 - - 813 

Logistic K A 1398 304 257 - - 808 

Logistic K K 1386 305 257 - - 809 

Logistic S None 1401 - 260 - - 821 

Logistic S A 1393 339 262 - - - 

Logistic S K 1392 339 - - - - 

Logistic A-K None 1354 315 254 - - 795 

Logistic A-K A 1345 284 250 - 173 796 

Logistic A-K K 1340 286 - 517 170 806 

Logistic A-S None 1357 347 256 - 176 794 

Logistic A-S A - 285 249 - 173 795 

Logistic A-S K 1347 - - - - 796 

Logistic K-S None 1359 315 255 - - 798 

[Table continues across page] 
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Logistic K-S A - 292 253 - 172 - 

Logistic K-S K - 295 251 - 173 - 

Logistic A-K-S None 1349 313 258 - - 795 

Logistic A-K-S A 1344 286 252 - 169 796 

Logistic A-K-S K 1339 289 258 - 174 797 

Michaelis-Menten None None 1516 - 383 541 233 - 

Michaelis-Menten None A 1518 - - - - - 

Michaelis-Menten None K 1517 628 377 - 225 - 

Michaelis-Menten A None 1370 - 261 521 178 - 

Michaelis-Menten A A 1359 - 254 607 171 - 

Michaelis-Menten A K 1358 - 253 - 172 - 

Michaelis-Menten K None 1365 617 256 519 177 1014 

Michaelis-Menten K A 1359 629 253 518 - 1011 

Michaelis-Menten K K 1356 652 252 - 173 - 

Michaelis-Menten A-K None 1366 - - - 179 - 

Michaelis-Menten A-K A - - - - - - 

Michaelis-Menten A-K K - - - - - - 

Asymptotic-with-offset None None - - - - - - 

Asymptotic-with-offset None A - - - - - - 

Asymptotic-with-offset None K - - - - - - 

Asymptotic-with-offset A None 1365 - - - - 790 

Asymptotic-with-offset A A 1353 313 - - - 801 

Asymptotic-with-offset A K 1353 - - - - - 

Asymptotic-with-offset K None 1377 - - - - 793 

Asymptotic-with-offset K A 1371 - - 524 - 795 

Asymptotic-with-offset K K - 335 - - - - 

Asymptotic-with-offset C None - - - - - - 

Asymptotic-with-offset C A - - - - - - 

Asymptotic-with-offset C K - - - - - - 

Asymptotic-with-offset A-K None 1353 - - - - - 

Asymptotic-with-offset A-K A - - - - - 801 

Asymptotic-with-offset A-K K 1347 - - - - - 

Asymptotic-with-offset A-C None 1365 - - - - 800 

Asymptotic-with-offset A-C A 1355 - - - - 802 

Asymptotic-with-offset A-C K 1353 - - - - - 

Asymptotic-with-offset K-C None 1368 369 - - - - 

Asymptotic-with-offset K-C A - - - - - - 

Asymptotic-with-offset K-C K - - - - - - 

Asymptotic-with-offset A-K-C None 1354 - - - - - 

Asymptotic-with-offset A-K-C A - - - - - - 

Asymptotic-with-offset A-K-C K - - - - - - 
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Figure 10.1. Boxplots of standardized residuals for the selected best models for each forest area used as random effect. SS is 

Sitka spruce, WH is western hemlock, DF is Douglas fir, H is height, DRC is diameter above root collar, DBH is diameter at 

breast height. Coed is Coed-Y-Brenin as named in Table 1 
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Figure 10.2. Simulated growth patterns (continuous line) of each growth model as a function of light (GSF, Global Site 

Factor), for a tree of average height or diameter, and in absence of competition, plotted with the observations (points). SS is 

Sitka spruce; DF, Douglas fir; WH, western hemlock; H, Height; DRC, Diameter above Root Collar; DBH, Diameter at Breast 

Height. The dashed lines are the upper and lower boundaries defining a 95% prediction Interval 
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ANNEX II: Supplementary Information for Chapter 6 

This section has been included as Supporting Information for the online version of the paper 

presented in Chapter 6. 

Examples of smartphone hemispherical pictures 

Figure 10.3 shows a circular hemispherical picture and the two smartphone hemispherical 

pictures in the same plot, providing guides to compare the respective coverages. Note that the 

Nikon Coolpix hemispherical photography famously excludes a small portion on the bottom 

of the pictures, while the smartphone hemispherical photography employed here sometimes 

had a diagonal field-of-view slightly smaller than the frame of the picture (see the black 

corners). In both cases, those areas were considered by the software as blocking elements. 

 

Figure 10.3. Examples of the circular picture (a) and of the two smartphone pictures (b and c) for the same plot. The yellow 

circle represents the 183° FOV of the Nikon Coolpix. The green circle is the 150° FOV of the smartphone. The red rectangles 

show the approximate areas on the Nikon picture covered by each Smartphone picture. Note that in hemispherical pictures 

the East and West directions are reversed 
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Figure 10.4 shows the results of the merging process for the smartphone images in two plots. 

In the left picture, we took the two smartphone pictures with the correct alignment in the field, 

with angle of 90° from each other. In the right picture, we took the images with a slightly wrong 

alignment but the Hugin software automatically corrected the error. Note that the area with 

missing information within the yellow circle was considered as obstructed view. 

 

Figure 10.4. Examples of the results of the merging process with Hugin for two plots. The green circles represent the 

approximate 150° FOV, while the yellow the 180° FOV. The left images were taken with a correct 90° angle from each other 

in the field, the right with a slight deviation. White pixels outside the merged images and within the yellow circles correspond 

to the area considered as blocking elements for the parameters estimations. 
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Additional statistical results 

Comparison of classification methods 

The comparisons between outputs estimated from the same camera (respectively Total Gap 

from smartphone and Canopy Openness from circular images) but with different thresholding 

methods are shown in Figure 10.5. 

 

Figure 10.5. Scatterplots of Total Gap (TG, left) and Canopy Openness (CO, right) from same camera pictures but with 

different classification methods, showing the line of identity (dashed black line). 

Comparison of smartphone picture with different orientation 

The comparisons between Total Gap estimated from smartphone pictures taken with 

different orientation, using the same classification methods, are shown in Figure S5.

 

Figure 10.6. Scatterplots of Total Gap (TG) from East-West (E/W) and North-South (N/S) oriented Smartphone pictures with 

the same classification method (left, EnhanceHP; right, IsoData), showing the line of identity (dashed black line). 
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Comparison of different FOVs for circular HP 

The comparisons of parameters estimated from circular HP images with FOV 150° and 180° 

are shown in Figure 10.7. 

 

Figure 10.7. Scatterplots of Canopy Openness and Site Factors (ISF, Indirect; DSF, Direct; GSF, Global) estimated from 

circular HP images with a Field of View of 150° (y-axis) and 180° (x-axis), showing the line of identity (dashed black line). 
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Comparison of non-merged smartphone HP with circular HP, IsoData method 

The comparison of Canopy Openness from circular pictures and Total Gap from smartphone 

values (averaged between the two pictures), using the IsoData method, is shown in Figure 

10.8. CO from circular pictures was significantly higher (p < 0.001) than TG values from the 

smartphone pictures (mean of differences 0.115, st.dev. 0.04). 

 

Figure 10.8. Scatterplot of Canopy Openness (CO) from circular images and Total Gap (TG) from smartphone images, using 

IsoData method, showing the line of identity (dashed black line). 
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Comparison of stitched Smartphone HP with circular HP, IsoData method 

The comparisons between the outputs estimated from the circular and the merged 

smartphone images, using the IsoData method, are shown in Figure 10.9. There were some 

plots where the IsoData thresholding applied to the merged smartphone pictures seems to 

have completely failed, resulting in differences between circular and smartphone values of 

around 0.3 and more. Even not considering these exceptions, the distribution of circular and 

smartphone values was generally worse for all parameters than when using EnhanceHP. 

 

 

Figure 10.9. Scatterplots of Canopy Openness and Site Factors (ISF, Indirect; DSF, Direct; GSF, Global) from Smartphone 

merged images versus the same values from the circular Images, using IsoData method. The dashed black line is the line of 

identity.  
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ANNEX III: Crowd-sourced data collection project 

I investigated the use of smartphone hemispherical photography also for the opportunity to 

recruit citizen scientists in a crowd-sourced data collection for regeneration growth. The 

rationale was the possibility to collect in such way a larger dataset than I could have done on 

my own, and with more geographical areas covered. 

Using ‘Open Data Kit’, a free and open-source application for mobile data collection, I 

prepared a simple data entry form that everyone could have downloaded on his/her smartphone 

or table (Error! Reference source not found.). Following such form, a user could have taken 

hemispherical images above seedlings, record the GPS coordinates, and insert few simple 

information about the trees (species, total height, leader length). All the data would have been 

uploaded to a server from which I could have easily retrieved them. 

I set up a website at www.simonebianchi.eu/crowdsourcing with the information about the 

project, prepared informative leaflets (attached later), and contacted organizations of forestry 

practitioners and students. Some people replied and asked to participate in the project. I sent 

them a fish-eye lens together with more detailed instructions. Unfortunately, these persons 

were few and they did not follow up with the data collection in the field, so I had to quit the 

project. 

 

Figure 10.10. Screenshots of mobile data entry prepared with Open Data Kit.  

http://www.simonebianchi.eu/crowdsourcing
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CROWD-SOURCING DATA COLLECTION OF 

FOREST REGENERATION GROWTH 

Do you want to join a forestry research project? 

 

WHY? Natural regeneration is becoming increasingly important in UK forests managed using 

a Continuous Cover Approach. I am trying to build a model of regeneration growth as a 

function of the light regime under a forest canopy. I need data from all over the UK, and you 

can help me to expand the research range using your smartphone. Become a citizen scientist 

and participate in a crowd-sourced research! 

WHERE? Anywhere in the UK where you find a Sitka spruce (Picea sitchensis) or Douglas 

fir (Pseudotsuga menziesii) seedling growing under canopy cover.  

HOW? It is very simple: 

 

 

 

 

 

 

 

 

 

 

 

WHEN? Right now! The project has been launched, and the webserver is ready. Please contact 

me to receive a free fish-eye lens for your device and more detailed (but still simple) 

instructions on how to collect and upload the data. 

WHAT’S NEXT? The model will be useful to everyone interested in Continuous Cover 

Forestry. The dataset will be openly released for everyone to make further use of it. 

Contact me to join the project! 

Email afp462@bangor.ac.uk 

website www.simonebianchi.eu/crowdsourcing   

 

 

 

1) Shoot a picture above the seedling with 

a fish-eye equipped smartphone! 

2) Take a few and very simple 

measurements of the plant! 

3) Upload your data to a 

webserver thanks to the 

free app Open Data Kit! 

mailto:afp462@bangor.ac.uk
http://www.simonebianchi.eu/
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More background about the project: 

  

This work will contribute to MOSES_GB, the new individual-tree forest model being 

developed by Forestry Research, the research agency of Forestry Commission. 

More info on: http://www.forestry.gov.uk/fr/INFD-8BXETZ   

Light is the main factor 

affecting regeneration growing 

under canopy cover. The growth 

rate can be linked to the light 

availability. 

Hemispherical photography, using full-frame 

cameras equipped with fish-eye lenses, gives 

reliable estimates of the light transmitted through 

the canopy. Such measurements can then be 

linked to the regeneration growth. 

What if smartphone 

cameras, equipped with 

small and cheap fish eye 

lenses, can give 

comparable results? 

Every person who owns one could take 

measurements, share them through the internet 

and help to create the largest forest regeneration 

growth database in the UK! 

  

 

http://www.forestry.gov.uk/fr/INFD-8BXETZ
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ANNEX IV: Supplementary Information for Chapter 7 

Methodology  

I used the 78 plots from the 8 stands of the independent validation datasets presented in Chapter 

4 to test the light availability model from Hale et al. (2009). I estimated GSF values applying 

Model 8.1 to the local stand characteristics (basal area BA, stems per ha SPH) measured in 

each plot (radius 5.6 m), and then averaged them at stand level. In the same plots, using a Nikon 

Coolpix and the methodology described in Chapter 6 for traditional circular pictures, I 

calculated GSF values from hemispherical photography), and then averaged them at stand 

level. I compared both the plot-level and stand-level GSF values from Model 8.1 and 

hemispherical photography using scatterplots. 

Results 

Figure 10.11 shows the comparison of GSF values at plot-level (graph a) and at stand-level 

(graph b). At plot-level, the observed values from HP and the estimated values from Model 8.1 

had scarcely a correspondence. Only when averaged at stand-level the values were consistent 

with each other (six stands out eight had a difference ±10% between observed and estimated 

values). The two stands with the highest predictions errors, named K_1149 and K_3248, were 

affected to different degrees by many windblown events. K_1149 was also surrounded by large 

open areas, thus maybe increasing the observed GSF area through a “edge” effect.  
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Figure 10.11. Comparison of GSF values, observed with hemispherical photograph (y-axis) and estimated from Model 8.6 (x-

axis), at plot-level (graph a) and stand-level (graph b)  
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