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Summary
This thesis describes the investigation into the use of visual servoing to keep an

unmanned aerial vehicle (UAV) aligned with overhead electricity distribution

lines, in order to use it to inspect them. The UAV would carry cameras in order to

capture video footage showing the line's condition.

Firstly, the current methods of inspecting overhead electricity distribution lines,

line-walking and manned helicopters, are described. A review of visual servoing

and the relevant tracking methods is presented. Then a mathematical model of a

ducted-fan UAV is developed. Analysis of the image geometry is performed to

show how movements of the UAV affect the positions that the overhead lines

appear in the images from the UAV's camera. This analysis shows that it should

be possible to estimate the UAV's position relative to the lines if two cameras,

one pointing forward and one pointing backwards, are used. The design and

construction of a laboratory test rig to perform experiments is described. Then the

image processing method, based on the Hough transform, used to extract the

overhead lines from the image is described followed by the development of a

tracker, which makes use of fuzzy logic and a Kalman filter, to track the overhead

lines from frame to frame. Experiments are performed to see how well the UAV is

able to follow the lines using the laboratory test rig. Finally, conclusions are

drawn as to how well the system works as well as suggestions for the future

direction of the project.
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Chapter 1 Introduction
1.1 Introduction

In the modem world we are using more and more electrical equipment and are

becoming increasingly reliant on computers in all aspects of life. In order to

support this modem lifestyle, we have become increasingly reliant on a reliable

electricity supply. In addition, more basic requirements for survival are now

dependent on the electricity supply; for example, modem heating systems, while

usually fired by gas or oil, require electricity to run the controllers and so during a

power cut more and more people have no way of heating their homes. People are

also left without lighting and, in many cases, cooking facilities. Power cuts, or

outages, are no longer acceptable to consumers or businesses, and electricity

companies have a duty to keep the electricity supply on.

Figure 1.1: Example Support Pole sbowing 3-pbase Conductors on Pin Insulators and a Pole-
mounted Transformer.

Electricity distribution in the U.K. is usually done by means of 3-phase overhead

lines. These are open conductors supported on wooden poles, an example of

which is shown in Figure 1.1, at a voltage of 11 or 33kV. There are approximately

150,OOOkmof overhead line and 1.5 million wood support poles in the U.K.,

which are primarily in rural areas, as most distribution within towns and cities is

done using underground cables. Putting cables underground means that they are

1



Chapter 1 Introduction

less susceptible to damage, although any repairs that are required necessitate the

cables being dug up. The use of underground cables is far more expensive than

overhead lines (around five to ten times the cost), hence the use of overhead lines

for rural distribution, where the distances are longer. The lines and poles need

regular inspection to detect faults, check for tree encroachment and ensure a

reliable electricity supply. In addition the law requires the electricity companies to

inspect the distribution lines, and electricity companies may have to pay

compensation to customers if their supply is off for too long. The safety of

members of the public may be at risk if safety measures such as warning notices

and anti-climb guards become damaged or missing and are not replaced. The

electricity companies also need to monitor the state of the lines so that

replacement and upgrade strategies can be planned and estimates of required

future investment can be made.

1.2 Overview of the Thesis

1.2.1 Motivation

In order to ensure a reliable supply of electricity, it is necessary to inspect the

distribution lines regularly. Currently the lines are inspected by inspectors

walking the line and observing its condition. This gives a good written record of

the lines' condition, with any possible faults recorded, although degradation of the

top of the insulators cannot be seen from below. Unfortunately it is a slow method

of inspection and at times involves inspectors going into fairly rough terrain. On

rare occasions, inspectors can also be attacked by livestock.

An alternative inspection method that is currently used is to inspect the lines from

manned helicopters. This method is quite fast but expensive. Nevertheless, many

companies use this method on a regular basis. Inspection using manned

helicopters is hazardous because the helicopter flies within five to ten metres of

the lines in order for the observer to be close enough to see the overhead line in

sufficient detail for defects to be spotted. This requires great skill from the pilot. It

is difficult to inspect power lines near roads or property due to the risk to people

on the ground.
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Chapter 1 Introduction

This project considers an alternative method of inspection. The idea is to use an

unmanned aerial vehicle (VAV), carrying a camera, which would fly above the

line to capture video, showing its condition. The UAV would be electrically

insulated, so that if it landed on the line, it would not cause a short circuit. The

UAV would also draw power from the line, which would limit its ability to fly

away from the line. This "tethering" of the UAV to the vicinity of the lines is an

important feature of the concept, with regard to preparing a safety case for the

Civil Aviation Authority (CAA), and is discussed in more detail in Chapter 2. The

video footage of the line could then be lodged in a database and analysed, and the

data used to schedule maintenance. It is believed that this approach will be faster

than walking the line, but without the cost and at reduced risk compared to

manned helicopters.

1.2.2 Aims

The aim of this work is to investigate the possibility of using visual servoing to

control a UAV for power line inspection. This requires the following objectives to .

be fulfilled:

• Develop a mathematical model of the UAV.

• Construct a test rig on which to perform experiments.

• Develop and test a method of locating the overhead lines in the images taken

from a camera onboard the UAV.

• Develop and test a method of tracking the lines from frame to frame.

• Demonstrate visual control of the UAV.

• Demonstrate visual control of multiple axes of the UAV.

1.2.3 Structure

Chapter 2 describes the background of the project and includes a description of

the concept of using a UAV for power-line inspection. A review of the literature

for visual servoing is also presented. Based on the review, suitable methods are

selected for guiding the UAV along the line and tracking of the lines from frame .

to frame.
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Chapter 1 Introduction

Chapter 3 presents a mathematical model of the chosen type ofUAV, along with

simulation results of the model and the design of a feedback controller.

In Chapter 4 a geometric analysis of how the lines are transformed into the image

is presented. The mathematical model is used to predict how movements of the

UAV in lateral displacement, height, yaw, roll and pitch will affect the positions

of the overhead lines in the image. It is shown that the effect of movements in

different degrees of freedom on the line positions in the image is largely additive,

meaning that it is possible to extract the position and pose of the UAV from image

processing. In addition, it is shown that, in order to separate yaw, roll and lateral

displacement a second camera, pointing rearward, is needed.

Chapter 5 describes the laboratory test-rig used for experiments. The extensive

mechanical modification of an existing test-rig is described, along with the design

and construction of a digital position controller, implemented in a microcontroller,

to drive the rig. The structure of the control visual servoing software is also

presented.

The image processing software is described in Chapter 6. This is based on the

Hough transform, which transforms straight lines in the image into points in the

transform space. The selection and testing of the methods of pre-processing of the

image and post-processing of the transform are described.

The development of a tracker to track the lines from frame to frame is described in

Chapter 7. First, an early local search tracker is described. An acquisition routine

that finds the lines to initialise tracking is developed. Refmements are introduced,

including the addition of fuzzy logic rules to detect if the tracker has mistaken a

sideline for the centre line or if the tracker has lost lock on the lines. Finally, a

Kalman filter is added to smooth out noise in the line positions and reduce the

chances of the tracker switching away from the lines. Results for tracking both

lateral displacement and height are also presented.

Chapter 8 describes the use of two cameras, with the tracker algorithm applied to

both video streams, in order to extract yaw and roll as well as lateral
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Chapter 1 Introduction

displacement. Visual control of both the lateral displacement and yaw

simultaneously is demonstrated, along with measuring the roll of the UAV from

the image.

Finally, Chapter 9 discusses the work in this thesis and assesses the extent to

which the objectives have been satisfied. Conclusions are drawn and a discussion

of how the project could be developed in the future is given.

1.3 Contributions of this Research Work

The research described in this thesis makes the following contributions to

knowledge, which, to the best of the author's knowledge, have not been

previously reported.

• A mathematical model for a ducted fan rotorcraft UAV controlled by shifting

its centre of gravity (CG) has been developed.

• An extension of the Hough Transform method, called the Aggregated Hough

Transform, has been developed, which is particularly suited to locating

overhead power lines in aerial images.

• A model-based visual tracking method, using fuzzy logic and a Kalman filter,

has been developed to track the lines from frame to frame.

• Control of the UAV to keep it aligned with the power line, based on visual

measurement, has been demonstrated. This includes controlling multiple

degrees of freedoms including lateral displacement, yaw and height and

estimating the roll of the UAV.

1.4 Contributions to Published Literature

Published:

[1] Golightly, I.T. and Jones, DJ., Visual control of an unmanned aerial vehicle

for power line inspection. in Proc. IEEE Int. Con! Advanced Robotics (leAR

2005).2005. Seattle, USA: 228-295.

This paper was a fmalist for the "Boeing Company Best Paper Award".
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[2] Jones, D., Golightly, I., Roberts, J., Usher, K. and Earp, G., Power line

inspection - a UAV concept. in lEE Forum on: Autonomous Systems. 2005.

London, UK.

Accepted:

[3] Jones, D., Golightly, I., Roberts, J. and Usher, K., Modeling and Control of a

Robotic Power Line Inspection Vehicle. to appear in Proc. IEEE International

Conference on Control Applications (CCA 2006). 2006. Munich, Germany,
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Chapter 2 Background and
Literature Review

2.1 Overview

This chapter has three main functions. First, it describes the current methods used

for inspecting power distribution lines, and discusses the possible use of a UAV

for power line inspection. Secondly, a review of the current literature on visual

servoing is presented. Finally the theory of Fuzzy Logic and Kalman filtering

used in the tracking software is presented.

2.2 Power Line Inspection

The U.K.' s electricity distribution lines and support poles need regular inspection

in order to comply with legal requirements and to ensure a reliable electricity

supply. As the poles and lines are exposed to the elements, there are many ways

that they can sustain damage. When the lines are inspected, the inspectors are

looking for defects such as:

• Cracked, or degraded insulators.

• Signs of corrosion on the cables.

• Cables that have come off the insulators and are hanging or resting on the

cross-arm.

• Damage to the pole or cross-arm.

• Broken, slack or missing stays.

• Damaged pole-mounted transformers.

• Encroachment of trees.

• Traces of arcing.

• Missing or damaged safety notices or anti-climb guards.

If these problems can be detected early, then they can be fixed before they cause a

problem. For example if one conductor comes off its insulator and rests on the

cross-arm, the line will stilI work, as the cross-arms are not earthed. However, if a
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second conductor comes off, then there will be a short circuit, causing severe

damage and presenting a danger to anyone near the affected pole, as lines could

fall. If the problem is detected early, then the first conductor can be put back onto

its insulator before there is a problem, and the other two conductors can be

checked to make sure they are not about to come off. It is important to check for

tree encroachment as most damage caused to power lines in storms is due to trees

being blown over onto the lines. In addition, if trees grow too close to the line,

then children can climb them and be electrocuted by the line. An example of tree

encroachment is shown in Figure 2.1.

Figure 2.1: Tree Encroaching OD a Power Line.

Currently the lines are inspected by inspectors walking the line and observing its

condition. This gives a good written record of the lines condition, with any

possible faults recorded, although degradation of the top of the insulators cannot

be seen from below. This means that not all faults can be seen by this inspection

method. Unfortunately it is a slow method of inspection, as inspectors have to

walk between the poles. They often have to cross walls, fences and hedges, which

slows the process further, and at times the inspectors have to go into fairly rough

terrain, as shown in Figure 2.2. Many of the lines cross farmland and on rare

occasions, inspectors can be attacked by livestock. It can also be quite tedious,
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meaning that faults are occasionally not recorded or detail is poor. As there is no

visual record, the inspector's report has to be relied upon, and it is difficult to tell

if degradation has got worse between inspections.

Figure 2.2: Power line in an Upland Area.

An alternative method of inspection is to use manned helicopters. This method is

also used by National Grid Transco to inspect transmission lines and pylons. This

method is quite fast, but is very expensive. It is also hazardous, as the helicopter

has to fly within five to ten metres of the line in order to allow the observer to see

the lines with sufficient detail. This requires a highly skilled pilot in order to avoid

crashing into the line or the ground and makes it difficult to inspect power lines

near roads of property due to the risk to people on the ground. It can also be

difficult for the observer to tell which pole appears in the image.

A project [4-9] was run at Bangor to improve the quality of inspection from

helicopters by using a video camera on a stabilised mount. A visual tracker to

keep the camera pointing at the poles was developed. This uses a combination of

Differential Global Positioning System (DGPS) and machine vision to lock the

camera onto the pole and keep it locked onto the pole as the helicopter flies past.
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This system should allow the camera operator to zoom in on the pole to capture

video showing its condition.

This thesis considers an alternative method of inspection. The idea is to use an

unmanned aerial vehicle (UAV), which would fly above the line to capture video,

showing its condition. An early artist's impression is shown in Figure 2.3.

Figure 2.3: Early Artist's Impression of the UAV Flying Above the Lines.

The DAV proposed for the project is a ducted fan rotorcraft. Many rotorcraft of

type have been constructed, ranging from the "flying platform" [10] of the 1950s

to current examples such as [11]. For this work, we have assumed a ducted fan

with contra-rotating propellers (to equalise yaw moment on the airframe) and a

payload above the duct so that the centre of gravity is above the aircraft centre.

Prouty [12] shows that this configuration should be dynamically stable, but only

marginally statically stable with a tendency to drift into translational flight. Ando

[13] indicates that using a duct with a lip, or bellmouth, and placing the centre of

gravity within a very small height range above the aerodynamic centre of the duct,

then the craft can be made asymptotically stable. Height and yaw control of the

craft is provided by adjusting the speed of the rotor blades either together for lift

or differentially for yaw. Control of the pitch and roll axes is provided by moving

the payload mass in the relevant direction. The craft moves in the horizontal plane

by pitching and/or rolling in the desired direction of travel. This means that the
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craft is under actuated: the same actuator controls both roll and lateral

displacement, while another actuator controls forward movement and pitch. Some

of the problems associated with this kind of craft are discussed by Hamel [14,15].

The advantages of using a ducted fan are that the duct improves the hover

efficiency and means that, in the event of a crash, the rotor blades are shielded and

so won't hit anything. The airframe would be designed to be electrically

insulating, such that if it comes to rest on the lines, it doesn't cause a short circuit.

In this concept, it is planned that the UAV will pick up its power from the line

itself. The type of missions that the UAV will be expected to carry out vary in

length and can be quite long, which means that the use of a battery powered

vehicle would not be practical. A UAV powered by an internal combustion engine

or a turbine could be used, although these are very noisy and would require the

carrying of fuel. If the UAV is powered from the line then it is possible to reduce

its weight because there is no need to carry fuel or large numbers of batteries.

There will be the weight of the power pick-up and conversion equipment,

however. An additional advantage of using an electric UAV is that, in the event of

a crash, there is no fuel on board to cause an explosion or a fire, Even though the

UAV will be powered from the line, the UAV will still need some battery power

as it will need to disconnect from the lines in order to fly over the poles.

One of the problems facing the project is compliance with the CAA regulations on

UAVs [16]. This primarily involves complying with the 'Sense and Avoid'

requirement to avoid collision with other aircraft. In order to comply with this

requirement, this would require an "intelligent electronic pilot" to be put into the

UAV. The aim of this project is to design a component of this "pilot" that uses

visual servoing to keep the UAV aligned with the lines. The UAV will also need

to be able to avoid obstacles in its path and work has been done in Bangor by

Matthew Williams [17] on a similar project looking at using vision to achieve this.

Compliance with CAA regulations is another advantage of powering the UAV

from the line. As the UAV is effectively tethered to the line, by its requirement for

power, it cannot fly far from the line and so endanger other aircraft.
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For small UAVs (<20kg) that are operated below 400ft and within sight of an

operator, it is possible to operate under the rules for model aircraft [18], although

permission is required for commercial use ofUAVs between 7 and 20kg. It would

be possible to operate the power line inspection UAV under the rules in [18] if it

was kept in sight of the operator. To operate a UAV that is over 20kg would

require airworthiness certification. Operating out-of-sight of the operator is

currently not normally permitted and so the aim would be to gain approval for the

use of an on-board electronic pilot with remote monitoring and supervision. The

effective tethering of the UAV to the line will help with the safety case for such a

vehicle.

The control system would guide the UAV along the lines under visual control, but

with the ability for the operator to take control if necessary. The UAV would

capture video showing the condition of the line. This would be viewed off-line to

check for faults, as well as providing a visual record of the condition of the line.

This would be the most likely way of operating early commercial versions of an

inspection UAV. For the UAV to become economically attractive, longer-range

missions with operation out-of-sight of the operator would be necessary. A

business case for using a UAV for power line inspection is given in [19]. The use

of a UAV should give higher quality video footage of the line and be cheaper and

safer than using manned helicopters, as well as being quicker than line walking. A

longer-term aim would be to have the UAV more autonomous. It may also be

possible to include some fault detection software, to automatically spot faults on

the lines.

2.3 Visual Servoing

Visual Servoing [20, 21] refers to the control of robots or vehicles using vision to

provide the control feedback signals in real-time using a closed vision loop. In

older systems, referred to as "look then move", an image would be captured and

processed to locate the feature of interest. This robot would then move to the

calculated position with no more input from the vision system. The term visual

servoing is believed to have been used first in 1979 by Hill and Park [22]. Visual

servoing can be used for both factory robots in a structured environment and for
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robots operating in real-world environments. There is an excellent tutorial on

visual servoing by Hutchinson et al. [23]. Visual Servoing is a very wide field and

is addressed by many researchers.

Visual servoing systems all use one or more cameras for input. These can either

be fixed in the workspace, looking at the robot and target, or mounted to the robot

end-effector, referred to as "eye-in-hand". Factory robots can use either system,

but when visual servoing is used to control a vehicle, the camera is mounted onto

the vehicle, and so they are eye-in-hand systems. The images from the camera are

processed in real-time in order to locate the required target in the image. As well

as processing the current frame, the vision system needs to match features found

in the current frame with those found in the previous frame and thus track the

target object from each frame to the next. These trackers usually use a predictive

filter, in order to aid finding the target object in each new frame and also to reduce

the effect of noise on the measurements. Once this has been done, the current

position of the robot or vehicle relative to the target is calculated and the

difference between the demanded position and the current position is calculated

and this error signal is used to drive the robot. This is updated with each frame

from the camera.

The primary problems associated with visual servoing are associated with the

image processing. In unstructured environments, features in the background can

affect the location of the target in the image, by providing alternative possibilities

as to what the target is. Changing lighting can also affect the processing of images

and so affect the ability of the vision system to find the target. As the vision

system has to run in real time, there is a compromise between accuracy and speed:

it is often necessary to use less accurate image processing methods in order to

allow the vision system to process frames sufficiently fast to provide control input

to the robot or vehicle.

A lot of the current research is into the use of visual servoing to control robots that

operate in the real world. These include using visual servoing to manoeuvre small

robots around buildings [24, 25], visual control of cars or other motor vehicles

[26-29] and visual control of aerial vehicles.
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As this project involves guiding a UAV along electricity distribution lines, it was

necessary to look at the literature to find what techniques are in use for controlling

UAVs. There are a number of UAV projects using visual servoing happening

around the world and there are summaries of some of these by Ollero [30] and

Kontitsis [31]. The UAVs used are primarily helicopters or rotorcraft, but there

are projects that use airships. A variety of techniques are used to process the

images to estimate the position of the UAV. These include optical flow, stereo

vision, pattern matching, edge detection and the Hough transform. The techniques

chosen are suited to the particular application, rather than there being universal

techniques.

Hrabar el al. [32] used a combination of optic flow and stereo vision for guiding a

UAV through urban canyons. This uses optical flow to estimate the speed and

rotation of the UAV and also locating objects to be avoided. Stereo vision is used

to locate objects in the field of view for obstacle avoidance. The outputs from

both of these are combined, giving priority to any objects found by the stereo

vision, as this is good at finding objects that are in front of the vehicle.

Work has also been done by Mejias et al. [33] into guiding UAVs through urban

canyons. In this case the UAV uses visual servoing, in addition to GPS, to guide

itself towards features of interest, in this case, windows on buildings. It uses

colour segmentation to highlight them in the image. This image is then

thresholded to produce a binary image. A square finding algorithm is used to

locate the window in the binary image. A Kalman filter is used in tracking the

location of the window in the image from frame to frame.

Amidi [34, 35] developed a visual odometer for autonomous helicopters. This

works by detecting arbitrary objects on the ground and then using template

matching to track objects on the ground and estimating the helicopter's position

by the movement of these objects within the images from the stereo cameras. The

system is also able to measure changes in yaw and height of the helicopter by

changes in the appearance of the objects in the images.
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The ELEVA project [36, 37] is a project to develop a VAV for the inspection of

electricity pylons. This project intends to use a small helicopter to inspect

electricity transmission lines. The system uses a Hough Transform to extract the

lines from images of the lines; these are then tracked from frame to frame. Stereo

vision is also used to estimate the distance from the lines. The helicopter sends

images to a ground-based computer for processing via radio link and control

signals are sent back up to the helicopter. The control computer allows a user to

manually override control of the helicopter in the event of a problem. The visual

servoing is augmented with inputs from Differential Global Positioning System

(DOPS), an inertial measurement unit and a laser altimeter.

Mejias et al. [38] have been working on using machine vision to locate a safe

landing area for landing a VAV in the event of a forced landing being required.

The paper considers a power line inspection vehicle inspecting a line that is forced

to land within a very short period of time. In order to do this, a forward pointing

camera is used to detect the lines. When the system is no longer able to detect the

lines, focus is switched to a downward pointing camera in order to look for a

landing site. In order to search for a landing site, a contrast threshold is applied to

the image in order to pick out obstacles on the ground. An edge detector is then

applied to give the edges of the obstacles. The UAV then heads towards the

largest area free of obstacles. This work was tested on the Air Vehicle Simulator

(AVS) [39, 40] at the Autonomous Systems Laboratory, CSIRO, Australia.

The optical flow and stereo vision techniques could be useful for avoiding objects

while inspecting power lines. These would primarily involve debris resting on the

line, tree encroachment and occasions where insulators are above the level of the

lines and work has already been done into using optical flow for this purpose by

Matthew Williams [17]. Optical flow may also be able to detect when the VAV is

approaching a support pole. Template matching could also be useful for locating

poles while inspecting power lines. The aims of the ELEVA project are quite

similar to those of this project and also uses image processing based on the Hough

transform in order to locate the lines. Carelli et at [25] use an edge detector and a

similar line classification to extract lines from the scene, although this is being

used to guide a wheeled robot along corridors. The ability for the VAV to land
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itself in case of an emergency will be needed for a fmal inspection UAV. This

ability may also be useful for landing the VAV at the end of a mission.

2.4 Tracking

Tracking involves taking features found in an image frame and locating the same

features in subsequent frames. Davison [41] describes four main tracking

methods:

• Exhaustive search, where the entire image, or the transform space in this case,

is searched for a match between the object being tracked in the previous frame

and the current frame.

• Local search: this is similar to exhaustive search except that only the local

area around the point at which the object would be expected to be found is

searched.

• Kalman Filter [42]: this attempts to fmd a best estimate of the object's

position by combining a prediction from the previous frames with the

measurement of the object's position in the current frame. All the errors are

assumed to have a Gaussian distribution and are used form a weighting factor

to combine the prediction and measurement.

• Particle Filter [43]: this also uses errors to produce position estimates but

unlike the Kalman filter, the errors are not assumed to be Gaussian. Instead the

error function is represented by a number of particles, which allows more

complex error functions to be represented, including multi-modal functions,

allowing multiple-hypothesis testing.

In this project, the image is processed using a Hough Transform, which

transforms lines in the image to points in the transform space. A tracker was

developed to track the points in the transform space. This tracker started as a

Local Search tracker and was later adapted to include a Kalman filter. In addition,

fuzzy logic is used in the tracker for hypothesis testing. The Hough Transform,

Fuzzy logic and the Kalman filter are briefly described in the following sections.
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2.4.1 Hough Transform

The Hough Transform is a well-known method for extracting lines that match

parameterized functions from an image. The most common case is classifying

straight lines in normal form according to their angle (8) and distance from the

image centre (p).

In order to create the transform, an edge detector is used to pick out lines in the

image, and then each line is classified by its angle and distance from the image

centre.

The transform consists of a 2D array of accumulators addressed by p and e. For
each edge pixel, the relevant accumulator is incremented. After this process is

completed, the transform is normalised such that all the accumulators have a value

between zero and one. A threshold, called the Hough Transform threshold (H

threshold), is then applied. This picks out the features of interest and suppresses

background noise. For this application, clusters of points are aggregated to a

single point. An example image and the resulting transform are shown in Figure

2.4.
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+120
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(a) (b)

Figure 2.4: Typical Result showing: (a) the Three Overhead Lines Overlaid with the Straight
Lines Generated by the Hough Transform and (b) the Corresponding Points in the Hough

Transform Space.
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2.4.2 Fuzzy Logic

Boolean logic is a useful method of decision making in situations where it is clear

which category a given case belongs to. In many cases, however there is a grey

area between the two categories. In these cases the possible categories form a

fuzzy set and fuzzy logic [44, 45] can be used to differentiate between them.

Figure 2.5 shows the different membership functions (J.l) of a Boolean set (dotted)

and a fuzzy set (solid). The value of J.l indicates the probability of a given case

belonging to category 2.
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Figure 2.5: Classic and Fuzzy Set Membership Functions.

In order to determine which category a particular case belongs to, the value of

some measure, M, is used. M is a measure associated with the situation and is

indicative of the category a case belongs to. Depending on the situation, multiple

measures may be appropriate, with fuzzy rules combineing the measures. IfM is

very high or very low then the case can be assigned to either category 2 or 1

respectively. For values of M that relate to a probability of around 0.5 then more

information is needed to decide which category the case belongs to. This can be

obtained from repeated measurements, which will either increase or decrease the

probability value. As it is extremely unlikely to obtain perfect 0 or 1 probability

values, it is necessary to defuzzify the set. This can be done by approximating the

membership function to piece-wise linear. This creates a not sure category in

between the two categories. When a case lies in this category, repeated
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measurements must be made until the probability measure lies in one of the other

two categories.
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Figure 2.6: Defuzzifying a Fuzzy Set.

The tracking algorithm (Chapter 7) typically encounters a number of situations

that require a decision to be made on the basis of uncertain data and this is where

fuzzy logic is applied. For instance the tracker could mistake one of the sidelines

for the centre line and cause a missing sideline in the Aggregated Hough

transform (AHT). However, this could also be caused by a sideline disappearing

from the frame. As it is not immediately apparent which of these situations has

occurred, a fuzzy logic rule is used to distinguish between the two cases. A full

account of the method is given in section 7.4.

2.4.3 Kalman Filter

When the lines are tracked from frame to frame, a measurement of their position

in each frame is produced. Due to the nature of image processing, these

measurements are quite noisy. In order to improve their accuracy, it is normal to

filter the measurements. This smooths out the noise in order to give a more

accurate estimate of the line's position. In 1960 Kalman published the Kalman

filter [42, 46], which is a recursive filter. It gives an optimal solution if the errors

in the measurements being filtered have a Gaussian distribution. With other error
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probability density functions, the Kalman filter can still give good results; in order

to use it in these situations, the errors are assumed to be Gaussian.

For the line tracking Kalman filters will be used to filter the p and e values of

each line. The Kalman filter has four stages:

• Calculate the Kalman gain: this determines the fraction of the estimate that is

from the prediction and the fraction from the measurement.

• Update the estimate.

• Update the error (variance) associated with the estimate.

• Calculate the prediction for the next frame and its associated error (variance).

This is shown in Figure 2.7.

Measurements In

Calculate prediction and
associated variance for

the next step.

Combine Measurement and
Prediction to produce Updated

. Estimate

Compute variance in the
Updated Estimate

Figure 2.7: Operation of the Kalman Filter.

In Chapter 7, results for the performance of the tracking algorithm are presented

with and without the Kalman filter.

2.5 Summary

In this chapter, a case has been made for using a UAV to improve the quality and

speed of power line inspection. In order to navigate along the lines, the UAV must
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be able to measure its position relative to the lines. The remainder of this thesis is

an investigation of using machine vision for this purpose, allowing visual servoing

of the UAV to be implemented. The following chapters describe the modelling of

the UAV, how the overhead lines are located in the image and the closed-loop

visual servoing of the UAV.
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Chapter 3 UAVModel
3.1 Introduction

The VAV that is proposed for use in this application is a ducted fan rotorcraft,

based on the 'flying platform' principle [10] discussed in section 2.2. This has the

Centre of Gravity (CG) deliberately placed above the aircraft centre (AC) to give

dynamic stability in hover [12]. Early construction of a laboratory demonstrator

version of the craft is shown in Figure 3.1. This rotorcraft is approximately 35cm

in diameter and 25cm high; the craft used for inspecting the lines would be larger.

As the mathematical model developed in this chapter is for the small laboratory

demonstrator, rather than a full sized inspection VAV it will be more easily

affected by wind gusts.

Figure 3.1: Dueted-fan Rotoreraft with Half of the Duct Removed to show the Twin Motors,
Counter-rotating Propellers and Internal Construction.

The payload (not shown) is to be mounted above the duct and attitude control is

accomplished by moving a mass to change the position of the CG. Lift and yaw

control are achieved by changing the propeller speeds collectively or

differentially. Overall, the design is quite similar to that described by Sherman et

al [11].
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3.2 UAV Model

Ando [13] has derived a simple 3 degree of freedom dynamic model for this

configuration which suggests that placing the CO within a very small range of

locations above the AC gives both static and dynamic stability. In practice, it is

anticipated that active (gyro) stabilization will be necessary but starting with a

system that has near passive stability is attractive. Ando' s model is extended, as

shown in Figure 3.2, to include a servo-controlled payload mass (mp) on a

prismatic joint with origin at a distance f above AC; this places the CO a distance

h above AC. Moving this mass to the right causes a moment about AC, MAC,

causing the duct to 'topple' clockwise and the horizontal thrust component thus

produced accelerates it to the right. As the duct moves to the right, a force, HA,

acts against the duct; due to the presence of a lip, or bellmouth, at the top of the

duct, HAproduces a moment that tries to return the duct to the upright position. It

should also be noted that the velocity, U, the duct velocity, Uo, and HAin Figure

3.2 are defmed in the opposite direction to the expected motion; this is a

convention taken from Ando's model. When testing the visual servoing, this

model will be applied to the left/right displacement and roll axes, although in this

chapter only pitch will be referred to; it should be noted that this model applies

equally to the left/right/roll and forward/backward/pitch axes.

Figure 3.2: Forces, Moments and Velocities for the Dueted-fan Model.
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If we assume that the thrust, TA, is adjusted such that its vertical component

balances mg, where m=ms+m, and rna is the aircraft mass, giving a hover

condition and that e remains small, the acceleration of the UAV and the pitch

angle are given by (3.1) and (3.2).

(] = -gO- g U - hg iJ (3.1)
V V

where:

g is the acceleration due to gravity

V is the velocity of air through the duct

(j =!M +(! a~ _ h
2
mg +h aM]iJ+(! aM _ hmg)u (3.2)

I AC I 00 IV I au I au IV

where:

I is the moment of inertia of the UAV

aM and a~ give the contributions to the moment due to the velocity an angular
au 00
acceleration and are assumed to be constant, as done in [13]. The moment about

AC due to movingm, is given by:

If (3.2) and (3.3) are combined and the coefficients of iJ and U in (3.2) are

replaced by Kt and K2 this gives:

By taking parameters from our lab demonstrator or usmg Ando' s non-

dimensionalised values and calculating estimated values for our lab demonstrator.

The value ofh is chosen in order to give a stable response. The values used are:
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mp=0.7kg

ma=1.4kg

h=O.l25m

V=16.59ms-l

1=0.0656 kgm2

oM = 0.1559Ns
oU

o~ = -0.0580NmsoB

If these are substituted into (3.1) and (3.4) this gives:

U = -9.81O-0.591U -0.07398 (3.5)

e = 104.7ax - 0.8838 +0.0103U (3.6)

These equations can be used to simulate the VAV to see how it will perform.

3.3 UAV Simulation

3.3.1 Simulation of the UAV

The equations for the VAV were modelled in Simulink. Initially this was tested

with a step input into the deltaX input, giving a ramp position output and a

constant speed after the transient response. This showed that the payload needed

to move only a tiny amount: Imm movement of the payload caused a speed of

IOms". This would require the movement of a large mass with great precision. To

solve this problem it was decided that the payload should be fixed and instead

carry a moveable mass to tip the VAV. This moveable mass forms an actuator to

tip the VAV. The mass is modelled as 1% of the payload mass. This changes (3.6)

to:

e = 1.047ax-0.8838+0.0103U (3.7)
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Equations (3.5) and (3.7) were modelled in Simulink. Figure 3.3 shows the

Simulink model of the DAY; the direction of U, shown in Figure 3.2 is opposite

to the expected direction of travel; in order to correct this the Simulink model

incorporates an inverting gain on D. The DAY model in Figure 3.3 was made into

a Simulink subsystem and tested using the Simulink model shown in Figure 3.4.

d2tMlI

Glin1

Glin2

Glln3

Demand

GIIn4

GlintS

Figure 3.3: Simulink Model of UAV.

dU
1
• U

Intellrdoa GllnG
u

ScopeUAVModel

Integr.ttor

Figure 3.4: Simulink Model used to Test the UAV ModeL

To test the DAY model, a step input was put into the actuator input (deltaX) to tip

the duct. It would be expected that this would produce a constant speed response,
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after the initial transient, and an increasing position response at a constant rate.

This is because moving the actuator causes the duct to tip. However, as the duct

tips, a back force, HA,acts such as to stop the duct tipping. The tipping moment

from the actuator is balanced by HAmeaning that, for a given actuator input, the

duct settles at a constant pitch and so has a constant speed.
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Figure 3.5: VAV Position, Speed and Pitch Response.

Figure 3.5 shows the result of putting a step input into the DAV's actuator. The

upper graph shows the velocity, D, (solid) and pitch angle, S, (dashed), while the

middle graph shows the lateral position of the duct and the lower graph shows the

step input to the actuator. The graphs show that the DAV has quite a slow

response time. The response is as expected for the chosen CG position.

As the DAV will be simulated in real-time on a computer at a fixed sample rate, it

is necessary for the model to work in discrete time. The model will be run at

25Hz, which is considerably faster than the response of the DAV; according to

[47] a discrete approximation to integration should give a good match with the

continuous time model. As backward Euler integrators are easy to code in

software, the model was converted to discrete time using the backward Euler rule.
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Figure 3.6 shows the discrete-time Simulink model of the UAY; the unit delay

blocks represent the fact that the values used come from the previous time-step.

This model was tested using the Simulink model shown in Figure 3.7.

Dls<nt .. Tim.
Inhg.nor1

d tMll

>-----io( 2
U

Figure 3.6: Discrete-time Version of UAV ModeL

Zero·Order
Hold

Dlsorete· Time
Integrator

UAV Model
Soope

Figure 3.7: Simulink Model used to Test the Discrete-time UAV Model.

Figure 3.8 shows that the response of the discrete UAY model matches well with

the continuous time version.
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Figure 3.8: Discrete-time VAVModel Response.

3.3.2 Position Control Loop

This application requires position control of the VAV and so a position control

loop was wrapped around the VAV model in Figure 3.6. The aim is to control the

lateral position of the VAV with respect to the overhead lines. This requires a

lateral position feedback loop. The system is shown in Figure 3.9. Normally, the

lateral position of the VAV is estimated from image processing shown in the

vision-processing loop. In order to bring the VAV into the vicinity of the lines and

in case vision feedback fails, there is also a feedback loop using DGPS. The

model switches to vision feedback when the lines are acquired and away to DGPS

if the lines are lost or the VAV strays to far from the lines.
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Figure 3.9: System Model, where XA is tbe lateral position resulting from the demand
position, XAd•

SISOtool was used to select an optimal position loop gain (Kp or Kv), Working

from the block diagram in Figure 3.3, the transfer function of the UAV, from Ax

to U is:

U(8) _ 0.07748 +10.27
&(8) - 83 +1.47482 +0.5238+0.101 (3.8)

The speed, U, is integrated to give the position, X. The transfer function from Ax

to X is:

X(8) _ 0.07748 + 10.27
&(8) - 84 +1.47483 +0.52382 +0.1018 (3.9)

The transfer function for the position of the UAV was entered into SISOtool and .

the resulting root locus is shown in Figure 3.10. In order to see the pole, it was

necessary to zoom in on the region around the origin; the zoomed in version is

shown inFigure 3.11.
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Figure 3.10: Root Locus for the VAV.
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Figure 3.11: Zoomed-in Version of the Root Locus for the VAV.
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Critical damping occurs with a gain of 0.00074. The step response is shown in

Figure 3.12.

Step Response

0.9

0.8
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Figure 3.12: Step Response with Critical Damping.

It can be seen in Figure 3.12 that at critical damping, the VAV's response is very

slow. If the gain is increased the system becomes faster but oscillatory and with a

gain above 0.0032 the system becomes unstable. A good compromise between

speed and oscillation occurs with a gain of 0.001. Figure 3.13 shows that the

response at this value of gain is under-damped but quicker than critical damping.

Itmay be possible to design a compensator to help improve the speed of response

but maintain the damping, although this would be differential in nature, and so

tend to increase the signal noise. It is believed that the scope to improve the

response by this method is limited and so instead, the use of pitch rate feedback is

considered; this is discussed in section 3.4.
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Figure 3.13: Underdamped Step Response for a Loop Gain of 0.001.

As the system is actually being run in discrete time, the continuous to discrete

time conversion function of SISOtool was used to convert the root locus to

discrete time. The step response for the discrete time model could then be seen.

The discrete root locus is shown in Figure 3.14 and Figure 3.15 shows the root

locus zoomed in on the unit circle; the discrete step response is shown in Figure

3.16.

It can be seen from Figure 3.16 that the response is virtually identical to the

continuous time model. As with the continuous time case, it can be seen from

Figure 3.15 that the poles are close to the stability margin.
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Figure 3.14: Discrete-time Root Locus for the UAV.
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Figure 3.15: Zoomed-in Version of the Discrete-time Root Locus for the UAV.
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Figure 3.16: Discrete-time Step Response for a Loop gain of 0.001.

3.3.3 Simulation of Position Feedback Control of the UAV

As the UAV will be subjected to wind gusts, the model of Figure 3.9 incorporates

their effect into the simulation. Figure 3.18 shows the UAV model with wind gust

input while Figure 3.17 shows the position controller.

Scop.1

Wind Zero-Order
Hold1

Figure 3.17: Discrete UAV Position Controller.
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Figure 3.18: UAV Model witb Wind Gust Input.

The VAV was tested with a step demand of 5m and its response is shown in

Figure 3.19. In order to test the response to wind, a pulse wind gust of strength

lms" for 5s was applied. This is quite a strong gust for a small UAV like the one

that is modelled. The response to the wind gust is shown in Figure 3.20.

Figure 3.19 shows the demand (dashed) and the response (solid), which matches

well with the response from SISOtool.
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Figu re 3.20: Pulse Wind Gust Response of UAV Model.
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Figure 3.20 shows that the system is able to recover from a wind gust, but is quite

slow to do it; it is also displaced a considerable distance from the demanded

position (dashed). It should be noted that, while the wind gust to cause the effect

seen in Figure 3.20 may seem small, the UAV modelled is a small laboratory

demonstrator, which is much more easily affected by wind compared to a larger

UAV, as would actually be used for inspection purposes.

The UAV model was programmed into the test rig control computer (to be

described in Chapter 5). The position response of the UAV to a step input to the

UAV's actuator (L\x) could then be obtained when it is being simulated by the

laboratory test-rig. Figure 3.21 shows the response from the Simulink model

(dash-dotted) and the measured rig response (solid). It can be seen that there is a

good match between the two. Also shown is the response of the bare test rig (i.e.

no UAV model (dashed)). It can be seen that the natural test-rig response is much

faster than the UAV and so it is able to simulate the UAV's movement accurately.
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Figure 3.21: Comparison of the Step Response Produced by the Test Rig and the Off-line
Simulation; the Raw Test rig Response is also shown.
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3.4 Pitch Rate Feedback

The VAV's speed of response should improve with the addition of pitch rate

feedback. An investigation into this was undertaken by Dr Dewi Jones, which

showed an improved response speed if a pitch rate gyro and compensator are

added. The gyro bandwidth is significantly faster than the VAV dynamics and so

could be omitted from the model. The compensator transfer function is shown in

(3.10) and the Simulink model in Figure 3.22.

C (s) = 0.4545s +1 (3.10)
PR 10s2 + 100.1s +1

Out

DIs",tlo- Tim. O.ln1
IntoUlito.

Figure 3.22: Pitch Rate Compensator.

The VAV model was modified to give pitch rate output as shown in Figure 3.24.

Gains were selected for the controller to obtain a faster response than previously

but without too much overshoot. The controller is shown in Figure 3.23.

Wind Zero-Ord.,
Hold

Figure 3.23: Controller with Pitch Rate Feedback.
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Figure 3.24: VAV Model with Pitch Rate Output.

As with the previous controller, the VAV model with pitch rate feedback was

tested with a step demand of Srnand a wind gust of lms" for Ss.
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Figure 3.25: Step Response of VAV with Pitch Rate Feedback.
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Figure 3.25 shows the UAV response (solid) to a step demand (dashed); for

comparison the step response of the UAV without pitch rate feedback is shown

(dash-dotted). It can be seen that the UAV responds in about half the time

compared with the model with no pitch rate feedback, although there is now a

small steady state error.
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Figure 3.26: VAV Response to Wind Gust with Pitch Rate Feedback.

Figure 3.26 shows the result of a wind gust (solid). It can be seen that the UAV

responds more quickly than without pitch rate feedback and also doesn't stray as

far from the demand (dashed); for comparison the response to the same sized

wind gust for the UAV without pitch rate feedback is shown (dash-dotted).

The pitch rate feedback was programmed into the real-time UAV model on the

test rig control computer and its response compared with the off-line Simulink

version. Figure 3.27 shows that there is good agreement between the test rig

model (solid) and the Simulink model (dash-dotted) although there may be some

effect from the test-rig dynamics as the VAV now has a faster response; the raw

test rig response is shown (dotted), showing that the rig time constant remains

well below that of the new VAV model. Often in Hardware-in-the-Loop
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simulators an inverse transfer function of the test-rig is included in order to try to

remove the dynamics of the rig; this would likely become necessary in this project

if we wish to simulate a faster DAY. Also shown in Figure 3.27 is the DAY

model with position feedback only (dashed), showing the improved response

speed with pitch rate feedback.
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Figure 3.27: Comparison of Step Responses of VAV Model with and without Pitch Rate
Feedback and Test Rig.

3.5 Conclusions

A model of the DAY has been developed in this chapter. With pitch-rate feedback

it has a reasonably fast position response but with some overshoot. It will give a

good basis on which to test the vision software. It should be noted that, as

construction of the laboratory demonstrator is not complete, it has not been

possible to validate the model with data from the real craft. Also, the model is

limited to two degrees of freedom, and it is currently assumed that there will be

little interaction between the forwardlbackward direction and the left/right model.

This is likely to be a reasonable assumption, due to the symmetrical nature of the

DAY, but again there is no experimental data to validate this. There will be some
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interaction between pitch and lift, as when the VAV pitches, a component of the

thrust acts horizontally and so the vertical thrust is reduced. It should also be

noted that the model is linear and at extremes, the small angle assumptions break

down. The model assumes that the aerodynamic derivatives are constant but, in

practice, they change with operating conditions. What this means in practice is

that you can arrange for the CG to be within a small interval that gives stability

but this interval changes as the aerodynamic derivatives change, so getting true

passive stability is unlikely.

The current model is for a small laboratory demonstrator, rather than a full sizes

VAV, as would be used for inspection. When data for such a craft becomes

available it could be simulated. It would be expected that it will be less affected

by wind, due to its larger mass, although its response time may be slower.

Another future development will be to look at using a VAV that is not passively

stable but uses gyro stabilisation to give a faster response. The limitation on the

pitch rate response is due to the non-minimum phase zero introduced by the servo

mechanism that controls the mass, mp.
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Chapter 4 Image Geometry
4.1 Introduction

This chapter describes a mathematical model of the effect of UAV motion on the

resulting image. The geometric transformation of the lines in the 3D world into

the 2D image is modelled in order to predict how the UAV's motion affects their

position in the image. Ideally, processing the image should yield the height, lateral

displacement, yaw, pitch and roll of the vehicle with respect to the lines. Itwould

not be expected to obtain its distance along the lines from image processing, as

their position in the image is invariant to the UAV's longitudinal position. It is

shown here that height and pitch can be estimated from processing the frames

from a single camera pointing forward and angled down along the lines, but that

yaw, roll and lateral displacement cannot be fully separated. It is also shown that

the use ofa second camera, pointing backwards, allows the separation of yaw, roll

and lateral displacement.

4.2 Analysis for One Camera

The camera is assumed to be mounted on the UAV looking forwards. The UAV

will pitch forward in order to travel along the lines and so this will cause the

camera to be pointed down at the lines. The pitch angle that will be used for flying

the UAV forward along the lines on the actual UAV used for inspection is not yet

known; it may be necessary to pitch the forward camera down relative to the duct.

Currently the pitch angle is assumed to be 20°. Figure 3.8 indicates that this

corresponds to a forward speed of Sms", This is a reasonable speed for the fmal

UAV to travel at along the lines, although it may be on the high side. It is not

currently known how this speed will scale up with a full-sized UAV. This camera

configuration was chosen as it allows the lines to be seen but also to see ahead

along the lines. A camera pointing vertically downwards may have some

advantage for measuring yaw and lateral displacement relative to the lines, but

this would need to be mounted below the duct and on the proposed VAV the

payload is above the duct; in addition the image would be complicated by the

power pick-up appearing in it. The position of the power lines is known in world
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space, {W}. In order to see how a line will appear in the image its co-ordinates

must be transformed into a reference frame centred on the camera lens, {C} as

shown in Figure 4.1.

Optical
Axis

Y"",

u

{W}

Figure 4.1: Reference Frame Definitions.

4.2.1 Mathematical Model

The relationship between the position of a point on the power line in the world

space {W} and its image co-ordinates is defmed by a sequence of transformations

[48], based on the reference frames shown in Figure 4.1. The co-ordinates (Xc,

Ye, Zc) of a point in {C} are related to a point in {W} by a translation, u, from the

origin in {W} to the centre of the camera mount, three rotations through the Euler

angles yaw (a), pitch CP) and roll (1) to a reference frame centred on the UAV,

{A}. This is followed by a translation, t, to the centre of the camera lens, {Cl. It

should be noted that a, P and 1 are being used in this case for the yaw, pitch and

roll, rather than the conventional v, e and ~, as e is used for one of the Hough

Transform variables. In order to create the image there is then a perspective

transformation into the image. The transformations are given in homogeneous co-

ordinates, as discussed in [48]. The sequence of transformations is given by:
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(4.1)

where t is the distance between the rotation point of the camera and the lens

centre and A. is its focallength. Dividing the Xc, Ye and Zc co-ordinates by -Yen...
gives the points in the (x, z) image plane, placed at Ye = -A.. These are given by:

X= Xc and z= Zc (4.2)
_ Ye _ Ye

A- A-

4.2.1.1 Analysis/or Lateral Displacement

Applying equation (4.1) to a straight-line model of the centre conductor, placed at

Xw = 0 and Zw = -ZL, where ZL is the vertical height of the camera centre above

the line, generates a corresponding line in the image. Applying the Hough

Transform then gives p and e values of the lines as a function of the camera pose.

Consider, for instance, an VAV that is displaced laterally by Xu to either side of

the centre line. Assume that the vehicle is flying along the lines at constant speed,

and so has a fixed pitch, ~. Assume also that a and 'Y are zero. Equation (4.1)

becomes:
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Xc 1 0 0 0 1 0 0 0 1 0 0 0
Yc 0 1 0 0 0 1 0 -R 0 cosp -sinP 0

* * *Zc = 0 0 1 0 0 0 1 0 0 sinP cosp 0
-Ye 10 -- 0 0 0 0 0 1 0 0 0 1
A A

1 0 0 -X 0
"

0 1 0 0 Yw* (4.3)
0 0 1 0 -ZL
0 0 0 1 1

This becomes:

Xc -X
"

Ye Ywcos P +ZLsin P - R
Zc = Yw SinP-ZL cosp (4.4)

-Ye YwCOSP+ZL sinP-R
A A

From (4.4), using (4.2), the image co-ordinates are given by:

X= -AX" and z= A(YwsinP-ZLcosp) (4.5)
Yw cos P +ZL sin P - R Yw cos P +ZL sin P - f

Applying the Hough Transform then gives:

B = tan-1(:) and p = xcosB-zsinB (4.6)

and hence:

(
-X )B = tan " " and
YwSinP-ZL cosp
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Constants Kx}' KX2 and KX3 can be defined as follows:

1
KX3 = (4.10)

Yw cos P +Z L sin P - f

Re-arranging (4.12) and evaluating the constants Kxi. KX2 and KX3 for fixed

values of i,~,1,Yw and ZL gives:

B = tan -I(~) and
KXI

p = -~COS(tan-I(~)J-KX2 sin(tan-J(~)J (4.11)
KX3 KXl KXl

This converts to:

B = tan-I( Xu ) and
KXl

Xu 1 K
P = --K-X-3 --;=1 +=( =X=u=)=2 - X2

KXI

1+(~)2
KXI

(4.12)

where both p and e are seen to vary with lateral displacement, Xu'

4.2.1.2 Analysisfor Roll

Applying the same procedure to the roll axis, y, (assuming Xu is zero), gives the

image co-ordinates as:
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X = _1t(Yw sinpsinr - ZL cosPsinr) and
Yw cos p + ZL sin fi - l

z = _1t(Yw sinpcosr-ZL cosficosr) (4.13)
Yw COSP+ZLsinfi-l

and applying the Hough Transform gives:

B=r and p=O (4.14)

In (4.14) e changes with roll angle while p is identically zero. Full analysis is

presented in Appendix A.

4.2.1.3 Analysis/or Yaw

If the same procedure is applied to the yaw axis, c, with '1 and Xu kept at zero,

then the image co-ordinates are:

1 Yw sin a dX=A an
Yw cosacosp+ZL sinP-l

z = -It Yw cosasinp-ZL cosp (4.15)
Yw cosacosp +ZL sinP-l

and applying the Hough Transform gives:

B = tan -I ( - Yw sin a ) and
Yw cosasinp-ZL cosp

When the yaw angle (a) is varied, we see from (4.16) that p and e vary, although

it should be noted that e changes very little. Full analysis is presented in Appendix

A.
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Summarising, equations (4.12), (4.14) and (4.16) show that both p and e of the

centre line change with lateral displacement and with yaw, although it should be

noted that e changes very little with yaw; an example showing the effect of lateral

displacement and yaw of a camera is given in [49]. However, roll of the VAY

only changes that value of e of the centre line. Thus an ambiguity occurs, because

any pair of values of r and a can be chosen independently to alias a given lateral

displacement, Xu. In other words, it is possible for a fmite value of Xu to be

produced by a combination of yaw and a roll of the VAY, despite the real value

being zero. It is concluded that Xu, r and a cannot all be estimated from just two

variables, p and e, obtained from a single camera.

4.2.1.4 Analysis/or Height

Ifwe apply equation (4.1) to a model of the centre conductor and vary the height

of the VAY from its "normal" height above the lines, ZL, by a distance Z, then we

get the following:

Xc 1 0 0 0 1 0 0 0 1 0 0 0
Yc 0 1 0 0 0 1 0 -l 0 cosp -sinP 0
Zc = * • *0 0 1 0 0 0 1 0 0 sinP cosp 0
-Ye 10 -- 0 0 0 0 0 1 0 0 0 1

A- A

1 0 0 0 0
0 1 0 0 Yw* (4.17)
0 0 1 -Z -ZLII

0 0 0 1 1

This becomes:

o
Yw cOSP+(ZL +Z,,)sinP-l
Yw SinP-(ZL +Z,JcosP
Yw cOSP+(ZL +Z,,)sinP-l

A-

(4.18)

From (4.18), using (4.2), the image co-ordinates are given by:
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Applying the Hough Transform then gives:

0=0 and p=O (4.20)

It can be seen that the height of the UAV above the lines does not affect the

position of the centre line in the image.

4.2.1.5 Analysis/or Height applied to a Sideline

If the same analysis is done for a sideline at a lateral distance Xs from the centre

line, then we get following:

Xc 1 0 0 0 1 0 0 0 1 0 0 0
Ye 0 1 0 0 0 1 0 -l 0 cosp -sinP 0
Ze = ... ... ...

0 0 1 0 0 0 1 0 0 sinP cosp 0
-Ye 10 -- 0 0 0 0 0 1 0 0 0 IA- A.

I 0 0 0 -Xs
0 I 0 0 Yw... (4.21)
0 0 I -Z -ZLu

0 0 0 I I

This becomes:

-Xs
Yw cOSP+(ZL +ZJsinP-l
Yw SinP-(ZL +ZJcosP
Yw cOSP+(ZL +ZJsinP-l

A.

(4.22)

From (4.22), using (4.2), the image co-ordinates are given by:
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z = -A, Yw SinP-(ZL +ZJcosP (4.23)
Yw cosp +(ZL +Z,,)sinP-l

Applying the Hough Transform then gives:

e = tan-l( AXs ) and
Yw SinP-(ZL +Z,JcosP

AXs e 1 YwSinp-(ZL +ZII)COSP . ep = cos + /I, sm
Yw cOSP+(ZL +Z.,)sinP-l Yw cOSP+(ZL +ZII)sinP-l

(4.24)

It can be seen that while the centre line does not change position in the image with

varying height, the positions of the sidelines do vary in both p and 9.

4.2.1.6 Analysis/or Pitch

A similar analysis for the pitch gives no change of the centre line position in the

image with changing pitch although the positions of the sidelines do vary with

pitch. The image co-ordinates are given by:

Applying the Hough Transform then gives:

o = tan-t( AXs ) and
Yw SinP-ZL cosp

AXs e 1 Yw sinp-ZL cosp . e (4 )p = cos + /I, sm .26
Yw COSP+ZL sinP-l Yw COSP+ZLsinP-l
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Full analysis is presented in Appendix A. It can be seen that, while the position of

the centre line in the image is unaffected by height or pitch, the positions of the

sidelines do vary. Thus it should be possible to estimate the height and pitch of the

VAV from the distances in p and 0 between the sidelines and the centre line. As

the two sidelines are at approximately equal distances either side of the centre

line, the mean distance between a sideline and the centre line could be used (Od,

Pd). Height affects both Pd and Od while pitch affects Pd, but has very little effect

on Od. It should, therefore, be possible to determine both the height and pitch of

the VAV from one camera. Distance along the lines does not affect the positions

of the lines in the image, as would be expected.

4.2.2 Model Validation in MATLAB

In order to assess whether the geometric model is an acceptable representation of

the test rig, an image was effectively synthesized by evaluating equation (4.1) for

parameter values taken from the test rig, Yw = 150mm, 'Y = a = 0, ~ = 200, t =

30mm and ZL = 80mm. A small refmement was to use a parabolic model of the

lines to approximate their catenary shape. The Hough Transform of the

synthesized image was then calculated as each of the VAV's six degrees of

freedom were changed one at a time. Figure 4.2 shows that the model predicts pc

(dash-dotted) and ae (solid) for the centre conductor will vary almost linearly with

lateral displacement Xu' Also shown in Figure 4.2 are the mean of the Hough co-

ordinates of the two outer conductors relative to the centre conductor, Pd (dotted)

and ad (dashed). These are calculated using:

Bd = (BL -Bc)+(Bc -BR)
2
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Figure 4.2: Comparison of Geometric Model Predictions (lines) and Test Rig Measurements
(discrete points) for Lateral Displacement of the Vehicle from the Centre Line.

To see how the model compares with results from the test rig, a sequence of

images, a sub-sampled version of which is shown in Figure 4.3, was produced

with a lateral translation of the camera on the test rig. These were then processed

using the Hough Transform, described in Chapter 6, to obtain the P and e values

of the three lines. The data points measured directly on the test rig were plotted

onto Figure 4.2 (Pc, x; ec, 0; Pd, 0; ed, +). There is good agreement between the

data points measured directly on the test rig and the model prediction. The

discrepancies between the model and the measurements in Pc (for negative Xu)

and in ec (for positive Xu) are thought to be due to a slight offset of the lines at

zero displacement on the test rig, and slight differences in the scaling of the

image. There is also good agreement for the mean of the Hough co-ordinates of

the two outer conductors relative to the centre conductor, which is seen to be

relatively insensitive to lateral displacement.
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Figure 4.3: Lateral Displacement Image Sequence.

It can be seen that pc and Be change approximately linearly with lateral

displacement, X. If these are assumed to be linear then the value of the slope will

relate the values of X to Pc and Be. If the inverses of each slope are defmed as X,

ax ax
and X, (where X, and X, are - and -), then the value of X can be calculatedaB ap
using either:

x = XeB (4.28)

x = XpP (4.29)

Measuring the values Xe and X, from the test rig data in Figure 4.2 gives:

Xe=0.048

X, = -0.0433

The lateral displacement could be obtained individually from either p or B but for

the testing done inChapter 7 the average was used:
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The same procedure was repeated for yaw, roll, pitch and height above the lines.

Again image sequences were obtained from the test rig. Because the test rig

doesn't have roll or height adjustment, these sequences had to be obtained

manually, i.e. the camera had to be taken off the rig and moved relative to the

lines by hand. This accounts for the larger amount of noise in these two data sets.

The results for yaw, roll, height above the lines and pitch are shown in Figure 4.4,

Figure 4.5, Figure 4.6 and Figure 4.7 respectively. Line styles are as for the lateral

displacement results (Figure 4.2).

-~:g_
c:o-tJ) 0Q) 0x
'5..-

~OL_----~----~L_----~----~------~----~
-15 -10 -5 0 5 10 15

Yaw (deg)

Figure 4.4: Comparison of Geometric Model Predictions (lines) and Test Rig Measurements
(discrete points) for Yaw of the Vehicle.

Figure 4.4 shows that pc changes roughly linearly with yaw, as predicted, but

there is virtually no change in Se. The positions of the outer lines relative to the

centre line are insensitive to yaw. There is again good agreement between the test

rig and model results.
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Figure 4.5: Comparison of Geometric Model Predictions (lines) and Test Rig Measurements
(discrete points) for Roll of the Vehicle.
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Figure 4.6: Comparison of Geometric Model Predictions (lines) and Test Rig Measurements
(discrete points) for Varying Vehicle Height above the Lines.
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Figure 4.5 shows that Se changes linearly with roll, as predicted, but there is

virtually no change in pc. The positions of the outer lines relative to the centre line

are insensitive to roll. There is again good agreement between the test rig and

model results.

Figure 4.6 shows that there is no change in the position of the centre linetp-, Se)

with height above the lines. There is a change in the mean of the Hough co-

ordinates of the two outer conductors relative to the centre conductor (Pd, Sd).

40,----,-----.----,-----,-----,----,-----.----,
+ j ! + j+

: + : + + : +: :
- __:t_, "c2:cc=r====r=== l==::::t::=::-:t:::: ::::'=_::::- -

i xx xx

+J ) 0 :c

~OL----J-----L----~----~----~--~----~----~5 10 15 20 25 30 35 40
Pitch (deg)

45

Figure 4.7: Comparison of Geometric Model Predictions (lines) and Test Rig Measurements
(discrete points) for Pitch of the Vehicle.

Figure 4.7 shows that, as with height, there is no change in the position of the

centre line in the image with pitch. In this case, there is little change in the Sd

values of the outer lines, while there is an almost linear relationship between the

Pd values.

It can be seen that the measurements match well with the theoretical model. As

predicted, Sd and Pd are only significantly affected by pitch and height meaning

that it should be possible to estimate the height and pitch from Sd and Pd. The
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position of the centre line in the image is affected by the lateral position, yaw and

roll. Roll only affects the value of Gc while yaw only significantly affects the

value of pc. Lateral displacement has an effect on both Gc and pc. As such it is

possible for a combination of a yaw and a roll to have an equivalent effect on the

image as a lateral translation. It is not, therefore, possible to separate these three

values from the two variables, Pc and Gc.The solution to this problem is discussed

in section 4.3.

4.2.3 Two-axis Modelling in MATLAB

The previous section considered varying individual axes and observed the effect

on the image. However the results do not show the effect of any cross coupling

between axes. Here the effect of varying multiple axes is assessed, using the same

procedure as was used for single axes, but varying two axes at a time.

The axes of the VAV can be formed into two groups: those that affect the position

of the centre line in the image (lateral displacement, yaw and roll), the "Centre

Line" group and those that affect Gd and Pd (height and pitch), the "Difference"

group. If all combinations of two axes were to be tested this would produce a

prohibitive number of tests, therefore, testing was limited to cross coupling within

the groups and between them.

In order to test for cross coupling within the "Centre Line" group, it was

necessary to test three combinations: lateral displacement and yaw, lateral

displacement and roll and roll and yaw.
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Figure 4.8: The Effect of Varying both Yaw and Lateral Displacement on Qc.
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Figure 4.9: The Effect of Varying both Yaw and Lateral Displacement on Pc.
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It can be seen from Figure 4.8 and Figure 4.9 that there is little cross coupling

between the lateral displacement and yaw axes; the Se and pc values are

approximately equal to the sum of the contributions to Se and pc from each axis.

This procedure was repeated for the lateral displacement and roll axes and the roll

and yaw axes. The graphs for these tests are shown in Appendix B. It can be

concluded that there is little cross coupling between the lateral displacement, yaw

and roll axes.

There is only one test required for the "Difference" group: pitch and height. This

test looks for cross coupling between Sd and Pd, as neither axis affects the values

ofSe and Pc.

It can be seen from Figure 4.10 and Figure 4.11 that there is more cross coupling

than there was within the "Centre Line" group, although the height and pitch axes

should be reasonably separable. The cross coupling should be less of a problem

with pitch and height, as the aim would be to maintain the pitch and height within

tight limits.

25

[: 20
a:>

15

10
50

2

o 5
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Figure 4.10: The Effect of Varying both Pitch and Height on Od.
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Figure 4.11: The Effect of Varying both Pitch and Height on Pd.

In order to test for cross coupling between the two groups of axes, the lateral

displacement and height were varied, and the effect on both ad and Pd and the

centre line position in the image were measured. This allows the effect each group

of axes has on the other to be seen. As the lateral displacement is measured from

the centre line, the test on the centre line showed the effect on lateral displacement

by changing the height.

Figure 4.12 and Figure 4.13 show that there is cross coupling between height and

lateral displacement. Varying the height will affect the position of the centre line

in the image if there is also lateral displacement of the UAV, although the effect is

fairly small provided the UAV height is maintained within a couple of metres

above the lines. The effect on the lateral displacement could also be caused by

pitch and the effect could also affect yaw and roll measurement.
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Figure 4.12: The Effect of Varying both Height and Lateral Displacement on Sc.
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Figure 4.13: The Effect of Varying both Height and Lateral Displacement on Pc.
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As the height is measured from Od and Pd, the test on Od and Pd showed the effect

on height by changing the lateral displacement. The graphs showing this are

shown in Appendix B. This shows that there is some effect on the height

measurement by changing the lateral displacement. This could be predicted by the

Od and Pd lines in Figure 4.2. This effect is not caused by yaw or roll.

To summarise, the following cross-coupling effects are seen:

• There is little cross coupling between lateral displacement, yaw and roll.

• There is little cross coupling between height and pitch.

• There is some effect on the measurement of height or pitch by changing the

lateral displacement but not by changing the roll or yaw.

• There is an effect on the measurement of lateral displacement, yaw and roll by

varying height and pitch.

It should be possible to extract the information about all five axes from the image.

There is little cross coupling between most of the axes. The main concern would

be the effect on the lateral displacement, yaw and roll of varying the height. This

shouldn't present too much of a problem as the aim will be to maintain the height

and pitch within tight limits as the UAV travels along the line, and an estimate of

the height could be fed back into the vision system to compensate for this.

4.3 Analysis for Two Cameras

It has been shown that one camera is insufficient to determine the lateral

displacement, yaw and roll of the UAV. One strategy is to use an independent roll

sensor to resolve the ambiguity. There are forms of GPS that can estimate the roll

of a vehicle by using two antennas or it would be possible to use a roll rate gyro

and integrate the signal to obtain the position. It is possible to combine these two

to improve the accuracy as described in [50]. Another possibility would be to use

a mercury inclinometer, which would consist of a circular tube, mounted

vertically aligned left to right, with a number of contacts spread around its length,

inside the tube, and small amount of mercury, inside the tube; roll could be

measured by which contacts were connected by the mercury. Mercury
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inclinometers are sensitive to all acceleration rather than just gravity. All of these

sensors do have a problem with noise and limited accuracy. The known effect of

the roll could then be subtracted from the Se value from the image and the yaw

and lateral displacement can be extracted from the resulting Pe and Se values.

Another possibility to separate lateral displacement, yaw and roll is to use a

second camera, pointing backward, and pitched downward relative to the duct, as

shown in Figure 4.14. This should allow the separation of lateral displacement,

yaw and roll as they will affect the position of the centre line in the image from

the backward camera differently to its position in the image from the forward

camera.

Backward
Camera

Forward
Camera

Duct

Line

Figure 4.14: Mounting of Twin Cameras on the Duct.

The reference frames for two cameras are shown in Figure 4.15. The geometric

model for the forward camera is given by (4.1) and the analysis proceeds in

similar fashion to Section 4.2, except that the value of t is larger. This is due to

the cameras being back to back, requiring them to be placed further from the

vertical axis of rotation. The geometric model for the rear-pointing camera is

similar to (4.1) and is shown in (4.31). The differences are: the camera is pitched

down from the rotorcraft by an angle ~e, giving an extra transformation; the yaw
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angle is incremented by 1t due to the camera pointing rearward and the roll and

pitch are in the opposite direction.

Optical
Axis

-Y~~
XcF

{CF}

u
,/ Yee

Optical I

Axis

{W}

Figure 4.15: Reference Frame Definitions for twin Cameras.

XeB 1 0 0 0 1 0 0 0 1 0 0 0
YeB 0 1 0 0 0 1 0 -£ 0 cos Pc +sin Pc 0
ZeB = * * *0 0 1 0 0 0 1 0 0 sin Pc cos Pc 0
-YeB 1

0 -- 0 0 0 0 0 1 0 0 0 1
A. A.

cos(- y) 0 sin(- y) 0 1 0 0 0
0 1 0 0 0 cos(- p) -sin(-p) 0

* *-sin(-y) 0 cos(- y) 0 0 sin(- p) cos(- p) 0
0 0 0 1 0 0 0 1

cos(a+ n) -sin(a+n) 0 0 1 0 0 -X Xw"
sin(a+n) cos(a +n) 0 0 0 1 0 -y * Yw* II (4.31)

0 0 1 0 0 0 1 -Z ZwII

0 0 0 1 0 0 0 1 1

Again, the Hough Transforms for the dual camera case were calculated for a

synthetic image. The simulation was repeated, as for the case of one camera, for

lateral displacement, yaw and roll. The values of P and e for both cameras were

plotted against lateral displacement, yaw and roll.
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Figure 4.16: Geometric Model Predictions (lines) and Test Rig Measurements (discrete
points) of Pc and 9c for Varying Lateral Displacement (Xu) with Twin Cameras.

Figure 4.16 shows that each camera gives opposite results: as lateral displacement

increases, PCF (dash-dotted) and SCB (dashed) decrease while PCB (dotted) and SCF

(solid) increase. To see how the model compares with results from the test rig, a

sequence of images was produced, in the same way as for one camera, with a

lateral translation of the cameras on the test rig. These were then processed using

the Aggregated Hough Transform, described in Chapter 6, to obtain the P and e
values of the three lines. The data points measured directly on the test rig were

plotted onto Figure 4.16 (PCF, x; eCF, 0; PCB, 0; SCB, +). This effect would be

expected because when the DAV moves to the left, the forward-pointing camera

moves to its left but the rearward-pointing camera moves to its right. Example

synthesised images for the two cameras, where the DAV is to the left of the lines,

are shown in Figure 4.17.
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Forward Backward

Figure 4.17: Synthesised Images for the Forward and Backward Camera when the UAV is
Laterally Displaced from the Lines.
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Figure 4.18: Geometric Model Predictions (lines) and Test Rig Measurements (discrete
points) of Pc and 9c for Varying Yaw (a) with Twin Cameras.

Figure 4.18 shows the result for varying yaw angle (a), where it is clear that

changes in Pc and Sc are the same for both cameras; the backward camera results

(dotted, dashed) overlap the camera 1 results in the figure. This is as expected

because the rotation occurs in the same sense for both cameras. It can also be seen

that there is a small change in the value of S with yaw, compared to the single

camera, where there was very little change; this is due to the longer value of .t in

the two-camera configuration.
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Figure 4.19: Geometric Model Predictions (lines) and Test Rig Measurements (discrete
points) of Pc and Oc for Varying Roll (y) with Twin Cameras.

In contrast, varying the roll angle (y) causes different changes in Pc and 9c for

each camera as shown in Figure 4.19, which is due to the pitch of the second

camera relative to the DAV. Example synthesised images for the two cameras,

where the DAV is to the left of the lines, are shown in Figure 4.20.

Forward Backward

Figure 4.20: Synthesised Images for the Forward and Backward Camera when the UAV
Rolls.

Because the two cameras yield different results for varying lateral displacement,

yaw and roll, there are now four equations and three unknowns. Estimates of the

position and orientation of the DAV relative to the lines can therefore be made.
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By defming co-efficients that are the values of the slopes of each of the lines in

Figure 4.16, Figure 4.18 and Figure 4.19 the values of Pc and Oc for each camera

are given by:

PH = PHXX +PBaa+ PBrr (4.34)

where:

OFand PF are the values of 0 and P for the centre line from the forward pointing

camera.

ea and PS are the values of 0 and P for the centre line from the backward pointing

camera.

X is the lateral displacement of the UAV

a is the yaw of the UAV

'1 is the roll of the UAV

OFX,PFX,OFa,PFa etc. are the coefficients: these are equal to the values of the slope

of the relevant graphs (e.g. 8Fx is oBF )oX

Measuring the co-efficient values from the test rig data gives:

8Fx=24.9 8Fa=1.30 8Fy=0.93

PFx=-30.7 PFa=-4.66 PFy=O

8sx=-24.9 8sa=1.30 8sy=-I.36

Psx=30.7 PSa=-4.66 psy=2.74

Table 4.1: Lateral Displacement, Yaw Roll Co-efficients.

Height and pitch information can be obtained from Pd and Od from the forward

camera.
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4.4 Conclusions

It has been shown in this chapter that it is theoretically possible to estimate the

pose and position of the UAY relative to the lines. Lateral displacement, yaw and

roll affect the position of the centre line, while pitch and height above the lines

affect the distance between the outer and centre line in Hough space. It is possible

to obtain estimates of the pitch and height from one camera, but in order to obtain

the lateral displacement, yaw and roll it is necessary to combine the results from

two cameras or one camera and a roll sensor. Measurements from the test rig

agreed well with the predictions of the geometric model.
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Chapter 5 Test Rig
5.1 Introduction and Overview

In order to perform real-time experimental testing of the image processing,

tracking, controller and UAV model, it was necessary to construct a test rig that

simulates the UAV. While the UAV itself has six degrees of freedom, it was

decided, for simplicity, to limit the rig to the three degrees of freedom: X, Y and

Yaw. These axes were chosen because it is necessary to control the horizontal

position and heading of the UAV relative to the lines. The pitch and height

relative to the lines should remain within tight limits when the UAV flies along a

line, and so can be assumed to be constant for the purposes of this project. The

roll axis would be useful for simulation, but would add significantly to the

complexity of the rig; a roll axis would be the choice if a fourth axis were to be

added.

The rig used for this project is a large custom-built X-V table, which carries a

camera. The mechanical subsystem was originally designed by Matthew Williams

[17] but has been extensively modified for use with this project. The test rig

measures approximately 2.5x1.1m and is shown in Figure 5.1. In addition to the

table, the rig comprises a custom-made controller board to control the position of

the camera, and three pes to run the image processing, tracking, controller and

UAVmodel.

The rig has position control of the X and Y axes and the Yaw of the camera,

provided by a custom written software controller. Underneath the table is a 30:1

scale model power line. This gives an idealised version of the scene that would be

seen by the UAV. The camera can be steered to simulate the yaw of the rotorcraft,

and has a fixed forward pitch. As the UAV travels forwards along the line at a

constant speed it will maintain a constant pitch in order to achieve this. Although

the pitch angle of the rig's camera can't be changed actively during simulation it

is possible to change the pitch angle manually. The X and Y axes are both driven

through timing belts driven by motors. The position of the camera in the X

direction is sensed by an optical encoder driven by the belt, while the Y position is
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sensed by an optical encoder on the motor shaft. The Yaw axis is directly driven

by a motor with an optical encoder attached.

~-CMlrhead
line

Figure 5.1: Test Rig.

The test rig retains the original table's mechanical components, but has new X and

Y drives. The camera mount and Yaw axis drive are also new. The whole rig has

been raised on legs, in order to place the camera above the lines. The interface
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between the drives and the controller is identical for each axis, which simplifies

the writing of the control software.

The X-V table consists of two parallel aluminium channels mounted on a wooden

frame. A carriage runs on each channel with a THK linear V rail fixed between

them. Mounted on each carriage is a pulley housing. Between the two pulleys

there is a toothed belt, which is attached to the camera mount and provides the X

drive for the table. The drive motor itself is mounted on one of the pulley

housings. The position of the belt is sensed by a rotary optical encoder, which is

mounted on the other pulley housing. A second toothed belt runs in the Y

direction between two pulleys mounted at either end of the wooden frame. The

linear V rail is attached to this belt to provide the Y drive. Both the drive motor

and position encoder are attached to the pulley at one end of the rig. The upper

section of the camera mount contains a drive motor and an optical encoder to

sense the angle of the lower part of the camera mount, which carries the camera

and is rotated by the yaw drive motor. The lower part of the camera mount also

includes a manual pitch setting, allowing the pitch of the camera to be fixed. The

reference frame for the test rig is shown in Figure 5.2. The origin of this reference

frame is at camera level at the top right corner of the rig as shown in Figure 5.1.

z

x

Yaw

Figure 5.2: Test Rig Reference Frame.

The position and orientation of the camera is controlled by a dedicated controller.

This circuit board carries a PIC microcontroller that runs the position control

software. This interfaces to the rig motors through DACs and power amplifiers,

and the encoders via dedicated counter chips. The microcontroller receives

position demands from the control PC via a serial connection. This PC runs a

model of the UAV and the visual servoing.
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The remaining sections describe in more detail the mechanical design of the rig

modifications, the modelling of the rig and the electronic and software design of

the controller.

5.2 Mechanical Design

The author designed all the modifications to the test rig. The School's Mechanical

Workshop carried out the majority of the construction

5.2.1 X Drive

The X drive required the simplest modification, involving the replacement of the

drive belt and the fitting of a rotary encoder to the pulley housing at the non-drive

end of the linear V rail. The existing drive motor and pulley wheels were used.

Figure 5.3 shows the design of the encoder end of the X drive. Figure 5.4 shows

the X drive system.

HEDS-5701-FOO

10

Oldham
25

Coupler

10

Toothed 15
Pulley

10

......
6 100

Figure 5.3: Design of the X Drive Encoder Pulley Housing.
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Drive Motor

Figure 5.4: X Drive.

5.2.2 Y Drive

The Y drive needed to be replaced completely, with the exception of re-using the

drive motor. Itwas decided that the best option was to use a toothed belt design as

used in the X drive. This required a pulley mount at one end, and a pulley mount

with the drive motor and position optical encoder at the other. A method of

linking the belt to the linear V rail was required, which needed to avoid the X

drive belt and the camera mount.

Figure 5.5 shows the Y drive pulley housing design while the design for the non-

drive pulley housing and linear V rail link are shown in Figure 5.6. Figure 5.7 is a

photograph of the drive end of the Y mechanism.
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Oldham
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Figure 5.5: Drive Pulley Housing for the Y Drive.
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Non-Drive End Assembly:

Bearing

Spacer

10 15 10

144

10

75

Belt/Carriage Attachment:

10

15

Figure 5.6: Y Drive Non-drive End Pulley Housing and the Link to the Linear V Rail.
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Figure 5.7: Y Drive.

5.2.3 Camera MountIY aw Drive

A new camera mount was required to hold a camera looking down onto the lines

and act as a base for the yaw axis. The design has the motor housing fixed to the

running block so as to be below the linear V rail. The camera mount is attached to

the motor shaft underneath the motor housing. Figure 5.8 shows the yaw assembly

and camera mount and a picture of the camera assembly is shown in Figure 5.9.
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.(_ Toothed Bel!l

<Linear <
Rail
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Figure 5.8: Yaw Assembly and Camera Mount Design.
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Linear
V Rail

Figure 5.9: Camera Mount.

The choice of motor for the yaw axis was limited by the requirement to have a

shaft at both ends, in order to allow the optical encoder to be fitted. The motor

also needed to be approximately 25 mm in diameter and run from 12V. This

limited the choice to a Maxon RE25 or a Maxon A-max 26 motor. It was

necessary to calculate how fast each motor could turn the camera mount, to ensure

it would be fast enough to simulate the rotation of the rotorcraft; a maximum rate

of 1 radls was estimated. Both motors were found to be capable of this rate so the

cheaper A-max motor was chosen.
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5.2.4 Twin Camera Mount

For later experiments, two cameras were required, one pointing forwards and one

pointing backwards. A second camera mount was designed and built to do this.

Figure 5.10 shows the design of the mount while Figure 5.11 shows a photograph

of it.

1<--- Shaft

Figure 5.10: Design of the Twin Camera Mount.

Figure 5.11: Twin Camera Mount.

82



Chapter 5 Test Rig

5.3 Modelling of the Test Rig

5.3.1 Position Feedback Controller

In order to write the control software to provide position control of the test rig, it

was necessary to develop a dynamic model of the rig. The parts of the rig being

moved by each axis form a load, which places an effective moment of inertia on

each motor shaft. A mathematical model of the motor, based on a servo model in

[51], was built in Simulink and is shown in Figure 5.12. A disturbance input is

included, in order to test how well the rig rejects disturbances.

2
Disturbance

Figure 5.12: Motor Model.

Here K is the motor torque constant, R, is the armature resistance, J is the moment

of inertia of the load and n is the gearbox ratio. Values of K and R, for each axis

were obtained from the motor data sheets, while n is known for each gearbox. An

estimate of J needed to be calculated for each axis. For the yaw axis this was done

by calculating the moments of inertia for each of the parts of the camera mount

and the camera and adding them up. As the X and Y axes are rectilinear, J is the

effective inertia. It should also be noted that the loads presented to the motors by

the X and Y axes have a large frictional component, although the load is being

modelled as inertial for this exercise. The inertia can be calculated using:

J = mr" (5.1)

where r is the radius of the belt pulley wheel and m is the mass.

The value or r is known, so what is needed is an estimate of the effective mass in

order to calculate the effective inertia. In order to estimate the mass, a string was
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attached to the drive belt. This was run parallel to the belt until the edge of the test

rig, where it passed over a pulley. Masses were attached to the end of the string

and the mass increased until it was sufficient to move the slider block in the case

of the X axis or the linear V rail in the case of the Y axis. The moment of inertia

was then calculated for the two axes using:

The values for the three axes are shown in Table 5.1.

Axis Yaw X Y

K (NmA-I) 0.0146 0.0163 0.0525

J (kgnr') 5.1X 10-4 4.5xlO-4 52.42xI0-"

Ra(n) 2.5 1.23 2.07

n 1 35 27

Table 5.1: Values for the Motor Model for each Axis.

Initially a rig model was built with only the X and Yaw axes, because the Y axis

is expected to behave in a similar manner to the X axis. Figure 5.13 shows this

model, which includes a model for the motor stiction at the input to each motor,

shown in Figure 5.14.

Amp s.t Stlction Outl

R.d2Count Int.grnor

VlwMotor

Count2Rld

In! o..cl

Amp S.t1 Stiction1 DUll

Rld2Count1

XMotorAndGur

Figure 5.13: Test Rig Model.
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Dead Zone

Sign Gain

Figure 5.14: Simulink Stiction Model.

A controller model based on position feedback was implemented. Optimum gains

to give a critically damped response were found using SISOtool and included in

the Simulink model. Due to the non-linearity in the motor model, a higher gain

was needed for the yaw axis than the optimum determined by linear analysis.

Figure 5.15 shows the controller model. This was tested with square wave inputs

into both the X and Yaw axes, to test the step response. The magnitudes of the

demand inputs are ±2m (scaled) for the X axis and ±45° for the Yaw axis and the

results are shown in Figure 5.16.

Figure 5.15: Test Rig Position Feedback Controller Model.

In Figure 5.16 it can be seen that we get a critically damped response (solid) to the

step demand (dotted) with the X axis, as predicted by SISOtool. The yaw axis

gives a very under-damped response to the step input.
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o 10 20 30 40 50 60 70

o 10 20 30 40
time (s)

50 60 70

Figure 5.16: Position Feedback Controller Output.

5.3.2 Speed Feedback for the Yaw Axis

80

80

Due to the oscillatory response, it was necessary to alter the yaw controller. Speed

feedback was added to the yaw axis. The model was adjusted to give the motor

speed, as shown in Figure 5.17, although on the test rig the speed would be

obtained by differentiating the position signal.

Outl

OUll

Rad2Count1 Integr.tor1 Quantizer1

XMotorAndGur

Figure 5.17: Test Rig Model With Yaw Speed Output.
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To select the value of the speed feedback, the yaw model was put into SISO tool,

using different values of speed feedback. The best response was found using a

speed feedback gain of 0.1 and a loop gain of 22. The new model was built in

Simulink and tested. Figure 5.18 shows the new model, while the step response is

shown in Figure 5.19. In order to test the disturbance rejection, pulses were

applied to the disturbance inputs of the model. These were of magnitude 1ms-2 for

the X axis and 45°s-2 for the Yaw axis and the responses are shown in Figure 5.20.

nn~------------------~
X Disturb,noe

Figure 5.18: Test Rig Controller with Speed Feedback on Yaw Axis.

o , , , .. , _
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0 10 20 30 40
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Figure 5.19: Step Response for the Test Rig Model with Speed Feedback on the Yaw Axis.
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Figure 5.20: Disturbance Re ponse for the Te t Rig Model with pe d F dba k on th Yaw
Axi .

It can be seen from Figure 5.19 that the Yaw response i ery much impr v d.

Figure 5.20 indicates that the test rig will reject disturbances quite well.

5.3.3 Discrete-time Controller

As the controller will be implemented in software it was ne e ary to con ert the

model to a discrete-time controller. At this point, a model for the Y axi wa

added. Figure 5.21 shows the discrete-time controller model. The

shown in Figure 5.22.

A satisfactory response was obtained for all three axes. It can be een in Figure

5.22 that the assumption about the step respon e of the Y axi wa rre t in that

it is similar to the X axis. Itwas then possible to write the controller code.
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nn~--------------------~
YDlsturbancti

Figure 5.21: Descrete-time Controller for Test Rig.
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Figure 5.22: Output for All Three Axes for the Discrete-time Controller.

5.4 Electronic Design

The position sensors on the rig are HP HEDS optical encoders, which produce

digital output and the rig controller needs to communicate with the control PC.

For these reasons, it was decided that it would be easiest to implement the
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controller digitally in software. A PIC16F874A mi r ontroll r wa ho n to

implement the controller. This has a number of I/O ports which an bud t

interface with the encoders and motors, as well as a erial port, which can b u ed

to communicate with the control PC. The optical encoder ar conn et d to th

PIC using dedicated HCTL2016 quadrature decoder chip. The h Id aunt

representing the current position, and the position can brad out by an 8-bit

interface. The motors are connected using an AD DA 8412F 4- hannel 12-bit

DAC. The outputs from this are fed to the motors through L165 p wer amplifier.

Three of the PIC's ports are assigned to form a bus to interface with the DA and

counters. A crystal oscillator provides the clock for the PI and c unter at a

frequency of 3.6864MHz. This value was cho en because the PI g n rat th

baud clock for the serial port from this clock and this alue di id down t gi

the 38400baud required.

The circuit was implemented on Veroboard. Figure 5.24 how the ir uit

diagram for the test rig control circuit. Figure 5.23 shows a photograph of the

circuit board.

Figure 5.23: Test Rig ontrol ircuit Board.
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Figure 5.24: Test Rig Circuit Diagram.

5.5 Embedded Software

To
Yaw
Motor

To
X

Motor

To
y

Motor

The PIC microcontroller had to be programmed to perform the control. Its main

functions are to implement the controller and to communicate with the control PC.

These two functions must run concurrently. This was implemented using the PIC

interrupt. The control loop is the most time critical of the functions and was run at

interrupt level, with the communication routine run at normal level. The

microcontroller software is written in MPASM, the assembly language for PIC

microcontrollers. Figure 5.25 shows the state transition diagram of the embedded

software. It should be noted that in Figure 5.25 there are two transitions leaving

the Control Algorithm state marked end. This is possible because these transitions
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are a "return from interrupt" and so the software returns to the state it was in

before the interrupt.

End of Setup

Timer Interupt

Figure 5.25: Embedded Software State Transition Diagram.

The PIC contains a timer and this is set to trigger the interrupt at a frequency of

450Hz. This value had to be sufficiently high in order to control the Yaw axis,

which has a response time of O.5s.There is an upper limit to the frequency caused

by the clock frequency driving the PIC. The specific value of 450Hz was chosen

due to the frequency of the crystal that drives the system, 3.6864MHz, which

itselfwas chosen in order to provide the correct baud rate for the serial port.

The controller must provide position control for the X and Y axes and both

position and speed feedback on the Yaw axis. Because the Yaw speed is obtained

by differentiating the position signal, it is quite noisy. This caused some chatter of
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the Yaw axis so a first order infinite-impulse response low pass filter [52] on the

Yaw demand signal was used to remove it.

In order to test the validity of the model of the test rig described in section 5.3, the

step response of the test rig was measured for all three axes and the results are

shown in Figure 5.26.

Figure 5.26: Comparison between the Step Responses of Rig and Simulink Model of the Test
Rig.

Figure 5.26 shows that the step response of the test rig's yaw axis (solid) matched

well with the predicted model (dash-dotted), although there is a position offset.

This is due to the cables going to the camera acting as a spring. There was some

difference in the X and Y response in that the rig's response time is quicker than

predicted. This is due to the fact that the load was modelled as inertial while it is

partly frictional. While inertia tends to hinder both acceleration and deceleration,

friction aids deceleration. This allowed a higher loop gain to be used than

predicted without causing an overshoot, thus allowing the faster response. The

gains were rounded to powers of two, in order to speed up the operation of the

software. Figure 5.27 is a flowchart showing how the control algorithm works.
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Start

Apply Position
feedback to X

Apply speed feedback
to Yaw axis

Figure 5.27: Flowchart for the Control Algorithm.

In between calls to the control algorithm, the PIC needs to monitor the serial port

for requests from the control PC. In most cases this will be the PC sending new

position demands and read back the current positions. In addition, the PC needs to

be able to check that the communication channel is working, and reset the rig

position to zero. Figure 5.28 shows a flowchart for the communication routine.
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Figure 5.28: Flowchart for the Serial Communication Routine.

5.6 Control Software

The control software provides simulation of the VAV and the image processing

required to do visual control. This software runs on a PC under Microsoft

Windows XP and was written using Microsoft Visual C++ 6.0. In order to grab

images from the test rig's camera, the control PC has a Matrox Meteor

framegrabber card in it. This is accessed from the C code using the supplied MIL

software.

The PC software is multithreaded. One thread operates the user interface, while

the other two run the control and DAV model, described in Chapter 3, and the

image processing and tracking described in Chapters 6, 7 and 8. The vision

processing thread is started and stopped by the control thread, which also reads
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the line positions from the vision thread. The control thread is itself started and

stopped by the user interface. The tasks performed by each thread and the thread

ownership is shown in Figure 5.29

Interface

Display test-rig
position and status
to user.

Allow manual
Control of test rig.

Start and stop
Control Thread.

Display position
information from the
Control Thread.

\ \
Control Thread Vf----_V_iS_io_n_T_h_re_a_d_---i

Start and stop 0"
Vision Thread.

Take positions from
map, Vision Thread
and DGPS
simulation to
generate control
inputs for the UAV.

Process Images from
the Camera with
AHT to extract the
lines.

Track the lines from
frame to frame.

Provide estimates of
the positions of the
lines in the image to
the Control Thread.

i Test Rig Control EJ

Simulate the UAV
and send the
resulting position
demands to the test
rig.

~~--------------~
Figure 5.29: Separation of tasks within the Control Software.

Reset to Zero I GotoZero I TestComms·1 ReadPosition4

Test Rig Status:

IT est Rig: "COMl ",38400 Baud.

Map File:

IM:\PhD\ Test_Rig\Maps\Single_Line.epm I[S'iowse'::':ll....... _ ..

OK
Cancel

P' Enable Vison Feedback

Go
Start Tracking Control Loop Frequency: 0 Hz

X Demand: 0
Stop Tracklngl Vision Loop Frequency: 0 Hz

YDemand: 0
Manual Movement:

P' Restrict Movement Forward I Yaw Demand: 0

Forward I X Position: 0

~~ ~~

Y Position: 0

Yaw Position: 0

~ Backwardl ~ Wind Strength: 0

~
Backwardl

~ Error Code: 0

Figure 5.30: Test Rig Control Software Interface.
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The interface was put together using the tools within the Visual C++ development

environment. The control and vision threads implement the control and vision

algorithms described elsewhere in this thesis. Figure 5.30 shows the user

interface.

This allows the user to move the camera on the test rig and set the rig's zero

position, as well as starting and stopping the tracking software and setting the

magnitude of a wind gust to be applied to the DAV. There are two sets of

direction buttons: the inner set give a small movement, while the outer ones give a

larger movement. CW stands for clockwise while ACW stands for anti-clockwise.

There is a box to show the user if the test-rig's controller is responding and the

user is able to specify a map file. This tells the software where the poles are

relative to the rig's zero position. This is equivalent to providing DGPS waypoints

for an actual inspection DAV. An example Map file is:

EPM1
3
o 0
3515 3350
3515 14840

The structure of the file is that on the first line is a header to identify the file type

and on the second line is the number of waypoints, which, due to a requirement of

the software is equal to the number of poles plus one. On the subsequent lines are

the X and Y coordinates of the waypoints, in encoder counts, the first of which is

always (0,0) .

. MIL DISPLAY #0 "iiiEl

Figure 5.31: Example Image and the Lines Found by the Hough Transform.
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Figure 5.31 shows an example frame with the processed image next to it.

For later experiments two cameras were used, which required two image

processing computers, one per camera. The software was split to run on three

computers, two running the vision threads and one performing the control. The

vision and control parts of the software were left unchanged. The change to three

computers only required modifications to the user interfaces and the addition of

code to handle the communication between them. For simplicity and because the

amount of data to be transferred between the PCs was quite small, serial

communication was used. Figure 5.32 shows the new control interface, which is

similar to the interface for the single camera software, apart from the addition of

the boxes to display the connection status of the vision PCs. Figure 5.33 shows the

interface for the vision part of the software. This allows the user to start and stop

the vision thread and specify whether captured images are written to disk.

i Test Rig Control El

OK I
Browse... I

Cancel I
Reset to Zero I Go to Zero I
Test Comms.1 Read Position,

pr Enable Vison Feedback

Go

X Demand: 0
0 Hz

Y Demand: 0
0 Hz

Yaw Demand: 0

X Pos~ion: 0

Y Position: 0

Yaw Position: 0

Wind Strength: 0

Error Code: 0

Map File:

Test Rig Status:

IT est Rig: "COM2", 38400 Baud.

Forward Vision PC Status:

IForward Vision PC: "COM3", 38400 Baud.

Backward Vision PC Status:

IBackward Vision PC: ''COM4'', 38400 Baud.

Start Trackingl Control Loop Frequency: I
Stop Tracklngl

Manual Movement

P Restrict Movement

Vision Loop Frequency:

Forward I
Forward I

Left Left Right Right

ADN

AON Backwardl ON

Backwardl

Figure 5.32: Test Rig Control Software Interface for Two Cameras.
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Start Vision I
Stop Vision I
Vision Loop Frequency: I

T racking Status: '-1 --~O

Error Code: I 0

IL:::::::~Q:~:::::::::J
Cancel I

o Hz

• Test Rig Vision Control EJ

r Capture Source r Capture Processed

Status:

ISerial Port Open

Figure 5.33: Test Rig Vision Software Interface.

5.7 Conclusions

The test rig successfully gives accurate position control of the X and Y position

and the Yaw of the camera. The test rig did take quite a lot of time to design and

build, but once this was done very little maintenance was needed and the rig

proved to be reliable. The rig proved to be extremely useful for this project, in that

it allowed the real-time testing of the tracking software and control of the VAV

model.
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6.1 Introduction

Image processing offers a means for measuring the position and orientation (pose)

of the rotorcraft with respect to the lines using a small, lightweight and cheap

sensor which can also provide information for higher-level functions, such as

obstacle detection and path planning. A camera fixed on the rotorcraft body will,

depending on its orientation and location, see 3 lines extending into the distance,

converging due to perspective distortion. Although they are in fact catenaries,

from overhead they are approximated reasonably well by straight lines.

The UAV needs to be able to track the lines from frame to frame in order to

maintain lock onto the lines. In order to do this, the lines must be located in the

image. Each frame needs to be processed in order to locate the lines within it and

this must be done with a good degree of accuracy. The lines appear up to six

pixels wide in the image and the test rig lines do have a few kinks that would not

be present on the actual lines. While most of the time the estimated position of the

line from the image processing should appear within a few pixels of the actual

line, some may be up to 10 pixels away. This occurs due to kinks in the model

lines. Such kinks don't occur on full sized power lines due to the weight of the

cable. That the estimate of the line positions occasionally appear up to 10 pixels

away from there actual position in the image should not cause a problem as

filtering is included in the tracker. The slow response time of the UAV means that

it is unable to respond to high frequency noise. As this is a real time application,

the image processing must also be fast. The sample time for the vision feedback

must be considerably smaller than the response time of the UAV. A frame rate of

ten frames per second should be sufficient for this application. A compromise

between these two criteria is necessary. The Hough Transform [48, 53] finds

straight lines in an image and is also a relatively fast method, computationally, so

this is used as the basis of the image processing. Successful application of the

Hough transform requires pre-processing of the raw image and post-processing in

the transform space. The image processing is summarised in Figure 6.1. On the

100



Chapter 6 Image Processing

current hardware this takes approximately 8ms with the first three tasks taking

around 28% of that time each.

Figure 6.1: Flowchart showing the Operation of the Image Processing.

6.2 Contrast Enhancement

The varying light levels encountered in this application greatly affect the image

processing. The images from the camera do not use the full dynamic range of

intensity representation: in low light levels the images from the camera use only

the lower end of the dynamic range while, with high light levels, only the upper

end of the dynamic range is used. Contrast enhancement can help with this by

adjusting the brightness of each pixel such that the full dynamic range is used to

store the image. Methods of doing this include contrast-stretching, histogram

equalisation and histogram specification [48]. For speed, a very simple contrast-

stretching algorithm was used. This works by first finding the lightest and darkest

pixel values within the image, Pmin and Pmax• The pixel values between these two

values are then stretched to fill the range 0-255. The grey level transformation

function is shown in Figure 6.2. Contrast enhancement improves the image in low

light levels, as can be seen in Figure 6.3.
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Output

Light

Dark Light

Dark

Pmin Pmax
Input

Figure 6.2: Grey Level Transformation Function.

Figure 6.3: Image Before and After Contrast Enhancement.

6.3 Edge Detector

Before the Hough Transform is applied, an edge detection algorithm is used to

pick out lines in the image: i.e. boundaries of rapid transition between light and

dark. A variety of different algorithms for this purpose are described in the

literature. These include the Roberts [48], Prewitt [48] and Sobel [54] mask edge

detectors, the Laplacian of Gaussian edge detector [55] and the Canny detector

[56]. Two of the most commonly used are the Sobel detector and the Canny

detector. Although the Canny detector can produce better results, it is more

computationally demanding so the Sobel detector was used.

The Sobel edge detector is a mask operator. The mask is applied to the image both

horizontally and vertically, which finds both the horizontal and vertical

components of a line. Figure 6.4 shows the masks used.
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Figure 6.4: Vertical and Horizontal Sobel Masks.

After the masks have been applied, there is a value for the horizontal, X, and

vertical, Y, image gradient for each pixel. The vertical and horizontal gradients

are then combined for each pixel to give the square of the gradient magnitude

using (6.1) The angle perpendicular to the gradient at each pixel is calculated

using (6.2), as this is needed for the transform stage.

A sample result is shown in Figure 6.5. Figure 6.Sa is the raw image and b shows

the results of applying the Sobel masks. In order to pick out the stronger edges, a

threshold, called the gradient threshold, is applied, which gives image c. Looking

at image c, it can be seen that the edges vary in thickness. This is because, with

very strong edges, the values of the gradient is higher than the threshold either

side of the lines The lines can be reduced to I pixel wide using non-maximum

suppression [57]. This is a thinning technique and it works by rejecting a pixel as

an edge if it is next to an edge pixel with a higher gradient value, perpendicular to

the edge direction. Figure 6.5d shows the fmal result. In this application we are

not looking for horizontal lines, as the power lines should appear reasonably close

to vertical in the image. Lines whose angle is within ±5° of the horizontal have

been removed from image d.
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Ii
(b)

'\
'\

Figure 6.5: An Image at Different Stages of Edge Detection.

The optimum value for the gradient threshold needs to be found for the edge

detector. This needs to be low enough to include the desired lines but high enough

to reject background noise. The method used has been described previously by

Golightly & Jones [8], for comer detector algorithms. The method works by

taking a number of sample images and marking areas around the features of

interest. A threshold value is determined for the number of pixels that are

expected to make up each feature and then the actual number of pixels comprising

the feature in each image is counted and compared to the threshold value. In this

case eleven frames were selected from a sequence of images. A MATLAB

program was written to count the number of pixels making up sections of the three

lines in each frame. Figure 6.6 shows an example frame used; marked on this

image are three boxes highlighting the sections of line that are of interest. The

program counts the number of pixels making up the lines within these boxes.

The program plots the total number of pixels found for each threshold value,

across all eleven frames. The ideal number of pixels for each line, based on

fmding two unbroken l-pixel-wide lines, is also plotted. Figure 6.7 shows the

results.
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Figure 6.6: Example Line with the Areas ofInterest Marked.

1300

1250

1200

en
Qix

1150c:._
0....
~ 1100
E
;:jz

1050

1000

950
0 0.005 0.01 0.015 0.02 0.025 0.03

Gradient Threshold

Figure 6.7: Edge Detector Results with Non-maximum Suppression.

Figure 6.7 shows the number of pixels actually found for the left (dash-dotted),

centre (solid) and right (dotted) lines while the ideal number of pixels for each

line is shown with horizontal lines in the same style. It can be seen that changing

the gradient threshold does not have a large effect on the result: looking at the

centre line, the number of pixels is nearly ideal over the full range of gradient

threshold values. For the left and right lines there is some change and the

crossover point is at around 0.023. This value will be used as the threshold.
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The effect of non-maximum suppression may be assessed by running the same

experiment on edge images where it was not used. Figure 6.8 shows the results. It

can be seen that the target number of pixels is not reached, and .that the number of

pixels found is sensitive to the threshold value. The benefits of non-maximum

suppression are clear.
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Figure 6.8: Edge Detector Results without Non-maximum Suppression.

6.4 Hough Transform

The Hough Transform is a well-known method for extracting lines that match

parameterized functions from an image. The most common case is classifying

straight lines in normal form according to their angle (8) and distance from the

image centre (p).

In order to create the transform, each line in the edge map must be classified by its

angle and distance from the image centre. In order to do this, the edge map is

stepped through. When a pixel, which is part of an edge, is discovered, its angle

(8), as previously calculated by the edge detector, is retrieved. The perpendicular

distance from the image centre, p, can then be calculated using (6.3):
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p = xcos(8)+ ysin(8) (6.3)

where:

x and yare the cartesian co-ordinates of the pixel in the image

The transform consists of a 2D array of accumulators addressed by p and e. For
each edge pixel in the edge map, the relevant accumulator is incremented. After

this process is completed, the transform is normalised such that all the

accumulators have a value between zero and one. A typical result of this is shown

in Figure 6.9a, which has been inverted for clarity. A threshold, called the Hough

Transform threshold (H threshold), is then applied. This picks out the features of

interest and suppresses background noise. A typical result of this is shown in

Figure 6.9b.

(a) (b) (c)

Figure 6.9: A Typical Hough Transform ofa Line Image Before (a) and After Thresholding
(b) and After Aggregation (c).
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Figure 6.10: Typical Result showing: (a) the Three Overhead Lines Overlaid with the
Straight Lines Generated by the Hough Transform and (b) the Corresponding Points in the

Hough Transform Space.
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This leaves clusters of points that need to be reduced to form single points with a

typical result after reduction shown in Figure 6.9c. An example image and the

resulting transform are shown in Figure 6.10.

The optimum threshold for the Hough transform needs to be found. In addition,

there are alternative methods to reduce the clusters in the thresholded Hough

transform to single points:

• An Aggregation algorithm described in [8].

• Non-maximum suppression, as used in the edge detector.

The aggregation algorithm works by stepping through the transform with a NxN

search square. The search square is centred on each pixel in tum. If the pixel has a

value of zero, a zero pixel, then no further action is taken. If the pixel has a value

of one, a one pixel, the average position of all the one pixels within the search

square is calculated along with the number of one pixels within the search square,

called the associated value. The pixel at the average position is set to one in the

aggregated version of the Hough transform (AHT). If it is the only pixel within N

pixels in the AHT then it is kept. If there are other pixels within N pixels, then the

one with the highest associated value is kept. This leaves a pixel whose position is

at the centre of the cluster. The Non-maximum suppression works as in the edge

detector, i.e. only points that are a local maximum are retained.

To fmd out which is the best to use for this application, both were tested with

different values of threshold. In order to do this, a measure of detection quality is

needed. The number of true positives (TP), false positives (FP) and false negatives

(FN) in each transform can be counted. A true positive is a line that appears in the

AHT that is associated with one of the three lines in the original image, while a

false positive is a line that appears in the AHT that is not associated with one of

the three lines. If there are two lines in the AHT associated with one line in the

image then one is defined as TP and the other as FP. A false negative is where

there is a line in the image that doesn't have an associated line in the AHT. The

fraction of true positives (fTP) is then defined in (6.4), while the detection success

(DS) is defined as in (6.5).
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.f = TP (64)
JTP TP+FP .

DS= TP (6.5)
FN+l

As FN+TP=3, DS can be defmed as in (6.6):

DS= TP (6.6)
4-TP

In order to assess how well each method works, a measure is needed that includes

both DS and fTP.The detection quality (DQ) is defmed as the product of the two,

resulting in (6.7):

DQ= Tp
2

(67)
(4-TPXTP+FP) .

The DQ varies from zero to three, with zero representing a bad detection quality

and 3 being good.

Figure 6.11 shows the result of how detection quality changes with H threshold,

averaged for five frames. It can be seen that the aggregation method (solid) gives

better results than non-maximum suppression (dotted), the best threshold value

being 0.55. This is because the clusters contain a number of maxima and so the

non-maximum suppression tends to give a number of points in the AHT to

represent one line in the original image. Occasionally there are two points in the

AHT for one line in the image with the aggregation method, although this is a

much rarer occurrence than with non-maximum suppression.
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Figure 6.11: Detection Quality against Hough Transform Threshold for the Aggregation and
Non-maximum Suppression Methods.

2.5 .

f 1.: ••••••••••••~lt••••·:.:•••! '..: y , .

:;:

16s
0.5

/

1 - ··..·,..···..·········..····..·····r······· ······',··· ···t..·..·· ··..··..····..··
- - - .. :-

·..············..····..······..·..·· ·······..··..f····..·..··· ··..··..····r·········..········· ··..·r· ·· ···· .

OL_ ~ _L ~L_ J_ ~

o 0.2 0.4 0.6 0.8
H Threshold
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The aggregation algorithm can be used with varying mask sizes. A suitable size

was found by computing the Hough transform of a selection of frames for three

mask sizes. Figure 6.12 shows that better results are obtained with a 9x9 mask

(solid) than using a 7x7 mask (dotted) or a 5x5 mask (dash-dotted); the best result

is obtained using a threshold value of 0.475. These values are used in the fmal

algorithm to obtain the results in Chapters 7 and 8.

6.5 Evaluation

In order to evaluate the performance of the image processing method, it was run

on a sequence of 225 image frames taken by flying the VAV along the line, with

no wind disturbance. The line has a plain background. Detection is considered

successful if the maximum distance between the true line and that in the AHT is

no more than 10 pixels. Ideally, all three lines will be found and Figure 6.13

shows that this occurs 47% of the time. Figure 6.13 also shows that, in 7% of

images, more than 3 lines are identified. This occurs when a line in the original

image is mapped to more than one point in the AHT sufficiently far apart that they

are not aggregated. This can occur if there is a kink in the line, causing the cluster

in the thresholded transform to appear as two clusters. This is generally not a

problem as both are usually a reasonably good match for the line and the tracker

simply selects one of them.
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Figure 6.13 Number of Lines Identified by the Hough Transform in Each Frame of a
Sequence.
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Reliable tracking requires that at least two lines in the image are found because

the position of the third line can then be estimated. This assumes that the lines are

spaced an equal distance apart. This is very common although is not always the

case. Itwould be possible to supply a priori information to the tracking system in

cases where the conductors are not equally spaced. Finding at least two lines

happens 60% of the time in Figure 6.13. Ifonly one line is found, it is difficult to

distinguish it from single lines generated by the background and the system

becomes vulnerable to tracking false targets.

A significant problem occurs as the distant support pole is approached and

becomes more prominent in the image. The Hough transform then tends to find

one of the strong edges associated with the pole, rather than the overhead lines.

This edge is an acceptable substitute for the centre line, with which it is nearly co-

linear. Unfortunately, its relative strength causes the thresholding algorithm to

suppress the Hough transforms of the two outer lines and tracking is adversely

affected. This may be seen in Figure 6.13 between frames 150 and 210, where

only one line is consistently identified. For the preceding section, before the

distant pole becomes prominent, at least two lines are found 95% of the time, with

all three lines being found 77% of the time.

6.6 Conclusions

It can be seen that this form of image processing yields the positions of the lines

in the image with sufficient frequency to be tracked from frame to frame. Itwould

be expected that similar results would be obtained with other image sequences

with plain backgrounds. When cluttered backgrounds are present, the performance

is likely to be less good. Background features will produce additional lines in the

AHT. Very dark or very bright features in the background may affect the

performance of the contrast enhancement. It may be necessary to adjust the values

of parameters when used with realistic backgrounds although the structure of the

image processing software shouldn't need to change in order to process cluttered

backgrounds except when dealing with very cluttered scenes.
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The tracking algorithm and estimation of the vehicle's position is discussed in

Chapter7.
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Chapter 7 Tracking
7.1 Introduction

In order for the VAV to follow the lines, it is necessary to track the lines from

frame to frame. This involves fmding the lines in the current frame and then

fmding which ones correspond to the three lines found in the previous frame.

According to Davison [41] there are four main tracking methods:

• Exhaustive search, where the entire image, or the transform space in this case,

is searched for a match between the object being tracked in the previous frame

and the current frame.

• Local search: this is similar to exhaustive search except that only the local

area around the point at which the object would be expected to be found is

searched.

• Kalman Filter [42]: this attempts to find a best estimate of the object's

position by combining a prediction from the previous frames with the

measurement of the object's position in the current frame. All the errors are

assumed to have a Gaussian distribution and are used form a weighting factor

to combine the prediction and measurement.

• Particle Filter [43]: this also uses errors to produce position estimates.

However, unlike the Kalman filter, the errors are not assumed to be Gaussian.

Instead the error function is represented by a number of particles, which

allows more complex error functions to be represented, including multi-modal

functions, allowing multiple-hypothesis testing.

The most basic form, exhaustive search, is likely to produce many tracking errors;

this is because the pattern we are searching for is relatively simple (three dots in

the transform space) and so could be lost in the background noise. In addition the

exhaustive search is more computationally demanding than a local search tracker

because all of the transform must be searched at every sample. For these reasons,

a local search tracker was used initially.
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This chapter discusses the development of the tracking software. This starts with a

local search tracker and the development of a model-based acquisition routine, to

fmd the lines in the early frames in order to initialise the tracking. Section 7.4

considers the use of fuzzy logic, to detect whether the tracker erroneously thinks a

sideline is the centre line or whether the lines have been lost. Finally, the inclusion

of a Kalman filter is described. This chapter concentrates on obtaining the lateral

displacement of the VAV relative to the lines, although some results for tracking

height are presented. Tracking of roll, yaw and lateral displacement using two

cameras is described in Chapter 8.

7.2 Early Tracker

7.2.1 Description of the Early Tracker

A relatively simple tracker was implemented to start with, giving a broad

assessment of tracking performance as well as a basis on which to build a more

advanced tracker.

Lateral displacement of the rotorcraft with respect to the lines leads to the pattern

shown in Figure 7.1 where the 3 points are seen to slide along a straight-line locus

in the Hough transform space, as predicted in chapter 4.

.-~ ..

.•.......

.......

Figure 7.1: Three Examples of Image Line Patterns (left) and their Corresponding Hough
Transform Points (right).
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Assuming that yaw, roll, pitch and height remain constant, the displacement

relative to the centre line is given by (7.1). Chapter 4 showed that either the e or p

value can be used to obtain the lateral displacement so equation (7.1) uses an

average of the two.

XO+X p
X = () p (7.1)

2

ax ax
where Xa and X pare - and -

00 ap

The e and p scaling factors are obtained from the analysis in section 4.2.2.

Substituting these values into (7.1) gives:

X = O.048B-O.0433p (7.2)
2

It is reasonable to assume that yaw pitch and height will generally remain within

tight limits when the rotorcraft is flying along a line section. In practice the UAV

will roll when it moves from side to side. However, because roll and lateral

displacement independently affect the line positions in the image (as shown in

section 4.2.2) lateral displacement can be considered independently.

Once the line co-ordinates have been extracted, it is necessary to track them from

frame to frame. The tracker is initialised by taking off-line measurements of the

positions of the lines in the early frames of each image sequence. The averages of

these measurements were used as the start points. Clearly, this is not a practical

method of initialising tracker on an actual UAV; an automated method of

initialisation is described in section 7.3. Once tracking has started, it is necessary

to search the local area around the predicted position of each line in the transform

space. Initially, the search area is chosen to be symmetric in e and p: this gives a

choice between either a circular or square shaped search area. In order to compare

the two, a square and a circle, with a diameter equal to the side of the square, were

generated in the transform space. Each point within the square and circle represent

a line in the image space. All the lines associated with these points were drawn in
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the image space. Figure 7.2 shows the two HT search areas, on the left, and all the

lines in the corresponding image shown on the right in white. The red lines show

the limits for the square search area, for comparison. Both search areas are seen to

produce a similar set of lines in the image space. Squares are easier to represent,

computationally, and so square search areas, hereinafter called search-squares,

will be used.

i
0..

i
0..

8-7 X-7
(b)(a)

Figure 7.2: Square and Circle Search Spaces in the HT with Corresponding Lines in the
Image Space.

Search-squares, centred on the predictions from the previous frame, are placed on

the transform of the current frame and searched for matches to the three lines.

When flying straight above the lines, each frame should appear substantially the

same as the previous frame, although there is in fact a small change due to the

catenary shape of the lines. With the assumption that the pattern in Hough

transform space is invariant with position along the line, the current line positions

can then be used as reasonable predictions for the next frame. For most overhead
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lines, the pattern should be symmetrical. However, there are lines that are not

constructed symmetrically, but this information is known and can be accounted

for in the tracker algorithm. In some cases, one or more lines are not found.

Merging into the background, glare or occlusion can cause this. If only one line is

missing, then its position can be predicted from the other two. If fewer than two

lines are found, then the previous predictions are simply carried forward and used

as the next prediction. Initially the size of the search-squares is set to the

minimum size, in this case it is 21 pixels (10 pixels either side) in a transform

space of 181x120 pixels; a more formal choice of search square size is undertaken

in section 7.4. If a corresponding line is not found in a given frame, the size of the

search square is increased by two pixels in the next frame in order to increase the

chances of fmding a match, up to a maximum size of 41 pixels. When a match is

found in a frame the size of the search square is reset to the minimum size of 21

pixels. In addition rules are included to ensure conformance to the three-line

pattern in the transform, as shown in Figure 7.1. This involves ensuring that the

points corresponding to the two sidelines are at least 10 pixels in both a and p

away from the centre pixel in the correct direction.

7.2.2 Implementation of the Early Tracker

The structure of the tracking algorithm is shown in Figure 7.3. In order to test the

tracker, it was coded in MATLAB and run off-line on sequences of images taken

from the test rig. These were the straight-line sequence used for testing the image

processing and a sine sequence, where the camera was flown on a sinusoidal path

in a horizontal plane above the line. Once the off-line version of the tracker was

working, it was ported into c++ and incorporated into the test rig control

software.
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Figure 7.3: Flowchart showing the Operation of the Early Tracker.
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The aim of the image processing and tracking is to provide the local position

feedback signal for the VAV when it is close to the overhead lines. In order to

bring the VAV into the vicinity of the lines, or if the visual tracker loses the lines,

Differential Global Positioning System (DGPS) can be used to provide the

position signal. The model of the system is shown in Figure 7.4, which is an

extended version of Figure 3.9 that includes the pitch rate feedback described in

section 3.4. The rotorcraft model and pitch rate compensator run at a sample rate

of 25Hz, while the vision processing runs at 10Hz and the DGPS runs at 1Hz. The

vision processing and DGPS together form the position feedback loop for the

VAV. The model includes a switching condition to select between vision and

DGPS feedback. The system uses the DGPS to bring the VAV to the vicinity of

the lines and then switches to using vision when the lines are acquired. Currently

the system is set to switch back to DGPS if the VAV strays more than 2m from

the line, as measured from the test-rig. On an actual inspection VAV this envelope

limit measured from the DGPS and would likely be set further from the lines, in

order to stop DGPS errors erroneously switching the system away from vision

feedback. When the VAV comes back within 2m of the line, the system attempts

to re-acquire the lines. The system will also switch to using nGPS in the event of

the tracker losing lock on the lines.

gust
velocity

test rig
rotorcraft I---+ldynamics

J---~ model

r-----···-··-···---
f

r' ..,
~___"___"___"-H' ~+-~----~

I +
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Figure 7.4: High Level System Model.
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Itwas necessary to model the DGPS position errors in order to show the effect of

DGPS feedback. Position fixes from DGPS contain random correlated errors.

Figure 7.5 shows a sequence of East-West DGPS errors obtained by Earp [7]

using a Trimble Pro XR receiver at a fixed reference point - the error distribution

and power spectral density are also to be found in [7].
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Figure 7.5: Measured DGPS Errors at 1Hz Sampling Rate showing the Two Sections of Data
Used in the Test.

In order to simulate DGPS, two sequences of errors were selected from the error

set shown in Figure 7.5. Sequence 1 has a distinct bias offset, while sequence 2

has no bias. These error sequences are added into measurements from the test rig

to produce simulated DGPS position fixes. Using two error sequences allows

testing of the effect of different errors.

7.2.3 Results with Early Tracker

7.2.3.1 Still-air Responses

In order to use DGPS to guide the UAV along the lines, a number of waypoints

would be set; these would almost always be at pole locations. In practice
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electricity companies only know the locations of the poles to within a few metres.

If DGPS were used to guide the UAV, it would blindly follow the recorded pole

locations. Using vision feedback means that the UAV would follow the actual

line, provided that the initialisation is correct, i.e. that the UAV is sufficiently near

to the lines for visual acquisition to occur.

In the first test, the second pole on the test rig was offset from its recorded

position, with the first pole being kept at its recorded position, and the DAV flown

along the line. Figure 7.6 shows that the UAV's path with vision feedback (solid)

follows the actual lines (dotted) rather than an erroneous course based on the

recorded waypoints (dash-dotted).
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Figure 7.6: Lateral Displacement of the UAV using Vision Feedback with an Offset Pole.

In addition to the waypoint errors, DGPS has errors in the fixes it gives, as

discussed in subsection 7.2.2. To quantify their effect, the DAV is flown along the

lines with lateral position feedback from the DGPS loop alone. The path of the

DAV, using the two different DGPS error sets (dashed, sequence 1; dash-dotted,

sequence 2) are shown in Figure 7.7, which shows that the varying errors in the

DGPS position fixes cause significant perturbations of the flight path. The DAV
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was then flown along the lines with vision providing the position feedback (solid).

This flight path tracks the centre line more closely than the DOPS flight paths.
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Figure 7.7: Lateral Displacement ofthe UAV using DGPS and Vision Feedback; Zero Wind
Gusting.

It can be seen from Figure 7.7 that the vision system does not produce perfect

tracking. The deviation that occurs in the range 5-20m is due to the image

processing finding a strong edge in the direction of a kink in the overhead line, as

shown in Figure 7.8, which is then tracked for a period. This occurs because the

model lines are lightweight and so don't keep to a true catenary shape. With a line

in the real-world, this does not occur, as the weight of the line scales up far more

than its diameter relative to our rig lines; this causes the weight of the line to keep

it in catenary shape. The second feature of the response is a small offset, which

forms at about 30m along the line and persists to the end of the run. This is caused

by the detection and tracking of a strong edge on the upcoming support pole,

whose width becomes significant as it is approached. The camera therefore tracks

slightly to one side of the centre line. These results shows that we should get

better tracking using vision, rather than relying on DOPS alone; DOPS is essential

to bring the UAV into the vicinity of the lines, however.
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Figure 7.8: Example of a Kink in the Lines.

The vision results in Figure 7.6 and Figure 7.7 show the position of the UAV

measured from the test rig under vision control, rather than the estimated position

of the UAV from the image processing and tracking. Figure 7.9 shows both the

measured position of the UAV from the test rig (dash-dotted) and the estimates

from the image processing (solid).
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Figure 7.9: Measured UAV Position and Estimated UAV Position from the Image
Processing.

Figure 7.9 shows that the estimated position from the image processing matches

well with the measured UAV position, although it is noisier. This would be

expected as the line positions in the image do change slightly from frame to
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frame. Due to the slow response time of the UAV, this noise is smoothed out and

so doesn't appear on the measured UAV position graph.

As was discussed in Chapter 6, there can be problems associated with low light

levels. This is countered using contrast enhancement. In order to test how this

affects the tracker, the UAV was flown along the lines in low light level

conditions. Figure 7.10 shows that the tracker works as well in low light levels

(solid) as in normal light levels (dash-dotted): Normal lighting levels refers to the

test rig being illuminated by the overhead laboratory fluorescent lights plus a

small amount of varying daylight and low light refers to the small amount of

daylight entering the laboratory with the window blind closed.
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Figure 7.10: Lateral Displacement of the UAV using Low and Normal Light Levels.

7.2.3.2 Windgust Responses

The response of the vision feedback system to a simulated wind gust was

investigated. In order to test this, a 3s pulse of wind of lms-) velocity, which

represents a significant wind gust for this size of UAV, was input between

approximately 3 and 5m along the line. As the UAV model being used in
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simulation is for the lab demonstrator, rather than the fmal DAV, which is likely

to be around 5x bigger, it is more affected by wind. How the wind gust scales with

the size of the DAV is currently unknown, although if it scales linearly, the 1ms"

wind gust would be equivalent to around llmph for a full size DAV. The

modelling of a full size DAV and the effect of wind gusts on it will need to be

done later in the project.

It should be noted that the wind gust was simulated on the control PC and was

input into the dynamic model simulated on that PC via the gust disturbance input

of the model, as discussed in section 3.4; the position of the DAV is then relayed

to the test-rig. Figure 7.11 shows two results, for a positive and negative wind

gust (solid lines).
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Figure 7.11: Lateral Displacement ofthe UAV in Response to a Pulse Wind Gust.

Figure 7.12 shows samples of the images recorded, during the run with the

positive wind gust, sampled at equal intervals in the range 3-1Omalong the lines.
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Figure 7.12: Sequence of Camera Views taken during the Run with Positive Wind Gust.

There is a slight asymmetry in the flight paths because of the small offset in the

initial position. Although both responses start at the same lateral displacement, a

slight drift in the flight path has occurred before the positive wind gust is applied.

Both responses are under-damped; this is due to the underlying under-damped

UAV model, discussed in Chapter 3. In both cases, the UAV manages to re-align

correctly with the centre line. Towards the end of the run, the system tracks the

pole edge rather than the centre line, as discussed previously.

Next, the velocity of the pulse wind gust was increased to Sms", which is a very

large wind gust for this UAV. There is now a sufficient initial deviation to cause

the camera to lose the lines from its field of view as shown in Figure 7.13 and the

corresponding image sequence (3-11m) in Figure 7.14.
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Figure 7.13: Lateral Displacement of the UAV in Response to a Large Pulse Wind Gust.

Figure 7.14: Sequence of Camera Views taken during the Run with Large Positive Wind
Gust.

The initial deviation is now about 12m from the centre line, which removes all

except the furthest portion of the span from the image. At 2m lateral

displacement, the position feedback is switched to the DGPS loop, which returns
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the camera back to the vicinity of the lines. As the 2m threshold is crossed again,

control is switched back to the vision system, which occurs at about 6m along the

lines. When the vision system re-acquires the lines, it tends to lock onto the right

hand line, rather than the centre line. It should be noted that, as there is no

automatic acquisition system in the early tracker, the predicted positions of the

lines for re-acquisition is fixed at the positions that they were at when they were

lost. The line is then tracked until about 30m along the lines, where the system

locks onto the strong edge from the pole, causing the UAV to move towards the

centre line. The negative wind gust gives a response that is approximately a mirror

image of the positive gust response. The extension of the visual tracking system to

detect when the system has locked onto one of the sidelines, and switch to the

centre line is described in section 7.4, and an automatic acquisition system is

described in section 7.3.

7.3 Acquisition

7.3.1 Description of the Acquisition Routine

Rather than have a fixed starting point for tracking, it is better for the system itself

to find the lines in the image for a starting point. This is because the UAV may

not be fully aligned with the lines at the start of tracking. For this reason, an

acquisition routine was developed. First, the principle is described and then the

implementation and performance are discussed.

The acquisition routine initialises the tracker by providing the first estimates of 9

and p for each of the three lines, which are used to place the search-squares. The

ART is searched exhaustively for straight lines and the "best" lines are selected as

the lines to track. A model of the expected ART pattern, as described in section

6.4, is used to define the criterion for the "best" lines. Each possible match is

given a score depending on how well it fits the model and the best of these is

chosen. At least two of the three lines need to be found for a match, with three

lines being given preference over two.
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c

Figure 7.15: Points in AHT and the Distances between them; Crosses Represent the Positions
where the Three Points are Expected to be, while the Circles Represent Examples of Actual

Points Found.

Ideally the point representing the centre line should appear at the centre of the

Aggregated Hough transform (AHT), point Cc in Figure 7.15. In practice the

centre line, C, will be found a short distance, dc, from Ceo Ideally we would then

expect to find the left and right line at points Le and Re, a distance d from C.

Again, in practice these will be found a short distance from Le and Re at L and R;

these are distances dL and dRfrom C respectively. For any set of lines (R, C and

L) we can defme an improbability measure, P, as in (7.3):

where:

fs is the sideline factor

fc is the centre factor

S is the symmetry measure

This measure incorporates three important factors about the best match model: the

distance from the AHT centre, how far the sidelines deviate from their expected

positions and how symmetrical the lines are. The best match is the most

symmetrical with the sidelines close to their expected position. In addition it

should be close to the centre of the AHT, although this is less critical, as reflected
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in the value of fe in (7.3). The candidate set of lines which minimises (7.3) is

selected.

The values of the sideline and centre line factors were determined experimentally

and fc=O.OOOland fs=0.002 were found to give the best results. In the case where

all three lines are found the symmetry measure is given by (7.4)

S=(R-C+L-CY (7.4)

If either the right or left line is not found, its position has to be estimated from the

other two. In these cases, (7.4) fails and an alternative measure for S, based on the

predicted distance, d is used. This measure is also designed to give higher values

of S than (7.4) in order to give preference to line sets where all three lines are

found. In the cases where only two lines are found, S is defined as in (7.5) when

the left line !s missing, or (7.6) when the right line is missing.

S = (abs(d)+ abs(R - C)Y (7.5)

S=(abs(d)+abs(L-C)y (7.6)

7.3.2 Implementation of the Acquisition Routine

The acquisition routine needs to check every point in the AHT to see if it is a

possible candidate for the centre line by scoring it according to (7.3). Figure 7.16

shows the operation of the acquisition routine. In order to test it, it was coded in

MATLAB and run on the same test sequences used to test the early tracker. After

testing the acquisition routine, it was ported to C++ and incorporated into the real-

time vision software; the code is shown in Appendix D.

131



Chapter 7 Tracking

Search entire HT for points, which
could represent conductors

Assume the current point is the centre line,
search in expected locations for the sidelines.

Move focus to next point

14----No-----<

Yes

Calculate the one line
probability measure.

Calculate the two line
probability measure.

Yes

Figure 7.16: Flowchart showing the Operation of the Acquisition Routine.

7.3.3 Results with the Acquisition Routine

Ideally. the acquisition routine should find the three lines from the AHT. as shown

in Figure 7.17. However, this is not always the case and we can define six

different types of result:

• Found All Correct: where all three lines are found and match well to the actual

lines.

• Found 2 Correct: where two of the three lines are found and match well to the

actual lines, with the third line predicted from the other two, an example of
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which is shown in Figure 7.18. Here the white lines represent the result from

the transform and the dotted line represents the predicted third line.

• Found Sideline: where two of the three lines are found and match well to

actual lines, but the third line is predicted such that the estimated centre line

erroneously corresponds to one of the sidelines, rather than the centre line; an

example is shown in Figure 7.19. Here the white lines represent the result

from the transform, the dotted line represents the predicted third line, while

the black line corresponds to a line that appears in the ART but that isn't in

the set from the acquisition output. In this case it is the other sideline.

• Found Pole: where the centre line in the result corresponds with a pole edge

rather than the centre line in the image, an example is shown in Figure 7.20;

the line styles are as before.

• Not Found: where no result is found by the acquisition routine, an example is

shown in Figure 7.21, where the lines found by the AHT are shown in black,

but they don't fit the line model sufficiently for a match.

• Found Incorrect: where a result is found but it does not correspond to the

actual lines. This would typically lock onto straight-line sections produced by

the insulators on a pole top; an example is shown in Figure 7.22. As with

previous examples, the white and dotted lines represent the result and black

lines are other lines in the AHT.

Figure 7.17: An Example of a "Found All Correct" Result.

133



Chapter 7 Tracking

Figure 7.18: An Example of a "Found 2 Correct" Result.

Figure 7.19: An Example of a "Found Sideline" Result.

Figure 7.20: An Example of a "Found Pole" Result.

Figure 7.21: An Example of a "Not Found" Result.
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Figure 7.22: An Example of a "Found Incorrect" Result.

The acquisition routine was tested on five image sequences: a straight flight down

the lines, the DAV flying down following a sinusoidal path and three sequences

taken from an early version of the on-line version of the tracking software, where

different strength wind gusts were applied to the DAV. The results for the five

runs are as follows:

The desired result, "Found All Correct", occurs 45% of the time. A "Found 2

Correct" result is just as good for starting tracking as a "Found All Correct" result;

a "Found Sideline" result would not be useful for starting the early tracker, but the

incorporation of sideline detection into the tracker, as described in section 7.4,

allows such a result to successfully start tracking. If these two result types are

included, tracking would be successfully started 74% of the time. A "Found Pole"
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Figure 7.23: The Results from Testing the Acquisition Routine.
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result will often be able to switch to the lines and so mayor may not be a valid

start to tracking; if "Found Pole" results are included as valid, tracking would be

started successfully 83% of the time. If the acquisition routine returns a ''Not

Found", the only option is to look at the next frame, until the lines are found. The

only time a problem is faced is when a "Found Incorrect" result starts tracking the

wrong features in the image. There will be some "Found Pole" results that cause

the system to only track the pole and not switch to the centre line. As described in

the next section, it was necessary to extend the acquisition routine in order to

alleviate this problem.

7.3.4 Implementation of the Repeat Acquisition Routine

If the acquisition routine is run on successive frames, it would be expected that

the actual lines will appear in approximately the same place in each frame

whereas results associated with the background or the insulators on top of the

poles will appear in different places in subsequent frames. In order to eliminate

the incorrect results, it was decided to repeat the acquisition routine on successive

frames and look for matching results.

If we take a pessimistic view of "Found Pole", and only accept "Found All

Correct", "Found 2 Correct", and "Found Sideline" results as valid results to start

tracking, then a valid result is obtained 74% of the time; this means that 26% of

the time the result is invalid or non-existent, of which 10% are invalid. If adjacent

frames are compared and return a "Found" result and the two results are similar,

Le. the lines appear in about the same place then, most of the time, they are valid

results. The chances of getting three invalid results, which match to each other, in

a row is 0.1%, and so requiring three matching acquisitions in a row should

almost always give a valid result. In order to implement this, a count variable is

used, if the results match, this is incremented; otherwise, it is decremented. Using

the count allows hypothesis testing. Ifa match for the lines is found, it is uncertain

whether it is a true or false match. Looking at subsequent frames allows the

testing of the hypothesis that the match is a true match. If the subsequent frames

return similar matches, then this indicates that the match is a true match. If the

count goes below zero then the acquisition routine starts again but if the count
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reaches three, the result is used to start tracking. Figure 7.24 shows the operation

of the repeat acquisition routine.

Yes

Yes

No

Figure 7.24: Repeat Acquisition Flowchart.

7.3.5 Results from Repeated Acquisition

Due to the nature of the repeated acquisition routine, it has to give a "Found"

result eventually. The only time that this would not happen is if the tracker were

to lose the lines close to the end of a line and attempt to re-acquire them; in this

case, the UAV may reach the end of a line before successful acquisition occurs. In

practice, the UAV could be made to hover above the lines until they are re-

acquired. This, however, is not an option for off-line testing as image sequences
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are used. What is of interest in this case is the number of frames that it takes to

acquire the lines. In the ideal case, this will be three frames; it is not possible to

acquire the lines in less than three frames due to the nature of the repeated

acquisition routine. In addition, the number of invalid results also needs to be

found. In order to test these, the repeat acquisition routine was run on the five test

sequences, starting the routine at each frame of each sequence. The number of

frames required to acquire the lines from each starting frame was recorded, along

with whether the routine fmished or ran out of frames; this only happened towards

the end of each sequence. From these the mean number of frames for acquisition

could be calculated, along with the percentage of acquisitions that happened in

only three frames. The results of the test showed that the mean number of frames

for acquisition is 7.4 and 50% of the acquisitions happened in 3 frames. In total,

87% of the results gave valid matches to the lines, while 13% had locked onto the

distant pole. The acquisition routine returned no results associated with the

background or insulators.

7.4 Rule-based Tracker

7.4.1 Problems with the Early Tracker

The results in section 7.2 exhibit a number of tracking problems. The main

problem occurs when the tracker thinks that one of the sidelines is the centre line

and so tracks it as if it were the centre line, an example of which is shown in

Figure 7.25a. Other problems include the tracker losing the lines altogether and,

very occasionally, when the tracker thinks that the centre line and one of the

sidelines are the two sidelines. The centre line is then predicted incorrectly to be

mid-way between them, as shown in Figure 7.29. In addition the optimum size of

the search-squares needs to be chosen.

7.4.1.1 Sideline TrackingDetection

In this section a fuzzy logic rule is developed to detect erroneous tracking of a

sideline. If only the centre line and one sideline are found (white), there are two

possibilities as to why:
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• The tracker has locked onto the left hand sideline and believes the centre line

is the right hand line, as shown in Figure 7.25a, so the predicted left hand line

(dotted) doesn't correspond to any of the actual lines. The mirror image of this

can also occur.

• One of the sidelines is missing from the AHT. As shown in Figure 7.25b, only

the centre line and the other sideline (white) have been found while the

predicted third line (dotted) is close to the position of the actual line in the

image.

(a) (b)

Figure 7.25: Possible Causes of only Finding One Sideline: a: Tracking Sideline, b: Other
Sideline Missing from the ART.

(a) (b)
Figure 7.26: Fourth Line Predictions for the Case where Only One Sideline is Found: a:

Tracking Sideline, b: Other Sideline Missing from the ART.

139



Chapter 7 Tracking

The two patterns in Figure 7.25 are indistinguishable from the tracker's point of

view so it is necessary to search for a fourth line (dash-dotted), which could be the

missing sideline, as shown in Figure 7.26.

This fourth line, or "extra line" as it is referred to in the software, is predicted

from the two lines that the tracker has found, in a similar fashion to predicting a

missing sideline. Analysis in section 4.2.2 indicates that lateral displacement of

the UAV relative to the overhead lines causes them to appear closer together in

the image. In cases where the tracker had locked onto a sideline the "extra line"

was found experimentally to appear at approximately 0.8 times the distance

between the centre line and the sidelines in the tracker. The 9 and p values are,

therefore, multiplied by 0.8 In the case where the left hand line is missing, the

position of the extra line is given by (7.7); if the right hand line is missing, the

mirror image is used, and the position of the extra line is given by (7.8).

Be=0.8*((2*B,)+BJ p, =0.8*((2*p,)+pJ (7.7)

In this case it can be seen that when the tracker has locked onto the left-hand

sideline (Figure 7.26a), the extra line appears in about the right place to be a

match for the right-hand line, whereas in case b the extra line doesn't correspond

with anything in the image. In order to discriminate between the two cases, it is

necessary to look at subsequent frames.

Ideally, each time only a sideline and the centre line are found, it would be

possible to place each instance into one of the two groups: "Tracking Sideline"

and "Tracking Centre Line", but in practice there is a third "Not Sure" group. The

three groups: "Tracking Sideline Very Likely", ''Not Sure" and "Tracking Centre

Line Very Likely" form a fuzzy set, as discussed in Chapter 2. A simple fuzzy

logic rule can be used to detect which group an individual instance belongs to.
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Figure 7.27: Fuzzy Membership Function for the Sideline Detection and its Piecwise Linear
Approximation.

When this two-line case occurs, a count variable, NEL, is set to O. Figure 7.27

shows how the fuzzy set membership function, J..lSLT,changes with the value of

NEL. In order to de-fuzzify the set, the membership function is approximated by a

piecewise-linear J.1SLTfunction. If a match is found in subsequent frames for the

fourth line, this value is incremented, otherwise it is decremented. In addition if

the third line reappears in the transform and the tracker finds it, NEL is

decremented. What this does is to test the hypothesis that the tracker is tracking a

sideline rather than the centre line. When the extra line is found, this reinforces

the hypothesis, while failing to fmd the extra line or re-acquiring the missing

sideline tends to disprove the hypothesis and indicates that the tracker is actually

tracking the centre line and the sideline has merely disappeared from the

transform. Two threshold values are defined for the piecewise linear Jl function:

TLand Tu. While TL<NEL<Tu remains the case, the system remains in the not sure

state. IfNEL <= TL then the system enters the Tracking Centre Line Very Likely

state and the tracking of the fourth line is stopped and if NEL >= Tu then the

system enters the Tracking Sideline Very Likely state and switches to the centre

line. It was found that TL=-3 and Tu=3 Were sufficient to separate the two cases.

In the case where the sideline is being tracked the tracker switches as shown in

Figure 7.28
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Figure 7.28: Switching Lines When a Sideline is being Tracked.

7.4.1.2 Detection of the Loss of the Centre Line or Loss of the Lines

There are two other problem cases. The first is loss of the centre line, i.e. what the

tracker thinks are the two sidelines, are in fact the centre line and a sideline, as

shown in Figure 7.29. In Figure 7.29 the white lines correspond to the lines the

tracker thinks are the sidelines, while the dotted line corresponds to the predicted

centre line.

Figure 7.29: Example Case where the Tracker Thinks that the Centre Line and a Sideline
Correspond to the Two Sidelines.

The second problem is a loss of the lines, defined as finding no lines or just one

line. Finding only one line is insufficient for tracking, as it could easily

correspond to a line from the background.
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When these cases are detected, fuzzy logic rules, similar to the sideline rule are

invoked. In the case of a missing centre line, the groups are "Correct Tracking

Very Likely", ''Not Sure" and "Incorrect Tracking Very Likely". In the case of

fmding no more than one line, the groups are "Correct Tracking Very Likely",

''Not Sure" and "Lines Lost Very Likely". In these cases we are starting with the

count variables, NL (lines lost) or NIT (incorrect tracking) equal to O. Tracking

continues into subsequent frames, and if they give the same conclusion, then the

appropriate count is incremented, if not it is decremented. Again there are upper

and lower threshold values (TL and Tu) that defme the "Not Sure" region. It was

found that TL=0 and Tu=5 were sufficient to separate the two cases for both

incorrect tracking and losing the lines.

7.4.1.3 Selection of the Optimum Search-square Size

It was necessary to select optimum search-square sizes. If the search-squares are

too small, then some matches won't be made as the VAV moves to one side. On

the other hand if the search-squares are too big the tracker is more likely to switch

to an incorrect line. This most often happens if the centre line and pole are not

quite co-linear and the centre line disappears for a frame-the tracker then switches

to the pole. An example of this happening is shown in Figure 7.30 where the

white lines indicate the tracker's output that correspond to lines from the AHT,

while the black lines indicate other lines present in the AHT, which aren't used by

the tracker. These lines are correctly found by the Hough transform and

correspond to image features, it is just that they are not selected as matches for the

lines by the tracker. An example of the search-squares superimposed on an AHT

is shown in Figure 7.31.

Figure 7.30: Images of the Lines with the Tracker Output Superimposed when the Tracker
Switches from the Centre Line to the Pole.
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Figure 7.31: Tracking Squares Superimposed on an ART.

The first part of the selection process involved selecting the minimum search

square size. In order to do this the Rule-based tracker was run off-line with

minimum search square sizes varying from 3x3 - 25x25 pixels on two wind

sequences. These sequences include both the situation where the tracking switches

to the pole and the situation where the DAVis displaced laterally. If the search

square is too large then the tracker is more likely to switch to the pole and if the

search square is too small then tracking breaks down as the DAV moves laterally.

The optimum search square size is a compromise between these two and can be

determined by looking at the resulting processed image frames and tracking data

to see where the tracker has estimated the line positions. The optimum minimum

search square size was found to be 15x15 pixels.

After the minimum search square size had been chosen, it was necessary to select

the maximum search square size. Again the rule-based tracker was run off-line on

the same two image sequences, this time varying the maximum search square size

from 17x17-45x45 pixels. If one of the lines has been missing for a few frames

and continues to be predicted, the prediction may well drift away from the actual

line. When the actual line reappears in the ART, the search square can at times be

too small to enclose and recapture it. The results showed that, with smaller

maximum search square sizes, the line is occasionally not recaptured. This is

shown in Figure 7.32a. With a larger maximum search square size, the line is

recaptured as shown in Figure 7.32b. With a maximum search square size above

35x35 pixels, there was no difference in the results, and so there is little point

using a larger maximum search square size; for these reasons, the maximum

search square size was set at 35x35 pixels.
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(a) (b)

Figure 7.32: Finding Maximum Search-square Size; the Maximum Search-square Sizes used
are: a: 33x33 pixels, b: 35x35 pixels.

7.4.2 Implementation of the Rule-based Tracker

Testing of the rule-based tracker was done in a similar manner to the early tracker.

It was coded in MATLAB and run off-line on the same image sequences as were

used for testing the acquisition routine. Once the off-line version of the tracker

was working, it was ported into Cf+ and incorporated into the test rig control

software.

Figure 7.33 shows the operation of the rule-based tracker. A state machine is used

in the program in order to control which parts of the tracker run. This state

machine is shown in Figure 7.36. The repeated acquisition process is described in

section 7.3, while the image processing, search of the ART and third line

prediction are as described in section 7.2; their flowcharts are shown in Appendix

C. Flowcharts showing the operation of the Fuzzy Logic rules are in Figure 7.34

and Figure 7.35.
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Figure 7.33: Flowchart for the Rule-based Tracker.
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Figure 7.34: Flowchart showing the Operation of the Sideline Detection Rule.
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Figure 7.35: Flowchart showing the Operation of the Lose Rules.
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Figure 7.36: State Transition Diagram showing how the Tracker State Changes.

7.4.3 Results from the Rule-based Tracker

In order to test the new tracker, the UAV was flown along the lines, and its lateral

displacement recorded. This was done with no wind, a wind gust and a larger

wind gust: these gusts are of the same strength as used to test the early tracker. It

would be expected that with the first two cases should give similar results to the

previous tracker, because there is a relatively low incidence of losing the line.

This confmned in Figure 7.37 and Figure 7.38.
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Figure 7.39: Lateral Displacement of the UAV with Rule-based Tracker in Response to a
Large Pulse Wind Gust.

The large wind gust result should be improved, because the sideline detection

should detect ifthe system locks onto a sideline. This is confirmed in Figure 7.39,

which shows that the new tracker detects the sideline lock when the lines are re-

acquired and switches tracking to the centre line (solid). The dash-dotted lines

show the path of the UAV with the previous tracker where the sidelines were

followed. It can also be seen that the new rules reduce oscillation around the line.

However there remains the problem of the tracker locking on to the pole at the

end of the run, shown by the UAV moving away from the centre line.

7.4.4 Height Tracking

The test-rig used for this project does not have height adjustment but an

opportunity arose during the project to test the rule-based tracker on an

experimental facility that has this degree of freedom. The software was ported

onto the Air Vehicle Simulator (AVS) [39, 40] at the Autonomous Systems

Laboratory, CSIRO, Australia and tested there by Dr Dewi Jones. The AVS is

essentially a larger scale version of the laboratory test-rig described in Chapter 5,
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measuring approximately ten metres long by eight metres wide by six metres

high. This operates in a large shed and the simulated vehicle consists of a pod

suspended from four winches; movement of the winches moves the pod. The pod

can be moved in the X, Y and Z directions and carries a camera, pitched down by

20° from the horizontal, which captures 640x480 grey-scale images of the line.

Also on-board the pod is a computer to process the images. The results of the

image processing are transmitted to the control computer via radio LAN. The

central control computer simulates the DAV, closes the control loop and

calculates the required winch positions, which are sent to microcontrollers that

control the winches. Figure 7.40 shows the AVS pod above a model power line.

Rocks are placed around the line to provide a cluttered background in order to test

its effect. It should also be noted that the floor is reflective and produces difficult

lighting conditions.

Figure 7.40: The AVS Pod suspended above a Model Power Line.

The UAV model was also ported onto the AVS software and vision feedback used

to track the pod's lateral displacement from the centre line position. The average

distance between the sidelines and the centre line was used for tracking the height
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of the pod. Calibration was performed using the AVS; yielding the following

equations for the lateral displacement, X, (7.9) and the height, Z (7.10).

x = -0.34315+(0.0012288PJ+(0.004040lBc) (7.9)

Z = -0.56246+ 35.308 (7.10)
d

where:

pc and Sc are the rand q values associated with the centre line

d is the average distance between the sidelines and the centre line
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Figure 7.41: Results of tracking both Lateral Displacement and Height on the AVS; Sample
N° indicates distance along the lines.

Figure 7.41 shows how well the pod lateral position and height as measured by

the AVS (solid) matches to the demand (dotted); the dash-dotted line shows the

measurement of lateral displacement and height from the visual tracker. It can be

seen that the vision output for the lateral displacement is noisier than the

measured position. The DAV is able to re-align with the lines. With the height
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measurement it can be seen that the position follows the demanded height well

although the output from the tracker is quite noisy, particularly at the end of the

run. This is due to the AVS pod pitching as it comes to a stop. It is to be expected

that the vision output for the height would be more noisy than the lateral

displacement as it is calculated from the difference between points in the AHT

and so there will be a larger error than for the lateral displacement, which is

calculated from the position of the point representing the centre line. It can be

seen from the vision height measurement during the small wind gust that there is

some effect on the height measurement from the lateral displacement. This

coupling would be expected because the lines appear closer together as the VAV

is displaced laterally. This was predicted in section 4.2.2. Looking at the lateral

displacement results, there is a distinct offset between the AVS and vision

measurement; this is probably due to an offset in the line position.

More details of work done with the AVS can be found in [3] but this summary

shows that the tracker software is capable ·of operating in far less benign

conditions than the laboratory test-rig at Bangor. It also shows that information on

height and lateral displacement can be extracted from the image and used for two

degree-of-freedom visual servoing.

7.5 Kalman Filter

The trackers described so far in this thesis do not include any kind of filter

algorithm. Predictive filtering is a powerful tool and an essential component of

any practical visual servoing system. Filtering introduces a priori knowledge

about the system dynamics and basically has two functions:

• It places dynamic constraints on the possible motion of the features between

one image frame and the next.

• It allows better predictions, based on past measurements and the internal

dynamic model of where image features will be located in future frames.

Filtering therefore contributes a great deal to the robustness of a tracker and it is

somewhat remarkable that the preceding results have been obtained without its
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inclusion. Nevertheless, improved robustness is still a necessary goal and this

section considers the addition of a Kalman filter to the tracking algorithm.

7.5.1 Description of the Kalman Filter Tracker

The Kalman Filter is a recursive filter as discussed in section 2.4. It gives an

optimal solution if the errors in the measurements being filtered have a Gaussian

distribution. With other error distributions, the Kalman filter can still give good

results but in order to use it in these situations, the errors are assumed to be

Gaussian.

For this application Kalman filters are used to filter the p and e values of each

line. It should be noted that the Kalman filter is include in addition to the fuzzy

logic rules described in section 7.4. The Kalman filter has four stages:

• Calculate the Kalman gain: this determines the fraction of the estimate that is

from the prediction and the fraction from the measurement.

• Update the estimate.

• Update the error (variance) associated with the estimate.

• Calculate the prediction for the next frame and its associated error (variance).

Using equations from [46], at sample k the Kalman gain is given by

where:

P-k is the error covariance matrix associated with the prediction

H, is matrix giving the ideal connection between the measurement and the state

vector

Rk is the error covariance matrix associated with the measurement

The estimate is given by
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where:

it is the prediction vector

Zk is the measurement vector

The variance associated with the estimate is given by:

where:

I is the identity matrix

The prediction and its associated variance are given by:

where:

'Pk is the matrix relating the current estimate to the next estimate.

Qk is the error covariance matrix associated with 'Pk

In our Kalman filters i , i-and Z represent the estimate, prediction and

measurement of p or e, and are scalars. Ideally, in this application the

measurement should be equal to the state vector, as it is the measurement that is

being filtered. For this reason H is equal to 1. There is now a measure of the

accuracy of the prediction: the variance of the prediction, P,,- • This can be used to

set the search square size. As 99.7% of results are within three standard deviations

of the mean, the search-square size, Sss, is calculated using:

The Kalman filter equations (7.11), (7.12) and (7.13) become for e; there is an

identical Kalman filter for p:
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For the early tracker and rule-based tracker, the predictor, ~, used was a zero order

predictor. This type of predictor is known as a trivial predictor and simply uses

the current measurement as the prediction. This predictor works well when the

VAV isn't moving laterally. When the VAV is moving laterally, the zero order

predictor is not as good as the lines do not appear in the same place in consecutive

frames. However it still works if the VAV doesn't move too far between frames.

Prediction can be improved for these situations by changing to a first order

predictor. A first order predictor is of the form:

ap
PhI =Pt +-UT (7.19)au

where:

V is the VAV lateral velocity

T is the sample time

ao and ap are the Jacobian relating the speed to e and pau au

It is possible to estimate the velocity of the VAV from the changing e and p

values. This allows the predictor to be simplified as it gives an estimate of the

velocity in Hough co-ordinates, meaning that there is no need to calculate the

Jacobian. When the VAV moves laterally, the values of e and p change for the

three lines by amounts Aa and Ap respectively. Assuming that the speed of the
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UAV changes little from frame to frame to frame, the predictior in equation (7.19)

becomes:

Pk+l = Pk +Ap (7.20)

A higher order predictor could be used. This would be based on the UAV model

described in Chapter 3 and could predict where the UAV would be based on

known control inputs. Such a predictor would be complex to implement as the

UAV motion is described in a Cartesian reference frame, while the Kalman filter

is carried out in the AHT's reference frame. In order to use such a second order

predictor, the two have to be related by the appropriate Jacobian, which includes

that of the Hough transform. Moving to higher order predictors increases the

complexity and is subject to the law of diminishing returns.

It was decided to use a ftrst order predictor. In order to perform this with the

Kalman filter equations, the prediction and estimate have to be put in normal form

for this step. For e the predictor, (J), is:

[
1 AB]

(J) = 0 1 (7.21)

There is an equivalent predictor for p.

Equation (7.14) becomes:
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Testing of the first order predictor showed it worked well. When one of the lines

was missing from the AHT, meaning that its position was estimated from the

other two, the calculated values of as and ap were found to be a poor predictor

for that line. It was found that better results could be obtained by estimating the

values of AS and ap for the missing line from the values of as and Ap for the

other two lines. This is done by taking the average of as and ap for the other two

lines. For example, if the right line is missing, aSRand apR are given by:

7.S.2 Implementation of the Kalman Filter Tracker

The matrix equations were easy to code in MATLAB as it has matrix support, but

Cf+ does not have this support natively. To allow for easy coding, the matrix

equations were broken down into scalar equations. Equation (7.22) becomes:

In addition to the equations for the Kalman filter, it is necessary to measure the

error variances associated with the measurement (R) and the prediction (Q). In

order to obtain an estimate of R, ten processed frames were selected from the

image sequences used to test the trackers. These had the output lines from the

ART superimposed on them along with a marker of the image centre. Lines were

marked onto the images, showing an estimate of the line position by eye. An

example of this is shown in Figure 7.42
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Figure 7.42: Example Frame Used to Measure R.

The difference between the p and e values for each line in each of the ten frames

was recorded. The variance was then calculated for both e and p. The values ofR

were as follows and are used in all the Kalman filter tests:

9: R=3.902

p: R=3.13pixet2 (7.25)

These values of the measurement apply when all three lines are found in a frame.

However, during normal operation, lines are missing from some frames. In these

cases, the measured value of R in (7.25) will not be representative of the error

present in any estimate used as the measurement. The value of R needs to vary

with time to reflect the effect on the error caused by the estimation of line

positions.

In the case where one line is missing from the AHT, its position is estimated from

the positions of other two. The value of R associated with the estimated line will

be higher than the measured values as the error in the estimated position is higher

than if it were present in the transform. The value of R for an estimated line

position is calculated by adding up the standard deviations of the line positions the

estimate is calculated from. For an estimated centre line, Rc is calculated by

equation (7.26) and when the sideline is estimated, R is given by (7.27) for an

estimated left line and (7.28) for an estimated right line.
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Rc = (JR;+jR;) (7.26)

If more than one line is missing, then line positions are not estimated and instead,

the prediction from the previous frame is carried forward. In this case, in order to

indicate the higher error, twice the standard deviation is assumed. R is calculated

usmg:

R = 4 * RDEF (7.29)

where:

RDEFis the measured value ofR given in (7.25)

To measure the value of Q the off-line tracker was programmed to record the

prediction used and the actual change in the estimates of p and e. The error

between the two was recorded for each frame. A program was then written in

MATLAB to extract the prediction errors and calculate the variance for both e and

p. The values of Q were as follows and are used in all the Kalman filter tests:

e: Q=1.1602

p: Q=0.791pixetl (7.30)

Testing of the Kalman filter tracker was done in a similar manner to the rule-

based tracker. It was first coded in MATLAB and run off-line on the same image

sequences as were used for the rule-based tracker. Once the off-line version of the

tracker was working, it was ported into C++ and incorporated into the test rig

control software and Figure 7.43 shows its operation. The repeated acquisition

process is as described in section 7.3, while the image processing, search of the

AHT and third line prediction are again as described in section 7.2. The fuzzy
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logic rules are as described in section 7.4. A flowchart showing the operation of

the Kalman filter itself is shown in Figure 7.44.

Apply Lose Lines and Lose
Centre Line Fuzzy Logic Rules

Repeated Acquisition

Process Frame and
Search for points in HT

Predict third line if
necessary

Apply Sideline Detection
Fuzzy Logic Rule

Ensure Search Square boundaries remain within HT

Pass conductor positions to control syste

"">---Yes---'

No

( End)

Yes,.

Figure 7.43: Flowchart for the Kalman Filter Tracker.
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Calculate Kalman Gains (K) for Each Line

Update Position Estimate for Each Line

Update the Estimate Variance (P) for Each Line

Calculate the Predictor for Each Lin

No

Calculate the Predictor for the
missing line from the other two.

Calculate the Prediction of the Line
Positions in the Next Frame

Calculate the Variance of the
Prediction (P ) for Each Line

Figure 7.44: Flowchart for the Kalman Filter.

7.5.3 Results with Kalman Filter Tracker

In order to test the Kalman filter tracker, the DAV was flown along the lines, and

its lateral displacement recorded. This was done with no wind, a wind gust and a

large wind gust: again these gusts are of the same strength as used to test the early

tracker (see section 7.2.3).

Figure 7.45 shows that the DAV tracks the lines well with the Kalman filter

tracker. The results with the Kalman filter tracker (solid) are very similar to those

obtained with the rule-based tracker (dash-dotted). It should be noted that the

Kalman filter tracker does include the fuzzy logic rules. This would be expected

because there is a plain background to the lines and so there is little noise and only

small DAV lateral velocity, so there is little opportunity for the Kalman filter to

show an advantage.
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Figure 7.45: Lateral Displacement of the DAV with Kalman Filter Tracker Subject to No
Wind.

In order to see the effect of the Kalman filter, it is necessary to look at the

estimate of the lateral displacement of the VAV from the Kalman filter tracker,

rather than the measured VAV position from the test rig, and compare it to the

unfiltered lateral displacement estimate from the Rule-based tracker. Figure 7.46

shows that the output from the Kalman filter tracker (solid) generally has less high

frequency content compared to the Rule-based tracker output (dash-dotted). This

can be seen more clearly by zooming in on the area ofthe plot that doesn't include

the sections affected by the poles at either end of the run, as shown in Figure 7.47.
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Figure 7.48 shows that the results when a wind gust is applied (solid) are similar

to with those from the rule-based tracker (dash-dotted) and Figure 7.49 shows that

this is true for a large wind gust too.

While the tracker, with or without the Kalman filter, gives good results on the

plain background currently in use, there should be a difference when a cluttered

background is used. Inclusion of the Kalman filter should produce a tracker that is

more resilient to background noise, but time did not allow this to be investigated.

7.6 Conclusions

A successful tracker has been developed. The lines are tracked well from frame to

frame, giving a good basis to build on but there are a few problems that need to be

dealt with. The major problem is the effect of the pole as the UAV approaches it.

Possible solutions to this include using a fraction of the values of the sidelines in

the prediction of the centre line. This would help as it would tend to keep the line

pattern more symmetrical; when the tracker locks onto the pole, the line pattern

becomes quite non-symmetric. This could make use of the symmetry measure

from the acquisition routine and may form part of the Kalman filter predictor.

Another possibility is to incorporate more fuzzy logic in order to detect if the pole

is being tracked and attempt to switch back to the centre line. It may also be

possible to incorporate a model of the pole into the tracker and track this instead

of (or as well as) the lines, as the UAV approaches the pole.

Tracking could be improved by the use of a particle filter [43, 58]. This uses a

series of particles to represent the error probability density function, allowing

more complex error probability density functions to be represented than Gaussian

errors. Particle filters also allow for tracking more than one possible match. When

this happens, the true match gets stronger, while false matches die away. This

would allow for multiple-hypothesis testing as to the possible location of the lines

in the image; allowing the multiple possible matches produced by the acquisition

to be tested and tracked rather than only looking at the "best" match. Multiple-

hypothesis testing should also help when the tracker is used in the real

environment where the background contains clutter. The effect of a cluttered
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background needs to be investigated. Other possible lines of investigation include

the affine techniques described by Shapiro [59], more fuzzy logic, neural

networks [60] and the use of optical flow to detect the upcoming pole.

168



Chapter 8 Multi-axis Control
8.1 Introduction

Chapter 7 discussed control of the lateral displacement and height of the VAV

using visual servoing. The geometric analysis in Chapter 4 showed that lateral

displacement, yaw and roll could be measured from the position of the centre line

in the image while the height and pitch could be measured from the average

distance between the outer lines and the centre line. Chapter 4 also showed that in

order to track lateral displacement, yaw and roll, two cameras were required. In

this chapter, control of multiple axes is discussed. This will focus on the use of

two cameras to provide information on the lateral displacement, yaw and roll of

theVAV.

In order to do this the two-camera assembly was fitted to the test-rig and the

multiple computer version of the tracking software was used, as described in

section 5.6. The vision part of this software used the Kalman filter based tracker

described in section 7.5, while the control part of the software used the VAV

model described in Chapter 3. The equations used to extract the lateral

displacement, yaw and roll are described in this chapter. The code for the control

and vision parts of the software are given in Appendix D.

In order to build up to measuring all three axes from vision, each axis was added

in tum. To start with, the system was tested with only lateral displacement

tracking. Lateral displacement was extracted from the forward camera using the

equation (7.1) as used in Chapter 7. As the twin-camera mount is being used, the

values of Xa and X, are taken from section 4.3 rather than section 4.2.2. Testing

only the lateral displacement, initially, was done to show that the system worked

with the two-camera configuration as it did with one camera. Following this, the

system was expanded to extract both the lateral displacement and yaw from the

forward camera. This allowed control of both the lateral displacement and yaw.

As the VAV model from Chapter 3 doesn't include a model for yaw, it was

modelled as a first order system. Finally, the system was expanded to use input

from both cameras to give the lateral displacement, yaw and roll. Note that the
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test-rig doesn't have a roll axis so this variable can't be controlled. An additional

complication is that on the actual VAV the same actuator will control roll and

lateral displacement (it is under-actuated). In this case, the lateral displacement

and yaw were controlled while the roll measurement was simply recorded. This

allowed the output to be assessed as to whether it could be used to control the roll

axis,

8.2 Lateral Displacement Control

8.2.1 Design

In the first test, only the lateral displacement, X, is measured using images from

the forward camera of the twin-camera mount. The measure of X is estimated

from the forward image using (8.1)

XO+X PX = (J p (8.1)
2

1 1
where x, and x, are 00 and -0-'

_F_ 'PF

ax ax

The e and p scaling factors are obtained from the analysis ID section 4.3.

Substituting these values into (8.1) gives:

X = 0.04010-0.0314p (8.2)
2

Lateral displacement using the twin-camera assembly could then be tested.

8.2.2 Results

In order to test the lateral displacement tracking, the same tests were used as in

Chapter 7. First the VAV was flown along the line subject to no wind gust. This

was then repeated with a small and large wind gust.
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Figure 8.1: Lateral Displacement of the UAV with Kalman Filter Tracker Subject to No
Wind.

We can see from Figure 8.1 that for most of the length of the line section tracking

is good with the twin-camera setup (solid) although the effect of switching to the

pole at the end of the run is considerably worse than with the single camera result

from section 7.5.3 (dash-dotted). Figure 8.2 shows the effect of mistaking the pole

for the centre line. The values of both e and p are affected by tracking the pole,

although the effect on e is more significant as its sign changes, which introduces a

certain amount of positive feedback. The position estimate from the twin camera

mount comes more from the e value than the position estimate from the single

camera, hence the larger effect. In order to show that the deviation at the end of

the run is caused by the pole, it was covered such as to blend in with the

background. The DAY was then flown along the line again. Figure 8.1 shows that

the DAY doesn't deviate at the end of the line (dashed).
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Figure 8.3: Lateral Displacement of the UAV with Kalman Filter Tracker Subject to a Pulse
Wind Gust.

Figure 8.3 shows that with the small wind gust, the results for the two-camera

setup with the poles covered (solid) match well with the one camera system (dash-

dotted) with a pulse wind gust. Figure 8.4 shows a similar result with a large pulse

wind gust.
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Figure 8.4: Lateral Displacement of the UAVwith Kalman Filter Tracker SUbject to a Large
Wind Gust.

Tracking of the lateral displacement works as well with the twin-camera mount as

with the single camera mount. This is as would be expected. There is, however a

larger effect caused by switching to tracking the pole.

8.3 Lateral Displacement and Yaw Control

8.3.1 Design

In this section, the intention is to simultaneously control both the lateral

displacement, X, and the yaw, (1, of the UAV. In order to do this, both the (1 and X

need to be extracted from the image. Also, it is necessary to model the yaw of the

rotorcraft.

8.3.1.1 Yaw Model

The yaw of the UAV would be provided by adjusting the relative speeds of the

two rotor blades. Unfortunately, the data required to model the yaw of the UAV

was not available. However, the speed of the yaw should be proportional to the
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difference in the speeds of the rotor blades, over short periods of time. Hence the

yaw position would be the integral of this. The yaw axis can be modelled as a

single integrator. It would be expected that the time to yaw through a fairly small

angle would be of the order of seconds. A better model will be built when data is

available.

Position feedback could then be used to control the yaw position of the UAV.

Position feedback is provided by the vision control, or a compass. The first order

model of the yaw of the UAV is shown in Figure 8.5

Step Zero-Order
Hold

Time Delay

UAVYaw

Figure 8.5: First Order Yaw Model.
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Figure 8.6: Yaw Model Position Response.
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Figure 8.6 shows the response of the first order yaw model (solid) to a step input

(dashed). The flrst order yaw model was coded into the control part of the test rig

software (ControIThread.cpp: see Appendix D)

It should be noted that as the UAV yaws, its heading will change and so the

direction of lateral displacement on the rig will change. As the yaw is expected to

stay at around zero, the lateral displacement was kept aligned with the X axis of

the test rig rather than rotating it with the yaw of the UAV. This is something that

will have to be done in the future.

8.3.1.2 Equations to CalculateX and afrom the Image

Analysis in section 4.2.2 indicates that, if roll is always zero, as it is on the test

rig, then it should be possible to extract both lateral displacement and yaw from

just the forward camera. Section 4.2.2 indicates that there is little cross coupling

between the lateral displacement (X) and yaw (a) and so their contributions to e

and p can be added together. The values of P and e for any given X and a are

given in (8.3) and (8.4).

P = PxX +Paa (8.4)

where:

e and p are the values of e and p for the centre line from the forward pointing

camera.

X is the lateral displacement of the UAV

a is the yaw of the UAV

ex, px, ea and Pa are the coefficients: these are equal to the values of the slope of

the relevant graphs in section 4.3, for example ex is equal to 08 .ax

Itwas necessary to re-arrange these equations to give X and a in terms of p and e.

If (8.3) is re-arranged to give a this gives:
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Substituting (8.5) into (8.4) gives:

Re-arranging (8.6) gives:

X= (8.7)

Sub (8.7) into (8.3) gives:

Re-arranging (8.8) gives:

Px

a = B 1 P + : x B (8.9)
Px a _p Px a_pe a B a

X X

This gives equations for X and u, Before these can be programmed into the

control software, the values of the coefficients need to be determined. From

analysis in section 4.3 the values are:

9x=24.9

px = -30.7
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Pu= -4.66

It should be noted that while ea is almost zero for the single camera setup, for the

twin camera, it has a significant non-zero value. Putting these values into (8.7)

and (8.9) gives:

X=0.0171p+0.06l2B (8.10)

a = -0.328p - 0.403B (8.11)

These equations and the first order VAV model were added to the control

software. This could then be tested.

8.3.2 Results

First the VAV was flown along the line, subject to no wind gust. Following this,

the test was repeated using a small and then a large wind gust.

Figure 8.7 shows that for the first part of the run, both the lateral displacement and

the yaw track quite well (solid), although there is a slight offset on the lateral

position. As the VAV approaches the pole at the end of the line, two-axis tracker

causes a larger lateral displacement to occur. This is because the tracker locks

onto the pole and the erroneous p and e values cause both lateral displacement and

yaw tracking to be affected. The rotorcraft's yaw then compounds the effect on

the lateral displacement. Again, in order to show that it is the pole that causes the

deviation, the run was repeated with the pole covered up (dash-dotted).
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Figure 8.7: Lateral Displacement and Yaw ofthe VAV with Kalman Filter Tracker Subject
to NoWind.
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Figure 8.8: Lateral Displacement and Yaw of the VAV with Kalman Filter Tracker Subject
to a Pulse Wind Gust.
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Figure 8.8 shows that the DAVis able to restore lock onto the line after a pulse

wind gust. When the DAV is blown aside by the wind gust, it can be seen that

there is little effect on the yaw of the craft, indicating that the two axes are

independent. The DAV doesn't drift at the end of the run because the pole had

been covered. Figure 8.9 shows the desired tracking behaviour with a large pulse

wind gust.
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Figure 8.9: Lateral Displacement and Yaw of the UAV with Kalman Filter Tracker SUbject
to a Large Pulse Wind Gust.

8.4 Lateral Displacement, Yaw and Roll Tracking

8.4.1 Design

In this section the possibility of tracking lateral displacement (X), yaw (a.) and roll

(y) at the same time is investigated. It was shown in Chapter 4 that both cameras

were required to extract X, a. and y. As the contributions to the p and e values

from X, a. and yare independent and add together, their values can be combined to

give p and e for each camera. The values of p and e for the forward facing camera

for any given X, a. and y are given in (8.12) and (8.13) while those for the

backward facing camera are given in (8.14) and (8.15).
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where:

BF and PF are the values of B and p for the centre line from the forward pointing

camera.

Bs and ps are the values of B and p for the centre line from the backward pointing

camera.

X is the lateral displacement of the UAV

a is the yaw of the UAV

'Y is the roll of the UAV

BFX, PFX, BFa, PFa etc. are the coefficients: these are equal to the values of the slope

of the relevant graphs in section 4.3

Itwas necessary to re-arrange these equations to give X, a and 1 in terms ofBF, PF,

Bs and ps. If(8.l2) is re-arranged to give X this gives:

x = PF - PFaa (8.16)
PFX

Substituting (8.16) into (8.13) gives:

Re-arranging for 1 gives:
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Substituting (8.18) and (8.16) into (8.14) gives:

Re-arranging (8.19) for (l gives:

Substituting (8.20) into (8.12) gives:

(8.21)

Re-arranging (8.21) for X gives:

(8.22)

Substituting (8.22) and (8.20) into (8.15) and re-arranging for y gives:

PFXPByBFa
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(8.23)

This gives equations for X, a and y. Before these can be programmed into the

control software, the values of the coefficients need to be determined. From

analysis in section 4.3 the values are:

8Fx=24.9 8Fo.=1.30 8Fy=0.93

PFx=-30.7 PFo.=-4.66 PFy=O

8Bx=-24.9 8Bo.=1.30 8By=-1.36

PBx=30.7 PBo.=-4.66 PBy=2.74

Table 8.1: Lateral Displacement, Yaw Roll Co-efficients.

Putting these values into (8.22), (8.20) and (8.23) gives:

x = 0.0754PB - 0.137 PF - 0.2220F (8.24)

a = -0.496PB + 0.69pF +1.460F (8.25)

r = -0.7350B -1.85PB +3.17PF + 5.46BF (8.26)

These equations were added to the control software, which was then tested.

8.4.2 Results

Again the VAV was first flown along the line, subject to no wind gust and with

the poles covered. The lateral displacement and yaw were controlled by the vision

feedback, while the roll can only be measured from the images. Ideally we would

expect to get a constant zero measurement for the roll, while the lateral

displacement and yaw should track as before.
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Figure 8.10: Lateral Displacement, Yaw and Roll of the UAV with Kalman Filter Tracker
Subject to No Wind.

Figure 8.10 shows the lateral position and yaw of the DAV under vision control

(solid) and the estimate of the lateral displacement, yaw and roll of the DAV from

the image processing (dash-dotted). The DAV tracks the lines quite well. There is

some oscillation in the lateral displacement of the DAV. Yaw is around zero, as

would be expected. The estimates of the lateral displacement and yaw from the

image processing have more noise than the measured positions from the rig. There

is also a reasonable amount of noise on the roll measurement. At the very end of

the run, the tracker loses the lines, as there aren't more lines following on from

the pole, hence the deviation from the lines at the very end of the run.

Possible causes of the oscillation in the lateral displacement and the noise are that

separating three measurements from the e and p values and using two cameras

brings in more noise sources. Also there will be a larger error in the Spy, BBy and

PBy values, compared to the values of the other coefficients because there is no roll

axis on the rig and it was necessary to make the measurements by hand. Changing

the lateral displacement causes opposite effect on the forward and backward

image while roll causes opposite but unequal effects on the two images. It may,
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therefore be the case that these two axes are not as easy to separate as separating

the yaw measurement, and so may be more sensitive to noise.

8.5 Conclusions

It can be seen from the two-axis experiment that it is possible to extract the lateral

displacement and the yaw from one camera and successfully control both axes.

This leads to a possible method of reducing the problem of the pole. It should be

possible to use the backward facing camera to obtain the yaw and lateral

displacement when the UAV approaches a pole, as the backward facing camera

won't see the pole. When both cameras can see a clear line, it would be possible

to use an average of the X and a measurements from both cameras to control the

UAV. In order to use either of these options, a measurement of roll would have to

be made using a non-vision sensor, and the effect of the roll would have to be

subtracted from the p and e values from each of the cameras.

The three-axis experiment indicates that it should be possible to control all three

axes from vision, if both cameras are working, although the results are noisier

than controlling just yaw and lateral displacement. In order to fully test this, the

test-rig would need the addition of a roll axis in order to simulate the roll and thus

see the effect on the image. In addition, as the same actuator will control both roll

and lateral displacement on the UAV, there will, at times, need to be a non-zero

roll demand, in order to stop the attempt to obtain zero roll affecting lateral

displacement. A method of combining the lateral displacement and roll error

signals to feed to the actuator on the UAV will need to be developed.
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Chapter 9 Conclusions and
Future Work

9.1 Conclusions

The project has produced encouraging results for the prospect of a visually guided

UAV to inspect electricity distribution lines. It has been shown that the three lines

do form a useful beacon for servoing the VAV. The project met its aims and has

given a good foundation on which to build an improved tracker.

A model of the UAV has been developed, although validation tests will need to be

done once a UAV has been constructed to see how well it conforms to the real

UAV. The ducted fan type of UAV described suffers from a poor wind gust

response and there is also the limitation that the model is of the laboratory

demonstrator and so is more sensitive to wind than a full size UAV would be. The

UAV also has the limitation of having a slow response time. The tracking results

show this slow response, and indicate that a different design of VAV, with a faster

response time will very likely be needed for this project. Changing to a different

type of UAV would require a new UAV model but shouldn't significantly affect

the operation of the vision system.

The test rig, on which experiments were performed, was constructed successfully,

although this took quite a lot of time and work. Despite its small scale, it produces

satisfactorily realistic image sequences of the overhead lines. The rig provides

good three-axis movement but it is clear that additional axes would need to be

added for future experiments. The addition of a roll axis and changing the pitch to

a controllable axis, rather than just a manually settable axis would be necessary in

order to better simulate the UAV.

The Aggregated Hough Transform was developed and shown to find the three

lines well. Within the AHT there are often lines that are not associated with the

overhead lines. These primarily come from the pole and the insulators on top of it,

when they are prominent in the image. There are occasional lines from the
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background. These don't generally cause a problem with tracking, as they tend to

appear in areas of the AHT that the tracker doesn't search. The exception to this is

the vertical pole, which did tend to cause tracking problems when it was not co-

linear with the centre line. When more realistic backgrounds are used, the number

of such lines will increase, and so it is predicted that tracking will be affected

more.

The use of fuzzy logic rules and a Kalman filter provided successful tracking of

the lines from frame to frame. Visual control of the lateral displacement of the

UAV was demonstrated and the UAV was able to maintain alignment with the

centre line and re-acquire the lines and return to the centre line after a wind gust.

In Chapter 8 simultaneous control of both lateral displacement and yaw was

demonstrated. This showed that both could successfully be controlled by visual

servoing with video from one camera. The possibility of extracting information

about the roll of the UAV from vision, as well as the lateral displacement and

yaw, was demonstrated using two cameras, although this gave a much noisier

result than when only the lateral displacement and yaw were tracked.

Consideration must also be given as to how to use the roll and lateral

displacement signals, because the same actuator must control both the roll and

lateral displacement axes. The experiment in section 7.4.4 showed that in addition

to extracting the lateral position of the UAV it was also possible to simultaneously

extract an estimate of the height above the lines and control both the lateral

displacement and height of the UAV simultaneously. In order to combine this and

the yaw and roll control, it would be necessary to add a height axis to the test rig

as well as a roll and pitch axis.

It has been shown that the UAV will follow the lines and that it is possible to

control multiple axes using vision feedback. Though the results of this project

demonstrate the principle of controlling the UAV using visual servoing, there are

significant problems that remain to be solved before commercial development is

appropriate. At least in the short term, it is likely that other sensors that assist

visual servoing will be needed. These could include ultrasonic, laser and

millimetre wave radar sensors. Using these would give an associated power,
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weight and cost penalty. Currently the system is run in an idealised environment

with a plain background, with the exception of the test performed on the AVS.

Tests will need to be done using cluttered backgrounds and eventually in the real

world. This will almost certainly cause tracking to be less reliable than in the

current idealised case, and so strategies to deal with this must be found.

9.2 Future Work

In order to take the project from its current early state to completion, a lot of work

is going to be required. The problems of tracking the pole and tracking problems

associated with realistic backgrounds will need to be solved. This could possibly

be done by the use of fuzzy logic rules to detect a switch followed by an attempt

to move back to the centre line. Alternatively, a percentage of the positions of the

outer two lines, when both are present, could be included in the prediction of the

centre line. A particle filter [58], the affine techniques described by Shapiro [59]

and/or the use of neural networks [60] could also help with this. Template

matching may also help with locating the pole in the image, which could allow the

system to switch back to the centre line. A possible method for locating the pole

in the image is given in [61]. The location of the pole top could also be used for

servoing the UAV. An additional line of investigation is to look at the

augmentation of information by other sensors, such as an electric field sensor to

detect the position of the lines relative to the craft, roll and pitch sensors, a

compass and radar combined with the machine vision method, thus improving the

estimates of position and leading to improved control of the UAV. The use of a

downward looking camera could be investigated. Because it would look directly

downward, it wouldn't be affected by the distant pole. Primarily, this should give

information on the lateral displacement and yaw of the UAV. Due to the direction

this camera points, small values of roll and lateral displacement will produce the

same apparent motion in the image. Consideration would be needed in to how to

mount such a camera on to the UAV such that it has a clear view of the lines un-

obscured by the power pick up.

It is know that the ducted fan type UAV that is planned as a laboratory

demonstrator suffers from a poor wind gust response. It was chosen because it is
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convenient to have a UAV that is dynamically stable and marginally statically

stable. Further work is required to design a replacement for this UAV that is

larger, so as to be useful for inspection purposes, has a better wind gust response

and has a faster response time. It is also necessary to investigate how the effect of

a wind gust scales with the size of the UAV. It is possible that using an inherently

unstable UAV with a dedicated stabilising control system may help speed up the

response to a wind gust and allow a critically damped response, rather than the

current slow, under-damped response. Work also needs to be done to develop the

power pick-up system.

The research effort reported in this thesis has made a significant contribution to

the feasibility of the overall concept but it is clear that several other difficult areas

of work must be undertaken before a practical system for power line inspection

emerges.
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Appendix A Geometric
Analysis

A.I Analysis for the Roll Axis

Applying equation (4.1) to a straight-line model of the centre conductor, placed at

Xw = 0 and Zw = -ZL' where ZL is the vertical height of the camera centre above

the line, generates a corresponding line in the image. Applying the Hough

Transform then gives p and e as a function of the camera pose. The VAV that

rolls by an angle y. Assume that the vehicle is flying along the lines at constant

speed, and so has a fixed pitch, ~. Assume also that a and Xu are zero. Equation

(4.1) becomes:

Xc 1 0 0 0 1 0 0 0 cosr 0 sin y 0
Ye 0 1 0 0 0 1 0 -£ 0 1 0 0
Ze = * * *0 0 1 0 0 0 I 0 -sinr 0 cosy 0
-Ye I0 -- 0 0 0 0 0 I 0 0 0 IA- A

I 0 0 0 0
0 cosf3 -sinf3 0 Yw* (A.!)
0 sinf3 cosf3 0 -ZL
0 0 0 I I

This becomes

Yw sin f3 sin r - ZLeos f3 sin y
Yw cosf3+ZL sinf3-f

Yw sinf3cosr - ZL cosf3cosr
Yw cosf3+ZL sinf3-l

A

(A.2)

From (A.2), using (4.2), the image co-ordinates are given by:

1Yw sinf3siny-ZL cos f3sin y d
X=-A an

Yw cosf3+ZL sinf3-f
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z = -A. Yw sinpCOSy-ZL cospcosy (A.3)
Yw COSP+ZL sinP-l

Applying the Hough Transform (4.6) then gives:

B = tan -1 ( Yw sin P sin y - Z L COSP sin y J = tan -1 ( sin y) and
Yw sinpcOSy-ZL cospcosy cosy

1Yw sin P sin y - Z L cos P sin y 1 Yw sin P sin r - Z L cos P sin r .p = -/I. cosy+/I. smy
Ywcos P + Z L sin P -l Ywcos P + ZL sin P -l

(A.4)

These simplify to

B = r and p = 0 (A.5)

It can be seen that only e changes with roll angle while P is identically zero.

A.2 Analysis for the Yaw Axis

Applying equation (4.1) to a straight-line model of the centre conductor, placed at

Xw = 0 and Zw = -ZL, where ZL is the vertical height of the camera centre above

the line, generates a corresponding line in the image. Applying the Hough

Transform then gives p and e as a function of the camera pose. The VAV that

yaws by an angle c. Assume that the vehicle is flying along the lines at constant

speed, and so has a fixed pitch, p. Assume also that y and Xu are zero. Equation

(4.1) becomes:
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Xc 1 0 0 0 1 0 0 0 1 0 0 0
Yc 0 1 0 0 0 1 0 -f 0 cosp -sinP 0= '" '" '"Zc 0 0 1 0 0 0 1 0 0 sinP cosp 0
-Ye 10 -- 0 0 0 0 0 1 0 0 0 1A A

cosa -sma 0 0 0
sma cosa 0 0 Yw

'" (A.6)
0 0 1 0 -ZL
0 0 0 1 1

This becomes

Yw cosasinp-ZL cosp (A.7)
Yw cosacosp+ZL sinp-f

A

Xc -Ywsina
Ye Yw cosacosp+ZL sinP-f

From (A.7), using (4.2), the image co-ordinates are given by:

., Y...sin a dX=A ~
Yw cosacosp+ZL sinP-f

Z=-A Y...cosasinp-ZLcosp (A.8)
Yw cosacosp+ZL sinP-f

Applying the Hough Transform (4.6) then gives:

B-1 ( - Y...sin a J d=~ an
Y...cosasinp-ZL cosp

-AX" e A(Yw SinP-ZL cosp) . ep = cos - sm (A.9)
Yw COSP+ZLsinP-f Yw COSP+ZL sinP-f

It can be seen that both p and e change with yaw.
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A.3 Analysis for the Pitch Axis

If we apply equation (4.1) to a model of the centre conductor and vary the pitch

(P) of the UAV from the "normal" pitch value required for the UAV to move

forward then we get the following:

Xc 1 0 0 0 1 0 0 0 1 0 0 0 0
Ye 0 1 0 0 0 1 0 -l 0 cosp -sinp 0 Yw
Ze = * * *0 0 1 0 0 0 1 0 0 sinp cosp 0 -ZL
-Ye 10 -- 0 0 0 0 0 1 0 0 0 1 1
A A

(A.lO)

This becomes:

Xc 0

Ye Yw COSP+ZL sinp-l

Ze = Yw sinP-ZL cosp (A.Il)

-Ye Yw COSP+ZL sinP-l
A A

From (A. I I ), using (4.2), the image co-ordinates are given by:

x=O and z=-A YWSinP-ZLCOSP (A.I2)
Yw cosp +ZL sinP-f.

Applying the Hough Transform then gives:

e = 0 and p = 0 (A.13)

It can be seen that the pitch of the UAV does not affect the position of the centre

line in the image, however if the same analysis is done for a sideline a lateral

distance Xs from the centre line then we get following:
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Xc 1 0 0 0 1 0 0 0 1 0 0 0 -x,
Yc 0 1 0 0 0 1 0 -R. 0 cos{3 -sin{3 0 Yw
Zc = * * *0 0 1 0 0 0 1 0 0 sin{3 cos{3 0 -ZL-Yc 1

0 -- 0 0 0 0 0 1 0 0 0 1 1
A- A

(A.14)

This becomes:

Xc -Xs
Yc Yw COS{3+ZL sin{3-R.

Yw sin{3-ZL cos{3 (A.IS)
Yw cos{3 +ZL sinfJ -R.

A-

From (A. IS), using (4.2), the image co-ordinates are given by:

Applying the Hough Transform then gives:

B = tan-I( AXs J andr, sin{3-ZL cos{3

AXs B ., Yw sin{3-ZL cos{3 . B (A.I7)P = cos +/1,. sm
Yw cos {3+ Z L sin {3- R. Yw cos {3+ Z L sin {3- R.

It can be seen that both p and 9 for a sideline vary with pitch angle (P).
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Appendix B Two-Axis Analysis
Shown in this appendix are graphs showing the effect of varying both roll and

lateral displacement and yaw and roll on the values of Se and pc and the effect of

varying both Height and Lateral Displacement on Bd and Pd.
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Figure B.t: The effect ofvarying both Roll and Lateral Displacement on 9c.

194



AppendixB Two-Axis Analysis

40

20

-a;
.~ 0
~
a.

-20

-40 -2
20

-20 2 Lat. Disp. (m)

Figure B.2: The effect ofvarying both Roll and Lateral Displacement on Pc.

30

20

10

1) 0-CD
-10

-20

-30
20

20

-20 -20

Figure B.3: The effect ofvarying both Yaw and Roll on Oc.

195



AppendixB Two-Axis Analysis

100

50
........
ID 0x
!£
0.. -50

-100
-20 20

20 -20

Figure B.4: The effect ofvarying both Yaw and Roll on Pc.

15

2

30

25

€: 20
"C

CD

10
2

5 -2 Lat. Disp. (m)
Height (m)

Figure B.5: The effect of varying both Height and Lateral Displacement on Od'

196



Appendix B Two-Axis Analysis

-10

-15

........
IDx -20c::-"0
Cl.

-25

-30
2

-'.~" . 'j

"""

-1

Lat. Disp, (m) -2 2
Height (m)

Figure B.6: The effect of varying both Height and Lateral Displacement on Pd.

5

197



Appendix C Tracking
Flowcharts

Find All Candidate Points for a Conductor in eac
of the three Search Squares

Remove Duplicate Points

In each search Square, select the candidate
point: the point nearest the square's centre

Enforce minimum distance between conductor points in AH

Figure C.I: Flowchart showing the operation of image processing and search of the AlIT
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Set C position to average
of Land R positions

No

Yes

Set extra_line_count to 0

Yes

Figure C.2: Flowchart showing the third line predlctlon
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AppendixD C++ Source Code
D.I Header Files

D.l.l ControlThread.h

#if
!defined(AFX_CONTROLTHREAD H DF15EFD5 E059 4367 9C39 54FE9FFE31B7
_INCLUDED _)
#define
AFX CONTROLTHREAD H DF15EFD5 E059 4367 9C39 54FE9FFE31B7 INCLUDE
D

#if MSC VER > 1000
#pragma once
#endif II MSC VER > 1000
II ControlThread.h header file
II

#include "MapObject.h"
#include "Serial.h"

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
IIIIIIIIIII
II ControlThread thread

class Control Thread : public CWinThread
{

DECLARE_DYNCREATE(ControlThread)
protected:

ControlThread(); II protected constructor used by
dynamic creation

Ilconstructor
public:

ControlThread(short x_p, short y_p, short yaw_p, short x_d,
short y d, short yaw d, MapObject* m, BOOL m exist, Serial*
trig_s,-serial* fvis=s, Serial* bvis_s, BOOL-s_exist, short x_min,
short x_max, short y_min, short y_max, short yaw_min, short
yaw_max, double wind, BOOL vis_en);

II Attributes
public:

HANDLE m_hEventKill;
HANDLE m_hEventDead;

IICritical section for access to the tracking data by
external thread static CRITICAL_SECTION accessLock;

11**************Demand and Test rig output
variables**********

Ilposition varaibles
short x_pos, y_pos, yaw_pos;

Ildemand variables
short x_dem, y_dem, yaw_dem;
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//output variables
short x_out, yaw_out;

//************************UAV Model
variables*****************

//d2theta/dt2
double d2theta;

//d_theta/dt and delayed version
double d_theta, d_theta_nl;

//theta value and delayed version
double uav_theta, uav_theta_nl;

//dU/dt
double dU;

//U and delayed version
double U, outU, U_nl;

//intermediate value for pitch rate feedback
double dtfbl;

//integral of intermediate value for pitch rate feedback and
delayed version

double int_dtfbl, int_dtfbl_nl;

//pitch rate feedback value and delayed version
double dtfb2, dtfb2out, dtfb2_nl;

//double versions of demand and output variables
double temp_x_dem, ternp_y_dem, ternp_yaw_dem, temp_x_out,

temp_yaw_out;

//delayed values of ternp_x_out and temp_yaw_out
double temp_x_out_nl, temp_yaw_out_nl;

//position error in x direction
double x_p_err, x_p_err_nl;

//integral of position error in x direction
double int_x_p_err, int_x_p_err_nl;

//***********************Yaw part of UAV
model******************

//position error in Yaw
double yaw_p_err;

//pre-integrated yaw output
double d_yaw;

//***************************Other
Variables********************

//wind gust magnitude
double windGust;

lienable vision feedback
BOOL visionEnable;
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//storage for gps error data
short* gps_errors;
short last gps fix;
int gps_errors=length;

//error code storage
int err_code, ext_err_code;

//tracking enable flag
BOOL trackEnable;

//gust delay count
int d_count;

//set to align with the lines before proceeding along the
line

BOOL align;

//position step increments
double dx, dy;

//flag to indicate if tracking has finished
BOOL finished;

//file directory for position output file
char* directory;

//copies of position variables for external access
short ext_x_pos, ext_y_pos, ext_yaw_pos, ext_x_dem,

ext_y_dem, ext_yaw_dem;

//Map of poles
MapObject* map;
/Iflag to indicate if the map has been created correctly
BOOL rnExist;

//Serial Ports
Serial* sp trig;
Serial* sp=fvis;
Serial* sp bvis;
//flag to indicate if the serial ports have been created

correctly
BOOL sExist;

I/movement restrictions
short xmin, xmax, ymin, ymax, yawmin, yawmax;

//tracking status
int trackStatus;

//copies of frequency variables for external access
unsigned int ext_c_freq, ext_v_freq;

//Control Loop Frequency in Hz
unsigned int c frequency;
//Vision Loop Frequency in Hz
unsigned int v frequency;
//variable to show if the system has a high performance

counter
BOOL hpc;
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Ilstorage structure to read out frequency
LARGE INTEGER temp freq;
Ilperformance counter frequency
int64 HPC freq;

7/storage for start time of current iteration
LARGE INTEGER curStartTime;
Ilstorage for start time of previous iteration
LARGE INTEGER prevStartTime;
Ildifference between the start times
int64 elapsedCounts;

7/difference between the times in milliseconds
unsigned int elapsedMS;
Iisampling period in milliseconds
unsigned int sampleTime;

Ilsampling period in seconds
double T;

Ilpi
double pi;

Ilrho and theta values from vision computers
int frho, ftheta, brho, btheta;

Iltracking staus from vision computers
int vis_track_stat_f, vis_track_stat_b;

II Operations
public:

Ilfunction to run each step of the controller and UAV model
void SingleStep();
Ilfunction to allow access to the tracking data by the

interface thread
void AccessData(short* x_p, short* y_p, short* yaw_p, short*

x_d, short* y_d, short* yaw_d, unsigned int* freq, unsigned int*
v freq, BOOL* fin, int* errcode);
_ Ilfunction to send demands to the test rig

int DataTrans();
Ilfunction to kill the control thread
void KillThread();

Ilapply GPS errors to position values from test rig
short GPS_Error(short value, int* count);

II Overrides
II ClassWizard generated virtual function overrides
11{{AFX_VIRTUAL(ControlThread)
public:
virtual BOOL InitInstance();
virtual int ExitInstance();
II}}AFX_VIRTUAL

II Implementation
public:

virtual -ControlThread();
virtual void Delete();

II Generated message map functions
11{{AFX_MSG(ControlThread)

II NOTE - the ClassWizard will add and remove member
functions here.
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I/}} AFX_MSG

DECLARE MESSAGE_MAP()
} ;

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
IIIIIIIIIII

II{{AFX INSERT LOCATION}}
II Microsoft Visual c++ will insert additional declarations
immediately before the previous line.

#endif II
!defined(AFX_CONTROLTHREAD_H __ DF15EFD5 E059 4367 9C39 54FE9FFE31B7
__ INCLUDED _)

D.l.2 VisionThread.h

Uf
!defined(AFX_VISIONTHREAD_H __ 9B965A29_66B7 43D2_A212_37F70FF328FF _
_INCLUDED_)
#define
AFX VISIONTHREAD H 9B965A29 66B7 43D2 A212 37F70FF328FF INCLUDED

#if MSC VER > 1000
#pragma once
#endif II MSC VER > 1000
II VisionThread.h : header file
II

#include <mil. h>

#include "ImageObject.h"
#include "EdgeMap.h"
#include "HoughTransform.h"
#include "kalman.h"

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
IIIIIIIIIII
II VisionThread thread

class VisionThread : public CWinThread
{

DECLARE_DYNCREATE(VisionThread)
protected:

VisionThread();
public:

VisionThread(BOOL cap_Source, BOOL cap_Proc);

II Attributes
public:

HANDLE m_hEventKill;
HANDLE m_hEventDead;

IICritical section for access to the tracking data by
external thread

static CRITICAL SECTION accessLock;
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//error code storage
int err_code, ext_err_code;

//copy of frequency variable for external access
unsigned int ext_v_freq;

//Vision Loop Frequency in Hz
unsigned int v_frequency;
//variable to show if the system has a high performance

counter
BOOL hpc;
//storage structure to read out frequency
LARGE INTEGER temp freq;
//performance counter frequency
int64 HPC freq;

I/storage for start time of current iteration
LARGE INTEGER curStartTime;
//storage for start time of previous iteration
LARGE INTEGER prevStartTime;
//difference between the start times
int64 elapsedCounts;

I/difference between the times in milliseconds
unsigned int elapsedMS;
//sampling period in milliseconds
unsigned int sampleTime;

//************Handles to Access the Frame Grabber
Card**************

MIL ID MilApplication, /*Application identifier.*/
- MilSystem, /*System identifier.*/

MilDisplay, /*Display identifier.*/
MilDigitizer, /*Digitizer identifier.*/
MilParentBuff, /*Parent buffer which contains

grab and display buffer.*/
MilGrabImage,

MilDispImage;

the

/*Grab Image buffer identifier.*/
/*Display Image buffer identifier.*/

int channel; //digitizer channel

double imScale; //image grabing scle factor

ImageObject* SourceImage;
ImageObject* DestImage;

//image captured from digitizer
//final processed image

EdgeMap* edgeMap; //Edge Map of captured image

HoughTransform* ht; //Hough Transform of captured
image

BOOL capSource, capProc;
processed images.

//whether to capture source and

int frameNumber;
number

//storage for current frame

//pointers to strings for saving image data
char *directory, *Fname, *baseFname, *extn, *Fname2,

*baseFname2i

//strings to print rho theta values
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char* rhoOutString;
char* thetaOutString;

Ilexternal acces to rho and theta values from HT
int ext_rhoOut, ext_thetaOut;

Iisearch squares
struct kalman lRhoKal;
struct kalman lThetaKal;
struct kalman cRhoKal;
struct kalman cThetaKal;
struct kalman rRhoKal;
struct kalman rThetaKal;
struct kalman eRhoKal;
struct kalman eThetaKal;

Ilcount to see if we need to switch lines
int switch_count;

Ilcount to see if we have lost the lines
int lose_count;

Ilcount to see if we have lost the centre line
int lose_centre_count;

Ilcount to aquire the lines
int aquire_count;

Iistorage for tracking status
int track_stat, ext_track_stat;

II Operations
public:

//process an individual frame
void SingleStep{);
IIContrast Enhance an image
int ContEnhance{ImageObject* source);
I/Edge Detector
int EdgeDetect{ImageObject* source, EdgeMap* dest, int

edgeGap, double gThres);
//Hough Transform
int Hough_Transform{EdgeMap* source, HoughTransform* dest,

int edgeGap, double threshold, int a size);
/ISuperimpose the lines from an AHT on to an image (not a

true inverse)
int InvHoughTransform{HoughTransform* soruce, ImageObject*

dest);
IITrack lines from frame to frame
int TrackLines{HoughTransform* source, struct kalman*

lthetakal, struct kalman* lrhokal, struct kalman* cthetakal,
struct kalman* crhokal, struct kalman* rthetakal, struct kalman*
rrhokal, struct kalman* ethetakal, struct kalman* erhokal,
int*trackStat, int* switchCount, int* loseCount, int*
loseCentreCount);

//Acquisiiton routine
int Acquisition{int* bestposition, int* bestfound,

HoughTransform* htr, int thetadiff, int rhodiff, int thetavar, int
rhovar, double sideline fact, double centre fact, int fnum);

//Calculate image gradient _
double Grad{ImageObject* image, int xpos, int ypos, double*

dx, double* dy);
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Ilfind a point to represent a cluster of points in AHT
unsigned int FindPoint(int* xout, int* yout, HoughTransform*

trans, int xbase, int ybase, int c_size);
IIFind points in a specified area of the AHT
int FindPoints(int* outpoints, int* outnumpoints,

HoughTransform* trans, int thetabase, int rhobase, int theta_size,
int rho_size, int centre, int mode, int* HTAccessError);

IIDrawa line on an image
int DrawLine(ImageObject* image, int theta, int rho,

unsigned char intensity1, unsigned char intensity2);
Ilcopy an image
int Copylmage(ImageObject* source, ImageObject* dest);
Iiallow access to the tracking data by external thread
void AccessData(unsigned int* v_freq, int* errcode, int*

thetaout, int* rhoout);
Iiallow access to the tracking status by external thread
void ReadWriteTrackStat(int* trStat, BOOL read);
Ilkill the thread
void KillThread();

II Overrides
II ClassWizard generated virtual function overrides
11{{AFX_VIRTUAL(VisionThread)
public:
virtual BOOL InitInstance();
virtual int ExitInstance();
I/} }AFX_VIRTUAL

II Implementation
public:

virtual -VisionThread();
virtual void Delete();

II Generated message map functions
II{{AFX MSG(VisionThread)

I/NOTE - the ClassWizard will add and remove member
functions here.

I/} }AFX_MSG

DECLARE MESSAGE_MAP()
} ;

1111111111111111111111111111111111/1/1111/////////1//1/////1//////
11111111111

II{{AFX INSERT LOCATION}}
// Microsoft VIsual c++ will insert additional declarations
immediately before the previous line.

#endif I I
!defined(AFX VISIONTHREAD H 9B965A29_66B7_43D2_A212_37F70FF328FF
_INCLUDED_) _

D.1.3 EdgeMap.h

// EdgeMap.h: interface for the EdgeMap class.
II
11111111111/1111111111111111111/1111111//1///1111111111111/11/1///
1/11
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#if
!defined(AFX_EDGEMAP H 3B004A20 4348 11D7 BAAC 0004769EA59C INCL
UDED_)
#define
AFX EDGEMAP H 3B004A20 4348 11D7 BAAC 0004769EA59C INCLUDED_ _ _ - _
#if MSC VER >= 1000
#pragma once
#endif II MSC VER >= 1000

class EdgeMap
{

Ilconstructor/descructor
public:

EdgeMap();
EdgeMap(int xSize, int ySize);
virtual -EdgeMap();

Ilattributes
public:

Iistorage for edge strength data
double** edge strength data;
Iistorage for-edge angle data
double** edge_angle_data;
Iistorage for the thresholdded edge map
unsigned char** thres edge data;
Iidimensions of the edge map

private:
int xsize, ysize;

Ilmethods
public:

Ilread the X dimension
int GetXSize();
Ilread the Y dimension
int GetYSize();
Iiset the edge map to zero
void SetZeros();

} ;

#endif I I
!defined(AFX_EDGEMAP H 3B004A20_4348_11D7_BAAC_0004769EA59C_INCL
UDED_)

D.l.4 HoughTransform.h

II HoughTransform.h: interface for the HoughTransform class.
II
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
IIII

Uf
!defined(AFX_HOUGHTRANSFORM_H_3B004A20_4348_11D7_BAAC_0004769EA59
C INCLUDED_)
#define
AFX HOUGHTRANSFORM H 3B004A20 4348 11D7 BAAC 0004769EA59C INCLUD_ _
ED

#if MSC VER >= 1000
#pragma once
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#endif II MSC VER >= 1000

class HoughTransform
{

Ilconstructor/destructor
public:

HoughTransform();
HoughTransform(int xSize, int ySize, int del_Rho, int

del_Theta);

virtual -HoughTransform();

Ilattributes
public:

Iistorage for:
unsigned int** HT_data;
unsigned char** thres_HT_data;

transform
unsigned int** aggreg_values;

aggregation
unsigned char** aggreg_HT_data;

transform
private:

int xsize, ysize;
transformed.

int numRho, numTheta;
hough space, theta is on x axis,

int delRho, delTheta;
quantisation.

IIHough transform data
IIThresholded Hough

IIValues used in

IIAggregated Hough

Iisize of the image that was

Iisize of x and y axes of
rho is on y axis

Ilrho and theta

Ilmethods
public:

Ilread the X size of the transformed image
int GetXSize();
Ilread the Y size of the transformed image
int GetYSize();
Ilread the Rho size of the transform
int GetRhoSize();
Ilread the Theta size of the transform
int GetThetaSize();
Ilread the Rho quantisation of the transform
int GetRhoQuant();
Ilread the Theta quantisation of the transform
int GetThetaQuant();

void SetZeros();
unsigned int GetMax();

} ;

#endif I I
Idefined(AFX_HOUGHTRANSFORM H 3B004A20 4348 1107 BAAC 0004769EA59
C_INCLUDED_)

D 1.5 ImageObject.h

II ImageObject.h: interface for the ImageObject class.
II
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
IIII
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#if
!defined(AFX_IMAGEOBJECT H 3B004A20 4348 11D7 BAAC 0004769EA59C
INCLUDED_)
#define
AFX IMAGEOBJECT H 3B004A20 4348 11D7 BAAC 0004769EA59C INCLUDED_ _
#if MSC VER >= 1000
#pragma once
#endif II MSC VER >= 1000

class ImageObject
{

Ilcontructor/destructor
public:

ImageObject();
ImageObject(int xSize, int ySize);
virtual -ImageObject();

Ilattributes
public:

Iistorage for the image data
unsigned char** image_data;

private:
Iidimensions of the image
int xsize,ysize;
Ilminimum and maximum pixel values in the image
unsigned char min, max;

Ilmethods
public:

Ilread the X size of the image
int GetXSize();
Ilread the Y size of the image
int GetYSize()i
Iiset all the image pixels to zero
void SetZeros();
Ilinvert the image
void InvertImage()i
Ilfind the minimum and maximum pixel values in the image
Ilexclude the edge of the image to a distance edge gap
void FindMinMax(int edgegap);
Ilread the minimum pixel value
unsigned char GetMin();
Ilread the maximum pixel value
unsigned char GetMax();

} ;

#endif I I
!defined(AFX_IMAGEOBJECT_H_3B004A20_4348_11D7_BAAC 0004769EA59C
INCLUDED_)

D 1.6 kalman.h

Ilkaiman filter data structure

struct kalman
{

int estimate; Ilcurrent estimate
int prevEstimate; Ilprevious estimate
int prediction; Ilprediction
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double estProb; Ilvariance of current estimate
double predProb; Ilvariance of prediction
double H;
double K; IIKalman Gain
int phiOffset; Iloffset for generating next prediction
double Q; Ilvariance
int measurement; Ilmeasurement
double R; Ilvariance of measurement

} ;

D.2 Selected Functions

D.2.1 ControlThread::SingleStep

11****************************************************************
*******
II SingleStep
II Follow Pole Maps
II Combine Error Sources
II Send demands to test rig
11****************************************************************
*******
void ControIThread::SingleStep()
{

IIData Output file
FILE* dataOut;
Ilfilename
char dataFName[100];

Iiset rho and theta quantisation
int delrho = 2i
int del theta = 1;

double temp ftheta, temp frho, temp btheta, temp brho,
x_ht_err, yaw_ht~rr, roll_ht_err, x_ht_err2, yaw_ht_err2,
roll ht err2;

_ short store x out, store yaw out; Ilxout for data file
double visionFract = 0; 7/fraction of the feedback signal

that is from the vision feedback

if (hpc)
{

11*****************Wait until the next sample
time*************

Iionly wait if in tracking mode
if (trackStatus == 2)
{

Ilread the number of ms since the previous
iteration started

QueryPerformanceCounter(&curStartTime)i
elapsedCounts = curStartTime.QuadPart -

prevStartTime.QuadParti
elapsedMS = (unsigned

int) ((1000*elapsedCounts)/HPC_freq);

Ilif the full sample period hsn't elapsed, then
wait for the reamaining time, rounded down to the nearest 10 ms
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if (elapsedMS < sampleTime)
{

Sleep«sampleTime - elapsedMS)-{{sampleTime
- elapsedMS)%10»;

}

//wait until end of sample time
do
{

QueryPerformanceCounter(&curStartTime);
elapsedCounts = curStartTime.QuadPart -

prevStartTime.QuadPart;
elapsedMS = (unsigned

int)MathFns::Round({1000*(double)elapsedCounts)/(double)HPC_freq);
}
while(elapsedMS < sampleTime);

//calculate the sampling frequency
QueryPerformanceCounter(&curStartTime);
elapsedCounts = curStartTime.QuadPart -

prevStartTime.QuadPart;
c frequency = (unsigned

int)MathFns::Round(double)HPC freq/(double)elapsedCounts);
//QueryPerformanceCounter(&prevStartTime);
EnterCriticalSection(&ControlThread::accessLock);
{

ext_c_freq = c_frequency;

LeaveCriticalSection(&ControlThread::accessLock);
QueryPerformanceCounter(&prevStartTime);

//read position of the centre line from vision PCs
err code sp_fvis->VisReadData(&ftheta, &frho);
err_code = sp_bvis->VisReadData(&btheta, &brho);

//read tracking status from the vision PCs
err_code sp_fvis->VisReadTrackStat(&vis_track_stat_f);
err_code = sp_bvis->VisReadTrackStat(&vis_track_stat_b);

//set tracking enable to false if necessary
if (!trackEnable)
{

sp_fvis->VisWriteTrackStat(O);
sp_bvis->VisWriteTrackStat(O);
err_code=4;

//perform tracking based on map
switch (trackStatus)
{

//**************tracking not started need to intialise
tracking**********

case 0:
//get the difference in the y direction to find

direction
dy = «(double)map->GetNextCoOrds() [1) -

«double)map->GetCurCoOrds() (1));
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//set the initial demands
yaw_dem = 0;
x dem map->GetCurCoOrds() [0];
y_dem map->GetCurCoOrds() [1];

//set the past output values to start of line x value
temp_x_out_n1 = 0.0033*(double)map-

>GetNextCoOrds() [0];
temp_yaw_out_n1 = 0;

//set curret output values to 0
temp_x_out = 0;
temp_yaw_out = 0;

//set current d2theta/dt2 to 0
d2theta = 0;

//set current and delayed d_theta/dt to 0
d_theta = 0;
d_theta_nl = 0;

//set current and delayed theta value to 0
uav_theta = 0;
uav_theta_n1 = 0;

//set current dU/dt to 0
dU = 0;

//set current and delayed U to 0
U = 0;
U_n1 = 0;

//set the past error value to 0
xy_err_nl = 0;

//set the past integral of position error to 0
int_xy_err_nl = 0;

//set the integral of intermediate value for pitch
rate feedback and delayed version to 0

int_dtfbl = 0;
int_dtfbl_nl = 0;

//set the pitch rate feedback value and delayed
version to 0

dtfb2 = 0;
dtfb2 nl = 0;

//set intermediate value for pitch rate feedback to 0
dtfbl = 0;

//set to align x before starting along the lines
align = TRUE;

//set the y difference to 5 in the correct direction.
if (dy > 0)
{

dy = 5;

if (dy < 0)
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dy -5;

//initialise the floating point version of the demands
temp_x_dem (double) x_dem;
temp_y_dem = (double) y_dem;

//send demands to test rig
DataTrans();

//move to the tracking state
trackStatus 2;
break;

//*****starting new line section and so need to re-
initialise******

case 1:
//set demands
yaw dem = 0;
x dem map->GetCurCoOrds() [0];
y=dem = map->GetCurCoOrds() [1];
//set not to align x before starting along the lines
align = FALSE;

//set the y difference to 5 in the correct direction.
if (dy > 0)
{

dy = 5;

if (dy < 0)
{

dy = -5;

//initialise the floating point version of the demands
temp_x_dem (double) map->GetCurCoOrds() [0];
temp_y_dem = (double) map->GetCurCoOrds() [1];

//send demands to test rig
DataTrans();

//move to the tracking state
trackStatus 2;
break;

//*******************tracking between two
poles****************

case 2:
//read x demand from the map
x_dem = map->GetNextCoOrds() [0];

position
//calculate error signal from map demand and test rig

if (trackEnable)
{

&d_count));
x_p_err = (double) (x_dem - GPS_Error(x_pos,
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yaw_p_err (double) (yaw_dem - yaw_pos);

else
{

x_p_err = (double) (x_dem - x_pos);
yaw_p_err = (double) (yaw_dem - yaw_pos);

Ilif we are using V1S10n feedback set V1S1on fraction
to 1 otherwise set to 0 and reset the vision tracking

if(visionEnable && trackEnable && (x_pos < (x_dem +
600» && (x_pos> (x_dem - 600»)

{

if«vis_track_stat_f==O) I I (vis_track_stat_f==4) I I (vis_track_
stat_b==O) I I (vis_track_stat_b==4»

{
visionFract 0;

else
{

visionFract 1;

else
{

visionFract = 0;
sp_fvis->VisWriteTrackStat(O);
sp_bvis->VisWriteTrackStat(O);
err_code=5;

11*****calculate correction factors from rho and
theta*******

Ilapply HT quantisation factors
temp_frho = frho * delrho;
temp_ftheta = ftheta * deltheta;
temp_brho = brho * delrho;
temp_btheta = btheta * deltheta;

Ilcalculate x, yaw and roll errors
x ht err = (0.0754*temp_brho)-(0.137*temp_frho)-

(0.222*temp_ftheta);
yaw_ht_err = (0.690*temp_frho)+(1.46*temp_ftheta)-

(O.496*temp_brho);
roll ht err = (3.17*temp frho)+(5.46*temp ftheta)-

(O.735*temp_btheta)-(1.85*temp_brho); _

Iistore ht output
x_ht_err2=x_ht_err;
yaw_ht_err2=yaw_ht_err;
roll_ht_err2=roll_ht_err;

Ilapply vision fraction
x_ht_err*=visionFract;
yaw_ht_err*=visionFract;
roll_ht_err*=visionFract;

11******calculate correction factors from DGPS and
compass******
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//apply count to metre conversion of 0.0033 to gps
error signal

x_p_err*=0.0033;
//apply gps faction
x_p_err*=(l-visionFract);

//apply count to degree conversion of 90/500 to
compass error signal

yaw_p_err*=90;
yaw p err/=500;
//apply compass faction
yaw_p_err*=(l-visionFract);

//*************cornbine error sources**********

//subtract the vision correction factor to error
signal

x_p_err-=x_ht_err;

//subtract the vision correction factor to error
signal

yaw_p_err-=yaw_ht_err;

//******calculate the pitch rate feedback
fraction*******

//apply the pitch rate compensator (first integrator
is already performed as part of the uav model

dtfb1=(0.0454S*d_theta)+(0.1*uav_theta)-
(10*int_dtfb1);

//apply the second integrator
int dtfb1=int dtfb1 n1+(T*dtfb1);
//set the previous value for the next iteration
int dtfb1 n1=int dtfb1;
//add in feedback
dtfb1-=(0.01*dtfb2);
//apply the third integrator
dtfb2=dtfb2 n1+(T*dtfb1);
//set the p;evious value for the next iteration
dtfb2 n1=dtfb2;
//apply the pitch rate gain
dtfb20ut = 5000 * dtfb2;

//***************cornbine lat. disp. error
signals****************

//add in the pitch rate feedback
x_p_err -= dtfb2out;

//apply the loop gain
x_p_err *= 0.1;

//apply the saturation
if (x_p_err > 0.2)
{

x_p_err = 0.2;
}
if (x_p_err < -0.2)
{

x_p_err = -0.2;
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11*********Apply the U.A.V. model*******************

11*************Lat. Disp. Model*********************

IId2theta integrator
Ilcombine signals for integrator
d2theta (1.047*x_p_err)+(O.Ol03*U)-(O.883*d_theta);
Ilapply the integrator
d theta = d theta nl + (T*d2theta);
I/set the previous value for the next iteration
d_theta_nl = d_theta;

lid theta integrator
Ilapply the integrator
uav theta = uav theta nl + (T*d_theta);
Iiset the previous value for the next interation
uav theta nl = uav theta;
Ilmultiply by the gain
dU = (-9.81)*uav theta;
Iladd in d_theta-factor
dU-=(0.0739*d_theta);

IldU integrator
Ilcombine signals for integrator
dU-=(0.591*U); Ilplus is used as we are using the

inverted version of U
Ilapply the integrator
U = U nl + (T*dU);
Iiset-the previous value for the next iteration
U_nl = U;

Iiset the output U of the model
outU = -U;

Iladd wind gust position error to demand if necessary
if (trackEnable)
{

Ilincrement count variable
d count++;
I/add in offset if time reached
if«d_count >= 175)&&(d_count <= 250»
{

U += windGust;

Ilu integrator
Ilapply the integrator
temp x out = temp x out nl + (T*outU);
Iiset the previous value for the next iteration
temp_x_out_nl = temp_x_out;

11*******************Yaw
Model*************************

d yaw = yaw p err - temp yaw out;
I/apply yaw-integrator _ _
temp yaw out = temp yaw out nl + (T*d_yaw);
Iiset the previous value for the next iteration
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temp_yaw_out_n1 = temp_yaw_out;

11*****************Output Data to
Rig******************

Ilconvert x output position back to counts
x_out = (short) (temp_x_out/0.0033);

Ilconvert yaw output position back to counts
yaw_out = (short) (temp_yaw_out/90*500);

Ilincrement y demand if necessary, if finished, set
demand as map coordinate

if « (y dem < map->GetNextCoOrds ()[1]) && (dy >=0» II
«y dem > map->GetNextCoOrds() [1]) && (dy < 0»)

{
temp_y_dem += dy;
y_dem = (short)temp_y_dem;

else

y_dem map->GetNextCoOrds() [1];

Iistore output values
store_x_out = x_out;
store_yaw_out = yaw_out;

Iisend demands to test rig
DataTrans();

Ilif we have reached a pole, set move to next pole
state

if (align)
{

if «y dem == map->GetNextCoOrds() [l])&&«x out
>= (map->GetNextCoOrds()[O] - 5»&&(x out <= (map- _
>GetNextCoOrds() [0] + 5»» _

{
trackStatus 3;

else
{

if (y_dem == map->GetNextCoOrds() [1])
{

trackStatus = 3;

break;

11*****reach a pole, move to next line section, or stop if
last pole*****

case 3:
lienable tracking in second section
trackEnable = TRUE;

Ilif we have another line section then change to
initialisation state to track along next line section

if (map->Advance() == 0)
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trackStatus 1;

Ilif no more line sections, then stop tracking
else
{

EnterCritica1Section(&ControlThread::accessLock);
{

finished = TRUE;

LeaveCriticalSection(&ControlThread::accessLock);

break;
default:

break;

Ilwrite external variables to be read by dialog process.
EnterCriticalSection(&ControlThread::accessLock);
{

ext_x_pos = x_pos;
ext_y_pos = y_pos;
ext_yaw_pos = yaw_pos;
ext x dem = x_out;
ext_y_dem = y_dem;
ext_yaw_dem = yaw_out;
ext_v_freq = v frequency;
ext_err_code = err_code;

}
LeaveCriticalSection(&ControlThread::accessLock);

D.2.2 VisionThread::SingleStep

11****************************************************************
****
II Single Step
II Process an individual frame and track the lines from the
previous frame.
11****************************************************************
****
void VisionThread::SingleStep()
{

int old_track_stat=O;

int err;
int del theta = 0;
int delrho = 0;

int bestFound = 0;
int bestPosition[6];

char Fname3[100);
char fn[100];

if (hpc)
{

Ilread the number of ms since the previous iteration
started

QueryPerforrnanceCounter(&curStartTime);
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elapsedCounts = curStartTime.QuadPart -
prevStartTime.QuadPart;

elapsedMS = (unsigned
int) ({lOOO*elapsedCounts)/HPC_freq);

Ilif the full sample period hsn't elapsed, then wait
for the remaining time, rounded down to the nearest 10 ms

if (elapsedMS < sampleTime)
{

Sleep{{sampleTime - elapsedMS)-{{sampleTime -
elapsedMS)%10));

}

Ilwait until end of sample time
do
{

QueryPerformanceCounter{&curStartTime);
elapsedCounts = curStartTime.QuadPart -

prevStartTime.QuadPart;
elapsedMS = (unsigned

int) ({1000*elapsedCounts) IHPC_freq);
}
while{elapsedMS < sampleTime);

Ilcalculate the sampling frequency
QueryPerformanceCounter{&curStartTime);
elapsedCounts = curStartTime.QuadPart -

prevStartTime.QuadPart;
v frequency = (unsigned

int)MathFns::Round{{double)HPC_freq/{double)elapsedCounts);
EnterCriticalSection{&VisionThread::accessLock);
{

ext_v_freq = v_frequency;

LeaveCriticalSection{&VisionThread::accessLock);
QueryPerformanceCounter{&prevStartTime);

I/read current tracking status, in case it has changed
EnterCriticalSection{&VisionThread::accessLock);
{

track_stat = ext_track_stat;

LeaveCriticalSection{&VisionThread::accessLock);

//set error code for this iteration to 0
err_code = 0;

I/Set the file names for saving images.
frameNurnber++;
strcpy{Fname, baseFname);
strcpy{Fname2, baseFname2);
strcpy{Fname3, baseFname2);
sprintf{fn,"%04d",frameNurnber);
strcpy{extn, ".tif");
strcat{Fname, fn);
strcat{Fname, extn);
strcat{Fname2, fn);
strcat{Fname2, extn);
strcat{Fname3, fn);
strcat{Fname3, "_2");
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strcat(Fname3, extn);

II Grab an image.
MdigGrab(MilDigitizer, MilGrablmage);

Iisave the image biffer if required
if (capSource)
{

MbufSave(Fname,MilGrablmage);

IICopy the image to the processing array
MbufGet(MilGrablmage, SourceImage->image_data[O]);

IIContrast Enhance the image
ContEnhance(Sourcelmage);

IICopy image from source to destination
Copylmage(Sourcelmage, Destlmage);

IIPerform Edge Detection
EdgeDetect(Sourcelmage, edgeMap, 2, 1495.575);

IICalculate Hough Transform
err_code = Hough_Transform(edgeMap, ht, 2, 0.475, 9);

IICalculate Inverse Hough Transform
InvHoughTransform(ht, Destlmage);

if (capProc)
{

MbufPut(MilDisplmage, Destlmage->image_data[O]);llsave
the image biffer if required

MbufSave(Fname2,MilDispImage);

Iistore the tracking status so we can see if it has changed
old_track_stat=track_stat;

Ilread theta and rho quantisation
del theta = ht->GetThetaQuant();
delrho = ht->GetRhoQuant();

11*************Aquire the lines********************

if (track_stat==O)
{

Ilclear the kalman filter values
lThetaKal.prediction = 0;
lRhoKal.prediction = 0;
lThetaKal.prevEstimate = 0;
lRhoKal.prevEstimate = 0;
lThetaKal.predProb = DEFRTHETA;
lRhoKal.predProb = DEFRRHO;
lThetaKal.phiOffset = 0;
lRhoKal.phiOffset = 0;

cThetaKal.prediction = 0;
cRhoKal.prediction = 0;
cThetaKal.prevEstimate = 0;
cRhoKal.prevEstimate = 0;
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cThetaKal.predProb = DEFRTHETA;
cRhoKal.predProb = DEFRRHO;
cThetaKal.phiOffset = 0;
cRhoKal.phiOffset = 0;

rThetaKal.prediction = 0;
rRhoKal.prediction = 0;
rThetaKal.prevEstimate = 0;
rRhoKal.prevEstimate = 0;
rThetaKal.predProb = DEFRTHETA;
rRhoKal.predProb - DEFRRHO;
rThetaKal.phiOffset = 0;
rRhoKal.phiOffset = 0;

Ilacquire the lines
Acquisition (bestPosition, &bestFound, ht, THETADIFF,

RHODIFF, THETAVAR, RHOVAR, FS, FC, frameNumber);

Ilif a set of lines are found, set then as the
prediction

if (bestFound==l)
{

lThetaKal.prediction = bestPosition[O];
lRhoKal.prediction = bestPosition[l];
lThetaKal.prevEstimate = bestPosition[O];
lRhoKal.prevEstimate = bestPosition[l];
lThetaKal.predProb = DEFRTHETA;
lRhoKal.predProb = DEFRRHO;
lThetaKal.phiOffset = 0;
lRhoKal.phiOffset = 0;

cThetaKal.prediction = bestPosition[2];
cRhoKal.prediction = bestPosition[3];
cThetaKal.prevEstimate = bestPosition[2];
cRhoKal.prevEstimate = bestPosition[3];
cThetaKal.predProb = DEFRTHETA;
cRhoKal.predProb = DEFRRHO;
cThetaKal.phiOffset = 0;
cRhoKal.phiOffset = 0;

rThetaKal.prediction = bestPosition[4];
rRhoKal.prediction = bestPosition[5];
rThetaKal.prevEstimate = bestPosition[4];
rRhoKal.prevEstimate = bestPosition[5];
rThetaKal.predProb = DEFRTHETA;
rRhoKal.predProb = DEFRRHO;
rThetaKal.phiOffset = 0;
rRhoKal.phiOffset = 0;

aquire_count=l;
track_stat=4;

DrawLine(Destlmage, deltheta*lThetaKal.prediction,
delrho*lRhoKal.prediction, 255, 0);

DrawLine(Destlmage, deltheta*rThetaKal.prediction,
delrho*rRhoKal.prediction, 255, 0);

DrawLine(Destlmage, deltheta*cThetaKal.prediction,
delrho*cRhoKal.prediction, 255, 128);

}
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11*****if we have found the lines then re-aquire them to
check they are consistant****

else if (track_stat==4)
{

Ilacquire the lines
Acquisition (bestPosition, &bestFound, ht, THETADIFF,

RHODIFF, THETAVAR, RHOVAR, FS, Fe, frameNumber);

Ilif we haven't found a match
if (bestFound==O)
{

if (aquire_count>O)
{

aquire_count--;

else
{

track_stat=O;

Ilif we've found some lines
if (bestFound==l)
{

Ilcheck that the new line positions are similar
to the previous

if((bestPosition[O]«lThetaKal.prediction+10»&&(bestPositio
n[O]> (lThetaKal.prediction-
10»&&(bestPosition[1]«lRhoKal.prediction+lO»&&(bestPosition[l]>
(lRhoKal.prediction-
10»&&(bestPosition[2]«cThetaKal.prediction+10»&&(bestPosition[2
]>(cThetaKal.prediction-
10»&&(bestPosition[3]«cRhoKal.prediction+lO»&&(bestPosition[3]>
(cRhoKal.prediction-
10»&&(bestPosition[4]«rThetaKal.prediction+10»&&(bestPosition[4
]>(rThetaKal.prediction-
10»&&(bestPosition[5]«rRhoKal.prediction+10»&&(bestPosition[5]>
(rRhoKal.prediction-lO»)

{
Ilif so then save the new position
lThetaKal.prediction = bestPosition[O];
lRhoKal.prediction = bestPosition[l];
lThetaKal.prevEstimate = bestPosition[O];
lRhoKal.prevEstimate = bestPosition[l];
lThetaKal.predProb = DEFRTHETA;
lRhoKal.predProb = DEFRRHO;
lThetaKal.phiOffset = 0;
lRhoKal.phiOffset = 0;

cThetaKal.prediction = bestPosition[2];
cRhoKal.prediction = bestPosition[3];
cThetaKal.prevEstimate = bestPosition[2];
cRhoKal.prevEstimate = bestPosition[3];
cThetaKal.predProb = DEFRTHETA;
cRhoKal.predProb = DEFRRHO;
cThetaKal.phiOffset = 0;
cRhoKal.phiOffset = 0;

rThetaKal.prediction = bestPosition[4];
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rRhoKal.prediction = bestPosition[5];
rThetaKal.prevEstimate = bestPosition[4];
rRhoKal.prevEstimate = bestPosition[5];
rThetaKal.predProb = DEFRTHETA;
rRhoKal.predProb = DEFRRHO;
rThetaKal.phiOffset = 0;
rRhoKal.phiOffset = 0;

aquire_count++;

Ilif not then decrement the count and re-aquire
if necessary

else
{

if (aquire_count>O)
{

aquire_count--;

else
{

track_stat=O;

DrawLine(Destlmage,
deltheta*lThetaKal.prediction, delrho*lRhoKal.prediction, 255, 0);

DrawLine(DestImage,
deltheta*rThetaKal.prediction, delrho*rRhoKal.prediction, 255, 0);

DrawLine(Destlmage,
deltheta*cThetaKal.prediction, delrho*cRhoKal.prediction, 255, 0);

Ilif we've found three valid sets of lines then
move to tracking mode.

if (aquire_count>=3)
{

aquire_count=O;
track_stat=l;

11****************Track the lines************************

else if «track_stat==l) I I (track_stat==2) I I (track_stat==3»
{

err = TrackLines(ht, &lThetaKal, &lRhoKal, &cThetaKal,
&cRhoKal, &rThetaKal, &rRhoKal, &eThetaKal, &eRhoKal, &track_stat,
&switch_count, &lose_count, &lose_centre_count);

if (err == 2)
{

err code += 4;

DrawLine(Destlmage, deltheta*cThetaKal.measurement,
delrho*cRhoKal.measurement, 255, 0);

DrawLine(DestImage, deltheta*cThetaKal.estimate,
delrho*cRhoKal.estimate, 255, 255);

IIDraw Outer Lines on output image
DrawLine(DestImage, deltheta*lThetaKal.measurement,

delrho*lRhoKal.measurement, 255, 0);

224



AppendixD c++ Source Code

DrawLine(Destlmage, deltheta*lThetaKal.estimate,
delrho*lRhoKal.estimate, 255, 255);

DrawLine(Destlmage, deltheta*rThetaKal.measurement,
delrho*rRhoKal.measurement, 255, 0);

DrawLine(Destlmage, deltheta*rThetaKal.estimate,
delrho*rRhoKal.estimate, 255, 255);

if«track_stat==2) I I (track_stat==3»
{

DrawLine(Destlmage,
deltheta*eThetaKal.measurement, delrho*eRhoKal.measurement, 192,
0) ;

DrawLine(Destlmage, deltheta*eThetaKal.estimate,
delrho*eRhoKal.estimate, 192, 192);

}

Ilif necessary, update the tracking status
EnterCriticalSection(&VisionThread::accessLock);
{

if(ext_track_stat == old_track_stat) Ilif the status
hasn't been changed externally

{
if (old_track_stat!=track_stat) Ilif the status

has been changed

ext track stat track_stat; Ilupdate the
status

LeaveCriticalSection(&VisionThread::accessLock);

IIDraw the found Centre line on the output image
IICopy processed image to the display buffer
MbufPut(MilDisplmage, Destlmage->image_data[O]);

IIWrite rho and theta values on to output image
sprintf(thetaOutString, "Theta: %d", cThetaKal.estimate);
sprintf(rhoOutString, "Rho: %d", cRhoKal.estimate);

MgraText(M_DEFAULT, MilDisplmage, 0, Destlmage->GetYSize()-
32, rhoOutString);

MgraText(M_DEFAULT, MilDisplmage, 0, Destlmage->GetYSize()-
16, thetaOutString);

Iisave the image biffer if required
if (capProc)
{

MbufSave(Fname3,MilDisplmage);

Iisave error code, and centre line rho and theta.
EnterCriticalSection(&VisionThread::accessLock);
{

ext err code = err_code;
ext thetaOut = cThetaKal.estimate;
ext rhoOut = cRhoKal.estimate;

LeaveCriticalSection(&VisionThread::accessLock);
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D.2.3 VisionThread::ContEnhance

11****************************************************************
****
1/ Contrast Enhance an image by Contrast Stretching
II writes new image over the top of the old one
II input/output: source
//****************************************************************
****
int VisionThread::ContEnhance(ImageObject* source)
{

int max, mini
int xsize,ysizei
int i,ji
double mulfact,tempvali
int tempva12i

/Ifind max and min values in the image
source->FindMinMax(15);
max source->GetMax();
min = source->GetMin();

/Icalculate the multiplication factor
mulfact = 255/«double) (max-min));

//read image sizes
xsize source->GetXSize();
ysize = source->GetYSize();

Iistep through each pixel in the image to calculate the new
pixel values

for(j = 0 ; j < ysize ; j++)
{

for(i
{

o ; i < xsize ; i++)

//subtract minimum pixel value and convert pixel
value to double

tempval = (double) (source->image_data[j] [i) -
min);

//multiply the pixel value by the multiplication
factot

tempval *= mulfact;
Ilround the new value to the nearest integer
tempva12 = MathFns::Round(tempval);
/Iensure that the resulting pixel value is in the

range 0-255
if(tempva12 > 255)
{

tempva12 = 255;
}
if(tempva12 < 0)
{

tempva12 = 0;

Ilwrite new pixel value to the image
source->image_data[j] [i)= (unsigned char)tempva12;

return(O)i
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D.2.4 VisionThread::EdgeDetect

11****************************************************************
****
II Edge Detector
II Perform sobel edge detector with non-maximum suppression
II input: source: input image
II edgeGap: avoid looking at the edge of the image
II gThres: gradient threshold to use
II output: dest: output edge map
1/****************************************************************
****
int VisionThread::EdgeDetect(ImageObject* source, EdgeMap* dest,
int edgeGap, double gThres)
{

double dx=O; //value of dI/dx
double dy=O; //value of dI/dy
double g=O; //value of square of image gradient
double gl,g2; //values of ajacent squares of image gradient
double ang=O; //value of angle
int i, j:
int XSize, YSize:

//clear the edge map
dest->SetZeros();

//check that the edge gap is at least 1
if (edgeGap < 1)
{

edgeGap = I:

//read the size of the image to be edge detected
XSize source->GetXSize();
YSize = source->GetYSize();

//check that the edge map is the right size.
if«(XSize != dest->GetXSize(» I I (YSize != dest->GetYSize(»)
{

return(l);

//*************perform edge filtering********************

/Istep through all required pixels
for(j = edgeGap : j < (YSize-edgeGap) : j++)
(

for(i = edgeGap : i < (XSize-edgeGap) : i++)
{

I/find image gradient at point of interest.
g=Grad(source,i,j,&dx,&dy):

I/if the edge is sufficiently strong, record it
in the edge map

if(g > gThres)
(

if(dx == 0)
{

ang = -pi/2:
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else
{

ang = atan(dy/dx);
}
//record edge value and angle
dest->edge_strength_data[j] [i]=g;
dest->edge_angle_data[j] [i]=ang;

//*************apply non-maximum suppression**************

//step through all required pixels
for(j = edgeGap ; j < (YSize-edgeGap) ; j++)
{

for(i = edgeGap ; i < (XSize-edgeGap) ; i++)
{

//read the gradient value and angle from edge map
g=dest->edge_strength_data[j] [i];
ang=dest->edge angle data[j] [i];
if (g>gThres) I/if the gradient is larger than

the threshold

//only set edge pixel if it is local
maximum

if «ang < (pi/4» && (ang >= -(pi/4»)
{

//read the values of adjacent pixels
gl=dest->edge_strength_data[j] [i-I];
g2=dest->edge strength data[j] [i+l];
//set the output to 255 if it local

maximum
if«g>=gl)&&(g>g2»
{

dest->thres_edge_data[j] [i]=255;

if «(ang >= (pi/4» && (ang < (17*pi/36»)
II «ang < -(pi/4» && (ang> -(17*pi/36»»

{
//read the values of adjacent pixels
gl=dest->edge_strength_data[j-l] [i];
g2=dest->edge_strength_data[j+l] [i];
//set the output to 255 if it local

maximum
if«g>=gl)&&(g>g2»
{

dest->thres_edge_data[j] [i]=255;

return(O);
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D.2.5 VisionThread::Hough_Transform

11****************************************************************
****

that
II
II
II output: dest:
II error codes:
II 0 successs
II 1 Hough Transform wrong size.
II 2 Error accessing Hough Transform
11****************************************************************

II Perform hough transform
II Calculate an aggregated Hough transform (AHT) of an edge map.
II inputs: source: input: edge map
II edgeGap: amount of the edge of the edge map

should not be processed.
threshold: value for thresholding the HT
a_size: size of the masks used for aggregation

output Hough transform

****
int VisionThread::Hough_Transform(EdgeMap* source, HoughTransform*
dest, int edgeGap, double threshold, int a_size)
{

unsigned char edgePixel;
double ang=O;
double rho=O;
int anglndex, rholndex;
int i, j, k;
int Theta, Rho, Theta1, Rho1, Theta2, Rho2;
int XCentre, YCentre, XSize, YSize, delRho, delTheta,

ThetaSize, RhoSize, ThetaCentre, RhoCentre;
unsigned int HTMax, HTThres, value;
int ha size;
int c numpoints = 81;
int numpoints = 81;
int points[162];

Ilerror checking
int err = 0;
int errCode = 0;

Ilclear the hough transform
dest->SetZeros();

Ilcheck that the edge gap is at least 1
if (edgeGap < 1)
{

edgeGap = 1;

Ilcheck that the threshold is in range 0 to 1
if (threshold < 0)
{

threshold = 0;

if (threshold> 1)
{

threshold = 1;

Ilcheck that the aggregation mask size is odd and >=3
if (a_size < 3)
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a size 3;

if «a_size%2) != 1)
{

a_size++;
}
ha_size = a_size/2;

//read size info
XSize = source->GetXSize();
YSize = source->GetYSize();
XCentre = MathFns::Round«double)XSize/2);
YCentre = MathFns::Round«double)YSize/2);
delTheta = dest->GetThetaQuant();
delRho = dest->GetRhoQuant();
ThetaSize = dest->GetThetaSize();
RhoSize = dest->GetRhoSize();
ThetaCentre = ThetaSize!2;
RhoCentre = RhoSize/2;

//check that the Hough transform is the right size.
if«XSize != dest->GetXSize(» I I (YSize != dest->GetYSize(»)
{

return(l);

//******************calculate the hough
transform**************

//step through all required pixels
for(j = edge Gap ; j < (YSize-edgeGap) ; j++)
{

for(i = edge Gap ; i < (XSize-edgeGap) ; i++)
{

//read whether current pixel is an edge
edgePixe1 = source->thres_edge_data[j] [i];
ang = source->edge_angle_data[j] [i];

//if the edge is sufficiently strong, record it
in the hough transform

if(edgePixel == 255)
{

//quantise angle

anglndex=MathFns::Round«180*ang/pi)/deITheta)+ThetaCentre;
//calculate rho
rho=«j-YCentre)*sin(ang»+«i-

XCentre)*cos(ang»;

rholndex=MathFns::Round(rho/deIRho)+RhoCentre;
(dest->HT_data[rholndex] [anglndex])++;

//read the max value from the Hough transform
HTMax = dest->GetMax();
//set the limits on the Hough Transform threshold
if (HTMax<5)
{
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HTMax=5;
}
if (HTMax>25)
{

HTMax=25;

//calculate the threshold to use
HTThres = (unsigned

int) (MathFns::Round(threshold*(double)HTMax»;
//check that this value is greater than 0 (if 0 will get

image full of lines)
if (HTThres < 1)
{

HTThres = 1;

//*****************threshold the Hough
Transform******************

//step through all required pixels
for(j = 0 ; j < RhoSize ; j++)
{

for(i
{

o ; i < ThetaSize ; i++)

//threshold each pixel
if (dest->HT_data[j] [i] >= HTThres)
{

dest->thres_HT_data[j] [i]=255;

//******************aggregate the Hough
Transform*****************

//step through all required pixels
for(j = ha_size; j < (RhoSize - ha_size) ; j++)
{

for(i = ha_size; i < (ThetaSize - ha_size) ; i++)
{

//if the current "pixel" is in the tranform
if (dest->thres_HT_data[j] [i) == 255)
{

//find a point to represent the cluster of
points

value = FindPoint(&Theta, &Rho, dest, (i -
ha_size), (j - ha_size), a_size);

//save the representitive value associated
with the cluster

dest->aggreg_values[Rho] [Theta] value;

//set the representative point to 0 so it
isn't picked up when finding points in it's vacinity

dest->aggreg_HT_data[Rho] [Theta] = 0;

//find any points around the current
representative point

numpoints = c_numpoints;
FindPoints(points, &numpoints, dest,

(Theta-ha_size), (Rho - ha_size), a_size, a_size, 0, 2, &err);
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if (err != 0)
{

errCode 1= 2;

Ilif there are no other representitive
points in the vicinity then set this point in the transform

if (numpoints == 0)
{

err=dest->aggreg_HT_data[Rhol [Theta]
255;

}
Ilif there are other points then find the

strongest one and remove all others
else
{

Rhol = Rho;
Thetal Theta;
for (k = 0 ; k < numpoints ; k++)
{

Ilread point from the list
Rho2 = points[2*k];
Theta2 = points[2*k+l];
Ilif 1 is larger than 2 set 2 to

o
if (dest-

>aggreg_values[Rhol] [Thetal] > dest->aggreg_values[Rho2] [Theta2])
{

dest-
>aggreg_HT_data[Rhol] [Thetal] 255;

dest-
>aggreg_HT_data[Rho2] [Theta2] 0;

}
else Ilotherwise set 2 as the

new 1

Rhol = Rho2;
Thetal = Theta2;

return(errCode);

D.2.6 VisionThread::Acquisition

11****************************************************************
****
II Acquisition function
II find the overhead lines in the image using a model of their
expected position
II inputs: htr: the hough transform to be searched
II thetadiff, rhodiff, thetavar, rhovar, sideline_fact,
centre fact:
II the parameters of the line model
II outputs: bestposition is the best position in form
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II [lefttheta leftrho centretheta centrerho
righttheta rightrho]
II bestfound states whether a match has been found 1:
found 0: not found
II return value contains the error code*1
11****************************************************************
****
int VisionThread::Acquisition(int* bestposition, int* bestfound,
HoughTransforrn* htr, int thetadiff, int rhodiff, int thetavar, int
rhovar, double sideline_fact, double centre_fact, int fnurn)
{

FILE* file;
char fnarne[100];
char fn[100];
int err, err2, errCode;
int i, j, k;
int numTheta, numRho, h_numTheta, h_numRho;
int threefound;
int left found, right found;
int rnaxthetadiff, rninthetadiff, maxrhodiff, minrhodiff;
int tempthetadiff, temprhodiff;

int leftdist, rightdist, centredist[100];

int symmetry[100];

int cbestval, cbestnum;

double value[100];

int numpositions, positions_alloc;
int positions[1000];
positions_alloc = 100;
nurnpositions = 0;

int nurnpoints;
int points[400];
nurnpoints = 200;

errCode=O;

nurnTheta=htr->GetThetaSize();
nurnRho=htr->GetRhoSize();
h nurnRho = nurnRho/2;
h=numTheta = numTheta/2;

Ilfind points in the hough transform
err=FindPoints(points, &numpoints, htr, (-h_nurnTheta), (-

h_numRho), numTheta, numRho, 1, 2, &err2);
if (err2 != 0)
{

errCode 1= 2;

if (err != 0)
{

errCode 1= 4;

Iiset best position to 0
bestposition[O]=O;
bestposition[l]=O;
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bestposition[2]=O;
bestposition[3]=O;
bestposition[4]=O;
bestposition[5]=O;
positions[O]=O;
positions [1]=0;
positions[2]=O;
positions[3]=O;
positions[4]=O;
positions[5]=O;
positions[6]=O;
positions[7]=O;
positions[8]=O;
positions [9]=0;

I/set the flag to see if we have a three line position to 0
threefound=O;
I/set the flag for finding a 'best' position to 0
*bestfound=O;

I/**************find all possible centre lines in the
transform*********

if (numpoints>O)
(

//step through all points assume each may be the
centre line

for(i = 0 ; i < numpoints; i++)
(

//set max and min rho and theta differences
maxthetadiff=thetadiff+thetavar;
minthetadiff=thetadiff-thetavar;
maxrhodiff=rhodiff+rhovar;
minrhodiff=rhodiff-rhovar;

//assume the current point is the centre line
positions[(lO*numpositions)+2]=points[2*i];
positions[(lO*numpositions)+3]=points[(2*i)+1];

//set temporary values for the left and right
lines.

positions[lO*numpositions]=points[2*i];
positions[(lO*numpositions)+1]=points[(2*i)+1];
positions[(lO*numpositions)+4]=points[2*i];
positions[(lO*numpositions)+5]=points[(2*i)+1];
positions[(lO*numpositions)+6]=O;

positions[(lO*numpositions)+7]=(int) «pow(rhodiff,2»+(pow(t
hetadiff, 2) ));

positions[(lO*numpositions)+8]=(int) «pow(rhodiff,2»+(pow(t
hetadiff,2») ;

positions[(lO*numpositions)+9]=O;

I/set found flags to 0
leftfound=O;
rightfound=O;

I/check all other points in the transform to see
if they may be on of the sidelines

for(j = 0 ; j < numpoints ; j++)
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Ilcalculate the distances between the two
points being compared

tempthetadiff=points[2*i)-points[2*j);
temprhodiff=points[(2*i)+1]-

points[(2*j)+1];
Ilif the 'j' point is within the acceptable

area for the left line then record it as such

if((tempthetadiff<=maxthetadiff)&&(tempthetadiff>=minthetadi
ff)&&(temprhodiff<=maxrhodiff)&&(temprhodiff>=minrhodiff»

{
Ilrecord that we have found a

possible left line
1eftfound=1;
IIca1cu1ate it's distance from the

ideal
leftdist=(int) (pow((tempthetadiff-

thetadiff),2)+pow((temprhodiff-rhodiff),2»;
Ilif this is the best left line so

far, record it

if(leftdist<positions[(lO*numpositions)+7)
{

positions[lO*numpositions]=points[2*j];

positions[(lO*numpositions)+1)=points[(2*j)+1);

positions[(lO*numpositions)+7]=leftdist;
}

}
Ilif the 'j' point is within the acceptable

area for the right line then record it as such
if((tempthetadiff>=(-

maxthetadiff»&&(tempthetadiff<=(-minthetadiff»&&(temprhodiff>=(-
maxrhodiff»&&(temprhodiff<=(-minrhodiff»)

{
Ilrecord that we have found a

possible left line
rightfound=l;
Ilcalculate it's distance from the

ideal

rightdist=(int) (pow((tempthetadiff+thetadiff),2)+pow((temprh
odiff+rhodiff),2»;

Ilif this is the best right line so
far, record it

if(rightdist<positions[(lO*numpositions)+8])

positions[(lO*numpositions)+4]=points[2*j);

positions[(lO*numpositions)+S)=points[(2*j)+1);

positions[(lO*numpositions)+8]=rightdist;
}
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//if we have found a possible position
if«leftfound==l) I I (rightfound==l»
{

*bestfound=l;

//calculate the probability measure and set
the bothlines flag

if«leftfound==l)&&(rightfound==l» //both
lines found

positions[(lO*numpositions)+9]=1;

symmetry[numpositions]=(int) (pow«positions[lO*numpositions]
-positions[(lO*numpositions)+2]+positions[(lO*numpositions)+4]-
positions[(10*numpositions)+2]),2)+pow«positions[(10*numpositions
)+1]-
positions[(10*numpositions)+3]+positions[(10*numpositions)+5]-
positions[(lO*numpositions)+3]),2»;

}
else if (leftfound==l) //only

left line found

positions[(lO*numpositions)+9]=2;

symmetry[numpositions]=(int) (pow«abs(thetadiff)+abs(positio
ns[lO*numpositions]-
positions[(lO*numpositions)+2]+thetadiff»,2)+pow«abs(rhodiff)+ab
s(positions[(lO*numpositions)+l]-
positions[(lO*numpositions)+3]+rhodiff»,2»;

}
else if (rightfound==l) //only

right line found

positions[(lO*numpositions)+9]=3;

symmetry[numpositions]=(int) (pow«abs(thetadiff)+abs(positio
ns[(10*numpositions)+2]-
positions[(lO*numpositions)+4]+thetadiff»,2)+pow«abs(rhodiff)+ab
s(positions[(10*numpositions)+3]-
positions[(10*numpositions)+5]+rhodiff»,2»;

}

centredist[numpositions]=(int) (pow(positions[(lO*numposition
s)+2],2)+pow(positions[(10*numpositions)+3],2»;

value[numpositions]=(symmetry[numpositions]*(l+(sideline fac
t*(positions[(lO*numpositions)+7]+positions[(10*numpositions)+8]»
+(centre_fact*centredist[numpositions]»);

positions[(10*numpositions)+6]=(int)value[numpositions];
numpositions++;

//find the 'best' position, if available
if«*bestfound)==l)
{

//set the current best as the first poisition
cbestval=positions[6];
cbestnum=O;

.//compare to remaining positions
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for(k = 1 ; k < numpositions ; k++)
{

Ilif the current best is not as good as the
one it is being compared to

if(cbestval>positions[(lO*k)+6])
{

cbestnum=k;
cbestval=positions[(lO*k)+6];

Iistore the best position
bestposition[O]=positions[lO*cbestnum];
bestposition[l]=positions[(lO*cbestnum)+l];
bestposition[2]=positions[(lO*cbestnum)+2];
bestposition[3]=positions[(lO*cbestnum)+3];
bestposition[4]=positions[(lO*cbestnum)+4];
bestposition[S]=positions[(lO*cbestnum)+S];

Ilif we haven't found a three line position, then
estimate three lines from two that have been found

Ilif the left hand line is found, estimate the
right hand line

if(positions[(lO*cbestnum)+9]==2)
{

bestposition[4]=bestposition[2]+bestposition[2]-
bestposition[O];

bestposition[S]=bestposition[3]+bestposition[3]-
bestposition[l];

}
Ilif the right hand line is found, estimate the

left hand line
if(positions[(lO*cbestnum)+9]==3)
{

bestposition[O]=bestposition[2]+bestposition[2]-
bestposition[4];

bestposition[l]=bestposition[3] +bestposition [3]-
bestposition[S];

Ilensure that search window doesn't go outside the hough
transform

if(bestposition[O]>(h_numTheta-AQ_EDGE_GAP»
{

bestposition[O]=h_numTheta-AQ_EDGE_GAP;
}
if(bestposition[O]«AQ_EDGE_GAP-h_numTheta»
{

bestposition[O]=AQ_EDGE_GAP-h_numTheta;
}
if(bestposition[l]>(h_numRho-AQ_EDGE_GAP»
{

bestposition[l]=h_numRho-AQ_EDGE_GAP;
}
if(bestposition[l]«AQ_EDGE_GAP-h_numRho»
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bestposition[l]=AQ_EDGE_GAP-h_numRho;
}
if(bestposition[2]>(h_numTheta-AQ_EDGE_GAP))
{

bestposition[2]=h_numTheta-AQ_EDGE_GAP;
}
if(bestposition[2]«AQ_EDGE_GAP-h_numTheta))
{

bestposition[2j=AQ_EDGE_GAP-h_numTheta;
}
if(bestposition[3]>(h_numRho-AQ_EDGE_GAP))
{

bestposition[3j=h_numRho-AQ_EDGE_GAP;
}

if(bestposition[3]«AQ_EDGE_GAP-h_numRho))
{

bestposition[3j=AQ_EDGE_GAP-h_numRho;
}
if(bestposition[4]>(h_numTheta-AQ_EDGE_GAP))
{

bestposition[4j=h_numTheta-AQ_EDGE_GAP;
}
if(bestposition[4j«AQ_EDGE_GAP-h_numTheta))
{

bestposition[4j=AQ_EDGE_GAP-h_numTheta;
}
if(bestposition[S]>(h_numRho-AQ_EDGE_GAP))
{

bestposition[Sj=h_numRho-AQ_EDGE_GAP;
}
if(bestposition[Sj«AQ_EDGE_GAP-h_numRho))
{

bestposition[Sj=AQ_EDGE_GAP-h_numRho;

return(errCode);

D.2.7 VisionThread::TrackLines

11****************************************************************
****
II Track Lines
II Interpret and track points from the AHT
II inputs: source: the AHT
II i/o: lthetakal, lrhokal, cthetakal, crhokal, rthetakal,
rrhokal, ethetakal, erhokal:
II structures to hold the Kalman filter data
II switchCount, loseCount, loseCentreCount:
II fuzzy count values
II error codes:
II 0 success
II 2 Error accessing Hough Transform
11****************************************************************
****
int VisionThread::TrackLines(HoughTransform* source, struct
kalman* lthetakal, struct kalman* lrhokal, struct kalman*
cthetakal, struct kalman* crhokal, struct kalman* rthetakal,
struct kalman* rrhokal, struct kalman* ethetakal, struct kalman*
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erhokal, int*trackStat, int* switchCount, int* loseCount, int*
loseCentreCount)
{

int err,err2;
int errCode = 0;
int i, j, k;
FILE* dataOut;
char dataFName[lOO];

//search square sizes
int 1 rect theta size, 1 rect rho_size, c rect theta_size,

c_rect_rhoyize,- r_rect_theta_size,- r_rect_rho_size,
e_rect_theta_size, e_rect_rho_size;

//half the search square sizes
int h 1 rect theta size, h 1 rect rho_size,

h_c_rect_theta_size, h_c~rect_rho_size,-h r rect theta_size,
h_r_rect_rho_size, h_e_rect_theta_size, h_e_rect_rho_size;

//dimensions of ht
int theta, rho, htheta, hrho;

//allocate storage for points found in hough transform
int numlpoints, numcpoints, numrpoints, numepoints;
int Ipoints[600];
int cpoints(600);
int rpoints(600);
int epoints[600];
numlpoints = numcpoints = numrpoints = numepoints = 200;

//calculate the square sizes as 3* the standard deviation
1 rect theta size = (int)ceil(1+(6*sqrt(lthetakal-

>predProb) ));
l_rect_rho_size = (int)ceil(1+(6*sqrt(lrhokal->predProb)));
c_rect_theta_size = (int)ceil(1+(6*sqrt(cthetakal-

>predProb)));
c rect rho size = (int)ceil(1+(6*sqrt(crhokal->predProb)));
r_rect_theta size = (int)ceil(1+(6*sqrt(rthetakal-

>predProb)));
r_rect_rho_size = (int)ceil(1+(6*sqrt(rrhokal->predProb)));
e_rect_theta size = (int)ceil(l+(6*sqrt(ethetakal-

>predProb)));
e_rect rho_size (int)ceil(1+(6*sqrt(erhokal->predProb)));

//calculate the half square sizes
h 1 rect theta size=l rect theta size/2;
h-l-rect-rho size=l rect rho size/2;
h-c-rect-theta size;c rect theta size/2;
h-c-rect-rho size=c rect rho size/2;
h-r-rect-theta size;r rect theta size/2;
h-r-rect-rho size=r rect rho size/2;
h=e=rect=theta_size;e_rect_theta_size/2;
h_e_rect_rho_size=e_rect_rho_size/2;

//get HT dimensions
theta = source->GetThetaSize();
rho = source->GetRhoSize();
htheta = MathFns::Round«double)theta/2);
hrho = MathFns::Round«double)rho/2);

//find points in the hough transform

239



AppendixD C++ Source Code

err=FindPoints(lpoints, &nurnlpoints, source, (lthetakal-
>prediction)-h_l_rect_theta_size, (lrhokal->prediction)-
h 1 rect rho size, 1 rect theta size, 1 rect rho size, 1, 3,&err2); _ _ _ _ _ _ _ _

if (err2 != 0)
{

errCode 1= 2;

err=FindPoints(cpoints, &numcpoints, source, (cthetakal-
>prediction)-h_c_rect_theta_size, (crhokal->prediction)-
h_c_rect_rho_size, c_rect_theta_size, c_rect_rho_size, 1, 3,
&err2);

if (err2 != 0)
{

errCode 1= 2;

err=FindPoints(rpoints, &numrpoints, source, (rthetakal-
>prediction)-h r rect theta size, (rrhokal->prediction)-
h_r_rect_rho_size, r_rect_theta_size, r_rect_rho_size, 1, 3,
&err2) ;

if (err2 != 0)
{

errCode 1= 2;
}
if«*trackStat==2) 11(*trackStat==3»
{

err=FindPoints(epoints, &numepoints, source,
(ethetakal->prediction)-h erect theta size, (erhokal-
>prediction)-h_e_rect_rho=size, e_rect=theta_size,
e_rect_rho_size, 1, 3, &err2);

if (err2 != 0)
{

errCode 1= 2;

Iisave data to file
strcpy(dataFName, directory);
strcat(dataFName, "\\points.txt");
dataOut=fopen(dataFName, "a");
fprintf(dataOut, "Frame %d:\n", frameNumber);
fprintf(dataOut, "\tRaw Points: Track Status %d\n",

*trackStat);
fprintf(dataOut, "\t\tLeft Points:\n");
for(i = 0 ; i < numlpoints ; i++)
(

fprintf(dataOut, "\t\t\tTheta: %d Rho: %d\n",
lpoints[3*i], lpoints[3*i+1]);

}
fprintf(dataOut, "\n\t\tCentre points:\n");
for(i = 0 ; i < numcpoints ; i++)
{

fprintf(dataOut, "\t\t\tTheta: %d Rho: %d\n",
cpoints[3*i], cpoints[3*i+1]);

}
fprintf(dataOut, "\n\t\tRight Points:\n");
for(i = 0 ; i < numrpoints ; i++)
{

fprintf(dataOut, "\t\t\tTheta: %d Rho: %d\n",
rpoints[3*i], rpoints[3*i+1]);

}
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if( «*trackStat)==2) II «*trackStat)==3))
{

fprintf(dataOut, "\n\t\tExtra Points:\n");
for(i = 0 ; i < numepoints ; i++)
{

fprintf(dataOut, "\t\t\tTheta: %d Rho: %d\n",
epoints[3*i), epoints[3*i+l));

}

fprintf(dataOut,"\n");

11*******remove duplicate points (that appear in more than
one search square)********

Ilfor all points
i=O;
while(i < numcpoints)
{

j=O;
while(j < numrpoints)
{

Ilif points match
if«cpoints[3*i) == rpoints[3*j)) &&

(cpoints[3*i+l) rpoints[3*j+l)))

Ilif centre point is less respresentative
remove it

if(cpoints[3*i+2) > rpoints[3*j+2))
{

numcpoints--;
for(k = i ; k < numcpoints ; k++)
{

cpoints[3*k) = cpoints[3*(k+l)):
cpoints[3*k+1)

cpoints[3*(k+l)+1);
cpoints[3*k+2)

cpoints[3*(k+l)+2):

i--; lias we will increment i as we
leave the loop, we need to decrement it as all the points in i
have moved

break: lias point removed from c, we
don't need to test it against the rest of r

}
Ilotherwise remove the point from the right

search square
else
{

numrpoints--:
for{k = j : k < numrpoints ; k++)
{

rpoints[3*k) = rpoints[3*(k+l));
rpoints[3*k+l] =

rpoints[3*(k+l)+1):
rpoints[3*k+2)

rpoints[3*{k+l)+2);

j++;
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i++;

i=O;
while(i < numcpoints)
(

j=l;
while(j < nurnlpoints)
(

Ilif points match
if«cpoints[3*i] == Ipoints[3*j]) &&

(cpoints[3*i+l] Ipoints[3*j+l]»

Ilif centre point is less respresentative
remove it

if (cpoints[3*i+2] > Ipoints[3*j+2)
(

numcpoints--;
for(k = i ; k < numcpoints ; k++)
(

cpoints[3*k] = cpoints[3*(k+l)];
cpoints[3*k+1] ==

cpoints[3*(k+l)+1];
cpoints[3*k+2] =

cpoints[3*(k+l)+2];

i--; lias we will increment i as we
leave the loop, we need to decrement it as all the points in i
have moved

break; lias point removed from c, we
don't need to test it against the rest of r

}
Ilotherwise remove the point from the left

search square
else
(

numlpoints--;
for(k = j ; k < numlpoints ; k++)
(

Ipoints[3*k] = Ipoints[3*(k+l)];
Ipoints[3*k+l]

Ipoints[3*(k+l)+1];
Ipoints[3*k+2] '"

Ipoints[3*(k+l)+2];

j++;

i++;

i 0;
while(i < nurnlpoints)
(

j = 0;
while(j < numrpoints)
(

Ilif points match
if«lpoints[3*i] == rpoints[3*j]) &&

(lpoints[3*i+l] rpoints[3*j+l]»
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Ilif left point is less respresentative
remove it

if(lpoints[3*i+2] > rpoints[3*j+2])
{

numlpoints--;
for(k = i ; k < numlpoints ; k++)
{

lpoints[3*k] = lpoints[3*(k+l)];
lpoints[3*k+l]

lpoints[3*(k+l)+1];
lpoints[3*k+2]

lpoints[3*(k+l)+2];

i--; lias we will increment i as we
leave the loop, we need to decrement it as all the points in i
have moved

break; lias point removed from 1, we
don't need to test it against the rest of r

}
Ilotherwise remove the point from the right

search square
else
{

numrpoints--;
for(k = j ; k < numrpoints ; k++)
{

rpoints[3*k] = rpoints[3*(k+l)];
rpoints[3*k+l]

rpoints[3*(k+l)+1];
rpoints[3*k+2]

rpoints[3*(k+l)+2];

j++;

i++;

Ilremove duplicate points from the extra square
if«(*trackStat)==2) I I «*trackStat)--3)
(

i=O;
while(i < numcpoints)
{

j=O;
while(j < numepoints)
{

Ilif points match
if«cpoints[3*i] == epoints[3*j]) &&

(cpoints[3*i+l] == epoints[3*j+l]») Ilif points match
{

Ilif centre point is less
respresentative remove it

if(cpoints[3*i+2] > epoints[3*j+2])
{

numcpoints--;
for(k = i ; k < numcpoints ;

k++)
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cpoints[3*k] =
cpoints[3*(k+l)];

cpoints[3*k+l]
cpoints[3*(k+l)+1];

cpoints[3*k+2] =
cpoints[3*(k+l)+2];

i--; lias we will increment i as
we leave the loop, we need to decrement it as all the points in i
have moved

break; lias point removed from
c, we don't need to test it against the rest of r

}
Ilotherwise remove the point from the

extra search square
else
{

numepoints--;
for(k = j ; k < numepoints

k++)

epoints[3*k] =
epoints[3*(k+l)];

epoints[3*k+l]
epoints[3*(k+l)+1];

epoints[3*k+2]
epoints[3*(k+l)+2];

j++;

i++;

i=O;
while(i < numrpoints)
{

j=l;
while(j < numepoints)
(

(rpoints[3*1+1)

Ilif points match
if«rpoints[3*i)

epoints[3*j+l))
{

epoints[3*j) &&

Ilif right point is less
respresentative remove it

if(rpoints[3*i+2) > epoints[3*j+2)
(

numrpoints--;
for(k = i ; k < numrpoints ;

k++)

rpoints[3*k] =
rpoints[3*(k+l»);

rpoints[3*k+l) =
rpoints[3*(k+l)+1];

rpoints[3*k+2] =
rpoints[3*(k+l)+2);
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i--; lias we will increment i as
we leave the loop, we need to decrement it as all the points in i
have moved

break; lias point removed from
c, we don't need to test it against the rest of r

}
Ilotherwise remove the point from the

extra search square
else
{

numepoints--;
for(k = j ; k < numepoints

k++)

epoints[3*k] =
epoints[3*(k+l)];

epoints[3*k+l]
epoints[3*(k+l)+1];

epoints[3*k+2]
epoints[3*(k+l)+2];

j++;

i++;

i = 0;
while(i < numlpoints)
{

j = 0;
while(j < numepoints)
{

(lpoints[3*i+l]

Ilif points match
if«lpoints[3*i]

epoints[3*j+l]»
{

epoints[3*j]) &&

Ilif left point is less
respresentative remove it

if(lpoints[3*i+2] > epoints[3*j+2])
{

numlpoints--;
for(k = i ; k < numlpoints ;

k++)

lpoints[3*k] =
Ipoints[3*(k+l)];

Ipoints[3*k+l]
Ipoints[3*(k+l)+1];

Ipoints[3*k+2]
Ipoints[3*(k+l)+2];

i--; lias we will increment i as
we leave the loop, we need to decrement it as all the points in i
have moved

break; lias point removed from
1, we don't need to test it against the rest of r

}

Ilotherwise remove the point from the
extra search square

else
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numepoints--;
for(k = j ; k < numepoints

k++)

epoints[3*k] =
epoints[3*(k+1)];

epoints[3*k+1]
epoints[3*(k+1)+1];

epoints[3*k+2]
epoints[3*(k+l)+2];

j++;

i++;

11************record the 'best' point for each
line******************

Ilif only 1 point then it is the best
if(numlpoints == 1)
{

lthetakal->measurement = lpoints[O];
lrhokal->measurement = lpoints[l];
lthetakal->R = DEFRTHETA;
lrhokal->R = DEFRRHO;

}
Ilif more than 1 then pick the best
if(numlpoints > 1)
{

Ilrepeat as long as we have more than 1 point
while(numlpoints > 1)
{

Ilif the first point is worse than the second,
remove the first and move the second to become the new first

if(lpoints[2] > lpoints[S])
{

lpoints[O]=lpoints[3];
Ipoints[1]=lpoints[4];
lpoints[2]=lpoints[S];

}
lias we have removed a point, reduce the number

of points
numlpoints--;
Ilmove the remaining points down
for(i = 1 ; i < numlpoints ; i++)
{

lpoints[3*i]=lpoints[3*(i+1)];
lpoints[3*i+1]=lpoints[3*(i+1)+1];
lpoints[3*i+2)=lpoints[3*(i+1)+2];

}
Ilrecord the best point
lthetakal->measurement = Ipoints[O);
lrhokal->measurement = lpoints[l];
lthetakal->R = DEFRTHETA;
lrhokal->R = DEFRRHO;
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Ilif only 1 point then it is the best
if{numcpoints == 1)
{

cthetakal->measurement = cpoints[O);
crhokal->measurement = cpoints[l];
cthetakal->R = DEFRTHETA;
crhokal->R = DEFRRHO;

}
Ilif more than 1 then pick the best
if{nurncpoints > 1)
{

Ilrepeat as long as we have more than 1 point
while{numcpoints > 1)
{

Ilif the first point is worse than the second,
remove the first and move the second to become the new first

if(cpoints[2] > cpoints[5])
{

cpoints[O]=cpoints[3];
cpoints[1]=cpoints[4];
cpoints[2]=cpoints[5];

}
lias we have removed a point, reduce the number

of points
numcpoints--;
Ilmove the remaining points down
for(i = 1 ; i < numcpoints ; i++)
{

cpoints[3*i]=cpoints[3*(i+l)];
cpoints[3*i+1]=cpoints[3*{i+1)+l];
cpoints[3*i+2)=cpoints[3*(i+1)+2);

}
Ilrecord the best point
cthetakal->measurement = cpoints[O);
crhokal->measurement = cpoints[l);
cthetakal->R = DEFRTHETA;
crhokal->R = DEFRRHO;

Ilif only 1 point then it is the best
if(nurnrpoints == 1)
{

rthetakal->measurement = rpoints[O);
rrhokal->measurement = rpoints[l];
rthetakal->R = DEFRTHETA;
rrhokal->R = DEFRRHO;

if(numrpoints > 1)
{

Ilrepeat as long as we have more than 1 point
while(numrpoints > 1)
{

Ilif the first point is worse than the second,
remove the first and move the second to become the new first

if (rpoints[2] > rpoints[5])
{

rpoints[O]=rpoints[3];
rpoints[l]=rpoints[4];
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rpoints[2]=rpoints[5];
}
lias we have removed a point, reduce the number

of points
numrpoints--;
Ilmove the remaining points down
forti = 1 ; i < numrpoints ; i++)
{

rpoints[3*i]=rpoints[3*(i+1)];
rpoints[3*i+1]=rpoints[3*(i+1)+1];
rpoints[3*i+2]=rpoints[3*(i+1)+2];

}
Ilrecord the best point
rthetakal->measurement = rpoints[O];
rrhokal->measurement = rpoints[l];
rthetakal->R = DEFRTHETA;
rrhokal->R = DEFRRHO;

Ilif an extra line is being tracked then record its position
if(((*trackStat)==2) I I ((*trackStat)==3»
{

Ilif only 1 point then it is the best
if(numepoints == 1)
{

ethetakal->measurement = epoints[O];
erhokal->measurement = epoints[l];
ethetakal->R = DEFRTHETA;
erhokal->R = DEFRRHO;

}
Ilif more than 1 then pick the best
if(numepoints > 1)
{

Ilrepeat as long as we have more than 1 point
while(numepoints > 1)
{

Ilif the first point is worse than the
second, remove the first and move the second to become the new
first

if(epoints[2] > epoints[5])
{

epoints[O]=epoints[3];
epoints[1]=epoints[4];
epoints[2]=epoints[5];

}
lias we have removed a point, reduce the

number of points
numepoints--;
Ilmove the remaining points down
forti = 1 ; i < numepoints ; i++)
{

epoints[3*i]=epoints[3*(i+1)];
epoints[3*i+1]=epoints[3*(i+1)+1];
epoints[3*i+2]-epoints[3*(i+1)+2];

}
Ilrecord the best point
ethetakal->measurement = epoints[O];
erhokal->measurernent = epoints[l];
ethetakal->R = DEFRTHETA;

248



AppendixD c++ Source Code

erhokal->R DEFRRHOi

//save kalman filter data to file
fprintf(dataOut, "\tKalman Filter Data: Track Status %d\n",

*trackStat)i
fprintf(dataOut, "\t\tLeft Line: nurnlpoints:

%d\n",numlpoints)i
fprintf(dataOut, "\t\t\tTheta: %d %d %d %f %f %f %f %d %f %d

%f\n", Ithetakal->estimate, Ithetakal->prevEstimate, lthetakal-
>prediction, Ithetakal->estProb, Ithetakal->predProb, lthetakal-
>H, lthetakal->K, Ithetakal->phiOffset, lthetakal->Q, lthetakal-
>measurement, lthetakal->R)i

fprintf(dataOut, "\t\t\tRho: %d %d %d %f %f %f %f %d %f %d
%f\n", lrhokal->estimate, Irhokal->prevEstimate, lrhokal-
>prediction, Irhokal->estProb, lrhokal->predProb, lrhokal->H,
lrhokal->K, lrhokal->phiOffset, lrhokal->Q, lrhokal->measurement,
lrhokal->R) ;

fprintf(dataOut, "\t\tCentre Line: numcpoints:
%d \n" ,numcpoints) i

fprintf(dataOut, "\t\t\tTheta: %d %d %d %f %f %f %f %d %f %d
%f\n", cthetakal->estimate, cthetakal->prevEstimate, cthetakal-
>prediction, cthetakal->estProb, cthetakal->predProb, cthetakal-
>H, cthetakal->K, cthetakal->phiOffset, cthetakal->Q, cthetakal-
>measurement, cthetakal->R)i

fprintf(dataOut, "\t\t\tRho: %d %d %d %f %f %f %f %d %f %d
%f\n", crhokal->estimate, crhokal->prevEstimate, crhokal-
>prediction, crhokal->estProb, crhokal->predProb, crhokal->H,
crhokal->K, crhokal->phiOffset, crhokal->Q, crhokal->measurement,
crhokal->R) ;

fprintf(dataOut, "\t\tRight Line: nurnrpoints:
%d\n",nurnrpoints)i

fprintf(dataOut, "\t\t\tTheta: %d %d %d %f %f %f %f %d %f %d
%f\n", rthetakal->estimate, rthetakal->prevEstimate, rthetakal-
>prediction, rthetakal->estProb, rthetakal->predProb, rthetakal-
>H, rthetakal->K, rthetakal->phiOffset, rthetakal->Q, rthetakal-
>measurement, rthetakal->R);

fprintf(dataOut, "\t\t\tRho: %d %d %d %f %f %f %f %d %f %d
%f\n", rrhokal->estimate, rrhokal->prevEstimate, rrhokal-
>prediction, rrhokal->estProb, rrhokal->predProb, rrhokal->H,
rrhokal->K, rrhokal->phiOffset, rrhokal->Q, rrhokal->measurement,
rrhokal->R) ;

if«(*trackStat)==2) I I «*trackStat)==3»
{

fprintf(dataOut, "\t\tExtra Line: numepoints:
%d\n",numepoints);

fprintf(dataOut, "\t\t\tTheta: %d %d %d %f %f %f %f %d
%f %d %f\n", ethetakal->estimate, ethetakal->prevEstimate,
ethetakal->prediction, ethetakal->estProb, ethetakal->predProb,
ethetakal->H, ethetakal->K, ethetakal->phiOffset, ethetakal->Q,
ethetakal->measurement, ethetakal->R);

fprintf(dataOut, "\t\t\tRho: %d %d %d %f %f %f %f %d
%f %d %f\n", erhokal->estimate, erhokal->prevEstimate, erhokal-
>prediction, erhokal->estProb, erhokal->predProb, erhokal->H,
erhokal->K, erhokal->phiOffset, erhokal->Q, erhokal->measurement,
erhokal->R) i

}

//*******ensure that the points conform to the minimum
distance rules**********
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Ilensure the two outer points are at least the required
distance away from the centre point

if (lthetakal->measurement«cthetakal->measurement+lO»
{

lthetakal->measurement=cthetakal->measurement+10;
}
if (lrhokal->measurement>(crhokal->measurement-S»
{

lrhokal->measurement=crhokal->measurement-S;
}
if (rthetakal->measurement>(cthetakal->measurement-lO»
{

rthetakal->measurement=cthetakal->measurement-10;
}
if (rrhokal->measurement«crhokal->measurement+S»
{

rrhokal->measurement=crhokal->measurement+S;

Ilensure that the extra point is at least the required
distance away from the lines

if ((*trackStat)==3)
{

if (ethetakal->measurement«lthetakal->measurement+S»
{

ethetakal->measurement=lthetakal->measurement+S;

if (erhokal->measurement>(lrhokal->measurement-6»
{

erhokal->measurement=lrhokal->measurement-6;

if ((*trackStat)==2)
{

if (ethetakal->measurement>(rthetakal->measurement-S»
{

ethetakal->measurement=rthetakal->measurement-8;
}
if (erhokal->measurement«rrhokal->measurement+6»
{

erhokal->measurement=rrhokal->measurement+6;

11********if points are missing, then Kalman Filter may use
spurious data, therefore use the prediction as the
measurement*****

if (numlpoints==O)
{

lthetakal->measurement=lthetakal->prediction;
lrhokal->measurement=lrhokal->prediction;
lthetakal->R=4*DEFRTHETA;
lrhokal->R=4*DEFRRHO;

if (numcpoints==O)
{

cthetakal->measurement=cthetakal->prediction;
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crhokal->measurement=crhokal->predictioni
cthetakal->R=4*DEFRTHETA:
crhokal->R=4*DEFRRHO;

if (numrpoints==O)
{

rthetakal->measurement=rthetakal->prediction:
rrhokal->measurement=rrhokal->prediction:
rthetakal->R=4*DEFRTHETA:
rrhokal->R=4*DEFRRHO:

if( «*trackStat)==2) I «*trackStat)==3))
{

if (numepoints==O)
{

ethetakal->measurement=ethetakal->prediction;
erhokal->measurement=erhokal->prediction:
ethetakal->R=4*DEFRTHETA;
erhokal->R=4*DEFRRHO;

11****if 2 points found, use those to predict the third
point****

Ilif centre point missing, average the other 2
if«numcpoints 0) && (numlpoints > 0) && (numrpoints>

0) )

cthetakal-
>measurement=MathFns::Round«(double)lthetakal-
>measurement+(double)rthetakal->measurement)/2);

crhokal->measurement=MathFns::Round«(double)lrhokal-
>measurement+(double)rrhokal->measurement)/2);

cthetakal->R=pow«sqrt(lthetakal->R)+sqrt(rthetakal-
>R)),2);

crhokal->R=pow«sqrt(lrhokal->R)+sqrt(rrhokal->R)),2);

Ilif right point missing calculate from other two
if«numrpoints == 0) && (numlpoints > 0) && (numcpoints>

0) )

rthetakal->measurement=cthetakal-
>measurement+cthetakal->measurement-lthetakal->measurement;

rrhokal->measurement=crhokal->measurement+crhokal-
>measurement-lrhokal->measurement;

rthetakal->R=pow«2*sqrt(cthetakal->R)+sqrt(lthetakal-
>R) ) ,2) ;

rrhokal->R=pow«2*sqrt(crhokal->R)+sqrt(lrhokal-
>R) ),2) ;

}

Ilif left point missing calculate from other two
if«numlpoints == 0) && (numrpoints > 0) && (numcpoints >

0) )

lthetakal->measurement=cthetakal-
>measurement+cthetakal->measurement-rthetakal->measurement;
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lrhokal->measurement=crhokal->measurement+crhokal-
>measurement-rrhokal->measurement;

Ithetakal->R=pow((2*sqrt(cthetakal->R)+sqrt(rthetakal-
>R) ),2) ;

lrhokal->R=pow((2*sqrt(crhokal->R)+sqrt(rrhokal-
>R)),2);

}

Iisave kalman filter data to file
fprintf(dataOut, "\n\tKalman Filter Data: Track Status

%d\n", *trackStat);
fprintf(dataOut, "\t\tLeft Line: numlpoints:

%d\n",numlpoints);
fprintf(dataOut, "\t\t\tTheta: Id Id Id If If If If Id If Id

%f\n", Ithetakal->estimate, Ithetakal->prevEstimate, Ithetakal-
>prediction, Ithetakal->estProb, Ithetakal->predProb, Ithetakal-
>H, Ithetakal->K, Ithetakal->phiOffset, Ithetakal->Q, lthetakal-
>measurement, Ithetakal->R);

fprintf(dataOut, "\t\t\tRho: %d %d %d If %f %f %f %d %f Id
%f\n", lrhokal->estimate, lrhokal->prevEstimate, lrhokal-
>prediction, lrhokal->estProb, lrhokal->predProb, lrhokal->H,
lrhokal->K, lrhokal->phiOffset, lrhokal->Q, lrhokal->measurement,
lrhokal->R) ;

fprintf(dataOut, "\t\tCentre Line: numcpoints:
%d\n",numcpoints);

fprintf(dataOut, "\t\t\tTheta: %d Id Id If If If If Id If Id
%f\n", cthetakal->estimate, cthetakal->prevEstimate, cthetakal-
>prediction, cthetakal->estProb, cthetakal->predProb, cthetakal-
>H, cthetakal->K, cthetakal->phiOffset, cthetakal->Q, cthetakal-
>measurement, cthetakal->R);

fprintf(dataOut, "\t\t\tRho: %d Id %d %f %f If If Id If Id
If\n", crhokal->estimate, crhokal->prevEstimate, crhokal-
>prediction, crhokal->estProb, crhokal->predProb, crhokal->H,
crhokal->K, crhokal->phiOffset, crhokal->Q, crhokal->measurement,
crhokal->R);

fprintf(dataOut, "\t\tRight Line: numrpoints:
%d\n",numrpoints);

fprintf(dataOut, "\t\t\tTheta: Id %d Id If If %f %f Id If Id
%f\n", rthetakal->estimate, rthetakal->prevEstimate, rthetakal-
>prediction, rthetakal->estProb, rthetakal->predProb, rthetakal-
>H, rthetakal->K, rthetakal->phiOffset, rthetakal->Q, rthetakal-
>measurement, rthetakal->R);

fprintf(dataOut, "\t\t\tRho: %d Id %d %f %f %f If %d %f Id
%f\n", rrhokal->estimate, rrhokal->prevEstimate, rrhokal-
>prediction, rrhokal->estProb, rrhokal->predProb, rrhokal->H,
rrhokal->K, rrhokal->phiOffset, rrhokal->Q, rrhokal->measurement,
rrhokal->R) ;

if(((*trackStat)==2) I I ((*trackStat)==3))
{

fprintf(dataOut, "\t\tExtra Line: numepoints:
Id\n",numepoints);

fprintf(dataOut, "\t\t\tTheta: Id Id Id If If If If Id
If Id %f\n", ethetakal->estimate, ethetakal->prevEstimate,
ethetakal->prediction, ethetakal->estProb, ethetakal->predProb,
ethetakal->H, ethetakal->K, ethetakal->phiOffset, ethetakal->Q,
ethetakal->measurement, ethetakal->R);

fprintf(dataOut, "\t\t\tRho: Id Id Id If If If If Id
%f Id %f\n", erhokal->estimate, erhokal->prevEstimate, erhokal-
>prediction, erhokal->estProb, erhokal->predProb, erhokal->H,
erhokal->K, erhokal->phiOffset, erhokal->Q, erhokal->measurement,
erhokal->R);
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//********************Apply Kalman
Filter**************************

//Compute Gain
lthetakal->K=lthetakal->predProb*lthetakal->H/(lthetakal-

>H*lthetakal->predProb*lthetakal->H+lthetakal->R);
lrhokal->K=lrhokal->predProb*lrhokal->H/(lrhokal->H*lrhokal-

>predProb*lrhokal->H+lrhokal->R);

cthetakal->K=cthetakal->predProb*cthetakal->H/(cthetakal-
>H*cthetakal->predProb*cthetakal->H+cthetakal->R);

crhokal->K=crhokal->predProb*crhokal->H/(crhokal->H*crhokal-
>predProb*crhokal->H+crhokal->R);

rthetakal->K=rthetakal->predProb*rthetakal->H/(rthetakal-
>H*rthetakal->predProb*rthetakal->H+rthetakal->R);

rrhokal->K=rrhokal->predProb*rrhokal->H/(rrhokal->H*rrhokal-
>predProb*rrhokal->H+rrhokal->R);

if«(*trackStat)==2) I «*trackStat)==3»
{

ethetakal->K=ethetakal->predProb*ethetakal-
>H/(ethetakal->H*ethetakal->predProb*ethetakal->H+ethetakal->R);

erhokal->K=erhokal->predProb*erhokal->H/(erhokal-
>H*erhokal->predProb*erhokal->H+erhokal->R);

}

//Update Estimate
Ithetakal->estimate=MathFns::Round(lthetakal-

>prediction+(lthetakal->K*(lthetakal->measurement-(lthetakal-
>H*lthetakal->prediction»»;

lrhokal->estimate=MathFns::Round(lrhokal-
>prediction+(lrhokal->K*(lrhokal->measurement-(lrhokal->H*lrhokal-
>prediction»»;

cthetakal->estimate=MathFns::Round(cthetakal-
>prediction+(cthetakal->K*(cthetakal->measurement-(cthetakal-
>H*cthetakal->prediction»»;

crhokal->estimate=MathFns::Round(crhokal-
>prediction+(crhokal->K*(crhokal->measurement-(crhokal->H*crhokal-
>prediction»»;

rthetakal->estimate=MathFns::Round(rthetakal-
>prediction+(rthetakal->K*(rthetakal->measurement-(rthetakal-
>H*rthetakal->prediction»»i

rrhokal->estimate=MathFns::Round(rrhokal-
>prediction+(rrhokal->K*(rrhokal->measurement-(rrhokal->H*rrhokal-
>prediction»»;

if«(*trackStat)==2) I «*trackStat)==3»
{

ethetakal->estimate=MathFns::Round(ethetakal-
>prediction+(ethetakal->K*(ethetakal->measurement-(ethetakal-
>H*ethetakal->prediction»»;

erhokal->estimate=MathFns::Round(erhokal-
>prediction+(erhokal->K*(erhokal->measurement-(erhokal->H*erhokal-
>prediction»»;

}
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//Update Estimate Variance
Ithetakal->estProb=(l-(lthetakal->K*lthetakal-

>H))*lthetakal->predProb;
lrhokal->estProb=(l-(lrhokal->K*lrhokal->H))*lrhokal-

>predProb;

cthetakal->estProb=(l-(cthetakal->K*cthetakal-
>H))*cthetakal->predProb;

crhokal->estProb=(l-(crhokal->K*crhokal->H))*crhokal-
>predProb;

rthetakal->estProb=(l-(rthetakal->K*rthetakal-
>H))*rthetakal->predProb;

rrhokal->estProb=(l-(rrhokal->K*rrhokal->H))*rrhokal-
>predProb;

if(((*trackStat)==2) I ((*trackStat)==3))
{

ethetakal->estProb=(l-(ethetakal->K*ethetakal-
>H))*ethetakal->predProb;

erhokal->estProb=(l-(erhokal->K*erhokal->H))*erhokal-
>predProb;

}

//calculate phi offset
lthetakal->phiOffset=lthetakal->estimate-lthetakal-

>prevEstimate;
lrhokal->phiOffset=lrhokal->estimate-lrhokal->prevEstimate;

cthetakal->phiOffset=cthetakal->estimate-cthetakal-
>prevEstimate;

crhokal->phiOffset=crhokal->estimate-crhokal->prevEstimate;

rthetakal->phiOffset=rthetakal->estimate-rthetakal-
>prevEstimate;

rrhokal->phiOffset=rrhokal->estimate-rrhokal->prevEstimate;

if(((*trackStat)==2) I ((*trackStat)==3))
{

ethetakal->phiOffset=ethetakal->estimate-ethetakal-
>prevEstimate;

erhokal->phiOffset=erhokal->estimate-erhokal-
>prevEstimate;

}

//predict phi offset if one line is missing
if((numcpoints == 0) && (numlpoints > 0) && (numrpoints>

0) )

cthetakal->phiOffset=MathFns::Round((lthetakal-
>phiOffset+rthetakal->phiOffset)/2);

crhokal->phiOffset=MathFns::Round((lrhokal-
>phiOffset+rrhokal->phiOffset)/2);

}

if((numrpoints -- 0) && (numlpoints> 0) && (numcpoints>
0) )

rthetakal->phiOffset=MathFns::Round((lthetakal-
>phiOffset+cthetakal->phiOffset)/2);
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rrhokal->phiOffset=MathFns::Round((lrhokal-
>phiOffset+crhokal->phiOffset)/2);

}

if ((numlpoints 0) && (numrpoints > 0) && (numcpoints >
0) )

Ithetakal->phiOffset=MathFns::Round((cthetakal-
>phiOffset+rthetakal->phiOffset)/2);

lrhokal->phiOffset=MathFns::Round((crhokal-
>phiOffset+rrhokal->phiOffset)/2);

}

//Project Ahead
Ithetakal->prediction=MathFns::Round(lthetakal-

>phiOffset+lthetakal->estimate);
Ithetakal->predProb=lthetakal->estProb+lthetakal->Q;
lrhokal->prediction=MathFns::Round(lrhokal-

>phiOffset+lrhokal->estimate);
lrhokal->predProb=lrhokal->estProb+lrhokal->Q;

cthetakal->prediction=MathFns::Round(cthetakal-
>phiOffset+cthetakal->estimate);

cthetakal->predProb=cthetakal->estProb+cthetakal->Q;
crhokal->prediction=MathFns::Round(crhokal-

>phiOffset+crhokal->estimate);
crhokal->predProb=crhokal->estProb+crhokal->Q;

rthetakal->prediction=MathFns::Round(rthetakal-
>phiOffset+rthetakal->estimate);

rthetakal->predProb=rthetakal->estProb+rthetakal->Q;
rrhokal->prediction=MathFns::Round(rrhokal-

>phiOffset+rrhokal->estimate);
rrhokal->predProb=rrhokal->estProb+rrhokal->Q;

if (((*trackStat) ==2) I ((*trackStat) ==3»
{

ethetakal->prediction=MathFns::Round(ethetakal-
>phiOffset+ethetakal->estimate);

ethetakal->predProb=ethetakal->estProb+ethetakal->Q;
erhokal->prediction=MathFns::Round(erhokal-

>phiOffset+erhokal->estimate);
erhokal->predProb=erhokal->estProb+erhokal->Q;

//update previous estimate
Ithetakal->prevEstimate=lthetakal->estimate;
lrhokal->prevEstimate=lrhokal->estimate;

cthetakal->prevEstimate=cthetakal->estimate;
crhokal->prevEstimate=crhokal->estimate;

rthetakal->prevEstimate=rthetakal->estimate;
rrhokal->prevEstimate=rrhokal->estimate;

if (((*trackStat) ==2) I ( (*trackStat) ==3»
{

ethetakal->prevEstimate=ethetakal->estimate;
erhokal->prevEstimate=erhokal->estimate;
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Iisave kalman filter data to file
fprintf(dataOut, "\n\tKalman Filter Data after KF: Track

Status %d\n", *trackStat);
fprintf(dataOut, "\t\tLeft Line: numlpoints:

%d\n",numlpoints);
fprintf(dataOut, "\t\t\tTheta: %d %d %d %f %f %f %f %d %f %d

%f\n", lthetakal->estimate, lthetakal->prevEstimate, lthetakal-
>prediction, Ithetakal->estProb, Ithetakal->predProb, Ithetakal-
>H, Ithetakal->K, Ithetakal->phiOffset, Ithetakal->Q, Ithetakal-
>measurement, Ithetakal->R);

fprintf(dataOut, "\t\t\tRho: %d %d %d %f %f %f %f %d %f %d
%f\n", lrhokal->estimate, lrhokal->prevEstimate, lrhokal-
>prediction, lrhokal->estProb, lrhokal->predProb, lrhokal->H,
lrhokal->K, lrhokal->phiOffset, lrhokal->Q, lrhokal->measurement,
lrhokal->R) ;

fprintf(dataOut, "\t\tCentre Line: numcpoints:
%d\n",numcpoints);

fprintf(dataOut, "\t\t\tTheta: %d %d %d %f %f %f %f %d %f %d
%f\n", cthetakal->estimate, cthetakal->prevEstimate, cthetakal-
>prediction, cthetakal->estProb, cthetakal->predProb, cthetakal-
>H, cthetakal->K, cthetakal->phiOffset, cthetakal->Q, cthetakal-
>measurement, cthetakal->R);

fprintf(dataOut, "\t\t\tRho: %d %d %d %f %f %f %f %d %f %d
%f\n", crhokal->estimate, crhokal->prevEstimate, crhokal-
>prediction, crhokal->estProb, crhokal->predProb, crhokal->H,
crhokal->K, crhokal->phiOffset, crhokal->Q, crhokal->measurement,
crhokal->R);

fprintf(dataOut, "\t\tRight Line: numrpoints:
%d\n",numrpoints);

fprintf(dataOut, "\t\t\tTheta: %d %d %d %f %f %f %f %d %f %d
%f\n", rthetakal->estimate, rthetakal->prevEstimate, rthetakal-
>prediction, rthetakal->estProb, rthetakal->predProb, rthetakal-
>H, rthetakal->K, rthetakal->phiOffset, rthetakal->Q, rthetakal-
>measurement, rthetakal->R);

fprintf(dataOut, "\t\t\tRho: %d %d %d %f %f %f %f %d %f %d
%f\n", rrhokal->estimate, rrhokal->prevEstimate, rrhokal-
>prediction, rrhokal->estProb, rrhokal->predProb, rrhokal->H,
rrhokal->K, rrhokal->phiOffset, rrhokal->Q, rrhokal->measurement,
rrhokal->R) ;

if (((*trackStat) ==2) II ((*trackStat) ==3))
{

fprintf(dataOut, "\t\tExtra Line: numepoints:
%d\n",numepoints);

fprintf(dataOut, "\t\t\tTheta: %d %d %d %f %f %f %f %d
%f %d %f\n", ethetakal->estimate, ethetakal->prevEstimate,
ethetakal->prediction, ethetakal->estProb, ethetakal->predProb,
ethetakal->H, ethetakal->K, ethetakal->phiOffset, ethetakal->Q,
ethetakal->measurement, ethetakal->R):

fprintf(dataOut, "\t\t\tRho: %d %d %d %f %f %f %f %d
%f %d %f\n", erhokal->estimate, erhokal->prevEstimate, erhokal-
>prediction, erhokal->estProb, erhokal->predProb, erhokal->H,
erhokal->K, erhokal->phiOffset, erhokal->Q, erhokal->measurement,
erhokal->R) :

}

11*******************Apply Fuzzy Logic**********************

Ilif right point missing set tracking mode to 3 and set up
extra point if necessary

if((numrpoints == 0) && (numlpoints > 0) && (numcpoints > 0)
&& ((*trackStat) !=3))
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(*trackStat)=3;
ethetakal->prediction=MathFns::Round(O.8*(lthetakal-

>prediction+lthetakal->prediction-cthetakal->prediction»;
erhokal->prediction=MathFns::Round(0.8*(lrhokal-

>prediction+lrhokal->prediction-crhokal->prediction»;
ethetakal->prevEstimate=MathFns::Round(0.8*(lthetakal-

>prediction+lthetakal->prediction-cthetakal->prediction»;
erhokal->prevEstimate=MathFns::Round(O.8*(lrhokal-

>prediction+lrhokal->prediction-crhokal->prediction»;
ethetakal->estimate=MathFns::Round(0.8*(lthetakal-

>prediction+lthetakal->prediction-cthetakal->prediction»;
erhokal->estimate=MathFns::Round(0.8*(lrhokal-

>prediction+lrhokal->prediction-crhokal->prediction»;
ethetakal->predProb=pow(0.8*(2*sqrt(lthetakal-

>predProb)+sqrt(cthetakal->predProb»,2);
erhokal->predProb=pow(0.8*(2*sqrt(lrhokal-

>predProb)+sqrt(crhokal->predProb»,2);
ethetakal->phiOffset=O;
erhokal->phiOffset=O;
*switchCount=O;
numepoints=-l;

ffif left point missing set tracking mode to 2 and set up
extra point if necessary

if«numlpoints == 0) && (numrpoints > 0) && (numcpoints > 0)
&& «*trackStat) !=2»

{
(*trackStat)=2;
ethetakal->prediction=MathFns::Round(O.8*(rthetakal-

>prediction+rthetakal->prediction-cthetakal->prediction»;
erhokal->prediction=MathFns::Round(0.8*(rrhokal-

>prediction+rrhokal->prediction-crhokal->prediction»;
ethetakal->prevEstimate=MathFns::Round(0.8*(rthetakal-

>prediction+rthetakal->prediction-cthetakal->prediction»;
erhokal->prevEstimate=MathFns::Round(O.8*(rrhokal-

>prediction+rrhokal->prediction-crhokal->prediction»;
ethetakal->estimate=MathFns::Round(0.8*(rthetakal-

>prediction+rthetakal->prediction-cthetakal->prediction»;
erhokal->estimate=MathFns::Round(0.8*(rrhokal-

>prediction+rrhokal->prediction-crhokal->prediction»;
ethetakal->predProb=pow(0.8* (2*sqrt (rthetakal-

>predProb)+sqrt(cthetakal->predProb»,2);
erhokal->predProb=pow(O.8* (2*sqrt (rrhokal-

>predProb)+sqrt(crhokal->predProb»,2);
ethetakal->phiOffset=O;
erhokal->phiOffset=O;
*switchCount=O;
numepoints=-l;

ffadjust fuzzy value associated with switching from the
sideline

if (((*trackStat) ==2) I I ( (*trackStat) ==3) )
{

f/if the extra point is present then increment the
extra point count

if (numepoints>O)
{

(*switchCount)++;
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//if the extra point is not present then decrement the
extra point count

if (numepoints==O)
{

(*switchCount)--;

//if we have all three lines decrement extra point
count, if -3 then set to -3;

if((numlpoints > 0) & (numrpoints > 0) & (numcpoints>
0) )

(*switchCount)--;

//if we find an extra point 3 times in a row, we are
probably on a side line, therefore we need to switch to the centre
line

if(((*trackStat)==2)&&((*switchCount»=3»
{

lthetakal->estimate=cthetakal->estimate;
Ithetakal->prevEstirnate=cthetakal->prevEstimate;
Ithetakal->prediction=cthetakal->prediction;
Ithetakal->estProb=cthetakal->estProb;
Ithetakal->predProb=cthetakal->predProb;
lthetakal->H=cthetakal->H;
Ithetakal->K=cthetakal->K;
Ithetakal->phiOffset=cthetakal->phiOffset;
lthetakal->Q=cthetakal->Q;
Ithetakal->measurement=cthetakal->measurement;
Ithetakal->R=cthetakal->R;
lrhokal->estimate=crhokal->estimate;
lrhokal->prevEstimate=crhokal->prevEstimate;
lrhokal->prediction=crhokal->prediction;
lrhokal->estProb=crhokal->estProb;
lrhokal->predProb=crhokal->predProb;
lrhokal->H=crhokal->H;
lrhokal->K=crhokal->K;
lrhokal->phiOffset=crhokal->phiOffset;
lrhokal->Q=crhokal->Q;
lrhokal->measurement=crhokal->measurement;
lrhokal->R=crhokal->R;

cthetakal->estimate=rthetakal->estimate;
cthetakal->prevEstimate=rthetakal->prevEstimate;
cthetakal->prediction=rthetakal->prediction;
cthetakal->estProb=rthetakal->estProb;
cthetakal->predProb=rthetakal->predProb;
cthetakal->H=rthetakal->H;
cthetakal->K=rthetakal->K;
cthetakal->phiOffset=rthetakal->phiOffset;
cthetakal->Q=rthetakal->Q;
cthetakal->measurernent=rthetakal->measurement;
cthetakal->R=rthetakal->R;
crhokal->estimate=rrhokal->estirnate;
crhokal->prevEstimate=rrhokal->prevEstimate;
crhokal->prediction=rrhokal->prediction;
crhokal->estProb=rrhokal->estProb;
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crhokal->predProb=rrhokal->predProb;
crhokal->H=rrhokal->H;
crhokal->K=rrhokal->K;
crhokal->phiOffset=rrhokal->phiOffset;
crhokal->Q=rrhokal->Q;
crhokal->rneasurernent=rrhokal->measurernent;
crhokal->R=rrhokal->R;

rthetakal->estirnate=ethetakal->estirnate;
rthetakal->prevEstirnate=ethetakal->prevEstirnate;
rthetakal->prediction=ethetakal->prediction;
rthetakal->estProb=ethetakal->estProb;
rthetakal->predProb=ethetakal->predProb;
rthetakal->H=ethetakal->H;
rthetakal->K=ethetakal->K;
rthetakal->phiOffset=ethetakal->phiOffset;
rthetakal->Q=ethetakal->Q;
rthetakal->rneasurernent=ethetakal->measurernent;
rthetakal->R=ethetakal->R;
rrhokal->estimate=erhokal->estimate;
rrhokal->prevEstimate=erhokal->prevEstimate;
rrhokal->prediction=erhokal->prediction;
rrhokal->estProb=erhokal->estProb;
rrhokal->predProb=erhokal->predProb;
rrhokal->H=erhokal->H;
rrhokal->K=erhokal->K;
rrhokal->phiOffset=erhokal->phiOffset;
rrhokal->Q=erhokal->Q;
rrhokal->rneasurernent=erhokal->rneasurement;
rrhokal->R=erhokal->R;

*trackStat=l;

if«(*trackStat)==3)&&«*switchCount»=3))
{

rthetakal->estirnate=cthetakal->estimate;
rthetakal->prevEstimate=cthetakal->prevEstirnate;
rthetakal->prediction=cthetakal->prediction;
rthetakal->estProb=cthetakal->estProb;
rthetakal->predProb=cthetakal->predProb;
rthetakal->H=cthetakal->H;
rthetakal->K=cthetakal->K;
rthetakal->phiOffset=cthetakal->phiOffset;
rthetakal->Q=cthetakal->Q;
rthetakal->rneasurernent=cthetakal->measurement;
rthetakal->R=cthetakal->R;
rrhokal->estimate=crhokal->estimate;
rrhokal->prevEstimate=rrhokal->prevEstimate;
rrhokal->prediction=crhokal->prediction;
rrhokal->estProb=crhokal->estProb;
rrhokal->predProb=crhokal->predProb;
rrhokal->H=crhokal->H;
rrhokal->K=crhokal->K;
rrhokal->phiOffset=crhokal->phiOffset;
rrhokal->Q=crhokal->Q;
rrhokal->measurement=crhokal->measurement;
rrhokal->R=crhokal->R;

cthetakal->estimate=lthetakal->estimate;
cthetakal->prevEstimate=lthetakal->prevEstimate;
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cthetakal->prediction=lthetakal->prediction;
cthetakal->estProb=lthetakal->estProb;
cthetakal->predProb=lthetakal->predProb;
cthetakal->H=lthetakal->H;
cthetakal->K=lthetakal->K;
cthetakal->phiOffset=lthetakal->phiOffset;
cthetakal->Q=lthetakal->Q;
cthetakal->measurement=lthetakal->measurement;
cthetakal->R=lthetakal->R;
crhokal->estimate=lrhokal->estimate;
crhokal->prevEstimate=lrhokal->prevEstimate;
crhokal->prediction=lrhokal->prediction;
crhokal->estProb=lrhokal->estProb;
crhokal->predProb=lrhokal->predProb;
crhokal->H=lrhokal->H;
crhokal->K=lrhokal->K;
crhokal->phiOffset=lrhokal->phiOffset;
crhokal->Q=lrhokal->Q;
crhokal->measurement=lrhokal->measurement;
crhokal->R=lrhokal->R;

lthetakal->estimate=ethetakal->estimate;
lthetakal->prevEstimate=ethetakal->prevEstimate;
lthetakal->prediction=ethetakal->prediction;
lthetakal->estProb=ethetakal->estProb;
lthetakal->predProb=ethetakal->predProb;
lthetakal->H=ethetakal->H;
lthetakal->K=ethetakal->K;
lthetakal->phiOffset=ethetakal->phiOffset;
lthetakal->Q=ethetakal->Q;
lthetakal->measurement=ethetakal->measurement;
lthetakal->R=ethetakal->R;
lrhokal->estimate=erhokal->estimate;
lrhokal->prevEstimate=erhokal->prevEstimate;
lrhokal->prediction=erhokal->prediction;
lrhokal->estProb=erhokal->estProb;
lrhokal->predProb=erhokal->predProb;
lrhokal->H=erhokal->H;
lrhokal->K=erhokal->K;
lrhokal->phiOffset=erhokal->phiOffset;
lrhokal->Q=erhokal->Q;
lrhokal->measurement=erhokal->measurement;
lrhokal->R=erhokal->R;

*trackStat=l;

Ilif we have failed to find an extra line to the side3 times
in a row then we can assume that we are tracking on the centre
line and the side line has dissappeared

if««*trackStat)==2) II«*trackStat)==3))&&«*switchCount)<-
-3) )

*trackStat=l;

Ilif we have not found the centre line increment centre lose
count else decrement it

if(numcpoints == 0)
{

(*loseCentreCount)++;
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else
{

(*loseCentreCount)--;
if«*loseCentreCount)<O)
{

(*loseCentreCount)=O;

Ilif we have not found the centre line for 5 frames set to
re aquire the lines

if«*loseCentreCount»=5)
{

*trackStat=O;
*loseCentreCount=O;

Ilif we have only found 1 or 0 line{s) increment a count
if{{{numlpoints >= 0) && (numrpoints == 0) && (numcpoints

0)) I I «numlpoints 0) && (numrpoints >= 0) && (numcpoints
0)) I I ({numlpoints == 0) && (numrpoints == 0) && (numcpoints >=
0) ) )

(*loseCount)++;

else
{

(*loseCount)--;
if«*loseCount)<O)
{

(*loseCount)=O;

Ilif we have only found 1 or 0 line{s) for 5 frames set to
re aquire the lines

if«*loseCount»=5)
{

*trackStat=Oi
*loseCount=Oi

Ilsave kalman filter data to file
fprintf(dataOut, "\n\tKalman Filter Data after fuzzy rules:

Track Status %d\n", *trackStat)i
fprintf(dataOut, "\t\tLeft Line: numlpoints:

%d\n",numlpoints);
fprintf{dataOut, "\t\t\tTheta: %d %d %d %f %f %f %f %d %f %d

%f\n", lthetakal->estimate, lthetakal->prevEstimate, lthetakal-
>prediction, Ithetakal->estProb, Ithetakal->predProb, Ithetakal-
>H, Ithetakal->K, Ithetakal->phiOffset, Ithetakal->Q, Ithetakal-
>measurement, Ithetakal->R);

fprintf(dataOut, "\t\t\tRho: %d %d %d %f %f %f %f %d %f %d
%f\n", lrhokal->estimate, lrhokal->prevEstimate, lrhokal-
>prediction, lrhokal->estProb, lrhokal->predProb, lrhokal->H,
lrhokal->K, lrhokal->phiOffset, lrhokal->Q, lrhokal->measurement,
lrhokal->R) i

fprintf{dataOut, "\t\tCentre Line: numcpoints:
%d\n",numcpoints)i
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fprintf(dataOut, "\t\t\tTheta: %d %d %d %f %f %f %f %d %f %d
%f\n", cthetakal->estirnate, cthetakal->prevEstirnate, cthetakal-
>prediction, cthetakal->estProb, cthetakal->predProb, cthetakal-
>H, cthetakal->K, cthetakal->phiOffset, cthetakal->Q, cthetakal-
>rneasurernent, cthetakal->R);

fprintf(dataOut, "\t\t\tRho: %d %d %d %f %f %f %f %d %f %d
%f\n", crhokal->estirnate, crhokal->prevEstirnate, crhokal-
>prediction, crhokal->estProb, crhokal->predProb, crhokal->H,
crhokal->K, crhokal->phiOffset, crhokal->Q, crhokal->rneasurernent,
crhokal->R) ;

fprintf(dataOut, "\t\tRight Line: nurnrpoints:
%d\n",nurnrpoints);

fprintf(dataOut, "\t\t\tTheta: %d %d %d %f %f %f %f %d %f %d
%f\n", rthetakal->estirnate, rthetakal->prevEstirnate, rthetakal-
>prediction, rthetakal->estProb, rthetakal->predProb, rthetakal-
>H, rthetakal->K, rthetakal->phiOffset, rthetakal->Q, rthetakal-
>rneasurernent, rthetakal->R);

fprintf(dataOut, "\t\t\tRho: %d %d %d %f %f %f %f %d %f %d
%f\n", rrhokal->estirnate, rrhokal->prevEstirnate, rrhokal-
>prediction, rrhokal->estProb, rrhokal->predProb, rrhokal->H,
rrhokal->K, rrhokal->phiOffset, rrhokal->Q, rrhokal->rneasurernent,
rrhokal->R);

if( «*trackStat)==2) II «*trackStat)==3»
{

fprintf(dataOut, "\t\tExtra Line: nurnepoints:
%d\n",nurnepoints);

fprintf(dataOut, "\t\t\tTheta: %d %d %d %f %f %f %f %d
%f %d %f\n", ethetakal->estirnate, ethetakal->prevEstirnate,
ethetakal->prediction, ethetakal->estProb, ethetakal->predProb,
ethetakal->H, ethetakal->K, ethetakal->phiOffset, ethetakal->Q,
ethetakal->rneasurernent, ethetakal->R);

fprintf(dataOut, "\t\t\tRho: %d %d %d %f %f %f %f %d
%f %d %f\n", erhokal->estirnate, erhokal->prevEstirnate, erhokal-
>prediction, erhokal->estProb, erhokal->predProb, erhokal->H,
erhokal->K, erhokal->phiOffset, erhokal->Q, erhokal->rneasurernent,
erhokal->R) ;

)

//calculate the square sizes
l_rect_theta size = (int)ceil(1+(6*sqrt(lthetakal-

>predProb»);
l_rect_rho size = (int)ceil(1+(6*sqrt(lrhokal->predProb»);
c_rect_theta size = (int)ceil(1+(6*sqrt(cthetakal-

>predProb) ));
c_rect_rho size = (int)ceil(1+(6*sqrt(crhokal->predProb»);

= (int)ceil(1+(6*sqrt(rthetakal-r rect theta size_ _
>predProb»);

r_rect_rho_size =
erect theta size_ _

>predProb»);
erect rho size_ _

(int)ceil(1+(6*sqrt(rrhokal->predProb»);
= (int)ceil(1+(6*sqrt(ethetakal-

(int)ceil(1+(6*sqrt(erhokal->predProb»);

//calculate the half square sizes
h_1_rect_theta_size=l_rect_theta_size/2;
h_1_rect_rho_size=l_rect_rho_size/2;
h_c_rect_theta_size=c_rect_theta_size/2;
h_c_rect_rho_size=c_rect_rho_size/2;
h r rect theta size=r rect theta size/2;
h=r=rect=rho_size=r_rect_rho_size/2;
h erect theta size=e rect theta size/2;
h=e=rect=rho_size=e_rect_rho_size/2;

262



AppendixD C++ Source Code

Ilensure the two outer points are at least the required
distance away from the centre point

if (lthetakal->prediction«cthetakal->prediction+10»
{

lthetakal->prediction=cthetakal->prediction+10i

if (lrhokal->prediction>(crhokal->prediction-S»
{

lrhokal->prediction=crhokal->prediction-S;
}

if (rthetakal->prediction>(cthetakal->prediction-10»
{

rthetakal->prediction=cthetakal->prediction-10;
}
if (rrhokal->prediction«crhokal->prediction+S»
{

rrhokal->prediction=crhokal->prediction+S;

Ilensure that the extra point is at least the required
distance away from the lines

if ((*trackStat)==3)
{

if (ethetakal->prediction«lthetakal->prediction+S»
{

ethetakal->prediction=lthetakal->prediction+S;
}
if (erhokal->prediction>(lrhokal->prediction-6»
{

erhokal->prediction=lrhokal->prediction-6;

if ((*trackStat)==2)
{

if (ethetakal->prediction>(rthetakal->prediction-S»
{

ethetakal->prediction=rthetakal->prediction-8;

if (erhokal->prediction«rrhokal->prediction+6»
(

erhokal->prediction=rrhokal->prediction+6;

Ilensure that search window doesn't go outside the hough
transform

if(lthetakal->prediction>(htheta-h_l_rect_theta_size»
{

lthetakal->prediction=htheta-h_l_rect_theta_size;
}
if(lthetakal->prediction«h 1 rect theta size-htheta»{ _ _ _ _

Ithetakal->prediction=h_l_rect_theta_size-htheta;
}
if(lrhokal->prediction>(hrho-h 1 rect rho size»{ - _ _ _

lrhokal->prediction=hrho-h_l_rect_rho_sizei
}
if(lrhokal->prediction«h_l_rect_rho_size-hrho»
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lrhokal->prediction=h_l_rect_rho_size-hrhoi

if(cthetakal->prediction>(htheta-h_c_rect_theta_size»
{

cthetakal->prediction=htheta-h_c_rect_theta_sizei

if(cthetakal->prediction«h_c_rect_theta_size-htheta»
{

cthetakal->prediction=h_c_rect_theta_size-hthetai
}

if(crhokal->prediction>(hrho-h_c_rect_rho_size»
{

crhokal->prediction=hrho-h_c_rect_rho_sizei

if(crhokal->prediction«h_c_rect_rho_size-hrho»
{

crhokal->prediction=h_c_rect_rho_size-hrhoi
}

if(rthetakal->prediction>(htheta-h_r_rect_theta_size»
{

rthetakal->prediction=htheta-h_r_rect_theta_sizei

if(rthetakal->prediction«h_r_rect_theta_size-htheta»
{

rthetakal->prediction=h_r_rect_theta_size-hthetai

if(rrhokal->prediction>(hrho-h_r_rect_rho_size»
{

rrhokal->prediction=hrho-h_r_rect_rho_sizei

if(rrhokal->prediction«h_r_rect_rho_size-hrho»
{

rrhokal->prediction=h_r_rect_rho_size-hrhoi

if(ethetakal->prediction>(htheta-h_e_rect_theta_size»
{

ethetakal->prediction=htheta-h_e_rect_theta_size;

if(ethetakal->prediction«h_e_rect_theta_size-htheta»
{

ethetakal->prediction=h_e_rect_theta_size-htheta;
}
if(erhokal->prediction>(hrho-h_e_rect_rho_size»
{

erhokal->prediction=hrho-h_e_rect_rho_size;

if(erhokal->prediction«h_e_rect_rho_size-hrho»
{

erhokal->prediction=h_e_rect_rho_size-hrho;

//save fianl points to file
fprintf(dataOut, "\tFinal Square Centres: Track Status

%d\n", *trackStat);
/* fprintf(dataOut, "\t\tLeft Line:\n\t\t\tTheta: %d Rho: %d
Size: %d\n\n",sSquares[O], sSquares[l], sSquares[2]);

fprintf(dataOut, "\t\tCentre Line:\n\t\t\tTheta: %d Rho: %d
Size: %d\n\n",sSquares[3], sSquares[4], sSquares[5]);

fprintf(dataOut, "\t\tRight Line:\n\t\t\tTheta: %d Rho: %d
Size: %d\n\n",sSquares[6], sSquares[7], sSquares[8]);
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if«(*trackStat)==2) I I «*trackStat)==3»
{

fprintf(dataOut, "\t\tExtra Line:\n\t\t\tTheta: %d
Rho: %d Size: %d\n",extraSquare[O], extraSquare[l],
extraSquare[2])i

}*I

fclose(dataOut)i

return (errCode)i

D.2.S VisionThread::Grad

11****************************************************************
****
II Image Gradient Function
II Calculate the gradient at a pixel in the image
II inputs: image: the image we want the gardient of
II xpos, ypos: position in the image that we want the
gradient
II outputs: dx, dy: gradients in x and y direction
II return value: magnmitude of the gradient
11****************************************************************
****
double VisionThread::Grad(ImageObject* image, int xpos, int ypos,
double* dx, double* dy)
{

double mag,xh,yv,xd,yd,dl,d2;

Ilcalculate the gradient components
xh = «(double)image->image data [ypos] [xpos+l]) -

«double)image->image data [ypos] [xpos-l]»/2i Ilcalculate the
portion of dI/dx due to horizontal

yv = «(double)image->image data [ypos+l] [xpos]) -
«double)image->image data [ypos-l] [xpos]»/2i Ilcalculate the
portion of dI/dy due to vertical

dl = «(double)image->image data [ypos+l] [xpos+l]) -
«double)image->image data [ypos-l] [xpos-l]»/4;

d2 = «(double)image->image_data[ypos-l] [xpos+l]) -
«double)image->image_data[ypos+l] [xpos-l]»/4i

Ilcalculate the gradients
xd dl+d2;
yd = dl-d2;

*dx (xh+xd)/2; Ilcalculate dI/dx
*dy (yv+yd)/2; Ilcalculate dI/dy

mag «*dx) * (*dx» + «*dy) * (*dy»;

return (mag);

D.2.9 VisionThread::FindPoint

11****************************************************************
****
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II Find Point
II Find a point to represent a cluster of points
II inputs: trans: the hough transform that the point is to be
found in
II
II
II
II

xbase, ybase: position of the aggregation square
c size: size of the aggregation square

outputs: XQut, yout: the position of the representative cluster
return value is a representative value

11****************************************************************
****
unsigned int VisionThread::FindPoint(int* xout, int* yout,
HoughTransform* trans, int xbase, int ybase, int c_size)
{

unsigned int value 0;
int xsum = 0;
int ysum = 0;
int num 0;
for(int j = ybase ; j < (ybase + c_size) ; j++)
{

for(int i = xbase ; i < (xbase + c_size) ; i++)
{

if (trans->thres_HT_data[j] [i] == 255)
{

xsum += i;
ysum += j;
num++;
value++;

*xout MathFns::Round«double)xsum I (double)num);
*yout MathFns::Round(double)ysum I (double)num);
return(value);

D.2.10VisionThread::FindPoints

11****************************************************************
****
II find points in the region of a point
II inputs: trans: the hough transform to be searched for points
II thetabase, rhobase: position of the search square
II theta size rho size: search square size
II centre sets the-centre point that thetabase and
rhobase are relative to:
II 0 = top left corner
II 1 = image centre
II mode sets whether only the position is recorded, or
whether the square of the distance from the point and the search
square centre is also recorded:
II 2 = position only
II 3 = position and distance
II note that in mode 2 outpoints must contain twice as
many elements as outnumpoints, in mode 3 there needs to be 3 times
as many elements as outnumpoints
II outputs: outpoints: the points found in the region of the
transform
II outnumpoints: the number of points found
II if there is an error accessing the HT, HTAccessError
is set to 2, otherwise it is 0
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II returns 0 if successful
II returns number of extra memory elements required if not
successful
11****************************************************************
****
int VisionThread::FindPoints(int* outpoints, int* outnumpoints,
HoughTransform* trans, int thetabase, int rhobase, int theta_size,
int rho_size, int centre, int mode, int* HTAccessError)
{

unsigned char tempElement = 0;
int num = 0;
int over = 0;
int theta, htheta, rho, hrho, thetacentre, rhocentre;

Ilget HT dimensions
theta = trans->GetThetaSize();
rho = trans->GetRhoSize();
htheta = MathFns::Round«double)theta/2);
hrho = MathFns::Round«double)rho/2);

Ilclear HT Access error code
*HTAccessError = 0;

Ilif we are working releative to the image centre then
adjust the base.

if (centre == 1)
{

thetabase += htheta;
rhobase += hrho;

Ilcalculate the search square centre
thetacentre = thetabase + (theta size/2);
rhocentre rhobase + (rho_size/2);

Ilfor all points in the search square
for(int j = rhobase ; j < (rhobase + rho_size) ; j++)
{

for(int i = thetabase ; i < lthetabase + theta_size)
i++)

tempElement = trans->aggreg_HT_data[j] [i];
if (tempElement == 1)
{

*HTAccessError = 2;
}
Ilif a point is found
if (tempElement == 255)
{

Ilrecord the points
if (centre == 1)
{

outpoints [mode*nurn] i-htheta;
outpoints [mode*nurn+1] = j-hrho;

else
{

outpoints [mode*nurn] = i;
outpoints [mode*num+1] = j;

}
if (mode == 3)
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outpoints [mode*num+2] = ((i-
thetacentre)*(i-thetacentre»+((j-rhocentre)*(j-rhocentre»;

}
Ilif the buffer is full, record the amount

of extra space required
if (num < ((*outnumpoints)-l»
{

num++;

else
{

over++;

*outnumpoints num;
return(over);
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