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Preface

At the beginning of the nineteenth century, Alexander von Humboldt and Aimé
Bonpland travelled amongst the Ecuadorian Andes. The ‘Avenue of the Volca-
noes’, as Humboldt described this section of the Andes, proved an excellent outdoor
laboratory, generating ideas which have become the foundation for many aspects of
plant ecology today. Their plant collection still remains the basis for plant taxonomy
in the region (evidenced by the number of species in this work with the authority of

“H.B.K.”, the abbreviated names of Humboldt, Bonpland and Kuntze). Richard
Spruce was collecting in the high pdramo grasslands above the Ecuadorian forests
around the time of Humboldt’s death. Soon afterwards, the golden age of plant col-
lecting in South America had begun to decline.

Since then, a number of trips have been made to the Ecuadorian p4ramos by col-
lectors, but their work has tended to be small-scale (by comparison with the efforts
of Humboldt et al.) and concentrated in the more accessible regions. More recently,
scientific interest in the paramos has increased. A project to produce a Flora of Ecua-
dor is now in progress, based on international research coordinated in Scandinavia.

Taxonomically, therefore, the paramo flora is relatively well-known, though in the
absence of a complete guide to the flora, obtaining identifications still requires
lengthy research in herbaria. However, other aspects of pdramo vegetation have
been neglected. Lately, the Centro de Investigaciones Ecolégicas de los Andes Tropi-
cales (CIELAT) based at the Universidad de los Andes in Mérida has concentrated
on Venezuelan padramo vegetation, with particular emphasis on environmental condi-
tions, productivity, population and reproductive ecology. A co-operative research
programme involving Colombia and the Netherlands (Investigaciones de Ecosiste-
mas Tropandinos — ECOANDES) has produced major contributions to our knowl-
edge of the community composition and biogeography of the Colombian p4dramos.

Despite this intense effort elsewhere in the Northern Andes, the padramos of Ecua-
dor have not been subjected to the same degree of detailed study as those in neigh-
bouring countries. The country is well-known as a centre of biological diversity and
this has perhaps led research programmes away from the highlands to the species-
rich forests. The miserable climate at high altitudes cannot have helped the case for
the pdramo in this respect (locals have coined the term parameando to mean “It’s
raining”).

During the course of three student expeditions to Ecuador I had the opportunity
to make extensive observations in the high altitude grasslands of the Andes. The
work was of necessity broad-based: so little is known about pdramo vegetation that it
was difficult to plan the research programme with any confidence. Access to remote
areas of pdramo was difficult to assess from the reference sources available. A low
budget, coupled with these access difficulties and the terrible weather conditions,
limited the technical equipment it was possible to use (warm, rainproof clothing,
camping equipment, food and plant presses constituted a heavy pack without addi-
tional scientific equipment).
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However, a number of projects were carried out and will hopefully act as a catalyst
in encouraging further research in this unique ecosystem. The pdramo is an ideal
place to study plant responses to environmental gradients and a set of interesting cli-
matic conditions with pronounced daily rather than seasonal cycles. It is also an envi-
ronment where, in the future, biological monitoring of the greenhouse effect might
be possible via the response of plant communities to the changing climate.

Paul M. Ramsay,

December 1992.
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Paramo vegetation was quantitatively surveyed in 192 samples on altitudinal gra-
dients in twelve sites in Ecuador. Thirty-one communities were identified, compris-
ing 348 vascular plant taxa (voucher specimens deposited at Kew and QCA, Quito).
These communities could be assigned to eight general types of pdramo vegetation lo-
cated between the upper forest limit and the snow-line: Shrubby Sub-paramo, High
Altitude Dwarfshrub Paramo, Tussock Paramo, Bamboo Piaramo, Espeletia Paramo,
Cushion Pdramo, Rainshadow Desert Piramo and High Altitude Desert Paramo.
Community types were more closely related to altitude than to other variables such
as burning, trampling, grazing and pH.

The species were assigned to ten defined growth form categories. The distribu-
tions of these categories in 192 paramo vegetation samples were described. Twelve
growth form communities were identified. Field temperature measurements of plant
parts demonstrated that some plants maintained day and night temperatures several
degrees Celsius above ambient levels.

The effect of fire on cyclical and successional processes within pdramo vegetation
were described. Two experimental paramo fires reached temperatures in excess of
400°C in the upper tussock canopy, while the tussock bases were mostly below 65°C.
In a quantitative study, the majority of plant-by-plant replacements soon after a para-
mo fire did not depart from those expected by chance, though some trends were ob-
served and described.

Field trials in Central Ecuador provided net aboveground grassland community
productivity estimates for five sites. Estimates ranged from 1,359 g m2 yr'1 at 3,100
mtoS512g m2 yr'1 at 3,950 m.

In greenhouse experiments, tussock grasses from Calamagrostis spp. at three alti-
tudes in the pdramo were grown in a diallel design under two watering regimes. In
both regimes, the grass from the lower altitude yielded more and had a higher
relative yield than that from the higher altitude. RYTs in the wettest treatment lay be-
tween 1.2 and 2.5, those of the drier treatments were not greater than 1.0.

ix



Resumen

La vegetaci6n del padramo fue muestreada cuantitativamente en 192 muestras en
un gradiente altitudinal en doce sitios en Ecuador. Treinta y una comunidades fue-
ron identificadas, comprendiendo 348 taxa de plantas vasculares (muestras fueron
depositadas en Kew y QCA, Quito). Esas comunidades pueden ser asociadas a ocho
tipos de vegetacién del paramo localizadas entre el limite superior del bosque y la
linea de nieve: Sub-paramo Arbustivo, PAramo Arbustivo Enano de Altura, Piramo
Macolla, PAiramo Bambii, Pdramo Espeletia, PAramo Almohadillado, Paramo Desér-
tico Seco y Paramo Desértico de Altura.

Los tipos de comunidades estuvieron mas relacionados a la altitud que a otras vari-
ables como la quema, pisoteando, pastoreo y pH.

Las especies fueron asignadas a diez categorias definidas por su forma de creci-
miento. Las distribuciones de esas categorias en las 192 muestras de vegetacion del
paramo fueron descritas. Doce comunidades de diferente forma de crecimiento fue-
ron identificadas. Mediciones de temperatura de partes de las plantas en el campo
demostraron que algunas plantas mantienen temperaturas, durante el dia y la noche,
varios grados celsius por encima de los niveles ambientales.

El efecto del fuego en los procesos ciclicos de sucesién y dentro de la vegetacion
del paramo fueron descritos. Dos fuegos experimentales en el pdramo, alcanzaron
temperaturas superiores a los 400°C en la parte superior del dosel de la macolla,
mientras que en las bases de la macolla fueron menores a 65°C. En un estudio cuanti-
tativo, la mayoria de los remplazamientos planta por planta inmediatamente déspues
del fuego en el pdramo no fueron distintos de aquellas que se esperaba por suerte,
aunque algunas tendencias fueron observadas y descritas.

Pruebas del campo en la parte central del Ecuador provereron estimaciones de
productividad neta de Ja comunidad de pastos ¢ncima del suelo para cinco sitios. El
rango de las estimaciones fue desde 1,359 g m2 poranoa3,100myS12g m2 por
ano a 3,950 m.

En experimentos de invernadero, las gramineas de Calamagrostis spp. a tres alti-
tudes en el padramo fueron crecidas en un disefio “diallel” a dos regimenes de regan-
do. En ambos regimenes, el pasto de las altitudes bajas produjeron més y tuvieron
mayor cosecha relativo que aquellas de altitudes altas. RYTs en el tratamiento mds
himedo estuvieron entre 1.2y 2.5, aquellas de los tratamientos secos no fueron
mayores que 1.0.
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Ecuador

cuador, situated in north-western South America, is the fourth smallest state on

the continent (Figure 1.1). It derives its name from the equator which passes
through the country which is bounded to the west by the Pacific Ocean, to the north
by Colombia and to the south and east by Pert (though there is con51derable dispute
over this border) The total area has been estimated at 269,178 km?. There are
twenty provinces including the Galapagos Islands and the Banco Central del Ecua-
dor (1990) estimates the population at 10.2 million, about 38 people on average per
square kilometre. The capital city is Quito.

The Andes run approximately north-south, bisecting the country. The western
coastal region is known as the Costa, the Andean uplands as the Sierra, and the east-
ern lowlands are often referred to as the Oriente or as Amazonas. The Andes consist
of two parallel ranges, the Cordillera Occidental (western range) and the Cordillera
Oriental (eastern range). Many peaks are volcanic and snow-covered. The two ran-
ges are connected by transverse ranges (nudos), rather like rungs in a ladder, with
the main centres of population occupying the depressions between them (hoyas).

Although rich in natural resources, Ecuador has not been able to sustain the high
rates of economic growth it experienced during the early 1970’s. The economy was
basically agricultural until extensive exploitation of petroleum deposits in 1972 stimu-
lated industrial development. In 1988, agriculture employed 33% of the workforce
and provided 17% of the Gross National Product (Banco Central del Ecuador,

1990). In 1984, the land use patterns were as follows: forested, 51.1%; meadows and
pastures, 17.0%; agricultural and under permanent cultivation, 9.1%; and other,
22.8%.

Tourism is a growing phenomenon in Ecuador. In 1988 tourism generated US$273
million (Banco Central del Ecuador, 1990). The majority of visitors come from the
Americas, though European tourists constitute a significant proportion. Many visi-
tors are interested in the country’s natural resources (mountains, flora and fauna).
Of course, the Galapagos Islands are responsible for attracting a large proportion of
tourists, though their numbers are strictly controlled.

The Paramos of the Andes

dramo is an ancient Spanish word for “an elevated, barren, treeless plateau”, then

used to signify the inhospitable plains of Spain (Acosta-Solis, 1984). The term was
brought to South America by the conquistadores and colonialists who applied it to
the exposed grasslands of the northern Andean ranges.

Paramos occupy the vegetation belt between the upper limit of the montane cloud
forest (Ceja Andina) and the snow-line (Figure 1.2). They occur from Venezuela to
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Figure 1.1.
Map of Ecuador, showing volcanoes and principal towns and cities. KEY: 1, Vol-

can Chiles; 2, Volcan Cotacachi; 3, Volcan Cayambe; 4, Volcan Pichincha; 5, Vol-
can Antisana; 6, Volcan Sumaco; 7, Volcan lliniza; 8, Volcan Cotopaxi; 9, Volcan
Chimborazo; 10, Volcan Tungurahua; 11, El Altar; 12, Volcan Sangay.

Ecuador and northern Peri (where they are called jalcas), with outliers in other parts
of Perti, Bolivia, Panam4 and Costa Rica (Cleef, 1978). The paramos show simi-
larities to the vegetation of other high elevation tropical environments (Figure 1.3).
These high montane ecosystems are found in the Central Andes (puna), East Africa
(afroalpine or moorland), Malaysia (tropical alpine) and Mexico (zacatal, though
Gomez-Pampa (1973) and Breedlove (1973) speak of ‘pdramo’ vegetation in Vera-
cruz and Chiapas). Some authors advocate the use of pdramo to describe all of these
tropical alpine vegetation types (for example, Walter, 1973, and Lind & Morrison,
1974). Monasterio & Vuilleumier (1986) suggest the use of terms such as Andean
pdramo, African pdramo, Papuan pdramo, and so forth. The term tropicalpine has
lately been used to describe all alpine areas in equatorial regions (for example,
Smith & Young, 1987b). Other authors have suggested the use of the term “tundra”
for all treeless regions, north and south of latitudinal tree-lines and above natural al-
titudinal tree-lines (for example, Holdridge, 1957; Tieszen & Detling, 1983). In this
work, I will use tropicalpine and the more traditional nomenclature for regional
vegetation (paramo, afroalpine, etc.).
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Figure 1.2.
Vegetation zones of the Andes: (A) Western Andes, (B) Eastern Andes, following

Mann (1968). The zones are divides by dashed lines. Major mountains are shown
at the top of the figure and pricipal cities at the bottom.
Mountain Codes: Ac, Aconcagua; Am, Ampato; B, Balmaceda; Ca, Cayambe; Ch,
Chani; CM, Cerro Muralion; Co, Cotopaxi; Cn, Colon; CP, Cerro de Pasco; D, Do-
meyco; |, llampy; 11, llimani; M, Misti; Ma, Maipo; NR, Nevado del Ruiz; OS, Ojos
del Salado; S, Sangay; T, Tronador; Tu, Tupungato; V, Villarica.
City Codes: B, Bogota; BA, Buenos Aires; C, Concepcion; Ca, Caracas; Cue,
Cuenca; Cuz, Cuzco; G, Guayaquil; I, lquique; J, Jujuy; L, Lima; LP, La Paz; LT,
Lake Titicaca; M, Mendoza; PA, Puerto Arenas; Q, Quito; S, Santiago de Chile.
Other abbreviations used in text: E.G. FOR., Evergreen Forest; SCL. FOR., Sclero-
phyll Forest.; TEMP SAVANNA, Temperate Savanna.
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Figure 1.3.
Regions of the world with high altitude tropical vegetation: 1, Northern Andes

(paramo); 2, Central and Southern Andes (puna); 3, Guyana Highlands (tepuis); 4,
Central American Highlands (paramo and zacatal); 5, East African mountains
(afroalpine mooriand); 6, Ethiopian Highlands (tableland); 7, Malaysian Highlands
(tropical alpine grasslands). Adapted from Monasterio & Vuilleumier (1986).

“Paramo” and “Rain Pdramo” appear in Holdridge’s (1967) life zone classification
system, but many Ecuadorian pdramos are found in the “Moist Forest” and “Wet
Forest” life zones. Though an adequate category is not found in Fosberg (1967),
“Steppe” [2G] would seem to be most appropriate for the majority of padramo vegeta-
tion.

The Andean paramos should not be confused with the padramos templados of high
latitudes in South America (40°S), which show distinctive dissimilarities from equa-
torial pdramos. They are also distinct from Neotropical savannas which have entirely
different floristic, physiognomic and physiological features (Huber, 1987).

Some authors have suggested the limit of distribution of Espeletiinae tribe (Com-
positae) as a guide for the extent of pdramo vegetation (for example, Fosberg, 1944).
In Ecuador, only one species of Espeletia is found (Espeletia pycnophylla). One sub-
species is restricted to northern areas, such as the padramos of El Angel, Volcan
Chiles and El Playon de San Francisco, the other to a valley in the Llanganatis (Cen-
tral Ecuador). Elsewhere, Espeletia is absent, with Puya species becoming more
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dominant. Ecuadorian paramos generally lack Chusquea bamboo species, which is a
dominant plant in more humid p4ramos.

Acosta-Solis (1984) has estimated that the total area of pdramo in Ecuador is
somewhere between 25,000-28,000 kmz, though this is probably an over-estimate,
since he includes the snowcaps and assumes that the lower limit of the pdramos is at
3,000-3,300 m. The actual altitude of the upper forest line in Ecuador varies consider-
ably, from under 3,000 m to about 4,000 m, depending mainly on climatic factors and
human interference, though most often the transition zone exists between 3,400-
3,500 m. The upper limit of the pdramo is the snow-line, ranging from 4,400-4,900 m.
Encalada (1986) offers 20,000 km” as a more reasonable evaluation of the extent of
the Ecuadorlan paramo, and Bonifaz (1981) goes further with an overall estlmate of
19,610 km , calculating the area of subparamo (3,500-4,000 m) as 13,310 km? , with
6,300 km? of padramo occupying the land above 4,000 m.

Some authors believe the existence of the pdramos to be the result of man’s acti-
vities, in particular burning (Ellenberg, 1979; Laegaard, 1992). Without doubt, clear-
ance of forest has had a major impact on the extent of the lower reaches of the
paramo grasslands. The presence of pockets of quifiuales (woodlands of Polylepis
spp. trees) and Gynoxys spp. woodlands amidst the extensive grasslands of pdramo
has been used as support for this argument, stating that such pockets of woodland
represent refugia from fire and that without burning, the whole landscape would be
dominated by trees. Simpson’s (1979) revision of the genus presents a summary of
the debate. A.P. Smith (1978) carried out field experiments with Polylepis sericea in
the Venezuelan Andes and found that seedlings only survived on rocky talus slopes
and showed 100% mortality over one year in open paramo and bare soil. He con-
cluded that the cause of mortality was an interaction of competition and climatic
stress. Ramsay (1988) also points out that several large islands in lakes in the pdramo
of Cajas (southern Ecuador) do not support woodland vegetation. This will be dis-
cussed in more detail in the final chapter of this thesis.

Geology and Edaphology of the
Paramos

The massive Andean range owes its existence to the consumption of the oceanic

Nazca tectonic plate beneath the continental South American plate (at a rate of
about 6¢cm per year). It accounts for the crumpling of the stable continental margin
to form the belts of fold mountains that now constitute the eastern ranges of the
Andes, for the birth of the great Andean volcanic cordillera to the west, and for the
continental growth of western South America (James, 1973).

The Ecuadorian highlands or Sierra, according to Baldock (1982), is a composite
mountain belt, formed by two (or more) distinct orogenic episodes. In the Palaeo-
zoic, the Cordillera Oriental (also known as the Cordillera Real) was formed as high
pressures forced fold mountains upwards in a line roughly north-south. This range is
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underlain by metamorphic rocks capped by Cenozoic volcanoes. In the late Meso-
zoic to Cenozoic, the Cordillera Occidental developed, probably as an island arc
(Baldock, 1982). This range is comprised of Cretaceous-Lower Tertiary volcanic and
volcaniclastic rocks, along with sedimentary rocks which were deposited between the
islands. Many of the higher areas are covered by Neogene volcanics. According to
Hoffstetter (1986), there are eight active volcanoes in Ecuador, and twenty more
have recently become extinct.

The inter-Andean valley is a graben, a fault between two lines of weakness, which
appeared during the Neogene uplift and arching of the Andean mountain belt. This
‘Avenue of the Volcanoes’, averaging 2,500-3,000 m, becomes morphologically less
distinct to the south, but is still evident geologically (Baldock, 1982).

During the past there have been several glaciations in highland Ecuador. Glacial
features such as moraines, boggy U-shaped valleys, tills, cirques, fluvio-glacial de-
posits, tarns and glacial lakes, polished bed-rock, roches moutonées and erratic rocks
are frequently observed, especially in the super-paramo (Cleef, 1981). Repeated gla-
ciations and catastrophic volcanic events have prevented the undisturbed develop-
ment of soils over much of the padramo area.

There have been few detailed studies of pdramo soils. General works dealing with
the soils of South America, have tended to group together the soils of the high
Andes (for example, the “paramo soils” of Beek & Bramao, 1968). Studies of particu-
lar countries or regions have used similar general terms or local names for the soils
present.

Sturm (1978) reviewed previous pedological studies in the northern Andes in his
paper on the soil flora and fauna of a Colombian paramo. Cleef (1981) presents an
extensive set of soil data, collected during his characterisation of the pdramos of the
Colombian Cordillera Oriental.

In general, the soils of the pdramos of the northern Andes are very dark in colour,
acidic, rocky and poorly developed, low in inorganic nutrients but with a high organic
content in the uppermost horizon (Sturm, 1978; Baruch, 1979; Cleef, 1981). The de-
composition of the vegetation is slow (reflected in high carbon:nitrogen ratios —
Cleef, 1981), ascribed by Jenny (1948) to the cold temperatures rather than the soil
moisture content. Frei (1958) assigned most Ecuadorian paramo soils to the Black
Andean Soil Group. Soils of this type collected in Ecuador were found by Miller and
Coleman (1952) to be characterised by a relatively high organic content (9-12% dry
weight), high cation exchange capacity, low exchangeable calcium and magnesium,
high concentrations of exchangeable aluminium and a high capacity for phosphate
adsorption, with a pH of 4.1-4.8. However, pH values from 3.8 (Pefia Herrera,
quoted in Acosta-Solis, 1984) to 6.2 (Grubb, Lloyd & Pennington, manuscript) have
been recorded in Ecuadorian padramos. Clearly, this variation in pH will alter soil
properties such as cation exchange capacity.

Horizon A can be thick, 30cm to 2m in depth (Acosta-Solis, 1984). Boundaries be-
tween horizons are not usually pronounced (Jenny, 1948; Acosta-Solis, 1984).
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A common component of pdramo soils is cangagua, a mixed loessal volcanic fall-
out deposit related to volcanic eruptions and cold, possibly dry periods of glaciation
(Clapperton & McEwan, 1985; Vera & Lépez, 1986). If the soil is deep enough, par-
ticularly if cangagua is present in large amounts, there is little influence of the bed-
rock on the vegetation (for example, the Nevado de Sumapaz, Colombia, is
underlain by limestone but the soil pH is not markedly different than elsewhere;
Cleef, 1981).

In general, these descriptions refer only to the pdramo soils beneath tussock grass-
land at intermediate altitudes. In fact, a mosaic of soil types occur, under the in-
fluence of factors such as topography, geological history and altitude. Under very wet
conditions, clays and peat may develop. Though Sturm (1978) found little or no pod-
zolic soils in the paramos, the Cambridge Llanganati Expedition 1969 (1970) found
podzols at 4,200 m in Cerro Hermoso, Ecuador, where a distinct iron pan had
formed 4-10cm below the surface. They also described iron-oxide mottling in soils
with restricted drainage. Furrer & Graf (1978) studied glacial and periglacial phe-
nomena in the higher reaches of the Ecuadorian Andes where stony soils are com-
mon, sometimes showing periglacial features such as needle ice, structured soils
(stripes and polygons) and screes.

Climate

From the outset, it is important to differentiate between the alpine climate of tem-

perate regions and the tropicalpine environment of the Andes. Tropical climates
do not show as much seasonal variation in temperature and day length as the mid-
and high-latitude climates (Sarmiento, 1986). A characteristic feature of the tropical
climate is that the yearly variation in temperature is not so great as the daily vari-
ation. The main climatic pattern is, therefore, the marked circadian cycle rather than
the seasonal pattern. This is the diurnal temperature climate described by Troll
(1968).

The seasonal constancy of temperature holds true for all altitudes. However, tem-
perature decreases on average with increasing altitude with a lapse rate of around
0.6°C per 100 m of altitude. Although there is a constancy of mean temperature, the

minima do vary seasonally. This is particularly important with regard to the number
of frost days.

Rainfall is much more variable than temperature, since it depends on a whole
range of factors relating to the geography of each mountain system. Most tropical re-
gions have two to four seasons with heavy rainfall alternating with dry, almost rain-
less conditions. The tropical mountains are subject to this rainfall seasonality too, in
all but the wettest and most arid regions. The circulation patterns of the atmosphere
have a direct influence on the climate of the Andes (Eidt, 1968). The Andean range
1s not just a watershed between east and west, it is also a climatic dividing line, bisect-
ing the major air masses of the southern hemisphere (Sick, 1969). Sarmiento (1986)
summarized rainfall patterns along the Andean chain. From Venezuela to Central
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Colombia rainfall follows a bimodal pattern, with the main dry season from Decem-
ber to March. Around the thermal equator, between 4°N and 5°N, the rainfall pat-
tern is still bimodal, but the major dry season shifts to the middle months of the year.
In northern Ecuador, the secondary dry season tends to disappear and the climate
becomes more or less two seasonal, showing a pronounced mid-year minimum. This
bi-seasonality is reinforced southward, so that southern Ecuador experiences drier
weather from June to January. The trend culminates in a two-season regime in the
Peruvian Andes. Emphasising this bi-seasonality, Sarmiento (1986) reports that in
the Andes of Ecuador, 70% of the annual total precipitation falls in the wet season,
compared with 80% and 90% for parts of southern Peru and Bolivia, respectively.

Johnson (1976) noted several other climatic gradients along the Andes from Ecua-
dor to Bolivia. Total rainfall decreases smoothly from north to south. In northern
Ecuador, the paramos are quite humid, but in southern Ecuador (at about 2°S) condi-
tions become semi-arid (Johnson, 1976). This is accompanied by unreliability of rain-
fall. Schwabe (1968) relates this to the position of the Intertropical Front
(responsible for convection rain patterns) which is located near the thermal equator,
and so lies close to Colombia and Ecuador all year round, resulting in rainfall
throughout the year. Further south, away from the continuous influence of the ITF,
rainfall becomes more seasonal. A further trend is the appearance of a cold season
during the southern hemisphere winter as one moves south. However, despite this N-
S variation, the main axis of environmental variation is E-W (Troll, 1968). This re-
sults in climatic zones parallel to the Andes (see Sarmiento, 1986: Fig. 7).

The temperature regime can be governed to a large degree by the rainfall pat-
terns, since rainfall is associated with cloudiness. Tropicalpine environments rely
heavily on direct solar radiation as a temperature input and cloud cover dramatically
reduces insolation. At night, the cloud cover reduces thermal loss via long-wave radi-
ation. Thus, cloudiness buffers temperature variation, restricting the amplitudes of
maximum and minimum temperatures. In this way, seasonality in rainfall leads to
thermoperiodism, an annual cycle with dampened temperature oscillations and
higher night minima during wet seasons and greater temperature fluctuations and
lower night minima during dry seasons (Sarmiento, 1986).

Precipitation is, therefore, of great importance in determining a host of climatic
conditions. Rainfall pattern is dependent on a range of factors, most influential of
which are altitude, topography and geographic position. Weischet (1969) and Lauer
(1976) showed that, in general, there is a maximum amount of precipitation at
middle altitudes, occurring a few hundred metres above the cloud base where drops
begin to form and corresponds to the position of montane cloud forests. Above and
below this altitude, the amount of rainfall steadily decreases.

The Andes are characterised, like other mountain ranges, by irregular topography.
Their geological youth means that slopes are still very steep and level ground is rare-
ly found. As Troll (1968) points out, under such circumstances, meteorological data
collected in one valley may be completely different to that in the next valley: the so-
called “Troll effect”. Locating meteorological stations in valleys leads to an underesti-
mation of rainfall, and run-off data show that in many mountain areas, as a result of
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the “Troll effect”, precipitation measurements are utterly unrepresentative (Flohn,
1974).

Topoclimates may be more important than regional climates. Geiger (1966, 1969)
and Barry & Van Wie (1974) stress three key topoclimatic factors. Slope aspect and
slope angle modify diurnal temperature and humidity changes through their action
on insolation. This was well-known in the Alps where agriculture was located on
sunny (‘adret’), south-facing slopes whilst shaded (‘ubac’), north-facing slopes re-
mained under forest (Garnett, 1937). This is more important in tropical mountains
where diffuse radiation accounts for much less a proportion of the total radiation,
and direct sunlight is consequently more influential. Therefore, steep slopes receive
less radiation than flatter ones. Holland & Steyn (1975) demonstrated that differen-
ces between equator-facing and pole-facing slopes (in the absence of cloud) are grea-
test on steep slopes and at mid-latitudes —and least in equatorial and polar regions.
Their studies suggest that thermal microclimatic differences at tropical latitudes are
generally insignificant. However, these studies did not take into account cloudiness.
In the tropics, E-W slope aspect is more important than N-S slope aspect, mainly as a
result of differences in precipitation on lee- and windward slopes and the effect of
afternoon cloudiness (a common situation) on western-facing slopes (Smith, J.M.B,,
1978; Az6car & Monasterio, 1979, 1980b). The result is that east-facing slopes re-
ceive more sunlight. A third factor is topography, with its relation to catabatic and an-
abatic winds and night-time inverted temperature regimes (cold valley bottoms).

Winds are usually gentle, but can influence plant growth (Smith, 1972). Strong
winds can be a continual presence locally, where consistent directionality can create
distinct microclimates on leeward and adjacent windward slopes (Smith, 1972). The
absence of strong winds in the pdramos has been used to explain why stem rosette
species are dominant in many regions (Cleef, 1978 —reply to Hnatiuk).

The fall in atmospheric pressure with altitude leads to a lowering of the air water-
vapour pressure at high elevations. This may be limiting to plant growth at these alti-
tudes. High UV-B input is, to some extent, compensated by reduced epidermal UV
transmissivity (Robberecht, Caldwell & Billings, 1980). Barnes, Flint & Caldwell
(1987) provide corroborative evidence for this but suggest that other factors, in addi-
tion to the shielding of UV-B radiation by UV absorbing pigments and/or leaf struc-
tures, are also involved.

Vegetation types are clearly related to prevailing climatic conditions. Cuatrecasas
(1968) and Monasterio & Reyes (1980) report that a mean temperature of 10°C
roughly corresponds to the climatic boundary between montane and paramo cli-
mates, which, according to Sarmiento (1986) corresponds (on wet slopes at least) to
the first appearance of a few days of night frosts (that can occur at any time of the
year). The number of days of frost increases sharply around 3,300 m, which coincides
approximately with the upper limit of montane forests. By 4,500 m, the number of
frost days per year rises to about 100, and the nival limit is usually reached between
4,700-4,900 m. On drier slopes, frosts appear at lower elevations, but the permanent
snow-line may be much higher.
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For a plant to be a successful colonist of the pdramos, it must be able to cope with
several climatic factors which present difficulties to plant existence. Sarmiento
(1986) considers freezing temperatures at night and insufficient radiation and sub-op-
timal temperatures during daylight hours as the main constraints on life in tropical
mountains. Plants may evolve several responses to these factors: modifications in
form, function, behaviour or all three (Sarmiento, 1986). These adaptations will be
discussed in more detail in a later chapter on pdramo growth forms. Particularly im-
portant to many species is the exploitation of microclimates.

Flora

The present pdramo vegetation is at least four million years old (Van der Hammen

& Cleef, 1986). These authors estimate that the paramo has 30 endemic genera
out of 300 (10%), while in the Cordillera Oriental of Colombia 35% of the species
are endemic (Van der Hammen & Cleef, 1986).

Central to the understanding of paramo vegetation is a knowledge of its develop-
ment. Van der Hammen & Cleef (1986) present a valuable account of the evolution
of the high altitude vegetation of the northern Andes. About 4-5 million years BP
(before present), lowland and mountain savannas and other tepui-like grasslands,
determined by edaphic and/or climatic (other than temperature) factors, existed
amongst the forest. This “pre-paramo” was made up of floristic elements from An-
dean, even Sub-Andean forest vegetation. It was to be an important source of
(Neo)tropical and Andean elements of later pdramo vegetation types, once the final
upheaval of the Andes took place.

During this great uplift in the Pliocene and Early Pleistocene (some 4-2 million
years BP), night frosts became important above 2,300 m and the flora became
adapted to the new conditions. The “proto-padramo” vegetation was wider in extent
than today’s paramo since, despite milder temperatures, the forest line was low
owing to an undeveloped upper Andean forest flora. Some evidence for the exist-
ence of a “proto-piaramo” flora is provided by pollen analysis. Though poor in gen-
era, some of the taxa are characteristic of the present-day pdramo, while others are
now absent. Half of the floral elements were of tropical origin, the remaining 50%
temperate (mostly from the south).

The immigration of temperate species then proceeded more rapidly (both from
the south and north) leading to the appearance of paramo vegetation much as we
know it today. During interglacial times, the pdramo had an archipelago-like distribu-
tion, similar to that at present. During the glacials, however, the extent of the péra-
mo resembled that of the proto-paramo, possibly even larger.

Since proto-p4ramo times (2-0.5 million years BP), there have been 15-20 major
climatic cycles (each of approximately 100,000 years duration), which have displaced
the forest line. Maximum opportunities for the migration of pdramo plants were af-
forded when the upper forest line was around 2,000 m (some 5-10% of the time): the
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area of paramo being increased several times. Immigration to the pdramo was also
optimum at this time. For 40% of the time, the paramo occupied its present position
(or slightly higher), and migration and immigration were minimal. For the remaining
50% of the time, the extent of the pdramo was intermediate.

The altitudinal movement of vegetation belts was not merely a vertical displace-
ment: the flora had to contend with different soil types (sometimes after a glaciation
there was no soil at all) and wetter/drier conditions. In this way, extinction of ele-
ments of the flora could occur when their niches were temporarily unavailable. In
Ecuador and parts of Colombia, further extinctions may have resulted from the con-
tinual, often catastrophic effects of volcanic activity.

Tropical alpine environments may, therefore, be thought of as typically insular and
short-lived (Smith & Cleef, 1988), relying on long distance dispersal rather than local
adaptation as the primary source of recruitment to tropical alpine floras. The equili-
brium theory of island biogeography (MacArthur & Wilson, 1967) has been used to
calculate the expected number of species for different pdramo regions. Vuilleumier
(1970) found good correlation between expected and observed numbers of species
for Andean birds. Simpson (1974) found that plant species diversity conformed to
the theory of island biogeography (though greater correlation was found using para-
mo area and distance measures at glacial times than those of the present day). It is
probable that the continual displacement of paramo vegetation belts prevents a state
of equilibrium from being reached in all but the most rapidly colonizing groups (such
as birds).

Cabrera (1957) places the ‘Pdramo Province’ within the ‘Andean Domain’, which
in turn is a part of the ‘Neotropical Region’. The most important families in the
‘Paramo Province’ are Compositae (Asteraceae), Gramineae (Poaceae), Cyper-
aceae, Cruciferae (Brassicaceae), Geraniaceae, Valerianaceae, Bromeliaceae, Ca-
ryophyllaceae, Umbelliferae (Apiaceae), Leguminosae (Fabaceae) and Rosaceae.
All pdramos merit their amalgamation into a single biotic Province because of simi-
larities in evolutionary history, environmental conditions, fauna, flora and vegetation
(Monasterio, 1980c). However, despite these likenesses, there are clear sub-divisions
within the Province. For example, Monasterio (1980c) differentiates the Province
into three groups: the jalca and Ecuadorian padramos, consisting mainly of tussock
grasses with genera from extra-tropical regions; the paramo of Colombia, with equal
importance of grasses and rosettes; and the Venezuelan paramos, where some dual-
ism exists but the rosettes are more dominant.

Cleef (1981) reports that more than 300 native vascular plant genera are repre-
sented in the pdramos of the northern Andes (with 260 of them in the Colombian
Cordillera Oriental — comprising about 700 species). There have been numerous col-
lections of plants made in the Ecuadorian paramos, ever since von Humboldt and
Bonpland made their way through the “Avenue of the Volcanoes” in 1802 (Sandwith,
1926). As a result, the taxonomy of the region is relatively well-advanced, though
plant identification is still only possible by comparing specimens in herbaria as keys
are incomplete or unavailable, despite the excellent efforts of the Flora of Ecuador
project.



1. Introduction to the Ecuadorian Paramos 13

The literature contains several descriptions of paramo flora in Ecuador (for
example, Heilborn, 1925; Diels, 1934; Acosta-Solis, 1937, 1966, 1984, 1985; Penland,
1941; Drew, 1944; Svensen, 1945; Paredes, 1962; Lgjtnant & Molau, 1982; Cer6n,
1985). More recently, some quantitative descriptions using methods of Braun-Blan-
quet have been published (@llgaard & Balslev, 1979; Balslev & de Vries, 1982;
Black, 1982; Ramsay, 1988). However, these researches are still far behind progress
in Venezuela and Colombia, where some extensive quantitative comparisons have
been made (for example, Farifias & Monasterio, 1980; Cleef, 1981; Baruch, 1984;
Rangel & Franco, 1985; Franco, Rangel & Lozano, 1986).

Harling (1979) recognizes three types of paramo in Ecuador. Grass pdramos or pa-
jonales occupy most ground below 4,000 m. Cushion paramos are found above 4,000
m, as the tussock grasses are replaced by cushion plants. Harling’s third category con-
tains the desert pdramos or arenales, which inhabit the higher reaches of the Andean
ranges, where conditions restrict plant growth.

The pdramo vegetation of Latin America characteristically shows altitudinal zona-
tion, resulting from progressively higher stress factors with increasing elevation. Cua-
trecasas (1934, 1958, 1968) classified the typical Colombian paramo into three belts:

@ Sub-pidramo (3,000-3,500 m) —the transition zone between
the upper Andean forest and the open paramo, dominated
by bushes of Compositae, Guttiferae and Ericaceae.

@ Grassy Pdramo (3,500- ¢.4,100 m) —characterised by tus-
sock grasses (mainly Calamagrostis and Festuca spp.) with
thickets of Hypericum and Senecio vaccinioides. Isolated
woodlands exist in this belt, consisting of trees of the genus
Polylepis. Another feature of this zone is the presence of
Espeletia spp., though this is not usually true of Ecuadorian
péaramos.

® Super-paramo (c. 4,100 m and above) —the extreme envi-
ronmental conditions restrict plant growth and cover is
sparse. Characteristic are Culcitium spp.

Despite this zonal approach, clear separations between the community types have
not generally been found in quantitative studies, rather a continuum of community
change (Crawford, Wishart & Campbell, 1970, for Peri; Farifias & Monasterio, 1980,
and Baruch, 1984, for Venezuela).

The geological history of the Andes has left the range with a “small-scale mosaic
of types of landscape” (Schwabe, 1968) consisting of high ridges and deep valleys,
clearly showing the influence of glaciation. This high topographic diversity is re-
flected in a wide spectrum of plant communities with azonal distributions. Cliffs,
rock outcrops, recent moraines, river-banks and waterlogged ground support their
own community types (Grubb et al., unpublished).
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Alpha diversity (within habitat species richness) appears to be similar in tropical
alpine, temperate alpine and arctic communities (Hanselman, 1975). However,
gamma diversity (regional among mountain species richness) appears to be greater
in tropical alpine communities (evidenced by high levels of endemism and vicarious
species complexes in tropical mountains). This is doubtless a function of the island-
like nature of the pdramo regions in a sea of tropical vegetation with pulses of migra-
tion during glaciations alternating with periods of speciation in the isolated pdramos
when the climate was warmer (Simpson, 1975). In addition, Janzen (1967), Huey
(1978) and Smith (1987) suggest that tropical mountains may be effectively more iso-
lated from each other than are temperate mountains with similar topography. This
has wide implications for understanding the processes of plant biogeography and
evolution in the high Andes.

Fauna

The diversity of pdramo habitats supports a variety of animal species. The grasses
of the padramo provide a living for a number of herbivores such as deer (Odocoi-
leus virginianus), rabbits (Sylvilagus brasiliensis) and numerous small rodents (16
species in three orders have been collected in the paramo of Cajas, southern Ecua-
dor, by Barnett & Gordon, 1985). These herbivores (in addition to hunting by man)
provide food for several large carnivorous species: puma (Felis concolor), spectacled
bear (Tremarctos ornatus), Andean fox (Dusicyon culpacus) and large birds of prey.
Carrion-feeders include the magnificent condor (Vultur gryphus). All of these large
carnivores, especially the condor, have declined considerably over the last hundred
years as a result of hunting and killing practices of farmers with domestic herbivores.
Whymper (1892) describes very large populations of condors: for Chimborazo he
writes, “When the atmosphere permitted us to look below, we commonly saw a
dozen [condors] on the wing at the same time.”; and for Antisana, “A score or more
continually hovered over the pastures.” Such sights have long since disappeared.

Twelve species of hummingbird (Trochilidae) inhabit the pdramos (Wolf & Gill,
1986). Cordillera Snipe (Chubbia jamesoni) are common, as are the Paramo Pipit
and members of the genus Cinclodes. Ducks and teals live in some péramo lakes,
along with populations of introduced trout (Salmo gairdnerii and S. trutta).

Descimon (1986) observed a very sharp division in lepidopteran diversity between
the upper montane forest and the pdramo. He explained this in evolutionary terms:
the relatively recent uplift of the Andes had not allowed sufficient time for local
species to evolve and take advantage of the pdramo habitat and the long distance
from the nearest source of preadapted fauna (in Tierra del Fuego) had prevented im-
migration from this region.



1. Introduction to the Ecuadorian Paramos 15

The Influence of Man

Although the padramos are uninhabited, man’s influence is strong there. Human

communities in the high Andes have been, in general, self-sufficient. Their isola-
tion, coupled with access to a broad resource base, has contributed to this reliance
on subsistence agriculture.

Several decades ago, Ecuadorian agricultural systems in the highlands were among
the most anachronistic in the hemisphere (Haney & Haney, 1989). An agrarian re-
form programme was launched to improve the lot of the campesinos (peasant far-
mers) in 1964 but has been only partially successful. Some rural people own small
patches of land (minifundios), which are often incapable of providing even a subsist-
ence living for their owners. In a study of the minifundio community of Santa Lucia
Arriba in highland Ecuador, 80% of households owned less than 1 ha of 1and or were
landless, though 61% had purchased land over and above what they had inherited
(Forster, 1989). Others work as huasipongueros (tenant farmers) on large haciendas,
in return for which they may receive a house and a small plot of land on which they
may grow crops.

The diet of the campesinos remains essentially traditional, despite commercialisa-
tion of the rural economy and changes in production and eating habits (Herrera,
1987). The main foods are barley meal, potatoes, rice, barley grain, beans and wheat
flour, and deficiencies in protein and energy requirements are very common, espe-
cially in children (Herrera, 1987).

The campesinos recognize various agricultural zones on the elevational gradient,
summarized for northern Peri by Brush (1976). The paramos are not used for culti-
vation owing to frequent frosts. Instead, the extensive low-value paja (tussock grass)
provides forage for cattle, horses and sheep. Below the paramo zone is a belt of
tuber cultivation (e.g., potatoes and oca) and below that is a zone of cereal cultiva-
tion (e.g., maize and quinoa). The ceja andina provides a source of timber and fuel-
wood.

The human ecology of the Andes is in a state of flux. In pre-Hispanic times, settle-
ments were higher than at present. The lowering of Andean villages after the Span-
ish conquest has been attributed to increased dependence on cereal crops under Old
World influence (Brush, 1976). In more recent times, this trend away from the péra-
mos has been reversed. The depletion of local natural resources (particularly fuel-
wood) as a result of increased population pressure, diminishing isolation and the loss
of self-sufficiency has generated a need for cash crops. Brush (1976) describes live-
stock as a “living bank account on the hoof”, since cattle can be readily converted
into money when required, and the paramo zone has seen an increase in grazing
pressure.

As Brush also points out, the tuber zone has traditionally been the major focus of
subsistence activity in the Andes. Pressure to increase production has resulted in
pushing crops away from their effective limits to their absolute limits in the sub-péra-
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mo (where risks of frost damage and disease are higher). Gondard (1988) also identi-
fied this trend — of advancing pioneer fringes of agriculture along the edge of natural
vegetation formations — throughout the Andean region of Ecuador.

In a study of perceived stress factors in Ecuadorian Andean campesinos, Stadel
(1989) found that low temperatures at high elevations and isolation were seen as
major worries, but steep slopes and erosion were not. This is perhaps a consequence
of the modern view of maximization of yields, rather than of sustainability.

The treatment of montane forest is a prime example of a non-sustainable ap-
proach to local natural resources. Day-to-day survival has forced many communities
to destroy the ceja andina completely in the quest for wood, now leaving them with-
out fuelwood —“the poor man’s energy crisis” (Brandbyge & Holm-Nielsen, 1987).
In some of the drier pdramos, where trees are absent, shrubs are collected for fuel.
This happens, for example, on the slopes of Volcdn Chimborazo, where each house-
hold collects a horse-load of Chuquiraga jussieui branches every five days or so, for
cooking and heating. A similar practice has been observed in puna vegetation types
in parts of highland Perd and Bolivia (West, 1987). This practice can cause degrada-
tion of the ecosystem if the shrubs are over-utilized.

With increasing utilization of the paramos as pastures, burning has become more
widespread in an effort to alter the nutritional value of the paja tussocks by removing
choking dead leaves and stimulating the growth of succulent new shoots. Ellenberg
(1979) puts forward a case for the extreme modification of tropical mountain ecosys-
tems of the Andes by burning and trampling. As he points out, nearly all regions of
the Andean countries are composed of mixtures of ecosystems, representing differ-
ent stages of landscape history and different levels of human interference.

Despite the hostile climate, the pdramos will become increasingly important to An-
dean peoples as a result of population pressures in a country with the greatest den-
sity of humans per cultivable unit and the highest birthrate on the continent.
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Introduction

he high altitude grasslands of the northern Andes of South America are charac-

terised by two great vegetation types, the pdramo and the puna. They both cover
similar altitudinal ranges, but are fundamentally distinct, largely in terms of humidity
(Quintanilla, 1983; Acosta-Solis, 1984). The paramos stretch from Central America
to northern Pera and Bolivia, where the drier puna vegetation begins and extends
southwards into Chile (Cleef, 1978).

The péramos of Ecuador are interesting in that they occur towards the southern-
most limit of pdramo vegetation, and show a trend from humid paramos in the north
to drier paramos in the south (Acosta-Solis, 1984). There is also a similar trend from
the humid vegetation on the eastern Andean range (receiving moisture-laden air
from the Amazon basin) to the drier western range (corresponding to the east-west
climatic trend described by Sarmiento, 1986). There is a complex interaction of these
trends to produce various kinds of pdramo vegetation within the same latitude or
along one Cordillera. In the northern province of Carchi (and one site in the eastern
slopes of the Andes in Central Ecuador), there are pdramos with vegetation more
typical of Colombia. By contrast, Acosta-Solis (1984) describes various sites in Ecua-
dor with what he considers to be “puna” vegetation, similar to that of Pert (for
example, the Grande Arenal of Volcidn Chimborazo).

The community composition of the high altitude grasslands of the Andes has been
studied in various countries. In Venezuela, most research has been centred on the
mountains around Mérida (Vareschi, 1970; Monasterio, 1979, 1980a, 1980b; Fariiias
& Monasterio, 1980; Baruch, 1984; Ricardi, Bricefio & Adamo, 1987). The widest ex-
tent of pdramo is found in Colombia and a number of researchers have studied its
composition there (Cuatrecasas, 1934, 1958, 1968; Cleef, 1979, 1981, 1983; Sturm &
Abouchaar, 1981; Sturm & Rangel, 1985, Rangel & Franco, 1985; Franco, Rangel &
Lozano, 1986; Rangel & Lozano, 1986; Rangel & Aguirre, 1987). The puna of Perd
has received considerable attention, beginning with the extensive works of Williams
(1941) and Weberbauer (1945) and continuing with overviews such as that by Ca-
brera (1968) and detailed studies of particular areas (for example, Wilcox et al.,
1986).

By contrast, the pdramos of Ecuador have received relatively little attention. Hum-
boldt and Bonpland were the first to make a serious attempt at collecting Ecuado-
rian pdramo plants in 1802 (Sandwith, 1926). A succession of plant collectors
followed, including Jameson and Spruce, and collections have continued throughout
this century. General descriptions of pdramo vegetation have been produced by
Diels (1934), Acosta-Solis (1937, 1966, 1984, 1985), Penland (1941), Drew (1944),
Svensen (1945), Paredes (1962), Lgjtnant & Molau (1982) and Cerén (1985). Until
recently, access to many pdramo areas has been difficult. Lately, as new roads have
appeared, collecting has been carried out with renewed vigour to complete our
knowledge of plant distributions in the more remote padramos and to provide herba-
rium material for identification purposes (for example, Holm-Nielsen, @llgaard &
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Molau, 1984). This activity has resulted in quite detailed plant inventories of some
pédramo areas and the beginnings of a Flora of Ecuador (Harling & Sparre, 1973-).

Very few quantitative descriptions of Ecuadorian pAramos have been attempted.
Balslev & de Vries (1982) described the vegetation at a single altitude on Volcan Co-
topaxi by means of four 100m2 quadrats. Mufioz, Balslev & de Vries (1985) provided
the same treatment for plots on Volcdn Antisana and Black (1982) presented a pre-
liminary account of a detailed study carried out on Volcén Antisana over a number of
years, but as yet no further information is available.

Within any one paramo region in Ecuador, the vegetation can be expected to be
comprised of a number of altitudinally-related vegetation zones. Within this zonal
pattern, other vegetation types may be found which are independent of altitude,
their presence governed by such factors as soil moisture, topography and the like.
This expectation is based on the studies of pdramo vegetation in neighbouring An-
dean countries which have already been cited (but particularly Cleef, 1979) and de-
scriptions of mountainous regions throughout the world (for example, J.M.B. Smith,
1975, and Coe, 1967).

Mills (1975) described plant distribution over an altitudinal transect on Volcén Co-
topaxi in terms of presence or absence of species, and this represents the only pub-
lished study to date which looks at the community composition of an Ecuadorian
paramo in relation to altitude.

Cuatrecasas (1934, 1958, 1968) defined three altitudinal belts of pdramo vegeta-
tion with reference to the vegetation of Colombia. The transition zone between the
upper Andean forest and the open grassland is dominated by shrubs and grasses, and
Cuatrecasas termed this sub-pdramo. Above the sub-pdramo, he described the gras-
sy paramo or paramo proper, characterized by tussock grasses and giant rosette
plants. Finally, at the highest altitudes, the extreme environmental conditions restrict
plant growth and cover is reduced. This is the super-paramo.

In describing the vegetation types of Ecuador, Harling (1979) also defined three al-
titudinal belts. Above the montane forest scrub, the grass paramo (pajonal) is lo-
cated between 3,400 and 4,000 m, dominated by tussock grasses of Calamagrostis,
Festuca and Stipa, with herbs and shrubs from the genera Ranunculus, Lupinus, Gen-
tiana, Halenia, Castilleja, Valeriana, Baccharis, Oritrophium, Chuguiraga, Hypochaeris
and in some cases Espeletia. The shrub and cushion paramo is found between 4,000
and 4,500 m. Tussock grasses are less extensive, being replaced by shrubs, herbs of
various kinds, mats, rosette plants and cushions. Small trees may also occur. Most
characteristic genera of this zone are Chuquiraga, Diplostephium, Baccharis, Valeria-
na, Calceolaria, Astragalus, Loricaria, Senecio, Culcitium, Werneria, Onitrophium, Gen-
tiana, Halenia, Viola, Lachemilla, Draba, Bomarea, Jamesonia and Lycopodium. The
most important cushion-forming species are Azorella pedunculata, Azorella aretoides,
Azorella corymbosa, Plantago rigida, Draba aretioides, Werneria humilis and Distichia
tolimensis. At the highest altitudes (above 4,500 m), Harling classifies the sparse
vegetation of xerophytic grasses, alternating with herbs, shrubs, mosses and lichens
as desert paramo. At these altitudes, species such as Ephedra americana, Poa cuculla-
ta, Rhopalopodium guzmanii, Lupinus microphyllus, Lupinus smithianus, Nototriche
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pichinchensis, Senecio microdon, Senecio comosus, Culcitium nivale and Werneria rigi-
da are found. Harling also describes the much lower altitude padramo on the western
and southern slopes of Volcdn Chimborazo (from about 4,000 m) as desert pdramo.
Here he describes a community with scattered clumps of Stipa and a few shrubs and
herbs (for example, Calceolaria ericoides, Azorella pedunculata, Calandrina acaulis,
Chuquiraga jussieui and Hypochaeris sonchoides).

The divisions between these vegetation zones have been arbitrarily devised, based
on many years’ experience of studying pdramo vegetation. Cleef (1981) described in
great detail 121 community types of the Colombian Cordillera Oriental, using the
Ziirich-Montpellier classification methods. However, there are only a few other
cases of paramo classification using quantitative methodology, these examining the
Venezuelan p4ramo (Farifias & Monasterio, 1980; Baruch, 1984).

The present study aims to give a quantitative description of the grassy paramo
vegetation of Ecuador, linking the distribution of species and padramo types to envi-
ronmental variation, including those factors relating to altitude. Azonal vegetation
types, such as bogs or woodlands, were excluded from the study in order to simplify
the relationship between vegetation and altitude.

Methods

Study Sites

Twelve paramo localities were sampled in total: these areas selected to encompass a
range of pdramo types from north to south and east to west (Figure 2.1). In north-
western Ecuador, two pdramos were sampled. Volcan Chiles straddles the Colombia-
Ecuador border and maintains an extensive pdramo, notable as one of the few in
Ecuador with Espeletia giant rosette plants. The area is very humid and was sampled
from 4,200m (between the summit and the crest of the pass 38km from Tulcén) to
3,600m near Tufino (Figure 2.2). Volcdn Cotacachi in Imbabura province supports a
moderately humid pdramo. It was studied from the shoulder above the crater at
4,200m to the area just above Laguna Cuicocha at 3,600m (Figure 2.3).

Only one pdramo was studied in north-eastern Ecuador. To the north of the pass
on the Quito-Baeza road is a very humid p4ramo on a lakeland plateau, the Pdramo
de Guamani (Figure 2.4). It was sampled from 4,400m on the main jagged ridge to
3,800m in agricultural pdramo below Laguna de Hoyas.

In Central Ecuador, four paramos were sampled in or close to Parque Nacional
Sangay on the Cordillera Oriental. Volc4dn Tungurahua is still active, its tephra and
ash deposits in this humid area supporting a modified paramo flora. Along the route
to the summit on the northern flank of the volcano, the vegetation was investigated
from 4,300m to 3,900m (Figure 2.5). Further south, the west-facing caldera of El
Altar dominates a more usual pdramo vegetation. A transect from 4,200m beneath
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Figure 2.1.
Map of Ecuador showing the location of the twelve study sites. Site codes: 1, Vol-

can Chiles; 2, Volcan Cotacachi; 3, Paramo de Guaman(; 4, Volcan Tungurahua; 5
& 6, El Altar (2 sites); 7, Paramo de Daldal; 8, Volcan Chimborazo; 9, Paramo de
Zapote Naida; 10, El Area Nacional de Recreacion Cajas; 11, Paramo near
Cumbe; 12, Paramo near Ofia. Land above the 3,000 m contour line is shaded.
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Sketch map showing the location of the sampling transect on Volcan
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The location of the two sampling transects on El Altar (). The dotted area repre-
sents (semi-)permanent snow cover, and the forest is shown to the east. Based on
the PRONAREG-ORSTOM Mapa Ecoldgico for Riobamba. The scale is approxi-
mately 1:142,800.
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Obispo to the Collanes Plain at 3,800m was the basis for the study in this area (Fig-
ure 2.6). On the eastern slopes of the El Altar massif, a much more humid p4dramo
exists and was studied from 4,300m beneath Chizapucutul to 3,800m beside Laguna
Verde (Figure 2.6). Above the village of Daldal an area of typical agricultural para-
mo was investigated. The Lomo de Trenzapamba at 4,200m was the highest study
point at this location with the sub-paramo at 3,700m the lowest (Figure 2.7).

On the Cordillera Occidental in Central Ecuador stands Volcdn Chimborazo, at
6,310m the highest peak in the country. The famous Grande Arenal (“Great Beach”)
was sampled from 4,600m to 4,000m on the northern slopes of the volcano
(Figure 2.8). A highly modified paramo is found here on a sandy substrate in a com-
paratively dry region.

Finally, four pdramos made up the southern section of the study sites. All four
areas were comparatively dry and low-lying. El Area Nacional de Recreacién Cajas is
situated to the west of Cuenca on the Cordillera Occidental. It is a lakeland plateau
averaging around 3,800m. The highest elevation studied was at 4,000m on Soldados
above Totorococha, the transect descending from there to 3,400m towards the
treeline above the Rio Mazan forest reserve (Figure 2.9). On the pass between Cuen-
ca and Lim6n on the Cordillera Oriental is the Pdramo de Zapote Naida
(Figure 2.10). It was studied from 3,500m to 3,200m, though no sampling was con-
ducted at 3,300m because of a belt of shrubby vegetation. A pdramo region south of
Cumbe from 3,400m to 3,200m and a small patch of pdramo at 3,100m south of Ona
(Figure 2.10) completed the study sites. These two areas were both situated on the
Cuenca to Loja road.

Table 2.1 provides a summary of the study sites. The grid references quoted are for
guidance only, since the studies were conducted along transects rather than at points.
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Province Altitude (m) Latitude & Sampling Dates
Min Max Longitude
Volcan Chiles Carchi 3,600 4,200 1°49'N 77°57'W  20-22 Oct 1987
Volcén Cotacachi Imbabura 3,600 4,200 0°35'N 78°20'W  11-12 Oct 1987
Paramo de Guamanf Pichincha 3,800 4,400 1°15'S 78°12'W 7-8 Oct 1987
Volcan Tungurahua Tungurahua 3,900 4,300 1°29'S 78°23'W  28-29 Aug 1987
El Altar (west) Chimborazo 3,800 4,200 1°40'S 78°24'W 2-3 Sep 1987
El Altar (east) Chimborazo 3,800 4,300 1°43'S 78°25'W  12-13 Aug 1989
Daldal Chimborazo 3,700 4,200 1°48'S 78°32’'W 30 Oct 1987
Volcan Chimborazo Chimborazo 4,000 4,600 1°30'S 77°50'W 25 Oct 1987
Paramo de Zapote Naida Azuay/Morona Santiago 3,200 3,500 3°00'S 78°40'W 21 Sep 1987
Cajas Azuay 3,400 4,000 2°53'S 79°10'W  12-14 Sep 1987
Cumbe Azuay 3,200 3,400 3°20'S 79°10'W 21 Sep 1987
Ona Loja 3,100 - 3°35'S 79°15'W 16 Sep 1987
Table 2.1.

Study sites used in the phytosociological study of the Ecuadorian paramos.

Plant Collection

Since a comprehensive flora of the Ecuadorian padramos has yet to be produced, it
was necessary to collect voucher specimens of plant taxa and cross-reference them
with plants cited in this study. Therefore, in cases where species have not been fully-
named, they are identified by a code number shown in square braces, which permits
cross-reference of the species to voucher specimens via Appendix 1. Thus, for Ceras-
tium sp. [197], the code number 197 in Appendix 1 shows that this species is repre-
sented by two voucher specimens numbered 454 and 536.

A collecting licence was obtained from the Ministerio de Agricultura y Ganaderia,
with the support of the Pontificia Universidad Cat6lica del Ecuador (PUCE) and the
Museo Ecuatoriano de Ciencias Naturales (MECN).

During the course of the fieldwork, representative vascular plant material was col-
lected. Ideally, fertile specimens were taken, but occasionally only sterile material
was available. The material was placed in polythene bags until it could be pressed.
The pressing usually took place within one day, though in difficult circumstances up
to three days elapsed before some specimens were pressed.

Plant material was sandwiched between sheets of newsprint or, when available,
proprietary ‘flimsies’, with a drying unit (consisting of a corrugated aluminium sheet
between two blotting papers) separating specimens. Repeating this pattern, the press
was filled and bound using straps.

Whenever possible, the presses were transported to Quito for drying in the drying
room of the PUCE herbarium. The presses were placed over low-power electric hea-
ters for 3-7 days. On many occasions, however, drying had to be carried out away
from Quito. For this purpose, a wooden frame was constructed to support the press
at the right height and a paraffin pressure stove used as a heat source. This proved
very effective, though the stove was prone to flare up from time to time, requiring
constant vigilance.
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When possible, four duplicates were collected for each specimen, and numbered
on collection. Duplicate specimens are housed in the collections at the Royal Bo-
tanic Gardens, Kew (K) or the Royal Botanic Garden, Edinburgh (E), the herbarium
of the Pontificia Universidad Cat6lica del Ecuador, Quito (QCA) and the Ecuado-
rian national collection at the Museo Ecuatoriano de Ciencias Naturales, Quito
(QCNE). The remaining duplicate set was deposited with the Ministerio de Agricul-
tura y Ganaderia in Quito.

Preliminary identifications were carried out at the QCA herbarium, but most of
the taxonomic work took place at the herbarium of the Royal Botanic Gardens, Kew.
Many specimens have only been identified to generic level, though it has been
possible in nearly all cases to assign these to more precise taxa without actually nam-
ing them (for example, Calamagrostis A, Calamagrostis B, etc.). Where specimens
could not be differentiated with confidence, species aggregates have been formed.
For example, there is a possibility that Bromus pitensis was confused with Bromus la-
natus in the field, and therefore this species has been amalgamated into Bromus lana-
tus aggregate. Similarly, Lachemilla andina has been added to Lachemilla rupestris
aggregate in the analysis.

A complete moss and macro-lichen collection was made for each quadrat and later
used to produce comparative species lists for each pdramo area. A portion of the
moss collection was stolen in Ecuador, rendering full comparisons impossible. The
remainder of the mosses and macro-lichens are housed in the British Museum of
Natural History (BMNH), the Royal Botanic Gardens, Edinburgh (E), QCA and
QCNE, but have yet to be determined. The following analyses were, therefore, only
performed on the vascular plant composition of the quadrats.

Sampling Procedure

Only zonal paramo was studied. Azonal vegetation, such as that found in bogs, was
deliberately excluded from the sampling. The vegetation was investigated by means
of 5m x Sm quadrats, randomly located at each 100m of elevation over the range stu-
died (which depended upon the pdramo coverage at each site). At each altitude, a
100m transect was established along the contours and the three quadrats located ac-
cording to random co-ordinates previously generated. This was not always possible,
however, particularly in the super-pdramo where the vegetation was sometimes con-
fined to smaller patches (by rocky outcrops, unfavourable conditions or merely by the
small size of the peak). In such cases the horizontal transect was shortened and the
random co-ordinates scaled accordingly.

For each 25m2 sampling unit, a complete list of the vascular plants present was
compiled, along with the corresponding Braun-Blanquet abundance scores (1, <5%;
2, 6-25%; 3, 26-50%; 4, 51-75%; 5, >75% —‘r’ and ‘ +’ were not used owing to the
small size of the sample area). The species present were cross-referenced with
voucher specimens in the plant collection.
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Estimates of the coverage (as a percentage) of bare ground and rock cover, includ-
ing scree, were made for each sample unit. Plant litter coverage was not estimated
because most of the tussock grass material decays while still attached to the plant,
making accurate judgement difficult. The abundance scores for tussocks of this sort
included such standing dead material.

A number of environmental variables were recorded for each quadrat. Altitude
was measured as the mean of two Thommen 6,000m aneroid altimeters set at Quito
observatory (2,818m). It was not possible to account for meteorological changes in at-
mospheric pressure. Aspect was assigned to 8 compass points (N, NE, E, SE, §, SW, W
and NW) using a prismatic compass and slopes were measured in degrees from the
horizontal using a clinometer. A soil sample was taken from each quadrat (10cm
depth), air-dried and the pH measured with a Whatman pH meter (2:1 ratio of water
to soil by volume). However, some soil samples were stolen along with the mosses,
and therefore pH data is unavailable for the southern sites.

Finally, exposure, burning intensity, grazing intensity, trampling intensity and over-
all disturbance were estimated for each quadrat on subjective, semi-quantitative
scales from 0 to 5 (where 0 represents the absence of the influence and 5 the highest

influence).

Exposure was judged using the local topography: a sample surrounded by ridges
on all sides was considered to be of low exposure whereas a sample plot on a ridge re-
ceived a high exposure score. Burning intensity scores were determined from visible
indicators of fire. These included ash deposits, charred remains and the loss of soil
caused by the combustion of its organic material. Indicators of grazing included
visible signs (cropping of vegetation, etc.) and indirect signs (droppings). Trampling
scores were based on the presence of micro-terracing, paths, poaching (hoof-prints),
broken branches of shrubs and cattle-scrapes.

Overall disturbance was recorded in an attempt to deal with the interactive effects
of burning, trampling and grazing, where the combined impact of these variables can
result in higher disturbance than the individual effects might suggest. Thus, a disturb-
ance score was assessed with reference to compounded disturbance, irrespective of
its source.

The majority of the data was collected from August to October 1987, though one
of the sites was visited in August 1989 (Table 2.1).

Data-Handling and Analysis

In order to simplify the dataset, the vegetation samples were classified according
to a polythetic divisive cluster analysis technique. This was achieved using the TWIN-
SPAN algorithm (Hill, 1979), forming part of the VESPAN-II package (Malloch, 1988).
The plant taxa were also classified using this programme, based on their presence in
the stand classes.
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Multivariate direct gradient analysis (canonical ordination) was employed to deter-
mine the relationship between species distributions and the measured environmental
variables. This combination of regression and ordination was carried out using the
CANOCO programme (ter Braak, 1988). The analysis was performed on all taxa and
all stands, then the TWINSPAN classes were superimposed (as centroids) upon the re-
sulting ordination. The first axis of this ordination and the trace statistic (the sum of
all axes) were tested for statistical significance by means of a Monte-Carlo permuta-
tion test (Hope, 1968) with 99 permutations, also part of the CANOCO package.

a-diversity was estimated for each stand using an adapted version of the Simpson
index:

D = zp(p-1)
A(A])

where p represents the percentage cover of each species (using the mid-point of its
Braun-Blanquet score), and A is the total coverage of all the species in the quadrat
(that is, =p). This only represents an approximation of the diversity of the stands,
since Braun-Blanquet scores are not ‘linear’. Diversity was expressed as the recipro-
cal of D.

B-diversity, measuring “the extent of species change along environmental gra-
dients” (Whittaker, 1975), was calculated according to the measure proposed by Wil-
son & Smida (1984):

At = [g(H) + I(H)] .
2a

where g(H) represents the number of species gained along the gradient and 1(H) the
number of species lost. « is the average number of species found within the samples.
B-diversity is essentially the same as MacArthur’s (1965) between habitat diversity.

To calculate g-diversity values, the three replicate quadrats at each altitude were com-
bined (three 25 m2 quadrats becoming one sample of 75 m2).
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Results

Twelve paramo regions were studied. The number of quadrats and summary statis-
tics on the number of vascular taxa (“species”) recognised for each of these regions
is given in Table 2.2. The number of altitude levels sampled in each study area
ranged from one (3,100 m at Ofa) up to seven for several of the sites. In total, 64 alti-
tudes were sampled using 192 quadrats. The 21 stands sampled in the paramo at
Cajas included more species (117) than any of the other study areas, whilst the three
quadrats at Ofa yielded just 24 species. On average, a 25 m2 sample of the vegeta-
tion contained 21.11 species, though this varied from site to site (only 6.90 species
per quadrat on Volcan Chimborazo to 29.22 species in the padramo at Daldal). The
number of species recorded in the three replicate quadrats at each altitude averaged
29.41. On Volcan Chimborazo, this mean was 10.71 whilst in the pdramo around the
crater of El Altar it reached 42.60 species.

Site No of No of No of Mean No of Mean No of
Altitude Quadrats Species in Species per  Species per
Levels all Quadrats Quadrat Altitude

(3 Quadrats)

Volcan Chiles 7 21 94 22.10 31.86
Volcan Cotacachi 7 21 89 20.10 27.43
P4aramo de Guamani 7 21 97 23.52 35.57
Volcan Tungurahua 5 15 52 17.67 25.40
El Altar (west) S 15 92 27.54 42.60
El Altar (east) 6 18 71 19.44 25.83
Daldal 6 18 91 29.22 36.57
Volcan Chimborazo 7 21 37 6.90 10.71
Paramo de Zapote Naida 3 9 47 24.56 33.67
Cajas 7 21 117 22.86 36.29
Cumbe 3 Q I 24.78 2833
Odfa 1 3 24 16.33 24.00
Overall 64 192 348 21.11 29.41
Table 2.2.

The location and summarised vascular plant composition of 192 paramo quad-
rats. For each locality the number of altitude levels sampled and the number of
quadrats used are stated. The total number of vascular plant species found in the
stands at each locality are given. The mean number of species found in each
stand and at each altitude level (three quadrats combined) are shown.

Altogether, 348 taxa of vascular plants have been recognised in these sample
stands (Appendix 1). Table 2.3 indicates the composition of the 192 stands in terms
of family, and Table 2.4 shows the genera comprising these families. Almost 20% of
the species found in the quadrats belong to the family Compositae. 25 genera of com-
posites were present in the vegetation samples, the best-represented being Senecio,
Baccharis, Culcitium, Gnaphalium, Diplostephium and Gynoxys.
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Family Number Percentage
of Taxa of all Taxa
in Family
Unidentified to Family 6 1.7
Compositae 69 19.8
Gramineae 47 135
Cyperaceae 19 5.5
Lycopodiaceae 15 4.3
Scrophulariaceae 15 43
Gentianaceae 14 4.0
Leguminosae 12 34
Umbelliferae 11 3.2
Valerianaceae 11 3.2
Ericaceae 10 29
Rosaceae 10 29
Rubiaceae 10 29
Caryophyllaceae 8 2.3
Cruciferae 8 2.3
Geraniaceae 6 17
Plantaginaceae 6 1.7
Violaceae 6 17
Bromeliaceae 5 14
Guttiferae 5 14
Hemionitidaceae 5 14
Juncaceae 5 1.4
Melastomataceae 5 1.4
Ranunculaceae 5 1.4
Iridaceae 4 1.1
Orchidaceae 4 1.1
Lomariopsidaceae 3 0.8
Alstroemeriaceae 2 0.6
Labiatae 2 0.6
Oxalidaceae 2 0.6
Polygalaceae 2 0.6
Alliaceae 1 0.3
Aspleniaceae 1 0.3
Blechnaceae 1 03
Campanulaceae 1 0.3
Equisetaceae 1 0.3
Filicopsida 1 0.3
Grossulariaceae 1 03
Isoetaceae 1 0.3
Lentibulariaceae 1 0.3
Malvaceae 1 0.3
Melanthiaceae 1 03
Onagraceae 1 0.3
Ophioglossaceas 1 0.3
Polygonaceae 1 0.3
Thelypteridaceae 1 0.3
Xyridaceae 1 0.3
Total 348 100.0
Table 2.3.

A summary of the 348 recognised taxa in 192 paramo quadrats. The number of

taxa (“species”) in each family is given, along with the percentage of all taxa this

represents. There are 46 families. Six voucher specimens could not be identified
to family level.

The Gramineae accounted for 13.5% of the taxa with 15 genera determined. Agros-
tis, Poa, Calamagrostis and Festuca were the most important genera. The Cyperaceae
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No Family (6 unidentified taxa)
e Unidentified (6 taxa)

Alliaceae (1 unidentified genus)
e Unidentified (1 taxon)

Alstroemeriaceae (1 genus)
® Bomarea (2 taxa)

Aspleniaceae (1 genus)
® Asplenium (1 taxon)

Blechnaceae (1 genus)
® Blechnum (1 taxon)

Bromeliaceae (1 genus)
® PFPuya (5 taxa)
Campanulaceae (1 genus)
® Lobelia (1 taxon)

Caryophyllaceae (2 genera)
® Cerastium (7 taxa)
e Stellaria (1 taxon)

Compositae (25 genera

+ 2 unidentified taxa)
e Unidentified (2 taxa)
Senecio (8 taxa)
Baccharis (7 taxa)
Culcitium (6 taxa)
Gnaphalium (6 taxa)
Diplostephium (5 taxa)
Gynoxys (5 taxa)
Oritrophium (4 taxa)
Werneria (4 taxa)
Loricaria (3 taxa)
Erigeron (2 taxa)
Hypochaeris (2 taxa)
Lucilia (2 taxa)
Aphanactis (1 taxon)
Bidens (1 taxon)
Chrysactinium (1 taxon)
Chuquiraga (1 taxon)
Conyza (1 taxon)
Cotula (1 taxon)
Espeletia (1 taxon)
Hieracium (1 taxon)
Perezia (1 taxon)
Sonchus (1 taxon)
Stevia (1 taxon)
Taraxacum (1 taxon)
Vernonia (1 taxon)

Cruciferae (4 genera

+ 2 unidentified genera)
® Unidentified (2 taxa)
Draba (2 taxa)
Eudema (2 taxa)
Cardamine (1 taxon)
Lepidium (1 taxon)
eraceae (5 genera)
Carex (9 taxa)
Uncinia (4 taxa)
Oreobolus (3 taxa)
Rhynchospora (2 taxa)
® Eleocharis (1 taxon)
Equisetaceae (1 genus)
® Equisetum (1 taxon)
Ericaceae (3 genera
+ 7 unidentified genera)
o Unidentified (7 taxa)
® Disterigma (1 taxon)
® Pernettya (1 taxon)
® Vaccinium (1 taxon)
Filicopsida (1 genus)
® Friosorus (1 taxon)
Gentianaceae (3 genera)
® Gentianella (9 taxa)
® Halenia (4 taxa)
® Gentiana (1 taxon)
Geraniaceae (1 genus)
® Geranium (6 taxa)
Gramineae (15 genera
+ 2 unidentified taxa)
e Unidentified (2 taxa)
Agrostis (12 taxa)
Poa (10 taxa)
Calamagrostis (5 taxa)
Festuca (4 taxa)
Muhlenbergia (2 taxa)
Paspalum (2 taxa)
Stipa (2 taxa)
Aciachne (1 taxon)
Anthoxanthum (1 taxon)
Bromus (1 taxon)
Cortaderia (1 taxon)
Elymus (1 taxon)
Holcus (1 taxon)
Neurolepis (1 taxon)
Trisetum (1 taxon)

Cy

e

Table 2.4.

Genera in the 192 paramo quadrats. For each family the number of genera (plus
any unidentified specimens, which may or may not represent further genera) are
shown. Within each family, the genera are listed along with the number of taxa as-
signed to them. In total there are 117 genera in 46 families, with 27 taxa as yet un-
identified. [Continued Overleaf]
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Grossulariaceae (1 genus)

® Ribes (1 taxon)
Guttiferae (1 genus)

® Hypericum (5 taxa)
Hemionitidaceae (1 genus)

® Jamesonia (5 taxa)
Iridaceae (2 genera)

e Sisyrinchium (3 taxa)

® Orthosanthus (1 taxon)
Isoetaceae (1 genus)

® /soetes (1 taxon)
Juncaceae (2 genera

+ 1 unidentified genus)

e Unidentified (1 taxon)

e Luzula (3 taxa)

® Distichia (1 taxon)
Labiatae (2 genera)

e Satureja (1 taxon)

® Stachys (1 taxon)
Leguminosae (4 genera)

® [Lupinus (7 taxa)

e Vicia (3 taxa)

® Astragalus (1 taxon)

® Trifolium (1 taxon)
Lentibulariaceae (1 genus)

® Pinguicula (1 taxon)
Lomariopsidaceae (1 genus)

® Elaphaglossum (3 taxa)
Lycopodiaceae (2 genera)

® Lycopodium (12 taxa)

® Huperzia (3 taxa)
Malvaceae (1 genus)

e® Nototriche (1 taxon)
Melanthiaceae (1 genus)

e Tofieldia (1 taxon)
Melastomataceae (1 genus

+ 2 unidentified genera)

e Unidentified (2 taxa)

® Brachyotum (3 taxa)
Onagraceae (1 genus)

e Epilobium (1 taxon)
Ophioglossaceae (1 genus)

® Ophioglossum (1 taxon)

Orchidaceae (2 genera

+ 2 unidentified genera)

e Unidentified (2 taxa)

e Altensteinia (1 taxon)

e Mpyrosmodes (1 taxon)
Oxalidaceae (1 genus)

e Oxalis (2 taxa)
Plantaginaceae (1 genus)

® Plantago (6 taxa)
Polygalaceae (1 genus)

® Monnina (2 taxa)
Polygonaceae (1 genus)

® Rumex (1 taxon)
Ranunculaceae (2 genera)

® Ranunculus (4 taxa)

® Anemone (1 taxon)
Rosaceae (1 genus)

® Lachemilla (10 taxa)
Rubiaceae (4 genera)

® Arcytophyllum (4 taxa)

® Relbunium (4 taxa)

e Galium (1 taxon)

e Nertera (1 taxon)
Scrophulariaceae (7 genera)

® Bartsia (4 taxa)
Castilleja (4 taxa)
Veronica (3 taxa)
Calceolaria (1 taxon)
Ourisia (1 taxon)
Pedicularis (1 taxon)

e Sibthorpia (1 taxon)
Thelypteridaceae (1 genus)

® Thelypteris (1 taxon)
Umbelliferae (5 genera

+ 2 unidentified genus)

e Unidentified (2 taxa)
Azorella (5 taxa)
Eryngium (1 taxon)
Hydocotyle (1 taxon)
Niphogeton (1 taxon)

@ Oreomyrrhis (1 taxon)
Valerianaceae (1 genus)

e Valeriana (11 taxa)
Violaceae (1 genus)

® Viola (6 taxa)
Xyridaceae (1 genus)

® Xyris (1 taxon)

Table 2.4. (Continued)
Genera in the 192 paramo quadrats.
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provided 5.2% of the taxa found in the quadrats, with the Lycopodiaceae, Scrophula-
riaceae and Gentianaceae just below this figure.

Table 2.5 lists the thirty most frequent species occurring in the samples. By far the
commonest species is Calamagrostis sp. [251], which is present in 94.27% of the quad-
rats, with a mean Braun-Blanquet score between 2 and 3 (5-50% cover). Other com-

mon grasses were Paspalum tuberosum (present in 40% of the sample stands), Poa

sp. [262] (26%), Agrostis nigritella (20%) and Bromus lanatus (18%). Pernettya pros-
trata and Disterigma empetrifolium were growing in 56% and 46% of the quadrats re-

spectively.

Species number and name Family
251 Calamagrostis sp. Gramineae
185 Pernettya sp. Ericaceae

79 Disterigma empetrifolium Ericaceae
91 Geranium sibbaldioides Geraniaceae
40 Hypochaeris sessiliflora Compositae
97 Paspalum tuberosum Gramineae
143 Eryngium humile Umbelliferae
48 Oritrophium peruvianum Compositae
72 Carex tristicha Cyperaceae
146 Oreomyrrhis andicola Umbelliferae
80 Gentiana sedifolia Gentianaceae
64 Werneria humilis Compositae
134 Bartsia laticrenata  Scrophulariaceae
161 Hypericum sp. Guttiferae
88 Halenia weddelliana Gentianaceae
262 Poa sp. Gramineae
150 Valeriana bonplandiana Valerianaceae
130 Lachemilla orbiculata Rosaceae
99 Sisyrinchium jamesonii Iridaceae
106 Lupinus sarmentosus Leguminosae
29 Gnaphalium pensylvanicum Compositae
15 Bidens andicola Compositae
39 Hieracium frigidum Compositae
139 Azorella aretoides Umbelliferae
124 Lachemilla rupestris Rosaceae
142 Azorella pedunculata Umbelliferae
244 Agrostis nigritella Gramineae
103 Satureja nubigena Labiatae
94 Bromus lanatus Gramineae
153 Valeriana microphylla Valerianaceae
Table 2.5.

The 30 most frequent species found in the 192 paramo quadrats. The species
number, name and family are shown, along with the mean Braun-Blanquet value,
the frequency (N, out of 192) and the percentage constancy in the sample stands.

The Compositae made an important contribution to the list of most frequent

Mean Const
B-B Score

27
0.6
0.5
0.4
0.4
0.5
0.4
0.3
03
0.3
0.3
0.3
0.3
0.3
03
0.3
0.2
0.3
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2

%

94.27
56.25
46.35
44.79
42.19
39.58
38.54
33.85
29.17
28.13
27.60
27.08
26.56
26.56
26.04
26.04
24.48
23.96
22,92
2292
22.40
21.88
21.88
20.31
19.79
19.79
19.79
19.27
18.23
18.23

N

181
108

86
81
76
74
65
56
54
53
52
51
51
50
50
47
46

44
43
42
42
39

38
37
35
35

species: Hypochaeris sessiliflora, Oritrophium peruvianum and Werneria humilis were
all present in over 25% of the sample stands. Geranium sibbaldioides and Eryngium
humile were each found in over 30% of the vegetation samples.
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Slope Expos
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Table 2.6.
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Correlations between environmental variables, vegetation cover and diversity.
Correlations are based on 192 observations for each of the variables (with the ex-
ception of soil pH and conductivity with 132 observations). The overall mean for

each of the environmental variables is shown in the left-hand column. The r2

values are given on the first line and the *+’ or ‘-’ indicates a positive and negative
correlation respectively. The second line shows if the correlation is significant (*,

p=<0.05; **, p=<0.01; *** p<0.001) or not significant (NS).
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The eleven environmental variables which were measured for each quadrat were

subjected to a correlation test (Table 2.6), the distributions of six of these variables

are shown in Figure 2.11. Vegetation cover and species diversity values, derived from
species abundance data for each stand, were also correlated with the environmental
variables in Table 2.6. It is immediately apparent that these environmental variables
are interdependent. All variables except soil conductivity show a significant relation-
ship with altitude. Exposure is greater at higher altitudes (12 =22.4%, p <0.001) and

the cover of bare rock increases (12 =3.6%, p = 0.008). The amount of bare ground

also rises with altitude (r2 =18.4%, p <0.001) and slopes become steeper (12 =2.2%,
p=0.038). The soils are less acidic at higher altitudes than those lower down
(r2=11.1%, p <0.001).
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The semi-subjective assessment of overall disturbance was a very good predictor
of burning (12 =81.6%, p < 0.001), trampling (r2 =73.9%, p <0.001) and grazing
(r2 =83.8%, p <0.001). All of these variables were highly correlated with each other.
Clearly, trampling and grazing are linked (r2 =66.2%, p <0.001) and these forms of
disturbance are concentrated in areas which have been burned (12 =53.5%,
p <0.001; r12="70.2%, p < 0.001, respectively). It is reasonable, therefore, to use over-
all disturbance alone as an indicator of burning, trampling and grazing pressures.
These disturbances show an inverse relationship with altitude (12 =38.2%,
p <0.001): disturbance decreases up the elevational gradient.

Vegetation cover, calculated as the sum of the Braun-Blanquet mid-point cover
values for each quadrat, decreases at higher altitudes (12 =24.2%, p <0.001). Species
diversity (“evenness”) tends to increase with altitude (r2=8.0%, p <0.001), as do-
minance by a few species diminishes. Exposure decreases vegetation cover
(r2=11.6%, p <0.001) but increases species diversity (r2=11.6, p <0.001). Vegeta-
tion cover is greater on more acidic soils (r2=15.9%, p < 0.001), which are more
common on flatter ground (r2 =5.8%, p = 0.005).

The 192 vegetation samples were classified using TWINSPAN. The dendrogram
showing the divisions leading to the stand classification is presented in Figure 2.12. A
group of three samples was found to be sufficiently different from the other plots to
split away from them at the first division. At the next division, another small group
(containing 15 stands) was separated from the main group of samples. Then, by a
number of successive divisions, the large group of 174 samples was divided into five
groupings of 10, 24, 79, 46 and 15 plots. Ultimately, the classification resulted in 31
stand groups. These end groups may be interpreted as types of pdramo vegetation. It
should be remembered that this analysis does not rely on presence or absence of
species alone for the divisions. Instead, it is the combination of species present that
determines the end groupings. Thus, one species may be diagnostic of several
groups, but in each group its association with other characteristic species is unique.
A description for each of these padramo types is provided later.

Figure 2.13 shows the CANOCO ordination biplot of the 348 species plotted
against the first two constrained axes. In the figure, the species are displayed as
points in a two-dimensional subspace (there are many more dimensions that could
be displayed if it were possible). These points represent their approximate optima in
this space, that is, the points where they are most abundant. The environmental vari-
ables are shown as arrows: the length of an arrow indicates the magnitude of the
correlation between the variable and the distribution of species, whilst the direction
of the arrow shows the plane in which the variable increases.

This ordination was subjected to a Monte Carlo permutation test to determine the
statistical significance of the relationship between the species distribution and the or-
dination axes (and, therefore, the environmental variables). The species distribution
in the ordination space was found to be related to the environmental variables with a
high degree of probability (p = <0.01).

Arrows have been drawn on the ordination to show the nature of the relationship
between species distribution and vegetation cover (“Area”) and species diversity.
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Figure 2.11.

Distribution of six environmental variables in the paramo vegetation samples.
Exposure, burning, trampling, grazing and disturbance were measured on a six-
point scale (where 0 represents the absence of the influence and 5 the highest

influence) for 192 samples. pH values were measured for 132 samples.
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Figure 2.13.
CANOCO biplot ordination of the 348 vascular species present in 192 paramo

stands. Environmental variables are depicted as solid arrows. Passive variables,
which were not used to calculate the ordination, are superimposed as dashed ar-
rows. The axes are divided into standard deviation units (11 =0.508, 12=0.449).

These arrows are passive, in that they were not used to determine the ordination (un-
like the environmental variables), but have been superimposed onto it after its cre-
ation. For this reason they have been drawn with dashed rather than solid lines.

Most of the species in Figure 2.13 lie within a belt running diagonally from the
upper left portion of the ordination (with negative values for Axis 1 and positive
values for Axis 2) to the lower right part (positive Axis 1 values and negative Axis 2
values). This distribution corresponds well with the environmental variables of alti-
tude, exposure and disturbance, as depicted by their arrows. Those species in the
lower right portion of the ordination are most abundant at higher altitudes, where
disturbance is minimal but exposure is greater. Species diversity was highest in this
region of the biplot. Species located in this part of the ordination include Oritro-
phium peruvianum, Culcitium ovatum, Werneria humilis, Werneria pumila, Gentianel-
la foliosa, Lupinus purdianus, Lachemilla holosericea, Cerastium sp. [198), Aciachne
flagellifera, Agrostis nigritella, Agrostis sp. [239], Huperzia hypogoea, Lycopodium sp.
[288), Lycopodium sp. [289], Luzula racemosa, Plantago rigida, Valeriana aretioides,
Bartsia laticrenata and Azorella aretoides.
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Figure 2.14.
CANOCO biplot ordination of the 31 paramo plant communities. Environmental vari-

ables are depicted as solid arrows. Passive variables, which were not used to cal-

culate the ordination, are superimposed as dashed arrows. The axes are divided

into standard deviation units (11 =0.508, 12 =0.449). The centroid of each class is
colour-coded to match that of Figures 2.12 and 2.16.

Species which are more abundant at lower altitudes, where disturbance is greater
but exposure is reduced, are located in the upper left part of the ordination. Species
which are located in this portion of the ordination tend to exist in vegetation of lower
diversity and include Paspalum tuberosum, Poa sp. [266], Poa sp. [267], Stipa sp.

[270), Chrysactinium acaule, Gynoxys buxifolia, Oritrophium peruvianum forma inter-
medium, Gentianella gracilis, Gentianella hyssopifolia, Orthrosanthus chimboracensis,
Sisyrinchium tinctorium, Pinguicula calyptrata, Tofieldia sessiliflora, Brachyotum ledifo-
lium, Viola humboldtii, Puya sp. [180], Puya sp. [181], Halenia sp. [187], Cerastium sp.
[197), Jamesonia robusta, Lycopodium clavatum and Oxalis sp. [359].

A number of species lie clustered to the upper right of the diagram. The position
of these species correlates well with the amount of bare ground present, and are
little influenced by the other environmental variables which were measured. These
species were all found on Volcdn Chimborazo, and include Chuquiraga jussieui, Erige-
ron pinnatus, Lucilia radiata, Senecio teretifolius, Werneria crassum, Gentianella cer-
nua, Lupinus smithianus, Valeriana alypifolia ssp. alypifolia, Valeriana sp. [194],
Geranium sp. [157], Cerastium sp. [200], Plantago sp. [301], Stipa sp. [353] and Agros-
tis sp. [348].
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Of the thirty commonest species in the sample quadrats (shown in Table 2.5), al-
most all (24) are located around the origin of the ordination. Reference has already
been made to the exceptions.

The species ordination was used to calculate the centroids of the TWINSPAN
classes and to infer their correlation with the environmental variables, vegetation
cover and species diversity. The resulting biplot, showing the ordinated vegetation
classes and the environmental variables, is displayed in Figure 2.14. The mean values
of the environmental variables for each vegetation class are shown in Table 2.7.

Class Exposure Burning Trampling Grazing Disturb’ce  pH Slope Bare Rock

BS (n=3) 4.00 560 28

HD (h=12) 4.25 1.00 0.75 5.48 32 10.2 0.8

CCCD (n=1) 5.00 5.70 19 90.0 0.8

CCT (n=3) 3.00 2.00 2.00 2.00 4.40 15

DCS (n=5) 4.00 1.00 494 25 11.0 1.4

FCT (n=1) 4.00 1.00 500 22 1.0

AC (n=3) 5.00 - 20 81.7

AAC (n=3) 4.00 1.00 - 20

WAC (n=3) 5.00 5.50 41 23.3 14.0

WPC (n=3) 4.00 1.00 1.00 1.00 5.10 5 3.0

DTSC (n=3) 3.00 1.00 510 37 4.0

DSC (n=3) 4.00 5.10 35 27 0.3

DTC (n=3) 200 - 15

PC (n-3) 3.00 3.00 3.00 2.00 5.30 18 2.0

HHCT (n=6) 3.17 267 2.50 2.00 217 5.35 36 9.2 5.0

HPCT (n=12) 275 4.00 3.75 350 450 515 34 9.9

NB (n=10) 3.40 1.80 1.80 1.80 2.40 490* 26 4.0

OCT (n=20) 2.20 3.10 2.95 275 3.45 5.40* 19 2.0

VCT (n=10) 2.80 3.40 300 3.00 3.80 5.23* 22 04

SCT (n=21) 3.14 2.52 2.90 2.67 3.14 5.05 29 1.3

RCT (n=4) 2.00 2.50 1.75 1.50 2.50 5.50* 29 18.8

PCT (n=4) 3.75 2.25 2.25 2.25 250 - 25 0.8 0.5

ACT (n=2) 3.00 3.00 3.00 3.00 4.00 - 5

PCCT (n=24) 3.04 242 2.00 2.38 2.95 - 22 3.2 0.3

PCE (n=6) 3.00 4.00 4.00 3.00 4.00 4.50 17 3.0

VCE (n=6) 3.50 3.50 3.00 3.50 4.00 4.55 15 1.0

GCCD (n—7) 2.71 0.86 086 0.86 5.50 14 62.4

ACCD (n=3) 367 1.00 1.00 1.00 5.50 20 68.3 3.3

CCD (n=1) 5.00 5.70 19 80.0

NCCD (n=4) 4.00 1.75 0.50 1.00 5.33 19 82.5

SD (n=3) 2.00 1.00 1.00 1.00 5.60 5 80.0

Overall 3.19 2.00 2.05 1.84 2.35 5.19 24 11.1 1.8
Table 2.7.

Mean environmental variable values for the 31 paramo plant communities identi-
fied by TWINSPAN. pH values marked with * are derived from fewer values than the
other variables for that class. A blank represents zero, and '-' indicates that no
measurements were made.

Most of the classes are clustered around the origin and, in a similar pattern to that
shown by their constituent species, they extend along a plane from the upper left side
of the ordination to the lower right. This pattern corresponds well with the directions
of the arrows for disturbance, altitude and exposure. It can be inferred, therefore,
that Class PCCT was highly disturbed, of low altitude with a low exposure score. By
comparison, Class AC was composed of plots from exposed, high-elevation situations
with low disturbance.
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B-diversity values along the altitudinal gradient in twelve paramo areas.



2. Community Ecology of the Ecuadorian Paramos

49

Daldal

2 Beta Diversity Units

16

06|

L L I I £ 1 1 1 t 1 1 1
3200 3300 3400 3800 $800 3700 3800 300 4000 4100 4300 4300 4400 4800 4800

Altitude (m)

Zapote Naida

Beta Diversity Units
2

06+

L L e L L 1 2 It L 1

3200 3300 3400 3800 3600 3700 3600 3800 4000 4100 4200 4300 4400 4830 4800

Altitude (m)

Cumbe

2 Beta Diveraity Units

L It L 1 IS L 1 L 1 1 1 It 1

3100 3300 2400 3800 3800 3700 3IB00 3IPOQ 4000 4100 4200 4300 4400 4800 4800

Altitude (m)

290(; Diversity Units

Chimborazo

0.6

1 1 1

1 L 1 £ ] ) 1

1 1

3200 3300 3400 3600 3800 3700 3800 3I00 4000 4100 4200 4300 4400 4800 4800

Beta Diversity Unita

Altitude (m)

Cajas

161

06

It X 1 2 L 1 o 1

"
3200 3300 3400 3600 3600

Figure 2.15. (Continued)
p-diversity values along the altitudinal gradient in twelve paramo areas.

3700 3800 3800 4000 4100 4200 4300 4400 4500 4800

Altitude (m)



2. Community Ecology of the Ecuadorian Paramos 50

Again following the pattern established in the species ordination, a second cluster
of TWINSPAN classes is located in the upper right of the ordination space, roughly
perpendicular to the plane of the main cluster. These stand groups are characterised
by those species from Volcdn Chimborazo, described earlier for this portion of the
ordination, and are correlated with the amount of bare ground present. These out-
lying groups were very different from those around the origin. Class SD, which split
off from the rest of the stands in the first TWINSPAN division, has been placed fur-
thest from the main cluster of groups. Similarly, Classes GCCD, ACCD, CCD and
NCCD are set apart from the others in the classification as well as in the ordination,
confirming their distinctive composition.

The g-diversity values for each of the study areas are given in Figure 2.15. Gener-
ally, for any one altitudinal gradient, the g-diversity values continue to increase as the
elevational difference increases. This indicates that plant community composition
changes continuously along the gradient, though the rate of change varies. Almost all
of the p-diversity curves show a decrease in value at the end of the altitudinal range.
This is an artefact of the g-diversity formula, where the value depends on the species
lost plus the species gained. At higher altitudes, the number of species lost becomes
almost constant (perhaps even reaching its maximum, with no species in common
with the lowest altitude), but the number of species gained decreases as conditions
reduce plant cover. Thus a reduction in plant cover may result in a decrease in g-
diversity. The maximum value of the g-diversity units obtained is dependent to a
large extent on the altitudinal range covered. Maximum values of 1.5-2.0 units are
found for all sites covering a 600m range and one with a S00m range. The lowest
maximal value (0.65) is produced for Zapote Naida, with samples taken from only
three altitudinal levels.

A total of 31 vegetation types or plant communities have been defined in this
study. The definition of each of these communities is dependent upon assemblages
of species, rather than the presence or absence of key species. This is important, in
that a single species may occur in many different communities, and furthermore, may
play an important part in defining them (but only in conjunction with other species).

The term ‘species’ is used loosely in this context, since full identification of the
voucher specimens has not yet been achieved. Despite this, some attempt has been
made to define distinct taxa, even where a name has not been determined. In order
to avoid the situation of a ‘species’, so defined, requiring separation into real species
at a later date, taxa have been defined cautiously. As a result, it is possible that some
taxa may ultimately become merged into one, once full taxonomic studies have been
completed.

Of the commonest species in this study, a number have yet to be fully named.
From an examination of unpublished species lists and herbarium material, it is
possible to speculate upon the identity of some of these. It is likely, for example, that
Calamagrostis sp. [251] is Calamagrostis effusa H.B.K,, that Pernettya sp. [185] repre-
sents Pernettya prostrata H.B.K., and Hypericum sp. [161] is Hypericum laricifolium
H.B.K. It is also worth noting that four Castilleja sp. (Scrophulariaceae) taxa were
defined in this study, some or all of which may represent Castilleja fissifolia. If all of
these taxa were to be C. fissifolia, then this species would become frequent enough to
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merit a place in Table 2.5 of the commonest species in the vegetation samples, with
46 occurrences in the 192 plots (23.96%).

Descriptions of the plant communities derived from the TWINSPAN analysis are de-
scribed below. Figure 2.16 shows the distribution of these communities in the twelve
study areas. Each description is accompanied by an abbreviation to allow cross-refer-
encing with Figures 2.12, 2.14 and 2.16. The number of sample stands within each
community is also indicated.

The Zonal Vegetation of the Ecuadorian Paramos

Blechnum loxense Shrub Paramo (BS, 3 Stands)

This community was found at 3,900 m, just above the treeline on the flanks of Vol-
cdn Tungurahua. The community was dominated by the small (up to 1 m tall) tree
fern, Blechnum loxense, which covered between 50-75% of the surface area. Thelyp-
teris sp. [229] ferns were also strong indicators of this community. Other important
species in this group were Disterigma empetrifolium, Geranium reptans, Calceolaria
ferruginea, Baccharis genistelloides, Gynoxys baccharioides, Pentacalia arbutifolius, Si-
syninchium jamesonia, Luzula gigantea, Relbunium hypocarpium, Oreomyrrhis andico-
la, Ranunculus sp. [304], Culcitium ovatum and Eryngium humile. A number of other
species were present but did not show a preference for this particular community, in-
cluding Elaphaglossum sp. [282], Agrostis sp. [243], Azorella pedunculata, Erigeron sp.
[333] and Baccharis alpinum each with a cover value of about 5%, and Culcitium ova-
tum with over 25% cover. There was no Calamagrostis sp. [251].

The ground sloped 28° and soil pH was measured at 5.6. Exposure was high with
an index score of 4. There were no signs of human influence on the vegetation, direct
or indirect, though a track to the summit, in regular use, passed nearby.

Humid Desert Paramo (HD, 12 Stands)

A rapid change in the plant community occurred between 3,900 m and 4,000 m,
demonstrated by the steepness of the g-diversity curve between these altitudes on
Volcan Tungurahua (Figure 2.15). By 4,000 m both Blechnum loxense and Thelypteris
sp. [229] had disappeared completely. No single species was dominant on Volcan Tun-
gurahua from 4,000 m to 4,300 m; instead a low carpet of vegetation was found, char-
acterised by the presence of Lachemilla hispidula, Agrostis nigritella, Eriosorus sp.
[288], Baccharis alpinum, Oritrophium peruvianum, Luzula racemosa, Bartsia sp.
[167], Asplenium sp. [230], Culcitium ovatum and Erigeron sp. [333], each covering be-
tween 5 and 25% of the area. Furthermore, the lower part of this community was
characterised by species such as Hypochaeris sessiliflora, Ericaceae sp. [335], Azorella
pedunculata and Agrostis sp. [243], and to a lesser extent by Elaphaglossum sp. [282]
and Lupinus purdianus. On the other hand, Culcitium nivalis (with a cover of more
than 25% at 4,300 m), Ophioglossum crotalophoroides and Cerastium floccosum
tended to occur most often in the upper part of the community. There was no Cala-
magrostis sp. [251].
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The terrain was fairly constant on the volcanic cone, mostly determined by the
angle of repose of the ash and its erosion by water into gullies. The gradient varied
from 29° to 38° and exposure was high (4 or 5). Any disturbance was low (1) and con-
sisted of occasional trampling damage by mountaineers en route to the summit. The
ash substrate was found to have a pH varying from 5.3 to 5.7, with a mean of 5.5.

Calamagrostis sp. [251] and Chuquiraga jussieui Desert Paramo
with Cerastium sp. [200] (CCCD, 1 Stand)

Not far beneath the snow-line on Volc4dn Chimborazo, a patchy vegetation was
found among the scree at 4,600 m, dominated, like so much of the vegetation on this
mountain, by shrubs of Chuquiraga jussieui and Calamagrostis sp. [251] tussocks
(both less than 25% cover). Indicators of this group were Cerastium sp. [200] and Rel-
bunium croceum, plus cushions of Geranium sp. [157] and a small grey species [178]
with red leaf margins which remains unidentified. Werneria humilis cushions, Hypo-
chaeris sessiliflora, Agrostis nigritella and Culcitium ovatum were also present.

The slope of the ground was 19°. Exposure was very great (5) and there was no evi-
dence of any disturbance. The pH of the soil beneath this stand was found to be 5.7.

Calamagrostis sp. [251] and Culcitium ovatum Humid Tussock
Grassland (CCT, 3 Stands)

On the Colombian border in the far north of Ecuador, the vegetation at 4,000 m
on Volcén Chiles was distinguished by the presence of Calamagrostis sp. [251] tus-
socks (with a cover of 50-75%), with Culcitium ovatum, Lachemilla orbiculata, Lache-
milla pinnata and Geranium sp. [160], all with cover values between 5-25%. Other
constant members of this community were Pentacalia andicola, Werneria pumila,
Carex tristicha, Valeriana plantaginea, Jamesonia sp. [342] and Geranium sibbaldioides.
Other species of importance in this group were Perezia pungens, Lachemilla nivalis,
Niphogeton dissecta and Valeriana bonplandii.

The slope of the ground was 15°. The vegetation was subject to moderate exposure

and disturbance (with index scores of 3 and 2, respectively). Soil pH was measured at
4.4,

Calamagrostis sp. [251] and Festuca sp. [255] Tussock
Grassland (FCT, 1 Stand)

In places at 4,100 m, amongst the Diplostephium rupestre and Calamagrostis sp.
[251] High Altitude Shrub Community on Volcén Chiles (described below), was a
somewhat different vegetation type, lacking the shrubs of Diplostephium rupestre. In-
stead, Festuca sp. [255] tussocks were co-dominant with those of Calamagrostis sp.
[251] (each with a cover of 25-50%). Between the tussocks, the characteristic species
were Lachemilla rupestris, Valeriana plantaginea, Poa sp. [262] Valeriana ? niphobia,
Oritrophium peruvianum, Pentacalia andicola, Senecio chionageton, Werneria pumila,
Bartsia laticrenata, Cerastium sp. [199], Valeriana sp. [312], Jamesonia sp. [342], Agros-
tis nigritella, Agrostis sp. [239), Lachemilla nivalis, Geranium sibbaldioides, Disterigma
empetrifolium and Carex pichinchensis.
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The slope of this plot was 22°, exposure was high (4) and there were no signs of dis-
turbance. The soil pH was 5.0.

Diplostephium rupestre and Calamagrostis sp. [251] High
Altitude Shrub Community (DCS, 5 Stands)

Diplostephium rupestre, Werneria humilis and Gentianella foliosa characterised the
plant community at the highest altitudes sampled on Volcan Chiles (4,200 and 4,100
m). A low cover of Calamagrostis sp. [251] tussocks was present, with Jamesonia sp.
[342], Agrostis sp. [239], Disterigma empetrifolium, Lycopodium sp. [289], Gentiana
sedifolia, Niphogeton dissecta, Valeriana bonplandiana, Azorella sp. [195], Carex pi-
chinchensis, Geranium sibbaldioides, Lachemilla nivalis, Agrostis nigritella, Festuca sp.
[255], small mats of Aciachne flagellifera and cushions of Plantago rigida.

Slope varied from 22° to 28°. No indications of disturbance were found and the ex-
posure index was judged to be 4 in all cases. The soil pH of these plots was 4.9 or 5.0.

High Altitude Diplostephium rupestre Shrub and Cushion
Community (DSC, 3 Stands)

At 4,300 m in the Paramo de Guamani, Ranunculus sp. [304] and Cerastium sp.
[198] were the major diagnostic species, with cushions of Plantago rigida (having a
cover of greater than 50% in one plot) and Azorella corymbosa prominent. Culcitium
ovatum, Lachemilla hispidula, Gentiana sedifolia, Niphogeton dissecta, Eryngium
humile, Castilleja sp. [168], Halenia sp. [189], Ophioglossum crotalophoroides and
Draba sp. [234] were also typical of this community, though to a lesser extent. Diplos-
tephium rupestre shrubs were a constant and conspicuous feature of the community.
Hypochaeris sonchoides, Oritrophium peruvianum, Oreomyrrhis andicola, Valeriana
adscendens, Valeriana bonplandiana, Agrostis nigntella and Poa sp. [261] were present
in all three plots, and Werneria humilis, Disterigma empetrifolium and Geranium sp.
[160] were present in two-thirds of the samples.

A slope of 35° was consistent for all three plots. Exposure was high (4). No symp-
toms of disturbance were encountered in any of the three stands, and the pH was
determined as 5.1.

Tussock and Cushion Paramo with Diplostephium rupestre
(DTSC, 3 Stands)

At 4,200 m in the Pidramo de Guamani, one hundred metres below the community
just described and similar to it in many respects, the vegetation differed in one major
way: it was dominated by Calamagrostis sp. [251] tussocks, covering S0-75% of the
sample plots. Co-dominant were shrubs of Diplostephium rupestre. The presence of
Oritrophium hieracioides and Pernettya sp. [185] was also characteristic of this com-
munity. Werneria humilis was notable, forming cushions covering 25-50% of the area.
Other distinguishing members of the community were Carex lemanniana, Geranium
sibbaldioides, Luzula racemosa, Satureja nubigena, Bartsia laticrenata, Lycopodium
sp. [189] and Loricaria sp. [334] . Many species present were equally common in the
community described previously at 4,300 m in the Pdramo de Guamani: Valeriana
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bonplandiana, Valeriana adscendens, Agrostis nigritella, Poa sp. [261], Disterigma em-
petrifolium, Geranium sp. [160), Oreomyrrhis andicola, Oritrophium peruvianum and
Hypochaeris sonchoides.

The gradient was generally steep at 32°, 34° and 46° for the individual stands. None
of the plots had been recently disturbed and exposure was judged to be moderate
(3). The pH was measured at 5.1.

Distichia muscoides, Azorella corymbosa and Werneria humilis
Cushion Paramo (DTC, 3 Stands)

On the eastern slopes of El Altar at 4,100 m, a diverse community existed with no
one species dominating. Calamagrostis sp. [251] tussocks varied in cover from 5-15%.
A strong cushion and mat component, consisting of Distichia muscoides, Azorella co-
rymbosa and Werneria humilis, was responsible for much of the vegetation cover. Be-
tween these plants, other diagnostic species were growing: Ranunculus sp. [303],
Baccharis caespitosa, Valeriana adscendens, Lachemilla orbiculata, Luzula racemosa,
Oreomyrrhis andicola, Senecio repens, Oritrophium peruvianum, Isoétes sp. [323], Eleo-
chaeris sp. [363), Nertera granadensis and Lachemilla nivalis. Also present were Per-
nettya sp. [185), Eryngium humile, Azorella aretoides, Bromus lanatus, Geranium
sibbaldioides, Gentiana sedifolia, Disterigma empetrifolium, Hypochaeris sessiliflora, Si-
syrinchium jamesonia, Plantago rigida, Bartsia laticrenata and Hypericum sp. [273],
none of which was indicative of this community.

The slope was the same for all three quadrats in this community (15°). Exposure
was fairly low with an index score of 2. No indications of disturbance were observed
and no pH reading was possible for these plots.

Plantago rigida Cushion Paramo (PC, 3 Stands)

At 4,200 m on the western slopes of El Altar, near the crater, the vegetation was
dominated by cushions of Plantago rigida, covering 50-75% of the ground surface,
and in one case more than 75%. Associated with this community were tussocks of Ca-
lamagrostis sp. [251], which covered 25-50% of the area. Poa sp. [261], Agrostis sp.
[238), Lachemilla hispidula and Carex pichinchensis were indicative of this com-
munity, and to a lesser degree Culcitium ovatum, Loricaria thuyoides, Oritrophium
limnophilum, Halenia weddelliana, Ranunculus peruvianus, Lachemilla sp. [209], Ag-
rostis nigritella, Festuca sp. [254), Poa sp. [262] and Uncinia sp. [329). Azorella are-
toides, Bartsia laticrenata, Sisyrinchium jamesonia, Bromus lanatus, Disterigma
empetrifolium, Werneria humilis and Hypochaeris sessiliflora were constant species in
the community, though have no value in defining it. Other important species in the
community were Gentiana sedifolia, Geranium sibbaldioides, Eryngium humile, Pernet-
tya sp. [185] and Hypericum sp. [273].

The slope of these plots was 18°, exposure was 3 and disturbance moderate at 2.
The soil pH was 5.3.



2. Community Ecology of the Ecuadorian Paramos 56

Werneria humilis & Plantago rigida Cushion Paramo (WPC, 3
Stands)

At the highest sampling altitude (4,200 m) on Volcén Cotacachi, cushions of Werne-
ria humilis were co-dominant with Plantago rigida cushions and patches of Lycopo-
dium sp. [289] (each of these species covering between 25-50% of the area).
Calamagrostis sp. [251] was present in two-thirds of the samples, though with less
than 25% cover. Agrostis nigritella, Bartsia laticrenata, Geranium sibbaldioides,
Aciachne flagellifera, Oritrophium peruvianum, Valeriana aretioides, Luzula racemosa,
Disterigma empetrifolium and Hypochaeris sonchoides were also present. This com-
munity was differentiated from similar cushion p4dramos by the presence of Loricaria
sp. [334], Calamagrostis sp. [246), Halenia sp. [189], Azorella aretoides, Lachemilla ni-
valis and Diplostephium rupestre.

The terrain was reasonably flat (4° to 6°). Exposure was high (4) and disturbance
low (1). Soil pH was found to be 5.1.

Werneria humilis & Azorella corymbosa Cushion Paramo (WAC,
3 Stands)

At 4,400 m in the Pdramo de Guamani, a similar-looking vegetation to that de-
scribed above on Cotacachi was found. Werneria humilis was co-dominant, this time
with Azorella corymbosa, their cushions jointly covering more than 50% of the
ground surface. Lachemilla hispidula, Lachemilla holosericea, Cerastium sp. [198],
Oritrophium hieracioides and Oreomyrrhis andicola were also key components of the
vegetation. Other species in the community were Lycopodium sp. [289), Agrostis nigri-
tella, Bartsia laticrenata, Oritrophium peruvianum, Aciachne flagellifera and Geranium
sibbaldioides. There were no tussocks of Calamagrostis sp. [251] in these samples.

These plots were located on very steep slopes, 35° to 45° from the horizontal, and
in a very exposed situation which merited the maximum index score of 5. There were
no visible signs of disturbance. Soil pH was 5.5.

Lachemilla holosericea Cushion Paramo (AC, 3 Stands)

On the eastern flanks of El Altar at 4,300 m, a thin covering of vegetation lay on
the mineral substrate, with no one species occupying more than about 15% of the
sample plots. Indicators of this vegetation were Luzula racemosa, Lachemilla holo-
sericea and Culcitium adscendens. Also present were Werneria humilis, Azorella co-
rymbosa, Oreomyrrhis andicola, Huperzia hypogoea, Hypochaens sessiliflora,
Oritrophium hieracioides and Bartsia laticrenata. Once more, Calamagrostis sp. [251]
was absent from these plots.

On a 20° slope, these three stands were located in a very exposed situation and
given an exposure score of 5. No indications of disturbance were observed. Measure-
ment of pH was not possible for these stands.
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Aciachne flagellifera & Valeriana aretioides Cushion Paramo
(AAC, 3 Stands)

100 m below the desert pdramo community on the eastern side of El Altar, at
4,200 m, there existed a vegetation dominated by cushion and mat plants. Most indi-
cative of this community were the cushion and mats of Aciachne flagellifera, Plantago
rigida and Valeriana aretioides, with Geranium sibbaldioides, Baccharis caespitosa and
Poa cucullata. Oritrophium peruvianum, Azorella aretioides, Lachemilla nivalis, Carex
sp. [319] and Eudema nubigena were also characteristic. Huperzia hypogoea, Oreo-
myrrhis andicola, Azorella corymbosa, Bartsia laticrenata, Werneria humilis, Oritro-
phium hieracioides and Hypochaeris sessiliflora were present in these stands, but were
not diagnostic of this community.

The slope of the plots was measured at 20° from the horizontal. Exposure was
high, at 4, and no evidence was observed to suggest disturbance of the sites by burn-
ing, trampling or grazing.

Calamagrostis sp. [251] Tussock Grassland with Hypochaeris
soncho)ides, Halenia sp. [189] and Satureja nubigena (HHCT, 6
Stands

On Volcan Cotacachi at 4,000 m and in two of the three replicate quadrats at
4,100 m, plus one stand from 4,100 m on Volcdn Chimborazo, Calamagrostis sp. [251]
tussocks were almost completely dominant. In most cases the tussocks formed a com-
pletely closed canopy about 1-1.2 m above the ground. Associated with the tussocks,
beneath the canopy, were Cerastium danguyi, Satureja nubigena, Halenia sp. [189)],
Agrostis sp. [242), Bartsia laticrenata, Castilleja sp. [168], Poa sp. [268], Elaphaglossum
sp. [281], Lycopodium sp. [293] and Lycopodium sp. [295]. In addition to these
species, a number of others were present, but were not indicative of the community:
Pernettya sp. [185], Alliaceae sp. [175], Valeriana microphylla, Valeriana rigida, Eryn-
gium humile, Lupinus sarmentosus, Hypochaeris sonchoides and Gnaphalium luteo-
album.

In general, slopes were steep in these plots, between 35° and 46° (though one
stand was found on reasonably flat ground with a slope of only 5°). Exposure was vari-
able, ranging from 2 to 4 with a mean of 3.2. Mean disturbance was 2.2. Measure-
ments of pH were determined at 4.9, 5.5 or 5.6 for these stands, the mean value
being 5.4.

Calamagrostis sp. [251] Tussock Grassland with Hypochaeris
sonchoides, Plantago linearis and Relbunium croceum (HPCT,
12 Stands)

Calamagrostis sp. [251] tussocks were again dominant from 3,600 to 3,900 m on
Volcédn Cotacachi, though they were not so dense as those higher on the mountain.
With a cover of 50-75%), the tussocks did not form a completely closed canopy. Plan-
tago linearis, Bidens andicola, Hieracium frigidum, Relbunium croceum, Equisetum bo-
gotense, Paspalum tuberosum, Poa sp. [269] and Gnaphalium coarctatum were
characteristic species between the Calamagrostis sp. [251] plants. Though commonly
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linked with dense Calamagrostis sp. [251] tussocks elsewhere, Pernettya sp. [185],
Valeriana microphylla, Valeriana rigida, Hypochaeris sonchoides and Eryngium humile
were constant members of this community.

These stands grew on slopes which varied from 29° to 37° (mean, 34). Exposure
was moderate with a mean index score of 2.75. Disturbance was high (4 or 5) with a
mean score of 4.5. pH varied from 4.7 to 5.6; the mean value for the twelve stands
was 5.2.

Calamagrostis sp. [251] Tussock Grassland with Sisyrinchium
jamesonia (SCT, 21 Stands)

The remaining stands in the padramo of Daldal, from 3,800 to 4,200 m, and the
western slopes of El Altar from 3,900 to 4,100 m consisted of a community domi-
nated by Calamagrostis sp. [251)] (50-75% cover). Key floristic components of this
community were Hypericum sp. [161), Sisyrinchium jamesoni, Oritrophium peruvia-
num, Carex pichinchensis, Lupinus sarmentosus, Azorella aretoides, Castilleja sp.
[171], Aphanactis jamesonia and Uncinia sp. [329]. In addition, Hieracium frigidum,
Hypochaeris sessiliflora, Carex tristicha, Disterigma empetrifolium, Gentiana sedifolia,
Halenia weddelliana, Geranium multipartitum, Geranium sibbaldioides, Bromus lana-
tus, Paspalum tuberosum, Ranunculus peruvianum, Lachemilla rupestre, Valeriana
microphylla and Pernettya sp. [185] were present, but did not serve to distinguish this
community from other similar ones.

This large group of plots was found on slopes of 17° to 42°, averaging 28.6°. Expo-
sure was intermediate, with a mean score of 3.1. Disturbance was more variable,
from 2 to 4, though again centred on 3.1. pH measurements extended from 4.8 to 5.4.
The mean pH value for all 21 stands was 5.0.

Calamagrostis sp. [251] Tussock Grassland with Viola humboldtii
(vCT, 10 Standsy

Four plots from 3,500 and 3,600 m in the paramo of Cajas and six more from 3,700
to 3,900 m in the paramo of Daldal, belonged to a community characterised by the
presence of Viola humboldtii. The dominant species was the tussock grass Calama-
grostis sp. [251] (often with a cover greater than 75%) with Paspalum tuberosum a
constant associate. Other species which were consistent members of the community
were Bidens andicola, Carex crinalis, Geranium reptans, Azorella pedunculata, Sibthor-
Dpia reptans, Poa sp. [262], Gnaphalium pensylvanicum, Carex tristicha, Disterigma em-
petrifolium, Halenia weddelliana, Geranium multipartitum, Geranium sibbaldioides,
Ranunculus peruvianus, Lachemilla rupestris, Lachemilla orbiculata, Oreomyrrhis an-
dicola, Pernettya sp. [185] and Hypochaeris sessiliflora.

The slopes of these ten plots were very variable, ranging from quite flat terrain
with a slope of only 3° to steep, 37° valley sides. Exposure was moderate, with a mean
score of 2.8, and disturbance was moderate to high (3, mostly 4). The mean disturb-
ance score was 3.8. pH measurements could only be assigned to six of the ten plots in
this community: the mean of these plots was 5.2.
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Calamagrostis sp. [251] Tussock Grassland with Oreomyrrhis
andicola and Gnaphalium pensylvanicum (OCT, 20 Stands)

A plant community dominated by Calamagrostis sp. [251] with Oreomyrrhis andico-
la, Gnaphalium pensylvanicum and Lachemilla orbiculata was found in three paramo
areas. In the north-east, this community was found from 3,800 to 4,100 m in the Péra-
mo de Guamani; in central Ecuador it was found at 3,800 m on the Collanes Plain
below the crater of El Altar; and in the south it was found in the p4ramo of Cajas at
3,400 m and less extensively at 3,500 and 3,600 m.

In these stands, Calamagrostis sp. [251] tussocks were responsible for more than
half the vegetation coverage, often for more than three-quarters of it. Associated
species were Oreomyrrhis andicola, Gnaphalium pensylvanicum, Lachemilla orbicula-
ta, Bidens andicola, Azorella pedunculata, Aphanactis jamesonia, Agrostis sp. [242],
Poa sp. [261), Poa sp. [262], Satureja nubigena and Eryngium humile.

This community was found on almost flat ground as well as on steep slopes up to
33°. Exposure was moderate with a mean score of 2.2. Disturbance was mostly rated
at 3 or 4, the mean of the twenty stands was 3.5. Once again, soil samples were not
available for one-quarter of the plots. Those that were available had pH values which
varied from 5.1 to 5.6, with a mean of 5.4.

Neurolepis elata Bamboo Paramo (NB, 10 Stands)

This group of stands comprised those plots recorded from 3,800 to 4,000 m on the
eastern slopes of El Altar plus one plot from 4,100 m on Volc4n Cotacachi. In the El
Altar stands, the dominant species was the bamboo grass, Neurolepis elata, which
formed dense tussocks covering up to 75% of the plots. Neurolepis was absent from
the Cotacachi community, but the remainder of the flora was similar enough for it to
be joined with those from the eastern flanks of El Altar. Characteristic species of this
community were Culcitium adscendens, Diplostephium hartwegii, Diplostephium gluti-
nosum, Carex lemanniana, Rhynchospora macrochaeta, Disterigma empetrifolium,
Geranium sibbaldioides, Lupinus sarmentosus, Pernettya sp. [185], Arcytophyllum aris-
tatum, Gentianella sp. [316] and Oritrophium peruvianum. Calamagrostis sp. [251] tus-
socks were also present, sometimes co-dominant with the bamboo tussocks.

A number of species were common to this community and the Calamagrostis sp.
[251] tussock grassland with Oreomyrrhis andicola and Gnaphalium pensylvanicum
described above: Lachemilla orbiculata, Satureja nubigena, Senecio chionageton, Sisy-
rinchium jamesoni, Bartsia laticrenata and Eryngium humile.

The stands belonging to this community were located on slopes of 20° to 35°. The
mean slope was 26°. Exposure was fair to high (3 or 4) with a mean of 3.4. The vege-
tation was moderately disturbed (2 or 3). The mean index score for disturbance was
2.4. Finally, pH was only measured for the single Volcan Cotacachi plot, which was
4.9.
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Calamagrostis sp. [251] and Espeletia pycnophylla Tussock
Grassland with Paspalum tuberosum (PCE, 6 Stands)

In the north, on the Colombian border between 3,600 and 3,700 m on Volcan
Chiles, Calamagrostis sp. [251] tussocks covered 50-75% of the ground, but were
themselves covered by a 5-50% cover of Espeletia pycnophylla stem rosettes. Paspa-
fum tuberosum was a key floristic element, as were Blechnum loxense, Pentacalia stue-
bellii, Gnaphalium pensylvanicum, Gynoxys fulaginosa, Hypochaeris sessiliflora,
Oritrophium hieracioides, Rhynchospora ruiziana, Gentiana sedifolia, Eryngium
humile, Hypericum sp. [161], Bartsia sp. [165], Agrostis sp. [241], Hypericum sp. [275]
and Lycopodium clavatum. Other important constituents of the vegetation of these
stands were Oritrophium peruvianum, Werneria humilis, Carex tristicha, Oreobolus
goeppingen, Halenia weddelliana, Geranium sibbaldioides, Lachemilla rupestris, La-
chemilla nivalis, Agrostis sp. [240], Pernettya sp. [185), Sibthorpia reptans, Lupinus sar-
mentosus and Nertera granadensis.

The slope of the plots in this group varied from 7° to 21°, exposure was rated as 3
on the scale from 0 to 5 and disturbance was high at 4. The pH of the plots at 3,700 m
was found to be 4.7, whilst at 3,600 m the soil was the most acidic encountered in the
study with a pH of 4.3.

Calamagrostis sp. [251] and Espeletia pycnophylla Tussock
Grassland with Viola sp. [192] (VCE, 6 Stands)

At 3,800 and 3,900 m on Volcan Chiles, Espeletia pycnophylla was again co-domi-
nant with tussock grass. At 3,800 m the tussock grass species was Calamagrostis sp.
[251] with 50-100% cover. At 3,900 m, however, the Calamagrostis sp. [251] was re-
placed by tussocks of Agrostis sp. [240] with slightly less cover (50-75%). The distinc-
tive floristic elements of this community were Viola sp. [192], Rhynchospora
macrochaeta, Sisyninchium aff. alatum, Senecio chionageton, Bartsia laticrenata, Azo-
rella aretoides, Diplostephium sp. [233), Agrostis nigritella, Poa sp. [262], Jamesonia
pulchra, and Arcytophyllum sp. [305]. Other species were present in this community
in common with the similar stands lower on Volcan Chiles: Lupinus sarmentosus, Ori-
trophium peruvianum, Carex tristicha, Oreobolus goeppingeni, Halenia weddelliana,
Geranium sibbaldioides, Lachemilla rupestris and Pernettya sp. [185].

Once again, slopes were very variable. One of the plots was located on completely
level ground whereas the others were found on slopes between 12° and 20°. Expo-
sure was moderately high with a mean of 3.5 and all of the plots were heavily dis-
turbed (4). As with the paramo below this community, the soils were highly acidic
with values of 4.4 and 4.7.

Calamagrostis sp. [251] Tussock Grassland with Paspalum
tuberosum and Chrysactinium acaule(PCCT, 24 Stands)

In southern areas, a more open tussock grassland existed, with Calamagrostis sp.
[251] tussocks less dominant with a cover of 25-75%. Paspalum tuberosum (often
with a cover of greater than 25%) was indicative of such vegetation, along with Chry-
sactinium acaule, Orthrosanthus chimboracensis, Oreobolus goeppingeri, Valeriana
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bonplandiana, Halenia sp. [188], Agrostis sp. [240] and Lycopodium clavatum. Other
members of the community were Hypochaeris sessiliflora, Oritrophium peruvianum

forma intermedium, Geranium sibbaldioides, Eryngium humile, Hypericum sp. [161]
and Pernettya sp. [185].

All of the plots in the paramos of Zapote Naida, Cumbe and Ofia were assigned to

this group by the TWINSPAN analysis, in addition to the three quadrats from 3,700 m
in Cajas.

This was the largest grouping of stands from the analysis and the slopes of the 24
plots varied considerably from 4° to 42°. The index of exposure was between 2 and 4
(mean, 3.0) and disturbance was low in some plots but high in others, the mean was
3.0. Unfortunately, the soil samples from the plots in this community were amongst
those stolen and no pH values are available.

Calamagrostis sp. [251] and Poa sp. [262] Tussock Grassland
(PCT, 4 Stands)

This grouping consisted of the three plots from the highest altitude sampled in the
péaramo of Cajas (4,000 m), plus one plot from 3,800 m in the same area. The vegeta-
tion was dominated by Calamagrostis sp. [251] tussocks (cover 50-75%). This com-
munity was set apart by the presence of Poa sp. [262]. Other consistent species in the
community which were of indicative value included Carex pichinchensis, Halenia wed-
delliana, Baccharis alpinum, Diplostephium hartwegii, Ranunculus peruvianum, Eryn-
gium humile, Valeriana bracteata, Bartsia sp. [165] and Jamesonia alstonii. Other
members of the community were Arcytophyllum filiforme, Pernettya sp. [185], Lupinus
sarmentosus, Oritrophium peruvianum forma intermedium, Hypochaeris sessiliflora,
Werneria humilis and Hypericum sp. [161].

One of the four stands was found on almost level ground, while the remainder oc-
curred on a slope of 31°. Exposure was quite high with a mean of 3.8 and disturbance
scored 2 for three of the sites, but 4 for the remaining plot. No pH measurements
were made.

Calamagrostis sp. [251] and Agrostis sp. [243] Tussock
Grassland (ACT, 2 Stands)

The remaining two stands at 3,800 m in the p4dramo of Cajas were quite similar to
the community classified above as Calamagrostis sp. [251] and Poa sp. [262] tussock
grassland. Approximately half the area was covered by Calamagrostis sp. [251]. This
community differs in that Poa sp. [262] was absent, and a variety of other species
were present: Agrostis sp. [243], Valeriana bonplandiana, Lachemilla rupestris, Gera-
nium sibbaldioides, Paspalum tuberosum, Carex tristicha, Gentiana sedifolia, Gentia-
nella hirculus and Oreobolus goeppingeri. However, Arcytophyllum filiforme, Pernettya
sp. [185], Werneria humilis, Hypericum sp. [161)], Lupinus sarmentosus and Oritro-
phium peruvianum forma intermedium were still important elements of the com-
munity.
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The slope of these two plots was 5°, the exposure score moderate at 3 and disturb-
ance high at 4. No pH values were available.

Calamagrostis sp. [251] and Rhynchospora macrochaeta
Tussock Grassland (RCT, 4 Stands)

The plant community at 3,900 m in the paramo of Cajas and one plot from 4,100 m
on Volcén Chimborazo were linked in the TWINSPAN analysis. Dominated by Cala-
magrostis sp. [251] tussocks (cover 50%), the community contained Festuca sp. [256]
(cover 25-50%), Rhynchospora macrochaeta and Senecio chionageton, Gynoxys mini-
phylla, Disterigma empetrifolium, Culcitium sp. [232], Pernettya sp. [185], Poa sp.
[262], Jamesonia alstonii and Diplostephium hartwegii.

The slope of three of the four plots was 37° (the remaining plot was on an incline
of just 5°). Exposure was low at 2 and disturbance was moderate (3) to low (1) with a
mean of 2.5. A single pH reading of 5.5 was available for the Chimborazo plot.

Calamagrostis sp. [251] and Chuquiraga jussieui Desert Paramo
(CCD, 7 Stands)

A sparse, low-diversity vegetation was found at 4,200 m (and less extensively at
4,100, 4,300 and 4,600 m) on Volcdn Chimborazo. Consisting of Calamagrostis sp.
[251] tussocks and Chuquiraga jussieui shrubs, very few other species were found,
and in any case were non-selective to this community. Most prominent amongst
these species were Baccharis genistelloides and Geranium sp. [157].

These plots were located on the flanks of Volcan Chimborazo, some of which were
on fairly level ground (5°) whilst others were on steep slopes of 19° to 30°. Exposure
was highly variable: the plot at 4,600 m was rated as very highly exposed with a score
of 5, but as altitude decreased the remaining plots scored 3 or 2. Overall, the mean
was 2.7. Disturbance of these sites was assessed as minimal (mean, 0.9). The mean
pH for this community was 5.5, with a variation from 5.3 to 5.7.

Calamagrostis sp. [251] and Chuquiraga jussieui Desert Paramo
with Nototriche jamesonia (NCCD, 3 Stands)

The basic Calamagrostis sp. [251], Chuquiraga jussieui, Baccharis genistelloides and
Geranium sp. [157] community on Volcdn Chimborazo just described was enhanced
at 4,300 and 4,400 m by the presence of Nototriche jamesonia, Valeriana microphylla,
Culcitium adscendens, Hypochaeris sessiliflora, Gentianella cernua, Cruciferae sp.
[206], Agrostis sp. [242] and Plantago sp. [302].

The mean slope of these plots was 20°. Exposure was high, averaging 3.7 and dis-
turbance was low with a score of 1. pH was 5.4 or 5.7 (mean, 5.5).
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Calamagrostis sp. [251] and Chuquiraga jussieui Desert
Paramo, with Agrostis nigritella(ACCD, 1 Stand)

In one plot at 4,600 m on Volcan Chimborazo, a community was found consisting
of a 25-50% cover of Calamagrostis sp. [251] tussocks with Chuquiraga jussieui
shrubs, cushions of Geranium sp. [157] and the herbs Baccharis alpinum, Valeriana
hartwegii and Hypochaeris sessiliflora. It differed from similar vegetation 100-200 m
below in the presence of Agrostis nigritella, Culcitium ovatum, Cerastium sp. [200] and
Eryngium humile.

This single plot community was found on a slope of 19°, in a very highly exposed lo-
cation (5) with no signs of disturbance. The soil pH was measured at 5.7.

Calamagrostis sp. [251], Chuquiraga jussieui and Geranium sp.
[157] Desert Paramo (GCCD, 4 Stands)

At 4,500 m, and one plot at 4,400 m, on Volcdn Chimborazo the vegetation was
variable in composition. Calamagrostis sp. [251] tussocks covered less than 50% of
the area (and in two of the plots, less than 25%), with Chuquiraga jussieui shrubs, cu-
shions of Geranium sp. [157), Baccharis genistelloides, Baccharis alpinum, Valeriana
hartwegii and Hypochaeris sessiliflora between them. Relbunium croceum, Castilleja
sp. [168], Gentianella cernua, Lupinus smithianus, Erigeron pinnatus, Nototriche
jamesonii, Agrostis sp. [242] and Lucilia radians were additional constituents of this

group.

The mean slope of these four plots was 19°. Exposure was high (4) and disturbance
low (1). The mean pH was 5.3, with little variability.

Stipa sp. [253] and Senecio teretifolius Desert Paramo (SD, 3
Stands)

Tussocks of Stipa sp. [253] covering 25-50% of the ground, interspersed by small
shrubs of Senecio teretifolius and acaulescent rosettes of Plantago sp. [301], charac-
terised the vegetation at 4,000 m on Volcédn Chimborazo. Lucilia radians was the only
other species found in these plots, but was not as common as it was higher up the
mountain.

At this location, the terrain was relatively flat, inclined at 5° in an area of reason-
able shelter (exposure index score of 2). Few indications of disturbance were noted
and these plots received a score of 1 on the disturbance scale. The pH at this altitude
was found to be 5.6.
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Discussion

In total, twelve sites were used to gather the data for this study. These mountain
areas were well distributed throughout the country, and covered all of the major phy-
togeographical regions of Ecuador. However, owing to the isolated nature of many
paramo areas, some regions were somewhat under-represented (in particular, the far
south of Ecuador near the border with Perd, and the outer slopes of the eastern
Andes).

The vegetation of the Ecuadorian pdramos was described by means of stratified
random sampling. This is a somewhat different approach to that used by Cleef (1981)
to describe the pdramo vegetation of the Colombian Cordillera Oriental. He re-
corded data from stands which were subjectively chosen as representative of a par-
ticular community: vegetation sampling according to the classical method of the
Zurich-Montpellier school. The random approach employed in this study provided a
more objective method for classifying different plant communities. Although it is less
effective at sampling the entire range of vegetation types, a randomised selection of
vegetation samples permits a statistical treatment of the data. However, a totally ran-
dom procedure would have been impractical over such a large area which included
variable terrain. Therefore, a stratified approach was adopted as a compromise. At
regular 100 m intervals of altitude, a 100 m transect was established perpendicular to
the slope and the location of the samples determined from random coordinates
generated previously. This worked well in most cases, though at higher altitudes
rocky outcrops and cliffs often demanded that the transect be shortened.

Sampling was conducted by means of square quadrats covering an area of 25 m2.
This corresponds well with the minimal areas of 25-35 m2 advocated by Vareschi
(1970) for Venezuelan pdramo vegetation and Cleef (1981) for the paramo of the Co-
lombian Cordillera Oriental. Farifias & Monasterio (1980) sampled Venezuelan péra-
mo vegetation with 5 m by 2 m rectangular quadrats which they believed gave
“sufficient floristic information”. However, in Ecuador at least, the tussocky nature
of much of the vegetation required a larger sampling area to eliminate variability of
composition resulting from the distribution of tussocks.

The Ecuadorian paramo flora is very similar to that recorded by Cleef (1981), but
with fewer families and genera. This may be accountable to Cleef’s wider interpreta-
tion of ‘zonal p4ramo’ and his additional sampling of azonal bogs and thickets. Des-
pite this, the proportions of families and genera in the Ecuadorian paramos reflect
those found in Colombia. The Compositae is the most important family by far, with
over one-fifth of the recorded genera. The Gramineae family is also highly signifi-
cant, responsible for 13% of the genera and with a strong influence on the remainder
by virtue of the dominance of some of its members throughout the country. At the
family level, and also to a lesser degree at genus level, the pdramo flora described in
this study is similar to that of other mountainous regions: the puna of Perti (Cabrera,
1958), and the mountains of East Africa (Hedberg, 1964) and New Guinea (J.M.B.
Smith, 1977).
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It is interesting to note the origins of the Ecuadorian paramo flora and compare
them with the data presented for neighbouring paramo regions. Van der Hammen &
Cleef (1986) provided a check-list of genera of vascular plants for the Colombian
Cordillera Oriental, and assigned each genus to seven geographical floral elements.
Sturm & Rangel (1985) present a similar phytogeographical spectrum for the 130
most important species in the Colombian padramo flora as a whole. Using the same
approach for the genera presented in Table 2.4, a similar spectrum of origin has been
obtained for Ecuador. These data are summarised in Table 2.8.

Geographical Element Percentage of all Genera
Ecuador Cordillera Oriental, 130 species,
Colombia Colombia

Paramo Element 9 7 8

Other Neotropical Element 21 34 30
Austral-Antarctic Element 10 9 5
Holarctic Element 14 11 12
Wide Temperate Element 26 20 7

Wide Tropical Element 3 10 28
Cosmopolitan Element 17 8 10
Unknown Affinity Element - 1 -

Table 2.8.

Phytogeographical spectra of vascular plant genera for the zonal paramos of
Ecuador (this study), the Colombian Cordillera Oriental (Van der Hammen & Cleef,
1986) and the 130 most important species for Colombian paramos as a whole
(Sturm & Rangel, 1985). The latter values are estimated from a graphical source.

The data of both Sturm & Rangel (1985) and Van der Hammen & Cleef (1986)
demonstrate that for Colombia, approximately half of the genera present in the péra-
mos are of (Neo)tropical origin, the other half of temperate origin, with 7 or 8% en-
demic to the paramos . In Ecuador, the situation is different. Taxa of temperate
origin dominate the Ecuadorian pdramos: two-thirds of the genera occurring in the
192 sample stands were of this group. Only one-third were of (Neo)tropical origin.
This is perhaps the consequence of the lower humidity of Ecuadorian paramos and
the more extreme temperatures that are likely to result from this, especially cold
temperatures. Both humidity and temperature regimes in the mountainous regions
of Ecuador are likely to present more of a challenge to developing Neotropical ele-
ments of the flora and their range may be expected to be narrower than in Colombia
and Venezuela.

Both Colombian and Ecuadorian paramo floras have been subjected to similar
periods of isolation during glaciations and expansion during warmer periods, and it is
not surprising that endemic genera make up a similar proportion of the flora (9%) in
both regions.

Balslev (1988) looked at the distributions of some Ecuadorian pdramo species by
consulting available taxonomic monographs. He found that only 16% of the species
studied were known to occur beyond Peru and Colombia. Of the remainder, almost
half were endemic to Ecuador (40% of the total). However, this study was based on a
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limited sample of species and treated all species equally regardless of their rarity.
Balslev also found that the majority of padramo species were trans-Andean and not
confined to one Cordillera.

Despite some general similarities, the Ecuadorian pdramos are substantially differ-
ent from those of Colombia and Venezuela on a number of counts. First of all, in
Ecuador Espeletia species are absent from all but a few pdramo regions. These are re-
stricted to the north of the country at the Colombian border, and to one valley in
Central Ecuador (Cuatrecasas, 1986). This genus is a significant member of the péra-
mo flora in Colombia and Venezuela. Fosberg (1944) thought Espeletia so important
that he defined pdramo vegetation in terms of its presence.

Secondly, bamboo paramos of Chusquea (formerly known as Swallenchloa) are
generally absent in Ecuador. On the eastern slopes of the Ecuadorian Andes, bam-
boo grasslands do occur, but are dominated by Neurolepis elata tussocks. This genus
does not dominate the pdramo in the same way in Colombia (Neurolepis aristata be-
longs to the timberline vegetation and locally extends into the sub-paramo — Cleef,
1981). Black (1982) refers to localised areas, which he termed ‘carrizales’, dominated
by ‘espadana’ (= Neurolepis) and Swalenoclea (= ?Chusquea) on Volcén Antisana in
the eastern Andes of Ecuador, but no further details are given. Elsewhere in Ecua-
dor, thickets of Chusquea may be seen (for example, in the pdramo of Cajas), but
these are confined to small patches, presumably by topographic and microclimatic
factors.

A further distinction between Ecuadorian pdramos and those to the north is that
cushion plants are more abundant in the zonal vegetation of Ecuador. Cleef (1981)
noted the lack of cushion plants in the Colombian superparamo, but it should be re-
membered that there is little high altitude vegetation in the Cordillera Oriental
which he studied. Sturm & Rangel (1985) listed more cushion and mat plants for the
Cordillera Central of southern Colombia, which is directly linked to the pdramos of
northern Ecuador.

Overall, there appears to be a distinct trend across the pdramos of the northern
Andes, noted by Monasterio (1980c). In the far south, the jalca and Ecuadorian péra-
mos are dominated by tussock grasses with genera from temperate regions, whereas
in the Venezuelan paramos the giant stem rosettes (like Espeletia) are dominant. Be-
tween these extremes, the pdramos of Colombia are intermediate, with grasses and
rosettes sharing dominance.

It is difficult to compare species diversity in the different paramo regions of the
northern Andes because descriptions are based on vegetation samples of varying
sizes. Species-area effects render direct comparisons impossible. However, in terms
of species evenness (one measure of diversity), the Ecuadorian pdramos may be less
diverse than those of Colombia and Per, since much of the vegetation is dominated
by Calamagrostis tussocks. Elsewhere, co-dominance in paramo vegetation is usual,
with a more open physiognomy. Until more quantitative information is available for
all areas, it is not possible to confirm such speculation on differences or similarities
in terms of species richness.
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This study did not include azonal padramo vegetation, such as bogs, thickets or
woodlands. Areas of this kind are common in the paramos of Ecuador, and tend to
be restricted by topographic and possibly edaphic factors. Disturbance, especially
burning also plays a role in their distribution.

Permanently wet areas were typically dominated by cushion and mat plants such as
Distichia muscoides (Juncaceae), Plantago rigida (Plantaginaceae) and Oreobolus ob-
tusangulus (Cyperaceae) and similar communities have been described for other
péaramo regions (Cleef, 1978, 1981; Black, 1982). These plants provided a substrate
for the establishment of other species which grew amongst their close-fitting leaves.
Such cushion bogs are an antarctic-montane-tropical type of vegetation and are not
found in the Boreal Zone of the northern hemisphere (Troll, 1968).

In places, thickets of various types were encountered in the pdramo (often known
as ‘chaparrales’). Such thickets were frequently dominated by a single species, most
often Chuquiraga jussieui (Compositae), Loricaria spp. (Compositae), Baccharis spp.
(Compositae), Chusquea spp. (Gramineae) or Brachyotum spp. (Melastomataceae).

Woodlands were found mostly in the more extensive pdramos of Ecuador, and
were typically not present on volcanic peaks. Furthermore, they tended to be con-
fined to scree slopes, often beneath sheltering cliffs. They were almost always com-
posed of trees belonging to the genus Polylepis (Rosaceae) in conjunction with
Gynoxys (Compositae). The extent to which these woodlands have been modified by
human influence is still a matter of debate, which will be discussed the final chapter.

The zonal padramo vegetation was found to show pronounced patterns, which ap-
peared to be related as much to regional factors as they were to altitude. Indeed, Fur-
rer & Graf (1978) noted that the lower limit of the pdramo was often 300-500 m
higher (and the snow-line some 300 m lower) in eastern pdramos than those in the
west. This was explained by the higher precipitation levels on eastern slopes.

In all, seven main types of pdramo vegetation were recorded in this study.
Shrubby Sub-paramo

In Ecuador, shrubby padramo vegetation occurs in two distinct zones. The first zone
lies just above the cloud forest where woody vegetation grades into grassland. This is
the sub-pdramo referred to by Cuatrecasas (1954, 1958, 1968) and Cleef (1981).

In the Ecuadorian study areas, the sub-pdramo appeared little developed. This
contrasts sharply with Lauer’s (1979) view that drier paramos are likely to possess a
greater extent of sub-paramo without the ameliorating effects of greater cloud cover.
However, population pressure in Ecuador is greater than that found elsewhere in the
northern Andes, and could be responsible for the absence of sub-paramo. Certainly,
the cloud forest is only locally present in many parts of the Ecuadorian Andes. The
loss of sub-pdramo vegetation would probably have accompanied the destruction of
these forests. In most areas, the lower limit of the grassy pdramo coincides with more
intensive agriculture, whether as improved pastures or land under cultivation, and
the shrubby sub-pdramo no longer exists.
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Sub-p4ramo vegetation was only represented in one of the study areas. The three
replicate stands of Blechnum loxense sub-paramo (BS) at 3,900 m on Volcén Tungu-
rahua were clearly intermediate between the forest vegetation below and the short
paramo vegetation above. However, the volcanic mineral substrate in this area has
resulted in a sub-paramo which is not typical of most of Ecuador. There are, of
course, other volcanoes in the country which provide a very similar substrate.
Lojtnant & Molau (1982) described a community dominated by Blechnum loxense on
the humid summit of Volcidn Sumaco in Ecuador. However, the flora of this moun-
tain was considered to be unusual as a result of its isolated nature. Nevertheless, it
does share some species with the plots on Volcan Tungurahua.

None of the other study areas had a zone of sub-pdramo, and as a result there are
no quantitative descriptions of this kind of vegetation for other parts of the country.
In general, sub-pdramo vegetation elsewhere in Ecuador was found to be charac-
terised by the presence of Calamagrostis tussocks and associated flora, intermingled
with shrubs of Baccharis, Senecio, Gynoxys, Brachyotum, Escallonia, Hesperomeles,
Miconia, Buddleia, Monnina and Hypericum. Acosta-Solis (1966) also regarded these
genera as important members of the sub-paramo flora of Ecuador.

High-altitude Dwarfshrub Paramo

A second belt of shrubby vegetation occurs at much higher altitudes, usually above
4,000 m. Cleef (1981) noted this formation in his study of the Cordillera Oriental of
Colombia and explained its existence in terms of a condensation belt at this altitude
which permits the growth of woody vegetation. This zone of high altitude dwarf-
shrubs was present in most of the Ecuadorian study sites. However, it often inhabited
a very narrow altitudinal range, and many of these communities were missed during
the stratified sampling procedure, where they occurred between the 100 m sampling
levels. However, a number of representative stands were recorded in this study.

Diplostephium rupestre and Loricaria spp. are consistent members of this vegeta-
tion type. The tussock and cushion padramo with Diplostephium rupestre recorded at
4,200 m in the Pdramo de Guamani appears to be the Ecuadorian equivalent of the
high-altitude paramo dwarfshrub vegetation described by Cleef (1981) for Colombia.
However, tussocks of Calamagrostis, which were largely absent from Cleef’s com-
munity, are dominant here.

One hundred metres higher in the Paramo de Guamani, the tussocks of Calama-
grostis are absent, and in physiognomic terms the vegetation matches Cleef’s descrip-
tion more closely.

A third high altitude dwarfshrub community was recorded on Volcan Chiles at
4,100 m and 4,200 m. The description corresponds roughly with the community de-
scribed by Sturm & Rangel (1985) for the adjoining Colombian region of Cumbal-
Chiles. However, Loricaria cf. colombiana is absent from the Ecuadorian plots and
cushions of Distichia seem to be replaced by mats of Aciachne.



2. Community Ecology of the Ecuadorian Paramos 69

Tussock Paramo

The most extensive type of pdramo vegetation was tussock grassland, almost exclu-
sively dominated by Calamagrostis sp. [251]. In the majority of stands belonging to
this type, the tussocks covered over half of the surface area. Essentially, such vegeta-
tion consisted of a patchwork of raised tussocks and the spaces between them. Most

plants occupied the intertussock regions, though some species were more frequent
within the tussocks themselves.

There were altitudinal differences within the tussock padramos, and some regional
differences. The lower reaches of tussock grassland were represented in this study by
a number of communities. Calamagrostis sp. [251] Tussock Grassland with Oreo-
myrrhis andicola and Gnaphalium pensylvanicum was described for 20 stands in the
paramos of Guamani, El Altar (west) and Cajas. This community occurred between
3,400 to 4,100 m in areas with relatively humid conditions: on the eastern Cordillera
or just above the cloud forest treeline, where rainfall is high.

In central and southern paramos, where conditions were less humid, the Calama-
grostis sp. [251] tussocks were accompanied by a slightly different association of
species. Stands belonging to the Calamagrostis sp. [251] Tussock Grassland with
Viola humboldtii community were representative of such vegetation, and were lo-
cated in the padramos of Cajas and Daldal between 3,500 and 3,900 m.

On Volcédn Cotacachi in the north, from 3,600 to 3,900 m, the lower tussock grass
paramo was represented by Calamagrostis sp. [251)] Tussock Grassland with Hypo-
chaeris sonchoides, Plantago linearis and Relbunium croceum. Located on the western
Cordillera, this community received relatively little rainfall. Bare ground covered ap-
proximately 10% of the surface area on average, and reached as high as 20% in some
stands. It was similar to the pdramo vegetation surrounding Laguna Mojanda de-
scribed by @llgaard & Balslev (1979, Location 35).

In the far south of the country, in the padramos of Ona, Cumbe, Zapote Naida and
Cajas, a widespread community of lower tussock grassland was observed. This com-
munity of Calamagrostis sp. [251] Tussock Grassland with Paspalum tuberosum and
Chrysactinium acaule was the least humid of all the lower tussock pdramo repre-
sentatives. The vegetation was shorter in stature than that of more humid areas and
tussock cover was more variable, though usually between 25% and 75% of the total
area.

The TWINSPAN classification separated those tussock grass communities just de-
scribed from those higher up the altitudinal gradient. One community occupied an in-
termediate position between upper and lower tussock paramos on El Altar (west)
and in Daldal: the Calamagrostis sp. [251] Tussock Grassland with Sisyrinchium
jamesonia community was described between 3,800 and 4,200 m.

The upper tussock grass communities were less extensive and this was reflected in
the smaller number of stands of this type which were recorded. In the north, on Vol-
can Cotacachi at an altitude of 4,000 m, this type of vegetation was represented by
the Calamagrostis sp. [251] and Culcitium ovatum Humid Tussock Grassland com-
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munity, and at 4,100 m by the broadly similar Calamagrostis sp. [251] and Festuca sp.
[255] Tussock Grassland. The latter community differed mainly by virtue of the co-
dominance of Festuca sp. [255] tussocks.

At 4,000 and 4,100 m on Volcan Cotacachi, above the lower tussock paramo de-
scribed earlier, there exists a more humid grasslaud: Calamagrostis sp. [251] Tussock
Grassland with Hypochaeris sonchoides, Halenia sp, [189] and Satureja nubigena. As
with the lower community, bare ground averages about 10% of the surface area. This
vegetation was very similar in composition to that described by @llgaard & Balslev
(1979) for the Pdramo de Guamani at 4,000-4,100 m (Location 77).

Finally, three communities in Cajas represent variants of southern upper tussock
paramos. These were the Calamagrostis sp. [251] and Poa sp. [262] Tussock Grass-
land (3,800-4,000 m), the Calamagrostis sp. [251] and Agrostis sp. [243] Tussock Grass-
land (3,800 m), and the Calamagrostis sp. [251] and Rhynchospora macrochaeta
Tussock Grassland (3,900 m in Cajas, plus one stand from 4,100 m on Volcdn Chim-
borazo). All three communities were broadly similar in composition, but varied suffi-
ciently to be separated by TWINSPAN.

Bamboo Paramo

On the eastern slopes of the eastern range of the Ecuadorian Andes, with very
humid conditions and over 5 m of rainfall per year, places which would be dominated
by Calamagrostis sp. [251] tussocks elsewhere in the country are instead covered by
tussocks of bamboo grass. This type of vegetation was only encountered in one study
site, between 3,800 and 4,000 m on the eastern slopes of El Altar. Thus, only one
community of bamboo piramo has been described (Neurolepis elata Bamboo Péra-
mo). However, similar vegetation was observed in many other sites on the outer
slopes of the eastern Cordillera (Bromley, 1971; Black, 1982). It would appear, there-
fore, that this community occupies an equivalent niche to the bamboo-bunchgrass
paramo (the community of Chusquea and Oreobolus obtusangulus ssp. rubrovaginitus)
described by Cleef (1981) for the Colombian Cordillera Oriental.

It has been suggested that the presence of Neurolepis elata indicates a lack of dis-
turbance (Bromley, 1971). While this may be true in some cases, an undisturbed
habitat does not appear to be a prerequisite for the presence of Neurolepis, evi-
denced by the relatively high burning scores for the samples of this type in the para-
mo of eastern El Altar. However, human habitation and disturbance is much lower
in these paramos, most likely the consequence of high rainfall and unpleasant living
conditions. This same rainfall and humidity is undoubtedly a major factor in deter-
mining the success of Neurolepis. In the same way, bamboo species in Colombian
paramos are confined to similar areas, and their presence has also been linked with
high annual precipitation (Gradstein, Cleef & Fulford, 1977; Cleef, 1978) and with
the higher night temperatures associated with permanent atmospheric humidity
(Cleef, 1981).
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Espeletia Paramo

In the northern part of the country, and also in one isolated region in central Ecua-
dor, the Calamagrostis sp. [251] tussock vegetation is replaced by padramo com-
munities similar to those of Colombia. They are dominated by Espeletia pycnophylla
rosette plants in conjunction with Calamagrostis sp. [251] tussocks. In this study, vege-
tation samples from Volcdn Chiles provided quantitative descriptions of such com-
munities. This area is connected directly to the expansive paramo of El Angel, which
is perhaps the most famous area of Espeletia Paramo in Ecuador.

The lower Espeletia Padramo community on Volcén Chiles occurred at 3,600 and
3,700 m (Calamagrostis sp. [251)] and Espeletia pycnophylla Tussock Grassland with
Paspalum tuberosum). It corresponds well with the community of Calamagrostis effu-
sa and Espeletia cf. pycnophylla described by Sturm & Rangel (1985) for the Cumbal-
Chiles region. Calamagrostis and Espeletia are codominant, with Blechnum loxense
and Paspalum bonplandianum key elements of the flora. Sturm & Rangel (1985) re-
port that this community was present on “very humid sites” and associated with the
greater soil moisture and the protection offered by hollows. Franco, Rangel & Loza-
no (1986) described a similar community (Castratello-Calamagrostietum effusae) in
the Colombian Cordillera Oriental and linked its distribution to soil moisture condi-
tions. It is also similar in many respects to the Calamagrostis effusa and Espeletia
hantwegiana ssp. centroandina community described for two neighbouring Colom-
bian paramos by Rangel & Franco (1985) and Rangel & Lozano (1986).

Miller & Silander (1991) report a community from 3,415 m in the nearby Pdramo
del Angel dominated by tussocks and giant rosettes. Espeletia hartwegiana ( =E.
pycnophylla) covered approximately 15% of the area, whereas Puya hamata was re-
sponsible for roughly 30% cover. Tussocks of Calamagrostis intermedium (c. 30%)
and Carex pichinchensis (c. 15%) were codominants. This community appears similar
in many ways to that just described for Volcan Chiles and may represent a lower alti-
tude equivalent of the Espeletia and Calamagrostis tussock grassland. It is notable,
however, that Paspalum is absent.

At 3,800 and 3,900 m on Volcan Chiles, a community of Calamagrostis sp. [251]
and Espeletia pycnophylla Tussock Grassland with Viola sp. [192] was described. Tis-
socks of Agrostis sp. [240] displaced those of Calamagrostis sp. [251] at the highest al-
titude. This vegetation may correspond in some way with Sturm & Rangel’s (1985)
Loricaria cf. colombiana and Agrostis foliata community. They describe a shift at
higher altitudes: a decrease in Calamagrostis and Espeletia in favour of Loricaria and
Agrostis. Although, Loricaria was not present in the Ecuadorian plots, there was cer-
tainly a change from Calamagrostis to Agrostis with increasing altitude.

Cushion Paramo

At the highest elevations, tussock vegetation gives way to cushion paramo. Often,
the transition is very rapid, occurring over very short distances. The physiognomic ef-
fect of replacing tussocks with cushions results in a much more open vegetation, with
increased species diversity. The cushion pdramo communities, by virtue of their
residence on the tops of mountains, have a rather localised and isolated distribution.
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The stratified sampling technique employed in this study was prone to overlooking
some examples of this vegetation. However, six representative communities were de-
scribed.

In most regions, Calamagrostis sp. [251] tussocks begin to decrease in cover be-
tween 3,950 and 4,000 m, and their dominant position in the vegetation is assumed
by Plantago rigida cushions. At 4,200 m on the western slopes of El Altar, three
stands were described which were typical of the vegetation which develops above the
tussock paramos. In this Plantago rigida Cushion Paramo, the dominant species’ cu-
shions covered 50-75% of the surface area. Some Calamagrostis sp. [251] tussocks
persisted, with a cover of 25-50%. This type of vegetation was reported from Volcan
Pichincha, Ecuador, by Benoist (1935).

At the same altitude on the more humid eastern slopes of the same mountain,
Plantago rigida cushions were co-dominant with mats of Aciachne flagellifera and
Valeriana aretioides. One hundred metres lower on this slope and Plantago rigida was
completely absent. In its place, were cushions and mats of Azorella corymbosa, Disti-
chia muscoides and Werneria humilis.

At 4,300 m, vegetation cover was thinner. Although cushion plants were present
(Werneria humilis, Azorella corymbosa) they were not dominant. In fact, no species
was able to assume a dominant position in the community.

On Volcin Cotacachi at 4,200 m, cushions of Werneria humilis and Plantago rigida
were co-dominant with Lycopodium sp. [289]. A number of other cushion forming
species were also present (Aciachne flagellifera, Valeriana aretioides) along with some
dwarf shrubs (Diplostephium rupestre and Loricaria sp. [334]).

At 4,400 m in the Pdramo de Guaman{ a similar cushion pdramo was sampled. Wer-
neria humilis was again a significant element in the community, though this time co-
dominant with Azorella corymbosa.

Although Harling (1979) noted the widespread existence of cushion pdramos in
Ecuador, there are few descriptions of them in the literature. In Colombia and Vene-
zuela, cushion communities occur almost exclusively in wet azonal bogs and mires,
and therefore Cleef (1981) did not find the type of zonal communities described
here. @llgaard & Balslev (1979) describe several cushion communities in general
terms. Communities close to the Werneria humilis & Plantago rigida Cushion Pdramo
described here were found at Locations 15, 72, 78 and 79.

Rainshadow Desert Paramo

Two forms of desert piramo were present in the study sites: high altitude desert
paramo (the result of consistently low temperatures) and rainshadow desert pdramo
(occupying a wide altitudinal range in certain areas). General classifications of Ecua-
dorian paramo vegetation have sometimes confused these two kinds of desert (for
example, Harling, 1979), though the differences are pronounced and are reflected in
the floristic composition of the vegetation.
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A regional desert pdramo was sampled on Volc4dn Chimborazo. The ‘Grande Are-
nal’ or Great Beach of Chimborazo was described by Acosta-Solis (1985) as an
example of puna vegetation in Ecuador, very different from the pdramo vegetation
elsewhere in the country, but comparable to the puna of Peru, Bolivia and Argentina.
This was confirmed by the analyses in this study: the stands from Chimborazo were
consistently separated from the remainder.

Below 4,000 m on Volcdn Chimborazo, the vegetation was dominated by Stipa sp.
[253] and Senecio teretifolius with Plantago sp. [301]. The presence of Stipa tussocks
symbolises the link between the vegetation of the Arenal and that of the puna, where
Stipa ichu is predominant.

The arid nature of the north-western part of Volcan Chimborazo can be explained
by two factors. Firstly, the area is in rainshadow, both from the volcano itself, and
also from the eastern range of the Andes upon which most of the rain falls. Secondly,
the sandy substrate found here does not support surface waters. Acosta-Solis (1985)
reports that meltwater from the snow-cap of the mountain flows below ground only
to emerge at an altitude of around 4,000 m.

There are a number of other sites in Ecuador which are subject to similar condi-
tions. Acosta-Solis (1984, 1985) gives a number of examples including the slopes of
Volcén Carihuayrazo and Volcan Iliniza, and the pdramos of Palmira and Moyocan-
cha. By virtue of the free-draining substrate, a number of other regions may support
similar vegetation locally. For example, Miller & Silander (1991) describe com-
munities dominated by Stipa ichu tussocks on Volcan Cotopaxi, though they were
more diverse than those described here.

High Altitude Desert Paramo

At the limits of plant survival at high altitudes, a sparse vegetation cover of plants
may exist amongst the rocks and scree which provide shelter from the harsh condi-
tions. This is equivalent to the super-paramo defined by Cuatrecasas (1954, 1958,
1968). The super-paramo reaches its greatest extent the south-west of Ecuador
where it is driest (Furrer & Graf, 1978).

The vegetation of the upper reaches of Volcan Chimborazo provided a good
example of this kind of desert pdramo, though the rainshadow effects mentioned
above may have contributed to its formation. The majority of the region is domi-
nated by three species: Chuquiraga jussieui, Calamagrostis sp. [251] and Geranium
sp. [157]. One of Pllgaard & Balslev’s (1979) collecting locations was in a similar
area on Volcan Cotopaxi (Location 74), with Chuquiraga jussieui a conspicuous ele-
ment of the vegetation, but lacking Calamagrostis tussocks and Geranium cushions.

At the highest altitudes, the vegetation was heavily dependent upon sheltered sites
amongst the rocky substrate. Pfitsch (1988) demonstrated that significant thermal ad-
vantages (and thus benefits to survival) were experienced beside large rocks. On
Chimborazo, this resulted in a very variable floristic composition, which is reflected
by the complex community patterns produced by TWINSPAN at these altitudes. All of
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the communities were dominated by Chuquiraga jussieui, Calamagrostis sp. [251] and
cushions of Geranium sp. [157], with an associated range of other species.

On the humid slopes of Volc4dn Tungurahua, another desert pdramo community
was recorded at altitudes of 4,000 m and above. Tussock grasses were absent, the
vegetation consisting of a low carpet of plants. Many of the species in this community
may also be found in the cushion p4ramos which have already been described.

The distributions of the pdramo communities which have been described above
are determined by a number of environmental factors. Many of these factors are in-
terdependent, and altitude, in particular, proved to be correlated with almost all of
the other environmental variables measured in this study. It was also strongly related
to species and community distributions. Thus, altitude provides a useful overview of
many of the elements which control the presence and extent of pdramo vegetation.
Baruch (1984), in a study of Venezuelan paramo vegetation, also found that altitude
was the principal component of his first ordination axis, and that most of the environ-
mental parameters he measured were statistically related to it.

Cleef (1981) proposed that the zonation found in the Colombian Cordillera Orien-
tal was related to the incidence and frequency of sub-zero temperatures. The mech-
anisms involved may be related to tissue damage and early morning water stress,
illustrated by studies such as that by Goldstein & Meinzer (1983) and Goldstein,
Meinzer & Monasterio (1985). Unfortunately, it was not possible to collect repre-
sentative climatic information during the field visits and no data was available from
other sources.

Although the altitude of an area would indicate the general level of minimum tem-
peratures, they are buffered by humidity. Pdramos in humid, cloudy regions tend to
be subject to fewer, less intense frosts than their counterparts in drier areas (Sar-
miento, 1986). In a similar way, soil moisture may buffer temperatures close to the
ground and around the roots. Thus, the drainage and water holding capacities of
péaramo soils may also be relevant to plant distribution.

It is not clear whether plant communities develop in response to soil pH, or vice
versa. For example, the paramo soils of Sumapaz in Colombia are acidic despite over-
lying limestone (Fosberg, 1944). However, certain patterns of soil pH are evident
from this study, despite the loss of some samples. Whilst cushion and tussock para-
mos occupy areas of relatively average pH (around 4.5-5.5), Espeletia paramos ap-
pear to inhabit more acidic areas (pH of about 4.5) and desert paramos are found
largely on soils with higher pH values (5.5). Cleef (1981) also linked soil depth to
plant distribution in the Colombian paramo. This is particularly important at higher
altitudes where soil formation is slow.

In high altitude pdramos, vegetation was restricted to sheltered sites next to rocks
or other plants. Exposure was important in determining the presence or absence of
species throughout the paramo vegetation studied. Smith (1978) clearly demon-
strated that Polylepis sericea seedlings were unable to establish in open paramo in
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Venezuela, and many other species may be similarly restricted in the Ecuadorian
Andes.

Overall disturbance was rated for each sample on a six-point scale. This index
proved a reliable estimator for three other indices used in this study: burning, tramp-
ling and grazing. These three variables are strongly linked with each other. Usually,
paramo areas are burned because a farmer wishes to improve the nutritional value of
the land for livestock. Implicitly, the same area must be subject to grazing pressure.
Furthermore, cattle and horses with freedom to roam the padramo appear to favour
recently burned areas (personal observation; Verweij & Kok, 1992). This will concen-
trate grazing activity in burned areas. Of course, wherever there is grazing pressure,
there must also be trampling. On steep slopes throughout the Ecuadorian Andes, the
effects of trampling can be clearly seen: the hillsides are minutely terraced along the
contours by the movements of livestock. It might appear from the aforementioned
that agricultural use of the paramos is intensive. In fact, the reverse is usually the
case, cattle and horses are grazed over wide areas and at low density. However, in an
environment such as the paramo, recovery from disturbance is slow. This leads to
widespread indications of disturbance, though the rate of disturbance may be low.
Schmidt & Verweij (1992) observed that cattle on the padramo graze for long hours
and over large areas to meet their nutritional requirements. It was estimated that
cattle walked an extra 5 km per day, with an estimated ascent of 50 m, when com-
pared to the foraging behaviour of lowland animals.

Disturbance (both natural and human) was considered to be an important factor
determining the distribution of Colombian and Venezuelan paramo species by Loza-
no & Schnetter (1976) and Baruch (1984), respectively. In Ecuador, disturbance was
clearly correlated to species and community distributions. This will be discussed fur-
ther in the final chapter.

Species diversity was found to rise with increasing altitude. Baruch (1984) ob-
served the same phenomenon in a Venezuela paramo. This follows general observa-
tions that diversity tends to increase in places with relatively high environmental
stress (Peet, 1978). In such places, stress tolerance is the main strategy and competi-
tive exclusion is less influential on community composition (Grime, 1979). In the
Ecuadorian p4dramos, the diminishing dominance of Calamagrostis tussocks and its
eventual disappearance at the highest altitudes results in a much more even distribu-
tion of species abundance, which increases diversity. The cushions, which tend to
dominate the higher altitudinal zones, are less able to exclude other species which
grow upon them.

This study has described a number of pdramo communities throughout Ecuador
and covering a wide altitudinal range. The distributions of the plant species making
up these communities were statistically related to environmental variables such as al-
titude, exposure and disturbance. Other factors seem to be involved which were not
measured, like minimum temperatures and humidity. These factors have been linked
to plant distributions in the pdramos of Venezuela (Farifias & Monasterio, 1980; Ba-
ruch, 1984) and Colombia (Lozano & Schnetter, 1976; Cleef, 1981).
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Three areas of research, in particular, warrant further study. First of all, more
quantitative descriptions of pdramo areas of Ecuador are needed, to determine the
representativeness of the current study and to give a better picture of variability in
composition. Paramos to the south and east were under-represented in this study
and the understanding of Ecuadorian mountain vegetation would benefit from fur-
ther attention to these regions.

Secondly, the mechanisms which limit plant species distribution require attention.
This requires detailed study over a long period of time so that due consideration is
given to climatic factors. A useful starting point for such research would be the transi-
tion zone between tussock and cushion padramo found so often at around 4,000 m,
which is described in more detail in Chapter 4. Here, there are pronounced changes
in physiognomy over a very short distance (both laterally and altitudinally) and an op-
portunity to conduct a detailed study of the processes involved.

Finally, a third avenue of study concerns the distribution and composition of azo-
nal vegetation in the Ecuadorian paramos. Bogs, woodlands and thickets are fre-
quently discovered amidst the more extensive zonal pdramo dealt with here.
Consideration of the adaptations evolved by plants in response to such environments
may reward investigation.
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7fﬂAwGrowth Form Classification for
the Ecuadorian Paramo

The form of plants has long been recognized as an important descriptive feature of

both individual plants themselves and of the vegetation they comprise. Terms such
as tree and herb for plants, and forest and grassland for plant communities are in
general use and relate to particular forms of plant life. There are other, more spe-
cialized terms like xerophyte, which suggest particular adaptations to specific envi-
ronmental conditions.

Not surprisingly, there exists a large body of literature on plant forms with varied
applications. Throughout, there has been confusion over the use of the terms growth
form and life form. In this work, the definitions of Clements (1920) in Schulze (1982)
have been adopted —the growth form is the direct, quantifiable response made by a
plant to different habitats and conditions, while the life form is a morphological fea-
ture of a species which is insensitive to environmental changes. This distinction is a
useful one, and any temptation to use the terms synonymously should be resisted.
However, it is difficult to establish which of these terms applies to a particular fea-
ture without first subjecting the plant to artificial environments. It is often impracti-
cal to determine whether particular plant forms are fixed regardless of the
environment, and for this reason all plant forms will be referred to here as growth
forms. Future research may yield the information necessary to distinguish between
those features that have a plastic response to the environment and those which do
not.

Von Humboldt (1806) offered the first widely recognized classification of ‘Haupt-
formen’ (physiognomic types) following his travels in the Andes. His system grouped
plants according to physiognomic similarities, rather than by conventional taxonomic
comparison. He described nineteen distinctive plant forms, named and characterized
by a genus or family in which that form was clearly represented (for example, palms,
banana, lianas, lily, fern, grass). Later in the century, other authors advocated similar
physiognomic systems of plant classification. For example, Grisebach (1872) de-
scribed sixty vegetative forms and attempted to show their correlation with the cli-
mate in which they were found.

Warming (1884), Schimper (1898) and others, stressing the ecological significance
of plant form, classified plants partly by an assessment of their response to water sup-
ply and transpiration.

A simpler system was proposed by Raunkiaer (1907, 1908, 1934): his life form divi-
sions were based on the position of the buds or organs from which new shoots or fo-
liage developed after an unfavourable season. Plant behaviour during the growing
season was largely ignored. Ellenberg & Miiller-Dombois (1967) found it necessary
to modify the system to include more emphasis on structure and seasonality of the
crown, foliage and shoot systems. Despite difficulties, the Raunkiaer system and its
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derivatives have enjoyed wide usage for comparing different vegetation types and
their relationship to the environment.

Criticism of the Raunkiaer approach led to the development of other systems. Du
Rietz (1931) concluded that it was impossible to formulate one, all-encompassing
classification; rather, more was to be gained from the use of several parallel systems,
emphasizing different features. He proposed six classifications including main life
forms (based upon the general physiognomy of the plant in the growing season), bud
height life forms (as in the Raunkiaer system) and leaf life forms (based upon the
character of the leaves).

Most of the classification approaches have been devised in the temperate zone,
with only a secondary incorporation of tropical regions. Hedberg (1964) points out
the hopeless task of creating a system to incorporate all plants on earth for all cli-
mates. It is not surprising, therefore, that the applicability of general-use systems for
classifying growth forms in the peculiar environments of the tropical alpine regions is
limited. Many problems arise from the lack of climatic seasonality, which results in
the absence of a growing season (and of “resting buds”). The “unfavourable season”
required by a host of classifications occurs every night, invalidating such systems. In
addition, it is impossible to distinguish annuals from perennials, monocarps from
polycarps, or half-shrubs from herbs. Many plants are frutescent, but the younger
shoots are herbaceous, only acquiring woodiness with age (irrespective of the time of

year).

For these reasons, Hedberg (1964) found it necessary to establish his own system
for grouping plant forms in the Afroalpine environment. His system consisted of five
classes: giant rosette plants, tussock grasses, acaulescent rosette plants, cushion
plants and sclerophyllous shrubs. Some 45% of the flora fitted these classes, the rest
being ignored (showing “less conspicuous adaptations to this environment”). Vares-
chi (1970) referred to nine ‘biotypes’ of the Venezuelan Andes. Stem rosettes,
cushion plants, ‘trellis’ plants, dense bunch plants, plants with clustered flowers,
dwarf shrubs, rosette plants, geophytes and therophytes comprised his list. Troll
(1975 —cited by Lauer, 1979) associated nine life forms with the padramo: paramo
grasses, stem rosettes, basal rosettes, evergreen shrubs with dense scales or involuted
leaves, macrophyllous evergreen shrubs, shrubs with pubescent leaves, cushion
plants, dwarf rosette plants and dwarf semi-woody shrubs forming cushions.

Hedberg (1964) and Hedberg & Hedberg (1979) used their five classes of growth
form to examine the adaptive significance of these plants to the environment. How-
ever, it is also of interest to compare regions on the basis of growth form and to de-
scribe communities by their growth form composition. For these to be accomplished,
it is desirable to attempt to account for the 55% of the flora left out of Hedberg’s sys-
tem, though Mena & Balslev (1986) compared the paramo of El Angel with Afroal-
pine vegetation using only Hedberg’s five growth forms. The categories proposed by
Vareschi (1970) and Troll (1975) go some way to accounting for the omitted flora,
though their classifications do produce further problems of undue complication, par-
ticularly with regard to shrubs.
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Perhaps ideally, a classification system should indicate relationships between the
various groups in a hierarchical manner. However, in practice, this is very hard to
achieve with growth forms. Von Humboldt (1806) recognised that life forms are “by
their nature not capable of strict classification”. Warming (1909) considered it “an in-
tricate task to arrange the life-forms of plants in a genetic system, because they ex-
hibit an overwhelming diversity of forms, ... also because it is difficult to discover
guiding principles that are really natural”. Only small modifications to a growth pat-
tern are required to change the growth form (the fact that certain taxa may have rep-
resentatives in a number of growth form categories is evidence for this). A tussock
can thus be viewed as an exploded cushion (Hodge, 1946), which in turn may be seen
as a contracted shrub and so on. Therefore, an hierarchical classification has not
been attempted since the end groups are all that is required.

Tansley & Chipp (1926) state that “the independent student of evolution will do
well, however, to make his own classification of life-forms of the communities he ac-
tually studies”. It is my intention to add to Hedberg’s system in an attempt to include
a larger portion of the flora than the five classes currently accommodate, and to
apply it to the paramo flora of Ecuador.

Hedberg’s classes are dealt with first, with examples from the Ecuadorian paramo
flora and further afield. Then, additional types of growth form are defined and exam-
ples given.

Stem Rosettes (rigure 3.1)

Hedberg’s classification (1964) included both stem rosettes and basal rosettes in a
group termed ‘Giant Rosettes’. These forms are differentiated in the present system.

Stem Rosettes are characterized by thick and unbranched stems covered by dense,
dry leaves that remain attached to the plant when they die (marcescent). The single
aerial meristem produces lateral inflorescences. It is polycarpic and growth is not
determinate (that is, flowering does not halt the development of the axis). Cuatreca-
sas (1979) terms this growth form as a polycarpic, more or less tall, monocaul cauliro-
sula. Vareschi (1970) and Troll (1975) both include this form in their systems.

A widely used concept of plant form is the architectural model (Hallé & Oldeman,
1970): an inherent growth strategy which defines both the manner in which a plant
elaborates its form and the resulting architecture (Barthélémy, Edelin & Hallé,
1989). The architectural model of any plant is based on observations of the type of
growth, branching pattern, morphological differentiation of axes and the position of
sexuality (Barthélémy et al., 1989). Therefore, the architectural model is entirely in-
dependent of taxonomic boundaries between plants. It may express both the pheno-
typic plasticity of plants (including branch ageing, die-back, release of dormant
meristems and re-iteration) and the genetic control of metameric growth and itera-
tion (Hall¢, Oldeman & Tomlinson, 1978).
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Figure 3.1.
The stem rosette growth form (for example, Espeletia pycnophyilia).

The stem rosette form corresponds, in a wide sense, to Corner’s model of tree
architecture (Hallé et al., 1978). However, there are differences — differentiated re-
productive branches, spiral phyllotaxis in the stem but decussate phyllotaxis in the in-
florescence —which strictly requires another architectural model (Cuatrecasas,

1986). In the Raunkiaer system (Ellenberg & Miiller-Dombois, 1967) these plants
would be classified as phanerophytes.

It is exemplified by Espeletia pycnophylla ssp. angelensis in the paramos of north-
ern Ecuador (illustrated in Figure 3.1). Tree ferns also conform to this model, and so

Blechnum loxense has been incorporated into this class.

Elsewhere in the northern Andes, Espeletia species are a more important element
of the padramos (Cuatrecasas, 1979). Monasterio (1986) estimated that Espeletia ti-
motensis in the Venezuelan Andes has a life-span of 170 years. In Venezuela, Planta-
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go perrymondii and Bulbostylis sp. (Cyperaceae) also exhibit this form (Vareschi,
1970). In the puna vegetation of the Southern Andes, stem rosettes are not present.
On a wider scale, stem rosettes are common in the afroalpine region: Senecio, Den-
drosenecio and Carduus species (Mabberley, 1986). Cyathea, Dicksonia and Cibotium
tree ferns occur in subalpine habitats in the grasslands of Malaysian mountains (Van
Royen, 1967).

Basal Rosettes (Figure 3.2)

Holttum’s model (Hallé et al., 1978) is defined as a plant with a unique axis provided
by a single aerial apical meristem which always remains unbranched. After a phase of

-~

’
H
i

/
l
d
'
/
Y
/
/

I P i

S

AN ‘:k o ‘ B
(sl
R e s
O RAN '-Sr.i:":'h"'

2%

Figure 3.2.
The basal rosette growth form (for example, Puya hamata).
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stem building, the terminal meristem differentiates completely into an inflorescence.
It is, therefore, monocarpic. Sometimes they are referred to as ‘candle plants’. These
plants are rosulate phanerophytes according to the modified Raunkiaer system of El-
lenberg & Miiller-Dombois (1967).

Hedberg (1964) failed to differentiate this group from the stem rosettes, though
Troll (1975) did make the distinction. The basal rosette growth form is more com-
monly represented in the Ecuadorian pdramos than the stem rosettes. Several
species of Puya (for example, Phamata, shown in Figure 3.2) conform to this growth
model. Several other species in Ecuador have a similar overall appearance, and be-
long to this category but, unlike Puya, are neither woody nor monocarpic: Rumex to-
limensis, Valeriana plantaginea, Lupinus alopecuroides and Culcitium sp. A number of
fern species can also demonstrate this form, for example, Thelypteris sp.

Basal rosettes are present, but are not as important in Colombia and Venezuela—
representatives of this growth form, such as Draba spp. and Senecio spp., were re-
ported in several studies of the Colombian paramos (for example, Sturm & Rangel,
1985); and Vareschi (1970) fails to mention them at all in his study of Venezuelan
paramo vegetation. In the puna of Perd, however, they are much more conspicuous
(for example, the impressive Puya raimondii). In East Africa, Lobelia spp. (Campanu-
laceae) are very significant basal rosettes. Rheum nobile (Polygonaceae), Lobelia
(Campanulaceae), Eremurus himalaicus (Liliaceae), Arnebia (Boraginaceae) and
Saussurea (Compositae) in the Himalayas, Silverswords (4rgyroxiphium spp., Halea-
kala spp.— Compositae) in Hawaii and Echium spp. (Boraginaceae) in the Canary Is-
lands are all examples of ‘candle plants’ in mountain areas.

Tussock Plants (rigure 3.3)

In tussock or bunch grasses, erect tillers are produced from tightly packed culms at
the soil surface (though often growth of the tussock raises this region of dense culm-
bases above ground level). Dead leaves are retained and decay while still attached to
the plant. The scleromorphic leaves tend to be filiform, either tightly folded or in-
rolled. This growth form would classify as a caespitose hemicryptophyte in Raun-
kiaer’s system. It is often difficult to distinguish between true tussock-formers and
those plants which are only loosely tufted (Hedberg, 1964).

In the Ecuadorian p4dramos, tussock grasses most commonly belong to the genera
Calamagrostis, Cortaderia, Festuca and Stipa. Non-graminoids also belong to this
group, in particular a number of sedges (Carex, Rhynchospora, Uncinia) and Sisyrin-
chium spp.

Tussock grasses are common elsewhere in the paramos of the northern Andes,
though their prominence declines northwards as the giant rosettes become increas-
ingly significant. Vareschi (1970) notes that bunch grasses (particularly Agrostis haen-
keana and Helleria fragilis) occur at the highest altitudes in Venezuela. Yet further
north, in the Mexican zacatal, large stands of tussock grasses occur, the genera Briza,
Bromus, Calamagrostis, Festuca, Muhlenbergia and Stipa well-represented (Breed-
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Figure 3.3.
The tussock growth form (for example, Calamagrostis effusa).

love, 1973). In the puna of the Altiplano, tussock grasses (Stipa, Calamagrostis and
Festuca) represent an important growth form element (Ruthsatz, 1977; Seibert,
1983). In the afroalpine zone of East Africa tussock grasses are equally significant in
community physiognomy. Hedberg (1964) cites Festuca, Poa, Agrostis, Pentaschistis
and Carex as the main tussock-forming genera. Van Royen (1967) cites the main tus-
sock grasses of New Guinea as Danthonia, Agrostis, Anthoxanthum and Festuca. This
growth form is also highly characteristic of Sub-Antarctic regions, exemplified by Poa
and Stipa (Sewell, 1954), and Chionochloa, Poa, Festuca and Notodanthonia for New
Zealand (Mark & Adams, 1973).

Acaulescent Rosettes (rigure 3.4)

The basal rosette of these forms is initiated at or below ground level, the leaves being
attached at virtually the same level. An overground stem is absent (though in some
members the flowers are not sessile, but borne on more or less leafless flowering
stems). These plants commonly possess a large tap root. They are usually small (up to
30cm across, but generally smaller), though some of the larger species may be viewed
as small versions of the giant basal rosette form. Rosette or semi-rosette hemicrypto-
phyte approximates to this growth form in the Raunkiaer system (Ellenberg & Miil-
ler-Dombois, 1967).
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Figure 3.4.
The acaulescent rosette growth form, for example, Eryngium humile (left) and Hy-

pochaeris sessiliflora (right).

The paramo flora of Ecuador contains many representatives of this growth form.
The commonest include Hypochaeris sessiliflora, Oritrophium peruvianum, Hieracium
frigidum, Senecio pimpinellifolius, Senecio repens and Plantago major. Werneria nubige-
na is a variation on the rosette form, the leaves stacked on top of each other. Luzula
spp. and a number of sedges are included here. Less well-defined acaulescent roset-
tes are Lachemilla hispidula (and other similar members of the same genus), Oreo-
myrrhis andicola and Niphogeton dissecta. Isoétes is also placed in this category,
though perhaps it merits a group of its own.

Acaulescent rosettes are common elsewhere in the paramo; for example, Rhizoce-
phalum candollei Wedd. in the Venezuelan paramo (Hedberg & Hedberg, 1979).
Cleef (1978) includes Acaena cylindristachya, Valeriana spp., Castratella spp. and On-
trophium spp. among the Colombian paramo acaulescent rosettes. The form is well-
represented in the puna (Hedberg & Hedberg, 1979). Wilcox et al. (1986) list a
number of acaulescent rosette species in their bofedal communities in the highlands
of Central Perti. Cabrera (1968) lists a number of species occurring in the puna, in-
cluding Chaptalia similis, Trechonaetes lanigera, Plantago monticola and Northoscord-
um sessile.

In East Africa, there are several notable examples, including Ranunculus cryptan-
thus, Oreophyton falcatum, Haplocarpha rueppellii and Carduus chamaecephalus
(Hedberg, 1964). In New Zealand, there are a large number of species belonging to
this growth form, notably Aciphylla congesta, Celmisia spp. (C.major var. brevis ap-
pears remarkably similar to the Andean Oritrophium peruvianum — Solbrig (1960)
considered Oritrophium a section of the genus Celmisia but Cuatrecasas (1968)
treated them as separate genera) and Craspedia spp. (Mark & Adams, 1973). Hima-
layan rosette species (Polunin & Stainton, 1987) include Pycnoplinthopsis bhutanica
(Cruciferae) and Astragalus rhizanthus (Leguminosae).
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Figure 3.5.
The cushion and mat growth form, for example, Plantago rigida (right) and

Azorella pedunculata (left).

Cushion Plants (rigure 3.5)

The term cushion is used here in its widest sense, to include soft mat-cushions and
hard, compact bolster plants.

The plants in this class show a variety of shapes, ranging from semi-spherical
through hummock to flat mat. Rauh (1939) distinguished a number of morphological
types of which rosette cushions, creeping cushions and ball cushions are commonest
in the Ecuadorian paramos. All have profusely branched stems with short inter-
nodes, the branches terminated by imbricate leaves in more or less evident rosettes,
forming a dense layer covering the peaty interior (formed by the decay of the re-
mains of leaves, branches and roots). As the older branches die and decay, the
younger parts become isolated from the original plant (Heilborn, 1926; Hedberg,
1964). It is difficult to establish whether cushions or mats are composed of one indi-
vidual or more; the complete fusion of cushions of different species has been ob-
served (Heilborn, 1926). In the Raunkiaer system, cushion plants would be classified
as semi-woody dwarf shrubs, more specifically as “suffrescent” pulvinate cha-
maephytes. The classification of mat or hummock plants is less precise.

Cushion plants are very conspicuous in the Ecuadorian paramos, particularly
above 4,000m. Harling (1979) recognized an entire vegetation type as “cushion para-
mo”. Notable examples of cushion-formers are Plantago rigida, Valeriana rigida, Noto-
triche jamesonii, Geranium sp., Azorella diapensioides, Arcytophyllum spp., Werneria
humilis, Viola sp. and Distichia muscoides. Mat-formers include Oreobolus obtusangu-
lus, Distichia muscoides, Plantago rigida, Aciachne flagellifera and Azorella
pedunculata.
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According to Cleef (1978) six taxa constitute common vegetation types in the Co-
lombian paramos: Plantago rigida, Distichia muscoides, Distichia tolimensis, Oreobo-
lus sp., Azorella multifida and Aciachne pulvinata. In the Venezuelan paramo around
Mucubaji, Hedberg & Hedberg (1979) classified Aciachne pulvinata, Paepalanthus
karstenii, Calandrinia acaulis, Arenaria venezuelana f. caespitosa, Azorella crenata and
Plantago rigida as cushion plants.

The cushion growth form reaches its height of supremacy in the puna vegetation
where desert conditions produce the so-called puna mat vegetation (Hodge, 1946).
Notable puna species with a cushion or mat form include Azorella compacta, Ade-
smia eninacea, Adesmia patacana, Pycnophyllum spp., Anthobryum tetragonum and
Opuntia atacamensis (Cabrera, 1968). Hodge (1946, 1960) lists a number of cushion
plants for the Peruvian puna and emphasises the use of ‘llareta’ (4zorella spp.) for
fuel. Ruthsatz (1978) identified some thirty species of cushion plants in North-west
Argentina including several which occur in Ecuador (for example, Distichia mu-
scoides, Werneria pygmaea). In Northern Chile, Quintanilla (1983) reports Pycno-
phyllum bryoides, Azorella sp. and Adesmia sp., whilst Armesto, Arroyo & Villagran
(1980) studied cushions of Laretia acaulis, Azorella monantha and Azorella madre-
porica in Central Chile.

In East Africa only five species were found by Hedberg (1964) to belong to this
class: Agrostis sclerophylla, Sagina afroalpina, Swertia subnivalis, Myosotis keniensis
and Haplocarpha ruppellii. In Malaysia cushions are also very rare (Van Steenis, 1935
p.346, 1939 p.448). Van Royen (1967) describes mats of Eurya brasii and Oreobolus
sp. in Papua New Guinea. In the alpine zone of New Zealand mats and cushions are
a very conspicuous group, with Colobanthus canaliculatus (and other species),
Drapetes lyallii, Dracophyllum muscoides, Celmisia sessiliflora, Haastia pulvinaris,
Raoulia spp., Phyllachne spp. and Pygmaea spp. good examples (Mark & Adams,
1973; Godley, 1978). Reference to Polunin & Stainton (1987) shows that cushion and
mat plants are represented in the Himalayas, notably by Thylacospermum caespito-
sum (Caryophyllaceae), Arenaria bryophylla and A.densissima (Caryophyllaceae),
Saxifraga saginoides and S.pulvinaria (Saxifragaceae) and Androsace delarayis and
A.tapete (Primulaceae).

Upright Shrubs (rigure 3.6)

The sclerophyllous (tough-leaved) and dwarf shrubs of Hedberg’s (1964) classifica-
tory system are characterized by thin and distinctly woody branches with thin bark.
The leaves are rigid, more or less coriaceous (leathery), often small, folded or revo-
lute. The leaf surface is sometimes covered by dense, white pubescence, often mixed
with gland hairs. The shrubs vary in height from 50cm to 2m or more. Not all shrubs
in Hedberg’s classification were sclerophyllous and likewise, there are a number of
different leaf forms in the paramo species forming this group. Troll (1975) divided
upright shrubs into three classes: those with dense scales or involuted leaves (like
Loricaria), those with large leaves (such as Befaria) and shrubs with pubescent leaves
(for example, Helichrysum).
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Figure 3.6.
The upright shrub growth form (for example, Valeriana microphylia).

The group is continuous with suffrescent herbs and borderline cases are difficult
to distinguish. The absence of a resting season makes the classification of this growth
form according to the system of Raunkiaer impossible. Perhaps evergreen nanopha-
nerophytes without bud protection is close, but so too is suffruticose/frutescent cha-
maephytes (Ellenberg & Miiller-Dombois, 1967). Sturm (1978) found this to be a
problem too —many of his dwarf shrubs were denoted as “chamaephyte or nanopha-
nerophyte”.

Dwarf shrubs occur quite frequently in the Ecuadorian paramos, particularly in its
lowest reaches. Valeriana, Gynoxys, Diplostephium, Pentacalia ( = Senecio), Chuquira-
ga, Berberis, Hypericum, Gnaphalium, Lupinus, Loricaria, Calceolaria and Hesper-
omeles are all genera with representatives of this growth form.

Cleef (1981) referred to a dwarfshrub pdramo and a number of azonal dwarfshrub
comunities in the Colombian Cordillera Oreintal. Sclerophyllous shrubs constitute
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Figure 3.7.
The prostrate shrub growth form (for example, Pernettya prostrata).

one of the most frequent growth forms of the Venezuelan paramo, including Hesper-
omeles pernettyoides, Lachemilla verticillata, Polylepis sericea, Draba cf. funckiana, Hy-
pericum laricifolium, Valeriana parviflora and Baccharis prunifolia (Hedberg &
Hedberg, 1979).

In the remainder of paramo regions, dwarf shrubs are common in the lower por-
tions, the subp4ramo of Cuatrecasas (1958, 1968). In the puna of the Central Andes,
tola (Parastrephia lepidophylla) plays a major role in the plant community, in conjunc-
tion with other composite shrubs (Seibert, 1983). Quintanilla (1983) describes Chu-
quiraga kuschelli and Chuquiraga spinosa for the Chilean puna. ‘Sclerophyllous’
shrubs are a common element of the afroalpine flora: according to Hedberg (1964)
about fifty taxa belong to this group, including Protea kilimandscharica, Thesium kili-
mandscharicum, Alchemilla spp., Adenocarpus mannii, Hypericum spp., all afroalpine
Ericaceae, Bartsia spp., Helichrysum spp., Senecio spp. and Euryops spp. J.M.B. Smith
(1975) notes the importance of shrubs in the tropicalpine zone of New Guinea (for
example, Hypericum). In New Zealand, a number of species belonging to the genera
Drapetes, Hebe and Helichrysum are similar in general appearance to Loricaria spp.
in the padramo. Some Hebe spp. are also like the pdramo shrubs of Valeriana (Mark &
Adams, 1973).

Prostrate Shrubs (rigure 3.7)

Woody plants which form a dense covering on the ground have already been dealt
with in the cushion and mat section. However, certain creeping dwarf shrubs have a
more open cover and these are the plants which belong to this class. Vareschi (1970)
termed them ‘trellis’ plants.

It is possible to view these prostrate shrubs as dwarf shrubs or as mats in a loose
sense. For example, when dealing with the tropicalpine species Eurya brasii, J.M.B.
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Figure 3.8.
The erect herb growth form, for example, Bartsia laticrenata (left) and Jamesonia

alstonii (right).

Smith (1975) talks of a shrub, while Van Royen (1967) terms it a mat. These plants
would classify as frutescent chamaephytes under the Raunkiaer system.

Pernettya prostrata, Disterigma empetrifolium, Baccharis alpina and Arcytophyllum
aristatum are common representatives of this growth form in the Ecuadorian péra-
mo. These and similar species occur elsewhere in the padramos of the northern Andes
(Cleef, 1978, 1981). Vareschi (1970) offers Pernettya prostrata, Cyrilla racemiflora,
Eugenia triquetra and Hesperomeles pernettyoides as Venezuelan representatives. Ade-
smia horrida, A.atamensis and Nardophylum sp. are cited by Quintanilla (1983) as
prostrate shrubs of the Chilean puna. In New Zealand examples of prostrate shrubs
are found in the alpine zone, such as Pernettya nana, Palpina, Gaultheria depressa
and Coprosma petriei (Mark & Adams, 1973). Salix cayculata (Salicaceae) is a good
example of a Himalayan prostrate shrub (Polunin & Stainton, 1987).

Erect Herbs (Figure 3.8)

Since the ‘herbaceous stems’ grade continuous into small shrubs through varying de-
grees of woodiness, it is difficult to distinguish the larger members of this class from
the smaller ones of the ‘dwarf shrubs’ group.

In the Raunkiaer system, plants from this group can be included in the phanero-
phytes, particularly phanerophytic grasses (maybe lignified as in the bamboos) and
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(for example, Vicia setifolia).



3. Plant Form in the Ecuadorian Paramos 92

herbaceous phanerophytes. Several hemicryptophytes, which do not form tussocks,
are also included here. Some members may even be assigned to the geophytes. A

number of forms included here were termed ‘plants with clustered flowers’ by Vares-
chi (1970).

Common elements of the Ecuadorian p4dramo flora in this group include: Bartsia,
Castilleja, Draba, Jamesonia, Gentianella, Lobelia, Lycopodium, Bomarea, Lupinus
and a variety of genera from the Gramineae; similarly for the pdramo vegetation
elsewhere in the northern Andes.

This growth form is prominent in other high altitude tropical vegetation types,
along with most plant communities throughout the world.

Reptant and Prostrate Herbs (rigure 3.9)

These plants lack erect, leafy stems and possess stolons or other means of spreading
vegetatively, along the soil surface or just underneath it. Reptant hemicryptophytes or
reptant herbaceous chamaephytes defined in Raunkiaer system belong to this growth
form and are common throughout the world.

Lachemilla, Geranium, Satureja, Bidens, Gentiana, Gentianella, Halenia and
Ranunculus are all extremely common genera with a reptant herb growth form in the
Ecuadorian paramos.

Trailing Herbs (Figure 3.10)

With weak ascending stems, some with tendrils or minutely toothed stems aiding
their support among other plants, this growth form is relatively common in the grassy
paramo. The tussock grasses provide an ideal framework for these plants. The Raun-
kiaer system would classify Ecuadorian pdramo climbers into various categories:
spreading, climbing, hemicryptophytic lianas (Galium); tendril-climbing, hemicrypto-
phytic lianas (Vicia); or spreading, climbing, geophytic lianas (Oxalis). Other climbers
include Stellaria (on tussocks) and Bomarea (on shrubs). Here they are all grouped
together.

Cryptogams

Clothing the surface of soil or rocks in a close mantle, mosses and lichens are particu-
larly common in undisturbed humid paramos. Though not of the same character as
the mats of the earlier section, bryophyte mats can be the dominant growth form, es-
pecially at high altitudes on ashy soils. In the Raunkiaer system, these plants are
termed adnate thallophytes. This category includes leafy and thalloid cryptogams
(mosses, leafy and thallose liverworts, filmy ferns) and foliose, fruticose and thallose
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lichen mats. One lichen species, Thamnolia sp., is a solifluction floater (according to
the definition of Lind & Morrison, 1974), which merely lies, unattached to the sub-
strate, on the surface of the ground.

Owing to the loss of voucher specimens for a number of sites, it was not possible
to include this growth form category in later analyses.

Other Growth Forms

There are a number of species not strictly classifiable into the above growth forms,

though dealt with by Raunkiaer’s system. These include trees (for example,
Polylepis, Gynoxys) which are occasionally found in the paramo, and several geo-
phytes such as Stenomesson aurantiacum (Amaryllidaceae).

None of these plants was present in the following studies described in Sections II
and III of this chapter.
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Il. The Growth Form Composition of
the Ecuadorian Paramos

Introduction

In Chapter 2, a number of vegetation samples from the paramo vegetation of Ecua-

dor were classified according to their species composition. Many of the resulting
communities were assigned to various physiognomic groups (for example, cushion
paramo, tussock p4dramo), with the same dominant growth forms but not necessarily
the same species present.

Given that all characters of an organism are likely to reflect the action of selection
(Fisher, 1930), differences in plant form can be thought of as visible indications of
niche differentiation. Thus, selection gives rise to organisms that are ecologically
equivalent, a process known as convergent evolution (Johnson, 1973). It is often the
case that where the dominant growth form is the same, there is a similar degree of
convergence in the subordinate units of vegetation (Mooney, 1974).

The vegetation of high tropical mountains has often been cited as support for the
concept of convergent evolution (for example, Hedberg, 1964; Troll, 1968; Hedberg
& Hedberg, 1979; Halloy, 1983). Such reports are based on qualitative observations
of physiognomic parallelism between, for example, the mountains of East Africa and
the Andes. To test the extent of convergent evolution, more quantitative approaches
are required. However, before different mountain systems are compared, it is necess-
ary to determine the degree of variability of the vegetation within single mountain re-
gions.

Mena & Balslev (1986) used Hedberg’s (1964) growth form classification and ap-
plied it to three 10 x 10 m plots in the paramo of El Angel in northern Ecuador,
where they estimated the percentage cover of each of five growth forms. However,
the majority of their work related to a floristic comparison with the Afroalpine vege-
tation.

In this study, using ten of the eleven growth forms defined in the first section of
this chapter (bryophytes and lichens were not used here, because a large number of
voucher specimens were stolen in Ecuador), the growth form composition of Ecuado-
rian paramo vegetation is described in detail. Comparisons between the samples are
made and growth forms are related to environmental variables which may be respon-
sible for variations in their distribution.
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Methods

In Chapter 2, the vascular plant composition of 192 pdramo quadrats was de-
scribed. Using these same data, collected from twelve sites, each vascular plant
species was assigned to one of the ten growth form categories described in the pre-
vious section. Appendix 1 indicates the growth form category of each of the 348 taxa.

Where several species in a quadrat belonged to the same growth form category,
their Braun-Blanquet abundance scores were summed (by converting the individual
scores to their mid-point percentage cover, summing and converting the resultant
cover value back to a Braun-Blanquet score). In this way, the growth form composi-
tion of the 192 quadrats was determined.

Environmental data for each quadrat were also collected (described in Chapter 2).
Altitude, aspect and slope were measured, and exposure, burning intensity, grazing
intensity, trampling intensity and overall disturbance were estimated using subjec-
tive, semi-quantitative scales. The coverage (as a percentage) of bare ground and
rock cover (including scree) were also noted for each sample.

The 192 paramo stands and the ten growth forms were classified using the TWIN-
SPAN algorithm (Hill, 1979), part of the VESPAN-II package (Malloch, 1988).

In order to explore the relationship between the growth form composition of the
stands and the environmental variables measured in the study, direct gradient ana-
lysis was performed using the CANOCO programme (ter Braak, 1988). The TWIN-
SPAN classes were later superimposed as centroids upon the resulting ordination.
The first axis of the ordination and the trace statistic (the sum of all axes) were tested
for statistical significance by means of a Monte Carlo permutation test (Hope, 1968),
also part of the CANOCO package.

Results

The summary statistics on the growth form composition of the sample stands in
the twelve regions is presented in Table 3.1. In total, the growth form composition of
192 samples was recorded. The only site to have all ten growth forms was Volcan Tun-
gurahua, but the remaining sites all had eight or nine of the ten present, with the ex-
ception of the pdramo near Ona which had only seven.

Overall, the mean number of growth forms in a 25 m? sample was just under
seven. Notably different from this value was the mean for the samples from Volcén
Chimborazo, at 4.38.

Combining the three plots at each altitude level resulted in a mean growth form
complement of 7.25 for all of the sites. Again, Volcdn Chimborazo had fewer growth
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Site No of No of No of Mean No Mean No
Altitude Quadrats Forms in Forms per Forms per
Levels all Quadrats Quadrat Altitude
(3 Quadrats)
Volcan Chiles 7 21 9 7.67 8.14
Volcan Cotacachi 7 21 8 7.38 7.57
Paramo de Guamani 7 21 8 6.33 6.86
Volcan Tungurahua 5 15 10 6.87 7.40
El Altar (west) 5 15 8 6.73 7.20
El Altar (east) 6 18 8 6.06 6.33
Daldal 6 18 9 7.67 8.00
Volcan Chimborazo 7 21 8 4.38 5.43
Paramo de Zapote Naida 3 9 8 7.33 8.00
Cajas 7 21 8 6.95 7.57
Cumbe 3 9 9 7.67 8.33
Ona 1 3 7 6.33 7.00
Overall 64 192 10 6.73 7.25

Table 3.1.
The location and summarised growth form composition of 192 paramo quadrats.

For each locality the number of altitude levels sampled and the number of quad-
rats used are stated. The total number of growth forms found in the stands at each
locality are given. The mean number of growth forms found in each stand and at
each altitude level (three quadrats combined) are shown.

forms on average (6.33). The altitude levels in the paramo of Cumbe had the highest
mean with over eight growth forms on average.

Figure 3.11 indicates the frequency of occurrence of the ten growth forms in the
sample quadrats. Erect herbs, acaulescent rosettes and prostrate herbs were re-
corded in over 90% of the stands. Seven of the ten forms occurred in over three-
quarters of the vegetation samples (tussocks, acaulescent rosettes, cushions, upright
shrubs, prostrate shrubs, erect herbs, prostrate herbs). The remaining three forms
were much less frequent: trailing herbs and basal rosettes were present in approxi-
mately one-quarter of the stands, and stem rosettes were observed in just over 10%
of the samples.

The four most dominant growth forms were tussocks, acaulescent rosettes, erect
herbs and prostrate herbs, each of which accounted for more than 5% of the area of
about three-quarters of the plots. Only tussocks and acaulescent rosettes achieved a
cover of greater than 50% (in 65 and 8 plots, respectively).

The CANOCO analysis produced only two useful axes, due in part to the overall
similarity of the samples in terms of growth form composition. Subsequent axes were
unable to explain sufficient variation in the dataset to merit interpretation, demon-
strated by low eigenvalues (1 < 0.2). Another possible cause for such low eigenvalues
could be that the environmental variables recorded in this study were not sufficient
to ordinate the growth forms beyond the first two axes. However, the relationship be-
tween the distribution of the growth forms and the ordination axes was tested using a

Monte Carlo permutation test and was found to be statistically significant
(p <0.001).
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Figure 3.11.
The growth form composition of in 192 samples of Ecuadorian paramo vegeta-

tion. The frequency of each growth form is shown cumulatively for five cover
values. [SR, Stem Rosettes; BR, Basal Rosettes; T, Tussocks; AR, Acaulescent Ro-
settes; C/M, Cushions; US, Upright Shrubs; PS, Prostrate Shrubs; EH, Erect
Herbs; PH, Prostrate Herbs; TH, Trailing Herbs]

Figure 3.12 shows the CANOCO biplot for the ten growth forms with the environ-
mental variables superimposed on the ordination. The growth forms are well separ-
ated in the ordination space along a number of planes, which demonstrates a
complex relationship with the environmental variables.

Stem rosettes and basal rosettes have their optima in the lower right portion of the
ordination. This area can be partially characterised by relatively high exposure scores
and low bare ground coverage. Disturbance, altitude and rock cover appear to be
poorly correlated to their presence. However, none of the environmental variables
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CANOCO biplot ordination of the ten growth forms recorded in 192 samples of para-
mo vegetation. Environmental variables are depicted as solid arrows. The axes
are divided into standard deviation units (11 =0.057, 12=0.026). To the left-hand
side of the ordination, trailing herbs and tussocks are located, characterised by
lower altitudes, higher disturbance levels, less rock cover and lower exposure
scores. By contrast, cushions, and to a lesser extent acaulescent rosettes have

their optima at higher altitudes, with higher exposure levels, more rock cover and

less disturbance.

measured in this study explains the distribution of stem and basal rosettes satisfactor-

ily.

Tussocks and trailing herbs are found on the left-hand side of the ordinaton and
are associated with plots of low exposure and relatively high disturbance. High alti-
tude with comparitively high rock cover characterises the plots containing acaulesent

rosettes, and cushions and mats.

Erect herbs, prostrate herbs, prostrate shrubs and upright shrubs are located
around the origin of the ordination and are not, therefore, associated with extremes
of any of the studied environmental variables.
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Growth Forms

10
7 0.178 3
2 0.103 5
3 0.113 2
Tussocks, Acaulescent Upright Shrubs,| |Stem Rosettes,
Trailing Herbs Rosettes, Prostrate Basal Rosettes,
Erect Herbs, Shrubs Cushions/Mats
Prostrate Herbs
Figure 3.13.

TWINSPAN classification of the ten growth forms recorded in 192 paramo vegeta-
tion samples. Those growth forms which show similar distributions in these sam-
ples are grouped together. Four groups resulted from the classification. The
eigenvalue, which gives an indication of the importance of each division, is shown
directly beneath each division. The number of growth forms in each group is pro-
vided either side of a division.

Using TWINSPAN, the growth forms were grouped together according to their
similarity of distribution throughout the 192 paramo samples. The results of this ana-
lysis are depicted in Figure 3.13.

The first division of the ten growth forms separates a group containing the stem ro-
settes, basal rosettes and cushions from the remainder. Of the remaining seven
forms, tussocks and trailing herbs showed a linkage in distribution, as did the upright
shrubs and prostrate shrubs. The final association consisted of the acaulescent roset-
tes, erect herbs and prostrate herbs.

The paramo samples were analysed by virtue of their growth form composition,
both with TWINSPAN and CANOCO. The TWINSPAN classification of the 192
paramo quadrats in terms of growth form is shown in Figure 3.14. Twelve groups re-
sulted from the TWINSPAN classification. Each class contained at least six of the ten
growth forms, while two had the full complement of ten. The usual number (and
mean) was eight growth forms. It is clear from this that the differences in composi-
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Figure 3.14.

TWINSPAN classification of 192 samples of paramo vegetation according to growth
form composition. The composition of each of the twelve end groups is described

in detail in the text. The eigenvalue, which gives an indication of the importance of

each division, is shown directly beneath each division. The number of stands in
each group is provided either side of a division.
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Class B

Frequency

The growth form composition of the twelve groups defined by TWINSPAN from 192
samples of paramo vegetation. KEY: SR Stem Rosettes; BR Basal Rosettes; T Tus-
socks; AR Acaulescent Rosettes; CM Cushions/Mats; US Upright Shrubs; PS Prostrate
Shrubs; EH Erect Herbs; PH Prostrate Herbs; TH Trailing Herbs.
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Figure 3.15. (Continued)
The growth form composition of the twelve groups defined by TWINSPAN from 192
samples of paramo vegetation.
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tion were largely in terms of the relative abundances of the growth forms rather than
their presence or absence from the stands.

The growth form composition of each of the twelve TWINSPAN classes is shown
in detail in Figure 3.15, and their distribution throughout the study areas indicated in
Figure 3.16.

Class A (7 stands)

The plots belonging to this group were all located on Volcan Chimborazo (two at
4,600 m, one at 4,500 m, two at 4,400 m, one at 4,300 m and another at 4,000 m). All
of the plots had a sparse cover of vegetation, consisting of tussocks (5-25% cover)
with cushions, and upright shrubs (both growth forms with up to 25% cover). Acau-
lescent rosettes were present in six stands ( <5% cover), erect herbs in five (<25%
cover), with a sparse cover of prostrate shrubs and prostrate herbs (each <5%
cover).

Class B (2 stands)

One stand at 4,200 m on Volcan Chiles and another at 4,400 m on Volcidn Chimbo-
razo were grouped by the TWINSPAN analysis. Cushions, and erect herbs were re-
corded in both plots with a cover of more than 5%. Accounting for less than 5%
cover, tussocks, acaulescent rosettes, upright shrubs and prostrate shrubs were found
in both stands, whilst prostrate herbs and trailing herbs were only present in one
stand each.

Class C (8 stands)

This group comprised three plots from 4,200 m on Volcdn Cotacachi, one from
4,200 m and another from 4,100 m on Volcan Chiles, and one plot from 4,200 m and
another two from 4,100 m on the eastern slopes of El Altar. Acaulescent rosettes
were dominant, with a cover of greater than 25% in most cases. Prostrate herbs and
erect herbs occurred in all of the stands, sometimes with more than 5% cover. Pros-
trate shrubs and upright shrubs were also present in all of the stands, though respon-
sible for less than 5% of the ground cover in most cases. Cushions frequently
accounted for 5-25% cover. Tussocks were found in the majority of the samples, with
a cover of up to 25%.

Class D (4 stands)

One plot at 3,400 m in the paramo of Cumbe, one at 4,200 m in the paramo of
Guamani, one at 4,200 m and another at 4,100 m on Volc4n Chiles made up Class D.
All of the plots had a cover of 5-25% tussocks, and in one quadrat, tussocks were re-
sponsible for 25-50% cover. All four stands were vegetated by acaulescent rosettes,
cushions, and erect herbs (5-25% cover each), with lesser coverage by upright shrubs
and prostrate shrubs. Prostrate herbs were present in three of the samples and
reached more than 25% cover in one. Basal rosettes were also recorded in three of
the plots, but with less than 5% cover.
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Class E (6 stands

Three plots at 4,200 m on the western side of El Altar, two plots at 4,000 m in the
paramo of Daldal and one quadrat at 4,300 m in the padramo of Guaman{ were domi-
nated by acaulescent rosettes. In all of the stands, they covered over 50% of the
ground, and in two-thirds of cases more than 75%. Erect herbs were present in all of
the stands and covered 5-25% of the area in three plots. Prostrate herbs, prostrate
shrubs and upright shrubs were also found in all of the stands, each with a cover of
up to 25%. The majority of the plots had a cover of tussock plants, sometimes in ex-
cess of 25%.

Class F (8 stands)

Eight stands were grouped together by TWINSPAN in this growth form class
(three at 4,400 m in the pdramo of Guamani, three at 4,300 m and two at 4,200 m on
the eastern flank of El Altar). Cushions were present in all of the stands, and in over
half of them covered 5-25% of the ground surface and in a quarter covered more
than 25%. Acaulescent rosettes (5-50% cover), erect herbs (up to 25% cover) and
prostrate herbs (< 5% cover) formed the remainder of the vegetation cover. Pros-
trate shrubs were recorded in three samples with up to 25% cover. Tussocks were
present in only one plot, with a cover of less than 5%. Upright shrubs were complete-
ly absent.

Class G (8 stands)

On Volcan Tungurahua, in all three quadrats at 4,000 and at 4,100 m, one at 4,200
and another at 4,300 m, the vegetation was similar in many ways to that described for
Class F: acaulescent rosettes covered 5-25% of the ground, erect herbs up to 25%
and prostrate herbs less than 5%. Cushions were less conspicuous, responsible for
less than 5% cover. Prostrate shrubs were present in all of the stands and accounted
for more than 5% cover in all but one. Prostrate herbs were also present in three of
the quadrats. Basal rosette plants were recorded in seven of the eight plots, but
covered less than 5% in every case. Upright shrubs, contributing up to 25% cover,
were recorded in half the samples belonging to this class. Again, tussocks were rare
members of the community.

Class H (7 stands)

Four stands on Volcan Tungurahua (three at 3,900 m and one at 4,200 m) and
three on Volcan Chiles (all at 3,900 m) had a similar growth form composition. Stem
rosettes and erect herbs were present in all of the samples, sometimes covering more
than 25% each of the plot’s area. The other growth forms, present in the majority of
samples, were basal rosettes ( < 5% cover), tussocks ( <5% cover), acaulescent roset-
tes (< 25% cover), cushions (<25% cover), upright shrubs ( <25% cover), pros-
trate shrubs ( <5% cover) and prostrate herbs ( <25% cover). Trailing herbs were
recorded in two of the plots with minimal cover.
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Figure 3.17.

CANOCO biplot ordination of the twelve growth form classes defined by TWINSPAN
from 192 samples of paramo vegetation. The axes are divided into standard
deviation units (11 =0.057, 12=0.026).

Class | (5 stands)

Four samples from Volcan Chiles (two from 3,700 m and two from 3,800 m) and a
fifth from 3,400 m in the pdramo of Zapote Naida, were notable for the presence of
stem rosettes (with a cover up to 50%). Co-dominant were tussocks (25-50% cover),
and the other growth forms recorded were prostrate shrubs (up to 25% cover), cu-
shions (up to 25% cover), erect herbs (5-25% cover), prostrate herbs (5-25% cover)
and upright shrubs (< 5% cover). Acaulescent rosettes (5-25% cover) and basal ro-
settes (< 5% cover) were found in four and two of the five stands, respectively.

Class J (4 stands)

Two plots on Volc4n Tungurahua (one at 4,300 m, the other at 4,200 m), one plot
at 4,300 m in the paramo of Guamani, and a fourth plot at 4,100 m on Volcén Chiles
comprised another TWINSPAN group. Prostrate herbs, erect herbs and basal roset-
tes each covered more than 5% of the area of all plots. Acaulescent rosettes were
also recorded in all of the samples, but with a cover of less than 5%. In addition, cu-
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shions, upright shrubs and prostrate shrubs were all present in at least half of the
plots, with a cover of less than 5%.

Class K (6 stands)

Six plots were dominated by tussocks (25-50% cover). They were located at 4,000
m, 3,900 m (two) and 3,800 m in the paramo of Cajas, and at 3,400 m and 3,200 m in
the pdramo of Cumbe. Basal rosettes (< 5% cover), prostrate shrubs (< 5% cover),
erect herbs (<25% cover) and prostrate herbs (<25% cover) were present in all
samples, and acaulescent rosettes, cushions and upright shrubs were recorded in the
majority of the plots, each with up to 25% cover each.

Class L (127 stands)

The remaining 127 stands were included in the largest TWINSPAN group, repre-
senting two-thirds of the samples. All ten growth forms were present in this class,
though stem rosettes, with up to 50% cover, were found in only nine plots. The most
notable feature of this group was the dominance of tussocks, occurring in all but two
of the plots and covering over 75% in some samples. Acaulescent rosettes, erect
herbs and prostrate herbs were also strongly represented, each accounting for up to
50% cover in the majority of plots. Responsible for up to 25% cover in most samples
in this group, upright shrubs, prostrate shrubs and cushions formed a significant part
of the growth form community. Basal rosettes were only present in 25 stands, exceed-
ing 5% cover in some of these. Finally, trailing herbs were recorded in 53 plots (only
three plots outside this class were found to have this growth form). In the majority of
cases, the coverage of trailing herbs was less than 5%, though this was surpassed in
three plots.

The twelve classes described above were super-imposed on the CANOCO biplot
(Figure 3.17). Most of the classes were clustered around the origin of the ordination,
confirming their overall similarity of composition. However, Classes I and H were lo-
cated away from the main cluster, towards the position occupied by the stem rosettes
and basal rosettes. This indicates the importance of these forms in Classes I and H.
In the same way, Classes F, C, B and E were situated in the upper right sector of the
plot, indicating the predominance of cushions & mats and acaulescent rosettes. Class
L was sited close to the origin (as expected for the group representing two-thirds of
the samples), but towards the left-hand side, dominated by tussocks and trailing
herbs.

Discussion

In Hedberg’s (1964) growth form classification, 55% of the flora were not classified.
Hedberg (1992) maintains that although many paramo plants cannot be assigned to
one of the five forms in his system, all of the dominant plants can. Mena & Balslev
(1986), using the Hedberg classification, concluded that those species which did not
fit amounted to very little cover. It is interesting to find, therefore, that the addi-
tional growth form categories used in this study do account for a significant part of
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the vegetation cover. In particular, erect herbs and prostrate herbs covered 5-25% of
the sample area in the majority of plots. By comparison, stem rosettes and basal ro-
settes were much less frequent and abundant members of the Ecuadorian pdramo
communities.

It may be that this shift of emphasis in growth forms accompanies the change from
stem rosette-dominated p4dramos in the north to the grassy pdramos of Ecuador and
northern Perd in the south. However, erect and prostrate herbs were significant ele-
ments of even the stem rosette communities (Classes H & I) of Volcén Chiles.

Clearly, for a full and illuminating comparison of pdramo regions within the Andes
(and more so for inter-continental comparisons), the full growth form spectrum
should be investigated. Merely because certain growth forms do not appear to be
adapted to the high altitude environment does not mean that they are not so. In fact,
their very presence must mean that they are successfully tackling the problems of
such environments. Furthermore, by omitting a large part of the flora from a growth
form classification system, important differences may be overlooked.

According to Mooney (1974), there is an optimal dominant growth form for a
given climatic-substrate-successional combination. Further, he suggests a similar de-
gree of convergence in the subordinate units of vegetation. On this assumption, one
would expect to find a high degree of growth form similarity in the 192 pdramo
stands sampled in this study. This is indeed the case, as evidenced in Table 3.1. In
most of the study areas, the average number of growth forms per plot was found to
be between 6 and 7, with the overall average 6.73. Examination of Figure 3.11 re-
veals that stem rosettes, basal rosettes and trailing herbs were generally absent. The
dominant growth form was the tussock. It was responsible for more than 50% of the
vegetative cover in one-third of the samples, and more than 25% in two-thirds.

The similarity of composition of the samples was also demonstrated by the TWIN-
SPAN and CANOCO analyses, with low eigenvalues indicating little variation be-
tween plots.

However, some differences were evident. The TWINSPAN classification resulted
in twelve groups of stands according to growth form composition. One group, Class
L, contained about two-thirds of the samples and represented the most widespread
growth form composition. Tussock grasses were clearly dominant and associated with
them were trailing herbs present in 53 plots. Acaulescent rosettes, erect herbs, pros-
trate herbs, upright shrubs, prostrate shrubs and cushion plants were all strongly rep-
resented in this group.

A group of six stands, all found in the southern paramo regions (Class K), was very
similar to the large group just described. It differed in that tussocks, though still
dominant, were less abundant and trailing herbs were absent. Basal rosettes were
present in all of the plots but accounted for less than 5% of the cover.

In four samples from the humid northern paramo of Volcén Chiles and one from
Zapote Naida in the south (Class I), tussocks were co-dominant with stem rosettes.
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In other parts of Volcan Chiles and on Volcan Tungurahua, stem rosettes were domi-
nant in their own right, with tussocks accounting for less than 5% cover (Class H).

The remaining eight groups of samples were typically from plots with extreme con-
ditions where tussock grasses were less abundant, generally at higher altitudes.

In places where such extremes restricted plants to microhabitats which permitted
establishment and growth, dominance of a single growth form was rare. In the arid
conditions of the Grande Arenal de Chimborazo, a number of samples showed co-
dominance of tussocks, cushions and upright shrubs (Class A). Another plot from
Volcén Chimborazo was similar to a sample of vegetation from the highest altitude
sampled on Volcan Chiles (Class B). Although eight growth forms were present, only
erect herbs and cushions were able to exceed 5% cover.

Where a more continuous vegetative cover existed at high altitudes, the dominant
growth form was often the acaulescent rosette. In Class D, which consisted of plots
from the pdramos of Cumbe, Guamani and Volcén Chiles, acaulescent rosettes were
co-dominant with tussocks, cushions and erect herbs. Class C was more clearly domi-
nated by acaulescent rosettes with tussocks, cushions and erect herbs subordinate
members of the community. In the six samples of Class E from the paramos of El
Altar (west), Daldal and Guamani, acaulescent rosettes accounted for over 50% of
the vegetative cover (more than 75% in half of these plots).

In some paramo regions, above the vegetation dominated by acaulescent rosettes,
cushion plants became co-dominant (Class F). Upright shrubs which were present in
the lower altitude vegetation were not found and tussocks were rare. This vegetation
consisted of only six growth forms, the fewest of all the TWINSPAN groups.

On Volcan Tungurahua, much of the vegetation (Class G) showed a similar compo-
sition to that of higher altitudes elsewhere. Acaulescent rosettes were once again co-
dominant, this time with erect herbs and prostrate herbs. Basal rosette plants were
present in almost all samples in this group.

The co-dominance of basal rosettes, erect herbs and prostrate herbs characterised
the vegetation of plots from Volcdn Tungurahua, Volcan Chiles and the paramo of
Guamani (Class J).

From the CANOCO analysis, it is evident that altitude, and environmental vari-
ables closely correlated to it (for example, rock cover and disturbance), were related
to the distribution of acaulescent rosettes and cushions. These low stature plants are
probably confined to high-altitude, rocky sites by competition from other species for
light. Plantago rigida has been grown in a more favourable greenhouse environment
in the absence of competition from other species (personal observation). A later
chapter will examine the nature of the relationship between this species and Calama-
grostis tussocks.

Tussocks and trailing herbs (which relied heavily on the tussocks for physical sup-
port) tended to occur more frequently in stands at lower altitudes, subjected to
higher disturbance.
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According to Bliss (1971), cushions and mats increase and tussocks and acaules-
cent rosettes decrease as the environment becomes more severe. This supports the
results of the current study.

To summarise , the growth form composition of the Ecuadorian paramos can be
described as follows:

® The majority of padramo vegetation is dominated by tus-
socks. The accompanying growth forms are mostly acaules-
cent rosettes, cushions, upright shrubs, prostrate shrubs,
erect herbs and prostrate herbs, sometimes with stem ro-
settes, basal rosettes or trailing herbs.

@ At higher altitudes, the dominance of tussocks is reduced.
At first, acaulescent rosettes become dominant, but at yet
higher altitudes their dominance is shared with cushions.
At the highest altitudes of all, where plant cover is thin, no
single growth form is dominant.

® In other locations where plant cover is sparse, once again
no single growth form is dominant.

® In humid pdramos, stem rosettes may be co-dominant with
tussocks or erect herbs. Basal rosettes, erect herbs and
prostrate herbs may be locally co-dominant at higher alti-
tudes.

In terms of percentage cover, prostrate shrubs, erect herbs and prostrate herbs are
as important as upright shrubs and giant rosettes, but less conspicuously so. They
also account for a large proportion of the species present in the padramo. Their per-
sistence in the pdramo environment implies that strategies other than those of Hed-
berg’s five forms are successful and deserve attention. Therefore, it is suggested that
all growth forms are considered in future paramo studies, at least in Ecuador.

Both basal and stem rosettes were present in stands with the least bare ground.
Miller (1987b) reports that establishment of Puya clava-herculis (a basal rosette
species) in the Ecuadorian pdramo was reduced on bare, exposed soil, and even
more so in vegetation dominated by cushions and mats.

However, the environmental variables which were measured did not explain the
distribution of stem and basal rosettes satisfactorily. Miller & Sillander (1991) sug-
gest that the upper elevational limit of Puya clava-herculis (a basal rosette species) in
the paramo of Virgen, Ecuador, is due to the combined effects of physiological
drought and low temperatures. Similar explanations have been offered to explain the
distribution of Espeletia species (stem rosettes) in other pdramo regions of the North-
ern Andes (Farinas & Monasterio, 1980; Perez, 1987).

Billings (1973) linked the local distribution of growth forms in the equatorial al-
pine region to the availability of soil moisture: graminoids in the wetter sites, acaules-
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cent rosettes and cushions in drier sites (and ridges, rocky places and disturbed sites)
and prostrate shrubs along the whole moisture gradient.

According to Barkman (1988), plant forms which grow together can be expected
to have some similarity in their physiology. In the Ecuadorian paramo, four groups of
such forms were determined (Figure 3.13), such as that containing acaulescent roset-
tes, erect herbs and prostrate herbs. The CANOCO analysis did not place members
of the same group close together in the ordination. This provides more evidence that
additional environmental factors are important in determining the distribution of
growth forms in the paramo.

In particular, soil characteristics, climatic features (especially measures of tem-
perature and atmospheric humidity) and studies of plant water balance may yield in-
teresting relationships with plant forms in the Andes. The next section in this chapter
looks at morphological adaptations to temperature in the pdramos of Ecuador.
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ll. TemperatUre Characteristics of
Major Growth Forms in the
Ecuadorian Paramos

Introduction

High elevation tropical grasslands have often been used as an example of convergent
evolution (for example, Monasterio, 1986). Accepting Fisher’s (1930) view that “no
character is likely to remain immune from selection for very long”, the structure and
form of tropicalpine plants can be considered to be adapted to the prevailing envi-
ronment. Similar selective agents in East Africa and the Andes, for example, will give
rise to plants that are ecologically equivalent and therefore alike in form and func-
tion.

One striking aspect of the tropicalpine environment which differentiates it from
other alpine and arctic regions is the diurnal temperature climate. “Summer every
day and winter every night” (Hedberg, 1964) present unique problems to tropical-
pine plants. Temperature and its effects on water balance have been repeatedly used
to explain convergent evolution (Walter, 1973; Carlquist, 1974; Hedberg, 1964; Hed-
berg & Hedberg, 1979; Monasterio, 1986).

Wind induced cooling and water stress has been implicated in delayed flowering in
Hypericum laricifolium (Smith, 1972). Differences in the responses of plants to wind

in the paramo are closely correlated with differences in their growth form (Smith,
1972).

It is usually the reproductive organs of a plant that are most sensitive to chilling
and frost (Larcher & Bauer, 1981). Miller (1987a) carried out detailed observations
of the temperature relations of Puya inflorescences.

Hedberg & Hedberg (1979) presented temperature records for five species, each
representing one of Hedberg’s (1964) growth forms, in the Venezuelan p4dramo in
Mucubaji, Mérida. The evidence was seen to support the hypothesis that the various
growth forms represent different strategies to maintain the water balance in the
tropicalpine environment. Pfitsch (1988) stated that of Hedberg’s five growth forms
that characterise the paramos, only sclerophyllous shrubs have no morphological
means of moderating the temperature extremes experienced by growing plant tissues.

Similar temperature measurements to those collected by Hedberg & Hedberg
(1979) were carried out in an Ecuadorian piramo over a 24 hour period.
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Methods

Study Site

This study was carried out in the pdramo on the slopes of Volcan Chiles, about
38km from Tulcén (0°47°N 77°57°W), near or in a boggy depression just below
4,000m. Pllgaard & Balslev (1979) visited the site during the third Danish botanical
expedition to Ecuador in 1976 (Location 23) and described it floristically.

The area was not far from the three quadrats used to sample the vegetation at
4,000m in the phytosociological study of Volcén Chiles (one of the sites used in Chap-
ter 2 and the previous section of this chapter).

Temperature Measurements

A Comark 2007 digital thermometer equipped with thermocouples (wire and
probe attachments) were used to record temperatures of the plants at various posi-
tions within their structure. Measurements were also carried out to provide contem-
poraneous records of air and soil temperature near the plants involved in the study.

The measurements taken were as follows (a wire thermocouple was used unless
stated otherwise):

Ambient Air Measured at 1.5 m above ground surface, shielded
from the sun.

Ambient Soil Measured at 100 mm below ground surface using
a probe thermocouple.

Giant Stem Rosettes Espeletia pycnophylla ssp. angelensis
Centre of flowers
Surface of stem beneath marcescent leaves
Surface of stem lacking marcescent leaves
Surface of living leaf

Tussock Plants Calamagrostis sp. [251]
Air between leaves at base of tussock
Air between leaves in upper part of tussock
Cortaderia sericantha
Air between leaves at base of tussock
Surface of inflorescence
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Acaulescent Rosettes

Cushion Plants

Upright Shrubs

Erect Herbs

Valeriana bracteata
Surface of basal leaf
Surface of flower
Senecio sp
[voucher no. 847 in Ramsay & Merrow-Smith 1987 collection, corre-
sponding to the “pretty Senecio with large solitary nodding heads”
(no. 8450) in Qligaard & Balslev, 1979.]
Surface of basal leaf
Surface of flower
Oritrophium peruvianum
Surface of basal leaf
Surface of flower

Werneria humilis

Surface of rosette

Cushion at 100 mm depth (using probe)
Oreobolus obtusangulus

Surface of mat
Plantago rigida

Surface of rosette

Cushion at 100 mm depth (using probe)

Loricaria ilinissae
Tip of branch
Pentacalia stuebellii
Tip of branch
Hypericum sp. [coll no. 915]
Tip of branch
Centre of flower
Pentacalia andicola
Tip of branch
Air within interior of shrub

Jamesonia sp [coll no 861]
Apex of stalk
Lycopodium sp [coll no. 859]
Apex of stalk
Perezia pungens
Surface of stem
Centre of flower
Centre of unopened flower bud
Castilleja sp [coll no. 946]
Centre of flower
Culcitium ovatum
Surface of stem
Centre of flower

The measurements were taken on the 20th and 21st of October 1987, with five rec-
ords over the 24 hour period: on the first day at 14.30 and just after sunset at 18.30,
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then on the second day at 01.30, 05.30 (just before sunrise) and finally at 13.30. It was
clearly impossible to measure all plants simultaneously and so these times mark the
start of the temperature recording sessions. These sessions followed a precise se-
quence from plant to plant.

Over the course of this study, the sky was overcast during the day and for most of
the night, with intermittent drizzle, though occasional patches of clear sky appeared
during darkness hours.

Results

The ambient air temperature reached a maximum of 8.9°C at 14.30 hrs on the first
day. This temperature fell quickly after sunset (approximately 18.00 hrs) to 5.0°C and
reached a minimum of 3.7°C at 05.30 hrs on the following day (approximately half an
hour before sunrise). Air temperature rose quickly after sunrise, and by 13.30 hrs
had reached 7.3°C.

The temperature of the soil 100 mm beneath the surface showed little variation.
The maximum temperature was 6.9°C in the early hours of the second day, and the
minimum temperature was 6.4°C at 13.30 hrs later the same day. Clearly, there is a
considerable delay in warming up and cooling down at this depth.

The temperature measurements for the plants are described below.

Giant Stem Rosette

Espeletia pycnophylla spp. angelensis was the only species examined which be-
longed to this growth form. Unlike some of the other species of Espeletia, E.pycno-
phylla spp. angelensis does not appear to exhibit nyctinasty (the closure of the leaves
around the leaf buds at night). The thermocouple measurements relating to this
plant are presented in Figure 3.15.

In general plant parts were found to follow the ambient air temperature closely at
night. During the day, however, their temperatures were at times more than 10°C
above the air temperature.

Flower temperatures were high during the day (about 14°C) but dropped consider-
ably at night, to below the ambient air temperature at 01.30 hrs. The flower tempera-
tures showed oscillations of up to 11.2°C over the 24-hour period.

The leaves of Espeletia remain fixed to the stem after death (marcescence). The
majority of specimens in this area lacked marcescent leaves on the lower portion of
their stems as a direct consequence of burning. The insulating effect of marcescent
leaves was demonstrated by the reduced amplitude of the stem temperature beneath
the mantle of dead leaves (9.9°C) compared to the temperature of part of the stem
which lacked them (18.8°C). This was largely the result of the higher daytime tem-
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peratures of the bare stem (which was black because of charring). The marcescence
did maintain the stem temperature slightly above the ambient air temperature dur-
ing the night.

Examination of the temperatures for the living leaves revealed a similar pattern to
that exhibited by the stem clothed by dead leaves, namely, a reduction of extreme,
high temperatures in the daytime and the maintenance of a slightly higher tempera-
ture than the air at night.

Tussock Plants

Two species of tussock grasses were represented in this study, Calamagrostis effusa
and Cortadena sericantha (Figure 3.16). The former species is found as the co-domi-
nant over most of the area, the latter is a common element of the flora in boggy areas.

The upper portion of the Calamagrostis tussock was found to maintain a high tem-
perature (close to 15°C) in the trapped air between the leaves. The amplitude of the
measurements taken was 10.6°C. Lower down the tussock in the dense base, the am-
plitude was half this range (5.3°C). The air between the basal parts of the leaves
cooled more slowly after darkness fell and was not subjected to temperatures above
10°C over the entire 24-hour period.

Even the extremes of temperature of the ground surface between the tussocks
were reduced, remaining slightly above the ambient air temperature throughout the
night.

Cortaderia sericantha has a more open tussock structure. In some respects, the
basal portion of the Cortaderia tussock is most similar to the upper (rather than the
lower) portion of the Calamagrostis tussock; sunlight penetration and air circulation
are greater. Thus, daytime temperatures are in excess of 15°C in the bases of the Cor-
tadenia tussock. At night the leaf bases were found to be approximately 1.5-2.0°C
higher than the corresponding air temperature. The inflorescence temperatures fol-
low closely the air temperature.

Acaulescent Rosettes

Three species inhabiting the boggy area were used as representatives of the acau-
lescent rosette form: Oritrophium peruvianum, Valeriana bracteata and Senecio sp.
[847]. The flower temperatures of the former two species were observed to be ap-
proximately 0.5-1.0°C higher than the air temperature at night (Figure 3.17). The tal-
ler flower of Senecio sp. followed the air temperature closely for most of the study
period, falling below it at one time during the night.

The basal rosettes of the three species were higher than the ambient air tempera-
ture at all times over the course of the 24-hour study. In particular, the basal rosette
of Senecio sp. was strikingly higher than the air temperature at night, by some 2-3°C.
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Figure 3.18.
Temperature variation over 24 hours at a number of measuring points on Espeletia

pycnophylla ssp. angelensis at 4,050m in the paramo of Volcan Chiles. The points
measured were the flower disc, upper leaf surface, the surface of the stem clothed in
dead leaves (‘Marc Stem’) and the surface of the bare stem. Air and soil temperatures
are also shown.
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Cushion/Mat Plants

Two species of cushion plant (Werneria humilis and Plantago rigida) and one mat
species (Oreobolus obtusangulus) formed the basis for the examination of these
growth forms (Figure 3.18).

The surfaces of all the cushion and mat species follow roughly the same pattern.
During the day, temperatures were high, in some cases in excess of 20°C. At night,
temperatures were higher than the surrounding air temperature by about 0.5-3.0°C.

At 10cm depth in the two cushion species, temperatures were conspicuously con-
stant at about 9°C, less variable than that of the waterlogged soil surrounding them.

Upright Shrubs

Figure 3.19 presents the temperature data collected for four species of shrub: Lori-
cana ilinissae, Pentacalia stuebellii, Hypericum ? strictum and Pentacalia andicola. A
similar pattern of temperature variation was observed for all four species. At night,
the tips of the branches were almost always slightly above the air temperature, while
by day they were often 5-10°C higher than the ambient temperature.

The dense branches of Pentacalia andicola formed an effective screen against light
and air circulation, but the temperature within this space did not demonstrate an
amelioration of the temperature extremes; in fact, it deviated little from the ambient
air temperature.

The flowers of Hypericum ? strictum showed similar temperature patterns over the
course of the study period to this species’ branch tips.

Erect Herbs

This growth form was found to experience similar fluctuations in diurnal tempera-
ture to those observed in other plants in this study: temperatures close to air tem-
peratures at night complemented by daytime temperatures well in excess of the
ambient conditions (Figure 3.20). Stem, bud and flower temperatures did not vary
markedly from this pattern in the five species studied: Lycopodium ? crassum, Castil-
leja sp., Perezia pungens, Culcitium ovatum and Jamesonia ? goudotii.

The most interesting observation in this group concerns the higher night-time tem-

peratures of the hairy stalk apex of Jamesonia, which did not reflect the correspond-
ing ambient air temperatures as faithfully as the remaining erect herbs.

Discussion

Unfortunately, the night-time temperatures experienced on the study dates were
not particularly low. In 1976, @ligaard & Balslev (1979) had measured a night-time
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Calamagrostis

Temperature ( C)
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Figure 3.19.
Temperature variation over 24 hours at a number of measuring points on two species

with a tussock growthform (Calamagrostis sp. and Cortaderia sericantha) at 4,050m in
the paramo of Volcan Chiles. The temperature was measured at the base of the tus-
sock, the upper leaf region (Calamagrostis only), the surface of the inflorescence (Cor-
taderia only) and the ground surface at the edge of the tussock. Air and sail
temperatures are also shown.
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Valeriana bracteata
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Figure 3.20.

Temperature variation over 24 hours at a number of measuring points on three species
with an acaulescent rosette growthform (Oritrophium peruvianum, Valeriana bracteata
and Senecio sp.) at 4,050m in the paramo of Volcan Chiles. Basal leaf surface and
flower temperature were measured. Air and soil temperatures are also shown.
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minimum of about + 1°C a few hundred metres away from the location of this pres-
ent study (where the minimum temperature was 3.7°C). Examination of Hedberg &
Hedberg’s (1979) figures reveals that much of the evidence used to support their hy-
potheses was derived from one of the three nights for which they had recorded data,
when temperatures dropped to around + 1°C. On the remaining two nights, mini-
mum temperatures were about 7-9°C, and the thermoregulatory properties of their
study plants were not so pronounced, if apparent at all. Clearly, better insights into
plant strategies can be gained when the nights are cold, preferably with a frost.

Figures 3.16-3.20 give the impression that a sharp temperature decline takes place
between 1430 and 1830, as a consequence of the intervals between measuring times.
It should be noted, however, that the majority of the temperatures decline occurred
between 1800 and 1830. After sunrise, however, air temperatures increased more
steadily, taking several hours to achieve values similar to those indicated at 1330;
though as a result of insolation, some surface temperatures may have risen consider-
ably immediately after sunrise.

Radiation frost —the loss of radiated heat from surfaces —is an important consider-
ation in interpreting these results. Surfaces of vegetation or ground cool down sev-
eral degrees more than air at 2m. Usually, minimum plant temperatures on clear
nights are 1-3°C below the minimum air temperature (Larcher & Bauer, 1981). Ac-
cording to Grace (1988), short vegetation would be expected to be cooler than tall
vegetation because mixing of air is reduced closer to the ground and therefore radi-
ated losses are more important.

Stem Rosettes

The stems of giant rosette plants in Africa and South America contain voluminous,
parenchymatous pith that acts as a water source during periods of low water availa-
bility (Hedberg, 1964; Goldstein, Meinzer & Monasterio, 1984). Many of these giant
rosette plants exhibit nyctinasty: the leaves close around the single apical bud at
night and open during the day (Smith, 1974), damping diurnal temperature fluctua-
tions. Thus they avoid freezing stress on cold nights and overheating (and resultant
water stress in young leaves) early in the morning. Smith (1974) has demonstrated
that leaf wilting and death results from the prevention of nyctinastic leaf movements
in such species. Mabberley (1986) attributed damped heating and cooling of stem ro-
settes to their massive construction, a view that is supported by the findings of Smith
(1980) that Espeletia schultzii plants were larger at higher altitudes. Coespeletia lutes-
cens was found to modify the microclimate beneath the plant (air temperatures 4.7-
7.0°C higher than in the open; soil at 20 cm depth 2.4-4.2°C higher), and was linked
to better seedling survival and greater water uptake.

The species observed in this study, Espeletia pycnophylla ssp. angelensis, did not ex-
hibit nyctinasty. However, the living leaves making up the apical rosette were dense-
ly pubescent (Acosta-Solis, 1984, refers to them as “donkey’s ears”). This fur-like
covering may explain why these leaves cooled down more slowly and remained slight-
ly warmer than the other parts of the plant throughout the night. Meinzer & Gold-
stein (1985) found that the thickness of pubescence in a Venezuelan species of
Espeletia increased by 1.5 mm along a 1,600 m gradient of increasing altitnde. Hed-
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Figure 3.21.
Temperature variation over 24 hours at a number of measuring points on three species

with a cushion or mat growthform (Werneria humilis, Plantago rigida and Oreobolus

goeppingeri) at 4,050m in the paramo of Volcan Chiles. Cushion or mat surface tem-

perature and that 10cm below the surface were measured. Air and soil temperatures
are also shown.
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Temperature variation over 24 hours at a number of measuring points on four species
with a shrubby growthform (Loricaria ilinissae, Pentacalia stuebellii, Hypericum sp.
and Pentacalia andicola) at 4,050m in the paramo of Volcan Chiles. The temperature
of the branch tip, flower and the inside of the shrub were measured. Air and soil tem-

peratures are also shown.



3. Plant Form in the Ecuadorian Paramos 124

Jamesonia Lycopodium

Temperature (°C) 28 _‘Tomvnnun fc)

.30 18.30 1.30 6.30 .30 .30 18.30 130 6.30 13.30
Time (hours) Time (hours)

—— Blalk Apex & Air st L6m O ol (100m} = Slaik Apex * Alr ot L6m O 8ol (0om)

Perezia pungens

Temperature (°C)

[ v . v
14.30 18.30 130 8.30 13.30
Time (hours)

—— Bud == Flower * A ol Lo
-G goil (100m) — Btem

Castilleja Culcitium ovatum

Temparature ("C) Temperature ("C)

161 ISJ

.30 18.30 130 8.30 12.30
14.30 18.30 130 6.30 13.30 Time (hours)
Time (hours)

F d

= Flower *  Alr ol 1L6m
©- Boll (100m) — Stam

r— Flower * Alr at 1.5m - 9- Soll (10cm) l

Figure 3.23.

Temperature variation over 24 hours at a number of measuring points on five species
with an erect herb growthform (Jamesonia sp., Lycopodium sp., Castilleja sp., Perezia
pungens and Culcitium ovatum) at 4,050m in the paramo of Volcan Chiles. The tem-
perature of the branch tip, flower, bud and halfway up the stem were measured. Air
and soil temperatures are also shown.
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berg (1964) and Baruch & Smith (1979) hypothesised that the adaptive significance
of leaf pubescence in tropical alpine giant rosette species lay in reduced radiation ab-
sorption, leading to reduced leaf temperature and lower rates of transpiration. Mein-
zer & Goldstein (1985), however, suggest that prevailing air temperatures indicate
that latent and convective heat loss are more critical in determining the thermal bal-
ance of the leaf. They predict that leaf pubescence could result in up to 5°C higher
leaf temperature. Similar pubescence on the inflorescence of Puya hamata was
shown to increase tissue temperature significantly and thus increase seed production
(Miller, 1987a).

A clear effect of the marcescent leaves on the surface temperature of the stem was
observed. The diurnal range of temperature was reduced from 18.8°C to 9.9°C by this
covering of dead leaves. Minimum surface temperatures on the stem were approxi-
mately the same regardless of the presence of marcescent leaves. The buffering ef-
fect of the marcescent layer was, therefore, largely in the prevention of extreme high
temperatures. Hedberg & Hedberg (1979) demonstrated the good insulating capac-
ity of the mantle of marcescent leaves in Espeletia schultzii, which remained remark-
ably constant at around 7.5°C, regardless of the temperature outside the mantle. The
mean temperature of the stem beneath the dead leaves of E.pycnophylla ssp. angelen-
sis over the course of the present study was also 7.5°C.

The marcescent leaf mantle was incomplete — the lower portion having been de-
stroyed by fire — and this may have resulted in some loss of insulatory protection.
Goldstein & Meinzer (1983) removed the dead leaf layer of Espeletia timotensis and
showed that stem temperature was altered, resulting in transient and permanent ef-
fects on water balance. Smith (1979) and Goldstein, Meinzer & Monasterio (1984)
report similar conclusions. The mechanism attributed to this effect by Goldstein &
Meinzer (1983) was considered to be one or more of the following: the inhibition of
pith recharge by subfreezing stem temperatures, the formation of embolisms in the
stem xylem and freezing injury to pith tissue.

Flower temperatures were close to ambient air temperatures for most of the 24-
hour period. This indicates that the inflorescences possess little ability to modify tem-
perature from that of the surrounding air and rely on tolerance of low temperatures
rather than avoidance. Smith (1974) reported that the parabolic form of Espeletia
schultzii leaves concentrated the sun’s rays, raising the temperature of the bud. Based
on the evidence of this study, E.pycnophylla ssp. angelensis does not function in the
same way, since flower temperatures were not found to be greater than the air. As
mentioned earlier, high inflorescence temperature was linked to increased seed pro-
duction in Puya hamata (Miller, 1987a). Fewer numbers of flowers were found on
the windward sides of the Espeletia plants by Smith (1974). These are clear illustra-
tions of how temperature stress can effect reproductive potential.

Tussock Grasses

Tussocks provide a well-defined boundary layer of dead air (Geiger, 1966; Jones,
1983). The outer leaves of the Calamagrostis tussock are subject to greater tempera-
ture variability than the basal leaves, but the trapping of air within the tussock allows
the temperature to rise more than 5°C above that of the ambient air during daylight



3. Plant Form in the Ecuadorian Paramos 126

hours. At night the temperature does not deviate greatly from the ambient air tem-
perature, but since these leaves are old and hardy, low temperatures may not be da-
maging.

The dense bases of Calamagrostis sp. are well insulated against extremes of tem-
perature, cooling slowly after dark and not exceeding 10°C during the day. It would
appear likely that during severe frosts the developing tillers of Calamagrostis are pro-
tected by the surrounding leaves. The retention of dead leaves within the tussock
structure may enhance this shielding effect. Hedberg (1964) observed that the dense
base of a tussock of Festuca pilgeri ssp. pilgeri on Mount Kenya, East Africa, was
7.5°C warmer than the -5°C temperature in the outermost leaves of the tussock. Coe
(1967) presented similar findings for the same species. In the Venezuelan Andes,
Hedberg & Hedberg (1979) showed a similar phenomenon in Stipa sp.

The insulatory properties are similar with respect to factors other than climate.
During a fire, for example, this portion of the tussock is shielded against radiated
heat in much the same way as it is protected from intense cold (Chapter 4).

The hairy basal leaves of Cortaderia sericantha serve a similar function to the pube-
scence on the marcescent Espeletia leaves, with the same result. The protection from
frosts afforded by these hairs allows newer leaves to develop undamaged.

The flowers of C.sericantha project beyond the vegetative leaves of the tussock. Al-
though this results in lower night-time temperatures and thus lower seed production,
the flowerheads serve the function of pollen and seed dispersal which requires good
air circulation to be effective. The benefits of increased pollination and dispersal
might outweigh the disadvantages of low seed production.

According to Nishikawa (1990), tussock formation provides stable growth condi-
tions against fluctuations in water level, air temperature and other factors. Tussock
formation changes a plant from a competitor in an unformed tussock to a stress toler-
ator in maturity.

Acaulescent Rosettes

The higher night rosette temperatures of the three acaulescent rosette species
compared with the air temperature corroborate the findings of Hedberg & Hedberg
(1979) with Hypochaeris sessiliflora in Venezuela. In particular, Serecio sp. showed
the same degree of difference between these temperatures.

Hedberg & Hedberg (1979) suggest that the position of these plants at the air/soil
interface enables them to buffer temperature variation, but they do not offer a mech-
anism for this, nor explain their results, which show the rosette temperature above
both air and soil surface temperature over the three day period. Possible explana-
tions include the protective properties of the outermost leaves and the beneficial
heat output of groundwater during cold nights (Carlquist, 1974). Hedberg (1964)
noted that water is more viscous at low temperatures and that the short internodes of
acaulescent rosettes mitigate this problem, and perhaps explains their success.
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The three species covered in the present study are found on soil which is heavily
waterlogged. The temperature of this wet soil is several degrees higher than that of
neighbouring areas. These higher soil temperatures may help plants considerably in
buffering extreme cold. Heat transfer from lower in the soil profile would clearly be
advantageous. In Hedberg & Hedberg’s (1979) study, the soil temperature 10cm
below ground is 10-14°C, several degrees higher than the soil temperature found in
the boggy areas of the Volcan Chiles study location. It is likely that the soil tempera-
ture will remain several degrees above the night-time air minimum throughout the
paramo, and acaulescent rosettes can therefore, exploit the soil/air interface over a
wide range of temperatures.

The flower temperatures of Valeriana bracteata and Oritrophium peruvianum were
observed to be 0.5-1.0°C higher than the air temperature at night. It is difficult to es-
tablish an external morphological explanation for this. One possible explanation may
be that these structures are able to exploit the heat release associated with condensa-
tion of water vapour on the flower surface. By encouraging condensation, the flowers
may sustain a higher temperature than the surrounding air through the night.

Cushions

The surfaces of the cushions followed a similar diurnal pattern to that found by
Hedberg & Hedberg (1979) for Plantago rigida in Venezuela. By day, temperatures
reached in excess of 20°C, while at night these surfaces fell to within a few degrees of
the air temperature. Ruthsatz (1978) observed the diurnal temperature regimes of
five cushion species in the puna of North-west Argentina and reported similarly wide
thermal fluctuations just beneath the cushion surface.

Hedberg & Hedberg (1979) point out that cushions merely represent an aggregate
of acaulescent rosettes and they may be viewed as adopting a similar approach to
thermoregulation, that is, taking advantage of the soil/air interface (Rauh, 1939; Hed-
berg, 1964; Billings & Mooney, 1968; Billings, 1973; Armesto, Arroyo & Villagran,
1980).

The inside of the cushions (10cm below the surface) remained markedly con-
stant —more so than the soil at the same depth—at around 9°C in both Plantago rigi-
da and Werneria humilis. In support of these observations, Ruthsatz (1978) found
that temperature measurements 10 cm deep within five cushion species in Argentina
had much smaller oscillations than the ambient conditions.

Therefore, the cushion form may enjoy the advantages of an enhanced soil/air in-
terface situation while the increased height which the domed shape provides for
some species may reduce waterlogging and increase the competitive ability of the
plant with regard to light. In addition, the grouping of rosettes may provide mutual
protection against strong winds and desiccation. Therefore, it does seem plausible
that the cushions can effectively raise the soil/air interface to their rosettes by means
of the cushion structure. Alliende & Hoffmann (1985) demonstrated that for some
puna species cushions provide an ideal substrate for germination; indeed, some
species were found almost exclusively on cushion plants. This indicates that the physi-
cal characteristics of cushions ameliorate the extremes of environment in such cases.
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Shrubs

These plants showed little adaptation towards temperature regulation, relying
heavily on low temperature tolerance. By day they were warmed by insolation and by
night they cooled with the air temperature. Hedberg & Hedberg (1979) proposed
that these plants do not possess morphological features to avoid low temperatures;
instead, their morphology enables these plants to withstand them. Thus the scale-like
leaves of Loricaria ilinissae, the needle-like leaves of Hypericum sp., the waxy leaves
of Pentacalia stuebellii, and the leathery leaves of Pentacalia andicola all serve to re-
duce transpiration during low temperatures, and by these means prevent water
stress. If this were so, then one would expect to see increasing xeromorphy as condi-
tions become more severe: Hedberg (1957) found this to be the case in East Africa.

Carlquist (1974) affirmed the frost resistant function of the ‘cupressoid’ habit of
Loricaria and added the functions of minimising transpiration and withstanding the
effects of alpine light conditions. He also pointed out that Loricaria has ultraspe-
cialised wood with an abundance of vascular tracheids which is related to cold tissue
temperatures.

Erect Herbs

Like the shrubs, it would appear that four of the five erect herbs in this study do
not possess morphological features to ameliorate their temperatures. Lycopodium
sp. appears to rely on low temperature tolerance and was found to show significant
altitudinal trends in leaf and plant size for Central Ecuador (Buckland & Ramsay, in
press), which may be a response to temperature and water stress.

Culcitium ovatum has leaves covered with downy hairs, but does not appear to gain
thermal benefit from this pubescence at the temperatures encountered in this study.
These hairs may instead serve to reduce transpiration during periods of water stress.

Unlike Culcitium, Jamesonia goudotii was found to stay approximately 0.5-1.0°C
above the air temperature overnight. Dense pubescence around the developing
frond tip and along the midrib characterises this species, and may explain the slightly
higher temperatures.

Essentially, there are three major problems associated with low temperatures in the
paramo:

@ direct damage to tissues by low temperatures.
@® reduction in rates of growth and development

@ water stress caused by transpiration demand when cold
temperatures restrict the rate of water uptake.

Minor thermal differences can have a significant effect on plant water balance
(Goldstein & Meinzer, 1983) and survival (Smith, 1979). These problems are particu-
larly pronounced when temperatures fall below zero. In a cold environment, there is
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strong selective pressure for the evolution of freezing avoidance and/or tolerance
mechanisms (Azocér, Rada & Goldstein, 1988). In habitats where temperatures at
night do not fall far below zero and remain there only for short periods of time, the
main resistance mechanism should be freezing avoidance (Larcher, 1981; Sakai &
Larcher, 1987). On the other hand, if temperatures drop well below freezing at night
and stay there for several hours, tolerance should be the selected resistance mechan-
ism (Larcher, 1981; Rada et al., 1985; Sakai & Larcher, 1987). In the study area, a
combination of both avoidance and tolerance would be expected, since the plants
there must endure both short and more long-lasting periods of freezing stress, ac-
cording to the season (Sarmiento, 1986).

In the case of tolerance, physiological adaptations are most important permitting
tropical alpine plants to recover their full photosynthetic capacity after a night frost
(Schulze et al., 1985). Az6car et al. (1988) studied Draba chionophila in the Venezue-
lan pdramo. This rosette plant was not insulated from low night-time temperatures
and leaves, pith and roots were observed to freeze without causing injury to the
plant.

Morphological features may be important in reducing transpiration (for example,
by means of xeromorphy or pubescence) or in maintaining the water balance in some
other way (such as the water-storing pith of Espeletia spp. — Goldstein et al., 1984).

A number of avoidance strategies have been adopted by pdramo plant species.
One approach is the shielding of delicate parts with dead, hardy or expendable parts:
as in the case of the marcescent leaf mantle clothing the Espeletia stem, or the protec-
tion of developing tillers and leaves by the outer leaves in tussock grasses. Many ro-
sette plants protect their inner developing leaves with outer ones (for example, Puya
hamata, Werneria nubigena). Trees of the genus Polylepis buffer temperatures by
means of many thin layers of exfoliating bark (Simpson, 1979) — a significant reduc-
tion in the extremes of high and low temperatures beneath the bark was measured by
Liley (1986). As mentioned earlier, insulatory functions of a plant can increase its
survival rate after a fire by shielding part of the plant from intense radiated heat.

Pubescence is another common strategy for low temperature avoidance. Meinzer
& Goldstein (1985) demonstrated by model simulation that leaf pubescence works
by increasing the thickness of the boundary layer of still air and reducing convective
heat transfer from leaf to air. This is particularly pronounced when many pubescent
layers lie together (as in a developing bud).

In this study, Espeletia pycnophylla, Cortaderia sericantha and Jamesonia goudotii
maintained higher temperatures than that of the air by means of hairiness. Miller
(1987a) reported an increase in inflorescence pubescence for various species of
Puya, and with a combination of temperature measurements and pubescence remo-
val demonstrated that the layer of hairs was responsible for up to 80% of the dif-
ference between flower and air temperature. He then linked this higher thermal
regime with increased success in seed production.

Finally, by inhabiting the boundary between soil and air, some smaller plants are
able to benefit from the warmer soil temperatures at night just below the surface.
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The acaulescent rosette growth form adopts this strategy, as do mat-forming species.
Taken one stage further, cushion plants are able to artificially raise the soil surface,
perhaps increasing their competitive abilities or reducing the effects of waterlogging.
In addition, by retaining a smooth surface, the individuals of a cushion or mat are
able to offer mutual protection from desiccation and wind action.

In some cases, both avoidance and tolerance strategies occur in combination. For
instance, nyctinasty was found to enhance the avoidance of low temperatures in
young leaves at night in Espeletia semiglobulata, whilst the outer leaves undergo regu-
lar freezing and appear to be undamaged (Larcher, 1975). The acaulescent rosette,
Senecio sp., and the tussock, Cortaderia sericantha, both employ avoidance in their
vegetative parts (by means of the soil/air interface and pubescence/mutual shelter, re-
spectively) and tolerance in the floral parts.

According to Dobzhansky (1950), any organism that lives in a temperate or cold
climate is exposed at different periods of its life cycle or in different generations to
sharply different climates. To survive and reproduce, any species must be at least
tolerably well adapted to every one of the environments which it regularly meets.
Changeable environments put the highest premium on versatility rather than perfec-
tion in adaptation. This view is supported by Tomlinson (1987) who suggests that
plasticity is more significant in adaptive terms than initial architecture.

The thermal regime is just one of the elements of the environment addressed by
growth form. It has already been mentioned that resistance to fire, protection from
solar radiation, transpiration, reproduction and competition are rival considerations
for inclusion in the overall form of a padramo plant. Therefore, the form of a plant
represents the outcome of many selection pressures, some weightier than others.
The form is a structural and functional compromise which allows for the optimiza-
tion of cost-benefit relationships (Baruch, 1982). As long as a plant gains more carb-
on than it pays for its architecture and physiology it may survive (Kiippers, 1989).

So, the inflorescence may suffer reduced seed production in an exposed position,
but the fewer seeds that are produced may be dispersed more efficiently. Such forces
are not necessarily antagonistic: it has already been cited that morphological features
which insulate sensitive tissues from extremes of climatic temperature can also serve
to protect against the high temperatures experienced during a pdramo fire. Givnish,
McDiarmid & Buck (1986) suggest that the evolution of a stem rosette species in the
Venezuelan tepuis has been driven by fire rather than low temperatures and were
able to demonstrate that fire survival was correlated with rosette height. Beck,
Scheibe & Schulze (1986) found that tussock grasses were increased after an East Af-
rican alpine fire, suggesting that fire favours the tussock form.

Despite competition for morphological adaptations from other considerations, it is
clear from the results of this study that resistance to low night-time temperatures has
been evolved by a number of plants and the growth form plays a major role in this. A
study of this kind, performed on a very cold night, would provide further and possibly
more conclusive evidence for thermoregulation by growth form and other morpho-
logical features.
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Introduction

Péramo plant species are not randomly scattered throughout the vegetation; they

exist in repeated patterns of particular species —as plant communities. Chapter 2
provided a descriptive treatment of pAramo communities and correlated species com-
position with a number of environmental variables.

This century has seen a productive and well-documented difference of opinion be-
tween those who believed, like Clements (1916), that communities were ‘super-or-
ganisms’ (and succession an entirely deterministic process) and those who saw the
vegetation as merely the resultant of two factors, the fluctuating and fortuitous immi-
gration of plants and an equally fortuitous and fluctuating environment (Gleason,
1917, 1976). The debate between the Clementsian holists and the Gleasonian individ-
ualists resulted in the rejection of the holist approach and the application of Darwi-
nian reductionist thinking to the development of plant communities. Plant
communities are therefore viewed as the result of three influences:

@ the response of plants to variation in external factors in
their environment.

@ the response of plants to each other through competitive
interactions between individuals.

@ historical chance events, reflecting both colonisation and
extinction.

Emphasis has shifted away from the abstract of plant communities to the compo-
nents of the vegetation, the individual plants themselves. Although particular com-
munities may appear static in composition, these communities are longer-lived than
their component parts (the plants) and they are maintained by a dynamic process of
death and replacement of individual plants. Two main approaches have been used to
examine the dynamic nature of plant communities. One involves piecing together a
picture of the processes involved by comparing contemporaneous plots at different
stages of development. This means of investigation is somewhat subjective, but as
Watt (1947) points out: “the formulation of laws and their expression in mathemati-
cal terms will be facilitated if an acceptable qualitative statement of the nature of re-
lations between the components of the vegetation is first presented.”

The second, and perhaps more satisfying approach examines the actual changes in
plant communities over time, looking at individual plants or plants falling into ca-
tegories (patches involving dominant growth forms or smaller associations within the
community). The advantage of this quantitative approach is that it is open to statisti-
cal interpretation. In its simplest form, each individual or category has a certain prob-
ability of being replaced by another of its kind or by an individual or category of
another kind. This approach has been used widely and has led to the development of
Markov modelling where these probabilities of replacement are used to predict suc-
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cession in vegetation (Horn, 1975; Usher, 1979, 1981; Hobbs & Legg, 1983; Lough et
al., 1987).

These approaches can be used to investigate not only the dynamic nature of the
maintenance of community composition in climax vegetation, but also to examine
succession or recovery from disturbance. It has been proposed by a number of auth-
ors that much of today’s grassy paramos (and other Andean high elevation grass-
lands) are secondary vegetation types, maintained artificially by man via burning
(Ellenberg, 1979; Laegaard, 1992), though other authors disagree (for example, Sim-
pson, 1979). In Chapter 2, burning (an element of disturbance) was found to be at
the very least correlated with species distributions.

Fire is commonplace in the paramo, a tool used by farmers to improve their pas-
tures. If fire is a very rare (catastrophic) event then it is unlikely to exert a selective
influence on the vegetation, but if (as is the case in the pdramo) burning is frequent,
the vegetation might be expected to show some kind of fire adaption. Although the
péramos are very humid, this does not preclude the occurrence of natural fires — Giv-
nish, McDiarmid & Buck (1986) describe a fire started by lightning in an exceedingly
rainy tepui in Venezuela. From the arguments presented above, burning should af-
fect the composition of pAramo communities through its influence on plant popula-
tion dynamics. Smith & Young (1987) noted the apparent cyclic succession induced

by fire in the paramos of Colombia and Ecuador, and pointed to the lack of data on
such phenomena.

With this in mind, a number of experiments were set up to investigate the dyna-
mics of pdramo tussock grass communities. The physiognomy of pdramo grassland is
not suited to a comprehensive strategy of sampling, particularly at the individual
plant level, because it consists of both large and small plants and may consist of sev-
eral layers. In addition, the study period was very short. For both these reasons, a
number of different approaches, both descriptive and probabilistic, were employed
to examine mechanisms involved in the maintenance of the community and its re-
covery from burning.

Three approaches were used: the measurement of fire temperatures, general ob-
servations of changes in plant communities and monitoring the fate of individual
plants. Each of these approaches will be described and the results presented. Finally,
the discussion will draw upon the results from all three studies.

Methods

Study Sites

Most of the data were collected in the valley of Daldal, Chimborazo Province, on
the Cordillera Oriental about 40km south-east of Riobamba (one of the areas
surveyed in Chapter 2). This pAramo begins around 3,500m, the lower reaches main-



4. Dynamics of Ecuadorian Paramo Vegetation 134

tained by regular burning. The grasslands extend thence to more than 4,200m before
the Andes begin their descent to the tropical lowlands of the Amazon Basin.

In general. the vegetation is grassy, dominated by Calamagrostis sp. [251] tussocks.
The lower p4dramo also contains shrubs (including members of the genera Lupinus,
Brachyotum, Chuquiraga, Baccharis, Pentacalia, Gynoxys and Pernettya), a number of
grasses (notably Paspalum sp.) and a large plant of the Cyperaceae, Uncinia
phleoides. These plants extend up to around 3,750m. At around 4,000m the tussock
grass is largely displaced by large cushions of Plantago rigida.

Throughout the Paramo de Daldal, burning is a major feature of land management
by local farmers. Bolivar Coronel, the owner of the land on which the study was car-
ried out, burns areas of padramo at least every three years, but the practice appears to
be somewhat erratic: burning is carried out according to the appearance of the vege-
tation and only if the weather conditions are suitable. Usually, only one match is
needed to start a blaze (if the fire base needs to be widened, pieces of tussock are
used to carry the flames from one spot to another). The fire is left to extinguish itself.

The experiments to measure fire temperatures were carried out near Laguna
Luspa in El Area Nacional de Recreacién Cajas on the Cordillera Occidental (near
Cuenca), and above Laguna de Hoyas in the PAiramo de Guamani on the Cordillera
Oriental (not far from the road between Quito and Baeza). Tussocks of Calamagros-
tis sp. [251] dominate the vegetation in both areas, in much the same way they do in
Daldal. In Cajas, agriculture is restricted to certain valleys within the national recre-
ation area, but many areas are subject to acts of vandalism by tourists and fishermen
(Ramsay, 1988). The Pdramo de Guamani, a much wetter area than Daldal or Cajas,
still appears prone to agricultural burning below 4,000m.

Temperatures during Paramo Fires

Two experimental burns were conducted to determine the fire temperature in the
vegetation structure during a fire. The first burn was carried out beside Laguna
Luspa in Cajas in September 1985, the second above Laguna de Hoyas in the Péra-
mo de Guamani in November 1987.

In both of these experiments, THERMOCHROM® crayons by A.W. Faber-Castell
were used. Each crayon contains a pigment which changes colour at a set tempera-
ture: by using a number of crayons containing different pigments, a range of tempera-

tures were encompassed. A set of 18 such crayons covering a temperature range
from 65°C to 670°C was used (Table 4.1).
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Figure 4.1.

THERMOCHROM® crayon pyrometer construction. For the experiment conducted in

the Paramo of Cajas, thin slices of crayon were sandwiched between a steel base-

plate and an upper plate of thermal glass (A), secured with wire (B). In the Paramo

of Guamani, crayon slices were held between two corrugated sheets of aluminium
(C).

Figure 4.2.
The positioning of the pyrometers in the tussock structure. Pyrometers were

placed within tussocks at approximately 1 m (position 1), 650 mm (position 2) and
350 mm (position 3) above ground. Pyrometers were also placed within the dense
tussock bases approximately 50 mm above surrounding ground level (position 4),
and at the edge of tussock bases (position 7). In the spaces between tussocks, py-
rometers were placed on the ground surface (position 5) and 20 mm below
ground (position 6). It should be noted that pyrometers at position 6 were not
placed directly beneath pyrometers at position 5 —it is shown this way for diagram-
matic purposes only.
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Colour No. Original Changed Temp. at which
Colour Colour Colour Changes
2815/65 Pink Blue 65°C
2815/75 Pink Blue-Green 75°C
2815/100 Pink Blue 100°C
2815/120 Light Green Blue 120°C
2815/150 Green Violet 150°C
2815/175 Violet Blue 175°C
2815/200 Blue Black 200°C
2815/220 White Yellow 220°C
2815/280 Green Black 280°C
2815/300 Green Brown 300°C
2815/320 Green White 320°C
2815/350 Yeliow Red-Brown 350°C
2815/375 Pink Black 375°C
2815/420 White Brown 420°C
2815/450 Pink Black 450°C
2815/500 Brown Black 500°C
2815/600 Blue White 600°C
2815/670 Green White 670°C
Table 4.1.

THERMOCHROM® crayon information, calibrated for an exposure time of 30 minutes
(data from manufacturer).

These crayons were developed for use in industry to detect the temperatures of
pre-heated hot bodies within about two seconds. The pigments they contain are the
same as those used in thermocolour paints but are mixed with various waxes and ex-
truded in strand form.

In Cajas, thin slices of the crayons were sandwiched between a stainless steel plate
and a thermal glass plate, held in place firmly with wire (Figure 4.1 a, b). This
allowed the pigments to be viewed, whilst protecting them from direct flames and
smoke. In the Pairamo de Guamani aluminium corrugates (cut from the sheets used
to ventilate plant presses) replaced the steel and glass plates (Figure 4.1 c). These py-
rometers were positioned in six parts of the vegetation structure (Figure 4.2). The py-
rometers in positions 1, 2 and 3 were suspended by wire in the leaves of the grass
tussocks, those in position 4 were placed in amongst the dense bases of the tussocks.
They correspond to 1000 mm, 650 mm, 350 mm and 50 mm above ground level re-
spectively. Positions 5, 6 and 7 correspond to the intertussock region, 20 mm below
ground in the intertussock region and the tussock/intertussock boundary, respective-
ly. In Cajas, three replicates were used in each of positions 2 to 7. The base of one of
the tussocks was then lit and the fire’s progress recorded. In the Pdramo de Guama-
ni, nine replicates were used in position 1 with three replicates in each of positions 4-
6.
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Qualitative Observations on the Recovery of
Grass Paramo from Fire

The dominant species in the Paramo de Daldal is Calamagrostis sp. [251] and is
crucial to the functioning of the community. The dense, 1m-tall tussocks that this
grass forms make its detailed study difficult. The short time available for the field-
work ruled out the possibility of all but the most basic of investigations. A sample of
tillers at 3,750m provided a figure for the average number of leaves per tiller. The
ratio of live to dead leaves is of interest and was examined by random samples of a
number of tussocks at 3,750m and 3,950m. A recently burned area provided an excel-
lent opportunity to accurately map tussock bases in a 25m” area, with subsequent
measurements of basal area of the species involved.

Near to this sampling area, two recently burned tussocks were randomly selected
and 40 tillers tagged using small plastic rings. The survivorship of these tillers was
monitored. In the same area, general notes were made in June and July 1987 on the
recolonization of burned areas and some quantitative data collected on the number
of colonists on newly burned tussocks and older, established ones. In addition, the re-
lationship between Calamagrostis tussocks and Paspalum sp. was noted in this
burned area and in adjacent recovered vegetation.

Transition Matrix Experiments

The basic unit of a plant community is the individual plant, and to study dynamics
at this level requires a sampling technique with sufficient resolution to differentiate
between individuals. It must also be capable of recognizing gaps which might be im-
portant in the regeneration process (Grubb, 1977). Empirically, 100 mm* was found
to be adequate, containing one plant only with reasonable consistency. Therefore,
this area was used as the basis for this part of the investigation. Single plant modules
(tillers, etc.) were treated as individuals for vascular plants, but grouped together for
mosses.

To record changes in occupancy in the intertussock areas, 1 m x 10 mm belt tran-
sects were used, each containing one hundred 100 mm? microquadrats in which the
presence of individuals was noted, similar to the approach adopted by Thérhallsdét-
tir (1990).

For each sampling plot, three times the number of transects ultimately required
were mapped and the transects to be used were randomly selected from them.

In order to identify the positioning of the transects with the degree of accuracy re-
quired, two wooden pegs were securely fixed in the ground, 50 mm from the begin-
ning and end of the transect (primary and secondary pegs, respectively). A tight
string from peg to peg marked the exact line of the transect and the starting point,
measured from the primary peg. The 10 mm wide transect lay to the left of the string
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Figure 4.3.
The layout of the transects used for the transition matrix studies.

running from primary to secondary post (Figure 4.3). The pegs were located with the
aid of sketch maps of the tussock bases in the immediate vicinity of the sampling
plots.

The species occupying each microquadrat were noted. Only rooted individuals
were recorded and sampling units in which nothing was rooted were defined as gaps.
Both mosses and vascular plant species were registered, though in the case of the
bryophytes, their small size called for a different approach: the presence of a
bryophyte species in a microquadrat was counted as one individual, regardless of the
actual number of individuals there. If one of the larger plant species was rooted
across several microquadrats, it was recorded for each of those quadrats (for
example, the large tap root of Hypochaeris sessiliflora can span 30-40 mm). No spe-
cial treatment was made for clonal individuals: if rooted in the sampling units they
were recorded as individuals. This is an important point since many paramo plants re-
produce vegetatively (for example, Azorella pedunculata, Paspalum sp and Geranium
multipartitum). Where more than one species occurred within a unit, the frequency
was recorded as a fraction of 1. Thus, two individuals in the same microquadrat each
received a score of 14. Using this method, the total frequency for each transect always
added up to 100. Frequency measures for each species were obtained by summing
their frequencies in each transect.

The pattern of replacement of species within the sampling plots was analysed by
constructing a matrix such that the rows represented the species recorded at the start
of the study period, the columns the species present at the end. The jth column of the
i row represents the number of microquadrats where species i has been replaced by
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species j. It is then possible to test the individual cells in the matrix, using Chi-Square
(x“) analysis, to determine whether the pattern of replacement is random or not.

The analysis is complicated by an assumption inherent in the xz test. Consider the
case where a microquadrat is occupied by a certain species both at the start and the
end of the experiment. The x“ test assumes that the last individual has replaced a
member of the same species over the course of the experiment. Since the experiment
was conducted within the lifetime of many plants, this is probably not the case: the
same individual has probably persisted during the time interval. This would result in
an over-estimation of the frequency with which a species replaces one of its own
kind, and may disguise the actual changes taking place elsewhere. This situation is
undesirable and therefore the princigal diagonals of the matrix (representing “no
change”) were eliminated from the x“ test. Of course, this hides any replacement of a
species by another individual of the same species and no probabilities are available
for such transitions. Another assumption of the x” test is that every change of occup-
ancy is a single transition. Bearing in mind the brevity of the experiment this is a rea-
sonable assumption: the case of an individual replacing another then being itself
replaced is unlikely.

Simply stated, the Xz test will determine the probability that the pattern of replace-
ment observed is completely random. If for each species pair, the species present at
time 11is called the i" species and the species present at time 2 the fh species, then
the null hypothesis states that “species i will be replaced by species j in that propor-
tion which the total replacements made by species j contribute to the overall number
of changes” or:

Ej = 3 (nir—nii) x (nj—nj)

2 (nj—njj)

where ‘r represents all species other than i orj, ‘nir’ the total number of times
species i is followed by all other species, ‘nii’ the total number of quadrats occupied
by species i at time 1 and time 2, ‘ny’ the total number of times species j follows all
other species, and ‘njj’ the total number of quadrats occupied by species j at time 1
and time 2 (Thérhallsdéttir, 1990). Put another way, the expected value is:

Total number olf quadrats x Total number of quadrats
Ej = vacated by i** species invaded by fh species

Grand Total of All Changes

provided the diagonal terms (the species replacing themselves) in the matrix are sub-
tracted before making the calculation. An example calculation is provided in Appen-
dix 2.

Most of the species involved in the data were rare and to avoid bias in the xz
values those species with an expected value less than 5 were not subjected to ay
test. The rarer species were treated as a group to overcome this problem. Yates’ cor-
rection for continuity was applied (Zar, 1984).
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Experiments were set up at 3,750 m and 3,950 m the Pdramo de Daldal. For each
altitude, observations were made between tussocks in three vegetation types:

@® Control areas where burning had not taken place for a
number of years. Ten transects were recorded at 3,750 m
and six at 3,950 m.

® Recently burned areas. Five transects were recorded at
3,750 m and three at 3,950 m.

@ Artificially bared ground (prepared by removing the top
few centimetres of the ground surface, exposing the bare
soil beneath). Five transects were recorded at 3,750 m and
three at 3,950 m.

Data were collected at the beginning of July 1987 and again at the end of October
of the same year.

Results

Temperatures during Paramo Fires

Table 4.2 presents the maximum temperatures reached within the typical vegeta-
tion structure during experimental burns in two different locations. The chromatic
thermometer crayons used in the construction of the pyrometers are said to be accur-
ate to 5°C, but since the colour changes are a function of time, and because the cas-
ing of the crayon slices may shield them slightly from radiated heat, it is suggested
that 10°C is more appropriate in this instance. Fire temperatures were maximum in
the upper leaves of the tussocks, with temperatures over 500°C. Temperatures
greater than 420°C occurred just 350 mm above the ground surface, but 250 mm
lower in the dense tussock bases, the temperature was much lower: often less than
65°C and with a maximum of 100°C. The edges of the tussock bases at ground level,
however, were subjected to much higher temperatures similar to those midway up
the tussock (375-420°C).
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Position Maximum Temperature (°C)
Cajas Guamani
1. Top of Tussock (1000 mm above ground) - 420-450
- 420-450
- 420-450
- 420-450
- 420-450
- 450-500
- 450-500
- 500-600
- 500-600
2. Inside Tussocks (750 mm above ground) 350-375 -
420-450 -
450-500 -
3. Inside Tussocks (350 mm above ground) 420-450 -
420-450 -
420-450 -
4. Tussock Bases (50-100 mm above ground) <65 <65
<65 <65
75-100 100-120
5. Intertussock (ground level) 350-375 75-100
350-375 65-75
220-280 100-120
6. Buried (20 mm below ground) <65 <65
<65 <65
<65 <65
7 Intertussock/Tussock Interface (ground level) 375420 -
375-420 -
375-420 -
Table 4.2.

Maximum fire temperatures, obtained from THERMOCHROM® crayon-based py-
rometers, in the paramo grasslands of El Area Nacional de Recreacion Cajas and
the Paramo de Guamanl. The positions of the pyrometers in the tussock grass
structure is shown in more detail in Figure 4.2.

Qualitative Observations on the Recovery of
Grass Paramo from Fire

Figure 4.4 presents a detailed map of tussock basesina 5 x 5 m plot at 3,750 m. Ca-
lamagrostis species tussocks dominate the area with a basal area of approximately
0.2871 m® m 2 or about 29% of the total. Uncinia phleoides (Cyperaceaez) is much
less important tussock-former with a basal area of around 0.0327 m” mZ or around
3% of the total area. In all, the bases of these two tussock species account for roughly
32% of the ground surface in the sample plot. It should be remembered that this is
basal area and not the area shaded by the plants’ leaves: this often exceeds 75% at
this altitude.

From a random sample of tillers taken from a single mature tussock, each tiller
has on average 2.86 leaves per tiller (range 2-4; sd 0.7827). This species does not
shed its dead leaves but retains them amongst the living ones. At 3,750m, just over
half of the standing leaves are dead (54.2%) and decay within the tussock itself. This
reduces the photosynthetic potential of the plant, with dead leaves shading out living
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Figure 4.4.
Detailed map of tussock bases in a recently burned 5 m x5 m plot at 3,750 m in

the Paramo de Daldal. The enclosed areas represent the tussock bases, mostly
belonging to Calamagrostis sp. (clear) with some Uncinia phleoides (dotted). The
positions of the five transects used to sample the small-scale changes in the com-
munity are also shown.

tissue, but may serve as a defence against predation by herbivores by decreasing the
overall nutritional value of the leaves (Schmidt & Verweij, 1992).

Continual burning of the tussocks and the destruction-renewal cycle that results
can produce cyclical patterns of species dynamics. One example of this is the interac-
tion between Calamagrostis tussocks and Paspalum sp. Areas of paramo at 3,750m
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which have not been burned for a number of years do not possess much Paspalum.
This plant has a growth form which is highly suited to opportunistic vegetative spread
after a fire (Figure 4.5). The addition of each new leaf moves the growing point
along the ground and invades new territory.

Although Paspalum does not survive burning well, some individuals remain after a
fire and grow rapidly, utilizing the abundant nutrients released by the fire. Owing to
this response to burning, Paspalum has been noted as a characteristic plant of burned
areas (Cleef, 1979; Ramsay, 1988). The species favours drier ground and so grows
onto the tussock bases. Once there, it rarely descends back into the intertussock
spaces (Figure 4.6). After a time, Paspalum ‘stolons’ come to cover much of the tus-
sock, suppressing the recovery growth of the Calamagrostis tillers. Other species are
then able to colonise the tussocks, among them Rumex acetosella, Disterigma empetri-
folium, Geranium multipartitum, Oxalis sp. and Lachemilla sp.

At this point two possibilities exist. Burning may occur again, soon after the first
fire. Since Paspalum does not survive fires well, this may be to the advantage of the
Calamagrostis particularly since the temperatures produced by a fire at this stage are
not so great. However, the tussock base can be damaged by repeated burning and
may start to crumble. If Calamagrostis has become so weakened by repeated burning
and competition from Paspalum and the others, the tussock may die. New tussocks
are formed in the intertussock zone by the multiplication of any surviving fragment
of the original tussock or by seed. The hummock left behind is gradually broken up
as it dries and as the old culm bases decay. Paspalum becomes less important as the
other species suppress its growth.

The other possibility is that the Calamagrostis is sufficiently resilient to resprout
successfully over much of the tussock base and force Paspalum towards the sides of
the tussock, by blocking the light to its leaves. In this way, the cycle is completed.

A number of observations were made on the recovery of Calamagrostis tussocks
after a burning episode. Immediately after a fire, new leaves begin to sprout from the
charred tussock base. Many of these first leaves are damaged towards their tips and
soon wither. However, re-growth continues with the appearance of many more
leaves, borne from tillers produced after the fire.

Two weeks after a burning episode, the tussock gives the appearance of relatively
straightforward recovery: new leaves rapidly replacing those lost to the flames. Tiller
ringing at this stage revealed that mortality is extremely high, with 37.5% of ringed
tillers dead five weeks later, 40% dead after ten weeks and 72.5% dead some fifteen
weeks after ringing (Figure 4.7). In fact, twenty weeks after the fire, the tussocks
were very similar in appearance to that only two weeks after the event, such is the ef-
fect of this mortality.

Clearly, this long-term exposure of the tussock base to light makes colonisation at-
tempts by other species possible. Table 4.3 presents data collected at 3,750m in the
Piramo de Daldal. Burning allows species to colonise the tussock by removing the
leaves that block light. Lupinus sp. shrubs were commonly observed growing in estab-
lished tussocks. Following a fire, germination of seeds already present in the tussock
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The habit of Paspalum sp.
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Figure 4.6.
The dynamic relationship between Calamagrostis sp. and Paspalum sp, mediated

by fire at 3,750 m in the Paramo de Daldal.
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bases takes place: an average of around 37 seedlings per square metre of tussock was
found. Stellaria leptopetala shows similar behaviour. Mature individuals of both these

species were found exclusively in and around the tussocks and seedlings were not

present elsewhere.

Burned Tussocks

Tussock dimensions (cm) 91x56  77x52  60x60
Tussock area (cm?) 5096 4004 3600
Rumex acetosella 47 15 5
Lupinus sp-. 28 15 8
Stellaria leptopetala 6 3 2
Dryopteris sp. [1066] 1
Lachemilla rupestris B 44B
Hydrocotyle bonplandii B 6+B 2
Lachemilla orbiculata B B 4
Stachys elliptica B
Vicia sp. [144]
Geranium sibbaldioides
Pentacalia arbutifolius
Paspalum sp. [103]
Relbunium croceum

Table 4.3.

Unburned Tussocks
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Tussock colonisation immediately after a less severe burn in relation to plants oc-
cupying mature tussocks. Numbers shown are the number of individual seedlings
of each species colonising the tussocks. 'B' indicates species colonising the outer

portion around the sides of the tussock base.
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Survivorship of Calamagrostis sp. tillers following a paramo fire. The survivorship

axis is on a logarithmic scale.
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The long period of tussock recovery after a fire gives the seedlings time to reach a
size where they can compete effectively for light once the tussock begins to grow
again.

The burned tussock is also open to opportunistic colonization. The behaviour of
Rumex acetosella is a good example of this. Within days of a fire, seeds of this species
germinate all over the tussocks. One tussock was seen to have 47 seedlings of
R.acetosella present. Unlike the other species mentioned, Rumex is not found exclu-
sively on tussocks; in fact, it is quite rare in established tussocks of Calamagrostis and
much commoner between them.

Species such as Lachemilla rupestris, Lachemilla orbiculata and Stachys elliptica are
able to take advantage of the bare ground around the tussock bases which is sud-
denly opened to sunlight after burning (Table 4.3). They were also present on the tus-
socks but are eventually killed as the tussock leaves overshadow them.

Some 250 m higher in the paramo, at around 4,000m, tussocks and mats are co-
dominant in the community and burning is less frequent. As altitude increases, the
tussocks of Calamagrostis are gradually displaced by Plantago rigida cushions until
eventually the tussocks are well spaced out. At 4,000m, a co-dominance exists, with
the cover tussocks and mats (covering the intertussock region) more or less equal. It
is here that some insight into the processes in operation might be gained. From ob-
servations of vegetation showing different stages of development, the following dy-
namic process is proposed. First of all, large tussocks of Calamagrostis are invaded by
a mat of Plantago rosettes, initially just a ‘dent’ in the tussock (Figure 4.8). This may
be the result of opportunistic growth following a fire, but since such events are rare
in this location, it was not possible to verify this by direct observation. Another possi-
bility is that the tussock base develops to the extent that water may become less ac-
cessible and the plant’s growth is weakened. Having gained a foothold, the mat
spreads across the top of the tussock base (which is raised above the surface of the
ground by up to S00 mm), splitting the original tussock into smaller ones around the
periphery of the mound. By this stage, a Plantago rigida cushion has developed. Dis-
section of ten large cushions of this species revealed that they were all overlying for-
mer grass tussock bases.

At this point, other species are able to colonise the cushion covering the centre of
the hummock: Lachemilla orbiculata, Cotula ? mexicana, Oreomyrrhis andicola and
Lachemilla andina. These species are common in the intertussock region. Some
species, rarely encountered in the low, intertussock depressions are relatively com-
mon on the Plantago hummocks, namely Disterigma empetrifolium, Pernettya prostra-
ta and Lachemilla hispidula. These species almost certainly benefit from the better
drainage afforded on the mound, but which was previously shaded by the tussock
leaves.

With time, the hummock becomes colonised by more species. Plantago rigida
cover drops from close to 100% to around 40%. In addition to those species
already mentioned, Hypochaeris sessiliflora, Rumex acetosella and Festuca sp. are
all later colonists. As more species invade the hummock, it begins to dry up. At first
the sloping surfaces become uneven and crumble. Finally, the P. rigida rosettes
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die and only moss species are able to survive on the crown of the hummock. Event-
ually, this too dies and the mound disintegrates.

While this process is going on, the fragments of the original tussock survive nearby
and, given the right conditions, are able to reproduce and gain in size. One or several
of these patches of Calamagrostis may attain full size and begin building a new
mound by repeated tillering on top of dead culm bases. After some time, P. rigida
may invade once more to begin another cycle.

= Plantago rigida Rosettes

Calamagrostis Tussock

Dense Base of Tussock

Remnants of
Former Tussock

New Tussock
Develops
from Remnant

Cushion Disintegrates and Dies

Figure 4.8. o
The dynamic relationship between Calamagrostis sp. and Plantago rigida at

4,000 m in the Paramo de Daldal.
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Transition Matrix Experiments

We have already seen that the intertussock vegetation accounted for approximate-
ly 68% of the ground cover at 3,750 m. The contributions of the species present in
the microquadrat transects were calculated for both sampling times using frequency
measures (Figure 4.9). In July, 32 species were recorded in the 1000 microquadrats,
rising to 35 species in October.

Much of the intertussock region at 3,750m was bare ground, with 51.0% of micro-
quadrats unoccupied in July, and 40.1% in October. Azorella pedunculata was by far
the most important plant species beneath the Calamagrostis tussocks, accounting for
25.7% and 27.8% of the quadrats in July and October respectively. This species was
even more influential in open areas around 3,200-3,500m in this valley, where mon-
tane forest had been cleared (see Chapter 5). The other species present were much
less frequent, the most abundant being Paspalum sp. (4.2 and 6.5% in July and Oc-
tober, respectively).

The dynamic interactions between these species is most interesting. Table 4.4
shows the number of transitions occurring between the main species in the intertus-
sock vegetation. During the study period (115 days), a remarkably high 36.9% of the
microquadrats showed a change of occupancy. 61.2% of all unoccupied 100 mm’
areas remained so throughout. xz analysis showed that most of the transitions were
explained by random replacements of one species by another. However, some transi-
tions were found to depart from randomness (Figure 4.10).

42.7% of all changes involved gaps being replaced by Azorella pedunculata or vice
versa. This pattern is characteristic of a short-lived ephemeral species, an opportunist
which invades bare ground quickly and vacates it after its short lifetime ends. How-
ever, A. pedunculata is not an ephemeral. In fact, it is a ‘k-selected’ species forming
mats of tough rosettes borne on thick, woody rhizomes (Figure 4.11). The A. pedun-
culata plant can be viewed as a ‘raft’ of rosettes on the soil surface, rather like corks
on water. As old rosettes die, the raft is rearranged to fill the gaps. Similarly as a new
rosette grows, the neighbouring rosettes are “reshuffled” to accommodate it by the
turgor pressure of the new growth. Thus, the plant is able to make use of its surface
area extremely efficiently. It is not clear whether this process can continue indefinite-
ly: senescence may occur, the mobility of the rosettes lessened as the layer immedi-
ately beneath them becomes cluttered with decaying rhizomes.

Five 1 m transects were used to sample burned intertussock areas not far from
those samples just described. Figure 4.12 shows the principal species in the intertus-
sock zone, notably Azorella pedunculata, Lachemilla orbiculata, Hydrocotyle bonplan-
dii and Viola humboldtii. Of the five hundred 100 mm? samples, 59.0% were devoid
of plants. In total, nineteen species were present in the intertussock community sam-
ples one week after a fire (double this sample size revealed 32 species in nearby un-
burned vegetation at the same time). Moss species were noticeably infrequent at
1.2%, about one-fifth of that observed in the unburned vegetation.
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Species at Species at Time 2

Time 1 1 3 5 9 14 15 24 29 42 46 R G T TD

1 Alch orbi 2 - - - - - - - - - 1 3 1

3 Azor pedu Vo 169%; 3 1 10vy Vi 3 - - 1 2Y, 65 256V, 86%

5 Pasp sp. - 3 31 - - - - 5 - 1 - 6 41v2 10V2

9 Cala sp. - - - 9 - - - - - - - - 9 0

14 Relb croc - 8 5 - 13 - 5 - . - 8 34V, 21V,

15 Care tris W, - - - MY - - - - - - 12V 1Y,

24 Gnap pens - - - - - - 12v 1 - - - 131 1

29 Dist empe - - - - - - - sV, - - - - 5V 0

42 Moss 2 - - - - Vo - - - 9%, - 3%, 3 16V 7

43 Moss 3 - - 1 - - - - - 6V - 3 - 10V5 10V2

44 Moss 4 1 - 1 - 1 - - - 1V, - 8 3 15V, 15V5

R REST - 3, 2 - 2¥ - - - 3Va 1 54¥% 3 70V, 15%

G GAPS 4 92V, 22 2 17 4 9 2 4 14V, 27 316 514 198

T TOTALS 7Vo278 65 12 44V, 15V5 25 9 25 18V2 99 401 1000

T-D 5V> 108V, 34 3 31Va 4V, 15V 3vs 15Vh 17Vo 44V, 89 368%,
Table 4.4.

Transition matrix for “unburned” vegetation at 3,750m in the Paramo de Daldal.
Codes: 1 Alchemilla orbiculata; 3 Azorella pedunculata; 5 Paspalum sp.; 9 Cala-
magrostis sp.; 14 Relbunium croceum; 15 Carex tristicha; 24 Gnaphalium aff. pen-
sylvanicum; 29 Disterigma empetrifolium; 42 Moss 2; 43 Moss 3; 44 Moss 4; 46
Moss 6. REST: Hypochaeris sessiliflora, Halenia weddelliana, Rumex acetosella,
Trifolium repens, Gentiana sedifolia, Alchemilla andina, Hydrocotyle bonplandii,
Geranium multipartitum, Festuca sp., Poa sp., Equisetum bogotense, Holcus lana-
tus, Plantago major, Oreomyrrhis andicola, Ranunculus pilosus, Aphanactis
jamesonia, Nertera granadensis, Bidens andicola, Geranium reptans, Viola hum-
boldtii, Moss 1, Moss 7, Moss 8, Moss 11. G Gaps; T Totals;

T-D Totals — Diagonals.

125 days later, the same samples in the burned area had 24 species, of which eight
were new to the transects. Bare ground had fallen to 45.8%. The most frequent
species was Hydrocotyle bonplandii, with Azorella pedunculata abundant too. Lache-
milla orbiculata, Rumex acetosella and Viola humboldtii were also important ele-
ments in the intertussock community at this time.

A high proportion of the samples showed a change of occupancy (47.3%) from the
first sampling one week after the fire to the second one, 107 days later (Table 4.5). A
number of transitions within the matrix were significantly different from that ex-
pected by chance (Figure 4.13).
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Figure 4.9.
The composition of unburned intertussock vegetation at 3,750 m in the Paramo de

Daldal. The frequency of occurrence in one thousand 100 mm? microquadrats
was recorded in July 1987 and 115 days later in October 1987. Full species names
are given in Table 4.4.
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Figure 4.10.

Constellation diagram showing significant deviations from random species re-
placements in recently unburned vegetation at 3,750m in the Paramo de Daldal.
The species comprising the ‘Rest’ are given in Table 4.4. Solid arrows = more
than expected. Dashed arrows = less than expected. * p <0.05; ** p<0.01; **x*
p <0.001.
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Figure 4.11.
The habit of Azorella pedunculata. A. Cross-section. B. Details of a portion of a

branch. C. Diagrammatic representation of an area of Azorella pedunculata mat.
Rosettes belonging to the same parent plant are the underlying branch system are
indicated. The arrows show the forces applied by new rosettes and the movement
of existing rosettes into spaces left by the death of other rosettes.
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Species at Species at Time 2

Time 1 1 2 3 12 28 R G T TD
1 Lachemilla orbiculata 7V - 2 13 1 3, 11 38 30V
2 Rumex acetosella - 4 - - - 3 - 7Va 3V
3 Azorella pedunculata 2 - 45V4 5 - 7Vs 24 83V, 38V,

12 Hydrocotyle bonplandii Vo - - 22¥p - 1 6 30 Vo

28 Viola humboldtii - - - 4 - - 4 0

R REST - - 2V 3Y2 1 13Ve 21 Al 27¥

G GAPS 8 12 24 51 9 25 167 296 129

T TOTALS 18 16 73% 95 15 5315229 500

T-D TOTALS-DIAGONALS 10v2 12 28V, 72V 11 40V 62 23615
Table 4.5.

Transition matrix of replacements at 3,750m in the burned paramo of the Daldal
valley. REST: Trifolium repens, Paspalum sp., Bidens andicola, Geranium multipar-
titum, Relbunium croceum, Carex tristicha, Cotula ? mexicana, Plantago linearis,
Gnaphalium aff. pensylvanicum, Holcus lanatus, Disterigma empetrifolium, Apha-
nactis jamesonia, Hypochaeris sessiliflora, Gentiana sedifolia, Geranium reptans,
Plantago major, Valeriana microphylla, Moss 2.

Once again, the reshuffling behaviour of Azorella pedunculata was evident from its
higher than expected replacements of, and by, bare ground (but with a net loss over-
all). Bare ground was replaced by Hydrocotyle bonplandii and Rumex acetosella more
often than random. As a group, the rarer species showed a very significant mortality
rate (‘being replaced by gaps’). This was probably the result of delayed fire damage.
These species tended not to replace Hydrocotyle bonplandii, which in turn replaced
Azorella pedunculata less than expected.

For comparison, Table 4.6 shows the species present in five sample transects lo-
cated on ground that had been artificially cleared of vegetation. After 15 weeks, 10%
of the microquadrats had been colonized — about two-fifths of these by Rumex aceto-
sella, again demonstrating its opportunistic abilities. Viola humboldtii and Cotula ?
mexicana between them accounted for a further quarter of the occupied quadrats.
Azorella pedunculata was present in only two of the 500 microquadrats; probably re-
generated from underground fragments of previous individuals.
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Figure 4.12.
The composition of burned intertussock vegetation at 3,750 m in the Paramo de

Daldal. The frequency of occurrence in five hundred 100 mm? microquadrats was
recorded in July 1987 and 125 days later in October 1987. Full species names are
given in Table 4.5.
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Figure 4.13.

Costellation diagram showing significant departures from random replacements in
burned vegetation at 3,750m in the Paramo de Daldal. The species comprising the
‘Rest’ are given in Table 4.5.S0lid arrows = more than expected.Dashed arrows
= less than expected. * p<0.05; **p<0.01; *** p<0.001.
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Species Freq. %Freq.
Rumex acetosella 19 3.8
Viola humboldltii 6 1.2
Cotula ? mexicana 6 12
Hydrocotyle bonplandii 4 0.8
Gnaphalium aff. pensylvanicum 3 0.6
Aphanactis jamesonia 3 0.6
Hypochaeris sessiliflora 2 0.4
Moss 2 2 0.4
Azorella pedunculata 2 0.4
Carex tristicha 1 0.2
Stachys elliptica 1 0.2
Stellaria recurvata 1 0.2
Gaps 450 90.0
Table 4.6.
Composition of bared ground transects (500 microquadrats) at 3,750m after 108
days.

Similar experiments were carried out at 3,950 m. Figure 4.14 shows the major
plant species found in this vegetation. There were fewer species in this area (27 at
both tlmes) than at 3,750m, though the sample area was smaller (0.06 m? rather than
0.10 m ) Bare ground accounted for 34.8% of the microquadrats at the start of the
study and 26.5%, 107 days later —much less than that observed 200m lower. A.pedun-
culata, so important at 3,750m, was not so frequent, occupying less than 5% of the
microquadrats. Mosses were better represented, with a cover around 25% at both
sampling times. Geranium multipartitum, Lachemilla andina and Festuca sp. were all
important members of the intertussock community.

The transition matrix in Table 4.7 shows that 27.7% of the microquadrats were oc-
cupied by a different species at the end of the study from the one resident at the
start; this is a much slower turnover than the 36.9% observed 200m lower. In fact,
omitting the unchanged quadrats, only one replacement value departed significantly
from random expectation. As a whole, the category in which all the rarer species
were grouped (‘Rest’) did not invade gaps as frequently as chance alone would pre-
dict (p <0.001). It is also worth noting that 64.1% of those quadrats which were unoc-
cupied in July remained in this state throughout the course of the study period.
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Daldal. The frequency of occurrence in six hundred 100 mm
recorded in July 1987 and 107 days later in October 1987. Full species names are
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Species at Species at Time 2

Time 1 3 5§ 11 13 15 16 42 46 49 R G T T-D
3 Azorella pedunculata 15 - 1 - - 1 - - 1 5 23 8
§ Paspalum sp. R 147 - - 1 - - a2 - 19 12
11 Lachemilla andina - - 3312 - - 173 - - 4 38 4,
13 Geranium multipartitum - - - 41 1 2 avy 1 - 3 2 55 1315
15 Carex tristicha - Vo - 1 18%2 1 2V, 1Yo - 1 2 28 )74
16 Festuca sp. - - - 2 - 30V Vo - - 1 3 37 6V
42 Moss 2 - 2 4 1 2 41V - - 4 1 55V> 14
46 Moss 6 - 1 - 1 2V, 1 25 - 3 - 331, 8V,
49 Moss 9 - 2 - - - - 2 36 5 1 46 10
R REST - - 2 1 2 - 1 1 1 M 7 5 15
G GAPS 3 6 13 6 2 2 14 12 3 14 134 209 75
T TOTALS 18 24 54V, 55V, 25V, 40 67V. 42V, 40 7312159 600
T-D Totals-Diagonals 3 62 21 14 7 92 26 17V 4 32V, 25 166

Table 4.7.

Transition matrix for “unburned” vegetation at 3,950m in the PAramo de Daldal.
REST: Lachemilla orbiculata, Calamagrostis sp., Hypochaeris sessiliflora, Rumex
acetosella, Relbunium croceum, Geranium reptans, Pernettya prostrata, Azorella

aretoides, Gentiana sedifolia, Hydrocotyle bonplandii, Trifolium repens, Oreo-
myrrhis andicola, Ranunculus pilosus, Gnaphalium aff. pensylvanicum, Stellaria

recurvata, Moss 1, Moss 3, Moss 5, Moss 7, Moss 10.

At 3,950m, bryophytes are responsible for most of the vegetation cover one week
after a fire (Figure 4.15). The 300 microquadrats contained just eight species and
65.3% of the 100 mm* units were unoccupied. Fifteen weeks later, bare ground had
dropped to 59.3% and the vegetation comprised 14 species with bryophytes again
dominant. The transition matrix (Table 4.8) indicates the changes of occupancy of
the microquadrats over the 108 days between these sampling times. In all, 45.2% of
the mlcroquadrats showed a change, nearly double that of the unburned vegetation
nearby. By x analy51s the rarer species taken as a group were shown to be significant
invaders of gaps (Figure 4.16). The relationship between Moss 6 and gaps was signifi-
cant in both directions, with the moss both vacating and invading bare ground. This
may be the result of delayed burning-related mortality and opportunistic behaviour
in colonizing gaps.

Moss 6 was shown to be capable of invading bare ground in the study transects lo-
cated in the artificially bared areas at 3,950m (Table 4.9). 93.6% of the area re-
mained uncolonized after 15 weeks. Hypochaeris sessiliflora regenerated from its
thick tap roots.
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Figure 4.15.
The composition of burned intertussock vegetation at 3,950 m in the Paramo de

Daldal. The frequency of occurrence in three hundred 100 mm? microquadrats
was recorded in July 1987 and 107 days later in October 1987. The species com-
prising the 'Rest' are given in Table 4.8.
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Figure 4.16.
Constellation diagram showing significant departures from random replacements

in burned areas at 3,950m in the Paramo de Daldal. Solid arrows = more than ex-
pected. Dashed arrows = less than expected. * p <0.05; **p<0.01; **=*
p <0.001.
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Species at Species at Time 2

Time 1 42 46 48 R G T TD
42 Moss 2 8 8 1 1 8 26 18
46 Moss 6 6 12V, V2 5 32 56 431
48 Moss 8 - 3 7 - 5 15 8

R REST - . 1 5 1 7 2

G GAPS 15 26V 4Vo 18 132 196 64

T TOTALS 29 50 14 29 178 300
T-D TOTALS-DIAGONALS 21 37Vo 7 24 48 135V5

Table 4.8.

Transition matrix of replacements at 3,950m in the burned paramo of the Daldal
valley. REST: Lachemilla orbiculata, Rumex acetosella, Azorella pedunculata, Hy-
drocotyle bonplandii, Geranium multipartitum, Cotula ? mexicana, Geranium rep-

tans, Plantago linearis, Azorella crenata, Viola humboldltii, Sibthorpia repens,

Moss 5.
Species Freq. %Freq.
Hypochaeris sessiliflora 7 23
Moss 2 5 17
Moss 6 4 1.3
Hydrocotyle bonplandii 1 0.3
Lachemulla andina 1 0.3
Aphanactis jamesonia 1 0.3
Gaps 281 93.9
Table 4.9.
Composition of bared ground transects (300 microquadrats) at 3,950m after 107
days.

Discussion

The péramo sites used for these studies were subjected to burning practices simi-
lar to those reported throughout the paramos (Smith & Young, 1987b; Laegaard,
1992; Verweij & Budde, 1992) and in other tropical alpine grasslands (Smith, 1975;
Beck, Scheibe & Schulze, 1986; Veldzquez, 1992). Generally, in a single paramo
area, there exists a mosaic of vegetation representing different periods of recovery
from burning which is clearly visible in the colouration of the vegetation.

The temperature distribution within the vegetation structure during a paramo fire
has great implications for plant survival. Firstly, all plant material forming the upper
part of the tussock is destroyed during a fire by high temperatures, sometimes ap-
proaching 600°C. Clearly, growth forms with unprotected meristems in or above this
zone, such as upright shrubs, may be disadvantaged by burning (Hedberg, 1964). A
number of species are able to regenerate from their roots. In the Pdramo de Daldal,
such species included: Monnina crassifolia, Brachyotum ledifolium, Pentacalia andico-
la, Hypericum laricifolium, Valeriana microphylla, Chuquiraga jussieui, Vaccinium ?
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floribundum and Lupinus ramosissimus. Laegaard (1992) reports similar findings for
some of these species. Beck et al. (1986) found that shrubs have a high capacity for
regeneration in the East African tropical alpine grasslands: even after a severe burn
nearly all shrubs regenerated.

The middle part of the tussock also reaches lethal temperatures (350-450°C), and
this is of relevance to species living within the tussock. Such species include climbing
herbs such as Lobelia tenera, Draba sp., Vicia ? setifolia, Ageratina azangoroensis and
Oxalis sp., as well as erect herbs like Festuca sp. and Trisetum spicatum.

However, for these species and for Calamagrostis itself, the dense tussock bases
offer protection from the intense heat generated in the canopy above. In both burn-
ing experiments, the dense base was subjected to relatively low temperatures, often
below 65°C because the dense leaves of the tussock shielded the inner parts from the
heat. Therefore, those plants with apical or axillary buds or rootstock capable of suc-
kering within this region may be able to regenerate even though parts of the plant
have been lost by fire.

Despite these relatively low temperatures during a fire, the subsequent exposure
of new shoots to the harsh pdramo environment can slow regeneration of the tus-
sock. This allows opportunistic species, lying within the tussock as seed, to establish
on the tussock. Some of these young plants will survive only until the tussock canopy
closes (such as Rumex acetosella). Others can survive for longer periods of time and
become established within the mature pdramo community, though this may be only a
small proportion of those seedlings which germinated. A good example of a species
of this nature is Lupinus cf. pubescens.

Certain species appear to favour the edge of tussocks, demonstrated by a number
of species in Table 4.3. The distribution of Uncinia pheleoides in Figure 4.4 shows the
pattern well. It is not clear whether these distributions reflect a degree of protection
from fire afforded by the tussock base or are the result of favourable sites for seed-
ling establishment. The latter explanation was proposed by Miller & Silander (1991)
to explain why Puya clava-herculis was frequently found inhabiting the tussock edge
in Ecuadorian paramos.

The intertussock spaces and the sides of the tussock bases may reach temperatures
on the ground of up to 375°C or 420°C if there is a good deal of dry matter in the tus-
socks. Temperatures of around 100°C are probably commoner in Daldal, where burn-
ing is a regular practice. This is also true of more humid p4dramos such as the Pdramo
de Guamani, which produced temperatures between 65-120°C in the experimental
burn.

Though temperatures on the ground may be lethal, temperatures remained low 20
mm under the surface (in all cases less than 65°C, the minimum limit for the pyrome-
ters). Therefore, plants occupying the spaces between tussocks may have their above-
ground parts destroyed but the subterranean organs are unaffected by the fire. Many
plants can ‘recolonise’ a burned area simply by regenerating from rhizomes or roots
(for example, Azorella pedunculata and Hypochaeris sessiliflora). Other species, in-
cluding those just mentioned, shield delicate buds within less sensitive plant parts.
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According to Laegaard (1992), the apical buds of acaulescent rosettes and cushion
plants are often situated 10-20 mm below the surface. From the results of the experi-
ments described here, this would afford such plants adequate protection from lethal
temperatures.

At 3,750 m in the P4dramo de Daldal, the species surviving a fire could be seen to
benefit from the above factors. The commonest survivors following a fire were those
able to resprout from rhizomes or rootstock: Lachemilla rupestris, Lachemilla orbicu-
lata, Hydrocotyle bonplandii, Rumex acetosella, Halenia weddelliana, Viola humbold-
tii, Sonchus oleraceus, Plantago major, Uncinia pheleoides and Cotula ? mexicana. It is
interesting to note that those species shielding the apical buds with plant parts did
not survive the most intense fire, but were present following a less severe burn. Such
species included Azorella pedunculata and Hypochaeris sessiliflora. It was also evident
that particularly after a less intense fire, small patches of intertussock vegetation
were commonly left alone by the fire. Within these patches, plants which did not ap-
pear to survive by means of one of the above strategies were observed. Such fortui-
tous survival enabled species such as Paspalum sp. to capitalise on the abundance of
space and nutrients after a fire, as described earlier. Laegaard (1992) confirms these
strategies for the majority of the above species.

The transition experiments corroborated these findings. In addition to the species
mentioned above, the burned transects at 3,750 m also contained Trifolium repens,
Bidens andicola, Geranium multipartitum, Relbunium croceum, Holcus lanatus, Apha-
nactis jamesonia and one species of moss.

Following this initial survival, remaining bare ground was colonised by opportunis-
tic species from seed. In particular, Rumex acetosella and Hydrocotyle bonplandii
were shown to increase their presence more than chance alone would predict. Hydro-
cotyle bonplandii was shown to be resistant to invasions by the rarer species, but was
itself less likely to replace Azorella pedunculata rosettes.

By contrast, a highly significant mortality of Azorella pedunculata rosettes and a
number of the rarer species was observed in the transects. This indicates that a num-
ber of individuals which survived the fire initially did not persist, perhaps because
they sustained critical damage which could not be repaired.

Although colonisation was taking place, this was a slow process: the proportion of
gaps in the transects decreased from 59% to 46%. However, nearby unburned vege-
tation showed a similar proportion of gaps (51% and 40%). The data from the con-
trol transects suggest that Azorella pedunculata is likely to proliferate at the expense
of many of the other species which have colonised the burned area, and that a fur-
ther reduction in bare ground is unlikely.

Of the twelve species found in the cleared transects at this altitude, all but two
rare species were present in the burned plots. This indicates that these colonists do
not rely on burning for seed germination, but merely take advantage of disturbance,
whatever form it may take. Interestingly, 90% of the bared transects were unoccu-
pied, compared with 40% and 46% in the associated control and burned plots. Remo-
val of the upper 20 mm of soil has much more serious implications for the
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regeneration of intertussock vegetation than a fire. The importance of regrowth from
plant parts just beneath the surface is confirmed.

At 3,950 m, survival following burning was much lower than in the transects just
described. About 65% of the intertussock spaces were bare, and only eight species
survived, with half of these being bryophytes. The diversity of these transects in-
creased in the following 108 days to fourteen species, largely by the invasion of bare
ground (which decreased to 59%). There was a high turnover of species in these
plots, however, mostly the result of delayed mortality in Moss 6. This species also col-
onised bare ground, and replaced a number of other bryophyte species.

Unburned vegetation at 3,950 m was found to contain almost twice as many
species (in twice as many sample units). The commonest species from the burned
plots were also present in the controls. Bare ground was very low: 35% at the start of
the experimental period and 27% at the end. In this crowded situation, it was found
that the rarer species did not colonise gaps as frequently as chance would predict,
perhaps because competition for resources was high.

When this vegetation was cleared by removing the upper 20 mm of soil, recolonisa-
tion was slow (similar to that 200 m lower in the paramo). After 107 days, only 6% of
the ground had become occupied, more than half of this by regeneration by Hypo-
chaeris sessiliflora from tap roots. Bryophytes were less successful colonists than in
the burned plots, but the two principal species in the burned transects were import-
ant in bared ground. In experimental studies in the Venezuelan paramo, Pfitsch,
Smith & Rodriguez Poveda (unpublished —cited by Smith & Young, 1987b) also
found that recolonisation of bared plots at high altitudes was a slow process. These
plots were colonised by a gradual accumulation of species from the mature com-
munity, without early specialist species. In the Paramo of Daldal at 3,950 m, there ap-
pears to be some evidence to support these observations (the establishment of
Hypochaeris sessiliflora) but other colonists were more opportunist species which
characterised the invasion of disturbed ground at lower altitudes (Hydrocotyle bon-
plandii and Aphanactis jamesonia). However, the climatic conditions at this altitude
were not so severe as those reported in the Venezuelan experiment.

From these studies in the Ecuadorian pdramos, a number of generalisations can be
made:

® The temperature during a fire is determined mainly by the
structure of the vegetation. The highest temperatures are
produced in the tussock canopy, the lowest within the tus-
sock base and just beneath the surface.

® Regeneration from below ground plant parts (including
those within the tussock bases) is the main form of re-
covery from fire.

@ The severity of the fire (largely a function of the interval
since the last burn) determines the degree of survival of in-
tertussock species on the ground surface.
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@ Initial survival does not guarantee persistence in the com-
munity. Both tussock grasses and intertussock species show
significant mortality rates in subsequent months.

® Recovery is slower at higher altitudes.

® Burning may induce cyclical patterns of community devel-
opment, illustrated by the interactions of Calamagrostis sp.
and Paspalum sp. in the Paramo de Daldal.

@® Certain species quickly colonise bare ground by seed.
These may persist to maturity, but most will be killed by
competition from neighbours as the vegetation matures.

@® Some species (such as Lupinus cf. pubescens) appear to
rely heavily on burning for establishment within tussocks
(where mature individuals are found).

It is clear that paramo vegetation in Ecuador is able to regenerate relatively rapid-
ly after burning. Similar rates of renewal are inferred from studies in Colombian
paramos (Pels & Verweij, 1992; Verweij & Budde, 1992). In Chirrip6 National Park,
Costa Rica, recovery was well underway a few months after a huge paramo fire
(Boza, 1978). This contrasts with observations by Janzen (1973), again in Costa Rica,
where regeneration was very slow, with large patches of bare ground still present
three years after the fire.

Transition matrix studies have often been associated with predictions of succession
(Horn, 1975; Usher, 1979, 1981; Noble & Slatyer, 1981; Hobbs & Legg, 1983; Lough
et al., 1987). However, in the present study this approach was considered inappropri-
ate, mainly because of the short timescale over which the observations were made.
The early changes in specific composition during recovery from disturbance are
usually faster than the later changes (Shugart & Hett, 1973), and several of the press-
ures acting upon individuals are not uniform over time (for example, grazing in-
fluence is especially common immediately after a fire — Verweij & Kok, 1992).
Therefore, the fixed transition probabilities demanded by Markov modelling do not
apply to paramo vegetation after a fire (Pels & Verweij, 1992).

Further to this argument, in East African tropical alpine grasslands, the studies of
Beck et al. (1986) indicated that linear succession after burning did not take place.
Rather, burning began a series of complete or incomplete (if burning was repeated
too soon) successional cycles. In order to predict the patterns of replacement during
such cycles, observations are required over the entire simulation period. It is not
clear how long such recovery cycles might be in the Ecuadorian p4dramo, and com-
plete recovery could involve several decades or more.

Apart from the dynamics directly relating to pdramo burning, these studies have
brought to light interesting aspects of the small-scale changes associated with un-
burned vegetation. Notably, the majority of changes of occupancy in the transition
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studies involved gaps and appeared to be random replacements. Similar findings
were made by Thérhallsdéttir (1983, 1990) in a grassland community in North Wales.

Gaps are known to be important in the dynamics of many plant species, and even
small ones can influence local conditions (Silvertown, 1981). The frequency of gaps
was high bearing in mind the dense appearance of the vegetation (51.0% and 40.1%
at 3,750 m, and 34.8% and 26.5% at 3,950 m, in July and October 1987 respectively).
Thérhallsdéttir (1983, 1990) reported gap frequencies of 17-60% (mostly around
30%) in North Wales. She also noted that clonal species tended to replace and be re-
placed by gaps more often than chance would predict. This was found to be true in
the pdramo, exemplified by the behaviour of Azorella pedunculata.

The mobility of mats of Azorella pedunculata in many ways resembles the floating
rafts of the Water Hyacinth (Eichhomia sp. — Watson & Cook, 1982). Clearly this
mobile collection of rosettes and underlying rhizomes presents several problems to
other plant species. To compete with A. pedunculata a plant must be capable of resist-
ing the movement of the mat or must itself be flexible to move with the rosettes. Cer-
tainly, Paspalum sp. and the rarer species (grouped together) were found to be
significantly less likely to replace an A. pedunculata rosette than chance would pre-
dict.

The fact that the main means of spread for Calamagrostis sp. is by vegetative repro-
duction from large, established tussocks may explain why the mat is unable to ex-
clude the tussock grass. While the 4. pedunculata mat may be an able competitor for
space, it may not be so adept at competing for light. The leaves of the grass shade out
the Azorella rosettes, allowing new tillers to develop at the tussock edges.

Grubb (1977) noted the lack of information on Calamagrostis sp. regeneration in
the Andes. Although some seedlings of Calamagrostis sp. were encountered in the
transition matrix studies, these were relatively uncommon and vegetative spread in
kaleidoscopic pattern is the principal means by which tussocks are maintained within
the community.

Some 250 m higher in altitude, and the dominance of Calamagrostis tussocks over
cushion and mat species is lost. The cyclical processes in operation in the boundary
zone between grass and cushion paramos was described earlier and is similar to that
described by Lough et al. (1987) for a New Zealand alpine cushion community.

It is not clear what forces drive this process. However, the existence of an appar-
ently persistent and stably cyclic dynamic relationship implies either an extrinsic envi-
ronmental cycle (unlikely in the paramo) or a cycle in one of the dominant species
(Horn, 1974). Since both species can exist both above and below this altitude (per-
sonal observation), it would appear that some environmental factor or factors result
in a spatial change in relative competitive abilities of the two dominant species. The
lower limit of extensive cushion vegetation elsewhere in the Andes seems to be the
result of interspecific competition (Armesto, Arroyo & Villagran, 1980; Alliende &
Hoffmann, 1985).
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It may be, as suggested by Laegaard (1992), that tussocks become overmature and
can no longer supply water and nutrients to satisfy the needs of the plant (water re-
quirements become more difficult to meet at higher altitudes — Meinzer & Gold-
stein, 1986). The same factor may also explain the reduced vitality of the cushions
and their subsequent decay, also observed in the Colombian paramos by Cleef
(1981). With the competitive ability of the tussock reduced, the cushion invades. Al-
ternatively, it could be that occasional burning at this altitude exerts a significant
stress on the tussocks (fire can spread between the widely-spaced tussocks if it is
windy). Some other factors, relating to climatic or edaphic features of the local envi-
ronment may also be involved.

The invasive behaviour of Plantago rigida, overgrowing other plants to form cu-
shions is mirrored elsewhere. Nathaniel (1985) describes a similar mechanism in the
formation of Plantago rigida cushions on the slopes of Volcan Cotopaxi, Ecuador,
and Werneria humilis also appears to share this behaviour (personal observation).

Lough et al. (1987) observed an analogous process with different species in New Zea-
land.

The widespread existence of this transition from grass pdramo dominated by Cala-
magrostis sp. tussocks to cushion paramo dominated by Plantago rigida implies that
the controlling factor or factors are also widespread. The explanation of this fun-
damental physiognomic change would provide a valuable insight into the mechan-
isms operating throughout the pdramo ecosystem.

Clearly, fundamental research into the small-scale dynamics of paramo vegetation
is a rewarding undertaking. Even very brief studies, such as those described here, can
facilitate the interpretation of the large-scale community in terms of the agents that
maintain them.
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Introduction

The severity of the high altitude tropical environment has often lead to compari-

sons with arctic and temperate alpine ecosystems (Bliss, 1971; Tieszen & Detling,
1983). Comparisons between temperate alpine and tropical alpine areas have shown
that, although temperate alpine regions experience more favourable conditions dur-
ing the growing season, the tropical montane environment experiences a greater
number of degree hours per year (Billings, 1973). From this evidence, Smith &
Young (1987b) suggest that tropical alpine communities may be more productive on
a yearly basis than their temperate counterparts.

The paramos throughout the Northern Andes are used for extensive grazing of
cattle, sheep, horses and mules. In the early 1950s, it was estimated that over half of
Ecuador’s cattle and around 85% of its sheep were grazed on the paramos (Acosta-
Solis, 1960). With the colonisation of Amazonia in recent times, the paramos no
longer contribute such high proportions of Ecuador’s cattle production, but they are
nevertheless a critical element of the rural economy in highland regions. In fact, it
seems likely that increasing population pressure, diminishing isolation and the loss of
self sufficiency in many rural communities has led to a recent increase in the head of
domestic livestock on the paramos of Ecuador. A particularly important feature of
livestock is that they represent an investment immune from inflation —a “living bank
account on the hoof” (Brush, 1976).

The previous chapter looked at the dynamic processes associated with burning to
improve forage quality in the pdramo. Grazing and trampling pressures are also im-
portant influences on plant community composition (Verweij & Budde, 1992). Unfor-
tunately, such pressures have resulted in the degredation of some p4dramo
ecosystems (Grubb, 1970; Smith, 1981; Acosta-Solis, 1984; Ramsay, 1988; Grubb,
Lloyd & Pennington, unpublished) and the neighbouring ceja andina forests (Brand-
byge & Holm-Nielsen, 1986; Laegaard, 1992; Verweij & Beukema, 1992).

Up to this date, there have been few published studies of the productivity of natu-
ral communities in any tropical alpine region of the world (Smith, 1987). One study
clzarrled out by Hnatiuk (1978) reported net aerial productivity rates of 1.28-4.42 t ha’

yr - in the grasslands of New Guinea. Acosta-Solfs (1984) estimated a yield of 4.35t
of dry matter per hectare per year in the Pdramo de Chiquicagua, Ecuador, though
the methodology described indicates that the value given is in fact an estimate of
standing biomass rather than productivity per se. A table of data for plots in the péra-
mo of Volcdn Antisana, Ecuador, appears in Black (1982). Values range from 2.60-
21.40 t and plots were subjected to burning, cutting and fertilizer treatments.
However, the reported details of the experimental design (exact method of data col-
lection, sample sizes, whether harvested material was dried before weighing, etc.) are
not sufficient to allow any interpretation of the values presented.

This chapter reports preliminary studies of grassland productivity over an altitudi-
nal gradient in the Andes of central Ecuador. Apart from providing data on standing
crops, comparisons are made between the aboveground net primary productivity of



5. Productivity of Andean Grasslands in Ecuador 167

BANOS

s EL TUNGURAGUA

_~

Figure 5.1, _
The location of the productivity experiments. A. The village of Alao is situated to

the south-east of Riobamba. One exclosure (site A) was located at the Sangay Na-
tional Park guardpost in Alao. B. The general location of this area is shown in (A)
as a box with dashed lines. Four exclosures (sites B-E) are shown in the upper
Daldal valley.
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Diagrammatic representation of the five exclosure sites used in the productivity
studies in the valleys of Alao (lower valley system with site A) and Daldal (upper
valley system with sites B-E). The slopes have been greatly exaggerated.
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areas covering an altitudinal range of nearly 1,000m, from improved pastures in the
valley bottoms to the upper reaches of agricultural use in the grass padramo at nearly
4,000m. Applications of fertilizer were used to assess the potential improvement of
natural grasslands and cutting regimes were applied to simulate grazing and burning.

Methods

Study Sites

The experiments were carried out in the highland valley systems of Alao and Dal-

dal, about 40-50km south-east of Riobamba (Figure 5.1). Five pastures were
chosen to cover the altitudinal gradient and the transition from improved grasslands
to unimproved ones (Figure 5.2).

The Alao Valley, Site A: 3,100m

The valley of Alao has been used intensively for agriculture for many years. Cereals,
potatoes and other crops are grown on the steep slopes of the valley, and animals are
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Figure 5.3.
‘Monthly precipitation for Alao, with means calculated from data for the period

1981-1983 (from the Instituto Nacional de Meteorologia e Hidrologia, Quito, for
station M396 Alao). Temperature records for this period were incomplete.
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reared on small pastures and amongst the crops. Alao is also the gateway to Sangay
National Park and a guardpost has been built on the flat valley plain to monitor visi-
tors. The experimental site was located within the grounds of this guardpost. The area
was flat and sheltered to some extent by trees and buildings. The soil showed good
drainage.

The meteorological station at Alao recorded 100 and 147 days of rain in 1981 and
1983, amounting to precipitation totals of 737.7 and 975.3 mm yr'1 respectively. Over
these years, a maximum of 33.8 mm fell during any 24-hour period. The pattern of
rainfall for the years 1981-83 is presented in Figure 5.3. Around 61% of the annual
precipitation falls between March and August, with a peak in March to May. No
other meteorological data was available.

The vegetation consisted of short-cropped grasses (about Scm tall), which were in-
tensively grazed from time to time by horses and cattle. There were no signs of culti-
vation, though nearby, vegetable crops were growing in tilled soil.

Site
Species A B C D E

Dactylis glomerata
Trifolium repens

Holcus lanatus
Anthoxanthum odoratum
Lolium sp.

Alopecurus sp.

Azorella pedunculata
Carex tnsticha
Lachemulla orbiculata
Ranunculus sp.

Bidens andicola
Gentiana sedifolia
Geranium sibbaldioides
Paspalum sp.
Hydrocotyle bonplandii
Taraxacum officinale
Bromus sp.

Agrostis sp.

Stellaria leptopetala
Gnaphalium aff. pensylvanicum
Geranium multipartitum
Cerastium sp.

Bromus lanatus
Festuca sp.

Trisetum spicatum
Festuca sp.
Calamagrostis sp.
Paspalum tuberosum
Cotula ? mexicana
Halenia weddelliana
Senecio pimpinellifolia
Valeriana microphylla
Hypochaeris sessiliflora

+++++a

+ 4+ +

+4+++a + 4 +
+ 4+
+ A+ F

+++++++++++++a
+ o+ +

44+ 4+ o+
+

++4+4+++qa
++++++a

Table 5.1 (Part 1).
Species list for the exclosures at the five study sites. Site codes: A, 3, 100m; B,

3,250m; C, 3,450m; D, 3,750m; E, 4,000m. “d” represents the dominant species.
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Site
Species A B C

O
m

Rumex acetosella
Hieracium frigidum
Lachemilla andina
Plantago major
Ranunculus peruvianus
Relbunium sp.

Poa sp.

Agrostis sp.

Gramineae

Gramineae
Sisyrinchium jamesoni
Vaccinium sp.
Equisetum bogotense
Vicia sp.

Lycopodium sp.
Ericaceae

Oreomyrrhis andicola
Pernettya prostrata
Sibthorpia repens
Disterigma empetrifolium
Oritrophium peruvianum
Cerastium sp.

Azorella aretoides
Niphogeton dissecta
Viola humbolltii

o+t

SRR T T T T S S A R S AR T o T

Table 5.1 (Part 2).
Species list for the exclosures at the five study sites. Site codes: A, 3, 100m; B,

3,250m; C, 3,450m; D, 3,750m; E, 4,000m.

The stand was characterized by grasses such as Dactylis glomerata, Lolium sp., An-
thoxanthum odoratum, Holcus lanatus and Alopecurus sp. Other herbaceous ele-
ments included Trifolium repens (Table 5.1).

The Daldal Valley

The remaining four sites were located in the valley of the Rio Daldal (Figure 5.1, b).
A small farming community occupied the lower end of the valley, but the huts above
3,400m were used solely for temporary accommodation. The lower part of the valley
above the settlement of Daldal was once forested, perhaps within the last century.
Some small patches of forest still remained but they were highly modified. Clearance
of these patches was taking place and during the course of the study, a significant area
was cleared for firewood. Forest clearance was carried out more for local fuel re-
quirements than for agricultural purposes. As a result of these activities, this part of
the valley showed a mosaic of forest and clearings of varying ages, some of the older
pastures having been colonized by species characteristic of ‘improved’ grasslands. In
this zone, some tributaries of the Rio Daldal showed signs of re-routing by man and
irrigation ditches had been skilfully constructed along the contours to channel water
for agricultural and domestic use. Above 3,650m, the forest was replaced by shrubby
grassland (sub-paramo). The upper limit of the forest was gradually being pushed
lower by burning from above. In some parts of the valley only a narrow belt of forest
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existed between 3,400-3,450m, a consequence of burning from above and felling from
below. The higher portions of the Daldal valley were covered with pdramo grassland,
typical of the highest reaches of the northern Andes. From 3,750-4,000m, the pdramo
was dominated by tussock grasses, but above this level, cushion plants became co-
dominant. The vegetation of the Daldal padramo has been discussed in earlier chap-
ters. No meteorological data exists for this area.

The experiments were carried out on the land of Bolivar Coronel, a local farmer,
who owned a stretch of pastures and forest from 3,250m to 4,200m.

Site B: 3,250m

The chosen area was sited on the valley floor, beside the Rio Daldal at 3,250m. The
vegetation at one time would have been naturally forested, but at the time of study it
consisted of short grasses (no more than 3cm high) and other herbs with a substantial
cover of a mat-forming species. The field was used to graze 10 cattle throughout the
year. There was little evidence for significant grazing by rabbits. At one time, a small
rivulet flowed through the pasture to join the R. Daldal, but had since been re-
routed. The ground sloped 5° from horizontal with a north-westerly aspect, and no
visible signs of previous cultivation. The pasture had been colonized by some species
characteristic of improved grassland. The dominant species, however, was Azorella
pedunculata, which formed a dense mat over the surface of the ground. Small patches
and individual plants of other species grew through this mat, notably Paspalum sp.,
Holcus lanatus, Dactylis glomerata, Trifolium repens and Bidens andicola (Table 5.1).

Site C: 3,450m

Amongst the remnants of secondary ceja andina cloud forest in the Daldal valley
were cleared patches of land up to half a hectare in area (but usually much less than
this). Often, the stumps of the once-dominant trees and shrubs were still very much
in evidence, some resprouting to form small bushes. The exclosure was erected in an
area free from such bushes, at 3,450m on sloping ground (8° from horizontal) with a
westerly aspect. Cattle freely grazed, dividing their time between these forest clear-
ings and the field lower down (site B), this latter site being favoured more often.
Rabbit grazing was more important here than at site B.

Like the exclosure at Site B, these plots were dominated by the presence of a mat
of Azorella pedunculata. Other important floristic elements included Paspalum sp.,
Holcus lanatus, Trifolium repens and Bidens andicola (Table 5.1).

A small area of land not far from the study plot was used to cultivate potatoes,
beans, oca and carrots.

Site D: 3,750m

The fourth exclosure was situated at 3,750m, above the forest patches, in pdramo
grassland. The slope of the ground was 18° from horizontal with a northerly aspect.
The plots were exposed to strong up-slope winds. Tussock grasses of Calamagrostis
sp. dominated the vegetation with other grasses and herbs performing a secondary
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role within the dense tussocks or in the intertussock spaces. Small, woody plants of
Valeriana microphylla and Lupinus sp. were frequently found amongst the tussocks,
and larger shrubs (Brachyotum ledifolium, in particular) were locally common, though
absent in the experimental plots (Table 5.1). This type of vegetation is often de-
scribed as sub-paramo (Cuatrecasas, 1958, 1968). Cattle were allowed to graze freely
in this area, the vegetation being regularly burned (once every 2-4 years) to remove
dead leaves and to stimulate the production of nutritious, young shoots. Rabbit graz-
ing may have been as important as that of livestock, but there was no data available to
support this.

Site E: 4,000m

The highest exclosure was located at 3,900m in grassy pdramo or pdramo proper
(Cuatrecasas, 1958, 1968). The plot sloped 12° from horizontal towards the south-
west, and was more sheltered than the exclosure at 3,750m. Tussock grasses of Cala-
magrostis sp. were dominant and the only noteworthy physiognomic difference
between this and the pdramo 250m lower was the absence of large shrubs and lupins,
though Valeriana microphylla was still common (Table 5.1). This area was visited by
cattle and horses, though less often than the lower vegetation, partly due to old, often
ineffective, man-made earthen walls and ditches (to limit herd movements) and part-
ly because of the unfavourable climate.

Above 4,000m, the vegetation became increasingly dominated by cushions of Plan-
tago rigida, and, as a consequence, unsuitable for grazing livestock. The unfavourable
climate also deterred cattle grazing above this altitude.

Experimental Design

At each of the above sites, 10.5m x 10.5m fenced exclosures were set up (Figure -
5.4). For each exclosure, eight 1.5m tall eucalyptus fence posts were driven into the
ground, and joined by wire mesh and barbedwire strand. Sixteen 2 x 2m plots were lo-
cated within the exclosure, separated by buffer zones of 0.5m between each of the
plots and between the plots and the fence. This design excluded cattle but did not
prevent small mammals such as rabbits and rodents from entering the areas.

The experiment at each of the five sites consisted of an unreplicated 2* factorial
plot design, incorporating two fertilizer treatments and two cutting regimes in all
combinations. The sixteen treatments were assigned to plots at random within each
location.

The treatments were a combination of:
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Figure 5.4.

The design of the exclosures used in the productivity studies. Each exclosure con-
sists of sixteen 2 m x 2 m plots, harvested by quarter, and separated by 0.5 m buff-
er zones. The 1 m high perimeter fences of wire mesh topped with barbed wire
strand were supported by eight eucalypt posts.
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a. Fertilizer treatments (applied at start of experiment)
® No fertilizer

@ 174g per plot of nitrogen (46:0:0) in the form of Urea,
corresponding to 200 kg hal of nitrogen.

@ 87g per plot of phosphorus (0:46:0), corresponding to 100
Kg ha'l, and 133g per plot of potassium (0:0:60), corre-
sponding to 200 Kg ha™,

@® Application of nitrogen, phosphorus and potassium in the
above rates (that is, both treatments ii. and iii.).

b. Cutting treatments
® No cuts.
@ Early cut at start of experiment only.
@ Late cut only after 70 days.

® Cut both at start of experiment and after 70 days.
The experiments were started between the 1320 July 1987. The initial cutting
treatments (ii. and iv.) enabled the weight of the standing crop to be estimated. Har-
vesting was carried out by plot quarter (that is, a different quarter of each plot was
harvested at each time) at approximately 35 day intervals (see Figure 5.5). The plots
were cut using small shears. The vegetation was cut back to ground level (or to just
above the hummocky bases of the tussocks in the paramo sites, and to the level of
the Azorella pedunculata mats in sites B and C). In the paramo sites (D and E), much
of the harvested material was dead. However, this was not separated from the live
material. “Biomass” and “phytomass” are used here to incorporate these dead leaves
still attached to the tussocks, but not to include litter. This is only important in pre-
viously uncut plots, since the dead leaves take time to accumulate to a significant
level.

Assessment of the net primary production of underground plant parts by biomass
methods are fraught with difficulties. To begin with, it is a destructive process and
cannot be used for repeated measurements of the same area. Also, there is great dif-
ficulty in separating recently produced rootstock from older, perhaps even dead, ma-
terial in the soil. For these reasons, and bearing in mind the limitations on resources,
the assessment of belowground productivity was not attempted.

The harvested plant material was then taken to the Sangay National Park guard-
post at Alao for initial drying at 65°C in a homemade oven (to prevent rotting), be-
fore being transported to the Politecnico Nacional in Quito for final drying at 105°C
for 24 hours. Weighing was carried out using an accurate balance to the nearest 1g.
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Figure 5.5.

Diagrammatic representation of the cutting and harvesting regimes. At the start of
the experiments, half of the plots were cut. The dry weight at the start of the experi-
ment is shown by a small circle. Harvesting was carried out twice during the
course of the experiments and once at the end of the study period. The overall
change in weight (AW) was calculated according to the formulae shown.
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Results

Standing Crops

Estimates of the dry weights for the initial aboveground biomass (standing crop)
of the five exclosure sites at the start of the experiments are given in Table 5.2. The
most striking feature of these data is the very high values for standing crop in the
paramo exclosures: at 794 g m ™~ and 837 g m ™", some 15-27 times larger than the
values for the other three sites. The upper four exclosures have roughly the same de-
gree of variability about their means, about half that of the lowest site.

Site Altitude Pasture Type Standing  95% Confidence CV%

Crop (9 m'2) Limits
A 3,100m Improved/ 54 40? 87.9
Agrnicultural valley
B 3,250m Semi-improved/ 42 128 333
Cleared ceja
C 3,450m Semi-improved/ 31 8 335
Cleared ceja
D 3750m Unimproved Lower 837 161° 23.0
paramo grassland
E 4,000m Unimproved Upper 794 21g° 33.1
paramo grassland
Table 5.2.

Standing above-ground biomass estimates collected 13-20" July 1987 from five
exclosure sites at five altitudes in the Andes of Central Ecuador. Based on 8 obser-
vations per site of (a) 4m? and (b) 1m2.

The increments of dry weight from harvest to harvest were calculated and an ana-
lysis of variance (ANOVA) was performed on all of these data. Since there is no repli-
cation of treatments, the usual procedure in such cases was followed: using some of
the higher level interactions as the error term (in this case, “Harvest x Sites x Fer-
tilizer”, “Harvest x Sites x Cuts”, “Harvest x Fertilizer x Cuts”, “Sites x Fertilizer
x Cuts” and “Harvest x Sites x Fertilizer x Cuts”). Despite significant differences
between altitude levels and an interaction between the time of harvest and the site
position, the exceptionally high coefficient of variation (CV), at 344%, did not allow
much confidence to be placed on these results. The data were examined for correla-
tion between variance and sample dry weights: logarithmic transformation of the
data did not reduce the variability of any of the data (determined by eye from resid-
ual versus fitted value plots) and so, throughout these analyses, it has not been used.



178

5. Productivity of Andean Grasslands in Ecuador

"S8)IS ANl 81 JO YIES Je sjuswieal) Buiino 1noy pue 1aziiua) JNoj ayy 10}
popad jeuawnadxe a.1jus ay) Jano sjuawaloul ybiom Aup punoibanoqe ueaiy
'9'g ainbiy

305}
907 ® A3 D 8307 0D A3 3D joN

009-—-
010} Aoy
00C—

§n)
8107 ¥ 4103 ) 8071 3N Aol D IoN

i

S19ZI|I3) Hd puo N

L

sy
%07  Auo3 I MO ) Auo3 n) joN

0
00¢
00¥
009
008
0001
009—-
00v—
00Z-

S|

Ajuo Jszyiniey sd

L3 1e)

2107 % Aoz Ind 907 3n) Apo3 D 10N

1

ik

Y aNs [
g 9)iS m
J 8NS [
a siS mm
1S Kuo sszyusy N

00¢
00)4
009
008
000l

19z||1pa 4 oN

009—
00v—
00Z—-

00¢
00v
009
008
0001
009—
00v—
00¢—

(,.w 6) yuawaiouy ybiap Aug

z-

00¢
00¥
009
008
0001



5. Productivity of Andean Grasslands in Ecuador 179

Owing to the very high variation of the harvest to harvest increment data, an ana-
lysis was performed on the overall dry weight changes over the entire experimental
period. The method of calculation of these increments is shown diagrammatically in
Figure 5.5 and the data is presented in Figure 5.6. Some of the values are negative,
showing an overall decrease in weight from the start to the end of the trial period.
Only those plots which were uncut at the start of the experiment show this and the
paramo sites (D and E) exhibit the greatest tendency to high negative values.

The NPK fertilizer treatment produced higher yields than the other fertilizer treat-
ments. Site A shows the greatest increase, within each fertilizer treatment, and for
the majority of cutting treatments. Sites B and C exhibit the smallest changes in
aboveground biomass.

The ANOVA results for this data are given in Table 5.3. The coefficient of vari-
ation is 101%, still extremely high, but much less than that for the harvest to harvest
data.

Source of Variation df SS SS% MS F p Significance
Sites 4 1847027  42.86 461757 3079  0.000 ***
Fertilizers 3 401373 9.31 133791 892 0000 **
Cuts 3 242323 5.62 80774 53  0.004 **
Sites X Fertilizers 12 398846 9.25 33237 222 0033 *
Sites X Cuts 12 739158  17.15 61596 411 0000 ***
Fertilizers X Cuts 9 141235 3.28 15693 1.05 0424 NS
Error (Sites X Fertilizers X Cuts) 36 539844 1253 14996
Total 79 4309805  100.00 54554
Table 5.3.

Analysis of Variance table for the dry weight increments from the start to the end

of the trial period. The highest level interaction term was used as the error, since

there was no replication. The level of significance is denoted by the conventional

symbols: NS, not significant; *, significant at the 95% level; **, significant at the
99% level; *** significant at the 99.9% level.

Site
A B C D E

Mean Dry Wsght (g m™) 424.06° 4569° 27.38° 73.38° 38.00°

Table 5.4.
Mean increments of dry weight (g m'2) from the start to the end of the experiment

(103-110 days) for each of the sites. Means sharing a letter have not been separ-
ated by the Student-Newman-Keuls test.
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Figure 5.7.
Mean dry weight gains for all five sites. a. Fertilizer treatments,

b. Cutting treatments. Means sharing a letter were not separated by a Student-
Newman-Keuls test.

Site
A B C D E

No Fertilizer 33025° 1275° 6.75° 50.50° 80.25%
N 51500° 62.50° 32.75° 12.50° -25.25°

PK 195509 44.75° 31.25° .550° -80.50°

NPK 65550° 62.75° 3875° 236.00° 170.50°

Table 5.5.
Mean increments of dry weight (g m‘z) from the start to the end of the experiment

(103-110 days) for each of the site x fertilizer interaction terms. Means sharing a
letter have not been separated by the Student-Newman-Keuls test.

The analysis shows a highly significant effect of site position. A Student-Newman-
Keuls (SNK) test, a multiple range test for comparing means (Zar, 1984), identifies
this difference: the increase in weight at Site A being much higher than that for the
other sites (Table 5.4). The fertilizer treatments give a high probability of being dif-
ferent, the NPK treatment being significantly higher than the other fertilizer treat-
ments (Figure 5.7a). Cutting regimes also result in important differences, the no cut
treatment being much lower than the other treatments (Figure 5.7b). Significant in-
teractions are shown between sites and fertilizers (site A plots responding more vi-
gorously to the fertilizer applications, and the PK treatment in the highest exclosure
showing the poorest response: Table 5.5). Another important interaction was that be-
tween sites and cutting treatments. The SNK test revealed seven groups of “sites x



5. Productivity of Andean Grasslands in Ecuador 181

cuts” means (Table 5,6). The uncut plots at site A produced the greatest increase in
biomass (551.75 g m on average) and was distinct enough to form a separate group
from the rest. The other three cutting reglmes at site A constituted the next heaviest
group (343.25-408.75 gm" ) The remaining groups showed some overlap, but rough-
ly speaking, the uncut plots from the p4aramo sites (D and E) formed the bottom
group (with a reduction in weight of 261.25 and 126.5 gm’ ) the montane forest
plots (B and C) formed the next lightest groups (showing increases in weight from
5.25-84.25gm’ ) and the other r_groups consisted of the remaining plots from the
p4ramo sites (141.5-206.75 g m™“). The only exception was the cut 2 plot from the
most elevated site, which, with a reduction in dry weight of 46 g m 2 , was placed in
the group with the plots from sites B and C.

Although at 101% the coefficient of variation of these data is much less than that
for the harvest to harvest increments, it is still too high to allow firm conclusions to
be drawn. There are two further approaches available to reduce the variability of the
data, both requiring subdivision of the data. The first is to analyse the sites separate-
ly, the other to look at the cut plots only.

The complex interactions with site position (Table 5.3) merit analyses of the sites
separately. In fact, the interactions, particularly those shown in Tables 5.5 and 3.6,
warrant the use of the following groups: site A, sites B + C and sites D + E.

The analysis of variance for the data from Alao (site A) is shown in Table 5.7. The
coefficient of variation is 39%. A significant effect of fertilizer is demonstrated by
the analysis of variance (p = 0.015). The result of the SNK test on the fertilizer
means is shown in Figure 5.8a: NPK and possibly N fertilizer treatments are higher
than the others. There appears to be little interaction between N and PK fertilizers,
the increased growth resulting from the addition of NPK is roughly the sum of that
produced by applications of N and PK alone.

No significant differences were found between sites B and C (Table 5.8). Both fer-
tilizer and cutting treatments were found to exhibit pronounced differences. The
coefficient of variation for the analysis was 70%. The SNK test of the fertilizer
means differentiated the lowest, unfertilized plot from the other fertilizer plots (Fig-
ure 5.8b), although the PK treatment was not clearly defined. The NPK plots yielded
less than would be expected if the relationship between N and PK was a straightfor-
ward additive effect.

Site
A B C D E
No Cuts 551752 525  7.75' -261.259 .126.509

Early Cut 392.50° 42.25* 34.00% 141.50° 146,75
Late Cut 343.25° 5100 30.00% 206.50° -46.00'
Early & Late Cut 408.75°  84.25%" 37.75%" 206.75° 177.75%

Table 5.6.
Mean increments of dry weight (g m'2) from the start to the end of the experiment

(103-110 days) for each of the site X cuts interaction terms. Means sharing a letter
have not been separated by the Student-Newman-Keuls test.
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Figure 5.8.
Mean dry weight increments for the four fertilizer treatments.

a. Site A; b. Sites B & C; c. Sites D & E. Means sharing a letter were not separated
by a Student-Newman-Keuls test. The bar to the left of each figure represents the
Least Significant Difference (LSD). Key to fertilizer treatments: C, Control; N, Ni-
trogen only; PK, Phosphorus and Potassium only; NPK, Nitrogen, Phosphorus
and Potassium.
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Source of Variation df SS SS% MS F P Significance
Fertilizers 3 491498 19.69 163833 604 0015 *
Cuts 3 96262 11.57 32087 1.18  0.370 NS
Error (Fertilizer X Cuts) 9 244093 29.34 27121
Total 15 831853  100.00 55457
Table 5.7.

Analysis of Variance table for the dry weight increments for site A (Alao) from the
start to the end of the experiment. The fertilizer X cuts interaction term is used as
the error since there is no replication of treatments.

Source of Variation df SS SS% MS F p Significance
Sites 1 2682.8 7.32 2682.8 4.15 0.072 NS
Fertilizers 3 83571 22.80 2785.7 4.31 0.038 *
Cuts 3 121511 33.15 4050.4 6.26 0.014 *
Sites X Fertilizers 3 675.8 1.84 2253 035 0792 NS
Sites X Cuts 3 2672.3 7.29 830.8 1.38 0.311 NS
Fertilizers X Cuts 9 42873 11.70 4764 074 0672 NS
Error (Sites X Fenrtilizers X Cuts) 9 58235 15.89 647.1
Total 3 36650.0 100.00 1182.3
Table 5.8.

Analysis of Variance table for the dry weight increments for sites B and C (Daldal)
from the start to the end of the trial period. The highest level interaction term was
used as the error, since there was no replication.

Table 5.10 shows no difference between sites D and E, though differences were
demonstrated for the fertilizer and cutting treatments. However, the coefficient of
variation was 221% — too high to allow confident interpretation of these results. Fig-
ure 5.8c illustrates the high variability of these data—both the N and PK treatments
resulted in a decrease in yield, while the NPK treatment showed a strong positive ef-
fect.

The comparison of cutting treatment means indicated that the uncut plots were,
on average, significantly lower than those plots which were cut (Table 5.9).

Another approach to reducing the variability of the data (shown in Table 5.3) is to
exclude those plots which were left uncut at the start of the experiment from the ana-
lysis. Since half of the original data (the uncut and late cut only plots) depend on the
initial estimates of standing crop (which have CV values of values between 23% and
88%), the variability of the data is increased. By removing these data from the ana-
lysis, the overall CV of the increments from the start of the experiment to the end
was reduced from 101% to 44%. The excluded plots had a CV of 208%. The
ANOVA of the early cut plots is given in Table 5.11.
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The two cutting treatments (early cut only, early and late cut) were not differen-
tiated and all interactions were insignificant. Once again, the sites contributed a
great deal to the overall variance of the data and proved to be highly significant. The
SNK test determined three populations from the five means, site A yielding more
than the others, with the dry weight increments from sites B and C being significantly
lower than the rest (Table 5.12). The fertilizer treatments were significantly different,
the plots treated with NPK growing fastest (SNK test: Table 5.13).

In a similar way to the subdivision of the whole dataset previously, it may be
possible to eliminate some of the variability of these cut data by looking at some sites
independently. It is clear from Table 5.12 that site A, sites B & C, andsites D & E
represent meaningful groups to be treated in this way.

The analysis of the Alao (site A) data is presented in Table 5.14, the coefficient of
variation being 36%. Despite the percentage sums of squares showing values similar
to those of previous analyses, the fewer degrees of freedom in this ANOVA do not
allow any significant differences between treatments to be expressed. Figure 5.9a
shows the growth increments of the fertilizer treatments, NPK again yielding the hig-
hest, with PK depressing the growth rate. The two cutting treatments produced very
similar yields of around 400 g m’2 over the trial period.

The coefficient of variation for the cut plots of sites B and C was 28%), and the ana-
lysis of variance of these data is shown in Table 5. 15 The difference between the
mean yield of site B (63 gm’ ) and site C(36 gm’ ) was found to be significant. The
plots which were cut twice yielded significantly more dry weight than those which
were on]y cut once, at the start of the experiment (61 g m Zon average as opposed to
38gm’ ) There were no apparent differences between the fertilizer treatments,
though the percentage sum of squares was high. The effects of N and PK appear to
be independent (Figure 5.9b).

Table 5.16 presents the analysis of variance of the cut plots from the p4ramo sites
(D & E). The coefficient of variation was 34%. Again, there were no significant ef-
fects of the treatments, despite the high sums of squares (particularly for the fer-
tilizer treatments). NPK application increased growth dramatically, despite N and
PK treatments showing little gain independently (Figure 5.9¢).

Cutting Treatments
Uncut Early Late Early & Late
Cut Cut Cuts

Mean Dry Weight (g m? 6.50° 38.13° 40.50° 61.00°

Table 5.9.
Mean increments of dry weight from the start to the end of the experiment (107-

108 days) for the cutting treatments at sites B and C (Daldal). Means sharing a let-
ter have not been separated by the Student-Newman-Keuls test.
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Mean dry weight increments for the four fertilizer treatments in plots which were
subjected to an initial cut. Analysis of variance did not indicate any significant dif-
ference between the means in all three cases.The bar to the left of each figure rep-
resents the Least Significant Difference (LSD). a. Site A; b. Sites B & C; c. Sites D
& E. Key to fertilizer treatments: C, Control; N, Nitrogen only; PK, Phosphorus and
Potassium only; NPK, Nitrogen, Phosphorus and Potassium.
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Source of Variation df Ss SS% MS F p
Sites 1 10011 0.62 10011 0.66 0.436 NS
Fertilizers 3 284317 17.69 94772 628 0014 *
Cuts 3 714842 44.48 238281 15.79 0.001  ***
Sites X Fertilizers 3 15371 0.96 5124 0.34 0.797 NS
Sites X Cuts 3 155654 9.68 51851 3.44 0.066 NS
Fertilizers X Cuts 9 291034 18.11 32337 214 0136 NS
Error (Sites X Fertilizers X Cuts) 9 135841 8.45 15093

Total 31 1606969  100.00 51838

Table 5.10.
Analysis of Variance table for the dry weight increments for sites D and E (Daldal)

from the start to the end of the trial period. The highest level interaction term was
used as the error, since there was no replication.

Source of Variation df SS S8S% MS F P Significance
Sites 4 660892 7278 165223  31.10  0.000 ***
Fertilizers 3 78117 8.60 26039 490 0019 *
Cuts 1 10017 1.10 10017 189 0.195 NS
Sites X Fenrtilizers 12 77102 849 6425 121 0.374 NS
Sites X Cuts 4 4570 0.50 1126 021 0927 NS
Fertilizers X Cuts 3 13709 1.51 4570 0.86 0488 NS
Error (Sites X Fertilizers X Cuts) 12 63757 7.02 5313
Total 39 908099  100.00 23285
Table 5.11.

Analysis of Variance table for the dry weight increments from the start to the end
of the trial period. Only plots with an early cut treatment are included.The highest
level interaction term was used as the error, since there was no replication.

Sites
A B C D E

Mean dry weight increment (g m-2) 400.63° 6325° 3588° 174.12° 162.25°

Table 5.12.
Mean increments of dry weight (g m'2) from the start to the end of the experiment

(103-110 days), excluding initially uncut plots, for each of the sites (A, 3,100m; B,
3,250m; C, 3,450m; D, 3,750m; E, 4,000m). Means sharing a letter have not been
separated by the Student-Newman-Keuls test.
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No fertilizer N PK NPK

Mean dry weight increment (g m-2) 14352 167.0° 120.2® 238.2°

Table 5.13.
Mean increments of dry weight (g m'2) from the start to the end of the experiment

(103-110 days), excluding initially uncut plots, for each of the fertilizer treatments.
Means sharing a letter have not been separated by the Student-Newman-Keuls

test.
Source of Variation df SS SS% MS F p Significance
Fertilizers 3 122718 6576 40906.1 194 0300 NS
Cuts 1 528 0.28 5281 003 0884 NS
Error (Fertilizers X Cuts) 3 63367 33.96 21122.5
Total 7 186614  100.00 26659.1
Table 5.14.

Analysis of Variance table for the dry weight increments for site A (Alao) from the
start to the end of the experiment. Only plots with an early cut treatment are in-
cluded. The fertilizer x cuts interaction term is used as the error since there is no
replication of treatments.

Source of Variation df SS SS% MS F p Significance
Sites 1 29976 23.36 2997.6 1569 0029 *
Fertilizers 3 43802 34.13 14601  7.64 0.064 NS
Cuts 1 2093.1 1631 2093.1 1095 0045 *
Sites X Fertilizers 3 3547 276 1182 062 0649 NS
Sites X Cuts 1 14631 11.40 14631 7.66 0.070 NS
Fertilizers X Cuts 3 9722 758 3241 170 0.337 NS
Error 3 5§73.2 4.47 191.1
Total 15 2833.9 100.00 855.6
Table 5.15.

Analysis of Variance table for the dry weight increments for sites B and C (Daldal)

from the start to the end of the trial period. Only plots with an early cut treatment

are included. The highest level interaction term was used as the error, since there
was no replication.
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Source of Variation df SS SS% MS F p Significance
Sites 1 5641  1.10 564.1  0.17 0708 NS

Fertilizers 3 23611.2  46.01 78704 236 0249 NS

Cuts 1 92641 18.05 92641 278 0.194 NS

Sites X Fentilizers 3 41547  8.10 13849 042 0755 NS

Sites 5 Cuts 1 11731 229 11731 035 0595 NS

Fertilizers X Cuts 3 2557.7  4.98 8526 0.26 0.854 NS

Error 3 9995.7 19.48 3331.9

Total 15 51320.4 100.00 3421.4

Table 5.16.

Analysis of Variance table for the dry weight increments for sites D and E (Daldal)

from the start to the end of the trial period. Only plots with an early cut treatment

are included. The highest level interaction term was used as the error, since there
was no replication.

Length Net Annual Aboveground Production (g m? yr'')
of expt.
(days) Overall Fertilized Unfertilized Initially Initially Unfertilized
Altitude cut uncut Cut
n= 16 12 4 8 8 2
SteA 3100m 103 1,503 1,614 1,170 1,420 1,586 1,359
SteB 3250m 108 154 192 43 214 95 110
SteC 3450m 107 93 117 23 122 64 70
SteD 3750m 110 243 269 168 578 91 430
SiteE  4,000m 108 128 73 295 548 292 512
Table 5.17.

Estimated net annual above-ground productivity for the five exclosure sites. At
each altitude sixteen productivity estimates were made (including all fertilizer and
cutting treatments) and the mean of these values is shown in the “Overall” col-
umn. The mean values for fertilized and unfertilized sites are presented, along with
those plots which were initially cut and those which were not. The most reliable es-
timate of natural productivity is given by the final column: those plots which were
unfertilized and cut at the start of the experiment.

Table 5.17 shows the increments in dry weight over the experimental period extra-
polated to a yearly base. Overall, the lowest site (Alao) was much more productive
than the rest. The productivity estimates of the sites in the Daldal valley were an
order of magnitude lower.

The addition of fertilizer stimulated production in the lower four plots, particular-
ly at Alao and in the montane forest sites. The highest péramo site showed depressed
growth on addition of fertilizer (73 compared to 295 g m’ yr )

An initial cut at the start of the experiment produced higher yields in the montane
forest and paramo plots. This represented roughly a doubling of productivity in three
of these sites, and a five-fold increase in the lowest pdramo plots. The dry matter pro-
duction in Alao was not increased by this early cut.
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Owing to the extreme variability of the data in plots which were not cut at the start
of the experiment, the best estimates of natural productivity rates are given by those
plots which were 1n1t1ally cut and not fertlhzed The lowest plots in Alao produced an
estimated 1,359 ) gm m, yr (13 59 tha yr ) The two montane forest zone plots at
110and 70 g m™“ yr’ produced ten to twenty time less than the Alao qlots The péra-
mo plots yielded substantially more dry weight (430 and 512 g m’ yr

Discussion

Patchiness within the vegetation was responsible for the high variability of the har-
vest data. Such heterogeneity is unavoidable in natural vegetation, and is caused by a
number of factors. One of these is the distribution of the dominant species and oc-
curs, for example, in the paramo sites (with the patchiness inherent in the tussock
grass physiognomy) and in the montane forest sites (with a very high mat cover, re-
stricting growth). The pattern of distribution of other species may contribute to the
dry weight variability. For example, in the Alao site, Dactylis glomerata forms coarse,
spreading culms at maturity, which are heavier but do not possess such a plastic re-
sponse to the environment as younger D. glomerata —the distribution of such mature
patches is reflected in the dry weight values. Another possible cause of patchiness at
Alao is grazing. The usual practice of tethering animals to a stake would produce pat-
ches of different grazing intensity and recovery ages.

Such variability in the vegetation could have been reduced by replication of treat-
ments or by increasing the plot size to a level which was influenced less by pattern.
However, neither of these approaches was possible for logistical reasons.

Half of the data are estimated increments (based on the standing crop values,
Table 5.1) while the other 50% are exact increments, the plots having been cut back
to a known level, namely zero, during the early cut. These latter data are much more
dependable than the uncut plots, reflected in the lower CV values (44% as opposed
to 208%). Throughout, the CV values are very high, but it should be noted that these
data are rates of growth, and rates are susceptible to high variability.

Logistics determined the timespan of the experiment: only slightly more than 100
days. Clearly this is by no means ideal and seasonal trends within vegetation pro-
cesses may well confound the picture presented here. It may explain, for example,
the fact that four of the five control plots decreased in standing crop weights over the
experimental period. In addition, plant nutrient deficiency may act by limiting the
amount of photosynthetically active organs. Such a mechanism would lead to a lag
between fertilizer application and the vegetation’s response (Tamm, 1975); thus, a
complete response to fertilizer application would require a much longer study of per-
haps several years. Both the small plot size and the short duration of the experiment
complicated the analyses by over-emphasizing interaction effects, mostly attributable
to the high variability of the data (evidenced by the high coefficients of variation).
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The harvest approach to plant productivity is a well-established one, but recent
studies of productivity have used COz2 exchange to estimate the rates of energy flow
in and out of producers. Such research has shown that traditional harvest approaches
seriously underestimate dry matter production. This underestimation is a result of
events taking place between shoot harvests and changes of plant material from one
category to another. In particular, the role of decomposers has been neglected —
Clark & Paul (1970) reported a living biomass of decomposers and consumers in ex-
cess of 50% that of the primary producers. Herbivory is also important and while the
activities of large herbivores have been intensively studied, the biomass consumed by
small herbivores (rabbits, rodents, grasshoppers, etc.) has been largely ignored. Cou-
pland (1972 —cited by Coupland, 1975) has shown that invertebrates may ingest and
drop as much as 80% that consumed by cattle.

A major difference between the paramo sites and the lower grassland pastures was
demonstrated by their higher standing crop biomass estimates at 837 and 794 g m’
for the plots at 3,750 m and 3,950 m respectively. There was an order of magnitude
of difference between these sites and those lower down. In fact, the values are ex-
tremely high compared with grasslands throughout the world (Rodin et al., 1975).

However, these estimates are consistent with reports from other paramo and tropi-
cal alpine vegetation. Acosta-Solis (1984) recorded a value 0f 435 g m™2 for the Para-
mo de Chiquicagua in Ecuador. Further north in Colombia, Tol & Cleef (1992)
measured the aboveground standing biomass of mainly dwarf bamboos and
bryophytes in a Colombian bamboo paramo at 2,282.5gm’ (63% dead material),
much higher than that in Daldal. In a study of Venezuelan paramo (physiognomically
very different from the one in this study), Smith & Klinger (1985) recorded values
ranging from 130to 601 g m2. In a wider context, Hnatiuk (1978) reported above-
ground phytomass estimates of 436-628 g m~Zin tropical alpine tussock grassland in
New Guinea.

The explanation for such high standing crops is straightforward: the tussock
grasses which dominate the piramo vegetation retain their dead leaves, which decay
whilst still attached to the tussock. A very large proportion of the aboveground stand-
ing crop biomass is therefore dead material. It would also be expected that decompo-
sition would take place at a slower rate at higher altitudes because of the colder
temperatures. It is suggested that there is adaptive significance attached to the reten-
tion of dead leaves — they may insulate the delicate, developing tillers from climatic
extremes and from lethal temperatures during grass fires (as discussed in earlier
chapters). It is also proposed that this habit may prevent colonization by other
species and reduce the overall nutritional value of the tussock, reducing levels of pre-
dation by herbivores. Schmidt & Verweij (1992) showed that dead matter in Calama-
grostis effusa tussocks is of much lower digestibility and that tussock grasses are
preferred least by cows (making up just 30% of the diet) despite its availability. Tol
& Cleef (1992) suggested that by tying up nutrients in dead material still attached to
the living plant, they are not available to other plants and this gives the tussock a
competitive advantage.

The lower three sites did not share this tendency to retain dead leaves and their
values for aboveground standing crop biomass were much lower as a result. The
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values were very low, perhaps reflecting grazing pressure at the lowest site and, at
the montane forest sites, the additional effect of the dominance of the Azorella mats.

From the initial analysis of the harvested material (Table 5.2), the five sites separ-
ate into three groups. The lowest site (Alao) was very significantly different from the
others, with a much higher production of dry matter. The two montane forest sites
made up the second group, with the two paramo sites comprising the third category.
However, it is the analysis of the initially cut plots that shows this distinction most
clearly (Table 5.13).

Before the start of the experiment, the primary limitation on growth at Alao was
grazing. Removal of herbivory (at least by cattle), allowed a massive increase in phy-
tomass to take place. At the other sites, however, grazing was not so limiting on plant
growth and, as a result, exclosing the plots did not have such a large effect. The esti-
mated annual productivity of the Alao site, at 1359 g m'zyr'l, is very large, com-
parable to boreal mountain forest and semi-arid savanna (Rodin et al., 1975).
However, because the experiment was carried out during the wettest part of the year
for Alao, coupled with the removal of grazing, the burst of growth recorded is per-
haps not sustainable, leading to an over-estimation of annual production.

That productivity is linked to water availability is well-documented (Tieszen & De-
tling, 1983). Weischet (1969), Lauer (1976) and Sarmiento (1986) report that the
zone of maximum precipitation in the Andes occurs at middle altitudes, correspond-
ing to the position of montane forest vegetation. Therefore, it would be expected
that the sites in this zone (B and C) would be the most productive of those studied.
In fact, they are the least productive. The steep slopes of the Andes at these elev-
ations may result in high rainwater run-off, and indeed it is common practice for the
pastures at site C to be periodically waterlogged with water diverted from a nearby
watercourse to promote growth (this suggests water-limitation is a factor in the pro-
ductivity of this site). The lowest Daldal site (B) is more or less flat and the rate of
growth was always higher than site C, 200m above (Table 5.16), though it was only
found to be significantly different from the steeper slope on one occasion (Table -
5.14). Water limitation may, therefore, be a constraint on plant growth in these pas-
tures, which may lead to an interaction between the treatments and site position.

The main restriction on growth in these sites is the mat-forming habit of Azorella.
The mat suppresses the vigour of the species growing within it, allowing only a few
shoots through —and these are quickly crogped by herbivores. The annual productiv-
ity for these sites, at 110 g m2 and 70 g m “ is roughly equivalent to estimates for de-
sert vegetation (Rodin et al., 1975) and semi-desert (Lieth, 1975). However, it must
be pointed out that this study does not take into account the productivity of the Azo-
rella mat itself, which may increase the overall annual production very significantly
indeed. It was impossible to harvest this species without disrupting the very nature of
the vegetation structure, leaving bare earth, and without destroying the other species
in the process.

Azorella pedunculata dominance is strongly associated with heavy grazing press-
ure. Grubb, Lloyd & Pennington (unpublished) reported a similar mat covering at
4,050m on the intensively grazed pastures of Volcdn Antisana, Ecuador —although
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they suggest that some of the mats were probably quite large before the practices of
burning and grazing were introduced. This latter point is debatable, since Azorella pe-
dunculata is only found in large mats where grazing intensity is high; elsewhere it is
found in very small patches and contributes little to the vegetation structure. It

would seem likely that light competition, with Calamagrostis and other grasses, is a
major factor in determining its distribution —where grazing and trampling alters the
competitive balance, Azorella is able to dominate.

However, it is clear that once an extensive Azorella mat has formed, it becomes
very difficult for other species to compete. Grubb et al. (unpublished) describe the
suppression of shoots of other species as the Azorella mat comes to surround them.
One of the reasons for this could be the mobile nature of the Azorella mats, consist-
ing of rafts of rosettes, borne on rhizomes, which are constantly changing position to
accommodate the growth of new rosettes. Any shoots of other species must straddle
this mat (roots below and leaves above) and therefore must be resistant to the lateral
movement of Azorella. Such plants would include species with short-lived, easily re-

placed shoots (for example, grasses) and plants which can physically resist the move-
ment (such as woody plants).

It is difficult to assess the potential for recovery of these mat-dominated pastures,
but without the continual cropping of shoots as they appear through the mat (i.e., in
the absence of grazing), other species may establish and become locally more domi-
nant. This may eventually lead to the elimination of the mat through competition for
resources. It is most likely, however, that in the Daldal montane forest site, these col-
onists would be woody species and the pastures would revert to forest once more.

If, after the clearance of forest, production is to be maintained at a reasonable
rate, grazing pressure must not reach the threshold for the formation of Azorella
mats. This is an area of research which demands more attention.

The upper two sites, in the padramo zone, were also influenced strongly by biotic
factors. Grazing is not so heavy here and conditions are often harsh. The accumula-
tion of dead leaves by the tussock grasses is of major importance, both in terms of
“adaptation” to the environment and with regard to the potential for dry matter pro-
duction. As dead leaves build up within the tussock, the plant loses vigour and
becomes less palatable to herbivores. For this reason, burning has become a well-es-
tablished management technique used by peasant farmers to stimulate available pro-
duction for livestock. The two paramo sites examined in this study were nearing a
condition when burning is applied (though its application is somewhat erratic) and
were perhaps at, or near to, a steady state —a condition of equilibrium where decom-
position of dead material and respiration proceed at the same rate as production,
leading to an absence, in terms of weight, of tussock growth (a common state in vege-
tation, described by Horn, 1974).

This balance may explain why many of the uncut plots in the pidramo did not show
weight gains over the course of the experiment (Figure 5.7). In fact, all of these uncut
plots showed a loss in weight, indicating, perhaps, that some inhibition of growth was
taking place. This phenomenon is also reflected in the annual net productivity esti-
mates for the initially uncut plots in the pdramo (Table 5.16), which are much lower
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than the estimates for the initially cut plots. It would seem, therefore, that the local
agricultural practice of burning the grassland to increase production is well-founded,
though it is likely that fire would inflict greater damage on the tussocks than mere
clipping. The fact that grazing animals tend to concentrate their foraging in recently
burned areas further complicates matters.

Physiological water limitation may be a major factor in inhibiting growth in the
paramo. Low soil temperatures, particularly during the clear early mornings when
photosynthesis and transpiration are occurring at rapid rates, may contribute to over-
all water stress in the higher altitude sites by reducing water uptake. This has been
demonstrated for Dendrosenecio (Smith & Young, 1987a) and Lobelia keniensis
(Young & Van Orden Robe, 1986) for East Africa, and for Espeletia schultzii in the
Venezuelan paramo (Smith, 1972). Water shortage would inhibit leaf elongation
(Wardlaw, 1969) and translocation of photosynthate may be directed to belowground
structures as a result. This growth of the root systems would not be apparent in this
study.

It is worth noting at this point that, in accordance with the data currently available,
tropical alpine grasslands have the highest ratio of aboveground to belowground phy-
tomass of all vegetation (Smith & Klinger, 1985). Root phytomass ranged from 66.7-
3864 ¢ m2in a Venezuelan paramo (Smith & Klinger, 1985) and 1,084-1,598 g m2
in a Colombian pdramo (Rossenaar & Hofstede, 1992). It has been proposed (Smith
& Klinger, 1985) that this high ratio is the result of a stressful environment (vegeta-
tion is of short stature and therefore extensive root systems are not required for sup-
port) with a year-round growing season (less need for storage in roots).

The net annual productivity estimates for these paramo sites (168 gm 2 and
295gm’ 2 for sites D and E respectively) is quite low, similar to that for tundra eco-
systems and about one-quarter that of mountain steppe (Lieth, 1975; Rodin et al.,
1975). They are in accordance with estimates of North American mountain grass-
lands (Sims & Singh, 1978) and values recorded by Hnatiuk (1978) in the tropical al-
pine grasslands of New Guinea (128-442 g m’ ) Annual net above ground
productivity was estimated for Espeletia tzmotenszs at 700 g m’ (Monasteno 1986)
and for Espeletia grandiflora at 1,500 g m’ (Sturm & Abouchaar, 1981) in physiog-
nomically different pdramos in Venezuela and Colombia, respectively. At higher alti-
tudes, desert pdramo productivity was much lower at 140 g m yr'! (Lamotte, Garay
& Monasterio, 1989).

This rate of growth would be required for at least 3-5 years to accumulate the
standing material shown in Table 5.1, which fits in very well with the observed prac-
tice of burning the tussocks every 2-4 years to renew the plants’ vigour. This rate of
growth and renewal is much higher than that estimated by Mann (1966) for Peruvian
puna vegetation: the gross annual primary productivity of dry and humid punas
being, respectively, 0.3 . gm Zand 8 gm 2 dry weight (with standing crop weights of
200 g m2 and 700 g m™)

It is likely that the environment could support a higher rate of carbon assimilation,
but this would be exploited with some risk to the plant. In a global survey of mineral
nitrogen content in high altitude plant tissues, tropical alpine plants had the lowest
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content of those latitudes studied (Korner, 1989). A tentative hypothesis for this situ-
ation was proposed: that tropical alpine plants keep their growth rates under control
(Kérner, 1989).

In temperate regions, there is a period of climatic cooling in the autumn, allowing
a step-wise ‘hardening’ of plant tissues to take place before winter sets in. In the
tropical mountains, however, with “summer every day, winter every night”, the plants
must retain the hardy state throughout the year to prevent night-time damage by
cold temperatures and desiccation. The induction of frost hardiness may lead to a de-
crease in photosynthetic capacity and, in any case, only 60% of the optimal CO2 up-
take is achieved by chilling tolerant plants at temperatures between +5 and + 10°C,
and is completely blocked when ice forms in the assimilatory organs (Larcher &
Bauer, 1981). Kaufmann (1977) discussed feedback inhibition via carbohydrate accu-
mulation and stomatal closure induced by water stress in the leaves caused by low
temperatures (especially in the soil). Prolonged exposure to low temperatures can
further depress the photosynthetic capacity of plants (Larcher & Bauer, 1981). For
example, the altitudinal limit of successful potato cultivation is set by the intensity of
episodic night frosts (Li & Palta, 1978). There are also structural responses to low
temperatures (such as growth form) which may be at the expense of optimum photo-
synthetic performance.

The analysis of variance for the data from the start to the end of the experimental
period for all the sites shows a very significant effect of fertilizers (Table 5.2). The
NPK treatment gave significantly better results than the other treatments (Figure -
5.8, a). There was a site-specific effect of fertilizer application, but this was not a
straightforward relationship (Table 5.4). It may be linked to soil moisture phenome-
na. Drier areas are less likely to be limited by nutrients — certainly the paramo sites
would be subjected to a relatively high degree of water stress and as a result, the addi-
tion of nutrients would not be expected to boost production by any great amount.
Furthermore, (Korner, 1989) noted that the nitrogen content of high alpine vegeta-
tion globally is naturally much higher than in other areas. Whether plants can re-
spond to further additions of nutrients by increased growth is still uncertain.

Another factor which may lead to a fertilizer-site interaction is the slope of the
plots. Generally, Andean slopes are very steep and rainfall quite high. In some of the
plots, this may have led to the lateral translocation of nutrients across the buffer
zones. The waterlogging practices carried out at site C may have contributed to this
phenomenon. It is worth mentioning that the very low value of the PK treatment
(Figure 5.8,a) is the result of some heavy weight losses in the pdramo sites in the
uncut plots (Figure 5.7). Analysis of the initially cut plots only resolves this anomaly,
for although the PK treatment is still the lowest, it is much closer to the other treat-
ments in its group (Table 5.12).

The main analysis gives a high significance to the cutting treatments, the uncut
plots proving to be much less productive than the cut ones (Table 5.2). Since limited
burning is used to increase production in the paramo, it is not surprising that cutting
has a similar effect. In fact, clipping would be expected to damage the plants less
than burning (which not only removes material but may inflict lethal temperatures
on parts untouched by flames). It should also be considered that a certain intensity of
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grazing may actually stimulate production. The early and late cut treatment in-
creased the yield over the value obtained by either the early or late cut treatments on
their own (Figure 5.8b). This was true not only in the pdramo, but also in the mon-
tane forest sites (Table 5.8). It would appear that the frequency of the cutting in this
treatment did not adversely affect production. Further research to determine the op-
timum cutting/burning/grazing regimes in these environments is required.

Longer-term studies are required to provide more accurate estimates of annual
production in the Andes, preferably with replication to reduce the variability of the
harvest data. In particular, emphasis should be placed on the overgrazed clearings of
montane forest.

Luteyn (1992) highlights the increasing demand for agricultural land in the An-
dean highlands and the threat this may pose for the fragile pdramo ecosystem. This
study indicates that better management (to avoid the low productivity associated
with overgrazing), the production of the lower pastures in the highlands could be
raised to a level that eliminates the need to exploit new areas of land (many farmers
exploiting montane forest and/or pdramo have pastures at lower altitudes). This area
of research must be explored in some detail in the future.
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Introduction

Earlier chapters have looked at the zonation of pAramo communities and their de-

velopment with time at both small-scale and large-scale levels. The interactions
between species are clearly of major significance in the evolution of a plant com-
munity, and are of vital importance to the understanding of community dynamics. In-
teractions between immediately adjacent plants may largely determine plant
performance (Weiner, 1982; Silander & Pacala, 1985). In the ecocline of the Andean
altitudinal gradient, each individual species will show a distribution “according to its
own genetic, physiological and life-cycle characteristics and its way of relating to
both physical environment and interactions with other species” (Whittaker, 1973). In
this latter respect, a plant’s distribution on the gradient will have been modified by
niche differentiation and restriction.

Dramatic, sharp discontinuities in vegetation are usually associated with strong en-
vironmental discontinuities or disturbance, most often in the paramo by fire. In
general, individual plant species, and the communities of which they are a part, inter-
grade continuously along the altitudinal gradient, rather than forming distinct zones.

The altitudinal ecocline is far from simple, however. An increase in altitude is asso-
ciated with several factors, including a reduction in air temperature (the lapse rate
for the Andes is around 0.6°C per 100m of altitude), an increase in wind speed and
increased cloud cover (Sarmiento, 1986, 1987). These effects are in turn modified by
factors such as topography, regional climatic patterns, grazing and disturbance by
man. These major processes are then involved in smaller patterns, within the soil for
example. To study the whole host of variables relating to altitude would be impracti-
cal; sot owould be the study of such factors at the community level. A reductionist
stance must be applied, dealing with only a few species and varying an artificial envi-
ronment in clear, measurable ways. By this process, the effects of the measured envi-
ronmental variables on the growth and interactions of the species can be observed.
In spite of the approximate nature of such observations, they can be used to assess
the effects that are likely to be important in the field (Williams, 1962).

One of the most important factors governing plant distributions in the paramos
was found to be water availability (Ramsay, 1988). It has been postulated by several
authors that with increasing altitude physiological drought becomes important (Wal-
ter & Medina, 1969; Pérez, 1987; Smith & Young, 1987b). It would be expected,
therefore, that plants from higher altitudes might respond better to drought condi-
tions than those from lower elevations, since they are regularly exposed to early-
morning droughts in their natural habitat.

To investigate the hypothesis that drought tolerance increases with altitude, three
grass species from the Ecuadorian pdramo were collected for greenhouse experi-
ments. One of these species was obtained from a high altitude of 4,150m, another
from a lower altitude of 3,750m, and the remaining one from an intermediate elev-
ation of 4,000m. Simple diallel tests of competitive interactions between these
species were carried out, growing cach species with each of the others and with itself.
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Materials and Methods

Plant Material

11 of the plants used in this study were collected on the 12'® November 1987 from

the Paramo de Guamani (Papallacta), between Quito and Baeza (Figure 6.1).
This padramo is quite wet, located on the Cordillera Occidental and represents a rela-
tively undisturbed paramo, though burning and grazing do occur in some places, in-
cluding the areas where grass material was collected.

At 4,150m the vegetation was dominated by Plantago rigida, interspersed with low
tussocks of Calamagrostis sp. A [724] (Plate 6.1). Other components of the vegeta-
tion included Culcitium ovatum, Oritrophium peruvianum, Oritrophium hieracioides,
Werneria nubigena, Senecio repens, Senecio chionageton, Lycopodium sp. [373], Pernet-
tya prostrata, Disterigma empetrifolium, Gentianella cernua, Gentiana sedifolia, Hale-
nia weddelliana, Hypericum lancioides, Agrostis nigritella, Poa sp. [723], Carex
lemanniana, Bartsia laticrenata, Castilleja sp. [222], Geranium sibbaldioides, Valeriana
bonplandiana, Satureja nubigena, Oreomyrrhis andicola, Eryngium humile and Apha-
nactis jamesonia. Thamnolia vermicularis, a small white tubular lichen was conspicu-
ous, lying on the ground surface. Tillers of Calamagrostis A were collected.

Lower down, at 4,000m, the area was covered with tussocks of Calamagrostis sp. B
(voucher specimen of cultivated plant deposited at the Royal Botanic Gardens,
Kew), with Poa sp. (voucher specimen of cultivated plant deposited at the Royal Bo-
tanic Gardens, Kew) growing within them and in the intertussock spaces (Plate 6.2).
The vegetation was burned at intervals, probably once every four years or so, though
it was estimated that approximately 2-3 years had elapsed since the last burning of
the vegetation at the collection site. Other prominent species in the plant community
were Puya clava-herculis, Oritrophium hieracioides, Senecio repens, Senecio chionage-
ton, Senecio pimpinellifolia, Bidens andicola, Hypochaeris sonchoides, Gnaphalium
aff. pensylvanicum, Diplostephium glutinosum, Pernettya prostrata, Disterigma empetri-
folium, Gentianella nummalarifolia, Hypericum lancioides, Agrostis sp. 822}, Poa sp.
[944], Carex tnisticha, Bartsia laticrenata, Geranium sibbaldioides, Sisyrinchium jameso-
ni, Lachemilla andina, Lachemilla orbiculata, Ranunculus sp. [339), Azorella peduncu-
lata, Azorella aretoides, Oreomyrrhis andicola, Eryngium humile and Aphanactis
jamesonia. Tussock material of Calamagrostis B was collected.

The lowest collection site (3,750m) was dominated by tussocks mainly of Calama-
grostis C (voucher specimen of cultivated plant deposited at the Royal Botanic Gar-
dens, Kew) but also of Festuca sp. [742] (Plate 6.3). Important elements of the flora
at this elevation included Oritrophium hieracioides, Bidens andicola, Gnaphalium gna-
phaloides, Gnaphalium dysodes, Culcitium adscendens, Gnaphalium aff. pensylvani-
cum, Sonchus ? oleraceus, Vicia andicola, Relbunium hypocarpium, Satureja nubigena,
Stachys eliptica, Rumex acetosella, Hydrocotyle bonplandiana, Agrostis sp. [822], Poa
sp. [356], Uncinia pheleoides, Bartsia laticrenata, Geranium reptans, Geranium multi-
partitum, Sisyrinchium jamesoni, Lachemilla orbiculata, Ranunculus sp. [339], Azorel-
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dunculata, Oreomyrrhis andicola, Eryngium humile and Aphanactis jamesonia. Tus-
sock material of Calamagrostis C was collected.

Sample tillers were collected by excising sections cf tussocks of the species con-
cerned. The plant material was immediately placed in polythene bags, the roots
covered with damp newspaper, and the leaves emerging out of the top of the bags.
The plants were then transported in this state to the greenhouses at the University of
Wales, Bangor: a journey which took nearly two weeks. During this time, many of the
outer tillers of the tussocks died, but the protected inner ones survived.

The plant material was then divided into individual tillers (though some tussocks
were retained to provide stock material for further experiments). The tillers were
then placed in deep boxes of soil and allowed to grow: half in a warm house (18-
23°C) and the other half in a cold house (5-15°C). Unfortunately, tiller mortality was
extremely high. In the warm house, Calamagrostis C showed the best survival, with
18.8% of the tillers still alive after six months. Half as many tillers of Calamagrostis
A survived and Calamagrostis B had a survival rate of 7.8% (with 1009% of the survi-
vors flowering). In the cold house, lower survival rates were observed of 7.8, 4.7 and
1.5% for Calamagrostis spp. A, B and C respectively. None of the cold house plants
flowered. The great majority of tiller deaths occurred during the first week after sep-
aration from the mother plant. The tillers that survived showed some growth, occa-
sionally prolific. Some tillers from each species had formed small tussocks of over
100 tillers after six months.

’_,/ y\/ . W | 4,000 m

Laguna de Boyeros

: 4200

A000™M

To Papallacta

Figure 6.1.
Map of the Paramo de Guamani, Ecuador, showing the collection localities of the

three grass species used in the greenhouse study (& ). Based on the Instituto
Geografico Militar (Quito) map for Oyacachi. The scale is 1:1,000.
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Experimental Design

he experiment was constructed along the lines of the classic diallel design (see

Williams, 1962; Norrington-Davies, 1967). In such an experimental design, plants
of two species are grown together in the same pot such that each species is grown
with each of the others and with itself once in each replication.

On 28" June 1988, individual tillers of similar size and condition were arranged in
pots containing two tillers, one target species and one neighbour species, such that
each replication consisted of six pots:

Neighbour Species
Calamagrostis
A B Cc

Target Calamagrostis A . . .
Species Calamagrostis B . .
Calamagrostis C .

Square pots (15cm x 15cm) were used, filled with John Innes’ “Humax” compost.
Twenty replications were planted, amounting to a total of 120 pots and 240 tillers.
Reserve tillers were also planted at the same time.

The pots were well-watered in warm conditions (18-23°C) to allow for the estab-
lishment of the tillers. An unusually long establishment period of six months was de-
cided upon (following the slow growth rates and high mortality of the species over
previous months). During this time, any dead tillers were replaced with living ones of
the same age from the reserve stock. However, mortality was again very high and the
number of replicates was reduced.

Following this establishment period the pots were randomly assigned bench posi-
tions in the warm house. One set of five replicates was placed on capillary matting,
allowing water uptake as necessary for growth: the other treatment, again of five re-
plicates, consisted of watering with a fine rose from above twice weekly, creating
periods of water shortage. These regimes were maintained for six months.

Harvesting was carried out on 3rd July 1989, some 270 days after planting. The
plant material was washed clean of soil and divided into above and below ground sec-
tions. Each of these portions were oven dried at 105°C for 24 hours and weighed.

Analysis of Results

he differences between the competitive abilities of the three grass species and the

effects of the two moisture regimes were assessed by way of an analysis of vari-
ance and multiple range tests for comparing means (Student-Newman-Keuls tests;
Zar, 1984).
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Three indices of competitive abilities were also calculated. Relational effects (Har-
per, 1977), the competitive advantage of species a over species b, were calculated ac-
cording to the formula:

1 1 1,1
Rab = 2 (Yab - EYaa) + 2 (EYbb - Yba)

where Yaa is the yield of the pure species a, Ybb the yield of the pure species b, Yab
the yield of species a when grown with species b, and Yba the yield of species b when
grown with species a.

Summational effects (Harper, 1977), a measure of how the yield of a mixture com-

pares with that predicted from the pure stands, were calculated following the
formula:

11 1
Sib = 5 (3Yaa + SYbb) - % (Yab + Yba)

using the same notation as above.

An alternative measure of how the mixture yield performs relative to the pure
stands, the Relative Yield Total (RYT —de Wit, 1960), was calculated according to
the formula:

RYT = Yab Yba
+

Yaa Ybb

again using the same notation as previously.

Results

he mortality of tillers during the establishment phase of the experiment is of some

interest (Figure 6.2). It can be seen that over twice as many tillers of Calamagros-
tis B survived as Calamagrostis A, with Calamagrostis C higher still. In examining
how each species survives when grown with each of the other species it is evident
that the survival of tillers of Calamagrostis spp. B and C is largely unaffected by the
species with which they are grown. Calamagrostis A, however, shows much greater
mortality when grown with Calamagrostis B.

A summary of the dry weight yields of the experiment is displayed in Figure 6.3.
The analysis of variance for the harvested aboveground plant material is presented

in Table 6.1. The coefficient of variation (CV) is high for a greenhouse experiment at
69.25%. No important differences were found between the two watering treatments.
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The target species performances were found to be considerably disparate (p <
0.001), while the neighbour species effects were considered insignificant. The interac-
tion terms proved of little consequence.

Source df SS MS F p Significance
Water Availability 1 0.97 0.969 0.06 0.811 NS
Targets 2 1181.85 590.776 35.30 0.000 =
Neighbours 2 46.72 23.360 1.40 0254 NS
Water Availability X Targets 2 76.77 38.386 229 0.108 NS
Water Availability X Neighbours 2 53.84 26.918 1.61 0.207 NS
Targets X Neighbours 4 61.01 15.253 0.91 0.462 NS
Water Availability X Targets X Neighbours 4 83.06 20.766 1.24 0.301 NS
Error 72 1205.12 16.738
Total 89 2709.04 30.439

CV = 69.25%

Table 6.1

Three-way analysis of variance performed on aboveground (shoot) dry weight
yields of three species of Calamagrostis growing at high and low water availability.
The yields of each species are referred to as 'targets’ and the yields of plants
grown with each species as ‘neighbours’.

Number of Surviving Tillers

S0 1

40 A

10

1

“
oo
‘——— =
i ]

Calamagrostis A Calomagrostis B Calamagrostis C

Associote Species

|| Calamagrostis A Calamagrostis B ] Calamagroslis C

Figure 6.2.
Number of surviving tillers after the establishment phase of six months. The total

survivorship for each species is subdivided into the number remaining when
grown with itself and each of the other two species. The values for pure stands
represent mean half-pot yields. The maximum possible survivorship for each
species is thus sixty tillers (twenty with each neighbour species).
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Table 6.2 presents the analysis of variance for the belowground harvested plant ma-
terial. A highly significant difference between the watering regimes was exposed (p
< 0.001), despite a coefficient of variation of almost 90%. Meaningful differences
between target species yields and between neighbour effects were also discovered (p

< 0.001 and p = 0.005, respectively). An effect of watering treatment on target
species yields was shown to be highly significant (p < 0.001).

Source df SS MS F p Significance
Water Availability 1 296.84 296.84 15.23 0.000 QQQ
Targets 2 439.47 219.73 11.28 0.000 QQQ
Neighbours 2 218895 109.48 562 0.005 QQ
Water Availability X Targets 2 401.62 200.81 10.30 0.000 QQQ
Water Availability X Neighbours 2 30.11 1506 0.77 0.466 NS
Targets X Neighbours 4 48.39 12.10 0.62 0.649 NS
Water Availability X Targets X Neighbours 4 50.08 1252 0.64 0634 NS
Error 72 1403.05 19.49
Total 89 2888.51 32.46
CV = 89.67%
Table 6.2

Three-way analysis of variance performed on belowground (root) dry weight
yields of three species of Calamagrostis growing at high and low water availability.
The yields of each species are referred to as ‘targets’ and the yields of plants

grown with each species as ‘neighbours’.

The combined root and shoot analysis is presented in Table 6.3. A significant dif-
ference was found between watering regimes (p = 0.031). Target species yields (p <
0.001) and the effects of neighbour species on the yields (p = 0.031) were con-
sidered noteworthy. Finally, a watering-dependent effect on target species growth
was demonstrated as important (p = 0.001).

Source df SS MS F p Significance
Water Availabi ty 1 2639 26389 485 0.031 Q
Targets 2 29771 1488.54 27.34 0.000 QQQ
Neighbours 2 3963 198.15 364 0.031 Q
Water Availability X Targets 2 8223 411,14 755 0.001 QQQ
Water Availability X Neighbours 2 1342 67.11 123 0298 NS
Targets X Neighbours 4 1642 4104 075 0553 NS
Water Availability X Targets X Neighbours 4 226.6 56.65 1.04 0392 NS
Error 72 39199 54.44
Total 89 8904.4 100.05
CV = 68.12%
Table 6.3

Three-way analysis of variance performed on whole plant dry weight yields of
three species of Calamagrostis growing at high and low water availability. The
yields of each species are referred to as ‘targets’ and the yields of plants grown

with each species as ‘neighbours’.
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A series of figures summarize the results of the Student-Newman-Keuls (SNK)
tests. Figure 6.4 presents the mean yields for shoots, roots and whole plants for the
two watering treatments. Differences in watering regimes were found to be unim-
portant in aboveground yields. Roots were found to yield significantly more in drier
conditions, which was sufficient to influence the importance of the effect of watering
on the whole plants.

Calamagrostis A and B were inseparable in terms of mean aboveground dry weight
yields, though Calamagrostis C was significantly higher than the others (Figure 6.5).
The belowground yields of each species were substantially different from the others:
Calamagrostis C yielding more than Calamagrostis B which in turn produced a

greater dry weight than Calamagrostis A. A similar situation was seen for the whole
plant yields.

Figure 6.6 shows the mean yields of the three species when grown with each neigh-
bour species, that is, how well the other species grew when mixed with a particular
species. Thus, the mean dry weight yield for shoots of Calamagrostis spp. A, B and C
when grown with Calamagrostis A was 6.3g. No significant difference was found be-
tween neighbour species means for the aboveground plant portions. Belowground, a
greater mean yield was obtained for plants grown with Calamagrostis A than for
those grown with the other two species. For whole plant yields, Calamagrostis A

Dry We'ght (g)

b
10 +
5 | P/ E4 — Whole Plant
Va ” /fﬁ Roots
0 - : Shoots
Wet Dry
Figure 6.4.

Mean yields of roots, shoots and entire plant (roots and shoots combined) for the two water

availability treatments in terms of dry weight. Separate comparisons between the two water-

ing regimes were made for each of the roots, shoots and entire plant datasets. Means shar-
ing a letter were not separated by a Student-Newman-Keuls test (n = 45).
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Figure 6.5.
Mean dry weight yields of roots, shoots and entire plant (roots and shoots combined) for

each target species regardless of the water availability regime and neighbour species. Separ-
ate comparisons between the three species were made for each of the roots, shoots and en-
tire plant datasets. Means sharing a letter were not separated by a Student-Newman-Keuls
test (n = 30).
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Figure 6.6.

Mean dry weight yields of plants (regardless of species or watering regime) when grown with

each of the neighbour species. Separate comparisons between the three species were made

for each of the roots, shoots and entire plant datasets. Means sharing a letter were not separ-
ated by a Student-Newman-Keuls test (n = 30).
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allowed plants growing with it to perform better than they did when grown with Cala-
magrostis C. The mean yield for plants mixed with Calamagrostis B was intermediate

between the other two species and could not be separated from either of them by a
SNK test.

No interaction effects were seen to be significant in aboveground yields. Figure 6.7
presents the mean target species yields for the two watering treatments for roots and
the entire plant. For the roots, no difference was found between these target species
x watering regime interaction means, with the exception of the Calamagrostis C
yield in the drier regime, which was significantly higher than the rest. For entire
plant production, once again the Calamagrostis C yield in the dry conditions was sig-
nificantly higher than the others. This species also performed well in the wetter
watering treatment. Calamagrostis A in the drier conditions yielded the lowest dry
weight, with the remainder of the means intermediate.

The competitive balances between the species (relational effects) are shown in
Table 6.4. The most striking feature of these results is that the competitive differen-
ces between the species is much smaller than, sometimes even reversed, in the wet-
ter conditions compared with the drier regime. Calamagrostis A is the weakest
competitor performing significantly worse than the other two species. The relation-
ship between Calamagrostis B and C is interesting. In the dry regime, Calamagrostis
Cyields much more than Calamagrostis B. However, in the wet regime, these species
yield almost the same overall (with Calamagrostis B yielding more aboveground and
Calamagrostis C more belowground).

The yield of a mixture, when taken as a whole, may differ from that predicted from
the yields of the pure stands alone. These elements of interaction, the summational
effects of Harper (1977), are given in Table 6.5. Mixtures containing Calamagrostis C
consistently yield more than predicted from the performance of the pure stands, in
both wet and dry conditions. In the wet, the mixture of Calamagrostis A and B pro-
duced a greater yield than expected, whereas in the drier regime the yield of the
same mixture was depressed.

A different approach to comparing the yields in mixture with those of the pure
stands is presented in Table 6.6. The Relative Yield Total (RYT) equals one when
the yield of the mixture reflects the corresponding yields of the species grown in iso-
lation. A value greater than one indicates that mutual stimulation of yield occurs,
while a value less than one indicates suppression. In general, the performance of mix-
tures in the wetter regime was enhanced compared with the pure stands. In the dry
treatment, mixtures containing Calamagrostis A were depressed. The mixture of Ca-
lamagrostis B and C followed expectation from the pure stands for the whole plant
(with the shoots yielding more and the roots less than predicted).

Figure 6.8 illustrates this situation for whole plants in the dry treatment. The joint
yield diagram for Calamagrostis B with C is almost a straight line linking the pure
stand yields, which indicates that the mixture yield can be predicted from the yields
of both species in isolation. The two other mixtures (A with B and A with C) lie
below this hypothetical straight line: the mixture yields are less than predicted. The
replacement series diagrams (on the right-hand side of Figure 6.8) illustrate the de-
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Figure 6.7.
Mean dry weight yields of species regardiess of neighbour for the two moisture

regimes for (a) roots and (b) whole plant. Yields sharing a letter were not separ-
ated by a Student-Newman-Keuls test (n = 15).



6. Greenhouse Competition Between Paramo Grasses 209

tail of these findings. Compared with the pure stands (intraspecific effects), one
species influences the other more than predicted while itself being affected less.

In the wet regime (Figure 6.9), all mixtures show enhanced performance com-
pared with the pure stands, shown by the convex line in the joint yield diagrams. The
replacement series diagrams also share the same form: both species show a convex
line, indicating that they both perform better than expected from the pure stand

yields.

Dry Wet
Mixture Shoots Roots Whole Shoots Roots Whole
A versus B 093 -4.50 4.44 0.48 -1.52 -1.05
A versus C -2.89 -5.01 -7.90 0.19 0.75 0.94
B versus C 5.12 -2.93 -8.05 0.66 0.61 0.05
Table 6.4.

The competitive relationships between the three Calamagrostis species (Rela-
tional effects of Harper, 1977). If the value is positive then the first species holds a
competitive advantage over the second species; if negative then vice versa.
Values are in terms of dry weight (g) per species.

Dry Wet
Mixture Shoots Roots Whole Shoots Roots Whole

A withB 122 -0.09 2.13 -2.65 -3.40 -6.05
A with C -059 -1.19 -1.78 -2.58 -1.97 -4.55
B with C -2 41 -0.10 -2.51 -1.75 -0.03 -1.78

Table 6.5.
The relationships between the yields of mixtures and pure stands of the three Cala-

magrostis species (Summational effects of Harper, 1977). Values are in terms of
dry we'ght (g) per species. If the yield of the mixture exceeds that predicted from
the yield of the pure stands then the value is negative; if below this predicted value
then the figure will be positive.
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Joint yield diagrams (left) and replacement series diagrams (right) for the three
Calamagrostis mixtures grown in the dry regime. In the replacement series
diagrams, the two solid lines represent the yield of each Calamagrostis species
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Joint yield diagrams (left) and replacement series diagrams (right) for the three

Calamagrostis mixtures grown in the wet regime. In the replacement series
diagrams, the two solid lines represent the yield of each Calamagrostis species
and the dashed line the joint yield.



6. Greenhouse Competition Between Paramo Grasses 212

Dry Wet
Mixture Shoots Roots Whole Shoots Roots Whole
A with B 0.63 1.00 0.72 2.20 2.75 2.46
A with C 0.84 0.96 0.90 1.80 2.36 1.89
B with C 1.15 0.90 1.02 1.47 1.08 1.24
Table 6.6.

The relationships between the yields of mixtures and pure stands of the three Cala-
magrostis species (Relative Yield Totals, RYTs, of de Wit & van den Burgh, 1965).
The values have no units. If the RYT > 1, then a yield advantage is obtained in mix-
ture; if RYT =1, no advantage is obtained; and if RYT < 1 a disadvantage is indi-
cated.

Discussion

The Cultivation of the Calamagrostis Species

efore dealing with the experimental results per se, it would be helpful to look at
some of the problems encountered when trying to grow these species in the green-
house.

It is standard procedure to begin an experiment of this nature with tillers taken
from mother plants. In this case, with large mother plants, it was easy to select suit-
able tillers of the same status. However, these tillers demonstrated remarkably high
mortality after separation and planting. The overall mortality was close to 52% (with
76%, 48% and 32% for Calamagrostis A, B and C respectively). It seems unlikely
that tillers would have been able to exert competitive effects on neighbours at this
stage. The discrepancy between the species is probably a result of the performance
of the plants themselves rather than the effects of neighbour tillers, despite the high
mortality of Calamagrostis A when grown with Calamagrostis B.

The cause of such mortality is unknown. The cultivation of tropical alpine plants is
notoriously difficult. At the Royal Botanic Gardens, Kew, in an attempt to simulate
the tropical alpine environment, artificial 12-hour daylength and marked diurnal tem-
perature regimes (21°C during the day and 5°C at night) have been introduced to the
greenhouses by Tony Hall at the Alpine Department at the Royal Botanic Gardens,
Kew (personal communication). Even under this regime, some plants show very dif-
ferent growth (for example, Plantago rigida adopts a very different habit from the
cushion growth form seen in the pdramo). Such environmental control was not
possible in this experiment and may have resulted in the death of a high proportion
of tillers. However, the survival of new individual tillers of recently burned Calama-
grostis tussocks in the field (Paramo de Daldal) was also low, at 85% and 60% for
two tussocks studied (Chapter 4). Perhaps low tiller longevity is a natural feature of
these plants. Clearly more research is needed to establish the expectations of tiller
mortality in these grass species.
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Whatever the causes, high tiller mortality makes it difficult to design satisfactory
experiments. Further complications to experimental design followed the estab-
lishment phase. A number of tillers were found to remain ‘dormant’ after planting,
that is to say, they stayed alive without producing any new growth. The experimental
protocol of replacing dead tillers did not allow for the substitution of dormant ones;
besides, it would not have been possible to determine the potential of tillers for dor-
mancy during the establishment period.

The presence of tillers more or less unchanged since planting at the start of the ex-
periment contributed greatly to the variability of the data. In all, fifteen tillers were
classed as dormant out of the ninety that comprised the dataset: if these are removed
then the coefficient of variation is reduced from around 68% to below 28% for the
whole plant data. This would probably reduce further if it were possible to compen-
sate for the extra yields obtained by the neighbours of dormant tillers.

The growth of these plants taken as a whole was much slower than that of local
Welsh upland grasses grown in similar conditions (Ramsay, unpublished data). The
stature of Calamagrostis A was always small, even in stock tussocks not involved in
the experiment. It would appear that some internal constraint on growth is present,
in addition to those limitations imposed on the plants by the greenhouse conditions
discussed earlier.

Finally, it is worth noting that a difference between species was observed in root
formation. Plants from the highest elevation (Calamagrostis A) developed much
finer roots than the other species, with the roots of Calamagrostis B appearing finer
than Calamagrostis C. This purely passing observation is supported by the work of
Korner & Renhardt (1987) who found that plants from higher altitudes developed
about 4.5 times more fine root length per unit leaf area than low altitude plants. In
the Calamagrostis species used in this study, there appears to be a genetic basis for
these differences.

Diallel Yields

he results of the diallel experiment do not support the hypothesis of better perfor-

mance in drought conditions by species from high altitude compared with low alti-
tude ones. In fact, the results are the reverse of those expected: the species from the
highest altitude was the only one to yield less in the drier regime than in the wetter
regime. Furthermore, the relative competitive abilities of the plants used in these ex-
periments were more pronounced in the drier conditions.

Overall, Calamagrostis C performed best, followed by Calamagrostis B with the
species from the highest altitude, Calamagrostis A, doing worst of all. This pattern
was reciprocated, in that the species which yielded most depressed the yield of its
neighbours most, and so on. These relative competitive abilities of the species were
sometimes influenced by the watering regime. For example, Calamagrostis C yielded
much more than Calamagrostis B in the drier regime, whereas in the wetter treat-
ment they showed almost equal competitive ability. However, in general it appears
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that Calamagrostis grasses from higher altitudes are less able competitors than those
from lower altitudes, irrespective of the watering regime. This supports the expecta-
tion of Grime (1979) that competition is less important at higher altitudes (where
stress is high) and that species from lower altitudes should be fast-growing, capturing
resources as quickly as possible. The upper distributional limit of several p4ramo
plants and communities have been attributed to stress tolerance factors (particularly
frost), whereas the lower limit has most frequently been ascribed to competitive ef-
fects (inter alia Armesto, Arroyo & Villagran, 1980; Farifias & Monasterio, 1980; Al-
liende & Hoffmann, 1985; Pérez, 1987; Miller & Silander, 1991).

In productivity terms, greater yields were obtained from plants subjected to the
drier treatment, mainly due to better root development (aboveground production
was little influenced by the watering regime), an effect that was particularly pro-
nounced in Calamagrostis C. It seems unlikely that capillary matting would result in
root suppression in these species: more likely is that root growth was stimulated in
the dry regime.

The relationships between the yields of mixtures and those of their component
species in pure stands was also investigated. The RYT has been widely used to inves-
tigate the extent to which species in a mixture compete for common limiting resour-
ces (Snaydon, 1991). The term ‘resource complementarity’ was coined by Snaydon &
Satorre (1989) to describe such an index. The lower the RYT, the greater is the com-
petition for limited resources. The summational effects, with minor differences, fol-
lowed the same pattern as the RY'TS described below.

In the drier treatment, RYTS were approximately equal to one, or less than one.
This implies that the species are making demands on the same limiting resources of
the environment (Harper, 1977), and in some cases this results in a reduced yield
compared with the pure stand yields.

In the wetter conditions, mixtures exceeded the performance of pure stands, with
RYTs greater than 1 and convex lines in the species replacement diagrams. Mixtures
containing Calamagrostis A resulted in very high RYT values: close to 2 or even
higher. This result is very rare in plant mixtures (Snaydon, 1991) and indicates com-
plete or nearly complete resource complementarity (that is, the species avoid compe-
tition, making different demands on the environment). The most plausible
explanation for these very high RYT values with Calamagrostis A in the wet regime is
that, owing to the inherently slow growth of this species, competition for resources
between the species in the mixture did not occur at all, or was delayed until towards
the end of the experimental period.

The lack of phenotypic plasticity in Calamagrostis A clearly had an important bear-
ing on the overall result of the experiment, decreasing the potential yield response of
this species. This may be advantageous in the High Andes by restraining opportunis-
tic growth (and utilization of precious resources) in response to transient climatic
conditions: Grime’s (1979) stress tolerant strategy. In the greenhouse, however, it
makes experiments of this nature difficult to interpret.
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One of the principal drawbacks of replacement experiments, such as that de-
scribed here, is that the results obtained only apply to the particular conditions under
which the experiment was carried out (Jolliffe, Minjas & Ruenckles, 1984; Connolly,
1986). Firstly, the experiments were carried out at fixed densities, a situation which
does not reflect the field situation (Inouye & Schaffer, 1981). Secondly, the climatic
conditions did not echo those prevalent in the Andes. The limiting factors on growth
in such changed conditions may have been different and the competitive balance be-
tween the grass species may have been altered in favour of the lower altitude species.
For example, the warm temperatures throughout the 24-hour period may have
allowed the lower elevation species to capitalize on the potentially higher metabolic
activity at the expense of Calamagrostis A.

A second possibility is that the drought treatment was not severe enough to exert
sufficient influence on the outcome of competition between species. In fact, the
grasses did significantly better in the drier regime, yielding over one-third more than
in the wetter conditions, largely the result of lower root growth in the wet. Calama-
grostis A is an exception in this, though, performing better in the wet —this is the re-
sult of greater tiller dormancy in the drier conditions. In the design of the
experiment the severity of the drier treatment was deliberately restricted because of
the high mortality rate experienced with these grasses. More stringent deprival of
water would perhaps have produced a different effect.

Therefore, before dismissing the original hypothesis outright, it is worth conside-
ring these arguments. Nonetheless, attention should be given to the rejection of the
hypothesis in hand, and to alternatives to explain the distribution of plant species
over the altitudinal gradient in the Ecuadorian pidramos. Temperature certainly
shows a marked trend across the elevation gradient with a lapse rate of 0.6°C per
100m. The number of frost days also increases sharply over the altitudinal range of
the paramo (Sarmiento, 1986). This factor might influence plant distributions
through plant competition, or via flower and seed development and germination re-
quirements. Frost could be particularly important with regard to the latter.

Future research in this direction should combine precise environmental measure-
ments in the field with distributional data for the plant species. Greenhouse studies
should aim to simulate the paramo environment as closely as possible, since the com-
plex relationship between environmental factors is perhaps more important than any
one factor taken alone. Field experiments to determine the outcome of competition
between species, in situ in the Andes, may reveal more useful information than the
artificial greenhouse environment.
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The paramo environment is unique to tropical alpine regions. It presents particular

difficulties for the flora, described in earlier chapters. The harshness of these con-
ditions confers a special fragility on the plant communities of the pdramos. The evol-
utionary history of the Andes (principally the uplift of the Andes, periodic volcanic
activity and the periods of cooler weather during glaciations alternating with warmer
interglacials) has further contributed to this precarious existence.

Geographically, the isolated nature of pdramo regions has resulted in distinct flo-
ras. During the warmer interglacial episodes, pAramo vegetation contracted as the
vegetation zones were pushed higher up the mountains. High rates of speciation and
extinction are thought to have occurred during these periods of isolation, and ac-
counts for the high level of endemism in pdramo taxa. At cooler times, the pdramos
covered a larger area in the Andes, as the vegetation zones were lower down the
mountains. At such times, new taxa, evolved in isolation, were free to migrate
through the extensive paramo belt. The vegetation of the padramo has undergone a
series of about 15-20 contraction-expansion cycles with accompanying speciation and
radiation episodes, each cycle lasting approximately 100,000 years (Van der Hammen
& Cleef, 1987).

In a sea of warm tropical vegetation and subject to the above climatic and catastro-
phic changes, the p4dramos can be thought of as typically insular and short-lived
(Smith & Cleef, 1988). They rely on long-distance dispersal rather than local adapta-
tion from the lowland tropical flora as the primary source of recruitment to the plant
communities. Cleef (1979) and Van der Hammen & Cleef (1986) found that about
half of the paramo flora of the Colombian Cordillera Oriental were of temperate
origin, the remainder of tropical (mostly neotropical) origin. In Ecuador, temperate
taxa dominate the zonal paramos, making up about two-thirds of the flora (Chapter
2). In all studies so far, pdramo endemics account for just under 10% of the total
flora (9% in this work).

As a consequence of the above factors, the vascular plants of the pdramo represent
the richest mountain flora in the world (Smith & Cleef, 1988). Luteyn, Cleef & Ran-
gel (1992) estimate that it consists of 112 families, 479 genera and between 3,000 and
4,000 species. However, these estimates include all types of pdramo vegetation: azo-
nal bogs, woodlands and thickets as well as the zonal vegetation types from shrubby
sub-paramo to high altitude desert super-pédramo.

In Chapter 2, the zonal pdramo vegetation of Ecuador was sampled by means of
192 quadrats, amounting to a total area of 0.48 ha. In these samples, 348 vascular
plant taxa were recorded (9-12% of the total pdramo flora of the Andes). These be-
longed to 117 genera and 46 families (24% and 41% of the total Andean paramo esti-
mates, respectively). In view of the objective to sample only the typical zonal
vegetation and that the study areas represent only a small fraction of the whole para-
mo province from Central America to Pert, these numbers are unexpectedly high.

Basing his work on a limited sample of species, Balslev (1988) estimated that 60%
of the highland flora of Ecuador were found outside Ecuador, and 72% were trans-
Andean (that is, present on both the eastern and western ranges of the Andes). In
the present study, 143 trans-Andean species were found ( or 41% of all species re-
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corded). Approximately 33%, or 114 species, were restricted to samples from the
Eastern Cordillera sites (Pdramo de Guamani, Volcn Tungurahua, El Altar west, El
Altar east, Pdramo de Daldal, Pdramo de Zapote Naida, PAramo de Cumbe and
Paramo de Ona). The remaining 91 species (26%) were recorded only in quadrats
from study sites on the Western Cordillera (Volcan Chiles, Volcan Cotacachi, Volcén
Chimborazo and Pdramo de Cajas).

Table 7.1 shows the number of species found in each study site. Less than one-
third of the 348 species found in all of the sites was present at any one study area.
The three samples from the Pdramo de Ofia contained just 24 species, while 21 sam-
ples from the Piramo de Cajas were comprised of 117 species. These figures repre-
sent 0.6-0.8% and 2.9-3.9% of the total padramo flora, respectively.

Paramo Region No of Total Area No of % of Total
Samples (ha) Species Paramo Species
Volcan Chiles 21 0.05 94 2.4-3.1
Volcan Cotacachi 21 0.05 89 2.2-3.0
Paramo de Guamani 21 0.05 97 2.4-3.2
Volcan Tungurahua 15 0.04 52 1.3-1.7
El Altar (west) 15 0.04 92 2.3-3.1
El Altar (east) 18 0.05 71 1.8-2.4
Paramo de Daldal 18 0.05 91 2.3-3.0
Vo can Ch mborazo 21 0.05 37 0.9-1.2
Paramo de Zapote Naida 9 0.02 47 1.2-1.6
P4ramo de Cajas 21 0.05 117 2.9-39
Paramo de Cumbe 9 0.02 71 1.8-2.4
Paramo de Ona 3 0.01 24 0.6-0.8
Total 192 0.48 348 8.7-11.6
Table 7.1

Distribution of vascular plant species in the twelve study sites in Ecuador. The per-
centage of paramo species is based on an overall estimate of 3000-4000 species
(Luteyn, Cleef & Rangel, 1992).

Almost half of the species were recorded in just one study area and three-quarters
were present in fewer than four sites (Table 7.2). Only four species were present in
ten or more sites: Pernettya sp. [185], Hypochaeris sessiliflora, Calamagrostis sp. [251]
and Eryngium humile.

These differences in species composition between the study areas were reflected
in the plant communities. The principal patterns were Espeletia pdramo in the north,
Neurolepis bambaoo parama in the east and Rainshadow desert pdramo in the west.
Furthermore, the grassy paramos, present all over the country, revealed similar re-
gional patterns.
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Frequency %
Species recorded in only 1 Site 168 48.3
Species recorded in 2 Sites 66 19.0
Species recorded in 3 Sites 26 7.5
Species recorded in 4 Sites 26 75
Species recorded in 5 Sites 24 6.9
Species recorded in 6 Sites 16 4.6
Species recorded in 7 Sites 10 2.9
Species recorded in 8 Sites 3 0.9
Species recorded in 9 Sites 5 1.4
Species recorded in 10 Sites 2 0.6
Species recorded in 11 Sites 1 0.3
Species recorded in all 12 Sites 1 0.3
Total 348 100.0

Table 7.2.

Frequency distribution of vascular plant species in the twelve study sites
in Ecuador.

Despite these regional differences, altitudinal zonation of plant communities was
pronounced. The mid-altitude zones (tussock pdramos and lower cushion p4ramos)
were extensive in many of the study areas. By contrast, other communities were re-
stricted to much smaller areas, for a number of reasons. The high altitude desert
p4ramos and cushion pdramos were confined by the limited extent of the land at
such elevations. The high altitude dwarfshrub pdramo communities were restricted
to a very narrow altitudinal band for reasons that are not yet clear, but which may be
related to humidity (Cleef, 1981). Finally, at the lower end of the paramo range, the
shrubby sub-paramo was largely absent because of burning and agriculture.

There is very little information on the degree of intraspecific variation in pdramo
species. Altitudinal ecotypes may exist in the paramos (Smith, 1980). Buckland &
Ramsay (in press) measured morphological parameters for several species along two
altitudinal gradients. Some of these species showed distinct morphological responses
to altitude. For example, Lycopodium sp. demonstrated a decrease in leaf size and
plant height with increasing altitude. Other species showed little or no correlation
with altitude.

In the greenhouse study described in Chapter 6, Calamagrostis sp. tussocks from
the highest altitude in the Pdramo de Guamani had a fixed response regardless of
the prevailing environmental conditions. Growth was slow compared to Calamagros-
tis spp. from lower altitudes and tussock stature was also small. This implies that, for
some species at least, rate of growth, plant form and other features are under genetic
control. In other species, however, the plant form is partially controlled by the envi-
ronment. For example, cultivated Plantago rigida at Kew has a very different habit to
the dense cushion observed in nature.

Thus, the zonal Ecuadorian pdramos are relatively species-rich (possibly with signi-
ficant intra-specific variation) and exhibit strong regional variations in composition.
Many of the communities are restricted to small areas, while their sensitivity to dis-
turbance is high because of extreme environmental conditions.
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The main threat to this diversity comes from agriculture. Although the high Andes
have been populated for thousands of years (Eckholm, 1975), there are two to three
times as many people living in the highlands now than were there immediately be-
fore the arrival of the first Europeans (Baker, 1978). In Ecuador, approximately 50%
of the population live in the Andean Highlands (Luteyn, 1992) and population
growth is among the highest in South America.

Traditionally, highland peoples of the Andes have achieved sufficiency by their
ability to exploit several distinct life zones simultaneously. Murra (1972) termed this
system “vertical control”. A highland community would farm a number of geographi-
cally separated areas, deriving different products from each and at different times of
the year.

The arrival of the Spanish modified this lifestyle, through the introduction of new
crops and livestock and the widespread resettlement of peoples (Brush, 1976). How-
ever, despite these changes, Murra’s model of vertical control remains the basis for
the subsistence economies of many Andean communities.

The valley of Daldal, surveyed in Chapter 2 and the main site for Chapter 5’s pro-
ductivity studies, is a good example of how such a system operates even at a local
scale. Farmers living in the settlement of Daldal (3,100 m) have a number of fields
nearby in which they grow crops such as maize, quinoa (Chenopodium), peas and a
range of other produce for domestic use and for sale at the local market. These far-
mers may also possess land at higher altitudes. Many farmers have land at 3,400 m,
which is used to cultivate tubers (potatoes, oca) and beans, and another more exten-
sive holding in the padramo zone used for the rearing of livestock (mostly cattle and
horses). In the nearby settlement of Alao, some farmers occasionally visit the mon-
tane forest on the eastern slopes of the Andes to supplement their produce by hunt-
ing and fishing.

Since the land-use of extensive highland haciendas was changed by the 1964 Law
of Agrarian Reform and Colonisation, smaller, more intensive farms have become
common (Cabarle et al., 1989). As the population grows and as communities become
less isolated and part of the wider economy, many farmers are unable to operate ver-
tical control. Instead, they are forced to survive with smaller plots or land of lower
quality (usually at higher altitudes). Thus, in the valley of Daldal, there were farmers
living at 3,400 m with only nearby plots on which to grow food. This requires the in-
tensive use of this land. It is also less resilient than the traditional lifestyle. Cropping
at this altitude is less dependable and requires more land for the same crop. Since
these people are no longer able to meet all of their food demands, they are forced to
sell part of their harvest and trade for other necessities (including fuel, now that
most of the montane forest has gone). As a result of these pressures, conversion of
natural or semi-natural habitats to agriculture has proceeded very rapidly in recent
times, and the sub-paramo has completely disappeared in the Daldal valley.

This trend is mirrored in most other highland settlements and the sub-paramo has
been destroyed in many areas by conversion to arable land. Much of the remainder
of the pdramo has also been affected by its widespread utilisation as grazing pasture.
As reported in Chapters 2 and 4, the poor herbage quality of mature tussocks leads



7. Overall Discussion 221

farmers to burn tussock pdramos every two to four years. The effect of this practice
on the Andean environment has led to speculatlon that the Ecuadorian padramos
(covering an area of approximately 20,000 km? —Bonifaz, 1981; Encalada, 1986)
may not be the true climax vegetation, but a secondary type maintained by burning.
Scattered throughout the paramo zone, there are woodlands of varying sizes, mostly
consisting of the genus Polylepis (Rosaceae) but often in association with Gyroxys
(Compositae). It has been argued that high-altitude forests, similar to these wood-
lands, once covered much of today’s paramos, but have been destroyed over many
years by man-induced fires and replaced by the grasslands present today. Evidence
for this view includes:

@ the regular practice of burning in many paramo grasslands
as a management tool for improving pasture quality (Ellen-
berg, 1958; Laegaard, 1992);

@ the presence of woodlands and small patches of trees grow-
ing in areas unlikely to sustain fires, for example, scree
slopes and beside rivers (Laegaard, 1992);

® the ability of certain tree species to survive in the grassland
zone, some 400-500 m above the present forest limit (El-
lenberg, 1958; Brandbyge & Holm-Nielsen, 1986);

@ observations that paramo fires erode the edges of adjacent
forests (Laegaard, 1992);

@ the lack of a transition zone from trees to grassland at the
present treeline and observations of such transitions at
higher elevations (Laegaard, 1992); and

@ biogeographical information relating to birds endemic to
high-altitude woodlands (Fieldsd, 1992).

Counter to these arguments, other authors believe the paramos to be a largely
natural phenomenon, representing the true climax vegetation of high altitudes in the
northern Andes. Observations used to support such a view include:

@ the apparent restriction of high altitude forests to specific
microclimates in sites such as rocky slopes, river courses,
valley bottoms, etc. (Troll, 1959);

@ the common occurrence of trees characteristic of the high
altitude forests around dwellings which replicate the micro-
habitats described above (Simpson, 1979), supported by
evidence from Brandbyge (1992) that Polylepis incana
growth near walls is twice that in the open;
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@ cxperimental investigations carried out by Smith (1978) in
Venezuela showed convincingly that Polylepis sericea was
restricted to microsites by poor establishment elsewhere.

@ biogeographical evidence relating to the tree species them-
selves (Simpson, 1979) and fauna associated with them
(Simpson, 1979); and

@ palaeohistorical data on Polylepis suggesting wide expan-
sions and contractions with climatic changes without man
(Simpson, 1979).

Clearly, both sides of the debate have drawn upon powerful support for their case.
Without doubt, the current extent of pdramo grassland is considerably greater than
would naturally exist in the absence of man. However, as Balslev & Luteyn (1992)
put it, “the question is not whether man has cut the Andean forest and continues to
maintain and increase pdramo area, but rather whether he alone has been respon-
sible for wiping out the high-elevation forests up to the presently observed timber-
line or if natural forces have controlled this.”

The biogeographical evidence is confused, and has been used to support both
views. Owing to the complex climatic history of this region, with periods of speci-
ation and radiation, it is difficult to assess whether species patterns observed today
reflect current forest limits or are the consequence of previous isolations and expan-
sions. Similarly, palaeological data have not yet provided sufficient information to
determine the former extents of forest cover in this regard.

The ability of some tree species to survive at higher elevations than they are found
in nature is undisputed. However, this does not mean that they could colonise grass-
land if burning were halted. Simpson (1979) suggests Polylepis seeds are dispersed by
birds and germination rates of P, incana are low (Brandbyge, 1992). Brandbyge &
Holm-Nielsen (1986) suggested that natural regeneration of Polylepis might depend
on favourable microclimatic conditions not offered by tussock paramo, and Smith
(1978) found Polylepis sericea unable to establish in Venezuelan pdramo vegetation
or on bare soil. The author has not observed Polylepis seedlings growing in open
grass paramo in Ecuador, only within woodlands or at their edges, on scree or beside
water near existing woods.

From this evidence, even without burning, Polylepis would invade pdramo grass-
land at a very slow rate, gradually encroaching into the pdramo from its current
woodland edges. In view of the relatively recent climatic changes (with the last warm
period ending about 3,000 years BP — Van der Hammen & Cleef, 1986), in order for
Polylepis to cover most of today’s pdramos, it would have been necessary for it to col-
onise new areas at a relatively fast rate. The means by which such a rate of spread
would have been accomplished has not been demonstrated.

Furthermore, the lack of relict traces of former forests in the grassland demands
further explanation. Particularly at the highest altitudes (Laegaard, 1992, suggests a
true timberline between 4,100-4,350 m in Ecuador) decomposition of charred trees
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would be slow, and remnants might be expected in some places at least. There are no
reports of such finds.

Laegaard (1992) noted that transition zones from forest to grassland are largely ab-
sent from the present treeline, and that they have been observed at the upper limit of
the high altitude woodlands. However, Polylepis woodlands usually have sharp upper
boundaries and transitions are not found in the majority of cases. In addition, the
present treeline does occasionally present a transition zone, where human disturb-
ance is absent. Therefore, these observations do not favour a higher or lower
treeline, but merely confirm the effects of burning on the boundary between forest
and grassland, especially in the most accessible areas.

Laegaard (1992) states that “all grass pdramos are more or less regularly burned”.
This seems unlikely. Although great areas of pdramo are frequently burned, many
remote areas are not. The question then becomes, how frequently must fires occur to
prevent woodland establishment? When tussock grasses have not been burned for a
long time, fires can be both intense and far-reaching. Natural fires could occur under
certain circumstances and have been recorded in similar situations elsewhere (Giv-
nish, McDiarmid & Buck, 1986). Such fires could cover very large areas if climatic
and topographic conditions allow. Therefore, if very occasional burning could pre-
vent woodland establishment, natural explanations may be forthcoming.

If only the forest edges are destroyed by a neighbouring grass fire, very many fires
would be required to isolate pockets of woodland in the manner that has been pro-
posed. It is unlikely that the frequency of natural fires could account for such a num-
ber.

Patches of pdramo may be found which are isolated from other grasslands by effi-
cient fire breaks (islands in lakes, land isolated by cliffs and watercourses, efc.) and
are almost certainly not burned by man. If Polylepis woodland was the natural climax
vegetation, then these areas would be forested. In many cases, they are not. Accord-
ing to Siltanen, Thurland & Casanova (1987), Polylepis trees can grow on a wide
range of soil types and depths. It exists on wet and dry soils and even on rocky scree
slopes. Therefore, an inappropriate substrate is not a viable explanation for the
trees’ absence in these sites.

It is generally accepted that human populations only became a significant in-
fluence on the vegetation of the high Andes in the last few thousand years (Eckholm,
1975). The apparent capacity of certain plant species to survive fires demands expla-
nation of how such ability evolved if fires are such a recent phenomenon in the para-
mos. Laegaard (1992) suggests that the ability to survive burning is a fortuitous
side-effect of selection for other traits, such as drought tolerance and resistance to
UV radiation. Although these features may confer a degree of fire resistance, it is
perhaps cold temperature avoidance that offers a more plausible explanation, since
insulation from cold temperatures is equally effective against heat.

One possible explanation for the current distribution of Polylepis woodlands is that
they are relict populations from the warm period some 3,000 years BP that are able
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to regenerate within the self-perpetuating environment of the forest interior, but are
unable to expand much beyond the limits of the current woodlands.

Exactly where the natural timberline lies is difficult to judge on current informa-
tion. However, it seems likely that it will vary considerably from region to region in a
similar way to the vegetation zones described in Chapter 2. Furthermore, local topo-
graphic features will alter its distribution at a finer scale.

To answer the fundamental question of high altitude forests requires a great deal
of further effort. However, even if the pdramos are secondary vegetation types, this
does not alter the fact that they now cover large areas of the Andes. They are econ-
omically valuable and their sustainable management depends upon an understanding
of how the grassland functions.

Paramo fires are important determinants of plant communities. In Chapter 4, the
survival of pdramo plants following burning was related to fire temperatures. Radi-
ated heat and flames were responsible for the loss of aboveground leaves and stems
and the majority of regrowth was from belowground parts. However, high rates of
leaf and shoot mortality were observed in surviving plants in subsequent weeks and
recovery was a slow process, especially at high altitudes.

Despite these slow growth rates, the productivity experiments in the pdramo
(Chapter S) suggested that tussock productivity reaches equilibrium in 3-5 years,
which corresponds well to the observed practice of burning every 2-4 years. Further-
more, cutting the plots (to simulate burning) resulted in a higher yield in the paramo
plots. In agricultural terms, therefore, the practice of burning appears well founded.

In areas subjected to regular fires, plants which are poorly adapted to burning
might be displaced. Other species, able to survive fires or to colonise bare ground
after burning, might increase. It is likely, then, that paramo fires might be respon-
sible for the loss of biodiversity. However, regularly burned paramo grassland is not
subject to the very high temperatures reached by unburned vegetation. Infrequent
fires, therefore, may result in more losses than frequent fires because of their higher
intensity.

In some p4ramos, burning can cause long term damage to the soil. Over-frequent
burning appears to be most prevalent at higher altitudes, where the process of re-
covery takes longer. Thus, burning every 2-4 years does not allow enough time for
complete recovery. Over-burning does occur at lower altitudes too, if the frequency
of fires is high. Where over-burning is practised, erosion can result (Portsch & Hicks,
1980; Ponce, 1984). The humus content of the soil can be lost during the fire, and the
lack of vegetation to bind the remaining soil material can lead to its loss during the
runoff events associated with heavy rainfall. Eventually, a sparse plant community re-
mains, growing on a largely mineral substrate. The productivity of the land is lost, in
complete contrast to the original aim of the burning.

Grazing and trampling also affect the pdramo vegetation. They are strongly associ-
ated with burning, since recently burned areas are preferred for foraging (Verweij &
Kok, 1992). To meet their nutritional requirements in the padramo, cattle must travel
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long-distances and forage for long hours (Schmidt & Verweij, 1992). Diet selection
does occur (short grasses and sedges are preferred rather than tussock grasses —
Schmidt & Verweij, 1992), but the effect of this on the composition of plant com-
munities is still unclear. Widespread trampling effects include the creation of
micro-terracing (an intimate series of cattle paths following the hillside contours)
and the compaction of wet ground by poaching of livestock hooves. Intertussock
plants are damaged by trampling, which may favour tussock species and tough ro-
sette plants capable of surviving trampling.

Occasionally, small patches of highly modified paramo are found, which represent
the sheltering sites for livestock. Usually, they are dominated by short herbs (particu-
larly, Lachemilla orbiculata) often with thistles (Sonchus oleraceus). None of the
paramos in this study were grazed by sheep and none showed the extreme modifica-
tions in response to heavy grazing described by Grubb, Lloyd & Pennington (unpub-
lished) for the paramo of Volcan Antisana. In addition to the usual tussock grassland,
they found large areas of short turf and other areas dominated by tough mats of Azo-
rella pedunculata.

However, at lower altitudes in the Daldal valley, in the ceja andina zone, heavy
grazing and trampling had resulted in the dominance of Azorella pedunculata mats
(Chapter 5). These mats reduced the herbage production to levels comparable to de-
sert conditions. In such circumstances, the addition of fertilizers produced minimal
effect.

Population pressure is not only reflected in increased agricultural impacts. Fuel re-
quirements have resulted in the widespread destruction of montane forests. In some
areas, shrubs from the sub-paramo are now used as the principal source of fuel (per-
sonal observation). In other areas, particularly around Volcdn Chimborazo, shrubs of
Chugquiraga jussieui are collected from altitudes of 4,300 m and above. This corre-
sponds to the use of Llareta cushions (4zorella spp.) for fuel in Pert (Hodge, 1946,
1960). Efforts are underway to resolve the ‘poor man’s energy crisis’ by planting the
highlands with native species (Brandbyge & Holm-Nielsen, 1986; Brandbyge, 1992).
The p4ramo zone between 3,600-3,700 m has been proposed for aforestation with
Pinus radiata (Miller, 1976).

A number of Ecuadorian National Parks and other protected areas include large
areas of pdramo (Sangay, Podocarpus, Cotopaxi, Cajas, Cayambe-Coca, Cotacachi-
Cayapas). One of the fundamental roles of these areas is to foster contact with the
natural environment for urban populations (Ponce, 1984). Of course, this has lead to
conflicts with one of the other roles of these areas —to promote nature conservation.
For example, in Cajas, with more than 25,000 visitors per year, fishermen are respon-
sible for a high proportion of p4ramo fires, spread from campfires. In Sangay Na-
tional Park, hunters of deer and tapir set fires to flush out their prey. Other threats
come from trampling and the collection of shrubs and trees for fuel. As the number
of visitors to pdramos increases, it is important to protect the ecosystems from a
corresponding rise in environmental degradation.

Clearly, the pdramo ecosystem is under threat from many sources, the main one
being an increase in agriculture within the pdramo zone. The paramo is a valuable re-
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source in biological terms (with high biodiversity and significant regional and altitudi-
nal variation), but is also an important resource for major centres of human popula-
tion. Most highland towns and cities depend upon paramo regions for their water
supplies and increasingly for leisure activities and tourism. Furthermore, there is a
long history of medicinal uses for pdramo species. The best-known p4ramo plant is
Chuquiragua (Chuquiraga jussieui) which, among a wide range of uses, has been ad-
vocated for the treatment of malaria (Paredes, 1962). Concern over these issues has
led to public pressure to conserve and manage these regions in a sustainable manner.

Practices of burning may be sustainable within certain limits, though an increase in
the frequency and extent of burning should be considered cautiously. Wherever
possible, the conversion of padramo into arable land and pasture should be avoided. It
appears from the results of the productivity studies that lower altitude pastures may
be substantially under-productive and attention here may negate the requirement for
more land in the pdramo zone.

Although a strong political commitment and improved social standards are import-
ant elements in the long-term conservation of the pdramos and the maintenance of
their biological diversity, the understanding and participation of the rural poor in
the planning, design and management of such strategies are essential. Before this can
occur, one major difficulty needs to be resolved. The precarious existence of high-
land families makes the adoption of new methods and management practices a high
risk enterprise. One cannot expect people to venture their very lives on new manage-
ment models, even if they have been demonstrated scientifically, without adequate
financial and social backing.

A great deal of research is currently being carried out in Colombia and Venezuela
on the issues of pdramo biodiversity, management and community dynamics. While
much of this work will be directly relevant to Ecuador, it is clear from this study that
the Ecuadorian pdramos differ from those further north and more research is
needed in Ecuador itself. Researchers who follow this path will find it both challeng-
ing and rewarding.
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Key to Plates on pages 249-254.

Plate 1.

Plate 2.

Plate 3.

Plate 4.

Plate S.

Plate 6.

Plate 7.

Plate 8.

Plate 9.

Plate 10.

Plate 11.

Plate 12.

Plate 13.

Plate 14.

Plate 15.

The extensive paramo plateau of Cajas, with Laguna Luspa. Note the large,
grass-covered island in the lake. 24 August, 1985.

The Pdramo de Guamani, another extensive paramo region. 8 October, 1987.

The péramo of Volcén Cotacachi, an example of an isolated paramo region
surrounding a volcanic peak. 10 October 1987.

The Collanes valley beneath the crater of El Altar, part of the larger pdramo
system on the Altar massif. Note the burning at the far end of the valley.
The El Altar (west) sampling transect was situated on the slopes to the left.
3 September, 1987.

Cushion bog of Distichia muscoides, 4,200 m, Piramo de Guamani. 9 August,
1987.

Blechnum loxense Shrub Paramo (BS), 3,900 m, Volcdn Tungurahua. 29 Au-
gust, 1987.

Humid Desert Paramo (HD), 4,200 m, Volcan Tungurahua. 28 August, 1987.

Calamagrostis sp. [251) and Chuquiraga jussieui Desert Pdramo with Ceras-
tium sp. [200] (CCCD), 4,600 m, Volcan Chimborazo. 25 October, 1987.

Werneria humilis & Plantago rigida Cushion Pdramo (WPC), 4,200 m, Volcén
Cotacachi. 11 October, 1987.

Transition between Calamagrostis sp. [251) Tussock Grassland with Hypo-
chaenis sonchoides, Halenia sp. [189] and Satureja nubigena (HHCT) and
Werneria humilis and Plantago rigida Cushion Paramo (WPC), 4160 m, Vol-
can Cotacachi. 11 October, 1987.

Calamagrostis sp. [251] Tussock Grassland with Viola humboldtii (VCT),
3,700 m, Paramo de Daldal. 25 September, 1987.

Neurolepis elata Bamboo Péaramo (NB), 3,800 m, eastern slopes of El Altar.
10 August, 1989.

Calamagrostis sp. [251] and Espeletia pycnophylla Tussock Grassland with
Viola sp. [192] (PCE), 3,700 m, Volcan Chiles. 22 October, 1987.

Calamagrostis sp. [251] Tussock Grassland with Paspalum tuberosum and
Chrysactinium acaule (PCCT), 3,100 m, Ofia. 16 September, 1987.

Calamagrostis sp. [251] and Chuquiraga jussieui Desert Paramo (CCD),
4,150 m, Volc4n Chimborazo. 25 October, 1987.
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Plate 16.

Plate 17.

Plate 18.

Plate 19.

Plate 20.

Plate 21.

Plate 22.

Plate 23.

Plate 24.

Plate 25.

Plate 26.
Plate 27.

Plate 28.

Plate 29.

Plate 30.

Plate 31.

Plate 32.

Stem Rosette growth form: Espeletia pycnophylla ssp. angelensis, 3,700 m,
Volcén Chiles. 22 October, 1987.

Basal Rosette growth form: Puya sp., 3,500 m, Cajas. 11 September, 1987.

Tussock growth form: Cortaderia sericantha, 4,100 m, PAramo de Daldal. 19
August, 1987.

Acaulescent Rosette growth form: Senecio repens, 4,050 m, Pdramo de Gua-
mani. 8 August, 1987.

Cushion growth form: Azorella corymbosa, 4,300 m, Piramo de Daldal. 18
August, 1987.

Upright Shrub growth form: Pentacalia andicola, 4,050 m, Volcan Chiles. 21
October, 1987.

Prostrate Shrub growth form: Disterigma empetrifolium, 4,100 m, Volcén
Chiles. 21 October, 1987.

Erect Herb growth form: Bartsia laticrenata, 4200 m, Volcan Cotacachi. 11
October, 1987.

Prostrate Herb growth form: Satureja nubigena, 3,900 m, Pdramo de Guama-
ni. 8 August, 1987.

Trailing Herb growth form: Lobelia tenera, 3,600 m, Piramo de Daldal. 16
July, 1987.

Paramo fire near Laguna Luspa, Cajas. 27 August, 1985.
Péaramo fire near Laguna Luspa, Cajas. 27 August, 1985.

Result of overburning: the loss of soil. PAiramo near Laguna Yantahuayco,
Cajas. 18 August, 198S.

Fire in Espeletia Paramo, 3,700 m, Volcan Chiles. 22 October, 1987.

Thermochrom crayons and pyrometers used in the experimental fire at
Cajas. 13 September, 1985.

Recently burned pdramo at 3,750 m in the Daldal valley. This area was
mapped and the transition experiment transects located in the areas be-
tween the tussocks (Figure 4.4). 4 July 1987.

Burned Calamagrostis tussock with recently germinated seedlings of Rumex
acetosella, approximately 15 weeks after the fire. 3,750 m, Paramo de Dal-
dal. 25 September, 1987.
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Plate 33.

Plate 34.

Plate 35.

Plate 36.

Plate 37.

Plate 38.

Plate 39.

Plate 40.

Plate 41.

Plate 42.

Plate 43.

Plate 44.

Plate 45.

Plate 46.

Intertussock regeneration at 3,750 m, approximately 15 weeks after the fire.
Péramo de Daldal. 25 September, 1987.

Burned pdramo at 3,950 m, 123 days after a fire. The transition experiment
transects at this altitude were located in this area. Pdramo de Daldal. 30
October, 1987.

Transition zone between Plantago rigida cushions and Calamagrostis tus-
socks after a recent fire, 4,000 m, PAramo de Daldal. 30 October, 1987.

Plantago rigida cushion smothering a Calamagrostis tussock. Note the moss
growing on the top of the cushion, where the Plantago has already begun to
break down. Paramo de Daldal. 3 July, 1987.

Werneria humilis cushion growing over Calamagrostis sp. [251] tussock. 4200
m, Volcé4n Cotacachi. 11 October, 1987.

The upper Daldal valley, showing the location of the four productivity study
exclosures (B-E). 22 August, 1987.

Part of the Alao valley. Exclosure A of the productivity study was located on
the valley floor, near the Rio Alao at 3,100 m. 19 August, 1987.

Exclosure B of the productivity study, 3,250 m, Daldal valley. 5 July, 1987.

Exclosure C of the productivity study, 3,450 m, Daldal valley. 22 August,
1987.

Exclosure D of the productivity study, 3,750 m, PAiramo de Daldal. 5 July,
1987.

Exclosure E of the productivity study, 3,950 m, Piramo de Daldal. 20 Au-
gust, 1987.

Tussock and Cushion Paramo, 4,150 m, PAramo de Guamani. The collection
area for Calamagrostis sp. tussock material for the greenhouse competition
experiments. Small tussocks of Calamagrostis A can be seen amongst the
mats of Plantago rigida. Shrubby vegetation of Loricaria ilinissae and Diplos-
tephium rupestre can be seen in the background. 12 November, 1987.

Tussock Péramo, 4,000 m, PAiramo de Guamani. The collection area for Ca-
lamagrostis sp. tussock material for the greenhouse competition experi-
ments. Large tussocks of Calamagrostis B dominate the landscape. Other
prominent plants are Puya clava-herculis and Senecio chionageton. 12 No-
vember, 1987.

Cattle grazing on the upper part of the Cajas sampling transect on Soldados,
Cajas. Note the typical location of the Polylepis woodland at 3,800 m: be-
neath a cliff on a rocky substrate. 12 September, 1987.
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Plate 47. Local farmer collecting Chuquiraga jussieui for fuelwood (the load shown
lasts approximately five days), 4,300 m, Volcdn Chimborazo.

Plate 48. Severe soil erosion, 4,150 m, Volc4n Cotacachi. 11 October, 1987.
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The species referred to in the text have been cross-referenced with voucher ma-

terial deposited in herbaria in the UK and in Ecuador (as described in the text). The
following list allows the species names and codes used in the text to be linked to the
pressed specimens in the herbaria. The voucher collection numbers relate to those of
the Paramos ’87 collection by PM. Ramsay & P.J. Merrow-Smith, 1987, unless other-
wise stated. A small number of species were only found in sterile form and were not
collected. Some of the code numbers were not used.

Code Scientific Name, Family, Voucher Collection Numbers and Growth Form

1

10

11

12

13

14

15

16

17

18

Bomarea caldasii (H.B.K.) Willd. (Alstroemeriaceae). Voucher Collection N2 68, 827. Growth form:
Trailing Herb.

Bomarea glaucescens Baker (Alstroemeriaceae). Voucher Collection N2 231, 348, 648, 778. Growth
form: Erect Herb.

Blechnum loxense (H.B.K.) Hieron. (Blechnaceae). Voucher Collection N¢ 74, 272. Growth form: Stem
Rosette.

Lobelia tenera H.B.K. (Campanulaceae). Voucher Collection N° 22, 838. Growth form: Trailing Herb.
Cerastium danguyi Macbr. (Caryophyllaceae). Voucher Collection N2 801. Growth form: Trailing Herb.

Cerastium floccosum Benth. (Caryophyllaceae). Voucher Collection N¢ 253, 811. Growth form: Pros-
trate Herb.

Cerastium mollissimum Poir. (Caryophyllaceae). Voucher Collection N¢ 395, 732, 1060. Growth form:
Prostrate Herb.

Stellaria leptopetala Benth. (Caryophyllaceae). Voucher Collection N2 294, 366, 532, 733. Growth
form: Trailing Herb.

Baccharis alatemoides H.B.K. (Compositae). Voucher Collection N2 669. Growth form: Upright Shrub.

Baccharis alpina H.B.K. (Compositae). Voucher Collection N2 138, 256, 363, 499, 977. Growth form:
Prostrate Shrub.

Baccharis genistelloides H.B.K. (Compositae). Voucher Collection N2 633, 993. Growth form: Erect
Herb.

Baccharis genistelloides H.B.K. (Compositae). Voucher Collection N2 556. Growth form: Erect Herb.

Baccharis genistelloides H.B.K. (Compositae). Voucher Collection N2 84, 288. Growth form: Erect
Herb.

Baccharis humifusa H.B.K. (Compositae). Voucher Collection N2 215. Growth form: Prostrate Shrub.

Bidens andicola H.B.K. (Compositae). Voucher Collection N2 46, 560, 612. Growth form: Prostrate
Herb.

Chrysactinium acaule (H.B.K.) Wedd. (Compositae). Voucher Collection N2 452, 565, 609. Growth
form: Acaulescent Rosette.

Chugquiraga jussieui Gmel. (Compositae). Voucher Collection N2 442, Growth form: Upright Shrub.

Conyza uliginosa (Benth.) Cuatr. (Compositae). Voucher Collection N 467, 923. Growth form: Up-
right Shrub.
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Culcitium adscendens Benth. (Compositae). Voucher Collection N2 382, 1000. Growth form: Erect
Herb.

Culcitium nivale H.B.K. (Compositae). Voucher Collection N2 252, Growth form: Acaulescent Ro-
sette.

Culcitium ovatum (Sch.) Blake (Compositae). Voucher Collection N2 148, 276, 969. Growth form:
Erect Herb.

Culcitium rufescens H. & B. (Compositae). Voucher Collection N2 754, 934, Growth form: Basal Ro-
sette.

Diplostephium hartwegii Hieron. (Compositae). Voucher Collection N2 490. Growth form: Upright
Shrub.

Diplostephium oblanceolatum Blake (Compositae). Voucher Collection N© 624. Growth form: Up-
right Shrub.

Diplostephium rupestre (H.B.K.) Wedd. (Compositae). Voucher Collection N2 152, 757, 966. Growth
form: Upright Shrub.

Erigeron pinnatus Turcz. (Compositae). Voucher Collection N2 988. Growth form: Acaulescent Ro-
sette.

Espeletia pycnophylla Cuatr. ssp. angelensis Cuatr. (Compositae). Voucher Collection N2 849. Growth
form: Stem Rosette.

Gnaphalium ? luteo-album L. (Compositae). Voucher Collection N2 640, 836, 1064. Growth form:
Erect Herb.

Gnaphalium pensylvanicum Willd. (Compositae). Voucher Collection N2 112, 268, 365, 918, 1043.
Growth form: Erect Herb.

Gnaphalium antennarioides DC. (Compositae). Voucher Collection N2 947, Growth form: Erect
Herb.

Gnaphalium coarctatum Willd. (Compositae). Voucher Collection N2 538, 823. Growth form: Erect
Herb.

Gnaphalium dysodes Spreng. (Compositae). Voucher Collection N2 116. Growth form: Erect Herb.

Gnaphalium gnaphaloides (Kunth.) Beauv. (Compositae). Voucher Collection N2 737. Growth form:
Erect Herb.

Gynoxys baccharoides (H.B.K.) Cass. (Compositae). Voucher Collection N2 312. Growth form: Up-
right Shrub.

Gynoxys buxifolia (H.B.K.) Cass. (Compositae). Voucher Collection N2 674. Growth form: Upright
Shrub.

Gynoxys cuicochensis Cuatr. (Compositae). Voucher Collection N2 647. Growth form: Upright Shrub.

Gynoxys fuliginosa (H.B.K.) Cass. (Compositae). Voucher Collection N2 1124. Growth form: Upright
Shrub.

Gynoxys miniphylla Cuatr. (Compositae). Voucher Collection N2 504. Growth form: Upright Shrub.

Hieracium frigidum Wedd. (Compositae). Voucher Collection N2 80, 305, 352, 643, 673, 685, 799.
Growth form: Erect Herb.
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Hypochaeris sessiliflora H.B.K. (Compositae). Voucher Collection N2 306, 955, 960, 985. Growth
form: Acaulescent Rosette.

Hypochaeris sonchoides H.B.K. (Compositae). Voucher Collection N2 126, 714, 764, 995. Growth
form: Acaulescent Rosette.

Loricaria complanata (Sch.Bip.) Wedd. (Compositae). Voucher Collection N2 489. Growth form: Up-
right Shrub.

Loricaria thuyoides (Lam.) Sch.Bip. (Compositae). Voucher Collection N2 304, 340. Growth form:
Upright Shrub.

Lucilia lehmanii Hieron. (Compositae). Voucher Collection N2 200. Growth form: Acaulescent Ro-
sette.

Lucilia radians (Benth.) Cuatr. (Compositae). Voucher Collection N2 989. Growth form: Cushion.

Oritrophium hieracioides (Wedd.) Cuatr. (Compositae). Voucher Collection N2 334. Growth form:
Acaulescent Rosette.

Oritrophium limnophilum (Sch.Bip.) Cuatr. (Compositae). Voucher Collection N2 233, 333, 994, 1030.
Growth form: Acaulescent Rosette.

Oritrophium peruvianum (Lam.) Cuatr. (Compositae). Voucher Collection N2 163, 260, 347, 765, 846.
Growth form: Acaulescent Rosette.

Oritrophium peruvianum (Lam.) f. intermedium Cuatr. (Compositae). Voucher Collection N2 458,
564, 620. Growth form: Acaulescent Rosette.

Perezia pungens (H.B.K.) Less. (Compositae). Voucher Collection N2 850. Growth form: Erect Herb.

Pentacalia aff. andicola Turcz. (Compositae). Voucher Collection N2 779, 891, 1067. Growth form:
Upright Shrub.

Pentacalia arbutifolius H.B.K. (Compositae). Voucher Collection N¢ 220, 285. Growth form: Upright
Shrub.

Senecio chionageton Wedd. (Compositae). Voucher Collection N2 150, 436, 948. Growth form: Erect
Herb.

Senecio lingulatus (Schlechtd.) Cuatr. (Compositae). Voucher Collection N2 493. Growth form: Erect
Herb.

Senecio pimpinellifolia H.B.K. (Compositae). Voucher Collection N2 65, 286, 394. Growth form: Acau-
lecscent Rosette.

Senecio repens DC. (Compositae). Voucher Collection N2 183, 329. Growth form: Acaulescent Ro-
sette.

Pentacalia stuebellii Hieron. (Compositae). Voucher Collection N2 883, 921. Growth form: Upright
Shrub.

Senecio teretifolius (H.B.K.) DC. (Compositae). Voucher Collection N2 1005. Growth form: Upright
Shrub.

Sonchus ? oleraceus L. (Compositae). Voucher Collection N2 44, Growth form: Erect Herb.

Stevia sp. (Compositae). Voucher Collection N2 634, Growth form: Erect Herb.
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Taraxacum officinale Weber (Compositae). Voucher Collection N2 70. Growth form: Acaulescent Ro-
sette.

Vemonia sp. (Compositae). Voucher Collection N2 902, Growth form: Upright Shrub.

Wemeria ? crassa Blake (Compositae). Voucher Collection N2 999. Growth form: Acaulescent Ro-
sctte.

Wemeria humilis H.B.K. (Compositae). Voucher Collection N2 186, 362, 726, 759, 866. Growth form:
Cushion.

Werneria nubigena H.B.K. (Compositae). Voucher Collection N2 177, 780. Growth form: Acaulescent
Rosette.

Wemeria pumila H.B.K. (Compositae). Voucher Collection N2 869. Growth form: Cushion.

Diplostephium glutinosum Blake (Compositae). Voucher Collection N2 219, 322, 583. Growth form:
Upright Shrub.

Lepidium sp. (Cruciferae). Voucher Collection N 736, 838. Growth form: Erect Herb.

Carex crinalis Boott (Cyperaceae). Voucher Collection N2 359, 476, 525, 607, 644, 1026, 1058. Growth
form: Acaulescent Rosette.

Carex lemanniana Boott (Cyperaceae). Voucher Collection N2 747. Growth form: Tussock.

Carex pichinchensis H.B.K. (Cyperaceae). Voucher Collection N2 125, 419, 491, 876. Growth form:
Tussock.

Carex tristicha Boott (Cyperaceae). Voucher Collection N2 161, 360, 385, 533, 815, 959, 1025. Growth
form: Acaulescent Rosctte.

Oreobolus goeppingeri K. Svessenguth (Cyperaceae). Voucher Collection N2 327, 632, 688, 702, 926.
Growth form: Cushion.

Oreobolus obtusangulus Gaud. (Cyperaceae). Voucher Collection N2 225, Growth form: Cushion.

Rhynchospora macrochaeta Steud. (Cyperaceae). Voucher Collection N2 508, 699, 859. Growth form:
Tussock.

Rhychospora cf. ruiziana Boeck. (Cyperaceae). Voucher Collection N2 550, 617, 906, 1056. Growth
form: Basal Rosette.

Uncinia cf. hamata (Sw.) Urb. (Cyperaceae). Voucher Collection N2 378, Growth form: Acaulescent
Rosette.

Uncinia phleoides Pers. (Cyperaceae). Voucher Collection N2 739. Growth form: Tussock.

Disterigma empetrifolium (H.B.K.) Drude (Ericaceae). Voucher Collection N@ 85, 287, 342, 417, 694,
774, 958. Growth form: Prostrate Shrub.

Gentiana sedifolia H.B.K. (Gentianaceae). Voucher Collection N2 120, 280, 316, 569, 629, 867.
Growth form: Prostrate Herb.

Gentianella ? coralling Gilg. (Gentianaceae). Voucher Collection N2 622. Growth form: Erect Herb.

Gentianella ? foliosa (H.B.K.) Fabris (Gentianaceae). Voucher Collection N2 862. Growth form:
Erect Herb.
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Gentianella cemua (H.B.K.) Fabris (Gentianaceae). Voucher Collection N2 991. Growth form: Erect
Herb.

Gentianella gracilis (H.B.K.) Fabris (Gentianaceae). Voucher Collection N2 554, Growth form: Erect
Herb.

Gentianella hirculus (Griseb.) Fabris (Gentianaceae). Voucher Collection N2 449. Growth form:
Erect Herb.

Gentianella hyssopifolia (H.B.K.) Fabris (Gentianaceae). Voucher Collection N2 464, 637, 671.
Growth form: Erect Herb.

Gentianella nummalarifolia Griseb. (Gentianaceae). Voucher Collection N2 713, 766. Growth form:
Erect Herb.

Halenia weddelliana Gilg. (Gentianaceae). Voucher Collection N2 335, 892. Growth form: Erect
Herb.

Geranium multipantitum Benth. (Geraniaceae). Voucher Collection N2 123, 319. Growth form: Pros-
trate Herb.

Geranium reptans Kunth. (Geraniaceae). Voucher Collection N2 18, 299, 364, 730. Growth form: Pros-
trate Herb.

Geranium sibbaldioides Benth. (Geraniaceae). Voucher Collection N2 122, 318, 625, 687, 775, 925.
Growth form: Prostrate Herb.

Aciachne flagellifera Laegaard (Gramineae). Voucher Collection N2 719, 762, 863. Growth form:
Cushion.

Anthoxanthum odoratum L. (Gramineae). Voucher Collection N2 249, 540. Growth form: Erect Herb.

Bromus lanatus Kunth (Gramineac). Voucher Collection N2 291, 320, 523, 524, 591, 720. Growth
form: Erect Herb.

Contaderia nitida (Kunth) Pilger (Gramineae). Voucher Collection N2 105. Growth form: Tussock.
Holcus lanatus L. (Gramineae). Voucher Collection N® 248. Growth form: Erect Herb.

Paspalum tuberosum Mez. (Gramineae). Voucher Collection N2 103, 325. Growth form: Prostrate
Herb.

Orthrosanthus chimboracensis (H.B.K.) Baker (Iridaceae). Voucher Collection N2 83, 593, 1069.
Growth form: Erect Herb.

Sisyrinchium jamesoni Baker (Iridaceae). Voucher Collection N2 167, 267, 323, 802, 932, 1023.
Growth form: Tussock.

Sisyrinchium tinctorium H.B.K. (Iridaceae). Voucher Collection N2 547, 559, 619, 695. Growth form:
Tussock.

Luzula gigantea Desv. (Juncaceae). Voucher Collection N2 301, 964. Growth form: Tussock.

Luzula racemosa Desv. (Juncaceae). Voucher Collection N¢ 251, 341, 721, 793. Growth form: Acau-
lescent Rosette.

Satureja nubigena (Kunth.) Briq. (Labiatae). Voucher Collection N2 121, 300, 795, 885. Growth form:
Prostrate Herb.
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Stachys elliptica Kunth. (Labiatae). Voucher Collection N2 66, 380. Growth form: Erect Herb.

Lupinus ? purdieanus C.P. (Leguminosae). Voucher Collection N2 273. Growth form: Prostrate
Shrub.

Lupinus ? sarmentosus Dest. (Leguminosae). Voucher Collection N¢ 328, 492, 641, 788, 924, 1041.
Growth form: Prostrate Herb.

Lupinus microphyllus Desr. (Leguminosae). Voucher Collection N2 798, Growth form: Prostrate
Shrub.

Lupinus ramosissimus Benth. (Leguminosae). Voucher Collection N2 106. Growth form: Upright
Shrub.

Lupinus smithianus Kunth, (Leguminosae). Voucher Collection N2 987, Growth form: Prostrate
Herb.

Trifolium repens L. (Leguminosae). Voucher Collection N2 89. Growth form: Prostrate Herb.

Vicia ? andicola H.B.K. (Leguminosae). Voucher Collection N2 144, 738. Growth form: Trailing
Herb.

Vicia ? setifolia H.B.K. (Leguminosae). Voucher Collection N2 841. Growth form: Trailing Herb.

Pinguicula calyptrata H.B.K. (Lentibulariaceae). Voucher Collection N2 628, 684, 913. Growth form:
Acaulescent Rosette.

Tofieldia sessiliflora Hook (Melanthiaceae). Voucher Collection N2 621, 670. Growth form: Erect
Herb.

Brachyotum alpinum Cogn. (Melastomataceae). Voucher Collection N2 434, Growth form: Upright
Shrub.

Brachyotum cf. confertum (Bonpl.) Triana (Melastomataceae). Voucher Collection N2 611. Growth
form: Upright Shrub.

Brachyotum ledifolium (Desr.) Triana (Melastomataceae). Voucher Collection N¢ 825. Growth form:
Upright Shrub.

Plantago major L. (Plantaginaceae). Voucher Collection N2 63. Growth form: Acaulescent Rosette.

Plantago rigida H.B K. (Plantaginaceae). Voucher Collection N2 213, 379, 526. Growth form:
Cushion.

Monnina crassifolia H.B K. (Polygalaceae). Voucher Collection N 905. Growth form: Upright Shrub.
Rumex acetosella L. (Polygonaceae). Voucher Collection N2 216, 935. Growth form: Prostrate Herb.

Anemone jamesonii Hook. (Ranunculaceae). Voucher Collection N2 487, Growth form: Prostrate
Herb.

Ranunculus peruvianus Pers. (Ranunculaceae). Voucher Collection N2 338, 450, 848, 1018. Growth
form: Prostrate Herb.

Lachemilla ? rupestris (H.B.K.) Rothm. (Rosaceae). Voucher Collection N2 337, 686, 929, 1045.
Growth form: Prostrate Herb.

Lachemilla andina (Perry) Rothm. (Rosaceae). Voucher Collection N2 227, Growth form: Prostrate
Herb.
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Lachemilla galioides Benth. (Rosaceae). Voucher Collection N2 1046. Growth form: Acaulescent
Rosette.

Lachemilla hispidula (Perry) Rothm. (Rosaceae). Voucher Collection N2 257, 361, 717. Growth
form: Acaulescent Rosette.

Lachemilla holosericea (Perry) Rothm. (Rosaceae). Voucher Collection N2 718. Growth form: Acau-
lescent Rosette.

Lachemilla nivalis H.B.K. (Rosaceae). Voucher Collection N2 506, 768, 877, 878. Growth form:
Acaulescent Rosette.

Lachemilla orbiculata R. & P. (Rosaceae). Voucher Collection N2 303, 368. Growth form: Prostrate
Herb.

Lachemilla pinnata R. & P. (Rosaceae). Voucher Collection N2 884. Growth form: Prostrate Herb.

Nertera granadensis (Lf.) Druce (Rubiaceac). Voucher Collection N2 262, 522, 963. Growth form:
Prostrate Herb.

Relbunium hypocarpium (L.) Hemsl. (Rubiaceae). Voucher Collection N2 289, 293, 638, 741, 1063.
Growth form: Trailing Herb.

Bartsia laticrenata Benth. (Scrophulariaceae). Voucher Collection N2 330, 771, 855. Growth form:
Erect Herb.

Calceolaria ferruginea Cav. (Scrophulariaceae). Voucher Collection N2 307. Growth form: Upright
Shrub.

Ourisia chamaedryfolia Benth. (Scrophulariaceae). Voucher Collection N2 881. Growth form: Acau-
lescent Rosette.

Pedicularis incurva Benth. (Scrophulariaceae). Voucher Collection N2 513, 631. Growth form: Acau-
lescent Rosette.

Veronica serpyllifolia L. (Scrophulariaceae). Voucher Collection N2 534. Growth form: Erect Herb.

Azorella aretoides H.B.K. (Umbelliferae). Voucher Collection N2 210, 353, 783, 944. Growth form:
Acaulescent Rosctte.

Azorella corymbosa (R. & P) Pers. (Umbelliferae). Voucher Collection N2 376. Growth form:
Cushion.

Azorella crenata (R. & P) Pers. (Umbelliferae). Voucher Collection N2 887, 1053. Growth form:
Acaulescent Rosctte.

Azorella pedunculata (Spreng.) M. & C. (Umbelliferae). Voucher Collection N2 134, 271. Growth
form: Cushion.

Eryngium humile Cav. (Umbelliferae). Voucher Collection N2 228, 266, 566, 613, 837, 937, 980.
Growth form: Acaulescent Rosette.

Hydocotyle bonplandii A. Rich (Umbelliferae). Voucher Collection N2 250. Growth form: Prostrate
Herb.

Niphogeton dissecta (Benth.) F. Macbr. (Umbelliferae). Voucher Collection N¢ 119, 709, 787, 879,
890. Growth form: Acaulescent Rosette.
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Oreomyrrhis andicola (Kunth.) Hook f. (Umbelliferae). Voucher Collection N2 141, 297, 357, 729,
819. Growth form: Acaulescent Rosette.

Valeriana aretioides H.B.K. (Valerianaceae). Voucher Collection N¢ 756, 763. Growth form: Cushion.
Valeriana rigida R. & P. (Valerianaceae). Voucher Collection N2 808, 1040. Growth form: Cushion.

Valeriana adscendens Turcz. (Valerianaceae). Voucher Collection N2 711. Growth form: Acaulescent
Rosette.

Valeriana bonplandiana Wedd. (Valerianaceae). Voucher Collection N2 218, 275, 389, 561, 616, 691,
745, 880. Growth form: Upright Shrub.

Valeriana bracteata Benth. (Valerianaceae). Voucher Collection N2 332, 494, Growth form: Acaules-
cent Rosette.

Valeriana alypifolia ssp. alypifolia (Valerianaceae). Voucher Collection N 971. Growth form: Pros-
trate Shrub.

Valeriana microphylla H.B.K. (Valerianaceae). Voucher Collection N2 355, 446, 809, 998, 1029.
Growth form: Upright Shrub.

Valeriana plantaginea H.B.K. (Valerianaceae). Voucher Collection N2 952. Growth form: Basal Ro-
sette.

Viola humboldtii Tr. & Fl. (Violaceae). Voucher Collection N2 29. Growth form: Prostrate Herb.

Viola nivalis Benth. (Violaceae). Voucher Collection N¢ 414, 1037. Growth form: Acaulescent Ro-
sette.

Astragalus geminiflorus H.B.K. (Leguminosae). Voucher Collection N2 982. Growth form: Cushion.
Geranium sp. (Geraniaceae). Voucher Collection N2 472. Growth form: Prostrate Herb.

Geranium sp. (Geraniaceae). Voucher Collection N2 1004. Growth form: Prostrate Herb.
Geranium sp. (Geraniaceae). Voucher Collection N2 716, 888. Growth form: Prostrate Herb,

Hypericum sp. (Guttifcrae). Voucher Collection N2 314, 495, 562, 661, 676, 941, 1021. Growth form:
Erect Herb.

Unidentified species (Mclastomataceae). Voucher Collection N2 462, 664. Growth form: Prostrate
Herb.

Unidentified species (Melastomataceac). Voucher Collection N 639. Growth form: Prostrate Herb.
Oxalis sp. (Oxalidaceae). Voucher Collection N2 521. Growth form: Prostrate Herb.

Bartsia sp. (Scrophulariaceae). Voucher Collection N2 498, 615, 690, 936, 1022, 1051. Growth form:
Erect Herb.

Bartsia sp. (Scrophulariaceae). Voucher Collection N2 816. Growth form: Erect Herb.
Bartsia sp. (Scrophulariaceae). Voucher Collection N2 263. Growth form: Erect Herb.

Castilleja sp. (Scrophulariaceae). Voucher Collection N2 222, 331, 772, 981. Growth form: Erect
Herb.

Castilleja sp. (Scrophulariaceae). Voucher Collection N2 946, Growth form: Erect Herb.
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Castilleja sp. (Scrophulariaceae). Voucher Collection N2 265, 672. Growth form: Erect Herb.

Castilleja sp. (Scrophulariaceae). Voucher Collection N2 354, 460, 553, 817, 1019. Growth form:
Erect Herb.

Veronica sp. (Scrophulariaceae). Voucher Collection N2 535. Growth form: Erect Herb.

Aphanactis jamesonia Wedd. (Compositae). Voucher Collection N2 189, 317, 938. Growth form:
Acaulescent Rosette.

Cotula ? mexicana (DC.) Cabr. (Compositae). Voucher Collection N2 17, 370, 939. Growth form:
Acaulescent Rosette.

Unidentified species (Alliaceae). Voucher Collection N2 810. Growth form: Erect Herb.
Nototriche jamesonii A.W. Hill (Malvaceae). Voucher Collection N2 997. Growth form: Cushion.
As for Code N2 157.

Unidentified species (Family not known). Voucher Collection N2 984. Growth form: Cushion.

Puya clava-herculis Mez & Sodiro (Bromeliaceae). Voucher Collection N2 516. Growth form: Basal
Rosette.

Puya cf. pygmaea L.B. Smith (Bromeliaceae). Voucher Collection N2 655. Growth form: Basal Ro-
sctte.

Puya sp. (Bromeliaceae). Voucher Collection N2 662. Growth form: Basal Rosette.
Unidentified specics (Cruciferae). Voucher Collection N2 735, Growth form: Erect Herb.
Not used.

Cardamine sp. (Cruciferac). Voucher Collection N2 367. Growth form: Erect Herb.
Pemettya sp. (Ericaceac). Voucher Collection N 814, 953. Growth form: Prostrate Shrub.
Gentianella sp. (Gentianaceae). Voucher Collection N2 1017. Growth form: Erect Herb.
Halenia sp. (Gentianaceac). Voucher Collection N2 570. Growth form: Erect Herb.
Halenia sp. (Gentianaceae). Voucher Collection N2 642, 689. Growth form: Erect Herb.
Halenia sp. (Gentianaceae). Voucher Collection N2 712, 760. Growth form: Erect Herb.
Not used.

Unidentified species (Umbelliferae). Voucher Collection N2 731. Growth form: Erect Herb.
Viola sp. (Violaceae). Voucher Collection N2 927. Growth form: Acaulescent Rosette.
Ribes sp. (Grossulariaceae). Voucher Collection N® 854. Growth form: Upright Shrub.
Valeriana sp. (Valerianaceae). Voucher Collection N2 990. Growth form: Cushion.
Azorella sp. (Umbelliferae). Voucher Collection N° 868. Growth form: Cushion.

Sibthorpia repens (Mutis) Kuntze (Scrophulariaceae). Voucher Collection N2 511, 961. Growth form:
Prostrate Herb.
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Cerastium sp. (Caryophyllaceae). Voucher Collection N2 454, 536. Growth form: Trailing Herb.
Cerastium sp. (Caryophyllaceae). Voucher Collection N2 728. Growth form: Prostrate Herb.
Cerastium sp. (Caryophyllaceae). Voucher Collection N 743, 871. Growth form: Prostrate Herb.
Cerastium sp. (Caryophyllaceae). Voucher Collection N2 979. Growth form: Prostrate Herb.
Vicia sp. (Leguminosae). Voucher Collection N2 381. Growth form: Trailing Herb.

Lupinus sp. (Leguminosae). Voucher Collection N2 146. Growth form: Prostrate Herb.

Lupinus sp. (Leguminosae). Voucher Collection N2 824. Growth form: Upright Shrub.
Unidentified species (Compositae). Voucher Collection N2 746. Growth form: Prostrate Herb.
Unidentified species (Umbelliferae). Voucher Collection N° 527. Growth form: Prostrate Herb.
Cotula sp. (Compositae). Voucher Collection N2 1001. Growth form: Acaulescent Rosette.
Sisyrinchium sp. aff. alatum Hook. (Iridaceae). Voucher Collection N2 481. Growth form: Tussock.
Monnina sp. (Polygalaceae). Voucher Collection N2 830. Growth form: Upright Shrub.
Lachemilla sp. (Rosaceae). Voucher Collection N2 336. Growth form: Prostrate Herb.
Lachemilla sp. (Rosaceae). Voucher Collection N2 653. Growth form: Prostrate Herb.

Viola sp. (Violaceae). Voucher Collection N2 557. Growth form: Prostrate Herb.

Neurolepis elata (Kunth) Pilger (Gramineae). Voucher N2 436 from Ramsay, Evans & Buckland
1989 Collection. Growth form: Tussock.

Ranunculus guzmanii H.B.K. (Ranunculaceae). Voucher Collection N2 856. Growth form: Prostrate
Herb.

Carex sp. (Cyperaceae). Voucher Collection N2 542. Growth form: Acaulescent Rosette.
Distichia muscoides Nees & Meyen (Juncaceae). Voucher Collection N2 179. Growth form: Cushion.

Equisetum bogotense H.B. K. (Equisetaceae). Voucher Collection N2 813, 1052. Growth form: Erect
Herb.

Ophioglossum crotalophoroides Walt. (Ophioglossaceae). Voucher Collection N¢ 133, 255, 943, 1156.
Growth form: Acaulescent Rosette.

Plantago linearis H.B.K. (Plantaginaceae). Voucher Collection N2 58, 558, 812, 1028, 1059. Growth
form: Acaulescent Rosette.

Baccharis caespitosa (R. & P) Pers. (Compositae). Voucher Collection N2 1224. Growth form: Pros-
trate Shrub.

Poa cucullata Hack. (Gramineae). Voucher Collection N° 1225, Growth form: Erect Herb.
Not used.

Huperzia hypogoea B. Ollg. (Lycopodiaceae). Voucher Collection N¢ 1231. Growth form: Erect
Herb.
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Unidentified species (Family not known). Voucher Collection N2 520. Growth form: Acaulescent
Rosette.

Unidentified species (Family not known). Voucher Collection N2 623. Growth form: Upright Shrub.
Eudema nubigena H.B.K. (Cruciferae). Voucher Collection N2 727, 1185. Growth form: Cushion.
Unidentified species (Family not known). Voucher Collection N2 734. Growth form: Erect Herb.
Unidentified species (Family not known). Voucher Collection N2 1061. Growth form: Erect Herb.
Eriosorus sp. (Filicopsida). Voucher Collection N2 264, 872. Growth form: Basal Rosette.
Thelypteris sp. (Thelypteridaceae). Voucher Collection N2 292, 1066. Growth form: Basal Rosette.
Asplenium sp. (Aspleniaceae). Voucher Collection N2 270. Growth form: Acaulescent Rosette.

Lysipomia montioides H.B.K. (Campanulaceae). Voucher Collection N2 212. Growth form: Pros-
trate Herb.

Unidentified species (Compositae). Voucher Collection N2 873. Growth form: Prostrate Herb.
Diplostephium sp. (Compositae). Voucher Collection N2 933. Growth form: Upright Shrub.
Draba sp. (Cruciferae). Voucher Collection N2 715. Growth form: Erect Herb.

Draba sp. (Cruciferae). Voucher Collection N2 1062. Growth form: Erect Herb.

Agrostis sp. (Gramineae). Voucher Collection N2 548, 940. Growth form: Erect Herb.

Agrostis sp. (Gramineac). Voucher Collection N2 537. Growth form: Erect Herb.

Agrostis sp. (Gramineae). Voucher Collection N2 411, Growth form: Erect Herb.

Agrostis sp. (Gramineae). Voucher Collection N2 864. Growth form: Erect Herb.

Agrostis sp. (Gramineae). Voucher Collection N2 530, 551, 660, 679, 680, 698, 931, 1047. Growth
form: Erect Herb.

Agrostis sp. (Gramineae). Voucher Collection N2 910. Growth form: Erect Herb.

Agrostis sp. (Gramineae). Voucher Collection N2 377, 416, 501, 531, 659, 822, 992, 1008. Growth
form: Erect Herb.

Agrostis sp. (Gramineae). Voucher Collection N2 261, 284, 326, 514, 700. Growth form: Erect Herb.

Agrostis nigritella Pilg. (Gramineae). Voucher Collection N® 254, 344, 421, 722, 786, 865, 986. Growth
form: Erect Herb.

Not used.

Calamagrostis sp. (Gramineae). Voucher Collection N¢ 707, 761. Growth form: Erect Herb.
Calamagrostis sp. (Gramineae). Voucher Collection N2 1031. Growth form: Erect Herb.
Not used.

Calamagrostis sp. (Gramineae). Voucher Collection N2 549, 692, 696. Growth form: Erect Herb.



Appendix 1. Vascular Plant Species 267

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

267

269

270

2711

272

273

274

275

276

Calamagrostis sp. (Gramineae). Voucher Collection N2 384. Growth form: Erect Herb.

Calamagrostis sp. (Gramineae). Voucher Collection N2 321, 509, 580, 657, 697, 724, 725, 777, 893,
894, 920, 954, 956, 972, 1007, 1036, 1057. Growth form: Tussock.

Not used.

Elymus attenuatum (H.B.K.) R. & S. (Gramineae). Voucher Collection N2 740. Growth form: Erect
Herb.

Festuca sp. (Gramineae). Voucher Collection N2 343, 442, 1035. Growth form: Tussock.
Festuca sp. (Gramineae). Voucher Collection N2 502, 896. Growth form: Tussock.
Festuca sp. (Gramineae). Voucher Collection N2 510, 742. Growth form: Tussock.

Mubhlenbergia angustata (Presl.) Kunth (Gramineae). Voucher Collection N2 834. Growth form: Tus-
sock.

Muhlenbergia ligularis (Hack.) Hitchc. (Gramineae). Voucher Collection N2 369, 541. Growth form:
Erect Herb.

Paspalum sp. Mez. (Gramineae). Voucher Collection N2 568. Growth form: Prostrate Herb.
Paspalum sp. Mez. (Gramineace). Voucher Collection N2 908. Growth form: Prostrate Herb.
Poa sp. (Gramineae). Voucher Collection N¢ 345, 356, 723, 1033. Growth form: Erect Herb.

Poa sp. (Gramineae). Voucher Collection N¢ 346, 500, 505, 744, 821, 875, 1032. Growth form: Erect
Herb.

Poa sp. (Gramineac). Voucher Collection N2 383. Growth form: Erect Herb.

Poa sp. (Gramineac). Voucher Collection N2 390, 889. Growth form: Erect Herb.

Poa sp. (Gramineae). Voucher Collection N2 425. Growth form: Erect Herb.

Poa sp. (Gramineae). Voucher Collection N2 543. Growth form: Erect Herb.

Poa sp. (Gramineae). Voucher Collection N2 544. Growth form: Erect Herb.

Poa sp. (Gramineae). Voucher Collection N2 807. Growth form: Erect Herb.

Poa sp. (Gramineae). Voucher Collection N2 820. Growth form: Erect Herb.

Stipa sp. (Gramineae). Voucher Collection N¢ 586, 658. Growth form: Tussock.

Trisetum spicatum (L.) Richt. (Gramineae). Voucher Collection N2 1034. Growth form: Erect Herb.
Hypericum sp. (Guttiferae). Voucher Collection N2 840. Growth form: Prostrate Herb.

Hypericum sp. (Guttiferae). Voucher Collection N¢ 313, 486, 748, 915, 1050. Growth form: Upright
Shrub.

Not used.
Hypericum sp. (Guttiferae). Voucher Collection N¢ 474, 475, 587, 957. Growth form: Prostrate Herb.

Hypericum sp. (Guttiferae). Voucher Collection N© 826. Growth form: Upright Shrub.
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Jamesonia sp. (Hemionitidaceae). Voucher Collection N¢ 1176. Growth form: Erect Herb.

Jamesonia alstonii A.F. Tryon (Hemionitidaceae). Voucher Collection N2 388, 497, 627, 1049.
Growth form: Erect Herb.

Jamesonia pulchra Hook. & Grev. (Hemionitidaceae). Voucher Collection N2 907, 930. Growth
form: Erect Herb.

Jamesonia robusta Karst. (Hemionitidaceae). Voucher Collection N2 675. Growth form: Erect Herb.

Elaphaglossum sp. (Lomariopsidaceae). Voucher Collection N¢ 805, 1048. Growth form: Erect
Herb.

Elaphaglossum sp. (Lomariopsidaceae). Voucher Collection N2 269. Growth form: Erect Herb.
Elaphaglossum sp. (Lomariopsidaceae). Voucher Collection N2 1065. Growth form: Erect Herb.

Huperzia compacta (Hook.) B. Ollg. (Lycopodiaceae). Voucher Collection N2 515. Growth form:
Erect Herb.

Lycopodium sp. (Lycopodiaceae). Voucher Collection N2 803. Growth form: Erect Herb.
Lycopodium sp. (Lycopodiaceac). Voucher Collection N2 942. Growth form: Erect Herb.
Lycopodium sp. (Lycopodiaceae). Voucher Collection N2 1038. Growth form: Erect Herb.
Lycopodium sp. (Lycopodiaceae). Voucher Collection N2 258. Growth form: Erect Herb.
Lycopodium sp. (Lycopodiaceae). Voucher Collection N2 373, 758, 860. Growth form: Erect Herb.

Huperzia columnaris B. Ollg. (Lycopodiaceae). Voucher Collection N2 484. Growth form: Erect
Herb.

Lycopodium sp. (Lycopodiaceae). Voucher Collection N2 635. Growth form: Prostrate Herb.

Lycopodium clavatum L. ssp. contiguum(Kl.) B. Ollg. (Lycopodiaceae). Voucher Collection N2 545,
555, 903, 636. Growth form: Erect Herb.

Lycopodium sp. (Lycopodiaceae). Voucher Collection N2 463, 804. Growth form: Prostrate Herb.
As for Code N2292,
Lycopodium sp. (Lycopodiaceae). Voucher Collection N2 278. Growth form: Prostrate Herb.

Lycopodium magallanicum (F. Beauv.) Sw. (Lycopodiaceae). Voucher Collection N2 315, 517, 1044.
Growth form: Prostrate Herb.

Lycopodium sp. (Lycopodiaceae). Voucher Collection N2 350, 909, 1054. Growth form: Prostrate
Herb.

Epilobium denticulatum R. & P. (Onagraceae). Voucher Collection N2 296. Growth form: Erect
Herb.

Altensteinia ? fimbriata H.B.K. (Orchidaceae). Voucher Collection N2 277, 351, 962, 1068. Growth
form: Acaulescent Rosette.

Myrosmodes sp. (Orchidaceac). Voucher Collection N2 708, 1024. Growth form: Erect Herb.

Plantago sp. (Plantaginaceac). Voucher Collection N2 1010. Growth form: Acaulescent Rosette.
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Plantago sp. (Plantaginaceae). Voucher Collection N2 978, Growth form: Cushion.

Ranunculus sp. (Ranunculaceae). Voucher Collection N2 339, 832, 1020. Growth form: Prostrate
Herb.

Ranunculus sp. (Ranunculaceae). Voucher Collection N2 283, 710. Growth form: Prostrate Herb.
Arcytophyllum sp. (Rubiaceac). Voucher Collection N2 916. Growth form: Cushion.

Arcytophyllum aristatum Standley (Rubiaceae). Voucher Collection N2 519. Growth form: Prostrate
Shrub.

Arcytophyllum filiforme (R. & P) Standley (Rubiaceae). Voucher Collection N2 496. Growth form:
Cushion.

Arcytophyllum vemicosum Standley (Rubiaceae). Voucher Collection N2 630, 665. Growth form:
Upright Shrub.

Galium sp. (Rubiaceac). Voucher Collection N2 1039. Growth form: Trailing Herb.

Relbunium croceum (R. & P) Sch. (Rubiaceae). Voucher Collection N2 806, 983. Growth form: Trail-
ing Herb.

Relbunium hirsutum (R. & P) Schum. (Rubiaceae). Voucher Collection N2 466, 1055. Growth form:
Trailing Herb.

Valeriana sp. (Valerianaceac). Voucher Collection N2 874. Growth form: Cushion.

Valeriana ? niphobia Briq. (Valerianaceae). Voucher Collection N2 870. Growth form: Acaulescent
Rosette.

Xyris subulata R. & P, var. subulata(Xyridaceae). Voucher Collection N2546, 618, 633. Growth form:
Tussock.

Bromus pitensis H.B.K. (Gramineae). Voucher Collection N2 797, 895. Growth form: Erect Herb.

Gentianella sp. (Gentianaceae). Voucher N2 425 from Ramsay, Evans & Buckland 1989 Collection.
Growth form: Erect Herb.

As Code N2 128,

Oreobolus sp. (Cyperaceae). Voucher Collection N2 518, 626. Growth form: Cushion.
Carex sp. (Cyperaceae). Voucher Collection N2 529, Growth form: Acaulescent Rosette.
Carex sp. (Cyperaceae). Voucher Collection N2 358. Growth form: Acaulescent Rosette.
Carex sp. (Cyperaceae). Voucher Collection N2 375. Growth form: Acaulescent Rosette.
Carex sp. (Cyperaceae). Voucher Collection N2 418. Growth form: Acaulescent Rosette.
Isoétes sp. (Isoétaceae). Voucher not collected. Growth form: Acaulescent Rosette.

Not used.

Not used.

Viola sp. (Violaceae). Voucher not collected. Growth form: Prostrate Herb.
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As for Code N¢ 225.

Uncinia sp. (Cyperaceae). Voucher Collection N2 349, Growth form: Acaulescent Rosette.
Uncinia sp. (Cyperaceae). Voucher Collection Ne¢ 386, 800, 1027. Growth form: Acaulescent Rosette.
Unidentified species (Family not known). Voucher Collection N2 681. Growth form: Erect Herb.
Culcitium sp. (Compositae). Voucher Collection N2 901. Growth form: Basal Rosette.
Culcitium sp. (Compositae). Voucher Collection N2 485. Growth form: Basal Rosette.
Erigeron sp. (Compositae). Voucher Collection N2 259. Growth form: Acaulescent Rosette.
Loricaria sp. (Compositae). Voucher Collection N2 844. Growth form: Upright Shrub.
Unidentified species (Ericaceae). Voucher Collection N2 281, Growth form: Prostrate Shrub.
Unidentified species (Ericaceae). Voucher Collection N2 552. Growth form: Prostrate Shrub.
Unidentified species (Ericaceae). Voucher Collection N2 666. Growth form: Prostrate Shrub.
Unidentified species (Ericaceae). Voucher Collection N2 667. Growth form: Prostrate Shrub.
Unidentified species (Ericaceae). Voucher Collection N2 678. Growth form: Prostrate Shrub.
Unidentified species (Ericaceae). Voucher Collection N¢ 828. Growth form: Upright Shrub.
Unidentified species (Gramineae). Voucher Collection N2 528. Growth form: Erect Herb.
Jamesonia sp. (Hemionitidaceae). Voucher Collection N2 767, 861. Growth form: Erect Herb.
Unidentified species (Juncaceae). Voucher Collection N2 590. Growth form: Tussock.

Luzula sp. (Juncaceae). Voucher Collection N2 1002. Growth form: Acaulescent Rosette.
Unidentified species (Orchidaceae). Voucher Collection N2 1190, Growth form: Erect Herb.
Plantago sp. (Plantaginaceae). Voucher Collection N2 274. Growth form: Cushion.

Paspalum sp. (Gramineae). Voucher Collection N¢ 324, Growth form: Prostrate Herb.
Unidentified species (Gramineae). Voucher Collection N® 996. Growth form: Erect Herb.
Unidentified species (Gramineae). Voucher Collection N2 503. Growth form: Erect Herb.
Agrostis sp. (Gramineae). Voucher Collection N2 539. Growth form: Erect Herb.

Agrostis sp. (Gramineae). Voucher Collection N2 567. Growth form: Erect Herb.

Festuca sp. (Gramineac). Voucher Collection N 1006. Growth form: Erect Herb.

Stipa sp. (Gramineae). Voucher Collection N2 1009. Growth form: Tussock.

Relbunium sp. (Rubiaceae). Voucher not collected. Growth form: Trailing Herb.

Vaccinium sp. (Ericaceae). Voucher not collected. Growth form: Prostrate Shrub.

Puya sp. (Bromcliaceae). Voucher not collected. Growth form: Basal Rosette.
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Veronica sp. (Scrophulariaceae). Voucher not collected. Growth form: Erect Herb.

Viola sp. (Violaceae). Voucher not collected. Growth form: Prostrate Herb.

Oxalis sp. (Oxalidaceae). Voucher not collected. Growth form: Prostrate Herb.

Unidentified species (Family not known). Voucher not collected. Growth form: Erect Herb.
Puya sp. (Bromeliaceae). Voucher not collected. Growth form: Basal Rosette.

Unidentified species (Orchidaceae). Voucher not collected. Growth form: Acaulescent Rosette.

Unidentified species (Family not known). Voucher not collected. Growth form: Erect Herb.
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The x test will determine the probability that the pattern of replacement observed
is completely random. If for each species pair, the spec1es present at time 1 is called
the i** species and the speaes present at time 2 the ] spec1es then the null hypo-
thesis states that “species i will be replaced by species j in that proportion which the
total replacements made by species j contribute to the overall number of changes” or:

Ej = I (nir—nii) x (nj—njj)

> (nrj—njj)

where ‘7’ represents all species other than i or j, ‘nir’ the total number of times
species i is followed by all other species, ‘nii’ the total number of quadrats occupied
by species i at time 1 and time 2, ‘ny’ the total number of times species j follows all
other species, and ‘njj’ the total number of quadrats occupied by species j at time 1
and time 2. Put another way, the expected value is:

Total number of quadrats x Total number of quadrats
Ej = vacated byz species invaded by ] species

Grand Total of All Changes

provided the diagonal terms (the species replacing themselves) in the matrix are sub-
tracted before making the calculation.

Most of the species involved in the data were rare and to avoid bias in the x2
values those species with an expected value less than 5 were not subjected to a x2
test. The rarer species were treated as a group to overcome this problem. Yates’ cor-
rection for continuity was applied.

Using the transition matrix for unburned vegetation at 3,750 m in the Pdramo de
Daldal given in Table 4.4 (p.149), Paspalum sp. replaced Azorella pedunculata three
times. The total number of quadrats vacated by Azorella pedunculata (excluding the
diagonal) was 86.75 and the total number of quadrats invaded by Paspalum sp. (ex-
cluding the diagonal) was 34. The grand total of all changes (again excluding the diag-
onals) was 368.75.
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Therefore, the expected number of replacements of Azorella pedunculata by
Paspalum sp. is given by:

E = 86.75 x 34
368.75
E = 8.00

The Chi Square test requires the following information:

Azorella pedunculata replaced by

Paspalum sp. Other species All Species
Observed 3 83.75 86.75
Expected 8 78.75 86.75

The Xz calculation (with Yates’ correction applied) is:

x2 = > (Observed - Expected - 0.5)2
Expected
So, for the example given:
Y = (3-8-05?% + (8375 - 7875 - 0.5)°
8 78.75
© = 3781 + 0257
P = 4038

From xz tables, the probability that this result was due to random replacement lies
between 0.05 and 0.01. Therefore, the null hypothesis is rejected: Azorella peduncula-
ta was replaced by Paspalum sp. less frequently than chance would predict.
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