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Summary 

Despite the large quantity of research undertaken into the sustainability of 

food production and transportation systems, there is currently little consensus on 

the total contribution that greenhouse gas (GHG) emissions make to the overall 

GHG budget of food production systems. To date, most research has focused on 

the miles that food has travelled and the energy put into the production of 

pesticides and fertilisers associated with crop production. Understanding whether 

food imported from distant countries has a higher GHG footprint than locally 

produced food remains a very topical issue. Our fundamental lack of knowledge 

of this issue is limiting policy development in this area. Due to difficulties in 

field measurements mathematical models such as DNDC (DeNitrification 

DeComposititon) are being used to predict GHG emissions from different 

ecosystems. In this thesis, a combination of field measurements and model 

simulations were used to evaluate GHG emissions from different agricultural 

production systems undertaken in different countries (UK, Spain and Kenya). 

This thesis also considered the accuracy of the model by undertaking a sensitivity 

analysis and evaluating the outputs from different model versions. In addition, 

the accuracy of using a Q10 value approach to predict organic matter degradation 

was also evaluated.  

Overall, the results suggested that different model versions gave varying 

outputs, suggesting that predictions of GHG emissions obtained with models 

such as DNDC should be treated with caution. However, the model did predict 

similar results to those obtained in the field, although the model outputs tended to 

be higher. For comparison of GHG emissions from vegetable types grown in 

different geographical regions, no specific region produced lower GHG results 

when averaged across all crops. However, when individual crops were 

considered, Spain had the highest GHG emissions. The models showed different 

degrees of sensitivity to different inputs, with some not showing any variation at 

all. In the Q10 evaluation experiments the Q10 values varied greatly, though all 

gave results above the standard Q10 of 2. Further research is needed into the 

accuracy of climate and farm management models, and whether or not it is 

necessary to compare large data sets when considering different vegetable types 

and areas. 
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1.1. Introduction 

1.1.1. General introduction and need for research 

Food security and the origin of foodstuffs are currently high on the political 

agenda due to the UK’s commitment to meet the Kyoto agreement for reducing 

greenhouse gas (GHG) emissions from agroecosystems and the realisation that 

some critical natural resources are becoming rapidly depleted (e.g. rock P needed 

for fertilizer production). Degradation of cropland soils is a serious issue 

(Oldeman, 1994), which has and will continue to result in drastic adverse impacts 

on global food security and environmental quality (Lal et al., 1999). Food 

mileage was originally the only criterion used when assessing where food was 

produced and its potential harm to the environment. Scientists have now realised, 

however, that how far food travels from its point of origin does not provide a 

holistic view, as it neglects to include all that goes into growing and producing 

vegetables. For example, energy goes into food production through fertilisers, 

pesticides, tractors, transport, cleaning and packaging. People also fail to 

consider how much carbon (C) gets emitted into the atmosphere as a result of 

land use conversion for vegetable production. Current evidence suggests that 

there is a fine balance in soils as to whether they represent sinks or sources of 

GHG, and how the land is managed can have a great effect on the type and 

quantity of GHG emitted. 

 Accurately quantifying GHG from vegetable production systems 

represents a major problem, as all agroecosystems are inherently complex with 

net GHG emissions being dependent upon a range of factors. These include 

parent material, climate, changes in organism community and changes in soil 

properties. Some of these factors can be reproduced, to some extent, under 

laboratory conditions. However, this rarely captures the complexity of GHG 

from a field environment. Measuring GHG constantly under field conditions is 

often deemed impractical in terms of the time and funding it would require. To 

address this issue, mathematical models have been developed which allow the 

user to predict GHG emissions over whole cropping cycles. While many models 

have focused on one specific aspect (e.g. soil C), the model used here (DNDC; 

DeNitrification DeComposition; Leip et al., 2008), combines three models - 
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namely soil, climate and farm management - to allow for a more holistic 

assessment of GHG emissions. DNDC has been calibrated and validated for 

some land uses around the world, with long term data sets demonstrating its 

power for GHG scenario testing. While the model has progressively evolved and 

refined over time, it is uncertain whether the overall performance of the model 

has significantly improved with these revisions. To some extent this is due to the 

poor documentation of the changes between different versions of the model. 

Furthermore, modellers do not always use the most recent versions of the DNDC, 

which makes comparison of model outputs difficult. This has direct implications 

if the outputs of DNDC are used for policy formulation. 

 The aims of the project are (1) to validate DNDC under vegetable 

cropping systems; (2) to use the model to assess the importance of key 

environmental and management variables on GHG emissions from these 

systems; and (3) to evaluate the impact of different model versions on GHG 

predictions from vegetable cropping systems. This will be done, firstly, through a 

series of model comparisons using collected farm data. Once the model has been 

validated a series of datasets collected from farms within 3 different UK counties 

will be modelled and the results compared. 

 

1.1.2. The main chapters 

The point of this study is to predict GHG emissions from agricultural soils. This 

will be conducted through a series of chapters. The first few chapters will look at 

the reliability of the model leading on to the last chapter where field data will be 

modelled. The four chapters that form the core of this thesis can be summarised 

as follows: 

 

Chapter 3: Model Comparison Between Different Versions of the DNDC Model 

 

Most published papers do not state which version of the DNDC model was used 

to predict GHG emissions. Consequently, it is uncertain whether the outputs 

from different studies can be reliably compared. To address this, 5 different 

versions of DNDC were used to predict GHG emissions from 6 different 

vegetable types using the same input data. 
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Chapter 4: Sensitivity of Soil Respiration to Variation in Temperature 

 

Temperature and moisture have a profound effect on soil GHG emissions and are 

key drivers regulating modelled soil GHG emissions. The mathematical 

description of the change in soil respiration over a 10°C change in temperature 

(i.e. Q10 value) is critical for predicting the effects of weather on CO2 emissions 

from soil. For biological systems, the Q10 value is generally between 1 and 3, and 

for soils it is considered to be around 2. Most models use a Q10 factor of 2 in the 

system, though it has been found that soils may deviate significantly from this 

value. The aim of this chapter was to collect soils from different global 

geographical areas and to evaluate their Q10 relationship over a rising and falling 

temperature cycle. 

 

Chapter 5: Sensitivity of the DNDC Model to Variations to Weather and Model 

Inputs 

 

Models can have different sensitivities to inputs, and how sensitive the models 

are can have a great impact upon the accuracy of the outputs. The 3 latest 

versions of the DNDC model were used for this comparison; real data from a UK 

lettuce field was used as the baseline, and a sensitivity analysis was undertaken 

with the input data. Variation in model output in response to annual weather data 

was compared using different regional weather datasets. All three models were 

compared and the results graphed to consider which inputs are the most 

important and which have the greatest effect on the results. 

 

Chapter 6: A Comparison of GHG Emissions from Vegetables in Different 

Countries and Model Validation 

 

There is currently a significant, ongoing debate on food miles and whether foods 

travelling from abroad have higher GHG emissions than those produced locally. 

To address this, three countries were considered: Kenya, Spain and the UK. 

Within the UK three counties were used: Anglesey, Lincolnshire and Worcester. 

The outputs from the model were compared to nitrate and ammonium laboratory 
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data to validate the model. GHG emissions were converted for each vegetable 

type and area to consider their global warming potential as a whole. 

 

1.2. Greenhouse gas emissions in agroecosystems  

Balancing food production and environmental protection, and predicting the 

impacts of climate change or alternative management in agroecosystems, is 

attracting great attention from scientists (Zhang et al., 2002). Increasing 

population and the intensification of agriculture to meet urban food demand 

could further enhance the importance of these agricultural sources - the most 

significant factors being fertiliser use, irrigation, and land use change in the next 

century (Li et al., 1994). Agriculture profoundly influences the global 

environment, affecting atmospheric chemistry, water quality and quantity, and 

nutrient cycles. For example, due to increased human activity N fertiliser 

production and application and crop biological fixation have doubled the transfer 

of N from the atmosphere to biologically available pools (Zhang et al., 2002). 

Agriculture also represents a significant opportunity for GHG mitigation projects 

through soil carbon sequestration and lowering of CH4 and N2O emissions. 

Projects such as reduced tillage, timing of fertiliser/manure application and the 

use of different types of irrigation can result in soil carbon sequestration and 

reductions in CH4 and N2O emissions. These often result in compound 

environmental benefits through improved soil structure which, in turn, can 

improve air and water quality and sustainability of agroecosystems (Salas and Li, 

2003).  

 Cropping systems are human-modified terrestrial ecosystems that act as 

either sources or sinks of GHG (Cai et al., 2003). Modern technology has greatly 

promoted agricultural productivity by means of genetic improvement, irrigation, 

fertilization and pesticide applications (Zhang et al., 2002). It is estimated that 

80% of nitric oxide (NO), nearly 70% of ammonia (NH3) and more than 40% of 

nitrous oxide (N2O) emitted globally are human-activity induced (Vitousek et al., 

1997). Since the late 1950s, global synthetic N fertilizer consumption has 

increased from ~10 to ~100 Tg N in 2008, with the global N input into 

agricultural systems from synthetic fertilizer increasing more than 40 fold since 

1930 (Millar et al., 2010). Food production contributes approximately 70% of 
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global atmospheric input of nitrous oxide (N2O) and 40% of global atmospheric 

input of methane (CH4) (Li et al., 2005). It is estimated that agriculture accounts 

for 26%, 92% and 65% of the total anthropogenic emissions of CO2, N2O and 

CH4, respectively (Zhang et al., 2002). Of the three gases, CO2, CH4 and N2O, 

influenced by agricultural activities, current estimates indicate that N2O 

emissions from agricultural soils represent the largest source of GHG from the 

sector (Smith et al., 2004; Neufeldt et al., 2006). Normal crop production 

practices, such as fertiliser use and tillage, generate N2O and decrease the soil 

sink for atmospheric CH4 (Li et al., 2004). Figure 1-1 shows the increases in 

atmospheric CO2, CH4 and N2O from ice cores.  

Agricultural activity can increase carbon dioxide (CO2) emissions by 

increasing soil decomposition rates and burning plant biomass (Zhang et al., 

2002). Clearing, tilling, and draining native soils for agricultural production have 

released large amounts of CO2 from soils’ organic matter pool (Li et al., 2004). 

Since each GHG has its own radiative potential, a net global warming 

potential (GWP) of a crop production system can be estimated, accounting for all 

of the three gases (Li et al., 2005). Most published research focuses on soil C 

dynamics, with less attention paid to the other GHGs, nitrous oxide (N2O) and 

methane (CH4), each of which may offset gains in GHG emissions if not 

managed properly (Salas and Li, 2003). This is compounded by the inherent 

relationships between soil organic carbon (SOC) storage and N2O or CH4 

emissions in agricultural soils (Salas and Li, 2003). 

When assessing the impact of food production and distribution, the entire 

suite of GHGs needs to be considered (Li et al., 2005). Different GHGs can be 

compared on a common basis by converting the fluxes of the non-CO2 GHGs 

into the CO2 equivalents via their radiative forcing, called GWP (Global 

Warming Potential) which gives a uniform measurement. The IPCC values of 

GWP for N2O and CH4, equate to 1 kg of these gases to 310 and 23 kg of CO2 

equivalents, respectively, over 100 years (Levy et al., 2007; Li et al., 2004; 

Pluimers et al., 2000; Qui et al., 2009). 

Recently, significant investments have been made in assessing carbon 

sequestration projects in agricultural soils, due to the potential for trading carbon 

credits coupled with significant environmental benefits through improved soil 

quality, soil fertility and reduced erosion potential (Li et al., 2004). Changes in 
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farming management practices are being evaluated for their potential in 

mitigating GHGs emitted by the agricultural sector (Salas and Li, 2003). 

Agricultural soils generally have capacity to store carbon, as their pre-cultivation 

SOC reserves were depleted in the first few decades after conversion to 

agriculture in the 17
th

, 18
th

 and 19
th

 centuries, a process that caused  a dramatic 

loss of soil organic matter to microbial mineralization and progressive wind and 

water erosion (Li et al., 2004; Qui et al., 2009). The maximum soil C sink 

capacity is thought to approximately equal the historic C loss, which was 50 to 

75% of the original, estimated at 1550 Pg SOC pool (Lal, 2008). 

Agricultural systems account for approximately one quarter of global 

NOx emissions; of this, about 20-70% of the N2O emitted, is derived from soil 

(Mosier et al., 1998). Nitrous oxide is important in the chemistry of the 

stratosphere as NO oxidation is involved in the ozone equilibrium (Jambert et al., 

1997). On a per molecule basis, N2O is 200-320 times more potent than CO2 

(Verma et al., 2006) and it has been calculated that an increase of 0.2-0.3% in 

atmospheric concentrations would contribute about 5% to the greenhouse 

warming (Mosier et al., 1998). Current atmospheric concentrations of N2O are 

around 320 ppbv, but its atmospheric abundance is increasing at a rate of 0.3% 

per year due to human activities (Verma et al., 2006; Millar et al., 2010). Thirty 

eight industrialized countries currently contribute more than half of global 

emissions, and over the next 20 years global emissions are expected to rapidly 

rise as intensification increases in developing economies of Latin America and 

Asia (Lal and Bruce., 1999). As N2O has an atmospheric life of 150 years, this is 

not a short term problem (Verma et al., 2006). 
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Figure 1-1: Atmospheric concentrations of CO2, CH4 and N2O over the last 10,000 years 

(large panels) and since 1750 (inset panels). Measurements are shown from ice cores 

(symbols with different colours for different studies) and atmospheric samples (red lines) 

(IPCC, 2007). 

Nitrous oxide is produced primarily by microbial processes, nitrification 

and denitrification in soil (Verma et al., 2006) (See Figure 1-2). Soil structure 

and water content can affect the balance of N2O and N2 production by the 

reduction of N2O escape and further reduction to N2 (Mosier et al., 1998). Soil 

pH, and soil temperatures above 25 °C favour denitrification (Johnson et al., 

1994). Further, N2O fluxes can also differ markedly with landscape position 

(Mosier et al., 1991). 
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Figure 1-2: Diagram of the soil nitrogen cycle. The diagram considers both the biological 

and non-biological pathways and presently known processes  Nitrifier Denitrification, 

 Denitrification,  Nitrate and Ammonification and  Nitrification. This was 

adapted from Johnson et al., 1994 and Smith, 2010). 

 

Soils have been recognized as an important source of tropospheric NOx 

since 1978, when Galbally et al. (1978) reported the first field measurements 

(Davidson et al., 1997). These results were used by Logan (1983) to make a 

global NO budget which demonstrated that soil emissions of NO contribute 

significantly to tropospheric ozone precursors, and act as a source of N in 

atmospheric deposition, though this was found later to be to a low estimate 

(Davidson et al., 1997). The NOx emitted from the soils or from fossil fuel 

combustion reacts rapidly in the atmosphere with light, ozone and hydrocarbons 

to produce HNO3 and NO3
-
. Figure 1-2 depicts the portion of the N cycle that 

occurs in soils. Nitrogen is a unique nutrient, in that there are few mineral 

sources of N in soils, and yet soils contain a large N pool. This N originated 

primarily via N-fixing organisms, though in some systems N is easily leached (as 

NO3
-
) from the soil or volatilized as N2O or N2 following denitrification (Johnson 

et al., 1994). This graph is a simplified view of what happens in the soil in 

relation to nitrification and denitrification as NO2
-
 and other intermediate steps 

are not mentioned. 

After NO is emitted from the soil, it is often rapidly oxidized in the 

atmosphere to NO2, which is then readily absorbed onto leaf surfaces if a canopy 

is present (Bakwin et al., 1990). This process reduces the amount of NO and NO2 
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that escapes the soil-plant system and enters the atmosphere (Davidson et al., 

1997). If N2O exists long enough to reach the stratosphere it is converted into 

NO, contributing to the destruction of the ozone layer in the process. The initial 

estimates made by Galbally and Roy made in 1978 (10 Tg NO-N yr
-1

) was later 

found, with greater accuracy, more accurately to be 21 ± 4 Tg NO-N yr
-1

 

(Davidson et al., 1997).  

 The greatest input of N into agricultural systems is via fertilisers (Webb 

et al., 2004). Outputs of N from agriculture are mainly as crop offtake, NO3
-
 

leaching and as gases. Crop N offtake typically ranges from 54-98% of total N 

output; usually less (< 100 kg ha
-1

) for crops where residues remain in the field, 

e.g. sugar beet (Webb et al., 2004). The atmospheric concentration of N2O is a 

result of biotic and anthropogenic activities with 1.5 Tg of N yr
-1

 directly 

released into the atmosphere as N2O from fertiliser applications to agricultural 

ecosystems (Mosier et al., 1998). Nitrous oxide emissions follow a seasonal 

pattern, being high in the summer and autumn when the soils are usually warm 

and moist (Webb et al., 2004), though this is a heavily simplified view of the 

emissions, which are typically greatest in spring when N fertilisers are applied. N 

fertiliser use and biological N2 fixation are projected to continue to increase over 

the next 100 years due to increases in global food production (Mosier et al., 

1998). N applied to agricultural soils may be lost from the fields through surface 

erosion or leaching, and continues recycling in the soil–water–air system until it 

is eventually denitrified and converted to N2O and N2 and released back to the 

atmosphere or buried in sediments (Mosier et al., 1998a). It has been estimated 

that doubling the concentration of N2O in the atmosphere would result in a 10% 

decrease in the stratospheric ozone layer, which would increase the ultraviolet 

radiation reaching the earth by 20% (Jambert et al., 1997; Mosier et al., 1998). 

Further increases in N2O could result in an increased incidence of skin cancer 

and other human health problems (Lijinsky, 1977; Mosier et al., 1998).  

The conversion of forests and grasslands to croplands has accelerated C 

and N cycling and increased N2O emissions from soil (Mosier et al., 1998). 

Mosier et al. (1998) found that after a forest had been cleared and turned to 

pasture, emissions increased threefold, though they returned to background levels 

after 10-20 years. Willison et al. (1995) also found that changing soils from 

pastoral to intensive agriculture decreased CH4 uptake, though since 
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industrialization, diffusion has increased due to the increase in CH4 mixing 

ratios. Flessa et al. (1998) reported that drainage of peatland soils for use as 

cultivated agricultural land, caused loss of N through leaching. At the same time 

methane emissions were reduced through drainage. 

 

1.3. Methane emissions in agroecosystems 

Methane is important in the chemistry of the stratosphere, as CH4 oxidation 

partially controls the water vapour balance (Jambert et al., 1997). The current 

CH4 concentration in the atmosphere is 1.8 ppmv (Dobbie et al., 1996). It has a 

residence time of 8-12 years and a radiative absorption increase of 32 ppm 

(Bouwman 1990). Methane is 15 times more effective than CO2 (on a mass 

basis) at absorbing infrared radiation (Chen et al., 1997). Agriculture contributes 

approximately 20-40% of global atmospheric input of methane (Van der 

Weerden et al., 1999; Willison et al., 1995). 

The atmospheric concentrations of CH4 and NOx have increased over the 

past few decades by a rate of 1.1 and 0.25% per year respectively (Mosier et al., 

1991). Increased biospheric CH4 production is generally suggested as a reason 

for the increase, but a decrease in global sinks may also be important (Mosier et 

al., 1991; Willison et al., 1995). This indicates that perhaps 54% of the current 

CH4 uptake by UK soils is a result of the increased concentration of CH4 in the 

atmosphere (Willison et al., 1995). 

Sources of CH4 from ruminants, rice paddies and human exploitation of 

naturally occurring CH4 sources such as coal, oil, natural gas and biomass 

(Dobbie et al., 1996) have increased (Willison et al., 1995). These increases in 

atmospheric concentration may be partly due to decreasing rates of oxidation in 

soils (Jambert et al., 1997). The main biological sink for CH4 is the microbial 

oxidation of methane by methanotrophic bacteria in terrestrial ecosystems 

(Robertson et al., 2004; Van der Weerden et al., 1999; Willison et al., 1995) and 

the main sink is the atmosphere from the reaction with hydroxyl radicals, OH in 

the troposphere (Dobbie et al., 1996). Methane is produced in soils through 

biogeochemical cycles of C and N in the agroecosystems, decomposition, 

nitrification/denitrification, and methanogenesis respectively; any change in 

either management or climate/soil conditions will alter the biochemical or 
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geochemical processes, which will finally lead to changes in the gas fluxes (Li et 

al., 2004). It has long been recognized that nitrogen limitations often constrain 

carbon accumulations in mid- and high-latitude ecosystems. Recent research on 

plant responses to elevated CO2 concentrations is also consistent with the idea 

that low nitrogen availability can constrain carbon sequestration in terrestrial 

ecosystems (Sokolov et al., 2007). 

Current estimates vary, but indicate that microbes in soils may oxidise up 

to 50 Tg yr
-1

 of CH4 globally, accounting for 10% of total CH4 destruction 

(Willison et al., 1995). Flooded rice fields are an important source of CH4 

emissions on a global scale (Figure 1-3). Diffusion of atmospheric CH4 into the 

soil is considered to be one of the most important controls of CH4 consumption 

in dry conditions. Soils with high porosity are expected to have elevated CH4 

uptake. Production of CH4 is primarily controlled by the availability of 

biodegradable organic C. This production is also regulated by the degree of 

anoxia, by soil water content and O2 diffusion limitation (Jambert et al., 1997). 
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Figure 1-3: Amended diagram of CH4 production, oxidation, leaching and emissions in soil 

for paddy rice fields (Mosier et al., 2004). 

 

Mosier et al., (1991) found that cultivation of the soil by either ploughing or 

rotovating did not result in decreased CH4 oxidation states, which contrasts with 

observations made by Willison et al. (1995) of the IACR-Rothamsted long-term 

arable systems. It is likely that any short-term effect of cultivation on oxidation 

rates are too small to be observed, as was found by Van der Weerden et al. 

(1999). Cultivation may reduce the rate of CH4 consumption in two ways. 

Firstly, NH4
+
 released via mineralization of organic N may inhibit CH4 

monooxygenase enzyme activity. Secondly, increased aeration following soil 

disturbance may lead to lower soil moisture content. Methanotrophic bacteria are 

sensitive to water stress and oxygen availability, thus affecting their ability to 

consume CH4 as methanotrophs are therefore traditionally considered obligate 

aerobic respiratory bacteria (Roslev and King, 1994; Van der Weerden et al., 

1999). 
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Recent extensive changes in land management and cultivation could be 

contributing to the observed increase in both atmospheric CH4 and N2O (Figure 

1-1). Nitrogen fertilization and cultivation can decrease CH4 uptake on cultivated 

grasslands and in temperate forest soils and increase N2O production (Mosier et 

al., 1991). This has been shown in laboratory and field studies: the optimum soil 

pH for CH4 oxidation is 7.0-7.5 (Willison et al., 1995). Hütsch et al. (1994) also 

observed decreasing CH4 oxidation of grassland soil with decreasing pH ranging 

from 6.3-5.6, though this decrease was presumed to be due to an increase in 

water-filled pore space as it followed cultivation and thus reduced the soil’s 

aeration status (Van der Weerden et al., 1999). It has been estimated that 

combined land conversion to agriculture, disturbance of ecosystems, changes in 

agricultural practice and increased atmospheric deposition may have decreased 

the soil CH4 sink by 37 kt CH4 yr
-1

 (Willison et al., 1995). Land use change from 

forest/woodland to agricultural land can cause up to a 60% reduction of CH4 

uptake: this was shown in a range of soils from Scotland and Denmark (Dobbie 

et al., 1996). Ojima et al. (1993) concluded that the mechanisms responsible for 

the reduction of CH4 are not clear, though factors such as water availability, 

fertiliser applications, atmospheric N deposition, soil structural changes, and 

cropping management contribute to modifications of the soil uptake.  

Figure 1-4 is a retrospective estimate of global CH4 soil sink, relative to 

changes in atmospheric methane, derived from estimates of historic CH4 mixing 

ratios, temperate forest and grassland cover patterns, area impacted by chronic N 

deposition and consequent CH4 uptake rates (Ojima et al., 1993).  
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Figure 1-4: A retrospective estimate of the global CH4 soil sink relative to changes in 

atmospheric methane from 1850 to 1980. The ‘No disturbance’ line indicates estimated soil 

CH4
 
uptake assuming that no major land cover changes have taken place and that uptake 

rates were near maximal. The ‘Intensive’ line represents estimated soil CH4 uptake 

assuming that soil CH4 uptake was altered by land cover changes resulting from forest or 

grassland conversion to cropland or pasture. The ‘plus extensive’ line represents the added 

change in CH4 uptake due to increased atmospheric inputs of N over large areas of the 

world (Ojima et al., 1993). 

 

1.4. GHG measurement 

Methods for measuring different GHGs include flux chambers, gradient analyses, 

eddy correlation, and aircraft measurements (Davidson et al., 1997). The 

methods for extrapolation varies greatly; they include averaging over seasons, 

calculating temperature-dependent algorithms, adjusting for daily variations and 

applying ratios of NO and N2O emissions to more complete datasets on N2O 

emissions (Davidson et al., 1997). Few studies have been designed to estimate 

annual emissions of NO from soils, and most have been carried out in temperate 

climates (though NO may not be a GHG in the air it is converted to nitric acid 

which is implicated in acid rain) (Davidson et al., 1997). Furthermore, both NO 

and NO2 participate in ozone layer depletion. Extrapolating experimental data 

obtained for a given region and cultivation practice to a larger geographical scale 

is very difficult, owing to large variations in potential emissions from natural 

soils. In addition, the potential combination of soil types and agricultural systems 
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at the regional scale - and the response of these systems to fertiliser application, 

climate, and cultivation practices - can be substantial (Jambert et al., 1997). 

There are likely to be important regional differences in climate change responses, 

with the effects of increased CO2 concentration dominating in warmer regions, 

and the effects of increased temperature dominating in cooler regions. The latter 

may lead to losses in soil carbon in boreal and tundra regions (Kirschbaum, 

2000). 

To reliably predict CO2, N2O and CH4 emissions, soil chemical and 

physical characterisation are required. Soils sampled from a depth of 15 cm can 

be analysed for pH, NH4HCO3-soluble P and NH4HCO3-soluble K, while total 

soil organic C (SOC) is multiplied by 1.7 to give soil organic matter SOM (Webb 

et al., 2004). To determine soil mineral N, samples can be taken at 30 cm 

increments down to 90 cm (Webb et al., 2004). NH4
+
 and NO3

-
 can be extracted 

by shaking 40 g of soil with 200 ml 2 M KCl for 2 h before filtering and 

analyzing (Webb et al., 2004). Together, these methods can be used to estimate 

net N outputs via leaching of mineral-N, NH3 fluxes, N2O and N2 emissions, and 

crop N offtake (Webb et al., 2004). To estimate N2 emissions from denitrification 

activity, the acetylene inhibition technique can be used; however, Bollman and 

Conrad (1997) found that the observed discrepancies between denitrified NO 

rates and actual denitrification rates were created by the acetylene used in the 

denitrification assay. The acetylene probably caused scavenging of part of the 

NO that was produced as intermediate in the denitrification sequence, and thus 

could not be further reduced to N2O. Consequently, the denitrification rates were 

underestimated. Ammonia emissions can be measured using the aerodynamic 

gradient method as modified by Schjørring (1995). Wind speed and NH3 

concentration profiles are made linear with respect to the logarithm of height 

using the relationship between zero plane displacement and crop height (Webb et 

al., 2004). 

 Methane and N2O fluxes can be measured by inserting static perspex/steel 

chambers into the ground (Van der Weerden et al., 1999). These are airtight, and 

gas samples can be drawn from the headspace using a syringe at different time 

intervals (e.g. 0, 10, 30, 60 min). The gas in the air-tight syringes is typically 

analysed using a gas chromatograph equipped with electron capture detector and 

packed porapak Q column (Verma et al., 2006). Soil temperature is typically 



Chapter 1 

17 

taken inside and outside the chamber (e.g. at 2.5 cm depth) to account for 

variations due to radiation causing large temperature increases in the chamber 

(Jambert et al., 1997; Van der Weerden et al., 1999). 

A complete budget of fertiliser N, biologically fixed N2 and N 

mineralized from the soil organic matter is difficult to produce, but is needed if 

we are to accurately assess the impact of increased use of N in agricultural 

ecosystems on terrestrial N2O emissions (Mosier et al., 1998). Studies of N2O 

emissions from similar agricultural systems show highly variable results in both 

time and space, with the main factors influencing turnover are soil temperature, 

moisture, fertility, availability of organic substrate and drainage (Bowman, 1990; 

Mosier et al., 1998). Biome stratification of each stratum can be carried out to 

account for variations in NO emissions for various types of ecosystems 

(Davidson et al., 1997). For Davidson et al. (1997) it succeeded in revealing that 

three strata (savannahs/woodland, chaparral and cultivated lands) have some very 

high NO emissions. 

The temperature dependence of biochemical processes such as respiration 

has been described mathematically since the late 19th century by Van’t Hoff 

(1898) and Arrhenius (Davidson et al., 2006; Janssens et al. 2003). Soil 

temperature is typically a reliable predictor of soil respiration when no severe 

drought stress occurs. Exponential relationships, especially the Q10 relationship, 

have been commonly used to estimate soil respiration rates from temperature 

(Eqn. 1; Curiel Yuste et al., 2004). 

 

Q10 = Respiration rate at (T +10) /respiration rate at T (Eqn. 1) 

 

Q10 is the increase in reaction rate per 10°C increase in temperature, with the 

average Q10 of 2 being calculated by Wiant (1967) for CO2 evolution in soil 

(Winkler et al., 1996) and by Blackmer et al. (1982), Crill et al. (1994), Müller 

(1995) and Roslev et al. (1997) for N2O and CH4 evolution for temperatures 

between 0 and 30°C (Van der Weerden et al., 1999). However, this is true only 

over a limited temperature range, owing to physiological restrictions on 

metabolic functioning at higher temperatures >35°C (Huang et al., 2005). Q10 has 

been found to be also higher and lower than 2.0; for example Davidson et al. 
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(1998) measured soil temperatures at 2, 5 and 10 cm depth, respectively, and 

found corresponding diurnal Q10s for CO2 flux of 2.2, 2.7 and 4.2. The 

temperature response is usually expressed as a Q10 value, where T is the 

temperature in K (Smith et al., 2003). The Q10 function is most widely used to 

simulate the temperature response of soil respiration (Janssens et al., 2003). 

It was noted that Q10 values tend to be higher at low temperatures, so the 

relationship is not linear; this is consistent with observations and a large number 

of other studies (Palmer Winkler et al., 1996). With an increase in temperature, 

respiration increases and is generally modelled as increasing exponentially with 

temperature, with a Q10 (the proportional increase in respiration for every 10°C 

rise in temperature) near 2.0. However, this is true only over a limited 

temperature range, as more often Q10 itself is temperature dependent, decreasing 

with an increase in measured temperature (Huang et al., 2005). The Arrhenius 

equation predicts that the Q10 of chemical reactions decreases with increasing 

temperature, as is also commonly observed in many chemical and biological 

reactions in nature. The theoretical explanation for the decrease in Q10 with 

increasing temperature is that as temperature increases, there is a decline in the 

fraction of molecules with sufficient energy to react (Davidson et al., 2006). 

There is increasing evidence to suggest that the Q10 of soil respiration is not 

constant during the year, but tends to decrease with increasing temperature and 

decreasing soil moisture - though some argue that these seasonal changes are 

ecologically insignificant because the total annual flux is not altered (Janssens et 

al., 2003). Q10 discrepancies may stem from simple differences in experimental 

procedure, e.g. making temperature measurements at different depths. It has been 

argued that the substantial differences between observed Q10 in various 

publications might be partly explained by the decrease in diurnal variation in 

temperature with depth. Others have found an increase in Q10 with increasing 

depth in the soil (Smith et al., 2003). Experimental results demonstrated that Q10 

values vary with temperature, quantity and quality of soil organic matter, soil 

moisture and land cover type (Zhou et al., 2009). All the environmental and 

biological factors such as soil temperature, moisture, and soil organic matter are 

spatially heterogeneous. Accordingly, estimated Q10 from measured soil 

respiration likely varies spatially at different geographic locations (Zhou et al., 

2009).   
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Most empirical models rely on the correlation between the seasonal 

patterns of soil respiration and temperature, and thus have a constant parameter 

value for Q10. Consequently, they may over- or underestimate soil respiration 

over at smaller time scales. The response of soil respiration is not well known 

below that of the seasonal pattern (Janssens et al., 2003). Given the recognized 

uncertainties associated with assigning the appropriate Q10 value to the 

appropriate place and season, a better understanding is still needed (Davidson et 

al., 1998). 

 

1.5. Modelling GHG emissions  

If C sequestration in conventional agricultural soils is to become a 

tradable commodity in the emerging C markets, then methods are needed to 

predict, monitor and validate not only changes in soil C stocks over time, but also 

their impacts on non-CO2 GHG, like CH4 and N2O (Salas and Li, 2003). Given 

the considerable expense of establishing and maintaining flux measurement sites, 

the use of simulation models to estimate fluxes from agricultural soils has 

obvious benefits. Modelling also allows the complex links between soils’ 

physical, chemical and microbial processes to be examined (Adballa et al., 

2009). On a global scale, models allow the comparison between countries to be 

established, which is especially useful in light of the ongoing debate around 

‘local food’. Therefore, approaches that rely on spatially explicit, process based 

models coupled with direct measurements to validate and constrain uncertainties 

in model estimates are probably the most cost-effective and efficient (Salas and 

Li, 2003). If nations wish to explore the consequences of various mitigation 

strategies, both in terms of GHG production as well as crop yield, process-

oriented models will be necessary tools (Li et al., 2001). There have been a 

number of different models developed in recent years. Good examples include: 

1. CANDY (CArbon-Nitrogen-DYnamics). This simulates dynamics of soil 

N, temperature and water in order to provide information about N uptake 

by crops, leaching and water quality (www.ufz.de/index.php?de=14007) 

(Franko, 1996). 

2. CENTURY was developed to simulate long-term (decades to centuries) 

SOM dynamics, plant growth and cycling of N, P and S. It was originally 
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developed for grasslands but has since been extended to agricultural 

crops, forests and savannah systems 

(www.nrel.colostate.edu/projects/century) (Parton et al., 1995). 

3. DAISY simulates crop production and dynamics of soil water and nitro-

gen under diverse agricultural management systems. It was developed as 

a tool for field management and regional administrative purposes. It has 

been applied to catchment areas, farmland areas and specific sites 

(code.google.com/p/daisy-model) (Hansen et al., 1991). 

4. DNDC (DeNitrification and DeComposition) couples denitrification and 

decomposition processes as influenced by the soil environment to predict 

emissions of CO2, N2O and N2 from agricultural soils 

(www.dndc.sr.unh.edu) (Li et al., 1992). 

5. ITE (Institute of Terrestrial Ecology - Edinburgh) Forest Model. The 

pasture model aims to simulate N cycling in a grazed soil-plant system 

(Thornley and Verberne, 1990, 1992). 

6. NCSOIL simulates N and C flow through soil microbes and organic 

components. It comprises four organic components: plant residues, 

microbial biomass, humads and stable organic matter (Molina et al., 

1983). 

7. ROTHC is the Rothamsted C model in which the turnover of C in aerobic 

soil is sensitive to soil type, temperature, moisture and plant cover 

(www.rothamsted.ac.uk/aen/carbon/rothc.htm) (Jenkinson et al., 1987). 

8. SOMM is described as the raw humus sub-model of a single plant 

ecosystem model (SPECOM) developed for forested ecosystems 

(Chertov, 1990). 

9. The Verberne/Van Veen model aims to simulate N and water balance in a 

grassland soil-plant system in order to predict yield, N uptake, N 

leaching, N mineralization and accumulation of soil organic N (Verberne 

et al., 1990; Smith et al., 1997). 

 

These models are well used; however, there are still inherent problems with 

them, as the mathematical recreation of nature will never be completely accurate, 

owing to the number of variables and feedback loops involved. There is little 

evidence that either the ITE Forest Model, NCSOIL, SOMM or Verberne/Van 
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Veen model are still being used. However, process-based models clearly have an 

important role in designing, evaluating and implementing C sequestration and 

CH4 and N2O mitigation projects. In particular, models can 

 Provide opportunities for assessing potential soil C sequestration rates in 

the project evaluation phase 

 Be used for scenario analyses to examine risks (e.g. climate variability) 

 Simulate secondary impacts of agricultural C sequestration projects on 

net GWP for long term projects 

 Provide guidance on monitoring phase of C, by verifying changes in soil 

C stocks over time at the contract target levels 

 Be used to adjust predicted (or potential) values, that are based on 

predicted climate, soil, and management conditions, to simulated actual 

conditions (critical for monitoring) 

 Be augmented with direct observations to assess reliability of model 

predictions, adjust model inputs and provide updates to overall 

uncertainties (Salas and Li, 2003). 

 

In the modelling domain, uncertainty is commonly understood as an attribute that 

must be acknowledged and associated with the quality of the information used to 

build and run a model (Zimmermann, 2000). However, when modelling a 

complex system the quality of information is not the only thing that matters; the 

modeller's beliefs and experience also play an important role (Brugnach et al., 

2008). Even though a model can be based on sound process understanding, when 

there are many unknowns about the system to be modelled, the modeller is 

forced to make assumptions and take (necessarily subjective) decisions about 

why and how a problem should be modelled, and to incorporate uncertainty into 

the model through various stages of development (Brugnach et al., 2008). 

 A number of ‘process-oriented’ simulation models have been developed 

over the last few years with the objective of simulating terrestrial ecosystem C 

and N biogeochemistry and N trace gas emissions (Li et al., 2001). Different 

models, ranging from simple regressions to completely process-based models 

have been developed. As these regression models neglect several variables, they 

cannot always be used to test different management or mitigation scenarios, in 
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contrast to the more complicated process-based models (Beheydt et al., 2007). A 

process-based model can include more factors that influence regional and inter-

annual variability in CH4 flux than an empirical method that multiplies crop area 

by mean flux rates (Babu et al., 2006). The IPCC methodology is also a strictly 

empirical model. Process-oriented ecosystem models attempt to simulate many 

or all of the components of the N cycle. As a result, process-oriented models 

require many more details about the ecosystem being simulated than strict 

empirical models. A process-oriented model can, therefore, be driven by 

temperature, moisture, pH, redox potential and other basic environmental factors 

that are not usually applied to strictly empirical models (Li et al., 2001). 

 Crop growth models such as DSSAT and RCSOD focus on high crop 

production and efficient management, especially for water and fertiliser 

management. Crop growth, development and soil water dynamics are usually 

simulated well, but soil biogeochemistry is usually not considered, or simulation 

is simplified in terms of nutrient effects on crops in the models. Biogeochemical 

models such as RothC, CENTURY and DNDC pay more attention to soil 

processes, such as decomposition, nitrification and denitrification.  

The difficulties of modelling NO and N2O emissions have three causes: 

 

1. There are at least three sources of NO and N2O: nitrification, 

denitrification and chemodenitrification. The three reactions are so 

different in their thermodynamics and kinetics that, when they are mixed 

together, the pattern of NO to N2O fluxes is unavoidably complex.  

2. Each of the reactions is driven by a number of forces, including soil 

environmental factors, (e.g. temperature, moisture, pH, Eh, and substrate 

concentration) and ecological drivers (e.g., climate, soil physical 

properties, vegetation, and anthropogenic activity). Any change in the 

combination will alter the magnitude/pattern of fluxes. 

3. NO and N2O are intermediates or by-products of nitrification and 

denitrification. This means fluxes are determined by the kinetics of the 

production, consumption and diffusion of gases in the sequential 

biochemical reactions (Li et al., 2000). 
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Figure 1-5: A biogeochemical field is an assembly of forces controlling concerned 

biochemical or geochemical reactions in a specific ecosystem. The ecological drivers control 

spatial and temporal variations of the environmental factors, and the latter regulate all of 

the relevant geochemical and/or biochemical reactions. A biochemical model is to integrate 

the links among the ecological drivers, the environmental factors, and the biogeochemical 

reactions. The DNDC model was developed based on the biogeochemical concept (Li et al., 

2000).  

 

A biochemical system is an assembly of forces regulating biochemical 

(e.g. combination/decomposition, oxidation/reduction, assimilation/dissimilation) 

and geochemical (e.g. mechanical movement, dissolution/crystallization, 

oxidation/reduction, absorption/desorption, complexation/decomplexation) 

reactions in a specific ecosystem. The soil emissions from an ecosystem must be 

controlled by a series of reactions driven by the forces (Figure 1-5) (Li et al., 

2000). 

Soil-crop models such as SiB and BATs pay more attention to physical 

processes such as radiation, water, heat and momentum fluxes. Therefore gaps 

exist among the modelling efforts of agronomists, environmentalists and 

climatologists due to their different focuses. The DNDC model integrates crop 

growth processes with soil biogeochemistry (Zhang et al., 2002). 

 

1.6. DNDC model 

According to the functions of the Crop-DNDC model, the following factors have 

been quantified for the consideration of sustainable agriculture: 

 Productivity: grain yield, crop total biomass and economic benefit. 
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 Efficiency: Water use efficiency and nitrogen use efficiency. 

 Longevity: long-term soil organic carbon accumulation. 

 Environmental implications: emissions of GHG, other atmospherically 

active gases and nitrate leaching (Zhang et al., 2002). 

 

The DeNitrification-DeComposition (DNDC) model developed by C. Li 

and his colleagues is a process-based biogeochemical model constructed for 

predicting C sequestration, N dynamics and trace gas emissions from 

agroecosystems in the USA, China, India and Europe. Originally, it was a rain-

event driven model of soil N and C biogeochemistry that has been adapted to 

predict N2O emissions from agricultural soils over the year. The Crop 

Decomposition-Denitrification model can be used to determine C and N 

biogeochemistry in agro-ecosystems; the model can also yield daily data on 

emissions with the input parameters based upon 4 major ecological drivers: (1) 

climate, (2) soil properties, (3) vegetation, and (4) anthropogenic activities. It 

consists of six sub-models: soil climate (including water flow and leaching), crop 

growth, decomposition, nitrification, denitrification, and fermentation. The six 

interacting sub-models include fundamental factors and reactions, which 

integrate C and N cycles into a computing system. Crop growth is estimated 

using a generalized crop growth curve for both upland and wetland 

agroecosystems. The original DNDC model was designed for non-flooded 

agricultural lands, simulating the fundamental processes controlling the 

interactions among various ecological drivers, soil environmental factors and 

relevant biochemical or geochemical reactions, which collectively determine the 

rates of trace gas production and consumption in agricultural ecosystems (Babu 

et al., 2006).  The newly developed Crop-DNDC model has a linking between 

crop growth and soil biogeochemical processes and has been validated for a 

number of ecosystems, including grasslands, forests, agricultural lands; pastures, 

crop fields and rice paddies (Abdalla et al., 2009, Cai et al., 2003, DNDC, 2003, 

Leip et al., 2008; Li et al., 1992; Li et al., 2004; Qui et al., 2009; Tonitto et al., 

2007; Zhang et al., 2002). 

The model has been applied to agricultural fields (Li et al., 1996, 2001; 

Gou et al., 1999), dairy farms (Brown et al., 2001), rice fields (Li et al., 2005) 
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and soil organic carbon dynamics (Li et al., 1997). A forest version of DNDC, 

PnET-N-DNDC, was developed for forest soils.  It integrated three models: the 

Photosynthesis-Evapotranspiration (PnET) model, the DNDC model, and the 

nitrification model. PnET is a forest physiology model for predicting forest 

photosynthesis, respiration, organic carbon production and allocation and litter 

production (Cai et al., 2003; Li et al., 2000). Some alterations – such as the 

inclusion of specific data on soil characteristics and crop information - have been 

made to the database structure and content since the model’s inception to 

improve suitability for use in the UK. Information on the changes that have been 

made, and their rationale, is unavailable (Brown et al., 2002). 

The major considerations for the model development include: (1) the 

dynamics of crop growth and its responses to climatic conditions and farming 

practices; (2) interactions of crop growth with soil biogeochemical processes, 

and (3) the overall behaviour of the model in simulating crop yield and trace gas 

emissions responding to climate conditions and management practices (Zhang et 

al., 2002). In the version of DNDC modified for prediction in rice paddies, any 

change in the farming management will simultaneously alter several soil 

environmental factors including temperature, moisture, Eh, pH and substrate 

concentration gradients. These altered environmental factors will simultaneously 

and collectively affect a series of biochemical or geochemical reactions such as 

elemental mechanical movement, oxidation / reduction, dissolution / 

crystallization, adsorption / desorption, complexation / decomplexation, 

assimilation / dissimilation, etc., which finally determine CO2, CH4 and N2O 

emissions from the modelled ecosystems (Li et al., 2004). 

 The model can predict climate (soil temperature and moisture profiles 

based on soil physical properties, daily weather, and plant water use); crop 

growth and soil biogeochemistry and their interactions; soil C dynamics; N 

leaching and trace gas emissions (e.g. NO, N2O, N2, CH4 and NH3). The model 

can also yield daily data on emissions with the input parameters based upon the 

four major ecological drivers. These parameters can be used to simulate as many 

years’ data as is required. The model can be used for individual point locations 

(e.g. a single field) or, by means of coupling with GIS data, can be used at the 

regional scale (DNDC, 2003; Leip et al., 2008). 
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A number of versions of DNDC exist for individual land uses (e.g. 

forestry). Crop-DNDC model has two major advantages over other such models 

as CERES (Crop Environment Resource Synthesis), GePSi (Generic Plant 

Simulator), RothC, CENTURY and ECOSYS, as it integrates crop growth and 

soil biogeochemistry and can be used for predicting impacts of climate change or 

alternative management on both agricultural production and the environment 

(Zhang et al., 2002). 

 DNDC can simultaneously simulate at a sub-daily time step. That means 

it can provide more comprehensive simulations of the responses of 

agroecosystems to climate warming and atmospheric CO2 enrichment (Levy et 

al., 2007; Zhang et al., 2002). Among the advantages of DNDC are that it has 

been extensively tested and has shown reasonable agreement between measured 

and modelled results for many different ecosystems such as grassland, cropland 

and forest (Figure 1-6, 1-7, 1-8). DNDC uses databases with spatially and 

temporally differentiated information on climate, soil, vegetation and farming 

practices as parameters for supporting local, regional and national scale analyses 

(Salas and Li, 2003). Apart from Li and some others, there has been little 

systematic comparison of the different model versions. 

 

 

Figure 1-6: A comparison of a modelled (-) versus measured () emissions of N2O-N a 

grassland site near Edinburgh (Brown et al., 2002). 
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Figure 1-7: Comparison between observed and modelled CH4 and N2O fluxes from a rice 

paddy field (Li et al., 2005). 

 

 

Figure 1-8: Comparison of measured and simulated values of percent water-filled pore 

space (WFPS) for a beech forest site (Stange et al., 2000). 

 

In the Crop-DNDC model, crop growth is simulated not only by tracking crop 

physiological processes and decomposition rates, but also by calculating water 

stress and N stress. Biogeochemical processes that control CH4 and N2O 

emissions are non-linearly coupled with anthropogenic and ecological drivers 

that are highly variable in space and time (Salas and Li, 2003). DNDC predicts 

N2O emissions by tracking the reaction kinetics of nitrification and 

denitrification driven by climatic conditions, soil properties, and management 

practices (Li et al., 2004). 
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Figure 1-9: Crop DNDC model structure (Li et al., 2006). 

 

The DNDC model is constructed on two components that reflect the two-level 

driving forces that control geochemical and/or biochemical processes related to C 

and N fluxes (Figure 1-9). The first consists of soil climate, crop growth and 

decomposition sub-models and predicts soil temperature, moisture, pH, redox 

potential (Eh) and substrate concentration profiles (ammonium, nitrate, dissolved 

organic carbon) based on ecological drivers. These include daily precipitation, 

maximum and minimum air temperature, soil organic matter, soil texture, soil 

clay content, soil bulk density, vegetation and anthropogenic activity. The second 

component consists of nitrification, denitrification and fermentation sub-models 

and predicts NO, N2O, CH4 and ammonia (NH3) fluxes based on soil 

environmental variables derived from the first component (Xu-Ri et al., 2006; 

Kiese et al., 2005; Salas and Li, 2003). 

During changes in soil water content, the soil redox potential (Eh) is also 

subject to substantial changes. Consequently, CH4 and N2O are produced and 

consumed under certain conditions at different stages of the varying soil redox 

potential (Li et al., 2005). It is known that the redox potentials in soil in which 

N2O and CH4 are produced differ. The critical redox potential of a flooded rice 
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soil in which N2O is produced is +250 to +300 mV over a range of soil pH 

conditions. For CH4 it was found to be approximately -140 to -160 mV (Chen et 

al., 1997). To quantify Eh dynamics, DNDC combines the Nernst equation with 

the Michaelis-Menten equation. The two equations can be linked by a common 

factor: oxidant concentration (Li et al., 2005). 

The premise of the DNDC model is that by modelling the processes that 

lead to N2O fluxes, a model can make reasonable estimates of emissions from a 

range of agro-ecosystems (Li et al., 2001). DNDC simulates a full C and N 

balance, including different C and N pools and the emissions of all relevant trace 

gases from soils (Neufeldt et al., 2006).  

 

 

Figure 1-10: The overall structure of the Crop-DNDC model (Zhang et al., 2002). 

 

The soil climate sub-model calculates hourly and daily soil temperature and 

moisture fluxes. Water fluxes and heat flows through the soil which is divided 

into horizontal layers which are determined by soil texture and the gradients of 

soil moisture potential and soil temperature (Brown et al., 2002). 

The crop growth sub-model simulates crop biomass accumulation and 

partitioning based on thermal degree days and daily N and water uptake (Brown 

et al., 2002). The plant growth sub-model includes subroutines for cropping 

practices such as fertilization, irrigation, tillage, crop rotation and manure 

addition to simulate SOM turnover in arable lands. Clay adsorption of humads 

(moderately stable fractions of carbon in the form of living organisms and living 

humus) allows some soil-specificity; decomposition is a first order kinetic 

process, such that biomass formed during decomposition is a dependent variable 

(Smith et al., 1997; Borzecka-Walker et al., 2011) (Figure 1-10). 
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The decomposition sub-model calculates decomposition, nitrification, 

NH3 volatilisation and CO2 production on a daily time step. Decomposition can 

occur in three organic matter pools: decomposable residues, microbial biomass 

and humads, each of which has a labile and resistant component. The effect of 

soil properties; soil temperature, clay fraction and water content is modelled 

using factors that constrain decomposition rate from the maximum in non-

optimum conditions (Brown et al., 2002). During decomposition and 

assimilation, organic C, ammonium, and nitrate are produced and may 

accumulate. The levels of these substrates depend on the balance between the 

rates of mineralization, assimilation and loss (Li et al., 1992). 

By tracking crop biomass production and soil organic carbon (SOC) 

decomposition rates, DNDC captures short- and long-term SOC dynamics. It 

predicts N2O emissions by tracking the reaction kinetics of nitrification and 

denitrification across climatic zones, soil types, and management regimes (Li et 

al., 2004). Classical laws of physics, chemistry and biology, and empirical 

equations generated from laboratory observations, were used in the model to 

parameterize each specific reaction. The entire model forms a bridge between 

basic ecological drivers including management of agro-ecological systems, and 

water, C and N cycles (Salas and Li, 2003). The process algorithms in the DNDC 

model have been developed and parameterized using data collected in field and 

laboratory studies performed by a number of research groups in a number of 

locations, including two sites in China. The goal of process modelling is to 

include robust parameterizations of key processes so that the effects of process 

interactions and feedbacks can be simulated in a range of settings and conditions 

(Li et al., 2001). 

Since C sequestration, CH4 and N2O emission are affected by many 

environmental factors, albeit in different ways, shifting from one location to 

another will alter the effects of any management alternatives on the net global 

warming potential (Li et al., 2004). During decomposition and assimilation, 

organic C, ammonium, and nitrate are produced and may accumulate. The levels 

of these substrates depend on the balance between the rates of mineralization, 

assimilation and loss (Li et al., 1992) 

DNDC models the growth of over 40 types of crop plants based on such 

factors as their optimum yield, partitioning of assimilated C to root, leaf, stem 
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and grain, C/N ratios of root, leaf, stem and grain and water requirement. Harvest 

terminates root growth and turns 100% of the root biomass into root litter, which 

is automatically incorporated in the soil profile. Tillage following harvest will 

incorporate this part of the aboveground litter into the soil profile. As soon as the 

litter is incorporated in the soil, the litter is partitioned into three soil litter pools: 

(1) very labile, (2) labile and (3) resistant pools. The labile pool is carbon, which 

turns over relatively rapidly (< 5 years) (Hoyle et al., 2008). The partitioning 

fractions are calculated based on the C/N ratio of the fresh litter (Li et al., 2004). 

The crop/vegetation growth sub-model simulates the growth of various crops 

from planting to harvest, predicting biomass and N-content of grain, stalk and 

root. Crop growth is limited by N and water availability in the root zone in the 

crop growth sub-model. Transpiration water losses are calculated from crop 

growth and a crop-specific water-use-efficiency parameter. A decomposition 

sub-model has four soil C pools: litter, labile humus, passive humus and 

microbial biomass (Li et al., 2001). 

 When crop respiration is simulated growth and maintenance respiration 

are considered separately (Zhang et al., 2002). Root respiration is a result of three 

processes: (1) root growth, (2) root maintenance and (3) ion uptake and transport. 

Osman (1971) observed that root respiration of wheat was an exponential 

function of the temperature from 10-30ºC, with a Q10 value of 2.5 (Li et al., 

1994a). However, there are large differences in carbon dynamics across crop 

types and geographical area. In general, pastures are the largest sinks of carbon. 

Cotton, corn, rice with winter flooding, tomatoes, citrus and deciduous fruit 

cropping systems are additional sinks of C, as a result of farming practices. On 

the other hand, lettuces, beans, oats and winter wheat cropping systems appear to 

be a net source of carbon, and thus cause a decrease in soil carbon. Areas of rice 

paddies (without winter flooding), beets, sorghum, sunflowers, and viticulture do 

not appear to be significant sources or sinks of C (Li et al., 2004). The cropping 

systems of cotton, corn, alfalfa, non-legume hay (or pasture), citrus and 

deciduous fruit orchards made positive contributions to carbon sequestration. 

This sequestration is likely due to the high litter production of these cropping 

systems. SOC was reduced for lettuce, dry beans and sunflower cropping 

systems by 0.003–0.8 Tg C over the modelling period, most likely due to their 

low amounts of litter entering the soil. The cropping systems of cotton, corn and 
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grapes are the highest contributors to total nitrous oxide emissions. By tracking 

crop biomass production and decomposition rates, DNDC tracks short- and long-

term SOC dynamics (Li et al., 2004). 

 

 

Figure 1-11: Crop sub-model for DNDC. Where rectangles are steady state, circles/ellipses 

are processes, whilst solid lines and dash lines are for matter flow (Zhang et al., 2002). 

 

In the Crop-DNDC model, crop growth is simulated not only by tracking crop 

physiological processes but also by calculating water stress and nitrogen stress, 

which are closely related to soil biogeochemical processes and hydraulic 

dynamics. Biogeochemical processes that control CH4 and N2O emissions from 

agroecosystems are non-linearly coupled with anthropogenic and ecological 

drivers that are highly variable in space and time (Salas and Li, 2003). Figure 1-

11 shows the structure of the crop sub-model. The major state processes and 

variables include phenological development; LAI; photosynthesis and 

respiration; assimilate allocation; rooting processes; water and nitrogen uptake; 

and biomass and nitrogen content of crop organs. Crops assimilate atmospheric 

carbon through photosynthesis, and carbon assimilation produces nitrogen 

demand. The actual nitrogen uptake also depends on the availability of mineral 

nitrogen in soil. Phenological stages and stress factors (water and nitrogen) 

influence carbon allocation and nitrogen demand (Zhang et al., 2002). Crop-

DNDC also quantifies crop residue incorporated in the soil at the end of each 

growing season. Thus the model has coupled crop growth algorithms with soil 
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biogeochemical components, and simulates the carbon, nitrogen and water cycles 

in agroecosystems with a relatively complete scope. The model was validated 

against field measurements, including soil moisture, leaf area index, crop 

biomass and nitrogen content and the modelled results were in agreement with 

observations on soil carbon dynamics and trace gas emissions as well. Sensitivity 

tests, demonstrating the accuracy of the model to field measurements, 

demonstrated that the modelled results in crop yield, soil carbon dynamics and 

trace gas emissions were sensitive to climate conditions, atmospheric CO2 

concentration and various farming practices. There remains the potential for 

applying the model for simultaneously predicting effects of changes in climate or 

management on crop yield, soil carbon sequestration and trace gas emissions 

(Zhang et al., 2002).  

 DNDC is able to track the turnover of crop litter in the soils in terms of its 

quantity and quality as well as by the soil’s temperature, moisture level, and 

aeration. In DNDC, tillage affects SOC decomposition rates through two 

mechanisms (Li et al., 2004). Phenological information for mapping cropping 

practices was obtained with multi-temporal EVI (Enhanced Vegetation Index). 

Figure 1-12 shows Multitemporal EVI development curves which are plotted 

against time; thresholds will be established for each cover type to indicate the 

onset (B), growth rate (A), maximum potential growth (D), time corresponding 

to the maximum, and harvest (Salas and Li, 2003).  

 

 

 

Figure 1-12: Multitemporal EVI development curve where (B) is growth rate, (A) is 

maximum potential growth and (D) is time corresponding to the maximum (senescence) 

and harvest. (Salas and Li, 2003) 
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DNDC characterizes soil physical properties by soil texture (Li et al., 1992). 

DNDC uses four soil properties: (1) soil bulk density, (2) clay fraction, (3) pH 

and (4) organic carbon content (Li et al., 2004). The soil thermal conductivity 

depends on soil water content, N2O and CO2 from decomposition and on the type 

of soil. Soil water tension and unsaturated hydraulic conductivity are strong 

functions of the soil water content (Li et al., 1992). Day length is estimated based 

on latitude and Julian date. Photosynthetically active radiation at a certain time of 

the day is estimated based on daily solar radiation and solar elevation. Canopy 

and soil temperatures are estimated based on daily air maximum and minimum 

temperatures (Zhang et al., 2002). 

 For an overview of decomposition of organic matter in soils; nitrogen 

behaviour is simulated in the following ways. (1) When organic C is oxidised to 

CO2, the associated N is transformed to the NH4
+
. (2) NH4

+
 can be nitrified to 

nitrate or transferred to ammonia and volatilised to the air. (3) When organic C 

transfers from one pool to another, surpluses or deficits of available N can occur 

because of the differences in C:N ratios among different pools (Li et al., 1992). 

Plant nitrogen comes from NO3
-
 and NH4

+
 pools, based on their relative 

concentrations (Li et al., 1992). Because each of the soil litter pools possesses its 

own specific decomposition rate, the partitioning algorithms will determine the 

difference in the bulk decomposition rate for each of the simulated specific crop 

residues. Through these mechanisms, DNDC is able to precisely track the 

turnover of crop litter in the soils driven by its quantity and quality (i.e., C/N 

ratio) as well as by the soil temperature, moisture, and aeration. In DNDC, tillage 

affects SOC decomposition rates through two mechanisms. At first, tillage 

increases soil aeration, which elevates decomposition rates. Second, tillage 

redistributes SOC in the soil profile through physical disturbance. Overall 

decomposition rates would decrease as more SOC is redistributed into the deep 

soil layers where the oxygen partial pressure is relatively low. DNDC tracks both 

effects and determines the net impacts of the system. Especially, when the crop is 

harvested, all of the roots will be incorporated in the soil (Li et al., 2004). 

The Priestly–Taylor approach (1972) is employed to measure potential 

evapotranspiration using solar radiation and temperature. Based on Dhakhwa et 

al. (1997), it was assumed that potential transpiration decreases 30% when 

atmospheric CO2 concentration doubles. Actual plant transpiration is jointly 
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determined by potential transpiration (demand) and crop uptake capacity 

(provision), which depend on soil moisture and root conditions (amount and 

distribution) (Zhang et al., 2002). At harvest, all of the grain is removed from the 

soil/plant system and all of the roots stay in the soil. The proportion of 

straw/stalks left in the fields after harvest is assumed to stand inert until the next 

tillage moves them in the soil (Li et al., 1994a). Actual yield simulated by the 

model will generally be suboptimal due to limitations by climate, water and/or N 

availability (Levy et al., 2007). 

Major farming management measures have been parameterized in 

DNDC, including tillage, fertilization, manure amendment, flooding and crop 

rotation. Tillage is defined based on its timing and depth (Li et al., 2004). The 

sensitivity of DNDC to farm management practices such as timing and type of 

fertiliser application makes it ideal for investigation of the effect of many 

management practices that are suggested as options for mitigation of N2O 

emissions (Brown et al., 2002). 

 

 

Figure 1-13: The different C pools and their transformation processes as in the DNDC 

Model (Zhang et al., 2002). 
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DNDC predicts SOC dynamics mainly by quantifying the SOC input from 

crop litter incorporation and manure amendment, as well as the SOC output 

through decomposition (Qui et al., 2009). Tillage following harvest will 

incorporate this part of the aboveground litter into the soil profile. A considerable 

uncertainty in our analysis comes from crop residue incorporation estimates (Li 

et al., 2004). The decomposition sub-model has three active C pools and one 

passive pool for the decomposition sequence, and each active pool is further 

divided into two or three sub-pools (Figure 1-13). The soil profile is divided into 

horizontal layers with a typical thickness of 2 cm. Each layer is assumed to have 

uniform properties (Li et al., 1992). The actual decomposition rate also depends 

on environmental factors, including temperature, moisture, nitrogen availability, 

soil texture (clay adsorption) and farming practices (soil disturbance). During 

decomposition of residual pools, the carbon decomposed will be partitioned into 

microbial pools and CO2. Under anaerobic conditions, CO2 and some small 

molecular carbon substrates may be converted to CH4. Soil redox potential is 

estimated based on flooding conditions. CH4 emission is the difference between 

production and oxidation. The production and oxidation rates are simulated 

based on Cao et al. (1995) (Zhang et al., 2002). The C pools decompose via first-

order kinetics. This formulation has been widely used to estimate mineralization 

potentials of soils and yield results consistent with data from incubation studies 

(Li et al., 1992). The carbon released is either respired as CO2 or incorporated 

into microbial biomass. DNDC calculates the amount of carbon incorporated into 

microbial biomass, with 90% going into labile biomass and 10% going into 

resistant biomass (Li et al., 1992).  

There are considerable uncertainties in the magnitude of SOC dynamics, 

owing to uncertainties in initial soil conditions and crop residue management. 

The patterns of N2O emissions based on geographical area or crop type are very 

different from that of SOC dynamics (Li et al., 2004). The SOC balance is hence 

determined by the total decomposition rates, which leads to SOC loss, and the 

total litter incorporation, which leads to SOC gain. The decomposition rates are 

well modelled by DNDC, based on the SOC contents in all of the SOC pools and 

soil temperature/moisture conditions. Soil organic carbon gain must rely on a 

user-determined fraction of aboveground crop residue. Because crop residue 

incorporation is the most important source for SOC, any deviation in the fraction 
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of crop residue incorporation will affect the model’s accuracy. Unfortunately, 

this information (i.e., the fraction of aboveground crop residue incorporation) is 

usually missing or not precisely reported in most publications or reports. The 

inaccuracy in the amount of crop residue incorporated in soil is actually the most 

important factor that introduces uncertainties in the modelled SOC sequestration 

(Li et al. 1994; Li et al. 2003; Li et al., 2004). 

 

1.7. N Production and Reduction in DNDC 

DNDC predicts N2O emissions by tracking the reaction kinetics of nitrification 

and denitrification driven by climatic conditions, soil properties and management 

practices (Figure 1-14). Based on experimental observations and biogeochemical 

analysis, SOC and nitrate or nitrite have been recognised to be dominant factors 

affecting soil N2O emissions. Soil temperature, moisture, pH, redox potential and 

other substrate concentrations (e.g., DOC, NO3
-
, NH4

+
) can also affect N2O 

production (Li et al., 2004). 

 

 

Figure 1-14: The different N pools and their transformation processes as in the DNDC 

Model (Zhang et al., 2002). 

 

In the DNDC model, inorganic N availability for N2O production was derived 

only from the decomposition process of soil organic matter and without 

considering the effect of high initial NH4
+
 concentration. A simple equation was 

added to the nitrification sub-model of DNDC to calculate the N2O gas flux from 

the excess soil NH4
+
 concentration (Xu-Ri et al., 2003). The daily decomposition 

rate for each sub-pool is regulated by pool size, its specific decomposition rate 

(SDR) or fraction lost per day, soil clay content, N availability, soil temperature 

and moisture and effective depth of the soil profile (Tang et al., 2006). The 

 
NO2

- 
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reactions of nitrification, denitrification and chemodenitrification are separately 

simulated in the model due to their inherently different mechanisms. Nitrifiers 

require aerobic conditions, as they use the enzymes ammonia monoxygenase, 

which needs molecular oxygen to oxidize NH3 to N2O. In contrast, anaerobic 

conditions favour denitrifiers as they can use nitrogen oxides as electron 

acceptors when oxygen is depleted in the soil (Li et al., 2000). In DNDC it is 

assumed that only free NH4
+
 and NO3

-
 are available for microbial biomass and 

the plants (Li et al., 1994a). Transformation of the ammonium to ammonia is 

influenced by the soil pH, temperature and buffer capacity (Li et al., 1992). The 

denitrification sub-model tracks the sequential biochemical reductions from NO3
-
 

to NO2
-
, NO, N2O and N2 based on soil redox potential and dissolved organic 

carbon (DOC) concentration. Soil factors such as pH and temperature are taken 

into account. The growth and death of denitrifier populations are simulated, 

which enables consumption of C, NO3
-
, NO2

-
, NO and N2O (Brown et al., 2002). 

The Nernst equation and the Michaelis-Menten equation were adopted in 

DNDC to integrate the ecological drivers, soil environmental factors and the 

biogeochemical reactions into a modelling framework. DNDC tracks the soil 

redox potential evolution and calculates productions and consumptions of CO2, 

N2O and CH4 sequentially for both upland and wetland ecosystems (Qui et al., 

2009). The Michaelis-Menten equation is a widely applied formula describing 

the kinetics of microbial growth with dual nutrients, which are DOC and electron 

acceptors (i.e., nitrogen oxidants) in the denitrification reactions (Tonitto and Li, 

2006). The Nernst equation is a basic thermodynamic formula defining soil Eh 

based on concentrations of the oxidants and reductants existing in the soil’s 

liquid phase (Tonitto and Li, 2006).  

The Nernst and the Michaelis-Menten equations can be coupled, as they 

share a common factor: the oxidant concentration. This coupling has been 

realized in DNDC through a simple kinetic scheme called the ‘anaerobic 

balloon’. The nitrification/denitrification scheme was improved using the simple 

kinetic scheme of an ‘anaerobic balloon’’ that swells or shrinks according to the 

redox potential of the soil. The balloon represents the volumetric fraction of 

anaerobic microsites in a soil layer. Substrates (such as DOC, NH4
+
 and NO3

-
) 

were allocated to the anaerobic or aerobic compartments of each layer based on 
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oxygen availability and consumption in the soil profile (Cai et al., 2003; Li et al., 

2004; Giltrap et al., 2009; Shirato, 2005). 

The Nernst equation calculates the soil bulk Eh. As soon as the Eh value 

for a soil layer is estimated (based on the dominant oxidant species) the size of 

the anaerobic balloon can be determined, and hence the soil substrates will be 

allocated inside and outside of the balloon proportionally. Relatively anaerobic 

microsites will be allocated within the anaerobic balloon and relatively aerobic 

microsites outside the balloon) (Li et al., 2004, Tonitto and Li, 2006). It is 

defined that only the substrates allocated within the balloon will be involved in 

the anaerobic reactions (e.g., denitrification etc.) and the substrates allocated 

outside of the balloon will be involved in the aerobic reactions (e.g., nitrification 

etc.) (Tonitto and Li, 2006). On the proportional size, DNDC allocates the 

substrates (e.g., DOC, NO3
−
, NH3 or NH4

+
) into the aerobic and anaerobic 

microsites in the soil. Those within the anaerobic microsites can only be involved 

in reduction reactions and those outside can only participate in the oxidation 

reactions. The Michaelis-Menten equation is used to determine the rates of the 

reactions occurring within and outside of the balloon (Li et al., 2004). By 

tracking the formation and deflation of a series of anaerobic balloons - driven by 

depletions of, respectively, oxygen, NO3
-
, Mn

4+
, Fe

3+
 and SO4

2-
 - DNDC 

estimates soil Eh dynamics as well as production and consumptions of the 

products from the reductive/oxidative reactions, including CO2, N2O and CH4. 

With the anaerobic balloons, DNDC links soil Eh to trace gas emissions for 

wetland soils (Li et al., 2004). If O2 is depleted in the soil, certain groups of 

microbes (e.g., denitrifiers) can use other oxidants as electron acceptors. After 

oxygen, the most readily reduced oxidant is nitrate. As soon as the microbes 

transfer the electrons from organic C to NO3
-
, N2O and N2 will be produced 

(Firestone, 1982; Li et al., 2004).  

When the anaerobic balloon is inflated - by events such as irrigation or 

flooding causing the oxygen content to decrease - several processes will take 

place. These include: (1) more substrates (e.g., DOC, NH3, NO2
-
, NO, or N2O) 

being allocated within the balloon; (2) the rate of the reductive reactions (e.g., 

sequential denitrification reactions) increasing within the constraints imposed by 

Michaelis-Menten mediated microbial growth; and (3) the intermediate product 

gases (e.g., N2O, NO etc.) taking longer to diffuse from the anaerobic to the 
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aerobic fraction, increasing the rate at which N gases are further reduced to N2 

and stimulating denitrification (Tonitto and Li, 2006). As soon as the oxygen is 

depleted, the anaerobic balloon will reach its maximum and burst. At this 

moment, a new oxidant (i.e., NO3
-
) will become the dominant species in the soil, 

and a new anaerobic balloon will be born and swell, driven by the NO3
- 

depletion. When the anaerobic balloon is deflated, nitrification will be enhanced. 

NO and N2O are produced during both nitrification and denitrification processes, 

and are subject to further transformation during their diffusion among the aerobic 

and anaerobic microsites (Li et al., 2004; Shirato, 2005). Denitrification induced 

NO and N2O emissions are the result of competition among the processes of 

production, consumption, and diffusion of the two gases within the anaerobic 

balloon (Li et al., 2000). This enables the nitrification and denitrification to occur 

in the same soil, simultaneously in anaerobic and aerobic microsites as quantified 

by the Nernst and Michaelis-Menten equations (Li et al., 2004; Li et al., 2006; 

Giltrap et al., 2009; Shirato, 2005). 

The factors directly controlling denitrification rates are soil Eh, denitrifier 

activity, and concentration of substrates. The indirect factors include soil 

temperature, moisture, pH and any C or N-related processes. The production of 

N2 and N2O is regulated by microbial population dynamics. The flux of N gas 

from the soil to the atmosphere is regulated by soil clay, soil moisture (WFPS), 

and soil temperature (Tonitto and Li, 2006). 

Denitrifiers’ activity is driven by soil Eh, temperature, moisture and 

substrates including DOC and N oxides. As intermediates of the process, NO and 

N2O are tightly controlled by the kinetics of each step in the sequential reactions. 

Classical calculations for biochemical reactions kinetics were employed in the 

model (Li et al., 2000). The same is true for CH4 production, although the 

process occurs under more reductive conditions related to hydrogen production. 

These processes demonstrate how SOC content and N2O are related through the 

coupling and decoupling of C and N in the plant soil systems. In summary, an 

increase in SOC storage elevates soil DOC and available N content through 

decomposition, which in turn stimulates the activity of a wide scope of soil 

microbes, including nitrifiers, autotrophic nitrifiers and denitrifiers, which are 

responsible for N2O production in the soils (Li et al., 2004). 
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The rate of denitrification is very temperature dependent in the 10-35°C 

range, with a Q10 of 2.0. The rate continues to increase at higher temperatures, 

reaching a maximum at 60-75°C and then falling to zero. At lower temperatures 

the denitrification rate decreases but remains measurable down to temperatures 

between 0°C and 5°C (most parameters adopted in this study are based on a 

standard temperature of 22.5°C (Li et al., 1992)). 

The developers of the DNDC model took rainfall into account and 

considered precipitation to be a dominant force driving N2O emissions from 

upland agriculture (Cai et al., 2003). The model assumed that all rain events start 

at midnight, are of constant intensity and of variable duration (Li et al., 1992). 

Nitrate, nitrous oxide and ammonium rapidly accumulate in soils between 

rainfall events and this can stimulate high peaks of N2O emission through 

denitrification, owing to high DOC and nitrate in the soil (Li et al., 2001). The 

decomposition sub-model runs in a daily time step for every day of the 

simulation. When a rain event occurs, the decomposition sub-model pauses, and 

the denitrification sub-model continues to run either until the top 20 cm of the 

soil has an average water content of less than 40% of porosity, or for a maximum 

of 10 days - after which time little denitrification occurs in the model owing to 

the depletion of substrates (Li et al., 1992). Water movement is simulated with 

consideration for the processes of surface runoff, infiltration, gravitational and 

matric redistribution, evaporation and transpiration. Water available for 

infiltration includes rainfall, irrigation, snow melt and ponds existing on the 

surface. Precipitation is considered as snowfall when daily mean air temperature 

is below zero and precipitation may be intercepted by the crop canopy (Zhang et 

al., 2002). 

DNDC simulates only a few of the dominant controlling factors 

(temperature, soil redox potential, and substrate availability – DOC for CH4, and 

DOC and nitrate for N2O) in process-based detailed dynamics. It does not 

simulate in detail factors that control gas transport, which will have a significant 

effect on the temporal dynamics of gas fluxes (Babu et al., 2006). Neither does 

DNDC take into account all factors that could influence crop biomass yield (e.g., 

pest, weed competition, micro-nutrients, severe winds or hail), nor does it 

account for weed growth during fallow periods (Li et al., 1997). Model 

requirements for data and significant variability in climatic conditions, soils and 
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N2O emissions can result in high levels of uncertainty in predictions. The DNDC 

model simulates N2O emissions under a wide variety of management scenarios 

using readily available input data. The model is, however, less rigorous in 

predicting soil–water dynamics than some other N models, such as ECOSYS or 

Expert-N (Smith et al., 2004). Though the DNDC model, in contrast, made both 

under- and over-estimations for specific fields, it tends to give a better agreement 

between measured and calculated N2O losses compared with the regression 

models methods Bouwman (1996), Freibauer and Kaltschmitt (2003) and 

Roelandt et al. (2005) for the area under consideration (Beheydt et al., 2007). 

Future applications of DNDC and other similar models will reduce uncertainties 

and provide policy-relevant data for cost-benefit analysis of specific mitigation 

strategies in the agricultural sector (Li et al., 1994). With ongoing modification 

and calibration, DNDC can become a powerful tool for estimating GHG 

emissions and yield trends, and for studying the impact of climate change – 

which in turn will have an effect on the formation of policy (Babu et al., 2006). 

DNDC has had validation and sensitivity tests that have been published by Cai et 

al. (2003), Brown et al. (2002), Li et al. (2001), Smith et al. (2004), Strange et al. 

(2000). These found varying results:  

 

The variability between measured and predicted emissions was, however, high, 

indicating that the model often over- or underestimated on a site-to-site basis, 

but did well on the average. (Smith et al., 2004) 

 

Most of the validation tests indicate that DNDC is capable of producing 

reasonable predictions for SOC dynamics and trace gas emissions from croplands 

(Li et al., 2004). Validation analysis showed that the model is able to capture the 

patterns of soil moisture, crop growth and soil carbon and nitrogen dynamics. 

Application analysis demonstrates the sensitivity of the model to climate 

conditions, atmospheric CO2 concentration and various farming practices. This 

shows the potential application of the model in climate change research and 

policy-making, GHG mitigation and sustainable agriculture (Zhang et al., 2002). 

To date, however, there are only a limited number of data sets with which daily 

models such as DNDC have actually been validated. This is a reflection of the 

paucity of datasets of appropriate length, variety and frequency rather than of the 



Chapter 1 

43 

input requirements of DNDC (Brown et al., 2002). Other authors have also found 

contrasting results between measured and simulated temporal patterns of N2O 

emissions (Brown et al., 2002; Smith et al., 2003; Cai et al., 2003). Li et al. 

(2001) argued that DNDC is able to capture general patterns and magnitudes of 

N2O emissions observed in the field, although discrepancies do exist. Sensitivity 

tests were run (Strange et al. 2000) by varying one factor and keeping all others 

constant. The sensitivity of the model output to variation in the input values was 

investigated by looking at alternative scenarios commonly observed in the local 

farmland and changing the value of the single input variable while holding all 

others at baseline values (Brown et al., 2002). Smith et al. (2004) is one of the 

few to consider the weather, looking at variations in rainfall and temperature 

from year to year and finding they are responsible for the high interannual 

variation in N2O emissions. These sensitivity analyses demonstrate the basic 

behaviour of the model (Strange et al., 2000), though not all inputs have been 

considered. In general, the number of inputs considered has been small with few 

studies looking at all possibilities. 

Throughout this review of the literature there is evidence that models are 

being used to simulate field reaction to certain conditions and are being validated 

against large data sets. There is, however, limited evidence comparing different 

model versions and examining why such differences occur. There is also limited 

evidence that there is a full understanding of the magnitude of the effect that 

inputs will have on the resultant outputs. 

In this study, therefore, I wish to examine these problems further to 

consider the reliability of the outputs given, and how well this approach will 

work when comparing areas with differing environmental conditions, prevailing 

climate and land management. The areas considered will comprise 3 different 

countries to see if we can compare field outputs of GHG emissions to give 

realistic results for use in GHG budgeting and policy making. Therefore I 

hypothesise that the UK will have lower modelled greenhouse gas emissions for 

horticultural production than equivalent production systems overseas and that the 

model will give realistic and robust results in comparison to experimentally 

derived greenhouse gas estimates. 
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2.1. Abstract 

Twenty percent of the worldwide annual increase in greenhouse gas (GHG) 

emissions originates from agriculture. Consequently, practical ways are being 

sought to actively reduce GHG emissions within agro-ecosystems. To aid the 

decision making process, a range of mathematical models have been used to 

predict the future of land use change on GHG emissions from agriculture. 

DeNitrification DeComposition (DNDC) is a commonly used process-based 

simulation model that models carbon and nitrogen biogeochemistry in agro-

ecosystems. Since its first use, numerous versions of the model have been 

released in response to increased knowledge of the behaviour of GHG emissions 

over a wider range of cropping systems. One of the major problems with using 

models, however, is the potential variation in output between different versions 

of a single model. This variation can reduce the potential for comparing the 

results obtained from modelling studies that may have used different versions. 

The aim of this chapter was to compare the 6 model outputs of five different 

releases of the DNDC model, namely versions 82, 86, 90, 91 and 92 using 7 

different cropping regimes (beans, brassicas, lettuces, potatoes, sugar beet, vining 

peas and wheat). The crop parameterisation data was obtained for the same 

geographical region; model runs were based on real farm agronomic and climate 

data and included a number of field replicates.  

It was found that some models gave similar results: DNDC82 and 86 being 

one set, and DNDC91 and 92 being the other. DNDC90 produced prediction 

results intermediate between those of DNDC86 and DNDC91. Each version of 

the model predicted different vegetables to be the highest GHG emitter, and few 

crop type trends were apparent between the model versions. For example, N2O 

emissions from a bean cropping system gave the lowest results: 0.13  0.05 kg N 

ha
-1 

y
-1

 for DNDC92 and a result of 5.24  1.95 kg N ha
-1 

y
-1

 for DNDC82, 

though sugar beet was the lowest for DNDC82 with 2.25  0.23 kg N ha
-1 

y
-1

. 

The output of the model run over ten consecutive years was also considered and 

DNDC82, 86 and 90 gave larger output values for GHG emissions than 

DNDC91 and DNDC92. In conclusion, different versions of the DNDC model 

produced predictions that significantly varied in both the amount and pattern of 
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GHG release. This brings into question the use of models as a management tool 

for designing agronomic mitigation strategies for GHG reduction. 

 

2.2. Introduction 

Radiative forcing of the Earth’s atmosphere is increasing at unprecedented rates, 

largely because of increases in atmospheric concentrations of three greenhouse 

gases (GHG): CO2, CH4, and N2O (Chen et al., 1997). The release of GHG from 

agriculture accounts for approximately one fifth of the annual global increase in 

radiative forcing (Cole et al., 1997). Unfortunately, most of the published 

research has tended to focus on soil C dynamics with less attention paid to N2O 

and CH4 (Salas et al., 2003). Consequently, the fundamental regulation of GHG 

emissions from agricultural systems needs to be better understood, and this 

information translated into mathematical models to help predict future GHG 

emission scenarios and inform policies related to climate change. 

Within a single agricultural system it is possible to calculate the net 

global warming potential (GWP) value for a specific crop production system 

which accounts for all GHGs. Such analyses allow for direct comparisons 

between management systems (Li et al., 2005). Agricultural soils have the 

potential to greatly reduce GHG emissions by changing management to increase 

soil organic matter content and decrease N2O emissions (Mosier et al., 2005). 

The greatest input of N into an agricultural system is from fertilisers (Webb et 

al., 2004) and their application is projected to continue to increase over the next 

100 years (Mosier et al., 1998). Outputs of N from agriculture mainly occur as 

crop off take (ca. 54-98% of the total) and NO3
-
 leaching, with the amount lost 

via each pathway dependent on crop type and plant residue management (Webb 

et al., 2004). These outputs can be mitigated, without decreasing production, by 

sound agricultural management (Mosier et al. 2005).  

Crop growth models have been developed to simulate crop yield and 

other agronomic factors under different conditions (Leip et al., 2008). 

Agronomists pay most attention to crop growth and yield formation rather than 

GHG emissions. Examples of such models include DSSAT, RCSODS, and 

models produced by deWit and his colleagues in Wageningen (Zhang et al., 

2002). Crop growth, development and soil water dynamics are usually simulated 

in detail, but soil biogeochemistry is rarely considered, and when it is it tends to 
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be simulated in terms of nutrient effects. Soil-crop models pay more attention to 

physical processes; gaps therefore exist among the modelling efforts of scientists, 

environmentalists and climatologists due to their different focuses. One 

exception to this is the Denitrification-decomposition (DNDC) model, which 

attempts to integrate crop growth processes with soil biogeochemistry (Zhang et 

al., 2002).  

The DNDC model can be used to determine C and N biogeochemistry in 

agro-ecosystems. The model can also yield daily data on GHG emissions with 

the input variables based upon 4 major ecological drivers (Cai et al., 2003): 

climate, soil physical properties, vegetation, and anthropogenic activities. It 

consists of the six sub-models for soil climate, crop growth, decomposition, 

nitrification, denitrification, and fermentation. The six interacting sub-models 

have included the fundamental factors and reactions, which integrate C and N 

cycles into a simulation system (Li, 2004). The DNDC model is constructed of 

two components: the first consists of soil climate, crop growth and 

decomposition sub-models, which predict soil and environmental variables based 

on ecological drivers. The second component consists of nitrification and 

denitrification sub-models, which predict N2O and NO fluxes based on soil 

environmental variables derived from the first component (Xu-Ri et al., 2006; 

Kiese et al., 2005). DNDC uses databases with spatially and temporally 

differentiated information on climate, soil, vegetation and farming practices as 

parameters for supporting local, regional and national scale analyses (Salas et al., 

2003). In the DNDC model, crop growth is simulated not only by tracking crop 

physiological processes and decomposition rates, but also by calculating water 

stress and nitrogen stress. Biogeochemical processes that control CH4 and N2O 

emissions are non-linearly coupled with anthropogenic and ecological drivers 

that are highly variable in space and time (Salas et al., 2003). DNDC predicts 

N2O emissions by tracking the reaction kinetics of nitrification and 

denitrification driven by climatic conditions, soil properties and management 

practices (Li, 2004). 

DNDC models can simulate the growth of over 40 types of crops based 

on such factors as: their optimum yield; partitioning of assimilated C; C/N ratios; 

and water requirement. The model considers a variety of crop types owing to the 

significant differences in C dynamics across crops and countries (Li, 2004). 
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DNDC simulates the crop growth at a daily time step, using a pre-defined logistic 

function (S-curve) representing a trajectory to maximum obtainable nitrogen 

uptake and biomass carbon (Leip et al., 2008). There are considerable 

uncertainties in the magnitude of soil organic C dynamics, due to uncertainties in 

initial soil conditions and crop residue management (Li, 2004).  

The DNDC model is used predicatively in a policymaking context (for 

Integrated Sink Enhancement Assessment) by the European Commission and the 

Institute for Environment and Sustainability, an EC subgroup working on the 

Kyoto Protocol (Raes et al., 2009). It has also been used at the UK level by the 

Institute of Grassland and Environmental Research as a Nutrient and Greenhouse 

Gas Evaluation Tool. They also use DNDC in conjunction with other models 

(e.g. the Economic Farm Emission Model) and calibrate DNDC from UK-based 

measurements (Brown et al., 2001; Neufeldt et al., 2006) 

In this chapter I hypothesise that the latest release version of the model gives the 

most realistic results, but that these may differ significantly with previous 

versions of the model. Therefore I will, (1) compare different versions of the 

DNDC model to see if there are any significant variations in outputs between 

them, and (2) test if the most recent version gives the most realistic predictions. 

DNDC represents a primary tool used by researchers to inform regional, national, 

and continental policy, and is used in the formulation of emission reduction 

targets in the UK and USA. Five versions of the model from different time 

periods will be compared using real data over a 10-year period. Since its 

inception, numerous versions of the DNDC model have been released and used 

by different organizations. Its evolution through time would suggest that 

policymakers may not always be using the most accurate versions of the model, 

and that outputs from older versions may not be reliable. It is important to 

estimate the error and uncertainty associated with model prediction so that 

policymakers understand scientists’ predictions of GHGs. To date, some field-

based validation of DNDC has been undertaken but its ability to correctly predict 

the output varies greatly; according to some accounts, modifications by users 

have been made to rectify this problem. According to Giltrap et al. (2009), these 

modifications are mostly adjustment to soil or crop parameters. However, there 

has been no obvious consideration of variation between different versions of the 

model to date. Consequently this will be the focus of this chapter. 
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2.3. Method 

2.3.1. Versions of the DNDC model 

Between 1989 and the present day, many versions of the DNDC model have 

been released. Five model versions were used in this comparative analysis, these 

being DNDC versions 82, 86A, 90, 91, and 92. These were officially released 

between 2003 and 2008. These versions were collected from the official DNDC 

release site (www.dndc.sr.unh.edu) and from Dr. Declan Mulligan (EU JRC, 

Ispra, Italy). DNDC90 was the original model download for this project; through 

time DNDC90 was modified to create DNDC91 and DNDC92. As it was decided 

to compare the differences between these models, older versions were needed to 

see if problems with DNDC90 had occurred previously. Dr Declan Mulligan 

supplied two older versions for testing. The required input data varied between 

versions 90, 91, 92 and version 82 and 86A as extra or different inputs became 

available in the later versions. In addition, as the DNDC versions evolve there is 

a corresponding increase in the amount of output data (e.g. between DNDC82 

and DNDC92). The most important differences in the output data relates to 

greater information on the hydrological system and on the cropping section. 

Unfortunately, changes to the program code from model version to version are 

not open access and so it is difficult to see how each version of the model differs 

mathematically.  

 

2.3.2. Farm management input data 

The inputs for the model were agricultural management data collected for a range 

of crop types from 7 farms in Worcestershire, UK. The different vegetable types 

used in this comparison were; sugar beet (Beta vulgaris), vining peas (Pisum 

sativum), lettuce (Lactuca sativa), beans (Phaseolus vulgaris), wheat (Triticum 

aestivum), potatoes (Solanum tuberosum), and brassicas (Brassica oleracea) 

(Table 3-3). 

The same data were subsequently used when running all five versions of 

the model. The data collected from the farmers included agronomic management 

information for individual fields for specific vegetable crops. If key data was not 

available this was obtained from The Farm Management Handbook 2006/2007 

(SAC, 2006). The potato and lettuce fields had irrigation. Lettuce, vining peas, 
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some brassicas and some beans had one or more crops grown per rotational year. 

DNDC82 also has a difference in model-based input data of Litter SOC, Humads 

SOC, Humus SOC, Soil NO3
-
, Soil NH4

+
 and moisture. 

 

Table 2-1: Summary of the different inputs added or removed between versions 82 (older 

version) and 92 (newer version) of the DNDC model. 

Factors  Model versions (DNDC) 

 82 87 90 91 92 

Initial soil moisture Yes No No No No 

Initial soil temperature Yes No No No No 

Increase rate of atmospheric CO2 concentration No Yes Yes Yes Yes 

Depth of water retention layer No Yes Yes Yes Yes 

High groundwater table No No No Yes Yes 

Ability to redefine the SOC portioning and 

profile No Yes Yes Yes Yes 

Crop/land use types      

   Papaya Yes No No No No 

   Steppe Yes No No No No 

   Savannah Yes No No No No 

   Silage beet Yes No No No No 

   Celery No Yes Yes Yes Yes 

   Hops No Yes Yes Yes Yes 

   Rain fed rice No No Yes Yes Yes 

   Mixed cover crop No Yes Yes Yes Yes 

   Safflower No Yes Yes Yes Yes 

   Flax No Yes Yes Yes Yes 

Is it a cover crop? No No Yes Yes Yes 

Ability to modify crops No Yes Yes Yes Yes 

Ability to add new crops No No Yes Yes Yes 

Controlled-release fertiliser No Yes Yes Yes Yes 

Nitrification inhibitor application No Yes Yes Yes Yes 

A choice of flooding options Yes No No No No 

   Conventional flooding (5-10 cm) No Yes Yes Yes Yes 

   Marginal flooding (-5-5 cm) No Yes Yes Yes Yes 

Grass cutting (How often, when and amount?) No Yes Yes Yes Yes  
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Table 2-2: The input ranges for each crop during initial model parameterisation (the units are those used by the model). 

Crop  Units Lettuce Vining Peas Brassicas Beans Wheat Potatoes  Sugar Beet  

  N conc. in rainfall mg N l
-1 

0.286 0.286 0.286 0.286 0.286 0.286 0.286 

  NH3 background µg N m
-3 

0.060 0.060 0.060 0.060 0.060 0.06 0.060 

  CO2 background ppm 350 350 350 350 350 350 350 

Soil 

Soil texture  Clay  

Loam  

Loamy Sand  

Clay, Silty 

Clay  

Loam  

Loamy Sand  

Clay  

Loam 

Loam 

Loamy Sand 

 

Silty Clay 

Loam 

Silty Clay  

Loam  

Loamy Sand 

Silty Clay  

loam  

Loamy Sand 

Bulk density g cm
-3 

1.75 1.68 1.80   1.68 1.68 1.48 

Soil pH  4.98-7.45 5.52-7.07 5.88-7.35 6.15-6.80 4.63-6.25 4.72-6.30 6.07-7.10 

SOC at surface kg C kg
-1

 0.013-0.026 0.010-0.037 0.010-0.031 0.008-0.027 0.010-0.027 0.012-0.025 0.011-0.023 

Slope % 3-15 4-25 5-15 5-15 5-10 5-10 5-30 

Farming 

No. crops  2-3 2 1-2 1-2 1 1 1 

Crop type  lettuce vining peas brassicas beans wheat potatoes sugar beet 

Harvest mode  1 1 1 1 1 1 1 

Fraction left  0.3-0.5 0.3 0.5 0.3-0.4 0.1 0.2 0.2 

Tillage 
No. tillage  5 3 3 2 2 5 3.000 

Tillage method  2,3,3,4,5 2,4,5 3,3,4, 3,4 3,5 2,2,4,4,5 2,2,5 

          

Fertilization 

No. applications  2-3 None 1 None 1 1 1 

Type  Urea None NH4NO3 None NH4NO3 NH4NO3 Urea 

Amount kg N ha
-1 

67.9-102 None 500 None 119 454 100 
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Application type  Surface None Surface None Surface Surface Surface 

Depth cm 0.2 None 0.2 None 0.2 0.2 0.2 

Manure 

amendment 

No. applications  None None None None None 1 None 

Type  None None None None None farmyard None 

Amount kg C ha
-1

 None None None None None 208.53 None 

Weeding 
Weed problem  None None Yes None None None None 

No. sessions  0 None Moderate None None None None 

Irrigation 

No. applications  3 None None None None 6 None 

Amount used cm 1 None None None None 1 None 

Water pH  7 None None None None 7 None 
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Four replicates were taken for each experimental field, with each location sampled 

monthly from July 2005 until September 2006. CO2 emissions were measured using 

an EGM-4 equipped with an SRC-1 soil chamber (PP Systems Ltd, Hitchin, UK). Soil 

and air temperature were measured in situ. Air temperature was measured 30 cm 

above ground level. For the sites in Worcestershire, 3 pits were dug to a depth of 1 m 

and samples collected every 15 cm down the soil profile using 50 cm
3
 cores to 

determine bulk density. 

 Soils collected monthly at 0–10 cm depths from each plot were dried at 105 

°C for 24 h to determine moisture content while loss on ignition at 450 °C was 

undertaken to determine soil organic matter (SOM) content. In addition, soils 

collected at the start of the growing season from all locations were analysed for SOC 

with a Leco CHN 2000 analyser by Georgia Koerber. 1 M KCl extracts (1:% w/v) 

were taken to determine NO3
-
 and NH4

+
 levels in soil. The extracts were frozen prior 

to analysis. Nitrate concentrations in the extracts were measured using the vanadium 

chloride method of Miranda et al. (2001), while ammonium concentrations were 

determined according to Mulvaney (1996) with a Skalar segmented-flow 

autoanalyser. Soil pH was measured in a 1:5 (w/v) ratio of soil-to-distilled water using 

a Hanna 209 pH meter. 

 

Table 2-3: Summary of the Worcestershire fields sampled and used in the DNDC model 

simulations. 

Vegetable No of fields 

Beans (Phaseolus vulgaris) 5 

Brassicas (Brassica oleracea) 4 

Lettuces (Lactuca sativa) 6 

Potatoes (Solanum tuberosum) 6 

Sugar beet (Beta vulgaris) 6 

Vining peas (Pisum sativum) 6 

Wheat (Triticum aestivum) 6 
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2.3.3. Meteorological input data 

Weather data (maximum, minimum and average air temperature, rainfall, solar 

radiation, hours of sun and wind speed) for 10 years (1998 to 2008) for Brize Norton, 

Worcestershire was purchased from the UK Met Office (Figure 2-1). The 10 year 

dataset allowed for the possibility of running simulations over longer time periods in 

order to explore the variability/stability in model output with different annual weather 

patterns (i.e. inter-annual variation). In all versions of the DNDC model the input 

variables included maximum and minimum air temperature and rainfall. Wind speed 

became an additional input variable in DNDC versions 90, 91 and 92. 

The weather data used for the results found in the Results section ‘Running 

averages in DNDC modelling outputs’ was the average of ten years weather data from 

Brize Norton. This was to remove variation caused through climatic changes. 

 

2.3.4. Model simulation runs 

Each DNDC model version was run for each individual field for a 10 year 

period with the same crop. The crop would start with initially bare soil until the 

selected vegetable was planted and followed by bare soil once the crop had been 

harvested. The model was not pre-run to allow it to equilibrate as Li (2003) makes no 

suggestion of this in the manual. This contrasts with Qiu et al. (2009) who 

implemented a 20-year pre-simulation, and with Tonitto et al. (2007) who disregarded 

the first year of simulation to eliminate the possible uncertainties that could arise with 

the initial settings (e.g. SOC partitioning). However, two sets of results were 

considered: 

 In the first, the average of all 10 years of results was taken (termed average).  

 In the second, results from only the 10
th

 year were considered (i.e. the final 

model simulation year).  

The advantage of this latter method is that some level of equilibrium will have been 

achieved. 

 

2.3.5. Statistical Analysis 

All statistical analysis was performed using SPSS version 18 (SPSS Inc, Chicago, IL). 

A univariate analysis of variance was used for the 10
 
year average and the 10

th
 year, 
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with the dependent variable for figure 2-(3 to 7) and figure 2-9 being the differne t 

model versions for each response available.  

 

 

Figure 2-1: Ten years of real weather data for Worcestershire where the experimental fields were 

located and for which the DNDC model simulations were run. Rainfall (bar chart) measured in 

mm and graphed monthly. Average temperature (solid line) in degrees Celsius and graphed 

weekly. 

 

 

 

 

 

 

 

 

 

2.4. Results 

2.4.1. Influence of model version on crop biomass predictions 

Results for crop biomass show that overall DNDC90 and 92 predicted the highest 

crop biomass for most vegetables, but especially for potatoes with values of 11.1-11.3 
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t C ha
-1

 and 13.1-15.0 t C ha
-1

 respectively. Potatoes had the highest mass of crop 

biomass for all model types except for version 91, where wheat did. Lettuce had the 

lowest value in DNDC82, and overall it had the lowest average value for all versions 

of the models tested. DNDC86 gave the lowest results for beans of 0.28 t C ha
-1

. 

DNDC82 gave similar values for vining peas and beans, with values of 0.41 t C ha
-1

. 

DNDC92 gave the highest results for all vegetable types except for brassicas, with 

highest biomass values of 13.13 t C ha
-1

 from DNDC86.  

The predictions of crop yield averaged over the entire ten year period and 

obtained from the 10
th

 (final) year only were different in all vegetable and model 

versions, with the newer versions having more variation between the average of the 

ten years and the 10
th

 year result, although there were no significant differences found 

between the model types. 
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Figure 2-2: Comparison of the crop biomass produced by seven different crop types (  beans, 

 brassicas,  lettuce,  potatoes,  sugar beet,  vining peas  wheat) for 

five different versions of DNDC for both the final year of the model simulation (10
th

 year; upper 

panel) and averaged over the entire 10 year simulation period (lower panel) for a series of farms 

in Worcestershire. Values represent means ± SEM (n > 4). 

 

 

 

 

 

 

 

2.4.2. Influence of model version on soil organic carbon (SOC) changes 

Though DNDC82 is the oldest model version it was not the one predicting the greatest 

change in SOC; it had the third lowest set of results and was only significantly 

different in output from DNDC86 (P = 0.001). Lettuce had the highest loss of SOC in 

this version, with -1.66 t C ha
-1 

yr
-1

. Wheat had the lowest with -0.54 t C ha
-1 

yr
-1

. 

DNDC86 and DNDC90 were the versions with the most dramatic changes in SOC 

and both proved significantly different in their modelled outputs to DNDC91 (P = 

0.000 and 0.006 respectively) and DNDC92 (P= 0.000 and 0.004 respectively), with 

the highest loss for DNDC86 being lettuce with -6.07 t C ha
-1 

yr
-1

, while for DNDC90 

it was beans with -4.65 t C ha
-1 

yr
-1

. DNDC91 and DNDC92 behaved similarly, 

especially with potatoes, which actually created the most SOC over the 10 year model 

run cycle (Figure 2-2). Though these two models are similar they do differ in which 

vegetable type loses the most SOC and by how much. As with crop biomass, the 

different versions of the model predicted different changes in the SOC pool for each 

vegetable type, allowing no definitive SOC loss series for different vegetables to be 

established between the models (see Figure 2-2). 
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Figure 2-3: Comparison of soil organic carbon (SOC) loss from seven different crop types (  

wheat,  brassicas,  beans,  sugar beet,  vining peas,  potatoes,  

lettuce) for five different versions of DNDC for both the final year of the model simulation (10
th

 

year; upper panel) and averaged over the entire 10 year simulation period (lower panel) for a 

series of farms in Worcestershire. Values represent means ± SEM (n > 4). 
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2.4.3. Influence of model version on prediction for heterotrophic CO2 emissions 

Overall there were significant differences between the five models in their prediction 

of soil CO2 emissions (p< 0.001). DNDC91 measurement of the potatoes fields gave 

the largest losses for soil heterotrophic CO2 for both the 10
th

 year and 10-year average 

at 12.3 t C ha
-1 

yr
-1

 and 14.1 t C ha
-1 

yr
-1

. DNDC82 was significantly different in its 

predictions of CO2 efflux in comparison to all the other models tested for all vegetable 

types for the 10
th

 year (P < 0.001). DNDC82, however, was similar to DNDC86 for 

the running averages over the 10 year period (P = 0.236). The smallest predicted loss 

in CO2 was seen with DND86 at 0.31 t C ha
-1 

yr
-1

 from sugar beet. DNDC86 gave 

statistically similar outputs to DNDC91 and DNDC92 (P = 0.504 and 0.476 

respectively) for the 10
th

 year, but not for the 10 year running averages. For both the 

DNDC82 and DNDC86 models, brassica crops were predicted to be the greatest 

emitters for both in the 10
th
 year (1.62 t C ha

-1 
yr

-1
 and 2.33 t C ha

-1 
yr

-1
 respectively) 

and for the 10 year running averages (1.93 t C ha
-1 

yr
-1

 and 2.66 t C ha
-1 

yr
-1

 

respectively). For the DNDC91 and DNDC92 simulations, potatoes were predicted to 

be the highest emitters for both the 10
th

 year (12.3 t C ha
-1 

yr
-1

 and 14.1 t C ha
-1 

yr
-1

) 

and the 10 year averages (9.9 t C ha
-1 

yr
-1

 and 10.1 t C ha
-1 

yr
-1

), while for DNDC90 it 

was wheat for both the 10
th

 year and 10-year average (7.8 t C ha
-1 

yr
-1

 and 8.5 t C ha
-1 

yr
-1

 respectively). The smallest losses of CO2 predicted to occur were wheat for 

DNDC82 (0.6 t C ha
-1 

yr
-1

) and beans for DNDC86 (0.5 t C ha
-1 

yr
-1

; Figure 2-4). In 

contrast, for DNDC90, 91 and 92 the smallest losses in CO2 were found for lettuce 

(0.89 t C ha
-1 

yr
-1

, 0.72 t C ha
-1 

yr
-1

 and 0.78 t C ha
-1 

yr
-1

, respectively). DNDC91 and 

DNDC92 gave statistically similar results for all vegetable types (Figure 2-4).  
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Figure 2-4: Comparison of soil heterotrophic respiration (CO2) produced from seven different 

crop types (  sugar beet,  vining peas,  lettuce,  beans,  wheat,  

potatoes,  brassicas) for five different versions of DNDC for both the final year of the model 

simulation (10
th

 year) and averaged over the entire 10 year simulation period for a series of farms 

in Worcestershire. Values represent means ± SEM (n > 4). 
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2.4.4. Influence of model version on methane consumption by soil 

Agricultural soils can both produce and consume CH4, depending on the 

prevailing soil and climatic conditions (e.g. waterlogged soils produce large quantities 

of CH4 during rice production whilst aerobic/oxic soils such as those investigated here 

are normally net consumers of methane). In all the scenarios tested here, the soils 

were predicted to be net consumers of methane. Overall, DNDC82 and DNDC86 had 

the highest predictions for soils being CH4 sinks, while DNDC90 gave the lowest and 

DNDC91 and DNDC92 gave intermediate but similar results. Predictions of the net 

CH4 flux from DNDC82 were significantly different from DNDC91 (P = 0.040). 

DNDC86 predicted the second highest levels of methane consumption overall, 

although the patterns were similar to DNDC82 (P = 0.321). Within these, the 

vegetable crop with the greatest CH4 sink potential was wheat (2.52 kg C ha
-1 

yr
-1

 and 

2.12 kg C ha
-1 

yr
-1

 for DNDC82 and DNDC86; Figure 2-5) while beans gave the 

lowest predicted rates of consumption (0.11 kg C ha
-1 

yr
-1

). DNDC91 and DNDC92 

gave similar results (P = 0.998), which were slightly higher than the values produced 

by DNDC90, but again statistically similar (P = 0.246 and 0.401 respectively). In 

these versions of the model soils containing lettuce were predicted to be the greatest 

methane sinks (Figure 2-5). 
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Figure 2-5: Comparison of net methane emissions from seven different crop types (  sugar 

beet,  beans,  potatoes,  lettuce,  brassicas,  vining peas,  wheat) for 

five different versions of DNDC for both the final year of the model simulation (10
th

 year) and 

averaged over the entire 10 year simulation period for a series of farms in Worcestershire. 

Negative values indicate that the soils are net consumers of methane. Values represent means ± 

SEM (n > 4). 
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2.4.5. Influence of model version on nitrate leaching from soil 

When considering the amount of nitrate leached through the soil profile, DNDC82 

predicted the greatest rates of loss with the highest value obtained for potatoes both in 

the 10
th

 year and 10-year running average (405 and 454 kg N ha
-1 

yr
-1

 respectively) 

while the lowest values were obtained for vining peas (42 kg N ha
-1 

yr
-1

). In contrast 

to the predictions from DNDC82, DNDC90 gave significantly lower results and 

differences between crop types (e.g. the lowest predicted rates of N leaching were for 

beans at 15 kg N ha
-1 

yr
-1

 while the highest values were again for potatoes 386 kg N 

ha
-1 

yr
-1

; Figure 2-6). However, DNDC86 gave lower results than both DNDC90 and 

DNDC82, with an overall range from wheat at 3 kg N ha
-1 

yr
-1

 to brassicas at 292 kg 

N ha
-1 

yr
-1

. Just to further highlight the differences between model versions, DNDC91 

gave the lowest output for beans (1.9 kg N ha
-1 

yr
-1

) whilst in DNDC92, wheat gave 

the lowest value (8.9 kg N ha
-1 

yr
-1

). Overall, the first three versions of the model 

studied here had greater similarities in predicting which crop type had the highest 

leaching potential in comparison to the two later versions of the model. Taking all the 

results together, all five versions were similar in their outputs (P = 0.099 for 10
th

 year 

results, and P = 0.29 for the 10 year running average). DNDC82 and DNDC86 did 

give significant differences (P = 0.015). 
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Figure 2-6: Comparison of nitrate leaching from seven different crop types (  vining peas, 

 beans,  sugar beet,  wheat,  lettuce,  brassicas,  potatoes) for five 

different versions of DNDC for both the final year of the model simulation (10
th

 year) and 

averaged over the entire 10 year simulation period for a series of farms in Worcestershire. 

Values represent means ± SEM (n > 4). 
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2.4.6. Influence of model version on predicted nitrous oxide emissions from soil 

When simulating N2O emission loss rates, the models with the lowest emissions were 

DNDC86 and DNDC90 which gave statistically similar results (P = 0.528). DNDC86 

predicted lower N2O emission rates for vining peas (0.22 kg N ha
-1 

yr
-1

; 10
th

 year) and 

lettuce (1.90 kg N ha
-1 

yr
-1

, 10-year average) in comparison to DNDC90 which 

predicted higher values for beans (0.85 kg N ha
-1 

yr
-1

; 10
th

 year) and lettuce (5.80 kg 

N ha
-1 

yr
-1

; 10
th

 year) (Figure 2-7). DNDC82 gave the highest value for brassicas (11.8 

kg N ha
-1 

yr
-1

), while sugar beet was the lowest, emitting 2.25 kg N ha
-1 

yr
-1

 (both 10-

year averages). DNDC91 and DNDC92 predicted some low and some very high 

emissions, the highest being for lettuce in DNDC91 (14.2 kg N ha
-1 

yr
-1

, 10
th

 year), 

albeit it was similar to DNDC92 (P = 0.906). In addition, there were significant 

similarities between the average and tenth year results (Figure 2-7) for all models (P < 

0.05). 
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Figure 2-7: Comparison of nitrous oxide (N2O) emission rates from seven different crop types 

(  sugar beet,  vining peas,  lettuce,  beans,  wheat,  potatoes,  

brassicas) for five different versions of DNDC for both the final year of the model simulation 

(10
th

 year) and averaged over the entire 10 year simulation period for a series of farms in 

Worcestershire. Values represent means ± SEM (n > 4). 
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2.4.7. Temporal variation in model outputs over a 10 year simulation period 

It is clear from examining successive years of model predictions for a range of crops 

that the outputs from DNDC are critically dependent on the amount of time the model 

is run for. This is exemplified in the range of plots shown in Figure 2-8. The variation 

in predictions between the 5 versions of the DNDC model over the 10 year simulation 

period was found to be very large. In general, the model versions giving the most 

varied or extreme results were DNDC82 and DNDC86 (Figure 2-8). It should be 

noted that some of the variation in outputs for each of the years are partly due to 

variations in the real weather data used to run the models, as well factors associated 

with the agronomic sub-models. Climate (temperature and moisture) is a primary 

driver of the plant growth and microbial GHG emission sub-models. 

 To evaluate the temporal stability of the model, simulation comparisons were 

undertaken with three contrasting crops: lettuce, sugar beet and wheat (Figure 2-8). 

With both the lettuce and wheat crops, simulations made using DNDC92 produced 

the highest values for crop biomass, with an average value across the years of 0.64 t C 

ha
-1

 and 4.87 t C ha
-1

 respectively. DNDC91 gave the highest results for sugar beet 

with a mean of 5.86 t C ha
-1

 and generally gave results close to the average line, with 

lettuce lower than the average line with a mean of 0.26 t C ha
-1

. Wheat was higher 

than the average line with a mean of 4.09 t C ha
-1

. DNDC82 gave the lowest results 

for all three vegetable types: lettuce, sugar beet and wheat gave 0.46 t C ha
-1

, 1.51 t C 

ha
-1

 and 1.31 t C ha
-1 

respectively; see Figure 2-8. 
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Figure 2-8: Comparison of outputs from different versions of the DNDC model over a 10 

year simulation period for three crop types. Three different vegetable types were modelled 

to compare which outputs were the most affected by the variations in the different models. 

Each field measured (n=6) is averaged for the same years to produce the model output for 

that specified year. The models considered are (●) DNDC82 (○) DNDC86 (▲) DNDC90 (∆) 

DNDC91 (■) DNDC92. The solid line represents the average of all 5 model types for a 

specific year.  

 

Sugar beet had the highest outputs for soil heterotrophic CO2, while 

lettuce had the lowest (11.1 t C ha
-1 

yr
-1

 and 0.8 t C ha
-1 

yr
-1

 respectively; Figure 

2-8). DNDC82 and DNDC86 had the lowest predicted CO2 emissions with an 

average of 1.29 t C ha
-1 

yr
-1

 and 0.74 t C ha
-1 

yr
-1

 for sugar beet and 0.68 t C ha
-1 

yr
-1

 and 1.45 t C ha
-1 

yr
-1

 for wheat respectively. For DNDC82, lettuce gave the 

highest predicted CO2 efflux rates, with an average of 1.86 t C ha
-1 

yr
-1

. DNDC90 

gave the highest values for wheat with an average of 8.47 t C ha
-1 

yr
-1

, while 

DNDC82 gave a lower average of 0.68 t C ha
-1 

yr
-1

. 

 For the change in SOC, DNDC86 predicted that lettuce cultivation 

induced the greatest loss (5.3 t C ha
-1 

yr
-1

) while DNDC82 had a reduced loss of 

SOC by the tenth year, giving an average value of 3.4 t C ha
-1 

yr
-1 

(Figure 2-8). 

DNDC90, DNDC91 and DNDC92 behaved similarly, with losses of less than 2 t 

C ha
-1 

yr
-1

 for lettuce. DNDC86, DNDC90, DNDC91 and DNDC92 gave results 

for sugar beet that were similar to lettuce. DNDC86 and DNDC90 gave similar 

results for wheat of -2.6 t C ha
-1 

yr
-1

. DNDC82, DNDC91, and DNDC92 

predicted similar results for wheat with averages of -0.98 t C ha
-1 

yr
-1

, -0.36 t C 

ha
-1 

yr
-1

 and 0.40 t C ha
-1 

yr
-1

 respectively. 

Predictions for soil methane consumption had a similar pattern across the 

three vegetable cropping systems, with DNDC90, DNDC91 and DNDC92 

generally predicting similar results (Figure 2-8). DNDC82 predicted a higher 

CH4 sink, with a range and average of -2.43 and -2.83 kg C ha
-1 

yr
-1

 respectively 

for wheat, while DNDC86 predictions were marginally different at -2.54 and -

1.96 kg C ha
-1 

yr
-1

. DNDC86 gave different results for lettuce and wheat, with 

means of -1.83 and 2.28 kg C ha
-1 

yr
-1

 respectively. DNDC82 gave a lower result 

for sugar beet, with an average of -1.48 kg C ha
-1 

yr
-1

. In comparison DNDC86 

predicted an average CH4 consumption of -1.29 kg C ha
-1 

yr
-1

 (Figure 2-8). 

For the amount of nitrate leached under each cropping system, DNDC90 

and DNDC82 gave the highest results for all three vegetable types (Figure 2-8). 
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DNDC86, DNDC91 and DNDC92 gave low, and similar, predictions for sugar 

beet and wheat. DNDC86 had the lowest average of 46.4 kg N ha
-1 

yr
-1

 for 

lettuce, whereas DNDC91 and DNDC92 had similar 10-year averages of 73.3 

and 86.2 kg N ha
-1 

yr
-1

 respectively. 

In the case of N2O emissions, DNDC82 gave a higher average emission 

for lettuce than for sugar beet and wheat (6.68, 2.25 and 3.94 kg N ha
-1 

yr
-1

, 

respectively); these were the highest results, compared to the other models, for 

each vegetable type. DNDC86 gave the lowest results of 1.90, 0.28 and 0.35 kg 

N ha
-1 

yr
-1

 for lettuce, sugar beet and wheat respectively. In contrast, DNDC90, 

DNDC91 and DNDC92 produced similar emission estimates for lettuce (4.16, 

5.23 and 3.60 kg N ha
-1 

yr
-1

 respectively). DNDC91 gave the second highest 

results for sugar beet (1.93 kg N ha
-1 

yr
-1

) and lettuce and the third for wheat 

(2.56 kg N ha
-1 

yr
-1

) compared to the other models, which closely followed the 

average line, as seen in Figure 2-8. 
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2.4.8. Running averages in DNDC modelling outputs  

The temporal stability of DNDC was discussed above. However, the variability 

in model outputs for the same crop in response to repeated agronomic cycles 

with the same climatic regime is dealt with below. Figure 2-9 shows the 

cumulative average in output parameters for a range of DNDC versions plotted 

against the actual average for each year for a series of lettuce fields in 

Worcestershire. This differs from Figure 2-8 by having a cumulative (running) 

average for each model rather than the average for all the models. The results 

show a progressive step as the outputs from one year provide the input variables 

for the next year (e.g. soil organic carbon).  

 For soil heterotrophic CO2 production, all models were found to be 

statistically similar (P = 0.650) for the actual average values. DNDC90 gave a 

high starting level with a value of 7.1 t C ha
-1 

yr
-1

, which decreased to 1.8 t C ha
-1 

yr
-1

 for the second year and then followed the pattern of the rest of the models 

(Figure 2-9). Cumulatively, DNDC90 gave the highest results (7.1 t C ha
-1 

yr
-1

) 

and DNDC91 (1.4 t C ha
-1 

yr
-1

) gave the lowest results. DNDC90 was found to 

be significantly different from DNDC91 and DNDC92 (P < 0.001 and P < 0.003 

respectively). 

Changes in soil organic carbon (SOC) show the same pattern as described 

for soil heterotrophic CO2, with actual average results for all models being 

statistically similar (P = 0.152). DNDC90 predicted the greatest loss in SOC, 

with a loss in the first year of 7.1 t C ha
-1 

yr
-1

, but only a cumulative average loss 

over the ten years of 1.6 t C ha
-1 

yr
-1

. DNDC82 had an average cumulative loss 

similar to DNDC90 of 1.60 t C ha
-1 

yr
-1

, but without the substantial loss at the 

beginning. DNDC91 again predicted the lowest loss in SOC, with a range of -1.2 

to 0.6 t C ha
-1 

yr
-1

 according to the cumulative average and was found to be 

statistically different from DNDC82 (P = 0.012) and DNDC 90 (P < 0.001). 

Lastly, DNDC90 was found to be significantly different from DNDC92 (P < 

0.001) 

For CH4 emissions, DNDC82 and DNDC86 predicted more net 

consumption than the other three versions of the models, with DNDC82 showing 

the greatest sink values (average of 2.7 and 2.4 kg C ha
-1 

yr
-1

 for DNDC82 and 

DNDC86 respectively; Figure 2-9). DNDC90 predicted less methane 
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consumption than the other models, with an average of 0.83 kg C ha
-1 

yr
-1

 with 

the predictions remaining fairly constant throughout the ten year simulation 

period. The only two models that were significantly similar were DNDC91 and 

DNDC92 (0.92 and 0.91 kg C ha
-1 

yr
-1

 respectively, P = 0.993). DNDC90 was 

significantly different from DNDC82, DNDC87, DNDC91 and DNDC92 (P = 

0.001, 0.001, 0.015 and 0.047 respectively). DNDC82, DNDC87, DNDC91 and 

DNDC92 were all significantly different from each other (P < 0.001).  

  

  

 

 

Figure 2-9: Running average over a 10 year period for outputs from different versions of 

the DNDC model when simulating C and N cycling for a series of 6 individual lettuce fields. 

The symbols indicate that year’s average results for all 6 lettuce fields for each model; (○) 

DNDC82, (■) DNDC86, (∆) DNDC90, (●) DNDC91 and (▲) DNDC92. The lines for each 

model is the average for that year and all the years preceding it for all 6 lettuce fields for 

each model; () DNDC82, (--) DNDC86, ()DNDC90, (----) DNDC91 and () 
DNDC92. Values represent means for each model ± SEM (n = 6). 
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The amount of nitrate leached showed a downward trend from the first to 

the tenth year (Figure 2-9). DNDC90 gave the highest trend, with a cumulative 

average of 637 kg N ha
-1 

yr
-1

 reducing to 322 kg N ha
-1 

yr
-1

. DNDC86 gave the 

lowest trend with an average of 47 kg N ha
-1 

yr
-1

. DNDC86 was found to be 

statistically different from all other models; the only other significant difference 

was found between DNDC90 and DNDC92 (P = 0.003). 

Nitrous oxide emissions fell in the first year and reached a plateau for all 

models except for DNDC90, which continued to decrease from  10.8 kg N ha
-1 

yr
-1

 to a final running average of 4.9 kg N ha
-1 

yr
-1

. DNDC90 was found to be 

statistically different from DNDC86, DNDC91 and DNDC92 (P < 0.001 in all 

cases). DNDC82 behaved in an intermediate manner, and was found to be 

significantly different to DNDC86, DNDC91 and DNDC92 (P < 0.000, P = 

0.003 and P < 0.001, respectively). Other statistical differences were between 

DNDC86 to DNDC91 (P < 0.001) and DNDC91 to DNDC92 (P < 0.001) Figure 

2-9. 

 

2.4.9. Model variation between fields 

When making recommendations on GHG mitigation to farmers and 

policymakers it is important that proposed GHG reduction strategies are 

applicable to a wide range of farm types and not highly specific to geographical 

areas. This is also important when scaling up estimation of GHG emissions from 

the field level to the regional level. To evaluate the impact of geographical (field 

scale) location on model performance, a number of simulations for different 

fields containing the same crop were undertaken with DNDC92. The input 

parameters were based on actual management regime data collected from 

farmers. Figure 2-10 shows that DNDC92 produced significant variation in 

model outputs between different fields growing the same crop within the same 

geographical region. Furthermore, this level of variability was also seen for other 

versions of the DNDC model (data not presented). 

 The predicted crop biomass for lettuce field L4 was very high (average 

1.2 t C ha
-1 

yr
-1

), while L3 had the lowest predicted biomass yield (0.35 t C ha
-1 

yr
-1

) (Figure 2-10). L1 was found to be significantly similar to L2 (P = 0.095), L2 

was found to be similar to Lettuce3 (P = 0.092) and L5 was found to be similar to 
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L6 (P = 0.99). All other relationships were found to be significantly different (P 

< 0.05). 

 For changes in SOC, the six different fields followed the same pattern, 

starting high and progressively lessening over the 10 year simulation period. L3 

had the highest loss rate (average -0.97 t C ha
-1 

yr
-1

), whereas L1 had the lowest 

loss rate (-0.36 t C ha
-1 

yr
-1

) (Figure 2-10). The change in SOC at L3 was found 

to be statistically different from fields L1 and L6 (P = 0.015 and P = 0.044 

respectively). 

Soil heterotrophic CO2 production had a downward trend for all fields 

over time. L4 had the highest average value (1.4 t C ha
-1 

yr
-1

) being significantly 

different from L1, L2 and L6 (P values of 0.001, 0.026 and 0.012 respectively). 

Field L1, had the lowest predicted rates of CO2 emission with an average of 0.60 

t C ha
-1 

yr
-1

 and a range of 0.38 to 0.82 t C ha
-1 

yr
-1

. 

 For CH4 consumption by soil, the overall result for all fields was 

characterised by slight fluctuations from year to year (Figure 2-10). Field L3 had 

the largest sink, with an average of -1.36 kg C ha
-1 

yr
-1

, whilst L6 had the 

smallest sink of -0.67 kg C ha
-1 

yr
-1

. L6 and L4 were the only fields found to 

statistically similar (P = 0.219).  

For nitrate leaching, all fields produced similar results, with the amount 

leached varying between years (Figure 2-10). The only significant difference was 

between field L3 and both L4 and L6 (P = 0.02 and P = 0.012 respectively). L4 

had the lowest rate of leaching with an average of 51 kg N ha
-1 

yr
-1

 and L3 had 

the highest loss with 135 kg N ha
-1 

yr
-1

.  

Field L5 initially gave the highest N2O emissions for the first two years 

(6.66 and 7.76 kg N ha
-1 

yr
-1

), while L3 gave the highest overall average of 5.48 

kg N ha
-1 

yr
-1

. L3 was found to be significantly different to L1, L2, L4 and L6 

(all P < 0.001). L2 gave the lowest results with an average emission rate of 2.52 

kg N ha
-1 

yr
-1

. L1 was very close to the average for the group of fields, with an 

average of 3.39 kg N ha
-1 

yr
-1

. L5 was found to be significantly different from 

L2, L4 and L6 (P = 0.002, 0.007 and 0.03 respectively). 
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Figure 2-10: Variation in DNDC model outputs for six individual lettuce fields (●L1, ○L2, 

▲L3, ∆L4, ■ L5, □ L6) predicted using DNDC92 over a ten year simulation period. The 

solid line represents the average of the 6 fields for each year.  

 

2.5. Discussion 

An ecosystem model is a simplified representation of real world system 

functioning. In theory, a model can provide a representation of what the results 

may be if the system was measured (i.e. at steady state). When a measurement 

may be unattainable in a field situation, a model can estimate the results; 

however, if the outputs required are to possess a reasonable degree of accuracy, 

the inputs need to be accurate and specific. Variations and changes, however 

small, within the model’s matrix can have significant affects upon the results 
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obtained - as exemplified here. The complexity of environmental models is often 

a result of the number of variables within an environmental system and their 

interactions (e.g. feedback loops). DNDC is a complex model comprising four 

ecological drivers and six sub-models (Cai et al., 2003; Li, 2004). These drivers 

must interact with the sub-models and with each other to keep the system 

balanced; if this does not occur then the output given may not be realistic. The 

model aims to simulate a carbon and nitrogen cycle at a daily level over a given 

period of years for an agricultural system (Tonitto et al., 2007; Abdalla et al., 

2009; Wang et al., 2008). The inputs for this system include various data for the 

soil system, weather data (either yearly data or a repeated use of one year’s data) 

and the management system for the field (Zhang et al., 2002). Beheydt et al. 

(2007) used 22 long-term N2O emissions plots to validate the model, the oldest 

of these datasets being from 1993. They found that the default DNDC field 

capacity and wilting point needed to be adjusted to better simulate N2O 

emissions. The management system will ultimately run for any number of 

simulation timescales, from years to centuries, until the model is told to stop by 

the user. However, the stability of the model over longer timescales remains 

uncertain. 

The work undertaken here considered five versions of the model that 

have been produced over a period of about 10 years, with each model being more 

complex than the previous versions (i.e. from DNDC82 through to DNDC92). 

This should give more realistic results, but can also cause more errors within the 

models as a result of an increased number of linked calculations. In more 

complex models, a larger volume of data may make the model more accurate but 

harder to use. Errors can occur in any model and they need to be constantly 

assessed. The main developments in the model’s evolution have been:  

 Weather data - the later model takes into account the wind speeds. In 

addition, Global Met Data files can be used instead of plain text files. 

 Soils – Hydrological conductivity information can be included in addition 

to data on the presence of macro-pores and water-logging problems. Soil 

temperature and moisture content are not available inputs in later 

versions. 
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 Vegetable types have been added: SJ corn, SJ rice, SY corn, SY wheat, 

Henlan1, Woju, Ratooned Sugarcane, Shrub- blueoak, Qingcai, Raddish, 

Pepper, Edible amaranth, Qingcai2. The ability to specify whether or not 

the crop is a cover crop has been added. 

 In the new version there is an additional tillage option for deep ploughing 

at 45 cm. 

 Fertiliser - the option for slow released-controlled fertilisers and for 

nitrification inhibitors to be applied is now available in the simulation, as 

well as an option to use one’s own fertiliser files. 

 Manure - extra types have become available: compost, bean cake and 

human waste. 

 Flooding - flooding duration is defined as rain fed (control 2), observed 

water table fluctuation (control 3) as well as irrigation (control 1) is noq 

available and conventional flow (5-10 cm), marginal flow (0.5-5 cm) and 

water leakage rate instead. 

 Grass cutting - the number of times a year with date and amount cut in kg 

C/ha (DNDC manual 9.1) 

All of these variations can either increase or decrease the emissions from the 

system. With changes to tillage practice there are likely to be greater emissions 

with deeper tillage, owing to increased disturbance to the microbes in the soils 

(Al-Kaisi et al., 2005). With flooding and reduced hydrological conductivity in 

soil there may be an increase in methane emission, owing to increased 

waterlogging (Li et al., 1992). The ability to consider different crop types allows 

for greater accuracy, and grass cutting and slow-release fertilisers comes the 

likelihood of seeing less CO2 and N2O emissions. 

The results presented here indicate that differences between model 

versions can have profound effects upon the model predictions, confirming the 

hypothesis that the models would differ significantly. Unfortunately, relatively 

few field experiments have measured these outputs on the same temporal scale at 

which the models operate and therefore the knowledge of how accurate the latest 

version of the model would be is unknown. 

 DNDC has been used to measure a variety of situations, from rice paddies 

in China to European forests. Some of the models have been validated against 
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data sets by Beheydt et al. (2007), Brown et al. (2002), Cai et al. (2003), Grant et 

al. (2004), Jagadeesh Babu et al. (2006), Li (2000), Li et al. (1992, 1994, 1997, 

2000, 2006 and 2008), Miehle et al. (2006), Neufeldt et al. (2006), Qui et al. 

(2009), Salas et al. (2003), Smith et al. (1997 and 2004), Stange et al. (2000), 

Tang et al. (2006), Tonitto et al. (2007a,b) Xu-Ri et al. (2003), and Zhang et al. 

(2002). Though these results have, in the main, shown some general accordance 

with measured results, a good proportion have found the need to calibrate the 

model. Beheydt et al. (2007) was not alone in observing a poor fit between 

observed and expected data: Abdalla et al. (2009) found DNDC to constantly 

underestimate field measurements of the N2O flux due to overestimating water 

filled pore space and the effect of initial soil organic carbon (SOC) on N2O flux. 

The area that had least agreement is N2O emissions, which are one of the most 

important outputs. Neufeldt et al. (2006) and Abdalla et al. (2009) found that the 

model underestimated emissions. In the case of Adballa et al. (2009), this was 

mainly associated with low input systems, while Smith et al. (2004) found the 

model to both over- and under-estimate on a site-to-site basis. Levy et al. (2007) 

also found the model to both over and under-estimate emissions from highly 

organic soils. Lamer et al. (2007) found that the model reproduced measured 

N2O fluxes poorly, although Pampolino et al. (2006) found the annual N2O 

emission predictions to be very close to field observations. The level of 

agreement depended on the length of data used and what was being measured. 

Dietiker et al. (2010) found that DNDC, generally, predicted the seasonal trends 

and the absolute magnitude of the CO2 fluxes in a realistic way. However, 

discrepancies were during winter, when a net CO2 uptake overestimation was 

observed for several crops, suggesting that DNDC only considered a plant’s 

reaction to temperature and not other climatic issues such as sunlight hours or 

intensity.  

What is not mentioned in many of the papers is which version of the 

DNDC model is used. This is unfortunate, because – as this chapter suggests - 

the version used could have a significant influence on model results. Lamers et 

al. (2007) suggests the routine disclosure of the source code for DNDC and other 

biogeochemical models. Open source code would not only help in identifying 

errors but also enable model users to better understand the contents, and hence 

the limitations, of popular models. Ideally, a version should be validated against 
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a data set and any new versions validated against the same data set to allow 

easier comparisons to be made and the difference between versions to be 

understood.  

  DNDC72 (the year in which it was developed is not clear), was used by 

Smith et al. (2004) and Xu-Ri et al. (2003), while Neufeldt et al. (2006) used 

version 80. Version 82 was both used by Tonitto et al. (2007) and Li et al. 

(2004). Beheydt et al. (2007) and Levy et al. (2007) used 83 and 86 and 89 was 

used by Pampolino et al. (2006) and Leip et al. (2008), respectively. Abdalla et 

al. (2009) used 92. Lamers et al. (2007) notes the date on which the model was 

downloaded (8 Dec 2006), but do not give a version number. Such a wide range 

of models are noted in published papers then many of the apparent differences in 

the success of validation could well be due to the use of different versions. 

Much variation is shown between the yearly results for the ten years of 

simulation. Li et al. (1994a) found that one consequence of a dynamic 

agricultural operation is that soil properties determined by slower rate processes 

(e.g. decomposition) will seldom reach equilibrium. SOC sequestration might 

exhibit quite different short- versus long-term sensitivities to certain variables. 

Qiu et al. (2009) used a 20-year pre-simulation and Tonitto et al. (2007) 

disregarded the first year of simulation to eliminate the possible uncertainties that 

could be induced from the initial settings of some input parameters such as SOC 

partitioning. Unfortunately, Qiu et al. (2009) did not comment on what 

differences were found between the pre-simulation results and the final results. 

Using a 20-year pre-simulation may have a significant effect on the outcome, as 

the soils’ conditions may no longer reflect those being modelled (e.g. due to 

losses of SOC). Most papers do not state whether they use the pre-simulation 

option when using the model.  

 

2.6. Conclusions 

Overall, the different versions of the DNDC model were found to give 

very different predictions when directly compared to each other. Although one 

might expect that newer versions would be superior to previous versions of the 

model, this does not always seem to be the case - which may suggest that we 

may not have learnt from past problems (i.e. greater instability may have been 
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introduced into the model as default parameter values or equations are altered) 

and unfortunately not confirming the hypothesis. There is, therefore, a need for 

further investigation into the model’s performance (e.g. capacity for spurious 

predictions with increasing model complexity) to gain a better understanding of 

its strengths and weaknesses. From this respect, a sensitivity analysis would 

provide modellers with a better understanding of how the different sub-models 

interact.  

Many scientists use models for predicting the possible gains and losses of 

C, N and other nutrients from terrestrial ecosystems. They use models either 

because parts of the system are difficult to measure (intrinsically complex or 

practically difficult), or because they wish to consider long periods that are 

impractical to assess empirically. All models are simplified representations of the 

real world, and our knowledge about the accuracy of model predictions is limited 

by the data available to validate the model output. Unfortunately, even validation 

is imperfect, as the test data is location specific, and also sometimes time 

specific. These issues can reduce the generalisation of the model predictions.  

Generally, such limitations are well recognised by scientists, however, 

when models become central to the policymaking process, their limitations can 

bring serious risks to society. It is essential that policy makers are also aware of 

the limitations of the models they use, and that at a most basic level they can be 

sure that different versions of the same model are comparable. Unfortunately, the 

results of this work cast doubt on the comparability of versions of DNDC, but as 

yet there is no evidence that these differences have influenced any legislative or 

policy decisions. However, this risk remains a real one. 

 If policy makers take outputs from models that have not been tested or 

updated, then deciding on the future policies does not become a low risk process. 

Although models are routinely updated, it is not always known if a particular 

version is reliable (i.e. which parts of the model have been newly validated) and 

can only be presumed to provide an approximate answer at best. 
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3.1. Abstract 

Soil respiration represents a major flux by which biosphere C is returned to the 

atmosphere. Understanding the factors regulating this flux remains critical to our 

understanding of ecosystem feedbacks in global climate change. One of the 

major abiotic regulators of soil respiration is temperature; however, there is 

uncertainty about how this is mathematically related. In many global warming 

models soil respiration is one of the most useful outputs, and it is therefore vital 

that the sub-model which predicts CO2 emissions is parameterised correctly. For 

the model DNDC, a single Q10 is presumed to be appropriate for all soil types 

globally.  Here we specifically tested whether a Q10 model could be applied 

across a global soil gradient and whether it could successfully describe CO2 

efflux from contrasting soils exposed to a wide range of temperatures. To 

achieve this, soil was exposed to a sequential temperature ramp from 5 to 30°C 

and back again over repeated 24 h cycles while soil respiration was 

simultaneously measured. The results showed that all the soils responded 

similarly to changes in temperature and that there was no hysteresis in respiration 

between the rising (5 to 30°C) and falling (30 to 5°C) temperature ramps. 

Respiration from all the soils conformed well to a Q10 mathematical model, with 

an average value of 2.72 ± 0.15. Overall, the results suggested that on a large 

geographical scale, global latitude had some effect on the Q10 value. There was 

also variability in the Q10 values obtained over a small geographical scale, 

possibly relating to differences in land management strategy (e.g. crop type and 

tillage/fertiliser regime). In conclusion, our results suggest that soil respiration 

can be adequately described by a Q10 model, but that the theoretical value of 2.0 

may be an underestimation and that a higher Q10 value should be used in 

terrestrial models describing CO2 efflux from soils in response to temperature.  

 

3.2. Introduction  

The efflux of CO2 from the terrestrial and marine biosphere represents 

approximately 25% of the total annual flux of C to and from the atmosphere, and 

is estimated to be >68 × 10
15

 g C yr
-1

 (Palmer Winkler et al., 1996). Due to 

anthropogenic emissions, however, the land-atmosphere CO2 concentration 
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balance has shifted causing a 30% increase in atmospheric CO2 concentrations. A 

likely outcome of this change is an alteration in global temperature patterns. 

Estimated increases of 1.4 to 5.8°C in mean global surface temperature have 

been predicted to occur between 1990 and 2100, and these changes are likely to 

vary substantially among regions and exhibit both seasonal and diurnal variation 

(Wythers et al., 2005). While soils and oceans can potentially act as a large sink 

for CO2 they can only achieve this under a limited range of environmental 

conditions. If climate change were to cause even a small release of organic 

carbon (SOC) stored in soil, it could constitute a positive feedback effect 

(Kirschbaum, 2004; Lou et al., 2004).  

Respiration is the principal pathway of C loss from the ecosystem to the 

atmosphere and is the sum of root respiration and microbial respiration (Lou et 

al., 2004; Byrne and Kiely, 2006). Soil temperature and water content are the two 

major abiotic factors that regulate the production and consumption of greenhouse 

gases in soil mediated via changes in microbial and root activity in soil (Smith et 

al., 2003; Eliasson et al., 2005). Soil temperature has been identified as the most 

important environmental variable for predicting soil respiration, followed by soil 

moisture and nutrient availability (Lou et al., 2004; Tingey et al., 2006). Thus 

seasonal changes and climatic differences generate differences in respiration 

rates with time (Bernhardt et al., 2006). The strong temperature response of 

respiration can be seen in laboratory incubations, seasonal field observations, 

short-term soil-warming experiments and incubation experiments on litter in 

different climatic zones (Kirschbaum, 2004). Temperature has been shown to 

account for approximately 85–90% of the seasonal variability in soil CO2 fluxes 

(Lou et al., 2004). In Europe, seasonal changes in soil respiration follow the 

order of summer > autumn > spring > winter. The lower fluxes in winter are 

connected with depressed root and microbial respiration caused by low soil 

temperatures (<10°C) (Lou et al., 2004). A recent study has suggested that the 

temperature sensitivity of soil respiration may be independent of the mean annual 

temperature of the soil across a wide variety of ecosystems and average 

temperatures (Smith et al., 2003). 

Although the general relationship between temperature and respiration is 

well established, there has been some uncertainty in describing the microbial 

response (Winkler et al., 1996; Kätterer et al., 1998; Smith et al., 2003). For 
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example, some experiments have shown that soil respiration declines under 

prolonged warming, and eventually returns to rates similar to unwarmed soil. 

Consequently, extrapolations of the relationship of soil CO2 efflux to 

temperature, as measured prior to warming, may overestimate the flux. C budget 

models that ignore this so-called acclimation of soil respiration may therefore 

overestimate soil C loss in response to global warming without consideration of 

substrate availability etc. (Eliasson et al., 2005). An important feature of these 

temperature–response curves is the higher relative temperature sensitivity at 

lower temperatures. This implies that C stored in cooler regions is more likely to 

be lost with global warming than C stored in warmer regions (Kirschbaum, 

2004). The notion of a strong effect of temperature on C efflux rate has also been 

challenged in recent work (Giardina and Ryan, 2000). The question remains as to 

the true temperature dependence of soil processes, and how soil C stocks may be 

affected by changes in global temperature (Kirschbaum, 2004). 

 Due to the intrinsic complexity of the biosphere and the need to develop 

global climate change models to predict what will happen in the future, scientists 

are always looking for simple relationships in nature. The temperature 

dependence of biogeochemical processes such as respiration has been described 

mathematically since the late 19th century (Davidson et al., 2006). Of these, 

exponential relationships, especially the Q10 relationship, have been commonly 

used to predict changes in soil respiration rates in response to changes in 

temperature (Curiel Yuste et al., 2004). The Q10 for a reaction rate is defined as 

the factor by which the rate increases with a 10ºC rise in temperature, and is 

defined by the equation:  

 

Q10 = Respiration rate at (T +10) /Respiration rate at T (Eqn. 1) 

 

(Where T is temperature). A widely accepted view in ecosystem research is that 

the rate of soil organic matter (SOM) decomposition, like most biological 

reaction rates, tends to double for every 10°C rise in temperature (i.e. Q10 value 

for decomposition = 2) (Davidson et al., 2006). In many decomposition studies, 

the Q10 relationship is therefore compared to this theoretical value and used to 

describe the dependence of decomposition on temperature (Kätterer et al., 1998). 

Examples of possible Q10 relationships are shown in Figure 3-1. 
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Figure 3-1: Theoretical relationship between soil temperature and soil respiration showing 

Q10 values of 1 (left hand panel) and 2 (right hand panel). 

 

The origin of this rule-of-thumb (Q10 = 2), however, and the limits to its validity 

are less well known. Early experiments by Van’t Hoff and colleagues indicated 

that, around 20°C, reaction rates ‘roughly double or triple’ for every 10ºC rise in 

temperature (i.e. Q10 values of 2-3) (Davidson et al., 2006a). This works in 

accordance with the first law of thermodynamics that when one variable doubles 

then it proportionally affects an output.  

Most Q10 values for soil are believed to be 2, but will normally range 

between 2 and 3 and may go as high as 5 (Janssens et al., 2003). Palmer-Winkler 

et al. (1996) noted that Q10 values tend to be higher at low temperatures, 

consistent with other observations that root respiration is low at <10°C 

(Kirschbaum, 1995). With an increase in temperature (>10°C), respiration 

increases and generally conforms to a Q10 value close to 2.0. However, this is 

true only over a limited temperature range due to physiological restrictions on 

metabolic functioning at temperatures above 35°C (Huang et al., 2005).  

There is also increasing evidence to suggest that the Q10 of soil 

respiration is not constant during the year, but tends to decrease with increasing 

temperature and decreasing soil moisture (Leahy et al., 2004). Because most 

empirical models rely on the correlation between the seasonal patterns of soil 

respiration and temperature to produce a single Q10 value, such models may 

over- or under- estimate soil respiration over smaller time scales. Discrepancies 

in Q10 values may stem from simple differences in experimental procedure (e.g. 

making temperature measurements at different soil depths). For example, Moore 

et al. (1996) and Davidson et al. (1998) measured soil temperatures at 2, 5 and 10 

cm depth, respectively, and found corresponding diurnal Q10s for CO2 flux of 

2.2, 2.7 and 4.2. Davidson et al. (1998) argued that the substantial differences 
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between observed Q10 and those previously published might be partly explained 

by the decrease in diurnal variation in temperature with depth. Others have found 

an increase in Q10 with increasing soil depth (Smith et al., 2003). The 

temperature response of soil respiration is also expected to be dependent upon a 

range of other factors that may cause variation in the Q10 response (Kätterer et 

al., 1998). Examples of these include differences in agricultural management 

regime (e.g. tillage, fertiliser application, crop type) or abiotic conditions (e.g. 

salt concentration, O2 oxygen partial pressure) (Kätterer et al., 1998).  

Overall, relatively little is known about the short-term responses of soil 

respiration to shifts in temperature (Janssens et al., 2003). Further, the relative 

impact of global latitude, farm management or plant type has on the Q10 response 

remains poorly understood. The biogeochemical model DNDC uses a Q10 of 2.0 

(Li et al., 1992; Li et al., 2000), although a Q10 value of 2.5 has also been used by 

Li et al. (1994). This Q10 value stays constant throughout the model simulation 

and does not vary with the environment/ecosystem being simulated. This could 

possibly lead to variations in model output due to the Q10 used being larger or 

smaller than in a real environment. From the previous chapter we saw distinct 

variation in the outputs and for the GHG and this could be linked to the variation 

in the Q10 value used in the model. However to justify the need for clarification 

of the Q10 used there is a need to consider whether there is a significantly large 

amount of variation in the soils from different location and regimes for this to 

possible effect the outputs. If a Q10 of 2 or slightly higher is found there is no 

justification for this, however if there is considerable variation then a further 

understanding of the Q10 used by the DNDC model is needed and an explanation 

of why 2 is used. I hypothesise that the soil respiration will increase with 

increasing temperatures giving results which can be described well using a Q10 

value of 2 and confirming the values use for the DNDC model. Therefore this 

chapter critically tests the influence of geographical location and management on 

the applicability of Q10 values over short time scales. It is hypothesised that the 

Q10 values will vary with latitude (i.e. Q10s are higher at higher, colder latitudes) 

and that values significantly greater than 2 will be obtained over extended 

temperature ranges (5-30°C). 

 

 



Chapter 3 

100 

3.3. Materials and methods 

3.3.1. Soil samples 

Three replicate 50 g samples of soil were taken at a 0-15 cm depth from 

agricultural fields located in (1) the Murcia region of Spain, (2) Worcestershire 

in the UK, and (3) the Wakiso, Kampala, Mukono and Luwero districts of 

Uganda. Samples were randomly selected from within the fields (Koerber et al., 

2009). The overseas samples were shipped to the UK in cool boxes and stored at 

5°C until needed for the experiments. The fields used for sampling had been 

selected as part of a larger experiment concerned with greenhouse gas emissions 

from vegetable production as detailed in Koerber et al. (2009). As a result, each 

country contained fields of at least one of the target vegetable type (brassicas, 

leafy salads, peas and beans). Samples of soils from Germany, Australia and 

Antarctica were obtained from other surveys and experiments being undertaken 

within the School of the Environment and Natural Resources at Bangor 

University. These included soils collected by Prof Davey Jones (Australia; as 

detailed in Jones and Murphy, 2007), Dr Paul Hill (Germany; as detailed in 

Akagi and Zsolnay, 2008) and Dr Paula Roberts (Antarctica; as detailed in 

Roberts et al., 2009). Details of the soils used in the experiments are presented in 

Table 4-1 while the chemical and physical properties of the soils are reported in 

the individual studies detailed above. Each of the soils had been collected with 

similar methods to those described for the soils from Spain, the UK and Uganda, 

above, except that the Antarctica soils were stored frozen at -20°C and defrosted 

at 5°C for 7 days prior to use. Three replicates were taken from each field with 

the exception of the Spanish field ‘Lettuce 7’ where only two replicates were 

taken, and two of the Australian areas where only one sample could be used, 

owing to the small amount of soil collected. 
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Table 3-1: Summary of the geographical location, crop type and climatic regime of the soil samples used in the experiments. nd indicates not determined. Values 

represent means ± SEM. 

 

Country No. of 

fields 

sampled 

Vegetation 

status 

Annual  

rainfall 

(mm) 

Maximu

m temp 

(°C) 

Minimu

m temp 

(°C) 

Soil type Soil 

moisture 

(g g
-1

) 

Bulk density 

(g cm
-3

) 

 

Soil pH SOC at surface 

(kg C kg
-1

) 

Spain 9 Brassicas  300-350  39 -0.3 Loam 0.21±0.01 1.21±0.03 7.85±0.03 0.053±0.003 

 7 Lettuce  300-350 39 -0.3 Loam 0.17±0.01 1.22±0.03 7.88±0.04 0.054±0.004 

UK 5 Beans 600-650  35 -10 Loam-Sandy Loam 1.05±0.04 1.68 6.38±0.09 0.015±0.003 

 4 Brassicas 600-650 35 -10 Clay-Loam 1.10±0.02 1.80 6.55±0.32 0.015±0.004 

 1 Lettuce 600-650 35 -10 Clay-Loam-Loamy Sand 1.07±0.02 1.75 6.32±0.36 0.025±0.007 

 1 Vining peas 600-650 35 -10 Clay-Loamy Sand 1.12±0.02 1.67 6.32±0.36 0.019±0.004 

Uganda 5 Cabbage 750–2000  30 15 Sandy Clay Loam 0.26±0.01 1.063±0.121 5.06±0.25 0.037±0.004 

 3 French beans 750–2000 30 15 Sandy Loam 0.24±0.04 1.063±0.121 5.18±0.21 0.045±0.019 

 3 Lettuce 750–2000 30 15 Silty Clay Loam 0.21±0.01 1.063±0.121 4.91±0.08 0.025±0.003 

 3 Sugar beet 750–2000 30 15 Sandy Clay Loam 0.16±0.01 1.063±0.121 5.76±0.41 0.020±0.004 

Germany 3 No plants 820-920 37 -27 Clay Loam 0.21±0.01 nd 6.00±0.03 nd 

 3 Grassland  820-920 37 -27 Clay Loam 0.26±0.01 nd 5.70±0.09 nd 

 3 Rape  820-920 37 -27 Clay Loam 0.22±0.01
 

nd 6.80±0.10 nd 

Antarctic 3 Lichen tundra 500-1000  -15 -70 Sandy Silt Loam 0.78
 

nd 6.82±0.12 nd 

 3 Polar grass 500-1000 -15 -70 Sandy Silt Loam 0.14
 

nd 6.02±0.13 nd 

 3 No plants 500-1000 -15 -70 Sandy Silt Loam 0.390
 

nd 5.22±0.32 nd 

Australia 1 Jarrah forest 1000 23 11 Loamy sand 0.22±0.01 1.04±0.01 5.84±0.01 0.38±0.03 

 1 Karri forest 1100 23 11 Loamy sand 0.22±0.01 1.04±0.01 5.84±0.01 0.38±0.03 

 3 Banksia 

bushland 

800 23 11 Loamy sand 0.02±0.00 1.36±0.02 6.55±0.03 0.20±0.02 
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3.3.2. Soil respiration measurements 

Twenty grams of the 50 g collected of soil was measured into a 50 cm
3
 polypropylene 

centrifuge tube. To remove any CO2 present in the soil samples prior to 

experimentation, a 1.5 ml reaction vial, containing 1 ml of 1 M NaOH, was placed on 

the surface of the soil and the tubes capped for 24 h. This procedure was undertaken 

to ensure that all CO2 trapped in the soil was removed prior to respiration 

measurements being taken. The NaOH reaction vials were subsequently removed 

from the centrifuge tubes prior to placement of the tubes on an automated 12 channel 

SR-1 Soil Respirometer equipped with an infra-red gas analyser (IRGA) (PP-Systems 

Ltd, Hitchin, UK). The gas switching unit of the SR-1 ensures that respiration 

measurements are made from each sample channel every 16.5 mins. During each run, 

9 of the channels logged respiration from soil. The three remaining channels 

contained no soil and were used as controls (blanks). 

The SR-1 was placed in a Sanyo climate-control cabinet (Sanyo Biomedical 

Europe Ltd., Loughborough, UK) and a 24 h temperature ramping programme 

employed to automatically regulate the temperature of the soil. A progressive upward 

temperature ramp at 5°C intervals was run between 5 and 30°C for 12 h, followed by 

a declining ramp from 30 to 5°C over the next 12 h. The temperature in the climate 

control cabinet was held at a given level for 2 h before moving to the next 

temperature. The temperatures were chosen to reflect the typical range of those 

experienced in the field at most sites. The humidity in the cabinet was kept constant at 

70% and the system was kept in the dark. During each experimental run a set of 3 

Watchdog temperature loggers were placed in the cabinet to monitor whether the set 

temperatures were achieved. 

 Each experiment ran for 72 h to allow the soils to settle after being disturbed 

and the respiration results recorded only for the third day unless otherwise stated.  

 

3.3.3. Calculations of Q10 values 

The respiration results were plotted against temperature and the Q10 values calculated 

using the equation:  

 

Q10 = (R2/R1)
(10/T2-T1)     (Eqn. 2) 
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where R1 is the first respiration result at T1, R2 is the second respiration result at T2, 

and where T1 and T2 are the temperatures used for the two measurements (Figure 3-2). 

The Q10 value was calculated at two main intervals: during the 10-20°C rise, the 20-

30°C rise, the 30-20°C fall and the 20-10°C fall. In addition, the mean Q10 for each 

10°C temperature difference was calculated for all soils to check for extreme 

differences. 

 

 

 

 

 

 

 

Figure 3-2: The values for the Q10 calculation, with respiration results on the y-axis and 

temperature on the x-axis. T1 and T2 have a 10°C difference. 

 

3.3.4. Statistical Analysis 

All statistical analysis was performed using SPSS version 18 (SPSS Inc, Chicago, IL). 

A univariate analysis of variance was used with the dependant variable for figure 3-(5 

to 11) being the temperature. For figures 3-12 and figure 3-13 the dependent variable 

was the countries and for figure 3-16 the dependant variable was the crop type.  
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3.4. Results 

3.4.1. Experimental climate regime 

During each experimental run the climate-controlled cabinet was monitored to 

determine whether the programmed maximum and minimum temperatures were 

achieved. Figure 3-3 shows the temperature at which the climate cabinet was set and 

the actual temperature recorded at the level of the soil samples. It is apparent that the 

temperature inside the cabinet did not increase in a stepwise regime, as expected, but 

in a more linear pattern (r
2
 > 0.999 on both upward and downward ramps). The 

maximum temperature recorded was 29.1°C and the minimum temperature was 

4.6°C. 
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Figure 3-3: Comparison of the actual temperature (solid line) and expected temperature (dashed 

line) observed over a 24 h period. Experimental values represent the average of three 

independent temperature cycles.  

 

3.4.2. Long term soil respiration response 

In one experimental sample run, soil respiration was measured over 12 successive 

thermal cycles to determine the long term trends in CO2 output. Overall, it was found 

that soil respiration progressively declined over the 12 day period - although the 

magnitude of the decline reduced with time (Figure 3-4). The decrease in soil 

respiration was thought to be due to (1) the microbes settling after being physically 

disturbed by the movement and setting up of the containers in the chambers, and (2) 

progressive C substrate limitation of the soil microbial community. From the third 
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thermal cycle onwards the rising and falling limbs were found to possess 

approximately the same shape, and therefore these results were used for calculating 

Q10 values. Although the peak in respiratory flux declined over time, this pattern was 

not apparent at 5°C, where a constant flux was observed.  

 

 

Figure 3-4: Soil respiration measured over a 12 day period in soil collected from a Brassica field 

in Spain. Each peak represents a 24 h thermal cycle whilst each ● represents a 15 min interval. 

Values represent means ± SEM (n = 3). The results obtained on the third day were used in the Q10 

calculations.  

 

3.4.3. Responses of soil respiration to daily temperature cycles 

The soil respiratory flux measured during either the rising or falling half of the 

thermal cycle were plotted against temperature for each field in each geographical 

location. Graphing the fields in this way allowed us to see if there were any lags in the 

microbial response to the temperature. If such a response was apparent, this would 

have been representative of hysteresis, which is the dependence of a system not only 

on its current environment but also on its past conditions (evidenced by the system’s 

failure to respond immediately to the change in its environment). If the system 

exhibits hysteresis then a flat top in CO2 efflux during the downward thermal cycle 

would be expected. From Figure 3-5 it is evident that there was no lag phase in the 

respiration response found at either the highest or lowest temperature phases, 

suggesting that there was no hysteresis. The highest and lowest values for soil 
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respiration of both limbs were 2.57 mg CO2 kg
-1 

h
-1

 and 0.34 mg CO2 kg
-1 

h
-1

, 

respectively. A paired t-test showed no significant differences in the soil respiration 

response to temperature between the upward and downward halves of the cycle (p = 

0.917).  
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Figure 3-5: Soil respiration during the rising (●) or falling (○) limb of a diurnal thermal 

temperature cycle for soil collected from a lettuce field in Spain. Values represent means ± SEM 

(n = 3). 

 

Statistically significant differences in soil respiration were apparent between soils 

collected from the same location but under different vegetable crops (p < 0.001). The 

highest emissions were seen for soil collected from lettuce fields in Uganda and 

Spain: 2.67 mg CO2 kg
-1

 h
-1

 and 2.87 mg CO2 kg
-1

 h
-1

 respectively (Figure 3-6A and 

3-6B). The respiration patterns in response to temperature were similar to those 

presented in Figure 3-3. 
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B. Spain lettuce
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A. Uganda lettuce
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Figure 3-6: Soil respiration during the rising (●) or falling (○) limb of a diurnal thermal 

temperature cycle in two lettuce field soils from two contrasting geographical locations (Spain 

and Uganda). Values represent means ± SEM (n = 3). 

 

3.4.4. Influence of geographical region 

The results obtained for the different vegetable fields in each country were collated to 

give an average graph for soil respiration (Figures 3-7). Australia was removed from 

this study as the soil respiration showed very little reaction to changes in temperature; 

it did however have a correlation between the rising and falling limb, though not to 

the same CO2 emission levels as the other soils. The lack of reaction to temperature 
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may be due to the small amount of soil used and the length of time the soils were 

stored before use (i.e. high level of C substrate limitation).  
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Figure 3-7: Soil respiration during the rising (●) or falling (○) limb of a diurnal thermal 

temperature cycle for a range of soils obtained from UK vegetable fields. Values represent means 

± SEM (n = 11).  
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Figure 3-8: Soil respiration during the rising (●) or falling (○) limb of a diurnal thermal 

temperature cycle for a range of soils obtained from Ugandan vegetable fields. Values represent 

means ± SEM (n = 14). 
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Figure 3-9: Soil respiration during the rising (●) or falling (○) limb of a diurnal thermal 

temperature cycle for a range of soils obtained from German agricultural fields. Values represent 

means ± SEM (n = 9). 
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Figure 3-10: Soil respiration during the rising (●) or falling (○) limb of a diurnal thermal 

temperature cycle for a range of soils obtained from Antarctica. Values represent means ± SEM 

(n = 9). 
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Figure 3-11: Soil respiration during the rising (●) or falling (○) limb of a diurnal thermal 

temperature cycle for a range of soils obtained from Spanish vegetable fields. Values represent 

means ± SEM (n = 16). 

 

The soil respiration results for each area varied, with the Antarctic soils (Figure 3-10) 

having the highest emissions of CO2 and the soils from Germany (Figure 3-9) the 

lowest (Table 4-2). It is also apparent that the magnitude of the standard errors 

increased as the temperature increased. This, however, appeared proportional to the 

increase in the mean value. Antartica had reduced measurements taken on the falling 

temperature limb due to equipment failure.  

For the UK soils, soil respiration in the falling temperature limb did not give 

significantly lower results than with the rising limb (p < 0.462). In contrast, Spain was 

the only country to have a lower result for the rising limb in comparison to the falling 

limb (p < 0.05). For the Antarctic there are greater emissions from the rising than for 

the falling limb, which stopped at 16°C due to technical problems.  
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Table 3-2: Average soil respiration for each country measured at either 5°C or 30°C. Values 

represent means ± SEM.  

Geographical region Soil respiration (mg CO2 kg
-1

 h
-1

) 

 5°C 30°C 

Spain 0.36 ± 0.13 2.67 ± 0.21 

UK 0.12 ± 0.02 2.11 ± 0.66 

Uganda 0.14 ± 0.02 2.18 ± 0.16 

Germany 0.16 ± 0.02 1.47 ± 0.10 

Antarctic 2.00 ± 0.47 9.12 ± 1.37 

 

 

 

3.4.5. Dependence of geographical location on the Q10 for soil respiration 

The respiration results described below were used to calculate the Q10 value for the 

area within each country. The values are not meant to be representative of the whole 

country. In most of the literature, the Q10 value is classified as being equal to 2 for soil 

respiration; consequently all the experimental values were compared to this 

theoretical value. In the results presented here all the countries on both the rising and 

falling limb had an experimentally derived Q10 value above 2 and an overall average 

value of approximately 2.72 (Figure 3-12). The Antarctic was found to give 

significantly different results from Spain, Worcestershire and Germany (p = 0.000, 

0.001 and 0.001 respectively) and Spain was found to be significantly different from 

Uganda (p = 0.002).  
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Figure 3-12: Q10 value for soil respiration measured for a range of countries across the 

temperature range 10 to 30°C. Q10 values were determined during a rise or fall in temperature 

from either 10-20 or 20-30°C. Bars are denoted as follows: Rising 10-20°C ( ), 20-30°C ( ) 

and falling 10-20°C ( ), 20-30°C ( ) temperature and average Q10 ( ). 

 

 

Figure 3-13: Comparison of the Q10 value for soil respiration in samples from a range of 

countries measured across the temperature regime 5 to 30°C. Q10 values were determined at 10°C 

intervals for each temperature difference (i.e. 5 to 15, 6 to 16, 7 to 17°C etc). Values represent 

means  SEM. The legend and mean  SEM for each country is as follows: 2.28  0.017 (n = 9) 

for Spain brassicas (●), 2.11  0.008 (n = 7) for Spain lettuce (○), 2.18  0.012 (n = 16) for Spain 

(▼), 2.43  0.056 (n = 11) for the UK (), 2.70  0.064 (n = 14) for Uganda (■), 2.61  0.031 (n = 

9) for Germany () and 2.66  0.072 (n = 9) for Antarctica (). 
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The Q10 values shown in Figure 3-13 were calculated for each 1ºC incremental 

difference in temperature from 5 to 30ºC (rather than just 10-20ºC and 20-30ºC) 

except for the soil from Australia. The results were found to be statistically similar (p 

= 0.466). The results shown above all show a consistent result of having a Q10 above 

2.0 and a generally constant Q10 value is seen across the complete temperature range, 

apart from the Antarctic. Soils collected from under lettuce fields in Spain had the 

lowest Q10 values on average, while soils from Uganda had the highest. The 

experimental values shown in Figure 3-14 were log transformed to make comparison 

between countries easier. 
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Figure 3-14: Natural Log10 transformed soil respiration values for each country across the 

temperature range 5 to 30ºC. The countries are ● Spain, ○ Germany,  UK and  Uganda. 

Spain had an r
2
 of 0.993 and equation of y=0.0338x-0.5230, Germany had an r

2
 of 0.994 and 

equation of y=0.0410x-0.9994, UK had an r
2
 of 0.948 and equation of y=0.0376x-0.7388 and 

Uganda had an r
2
 of 0.974 and equation of y=0.0446x-0.9259. 

 

The log transformed CO2 emission values calculated for each country are shown in 

Figure 3-14 and confirm that the results adhere to a first order rate of reaction. The 

graph shows a difference between each of the countries. Uganda’s results were found 

to be further away from the trend line when compared to Figure 3-10. The result for 

each country converges towards the higher end of the temperature range. The results 

with the highest respiration had also the highest climatic temperatures, and this pattern 
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continued - the lowest results being for the area with the lowest mean annual 

temperature. Many of these average results fit well to a trend line and show that the 

results are of a first degree linear order for Q10. 

 

3.4.6. Differences between vegetable species 

The variation in Q10 values between soils collected from under different vegetables 

crops was examined across the range of countries over the 10-20°C and 20-30°C 

range for the rising and falling limbs of the thermal cycle (Table 4-3, Figure 3-16). 

Although there were some differences in the Q10 values for the rising and falling limbs 

there was no consistent pattern across all vegetable types. All vegetables gave a Q10 

value over 2, with sugar beet having the largest overall value, while Beans and 

Lettuce had the lowest average Q10 (Table 4-3). Overall, the differences between the 

vegetables are minimal and all fit in a range between 2.26-2.97. 

 

Table 3-3: Average Q10 values for four different cropping soils for the rising and falling limbs 

over two temperature steps (10-20 and 20-30°C) and then averaged across the 10-30°C range. 

The Antarctic and Australian soils have not been included in this. 

 

 

Vegetable Rising temperature  Falling temperature Mean  

 10 to 20°C 20 to 30°C  10 to 20°C 20 to 30°C  

Brassicas 2.45 2.20  2.67 2.15 2.37 

Lettuce 2.49 2.11  2.34 2.10 2.26 

Beans 2.89 2.18  2.94 2.47 2.62 

Sugar beet 4.44 2.62  2.65 2.15 2.97 
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Figure 3-15: Effect of crop type on the Q10 value for soil respiration measured across the 

temperature range 10 to 30°C for different crops in different geographical locations. Q10 values 

were determined during a rise or fall in temperature from 10-20 or 20-30°C. The legend and 

mean  SEM values for each treatment are as follows: 2.27  0.119 (n = 9) for Spain brassicas 
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2.80  0.345 (n = 3) for Uganda lettuce (
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and 2.97  0.505 (n = 3) for Uganda sugar beet (
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Figure 3-17 shows the log transformed soil respiration data using the experimental 

results shown in Figure 3-(7-11). Overall, this gives a clear picture of which vegetable 

types will give off more emissions and which will give off the least and at what 

temperatures, if the soil characteristics for those crops are similar. At higher 

temperatures the type of vegetable crop has little effect on the amount of CO2 

produced. At a lower temperature there does seem to be some effect, with sugar beet 

being the lowest producer and the rest being approximately the same, with little 

variation.  
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Figure 3-16: The log10 of soil respiration for each vegetable type averaged across a range of 

countries. Each vegetable has a linear regression line of best fit put through it. The legend and 

linear regression coefficient for each vegetable are as follows: (●) brassicas had an r
2
 of 0.974 and 

a y=0.0365x-0.7121, (○) lettuce had an r
2
 of 0.875 and a y=0.0361x-0.7463, () Beans had an r

2
 of 

0.950 and a y=0.0421x-0.8363 and () sugar beet had an r
2
 of 0.872 and a y=0.0452x-0.9865. 

 

 

 

 

 

 

3.5. Discussion 

The only common theme among these various approaches to modelling respiration is 

that they all include an empirically derived Q10 function, although the range of 

reported Q10 values is large (Davidson et al., 1998). As Pavelka et al. (2007) states, 

the complex mixture of production and transport processes usually has to be reduced 

to a simpler equation. One such relationship, which is well established in biology, is 

the one that exists between enzymatic reactions and temperature (Davidson et al., 

2006). The Q10 temperature coefficient is a measure of the rate of change of a 

biological or chemical system as a consequence of raising or lowering the temperature 

by 10°C.  
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For individual enzymes the Q10 value is typically equal to 2. Many studies 

have shown that the soil respiration rate, an indicator of soil microbial activity, 

increases exponentially with an increase in temperature (Huang et al., 2005; Liu et al., 

2006). However, describing the relationship in a complex soil environment is more 

difficult. Regardless of the soil type, texture or history, a diverse and abundant 

microbial community exists in soil in which many enzymes are operating 

simultaneously (Nelson, 1997). Thus it is clearly conceivable that soil respiration is 

actually the summation of the action of maybe 100,000 different enzymes. The 

biochemical feedback loops between these enzymes is likely to be highly complex. 

This could mean that the Q10 value can deviate from the theoretical value of 2. In this 

respect, the results presented here support this view that soil-temperature relationships 

cannot be described by a universal Q10 value.  

Across a wide range of soils, the experiments described here found Q10 values 

to range between 2.26 to 4.44 with an overall average value of 2.64. These values 

disprove my hypothesis of 2 being an acceptable value for the Q10 used for the DNDC 

model. The values found agree with the broad soil science literature, which suggests 

that Q10 values can vary greatly between individual experiments, with published 

values ranging between 1.35 and 2.88 (Kätterer et al., 1998). We therefore suggest 

modellers should consider values according to the intrinsic soil characteristics, 

vegetation type or latitude rather than just using the one value for all situations. 

Typically, Q10 values for soil respiration are assumed to range between 2 and 3, but in 

extreme cases may go as high as 5 (Clark et al., 2009). The premise that the Q10 

constant is 2 is now being reconsidered by some ecosystem mathematical modellers in 

light of the increasing evidence that Q10 values may approximately double or triple for 

every 10ºC rise in temperature. The reaction of SOM pools to the variations in 

temperature is considered to be equal (Q10=2 at 30–35°C; Q10=4–6 at 5–10°C) in most 

current C turnover models which are based on measurements of the CO2 efflux from 

short term laboratory incubations of bulk soils (Kirschbaum, 1995; Von Lützow and 

Kögel-Knabner, 2009). For example, Li et al. (1992), the developers of the widely 

used DNDC (DeNitrification-DeComposition) model originally used a Q10 value of 2 

to describe how soil organic matter breakdown is affected by temperature. However, 

in an updated version of the model Li et al. (1994a) use a Q10 value of 2.5, while in Li 

et al. (2000) the Q10 is once again described as 2.0. This change in value may account 

for the variable output from different versions of the DNDC model reported in 
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Chapter 3. In nearly all the published work made using DNDC the authors do not 

actually report the Q10 value used, so it is difficult to assess the validity of the model 

outputs. The CENTURY and Rothamsted (RothC) soil organic matter turnover 

models use temperature functions to describe the decomposition of soil organic matter 

to account for greater temperature sensitivity at lower temperatures rather than a 

single Q10 value (Davidson et al., 1998). This approach has significant merit, 

especially for soils which experience frequent temperatures below 10°C. As studies 

have revealed that soil temperature can explain up to 95% of variance in soil 

respiration rates, it is critical that the right approach to modelling soil temperature 

responses is taken (Pavelka et al., 2007). 

When considering the results presented here in relation to the properties of the 

soils in each area studied, it was found that the variability in intrinsic soil 

characteristics appeared to have little impact on the resultant Q10 values. For example, 

no clear pattern was observed between the magnitude of CO2 efflux, pH, texture, 

moisture content or organic matter content with Q10. It should be mentioned, however, 

that to definitively test these relationships would require much better sample 

stratification than used here (e.g. replicate soils sampled over a sand to clay texture 

gradient or the sampling of soil held at varying matric potentials from -50 kPa (field 

capacity) to beyond permanent wilting point (<-1500 kPa)). Despite this limitation, 

the results may not be that surprising for soil moisture, as Illeris et al. (2004) found 

that soils with different moisture contents had similar temperature response CO2 

efflux profiles. The pH of the soils used here was found to be very similar, so Q10 

relationships with this soil factor could not be reliably established in this study. To 

carry out a more systematic study on the impact of pH, soils could be used which 

naturally vary in pH (e.g. acid podzols through to calcareous rendzinas at high pH). 

However, this approach would have many other confounding factors, as the soils will 

vary significantly in many other parameters other than pH. A better approach would 

be to sample soils across an established liming gradient as undertaken in Rousk et al. 

(2011). 

 We found a very weak correlation between Q10 and latitude from which the 

sample originated. A similar response was also found by Bekka et al. (2003). This 

may reflect either differences in microbial community structure or differences in C 

substrate availability (Davidson et al., 1998). This is supported to some extent by Von 

Lützow and Kögel-Knabner (2009) who suggest that, due to higher C stocks being 
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found at higher latitudes, more SOM is available for soil respiration by the microbes. 

Trumbore et al. (1996) reported a latitudinal variation in Q10 values with higher values 

found in colder climates, although the values were also affected by soil moisture 

conditions (Davidson et al., 1998).  

 Overall, the Q10 values for soils collected from under different vegetable crops 

showed similar temperature responses, irrespective of geographical latitude. Beier et 

al. (2008) found that the plots with different vegetation cover showed no differences 

in temperature sensitivity, since no significant differences were observed across the 

temperature gradient. It was expected that the different crops would create differences 

in the structure, activity and biomass of the soil microbial community and that this 

may have affected both the rates of soil C cycling and, possibly, enzymatic 

breakdown pathways (Jones et al., 2004). This change in the microbial community 

can occur directly as a result of: plant-induced changes in rhizodeposition; species 

differences in root turnover rates; differences in mycorrhizal status and N2 fixing 

bacteria; above-ground litter inputs/quality; and, indirectly, in response to different 

agronomic management regimes (e.g. fertilisers, pesticides). As Liu et al. (2006) point 

out, it is important to consider changes in Q10 with environmental conditions as well 

as soil types and geographical locations. Although the microbial community was not 

characterised here, the variation in the areas where the samples were collected could 

give an indication of different microbial communities as well as soil characteristics. 

Briones et al. (2004) found that impacts of soil warming on mesofauna (e.g. 

enchytraeids) is also an important consideration when trying to explain how CO2 

fluxes will respond to changes in temperature. One drawback of this study was that 

only a limited number of samples were available for some crop types in some 

countries, creating a potential bias (e.g. one field per vegetable type in the UK, with 

three replicates). Bernhardt et al. (2006) and Cruiel Yuste et al. (2004) have found 

variation in Q10 depending on seasonality and climatic changes, factors that were not 

considered here. In their study, seasonal changes in soil temperature follows the order 

summer > autumn > spring > winter, which corresponded to seasonal variations in soil 

CO2 flux which could cause variation in Q10 values (Lou et al., 2004). This may also 

contribute to the variability between crop types, as soil sampling did not occur at the 

same point in the season, and the stage of plant development was also different.  

 The Australian results could not be used in the overall analysis. This was 

because of the very low levels of respiration in these samples, which was thought to 
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be a consequence of the small quantity of soil used and the air-dry conditions in which 

the soil was stored for a few months prior to analysis. Even when the three replicates 

were combined, there was still too little soil to give consistent results. If this 

experiment were to be repeated, there are parts of the protocol that would need 

improvement. It would be worth having a bigger set of samples and more replicates 

for the vegetable crop types, preferably all grown on the same soil type. In addition, 

soil moisture should be maintained at a constant matric potential (e.g. -50 kPa) for 

each soil, particularly as Davidson et al. (1998) found altered respiration patterns 

under dry (drought) soil conditions (< -1.5 MPa). This excessive dryness could affect 

the soil respiration by reducing microbial movement and limiting substrate and 

enzyme diffusion rates and ease of CO2 escaping from the sample. Although we found 

no evidence for hysteresis in soil respiration, this may be because of the way the small 

volumes of soil were uniformly warmed. In the field, temperature change is not 

uniform throughout a soil; typically, it warms from the top down in spring and cools 

from the top down in autumn – conditions in which hysteresis may be more likely to 

occur (Davidson et al., 2006). 

The results presented here clearly show that Q10 values are highly dependent 

on soil type, and a default Q10 value of 2 should not be assumed for all soils. At 

present, as we have seen, many modelling studies make this assumption. The list of 

identified problems associated with empirical respiration models is growing. For 

example, we know that the Arrhenius’ and Van’t Hoff’s assumption of constant 

temperature sensitivities of respiratory enzymes at all temperatures is incorrect 

(Davidson et al., 2006). The question of whether these varying values are down to soil 

type, moisture content or latitudinal origin are beyond the scope of this study, but 

there are insights into the possibilities to be found throughout the literature. Several 

examples exist of empirical relationships that have been established between field 

measurements of soil respiration, soil temperature and water content. Most of these 

relationships tend to be site specific, and no widely accepted and commonly used 

model has emerged.  

 

3.6. Conclusions 

Modelling the relationship between soil respiration and temperature remains critical 

for understanding and predicting greenhouse gas emissions from soil, particularly in a 

climate change context. The results presented here across a broad range of 
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geographical latitudes and vegetation types clearly shows that temperature has a 

dominant effect on the amount of CO2 released, irrespective of the vegetation type, 

country of origin and other soil properties. In summary, all the soil respiration-

temperature response curves displayed approximately the same gradient. Soils were 

found to have a Q10 of greater than 2 with some variation in response to latitude and 

crop type.  

It is possible that soil temperature in hot climates may, in the future, become 

rate limiting if global warming continues. If the microbes are already at their optimal 

level of production, CO2 production may fall as temperatures increase and microbial 

communities start to shut down or die (e.g. >40°C) unless adaptation by the microbes 

occurs (i.e. microbial shift towards a mesophilic community or change in physiology). 

Most global climate models use a Q10 value of 2 to describe how biosphere 

process rates change with temperature. In light of the results presented here, I 

conclude that this assumption may not be correct, and that Q10 values are slightly 

greater than 2. This would suggest that the DNDC models should use a larger Q10 or 

that the users may be able to add their own Q10 value to the model. The Q10 used is 

important when considering the possibility of soil warming and subsequent 

greenhouse gas emissions. It would imply that global warming might enhance the loss 

of soil organic matter to a greater extent than would be currently predicted from 

current global climate change models. In addition, the results presented here indicate 

that the Q10 value is not a constant but varies with temperature, making the 

mathematical modelling of the temperature response complex. Further work is 

required, using the same technique to examine the Q10 response in a greater range of 

ecosystems, especially those not studied here (e.g. arctic tundra, boreal forest, tropical 

rainforest etc). It would also be useful to determine the Q10 value for N2O and CH4 

efflux from the same soils in response to changing temperature. As moisture is known 

to be the other major soil property affecting greenhouse gas emissions, it would also 

be useful to undertake the experiments across a wide range of soil moisture contents. 

If, when we considered the CO2 emissions in the previous chapter, we had used a Q10 

of 2.72 (the average found here, rather the default value of 2), we have seen a great 

increase (26.5%) in the reported emissions. Potatoes, which had the highest value for 

net CO2 efflux in Chapter 3 of 14.1 t C ha
-1 

yr
-1

, would have seen an increase to 17.8 t 

C ha
-1 

yr
-1

. Overall, current models such as DNDC could underestimate field 

emissions by approximately 25%, depending upon the climate at the site. 
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4.1. Abstract 

One-fifth of the worldwide annual increase in greenhouse gas (GHG) emissions 

originates from agriculture. Consequently, practical ways are being sought to actively 

reduce GHG emissions within agro-ecosystems. To aid the decision making process, a 

range of mathematical models have been used to predict the future of land use change 

on GHG emissions from agriculture. DeNitrification DeComposition (DNDC) is a 

commonly used process-based simulation model that simulates carbon and nitrogen 

biogeochemistry in agro-ecosystems. Since its inception, there have been numerous 

versions of the model released in response to increasing knowledge of the behaviour 

of GHG emissions over a wider range of cropping systems. One of the major 

problems with using models is the potential variation between different versions and 

the importance of using the correct and most accurate farm data available to limit the 

variation create by inaccurate data. The variations between the different models were 

considered in chapter 3, with the latest version being considered the most reliable.  

The aim of this chapter is to run a step-wise sensitivity analysis on three 

versions of the DNDC model, these versions being DNDC90, 91 and 92 using 

contrasting cropping regimes (lettuce, sugar beet and wheat) located in the same 

geographical region. The simulations included input data obtained from a number of 

field replicates, with model runs based on real farm and climate data. This chapter 

will critically consider the importance of the input data and what effect this may have 

on the outputs.  

The sensitivity analysis results indicated that the most important variables 

were soil type, soil density, crop type, fertiliser rate/type and tillage regime. When 

field values were altered slightly, the percentage difference in GHG emissions from 

the baseline field values rose to over 2000%. Of all the inputs into the model, the 

model proved most sensitive to variation in initial soil organic carbon content. With 

respect to the input weather data, it was found that a data set based on average 

weather, run repeatedly for 10 years, produced significantly different output from an 

actual 10 year weather data set. N2O emissions were predicted to be considerably 

lower for the average data set (max emission of 1.42 kg N ha
-1

 yr
-1

), while for the 

actual 10 year weather data set the highest predicted emission rate was 4.45 kg N ha
-1

 

yr
-1

. It was also found that different regional weather data could have a large impact 
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on the output of the model. In conclusion, the results presented here suggest that the 

outputs from DNDC can be disproportionately affected by some input variables. It is 

concluded that input data for key variables should be considered carefully and 

weighted for accuracy. 

 

4.2. Introduction 

It is estimated that 80% of nitric oxide (NO), nearly 70% of ammonia (NH3) and more 

than 40% of nitrous oxide (N2O) emitted globally are anthropogenic in origin. Of this, 

agriculture accounts for 92% of total N2O emissions, 26% of CO2 emissions and 65% 

of CH4 emissions (Zhang et al., 2002). Nitrous oxide emissions from animal and crop 

production account for approximately 70% of annual global N2O and are expected to 

increase with increasing use of nitrogen fertilisers, which are needed to feed the rising 

global human population (Cai et al., 2003, Levy et al., 2007). Of the three gases 

influenced by agricultural activities (CO2, CH4 and N2O), current estimates indicate 

that N2O emissions from agricultural soils represent the largest source of greenhouse 

gases (GHG) from the sector (Smith et al., 2004, Neufelt et al., 2006). As countries try 

to assess their production of GHG, and their potential for mitigation of GHG, one 

major area of focus will be the agricultural sector (Li et al., 1997, Li et al., 2005). 

A number of ‘process-oriented’ simulation models have been developed in 

recent years with the objective of simulating terrestrial ecosystem carbon and nitrogen 

biogeochemistry and nitrogen/carbon trace gas emissions (Li et al., 2001). Different 

models, ranging from the empirical to the completely process-based, have been 

produced and made available to the user community. As regression models neglect 

several variables, they cannot always be used to reliably test different management or 

mitigation scenarios. This is in contrast to the more complicated process-based 

models (Beheydt et al., 2007), which may have better flexibility for predicting GHG 

fluxes (Babu et al., 2006). 

Crop growth models focus on crop production and efficient management. Crop 

growth, development and soil water dynamics are usually simulated in detail, but soil 

biogeochemistry is not considered, or simulated in terms of nutrient effects on crops 

(Zhang et al., 2002). Biogeochemical models pay more attention to soil processes, 

such as decomposition, nitrification and denitrification. Soil-crop models pay more 

attention to physical processes, such as radiation, water, heat and momentum fluxes. 

Therefore gaps exist between the modelling efforts of agronomists, environmentalists 
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and climatologists due to their different focuses. The DeNitrification-DeComposition 

(DNDC) model attempts to bridge this gap by integrating crop growth processes with 

soil biogeochemistry (Zhang et al., 2002). 

The DNDC model is a process-based biogeochemical model originally 

developed for predicting carbon and nitrogen dynamics and trace gas emissions from 

agroecosystems (Cai et al., 2003; Qiu et al., 2009). DNDC couples denitrification and 

decomposition processes as influenced by the soil environment, and has been 

developed to assess N2O, NO, N2, NH3 CH4 and CO2 emissions from agricultural 

soils. The model contains 4 main sub-models: soil climate, crop growth, 

decomposition and denitrification (Brown et al., 2002; Smith et al., 1997). The DNDC 

model was constructed with two components to reflect the two-level driving forces 

that control geochemical and/or biochemical processes related to C and N fluxes. The 

first component consists of the soil climate, crop growth and decomposition sub-

models, and predicts soil temperature, moisture, pH, redox potential and substrate 

concentration profiles based on ecological drivers. The second component, consisting 

of the nitrification, denitrification and fermentation sub-models, predicts NO, N2O, 

CH4 and NH3 fluxes based on the soil environmental variables (Salas and Li, 2003). 

Originally, DNDC was a rain-event driven model of soil nitrogen and carbon 

biogeochemistry that had been developed to predict N2O emissions from agricultural 

soils over a growing season. Crop growth was originally estimated using a generalized 

crop growth curve for both upland and wetland agroecosystems, but has subsequently 

been greatly revised for individual vegetation types (Cai et al., 2003; Li et al., 1992; 

Li et al., 2004; Qiu et al., 2009; Zhang et al., 2002). Some alterations have also been 

made to the database structure and content of DNDC to improve its suitability for use 

in the UK (Brown et al., 2002), as well as for the simulation of GHG in regions of the 

United States and China (Brown et al., 2002). The premise of the DNDC model is 

that, by modelling the processes that lead to N2O fluxes, it can make reasonable 

estimates of emissions from a range of agro-ecosystems (Li et al., 2001). DNDC 

simulates a full C and N balance of the plant-soil system, including different C and N 

pools, and the emissions of all relevant trace gases from soils (Neufelt et al., 2006). 

One limitation is that it does not predict changes in atmospheric GHG concentrations, 

and therefore contains no climate change feedbacks for long term simulations (e.g. 

50-100 y in length). 



Chapter 4 

 127 

Model requirements for input data and large variability in climate, soils, and 

N2O emissions can result in high levels of uncertainty in predictions, as DNDC 

simulates the process-based dynamics of only a few of the dominant controlling 

factors in detail (temperature, soil redox potential, and substrate availability) (Babu et 

al., 2006). The DNDC model simulates N2O emissions under a wide variety of 

management scenarios using readily available input data. It is unable to simulate 

factors that control gas transport in detail, which will have a significant effect on 

predictions of the temporal dynamics of gas fluxes or rigorous soil-water dynamics 

(Babu et al., 2006, Smith et al., 2004). However, future versions of DNDC could 

reduce the level of uncertainty and provide data for policy-relevant cost-benefit 

analysis of specific mitigation strategies in the agricultural sector (Li et al., 1994). 

With ongoing modification and calibration, DNDC can potentially become a powerful 

tool for estimating GHG emissions and yield trends, for studying the impact of 

climate change, and thus for formulating policy (Babu et al., 2006). 

DNDC has been validated by a number of research groups. Sensitivity tests 

have been published by Cai et al. (2003), Brown et al. (2002), Li et al. (2001), Smith 

et al. (2004) and Stange et al. (2000). These analyses report varying results, with 

Smith et al. (2004) finding the model to often over- or underestimate the emissions on 

a site-to-site basis whereas Li et al. (2004) found the model to give reasonable 

predictions. Brown et al. (2002) did suggest that there are a limited number of data 

sets with which daily models such as DNDC can be validated. Further, the accuracy 

of the predictions could be a reflection of the paucity of data sets of appropriate 

length, variety and frequency, rather than of the input requirements of DNDC. 

Sensitivity tests can be run by varying one factor and keeping all the others 

constant and assessing changes in outputs (Stange et al., 2000). Alternatively, one 

could look at the variability in model outputs in response to alternative scenarios that 

are commonly observed to occur in agricultural regions (Li et al., 2004). In the UK, 

sensitivity of the model output to variation in the input values was investigated by 

changing the value of the single input variable and holding all others at baseline 

values (Brown et al., 2002). Smith et al. (2004) are among the few to consider the 

influence of weather on model output and specifically, variations in rainfall and 

temperature from year to year. They found that these factors are responsible for the 

high interannual variation in N2O emissions. These different sensitivity analyses 
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demonstrate the basic behaviour of the model (Stange et al., 2000), though 

consideration of all inputs together has not been undertaken. 

 This chapter will investigate the sensitivity of the DNDC model, since it 

represents a primary tool used by researchers to inform regional, national, and 

continental policy and is used in the process of deciding emission reduction targets. 

Also the hypothesis is that the predicted amount of greenhouse gas emissions from the 

DNDC model will be most sensitive to variation in the carbon and nitrogen inputs and 

that weather input data also has a major influence on modeled gas emissions. Three 

consecutive versions of the model will be compared using collected farm data for a 

period of ten years. Each input variable will be taken in turn and changed while all 

other inputs will be kept constant. This allows us to consider the importance of each 

input in relation to itself and how sensitive each variable may be to the data used, over 

a set of outputs. The effect that different weather inputs have on the model outputs 

will also be considered. It is important to estimate the error and uncertainty associated 

with model prediction so that it identifies gaps in current understanding and helps 

identify where the most accurate input data are needed and which areas need to be 

improved to use input data more efficiently. 

 

4.3. Materials and methods 

Between 1989 and the present, many versions of the DNDC model have been 

officially released. For this study I chose the three most modern versions of the model 

- DNDC90, DNDC91 and DNDC92 - as the results from Chapter 3 showed that they 

gave the most consistent results. These versions were collected from the official 

release site (www.dndc.sr.unh.edu) and run on a normal desktop PC.  

Actual agricultural management data was collected for a range of crop types 

from seven farms in Worcestershire, UK (for location details see Koerber et al. 2010). 

With the model giving the option of 49 different crop types, it was decided to pick 

three crop types commonly found in large-scale production in the UK and abroad. 

These were lettuce, sugar beet and wheat. Lettuce was used as the test crop for the 

main bulk of the sensitivity analysis; however, sugar beet and wheat were also 

considered when undertaking a sensitivity analysis to different weather data. The soils 

types used reflected those found on the test farms. The data collected from the farms 

included agronomic management information for individual fields. If key data were 

not available then secondary values were obtained from The Farm Management 
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Handbook 2006/2007 (SAC, 2006). The Farm Management Handbook provides a 

comprehensive and up-to-date source of information for farmers and those involved in 

the assessment and planning of farm business, and allowed us to complete the dataset 

with representative information (Table 5-1). 

For soils, actual CO2 emission measurements and soil surface (0-10 cm) 

temperatures were sampled monthly between July 2005 and September 2006 for each 

field in Worcestershire. In three fields, soil pits were also dug to a depth of 1 m and 

samples taken every 15 cm for soil bulk density and soil organic carbon (SOC) 

determination. Soils collected monthly at 0-10 cm depth from each plot were dried at 

105 °C for 24 h to determine moisture content, while loss on ignition at 450 °C was 

undertaken to determine soil organic matter (SOM) content. In addition, soils 

collected at the start of the growing season from all locations were analysed for SOC 

with a Leco CHN 2000 analyser. 1 M KCl extracts (1:5 w/v) of the soil were also 

taken monthly and frozen at -20°C to await N analysis. Nitrate and ammonium 

concentrations in the KCl extracts were determined according to Miranda et al. (2001) 

and Mulvaney (1996). Soil pH levels were measured in a 1:5 (w/v) ratio of soil-to-

distilled water using a Hanna 209 pH meter. 

 

4.3.1. Meteorological input data 

Weather data (maximum, minimum and average air temperature, rainfall, solar 

radiation, hours of sun and wind speed) for a 10 year period (1998 to 2008) were 

obtained for Brize Norton, Oxfordshire from the UK Met Office (Figure 4-1). The 10 

year dataset allowed for the possibility of running simulations over longer time 

periods to look at the variability/stability in model output in response to changing 

climate. In all versions of the DNDC model the input variables included maximum 

and minimum air temperature, rainfall and wind speed.  

 



Chapter 4 

 130 

 

Figure 4-1: Ten years weather data for the geographical area where the fields were located and 

which was used to parameterise the DNDC model. Rainfall (bar chart) was measured in mm and 

graphed monthly. Average temperature (solid line) is presented in degrees Celsius and is graphed 

weekly. 

 

Each variable in the model was measured in a stepwise manner (where possible) and 

was kept within realistic parameters (where possible), as done in Brown et al. (2002), 

Stange et al. (2000) and Li et al. (1992a).  
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Table 4-1: Details of the parameter inputs used for the sensitivity analysis of the DNDC model. Values include the range used in the analysis, the number of 

variations and the step interval. 

Input Units  Range 
No. of 

variations 
Step 

Amount of manure kg C ha
-1 

0-29.66 8 0, 3.71, 7.42, 11.12, 14.83, 18.54, 22.25, 29.66 

Amount of fertiliser kg N ha
-1

 0-164.71 9 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 

Additional in atmospheric CO2 conc. ppm 0-30 2 0, 30 

Crop cover   2 yes or no 

Crop type   6 fallow, corn, vegetable, bean, lettuce, brussels sprouts 

Fertiliser application method   2 surface or injected 

Fertiliser type   7 
Urea, anhydrous ammonium, ammonium bicarbonate, 

NH4NO3, (NH4)2SO4, nitrate, (NH4)2HPO4 

Flood leaking rate mm day
-1

 0-100 6 0, 1, 10, 20, 50, 100 

Flooding depth cm 0.5-10 2 0.5-5, 5-10 

Flooding pH  6-8 5 6, 6.5, 7, 7.5, 8 

Fraction of crop left in field  0-1 5 0, 0.25, 0.5, 0.75, 1 

High ground water  yes, no 2 Yes, No 

Irrigation amount cm 0-3 5 0, 0.5, 1, 2, 3 

Irrigation water pH  6-8 5 6, 6.5, 7, 7.5, 8 

Latitude Decimal unit 0.25-74.78 5 0.25, 15.98, 39.48, 52.15, 74.78 

Manure type   8 
none, farmyard, green manure, straw, animal slurry, 

compost, bean cake, human waste 
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Microbial activity  0.01-1 3 0.01, 0.5, 1 

No of crops  1-3 3 1, 2, 3 

No of fertiliser applications  0-2 3 0, 1, 2 

No of flooding events  0-3 4 0, 1, 2, 3 

No of manure events  0-3 4 0, 1, 2, 3 

No of tillage events  0-5 6 0, 1, 2, 3, 4, 5 

No of weeding events  0-3 4 0, 1, 2, 3 

Slope  % 0-20 5 0, 5, 10, 15, 20 

Bulk density g cm
-3 

0.75-2 6 0.75, 1, 1.25, 1.5, 1.75, 2 

Soil organic matter kg C kg
-1

 0.01-0.4 8 0.01, 0.02, 0.03, 0.05, 0.08, 0.1, 0.2, 0.4 

Soil pH  6-8 6 6, 6.5, 6.96, 7, 7.5, 8 

Soil type  0.03-0.63 7 sandy to clay soil 0.03, 0.06, 0.09, 0.14, 0.19, 0.41, 0.63 

Tillage depth cm 0-45 5 0, 5, 10, 20, 45 

Variable N in rainfall kg N ha
-1 

yr
-1

 0.52-3.13 6 0.286,  0.52, 1.04, 1.57, 2.8, 3.13 

Weeding problem   3 none, moderate, serious 
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The difference between Baseline (B) and the results produced with a varied input (VI) 

was found as a percentage difference (PD) as follows (Eqn. 1):  

 

PD 
 

100



B

BVI
        (Eqn. 2) 

 

Negative percentages are due to the output values being lower than the baseline values 

and positive percentages are due to the output values being correspondingly higher. For 

methane, the positive output values are the result of the field producing more CH4 than 

the baseline field, whereas negative values are caused by a greater net CH4 

consumption/oxidation.  

 

4.3.2. Statistical Analysis 

All statistical analysis was performed using SPSS version 18 (SPSS Inc, Chicago, IL). A 

univariate analysis of variance was used for the 10
 
year average and 10

th
 year with the 

dependant variable being the weather data for figure 4-8 and figure 4-10. 

 

4.3.3. Weather comparison 

Comparisons were run to investigate the effect of input weather data on model outputs. 

Two comparisons were made, as follows: 

 

1. Average weather data versus variable weather data: The average of 10 years of 

weather data for Brize Norton was calculated and the model run for 10 consecutive 

years. This output was compared to that obtained when the 10 years data not averaged. 

This was run using the 6 lettuce fields described above. 

 

2. Different weather data: A comparison of the outputs from three sets of UK weather 

data [(1) Brize Norton, Oxfordshire, (2) Holbeach, Lincolnshire and (3) Valley, 

Anglesey], were used to see what variations different weather patterns had on model 

outputs. This was measured using six lettuce fields, six sugar beet fields and six wheat 

fields (Table 5-2). This will give an insight into how weather can affect the outputs 

rather than the soil and farm management inputs. 
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Table 4-2: The average input ranges for the lettuce, sugar beet and wheat crops used in the sensitivity analysis runs. 

  Units Lettuce Sugar Beet  Wheat 

 Atmosphere N Concentration in rainfall mg N/l 0.286 0.286 0.286 

 Atmosphere NH3 background at atmosphere µg N/m
3 

0.060 0.060 0.060 

 Atmosphere CO2 background at atmosphere ppm 350 350 350 

Soil 

Soil 

Soil 

Soil 

Soil 

Soil texture  Clay, Loam, Loamy sand  Silty clay, Loam, Loamy sand Silty clay, Loam 

Bulk density g/cm
3 

1.75 1.48 1.68 

Soil pH  4.98-7.45 6.07-7.10 4.63-6.25 

Soil organic C at surface kg C/kg 0.013-0.026 0.011-0.023 0.010-0.027 

Slope % 3-15 5-30 5-10 

Farming 

Farming 

Farming 

Farming 

No. Crops  2-3 1 1 

Crop type  lettuce sugar beet wheat 

Harvest mode  1 1 1 

Fraction left  0.3-0.5 0.2 0.1 

Tillage 

Tillage 

No. of tillage events  5 3 2 

Tillage method  2,3,3,4,5 2,2,5 3,5 

Fertilization  

Fertilization 

Fertilization 

Fertilization 

Fertilization 

No. Applications  2-3 1 1 

Type  Urea Urea NH4NO3 

Amount kg N/ha 67.9-102 100 119 

Application type  Surface Surface Surface 

Depth cm 0.2 0.2 0.2 

Manure Amendment 

Manure Amendment 

Manure Amendment 

No. Applications  None None None 

Type  None None None 

Amount kg C/ha None None None 

Weeding 

Weeding 

Weed problem  None None None 

No. of weeding events  0 None None 

Irrigation 

Irrigation 

Irrigation 

No. Applications  3 None None 

Amount used cm 1 None None 

Water pH  7 None None 
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4.4. Results 

As expected, the output of the DNDC model was modified to differing extents 

depending on which of the key input variables was altered. Overall, there was 

considerable difference in the effect of different variables to the model outputs. 

Variables having no significant effect on the model outputs are summarised in Table 

5-3. 

 

Table 4-3: Variables for which variation in input value resulted in no major variation on model 

outputs specifically relating to change in SOC, soil heterotrophic CO2, crop biomass, CH4 

emissions, nitrate leached and N2O emissions. 

Variables 

Atmospheric CO2 concentration 

Crop cover 

Fertiliser application method 

Floodwater pH 

Irrigation water pH 

Latitude 

Number of weeding events 

Slope 

N content in rainfall 

 

4.4.1. Change in SOC 

Changing the different input parameter values had a varying influence on predictions 

of SOC stocks (Figure 4-3). Some variables such as microbial activity had a large 

effect in DNDC90 (0-2.1 t C ha
-1 

yr
-1

), produced a small effect in DNDC91 (0-0.15 t 

C ha
-1 

yr
-1

), but had almost no effect in DNDC92 (<0.03 kg C ha
-1 

yr
-1

). This effect is 

partly attributable to changes in the way the physiochemical process between the 

models alters in response to soil pH levels which influences soil microbial activity 

(Stange et al., 2000). 

The four main variables that had a major effect on SOC storage were the 

number of tillage events, tillage depth, soil bulk density and soil type. The range in 

SOC output values for the two tillage variables was greatest for DNDC92, and least 

for DNDC91. A different pattern emerged for soil bulk density and soil type where 

DNDC90 produced the greatest range in outputs and DNDC91 the least. DNDC92 

produced the greatest range of values for tillage depth and number of tillage events, 
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while DNDC90 had the greatest range for soil type. All three models showed a similar 

range for the variations in soil bulk density. 

In DNDC92, crop type and the fraction of the crop left in the field had a 

moderate effect on changes in SOC stocks and was intermediate between DNDC91 

and DNDC90 (Figure 4-3).  Overall, DNDC90 had the fewest input variables 

affecting changes in SOC storage, but it also had the greatest variation in range. 

 

 

Figure 4-2: Change in soil organic carbon as a percentage difference from the baseline, with 

versions DNDC90 (), DNDC91 () and DNDC92 ( ). The output named soil organics was not 

graphed due to the large percentage difference and can be found in figure 4-8. 
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Table 4-4: The highest and lowest predicted values for change in SOC (kg C ha
-1 

yr
-1

) for three 

different versions of the DNDC model. The negative numbers are those below the baseline 

dataset values and the grey shaded areas are where the input values had no significant effect on 

the output values. 

 

 

 

 DNDC90 DNDC91 DNDC92 

 Lower Higher Lower Higher Lower Higher 

Amount of fertiliser 0 143.86 -22.16 0.02 -32.19 14.78 

Amount of manure 0 3.73 0 15.76 0 11.46 

Crop type -39.24 78.35 -9.5 321.23 0 266.81 

Fertiliser type   -0.03 0.01 -5.74 2.34 

Flood leaking rate   -0.09 0 -4.09 0.637 

Flooding depth -9.7 0 0 0.15 -4.7 2.35 

Fraction of crop left 

in field 
0 45.14 0 118.5 0 220.58 

High ground water -22.84 0   -5.58 2.790 

Irrigation amount 0 2.67 -0.45 15.76 -6.38 59.18 

Manure type -1.7 0.18 -7.34 0 -2.73 0.44 

Microbial activity 0 2078.51 0 145.84 0 0.3 

No of crops 0 202.62 0 132.66 0 18.21 

No of fertiliser 

applications 
  0 22.16 0 13.92 

No of flooding 

events 
0 30.17 -9.53 0 0 47.05 

No of manure 

events 
0 6.93 0 25.07 -17.64 4.106 

No of tillage events 0 490.41 -8.15 294.88 -376.25 1387.48 

Soil bulk density -474.04 1476.19 -103.2 413.11 -226.98 906.97 

Soil organic matter -275275 0 -51206.2 0 -131030 15822.21 

Soil pH   -0.01 0 -1.82 0.26 

Soil type -169.49 2797.91 0 660.08 0 1549.54 

Tillage depth -522.21 223.91 -87.04 251.72 -1450.68 820.12 

Weeding problem   -0.19 0.15 -13.47 3.936 
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4.4.2. Soil heterotrophic CO2 production 

In all three version of the DNDC model the same input variables had the most impact 

on the outputs in terms of soil heterotrophic CO2, albeit by differing amounts (Figure 

4-4). In both DNDC90 and DNDC91 it was apparent that crop type had a major effect 

on soil heterotrophic CO2 emissions, with DNDC91 having the largest predicted range 

(Table 5-4). In contrast, variation in tillage depth had the greatest effect for DNDC92, 

while both DNDC90 and DNDC91 gave smaller and similar model responses. The 

other three variables that had a large influence on the net CO2 emissions were soil 

type, soil bulk density and number of tillage events, with DNDC91 giving the lowest 

predicted range in values. DNDC90 showed the greatest value range of all three 

models for soil type and soil density while DNDC92 produced the greatest range for 

the number of tillage events (Figure 4-4).  

 

 

Figure 4-3: Soil heterotrophic CO2 as a percentage difference from the baseline, with versions 

DNDC90 (), DNDC91 () and DNDC92 ( ).The output named soil organics was not graphed 

due to the large percentage difference and can be found in figure 4-8. 
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Table 4-5: The highest and lowest predicted output for soil heterotrophic CO2 (kg C/ha/yr) for 

three different versions of DNDC. The negative numbers are those below the baseline dataset and 

the grey shaded areas are where the input values had no variation on the output values. 

 

 

 

 

 

 DNDC90 DNDC91 DNDC92 

 Lower Higher Lower Higher Lower Higher 

Amount of fertiliser -156.6 0 -199.5 0.07 -243.0 42.6 

Amount of manure 0 25.9 0 13.9 0 19.4 

Crop type -419.7 618.9 -396.5 2846.8 -228.4 972.0 

Fertiliser type   -0.46 0 -24.5 4.8 

Flood leaking rate   0 0.09 -27.4 4.5 

Flooding depth 0 7.7 0 31.6 -10.6 5.3 

Fraction left in field 0 221.8 0 75.2 0 308.3 

High ground water 0 22.2   -19.6 9.8 

Irrigation amount -22.5 4.6 -15.7 0.4 -60.6 12.6 

Manure type -11.6 0 -6.0 1.5 -0.7 1.0 

Microbial activity -2075.3 0 -145.8 0 -27.3 9.1 

No of manure 

events 
0 37.5 0 19.4 0 28.1 

No of crop 0 692.4 0 760.0 -225.9 75.2 

No of fertiliser 

applications 
  0 199.5 0 285.6 

No of flooding 

events 
-17.5 0 0 -10.9 -78.7 18.6 

No of tillage events -490.3 0 -294.7 8.1 -1485.9 376.2 

Soil bulk density -1063.0 875.3 -309.7 206.6 -958.2 237.5 

Soil organic matter 0 275208 0 51207.4 0 131087.5 

Soil pH   0 0.01 -7.3 1.3 

Soil type -2767.6 168.7 -660.1 0 -1646.7 167.5 

Tillage depth -224.0 522.0 -251.7 86.9 -855.6 1520.3 

Weeding problem   0 -3.8 0 20.3 
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4.4.3. CH4 emissions 

CH4 emission predictions appeared less sensitive to changes in model input 

parameters in comparison to some of the other model outputs (e.g. SOC storage and 

CO2 emissions). Of those that did have an effect, initial SOC level had a small effect 

which was similar for all versions of the model. In contrast, soil type had a greater 

impact, especially in DNDC90, which produced an emission range twice that 

predicted by DNDC91 and DNDC92 (Figure 4-5). Overall, soil bulk density had the 

greatest effect on CH4 emissions although the effect was almost identical for all three 

versions of the model. 

 

Figure 4-4: CH4 emissions as a percentage difference from that predicted with the baseline 

dataset, with versions DNDC90 (), DNDC91 () and DNDC92 ( ). 
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Table 4-6: The highest and lowest predicted output for CH4 emissions (kg C/ha/yr) for three 

different versions of DNDC. The negative numbers are those below the baseline and the grey 

shaded areas are where the input values had no variation on the output values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 DNDC90 DNDC91 DNDC92 

 Lower Higher Lower Higher Lower Higher 

Amount of fertiliser -0.02 0     

Crop type -0.01 0 -0.01 0.01 -0.01 0.002 

Microbial activity -0.02 0     

No of crops   0 0.01 -0.01 0.003 

No of flooding 

events 
0 0.02   0 0.01 

No of tillage events -0.01 0   -0.01 0.002 

Soil bulk density -0.09 0.39 -0.09 0.41 -0.09 0.4 

Soil organic matter -2.71 0 -2.52 0 -2.47 0.289 

Soil type (clay 

fraction) 
-0.12 0.402 -0.14 0.14 -0.15 0.14 

Tillage depth -0.01 0   0 0.01 



Chapter 4 

 142 

4.4.4. Nitrate leaching 

With respect to predictions of the amount of nitrate leached from the soil profile, 

DNC91 showed the biggest effect for number of flooding events (Figure 4-6). 

However, DNDC90 had the highest range in absolute terms (0 to 27 kg N ha
-1 

yr
-1

). 

All three versions of the model exhibited variation in NO3
-
 leaching with number of 

fertiliser applications, following the series DNDC90 > DNDC92 > DNDC91. In 

addition, and not surprisingly, soil type and the amount of fertiliser applied also had a 

significant effect with all three versions of the model. For soil type, DNDC90 had the 

highest predicted range, followed by DNDC92 and finally DNDC91, while for 

fertiliser application rate the predicted range in NO3
-
 leaching appeared similar for all 

three versions of the model. 

 

Figure 4-5: Nitrate leached as a percentage difference from the baseline, with versions DNDC90 

(), DNDC91 () and DNDC92 ( ).The output named soil organics was not graphed due to the 

large percentage difference and can be found in figure 4-8. 
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Table 4-7: The highest and lowest predicted output for nitrate leached (kg N/ha/yr) for three 

different versions. The negative numbers are those below the baseline and the grey shaded areas 

are where the input values had no variation on the output values. 

 

 

 

 DNDC90 DNDC91 DNDC92 

 Lower Higher Lower Higher Lower Higher 

Amount of fertiliser -98.97 51.22 -0.59 0.47 -10.1 11.52 

Amount of manure  0.89   -0.02 0.07 

Crop type -10.27 28.32 -0.04 0.33 -0.66 6.06 

Fertiliser type -16.67 9.71 -0.16 0 -3.35 0.451 

flood leaking rate 0 4.09   0 13.7 

Flooding depth -5.54 0 -0.01 0 0 7.05 

Fraction of crop left 

in field 
0 3.32   0 0.3 

High ground water -14.99 0   0 21.58 

Irrigation amount -9.62 11.6 -0.44 1.13   

Manure type -0.44 3.09 0 0.04 -0.06 0.72 

Microbial activity -24.43 0.00 -0.07 0 -1.37 0.412 

No of crops -91.53 0 -0.17 0.02 0 0.12 

No of fertiliser 

applications 
0 95.44 0 0.94 0 10.08 

No of flooding 

events 
0 26.57 0 15.05 0 17.72 

No of manure 

events 
0 0.9   0 34.48 

No of tillage events -19.72 0.00 -0.02 0 -10.77 1.855 

soil density -41.61 98.33 -0.3 0.07 -11.71 3.23 

Soil Organics 0 10473.79 0 15.66 0 824.52 

Soil pH -10.41 0.21 -0.01 0 -0.93 0.158 

Soil type (clay 

fraction) 
-109.29 35.37 -0.24 0.29 -12.41 1.790 

Tillage depth -9.01 21.44 0 0.01 -5.81 8.78 

Weeding problem -36.88 0 -0.35 0 -2.77 0.803 



Chapter 4 

 144 

4.4.5. N2O Emissions 

N2O emissions were highly sensitive to changes in some input parameters (Figure 4-

7) in comparison to predictions of CH4 and CO2 emissions. In particular, greatest 

sensitivity was seen in response to changes in initial soil organic matter content and 

number of fertiliser applications. With respect to fertiliser application events, the 

range in N2O outputs followed the series DNDC91 > DNDC90 > DNDC92, while for 

soil organic matter content the opposite trend was true following the series DNDC92 

> DNDC90 > DNDC91. Of the other factors investigated N2O emissions also 

appeared to be sensitive to tillage depth although the magnitude of the response 

appeared to be model version specific. In contrast, variables such as microbial 

activity, fertiliser type and soil type gave small but similar responses with all three 

versions of the model. 

 

 

 

Figure 4-6: N2O emissions as a percentage difference from the baseline, with versions DNDC90 

(), DNDC91 () and DNDC92 ( ). 
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Table 4-8: The highest and lowest predicted output for N2O emissions (kg N/ha/yr) for three 

different versions of DNDC. The negative numbers are those below those predicted by the 

baseline dataset and the grey shaded areas are where the input values had no variation on the 

output values. 

 

 

 DNDC90 DNDC91 DNDC92 

 Lower Higher Lower Higher Lower Higher 

Amount of fertiliser -0.75 0.55 -0.84 1.36 -0.43 1.21 

Amount of manure 0.00 0.02 0.00 0.01 0.00 0.33 

Crop type 0.00 0.11 -0.06 0.00 -0.33 0.47 

Fertiliser type -0.43 0.46 -0.72 1.32 -0.42 0.72 

Flood leaking rate -0.11 0.00 -0.03 0.00 -0.21 0.03 

Flooding depth 0.00 0.1 -0.03 0.00 -0.45 0.22 

Fraction of crop left 

in field 
0.00 0.07 -0.02 0.00 0.00 0.22 

High ground water -0.06 0.00   -0.14 0.07 

Irrigation amount -0.1 0.08 -0.01 0.15 -0.07 0.02 

Manure type -0.01 0.12 -0.01 0.19 -0.01 0.18 

Microbial activity -0.25 0.00 -0.85 0.00 -1.93 0.56 

No of crops -0.28 0.00 -0.03 0.00 0.00 0.05 

No of fertiliser 

applications 
0.00 1.13 0.00 1.43 0.00 1.06 

No of flooding 

events 
-0.47 0.00 0.00 0.1 0.00 1.44 

No of manure 

events 
0.00 0.55 0.00 0.02 -0.22 0.05 

No of tillage events -0.5 0.00 -0.27 0.13 -1.20 1.45 

Soil bulk density -0.26 1.05 -0.33 0.05 -0.84 0.19 

Soil organic matter 0.00 990 0.00 451 0.00 2018 

Soil pH -0.09 0.00 -0.33 0.00 -0.41 0.06 

Soil type (clay 

fraction) 
0.00 0.45 -0.81 0.84 -1.48 0.18 

Tillage depth -0.34 5.53 -0.08 0.27 -0.84 2.77 

Weeding problem -0.29 0.00 -0.17 0.14 -0.06 0.01 
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4.4.6. Initial soil organic matter content 

Variation in the initial soil organic matter content gave the largest percentage and 

value ranges of all the parameters for some key outputs (i.e. changes in soil organic 

carbon stocks, soil heterotrophic CO2 emissions and nitrate leaching) – which is why 

these were graphed together in Figure 4-8. For the percentage change from the 

baseline values for soil heterotrophic CO2, DNDC92 gave the largest range, though 

for the actual value range it was DNDC90, with DNDC91 giving the smallest 

percentage and value range. A similar pattern was found for nitrate leaching. For 

changes in net SOC stocks DNDC90 gave the largest percentage and value range with 

DNDC91 giving the smallest. 

 

Figure 4-7: Soil organic matter, graphed for change in soil organic carbon, soil heterotrophic 

CO2 and nitrate leached as a percentage difference from the baseline, with versions DNDC90 

(), DNDC91 () and DNDC92 ( ). 

 

Table 4-9: The highest and lowest predicted output for soil organic carbon, soil heterotrophic 

CO2 and nitrate leached for the input soli organics (t N/ha/yr) for three different versions. The 

negative numbers are those below the baseline. 

 

 DNDC90 DNDC91 DNDC92 

 Lower Higher Lower Higher Lower Higher 

Nitrate leached 0.00 275.21 0.00 51.21 0.00 131.09 

Change in SOC -275.27 0.00 -51.21 0.00 -131.03 15.82 

Soil Heterotrophic CO2 0.00 10.47 0.00 0.02 0.00 0.82 

-4.E+05 -3.E+05 -2.E+05 -1.E+05 0.E+00 1.E+05 2.E+05 3.E+05 4.E+05

Soil Heterotrophic CO2

Change in SOC

Nitrate Leached

Percentage Change Soil Organics

Soil Heterotrophic CO2 
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4.4.7. Influence of weather data 

4.4.7.1. ‘Average’ versus ‘varied’ weather data 

DNDC allows the use of one year’s weather data to be reused each year for the 

number of simulated years specified. In order to test the importance of weather on the 

outputs of the model, an average of Brize Norton’s 10 year weather data was run 

alongside the actual 10 year variable weather set. Thus one set of simulations would 

have a repeating set of weather data (‘repeated’) while the other had the real weather 

data, which varied each year (‘varied’). To aid in interpretation, a cumulative running 

average was calculated (e.g. for year 5 the cumulative average would include data 

from years 1, 2, 3, 4 and 5). The impact of these different weather scenarios on the 

outputs from the DNDC model is presented in Figure 4-8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 

 148 

Crop Biomass

Year

0 2 4 6 8 10

k
g
 C

/h
a

300

400

500

600

700

800

900

 

Soil heterotrophic CO2

Year

0 2 4 6 8 10

k
g

 C
/h

a
/y

r

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

 

Change in SOC

Year

0 2 4 6 8 10

k
g
 C

/h
a
/y

r

-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

 

CH
4
 Emissions

Year

0 2 4 6 8 10

k
g
 C

/h
a
/y

r

-1.2

-1.1

-1.0

-0.9

-0.8

-0.7

-0.6

 

Nitrate Leached

Year

0 2 4 6 8 10

k
g
 N

/h
a
/y

r

0

50

100

150

200

250

300

 

N
2
O Emissions

Year

0 2 4 6 8 10

k
g
 N

/h
a
/y

r

0

1

2

3

4

5

6

 

Figure 4-8: Variation between the same ‘repeated’ annual () weather data and ‘varied’ annual 

weather () data (symbols only). The cumulative running average for the ‘repeated’ (---) and 

‘varied’ () data is also shown (lines). 

 

Perhaps unsurprisingly, crop biomass production was more or less constant across the 

10 years of repeated weather (542 - 545 kg C ha
-1

; Figure 4-8). However, under the 

varied weather patterns, crop biomass yield varied from 560 to 735 kg C ha
-1

. Soil 

heterotrophic CO2 decreased over time for both types of weather data, although the 

outputs for the ‘varied’ weather set tended to be lower than that of the ‘repeated’ 
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weather set though they were significantly similar for the yearly data sets (p=0.787). 

The cumulative average of the ‘repeated’ data had a range of 670 to 1948 kg C ha
-1

 yr
-

1
, whereas the ‘varied’ data had a range from 611 to 1509 kg C ha

-1
 yr

-1
. The 

cumulative average data was found to not be significantly different between the 

weather types (p = 0.541). 

The ‘repeated’ data had a higher cumulative average for changes in SOC 

stocks than the ‘varied’ dataset (Figure 4-8). There was a greater difference in the 

values obtained in the initial simulation year than the tenth year of simulation (461 

versus 167 kg C ha
-1

 yr
-1

, respectively). There was, however, no significant difference 

between the predictions for the two weather datasets (p = 0.625).  

In contrast to SOC stocks, net methane emissions showed different patterns for 

the ‘varied’ and ‘repeated’ weather data. The ‘varied’ data began with a higher 1
st
 

year output (-0.89 kg C ha
-1

 yr
-1

) than the running average (-0.93 kg C ha
-1

 yr
-1

), but 

then fell below the running average for the remainder of the simulation period 

(p<0.001). The final cumulative averages for the two weather data sets were 

significantly different from each other (p = 0.003). 

Predictions of the amount of nitrate leached were significantly different 

between the ‘repeated’ and ‘varied’ data (p < 0.001; Figure 4-8). In year 1 of the 

simulation period the ‘varied’ data predicted much lower NO3
-
 leaching than the 

‘repeated’ data (15 versus 246 kg N ha
-1 

yr
-1

 respectively). The ‘repeated’ data 

predictions then declined over the subsequent 10 years falling to 193 kg N ha
-1 

yr
-1

. 

The ‘varied’ data gave the highest value for the cumulative running average of 93 kg 

N ha
-1 

yr
-1

 at year 7 falling to 86 kg N ha
-1 

yr
-1

 by Year 10.  

The predictions for N2O emissions for the ‘repeated’ and ‘varied’ data sets 

showed a substantial difference with the ‘repeated’ data predicting consistently higher 

emissions (Figure 4-8). The predicted emissions for the ‘repeated’ dataset started with 

a lower value 1.4 kg N ha
-1 

yr
-1

, with the output stabilising by Year 7 at 1.1 kg N ha
-1 

yr
-1

. The ‘varied’ predictions of N2O emissions started at 3.9 kg N ha
-1 

yr
-1

, and 

peaked at the 4
th
 year with emissions of 4.2 kg N ha

-1 
yr

-1
 falling to 3.6 kg N ha

-1 
yr

-1
 

by year 10. Predictions of N2O emissions from the ‘repeated’ and ‘varied’ data were 

significantly different (p < 0.001). 
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4.4.7.2. Influence of crop type, geographical location and variable weather 

dataset on the outputs from the DNDC model 
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Figure 4-9: weather data used for the weather comparison analysis. Temperature (°C) has been 

graphed weekly and rainfall (mm) has been graphed monthly (UK Met Office).  
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Lettuce Sugar beet Wheat 
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Figure 4-10: Variation of key greenhouse gases, change in SOC and nitrate leached, in three 

crops for three sets of weather data, crops were lettuce, sugar beet and wheat, and weather 

data was Brize Norton (), Holbeach () and Valley (). Cumulative lines were also 

added to each of these UK weather areas, Brize Norton (), Holbeach (---) and Valley (). 

 

Most of the model outputs for the three crops showed similar patterns over time 

(Figure 4-10), except for the change in SOC for sugar beet. For sugar beet and 

wheat the crop biomass and soil heterotrophic CO2 showed the same graphical 

pattern for the different geographical locations. 

 Brize Norton gave higher results for all three vegetable types for crop 

biomass compared to the other two locations. It was found to be significantly 

different from Holbeach for both lettuce and wheat (P=0.029 and 0.018 

respectively). Holbeach had the lowest productivity for each of the three crops 

respectively. 

Soil heterotrophic CO2 also varied between areas (Figure 4-10). Valley 

gave the highest outputs for lettuce. Brize Norton gave the lowest results and was 

found to be significantly different to Holbeach for wheat (P=0.011). Brize 

Norton and Valley gave high results for sugar beet and Holbeach gave the 

lowest. Brize Norton and Valley were statistically similar for all three vegetable 

types with P values of 0.085, 1.000 and 0.496 respectively. For wheat, Brize 

Norton gave the highest results and Holbeach gave the lowest. Valley had a 

larger range for wheat and was statistically similar to Holbeach wheat with a P 

value of 0.496. 

Changes in SOC varied across the three areas. Valley lettuce was 

significantly different from Brize Norton lettuce, with a P value of 0.045. 

Holbeach had the smallest loss compared to Brize Norton, though these were 

statistically similar for all three vegetable types, lettuce (P= 0.711), sugar beet 

(P=0.948) and wheat (P=0.390). Brize Norton had the smallest loss for wheat. 

Holbeach started with a greater loss than Valley, but then they converged to give 

similar results; Valley was significantly different from Brize Norton (P= 0.002) 

and similar to Holbeach (P= 0.534). At the start of the simulations Valley had the 

greatest loss for sugar beet and Brize Norton the least. Overall, Valley had the 

greatest loss compared with Brize Norton and Holbeach; Brize Norton and 

Holbeach started to converge over time. Valley had the largest variation in yearly 

data, with two years, - 2 and 7 - acting as sinks.  
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 All weather areas gave statistically similar results for sugar beet and 

wheat (Figure 4-11). Brize Norton had the lowest uptake of CH4 for all three 

crops, though it had very different starting and finishing points for all three. 

Valley had the greatest levels of emissions lettuce, sugar beet and wheat 

respectively.  

Patterns of nitrate leached were similar over the years between vegetable 

types, with a large increase to start with, then levelling off towards the 10
th

 year. 

Holbeach gave the lowest output for lettuce and sugar beet. Holbeach was 

significantly different from Brize Norton (P=0.000) for wheat, but similar for 

lettuce and sugar beet (P=0.892 and 0.999, respectively). Holbeach was 

statistically similar to Valley for all three vegetable types: lettuce (P=0.176), 

sugar beet (P=0.979) and wheat (P=0.523). At Brize Norton, wheat showed 

increasing levels of leaching after 5 years; this decreased over time. Valley gave 

the highest output;
 
Brize Norton and Valley wheat were significantly different 

with a P value of 0.003. Valley also gave the highest results for lettuce and sugar 

beet. Brize Norton gave similar values to Valley, for both lettuce and sugar beet 

with statistically similar values across the weather area (P=0.769 and 0.999 

respectively). 

Emissions of N2O were similar across the years for all areas, with no 

major changes except for wheat. Brize Norton, Holbeach and Valley showed 

similar results for lettuce, with Brize Norton giving P values of 1.000 and 0.951 

compared to Holbeach and Valley, and Holbeach compared to Valley giving a P 

value of 0.973. The highest emitter was Holbeach, and the lowest emitter was 

Brize Norton, with Valley lying between the two with a steep increase to year 3, 

and levelled off by the 10
th

 year. 

 

4.5. Discussion 

Sensitivity analyses of DNDC have previously been undertaken by Li et 

al. (1992, 2004), Adballa et al. (2009) and Robertson et al. (2000), though these 

studies only considered the sensitivity of the model to a few variables. Only 

Adballa et al. (2009) have considered more recent versions of the model (v 92), 

though their study focused only on factors regulating NOx production. In a UK 

study, Brown et al. (2002) also found that prediction of N2O emissions were 

highly sensitive to aspects of farming practice, particularly the type, rate, timing 
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and depth of fertiliser application. In this study all variables were considered and 

compared with three different model versions.  

Unlike Li et al. (1992, 1997) the scenarios tested here were run for more 

than a year, as simulated results showed that SOC decreased rapidly in the early 

years and gradually approached a quasi-equilibrium. If run for one year the 

system is unable to equilibrate and may give unrealistic results. This indicates 

significant initial instability in the model. Qiu et al. (2009) also ran a 20-year 

simulation to eliminate the possible uncertainties that could be induced from the 

initial settings of some input parameters such as SOC partitioning. 

 

4.5.1. Carbon dioxide emissions 

The results presented here suggest that there are potentially large variations in the 

sensitivity of the different variables in the different versions of the model tested. 

In an earlier version of the model, Li et al. (2004) showed that crop rotation and 

crop residue incorporation had a significant effect on annual CO2 emissions. In 

this study we did not find this to be the case; tillage depth and microbial activity 

had greater effects. Overall, soil type, organic matter content and bulk density 

represented key variables regulating the model outputs. Some of our findings 

confirm previous results presented by Li et al. (1992), which show that soil pH, 

rainfall nitrate concentration, initial soil nitrate and ammonium all had little or no 

effect on annual CO2 emissions.  

Babu et al. (2006) found the model to be sensitive to SOC content, 

agreeing with our results. Similarly, Beheydt et al. (2007) found the model 

output to be ‘slightly sensitive to pH’ which is also in agreement with my 

findings. Most aspects of tillage and fertiliser regime had a major effect on the 

model’s greenhouse gas predictions, though surprisingly manure had little effect 

since it can be a major source of C and N to soil microbial communities (Li et al., 

1992). The change in the relative importance of different variables in regulating 

GHG fluxes is demonstrated by Li et al. (1992) and Li et al. (2004). 

Li et al. (1992) reported that as the soil temperature increased from 0 to 

30C, soluble carbon and nitrate increased as was found here. Above 40C, 

soluble carbon gradually decreased and nitrate sharply decreased and then 

increased. At temperatures above 45C (not normally found in field soils) the 
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production of CO2 decreased because of the depression of microbial activity. 

Nitrification ceases above 45C, so no nitrate is produced (Li et al., 1992).  

 

4.5.2. Nitrous oxide emissions 

Fertilisers represent a large driver of N2O emissions, particularly when 

fertilization rates are high ca. 400 kg N/ha (Zhang et al., 2002; Li et al., 1994). Li 

et al. (1994) predicted that application of fertilisers at lower depths in the soil 

profile would reduce emissions. When considering tillage depth in this study this 

did not appear to reduce emissions. Soil type was found to have an effect on the 

N2O emissions – a finding supported by Li et al. (1992), who found that when 

soil clay content was decreased by 20% the annual N2O emissions increased by 

more than 40%. Strange et al. (2000) found up to a 1132% difference in N2O 

emissions from their study when varying soil types with clay fraction between 

0.09 and 0.29. 

In this study, irrigation had some effect on nitrate leaching, though not to 

the same degree as most of the other variables. Li et al. (1994) found that a 

weekly irrigation regime could increase N2O emissions by 250%, which is a 

problem, particularly because irrigation can promote the downward flow and 

leaching of mineral nitrogen, and increase nitrogen stress (Zhang et al., 2002). 

Varying soil pH was found to only have a maximum change of 5.67% 

whereas Stange et al. (2000) reported that emissions increased by up to 206%. In 

agreement with Li et al. (1994), we also found soil type, texture and tillage to 

have a large affect on N2O emissions. In an early version of the model, Li et al. 

(1992) reported that changes in soil density, clay content, rainfall nitrate, initial 

soil nitrate, and initial soil ammonium all had a slight effect, or none at all, on 

total denitrification.  

 

4.5.3. Methane emissions 

In this study methane emissions also proved sensitive to soil texture. This is in 

general agreement with Li et al. (2004) who predicted that heavier textured soils 

would emit less CH4 than lighter textured soils under the same management 

regime. In contrast to Li et al. (2004) and Babu et al. (2006), however, we did not 

find CH4 emissions were sensitive to soil pH and fertiliser regime. 



Chapter 4 

 159 

4.5.4. Model response to climate variables 

Relatively little work has been undertaken on the sensitivity of DNDC to weather 

data sets. From the results presented here it is apparent that greater consideration 

should be given to the influence of weather on model outputs. Work has mainly 

looked at climate change increases in temperature and rainfall (Brown et al., 

2002; Li et al., 1992; Li et al., 2004; Smith et al., 2004). The biggest effect 

observed in this study was the difference between the outputs obtained with the 

averaged weather data and the varied 10 year weather data set. As the same 

weather set was used for the average and varied 10 year weather data set, it was 

expected that the outputs by both would be very similar, with the possibility of 

the varied 10 year weather set showing greater fluctuation. This would be owing 

to the weather extremes not being averaged out. For most long term simulations, 

one year of weather data is normally used, suggesting that the outputs would give 

neither exceptionally low or high results due to extremes in weather data. Most 

sensitivity analysis undertaken with weather data considers the effect of global 

warming on the system, and therefore compares the output data of base results 

with those at 4ºC higher (Li et al., 2004). Li et al. (1992) found that variations in 

annual precipitation had the greatest effect on the annual total denitrification; 

when annual precipitation was increased by 20%, total denitrification increased 

by more than 50%. In the same vein, Li et al. (1992) found an increase in annual 

precipitation greatly increased annual N2 emissions, but slightly reduced N2O 

emissions. Where an increase in annual precipitation had a negative impact on 

annual CO2 emissions, rates of decomposition are slowed with the increased 

frequency/duration of anaerobic conditions. 

 The addition of sunlight hours to the basic weather data - maximum 

temperature, minimum temperature and rainfall results - unexpectedly gave the 

same results as the basic weather data. The addition of wind data gave lower 

results than basic weather data results. 

The variation in different regional weather and vegetable types was most 

interesting, as it could give a significant idea of what vegetables are best grown 

in which area. From the graphs presented, Brize Norton seems to represent the 

best area for growing vegetables as it has the lowest GHG emissions. 

Surprisingly, Holbeach seems to give the highest emissions, making it the least 

environmentally favourable. Given that most of Lincolnshire is given over to 
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food production, this may be of concern. Anglesey has relatively low rates of 

GHG emission, though at the moment it produces very few horticultural crops.  

It should be noted, however, that lettuce does produce lower CO2 

emissions than sugar beet. Wheat produces the most crop biomass and lettuce the 

least. It is not surprising that lettuce comes out worst, given the amount of tillage 

and fertiliser used for such a short term crop. 

 

4.5.5. Discussion 

The hypothesis was not correct for this study as the models were not only more 

sensitive to the carbon and nitrogen inputs as for soil heterotrophic CO2crop type 

gave a large percentage difference as did flooding type for Nitrate leached which 

would be expected. Microbial activity, soil type and soil density did however 

seem to affect the output of most greenhouse gases and are important in the 

carbon and Nitrogen cycle. The type of weather input did not have a great 

variation on the output for certain types and therefore disproves my theory that it 

would have a major influence. 

This study does not completely agree with Li et al. (1992) that DNDC provides 

an extremely accurate predictor of GHG emissions from agricultural systems. 

Overall the model behaviour (for N2O and CO2 emissions etc) is not always what 

would be representative of what is (or would be) observed in the field. The 

model provides an idea of the true nature of complex agricultural systems; only 

by studying the complex interactions among soil climate, decomposition and 

denitrification processes, and agronomic practices can a complete picture of 

agroecosystem scale N2O fluxes begin to emerge. Without a full understanding 

of a given soil, farming method and model, then no realistic prediction can be 

contemplated. DNDC was found to be highly sensitive to the type of weather and 

the accuracy of the inputs used. As stated by Mearns et al. (2007), achieving 

consistency in - and indeed, even understanding how to assign probabilities to -

outcomes or processes that encompass various types of uncertainties is very 

difficult even in the research realm. 

 

4.6. Conclusion 

DNDC has been used and developed for a variety of scenarios around the world. 

There is no evidence of substantial validation and sensitivity analyses with more 
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recent versions of the model, as we have seen in this study. My results suggest 

some similarities with less substantial sensitivity analyses, although there were 

substantial differences - probably owing to the different versions of the model 

considered. The different versions showed some large variation between which 

inputs are the most important, with soil type, soil density, crop types, fertilisers 

and tillage being the most important variables for all versions. The weather data 

suggested it was better to use data for each year instead of using a single year’s 

data multiple times to represent a multi-year data set. The three area data sets 

considered the variation between different growing areas and crop types. We 

found the model could consider which farming regime and management is most 

environmental friendly to that area, although as Leip et al. 2008 observed it 

would also have to consider relevant economic and social criteria. The sensitivity 

analysis conducted here supports the importance of validating this 

biogeochemical model for designing specific policies appropriate to the soils, 

climate, and agricultural conditions of a particular area. 
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5.1 Abstract 

It has previously been widely accepted that food miles provide a good indicator 

of the environmental sustainability of food production systems. Some recent 

reports, however, have questioned this viewpoint (Pretty et al., 2005). 

Consideration of how foods are produced, and – importantly - farm and industrial 

management regimes, can have a substantial impact on changing the carbon (C) 

footprint of foods. Many vegetables are imported into the UK (e.g. from Kenya 

and Spain). The general public perception is that this incurs a larger C footprint 

than locally sourced food. This chapter considers the quantity of greenhouse 

gases (GHG) emitted from soil when the same vegetable crops are either grown 

locally in the UK, or grown overseas in either Spain or Kenya. The UK based 

work considered crops grown in three different counties: Worcester, Anglesey 

and Lincolnshire. The model used to calculate the GHG emissions was DNDC 

(DeNitrification DeComposition model). A validation of the model was 

performed by direct comparison to field measurements of soil ammonium and 

nitrate. Patterns of measured soluble N were similar, however, DNDC tended to 

over-predict soil nitrate concentrations. The greatest modelled emissions of GHG 

emissions came from crops grown in Spain compared to those produced in either 

the UK or Africa. The UK had the lowest GHG emissions. The vegetable with 

the highest GHG modelled emissions were found to be potato. Vining peas and 

beans were found to cause the lowest emissions and the lowest amounts of GHG. 

Overall, the study suggests that significantly different losses of GHG occurs 

between countries, and that site-specific soil emissions should be incorporated 

into future C footprinting studies – which would necessitate a move away from 

IPCC Tier 1 default values. 

 

5.2 Introduction 

Food is one of the critical areas for the production of greenhouse gas (GHG) 

emissions, as agriculture contributes approximately 70% of N2O and 40% of CH4 

to the atmosphere globally while cropped soils also have the potential to 

sequester atmospheric carbon dioxide (CO2) (Li et al., 2004). In the European 

Union, the agricultural sector contributes approximately 10% of total GHG 

emissions (Schils et al., 2005). When assessing the impact of food, the entire 
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suite of GHGs needs to be considered (Li et al., 2005). Different GHGs can be 

compared on a like-for-like basis by converting the fluxes of the non-CO2 GHG 

into CO2 equivalents via their radiative forcing, called global warming potential 

(GWP). GWP is defined as the cumulative radiative forcing between the present 

and some defined later time, caused by a unit mass of gas emitted now, expressed 

relative to the reference gas CO2 (Levy et al., 2007). The IPCC values for GWP 

for N2O and CH4, equate 1 kg of these gases with 298 and 25 kg of CO2, 

respectively, over a 100-year time horizon (IPCC, 2007; Levy et al., 2007; Li et 

al., 2004; Pluimers et al., 2000; Qiu et al., 2009). 

 Environmental impacts from agriculture and the food chain have been 

investigated in many different ways. Agriculture has been the target for studies 

of emissions and resource use at farm, regional and global levels (Engstrom et 

al., 2007). Balancing food production and environmental protection, and 

predicting the impacts of climate change or alternative management on both food 

production and environmental safety in agroecosystems are drawing great 

attention in the scientific community (Zhang et al., 2002). Given the considerable 

expense of establishing and maintaining GHG flux measurement sites, the use of 

simulation models to estimate GHG fluxes from agricultural soils has obvious 

benefits (Abdalla et al., 2009). Modelling also allows the complex links between 

soil physical, chemical and microbial processes that need to be examined 

(Abdalla et al., 2009). On a global scale, models allow a comparison between 

countries – which is useful when considering the ‘local food’ debate. 

 This paper aims to discuss the GWP of differing vegetable types grown in 

three countries with contrasting climate regimes to establish if soil emissions 

would have any bearing on the ‘local food’ argument. The model being used is 

Denitrification-Decomposition (DNDC). This is a process-based biogeochemical 

model originally developed for predicting C and N biogeochemical cycles, C 

sequestration and trace gas emissions from upland and wetland agroecosystems 

in the United States (Abdalla et al., 2009; Li et al., 2004; Tonitto et al., 2007; Qiu 

et al., 2009), China, India and Europe (Leip et al., 2008). DNDC can 

simultaneously simulate climate, crop growth and soil biogeochemistry and their 

interactions; at a sub-daily time step, it can therefore provide comprehensive 

insights into how agroecosystems will respond to climate warming and 

atmospheric CO2 enrichment (Levy et al., 2007; Zhang et al., 2002). DNDC can 
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be applied both at the field plot-scale and at the regional scale (Leip et al., 2008). 

It consists of four interacting sub-models: soil and climate (including water flow 

and leaching), plant growth, decomposition, and denitrification (Levy et al., 

2007). Advantages of DNDC are that it has been extensively tested and has 

shown reasonable agreement between measured and modelled results for many 

different ecosystems, including as grassland, cropland and forest (Abdalla et al., 

2009). Abdalla et al. (2009) believe that the model has reasonable data 

requirement and is suitable for simulation at appropriate temporal and spatial 

scales. 

 The three countries being considered in this analysis are Kenya, Spain 

and the UK (within the UK the analysis will consider the counties of Anglesey, 

Lincolnshire and Worcestershire). Vegetables represent an increasingly 

significant component of the Kenyan agricultural sector, both as a source of food 

for the rural population and as a foreign exchange earner. Rapid growth has led 

to a tripling of snap bean production from 1982 to the current average of 18 000 

tonnes year
-1

. Snap beans' high value-to-weight ratio makes them an important 

component of Kenyan vegetable exports (Kamau and Mills, 1998). Spain, in 

contrast, exports a large share of vegetables, fruits, wine and olive oil to Europe 

(Mora and San Juan, 2004), though Spain is widely regarded as a low cost 

producer of fruit and vegetables (Swinbank and Ritson, 1995).  

 Changes in dietary habits stemming from increased health awareness, 

together with demand for convenience foods, have accelerated year-round 

consumption of fresh fruit and vegetables (Dolan and Humphrey, 2000). Many of 

these come from abroad with total annual food commodity movements being 

19.6 Mt, comprising 12.2 Mt yr
-1

 for imports and 7.4 Mt yr
-1

 for exports, of 

which swapped commodities (the same produce both imported and exported) 

amount to 5.23 Mt yr
-1

 (Pretty et al., 2005). Concerns about the environmental 

impacts of transporting food increasingly long distances prior to its consumption 

have focussed on the notion of ‘food miles’. This idea, popularly understood as 

the distance that food travels from farm gate to consumer, has generated 

considerable interest among environmental groups, academics, governments, the 

media, and the general public (Edwards-Jones et al., 2008). Food miles as a 

concept is blind to the social and economic benefits associated with trade in food, 

especially from developing countries. Therefore, the analysis of the sustainability 
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of food production systems must involve issues as diverse as social justice, 

pollution, conservation of biodiversity and economic costs (Cowell and 

Parkinson, 2003). This problem can be considered through Life Cycle 

Assessment, which can calculate the C footprint of a food item from production 

to consumption. Gaseous emissions from soil are not considered by consumers 

when making food choices, and even when they are accounted for in LCAs, the 

assumptions made are often incorrect (Edwards-Jones et al., 2008). My 

hypothesis is that the modeled UK results will give lower greenhouse gas 

emissions than those from abroad for equivalent horticultural production system. 

As such, the following study aims to assess whether crops grown in different 

areas emit significantly different quantities of GHGs and whether it is possible to 

predict if certain areas should be preferentially used for producing certain crops. 

This will be done through the DNDC modelling system. 

 

5.3 Materials and methods 

5.3.1 Geographical regions 

Five different regions were considered in this study: three vegetable producing 

regions in the UK (Lincolnshire, Worcester, Anglesey) –further details in 

Koerber et al. 2010, - Murcia in Spain located at 37° 45'N, 001° 19'W and 

Nanyuki in Kenya located at 0° 2'N, 37° 12'E (Table 1). Different vegetable 

crops were measured in each geographical region, namely: broccoli, purple 

sprouting broccoli, cabbages and Brussels sprouts Brassica oleracea L.; 

(collectively Brassicas), lettuces Lactuca sativa L., vining peas Pisum sativum 

L., French Beans Phaseolus vulgaris L., wheat Triticum aestivum L., potatoes 

Solanum tuberosum L., and sugar beet Beta vulgaris L. Not all vegetable crops 

were measured in all regions, as this depended on what was grown regionally 

(Table 2). The fields used for sampling had been selected as part of a larger 

experiment concerned with GHG emissions from vegetable production as 

detailed in Koerber et al. (2009). The overlap with this previous study was the 

collection of soil samples. In summary, each country contained fields of at least 

one of the target vegetable types (brassicas, leafy salads, peas and beans). 
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5.3.2 Data collection for DNDC model 

To enable accurate parameterization of the model, data was collected from 

farmers in each region. Most of this information pertained to agronomic 

management data for individual fields for input into the Denitrification 

Decomposition (DNDC) model version 92. If key data were not available for UK 

grown crops they were obtained from The Farm Management Handbook 

2006/2007 (SAC, 2006). Each individual field was modelled for a 10 year 

period, with the same crop rotation. The crop rotation would start with initially 

bare soil until the selected vegetable is planted and followed by consecutive 

crops of the same vegetable type or bare soil, once the crop had been harvested. 

The model was not pre-run to allow it to equilibrate (i.e. the model was run as 

prescribed in the user manual). Two types of model outputs were considered. In 

the first, the average results across all 10 years of output were taken (termed 

average). In the second, results from only the 10
th

 year were considered (i.e. the 

final model simulation year), as variation through the outputs has been seen in 

the previous chapters. The advantage of this latter method is that some level of 

equilibrium will have been achieved. Averages were made across all fields for a 

particular crop type. 

 

Table 5-1: Visual summary of the three different vegetable producing areas investigated in 

the study. 
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Photographs from 

Spain, demonstrating 

the different 

irrigation systems 

and the size of fields 

used. In the left 

photo drip irrigation 

is being used where 

the right photo is of 

flood irrigation. The 

central photo displays how some of the farms are made with large fields with roads between, where the right picture shows smaller fields with 

soil reaves splitting them. 

Photographs from 

Kenya looking at 

bean production. The 

right picture is of one 

of the irrigation dams 

used and refilled 

during the rainy 

season. The left 

picture shows the 

size of each field, 

which are separated by earth reaves. These were ready for planting. The centre picture is beans growing on handmade bean poles 

Photographs of UK 

fields. The left photo 

is a field covered to 

increase temperature 

and humidity forcing 

the plant to grow 

earlier in the season. 

The right photo 

shows the size of the 

fields we were 

working with in comparison to the other countries. The central photo is lettuce production. 
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Table 5-2: Summary of the geographical location, crop type and climatic regime of the soil samples used 

in the experiments. 

Region 
No. of fields 

sampled 
Crop 

Annual 

rainfall 

(mm) 

Maximum 

temperature 

(°C) 

Minimum 

temperature 

(°C) 

Anglesey 5 Brassicas 

827.9 13.1 7.5  5 Potatoes 

 5 Wheat 

Lincolnshire 5 Brassicas 

621.3 13.8 5.7 

 5 Lettuce 

 5 Potatoes 

 5 Sugar Beet 

 5 Vining Peas 

 5 Wheat 

Worcester 5 Beans 

622.3 14.0 5.2 

 4 Brassicas 

 6 Lettuce 

 6 Potatoes 

 6 Sugar Beet 

 6 Vining Peas 

 6 Wheat 

Spain 9 Brassicas  
326.0 33.6 3.9 

 7 Lettuce  

Kenya 12 Beans 925.0 25.0 10.6 

 

5.3.3 Experimental soil samples 

Each field location was sampled monthly from July 2005 until November 2007. On each 

occasion four soil replicates were taken from each experimental field along with four of the 

target vegetable plants. On return to the laboratory, plants were dried at 105°C to determine 

their dry weight for C budgeting.  

During each field visit, CO2 emissions from 4 locations in each field were measured 

using an EGM-4 equipped with an SRC-1 soil chamber (PP-Systems Ltd, Hitchin, UK). Soil 

and air temperature were measured in situ. Air temperature was measured 30 cm above 

ground level. This was measured monthly for the UK areas, bimonthly for Spain and for a 

month in Kenya, though different age plots were used. 
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 Soils were sampled monthly at a depth of 0–10 cm from each plot. The soil and plant 

samples were shipped to Bangor in cool boxes and stored at 5°C prior to analysis. The soils 

were subsequently dried at 105 °C for 24 h to determine moisture content while loss-on-

ignition at 450 °C was undertaken to determine soil organic matter (SOM) content. In 

addition, soils collected at the start of the growing season from all locations were analysed for 

total C using a Leco CHN 2000 analyser (Leco Corp., St Joseph, MI). 1 M KCl extracts (1:5 

w/v) of the soil were undertaken to determine NO3
-
 and NH4

+
 concentration in soil and the 

extracts frozen until analysis. Nitrate concentrations in the extracts were measured using the 

vanadium chloride method of Miranda et al. (2001), while ammonium concentrations were 

determined with the salicylate-hypochlorite procedure of Mulvaney (1996). Soil pH was 

measured in a 1:5 (w/v) ratio of soil-to-distilled water using a Hanna 209 pH meter. For all 

sites except Kenya, 3 pits were dug to a depth of 1 m and samples collected every 15 cm 

down the soil profile using 50 cm
3
 cores to determine bulk density. In Kenya, the farms 

provided the bulk density results directly as they had been measured in a previous study. 

 

5.3.4 Meteorological data 

Weather data (maximum, minimum and average air temperature, rainfall, solar radiation, 

hours of sun and wind speed) for 10 years (1998 to 2008) were purchased from the UK Met 

Office for Brize Norton (Oxfordshire), Valley (Anglesey) and Holbeach (Lincolnshire). The 

Spanish weather data were collected from Centro Meteorológico Territorial en Murcia and 

the Kenyan weather data were collected from an on-site weather station. The 10 year data set 

allowed us to run simulations over longer time periods to explore the variability/stability in 

model output with different annual weather patterns (i.e. inter-annual variation). In all 

versions of the DNDC model the input variables included maximum and minimum air 

temperature, rainfall and wind speed. 

 

5.3.5 Statistical Analysis 

All statistical analysis was performed using SPSS version 18 (SPSS Inc, Chicago, IL). A 

univariate analysis of variance was used for the 10
 
year average and 10

th
 year with the 

dependant variable for figure 5-(2 to 6) being the different counties as was for figure 5-(7 to 

13). For figure 5-14 and 5-15 the dependent variable was the vegetable type. 
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5.3.6 Global warming potential 

The global warming potentials (GWP) were calculated by multiplying the yearly emissions 

value by the compounds GWP value to convert it into CO2 equivalents. The GWP values are 

shown in Table 2 and were taken from IPCC (2007). 

 

Table 5-3: Global Warming Potentials for the main three GHG over a 100 year period. 

Compound Global Warming Potential (CO2 eq.) 

CO2 1 

CH4 25 

N2O 298 

 

5.4 Results 

5.4.1 Validation of DNDC model 

A validation of the DNDC model was undertaken by comparing the ammonium and nitrate 

concentrations measured from field samples with those predicted to occur from the model on 

the day the samples were taken (Figure 5-1). Overall, similar patterns for soluble N 

concentrations in soil were produced by the DNDC model when compared to field results 

although the model predicted higher results for nitrate than the field results; this was seen 

across all the regions. This suggests that the model over predicts the nitrate produced as 

confirmed by Li et al. (2006). 
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Figure 5-1: Comparison of field ( ) and modelled ( )Ammonium and Nitrate cencetration for wheat fields in Worcester, Lincolnshire and Anglesey. The 

10
th

 year has been used for this comparison 
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When it came to comparing model outputs, the key outputs modelled and 

graphed were soil organic C (SOC), soil heterotrophic CO2, crop biomass, CH4 

emissions, nitrate leached and N2O emissions. 

 

5.4.2 Soil heterotrophic CO2  

When considering soil heterotrophic CO2 emissions per hectare, the model 

results suggested that the highest emissions were from potatoes with the lowest 

from lettuces (Figure 5-2). Generally, soil heterotrophic CO2 emissions were 

lowest from Lincolnshire for all vegetable types modelled, except beans (not 

measured) and potatoes. The greatest level of emissions for both brassicas and 

lettuce occurred in Spain, with values of 3312 kg C ha
-1 

yr
-1

 and 6690 kg C ha
-1 

yr
-1

 respectively. Kenya had the highest emissions for beans with emissions of 

3432 kg C ha
-1 

yr
-1

. Both the 10
th

 year and average results were not significantly 

different between vegetable types, however between areas they were found to be 

significant (P = 0.000). 

Potatoes were the highest GHG emitting crops in both Worcester and 

Lincolnshire. Lettuces were the highest emitter for Spain with values of 4698 kg 

C ha
-1 

yr
-1

 (10
th

 year) and 6690 kg C ha
-1 

yr
-1

 (average year), while brassicas were 

the lowest for Spain with values of 2334 kg C ha
-1 

yr
-1

. Brassicas were predicted 

to be the lowest emitting crops for Anglesey, while lettuce was lowest in 

Lincolnshire. Beans were lowest for Worcester with an average of 935 kg C ha
-1 

yr
-1

 and for Worcester 10
th

 year of 611 kg C ha
-1 

yr
-1

. 
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Figure 5-2: Comparison of soil heterotrophic CO2 emissions produced by five different 

areas (  Worcester Anglesey  Lincolnshire  Kenya  Spain) for 

seven different crop types for both the final year of the model simulation (10
th

 year) and 

averaged over the entire 10 year simulation period. Values represent means ± SEM (n > 4). 

 

5.4.3 Change in SOC 

For most vegetable types there was a predicted loss of SOC (Figure 5-3). 

However, the model predicted that in Worcester and Lincolnshire, potato crops 

were C sinks with sequestration values of 346 kg C ha
-1 

yr
-1

 and 48 kg C ha
-1 

yr
-1

 

respectively. Spain and Kenya gave the highest SOC losses for beans, brassicas 

and lettuces (1328 kg C ha
-1 

yr
-1

, 2685 kg C ha
-1 

yr
-1

 and 3856 kg C ha
-1 

yr
-1

 

respectively). The loss from Spanish lettuces was the highest for all vegetable 

types. The geographical region with the smallest predicted losses was 

Lincolnshire. The average results were found to be significantly different 
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between areas for both average year and 10
th

 year (P = 0.000) but not for 

between vegetable types, with results of 0.671 and 0.129 respectively. 

 

Figure 5-3: Change in SOC produced by five different areas (  Worcester  

Anglesey  Lincolnshire  Kenya  Spain) for seven different crop types for 

both the final year of the model simulation (10
th

 year) and averaged over the entire 10 year 

simulation period. Values represent means ± SEM (n > 4). 

 

5.4.4 Nitrate leaching 

DNDC predicted Lincolnshire to have the lowest amount of nitrate leached for 

all vegetable types modelled (range 2.5 to 13 kg N ha
-1 

yr
-1

; Figure 5-4). For 

vegetable types or places there was no significant difference found for either the 

10
th

 year or average years’ results. Worcester had the lowest predicted N 

leaching for bean crops (6.5 kg N ha
-1 

yr
-1

), while Kenya had the highest 

predicted level of leaching from beans (58.6 kg N ha
-1 

yr
-1

) as seen in Figure 5-4. 
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Anglesey gave the highest value for brassicas, potatoes and wheat, while 

Lincolnshire had the highest value for vining peas. Worcester gave the highest 

value for sugar beet (14.8 kg N ha
-1 

yr
-1

). 

 

Figure 5-4: Comparison of the amount of nitrate leached by five different areas (  

Worcester Anglesey  Lincolnshire  Kenya  Spain) for seven different 

crop types for both the final year of the model simulation (10
th

 year) and averaged over the 

entire 10 year simulation period. Values represent means ± SEM (n > 4). 

 

5.4.5 CH4 emissions 

Kenya and Spain had the highest predicted methane sink for beans, brassicas and 

lettuce, at 1.0 kg C ha
-1 

yr
-1

, 3.1 kg C ha
-1 

yr
-1

 and 2.8 kg C ha
-1 

yr
-1

, respectively 

(Figure 5-5). Lincolnshire had the highest value for sugar beet (0.8 kg C ha
-1 

yr
-

1
), but all sugar beet values were very similar with the lowest being 0.6 kg C ha

-1 

yr
-1

 in Worcestershire. Anglesey had the highest net sink for potatoes and wheat, 
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while the lowest values for lettuce and wheat were from Lincolnshire. Worcester 

was the lowest predicted sink of methane for the rest of the vegetable types 

modelled. The average results and 10
th

 year results were found to give similar 

results for between vegetable types with P values of 0.941 and 0.991, 

respectively, however there was found to be a significant difference between 

areas with P values of both 0.000. 

 

Figure 5-5: Comparison of CH4 emissions produced by five different areas (  Worcester 

Anglesey  Lincolnshire   Kenya  Spain) for seven different crop types 

for both the final year of the model simulation (10
th

 year) and averaged over the entire 10 

year simulation period. Values represent means ± SEM (n > 4). 

 

5.4.6 N2O Emissions 

Worcestershire was the lowest predicted emitter of N2O for beans, potatoes and 

sugar beet, with emissions of 0.06 kg N ha
-1 

yr
-1

, 1.77 kg N ha
-1 

yr
-1

 and 0.81 kg 

N ha
-1 

yr
-1

, respectively. Lincolnshire was the lowest emitter for most other 
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vegetable types, as seen in Figure 5-6. The exceptions being sugar beet and 

vining peas, for which it was the highest. Both the 10
th

 year and average results 

were significantly different from each other for each area measured (P = 0.046 

and 0.04). Anglesey was the highest predicted emitting region for potatoes and 

wheat with values of 5.91 kg N ha
-1 

yr
-1

 and 3.50 kg N ha
-1 

yr
-1

. Kenya gave the 

highest value for beans and Spain gave the highest values for brassicas and 

lettuce. 

 

Figure 5-6: Comparison of N2O emissions produced by five different areas (  Worcester 

Anglesey  Lincolnshire  Kenya  Spain) for seven different crop types 

for both the final year of the model simulation (10
th

 year) and averaged over the entire 10 

year simulation period. Values represent means ± SEM (n > 4). 

 

 

5.4.7 Carbon Equivalents (Global Warming Potential) 
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5.4.7.1 Beans 

Beans gave higher results for total GWP in Kenya than in Worcester, with the 

results for Kenya being 4 times greater although the P value suggested no 

significant difference (P = 0.102). Worcester has the lowest values for CO2, N2O 

emissions and CH4 sink, with the highest being from Kenya. Though CH4 has 

been graphed, it is not visible due to the values being very low (Figure 5-7). 

 

Figure 5-7: Comparison of GWP (  soil heterotrophic CO2  N2O emissions  

CH4 emissions) of two different areas for beans for both the final year of the model 

simulation (10
th

 year) and averaged over the entire 10 year simulation period. Values 

represent means. 
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5.4.7.2 Brassicas 

Spain had the highest results for CO2, N2O emissions and CH4 sink (Figure 5-8). 

Lincolnshire had the lowest CO2 and N2O values, while Worcester had the 

smallest CH4 sink. There was no significant difference between the average and 

10
th

 year results (P = 0.275). 

 

Figure 5-8: Comparison of GWP (  soil heterotrophic CO2  N2O emissions  

CH4 emissions) of four different areas for brassicas for both the final year of the model 

simulation (10
th

 year) and averaged over the entire 10 year simulation period. Values 

represent means. 
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5.4.7.3 Lettuce 

Lettuce emissions were greater in Spain than in other regions, with a magnitude 

of 9 times due to the N2O emissions. Spain had the highest CO2, N2O emissions 

and CH4 consumption. Lincolnshire had the lowest CO2, N2O emission and CH4 

consumption. Both the average and 10
th

 year were significantly different (P = 

0.02). Spain had the highest N2O emissions of all vegetable types as seen in 

Figure 5-9. 

 

 

Figure 5-9: Comparison of GWP (  soil heterotrophic CO2  N2O emissions  

CH4 emissions) of three different areas for lettuce for both the final year of the model 

simulation (10
th

 year) and averaged over the entire 10 year simulation period. Values 

represent means. 
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5.4.7.4 Potatoes 

Anglesey had the lowest total GWP results for potatoes with the lowest CO2 

emissions whilst Worcester had the highest. It should be noted, however, that 

Worcester had the lowest N2O emissions (Figure 5-10). There was no significant 

difference between the 10
th

 year and average results (P = 0.128). Anglesey had 

the highest CH4 sink and the highest N2O emissions. 

 

Figure 5-10: Comparison of GWP (  soil heterotrophic CO2  N2O emissions  

CH4 emissions) of three different areas for potatoes for both the final year of the model 

simulation (10
th

 year) and averaged over the entire 10 year simulation period. Values 

represent means. 
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5.4.7.5 Sugar Beet 

Sugar beet gave higher predicted results for Lincolnshire than for Worcester. 

Lincolnshire, on average, had the highest results for CO2 and N2O (Figure 5-11). 

There was no significant difference between the average and 10
th

 year results (P 

= 0.807). Worcester 10
th
 year values had the highest N2O result and the 

Worcester average results were the smallest CH4 sink. 

 

Figure 5-11: Comparison of GWP (  soil heterotrophic CO2 emissions  N2O emissions 

 CH4 sink) of two different areas for sugar beet for both the final year of the model 

simulation (10
th
 year) and averaged over the entire 10 year simulation period. Values represent 

means. 
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5.4.7.6 Vining Peas 

Lincolnshire had higher results than Worcester for the average year, but not for 

the 10
th

 year, giving Lincolnshire both the highest and lowest values for CO2 and 

N2O. Lincolnshire also had the highest sink value for CH4, but Worcester had the 

lowest (Figure 5-12). There was no significant difference between the average 

and 10
th

 year results (P = 0.365). 

 

Figure 5-12: Comparison of GWP (  soil heterotrophic CO2  N2O emissions  CH4 

emissions) of two different areas for vining peas for both the final year of the model simulation 

(10
th

 year) and averaged over the entire 10 year simulation period. Values represent means. 
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5.4.7.7 Wheat 

Wheat gave higher results for Worcester and Anglesey than Lincolnshire (as seen 

in Figure 5-13). There was no significant difference between the average and 10
th

 

year results (P = 0.223). Lincolnshire had the lowest CO2, N2O emissions and 

CH4 consumption. Worcester had the highest results for CO2, and Anglesey had 

the highest results for N2O emissions and CH4 consumption.  

 

Figure 5-13: Comparison of GWP (  soil heterotrophic CO2  N2O emissions  CH4 

emissions) of three different areas for wheat for both the final year of the model simulation (10
th
 

year) and averaged over the entire 10 year simulation period. Values represent means. 

 

 

5.4.7.8 All Vegetable Types 

Anglesey had the lowest overall GWP equivalent emissions and Worcester had 

the second lowest GWP equivalent emissions (for beans). Spain had the second 

highest emissions, owing to high N2O production from lettuces - even though 

brassicas were lower than lettuces, the results were still above average, as seen in 

Figure 5-15. Vining peas also gave very low overall results for Worcester and 

Lincolnshire.  

Beans were the lowest emitters in Worcester, with potatoes being the 

highest; potatoes were also the highest in Lincolnshire. Lettuces were the highest 

emitters for Spain and brassicas were the lowest for Spain and Anglesey. The 

lowest emitter for Lincolnshire 10
th

 year results was vining peas. 
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Kenya had the highest overall emissions for beans and Spain had the 

highest for brassicas and lettuces. Lincolnshire’s average had the highest results 

for potatoes, sugar beet and vining peas from all regions modelled; it did 

however have the lowest result for wheat. Lincolnshire’s 10
th

 year results were 

the lowest results for brassicas, lettuces, sugar beet and vining peas, although 

Anglesey’s 10
th

 year had the lowest results for potatoes, and Worcester’s 10
th
 

year had the lowest for beans. Worcester, on average, had the highest emissions 

for wheat. The Average results were found to be significantly different between 

places (P = 0.039) but the 10
th

 year results was found to not be (P = 0.126). 

 

Figure 5-14: Comparison of total GWP of seven different vegetable types (  beans  

brassicas  lettuce  potatoes  sugar beet  vining peas  wheat) for 

five different areas, for both the final year of the model simulation (10
th

 year) and averaged 

over the entire 10 year simulation period. Values represent means. 
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5.4.8 Carbon equivalent per ton of yield 

The carbon equivalents have been divided by the modelled yield output for each 

vegetable type to produce the greenhouse gas intensity which consider whether 

the GHG emissions are less per ton of vegetable item produced. Worcestershire 

emissions are the highest with beans and potatoes producing higher emissions 

than the other vegetable crops and regions (Figure 5-16). Spain’s emissions are 

much lower when considering the amount of the vegetable produced, though it is 

the second worst producer after Worcester. Lincolnshire’s 10
th

 year results were 

the lowest, and Anglesey potatoes produced the lowest overall emission per tons 

of yield. Kenya was intermediate and 10
th

 year and average results were 

significantly different (P = 0.001). 

 

Figure 5-15: Comparison of total GWP divided by the modelled yield of seven different 

vegetable types (  beans  brassicas  lettuce  potatoes  sugar beet 

 vining peas  wheat) for five different areas, for both the final year of the model 

simulation (10
th

 year) and averaged over the entire 10 year simulation period. Values 

represent means. 
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5.5 Discussion 

Within the study described here the DNDC model provided a valuable insight 

into the influence of geographical location on GHG emissions and other 

agroecosystem C and N flows. If DNDC is to be used as a decision support 

model by farmers or regulatory staff, it must be able to accurately predict 

outcomes on crop production and environmental impacts for a wide range of 

farming operations and climatic conditions (Li et al., 2006). This necessitates that 

the model is validated against experimental measurements. While some 

agreement was seen in the predicted soil N concentrations and the field 

measurements, it is clear that the model needs further development to better 

describe a range of climate zones, soil types, and management regimes. It would 

also be useful to validate the model against more experimentally measured field 

variables (e.g. crop yield, soil water content etc). This would provide an 

indication of which sub-model may need optimizing for future studies. One of 

the major disadvantages of DNDC is also its inability to simulate lateral flow in 

the soil, which is obviously important on sloping land.  

Many aspects of environment and farm management have been shown to 

significantly affect crop yields and GHG emissions. Farming methods also vary 

greatly between farms and countries; Kenya and Spain have vastly different 

farming methods from those in the UK. These differences are largely due to 

variation in climate, soil and stage of economic development which the model 

may yet have not been validated for. In temperate climate zones, vegetable crops 

give high yields, which are attained by optimal agricultural practice, intensive 

disease and pest control and superior varieties (Wijbrandi and Both, 1993).  

Water can be limiting in Spain, and for this reason it uses significant 

amounts of irrigation, typically either drip irrigation or flood irrigation. The 

situation is different in Africa, where water can be abundant in some locations at 

some times. This is evidenced by the facts that in 2001 agricultural uses 

accounted for about 5% of internal renewable water resources in Africa, while 

they accounted for 10%, and 17% in the Caribbean, and Asia, respectively (Vlek 

et al., 2008). Kenya has less trouble with water, as farms there use large storage 

dams which are filled during the two rainy seasons, and the stored water 

subsequently used for drip irrigation of vegetables. About 50% of the world’s 
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large dams were built primarily for irrigation, and some 30–40% of the world’s 

irrigated cropland worldwide relies on dams (Vlek et al., 2008). Kenya is also 

subject to a more constant temperature and number of sunlight hours than the UK 

or Spain, allowing crops to be grown all year round. Due to the constant number 

of daylight hours in Kenya it can be necessary to use artificial lights on some 

crops in the evening; some Kenyan vegetables receiving up to an extra 4 hours of 

lighting. The Spanish and Kenyan farms we studied also used a lot more manure 

than their UK counterparts, and, owing to the longer and warmer growing 

season, planted more consecutive crops, which may be part of the reason why 

DNDC gave much higher results for Spain and Kenya than for the UK. At the 

height of summer Spain generally leaves the fields bare and undertakes most of 

the growing through the cooler winter.  

The DNDC model is not programmed to take account of either the extra 

lighting or the use of drip irrigation with added fertilisers. This may have 

introduced unforeseen errors into the model predictions, and in the case of the 

artificial light may have led to an underestimation of the size and rate of growth 

of the plants. With the use of artificial light also comes an increase in emissions 

through the extra use of electricity.  Also the model does not take into account 

that in some situations crops are harvested over many weeks (e.g. beans), so 

again the model outputs may have underestimated the yield. In addition, such a 

harvesting regime may lead to a longer growing season for some plants, and also 

a greater level of irrigation, possibly increasing the amount of GHG emissions 

produced. This may be particularly important in Spain, which has high 

evapotranspiration and restricted rainfall (Olesen and Bindi, 2002). The irrigation 

by flood or drip gave overall very high GHG results for Kenya, Spain and all 

regions using it for potatoes. In the model’s manual there was no indication of 

whether the model uses drip or flood irrigation (neither is there any indication in 

the published literature). Therefore we cannot be certain about the accuracy of 

the model on this account. More measurements and alteration to the model may 

have increased its reliability. 

 A validation of the model was undertaken by measuring the ammonium 

and nitrate present in the soil and comparing this to the ammonium and nitrate 

levels that the model predicted for the day the measurements were taken. It was 

found that the model and the in-situ results did show a similar pattern over time, 
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with the modelled results being generally higher. This result raises some doubt 

about the validity of the nitrogen sub model in DNDC. Li et al. (2006) suggest 

that to improve the model it would be necessary to introduce a better ability to 

simulate lateral flow in the soil. DNDC will need the information of horizontal 

water flow across the simulated grid cells, which can be produced by the 

spatially distributed hydrological models such as SWAT or MIKE SHE (Li et al., 

2006). This is particularly worrying as the nitrogen and carbon elements of the 

model are closely linked. Smith et al. (2004) found that the variability between 

measured and predicted emissions was high, indicating the model often over- or 

underestimated on a site-to-site basis, though they did conclude that it performed 

well on average. Brown et al. (2002) suggests that in cases where there is poor 

agreement between measured and model-predicted values it is rarely possible to 

ascertain whether the model’s predicted time of emission, or actual emission 

magnitude is at fault, as measurements are seldom recorded every day in a 

measurement period. 

There are few data sets with which to validate the large estimates of 

emissions from vegetables. In southwest Scotland, Dobbie et al. (1999) measured 

large N2O losses from brassicas (9.1 kg N2O-N ha
-1

) between March and 

October, following application of 130 kg fertiliser N ha
-1

 and 12.2 kg N2O-N ha
-1

 

and from potatoes (4 kg N2O-N ha
-1

) following application of 170 kg N ha
-1

 and 

4.7 kg N2O-N ha
-1

. Ryden and Lund (1980) recorded losses of 41.8 kg N2O-N ha
-

1
 yr

-1
 from celery (fertiliser application of 336 kg N ha

-1
) and 26.6 kg N ha

-1
 from 

cauliflower (fertiliser application of 528 kg N ha
-1

) in California. These crops, 

although only grown on small areas, can have a large effect on emission from 

some geographical areas (Brown et al. 2002). 

Potatoes were the only vegetable type measured that gained soil organic 

carbon, though - surprisingly - they gave the highest GWP UK emissions. This 

may be owing to the irrigation system implemented by the model (as discussed 

above), though Olesen and Bindi, (2002) suggested that potatoes, as well as other 

root and tuber crops, are expected to show a substantial response to rising 

atmospheric CO2 due to their large below ground sink for carbon. Overall, lettuce 

gave very low GHG emission results except for Spain, which had high results for 

both soil heterotrophic CO2 and for the N2O emissions. This suggests that it is 

not just what vegetable type that is grown that needs to be considered, but also 
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where it is being grown as some areas maybe more suited to the production of 

certain vegetable types than other areas and modelling is one way to take into 

consideration all environmental and management aspects. Wheat showed higher 

levels of GHG emissions in Anglesey and Worcestershire compared to those 

grown in Lincolnshire. Brassicas had varied levels of emissions over the four 

geographical areas considered, with Spain having the highest emission due to the 

large amount of N2O emissions produced and Lincolnshire gave the lowest. 

Beans and vining peas gave the lowest emissions, and this may be to do with the 

lack of fertilisers used as high levels of fertiliser not only stimulates plant growth 

but can stimulate microbial activity. Reducing this can therefore reduce 

emissions as well as less ploughing sessions, as this decreases the amount of soil 

disturbance. 

 It appears from the results that Spanish lettuce production is the largest 

GHG emitter, with Worcester beans being the lowest GHG emitter followed by 

vining peas in Lincolnshire and Worcestershire. Lettuce production systems also 

seem reasonably good in the UK but are one of the largest emitters when grown 

in Spain. In arid and semi-arid environments plant survival and growth is limited 

by the availability of water, and irrigation is required to increase plant production 

to the point where crops become economically viable. Irrigation also increases C 

input to soils via increased litter and root production (Entry et al., 2002). Potatoes 

were another high greenhouse gas emitter when grown in the UK - as is wheat 

when the yield produced is not considered. Brassicas in the UK gave lower 

emissions than wheat and sugar beet. Kenya gives the highest emission for beans 

but this maybe due to the large amounts of organic matter that is added to the 

soil. The higher daily temperature in Kenya may increase soil organic matter 

breakdown and the lack of machinery farming reduces the density of the soil, 

allowing easier movement of the gases through the soil.  

Table 3 summarises the vegetables that tend to have the highest and 

lowest environmental impact in each region. Spain and Kenya appear to have a 

greater environmental impact than any of the regions in the UK. Within the UK, 

Worcestershire was one of the worst growing areas, in terms of environmental 

impact, with Lincolnshire being the best. Anglesey was only the best 

environmental option for growing potatoes and gave intermediate results 
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compared to the rest of the vegetable types. Brassicas were one of the vegetables 

with the lowest environmental impacts, while potatoes were the worst. 

One might conclude that increasing the number inputs might change 

assessments of which vegetables are best suited to which areas. However, a 

discussion of that prospect is beyond the scope of this study. However it should 

be noted that the UK is unable to produce all vegetables at all times of the year; 

therefore our national eating habits would have to change, or become less 

healthy, if we were to avoid imports from certain countries. For example, 

Hospido et al. (2009) point out that open field production of lettuce in the UK 

provides supply from May to October, while lettuce is imported, primarily from 

Spain (around 80%), during the rest of the year.  

 

Table 5-4: Comparison of which vegetables and areas are best and worst for growing 

according to the GWP graphs and modelled results not considering yield produced. 

 Best GWP kg CO2eq./ha Worst GWP kg CO2eq./ha 

Region   

Worcester Beans (799) Potatoes (10551) 

Lincolnshire Vining Peas (1105) Potatoes (9486) 

Anglesey Brassicas (3315) Wheat (6477) 

Spain Brassicas (5452) Lettuce (14781) 

   

Vegetable   

Beans Worcester (799) Kenya (3666) 

Brassicas Lincolnshire (2301) Spain (5452) 

Lettuce Lincolnshire (1412) Spain (14781) 

Potatoes Anglesey (6411) Worcester (10551) 

Sugar beet Neither 

Vining Peas Neither 

Wheat Lincolnshire (3542) Worcester (6931) 

 

When two or more vegetables types were measured in each area the order was 

not found to be consistent with measurements of which vegetable types were the 

highest and lowest emitters. There was much variation, as can be seen from 

Table 6-4. Therefore my hypothesis for this study was correct in that the 

modelled UK results for the areas studied would be lower than those from 
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abroad, however the horticultural production system were not strictly the same 

due to environment and economically variations in the countries studied.  

 When we consider the tonnage of vegetables produced rather than 

hectares employed, the graph does suggest that Spain may not be as bad as 

initially thought, due to the large yield it produces, whereas Worcestershire was 

the worst and Kenya intermediate. The amount of the food item produced in each 

field needs to be looked at if we are to take a holistic view of GHG emissions. 

This is exemplified in the case of Spain. Also if the emission for one chemical is 

high it does not mean that the results are high for all the rest of the emissions for 

that specific vegetable type. Small changes to farm management may help reduce 

one emission, but this does not suggest that any one specific vegetable is worse 

than another. However, it may be worth considering growing certain vegetable 

crops in particular regions to minimize GHG emissions and adverse 

environmental impacts, and also considering the seasonality of these regions. 

 

5.6 Conclusion 

Vegetable production can release large amounts of GHGs, however, this can be 

minimized to some extent by the correct choice of location for their production 

(in environmental terms). Though many believe local production is better in 

terms of GHG emissions, this study critically shows that the outcome is highly 

dependent on where and how the vegetables are grown and not simply how far 

they travel to market. The results presented here suggest that vegetables 

produced abroad are not more environmental friendly than those produced within 

the UK. We ascribe this to warmer temperatures and the use of irrigation 

overseas in addition to differences in soil type and fertiliser/cropping regime.  

 Farm management can have a substantial affect on the GHG emissions, as 

excess fertilisers or excessive tillage may increase emissions and reduce 

greenhouse gas sinks. These results give an idea of what quantity of emissions 

may be produced; however, more fields of the same crop need to be measured for 

a more accurate comparison. The results showed that emissions were excessively 

large for some vegetable types in some locations suggesting, that their production 

should be discontinued. This may have negative implications for markets and 

consumer choice; however, it is clear that changes in food production need to be 
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made if we are to meet targets for GHG reduction in agriculture. In addition, 

changes in the location of food production may also have implications for 

economic development and social wellbeing, particularly in developing 

economies such as in Kenya.  

In summary, it was found that crops grown in different areas do emit 

significantly different amounts of GHG emissions, and this should be considered 

when discussing the question of ‘food miles’ and calculating carbon and 

ecological footprints. Theoretically, it is possible to predict which geographical 

area is most suited for each crop’s production; however, tests to validate the 

model outputs would be desirable before the introduction of new agricultural 

policies designed to combat climate change. 
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6.1 General Discussion 

Vegetable production, both domestically and abroad, makes an important 

contribution to the impact farming has on the environment, as well as the 

sustainability of a society. This is exemplified by the supply of fruits, vegetables 

and potatoes to the UK market, which totals 10.5 million tonnes annually 

(DEFRA, 2011). Over the past two decades, developing countries have had 

significant growth in their exports of fruit and vegetable products, with these 

products now accounting for some 21% of total developing country agro-food 

exports. The exports of developing countries have expanded beyond traditional 

tropical fruits and ‘out-of-season’ temperate vegetables to include a wide 

assortment of items (Jaffee et al., 2005). The environmental concerns of global 

agro-food systems have led to development of concepts such as ‘local food’ and 

‘food miles’ and have become powerful tools in policy discourses built around 

sustainable agriculture and alternative food systems (Coley et al., 2009). For this 

reason, ‘food miles’ need to be quantified, to assess the environmental, social 

and economic factors that may affect both the UK and export countries before a 

decision on the preferred overseas supplier to the UK can be selected. 

 This PhD was undertaken to assess whether or not it is more 

environmentally friendly to grow vegetables within the UK or overseas when 

simply considering greenhouse gas emissions from soil. This was theoretically 

assessed using several versions of the DNDC Denitrification Decomposition 

model with validation of the model output undertaken by comparison to actual 

soil N measurements in the field. It was decided after a study of the literature and 

comparison of the five latest model versions that the most recent version of the 

model would be used for further analyses. This decision was made with the 

qualification that results should be considered as semi-quantitative, as the model 

can both over or underestimate GHG emissions by a factor of 5. Through this 

PhD we have seen that the hypothesis of that the model will give realistic and 

robust results in comparison to experimentally derived GHG estimates is true for 

the present knowledge and our ability to measure GHG emissions. It has also 

been found to true that the UK would give lower modelled GHG emissions than 

equivalent systems abroad. However there is a chance that if different areas or 

systems were under consideration then this would not be true. 
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6.2 Limitations of using the DNDC model 

The accuracy of the DNDC model’s output was limited when applied to 

countries to which it had not previously been calibrated. At present, the model 

has been calibrated for China, India and North America, though it has been 

partially validated for use within Europe (Babu et al., 2009; Li et al., 1992; 

Tonitto et al., 2007). Within the 3 countries studied here there were differing 

farming techniques and conditions that the model’s coding does not take into 

consideration; these included flood irrigation and extended light hours. As such, 

this calls into question the validity of the model, as it may over or underestimates 

field N emissions. To what extent differing farm management schemes influence 

the model results will only be known once the model has been fully calibrated for 

these areas and the farm management options extended to include those 

incorporated in this project. 

Furthermore, it is noteworthy that the magnitude in variation for some 

key variables, for example, soil heterotrophic CO2, between farms within the 

same area was found to be as dissimilar to that between farms in different areas. 

This may be due to variation in farming techniques across the areas. For this 

reason, it would be wrong to say that one country would be better for producing 

certain vegetables crops than another. Ranatunga et al. (2001) also expressed 

concern when comparing models over the level of site-specific information 

required, as some models required less site specific information - although 

calibration levels are likely to be partly responsible for differences in model 

performance. This reasoning coincides with findings published by Hospido et al. 

(2009), who concluded from LCA measurements that no generalisations can be 

made as to which country has the most environmentally benign production 

systems. However, both the foreign countries considered in this project did give 

higher emission values than the three UK counties studied. Whether this is 

universally true for those entire countries rather than the few fields measured 

cannot be known without further study. 

 

The variation in model output raises several questions: 

1. Why is there so much uncertainty and disagreement? 
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2. Are there alternatives to the ways these budgets are developed? 

3. Why do we need global inventories anyway?  

For the last question, there is at least one simple answer: we need global numbers 

to demonstrate the importance (or lack thereof) of the soil GHG source in 

contrast to other important sources such as fossil fuel combustion or biomass 

burning (Matson, 1997). 

Models are limited in their ability to fully imitate all factors and processes 

to the degree that natural systems can, owing to the complexity and number of 

interactions involved. DNDC is, however, a complicated model in comparison to 

others, as it combines both nitrogen and carbon modelling with a crop growth 

model to study the whole system. Due to the nature of modelling, DNDC has 

been found both here and in the literature to over/underestimate emissions and is 

more sensitive to certain inputs. However, considering the other models 

available, the outputs have been found to have low errors and to be more 

consistent over long data sets (Smith et al., 1997).  

There is also the consideration of certainty vs complexity. As models 

become more complex and require greater numbers of inputs are we in fact 

removing the certainty that the results are correct? With a system of lower level 

complexity we can easily identify the interactions in the model and easily collect 

the date needed in comparison to a more complex system where the interactions 

are harder to identify and the inputs difficult to collect. However if the more 

complex system is correct and inputs are realistic this would give a more 

accurate output than the less complex system. Would it also be scientific to 

ignore changes in knowledge just because the system would become more 

complex? The only way to create certainty in a system that is is through the 

validation of the model to known measurements and to sure that this is accurate 

as possible. 

 Pre-simulation was not run for any of the simulations in this PhD, as most 

published data – with the exception of Qiu et al. (2009) - on the DNDC model 

did not mention any pre-simulation. It was decided that data from both the tenth 

year result and the average of the ten years would be considered for analysis; to 

increase the accuracy of the outputs given. The model is found to have a period 

of instability that maybe due to the algorithms of the model not being adjusted 

correctly to the inputs of the parameters. Calibration of the model for Europe 
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would significantly help this problem, as the algorithms would be able to capture 

the unique conditions of these environments (Liu et al., 2007) 

 

6.3 DNDC Analysis 

The five different versions - DNDC82, 86, 90, 91 and 92 - when compared with 

the same data, gave varying results. The most modern versions, DNDC 91 and 92 

gave the most similar and least extreme results. DNDC90 gave some of the most 

extreme results, with the nitrate leaching output being far greater than the nitrate 

input from the fertiliser applied. If this result was accurate, it has been estimated 

that the true field depletion of N after a number of years would make the field 

unviable for crop production. From long term studies it has been found that soils 

do lose N overtime, and that a net reduction in soil-derived N2O emissions will 

require mitigation strategies as fertiliser use increases and increased input comes 

from atmospheric deposition, ranging from 0.5 N m
-2

 y
-1

 in the US to 6 N m
-2

 y
-1

 

in Western Europe (Van Der Weerden et al. 1999, Mosier et al., 1998). However 

the N loss rates were not at the same magnitude as in the DNDC model. 

 

DNDC has been found to give reliable results by some reseachers (Li et 

al., 1992-2010; Salas et al., 2003; Tonitto et al., 2007). This contrasts with the 

findings from this exercise where the model did not always yield reliable results, 

though this may be due to problems with collecting data to validate the model 

rather than the model itself. The sensitivity analysis run on DNDC90, 91 and 92 

found that some of the inputs (atmospheric CO2 concentration, crop cover, 

fertiliser application method, floodwater pH, irrigation water pH, latitude, 

number of weeding events, slope, N content in rainfall) apparently had no effect 

upon the output of the sensitivity test. For example, for latitude, it was theorised 

that when the weather data used did not include the number of daylight hours, 

then latitude would be functional to alter the growth of the plants according to 

the region. This difference was not found, and therefore day light hours were not 

included in our simulation. Wind, however was including, owing to the 

variations in outputs that were found when used. The question is: what variables 

have the most influence on the model and what variables should be used? There 

is need for further analysis of why some variables have a larger effect. A 
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sensitivity analysis on the model looking at the relationship of variables would be 

useful to assess the full workings of the model. This would be easily calculated 

by using the same method, but changing the variables each time to calculate the 

size of the effect each variable has upon another and where each sub model 

overlaps. It would also help if the DNDC code was made open access to allow 

validation of the mathematical functions which drive the model, and also to see 

how the sub-models are connected (i.e. to assess feedbacks). 

Some of the outputs were found to be more sensitive to certain inputs 

than others. Soil organic carbon is a good example, and this was also found by a 

number of other researchers (Li et al., 1992). The model versions showed 

significantly different results when modelling the same data, however it is 

unknown unless the latest version is validated against field measurements 

whether this would be the most accurate version. It would however be presumed 

that this version is more accurate than the preceding version due to model having 

been changed. These changes in model version need to be communicated to the 

DNDC community as at present any updates are not. There are many users still 

using older version creating and using inaccurate model results for possible for 

policy use. The magnitude of variation for the different variables would suggest 

that the model needs to be modified to allow users to calibrate and validate the 

model for areas or vegetable/land use that is being measured. This would make 

the model more flexible and give the user more options for its use. The addition 

to the model of an added sub-model which would allow users to input collected 

biophysical data for the model to validate its outputs would also increase the 

accuracy of the model without the need to calibrate it for each area studied.  

 

6.4 Q10 values and modelling considerations 

The Q10 results were assessed to determine whether or not there would be 

differences in respiration from soils from different geographical areas, as well as 

if farm management/land use has an effect on respiration. It should be noted that 

the Q10 for the DNDC model, as well as with most other scientific models – for 

example, RothC - is assumed to equal 2. Although this has been proven on a 

small scale under laboratory conditions, this may not always be so when applied 

at the field scale, as the Q10 for soil measured from the study areas was found to 
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be greater than 2, with an average of 2.57. This piece of work does suggest that 

DNDC should reconsider the need for a Q10 of a higher value to once more be 

used or to justify the continuing use of the currect Q10 value. The DNDC model 

does not allow for variation in Q10 to be added, and this may have a detrimental 

effect upon the outputs, with the results underestimating the soil and microbial 

emissions. 

DNDC allows users to vary the soil type for the study area. However Q10 

values change according to the amount of soil moisture, and therefore would give 

different results compared to a situation in which the same Q10 remained 

constant. Clay soils are known to hold greater quantities of moisture than sandy 

soils owing to particle size. Therefore soils with a lower moisture content, or 

which exhibit higher moisture loss, will have a decreasing soil respiration - 

reducing the Q10 value (Liu et al., 2006). Crop types and farm management will 

also affect the Q10 of the soil. One of the factors that will cause the rate of 

microbial respiration to vary is the quantity and quality of soil organic matter, 

therefore the greater quantity and better quality of soil organic matter, the greater 

the respiration potential (Pavelka et al., 2007; Zhou et al., 2009). Farm 

management will vary between crop types, with some crops needing more or 

deeper tillage, decreasing soil organic matter levels. Greater use of perennial 

forage crops can also significantly increase soil C levels, owing to high root C 

production, lack of tillage disturbance, and protection from erosion (Mosier 

1998). The type of crop will not only vary the soil organic matter through 

dropped leaves, but also through the size of the root system and whether the roots 

are shallow or deep; root contribution to soil respiration ranges between 10–90% 

of total in situ soil respiration, depending on vegetation type, season and depth of 

roots, as respiration potential is located in the upper soil layers most often 

(Pavelka et al., 2007). 

 

6.5 Comparison of emissions from different vegetable types in different 

areas 

Models are unable to perfectly predict the natural environment and the limitation 

of a simulated environment will have an effect on the outputs; the magnitude of 

this effect is not fully known. If substantial variations in results occur between 

fields; then using model output and scaling these up to compare regions and 
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countries could produce significant inaccuracies. Freney et al. (1997) suggested 

that emissions of nitrous oxide from the same site and similar agricultural 

systems are variable in both time and space. This is due to the heterogeneity of 

the systems from which nitrous oxide is emitted, and the complex interactions 

which occur between the chemical, physical and biological variables of the soil. 

This would be true for all greenhouse gases produced. In the case of nitrous 

oxide, the regulations that policymakers may place on the agricultural industry to 

reduce its effects may not be based on data that reflects natural conditions. 

By using models, scenarios can be considered for the reduction of N2O in 

systems, but these need to be carefully scrutinised. This research project found 

that the field analysis of soil ammonium and nitrate gave the same pattern as the 

model but at a smaller magnitude. Other researchers also found a similar pattern 

with Li et al. (2006) suggesting that the model over-predicts the nitrate produced. 

Other published data in the literature also found some similarities, but these are 

mostly based on yearly or seasonal cycles and not day to day measurements, as 

in this research.  

However, when the results for each area and vegetable type were 

converted to carbon equivalents and compared, only Spanish lettuce N2O gave 

greater values than soil heterotrophic CO2. For Spain, the N2O results were very 

large - 36 kg N ha
-1 

yr
-1

 - much larger than the highest result for Kenya (4 kg N 

ha
-1 

yr
-1

). For the C equivalents per hectare Spain still gave the largest results 

with 4553 kg CO2 eq ha
-1

 while Kenya gave 2766 kg CO2 eq ha
-1

. When 

calculated on a per ton of yield base, the results were more similar to the rest of 

the areas measured as yields were greater for Spain and Kenya. This considerable 

difference with N2O may be due to the greater use of manure and variation in 

farming techniques discussed above. However at present from these modelled 

results the UK would give lower GHG emissions for systems studied. 

 The results discussed here only consider five versions of the DNDC 

model. There are potentially numerous outputs from numerous models available 

- such as Roth C, Century, and Daisy - that can be applied to the DNDC model to 

improve the output accuracy. Previous studies by Smith et al. (1997) and 

Ranatunga et al. (2001) have compared models including Roth C and Century 

and found them to give similar results to those predicted, though it is not known 

how fertilization and other treatments, as well as plant disease, may affect 
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outputs.  However, all models provided a satisfactory representation of the 

pattern of soil carbon decline under continuous cultivation. Predicted N2O 

emissions varied between the four models (CENTURYNGAS, DNDC, ExpertN 

and NASA-CASA) from 0.08 to 1.4 kg N2O-N ha
–1

 yr
–1

 in the shortgrass steppe, 

0.9 to 4.2 kg N2O-N ha
–1

 yr
–1

 in the Scottish grassland fertilized with urea and 

1.9 to 4.8 kg N2O-N ha
–1

 yr
–1

 in the German agricultural cropping sequence 

(Mosier, 1998). Therefore, the conclusions given here are cautionary, though we 

generally found emissions of CO2, N2O and CH4 uptake agreed with literature 

values (Smith et al., 1997) generated from alternative models to DNDC. 

 

6.6 The local vs. overseas scenario 

Currently, it is not possible to state with any degree of confidence that one 

agricultural area within a country, let alone different countries, is more 

environmentally friendly for vegetable production than another. Even if areas 

could be designated on environmental grounds, the whole picture needs to be 

considered, i.e., factoring in social issues. 

Coley et al. (2009) discusses that for consumers, purchasing the most 

geographically local produce per se does not necessarily mean the lowest carbon 

impact. They are not simply confronted with a choice between ‘local-good’ and 

‘global-bad’ as many factors are involved (Coley et al., 2009). Nor is carbon the 

only way to evaluate the impact of purchasing decisions: other factors will have 

implications for biodiversity and landscape, for local employment, for fair trade 

and for international social justice. 

The seasonality of the produce grown also needs to be considered by 

policy makers. Even though on a year round basis it has been shown that 

growing vegetables in the UK minimises their carbon footprint (Hospido et al., 

2009), it is not realistic to meet year round demand, because of the seasonality of 

vegetation production in this country. For example, lettuce is sourced from 

abroad during the UK winter as it cannot be grown outdoors. Therefore, would it 

be better to produce under cover in the UK winter or to accept emissions from 

bringing vegetables in from abroad when out of season? However, a negative 

impact of glasshouse production may be that it leads to more greenhouse gas 

emissions than generated by imports. 
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In order to provide lettuce to UK consumers all year round, several 

different supply chains have been developed. Hospido et al. (2009) suggest that 

to overcome the natural seasonality of supply in northern Europe, four basic 

strategies have been adopted by industry: protected cultivation to produce out of 

season; controlled storage to supply out of season; importation of fresh produce 

from countries where it is in season; and consumption of alternative vegetables 

that are in season. 

 However, it must be remembered that carbon sequestration depends on 

many factors such as variety, sowing date, crop establishments, harvesting date, 

controls of weeds, disease, pests, soil types, irrigation and fertilizer application 

rates (Moureaux et al., 2006), and that soil carbon sinks resulting from 

sequestration activities are not permanent and will continue only as long as a 

carbon-sequestering management practice is maintained. If a land-management 

or land-use change is reversed, the carbon accumulated will be lost, usually more 

rapidly than it was accumulated (Smith, 2004). 

 An overriding problem in the UK and other European countries is that 

consumers have become accustomed to the availability of an increased range of 

produce in shops regardless of the natural seasonality of its production (Hospido 

et al., 2009). Parts of the food industry will therefore be less reliant in the future 

on the local supply of produce and demand for products. However, a small part 

of the European food industry also relies on local food brands (specialities), 

some of which are registered and protected under EU regulation (Olesen and 

Bindi, 2002). Such local food specialities, which often have a long local tradition 

coupled with favourable natural conditions, may be particularly susceptible to 

climate change, due to the reliance on high quality products (Olesen and Bindi, 

2002). 

 However, the major problem is the expectations and perceptions of the 

consumer: 

 

For fruit and vegetables, gaps in fresh local supplies due to seasonality of 

production partially explain high imports, alongside consumer demands for 

variety (Cowell et al., 2003). 
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The driving force in agriculture is the global increase in demand for food and 

fibre by more affluent and expanding world population consuming a higher 

proportion of meat and exotic food in their diet (Olesen and Bindi, 2002). The 

current and future demand for biofuels varies significantly between countries and 

regions and the feedstocks for their production have major implications for crop 

choices and the associated land demands that arise for biofuel production 

(Murphy et al., 2011). The result is that global agriculture is exerting increasing 

pressure on the land and water resources of the earth, often resulting in land 

degradation, e.g. soil erosion, salinisation and pollution (Olesen and Bindi, 

2002). 

 As alluded to in the previous paragraph, the sustainability of food 

production and distribution is far wider than just greenhouse gas emissions from 

fossil fuel use and land use. Maintaining the supply of food also means 

addressing questions of water pollution, rural economics, landscape amenity and 

a host of others (Coley et al., 2009). Within the context of this project the main 

considerations are greenhouse gas emissions from agriculture. These are likely to 

be significantly affected by greenhouse-gas-induced climatic changes. As many 

mitigation practices affect more than one GHG, it is important to assess the 

impact on all GHGs simultaneously (Fitton et al., 2011). Policies influencing 

changes in land use are also potentially important aspect for policy makers that 

could be effective in mitigating and delaying global warming (Parry, 1990a). 

 

6.7 Future Work 

This research project has contributed to our understanding of greenhouse gas 

emission and food production. Work that would extend the research carried out 

so far would be: 

 A larger sample size would provide an improved comparison; within this 

larger sample size would be: 

o  A greater number of fields for each vegetable type 

o A greater number of the same vegetable type in each area 

o Additional vegetable types that would be available abroad as well 

as in the UK 
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o Addition of another area in each foreign country for greater 

comparisons  

 A larger data set for validation of the model with more data points than 

collected for this piece of work. 

 Calibration of the DNDC model to allow it to measure a greater number 

of countries and a larger range of farming techniques for the countries it 

is calibrated for. 

 Changes to the model to allow users to input data for parameters that are 

normally filled by the model. 

 Knowledge of the development of the model from the model 

development team so differences between versions can be assessed. This 

would allow for greater transparency and accuracy of the results from the 

DNDC model.  

 Further testing of the model and comparison with other models would 

help validate the DNDC for use in differing scenarios in the future. 

 

6.8 Conclusion 

From this study it can be concluded that increased food production within the 

UK regions measured, would be a better option for minimising greenhouse 

emissions from soils. This conclusion should, however, be reconsidered when a 

more robust model has been developed that can accurately represent the farming 

techniques used in Spain and Kenya. We found the DNDC model gave a similar 

pattern of results to the validation results of soil nitrogen measured from the 

fields. 

 

Agriculture and food production will always be interlinked with the social, 

economical and environmental issues of sustainability. Each of these situations 

will need to be considered separately according to its own unique problems. It is 

unethical to make decisions based only on environmental emissions of 

greenhouse gas emissions. As each situation has many inputs, models will 

ultimately need to be more complex in their design. Until then, funding needs to 

be directed to ensuring good field research is able to continue. 
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Correspondence with Changsheng Li discussing DNDC model changes 

 

 

David L. Jones 

 

 

 

 

 

 

Dear Davey, 

 

It's a pity to say we don't have a detailed log to document the changes in DNDC. 

The reason is we don't have the resources to do so. Sorry for my answer. But if 

you wish to obtain the latest version of DNDC, I'll be pleased to send it to you. 

 

Sincerely, 

Changsheng Li 

 

 

 

Dear Changsheng Li, 

I hope all is well. I have a quick question. We have used DNDC in the > past and 

were wondering if there is a detailed log of the changes > between the different 

versions as they have evolved over time. If you > can point me to the right place 

I would be really grateful. 

 

Many thanks 

Davey 
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Testing the assertion that 'local food is best': the challenges of an evidence-

based approach 

 

Gareth Edwards-Jones
a
, Llorenç Milà i Canals

b
, Natalia Hounsome

c
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a
, Barry Hounsome
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, Paul Cross
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York
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, Almudena Hospido
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, Ian M. Harris
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Edwards
e
, Graham A.S. Day

d
, A. Deri Tomos
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, Sarah J. Cowell

b
 and David L. 

Jones
a
 

 

a
School of the Environment and Natural Resources, Bangor University, Gwynedd 

LL57 2UW, UK 

b
Centre for Environmental Strategy (D3), University of Surrey, Guildford, Surrey 

GU2 7XH, UK 

c
School of Biological Sciences, Bangor University, Gwynedd LL57 2UW, UK 

d
School of Social Sciences, Bangor University, Gwynedd LL57 2UW, UK 

e
Centre for Economics and Policy in Health, Institute of Medical and Social 

Care Research, Bangor University, Gwynedd LL57 1UT, UK 

 

Published in Trends in Food Science & Technology 19, 2008, 265-274 

 

All field and laboratory measurements for Spain and some for the UK was 

collected by Elizabeth York. 
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Geographical variation in carbon dioxide fluxes from soils in agro-

ecosystems and its implications for life cycle assessment 
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Philip Nyeko
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School of the Environment and Natural Resources, Bangor University, Gwynedd 
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Centre for Environmental Strategy (D3), University of Surrey, Guildford, Surrey 
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Department of Forest Biology and Ecosystems Management, Makerere 

University, PO Box 7062, Kampala Uganda 

 

Published in Journal of Applied Ecology 46, 2009, 306-314 

 

 

All field and laboratory measurements for Spain and some for the UK was 

collected by Elizabeth York. 
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Vulnerability of exporting nations to the development of a carbon label in 

the United Kingdom 
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Centre for Environmental Strategy (D3), University of Surrey, Guildford, Surrey 

GU2 7XH, UK 

 

Published in Environmental Science and Policy 12, 2009, 479-490 

 

 

All field and laboratory measurements for Spain, Kenya and some for the UK 

was collected by Elizabeth York. Also Elizabeth collected all data needed for the 

Kenya LCA report. 

 


