Bangor University

DOCTOR OF PHILOSOPHY

Synchronic variation and historical change in language.

Fallon, Paul Ryan

Award date:
1992

Awarding institution:
Bangor University

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal ?

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

SYNCHRONIC VARIATION

AND HISTORICAL CHANGE

IN LANGUAGE

The palatal glide,
the sequence /Cjul and
the selaction of variants
r cjes
とうu
Cu
Cu 3

PAUL RYAN FALLON

DEDICATION

```
    l dedicate this work
    to all my parents
    Mary Ryan and
Martha + George Fallon (RIP)
```

 My gratitude is
 inextinguishable
 and inexpressible

THANKS

I wish first to express my thanks to the staff and pupils of the participating schools for their cooperation in the interviews and tests. In particular 1 am grateful to my former colleagues, John Malone (poet and head of the English department of the city centre school) and to Jim Toal (of the English department in the suburban school and Lato of the Listener crossword) for arranging access to their respective (and respected) schools, as well as ensuring the smooth running of the operation. I am also appreciative of the hospitality and accommodation they provided for me. In addition their interest in and comments on the work in progress were a useful antidote to my apparent obsession with the palatal glide. I also mention John Haram of Liverpool Polytechnic for his supply of paper which I was able to recycle, and for his help in photocopying. My doctors in Liverpool (since 1983) have also shown concern and interest.

In the University College of North Wales (CPGC), I record my appreciation of the staff in the Arts Library (desk, porters and cleaners) for their help both during and after my stay in Bangor. Their assistanct and the welcoming atmosp.iere they created made this preparation of this thesis much more pleasant.

The department of Linguistics in Bangor is fortunate in having a staff dedicated to teaching and research. Their solicitude in enquiring about my progress, the observations they had noted on the use of the palatal glide, and their offers of artictes were much appreciated. My greatest gratitude is extended to my supervisor Philip Scholfield for his patience and encouragement, Despite the Increasing burden of work which many academics have had to undertake, and despite my enforced absence from Bangor, his careful criticisms and comments on the drafts submitted were always detalled and constructive. They made revision of the work easier, especially improvements in presentation and exposition. His early recommendation to buy a word processor reduced the number of palimpsests which otherwise were inevitable. If at times his advice appeared pedestrian, it helped me to put one foot in front of the other rather than in the mouth. His direction and supervision are invaluable.

However I take sole responsibility for the facts and opinions presented, as well as for the errors and omissions. I am aware that my contribution is far from the last word on the subject.

PREFACE

The specific sequence which is to be explored is the palatal glide $/ \mathrm{j} /$ before the vowel $/ \mathrm{u}(\mathrm{i}) /$ and after certain preceding consonants. Following Wells (1982:140) the optional use of the long mark (:) does not reflect any important difference between RP and General American. Either form adequately represents the general phonetic nature of this vowel; the simpler form is used here.

The system of section numbering in the text was designed to avoid the proliferation of splintered subsections, and also to assist the author in deciding what goes where. In a letter of 1934 Prokoviev described how he went about composing a concerto. He jotted bits down when they occurred to him, and used them later as his bullding bricks. A similar procedure was adopted here.

The abbreviations and phonetic symbols used are conventional. The only exception is [r] which, while it represents a lingual roll. elsewhere, is here taken to be the frictionless continuant usually represented by [4], or its variant the alveolar tap [\mathcal{L}].

SUMMARY

Variation in the sequence /Cju/ (as in nublle, issue) is manifested in the phonemic variants, glided [Cj], unglided [C], coalesced [C (j)]. Of the 17 possible C, variation mainly occurs in the set of [+corlitant] consonants. The origins of the sequence are traced to $O E$ and Anglo French sources. The former created $/ \mathrm{Cju} /$; the latter began the modification to variants. The primary linguistic causes of change were stress in borrowed suffixes shifting to native patterns, leading to some categorical variants with [C] in /t $\mathrm{d} \mathrm{s} \mathrm{z} /$; and phonotactic constraints on word initial clusters in $/ \mathrm{r}$ I/ producing unglided [C]. Lexical diffusion proceeds within the preceding consonant by subenvironments, defined by word initial position or by suffix, rather than by frequency.

Empirical testing of linguistic constraints on the distribution and selection of varlants, took place in 2 boys schools in Liverpool, with 77 subjects aged 12-13 and 17-18 years. Elicitation was by reading passage and word list ($k=65$). Dialects from the urban basilect Scouse (used largely in the city centre school), to adopted RP (found in the suburban school) were examined. Results confirmed the variabllity among coronal consonants but with categorical subenvironments, mainly in the coalescents /t d s 2/. In British English while the continuants $/ \mathrm{s} \mathrm{z} /$ access all variants, stops are restricted to + glide and C. The complex patterning of variants for /s $z /$ was resolved. After $/ 1 /$ loss was pervasive lexically and socially. The presence of palatalized variants in $/ \mathrm{h} n \mathrm{l}$ was noted. Glide loss was recorded in the basilect after word initial /n/. Minor areas of loss occurred in some non coronal consonants, when /u/ reduced to shwa. Generally there was little idiolectal variation in spread of variants, of the synchronic linguistic explanatory variables, (including syllabification and word position), stress was the most useful, sometimes working with the others. For the coalescents, f-stress] operates in conjunction with stress in contiguous syllables.

CHAPIER 0 INTROOUCTION AND THEME

0100 General statement of topic 1
0110 Previous work on the palatal glide 3
0111 incidental references 3
0112 theoretical accounts 4
0113 empirical surveys 5
0114 psycholinguistic aspects 6
0120 Objectives and plan of this thesis 6
0121 historical development of the glide 6
0122 the empirical testing in Liverpool 7
0123 features of this investigation 8
CHAPTER 1 genesis and exoous of the rju/ sequence
1000 Introduction and plan of chapter 10
1100 OE and OF precursors: the seeds of the glide 11
1110 The native sources 12
1111 OE T + w 12
1112 OE EO + w 13
1113 OE OO + w 14
1114 OE $\operatorname{Ca}+w$ 15
1115 OE 百 + w 15
1120 The French contribution 16
1121 OF pure vowel /y(i)/ 18
1122 OF diphthong ui 20
1123 OF triphthongs leu, eau 20
1130 To the end of ME 21
1200 Modern English 25
1201 the 16c and 17c background 25
1202 the pronunclation of Greek and Latin 26
1203 the influx of vocabulary 27
1210 The progress of the IME diphthongs equ and iu 28
1211 their long separation and eventual merger 28
1212 the status of [y:] 31
1220 Variation in the new gllde 33
1221 phonotactic constraints and loss after /r // 33
$1222 \mathrm{Cju}>\mathrm{Cu}$ after the alveolars /t d n/ 38
1223 coalescence: CJu > Cu 41
1224 restoration of the gllde 43
1300 Summary 44
CHAPTER 2
THE CJu/ sequence,
THE LINGUISTIC VARIABLE AD LEXICAL DIFFUSION
2000 Content of chapter 47
2100 Phonetic and phonological aspects of /Cju/ 48
2101 consonantal and vocalic features of the glide /j/ 48
2102 acoustic features of / $\mathrm{j} /$ 49
2103 the subsystem of approximants /f rw j/ 50
2104 the palatal glide in terms of distinctive features 51
2105 the palatal glide as [tcor]: evidence from Ewe 52
2106 the palatal glide as [+cor]; physical sources 53
2107 the implications of $/ \mathrm{J} /$ as $[+c o r]$ 54
2108 the back vowel /u/ 55
2109 the conjunction of /j/ and /u/ 57
2110 The syllable 58
2200 The linguistic variable 61
2201 frequency 63
2202 structural units 63
2203 social stratification 64
2204 sallence 64
2205 quantification 65
2210 Types of lingulstic variable 67
2211 (yu) as a linguistic variable in Norwich 69
2300 Sound change: diffusion and dispersion 71
2310 Causal factors 71
2311 inherent features 72
2312 systemic changes 74
2320 Lexical and subenvironment diffusion 76
2321 lexical diffusion in Chinese 78
2322 lexical diffusion In English diatones 80
2323 lexical diffusion and word frequency 83
2324 word frequency and the individual 84
CHAPTER 3 LIVERPOOL AND SCOUSE
3000 The geographical and historical background 86
3001 the clty and its inhabitants 87
3002 Liverpool city centre north: Everton 88
3003 Liverpool south east: Woolton \& Allerton 91
3004 the schools 91
3010 Some linguistic features of the region 92
3011 studies of Liverpool speech 94
3012 Scouse: orlgins historical and extent geographical 94
3013 varieties of Scouse 96
3014 Scouse vowels 97
3015 Scouse consonants 98
3020 The nature of phonological varlables in Scouse 99
3021 the variables (u) and (00) 100
3022 implications for the analysis of glide variants 102

CHAPTER

METHODOLOGY: PREPARATIONS PROPOSNLS PROCEDURES AND PROELEMS
4000 Approaches to the empirical enquiry 104
4100 Preparations: previous research 105
4101 RP and the distribution of variants 105
4102 the USA 111
4110 A theoretical account: Chomsky \& Halle 1968 114
4111 the rule for glide insertion 114
4112 the 3 rules for glide deletion 115
4120 A theoretical account: Bailey 1977 118
4121 the implicational hlerarchy: the items and conditions 119
4130 Previous empirical work 123
4131 stimuli for the research 124
4132 number and selection of participants 125
4133 ellcitation of lexical items and range of PCs used 126
4134 explanatory varlables tested 128
4135 problems encountered 129
4140 Results and conclusions of previous work 131
4141 Stephenson 1970 131
4142 Phlllips 1981 132
4143 Pitts 1986 136
4144 Trudgill 1974 139
4145 Horvath 1985 141
4146 London 143
4150 Conclusion 145
4200 Proposals: potential explanatory varlables 146
4201 the nature of explanation 147
4210 All preceding consonants 148
4220 Variable PCs and lexical items 149
4221 manner of articulation and voicing 149
4222 syllables and words of similar phonological shape 149
4223 words of similar morphological shape 150
4224 frequency 150
4225 stylistic considerations 151
4226 stress 151
4227 syllablfication 151
4228 the informants 152
4300 Procedures and empirical mathods 153
4310 Participants 153
4311 cholce of subjects for pilot test 153
4312 cholce of main participants 154
4320 Materials used 155
4321 the word list for all PCs (WL2) 155
4322 the reading passage and WLI 155
4323 the comprehension questions 156
4330 Conduct of interviews 157
4331 locations for interviews 157
4332 recording equipment 158
4333 plan of interview 158
4340 Quantitative techniques 160
43.1 scoring and testing 161
4342 quantlfying variants to incorporate coalescence 163
4343 the indices 164
4344 use of variable words only 165
4345 use of components of X^{2} values 166
4400 Problems in interpreting the data 167
4410 Aberrant pronunciations 167
4411 use of a regular local variant 167
4412 errors due to ignorance of word 168
4413 misreading of a familar item 169
4414 lack of phoneme 169
4415 Indistinct sounds and the realization of /u/ 169
4420 Features accepted or excluded 170
CHAPTER 5 ANLYSIS OF RESULTS
5000 Introduction to analysis of results 172
5010 Divisions of preceding consonants by gliding status 172
5011 some caveats 174
5012 the structure of the tables 175
5013 tentative pointers 175
5100 The non probabllistic plain consonants 176
5110 Categorical environments 176
5111 postalveolar approximant /r/ 176
5112 word initial 177
5113 labiodental /f v/ 177
5120 The lablals 178
5121 the voiced bllabial stop /b/ 178
5122 the unvoiced bllabial stop /p/ 179
5123 the bllabial nasal /m/ 180
5130 The velars 182
5131 the unvoiced velar stop/k/ 182
5132 the volced velar stop/g/ 183
5140 The dental fricative / $8 /$ 184
5150 The glottal fricative $/ \mathrm{h} /$ 185
5160 Some comments on the plain QC consonants 187
5161 evidence from sllps of the tongue 187
5162 the plain probabllistic PCs in general 188
5200 The coalescing consonants /t d s z/ 190
5201 the unvolced alveolar stop /t/ 193
5202 the volced alveolor stop /d/ 197
5203 the voiced alveolar continuant /z/ 199
5204 the unvolced alveolar continuant /s/ 200
5205 some explanatory variables tested 02
5206 the subenvironments 204
5207 slips of the tongue 205
5210 The coalescent reduced set of five: the 《micro variables》207
5211 age end school differences 210
5212 comparisons with other research：social aspects 211
5220 The linguistic features of voice and artlculation 214
5221 the effect of voice 215
5222 manner of articulation 218
5223 the four separate PCs 221
5230 Summary of the micro coalescents 222
5300 The mini varlable inyu） 223
5301 data for（nyu）：all items 224
5302 word frequency 224
5310 The micro variable 《nyu》 225
5311 age，school and group comparisons for knyu» 227
5312 lexical patterns in 《nyu》 232
5313 （nyu）：a wider context 234
5400 The minl variable（lyu） 235
5401 \｛lyu\} data from the panconsonantal word list 236
5402 （lyu）data from the main enquiry 236
5410 Variation in klyus 238
5411 social varlation：age，school and group 238
5412 styllstic variation 241
5413 lexical variation：frequency and shape 244
5414 phonological variables：stress and syllabification 248
5500 Empirical testing：summary and conclusions 255
5501 the lexical incidence of PCs 256
5502 comparisons with other glide investigators 257
5503 the subenvironments 258
5504 role of the explanatory varlables 259
5505 diffusion of change：lingulstic aspects 261
5506 dlffusion of change：social aspects 262
CHAPIER 6 GLIDESHED REVISITED
6000 Glideshed revisited 264
6010 How objectives were achleved 265
6020 Where is the varlation？ 267
6030 Shortcomings，improvements and future research 269
6031 suggestions for future research 270
6032 lexical diffusion and chaos theory 271
6040 Envol 272
7100 Materials tested in interviews 273
7110 Reading passage: The evils of arink 273
7111 comprehension questions on the reading passage 274
7120 the word lists 275
7121 the ///list from the reading passage 275
7122 the panconsonantal word list 276
7200 Individual data from main study 277
7201 - notes and symbols 277
7210 all preceding consonants 278
7211 plain categorical 278
7212 plain quasicategorical 280
7213 plain probabilistic 282
7214 coalescing consonants 284
7220 flyu) 286
7221 quasicategorical words 286
7222 probabllistic words 288
7300 lllustrative lexical items arranged by preceding consonant 290
7310 [- cor][t ant] /f \vee p b m/ 290
7320 [+ cor][+ ant] 18 rl 293
7330 [+ cor][+ ant] /t d s zl 294
7340 [t cor][t ant] /l 298
7350 [t cor][t ant] 303
/n/
7360 [- cor][- ant] 306
8000 BIBLIOGRAPHY 308
prelude

CHAPTER 0

INTRODUCTION AND THEME

0100 General statement of toplc

Some of the pupils were enthuslastic when, after the interlude, their favourlte muslcians introduced some new tunes: others were neutral in their response. As consumers of the pop industry, it can be argued that their cultural nutrition is at risk, yet not as much as is assumed from nuclear fallout. But their varled responses did llluminate the dual aspects of glide disappearance - loss and coalescence.

Of the dozen or so possible glidable items in the passage above, a conservative RP speaker will score at least 10 in terms of the use of a palatal gllde, as opposed to a coalesced or unglided variant. On the other hand, an advanced Scouse speaker may only score 3 or less. This will put him on a par (in the environments above) with some speakers in East Anglia. But there are differences in the availability of non glided variants in non standard dialects. There is more coalescence In Liverpool compared with the greater use of unglided forms in the east. And speakers in America and Australla have other comblnations of variants.

It is important to bear in mind that the expression, the palatal glida in this thesis is restricted to the CGV sequence represented by /Cju/. This can be reallzed by up to four variants over the range of possible preceding consonants (PCs). Not all varlants apply to the plain (le non coalescing) consonants. And not all variants apply to the same dialect. (While the varlants for the examples below apply to most dialects, the pronunciations glven are for RP.)
(\#1) With a gllde
/Cju/ as in music
(\#2) glideless

[Cu/ as in rule
(\#3) with a phonemically palatallzed consonant /Cu/ as in culture ['k^ľD] restricted to /t ds z/
(\#4) with coalescence plus glide
IČjur as in casualty ['kižjuolti]
(the rare usage in the alveolar fricatives $/ \mathrm{s} \mathrm{z} /$ and $/ \mathrm{h} /$)

But the observed facts are not as simple as this quadripartite division may indicate. Areas of variation can occur dialectally, idiolectally and lexically, Most importantly from the point of view of the results of thls present study, it gives no indication of the global variation within certain preceding consonants. This was often the consequence of a mixture of categorical subenvironments identlfied in this investigation, and a residue of variable forms.

The present investigation deals with pronunciation in a relatively small area. All accents agree substantially on the lexical incidence of the sequence. It encompasses some native (le $O E$) stock, together with a much larger set of words and affixes of mainly Latin, Greek and French origins. Items in the former category tend to be in common use like fewi words in the latter group tend to be more erudite and restricted in their use, such as erudite. The distribution has been categorized for stressed syllables in Wells 1982. Words are represented by the subsections of his GOOSE (b) and CURE (ali) and (cii) standard lexical sets. These subsections exemplify the complete range of preceding consonants involved (except /g/). Unstressed syllables have not been classified by Wells, but the same PCs apply.

0110 Previous work on the palatal glide

A brief review of specific work on variants of the palatal glide in Cju/ is now given under three headings: incidental references, theoretical accounts and empirical surveys. The literature is relatively sparse, since it does not enjoy the same prominence as such linguistic varlables In English as ($n g$) or (r). But recently, the results of more substantial investigations have appeared.

0111 Incidental references
Linguists and other commentators on pronunciation have long been aware of the glide and the varlability in its use in the /Cju/ sequence. The earliest comments on the conjunction of the glide and the back vowel were almost contemporery with its emergence. Thy 16c English orthoepists noted Its orlgins and lexical distribution and its use among speakers, together
with its omission in anglicized borrowings with [y] from French especially after /t/. The monumental work of Dobson 1968 was an invaluable quarry. Later, the 18 c tendency to palatalize /t $\mathrm{d} s \mathrm{z} / \mathrm{was}$ also observed. In the 20c, references to the historical progress of the glide can be found in Zachrisson 1927; Wyld 1914, 1920; and Strang 1970. Other authors like Barber 1964, Potter 1969 and Aitchison 1978 have concentrated on areas where change appears to be taking place, or where fluctuation was evident. Fowler 1926 introduced a different dimension by noting the social implications in polite society of dropping the glide after / / . The use of the glide here and after /s/ is associated with better educated speakers or more careful speech. Comments on pronunclation have been made for the benefit of native and non native speakers, by MacCarthy 1950; Jones 1956, 1967; Gimson 1980 and Roach 1983 among others. The findings of this study may have pedagogical implications and uses. Wells 1982 also discusses varlous aspects of the changing use of the glide. In addition, he is responsible for some of the nomenclature for stages in the progress of the gllde.

0112
 Theoretical accounts

There have been five theoretical treatments, each motivated by different circumstances and objectives. Jones 1956 concentrated on stress as an explanatory varlable, bringing in the effect of contiguous syllables. Chomsky \& Halle 1968 suggested three glide deletion rules, again based on stress. Balley 1977 saw the process as diphthonglzation and established an implicational hierarchy of preceding consonants. Cooley 1978 examined the phonotactic constralnts on the production of the gllde, from a historical perspective, and her conclusions were taken up by B Phlillps 1984.

Abstract

Four empirical surveys have been conducted, each coincidentally located in an eastern coastal region of the country concerned: eastern England, eastern Australia, and the south eastern states of the USA. Of these studies 2 concentrated specifically on the glide: 2 were fragments of a larger work.

Trudgill 1974 devoted part of his research in Norwich to the gllde. It has a special place in that dialect, since it represents the most extreme example of yod loss in British (or possibly any dialect of) English. Trudgill concluded that the presence of [j] depended on the preceding consonant and to some extent on the lexical item itself. His (yu) variable exhibited differences from the others he looked at, and he noted "certain complicating factors" affecting its usage (op cit:102). Horvath 1985, in her extensive survey of Sydney speech examined the four main consonants susceptible to coalescence, namely $/ t \mathrm{~d} 5 \mathrm{z} /$. She confirmed that an unstressed vowel favours palatalization; [- glide] not being an option.

Both of the specific studies dealt with American English and were restricted to the alveolars $/ t d n /$ having been initiated with a brief inquiry by Stephenson 1970. He conjectured that glide insertion in those environments, was on the wane in the southern states. Phillips 1981 conducted a more detalled empirical investigation. She challenged the Schuchardtian hypothesis that the most frequently used words changed first. However, Pitts 1986 was unable to confirm this. In order to reconcile what she saw as the opposing trends in the use of the glide in the north and the south, she invoked the social factor of prestige.

Ainsworth \& Paliwal 1984 investigated the palatal glide, (together with the three other continuants /w r l/, from the point of view of production and perception. They tested the hypothesis that a listener refers to his own articulation when perceiving speech. Their results tended to reject this hypothesis. More recently, Recasens 1990 has reexamined the articulatory characteristics of palatal consonants. He suggests that the articulation of the glide merits its inclusion in a category of front palatals. This may have repercussions for the allocation, in terms of distinctive features, of the glide as [-cor].

0120
 Objectives and plan of this thesis

The present work contains a historical introduction identifying and classifying the origins of glidable ModE words, excursions into the processes of sound change and lexical diffusion, together with an empirical investigation into the distribution of the varlants across the 17 possible preceding environments and an examination of the factors influencing those variants. While variation is axiomatic between national varietles, variation within idiolects seemed worthy of deeper investigation.

Historical development of the glide

The historical aspect aims to trace from the time of $O E$, the origins and development of the strands which merged to give the modern /ju/, and then the subsequent erosion of the glide after certain PCs. This historical account of standard Engitsh in the next chapter, is complemented by brief descriptions of the extent of glide loss in selected relevant dialects. Glide
replacement is or has taken place to greater or lesser extents. General American and East Anglian reflect rather more widespread loss than RP and most other British accents.

0122 The empirical testing in Liverpool
The empirical aspect involves an investigation of the choice of variants among four groups of 77 Liverpool schoolboys, covering a wide range of idiolects from adopted RP to Scouse (see chapter 3). The reasons for examining Liverpool speech are primarily personal. Born in Old Swan, I have lived in the city (in Tue Brook and West Derby, see map 30-01) for most of my life, and had also worked in the clty centre school for a quarter of a century. Otherwise, comparing the role of (yu) as a linguistic variable in Norwich for Trudgill 1974, was a motivating factor.

The study was designed to ascertain the extent of gllding and other variants in Liverpool for all of the 17 preceding environments, (which include zero consonant), and compare this with RP and the hierarchy constructed by Balley 1977. It was also designed to concentrate on the /// environment where variation had not been fully elucidated. But as the analysis of the results of the tests progressed, the variation observed in this PC was not prominent. More analytical attention was consequently given to $/ \mathrm{n} /$, which turned out to exhlbit more gilde loss than expected, and to the 4 coalescing consonants.

A fundamental aspect involved restricting the number of social variables. Thus sex is restricted to male; age is restricted to the groups 11-12 and 17-19 years; and regional provenance is restricted to those born in Liverpool. The main explanatory variables are linguistic, and involve the effects of stress, syllabification, phonetic environment, and for N ,
phonological and morphological similarity. The contexts for elicitation are also restricted to the relatively formal. Natural conversation does not readily generate an adequate number of types (or tokens) especially in the variable PCs. Positive elicitation techniques were therefore vital.

0123 Features of this investigation
While necessarily repeating aspects of previous research, it does more than imitate. This investigation is innovative with regard to the examination of variants of the palatal glide, in that it is the first to Involve an extensive empirical investigation over all the possible PCs, taking into account the lexical load of each, and sampling a wide range of idiolects. In addition, comparatively little empirical research has been carried out specifically on Liverpool speech. Noteworthy are Knowles 1974, 1977. 1978; de Lyon 1981; and Newbrook 1986. And while not subscribing to the strictures of Smith 1989 on quantitative linguistics, this investigation moves away from the emphasis on sociolinguistic interpretations and computer assisted statistical techniques. But indices of gllde loss will be created from the data collected, so as to facilltate comparisons between groups and between individuals. The study is microlinguistic in both of the senses defined by Crystal (1985:194), as well as the distinction made by James (1980:27). It encompasses a view of a topic that distinguishes strictly lingulstic from, for instance sociolinguistic factors, and without making much reference to the uses to which the linguistic code is put. The term is also used to refer to analyses of linguistic data which involve a greater depth of detall.

The difference in the status of this Ingulitic variable (yu) in Norwich and Liverpool has led me to use the idea of minor forms of the
variable, units which have not been specifically used before in this context. The patative macro varlable (yu) in Liverpool does not embrace all possible preceding consonants as in Norwich. While some PCs here exhibited little varlation, others like the 4 coalescents $/ t d s \mathrm{z} /$ and $/ \mathrm{ln} /$ did, and were distinguished as mini variables. They are differentlated by being enclosed in curly brackets, \{Cyu\}. Within these mini variables there were smaller areas of variation, potential micro variables. These have chevrons, eg <lyul. They sometimes represent the only true areas of variation within a PC.

To recapitulate: the objectives are to establish how linguistic parameters operate within the mini and micro variable to influence the selection of variant; and if choice of variants is reflected socially in groups or individuals. That the resolution of these objectives is difficult is admitted by Horvath (1985:109).
"The variation associated with this sequence both within a given dialect and between dialects is very complex and ... has never been satisfactorily treated."

My investigation sets out to resolve the complexity by attempting to produce some order out of the chaos with respect to the sometimes contradictory and conflicting constraints which operate in the production of the variants of the sequence /Cju/ as manifested both in (Cyu) and 《Cyu》.

$$
f i r s t \quad s u b j e c t
$$

```
CHAPTER

\section*{GENESIS AND EXODUS}

OF THE /CJu/ SEQUENCE

\section*{1000 Introduction and plan of chapter}

This first chapter provides in 2 parts, an account of the phonological and lexical origins of the /Cju/ sequence. I propose to begin about the 10 c , and to trace the phonological origins and changes, first to a conventent date in the 13 c , and then to look forward in time to the middle and end of the 15 c . This coincides with the simpler late ME system of the phonemic diphthongs /lu eu pu/ which presaged the emergence of /ju/. The lexical antecedents are also divided into the same broad parts. First there were the 'native' words of \(\mathrm{OE}_{\mathrm{j}}\) extant ltems number about 2 dozen. They were then supplemented after the Norman Conquest by the influx of OF words: of these about 3 dozen are left. The effects of these sources on the production of the glide are quite different.

The second stage, from the 16c onwards will be reviewed in section 12. This chronicles the rise of the phonetic varlants of the glide, the beginnings of glide erosion, as well as the additions to the lexicon made during the la:er periods of borrowings in eModE from Latin and Grees. This second phase substantially increased the number of words with /ju/.
```

1100 OE and OF precursors: the seeds of the glide

```

The five native sources are derived from the combination of a long front vowel or diphthong and a following w. They are all identifiable by the 10c. Phonologically a division may be made between these earlier OE sources and the post Conquest French contributions. The of imports may be grouped into 3 strands. For reference in table \(11-01\), each of the 8 sources is given a typical word and a date for its first appearance as recorded in the OED. The 8 strands are divided into 4 broad categories. (based on their 13c diphthong status); three from native spellings shown by the prefix \(E\), and the group of French sources prefixed by \(F\).


By the time of late ME, category E1 had become /lu/. Group E2 had developed into \%eu/; while E3 became a more open /Eu/. The three French strands had a more chequered development. Each of the sources will be expanded in turn and lllustrated with relevant words, showing that the lexical load of each source was far from equal.

The OE system of long vowels has been described by Prins 1974 as structurally unbalanced, as it has a gap in the back vowels.


In addition to the long vowel system, four \(O E\) diphthongs are recognized (Wyld 1914). They are to and te together with ēo and éa. Each has both long and short forms of the first vowel. They are generally regarded as falling diphthongs in late \(O E\), with the second element opening to a back vowel, and weakening to shwa. A characteristic of the transition from OE to ME is the smoothing of these OE opening diphthongs to monophthongs, and the subsequent introduction in ME of new diphthongs which are all falling and of a closing character.

1 shall now detall each of the five native strands: the 2 long \(O E\) diphthongs with (and the short eo), as well as the long vowels \(r\), \(\ln\) these combinations, \(O E\langle w\rangle\) was vocalized to form a diphthong with the preceding vowel (Kristensson 1967:189).

untll the 16c．Mosse 1952；Brunner 1963；Kristensson 1967：73；Jordan 1974：110）．Category El is represented by
\begin{tabular}{|c|c|c|}
\hline hiw & 900 & ＜nue＞ \\
\hline IW & c725 & 〈yew＞ \\
\hline ntwe & Beowulf & ＜new） \\
\hline stTweard & 955 & ＜steward＞ \\
\hline tTwesdrg & c1050 & 〈tuesday＞ \\
\hline
\end{tabular}

1112 OE Ēo＋\(w\)
Prins（1974：57）has stated that Primitive Germanic／eu／developed Into \(O E\) Ea which represents the first of the 2 long \(O E\) diphthongs．in the lic it was reduced to a monophthong．in general and over a longer timescale， ēo＞／e：／＞／i：／，as in hrēod＞reed But compared to éa \(+/ w /\) which appears to have undergone a simple development，the progress of eo \(+/ w /\) is more varled in its geographical distribution．Jordan（1974：109）draws evidence from orthographic and poetical sources．Some texts contain the spelling 〈ew〉 for words in this category．He maintains this usage cannot be explained as a substitute for／lu／．When 〈iw＞had an allograph it was 〈yw＞and not 〈ew＞． Secondly，in the use of rimes like shrewe \(\sim\) newe，Jordan finds it difficult to accept the pronunclations \(/ \varepsilon u \sim \operatorname{lu} /\) ．Together with Kristensson 1967 and Prins 1974，he believes that in the 11 c ，\(O E\)（ 0 had developed to／e：／and that this was retained in the southwest and west midlands up till the 14 c at least．However in the north and east midlands generally it was unrounded during the 12c．Kristensson（op cit：175）finds no evidence of 10：／in Lancashire．By the end of the 12 c ，／eu／predominated in these latter regions， to be ralsed to／lu／in the 15 c ．

Items which are obsolete include
\begin{tabular}{|c|c|c|}
\hline hleow & c1000 & ＜lew＞\(=\) mild，sunny \\
\hline leow & & ＜thigh＞ \\
\hline leowe & & ＜league，mile＞ \\
\hline lareaw & & ＜teacher＞ \\
\hline
\end{tabular}

Words from group E2，similar to the typical word bréowan，include
\begin{tabular}{|c|c|c|}
\hline blēow & c1000 & ＜blew＞ \\
\hline cneow & Beowulf & ＜knew＞ \\
\hline Eowu & c1000 & ＜ewe＞ \\
\hline greaow & c725 & ＜grew） \\
\hline heow & 900 & ＜hew） \\
\hline hleowoc & c1205 & ＜luke（warm）＞ \\
\hline hreowan & Beowulf & ＜rue＞ \\
\hline neowe & c825 & ＜new＞ \\
\hline trêowe & Beowulf & 〈true＞ \\
\hline trêowp & c893 & 〈truth＞，〈troth＞ \\
\hline
\end{tabular}
\(1113 C E\) eo＋w
The only \(O E\) short vowel contributing to the eventual production of 1 ju／was ea．This is the version with the falling diphthong；the variant with the rising diphthong developing into ME ou（Ekwall 1975）．Not surprisingly， the short vowel shared a parallel development with its longer counterpart．eo \(+w_{\text {}}\) but the outcome was a little different．In the lic there was a general rounding to \(/\) ou／；later in the following century，some regional variations have been discerned．The loul pronunciation was retained in the west midlands and the south，where it was preserved till the 14 c ；but in the northern reglon，the east and south midlands and Kent，it became unrounded to／eu／，（Kristensson 1967）．In the course of the 13c this crucially became a more open version／عu／．Jordan（1974：127）has surmised this from the opening of the diphthong／el／to／ \(\mathrm{l} / \mathrm{l}\) ．

Examples for lllustration of the short vowel in the E3a group are few．Those that exist are susceptible to alternative explanations；or they were subjected to changes in stress so that they did not progress to \(/ \mathrm{ju} /\) ． They represent instances of incomplete lexical diffusion．
\begin{tabular}{lcc} 
gleow & \(c 900\) & 〈glew〉 \\
speowlan & \(c 897\) & 〈spew \\
streowlan & 971 & 〈strew
\end{tabular}

Some words which have become obsolete are
\begin{tabular}{ll} 
hreowan & ＜grieve〉 \\
hreowian & ＜repent〉 \\
beow & ＜servant〉 \\
speow & ＜succeed＞ \\
hreows & ＜respect＞
\end{tabular}
\(\boldsymbol{O E} \bar{e} a+w\)
This is the second of the \(O E\) long diphthongs．According to Prins 1974，the pronunciation of \(e_{a}+w\) altered in the lic from／\(\varepsilon\) ：aw／to／a：w／． This change to a monophthong meant that it became identical in sound with the category below \(\bar{m}+w\) ，and from the lic it shared its development．

Category E3b can be exemplified by
\begin{tabular}{|c|c|c|}
\hline cneaw & c1000 & ＜knew＞ \\
\hline dẽaw & c800 & ＜dew＞ \\
\hline peaw & Beowulf & 〈thew＞＝custom \\
\hline faxawe & Beowulf & ＜few＞ \\
\hline gleaw & c725 & ＜glew＞＝clever，wise \\
\hline heawan & 900 & ＜hew＞ \\
\hline seaw & c900 & 〈sew〉＝julce \\
\hline
\end{tabular}

1115 OE \(\overline{8}+w\)
Toon（1983：120）has described the／a／sound as being among the most volatile in the history of the English language，particularly in early \(O E\) ， where he links it to the increasing political dominance of the Mercians， since as he maintains
＂an increased tendency to ralse［s］，conditioned or unconditioned， was a concomitant of Mercian political ascendancy＂．（op cit：159）

The relationship between pronunclation and long political ascendancy may be worthy of further investigation from the point of view of adopting prestige varlants．The long vowel maintained its pronunclation untll the end of the \(11 c\) ，when it began a process of ralsing which took it at first to \(/ \varepsilon: /\) ．The specific combination here，with \(\langle w\rangle\) ，became／e：u／．In the course of the 12 c ，the firsit element was shortened tu \(/ \varepsilon . u /\) ．This was maintained until the 14 c ．

Words from group E3c，like maw are
\begin{tabular}{|c|c|c|c|}
\hline hlewas & & 〈Lewes＞Su & Ussex \\
\hline lewede & 890 & 〈lewd＞ & \\
\hline mēw & c725 & ＜mew＞ & \(=\) gull \\
\hline scrimwa & c725 & 〈shrew＞ & animal \\
\hline slëwp & c888 & ＜slewth） & \(=\) laziness \\
\hline
\end{tabular}

Obsolete words include
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{lewan} \\
\hline \multicolumn{2}{|l|}{lewend} \\
\hline lewfinger & \\
\hline lewede & ＜lalcus \\
\hline liwe & \\
\hline rēw & 1225 \\
\hline
\end{tabular}
＜betray＞
＜traltor＞
＜forefinger＞
〈layman＞
＜weakened＞
＜rew＞\(=\) successively

It is perhaps coincidental that the obsolete words cited begin with a liquid．If they had been extant when glide erosion after／／／was beginning， it is interesting to speculate whether they may have resisted because of their native origin，since the nature of the vowel［y：］in the french borrowings and shlfting stress，milltated against persistence of the gllde， as will be seen in the following subsection．

\section*{1120 \\ The French contribution}

The French contribution involves more varlabllity than the native． sources．This variabillty occurs in the phonetic area，and in extralingulstic factors such as geographlcal orlgins of speakers and their station in soclety．In terms of lexical items the phonetic contribution is provided largely by words with of \(/ y(i) /\) ，partly by the diphthong \(\langle u l\rangle\) ，and to a lesser extent by the triphthongs 〈ieu〉 and 〈eau〉．Much of the discussion in the literature revolves around the nature of the front rounded vowel and its adoption or adaption in trese islands．The varleties which emerged are busically social（and educational），and especlally in conjunction with the
remnants of \(O E / y: /\), they also exist on a geographical basis. By the time of the main influx of French and Norman vocabulary in the second half of the eleventh century, OE /y:/ was on the wane, having been replaced in general by the unrounded version [i:]. Following Prins 1974, three geographical areas based on chronology may be identified.
(1) In the ninth century, the rounded front vowel became unrounded and lowered to /e:/ in the south east.
(2) Around the end of the OE period, it had become unrounded to /l:/ In the north and the east midlands, Jordan 1974 suggested that in the east midlands, popular pronunciation had lost the capabillty for the rounded front vowel and that either leu/ or /l:/ was used as replacement. Krlstensson (1974:238) speaking with special reference to the six northern counties agrees that \(O E / y(i) /\) appeared as \(/ I(i) /\), except in Lancashire where \([y:]\) and [i:] were interchangeable south of the Ribble.
(3) Elsewhere it remained as /y:/ untll the end of the 14 c when it unrounded to /i:/.

These three divlslons, and the general reflexes of \(O E / y: /\) may be borne in mind when the largest influx of French and Norman vocabulary occurred after the conquest. As bilingualism developed, so did the vocabulary. Strang (1970:250) in an extended metaphor of almost diluvian proportions clalms that
> "the sluice gates opened, and there poured into English the greatest flood of loans from a single source by which the language has ever been inundated."

This continental contribution wlll be considered llike an earlier division of Gaul), in thrie parts. The first of thest are words with the vowel \(/ y(:) /\).
of pure vowel \(/ y(i) /\)
Central to the discussion of the effect of \(O F / y(i) /\) in Britain is an awareness of the geographical distribution of the vowel in France, its transmitters in England, and social and geographical circumstances attending those natives coming into contact with words containing this vowel. First the nature of the vowel. Vulgar Latin /ui/ had begun to be fronted to \([y:]\) in the Gallo Roman period (5c-9c), but while Brunot \& Bruneau (1949:91) say
"il est ... difficile de préciser la date a laquelle cette evolution s'est produlte",
it is possible to identify its geographical origins in the south. The process of fronting had not reached all parts of northern France in the lic kBliss 1969:204), lingering longest in the northeast. Since Wllliam recruited most of his followers from the north and northwest (mostly from Normandy, Malne and Brittany, it is likely that some of them did not have /y:/ in their inventory of sounds, and that even if they did, it may have still been in variation with /u:/. In these cases we may have expected the sound to have merged with the native English /U/, [PJS]. Indeed Emerson (1909:xxl) is sceptical about the use of the French [y:] in the midland and southern regions of England (except by those having learned French). He bases this view on the evidence of rime; and on the small number of words with thls of sound which were borrowed, together with their very gradual adoption.

Most commentators have concentrated on the phonetic aspects of production and their geographlcal and soclal distribution. The geographical spread is linked to the extent to whlch \(O E / y(:) /\) was extant. (See Jordan 1974:209 and Serjeantson 1935:297 for detalls). Where OE \(/ y(:) /\) was stlll used, then the sound was retainisd in the imported French words; where OE ly(:)/ had disappeared (especlally in the north and east midlands), then it
followed the pattern of the OE reflexes, pronounced as leu/ or \(\mathrm{m}: / \mathrm{/}\). In the west midlands for example, /y/ was probably retained up to the end of the 13c; in the west it lasted into the following century. While it existed, it was naturally used for the \(\mathrm{Fr} / \mathrm{y} /\). In the north, there was a simllar /y:/ sound which had originated from \(O E\) /0:/ Brunner 1963:29). But in the southern parts of the north region and in the north midlands, as Jordan (op cit) indicates, an /u:/ pronunciation existed and this was applied to Anglo French texts. But in areas like the east midlands where \(O E / y(i) /\) had been unrounded to /l(i)/, perceptually the nearest native sound, \(\mathrm{Fr} / \mathrm{l}: / \mathrm{l}\) was replaced in part by the diphthong leu/. It thus merged with the leu/ which was developing there from OE ēo + w. (See 81112).

Some social variation may be discerned. Those in the upper strata of society (those more in contact with the court, education and the law, where AN was stlll used), may well have been predisposed to use /y:/ rather than other variants. See Jordan (loc clt). But the pronunclation stratum in which /eu/ was used predominantly, became/lu/ at the beginning of the 15 c .

The French borrowings in category Fa include
\begin{tabular}{|c|c|c|}
\hline acuser & 1297 & <accuse> \\
\hline deluge & c1374 & <deluge) \\
\hline estuve & 1305 & <stew N> = stove \\
\hline estuver & c1400 & <stew V) = cook \\
\hline endurer & 1375 & <endure> \\
\hline fortune & 1300 & <fortune> \\
\hline glu & 1382 & <glue> \\
\hline mesure & c1200 & <measura> \\
\hline mue (r) & 14 c & <mew \(=\) moult \\
\hline nature & c1250 & <nature> \\
\hline rude & c1340 & <rude> \\
\hline pursuer & c1290 & <pursue> \\
\hline use & 1225 & <use> \\
\hline vertu & 1225 & <virtue> \\
\hline
\end{tabular}

OF diphthong ui
The diphthong is usually represented orthographically by \(\langle u l\rangle\) ，and had developed from Latin \(\bar{U}+i\) ．In AN it alternated between a rising and a falling pronunciation．For more detail see Menger 1904，Serjeantson （1935：298），Jordan（1974：215），Rickard 1974．The falling diphthong became predominant，and then became monophthongized to［y：］．As with the pure vowel ／y：／discussed in 81121，this emerged as／eu／in popular speech．（See also Mosse 1952；Brunner 1963；Bliss 1969）．

For category Fb ，examples of diphthongs are
\begin{tabular}{|c|c|c|}
\hline couvre feu & 1285 & ＜curfew＞ \\
\hline cruete & c1290 & ＜cruet＞ \\
\hline endulre & c1400 & ＜endue＞ \\
\hline estul & 1386 & ＜stew〉 \\
\hline frult & c1175 & ＜fruit＞ \\
\hline hul & 1292 & ＜hue＞（and cry） \\
\hline nulsance & 1410 & ＜nulsance＞ \\
\hline pule & 1393 & ＜pew） \\
\hline ruide & c1340 & ＜rude＞ \\
\hline
\end{tabular}

1123 Of triphthongs leu eau
Both the triphthongs were formed later in the 11c and 12c．The first，＜leu＞came mostly from Latin \(/ \varepsilon /+u\) ．To begin it was descending，but in the 12 c the stress shlfted in continental French，and in \(A N\) here it was reduced to／lu／．（Serjeantson 1935：299；Brunner 1963；Jordan 1974：217）．

For group Fc ，the first triphthong includes
\begin{tabular}{|c|c|c|}
\hline juleu & c1275 & ＜jew＞ \\
\hline lleu & c1290 & ＜lleu＞ \\
\hline porsieure & c1290 & ＜pursue＞ \\
\hline sleute & 1297 & ＜sult＞＝ \\
\hline co（u）rll（e）\({ }^{\text {a }}\) & 1340 & ＜curlew＞ \\
\hline
\end{tabular}

The other triphthong，〈eau〉，came about as a result of the vocalization of／－l－／to／－1－1．（Jordan loc cit；Mossé 1952；Brunner 1963）． When the of triphthong／eau／was borrowed，it was rapitly changed．
＂The of triphthong／eau／（originating through vocalization of valar or secondary velar／k／in the serles／－at／and／－et／\(>/ \varepsilon a / / /\) which rarely occurred in English was simplified to／eu／．＂（Jordan 1974：217）

This rarity accounts for the paucity of examples．In addition Serjeantson （1935：299）points out that before lablals or \(/ s \mathrm{c} /\) for instance，it was monophthongized to／e：／as in Beauchamp and Belvolr．In Wiltshire，Beausire became Beazer（861222 Domesday BBCi）．This long vowel was raised to／li／．
\begin{tabular}{lrl} 
beaute & \(c 1275\) & 〈beauty〉 \\
leaute & 1300 & 〈lewty〉 \(=\) loyalty \\
eau ardente & \(c \mid 315\) & 〈ewe ardaunt〉
\end{tabular}

\section*{1130 \\ To the end of ME}

I have outlined the results of the gradual shortening，smoothing and raising of \(O E\) long vowels，and diphthongs \(+/ W /\) ．Aside from the rounding of le／to lol in the south and west midlands，（which in any case became unrounded again after three centuries），there is a progression towards \(/ \mathrm{lu} /\) ， leul and／eu／which begins earlier in some environments than others．The changes in the contributory sounds are summarized in the time chart il－02． The detalls try to make some allowance for regional differences．From the chart it can be seen that while some of the original sources had developed to／lu／by the beginning of the 14 c ，others were at the／eu／and／Eu／stages．

Between 1250 and 1400 the dominance of the south began to wane， and the midland dialect became the foundation of the new standard language． The south stayed more conservative than the north．The transition to Middle Engllsh had been marked by changes at varlous levels of language．In phonology，by the 11 c both \(O E\) diphthongs ea and Eo had been reduced to simple vowels．But this was compensated for by the formation，starting in the second half of the 12 c of new diphthongs．Among the reasons for thls
according to Mosse 1952, was the shifting of the syllable boundary. Idiolectal differences in modern syllable boundaries will be used later in the analytical part of this study. While the \(O E\) diphthongs had been falling but opening, the new ME diphthongs had more of a closing character. There was also the simplification of initlal consonant clusters with \(/ \mathrm{h}-\mathrm{I}\), where the first was lost. This was to be mirrored later by the creation of new clusters as a result of the development of the glide /J/ with a preceding consonant. The solution to offending clusters was the loss of the second member, especially when a pair of glides were clustered.

At the end of ME there were seven diphthong phonemes Mossé 1952; Barber 1976), all of which may be regarded as closing. They were
\begin{tabular}{lll} 
Iin en an on & \\
& al & \\
& oi
\end{tabular}

The first 2 are relevant here. It is their merger and subsequent development with preceding consonants which produced the sequence under investigation.

Danielsson 1963 describes the transition from late ME in the 14 c to early ModE in the 16 c as being marked by instabllity in certain aspects of the language. Rapid changes were taking place. Orthography was in a state of confusion, and this was recognized as such. In printing there was instability In the spelling of learned words. Henry \(V\) had encouraged the use of English In documents. Chancery officlals had based their spelling on the language of the central midlands. But by the tlme of Caxton there was no firm standard. In fact the compositors employed from the continent made matters worse by Introducing their own conventions and adopting without thinking variant spellings. Danielsson refers to the situation at the beginning of the 16 c as 'fluid' (op cit:64).

Table 11-02
Time chart from OE to the late ME diphthongs

\begin{tabular}{ll} 
West midlands; southwest: south \\
AN & North; east midlands; south midlands \\
\(:\) & Anglo Norman \\
after a vowel indicates long \\
after a vowsl indicates half long \\
a & aftowinent part of a diphthong
\end{tabular}

In addition there were periods of instablity in the social and political life of the time. Most of the 14 c was riddled with campalgns and wars against Scotland and France. The Black Death made its first appearance in 1348. A poll tax was first introduced \(\ln\) 1381. A rising of peasants occurred soon after. The 15 e was marked by the continuation of the conflict with France. Internally the Wars of the Roses led to a change of dynasty. The 1530s saw the Reformation and the dissolution of the monasterles, with its consequent effects on population movement. The price revolution and accompanying inflation of the 16 c led to widespread economic discontent and movement between social groupings. A mere catalogue of some of the events affecting the life of a country cannot explain the changes in language that were taking place. But it has been tempting for some commentators (such as Prins 1974 and Schlauch 1959) to look for a connection between what was an unstable or developing economic and social structure and the way in which people used language. (The rapid development of Scouse, the urban basilect of Liverpool, in such circumstances, is an instance meriting research.)

Out of the instability came a sort of salvation. In the 16c a new breed of schoolmasters began their attempts at creating a more relevant spelling system; not necessarily involving reform, but regularization. It was obvious that pronunciation had deviated markedly from the former values of the letters. Their attempts were not successful. Where they did achieve lasting success was in the value that their publications have for subsequent Interpreters of pronunciation change. Their success is represented in the developments in the next section.

\section*{1200 Modern English}

The main points to be covered in this section on modern English include the reduction of the reflexes of the \(O F[y(i)]\) to \([0]\) or \([1]\) the merger of the late ME diphthongs to [ju]; linguistic features favouring glide disappearance; how this was manifested; and the extent of the subsequent variation, (chronological, social and lexical), as well as glide restoration. Much of the evidence comes from contemporary orthoepists. Their original works have been used when available, together with Dobson 1968.

1201
The \(16 c\) and 17c background
The emergence of a standard language and the slow crystallization of its forms had a variety of consequences. The foundation of grammar schools in the 16 c ; the expression of soclal status in the use of language; the prescriptive attitude of certaln manuals and the descriptive approach of some of the orthoepists - all these encouraged a greater awareness of language, particularly among the aspiring and rising groups in soclety, But there are also instances of where the lower sorts (to use the vocabulary of the late 16c), are in the forefront of pronunclation change. Wrightson 1987 Indicates that the use of the word 'sorts' reflected the broad groups of soclety - the haves and the have nots. It
"reflected not only the polarisation of English local society produced by demographic expansion and economlc change but also the realities of power relations in the local community." (op cit: 21-22)

By 1640 an extra term, the middle sort had crept \(\ln\), and was much used in the pamphlet literature of the Clvll War. As Wrightson points out, the language of sorts proved, by virtue of its very resonant imprecision, capable of capturing the process of soclal change. Some historians (notably Tawney

1954ab) have referred to the period 1558-1640 as The rise of the gentry, characterized by the rapid upward social mobillty of many families. I suspect that just like today, some of those 17c aspirants were keen to demonstrate their acquisition of status by being in the forefront of linguistic change. An area which can make considerable impact and impression is the use of recently introduced words.

\section*{1202 The pronunciation of Greek and Latin}

As well as recognizing the influx of learned vocabulary during the 16 c and 17 c , we must also give some consideration to contemporary attitudes towards the pronunciation of the classical languages, since both areas are interrelated. In essence there was a conflict (rather like that presently occupying different schools of interpretation of older western music), between those favouring the 'modern' method, and those favouring the 'authentic' approach.

When the study of Greek was resumed in western Europe, the pronunclation first adopted was that of the modern language, since this was used by the Greek teachers. A reaction against this practice was initiated by Erasmus. He adopted what he argued was the ancient pronunciation. In this country he was copled in the mid 1530s by Cheke (1514-57) and Smith (151377). They were then in their very early twenties. Almost inevitably they encountered opposition, which persisted even after they were appointed to the regius chairs of Greek and of civil law respectively in Cambridge. Opposition in particular came from the chancellor, (Gardiner, blshop of Winchester), He issued a decree in 1542 "forbldding the use of the new pronunclation on pain of expulsion from the Senate, loss of honours or scholarships, or caning", as may be required. Dobson 1968:39).

Cheke, following Erasmus, maintained that Greek \(u\) was the same as French \(u_{p}\) as was to be pronounced with the descendant of ME [y:] that is iu. Thomas Smith, publishing in 1568, but reflecting the usage of the 40 s distinguished eu in few, dew from ME equ deriving from long \(u\). He adds that the reformers used [eu] for Greek \(\varepsilon u\) and \([e(t) u]\) for gu For the other classical language Cheke favoured the identification of Latin \(u\) with ME \(\bar{U}\). He also says that this was often pronounced as \(y_{1}\) a fault adopted from the French. Dobson (op cit: 43) suggests that what Cheke had in mind was the use of [y:] (or [iu]) for Latin 'long \(u\) '. In fact this seems to coincide with the traditional English pronunciation Cobson op cit:51 fn2). Holmberg 1964 cites Robinson 1617 as giving a description of the anglicized pronunciation of Latin long /u:/. Using his transcription of (j)iw, we get
\begin{tabular}{ll} 
duclt & diwsit \\
tenuis & tenjlwls
\end{tabular}

1203
The influx of vocabulary
In the period after the Reformation and the Renascence, the language was host to yet another flood of vocabulary. It had the effect of further reducing the reliance on OE terms, as it was based on Greek and Latin words. For an illustration we may use the 98 glidable words tested in this investigation. Only 8 may be described as native. Five are 16ct romance imports. Of the remaining 85, fifty were taken from French and 35 from Greek and Latin. In the first group, a half were first recorded in the 14 c . Of the classical words, a half appeared in the 16c. While these flgures are not necessarily representative, they do give an indication of the balance and provenance of the vocabulary in general. Since many of the words were restricted in usage to educated people, and since the words were being
anglicized (as opposed to using the original pronunciations of the reformers), the pronunciation of the long /u:/ in such words was that identified at the end of the subsection above: the glided sequence. In a sense this sequence may have been perceived as being identifled with learned vocabulary, particularly by the unlearned. Whether this fostered gllde loss needs further study. What evidence there is, is intriguing.

1210 The progress of the IME diphthongs gu and iu

Their long separation and eventual merger
At the beginning of Modern Engllsh the ME diphthongs \(p u\) and iu were still separate, with some speakers still distinguishing between dew [deu] and due [diu]. But the evidence from contemporaries, in particular the 16c and 17 c orthoepists, together with later assessment of their work, suggests that the development of the diphthongs, while ultimately leading to the phoneme combination \(/ \mathrm{ju} /\), has marked regional variations. ME gu was originally pronounced as [eul. In early ModE the first element develops in the same way as ME e. When this was raised to leid, ME qu became [eul. Then as Dobson lop cit;798) states, the second element of the diphthong began to exercise an assimilatiory ralsing influence on the first. This caused [eul to change rapidly to [lu]. But it did so at different times for different reglons and different styles of speaker. Dobson (1968:19-30) gives the example of Peter Levins from the East Riding of Yorkshire. His Manipulus Vocabulorum 1570, the first English riming dictionary, seems not to distingulsh between ME eu and eu. Southern orthoepists continue to do so for another century. Bullokar from Sussex, and with his speech strongly coloursd by vulgar and by dialectal pronunciations, shows in his Book at Large 1580 that the diphthongs
were distinct. But also he is very aware of the advanced pronunciations typical of the Mopsse (and of Essex). Dobson (1968:85 fni) describes the Mopse as "affected, perhaps wanton, women", suggesting that 'wenches' may be a good gloss. They were "affected speakers of an advanced form of StE." (op cit:88), (not necessarlly precursors of Essex glrl). Bullokar is also important because as Dobson points out, he was a representative of the kind of person that while of no worldly distinction or wealth, gives up his natural dialectal and vulgar speech in favour of another form whlch was regarded as better. He is evidence of the spread of Standard English. But while he was not unsuccessful in conforming to the accepted standard, he still retained many traces of his orlginal pronunciation, some of which came to be customary in the standard language.

Charles Butler from Buckinghamshire published his English Grammar in 1633. He still keeps the ME diphthongs separate, but makes the main distinction between fu and iu. So does Rlchard Hodges in his Special help to Orthographie 1643. Wallis Grammatica Linguae Anglicanae 1653 says that words like neuter, few, beauty were sounded 'per e clarum et w', but goes on to admit that some people use /lu/. Yet Price 1668 stlll has neuter and few separate. In discussing proper diphthongs, "wherein both vowels keep their sound" (op clt:30), Price comments that while 〈ew> keeps its sounds in few, lewd, ewe, "it hath now obtained the sound of, iw as new, jewel", (op cit: 34), It is distinct from <eu>. There is orthoeplstical evidence of a mode of pronunciation which falled to distingulsh between ME gu and lu. This evidence dates from quite early in the 17c. But untll about 1660, the time of the Restoration of the monarchy after the Cormonwealth, the evidence ls based on careless ane vulgar \&peech.

It is not untll the publication in 1685 of (yet another) Grammatica

Linguae Anglicanae by Christopher Cooper, that the merger between ME \(\underset{\text { eu }}{ }\) and eu for all styles of speech, appears to have taken place. He did not distinguish [eu] from [iu] in his phonetic system. ©obson 1986:281).
"Cooper was ... the schoolmaster and parson of a comparatively unimportant town [Blishops Stortford - PRFI, and there is no reason to suppose that he enjoyed any reputation as a scholar."

His own pronunclation may therefore be regarded as conservative. We may consequently take the end of the 17 c as the approximate date for the complete merger of ME \(\mathcal{\rho u}\) and eu (incorporating iu). There was another variant of ME eu, a form not merging with /iu/. This did raise the first element to /e/ some time in the 16 c . But Prins 1974 says this variant was dying out by the middle of the 17 c and had become obsolete in the next century.

The closer late ME diphthongs \(e u\) and \(l u\) had been identical from at least as early as 1500. and since they merged in the latter form, it is the development of [iu] as such which is considered here. It was at first a falling diphthong with a short second element. It then changed to a rising diphthong. Since the second element was stressed, it became longer and quickly moved to [ju], and seems to have developed first in word initial position. This proves to be a point of weakness for change; it has been and is in the forefront of glide loss, as the Liverpool recordings will show. The change began in the last decade of the 16 c , and posslbly as early as the 1560s in non standard dialects, Cobson 1968:709; Prins 1974). Whlle the sequence of events is the same, the dates at which these stages occurred, depends on the style used in the standard language. [ju] appears to have been normal in the standard form from about the 1640 s , that is , around the time of the Civil War Yet [ill] persisted as may be expected, In carefu. conservative speech untll the late 17c. But as late as 1685 Cooper said that
/iu/ was preferred In careful speech. (Dobson 1968; Barber 1976). A change in the pronunciation of the vocalic element of /Ju/ had been noted by some contemporary observers. A centralization (or fronting) of the back vowel was evident due to the assimilatory influence of the [j]. This is a tendency which is also noticeable today in a broader context for some southern English speakers. A similar but different quality is evident among broad Scousers.

\section*{1212 The status of [y:]}

The point about fronting ralses the thorny question of the extent to which this was in use. The contenders are [lu] from earller ME lu and eu, and the sounds used in ME for OF [y:]. The orthoepists themselves were divided; but then they did not have at their disposal the techniques of the modern phonetician. On top of thls the orthoepists of the \(16 c\) and \(17 c\) shared a common fallure of denying the existence of some well established pronunclations which they did not use themselves (a fallure which may still dog some researchers); and in any case ly:] may only have been a diaphonic varlant. Having sifted and assayed the evidence for and against and in between, Dobson (1968:711) concludes
"in the lack of proof 1 prefer to accept the evidence in favour of [y:] and to belleve that there was a variation in pronunclation which causes the variation, and in some cases ... the confusion, in the evidence."

But Chomsky \& Halle (1968:252) refuse to be drawn into what they call the
"Involved question of whether ME had the sound [U1, but shall assume that this was not the case and that all Engllsh reflexes of forelgn [d] coincided with the contemporary reflexes of ME /ew/."

Earlier, Zachrisson (1927:79) had maintalned that "The early new English pronunciation of [ju:] in use, new and few is a very difficult and much debated problem." His suggestion was that in the 16 c and 17 c the reflex of ME ēu was commonly pronounced as l'iu l'u jul, possibly also as li'u jul, but with no conclusive evidence for [y: yu ly:].

What is incontrovertible and important, to take up the point made by Dobson about variable pronunciations, is that in words borrowed from French with [y:], the vowel was most likely modified in different ways by those using such words. Some groups of speakers will have retained the original vowel; other groups may have seized on elther the rounding or the fronting as being the feature to imitate. The latter occurrence may have happened in conjunction with changes in stress from the French pattern to stress on the first syllable, consequently producing a short vowel. Wyld 1920 has shown from extant spellings that in words like fortune, value, stress shift had occurred. (Thus lecter 1526 for lecture). By the 16 c both forms coexisted. But in the 17 c the form with stress on the relevant vowel had disappeared and with it the scope for a glided form.

We also have evidence for this stress shift and vowel change in sporadic lexical items, which predated the emergence of the glide in this context. While such spelling evidence may be idiosyncratic, and erratically so, forms like 15c argament suggest that what appeared to have been later glide loss (as in edicate), may really have been the successor of an earller vowel reduction. It is the evidence for, and interpretations of, the main body of glide loss which concerns us next.

In the next stages of the progress of the glide are the beginnings of the variations in its realization. No sooner had the glide been established than it came under attack from linguistic sources buttressed by social effects. Overall three main aspects may be discerned.
(1) the tendency for /Cju/ to become /Cu/
(2) the coalescence of certain consonants with /J/
(3) the restoration of the glide in some environments

Besides the reasons for the synchronic changes in variants of the glide (gliding, degllding and coalescing), there is also the diachronic question of why loss began and progressed across PCs in the way it did. In terms of preceding consonants, the gllde was lost first after \(/ \mathrm{Cr} /\) and \(/ \mathrm{Cl} /\). But other parts of the system of initial clusters were involved and these will now be examined.

Fhonotactic constraints and loss after /r //
In order to explain the underlying reasons for the loss of the glide In environments like these, Cooley 1978 drew attention to the role of surface phonetic constraints (SPCs). These, she suggested, can both facllitate and impede sound changes. Aware of the fact that certain phonological changes have resisted satisfactory explanations, she feels that our intultions may be a factor. A surface phonetic constraint states specific restrictions on posslble combinations of phonetic features and possible sequences of phonetic segments. We must bear in mind that languages have accepted sequences in the past which are no longer pert of their current phonotactic system, and which do not form part of the intuitive resources of
a speaker with that system. In English, certain Initial clusters which used to be acceptable, like /hl hn hr/ are no longer so, with /hw/ almost extinct. If change leads to an unacceptable sequence, uncertainty and instability result. In order to resolve the disequilibrium, there is elther additional phonological change, or there are alterations to the SPCs.

During the 16 c and 17 c , three rules (R1 - R3), were added to English phonology.
(R1) the emergence of the palatal glide [ju] from [liu],
(R2) the deletion of the velar stops [k g] word initially before [n], (R3) the deletions of the palatal glide after coronal consonants. These were optional in some contexts and obllgatory in others.

Hill (1958:74) had already intimated that R1 and R2 may have been related.
"There is thus an interesting hint of language history in the present position of nasals in the clustering pattern. it is possible, though unproved, that the loss of \(/ \mathrm{kn}-/\) and \(/ \mathrm{gn}-/\) is connected with the development of new clusters like /myu-/."

Hill allocated the consonants to different (initial) positional classes (pc).


Four constraints (Cl - C4) govern their use in initlal clusters.
C1 All clusters follow the order 123 of the pas above.
C2 Not all positlons have to be filled.
C3 If there is a triple cluster, the only avallable member of pci is /s/. The first of 2 consecutive obstruents must be \(/ \mathrm{s} /\) and the second a volceless stop.

C4 No cluster has more than 1 member from each class.
This last constraint had exceptions with restricted incidence.
el In \(\mathrm{pCl}, / \mathrm{sf}-/\), largely restricted to specialized Greek words and prefixes.
e2 In pc3, /hw-/ which has virtually disappeared in most dialects.
e3 Also in pe3, /hj/ + /u/.
But there was also the question of \(/ \mathrm{rj} /\) and \(/ / \mathrm{j} /\), both of which are in pc3, breaking constraint 4. No other combined forms have been found in the subsystem of approximants. (82103).

In relating the rules and constraints, Cooley identifled R2 - the deletion of the velar stops [k g] before [n] word initially - as the focus of the problem. Its connection with the others had not generally been reallzed. Cooley challenged the assimilatory hypothesis of velar by nasal, and in its place offered a different explanation.
"I suggest that the diversity of explanations for this change rises from the probabllity that the loss of velars resulted not only from internal pressure toward varlous phonetle assimilations, but primarlly from an attempt to correct disruptions of phonatic constraints."
(Cooley 1978:127)
When the glide /ju/ developed in place of the diphthong /iu/, new phonetic prevocalic clusters were created. Sume of these like /dJ vJ stJ/ conformed to the existing SPCs. Others did not. Those consisting of a
resonant plus the new glide, /sprj lj klj knj/, as in spruce, lewd, clue, knew, violated those constraints. Cooley argues that if SPCs do have a real function in linguistic structure, then we expect such a situation to be unstable. It will lead to changes. Cooley suggested four theoretical possibllities for correcting the sequentlal pattern.
(a) delete /J/i
(b) delete the first resonant,
(c) or alternatively reassign it to a different positional class;
(d) change the SPC.

It was suggested that the nasals were reassigned elsewhere. This caused rule 2, which deleted stops before nasals to come into operation. Thus sequences like /knj gnj// were dropped. Thls still left clusters like /rj sprj/ in a state of violation. They were rescued by the intercession of rule 3 - the selective deletion of the /J/ glide after coronal consonants.

The arguments here only apply to word initial position. If the sequences are to apply medially the clusters have to be tautosyllabic. Otherwise a relatively rare survivor like exude with /-gz\$j-/ will represent an example of clusters last stand. I now explain why rule 3 was selective.

In the case of \(/ r /\) the reasons for \(1 t\) being the first to lose the glide are articulatory and lexical as well as systemic. Appendlx 7322 which gives a list of typical /r/ words shows that of those noted, about \(x\) involve a clustered \(/ r /\). These are word initial or morpheme initlal. Some, in addition, were of French orlgin with \([y(i)]\). This conjunction of disfavourable circumstances clearly conspired to cause the gllde to disappear first in this preceding consonant. From a social point of view, it may have been that the many uncichooled were in the forefiont of gllde loss.

Analogy may have helped the early eroslon of the gilde with \(/ 1 /\),
occurring in tautosyllabic elusters, particularly when word initial. The change was not necessarily extended to all words by all speakers, and may have persevered over a few centuries, not least because of the greater number of items, (at least 4 times as many as /r/7. The word blue is now always degllded. Yet the first edition of the Oxford English Dictionary (1887: vol 1:942) explalns that
"In pronunciation, nearly all the dictionaries still recognize (bl'ū), but the more easily pronounced (bla) is general in educated speech." Influence from \(/ C l /\), meant that the glide began to be lost after plain \(/ 1 /\). Valy for value occurs in 1642, so it was sufficiently well established for Ledyard 1725 to note its loss. But there was soclal resistance. Towards the end of the regency period, Smart 1836 edited a new version of the 18c pronouncing dictionary of Walker. In it (op cit: \(x\) ), Smart castigated as vulgar, the glideless pronunclation of words like lute, lucld, lunatlc Later, Alford 1864 was rather more specific. He described the glldeless pronunciation as

> "an offensive vulgarism, most common in the midand counties, but found more or less everywhere."

In the present century Fowler had concentrated on this area with respect to standard pronunclation. In both editions of his guide, it was emphasized that to pronounce the /J/ after /// was formerly de rlgueur, "or the speaker was damned in pollte circles" (1926:335; 1965:484). The earlier version, embodying a personal view, was that the omission of the glide was slowly but surely displacing the pronunclation with it. In the later edition, while the omission of the gllde after /// (and /s/) was held to be on the increase, it was now suggested that thls may be due to the influence, of the USA. But there was uncertainty as to what yoverned the progress of glide loss. Inconsistency appeared to rule. In the clustered conclude and recluse
the glide had been lost as expected. Yet items llke dllute and prelude kept the glide; while delude and allude were wavering. Dealing with the disappearance of the glide in this PC, Potter (1969:20) exemplifies its absence with absolutely. "The \(J\) has gone ..., and this is obviously the pronunciation of tomorrow." And he points out that young people (iconoclastic and innovative as ever), even used the spelling loony. (The OED dates this to the final quarter of the 19 c .
\(\mathrm{Cju}>\mathrm{Cu}\) after the alveolars \(/ t \mathrm{~d} \mathrm{n} /\)
The distinction between fuller and reduced forms of the vowel becomes evident in many words deriving from \(O\) / \(/ \mathrm{F} /\). In the context of these examples, and because of the uncertainty over pronunciation, ME [y:] is to be taken in stressed syllables, as meaning either [y:] or the varlant [lu] later to become [ju]. But if the syllable in which it occurs is fully unstressed it becomes [1]. Thls later weakens to shwa, especially before 〈r>. Dobson (1968:850-855) has examined the evidence of the orthoeplsts. They provide many examples of this distinction. What is important are the implications for the analysis later of the role of stress in variation; and also the converse, the existence of extensive categorical subenvironments.

In syllables not immediately preceding the stress, for instance in multitude, spiritual, [y:] is usual in Robinson 1617 and Hodges 1643. Before final <-r> (or in derivatives of such words), like creature, venture, natural, measure, contemporary evidence is more fluctuating, in syllables immediately following the stress, varlation between [y:] and [i] (or shwa) is common. Lecter is attested as early as 1526. Bullokar 1580 representing the vulgar sperch of his time, states that as a general rüle <-ure> is pronounced with shwa and final \(/ r /\). He does have some transcriptions showing [y:r], but

Dobson (loc cit) attributes these to the influence of more correct speech. The variation in this environment takes on a more noticeable cuocial dimension, since it is largely ldentified with the vulgar pronunciations of the 16 c and 17 c , It affects not only words adopted in ME but also later borrowings which have been anglicized on the model of older adoptlons. There is variation between orthoepists. Again there is intra individual variation extending in some commentators to variation within words. There is chronological variation as we move onwards from Hart 1569, always with [y:], via Robinson 1617 normally [y:] but with shwa in venture, Hodges 1643 normally [y:] but with shwa in more words, to Cooper 1685 where all <-ure> words have shwa. There is soclal variation in that Bullokar 1580 shows shwa as his more usual form, that is the varlant of the lower orders. Hodges and Cooper while avoiding pronunciations that are evidently vulgar, provide evidence in their homophone lists, which are based on vulgar speech. Thus pairings such as the following appear - gesture, jester; lecture, lector; pasture, pastor; tenure, tenor. Pyles (1971:190) gives as an example, a couplet from 'Verses on 2 celebrated modern poets' by Jonathan Swlft:

If thls to clouds and stars will venture That creeps as far to reach the centre.

In words like mutual, particular, fortune, continue, where of \(/ \mathrm{y} /\) is not followed by \(\langle r\rangle\), the sound is normally represented by ME [yid. Yet there are examples here of reductions to [1] and shwa: 16 c monlment (Spenser The faerle queen 2, 7:5), and 1655 continlal Cooper 1685 in his English text describes such reductions as 'barbarous speech', but his Latin maintains that it is 'facllitatis causa'. Prins 1974 provides evidence of glide loss in the 18 c after the coronals \(/ t \mathrm{~d} n /\) from L.gdyard 1725 and Scott 1768. The Pronouncing dictionary of the latter suggested that dropping the glide after
the stops was considered fashionable. Indeed in the 18c conservative pronunciation kept an unpalatalized /t/, followed by shwa.

The predilection for prescription and correctness in language became evident again in the late 18 c and 19 c , especially after the end of the Napoleonic wars. Agaln like the mid 17c, there was a period of postwar turmoll, reconstruction and opportunities for social mobllity upwards. Concomitant with the movement was the need to be accepted in politer circles, and how correctly you spoke was of importance to many. Wyld 1920 gives the example of Walker (b 1732). His Rhetorical grammar 1801 maintains that polite speakers say educate with a glide: the older form was ['edikelt]. Yet as \(K\) Phillips (1984:136) confirms, there is literary evidence of a tradition of word and morpheme initial glideless pronunclation among the dandies of a previous generation. Selecting from Thackeray and Dickens with their orthographic convention of \(\langle 00\rangle\), he gives the following examples.
(1) Thackeray Pendennis (1849-50) ch 16, 19.

Major Pendennis, described as a dandy grown old, is quoted as saying 'the course for us to pursoo' and 'a doosid deal'.
(2) Dickens Little Dorrit (1857) ch 21, Edmund Sparkler, (enjoying a sultable surname for a man about town), refers to 'a doosed fine gal'.

Deuced seems to have been a fashionable lexical marker. Now, dandified men about town are absolutely characterlzed by other distinguishing shlbboleths.

Loss after /t \(n /\) is also mentioned with reference to a 19 c native of Liverpool. Krapp (1925:155) cites Lord Frederick Hamilton. In his book The days before yesterday 1920, Hamilton recalls that Gladstone used bare [-Cu-] In words like constltutional, news Gladstone was born in 1809, long before the Irish Influx into Liverpool. The circumstances of his family and birth inay have reflected an acc sptable pronunclation of tha time, even lif. it was provinclal. It is instructive that Hamliton saw fit to comment on this kind
of pronunclation, since in the final quarter of the 19 c , Anon 1879, as prollfic as ever, advised against the pronunciation of duty, due without the glide. But Gladstone was also conservative in keeping postvocalic [r], and liberal in his use of it.

Glide loss after shwa or even a non existent vowel occurred in other environments, and in earlier times, such as \(15 c\) argament and 1677 miracilous. Dickens in Plckwick Papers 1836 provides an example for \(/ \mathrm{g} /\) (occurring after tonic stress) for Sam Weller.
"Ven a mans wery poor ... and eats oysters in reg'lar desperation."

1223
Coalescence: \(\mathrm{CJu}>\mathrm{Cu}\)
A prominent feature of the changes taking place at the beginning of modern English were the assimilations of palrs of consonants, leading to an additional point of contrast in the consonant system. As Gimson (1980:164) has observed with reference to \(/ t /\),
"The alveolar stop contact is particularly sensitive to the influence of the place of articulation of a following consonant."

The first orthoeplstical evidence avallable comes from a Robert Robinson (difficult to identify precisely). The Art of Pronuntlation 1617 shows the development of [sj] and [z]] medially before unstressed vowels to [k] and [z]. However contrary to expectation and according to Dobson 1968, the coalesced variants depend on the development of a gllde [j] and not the development of [lu] to [ju], since medlal unstressed /// before a vowel normally becomes [j] If the following vowel ls unstressed. While Robinson epltomizes a recurring predicament among teachers and academics - "he was poor and lived as a schoolmaster" 'Jobson 1968:201) - he wes from London and had had good education. Later, Cooper 1685 says that the use of [s] in stressed syllables,
such as sure, sugar is (again) 'barbarous speaking'. His Latin text (again) uses 'facllitatis causa'. Strang (1970:116) dates the use of the assimilated form \(/ \mathrm{s} /\) for \(/ \mathrm{tJ} \mathrm{sj} /\) to the closing years of the 16 c . This occurred in a number of following environments, (eg nacion). As Strang points out, Shakespeare scans endings like -tion, -cion with 1 or 2 syllables. But the disyllabic form must by then have been rather old fashioned. Its relevance here is in the effect on words like sugar, sura Wyld 1920 had collected examples of spellings which reflect this pronunciation. The earllest instances of [sju-> su-] are from the late 16 c and middle 17c. Suit was represented by sheute in the 1590s; shuite 1653, shut 1654. For sure, there is shur 1642, shewer 1657, (op cit: 293). It must only have been about three decades or so since the appearance of /ju/ in the advanced standard, as dated by Dobson 1968, that the assimilated varlant appeared. Cooper 1685 gives \(\left[\begin{array}{c} \\ \text { z } \\ \lambda\end{array}\right]\) as the pronunclation used in such common words as pressure, measure. He notes that \([s] z j]\) were less usual, \(\left[\mathrm{K}_{\mathrm{j}} \mathrm{z} j\right]\) least so. The dating of these changes is at variance with that given by Schlauch 1959. There she states that in the \(15 \mathrm{c}, \mathrm{lt} \mathrm{d} /\) began the process of palatallzation which eventually produced [č J]. "How far the process had gone by 1500 or thereabouts, it is hard to say" (op cit:48).

When the change to [s], which simply increased the functional load of an already existing phoneme, was fully established, it was paralleled in the 17 c by the assimilation to \([\chi]\) in the corresponding voiced sequences, eg In measure, usual. This new phoneme filled a gap in the phonemic structure. At.first because of the circumstances of its origin, it was confined to medial position. Subsequently it has been extended to final position in loan words, where it alternates with [J], as in garaga However it has never become word Initlal. So for the \(P C / z /\) the coalesced varlant [z] does not
appear word initially. But its functional load is not heavy (app 7334). Comparable assimilations produced / \(\mathrm{K} /\) from /tJ/ later \(\ln\) the 17 c ; and \(/ \mathrm{J} /\) from /dj/ in the 18c, eg gradual.

Restoration of the glide
Purists never approved of the coalescing pronunciations, and they have had some success in restoring the glide. The 19 c saw it restored in words where [ร] had been usual, like sewer (= a channel for discharge). Chambers dictionary (ed Geddie) 1959 noted the old fashioned form [š9:], but gave the modern pronunciation as variably glided. Supreme has changed from [s] to [s]. Strang (op cit) mantains that the corresponding voiced sound [ž] has survived better, but suggests that \(/ 2 \mathrm{j} /\) is sometimes restored in casual. The 19c also largely removed the \(\mathrm{IJ} /\) from other sequences like immediate, idiot, odious and indian The latter has a relic as Strang 1970 notes, in honest injun. For the glide plus back vowel, there is variation in some dialects between word initial [dju-] and [ju-]. But not in RP where the former is used. Strang also notes that the voiceless member of the pair [č], has proved more durable. This statement is made on the basis of ltems like feature, nature it is possibly the consequence of citing such a productive morpheme, which occupies an extensive part of the /t/ Inventory. The impact of categorical subenvironments is made clearer in the analysis of my results in chapter 5.

\section*{1300 Summary}

In table 13-01 1 identify three broad divisions in the historical development of the /Cju/ sequence, together with the names that Wells 1982 has given to divisions 2 and 3 a . They contain the more important subdivisions concentrating on the preceding consonants in the context of broad dialectal and idiolectal divisions. Some are lateral rather than sequential. First there were the many stranded contributions from \(O E\) and \(O F\) which led to the existence of the /iul diphthong in early ME, and its subsequent mutation as a result of shifting stress to /ju/. Soon after this there began in conjunction with the preceding consonant, the process of glide disappearance. This was effected in a pair of ways. The glide was either dropped, a process which has gone further in some dialects than others. Alternatively it was absorbed into the preceding consonant, modifying it from [tant] to [-ant]. In some dialects the second and third divisions may overlap. The emergence of what I have referred to as subenvironments, within the environment. of the preceding consonant, is obvious. Many of them by now are categorical in their use of a variant.

The native sources underwent the transmission eu \(>\mathrm{iu}>\boldsymbol{j u}>\mathrm{ju}\). But the last stage was not consistent for every preceding consonant. The llquids were most at risk. Incompatibllity within the subsystem of approximants coupled with the other phonotactic constraints of initial clustering (which were a part of a wider process), conspired to bring about a rapld initiation of glide loss (EYD). Others like /t d s z/ underwent glide change in different directions. LYD (later in the sense of reaching its widest spread) began at about the same time as EYD, but in the other reaim of vocabulary, the recent imports from France. This time it was no longer the
frictionless continuants which were affected, but other alveolars; and with a bidirectional change. Here the main subenvironments favouring change are word initial position and ltems borrowed from French with \(/ \mathrm{y} / \mathrm{i}\) in conjunction with their regularization by shift of stress from the relevant syllable. The choice of variants in opposite directions was most evident in the unvoiced pair /t s/. The progression for <-ture> may be represented by
s'ty(i)r > 'Stz(r) > '\$ez

When there was change in the voiced pair /d 2/, it was in disparate directions - coalescence and loss. Glide restoration by the hands (and mouths) of purists became conventional in the 19 c , both in this country and in the eastern USA, (showing similarities with the restoration of \(/-\mathrm{in} / \mathrm{in}\) present participles). But this convention does not appear to have extended to the rapidly urbanizing lower sectors of society. So for the set of coalescents, where varlation was possible, gliding became the prerogative of RP and its imitators; while coalescence and to a lesser extent glide loss, were the preserve of the basilects.

We may note a possible extension of division three. it was observed in the recordings made for this study that a movement towards a post alveolar or even alveolopalatal articulation was occurring, with the consequent effect of glide assimilation. This ls introduced as a tentative division 3b.

There is a feature which has not been prominent so far in thls discussion. It is the size of the lexical Inventory for each PC. This has influenced the duration of the transmission of glide replacement. What has been omitted from the chart is any lexical and subenvironmental distribution within some of the PCs listed ebove. Chapter five will elucidate this, and the appendices exemplify it.

second subject

\section*{CHAPTER \\ 2 \\ ==========================}

THE /Cju/ SEQUENCE

THE LINGUISTIC VARIABLE

AND LEXICAL DIFFUSION

2000 Content of chapter

The second chapter covers some of the toples pertinent to the palatal glide, and its loss both by preceding consonant and across the lexicon. Consequently the sequence /Cju/ is described phonetically and phonologically, Conflicting views on the place of \(/ \mathrm{j} /\) in the system of distinctive features are examined, as well as its place in the subsystem of approximants. The ldea of and criteria for a linguistle variable are discussed, and circularities in its definition examined, together with the place of the sequence translated as (yu), in east Anglla and in Liverpool. Finally the concept of the lexical diffusion of sound changes is examined. This raises the question of the origins and locus of change, which have a bearing on the transmission of glide loss. Lexical diffusion can occur on a macro level across all 17 PCs; on a mini level within a PC; and on a micro level within subenvironments. Dispersion also takes place across idiolects and dialects.

2100 Phonetic and phonological aspects of /Cju/

We shall look at the components of the /Cju/ sequence from both phonetic and phonological standpoints. Besides the glide itself we identify the consonants which can precede it, and also the nature and variants of the following vowel.

2101 Consonantal and vocalic features of the glide /j/
While Roach (1983:50) and Ladefoged (1982:61) prefer the term approximant, a glide may be basically interpreted as a transitional sound when the vocal organs move towards or away from an articulation <Crystal 1985:137). However classificatory difficulties can arlse with borderline sounds. In the palatal version the front of the tongue articulates with the hard palate (Gimson 1980:34). Phonetically it is more properly treated as a vowel gllde on to a syllablc sound of greater steady duration (op clt: 35), yet it is usually included in the consonantal category on functional grounds. The phonemes of a language usually fall into 2 classes. There are those which are typlcally central (or nuclear) in a syllable, and there are those which are noncentral (or marginal). The glide functions in English as a consonant, being marginal in the syllable. The consonantal function of the palatal glide is emphaslzed by being preceded by the preconsonantal form of the indefinite article; a rather than an There was a l9c prescrlptive predilection for the second form. K Phillips (1984:137) cites the opinion of Savage 1833 (using vulgarlsm as part of the title of his book), that the use of the indefinite article in the form a European was vulgar. Savage stated that he preferred an European

\section*{Fig 21-01}

Vocalic allophones of /j/ (after Gimson 1980:213)


2102
Acoustlc features of \(/ J /\)
Painter 1979 interprets the glide as a starting point for the rapid movement to the tongue position for the following vowel. The point at whlch the essential vocalic gllde begins depends on the nature of the following sound. Thus the glide of \(/ J /\) to \(/ / /\) in yeast has a closer beginning than that of /J/ to \(10: /\) in yore fig 21-01. When /J/ is followed by a back close vowel as In you, the starting points need not be as close as in the first example, and the lips may antlcipate the rounding of the lul, if rourding occurs. The acoustic features of \(/ j /\) are similar to those of \(/ 1 /\), especlally with regard
to formants 2 and 3. Gimson (1980:211) suggests that the steady state of /J/ is very short, in the region of 30 ms , compared with \(/ l \mathrm{r} /\) where it is twice as long, (Painter 1979:21). The FI starting point of the /j/ glide is simllar to \(/ \mathrm{l}\), about \(240-250 \mathrm{~Hz}\), F2 is withln the range \(2280-3600 \mathrm{~Hz}\) depending on the following vowel (compared with /// at \(2250-2900 \mathrm{~Hz}\) ). The transition duration of F2 is in the region of \(50-100 \mathrm{~ms}\), F1 is the same or shorter.

2103 The subsystem of approximants /l r w J/
The palatal glide combines more readily than any of the other approximants both word initlally and word internally. Taking /l r w j/ as post initlals, the distribution of each can be seen in table 21-02, where * indicates a non occurring form. The most typical environment preceding the approximants consists of the stop consonants. But whlle /J/ has a wider distribution than the other approximants, it is normally restricted to a following /u/. Of my 16 consonants, \(/ r /\) is missing from the list as it is no longer associated with the glide. The final trio of \(/ \mathrm{m} n \mathrm{n}\) / has a special significance. Approximants do not cluster with each other, except for /// and /j/. But glide loss in /I/ is now so widespread as to be virtually non existent, except after tonic stress. It is accompanied by loss in \(/ n / \mathrm{in}\) English urban dialects, and it appears to be making inroads in \(/ \mathrm{m} / \mathrm{in}\) word initial position for some speakers. If the latter presages a continuing phenomenon, then the reduction and possible disappearance of the gllde after /m \(n\) l/ will bring it into line with the other approximants for these three environments.

In addition to the simple consonants, Roach (1983:6:1) and Rockey 1973 give the clusters /sp st sm sk/. This distinction is useful in view of
the categorical subenvironments revealed in the Liverpool tests. Also as my Illustrative word lists in appendices 7311 to 16 show, there are wide variations in the lexical inventories of the preceding environments. The examples exclude proper names (Zwicky), or cross morpheme clusters (earthling) and reductions (ev'ry) where different syllables are involved.
\begin{tabular}{|c|c|c|c|c|}
\hline Table The sub & \[
\begin{array}{r}
21-02 \\
\text { osystem }
\end{array}
\] & roximan & r w J/ & \\
\hline & 1 & \(r\) & w & j \\
\hline p & play & pray & * & puny \\
\hline b & black & bring & * & rebuke \\
\hline \(t\) & * & tray & twin & tune \\
\hline d & * & dray & dwell & due \\
\hline k & clay & cray & quick & cue \\
\hline g & glaze & grey & Gwen & ague \\
\hline \(f\) & flay & fray & * & few \\
\hline \(v\) & * & & * & view \\
\hline \(\theta\) & * & throw & thwart & enthuse \\
\hline s & slay & * & sway & sue \\
\hline 2 & * & * & * & zeugma \\
\hline 5 & * & shrelk & shwa & issue \\
\hline h & * & , & , & huge \\
\hline m & * & * & * & music \\
\hline n & * & * & * & newt \\
\hline 1 & * & * & * & lewd \\
\hline
\end{tabular}

The palatal glide in terms of distinctlve features
However descriptively accurate an artlculatory approach may be, a treatment using distinctive features will more succinctly capture the essence of describing and accounting for the environments favouring gllde loss, coalescence (or indeed appearance), particularly if /j/ can be shown to be [+cor]. We must first establish the place of the glide [j] in terms of the
class features [coronal] and [anterior]. Despite the fact that, as Smith 1989 points out, later phonological theories (such as autosegmental, see Halle, Bresnan \& Mller 1978), have moved away from the classic theory described in Chomsky \& Halle 1968, particularly in the rellance on binary distinctive features, they all need a construct equivalent to the feature [coronall. While it is uncontroverslal that [j] and the other palatals are [-ant], there is some disagreement over thelr relationship to coronall. From an articulatory point of view, the palatals are intermediate between the [+cor] alveolars and palato alveolars, and the [-cor] velars, Jakobson, Fant \& Halle 1951 characterized palatals as [-grave], which Smith 1989 claims corresponds exactly to [+coronall in the Chomsky \& Halle system. But those authors in The sound pattern of English categorized the palatals as [-coronal]. This approach was adopted by others such as Hyman 1975, Ladefoged 1982 and OConnor (1973:206).

2105 The palatal gllde as [tcor]: evidence from Ewe
Evidence for the allocation of [j] to [tcor] may be found in Ewe [eßè], a Kwa language spoken in Ghana, in his classes in phonetics and phonology for the MA course in Applled Lingulstics at UNCW Bangor (860204 \& 11), Dr Frank Gooding set the example of the Ewe liquids as an exercise in deriving the rule governing the distribution of [ 1\(]\) and \([r]\) in terms of classes of phonemes. Ewe allows CLV and CGV as initial syllables. In the former case [l] and [r] are in complementary distribution. To lllustrate the argument some words are taken from Ansre 1961. ©lacritics mark tones.)
\begin{tabular}{|c|c|c|c|}
\hline [blávè & twenty & [sro] & horse \\
\hline [16] & crocodile & [adre] & seven \\
\hline [kplée] & and & [tré] & calabash \\
\hline [fle] & to pick & (dru) & to be bent \\
\hline [ \(¢\) le] & to buy & [dzre] & to quarrel \\
\hline
\end{tabular}
\([r]\) only occurs after [tcoronal] consonants, [1] occurs everywhere else (including word initial). What happens after palatal consonants? Ewe has a pair of palatal consonants: the glide []], and the nasal [א]. These occur clustered.
\begin{tabular}{|c|c|c|c|}
\hline [jre] & evil & [గ̌ra] & to sharpen \\
\hline [jral & to bless & [ nr r ] & \\
\hline
\end{tabular}

If we assume that the distribution of these sounds is determined as simply as possible, and since both palatals pattern with [r], they must be members of the same set as those in the second column of the first batch of examples. That is, the set of coronals. Therefore [tcoronall includes rather than excludes the palatals. Loanwords prove the rule and the Ewe adaptations confirm it.
\begin{tabular}{llllll} 
German & Krug & \(>\) & Ewe & kplu & jug \\
French & Parls & \(>\) & Ewe & kpall & Paris \\
Portuguese & claro & \(>\) & Ewe & klalo & finlshed \\
Danish & trappe & \(>\) & Ewe & atrakpoe & steps
\end{tabular}

Thus Ewe sometimes has \([1]\) where the donor language has \(/ r /\). The distribution of [1] and [r] in Ewe follows the allocation of consonants by distinctive features outlined above.

2106 The palatal gllde as [tcor]: evidence from physical sources
More recent investigations by Recasens 1990 lend support to the allocation of the palatal glide to [tcoronal]. In his survey of the phonetic characterization of the palatal consonants, he used data taken from \(\times\) ray, linguographic, and (electro) palatographic sources. These data led him inter alla to a pair of suggestions relevant to the categorization of the glide.
(1) The production of the palatal consonants may involve a greater degree of articulatory precision than was previously assumed, especially the use of the external tongue muscles.
(2) A finer classification is consequently needed to take this procision into account.

Recasens identifies four classes of palatal consonants, as opposed to the traditional pair of zones. These four are the alveopalatals, and the front, mid and back palatals (or pre, mid and post). Thus the fricative [s] and the
 [h] are mediopalatal. With regard to the glide, linguograms and \(x\) ray data reveal that [j] is mainly articulated with the predorsum and/or the mediodorsum according to whether the constriction ls more or less fronted. Recasens concludes that the glide is mostly pre and medio dorsopalatal.
"Tongue dorsum effects are smaller for \([n]\) in the cluster \([n j]\) than for \([\rho]\), and for [l] in the cluster [lJ] than for [ C\(]\), since a [J] component is avallable in those clusters". (op cit:275)

The implications of /J/ as [tcor]
Allocating \([\mathrm{j}]\) to the feature \([+c o r o n a l]\) facilltates the explanation of glide loss or coalescence. If the glide is likely to be a front as opposed to a back palatal, like the prepalatals ls cl, then it will be allocated to [+cor]. If it is in this sector, then it may provide an articulatory explanation why it does not appear after \(/ \mathbb{C} \mathrm{J}\) है žl (except in careful speech after the continuants), since the transition between them and the glide is so minimal as to be negligible, It also helps to explain why the coronals such as \(/ t d n /\) and especially \(/: r /\) are susceptible to \(g l i d e ~ l o s s ~ o r ~ r e p l a c e m e n t . ~\)

Initially 1 suspected that allophonic variants of the back vowel /u/ may have been allied with certain aspects of glide replacement. As it transpired from the recordings, this idea nearly expired, with the exceptions of the fronted version for some of the broader Scousers, and for post tonic shwa.

Both Gimson (1980:121) and Wells (1982:147) deseribe RP /u/ as a relatively long back close vowel. The raising of the tongue is relaxed from the closest position, and it is rather advanced from the true back. It shares a relationship with \(/ \omega /\) which is similar to that between \(/ / /\) and \(/ / /\). The articulation of \(/ u /\) is tense compared with that of \(/ \omega /\). No firm contact is made between the tongue and the upper molars, and the lips tend to be closely rounded. In terms of the cardinal vowel \#8, the quality is that of a relaxed, lowered and centralized [u]. Gimson has also suggested that the absence in English of any opposition between /u/ and a front close vowel like [y] is an important reason for the relaxation and fronting of this phoneme from a true back position. In addition, as he has pointed out cop cit:122), when \(/ \mathrm{l} /\) is preceded by \(/ \mathrm{J} /\), the palatal nature of the glide normally entails considerable centralization of /u/. Wells (op eit) feels that a back quality is generally more indicative of a conservative type of accent, and fits more exactly with elocutlonary norms of beauty. He states that /u/
"is often somewhat centralized, even to the extent that there is no perceptible difference between the allophone used in the environment /J__/ and the phonemic norm."
(1982:294)
This is corroborated by Bauer 1985. He refers to RP /ul as it is generally described in the 20c, in relation to cardinal vowel \#8, as being lowered by a small amiunt and advanced, with a mich fronter allophone after / / /. Bauer has found that /ul is being fronted in RP to a far greater extent than is
generally mentioned in the llterature. He maintains that there is structural variation within the pronunclation of /u/. The main axis of this variation is front to back. His research indicated a tendency for female speakers to use a fronter /ul than males. But as he admits, this is not necessarily conclusive, since his female informants were generally younger than the males. The decisive factor may be age rather than sex. But in the London region, centralization is a characteristic of the dialect, both popular and modified. Extreme centralization among RP speakers is inhibited to some extent for social reasons.

Gimson (op cit) has noted that a type of \([4]\) is to be heard in many forms of Scottish English as a realization of RP /u/ and /w/. Walls (1982:148) says that many accents have a definitely central rather than back quallty for \(/ 4 /\). For examples, he gives (ln addltion to most English popular urban speech), that of Scotland and Northern Ireland; the southern hemisphere; and the southern United States. Centralization and unrounding is also a feature of more advanced Scouse speakers.

While phonetically [u] is a relatively long close back vocoid, it is often assoclated with some degree of diphthongization. The centring diphthong \(1 w \partial 1\) can be used. Thls has coalesced with 10:/ for some speakers. (See 83034). Gimson (1980:212) says that when / \(\mathrm{J} /\) is the final element of accented clusters, only /u/ or /wa/ may follow, as in pew, cura. In unaccented clusters IJ/ may be followed by \(/ u \omega\) wal as in argue, opulent, tenura. If the vowal is weakened to shwa, there may be a loss of the glide, in environments like /k/ where loss is not the norm.

But consideration of \(/ \mathrm{J} /\) and \(/ \mathrm{u} /\) separately does not reveal the complexity of the comisination.

The conjunction of /J/ and /u/
OConnor (1973: plate 10) has a spectrogram of \([j u]\). But there are differing opinions about the phonetic interpretation of the glide plus vowel, and also some disagreement as to its phonological role in English. These differences may however only be superficial, as the interpretations depend on the point of view of the commentator. From a purely phonetic standpoint, the similarity of syllable initial [j] to the front vowel [i] is obvious from its diachronic development. As indicated in 51212 and 81213 the historical change from [lu] to [ju] representing a change from less vocalle to more consonantal has been largely unidirectional and for this reason, as Ladefoged (1982:78) has admitted
"many books ... treat it as a sequence of a consonant followed by a vowel and symbollze it by [ju]."

But as he additionally states, he prefers to consider it as a diphthong. Thls is for both phonetic and phonological reasons. First of all [ju] differs from with \(|j|\)
all other diphthongs/in that the more prominent part occurs at the end. While the majority are syllabic in the first position with a glide second, /ju/ is distinctive in that it is a rising diphthong. A characteristic of Welsh English is that it treats the glide more as a vowel \([\mathrm{l}]\), and produces a diphthong of the falling type, where the first element is more prominent than the second. Generally speaking as Knowles 1987 has Indicated, in other diphthongs the degree of difference in aperture size between both elements is quite marked. With /J/ and /u/ the aperture sizes are approximately equal. The fact that it is rising makes the evaluation of the presence of the glide more difficult. Secondly Ladefoged considers [ju] to be a diphthong because of the way it satterns in Englis!. If, he says, it is not voralic, then we are forced to admit a large serles of consonantal clusters in Engllsh that can
only occur before a single vowel - that vowel being /u/. "There are no English words beginning with /pje/ or \(/ \mathrm{kja} / \mathrm{l}\) " (loc cit). Thus with regard to the distributional properties of English sounds, Ladefoged finds it simpler to recognize /ju/ as a diphthong. This results in a reduction in the complexity of statements about the English consonantal clusters.

2110 The syllable

The idea of the syllable is very real to native speakers and many non native speakers, even if they cannot explain exhaustively what a syllable is. The idea of the syllable is very real to phoneticians and many lingulsts, even if they have not yet found a satisfactory definitive definition. The idea of the syllable is useful as an explanatory variable for glide use even if it is difficult for a researcher to delimit from recordings their boundaries.

Attempts at the definition of a syllable focus on a pair of approaches - the phonetic and the phonological. For a wider discusion see Crystal 1985, Gimson 1980, OConnor 1973, Roach 1983 and Hyman 1975. The theories based on phonetic information alm at providing a universal definition valid for all languages. A phonetic syllable has three parts: the onset, the nucleus or peak, and the coda. The theories refer to articulatory, auditory, or acoustle features. For the first of these, the psychologist Stetson 1951, cited in OConnor 1973, suggested that each syllable corresponds to an increase in air pressure. Alr is released as a series of chest pulses, most noticeable in emphatic speech. But it proves difficult to detect a pulse in certcin adjacent syllibles, especially when a pair of vowels is involved, as in seeing. So it falls to delineate satisfactorily the
boundary of all adjacent syllables. The approach using auditory features indicates that a peak of sonority corresponds to the centre of a syllable. These peaks are best represented by vowels, with consonants providing the valleys. But as Crystal (1985:298) points out
"This approach gives a useful general guideline, but it does not always indicate clearly where the boundary between adjacent syllables falls."

More success may be obtained by looking at the concept of the syllable from a phonological viewpoint, considering the way in which sounds combine in specific languages. But as 1 found out in listening to the Liverpool survey recordings, expectations can colour objective judgements to the extent that deciding on syllabification for allocating the PC, becomes a circular process. Even when for phonological purposes a binary split is made, it does not facilitate syllable separation. The binary split divides the onset from the peak and coda, yet Hyman claims that

The initial consonant onset is irrelevant in determining the phonological properties of a syllable." (1975:189)

As in the phonetic approach, it is the vowels which largely occur at the centre of a sequence of sounds, with the marginal sounds represented by consonants. But with a proviso. Hyman (loc elt) says that the basic assumption in phonological approaches to the syllable is that there is a close relationship between word structure and syllable structure. As far as possible, whatever sequential constraints operate at the beginning (or end) of a word, must also operate at the beginning (or end) of a syllable, even If this is word internal. This relationship does not always hold. Hyman refers to the three principles of Pulgram 1970 for determining syllable structure, and by extension syllable boundary. Pulgram proposed (1) a principle of maximal open syllabiclty, (2) a principle of minimal coda and maximal onset,
and (3) a principle of the irregular coda. These principles are not independent. If the first is transgressed, recourse is had to the second, and so on.

The first principle inserts a syllable boundary after every vowel or diphthong in a word, thus creating an open syllable. This is simple, providing a lax vowel does not end the syllable. It violates a sequential constraint in English, as lax vowels are not allowed in word final position. To resolve this problem, as many consonants as necessary must be taken from the onset of the next syllable and transferred to the coda of the previous syllable. A similar problem occurs if the syllable cannot be kept open because the consonant(s) which form the onset of the next syllable do not occur in word initial position. To solve this, the same solution as before is used. The first solution is exemplified in the treatment of the word salute By principle (1), it becomes saslute. This violates the lax vowel constraint, so it is modified to salsute. This is where the circularity of argument is found. After discussing wide and narrow vowels, and rejecting the use of the terms lax and tense, Ladefoged 1982 suggests that they be retained to specify phonologically determined vowel sets. "In this way the set of English vowels that can occur in open syllables may be called the tense vowels...". The third principle states that if after transfers there are stlll irregularities on both sides of the juncture, then the burden of Irregularity must be borne by the coda rather than the following onset.

In conclusion, for the sequence under investigation, /ju/ is never split between syllables, but it may or may not have a syllable boundary immediately before it. Some of the words in my reading material, were unfamillar. Their slow and dellberate pronunclation revealed aspects of syllablfication which appeared to condition the use of varlants of the glide.

The term lingulstic variable QV) was introduced by Labov in order to deal with aspects of variation. It refers, as Crystal states,
"to the units in a language which are most subject to social or stylistic varlation, and thus most susceptible to change in the long term".
(1985:324)
The LV differs from older concepts, (which were treated as being qualitatively different), in the emphasis or necessity for quantification of the varlables. The significance of an LV lies not so much in the fact that it exhibits variation, but the frequencles with which the variants occur. Sets of variables are described quantitatively with reference to such factors as social class, age and sex, and the results of the covariation observed may be stated in the form of variable rules. Chambers \& Trudgill (1980:60) see a variable as a linguistic unit with variants involved in covariation with other social andfor lingulstic variables, (my emphasis). This implies that extralinguistic factors are not a necessary feature in the characterization of a linguistic variable. They do go on to say that
"Linguistle variables can often be regarded as socially different but linguistically equivalent ways of doing or saying the same thing."

With reference to free variation, they state that among the achlevements of urban dialectology is the demonstration that "this type of varlation is usually not 'free' at all, but is constrained by social and/or lingulstic factors." (loc cit). Later (op citil47) they claim that the variables studied suggest that
"there is no such thing as free varlation, and that features which vary are conditioned, sometimes by a complex of lingulstic and social factors."

They further maintain that

> "variable constraints partlclpate in datermining lingulstic variabllity, thus refuting the hypothesis that such variablity is 'eree'"
> (op citil44)

From these quotations, constrained equals conditioned equals determined which possibly equals caused These clalms need to be tested experimentally. But a eriticlsm of many of the lingulstic variables which have been tested, is that they were selected partly because they were expected to exhibit bound as opposed to free variation.

Walters (1988:126) is more specific when it comes to criteria for defining a linguistic variable. in a practlcal sense he generallzes the features from areas of varlation which have been studied. In a theoretlcal sense he is too restrictive, since it can be argued that anything which varies is a variable [PJS]. To quallfy as a LV, Walters lists five criteria. Ideally they will be frequent so that a corpus of a sufficlently large size can be established. They will be structural units in the language. Third, their distribution has to be soclally stratified. Fourth, they must be sallent, but not to the extent that they are consclously manipulated by speakers. And finally, they must be quantiflable on a linear scale. These five points will be considered below, both in general and from the speciflc point. of view of the palatal gllde.

Labov had earller (1966:49) identifled some of these criteria, and had also (1972:71), given three steps to be followed in analyzing LVs. First we must enumerate the range of contexts in which the varlable occurs. Then we must distinguish as many phonetic varlants as is reasonably possible. Lastly we must assign each LV a quantitative index. (In the early 70s, most of the emphasis in these studies was on phonetic and phonological investigations.) Yet the criterla do present difficulties.

Since the process of analysis can be very time consuming it is advisable to concentrate on varlables which occur relatively frequently and which in addition are relatively easy to ldentlfy. Hudson (1980a:141) has pointed out that "the frequency requirement tends to rule out the study of Individual words", yet they can be studied in the context of approprlate word classes. For the varlants of the palatal gllde, the confllct between frequency and identification remains. The individual words in the environments where variation occurs are relatively easy to identify, but often they are extremely poor when frequency of occurrence in everyday speech is considered. It was found that rellance on spontaneous natural speech for examples of variable lexical items was unproductive.

Modern linguistic thinking belleves that a shortcoming of traditional dialectology was that it treated linguistic forms in isolation rather than as part of a structure. Phonatic varlation may be better accounted for when it is placed in the context of phonological systems. Atomistic analysis alone is to be avoided. If variation in language must be analyzed, it is praferable to incorporate it by asslgning the varlable to the status of a structural unit. This will put it on a par with phonemes and morphemes (lf inis is considered desirable, and make the LV a signiflcant area of analysls. It is the emphasis on extralinguistic factors which marks a departure from prevlous theory. Chambers \& Trudgill (loc cit) argue that
"Such parameters not only can be incorporated in linguistle theory, but they must be incorporated if the varlable is accepted as a structurtal unit." (Their emphases).

Now a paradox emerges. It emerges, as paradoxes wlll, as a result of
putting theory into practice. The phonological LV is usually distinguished by reference to its phonetic varlants in the context of its varlable constraints, but it is placed in its social context by extralinguistic parameters. It is only in the presence of the latter that the LV becomes meaningful, because It is dependent upon them and correlated with them. However Chambers \& Trudgill admit that in practice the distinction between the lingulstic and nonlinguistic aspects cannot always be made "because the most compelling proof of the structural significance of the lingulstic varlable consists in showing that the varlable alters in an orderly way", (loc cit), when any of the independent social variables change.

\section*{2203}

Soclal stratification
This orderly variation is reflected in social stratification. Features chosen for study as linguistic varlables have been chosen because they were suspected of exhibiting such stratification. But if a LV is defined as having a distinctive profile when measured against social class, then it is no surprise to find that LVs exhibit some social stratification.

2204
Sallence
A linguistle variable has to be recognizably sallent but not excessively so. Sallence is to be distingulshed from frequency, it is a psycholinguistic feature which is of course interpreted sociolinguistically. It refers to the level of awareness or consciousness of the particular variable. Some like (h) or (ng) are prominent in many dialects of English. Others, like the palatal gllde, are at the lower end of the spectrum of awareness. We need to ditingulsh the socio from the psycholinguistic aspects. The main general observation that can be made about the glide in

Liverpool is that the use of the variant [- glide] as opposed to coalescence, In the alveolars /t \(\mathrm{d} n /\) is psycholinguistically most sallent when word initial, and sociolinguistically is assoclated with what are felt to be American forms of speech, or the equally trendy London style. For the PCs mentioned, it is [- glidel which is prominent. For others like /s l/ the prominence is occupled by [+ glide], and may be related to caroful, affected or upper social strata speech.

Psycholinguistic aspects have also been studied by Alnsworth \& Paliwal 1984. They calculated the correlations between the production and perception of the four English glides /w rlj/ testing the hypothesis that a listener refers to his own articulation when perceiving speech. After measuring the F2 and F3 onset frequencies for ten speakers for both production and perception, they found that the correlations for these values were not statistically significant. Even when they employed psychophysical units of frequency such as the mel or the bark, they found no lsomorphism between the production and perception frequencies. Consequently they rejected their hypothesis. This seems to confirm that broadly, the palatal gllde has low psycholinguistic sallence.

\section*{Quantification}

Given the inherently probablilistic nature of LVs, the concomitant problem of how to quantify varlants arlses. In constructing scales to measure variants, there ls a pair of problems referred to (among others) by Romaine 1975. The first is to decide how the scale is to be constructed; the second is to consider what meaning it has. In resolving the first problem, we may distinguish 2 kinds of phonologlcul varlable, discrete and continuous. (See for example Trudgill 1974: 84-85). There are those, usually consonants,
with discrete variants; they often deal with the presence or absence of a feature, and to that extent variants can be quite distinct. Other variables, usually vowels, which may be expressed on a continuous scale, have in theory an infinite number of values. In practice they are reduced to a manageable set of discrete variants based on those which the transcriber thinks he can perceive without difficulty. For the ranking of phonetic variants a pair is selected as maximally different. If there is only a pair of variants this does not cause problems. If there are more, complications can arise. The kind of complication depends on the basis chosen for the ranking. If this basis is phonetic, it remains to be decided whether it will be interpreted phonetically from an articulatory or from an auditory standpoint. These approaches are not necessarily equlvalent, so they will not necessarily produce the same partition of the scale. There is inevitably a degree of subjectivity in recognizing phonetic variants, so that different researchers may well produce different versions of a given text, as noted by Hudson 1980ab. These versions will differ not only in terms of the identification of tokens as instances of particular variants, and the phonetic transcriptions of these tokens, but also in the grouping of varlants for purposes of analysis. An instance of the first problem occurred in the study of the use of the palatal glide by Phillips 1981 ( 94135 ). Examples llke this do ralse the spectre of the problem of rellabllity.

The second point about transcription is not so vital since the ordering of the variants into analyzable groups is more important. This grouping may be decided by information about the lingulstic environments in which the varlable is used, as this may influence the choice of varlant. The allocation of scores to 'he intermediate positions is easy if they are an a linear scale. Each token recorded on the discrete continuum is given a value
on the scale. For the variants in the segmented continuous range, each is allocated a value on the scale according to which of the ldeallized types it most closely resembles. Equal spacing of numerical values need not necessarily imply equality of spacing of varlants along the 'real' phonetic continuum.

Romaine 1975 has also argued for "a more conscious incorporation of social reality into variable scales" (op cit:110). But when the basls of the ranking is social prestige, the same problem occurs. If the most prestigious and least prestigious forms are set at opposite ends of the spectrum, it supposes that a society or communlty (lf these can really be identlfied and delineated) is organized in a single hlerarchy reflected by the variants. This is not always the case. A parallel problem arose with the nongliding variants, coalescence and [- gllde], in this study, it is difficult to cope with a bipolarization of divergencies on a unidirectional scale. The same numerical value represented more than a slingle varlant. This relates to the second problem mentioned earlier: the meaning of the scale. It questions the correspondence between the selected points of phoneticlans and the way in which people translate them into soclal judgements. If varlants are to be correlated with social variables in this order, then this ls putting the cart before the horse; unless of course the soclal varlables are taken to be independent and the variants are to be correlated with them, which is the assumption usually made [PJS].

\section*{2210 \\ Types of linguistic variable}

While criterla for the recornition of linguistic variables have been suggested, these reflected the kinds of features which tended to characterize
the variables studied. Nowhere does Walters indicate the relative importance of the criterla he lists, nor does he even imply an order of relevance. This may not be too critical since the overriding factors to which the others appear subservient, are nonlinguistic or paralinguistic, viz soclal and stylistic correlates. There is a comparative neglect of purely lingulstic covariates. Not all need to be present to the same degree. The fact that some criteria may be more prominent has led to a classification of linguistic varlables.

Chambers \& Trudgill 1980 discuss, largely with reference to the work of Trudgill 1974 and the 16 phonological variables he used in Norwich, three main types of LV. These are differentiated on a non lingulstic basis. Variables such as Norwich (a:), with class stratification only and which are not involved in systematic stylistic varlation, are referred to as indicators. Stylistic variation is related to the formality of the situation, rather than being an inherent feature of people [PJS], but see 65412 for a different interpretation based on the interviews. Trudgill found that there was marked class differentiation. The lower and middle working classes were simllar, whlle the upper working class had an Index whlch was considerably lower than the lower middle class in casual speech. Where both styllstic as well as class, sex and/or age variation are present, the LVs are called markers and may be exempllfled by Norwich (ng). This second type is accompanied by more awareness as far as the general public is concerned. When publle awareness becomes so great that the varlable attains the status of a shibboleth, as with the Brooklyn New York City pronunclation of blrd then it is classed as a stereotype. In British Engllsh (t) and (h) are approaching this stage. Thus part of the differince between indicators, markers and stereotypes lies largely \(\ln\) the degree of awareness they reflect.

A degree of fineness in the middle category of markers is discerned by Chambers \& Trudgill (op cit). Using the distinction that speakers appear to be less aware of the variable that is an indicator than they are of the variable that is a marker, they ask why speakers are more sensitive to the social implications of some variables than of others. Their reply delineates three subgroups of markers. The first is where there is overt stigmatization in the community. In Norwich (h), ( \(t\) ) and (ng) are all the subject of unfavourable comment when nonstandard, as indeed they are elsewhere. A second factor is where a variable is Involved in the process of lingulstic change, inferred from age related differences, such as Norwich (0). Thirdly, a marker may not fulfil elther of the previous requirements.
(yu) as a linguistlc varlable in Norwich
What Wells 1982 has called Generallzed Yod Dropping occurs in a large area of eastern England, both urban and rural. The gilde is typlcally absent not only after alveolars, but also after lablals, velars and \(/ \mathrm{h} / \mathrm{s}\) Gliding is preserved after a zero consonant eg ewe. He suggests that due to pressure from RP, yod dropping is variable, but he does not indicate whether this varlabllity exists in linguistic or non lingulstic aspects. He does attribute an example to working class pronunclation, coinclding with the conclustons of Trudgill.

Most of the results that Trudgill has for his Norwich variables, where class and style are compared, follow a broadly similar pattern. The results for (yu) are noticeably different. Whlle the scores of the word list and the reading passage are simllar for different soclal groupings, (since they include she same items), the scores for the speech ltems - formal and casual - are not. Thls variable has special complicating factors which have
to be taken into consideration. While there is no overt stigmatization of (yu); no age related linguistic change involved in its distribution; and no large phonetic difference between Norwich and RP leading to stylistle variation by the middle classes, (yu) is stlll involved in stylistic differentiation. The reason for this lies in the importance that this variable has for the total phonological system, rather than the merely phonetic nature of the variants. The loss of the glide before /ul encompasses environments following any possible PC. (yu) therefore has varlants which are phonologleal RP
rather than merely phonetic. In standard/English, minimal pairs exist which depend for their contrast upon the presence of [j]. Examples are
\begin{tabular}{rll} 
lute & - & loot \\
feud & - & food \\
cute & - & coot \\
beauty & - & booty \\
dew & - & do \\
mute & - & moot
\end{tabular}

In east Anglia they may be homophonous, but the number of pairs may not be very large and genuine confusion in context is unlikely. Homophony is also extended in the direction of what Wells 1968 categorizes as the CURE words, where the Norwich vowel is the /3:/ of NURSE. Yod dropping makes potential homophones out of pairs such as pure - purr and cure - cur. Trudglll suggests that by virtue of the involvement of (yu) in a phonological contrast, the attention of speakers to the alternation may be more readlly attracted than with variants which are simply phonetic. Because of this surface contrast, the 2 different varlants of (yu) are of more systematic lingulstic signifleance than those varlants which are subject to puraly phonetic variation. This is seen as a fourth factor in the differentiation of variables. (yu) in east Anglla will tend to show the characteristics of markers. Its role in Liverpool needs to be established. ( \(\mathbf{\xi 3 0 2 2}^{(1)}\).

A concomitant objective of this investigation was to identlfy those weak points, phonetic, phonological or lexical, which favour glide loss, as well as tracing possible routes for its diffusion across the lexicon, across phonological environments, and its dispersion across language users. With these objectives in mind, this section looks at some ideas on the causation and diffusion of sound change.

In the 1975 article of Chen \& Wang, their stated objectives using evidence from Chinese, English and Swedish, were to Investigate the twin themes of how a sound change implements itself and why a phonological process assumes a particular form and follows a particular pattern. They concluded that implementation was best accounted for by the notion of lexical diffusion. Actuation was best explalned by proposing that the principal determinants of sound change are to be found in the inherent and universal constraints of the physiological and perceptual apparatus of the language user. Emphasis was on psychomotor aspects, Of the social aspect of transmission from speaker to speaker, little was sald.

\section*{2310}

\section*{Causal factors}

Language change in general and sound change in particular, have been attributed to a comprehensive variety of factors or causes. Rather like the erstwhile claim of the News of the world all of human life is there. Social and physical, physiological and psychological, mental and environmental aspects of the human condition have been used to lllustrate or explain the act of causation. Part of the problem lles in the last concept. It is unlikely
that there is a single causal factor. While it may be possible in some areas of language to pinpoint the cause that trlggers a process, the immediate factor may be less significant than the impetus provided by anterior contributory factors, which are the linguistic circumstances and propensity to change. Causation therefore includes immediate and more dlstant factors: linguistic and extralingulstic. The former embraces those factors which are found in the structure of a language and in the minds of speakers, and for the purposes of sound change, artlculatory and physiological features. Within the latter are those features outside the language system itself, and conveniently collected under the heading soclal. I have shown that the first areas of loss of the glide in the /Cju/ sequence may be attributed to a combination of factors: articulatory and auditory, phonetic and phonological, lexical and social. Some are systemic, inherent and endogenous: others are incidental and exogenous. Influences can be superficlal rather than deep, opaque rather than transparent, diffuse rather than speciflc, and lmmediate rather than long term.

Inherent features
To pursue these deeper, transparent, speciflc and long term causes, we need to look more closely within a language and its speakers. We need to look at the language as a system, and the language users as beings with a capacity for creating what can be described as patterned systems. An aspect of sound change, which unites a language and its users, is that of ease, as may be found in glide loss after the coronals. The anatomical, physiological and psychological aspects of human beings find their expression in what may be universal and possibly inniate phonetic tendencles. A inuch quoted development, because it is so widespread in different languages, is the loss
of word final consonants, particularly the voiceless stops \(/ \mathrm{p} t \mathrm{k} /\). In many Polyneslan languages like Maorl. /k/ is stlll retained, but in Samoan, it was replaced in all positions by a glottal stop. This is now barely noticeable (Marsack 1962). The process of attrition has gone far in some dialects of Chinese. While in archaic Chinese there was a considerable array of syllable final consonants, by AD 500 these were reduced to the nasals \(/ \mathrm{m} \mathrm{n} \mathrm{h} /\) and the unvoiced stops \(/ p \mathrm{tk}\). Since that time, the unvolced stops have disappeared for the majority of speakers. Modern Standard Chinese has lost all trace of the final stops via the stages of non release, becoming a glottal stop, and omission of the glottal stop. But the dialects of the south east of China still preserve the final consonants: in Cantonese they are unreleased. To demonstrate the auditory counterpart of incomplete articulation, Chen \& Wang 1975 tested native speakers of Chinese on their abllity to make an auditory distinction between the members of the subsets of final consonants, stops and nasals. The test was carried out devold of any context which may have helped speakers to identify the ltems. The words were read singly in lists. Out of 1188 nasals, 845 (71\%) were identified correctly. But of the 1188 stops, only 668 (56\%) were correct. This is clearly better than guessing, but It does indicate the level of difficulty in distinguishing between the three stops. In standard Chinese a consequence Capart from possible homophonic clashes) has been the overwhelming presence of the universally preferred syllable structure CV , (which together with V are the only possible syllable types in Samoan). The potential ambigulties of homophony In Chinese have been reduced by the development of polysyllable morpohologlcal constructions of similar semantic content, and the phonemic function of stress, (to distinguish memjers of pairs of polysyllabic constructions identical il segmental structure and tones), comparable in a way to the noun and verb
diatones in English to be considered later. A pair of examples will illustrate the point. (The 4 characters are of course different).
\begin{tabular}{lll} 
jünshl & ['tçȳnşl] & mllitary affairs \\
jünshl & [tçȳn'şl] & balance of power
\end{tabular}

The therapeutic powers of a language and its speakers to redress a potentially confusing situation are epitomized by this process in Chinese. Such developments do not necessarlly immediately lead towards a more strictly patterned system. These are more obvious when the converse process occurs, as below.

2312
Systemic changes
Altchison (1981:144) has stressed that the finlte number of patterns which each language contains, enables humans to cope with their native languages so apparently effortlessly. Assimilation of patterns rather than fragmented pleces of information enables us to communicate effectively. She also dwells on the inbullt self regulating devices which a language utillzes, and which restore broken patterns and prevent too much disintegration which has the effect of hindering communication. A language does not act on its own volition to make these changes. They are achieved by the users of the language, and they are motivated by a possibly innate need to rely on patterns and thereby impose a structure on IInguistlc information. While language users do not necessarily avoid problems by circumventing them in advance, they are able to respond to opportunitles. On the other hand Prins (1974:80) says that unbalanced vowel and consonant systems can last a long time. He further maintains that it is dublous whether phonemic reasons are
the cause of sound changes. While he regards many attempts to assign changes in language to structural causes, as being ingenious and interesting, he claims that structural changes are mostly in the nature of secondary adjustments (1974:7). However some possible examples of this kind of therapeutlc approach involve aspects of the development of the palatal glide, in the context of systemic changes in English phonology.

The tendency towards symmetry in the consonant system of Chinese has been noted. The patterning of the fricatives in English is stlll not yet complete. Before the 18c it was less so. In early ModE there were 8 fricatives.
\begin{tabular}{llllll}
{\([-\) voice] } & \(f\) & \(\theta\) & 5 & s & \(h\) \\
{\([+\) voice] } & \(V\) & 8 & \(z\) &
\end{tabular}

The phonemic status of the volced counterpart of \(/ 5 /\) arose by way of borrowings from French. In addition the natlve combination of [z] \(+[j]\) (not only in the context of the palatal gllde plus back vowel under discussion here), tended in certain circumstances to become \(/ 2 /\). Part of the missing pattern was filled. A reverse process appears to be operative for \(/ \mathrm{h} / \mathrm{In}\) that for some lects it is disappearing.

Another instance involves the subset of approximants. In 82103 it was shown that \(/ \mathrm{m} n \mathrm{n}\) combine only with the glide /J/, and not with the other three approximants. Removal of thls 'anomaly' tidles up the system. It is almost complete for \(/ 1 /\). The process is underway for \(/ \mathrm{N} /\), while there are tentative indications both from the Liverpool recordings and general observation) it may be beginning in a restricted subenvironment of \(/ \mathrm{m} / . A\) further example of systemic gaps concerns the Engllsh nasals. Of the three,
\[
/ m / \text { is }[-\operatorname{cor}][t a n t] \quad / n / \text { is }[+\operatorname{cor}][\tan t] \quad / n / \text { is [-cor][-ant]. }
\]

There is a gap for [+ cor] [- ant]. Articulations batween alveolar \([n]\) and palatal [ K ] are possible. The distinction between palato alveolar and palatal is hard to make (Ladefoged 1971:40), as it is between alveolar and post alveolar articulations. Bearing in mind these difficulties, there appeared to be some evidence of an alveo palatal nasal in the Liverpool recordings. This may represent a movement towards fllling a systemic gap for \([+c o r][-a n t]\), in the way /iz/ filled a gap.

\section*{2320 \\ Lexical and subenvironment diffusion}

Arguments and evidence for a gradual dispersion of a sound change across the lexicon have been presented in Chen \& Wang 1975. They wera trailed in Wang 1969 and Chen 1972. The earllest article suggested that while phonological changes may be phonemically abrupt, the ways they spread (linguistically and/or socially) across the lexicon will be gradual, and not necessarlly complete. A sound change may begin sporadically in the vocabulary. Wang instances the dual pronunclations that are used by the same speaker, giving as an example from Amerlcan Engllsh, (op cit:15), the \(J\) glide which may or may not be used as in [nu / nju]. But intra Individual varlation can only exist if a speaker is aware of the varlants. For /Cju/ vs /Cu/ this is likely. But for the palatalized form the difference is not so obvious in the case of \(/ t \mathrm{~d} /\). He llustrates how the dimension of time may be studled for each of three relatively Independent parameters: phonetlc, lexical and social. The phonetic evidence can be examined to reveal the changes from sound to sound, and environment to environment; the lexical aspect shows how the change travels from morpheme to morpheme for an individual. Finally, the soclal parameter involves the change from speaker to speaker in the same
dialect, as well as variety to varlety, Of these three aspects, it is largely the phonetic and the lexical which they accorded depth of treatment.

Wang 1969 introduced the term lexical diffusion. The basis for this model was stated more explicitly In Chen \& Wang (1975:256).
'a phonological rule gradually extends its scope of operation to a larger and larger portion of the lexicon, untll all relevant items have been transformed by the process.'

While this statement can be interpreted diachronically; at any stage in time the phenomenon appears as synchronic variation. Chen 1972 suggested that a progression in the shape of a cumulative frequency curve (ogive) or 5 curve may describe the ldealized process of diffusion (See figure 23-01).

Fig 23-01
The \(S\) curves for lexical diffusion.



In this model three broad stages may be discerned. The rate of diffusion is relatively slow at first ( \(t_{0}-t_{1}\) ), ideally among the more frequent items. The middle period \(\left(t,-t_{2}\right)\) is characterized by a relatively rapid movement across items of lesser frequency. Finally, the third phase \(\left(t_{2}-t_{y}\right)\) if completed mirrors the first in terms of rate of diffusion, but taking place in the least frequent words. The idealized curve may, in some cases, be composed of a series of overlapping small scale \(S\) curves representing different or successive environments.

With apologies to Jonathan Swift and his fleas (On poetry:337.
So diffusionists observe, a curve hath smaller curves that sometimes swerve and these have smaller curves to smite em and so proceed ad infinitum

These smaller curves can represent what 1 call minl and micro variables and other subenvironments. Examples cited in Chen \& Wang 1975:276 and Chen 1976:215 include the loss in French of final \([-n]\) whlch began in the 10 c with the nasallzation of the preceding vowel. The process started in the low vowels and contlnued upwards, being reflected in words like
an en bon coln bien fin brun
Each vowel had its own 5 curve. A current example of overlapping 5 curves has been found by Chen 1976 to occur in Shualingfeng. With regard to the present investigation, it is important to emphasize that it is not just the diffusion of lexical items which is important. There is also phonetic subenvironment diffusion.

2321 Lexical diffusion in Chinese
Before I look at how Chen \& Wang 1975 present thelr case for lexical diffusion, the reader is reminded of the four tones in Modern

Standard Chinese (MSC or Mandarin), and their representation in the pinyin transcription over the syllabic nucleus.
Tone 1 is level and represented by a level line
Tone 2 is a rising tone represented by a rising line ,
Tone 3 dips and then rises, unless modified to tone 2
Tone 4 is a falling tone shown by a falling line a

Chen \& Wang begin by recognizing that regularity and unlformity do not preclude the existence of 'a few recalcitrant forms', (op cit:256). They examine processes from Chinese dialectology which are adduced as evidence of lexical diffusion. For this they used a computerized data base of about 68000 entries, each representing a lexical item, with its reconstructed phonetic value for Middle Chinese (c600-c1200), and its present pronunciation in 21 dialects. The authors examine tonal development in Chazhou. This. Is part of the Min dialect spoken on the southeast coast of mainland China, in Fújlan (Fuklen) province opposite Talwan, and in northern Guăngdong or Canton province. (See Kratochvll \(1968: 16\) for map). The dlalects of the southeast generally preserve more of the features of Middle Chinese phonology than do the northern dialects of Beljing such as final unreleased [k] In 〈happiness> fuk (MSC fü). In Chaozhou, a blfurcation of each medieval tone occurred, conditioned by the voicing of the initlal consonant, so that there ls now a symmetrical system of 8 tonemes. Chen \& Wang chose Items that orlginally had a third tone in Middle Chinese. For unvoiced initials, 300 out of the 350 recorded ( \(85 \%\) ), are found in the approprlate category in Chbozhou. An apparent discrepancy emerges in tio volcud inltals. Only 107 out of 265 (40\%) fall in the appropriate category. Of the remaining 158, no less than

125 (47\% of the total), have a second tone. This produces an almost even spllt between tones 3 and 2.

Chen \& Wang rejected the idea of the spllt being phonologically conditioned, since most Middle Chinese initials spllt quite evenly between both tones. They reject any extraneous influences such as paradigmatic pressure or interdialectal borrowing. Pressure is rejected since there are no paradigms in Chinese: borrowing is rejected on the grounds that it cannot be phonetically selective. They conclude that the tone change (from third to second), must be a system internal development that has been captured in midstream.
"In other words, the Chbozhou situation represents a gradual advance of sound change on the lexical front, 'frozen' in the act." (1975:259)

No information is given about intervening stages in the development of the split, so we have no detall on how the change progressed.

\section*{2322 Lexical diffusion in English dlatones}

Data more transparently relevant to the ldea of lexical diffusion come from a historical study by Sherman 1973 of the development of disyllabic diatones from early to late Mode. Disyllable diatones are those lexical pairs where stress varles between the first and second syllables depending on whether the item functions as a noun or as a verb, like abstract, accent, addlct. (For many more see Gimson 1980 89.06.)

Sherman consulted some thirty dictionaries and grammars published between 1570 and 1798, and together with a computerized varsion of the Shorter Oxford English Dictionary 1934, he was able to trace and complle the history of the 150 (or \(11 \%\) ) disyllabic dlatones that Engllsh then used out of the 1315 isotonic homographs which existed. Table 23-02 gives specimen
years and shows the initial stages in a gradual diffusion of the stress alternation rule.
\begin{tabular}{|c|c|c|}
\hline Table Increase & \begin{tabular}{l}
02 \\
frequency
\end{tabular} & disyllable diatones \\
\hline Year & Source & Num of dlatones \\
\hline 1570 & Levins & 3 \\
\hline 1582 & Mulcaster & 8 \\
\hline 1660 & & 24 \\
\hline 1700 & & 35 \\
\hline 1800 & & 70 \\
\hline 1934 & SOED & 150 \\
\hline
\end{tabular}

The picture is similar with polysyllabic pairs: 70 out of 442 ( \(16 \%\) ) have converted. Since 1934 .more items have become diatonic. Altchison (1981:96) mentions that address as a noun is now wavering, probably due to American influence; and research is going the way of all stress.

To demonstrate how an equation from the theory of mathematical chaos may be used to measure diffusion across the lexlcon, I have taken the data from Sherman. After converting his number of dlatones achleved, as a percentage of the total possible figure (1315), 1 took 1560 as nominal base year. By using \(F(x)\) which measures rate of change, it was calculated that \(x_{t}=0.2\) corresponds to the year 1916. The difference between this and the nominal base year, \(1560(t=0)\) is 356 years. From this \(t=0.1\) is 178 years, This time scale was used as the basis for converting his other bench mark years into an \(x_{*}\) figure. The technique is not totally objective since it relles on using the final percentage that Sherman established, but in the absence of any other technique, it at least provides a tentative approach. On this dasis the following results were obtained.


Table 23-03
Comparison of Sherman 1973 with theoretical flgures
\begin{tabular}{lllcc} 
& & & & \\
Year & \(x_{t}\) & \(F(x)\) & zy & Sherman \& \\
1560 & 0 & 0 & 0 & 0 \\
1660 & 0.056 & 0.009 & 0.9 & 1.8 \\
1700 & 0.079 & 0.018 & 1.8 & 2.7 \\
1800 & 0.135 & 0.050 & 5.0 & 5.3 \\
1934 & 0.210 & 0.114 & 11.4 & 11.4
\end{tabular}


It can be seen that there is a similarity between the calculated theoretical figures for diffusion across the lexicon (\%y) and the figures that Sherman found. There appears to have been a greater percentage change in the earlier decades (up to 1700) compared with a lesser rate of diffusion after this. The figures for 1934 naturally coincide because of the time scale chosen. The cholce of this time scale -178 years for \(x_{t}=0.1\) imples that \(x_{t}=1.0\) is 1780 years. This is what the theoretical model suggests is the total time for diffusion to be completed. This puts the end of the process somewhere in the 34 th century. While this is consonant with the model, I shall not be vocal in submitting this as a prediction.

Studles in Wang 1977 and B Phillips 1984 show that some sound changes do not operate on the basls of phonatic conditioning alone. With yod loss, how changes are diffused across the lexicon needs further scrutiny, What needs to be discovered is which kinds of lexical items and environments change first. What needs to be investlgated is what determines which lexical Items and phonetic environments change first. A complementary model and explanation is needed for inter personal and inter varletal diffusion (such as the work of Labov), but this is not the focus of the present study,

The Neogrammarian emphasis on the regularity of sound changes was modified to the extent that Schuchardt \((1885=1972: 58)\) had suggested that the reason why some changes affected certaln words before others lay in the idea of frequency of use. His opinion was that rarely used words are slow to change, while the most frequently used words are in the vanguard of change. But in sound change, regularization or analogic change takes place mora readily in less prominent words. Hooper (1976:99-100) has shown that with reference to Irregular past forms of verbs in Engllsh; infrequent verbs are the most likely to shlft to the regular -ed paradigm.
'[of the] six verbs creep, keep, leap, leave, sleep and weep all of which have a past form with a lax vowel (due to the Middle Engllsh laxing ...l, ... three, creep, leap and weep all may have, at least marginally, a past form with a tense vowel, creeped, leaped and weeped The other three verbs are in no way threatened by levelling; past forms *keeped, leaved, *sleeped are clearly out of the question.'

These last three words are much more frequent than creep, leap, weep with an average frequency of 485 as opposed to 37 . Leaving aside for the moment any comment on the rellabllity and valldity of word frequency counts, and accepting as Hooper has done, the relative values of the average frequencies, she has suggested the hypothesis that
'infrequent ltems are the most resistant to phonetically motivated
change, while frequent items are most resistant to conceptually
motivated change.'
(ibid:95)
Hooper takes the position that sound changes are largely phonetically motivated and thus are likely to affect Infrequent items last. However she accepts that if it can be shown that some phonatic changes do affect Infrequent forms before frequent forms, then this may indlcate that phonetic changes can arise from different sources. Thls posslbllity may have arisen with respect to yod loss.

The concept of word frequency as used by Schuchardt, Hooper, and by Chen \& Wang is inevitably macrolinguistic. It relles on a global interpretation. While counts have hitherto relied primarlly on the printed word, later work has recognized the greater reality of the spoken language. But nelther resolve the place of the individual speaker with regard to the global figures. What are frequent overall are not necessarily so for individuals. In addition they may only have access (either actively or passively) to a restricted proportion of the relevant lexical items. If for argument we make a division into common and rare words, (as in Reld 1978, and to a large extent equating the rare group with an educated, scientific, or refined kind of vocabulary), the latter group are not in the everyday conversation of the man in the street. From this, a pair of points of consequence arise.

First, the extent to which many speakers do not use these rare words will affect any statements about the extent of glide loss for a PC, and the extent to which the glide may be sald to be disappearing for a given idiolect, and by extension for a dialect. I shall give a hypothetical example for an individual. Let us suppose that the glide is deemed to be dropped in 24 lexical items out of 180 for the PC in question. The index of glide loss is \(24 / 180=0.15\). Let us say the speaker uses only 50 of these words. Now his idiolectal index is calculated to be \(24 / 50=0.48\). An extension of this argument is that a speaker may drop the glide in a given PC, in all the words he has come into contact with, so that his idiolectal index will appear to be 1.00 , le categorlcal. Yet if the figures are based on the global total of words for this PC, hls percentage flgure can be considerably less. More importantly, he will no longer be regarded as a categorical dropper (which in
practice is what he is). But in theory if we allow for the words which he has not yet encountered, we are unable to state whether he will be 100\% glideless in these.

The issue, which at least needs airing if not resolving, is whether the amount of glide use for an individual speaker is to be measured by the global repertory of items available in the language, or whether it is to be measured in terms of his own personal repertory of vocabulary. On which basis do we calculate the idiolect index for a given PC? intuitively, the range of vocabulary of the individual seems to be a better basis for measurement, in that it better reflects his own usage. This approach does have certain drawbacks. It is admittedly difficult to evaluate the usage of a given speaker in terms of frequency of use. How can we establish the range of vocabulary for a speaker? Even if a flgure is established, it may be unrellable and subjective and subject to extension. Whereas the global total of words for a PC may be more objectively arrived at. But if a speaker is glideless for all of his accessible vocabulary, then surely he must be deemed categorically glideless. The instances of inaccessible (possibly glided) vocabulary are irrelevant. This dilemma is unresolved.
\[
i n t e r l u d e
\]

\section*{CHAPTER 3}


\section*{LIVERPOOL}

AND SCOUSE

Even after Liverpool had been given a royal charter in 1207 it stayed in the background of national economic and polltical development until its expansion in the seventeenth century after the silting of the river Dee precluded the continuation of Chester as a port. Prior to the mid 19c the inhabitants were essentially from south Lancashire. The status quo was turned upside down in the late 1840s with the Influx of impoverished Irish immigrants. Some used the port as a springboard for America; many did not get that far. The Irish were the most numerous contributors to the demographic cocktall which was to produce a mix which assumed a new and distinctive identity. Yet an important component which is sometimes overlooked, was the contribution from north Wales. Many Welsh came to bulld houses for the rapldly increasing population. (Their work has been detalled in J Jones 1947). The number of churches and chapels (both old and new) is a testament to their influence). The clty was involved in the printing and publication of Welsh books as well as newspapers such as Yr Amserau (18431859), \(Y\) Cymro (1890-1906) and \(Y\) Brython (1906-1939). The connections between the city and the principality were so strong that at a public meeting in the 1850s, Liverpool was described as the capital of north Wales. It was the repeated choice as a venue for the natlonal eisteddfod. Both nationalities settled to a large degree in Vauxhall, Scotland and also in Everton. Their arrival coincided with and contributed to the meteoric rise in the activity of the port as an atlantle terminal, and the rapid Increase in its population in the second half of that century. This impact was all the more dramatic in that it occurred not only within a short perlod of time, but also took place within the confines of an extremely limited urban arsa to the immediate north of the city commerclal centre, creating densities of
population previously unparalleled. Even today the land area of Liverpool is among the smallest of the large centres of population. It covers less than 45 square miles (compare Leeds at over 200 square miles, and Bradford at 150), and this is after the massive extension of boundarles at the beginning of the 20 c .

3002 Liverpool city centre north: Vauxhall, Scotland and Everton
Picton 1875 had commented on the separate development of the influx of population.
"It is curious to note the manner in which the different nationalities locate themselves in particular situations. In Liverpool the Irish are principally to be found clustered in Scotland and Vauxhall Wards, where Cathollc churches abound, and the Tlpperary brogue may be heard in all its richness. Everton is the Goshen of the Cambrian race. Its modern development is almost entirely the work of Welsh bullders ... A large part of the population is from the principality. Chapels in which the service is conducted in the Cymric tongue abound. Placards in the Welsh language may be seen on the walls and Welsh newspapers in the shop windows. The sharp click and guttural intonation of the Cambrian dialect may be heard from many a cottage door. ... they are an industrious, steady, sober race, Everton is now princlpally inhabited by the working classes, and it may be said to their honour that there is no part of the town more orderly, more free from beggary and squalld poverty than this district."
(op clt:353)
He also provided a description of Everton in the 1820 s.
"From the umbrageous follage of their gardens and pleasure grounds, noble mansions, in tier above tier, looked out on a lovely landscape. ... Everton was suburb of which Liverpool had every reason to be proud." (op cit:333)

But since the the early 19c the district had changed, "untll the pretty village of half a century ago, has developed into the crowded town with its 100,000 Inhabitants and its 11,000 municipal electors" (loc cit). In a general view of these develpoments Picton later argued in favour of the greatest rappiness of the greatest number.

Figure 30-01
Plan of Liverpool


\begin{abstract}
"the bosky glades, the rural lanes, the pleasant manslons, and the retired gardens of Everton of the past generatlon. They are gone past recall, and the rows of cottages and dreary streets which have taken their place may appear a poor exchange. But there is another side to the picture. Modern Everton has arisen out of the commercial prosperity of Liverpool. ... There is little of squalld poverty in the district, and a very large proportion of homely respectability amongst the artizan class which constitute the principal population."
\end{abstract}
(op cit:387)
He did not speculate on later stages in the hlstory of Everton. The political and rellgious divisions which characterized life in this part of the city have diminished in recent years. ( \(P\) Waller 1981). Typical of former alleglances, the largely Catholic working elass areas of Vauxhall and Scotland returned to Westminster T P OConnor. From 1885 untll his death in 1929, he was the only Irish Nationalist member representing an English constituency. He was returned unopposed for the Scotland division. Everton was (and stlll is) the heart of the Orange Protestant movement. For most of this century in local elections this particular working class vote was predominantly Tory. It is only a few years since the Protestant party ceased to put forward candidates and have members on the city councll. Now Conservatives occupy only 2 out of the 99 seats, both of these in the south eastern suburbs. This is after dominating the city for most of the 20 c.

R Waller 1983 in his almanac of politics, has surveyed all of the parliamentary constituencles. The separate areas in which the different nationalities located themselves in the mid 19c, are now covered by the same constituency, Riverside (after being Scotland, and Exchange). According to R Waller (op cit:120), "it contains some of the poorest and most deprived urban areas in Britaln". He specifies Everton which has the worst unemployment rate in Liverpool, with at least \(40 \%\) of males between 16 and 59 out of work. In terms of housing; owner occupiation ls at \(1 \%\) with councll propertiénaking up \(90 \%\). That was at the beginning of the 80 s . Recent improvements in housing
and the environment may bring hope for some. Famous former resident - Cllla Black.

3003 Liverpool south east: Childwall, Woolton and Allerton
The south eastern suburbs contrast strikingly with the north of the city centre. They were formally incorporated into the city at the turn of the century, Some stlll have expanses of parkland. The domesday village of Woolton (Little and Much), where the upper branch of the suburban school is sited, is centred near the quarry which provided the sandstone for the earlier of the cathedrals referred to in the song at the beginning of the chapter, as well as for many of the large villas in the district. There is more balance soclally and politically. (R Waller op cit:119). The most affluent, the most middle class, the most owner occupled sectors of the city are located here. Famous former resident - John Lennon.

3004

\section*{The schools}

A pair of secondary schools was involved in the survey. Both were linked historically, (Ryan 1948), but conducted since their foundations in 1842 and 1853 as distinctly separate, catering for different types of puplls. The earller was establlshed as a college. The Prefect of Studies appointed in 1866 introduced a spartan disclpline. He belleved that 'no useful purpose was served by postponing all punlshment until the next world'. The church to which it belonged had Gerard Manley Hopkins on the staff in the late 1870s, and Charlie Chaplin attended the college when he was performing in Liverpool. The later foundation acted as the parochial school, numbering among its more recent alunini Elvis Costello and Steve MCManaman (ace Liverpool F: playeri. Both schools were situated in what was then the north eastern fringe of the
city in Everton (as described by Pleton), but the subsequent spread of housing meant that they trecame identifled with the expanded elty centre. At the beginning of the war in 1940, the college was evacuated to north Wales. It later moved, in 1961, to south east Liverpool, to separate sites in Broad Green/Childwall and Woolton (see map). The parish school took over the vacated college bullding, leaving for a whlle a pair of large Georgian houses built in the 1830s, like those referred to by Plcton. I moved at the beginning of 1962 to the school (now designated bllateral and now drawing a third of its puplls from all over the city), and remained there until 1983. In the reorganization of secondary education in Llverpool in the 1980s, both schools reduced their citywide intake of pupils. Those pupils attending from outside the newly created catchment area remained at the school. Those in the sixth forms now represent the last of those puplls. Thls has an important bearing on the interpretation of the survey results. Because of their geographlical locations, both schools provide a marked contrast in terms of surroundings and intake. This is reflected in the range of varieties of language recorded, from near RP to broad Scouse.

3010 Some lingulstic features of the region

It is axiomatic that the Liverpool accent is northern rather than southern in character. But in many respects it is different from other northern urban varieties. Since the population owes much to the celtic fringe, 1 give some indication of glide use in those areas.

For over a mlllenlum, Irish Gaellc has had a systemic phonological distinction between ve:ar(ized) and palatal(i2ed) consonants. The traditional terms used for these are broad and slender consonants. Fallon 1986 covers
the orthographic problems). Wells points out that in parts of the south the slender consonants are merely nonvelarized in quality, rather than being actually palatalized. When these are used as realizations of the English /CJ/ it gives the impression that the glide has been dropped.

Yod coalescence in stressed syllables is common in Dublin, not only in popular accents but also in conservative educated speech. There is homophony with dew \(=\) due \(=\) dew [Ju]. In \(/ \mathrm{n} /\), yod dropping appears common, being frequent in unstressed syllables. It is germane to point out that at least a half of the Irish population in the mid 19c were monoglot Gaelic speakers (Strang 1970).

The sequence /jul is not native to the sound system of Welsh, whereas the diminuendo diphthong /lü/ is. Orthographically this corresponds to the Welsh 〈iw>. As Wells points out, the difference between [ju] and [iu] is minor phonetically, involving mainly a change of the feature [syllabic] from [-+] to \([+-]\). But it has phonological implications for Anglo Welsh.
(a) Sult does not rime with boot
(b) It can lead to the use of prevocalle sandhi forms before words beginning with /iu/, as in an union (ef 19e English).
(c) There are more minimal pairs. Wells (op cit: 386) gives an example from a Bangor correspondent of blue [blu] versus blew [blua]. In Walsh borrowings from English, as in stiwdia and in English words with <u uCe eu ew> such as include, new, there ls thls dlphthong rather than /(J)u/. It occurs even if the English word is rarely pronounced with the glide. On the occasion of the death of Lord Stockton (861229), the newsreader on HTV referred to hlm as a man of [erlu'disen). Readers of the football results on Radio Cymru regularly refer to Lutin as ['liutanl, and Crewe as [kr'lu\}. However the latter is a Welsh word cryw meaning stepping
stones. It now seems that a process of lexical diffusion is taking place whereby /iul is being eliminated from those words where it does not correspond to RP /ju/. This is most noticeable after /r \(/ /\). Rude is changing from /riud/ to /rud/; both flu and flew can be /flu/ rather than /fliu/.

Studies of Liverpool speech

The main modern lingulstic studles of the dialect are those by Knowles 1974, 1977, 1978; de Lyon 1981; Newbrook 1986. There are accounts in Hughes \& Trudgill 1979; and Wells 1982. In addition, some popular guides to Scouse exist. They mostly concentrate on lexical ltems or set phrases with greater or (increasingly) less currency, and are accompanied by a self defining representation of pronunciation. Trudglll 1983 has investigated the use of non prevocalic /r/ and intervocalic /t/ by the Beatles.

3012
Scouse: its origins historical and extent geographical
Prior to the mid 19c, the population of Liverpool was largely autochthonous, so the speech was essentlally a south Lancashire dialect. See Heywood 1861, Picton 1865 and Lawton 1953. As an urban working class dialect, Scouse is relatively recent in origin, following the massive incursions of Irlsh, Welsh and Scots into the clty. The influences are malnly celtic. Knowles 1978 has recognized the importance of the Anglo irish influence as "the 'Scouse element' which so sharply marks Liverpool speech from the rest of the Northwest." (op clt:80). There is no justification for Molin (1984:163) describing Scouse as a

\footnotetext{
"Liverpool Cockney ... that ... has Inflltrated "proper" British speech. This "Liverrool" form is the result of Cockney workers migrating from Londot, to Liverpool and taking their speech patterns with them."
}

The speech has nothing to do with Cockney workers migrating from London to Liverpool, whether they took their speech patterns with them or not. This impression may result from the attempts of some performers on radio, television or the theatre, to reproduce a Scouse style. The only similarity to Cockney is sociolinguistic. Both are generally restricted to that part of the population deseribed as working class. Trudgill (1990:126) has suggested "Just imagine if Liverpudlians sounded exactly like Cockneys!" 1 refrain from comment.

In geographical distribution, the accent is characteristic of the urban parts of the metropolitan area on both sides of the rlver Mersey. Llke the precise older definition of a Cockney being born within the sound of the correct Bow Bells), Dicky Sam or Mary Ellen (the terms in general use up to the inter war period for a true Scouser) had to be born in the district adjacent to the Pier Head on the waterfront. In the aftermath of the 1940s war, and the subsequent dispersion of population, Scouse became more widespread and modified. The sharp dividing line that used to exist ls now more amorphous, and has radlated further from the city. 20 miles and more from the city centre, in places previously considered as peripheral bastions of an uncontaminated way of llife and speech, the Liverpool accent can now be heard, coexisting and competing. The influence of Liverpool speech has spread beyond the mainland. G111 (1934:3-4) noted that Manx English was beginning to show Liverpool or south west Lancashire Influence in the Douglas area. Barry (1984:168) confirms this both geographlcally across the island and among the younger generation. Yet living in West Derby, almost the geographical centre of Liverpool qua city, I have only to go a few miles to the east (to the former medieval village of Prescot) to find remnants of a south Lancashire accent.

Like all dialects, different varieties of Scouse can be identified, from mild to impenetrable. The explosion of Liverpool accents on radio and television over recent years may have resulted in a greater awareness in the mind of the general public of the variety and range. Even from the 1940s, radio shows such as ITMA with Tommy Handley and Derak Guyler, and Arthur Askey, via the repercussions of the Beatles and other groups, to television programmes such as \(Z\) Cars, The Liver Birds, Watching, Bread, The Wackers, Brookside, The Brothers McGregor, Boys from the blackstuff, Waterfront Beat; all have contributed to place variaties of the accent firmly in public prominence. Together with films and plays llke Letter to Brezhnev, Shirley Valentine, Educating Rita, they serve to lllustrate the wide range of varieties of spoken Scouse, including the distinctive intonation system. However the characteristics of a marked Scouse speaker involve more than auditory perceptions. Knowles 1974, 1978, has also drawn attention to the articulatory setting which is characterlstic of advanced speakers. This may be accompanied by a hint of apparent aggressiveness.

Not all people in Liverpool use Scouse. In particular those either aspiring to or claiming to be members of a middle class, may attempt to eradicate any influences or suggestions of a Scouse background, especially if Zhey are female. Altchison (1981:82) has Identified Edna and Eric after their move to the south. Some people even used to disdain the descriptive Liverpualian in their eyes (and ears) they were Liverpolltans. The gamut from extreme (and well tempered) Scouse to varleties of RP was recorded in this investigation.

What Liverpool shares with the north, is the occurrence of /a/ in many words where standard English has /a:/, such as dance, daft, but surely not hat as Hughes \& Trudgill (1979:61) state. Where /a:/ does occur in Liverpool speech in general, it tends to be replaced by advanced Scouse speakers with [e::] as in garden, [gik:dn], the Wells START group. Centralization is a typical feature of Scouse vowels. Frequently in the city centre recordings, this occurred with /u/. This is accompanied by neutral lips, observing a surface phonetic constraint that when back vowels are fronted, they become unrounded. With regard to the central vowels, the shibboleth which epitomizes Scouse for most people in other parts of the kingdom, is the lack of contrast between words like fair, fare (RP /fea/) and flr (RP /f3://). Typical realizations are [ع:], or more centrally [ह:], but other forms including [3:] are heard. PJS instances the reversal in her halr, which can be [ع: 3:].

Wells (1982:372) has appositely noted the apparently incongruous use of [ \(\mathrm{Z} \omega \mathrm{\omega}\) ] in the name of the district Old Swan (see map), not necessarily identifled with female speech. Another feature which occurred largely in the city centre school, is the fronting of word final shwa to \([\varepsilon]\), as \(\ln\) jaguar. This appears to have been noted only in Knowles 1978.

Compared with RP, there is no mid central vowel \(/ A /\), and so no distinction between put and putt. Both are /put/. RP /w/ ls replaced by /u/ in 〈00〉 words like look. While words like look and luck are differentiated by \(/ \omega /\) versus \(/ \mathrm{A} /\), in Liverpool the distinction is by \(/ \mathrm{L} /\) and \(/ \mathrm{w} /\).

Fig 30-02
Liverpool variant of RP / \(\varepsilon\) ノ/ (after OConnor 1973:171)


Scouse consonants
Hughes \& Trudgill 1979 have llsted some of the maln features of the Llverpool consonants. Most of these occurred in the recordings made in both schools. The unvolced stops \(/ \mathrm{p} t \mathrm{k} /\) are heavily aspirated especially when word initial. When final, they may be realized as the fricatives \(\left[\begin{array}{l}0 \\ 8\end{array} x\right.\) ]. In the case of /t/ the tongue leaves the alveolar ridge slowly, resulting in an [s] before the following vowel begins. Prevocalic /t/ in ten becomes [teen], except in the cluster /st/.

Conpared with other British dialects, glottal stops are relatively infrequent. Intervocalic /t/ may be produced as a tap [f], particularly if the
first vowel is short. Hughes \& Trudgill comment that this may be restricted to specific lexical items, such as matter. But the tap is also prominent word finally, especially when /t/ ls followed by a vowel, as in get out, but he, about it, what are Aspects which are traceable to Irish phonology in which /d/ is more likely to be dental than alveolar, are found in the use of [d] for \(/ 8 /\), so that a cause and consequence of heavy ['bridn] may be a large family. Word final [日] may become [t]; mouth is [maut].

In common with many other varieties of English, the present participle suffix -ing ls likely to be [in] when speech is unmonltored. This is not the case in careful and considered speech, where it is more likely to be [ing]. In nothing, something, it is pronounced [ink]. Unlike RP, there is no distinction between singer and finger: they both have (ingl.

Word initial \(/ \mathrm{h} /\) is normally omitted in all Scouse varieties and social situations, with the possible exceptions of job or lingulstic interviews and court appearances, where it may also be accompanied by hypercorrection and a modification of some attitudinal paralingulstic features.

3020 The nature of phonological variables in Scouse

Despite the range of criteria that have been mooted for their identification, LVs have been primarlly defined on the basis of their social significance (see 62200). Knowles 1977, 1978 has argued that Scouse variables are different from the traditional sociolingulstic varlables. The varlants do not necessarlly lle on a linear scale. An example is his variable (a:) which has variants [a] end [a:], with an ad hoc compromise [A] in between. He claims that if [ex] is used, it must be ordered phonetically
before [a], consequently lowering scores. But this varlant, if used, is used by middle class speakers. As such they are not included in speakers of Scouse (or in such variables). At times, several scales may be involved. Some are complexes of component varlables, each with its own set of varlants. This view is confirmed by the conclusions of the present study of /Cju/. The fallure to incorporate all the components of this phonetic diversity, has led to the selection of the specific feature which best confirms the hypothesis. As examples he cites the Labov (eh) (1966:51-53) and the Trudgill (a) (1974:85-86), where the feature chosen, conveniently puts the varlants in the required social order.

A consequence of the incorporation of the phonetic diversity represents a change in the scope of the analysis. There is no longer a manageable small number of easily quantifiable varlants, but a larger number of subvariables and varlants which may be difficult to quantlfy. The rationale underlying this conclusion is that speech is not to be interpreted simply as being composed phonetlcally of strings of segments. Since segments are realized as carefully coordinated and overlapping movements of the vocal organs, it is more realistic to trace variables (and consequently varlants) to their source in speech production. Order has to be imposed. The naxt section shows how.

3021 The varlables (ua) and (o2)
Knowles discusses a pair of variables (ua) and (03), whlch have some relevance to glide production. In many varleties of urban speech the phonemic merger of \(102 /\) and \(12: /\) is being closely followed by the merger of /ual and 10:/. A tentative time scale ho: been suggested, with three groups divided
with reference to the wars. All instances of sure are coalesced rather than being glided.


Table 30-03
Age grading in pronunciations of /uz/ and /2:/
\begin{tabular}{|c|c|c|c|}
\hline & before 1918 & 1919-1938 & since 1938 \\
\hline sure & sue & Suz & ¢\% \\
\hline shore & Š0 & ธ3: & ถั: \\
\hline Shaw & ¢5: & ถ้ว: & ¢ว: \\
\hline
\end{tabular}

These variables may be considered together or separately. If they are taken together, the following quantltative scale is posslble:
\((u-1):[u 2]\)
\((u-2):[02]\)
\((u-3):[0:]\)

If they are presented separately:
\[
\begin{array}{llll}
(u-1) & :[u a] & (0-1):[00] \\
(u-2):[0:] & (0-2):[0:]
\end{array}
\]


\footnotetext{

}

Whichever scheme is chosen, what compllcates the issue is that the centring diphthongs are not single phonetic forms, but are complex varlables reallzed by sets of phonetic varlants. After choosing whether to carry out the merger or not, (or even to find a compromise vowel), the speaker in theory has the choice of several ordered but optional low level rules, which operate not just for these vowels, but more generally in Scouse phonology. Knowles argues that it is pointless attempting to plot this plethora of marginally differing forms on a linear scale. However a tentative way out may lie in plotting the four rules as such, on a scale and quantifying accordingly. We have a simpler situation for the LV (uz):
\begin{tabular}{ll}
\((u-1)\) & : [uə] \\
\((u-2)\) & : laxed \([\omega]\) \\
\((u-3)\) & : diphthongize or front \\
\((u-4)\) & : vGV \\
\((u-5)\) & final [ \(\varepsilon]\)
\end{tabular}

This is not a perfect solution, since if rule \(2 b\) operates, rule 3 cannot. Rule 4 does not necessarily operate on every variant, as [we] indlcates. Only tha first rule carries any prestige. The others operate mainly in working class speech. Thus a combination of laxed [w] with a fronted shwa, while possible is very unlikely. It is difficult to imagine a middle class speaker fronting final shwa to \([\varepsilon]\), since this is characterlstic of the extremest forms of Scouse typlcally associated with lower class speakers. The middle classes do not use Scouse as a means of communication, so the problems do not arise.

Implicatlons for the analysls of gilde varlants
Knowles interpreted his varlables with respect to class. Thls was not a prime concern in this enquiry. But simllar issues were found. How scoring for coalescence was tackled, is glven in 84341. The issue of subvarlables and varlants was treated by the use of minl and micro
variables. Because the probabilistic PCs in Liverpool represent only a subset of the possitle universe, it was found useful adapt a distinction from Thelander 1982, and incorporate the idea of a micro varlable as a lower unit of variation. For Trudgill (yu) was capable of a macroscople treatment since most of the PCs in all places of articulation were susceptible to varying degrees of glide loss. He was able to set up a pair of variants.
\[
\begin{aligned}
& \left.(y u)-1=\begin{array}{l}
{[j u\}} \\
(y u)-2=
\end{array}\right] \quad[u]
\end{aligned}
\]

In this investigation it was found that only half a dozen PCs out of the 17 showed any large scale varlabllity. The six were consequently designated mini variables, and symbolized not by (round) but by (curly) brackets; thus \{Cyu). Whlle the plain consonants /n l/ can be accommodated by a binary split, the coalescents need three, and of these, the continuants have access to all four variants.
\begin{tabular}{lll} 
(syu) \(-1=\) & [sju] \\
(syu) \(-2=\) & [sju] \\
(syu) \(-3=\) & [su] \\
(syu) \(-4=\) & [su]
\end{tabular}

While all variants were in theory avallable, not all necessarlly apply to each lexical item. The stops /t \(\mathrm{d} /\) were restricted, \(99 \%\) of the time, to a pair: [Cju] and [Ču]. An important aspect was the existence of subenvironments, some of which were categorical in their occurrence of a variant. Other subenvironments may be construed as micro varlables. How these are treated will be seen in the analysis, in chapter five, of the Liverpool tests.
```

CHAPTER 4

```

METHODOLOGY:

PREPARATIONS

PROPOSALS

PROCEDURES

AND PROBLEMS
```

4000 Approaches to the empirical enquiry

```

Chapter four deals with the preparations for the empirical Investigation. This involved the collation of explanation on the production of variants. it was partly based on intuition and observation, but mostly on pronouncing dictionaries and references in the literature. In addition, theoretical frameworks of 2 kinds were investigated. The first is the Chomsky \& Halle 1968 rule system; the second is the impllcational hierarchy of PCs of Balley 1977. The empirical surveys of subsets of the 17 PCs are considered. They comprise the American studies by Phlllips 1981 and Pitts 1986 on the alveolars /t \(\mathrm{d} \mathrm{n} /\); the Australian Investigation by Horvath 1985 on the coalescents \(/ t \quad d s \mathrm{z} /\); and the Norwlch survey by Trudglll 1974. These sources covered the lingulstic features which operate on the selection of varlants. The parameters are examined as possible explanatory varlables. After this, the proposals for the testing are put forward, together with the scoring system for effecting comparlsons. In this way the chapter looks forward to the obtained results.

\begin{abstract}
Previous research into the distribution and use of the glide and lts variants are examined. I begin with the distribution of variants in RP (since this provides a framework and benchmark) and in the USA (since this provides a background to the American studies).
\end{abstract}

4101 Received pronunciation and the distribution of varlants
The supplements to the Oxford English Dictionary Burchfield 19721986), as well as the second edition, define the Received Standard as the educated speech of southern England. The superiority of this variety is further illustrated in its guide to pronunciation, where after exemplifying the usual consonants of English, the less standard sounds are discussed but not quite dismissed under the heading Foreign and non southern it is subject to variation and change according to the level of formallty, age, sex, and the social attitude of its speakers. (Leith 1983). It has been estimated that only about 3\% of the English speaking population uses RP (Hughes \& Trudglll 1979:3). Recently the distinctions within RP have been described by Gimson 1980 and Wells 1982, among others. Bauer 1985 wonders if RP is becoming demoticized. He suggests (op cit:76) that these changes are accelerated, if not actually initlated, by the broader base that RP is acquiring within certain parts of the community. This was evident in some participants in the upper suburban school. Nowhere do Wells, Bauer (or Gimson) refer to the palatal glide as a differentiating feature. Thus we can speak of RP generally, Using as sources, Barber 1964; Wijk 1966; Jones 1945 1956; Rockey 1973; Fuach (1983:60); Gimson 1960; Trudgill \& Hannah 1985; and pronouncing dictionaries like Jones \& Gimson 1977 with the addition of Chambers (Geddie
1959), the following distribution based on unclustered preceding consonants is likely in all varietles of RP. The division is into four groups with either categorical or non categorical glide use.

G1 The glide is always produced after
\begin{tabular}{ll} 
the labials /p bf \(\mathrm{Vm/}\) & pupll, beauty, feudal, view, mute \\
the alveolar /n/ & news \\
the velars \(/ \mathrm{k} \mathrm{g/}\) & cute, ague \\
the fricative \(/ \mathrm{h} /\) & huge \\
and when word initial & european
\end{tabular}

G2 The glide is effectively absent after
the approximant /r/ rule

G3 There exists a pair of variable non coalescing consonants.
\begin{tabular}{ll} 
the inter dental /日/ & thews \\
the lateral /// & lurld
\end{tabular}

64 The group of consonants \(/ t \mathrm{~d} \varepsilon \mathrm{z} /\) has three variants. (The glide is not customarily produced where coalescence already occurs, except rarely in /s 2/.)
\(1 s\) z c J/ suit, resume, nature, verdure

I have represented the set of 17 PCs in a venn dlagram. Three subsets reflect the basic variants.



Diagram 41-01
Distribution of PCs in RP across the three basic variants


Diagram 41-01 isolates the eleven PCs which are categorlcal from those which have a range of varlants. The latter are in the intersections of the subsets. In \(A \cap B, / \theta /\) and \(/ / /\) have both glided and unglided forms; the fricatives \(/ 5\) 21 , being in \(A \cap B \cap C\) have access to all three. The diagram does not show the rare combined variant, nor clusters.

It can be seen that the variation occurs in 6 maln PCs. Fowler 1965 and Jones 1956 offer some useful guldelines for thls varlation, based on the allocation of stress. Jones has analyzed the effects, which 1 have arranged
into a tripartite scheme (Ji-J2 \(\beta\) below) which covers three consonants, Il s 2/, contrasting glide presence with absence. Coalescence was not specifled. in the rules stress for the relevant syllable is in square brackets.

Jl [+ stress] \(\quad \rightarrow \quad[\propto\) glide]
If \(/ \mathrm{L} /\) is stressed, the glide is variable but largely absent in \(/ 1 /\). The position of the stressed syllable in the word does not appear to have an effect.
\begin{tabular}{lll} 
(a) & syllable 1 stress & \\
(1a) & 'lurid & \\
(1b) & 'pseudo & 'lubricate \\
(1c) & 'zeugma & 'suzerain \\
( \()\) & syllable 2 stress & \\
(1d) & vo'luminous & \\
(1e) & en'sue & al'luvial \\
(1f) & re'sume & flex'ura \\
(y) & syllable 3, 4 stress & cae'sura \\
(1g) & anaco'luthon &
\end{tabular}

When the consonants are immediately preceded by a stressed syllable, the glide is general. This occurs when the stressed vowel is word initial, or is Internal as the result of affixation. The reference to shared morphemes needs to be empirically investigated, as well as the scope for coalescence after /s \(z /\) in \(2 b\) and \(2 c\).
\begin{tabular}{cccl}
\(\mathrm{J} 2 \alpha\) & (+ str)[-stress] & \(\rightarrow\) & {\([+\) glide] } \\
& 'volume & & \\
(2a) & 'capsule & & indis'soluble \\
(2b) & 'visual & & com'mensurate
\end{tabular}

If /u/ is followed, (not necessarily immediately), by a stressed syllable, the glide is variable.
\begin{tabular}{llll} 
J2 \(\beta\) & [- stress] (+ str) & \(\rightarrow\) & [~ glide] \\
(2d) & \begin{tabular}{l} 
lubricication \\
su'preme
\end{tabular} & & \\
(2e) & & mensur'ation
\end{tabular}

What remains to be explained is category \(J 2 \beta\) (and \(J I\) ) where the glide is variable. In \(J 2 \beta\) the variability in the examples given in (2d), may be explained by reference to the gllding status of the root words. But combining /// with /s \(2 /\) in a single treatment causes problems. The incidence of coalescence for \(/ \mathrm{s} \mathrm{z} /\) in \(\mathrm{J} 2 \alpha\) needs to be incorporated. Where variation still persists, other factors linguistic and nonlingulstic are involved.

Because of the glide erosion within /// (in RP) since Jones 1956, 1 shall restrict my comments to the alveolar fricatives \(/ \mathrm{s} 2 /\). My own analysis of \(/ \mathrm{s} \mathrm{z} /\) is more detalled. While related to stress, it also incorporates the Influence of morpheme addition alluded to above, as well as distinguishing between initial (I) and medial (M) positions. Within the latter, morpheme (m) and non morpheme ( \(n\) ) based items are separated. Finally stress is used to distinguish subsets.

1
In word initial position, the cholee of varlant is basically l+glide] or [-glide], with an increasing use of [- gllde]. Thus
superior
zeugma
suitable zeuxis
The coalesced form is generally preferred in sugar, sure in its entry for the former, the \(O E D\), while admltting that the phonological history of its forms is in several points obscure, does attest the varlabillty in the quallty of the first vowel. It is suggested that the development with [s] makes it probable that long /u:/ prevalled (as with sure), and that shortening took place afterwards.

M Medial syllables divide into morpheme and non morpheme based.
Mm The initial phoneme of a suffix regulates the rarige of varlants.
Both -sume and -sue for example can take the 3 main varlants \(\left[\begin{array}{ll}6 & 5] \\ s\end{array}\right]\). If
the prefix does not end in \(/ \mathrm{s} / \mathrm{l}\) (as in ent'sue), \([t\) glide] and [- glide] are used. But if it does end with /s/, (as in istsue), [- glide] is not an option. It is possible that these varlants may be reinforced by stress, as will be seen in Mn below. Words formed with the suffix -ure (where the ralevant vowel is morpheme initial), are restricted to the coalesced or glided forms.
\begin{tabular}{ll} 
presst & eraset \\
tonset & selzet
\end{tabular}

In items like mensuration the coalesced form ls rarer, probably due to the influence of \([-\xi-]\) in the final suffix \(-t\) lon

Mn If a morpheme addition is not involved, the choice of variants is alled to stress. If the relevant syllable is unstressed (and following tonic stress) [s sj; \(z z j]\) are used, with the possibllity of the combined form [sj].
\begin{tabular}{ll} 
peninsula & usury \\
sensuous & casulst
\end{tabular}

If the relevant vowel is stressed, a distinction between the volced and unvoiced alveolar fricatives occurs.
\(/ s /\) tends to use [tglide] and [-glide]
pharmaceutical
marsuplal
/2/ accesses (ln RP) both the above forms, as wall as (k).
exuberant
luxurlous
This analysis effectively describes the range of varlants for each subenvironment using Ilngulstic variables, but it does not set out to resolve which variant (s) an individual speaker will use. This Involves the idiolectal dimension. The results of my empiricial testing for \(/ \mathrm{s} z /\) are given \(\ln 135203\) and \(\$ 5204\).

Much of the theoretical and empirical work on the /Cju/ sequence has been based on eastern varieties of American English. These also provide a large scale lllustration of what Wells (1982:247) called Later Yod Dropping (LYD). The general opinion of historians is that the language spoken in those states resulting from the original settlements, took many of its characteristics from the speech of the south eastern countles of England. It has been calculated that of the early settlers in New England, s came from East Anglia and London, with \(1 / 6\) from the south west Devon, Dorset, Somerset). The East Anglian preponderance may contribute towards the greater loss of the glide than is current in Britain.

In the 18 c Webster had a conslderable regard for the New England pronunciation of his day. American speech was largely Influenced by his Spelling book which, from its first publication in 1783 to the beginning of the 20c, was the most circulated book in the country. (Mencken 1963:402).
"It had no traffic with slurring, but insisted that all words be pronounced as Jahveh had spelled them out to Adam and Eve in the Garden of Eden, or to the sons of Noah after the Flood."

Webster dismissed /j/ before /u/ as a pecullarity of Virginla speech, and hence barbaric. His 1828 Dictionary ordained the omission of the glide in words like figure, value, volume, mute, literature Gesture and jester were homophones. Pyles 1971 confirms that Webster preferred plain [t] in fortune, virtue, and was opposed to coalesced [č], but he did recognize that in the north it was customary to have a glide in the suffix -ture which was an unusual development. But his influence did not last. Glideless pronunclations were considered rustic and old fashioned by his more alegant contemporarles. After his death in 1843, succeeding editions reintroduced the glide. The westward spread of occupation across the continent means that the 20 c
dialectal distribution of the glide may be considered in very broad terms using the tripartite division of American speech by Krapp 1925. In the east plain [u] is preponderant, but not unlform. The south has predominantly [ju]. In western American, both coexist. In general the glide tends to be absent after all coronal consonants, but it remains after lablals and velars. Wells has specified the environments in which Later Yod Dropping has eliminated /j/ from the historical /ju/. The glide does not appear after \(/ t \mathrm{~d} \boldsymbol{n} \boldsymbol{\theta} \leq \mathrm{l} / \mathrm{in}\) strong syllables. These are elther stressed syllables or those where there ls no possibility of vowel reduction. In the case of weak syllables, general American shows a marked tendency towards Yod Coalescence. This has happened with \(/ t \mathrm{~d} s \mathrm{z} /\). Wells suggests that something similar may take place with /nj/ and /Ij/ (op cit:248).

Narrowing down the coverage to New England and the middle Atlantic states, Kurath \& McDavid 1961 identlfied three kinds of pronunciation.
(1) The diphthong /lu/ with decreasing stress, was confined to the New England settlement area. It was most common in rural northern New England and upstate New York, with extensions in Pennsylvania, western Massachusetts and Connecticut. It was rare in southeastern New England. In urban areas and among better educated speakers, it was largely avoided. Any change depended on the previous consonant - lablals and velars producing a different effect from alveolars. Kurath \& McDavid drew attention to the lexical diffusion of changes in the alveolar environments.
"the pronunclation /miuzik/ is being replaced by /mjuzik/, and /diuz,
tiuzde, niu/ are glving way to /duz, tuzde, nu/ or, less commonly, to
/djuz, tjuzde, nju/. The pace of the replacement varles from word to
word".
(op cit:113)
The movement from diphthong to unglided variant without an intermediate
glided form is interesting. Was this the original development In East Anglla, with echoes of morphic resonance as propounded by the New Zealand biologist Sheldrake?
(2) The varlant without the glide was current in the north and middle of the area. It is universal after alveolars in Pennsylvania, New Jersey and metropolitan New York; in New England it is predominant. A transitional band across West Virginia, Maryland and Delaware existed where both varlants are used. There is no reference to coalescence.
(3) In the Atlantic states the glide is found in the more southern area. There is a sporadic [lu] phone, which Kurath \& McDavid consider may be a prosodic varlant of /ju/. Among less cultured speakers, the sequences /dju tju/ are partly replaced by the coalesced forms /Ju cul. Thls is attributed to the English folk speech of the western counties (op cit:174). Pronunclation with the glide is infrequent in the northern parts, but is sometimes the preferred form among more educated speakers. It is this region which has been subject to more recent empirical Investigation

Chomsky \& Halle (1968:230-232) develop three rules for their own variety of AmE, to generate the surface forms for the range of consonants. They stated in their preface (op cit: vil) that what they were presenting was not "a definitive and exhaustive study". It was "an interim report" issued in the hope of stimulating criticism. Further on they specifically mention that
"The dialect of English that we study ls essentlally that described by Kenyon and Knott (1944). ... Their transcriptions are very close to our own speech." (op cit:lx)

Despite basing their conclusions on their own dalect, they claim that
"It seems to us that the rules we propose carry over, without major modification, to many other dialects of English." (ibla) I shall retain both their rule numbering, (preflxing them with CH ), and their phonetic notation.

4111 The rule for glide insertion
Chomsky \& Halle (op cit:194) had noted differences in the effects of the stem forming augments \([+1]\) and \([+u]\). When the former is unstressed the vowel is tensed and appears as phonetic [tyd, as in proverblal. If the vowe! appears in a stressed position, it is tensed and it then undergoes vowel shift to appear as phonetic [ay] eg sobriety. However [tu] does not behave like its front counterpart. Whether stressed or unstressed, it appears as [yüw], as in ambiguous and ambigulty. So there are 2 differences between [+l] and [tu]. The back vowel
(a) has an initial glide
(b) does not undergo vowel shift.

They suggest there must be a segmental feature which is automatically
assigned to stem forming \([t u]\) which exempts it from vowel shift. They propose the addition of a rule (CH50) to the grammar, which inserts the [y] glide of [yäw].
(CH50)


They posit \(\psi\) as the feature [round) which distingulshes those vowels before which the glide is inserted, from those before which it is not. So they begin their system of rules with the proposition that the gllde [y] is inserted before the back vowel. They maintain there was strong motivation for regarding [yūw] as phonologically unitary. If [y] was not introduced by some phonological rule, then the underlying representation of words like cube must be of the form CGVC, leading to the withdrawal of otherwise valid generalizations regarding CGV sequences. This implles that the gilde is not In the underlying representation. Having established the insertion, they enunclate a triad of optional gilde deletion rules (CH121-123) in different phonetic environments determined by the preceding consonant, which operate in their kind of American English, while making reference to other dialects.

4112 The three rules for gllde deletion
A common rule \(\ln\) American Engllish is that a gllde after an alveolar obstruent may produce alternations (Hyman 1975:13), as in
\begin{tabular}{|c|c|c|}
\hline we miss you & \(\rightarrow\) & [w| mis (j)u〕 \\
\hline we please you & \(\rightarrow\) & [wl pliz (j)u] \\
\hline we bet you & \(\rightarrow\) & [wl bex (j)u] \\
\hline we fed you & \(\rightarrow\) & [w1 fej(j)u] \\
\hline
\end{tabular}

The change is affected by stress, as it does not as readlly take place if the following syllable is stressed. This (optlonal) rule may be expressad by
alveolar
C \(\rightarrow \quad \underset{\mathrm{C}}{ } \quad \rightarrow \quad\) alveopalatal /J

To capture the phonetic motivation the rule can be reformulated
\(\underset{C}{\text { alveolar }} \rightarrow \quad \rightarrow \quad\) alveopalatal \(/\) palatal

The application of the rule also depends on carefulness and speed of speech.
It is fundamentally the first rule of Chomsky \& Halle, which aims at generating words like 'actual, 'gradual, 'sensual, 'visuah.
\(\left(\begin{array}{ll}\text { (CH121) }\end{array}\left[\begin{array}{l}- \text { son } \\ + \text { cor }\end{array}\right] \rightarrow\left[\begin{array}{l}\text {-ant } \\ \text { tstrid }\end{array}\right] /\left[\begin{array}{l}\text {-back } \\ \text {-voc } \\ \text {-cons }\end{array}\right]\left[\begin{array}{l}\text {-cons } \\ \text {-stress }\end{array}\right]\right.\)
 unstressed [u]. There is no palatalization when the vowel is stressed as in for'tuitous, en'dure, en'sue, re'sume: these are [- glide]. This rule accounts for the difference in American pronunclations between related words like per'petual and perpe'tulty.

A related rule deletes the glide after the alveopalatals.
(CH122)
\[
\left[\begin{array}{l}
-\operatorname{cons} \\
- \text { voc }
\end{array}\right] \rightarrow \emptyset /\left[\begin{array}{l}
+ \text { cor } \\
- \text { ant } \\
- \text { son }
\end{array}\right]
\]

This rule is restricted to the position following obstruents. So tissue becomes ['tišu], and not ['tıక̌ju] as it can be In RP, (see 60100).

They point out that in some dialects the glide is dropped after dentals and palato alveolars in other positions, leading to a different pair of contrasts like residue, constitute having [- glide], with residual, constitutive being coalesced. If it were only dental obstruents which were Involved, the rule is simple. But additional information is needed for dental and palatal sonorants.
"The relevant fact is the stress on the following vowel. Where the stress is other than minus, the gllde drops."
(1968: 222)
They cite 'annual, 'valuable and 'virulent as examples where the gilde is maintained, as the syllable is unstressed.

The final rule operates before a stressed syllable. It deletes the glide after dentals and alveolars \(/ \theta \mathrm{n} /\) and llquids \(/ \mathrm{l} /\); but not after the labials /p b m/, labiodentals /f v/ and velars /k g/.


It will be seen from rules 121 and 123 that stress has different effects on the resulting variants. By CH 121 unstressed syllables produce palatalization. By CH123, if the relevant syllable is unstressed and followed by a stressed syllable, then [- glide] ensues, since there is no scope for coalescence.

These rules can not apply unmodified to British Engllsh. They do not fully reflect the allocation of variants to given PCs. In particular this concerns degliding after alveolars. They do not capture the greater range of variants within environments like \(/ \mathrm{s} 2 /\). The fundamental approach necessitates positing the rule of glide insertion. This implies that at some level the glide is absent, which may not be in accordance with the psychologlcal reallty of glide usage in British Engllsh, since gllding may be regarded as the dominant variant for some PCs. It is also interesting that Chomsky \& Halle go counter to diachrony, as usually their rules recapitulate historical change.

Horvath 1985 has criticlzed the rules, specifically and generally.
"There are many exceptions to each of these rules, even If their applications were limited to the sound patterns of American English, and not as they purport to be, the sound patterns of Engllsh. The third rule, \([y]\) deletion in stressed position, is certainly not the case with British English and Australlan English .... Even in Webster's dictionary, almost all the example words used by Chomsky and Halle are given alternate pronunclations - most including the [y] glide." (1985:111)

That there were exceptions to t.ie rules within their own idiolect, and the fact that they are not totally satisfactory is recognized by the authors
themselves. With specific reference to the rule for palatalization, they mention that it is sometimes contradicted by words like mature or luxurious. Their response to this is that
"Since these variants seem to coexist or to be distributed in
various ways in many styles of speech, we must assume a
considerable degree of arbitrary lexical categorization or of dialect
mixture."
(op clt:230)

Horvath does relent (op cit:112) by admitting that
"In spite of the shortcomings of the Chomsky and Halle formulation of the complex processes involved with this particular 'CV' syllable in English, that these three rules capture the fundamental patterns of both palatalization and \([y]\) deletion must be granted."

The rules provide a point of departure for the present survey. As with most other sources, the basis for establishing the selection of varlants is the position of stress in a word. But as with Jones, this does not resolve the exceptions.

\section*{4120 \\ A theoretical account: Bailey 1977}

Balley also bases his account on observation and Intultion rather than on any detalled empirical examination. He describes the process as diphthongization or glide insertion rather than deletion, and establishes a complex rule for this. His notations incorporate the following.
(1) Markedness values:
u unmarked; universally most expected
m more marked; more unexpected
M over marked; most unexpected
(2) Parentheses:
in items 2 and 5 (or 4 and 5), they denote optionality. 1
have placed them around the item numbers in the rule below.
(3) Sequence of absolute values:
\(=\) denotes the order [ \(+\times\) (mid) -\(]\)
c denotes the order [ - \(\times\) (mid) + ]
- bar over a symbol denotes negation
(4) // // indicate his underlying panlectal phonetemes.

4121 The implicational hierarchy: the items and conditions
The items in the structural index are numbered 1 to 6. Features are three valued, as indicated above.

1
(2)

3
(4

[u nuc]

The change: Item \(3 \rightarrow[u \operatorname{grv}, \mathrm{~m}\) ph w] le lu/
There are three conditions (C1-C3) which are attached to the non variable formulations of the rule. I introduce them at the approprlate ltems.

Item 1 This may be a segment, a syllable boundary or a word boundary.

Item 2 The top line states that this must be either an obstruent or a nasal. Both are equally preferred.

Line 2 says the rule is more operative in the order \(1+x\) - gravel. Thus [x grave], a lablal or velar consonant is more likely than an alveolar [- gravel. Balley gives as an example in American English, that some lects
the change in cute, mute, but not in tune, news.
Line 3 states that when item 2 is \([u \operatorname{lin}]=[x\) linguall, then the order of the values of [continuant] are [ - \(x+\) ]. Occlusive and nasal apicals cause the rule to operate in lects in which it may not yet operate when a [+ continuant] apical, that is \(/ / \mathrm{s} 28 \mathrm{l} / \mathrm{l}\), occurs.

The least effective feature (at the bottom) is ( \(\bar{M}\) liquid). The apical here is ordinarily not overmarked. In the context of the rule it means a non mid [liquid] - that is not //r//. It may be a non liquid or a lateral. Since any //l r// in item 2 must be syllable initial (as required by condition 2), the variability of the markedness values of [llquid] in the antevocalle environment is irrelevant.
(C2) (1 = [a segl, not syllable boundary) \(2(2=[a \| q]\), not llquid)

C2 says that when Item 1 is not at least a syllable boundary, then 2 may not be a lateral. This is intended to ensure that only liquids not elustered with a PC can trigger the rule, that is for those which allow it to operate on stressed and unstressed //u// following liquids. For such speakers, the glide may be heard in lute but not in flute The optionality parentheses enclosing \([\bar{M}\) liq] indicate that while an apical here must ordinarlly be a non overmarked [llquid] segment, it may (as a rarer option) have any value of [liquid], (that is it may be [ \(\delta\) liquid]), so that //r// is then allowed. Thus the operation of the rule is rare on unaccented inputs when item 2 is \(/ / \mathrm{r} / /\). and rarer still on accented inputs when item 2 is \(/ / r / /\).

Item 3 This is a i+ nuclear] segment, vowel, which is marked for [gravel and [lowl. The vowel is //u//. It may be a segment with a normal or widened
pharynx, using the feature [pharyngeal width]. It may be lax or tense. However stress complicates the conditions. The feature [c accent] means that the rule is more operative on unaccented than on accented input vowels. Here condition 3 (with 2 stipulations), comes into play.
(C3)
\[
\left\{\begin{array}{l}
(2=\varnothing) \supset(1=[M \operatorname{seg}] \text { or } \#)] \& \\
(2 \neq \emptyset)>\{(1=[M \operatorname{seg}] \text { or } \#\rangle\langle(3=[\text { acc }] \text {, unaccented })\}]
\end{array}\right.
\]

If item 2 is absent (because of optionallty), then item 1 must be a word boundary. If item 2 is present, and the rule operates when item 1 is *, then Item 3 which is the input vowel, is less llkely to be accented. On the other hand in condition \(3,>\) may be substituted for \(>\) with the stipulation that a few speakers drop the entire second half of condition 3. This means that they have a more general form of the rule.

The third condition allows for the fact that lects permitting unaccented inputs to change after //s z \(\theta\) l \(t \mathrm{~d} / \mathrm{l}\) as in pressure, seizure, Matthew, value, nature, procedure, tenure - often do not permit the same change after these consonants if they are tautosyllablc, and therefore not when they stand at the beginning of a word, as in superb, Lucinda, tumultuous, duplicity, neurotic A modification of the above is that some lects may not permit the change after some or all of the 7 PCs above, in the case where the input vowel is accented. Thus it is possible for a lect to have a glide in tenure but not in manure. Balley points out that the consonant before the input vowel is heterosyllabic in pressure, seizure, Matthew, nature, procedure, tenure He admits that value is a special case since he claims its syllablzation varles from lect to lect. He does not explain how this is determined. It is questionable whether all lects make the PC heterosyllabic In the six words that Balley uses. Balley also clatms that in lects where the rule operates on unaccented //u// following //r//, the /J/
of the output forces this consonant into the preceding syllable, as in erudite, virulent, cherubim \(H e\) claims this is true despite the fact that \(/ / r / /\) is usually syllabified with a following vowel in many of these lects. More important is the recognition that there can be lectal variation in syllabification. This suggestion proved to be of interest later in this study, particularly when a speaker encounters a word for the first time in print.

Item 4 This represents a turbulent (obstruent) or semi turbulent (sonorant) segment. C1 states the relationship between the optional items 4 and 5, with 2 stipulations.
(Cl) \(\quad(5 \neq \emptyset) 24=\) [M cnt] le stop

If 5 is present, item 4 must be [- continuant] that is, a stop. If 5 is absent, 4 may be \(-\times\) or + [continuantl.

Item 5 The optional item 5 is over marked or mid [turbulent], ie a sonorant. It must be unmarked for [nasall which has a minus value in this environment. Also it must not be over marked for [liquid] which in the environment under examination is not [+ liquid], that is not a lateral.

Item 6 The final item must be \(\mathfrak{l +}\) nuclearJ. This vowel can even be a word final //e// that later gets deleted.

In the rule, the ordered values in item 2 guarantee the correct ordering of the outputs. This msans that more lects have the change following \([x\) grave] \(=\) labial, velar consonants than following \([-\) grave]
consonants. But when the environment is unmarked or mid [lingual] a an apical consonant, then the rule operates in more lects following [- continuant] and \([x\) continuant] \(=\) nasal apicals, than after the continuants \(/ / s 20 \mathrm{l} / /\). The hierarchy operates first on accented syllables and then on unaccented, so that glide insertion takes place more often when followed by an unstressed /u/. (\$ is a syllabic boundary).
```

\$ r J
\$1日2s5
ndt 2
velars, lablals

```

The most variable PCs are those speclfied invidually. It is to be noted that Bailey divides the coalescents into stops and continuants, implying that the stops have a greater association with the glide (on a par with \(/ \mathrm{m} /\). . The complexities of these environments wlll be examined in the analysis of my empirical results.

\section*{4130 Previous emplrical work}

As indicated in the opening chapter ( 80110 ), the amount of empirical work on varlants and varlabllity in the palatal glide is limited. The depth of the surveys has ranged from the relatively superficlal to the more - elaborate and analytlcal. The flve studies are by Stephenson 1970, Phlllps 1981 and Pitts 1986 sall carrled out in the south eastern states of the USA); Trudgill 197: in eastern England; and Horvath 1985 in eastern Australia, I shall compare and contrast them under the following headings:
(1) stimulus for the research
(2) number and selection of participants
(3) elicitation of lexical items and range of PCs used
(4) explanatory varlables tested
(5) problems encountered
(6) results and conclusions.

Stimull for the research

The stimull were varled. Stephenson 1970 initiated the inquiries with the premise that given the existence of variant forms and the discernment of a trend "we can project thls trend lnto the future, and predict with a reasonably good level of confidence, what will happen to the variants." (op cit:297). He did not specify a numerical level of confidence, stating simply that absolute certalnty is impossible because of nonlinguistic factors. This statement was made when some lingulsts were stlll unaware of the power of statistles both to inform and to deform the interpretation of data. His observation arose as a result of the difference between the southern Atlantic states retention of the glide and the northern loss (\$4102). Stephenson had noted that variation appeared to be on the increase In the south, and he wished to test whether the younger age groups were promoting the change. Philllps 1981 broadened the inquiry to examine the relation between gllde loss and word frequency. Pitts 1986 had noted that both American television and radio malntained a conservative standard with regard to pronunciation. She questioned the simpllelty of the previous studies since she suspected that the sltuation was more complex.

In contrast, the remaining studles formed parts of larger investlgations. Horvath examining varlation In Sydney, restrlcted herself to
the coalescing consonants /t d s 2/. In England Trudglll 1974 used 16 phonological variables, among them (yu). The main thrust of his research was to demonstrate degrees of social differentiation with respect to these LVs.

The stimulus for the present investigation came from a lecture to MA students given by my supervisor [PJS], in which he presented his specially composed rime involving lexical ttems in the /// environment, opening up for some of those students vistas and prospects hitherto unconsidered.

4132 Number and selection of participants
Kurath \& McDavid 1961 had used Information collected in New England and the middle Atlantic states in the 1930s and 1940s. The 157 informants represented a 'social and cultural elite and the upper middle class' (op cit:11), and were mostly between the ages of 45 and 65 (only ten were under 40). Selection procedures in the recent American studies were different. Stephenson had 44 students at the University of Georgia, divided into southerners ( \(n=36\) ) or nonsoutherners \((n=8)\). The southerners were either undergraduates (average age 21 years) or graduates (average 40). He appears to have simply used the pair of classes that he was teaching linguistics to. The older students were all teachers; the younger students were preparing to become teachers. "There was a small difference in educational leval of course" (op cit:298). In which direction he does not divulge. But in no way can they be said to be representative of the wider spectrum of southern llfe and mores. With Phlllips, younger students from the University of Georgla again took part ( \(n=60\), aged between 18 and 21 ). All were natives of the state. Her aim was "to obtain a statistlcally adequate population." (op clt:73). P'tts necessarlly used a different approoch. Her informants were announcers and news readers transmitting from Detrolt (Michigan) in the
north, Birmingham and Montgomery (Alabama), and Columbus (Georgla) in the south. She does not disclose how many were involved.

Horvath used 177 intervlewees. She drew on adults aged between 31 and 64 years with a mean age of 44; and on teenagers with a mean age of 15. She did express the fear that the sample of the latter may be blased since they were all still at school, and that if they were working class they may be aspiring to middle class status. This fear is not necessarily reproduced in my investigation since some of the older puplis remain at school because jobs are not available.

4133 Elicitation of lexical ltems and range of PCs used
The three American investigations use the trio of alveolars \(/ t \mathrm{~d} \mathrm{n} /\). Horvath examined those PCs capable of palatalization \(/ t d s z /\). Trudglll used a broader range. Stephenson had inltlated the 'Georgla' paradigm of tune, duke news. Phillips used a list of 100 Items, in which were embedded 30 relevant words, ten each of initial /t dn/, both mono and polysyllabic. Pitts on the other hand kept records over a perlod of 3 years of every word in the paradigm that she heard on television or radio (including the /st/ cluster). She claims (op elt:132) to have covered 108 separate words, producing 3704 tokens. But her table only lists 97 types including plurals (even with news and News distinct). Of these, 5 are compounds of new, 12 use New as part of a place name and seven were compounds of news. As a result /nju(z)/ accounts for \(x\) of types and about \(x\) of tokens, reflecting the sources. If we exclude plurals and repetitions of morphemle ltems like -duce, -tute, -tude we are down to under 50 types. But there were enormous fluctuations in the frequencies of tokens. Three ltens news, News, new were noted a total of 2160 times. The 19 commonest types covered 3323 tokens.

This only leaves 381 tokens for the remaining 89 types (using her total of 108), an arithmetic mean of four tokens per type. If the three years mentioned for the duration of the survey implles a period of about 150 weeks, then the number of tokens averages 25 a week, or about 4 a day. 1 have to express my admiration for the determination of the researcher in persevering so long. Difficulties arise in trying to note them unequivocally when a word occurs unexpectedly, and with no possibllity of token repetition.

Horvath (op cit:113) used a list of nine words ( 5 stressed).
"the set of words was chosen for Australian English Just because these consonants are variously palatalized when followed by both stressed and unstressed [u] in the speech of Sydneysiders."
\begin{tabular}{lll} 
& [tstr] & [-str] \\
\(/ t /\) & tune & \begin{tabular}{l} 
attitude \\
fortune
\end{tabular} \\
\(/ d /\) & due & \begin{tabular}{l} 
educate
\end{tabular} \\
\(/ s /\) & \begin{tabular}{l} 
assume \\
consume \\
presume
\end{tabular} & insulate
\end{tabular}

McCallum 1959 (cited in Horvath 1985) had noted the following Australlan variants for tuesday. Educated speech used the glided form. Broad, Illiterate and uneducated Australlan were coalesced. Bernard (1981:25-26) had commented on the regular palatalization of /t \(\mathrm{d} /\) before \(/ \mathrm{L} / \mathrm{m}\) mainly in weakly stressed syllables. The palatalized forms were the commonest, except for the most careful of speakers. He was referring to those words where gllded and palatalized forms were in use, as in tune, due, educate Words like gradual, actual were excluded, since these categorlcally have the palatalized versions. Why they are categorical is not explained. Explanation in these surveys varies from the nonexistent to the complex.

Stephenson did not delve into linguistic constraints. He only referred to region and age. Phlllips, while accepting the principles of inconsistency and variation in the speech of individuals, sa feature which turned out to be minimal in my Liverpool investigation), was concerned to test the opinion of Schuchardt that the more frequently used a word was, the more likely it was susceptible to sound change, unlike analogic change. She cited as examples of testing this idea, work by Leslau 1969 on assimilations in Ethiopian languages; Phillips 1980 on the assimilations involved in the raising of \(O E / a /\) before nasals; Fidelholz 1975 on vowel reduction in initial unstressed syllables; and a shwa deletion before 〈-ry> which did not affect the phonotactic structure of the language (Hooper 1976). Yet none of these investigations had examined a change like the loss of the glide in the alveolars, which did affect structure in that it resulted in the loss of the clusters /tj dj nj/ for a section of the population. Pitts went into greater explanatory detall. She included 6 social and 2 linguistic parameters. The race, sex, age and origin of the speaker were ascertained; the location and type of broadcast were noted. But linguistically only the preceding consonantal environment and the stress pattern of the word were taken into consideration. She classified her data into nine patterns. Monosyllables with full stress are the first group. If a place name contalned an unstressed New (as in New Mexico) it was put in group 7. If New was stressed as in Newport (and as a single word), it became pattern 2. This pattern purported to represent the trochaic foot, a bisyllablc word with a stressed syllable followed by an unstressed. Yet of the 34 items which Pitts includes in thls pattern, 7 (eg newspaper) are trisyllabic, and are all properly dactylle (stressed followed by 2 unstressed). The group designated dactylic, pattern

6, only includes unstressed /u/ as a final syllable (eg magnitude). The lambic foot of 2 syllables, pattern three - an unstressed syllable followed by a stressed syllable (eg induce) - contains a pair of three syllable words. The fourth group covers fully stressed syllables, like constitution where stress is on the penultimate or antipenultimate syllable. The anapestic foot, pattern 5, [- str -str +str] contains 2 Items. Both are allocated correctly. An important grouping, particularly in view of the experience of inciplent glide loss in Liverpool is that of pattern 8. These are initlal unstressed syllables, such as nutrition The last group of the nine, with a final unstressed syllable eg statue, has 2 members. For all its apparent specificity, this categorization of nine patterns contains groupings and inconsistencles which undermine its value. Yet each occurrence was coded for all of the 8 parameters examined. Because of the complexity of the calculations, a special variable rule computer program was used to evaluate the relative influence of the constraints, and to predict the probabllity of loss of the glide.

Horvath coded her words according to seven factor groups. Four of these were for social characteristics (age, gender, socloeconomic class, and ethnicity). The three lingulstic groups were stress, manner of articulation (stop or continuant), and volcing. Whether or not the relevant consonant was palatalized constituted the dependent variable. Levels of formallty were not a factor as the items were ellalted only by a llst. The novel technique, (in linguistics at least) of princlpal components analysis was used.

4135 Problems encountered
There do not appear to have been many problems in recording and interpreting the data. Phlllips discloses that of her 30 items a single word
- tumult - was eventually disregarded, as \(80 \%\) of the students appeared to be unfamillar with it. (Any pedagogical or epletemic interpretation is better left to others more qualified.) Despite a trio of Georgia linguists (including herself and Stephenson) listening to the taped responses, she admits that "It was not always easy to tell whether a glide was present or not." (1981: 75). There were in between sounds such as 'a palatal /t/' as in [ţun] or 'a fronted lu/' as in [nud]. If a majority decision by the troika was not reached, the response was excluded. Other exclusions were for a subject missing out a word; or mispronunciation, as in [djuti] for duly or [dan] for dune Just under 3\% of responses were rejected. Affricates were not a problem. There was only a single instance. "That response was ... rejected since it represents a different direction of sound change." (loc cit). However in the present investlgation such varlants bulked large in the alveolars.

The conclusions of both Stephenson 1970 and Phillips 1981, despite the small scale on which they were conducted, appeared to lend support to the belief that in the American south, the glide was in decline. More detailed examination by Pitts revealed that the situation was not so simple.
"What makes this particular sound change unusual is that it appears to be reversing itself among some groups of speakers even while others are adopting \(\mathfrak{i t}\) ".
(1986:131)
The solution seemed to lie in the realm of prestige, in a different setting results with a more linguistic interpretation were arrived at by both Horvath and Trudgill, as well as in the context of soclal correlates.

4141 Stephenson 1970
The results of Stephenson which relate varlants to origin and age, are given in table 41-06.

Table 41-06
Stephenson 1970 Results: tokens and percentages
\begin{tabular}{|c|c|c|c|c|}
\hline & + & glide & - & glide \\
\hline southern: 16 older & 36 & (75\%) & 12 & (25\%) \\
\hline southern: 20 young & 33 & (55\%) & 21 & (458) \\
\hline non southern: 8 & 1 & (74) & 23 & (938) \\
\hline
\end{tabular}
(1) southerners in the USA retained the gllde more than northeners.
(2) older students used the gllde more than younger students. There were urban influences on those older speakers using unglided forms. This led Stephenson to conclude that southern [Ju] was on the wane.
"On the basis of this evidence 1 venture to predict that within 2 generations, or about 50 years, pronunciations like [tjun] will be virtually nonexistent".
(op cit:300).
For a relatively small sample size \((n=44)\) and an absolutely small number of types ( \(k=3\) ), conclusions must be tentative. 1 carried out a \(x^{2}\) test just on southerners, which produced a value of 4.462. For \(v=1\) this is significant at the \(5 \%\) level, and supports his conclusion about gllding and age. Since the linguistic contexts were limited, any differences must be attributed to non linguistle factors.

\section*{4142 \\ Fhillips 1981}

Phillips concluded that the loss of the gllde is similar to other sound changes which have been investigated with relation to word frequency in that it has spread by phonetic analogy and it occurs "where memory falls" (citing Anttlla 1972:101). This applles when the glideless form becomes the default form [PJS]. Following Cooley 1978, Phillips supports the view that the deletion of [j] after coronal nasals and liquids was an attempt at stabilizing the phonotactic system, disrupted by the conversion of [lu] to [ju]. It is this effect on surface phonetic constraints and surface phonemic contrasts that distinguishes the loss of the gllde from some other sound changes. There is a surface phonemic distinction between pronunclations with and without the glide. Phillips suggests that the average southern speaker is conscious of 2 alternatives. Some words have the cholce, others must only be pronounced without the glide. It is the first kind, where an alternative exists which is relevant here. If the word is vary famillar, a speaker is more sure of himself, and ls therafore more likely to produce a glided pronunciation, (being a southerner). If tie word is less frequent, he ls likely to be less certain. At thls stage Phillips indicates the possibllity of the
inter individual varlation of underlying representations. If a speaker takes the underlying representation of a less famillar word to have \(t\) - glidel, it will be pronounced unglided. Conversely, if the underlying representation is taken to be [+ gildel then a cholce is possible. With words used infrequently by a given individual, he is more likely to forget which underlying representation is 'correct'. There is also the possibility of an incomplete phonological lexical entry [PJS]. 'Correct' here means the representation which is most likely to exist in his lexicon. As a consequence, "the safest course is obviously to pronounce the word without the glide." (Phlllips 1981:77). This is because the unglided pronunciation can be recognized as a form of the word, no matter what the underlying representation may be.

This exposition raises some questions. What is an 'average' southern speaker? Why, if the lexical category \([+\) glidel tolerates both varlants, does [- glide] only permit the ungllded form? What are the factors which distinguish the lexical categories? Are the factors simply lexical, to the exclusion of other lingulstic factors. These questions are not resolved by Phillips. Instead she concentrates on the role of communication in sound change.

She maintains that this, and the signlficance of surface phonemic distinctions, clarifies why [j] is lost first in the least frequently used words. Her method of demonstrating the proposition was to divide the words into frequency groups (which seem to be based on a logarithmic scale of powers of ten). The words which fell into each group had thelr tokens for glidelessness added and then averaged to provide the group frequency in column three in table 41-07. Note that all her words involve initial syllabies. Column 3 indicates that the lower the frequency, the greater is the level of glide deletion. There is no calculation of correlation between
frequency and glidelessness for individual words. In addition as PJS has noted, the percentage of monosyllabic words in each set also increases fairly systematically.
\begin{tabular}{|c|c|c|c|}
\hline Table 41-07 Glide deletion & and word frequency lafter Phillips & 1981) & \\
\hline Frequency per million tokens & Vords in the group & Group average & Group range \\
\hline \(0-1\) & nude, Tudor, tuber, tunic, dues neutron, duly, tuba, dude & 74.4 & 61-95 \\
\hline \(1-<10\) & nutrient, tutor, duel, duke, dune durable, tulip, nuisance, neutral, nucleus & 71.8 & 61-88 \\
\hline \(10-<100\) & Tuesday, numerous, tune, duty, numeral, due, tube & 60.1 & 51-68 \\
\hline 101-500 & knew, during & 54.5 & 46-63 \\
\hline \(>500\) & new & 43.0 & 43 \\
\hline
\end{tabular}


Some comments on the construction of the corpus she used as a basis, are necessary. The American Herltage Word frequency book (Carroll, Davies \& Richman 1971) was based on samples of school texts used in grades 3 to 9. For this reason it was considered more relevant for comparisons Involving the school based participants used in the present study. A total of 86,741 word types was found in the \(5,088,721\) tokens sampled by the American Heritage (AH) researchers, After excluding 35,079 hapaxes, numerals and numeric fractions, this leaves about 50,000 types with more than a single occurrence. Carroll et al (op cit: \(x \times x(x)\) explain that the definition of a type employed in their corpus is a string of graphic characters bounded at each end by space. This definition has the effect of considerably increasing the
number of types compared with those classified as dictionary entries. A word occurring at the beginning of a sentence (and consequently capitalized) is counted separately from the same word without an upper case initlal. Plurals, possessives and compounds are treated in the same manner. The authors defend this approach (loc citifn 4) by claiming that

> "there is good reason to believe that the lognormal model, is applicable, in principle, no matter how word types are defined."

Conversely what the AH frequencies do not do, is to distinguish between parts of speech. A word like tune is not counted separately for its nominal and verbal functions. Both these points are of importance. Inspection shows that Phillips used only the AH statistics relevant to the basic word form, eg duke. She ignored any contribution from dukes, duke's; Duke, Dukes, Duke's; or even dukedom Her data were not based on the raw frequencles of the words. She used the statistic for the estimated frequency per million tokens (U), which is derived from the raw frequency with an adjustment for dispersion over the 17 subject categories which the AH corpus used. It is clalmed by the authors of the word count that \(U\) better reflects the true frequency that may exist in a corpus of indefinitely large size.

As mentloned above, Phillips did not carry out an Individual lexical calculation of correlation. But using her order of frequency, and the individual word percentages of gllde deletion, I calculated the Spearman rank correlation coefficlent ( \(r_{0}\) ) for the 29 valid words, (out of 30). r. came to 0.60. By combining the tokens for plurals, possessives and upper case initials, 1 suspected that a better indleation of frequency may be established. I therefore combined the frequencles for the words Phillips tested (with the exception of nuclel on the grounds that it is an irregutar plural), and recalculated the Spearman statistic for the 29 items. It came to
0.60 , exactly the same as before. When this value was tested using the 2 tall version of the Student \(t\) test (Clarke d Cooke 1978), there is significant evidence against the null hypothesis that there is no relation between the rankings. This is corroborated by use of the \(D^{2}+T\) table (Langley 1968). The conclusion of Phillips with respect to frequency appears to be confirmed.

In addition 1 examined the rank correlation for the three alveolars separately. The results were
\[
\begin{aligned}
& r_{\text {on }}=0.66 \\
& r_{\text {ot }}=0.46 \\
& r_{\text {od }}=0.30
\end{aligned}
\]

While the individual coefficients are necessarily not as significant as those for the complete word list, due to the smaller number of items, the differences suggest that each PC will benefit from separate analysis.

\section*{4143 Pitts 1986}

Phillips had concluded that "The unmistakeable pattern is that the least frequently used words have been the most susceptible to change." (op cit:75). This conclusion was not to go unchallenged. pitts was unable to confirm the findings of Phillips 1981 with regard to frequency. Nor was she able to establish a coherent pattern of gllde dropping in her 19 most frequently occurring items. The proper noun News and the common noun news were unglided just under 40\% of the time, the adjective new was glldeless 59\% (cf Phillips 43\%), and in the name New York this reached 80\%. Pitts admits that her figures may be blased by the greater frequency of the words new, news, since they comprise blmost \(3 / 3\) of the entire sample. Their glided versions alone amount to \(1 / 3\) of the sample. While she found no coherent
pattern of lexical diffusion, the glide may be associated with those particular words which serve as a symbol of the self image of the media, to which the glided pronunciation lends a respectable formality.

Native southern announcers had a glideless probability factor of 0.30; the figure for northerners was 0.70. The trend towards glidelessness in the south was being accelerated by younger speakers (Stephenson 1970 and Phillips 1981). When the announcers are broken down by sex, females are more ready to drop it. Their figure is 0.56 as opposed to 0.44 for males. The difference between black and white speakers was not statistically significant.

Pitts maintained that the PCs did not play a distinguishing role. She does not provide a breakdown of the distribution of tokens. But her conclusion may be treated with some degree of circumspection in view of the differences between the numbers recorded for each environment. I have calculated (64133) that the 19 most frequent types represent 3323/3704 tokens (ie \(90 \%\) of all recorded occurrences). The data for \(\mathrm{In} / \mathrm{cover} 80 \%\) of these frequent tokens; /t/ \(10 \%\); \(/ d / 8 \%\) and \(/\) st/ \(3 \%\). The remaining 78 (or 87 depending on how they are counted) types recorded only 381 occurrences between them.

The elabaorate system of stress patterns did reveal some structure. Monosyllable, lamble and anapestic words (where the stress falls on the final or only syllable), have a greater tendency to preserve the gllde when the final syllable contains the lul. Conversely the glide was most likely to be lost from an unstressed syllable followed by a stressed syllable, as in nutrition What may be as important here ls the position of the syllable in the word. In any case the value of her conclusiens is diminished by the inconsistencles in the allocation of items to groupings.

The expected effects of word frequency were being disturbed in troadcast speech by something else. In the constraint designated register, there were six categories which distinguished between national and local versions of news, advertisements and interviews. The seventh was for public broadcasting. The figures for news and advertising demonstrated a surprising discrepancy (op cit:135). The local southern stations appeared to be promoting the loss of the glide. On the other hand the probabllities for interviews showed little difference between national ( 0.67 ) and local (0.70). Pitts concluded that speakers with less social power or prestige appeared to be more inclined to glide loss. She suggested that women and local southern stations interpreted the glideless forms as being progressive, simply because they were not typical of southern speech, which had the aura of being oldfashloned.

What was more difficult to account for was the adoption of the glide by the more prestigious groups. Both northern and national broadcasters were either retentive or innovative in the use of the gllde. This was attributed to a different kind of prestige. Northerners, Pitts suggested, may perceive use of the glide, not simply as a southern feature, but primarily as an elegant variant which is appropriate to the formal medium of broadcasting. (It is apparently favoured by elocution teachers in both north and south, but even this can not dissuade people from using it). The sentiment is sufficiently strong to offset the officlal praference for the glideless forms, evident in the handbook of pronunclation used by the National Broadcasting Corporation. Unllke Trudglll 1974, Pltts did not carry out a survey of attitudes toward the use and perception of the gilde. The Idea of elegance inay also be assoclated with what pitts calls the prestigious British accent' (op clt:137). As she ldentifies this with gliding
after \(/ s /\) and occaslonally /1/, she is presumably referring to RP. She exemplifies with a pair of (unrelated) advertisements: for a set of leather bound volumes on the American [revo'ljusen], and analgesic ['kepsju:lz].

The regional flip flop whereby many southerners are degliding while some northerners are beginning to gllde, is attributed to the fact that both variants are prestlglous, but to different groups of speakers for different reasons. The omission of the gllde is valued by those only recently gaining a place in broadcasting - women, blacks and local southern announcers. The glide itself is being propagated by the better and longer established white nonsouthern male announcers. It must be emphasized that this obtains in a limited set of words only. It is here that the sound change is being reversed: but the frequency of those ltems gives them a disproportionate stylistlc impact. A broader spectrum of words and preceding consonants was examined in England.

\section*{4144}

Trudgill 1974
In addition to class differentiation, what was of interest to Trudglll was the minor nature of the styllstic varlation, a finding corroborated in my investigation. [j] did not depend for its frequency of occurrence simply on social class or social context. It also depended on the initial consonant (since in the ltems he used, the PC was always word initial), and to some extent on the lexical item itself. A feature of his enquiry was the self evaluation test. The 30 subjects were presented with a list of 12 items. They first read them aloud as a word llst. Then they were asked to indicate on a chart which pronunclation - with or without the glide - most closely resembled the way in which they normally salll the word. Trudgill divided the informants into 2 groups. Those using 50\% or more [ J ]
were considered to be glide users: those with less than \(50 \%\) were called non users. His figures are in table 41-08 showing that most informants were accurate. But while Trudgill had expected a degree of over reporting, 40\% of glide users claimed to use what he saw as the lower status, non prestige, unglided variant.


Table 41-08
Self evaluation of tune in Norwich (Trudgill 1974)
\begin{tabular}{|c|c|}
\hline clained & not claimed \\
\hline 60 & 40 \\
\hline 16 & 84 \\
\hline
\end{tabular}

When the subjects are classified by sex, males are much more accurate than females (Table 41-09). The other difference between the sexes lies. In the fact that if inaccurate, males under report, whlle famales over report.


Table 11-09
Reporting of tune in Norwich (Trudglll 1974)
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|r|}{percentage of informants} \\
\hline & total & male & female \\
\hline over reporting & 13 & 0 & 29 \\
\hline accurate & 80 & 94 & 64 \\
\hline under reporting & 7 & 6 & 7 \\
\hline
\end{tabular}

Trudgill concluded that at a subconsclous or private level, males were disposed to use non standard forms. If it is true that informants percelve speech in terms of the norms they are alming at, then for Norwleh males the
feeling of group solidarity takes precedence over soclal status, (unless group solidarity implies and includes soclal status). The reason why females over report, according to Trudgill, is that they wish they did use the more statusful variant, or feel they are expected to, and therefore believe they do. When age was examined, younger speakers were more accurate than older.

The conclusions may be less useful than stated, since the use of the more formal pronunciation normally associated with word lists, may not reflect usage in casual or normal style, which is what the subjects were asked to compare. The cutoff proportion of \(50 \%\) to divide the informants into 2 groups provides a clear cut division. But if there had been three groupings, say 2 extremes at \(25 \%\) or below and \(75 \%\) or above, with a middle group of more varlable users, more speclfic information may have been ascertained.

\section*{4145 Horvath 1985}

Horvath shows that of the three linguistle factors she examined, stress is the most importanti a consonant in an unstressed syllable is more likely to be palatallzed. Of the others, stops are palatallzed more than continuants (and not consonants as her page 115 states); and that volcing favours palatalization. The first conclusion needs to be interpreted with circumspection. The stops included word initial types, and these are more prone to coalescence. Her results are in table 41-10. (The original result percentages have not been given correct to slgnificant figures. Only the first pair of digits of percentage have been stated, with no allowance made for rounding upwards. Thus for coalescence in stressed syllables, \(107 / 548=20 \%(2 s f)\) and not \(19 \%\) I have indicated these small discrepancles
in both tables by quoting the original figures followed by \(t\). No substantial differences are involved.)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Table 41-10 \\
Horvath - analysis of coalescence: linguistic factors
\end{tabular}} \\
\hline Factor and cont & ribution & Coalesc & Total & Percent \\
\hline \multicolumn{5}{|l|}{stress} \\
\hline stressed & 0.34 & 107 & 548 & \(19+\) \\
\hline unstressed & 0.66 & 203 & 427 & 47+ \\
\hline \multicolumn{5}{|l|}{manner} \\
\hline continuant & 0.41 & 79 & 429 & 18 \\
\hline stop & 0.59 & 231 & 546 & 42 \\
\hline \multicolumn{5}{|l|}{voicing} \\
\hline voiced & 0.57 & 123 & 327 & \(37+\) \\
\hline voiceless & 0.43 & 187 & 648 & \(28+\) \\
\hline Totals & & 310 & 975 & 32 \\
\hline
\end{tabular}

Based on Horvath (1985; 116)
Horvath says she is in a position to modify rule C\&H 121 (given in 84112) by adding a reference to articulation and volcing, making the varlable rule H .
(H1) Palatalization of /t d \(s\) z/: the Horvath modification
\(\left[\begin{array}{l}- \text { son } \\ \text { +cor }\end{array}\right] \rightarrow\left[\begin{array}{l}\text {-ant } \\ \text { tstrid }\end{array}\right] /\left(\begin{array}{l}- \text { cont } \\ \text { t-volce } \\ -\end{array}\right)\left[\begin{array}{l}- \text { back } \\ - \text { voc } \\ - \text {-cons }\end{array}\right]\left[\begin{array}{l}\text {-cons } \\ \text { (-stress })\end{array}\right]\)
Horvath also tested social factors. Table 41-11 gives her results.
All the social factors are significant except perhaps for socio economic class. However age produces a lower \(x^{2}\) statistle than class. \(\left(x^{2}=3.486\right.\) compared with \(X^{2}=9.415\) ), She interprets her rasults soclally to indicate that palatalization is more frequent among males, Anglos and teenagers, and disfavoured by the middle class. For comparisons with the present survey, ti:e

Horvath data has to be converted in line with the more restricted social correlates examined here. (55212).
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Table 41-11 \\
Horvath - analysis of coalescence: social factors
\end{tabular}} \\
\hline Factor and contr & ribution & Coalesced & Total & Percent \\
\hline \multicolumn{5}{|l|}{sex} \\
\hline male & 0.64 & 197 & 460 & \(42+\) \\
\hline female & 0.36 & 113 & 515 & \(21+\) \\
\hline \multicolumn{5}{|l|}{age} \\
\hline adult & 0.39 & 59 & 223 & 26 \\
\hline teenager & 0.61 & 251 & 752 & 33 \\
\hline \multicolumn{5}{|l|}{ethnicity} \\
\hline Anglo & 0.64 & 166 & 465 & \(35+\) \\
\hline Italian & 0.38 & 58 & 243 & \(23+\) \\
\hline Greek & 0.48 & 86 & 267 & 32 \\
\hline \multicolumn{5}{|l|}{class} \\
\hline middle & 0.40 & 90 & 348 & 25+ \\
\hline working up & 0.53 & 108 & 321 & 33+ \\
\hline working 10 & 0.57 & 112 & 306 & \(36+\) \\
\hline Totals & & 310 & 975 & 32 \\
\hline
\end{tabular}

Based on Horvath (1985: 116)

\section*{4146 London}

London, as Wells (1982:301) reminds us, is the linguistic centre of gravity of England. He maintains that its working class accent is nowadays the most influential source of phonological innovation in the country. (Compare the opinion of Strang 1970 on the position of Liverpool in the 1960s). Cockney (like Scouse) constitutes the basllectal end of the metropolitan accent continuum. Wells describes the most striking phonetic characteristics of Cockney as the shifted diphthongs and the extensive use
of the glottal stop. There are phenomena relating to the palatal glide, but they are not as salient as those just mentioned. The glide is retained everywhere in London after \(/ p b \vee g /\), and is extremely common after \(/ \mathrm{m} \mathrm{f} / \mathrm{k} /\), with Sivertsen 1960 in her study of elderly Cockney women reporting sporadic dropping in this trio. Where RP has an alveolar plus glide, as with \(/ t \mathrm{~d} \mathrm{n} /\), Cockney traditionally exhibits yod dropping. Wells reports that comments on the prevalence of this type of pronunciation in London are to be found from the 18 c onwards, and cites Mathews 1938 and Sivertsen 1960 as accepting glide loss here as the contemporary Cockney norm. Since then a development appears to have taken place with \(/ t \mathrm{~d} /\). There seems to have been a switch in popular London speech towards yod coalescence. Evidence comes from the work of Beaken 1971 and Bowyer 1973. They found no cases of yod dropping after /t/ or /d/. In the case of Beaken, his investigation of primary school children was based on a school close to Bethnal Green, where Sivertsen had carried out her survey. Beaken reported that the typical pronunciation of words such as tune, due, was with [c- \(]\) ], both word initial. The only varlant was the alternative with yod. This was seen as being elegant. Gimson 1980 also regards the varlant with \(/ J /\) as being more careful, deliberate and formal. It has been observed by Wells that people are aware of the fact that yod coalescence is stigmatized to some extent. This has led to the use of the hypercorrected forms [tj dj] in chew, June. The hint of a non linguistic correlative is taken further in Bowyer. Here adults in a prosperous south London suburb were allocated to four soclal groups. It was reported that tune commonly had [C-] for the lower soclal groups, and varled between [ \(x-1\) and \([t j]\) for the upper groups, with no cases of glide dropping. In a study of a single fanlly of east Londoners over three generations. Hurford 1967 referred only to the variation between the coalesced [ \(c\) ] and bare [t] in tune
etc. This variation may have been related to age in view of the previous remarks, but Hurford suspected that it was lexically conditioned, a useful indicator for the present study. For the nasal, Bowyer reported that for new, the unglided form was restricted to the lower groups, and even with them was not the dominant variant, which was stlll [nj-].

Wells was not sure why yod coalescence was displacing yod dropping as the broad Cockney norm. He considers it to have been an unusually abrupt switch. But the size of the capital may provide a clue. The coalesced forms have been attested in south London from at least the beginning of the 20c. They may have spread from there, for whatever reason, by whatever process, to displace the typlcally east Angllan forms with bare [t- \(\alpha-1\).

\section*{4150 \\ Conclusion}

It can be seen from the theoretical and the empirlcal investigations of the palatal glide or its concomitant varlants that varlety of features (linguistic and nonlinguistic) have been monitored and examined to see if they were able to explain why certain varlants prevalled. Some of these features were to prove useful and necessary in the present enquiry. How these previous studles affected the cholce of explanatory varlables and comparison with them, will be discussed in the next section.
```

Following the presentation of the conclusions of other researchers into the $/ C j u /$ sequence, 1 shall now coordinate their constraints, and establish the explanatory variables to be investigated in this enquiry.

```

Table 42-01
Possible factors affecting production of variants

PHONOLOGICAL AND PHONETIC
```

preceding consonants Tr Ho Ba
consonant clusters Pi Jo Ba Co Fo
positiond number of syllables Ba Jo
stress of relevant syllable Be Ba Pi Ho Fo Jo CaH
stress pattern in word Jo Pl
syllabirication Ba
manner of articulation Ho We Ba
volcing
Ho

```

LEXICAL
```

1 word frequency
1 word frequency
1 word frequency
Ph Pi
Hu CaH KaM
Jo
STYLISTIC

1	register or formality	Tr	Pi
2	cultured volce	Pi	Be

STMLISTIC
1 reglster or formality
Pl Be Gl

```

NONLINGUISTIC
```

l class or soclal status
l class or soclal status
3.chronological age
4 sex
5 ethnicity
6 geographical origin
educational level
Ir Ho Be Bo
Pl Tr
St Ph Pl Ir Ho
Pi ir Ho

```



Four groups of variables may be distingulshed. They are listed in table 42-01 together with a code for the researchers, as follows.
\begin{tabular}{llllllll} 
Ba & Balley & Fo & Fowler & Jo & Jones & Pl & Pitts \\
Be & Beaken & Gi & Gimson & McC & McCallum & St & Stephenson \\
Bo & Bowyer & Ho & Horvath & McD & McDavid & Tr & Trudgill \\
Co & Cooley & Hu & Hurford & Ph & Phillips & Ve & Vells \\
C\&H & Chomsky & K\&M & Kurath & & & & \\
& \(\&\) Halle & & \(\&\) McDavid & & & &
\end{tabular}

4201 The nature of explanation
Kaplan 1965 has compiled a taxonomy of types of noncausal explanation. Among them are what he refers to as mathematical generalizations (op cit:148), in which a quantity is formulated as a mathematical function of some other. These may be predictive, but according to Lass 1980, are not 'classically' causal. Lass suggests that the studies associated with sociolinguistic varlationists come into this category of mathematical generalizations. While they provide signlficant additions to our awareness and understanding of the soclal functioning of language, the connections they reveal are not strlctly explanatory. Lass argues that none establishes a causal nexus between any soclal factor and the actuation of change or the selection of any particular variant. What they do is to describe the particular soclal uses that existing varlants may be put to; how they come to serve some indexical function within a speech communlty; and how they create mathematical formulations of rules which may be sald to govern the distribution and deployment of varlants. They are descriptive rather than explanatory. Lass has concentrated here on sociolingulstle variables, but he had also included intralinguistic covarlation in this scheme. Clearly Lass propounds a more rigorous ldea of explanation than is accepted by others. Pateman 1987 for example, argues for the attractions of a realist view of the nature of lingulstics as opposed to a positivist or
idealist standpoint, basing his contentions on the work of Bhaskar 1975, 1979. A less rigid concept of cause and explanation will permit a distinction between internal and external variables, on the grounds that there is a more intimate connection between varlants and the former, even if this connection is not necessarily causal.

\begin{abstract}
In this thesis the explanatory variables influencing choice of variant, are linguistic. This is not to deny the place of non linguistic factors, but 1 feel that more extraneous factors while being capable of being correlated with change and choice, and as such providing a non causal explanation, are not causal in the sense of the word used by Lass 1980. Linguistic factors operate more transparently on actuation of change and selection of variant (except perhaps in the case of \(/ \mathbf{s} 2 /\) ). For my purposes, the varlables in the table were pruned since some were not relevant or had been found wanting.
\end{abstract}

\section*{4210 All preceding consonants}

The preceding consonant has been the most convenient feature to use to make an initial distinction between (near) categorical and varlable usage of a variant. It can serve to identify my minivarlables, The first area in the empirical testing is to ascertain (or confirm) the gliding status of each of the 17 PCs. Then to see how Liverpool compares with RP, and following Bailey 1977, to compare any hierarchy of preceding consonants with his. Previous research had focused on those PCs where there is generally a binary cholce of variants. Since thls does not always apply to British Engllsh, I shall meke a 4 part distinction ( \(55^{\prime}\) )10).

A consonant cluster usually operates phonotactic constraints which
preclude the use of a glide. Cooley 1978, Fowler 1926. Rockey 1973 and Roach 1980 have listed some phonetic subenvironments, and Jones was aware of \(/ \mathrm{Cl} /\), but only Pitts 1986 has speclfically looked at the place of /st/ within the /t/ environment. I shall report on the effects of such clusters, and how they affect the status of a PC.

4220
Variable PCs and lexical ltems

Having established the main areas of varlabllity in the PCs, we then need to investigate the reasons for that variability. The following points were designed with the 4 coalescents \(/ t d 52 /\), and \(/ / /\) in mind. Suspecting that the distribution of the gilde is not influenced by phonetic or phonological factors alone, attention will also be directed towards sets of lexical items.

4221 Manner of articulation and volcling
For the coalescents, I shall look at the conclusions of Bailey 1977, together with the findings of Horvath 1985 that the stops /t \(\mathrm{d} /\) promote coalescence more than the continuants \(/ s 2 / i\) similarly with volced rather than voiceless consonants. In addition the lexical distribution of the three varlants needs to be Investigated.

Syllables and words of simllar phonologlcal shaps
The suggestion of Balley 1977, that polysyllable words are more disposed to gllde production than monosyllabic words will be scrutinized. Increasing the number of syllables ralses the possibllity of interactions between stress and vowel quallty and quantity. Balley also noted the
importance of word initial position for glide loss, and this will be pursued here as well, in conjunction with syllablfication. Specific words of a simllar phonological shape like dilute and deluda (which are both blsyllable, with the relevant syllable second and stressed), will be examined for differences in the proportions of glide use between words, groups and individuals.

4223 Words of similar morphological shape
As with the corresponding phonological category, words of the same morphological shape (eg dilution, solution) will be tested to see lf the level of gliding is much the same, or if the proportions of glide use are significantly different. This had been alluded to by Jones 1956. Given the level of gliding in the base form -lude or -lute, it may carry over to derivatives like -luted or -lution. An extension of this idea was that similar morphemes may produce similar results. Some morphemes undergo internal change when derivatives are formed eg -lusion. There is the possibility that particular morphemes may have thelr own patterns of behaviour, as indeed individual speakers may.

4224 Frequency
The relationship with word frequency in connection with // was alluded to by Fowler 1965. Common words were more susceptlble to gllde loss than less used words: salute with /lu/, and volute /lju/. The degrees of correlation between glide loss and word frequency will be calculated for PCs using the Spearman \(p\) measure of rank order correlation. They can be compared with the conclusions of Phillips 1981 and Pitts 1986. But in view of the drawbacks a;sociated with ecunts and their applicatlon, trying to relate glide loss to word frequency alone is akin to chasing a chlmera (62324).

Many variables in other studies have been found to be affected over the range of styles from formal to informal. Here in the \(/ / /\) environment, three types of elicitation will be used: more gllding being tentatively associated with greater formality. But given the low profle of glide awareness, there are not expected to be the significant differences like those recorded in some other linguistic varlables.

\section*{4226}

Stress
The single linguistic feature which has occupled most researchers is stress. I shall adhere to my distinction between coalescing and plain PCs, since the range and choice of variants necessitates separate analysis. in the case of the coalescents, the consensus of opinlon shared by Chomsky \& Halle 1968, Balley 1977, Fowler 1926 and 1965, Jones 1956 and Pitts 1986 is that stress on the relevant syllable promotes glide deletion, while unstressed /u/ is variable. For plaln consonants, unstressed syllables fluctuate between it glide] and [- glide]. There is the influence of stress in contiguous syllables to be clarified. But other factors may be related. Among them, syllablfication has not prevlously been subject to empirical investigation.

\section*{Syllabification}

Balley 1977 had drawn attention to this aspect, but his examples of tautosyllable consonants were all word initial, and this may be an explanatory variable in Itself (94222). I propose to include cases where the tautosyllable consonants are also word medial. What will be tested in a pair of conjectures (C1 \& C2) is the broad distinction that for variable \(\mathrm{PC}(3\), heterosyllabicity is more favourable to gliding than tautosyllableity.

C1 If the preceding syllable (within the word) is open, or if the PC is tautosyllabic (including word initial), then there is less likelihood of a glide occurring.
eg interslude postslude Fluminaus
C2 If the preceding syllable (within the word) is closed, then there is more scope for a glide.
eg \(\begin{aligned} & \begin{array}{l}\text { avensue } \\ \text { jansuary } \\ \text { gensuine }\end{array}\end{aligned} \begin{aligned} & \text { prelsude } \\ & \text { solsuble }\end{aligned}\)
There is the danger of a circular argument, since the division between syllables can be difficult to distinguish (92110). I shall rely on those tokens with a slow or hesitant pronunciation, where the division is clearcut.

4228
The informants
So far, my proposals directly concern lingulstic features. With regard to the speakers themselves, differences between the four groups over all environments will be analyzed to establish if any are significant. More glide dropping or coalescence, is expected in the city centre school than in the suburbs. Older puplls are expected to be more conservative than younger.

In describing the procedures and methods adopted before, during and after the interviews, I have used the checkllst In Scholfield (in preparation: 292-294, app 1). They will be considered under the following headings: participants ( 84310 ); materials used (84320); conduct of interviews (84330); and scoring and quantitative techniques (34340).

The subjects for which the maln research was intended were from secondary schools in Liverpool. It was not possible to arrange a pllot study in the city and it had to be carried out in and around Bangor. Those asked to take part ( \(n=4\) ) were acquaintances, aware of my connection with UCNW, that the research was something to do with pronunciation, and that payment was not involved (in either direction). As it was of some inherent interest to have a comparison with speakers of dialects which are unalike in their overall use of the glide, the subjects in the pllot test (whlle all living in the vicinity of Bangor), originated in different parts of the British Isles, viz a pair of volunteers from Suffolk, both male and attached to the university; Lancashire (historic county of), but with no specifle palatine glide, and Scotland (via Bath), both female. Ages ranged from the mid twenties to a figure approaching twice this.

The main study took place in Liverpool, where famlliarlty with the range of accents was useful, and where the cooperation of teachers in the schools proved to be invaluable in selecting participants. The instructions from the researcher to the organizing teacher emphasized the need to cover a wide range of abilities and attainments. In the sixth forms, the responsible teachers were asked to select on the basis of geographical distribution across Liverpool. Participants were to be restricted to puplis in their first year, or in the sixth form, covering the age ranges 11-12 and 17-19 years. The need to cause as little interruption or disturbance as possible to the schedules of each establishment was important. Those puplls in the first year were from the catchment area surrounding each school. The sixth forms, being the remnants of the pre reorganization intakes, had a more widespread distribution. The schools were socially contrastive. The city centre school had a working class preponderance, while the suburban school drew on a wider base. Subjects were not however chosen on the basis of socio economle class. Within each school, the selection of puplls proceded on similar lines. The participants did not represent a random selection of the population, in the sense that each pupll in the relevant year had an equal chance of being chosen. This may have been the case initlally, but towards the end of the selection procedure, it was necessary to redress any imbalance that may have occurred with respect to the criterla mentioned above. The city centre school first year (C1) provided 20 subjects; in the corresponding sixth form (Cb), \(n\) \(=20\). In the suburban school 21 were selected in the first year SSi), with 16 taken from the sixth form (S6). This makes a grand total of 77 subjects.

Of all the possible PCs, it had been decided to investigate the /// environment in most detall, since it appeared to be the most likely candidate for varlation, linguistically and nonlinguistically, lexically and soclally, So the interview was designed to concentrate on and revolve around this covering 37 types. All the materlals used in the intervlew were originated by the researcher. They took the form of a reading passage together with a related set of 'comprehension' questions, and 2 word lists. These relatively formal levels were employed, as both types and tokens were not sufficiently common in casual speech.

The word list for all PCs (WL2)
For the general distribution of the glide all 17 PCs were represented. The number of lexical ltems for each was worked out in approximate accordance with the frequencles of occurrence of RP consonants calculated by Fry 1947, and cited in Gimson (1980:217-218) and Crystal (1987:165). Having reconverted the relative frequencles of the consonants being studied to percentages, the number of ttems to be allocated to each PC was then established. A total of \(k=65\) words was used. Each was given a number between 01 and 65, and a table of random numbers was used to determine the place of each word in the list. As an introduction, the list started with the names of the first 8 months. Further distractors were scattered in the list to make a total of 80 items (app 7122).

The reading passage and Wh1
The reading passage concentrated on the ellcitation of words for
II. More frequently occurring ltems were the first choice. Then words with similar morphological and phonological shapes were added. They were woven into the reading passage, entitled the evils of drink, (not based on Jeremiah 25:27 'Drink ye, and be drunken, and spue'). It was presented to the participants in printed form on 2 sheets of 14 paper (app 7110). The 31 items were reelicited as word list 1 (app 7121).

4323

\section*{The comprehension questions}

To divert attention from the experimental content, in the pilot test, a distractor was contrived. It took the form of a number printed at the end of each line ( \(n\) \& 4). This was pointed out to the subjects, and they were told that they were expected to look ahead and pause in their reading before the end of the line at the word indicated by the number. The subjects were told that this was to see how far ahead they looked while reading, and how accurately they responded to the number stimulus. it served as a very efficient diversion, too efficient in fact, since it threatened to destroy any attempt at natural reading, Consequently changes were made. First, the numbers at the end of each line were altered to coincide with more natural pauses in the passage. This was better in producing more connected reading, and the coincidence was commented on. Second, the ldea was abandoned. It was felt that while adults may cope reasonably adequately with understanding and carrying out the instructions, the younger pupils may well experience difficulties. A different attempt to distract was introduced. This took the form of a series of questions. They were ostensibly to test the comprehension abllities of the subject, but Intended to ellelt in a different manner, most of the /// words in the reading passage.

\begin{abstract}
It was planned to conduct each interview on identical lines, with identical instructions, identical procedures, identical tasks and in identical conditions. This implies a completely neutral interviewer. But because subjects were not identical, some deviations from the standard plan occurred. They will be explained in the appropriate sections below. In any case, social formallty may be impossible to measure (Reid 1978).
\end{abstract}

\section*{Locations for interviews}

All the interviews took place during standard school hours. Work began in the city centre school with the younger group, then those in the older group were interviewed. Later the suburban school was visited. The younger pupils were seen in the lower bulldings in Chlldwall, and the sixth formers were recorded in the upper school in Woolton. it had been hoped to use the same room in each building for all members of a group. This was impossible. Rooms varied in size and suitabllity. Their sizes ranged from small offices to classrooms, to llbrarles, to assembly halls. Nor was it always possible to ensure insulation from the everyday activities of school life. The sounds of modern interactive teaching techniques occasionally impinged on the recordings, as did the more erratic sounds of playground noise. Rather more distracting were the sound of a lawn mower cutting the grass immediately outside the classroom in the city centre school; or in the suburban lower school, interviewing in the hall extension whlle a singing lesson was in progress in the main part. There was an inevitable reduction in the quality of tile recordings and subsequent impediments in Interpretation. But they did provide a source of amusement for interviewer
and interviewee. While this helped to make the occasion seem less formidable for some, it did mean that not all levels, of formality were as controlled as anticipated.

The standard procedure was for each subject to be recorded singly with no onlookers. This was adhered to rigidly with the exception of the occasion when a subject was interviewed in the presence of the 2 next candidates. (It occurred just before a changeover of lessons, from which the subjects had been abstracted, and was intended to reduce disruption). I also suspect that in group S6, some discussion of the interviews took place between participants, resulting in possible collusion.

4332 Recording equipment
The tape recorder used in the Interviews was a Marantz superscope CD 320, from the phonetics laboratory of the Department of Linguisties in UCNW Bangor. it was used in conjunction with a separate microphone, which was usually attached to the jacket or tie of the subject. The interviews were recorded using Agfa LNX 90 tapes; these permitted up to 45 minutes recording, sufficlent for 3 interviews, each side.

Plan of interview
All the interviews were conducted by the researcher. The reason for his presence was given to prospective particlpants as his interest in recording samples of their reading. Subjects were not told the specific purpose of the research, nor indeed that this was involved. Some subjects had to be reassured that it was not a test of reading abllity, In a faw cases it was necessary to explain that nobocy else was going to llsten to their recording.

When each subject came into the room they were asked to sit down and put their name on a list. At the end of the intarview, 1 entered opposite the name, from the tape counter, the pair of three digit numbers indicating where each interview began and finished. This was misinterpreted by a subject in the suburban upper school. He added after his name his telephone number and then his address. Isaiah (53:6) begins 'All we like sheep...'. Most of the rest followed his example.

After putting on the microphone, subjects were presented with the reading passage. They did not see the material prior to this. Before they were asked to read it in their usual volce, they were told that after they finished reading, they were going to be asked some questions on its content. The cassette recorder was then switched on. Each subject was asked to say his name. After the recording levels had been checked, they were told to begin. This procedure progressed according to plan in most cases.

After the reading, the comprehension questions were given orally. The order of the 21 questions was arranged to elicit the items sequentially. This strict format was not always adhered to. The reasons for it being thwarted were that firstly, some subjects extended their replles so that they anticipated items to be ellcited by subsequent questions. In such a case those questions were omitted. Secondly, subjects over all 4 groups, were unable to remember some of the ltems required. At first they were prompted by ancillary questions, or directed to look at the relevant paragraphs. Since the hesitations appeared to make some of the younger puplls in the first school apprehensive, it was decided to tell subsequent subjects that they were allowed to look at the sheets for the words. This became counter productive in that tise resp.jnses consisted in a reading of the relevant sentence, as opposed to a more spontaneous elleltation.

When the questions were finished, informants were asked if they noticed anything about the kind of words they used in their rusponses. This was to see if they had spotted the real purpose of the task. They were then presented with the /// word list (WLI). After this they were given the passage again and encouraged to read it in what they consldered to be their poshest or broadcasting voice. The final ltem was the longer panconsonantal word list (WL2). At the end they were thanked for their cooperation, and the tape recorder was swltched off.

\section*{4340 \\ Quantitative techniques}

The quantitative analysis of language this century may be divided into four phases. First there was the use of numerical methods in word counts and in quantifying relations between words. Such were the approaches used by Zipf 1932 in connection with word frequency; Swadesh, and Gudschinsky 1956 with glottochronology to measure the extent to which languages have diverged from a common source, using the technique of lexicostatistics; or the techniques which Fucks 1956 offered for measuring word formation. The use of statisical techniques for hypothesis testing was often coupled with a more informed awareness of the different methods of selecting population samples. When these samples were of people they were selected with a view to using socioeconomic features to account for linguistle variants (ln the strong version), or to correlate with them (in the weaker form). More sophisticated approaches were developed. As Naro (1980:159) observed "The central empirical problem for variation theory is how to disentangle the data." So cumputer programs were devised to cope with the increasingly complex interrelationships between increasing numbers of
explanatory parameters. In particular the varbrul programs (Sankoff 1978) were initiated and extended. In the 1980s, models and methods from other disciplines were borrowed. The mathematical technique of principal components analysis used by Horvath 1985 (and further explained in Horvath a Sankoff 1987), removes a defect of earlier attempts to link variation to predetermined extra linguistic correlates. With this newer approach, speakers are grouped primarlly on their linguistic behaviour. Only after thls has been done are nonlinguistic parameters included. A simllar technique is that of cluster analysis (See Scholfield 1987).

There has been a reaction against the excessive emphasis on quantitative models and methods, and the development of computer assisted analysis (to the exclusion of all else). Among others Romaine 1982a does not accept that there is anything in the nature of language which entalls a description of it in terms of a variable rule or other such formal expression of quantitative relations. There was an increasing likelihood in the development of these technically more ingentous statistical devices, that some practitioners were in danger of going out of their depth in, for them, the uncharted waters of advanced statistical analysis. A similar comment may be applied to relatively unadvanced techniques of presentation of results and testing of hypotheses. In order to provide some assistance for linguists, textbooks such as Butler 1985, Woods et al 1986, and L Mllroy 1987 have appeared, with Scholfield (in preparation).

The quantitative methods used in thls investigation are comparatively simple. This is partly to avolf falling into the traps outlined above, but largely because the nature of the data and its manner of
collection did not necessitate complex methods. The partlcipants were not chosen on a rigid sampling basis; they were not intended to be deliberately representative of thelr age groups. Consequently descriptive rather than predictive or inferential statlstics are used.

Some researchers have had no problems with scorling for phonologlcal variables and their phonetic variants. Problems can emerge in 2 main areas: social significance and in the effect of direction on the phonetic criteria. 1 shall consider these separately. First, social signlficance. Many of the LVs chosen for early work in the fleld of variation were selected largely on the basis of an a priori connection with soclal stratlfication, so that the data gathered neatly provided empirical evidence of the relationship between a specific varlant and a given level of class. Even when Romaine 1975 interprets 'social reallty' as referring to the way in which people make judgements about social classification and the prestige of particular varlants, the resolution of the problem stlll exlsts as far as the glide is concerned. Since Romalne was Investigating LVs which were selected because of their social significance, such as the glottal stop, (ing), (au) and (r), she was able to incorporate the cline of approval into her scoring system. A linear scale for both components (varlants and class) with a direct relationship between each, was convenient to calculate and impressive to display graphically. This was all the more so when soclal class particularly, and linguistic variants sometimes, were treated as being discrete, 1 did not attempt a soclally based scale for scoring,

The other problem, that of phonatle interpretation, has a dual aspect. The first concerns the phonologlcal status of the glide; the second involves pelatalization. The distinction between discrate and continuous variants is generally made on the basls of the consonantal or vocalle quallty
of a phone. Consonantal variants are more readily interpreted as diserete. Vocalic variants, as for instance Trudgill 1974 and Norwich (a), may be divided into arbitrary stages, providing a compact set of varlants. Given a large degree of consistency in transcription on the part of the researcher, this allocation of variants may be considered acceptable for the purposes of scoring. Glides are usually taken as having an intermediate (if varlable) status between consonants and vowels. But when considered in conjunction with categorical PCs such as /f \(\mathbf{v} \mathrm{r} /\), the implication of discreteness is reflected in the clearcut distinction which exists on an aural level, between presence and absence of the glide. When it comes to other PCs, the distinction is not as dichotomous. This second aspect revolves around palatalization, and the implications for the direction of the scale. The variants are less discrete. /t \(d\) s \(2 /\) have phonemic coalescing varlants. Other consonants like \(/ \mathrm{h} \mathrm{n} /\) have nonphonemic palatallzed versions \(\ln [\mathrm{f}\) ] and [א]. While [+ glide] and [- glide] can be seen (and heard) as belonging to the same dimension, palatalization complicates the issue.

4342
Quantifying the varlants to incorporate coalescence
In this work coalescence was first interpreted as an extension beyond consonant plus glide. A three part system of scoring was originally considered.
\begin{tabular}{cc} 
points & varlants \\
0 & {\([-\) gllde } \\
1 & [+ gllde] \\
2 & coalesced
\end{tabular}

The allocation of 2 polnts for a coalesced consonant simply obscured the effect of the glided veriant. Groups in the clty centre scored more than the suburban groups, desplte the fact that thelr levels of gllding were less.

From a phonetic standpoint, coalescence may be regarded as lying beyond it glidel. It can also be argued that palatalization does not incorporate a phonetic glide [j]. Consequently a linear scale from [- glidel to [+ glide] on to coalesced, puts lack of gllde at different ends of the spectrum. The second approach concentrated on the presence of the glide or otherwise, (le glide drop or coalescence), with 2 points used on the scale.
\begin{tabular}{cl} 
points & variants \\
0 & {\([-\) gllde \(]\) or coalesced } \\
1 & {\([+\) gllde \(]\)}
\end{tabular}

This approach captures the essential emphasis on gllde presence serving to evaluate the varlable amounts of gllding between groups and individuals. it was also useful in those cases affecting inyu) particularly. . where a tendency in a few individuals towards a palatallzed \([\mathrm{K}]\) was possibly indicative of inclpient glide drop.

4233 The indices
The idea of an overall index of varlation was conceived of, as a way of identifying extreme individual speakers, and of providing a quantitative measure of gliding. At first the data for all PCs were combined into a single index. While this had the advantage of being representative, due to the near categorical nature of most PCs it had the disadvantages of falling to discriminate satisfactorily between most participants, and of identlfying Individuals at elther ends of the gllding spectrum. So it was decided to create an index for the variable PCs. Because of the dlfferent range of varlants for coalescing and plain PCs, these groupings were considered separately. The first plain Index was based on both \(/ / /\) and \(/ n /\). But even this smaller combined index obscured important differences in the levels of
gliding for the component PCs, as they are at opposite ends of the spectrum of glide loss. Finally a decision was made to create a separate index for each of the plain mini varlables. This separation had the advantage of facilitating a quantitative comparison of group and individual levels of gliding. In addition the lexical basis of the indices was modified so as to focus attention on the most discriminating or variable items.

4344 Use of variable words anly
In order to delete less variable words from the index the following approach was adopted. The 4 coaleseing consonants potentially occurred in a total of 18 items. Some of these exhibited more variation than others: some none. Using the overall figures, the predominant of the variants was selected. A percentage figure of \(90 \%\) was chosen as the cutoff point. All words with a predominant varlant below this percentage were considered as eligible for the index. This reduction raises the question of the minimum number of tokens of a variable needed for rellable statistical analysis. Since the number is less than ten, there is a strong likelihood of random fluctuation. Consequently analytical conclusions are to be treated with caution.

By excluding all categorical and near categorical items, it was belleved that a better measure of variabllity was capable of being achieved. There was however a difference in the range of types of ellcitation used for each mini variable. The (lyu) words were taken from the reading passage (twice), the responses to the questions, and the word list; that is four occaslons of ellcitation. All the gllded variants for a given individual were counted. These were then expressed as a percentage of the total valld tokens for each speaker (excluding mispronunciations and misreadings). A
proportional figure better reflects the incidence of gliding rather than a simple score. Thus the index ranged from 0 to 100 , with results given to 2 significant figures. A similar approach was adopted for inyu). The difference here is that the data were based on the single ellicitation in the panconsonantal word list. The indices were calculated for each of the 77 participants, for each of the 4 groups and for the global total of subjects.

4345 Use of components of \(X^{2}\) values
For testing significance, use was made of the \(x^{2}\) test. While this is a common approach, there is an extension of lts use here. Since the calculations were done by hand, it was possible to note the size of the contributory components to the final statistic, derived from the cells for the 0 - E values, Some of these components were more critical in their effects than others. Any which contributed approximately a third (or more) to the final statistic were noted and used to pinpoint the varlant and/or group, primarily responsible for any significant difference. Without thls, the final statistic only gives an indication of the significance of the set of results, and not wherein that signlflcance may be found.

4400 Problems in interpreting the data

\begin{abstract}
In most cases the translation from sounds on tape to marks and scores on paper proved to be relatively uncomplicated. However the course of true Linguistically Orientated Vocabulary Experiments never did run smooth.
\end{abstract}

\section*{4410 Aberrant pronunciations}

There were occasions when certain pronunciations suggested that the word was unfamiliar and a variety of aberrant pronunclations emerged from the tapes. My first classification led to diffleulties in allocation. At the suggestion of my supervisor [PJS], a more specific classification was undertaken. In this, a token is allocated objectively to a given group. Occasionally a subjective decision had to be made. This classification has 4 categories.

4411 Use of a regular local variant
The most prominent example involved the word aluminlum for many people in Liverpool this ends with the alveolar nasal \([-n]\) as opposed to the standard bllabial [-m]. Other individual lexical items had regular variant pronunclations, (which are used elsewhere); both genulne and tribunal had orthographic 〈l> pronounced as [ail and [1]. For most subjects, as indeed for many RP speakers, february has lost the first /r/ and is now [febjuerld. But participants *41 and \#84 used a [w] gllde. In addition communal had an epenthetic [i] before the final syllable, but only in those cases where the stress was shifted forward. The shlfting of stress in a werd, to the syllable after the standard position, is a feature of Scouse. In the interviews,
forward shifting of stress occurred in impudent，prelude，salutary，deluge， communal．Examples not in the corpus are the use of adver＇tisement and main＇tainance，both influenced by the verb，as they retain the verbal diphthong．A more classical example collected by the author was the use， when stopped by a traffic policeman，of the form［pa＇日in n］for＇parthenorn

4412 Errors due to lgnorance of word
It was clear from the readings of the passage and the lists，that in both schools and even at both age levels，some words were quite unfamiliar （as subject \＃7 commented），some were unusual，and many were unllkely to be part of an active vocabulary（\＃42）．This led to guesses being made for some words，with a consequent unrellabllity and lack of comparabillty．Typlcal comments were that the items were＂big words＂（passim）；＂long words＂（\＃08， \＃41，\＃47）；or from some first year puplls，＂hard to read＂（\＃13，\＃18）．

The clearest example of lgnorance concerned peruse．This was scarcely recognizable or indeed recognized．It was often seen as a compound of the verb to use，and acquired a glide．A similar strategy was used with pleurisy．〈ple〉 was interpreted as a prefix pronounced［pll］．A trio of seemingly similar sounding ltems in the word list－sues，surt，sult－caused considerable confusion．The first became bisyllabic；and the second became homophonous with the third．In C1 seven tokens were recorded for tribunal with stress on the first syllable and shwa in the second．Of the seven，four were given a gllde．None was accepted as valld．A final example of word Ignorance was hallucinate Common renderings involved analogy with the monosyllable hall，and／or the changing of medial［s］to［k］．

In this category were placed words which were felt to be intuitively familiar to most subjects. The almost ubiquitous forward shifting of stress occurred in ridicule, tru'ant, a'venue. Slips of the tongue had lupins occasionally metathesized to lunips.

\section*{4414 Lack of phoneme}

Problems also arise when individuals do not have specific sounds in their repertory, in this case \(/ 8 /\). For analysis a choice of alternatives is available. We can elther regard the subject as having an underlying phonological \(/ 8 /\), or we can accept the phonetle realization as an instance of [f]. Because of the pauclty of examples, both Instances were scored as \(10 /\).

4415
Indistinct sounds and the reallzation of /u/

Even after repeated playing of the tapes, a small proportion of still indistinct sounds had to be excluded from the analysis. This was the result of a variety and mixture of factors - unclear enunclation on the part of a subject; the tendency for some subjects to centralize /u/ in certain items, or not to use lip rounding; and the imperfections of the researchers auditory apparatus. With the assistance of staff members, Dr Frank Gooding and Mr Emlyn Parry the laboratory technician, use was made of some of the recording and playback techniques avallable in the Lingulstics department of UCNW. The slow scan helped to resolve some cases. It was hoped that spectrographlc analyses may have resolved the more problematic instances, but it was frequently difficult to distingulsh a putative \(/ J /\) especially when a cenirallzed [U] was peesent. The change in the nature of the vowel from back to front causes problems such as those Identifled by Painter (1979:21).
"The nonsyllabic vocolds are very easy to identify when they are followed by vowels with a tongue position different from themselves, since \(F_{1}\) and/or \(F_{2}\) change frequency slowly."

As he demonstrated, in combinations like [wl], [ju], \(F_{\text {, changes only a little }}\) from the first component to the second; while \(F_{a}\) sweeps dramatically up and down in frequency. In the case of [ju], there is a change in frequency of 170 down. On the other hand, in combinations like [wu], [jl], there is little change to be observed in the syllable. In connection with this, Ladefoged cop cit:205) mentions that adding lip rounding to front vowels lowers the upper formants.

\section*{4420 Features accepted or excluded}

The kind of features whlch were accepted included the following. Words which have variable voicing depending on whether they are being used nominally or verbally, (like excuse, abuse), did not have these functions distinguished. Allophones of /u/ were tolerated. These comprised what Wells (1982:291) referred to as "low level phonetic (reallzational) varlabllity, The centralized version used in Scouse, forms of the reduced vowal including shwa; and for words with a following \(\langle-r\rangle\), vowels which llustrate what Wells (1982: 237) calls the second FORCE merger ( \(=\) CURE lowering). Variants like [-z] in deluge, what appeared to be sllps of the tongue like the omission of the nasal [ \(n\) ] in insoluble (\#37, *50), where the relevant. syllable was not affected, or the introduction of an epenthetic vowel in words like lewd (\#05, \#07), were also accepted. In addition if an informant gave both a gllded and unglided form in the same reply, both were counted. Thus \#36 cianged from a gllded to an ungllded version of suluta Features which were rejected mainly reflected what was felt to be

\begin{abstract}
unfamiliarity with a word. Thus a nonstandard stress pattern such as pre'lude was excluded. Augmented vowels such as [1] and [el] also in prelude, [ald in deluge were not admitted. If a different word altogether occurred like insolvable for insoluble \#64, \#65), this was automatically rejected. The decisions were not always as clearcut as the last examples may suggest. The word salutary sometimes came out as solitary and as such was not counted. But on occasions the distinction was tenuous; if there appeared to be any uncertainty, rejection ensued. Inevitably a certain arbitrariness was involved. For some words the low totals for valid tokens indicates the lack of familiarity. But many excluded tokens were not lost forever. In /// they proved to be useful in the analysis of stress and syllablfication to be made in section 54 of chapter 5 which follows.
\end{abstract}
development

\title{
CHAPTER 5
}

ANALYSIS OF RESULTS

\section*{5000 Introduction to analysis of results}

\begin{abstract}
Rossini is reported to have said of the music of Wagner that whlle it had its moments, it also had its quarter of an hours. Chapter five is the longest of all. It presents the results of the interviews, together with analyses of the linguistic explanatory varlables for variants, and also some nonlinguistic aspects of glide usage.
\end{abstract}

5010 Divisions of preceding consonants by gliding status

In terms of frequency of gllding, taken over the global data for all informants, four divisions of preceding consonants can be discerned.

Division 1 Categorical environments are those which show \(100 \%\) presence or absence of the glide. Three involved total gliding. They were the lablo dental fricatives /f \(\mathrm{v} /\); and word Initial \(/ 0 /\). A gllde was absent for \(/ r /\). The results are given in 85110 .

Division 2 Some environments were not completely gllded, but elicited only a few unglided variants. Because they may represent incipient glide loss, they are given a separate examination, l have therefore introduced a quasi categorical ( \(Q\) ( division where gllding percentages go from an arbitrary cutoff of about \(90 \%\) to just below 100\%. These PCs are covered in 55120 - 55150 . The quasi categorical consonants include the bllabial stops \(/ \mathrm{b} / \mathrm{p}\), the velar stops \(/ \mathrm{kg} /\). In addtion, the lablal nasal \(/ \mathrm{m} /\) and the dental fricative \(/ 0 /\) fall into this division. The glottal fricative \(/ \mathrm{h} /\) is covered here for the reasons given in 65150. (The bracketed figures for /h/ in table 50-01 include the palatal variant \{ç]).

Division 3 The third division consists of those basically plain consonants with a gliding flgure of much less than \(90 \%\). Thus \(/ n /\) and \(/ 1 /\) are referred to as probabilistic. Their analysis is more extensive. Since they exhlbit more variation than the other plain consonants, both lexically and by groups and individual speakers, they are designated mini variables.

Division 4 A separate division of coalescents is made for those environments where there is a three (or possibly four) way set of phonemic variants. They are /t d \(5 \mathrm{z} /\), presented in \(\mathbf{5 5 2 0 0}\).

The total potential tokens in the complete corpus is 11858. This is made up of
\begin{tabular}{lr} 
categorical & 770 \\
quasl categorical & 2233 \\
probabllistic & 7469 \\
coalescing & 1386.
\end{tabular}

Data for the plain consonants are given in table 50-01. In essence the split is between coronals and non coronals. If we look back to dlagram 41-01 we can see that my results are not exactly ns lllustrated there. The Liverpool results show a small presence of [-gllde] in the stops \(/ \mathrm{p}\) b \(\mathrm{k} \mathrm{g} / \mathrm{l}\)

But more importantly, there is the unexpectedly large amount of degllding in the nasal \(/ n /\).


Table 50-01
Summary of results for all plain consonants
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
P C
\]} & \multicolumn{2}{|l|}{tokens} & \multicolumn{2}{|l|}{percent} \\
\hline & +g & \(-9\) & tg & -g \\
\hline 10 & 202 & 0 & 100 & 0 \\
\hline f & 226 & 0 & 100 & 0 \\
\hline \(v\) & 77 & 0 & 100 & 0 \\
\hline \(b\) & 261 & 3 & 99 & 1 \\
\hline \(p\) & 280 & 7 & 98 & 2 \\
\hline m & 285 & 6 & 98 & 2 \\
\hline \(k\) & 503 & 9 & 98 & 2 \\
\hline \(h\) & (192) & 13 & (94) & 6 \\
\hline \(\theta\) & 67 & 6 & 92 & 8 \\
\hline 9 & 68 & 8 & 89 & 11 \\
\hline \(n\) & 396 & 125 & 75 & 24 \\
\hline 1 & 134 & 459 & 23 & 77 \\
\hline 11 & 0 & 264 & 0 & 100 \\
\hline
\end{tabular}

5011
Some caveats
Before presenting the analysis and conclusions, the following points are made. Because of the composition of the groups of participants and the range of idiolects, conclusions based on global figures do not necessarlly apply to all of the groups. In turn, conclusions based on group figures do not necessarily apply to all of the individual participants within that group. A similar caveat applies to some words. Conclusions need to be interpreted with reference to the possibllity of categorical subenvironments within a PC. These cautiens apply especlally to divisions 3 and 4.

When the experimental results are presented, the distribution of tokens for each word across the four groups of participants is given. The left hand corner of the top row shows the total of valld tokens. This is followed by the abbreviations for the four groups of participants. The schools are distinguished by \(C\) for the city centre, and \(S\) for the suburbs. The age groups are shown by 1 for the first year pupils and 6 for the older sixth form puplls. The headings in the second row, \(t g\) and \(-g\), indicate presence and absence of the glide. For \(/ t\) d \(s 2 /\), the headings are preceded by co for coalescence. \(/ \mathrm{h} \mathrm{n} /\) have pa for the palatalized variant.

The lexical items and their reference number are given together with their group figures. At the end of each row are the corpus totals for the word. The bottom lines show the totals and percentages of varlant tokens for each group. At the end of this line, the figures represent the combined totals for all groups for a given PC. These figures add up to the number in the top left hand corner, le the grand total of tokens used in this part of the analysis.

5013

\section*{Tentative pointers}

Beginning with the non probabillistic plain consonants, pointers towards the speakers involved in glide loss began to emerge. They were most indicative in the coalescents. The same group of speakers turned out to be in the forefront of inclpient loss for the \(/ n /\) environment. The pleture regarding the purely lingulstic constraints on glide production was not as clearcut due to the existence of subenvironments (and micro varlables). But eventually the focus was sharpened on specific areas and sene useful conclusions were able to be made.

5100 The non probablilstlc plaln consonants

\begin{abstract}
Section 51 looks at the main group of plain consonants. Some show no variation; others recorded small areas. With the exception of /r/, all are predominantly glided. The bulk of the words tested come from the pan consonantal word list (WL2, app 2122), given as the final part of the interview. They are identified in the tables by PC and number. A few ltems from the reading passage are also included.
\end{abstract}

\section*{5110 \\ Categorical enviromments}

Four preceding consonants were found to be categorical. Unlike the other PCs where the data from the investigation are incorporated in the text, individual data for the categorical PCs are not. They appear in app 7211.

Post alveolar approximant /r/
The post alveolar approximant \(/ r /\), as Jones \((1960: 195)\) has pointed out, had largely relinquished its association, however brief, with the glide. \(\psi / u /\) But as late as the seventh edition of hls pronouncing dictionary (1945:479), Jones gave as an example of \(/ r /+\) gllde, the biblical name Zerulah, with the glideless varlant as an option. His preface (op cit: vi) says that the book was in the main a reprint of the fourth edition of 1937, so it reflected an earlier pronunciation of a word which was restricted in usage. Yet an optional glide for this name was also indicated in Chambers 1959, and for toreutic. Of the items tested, three had initlal consonant clusters. Given the phonotactic constraints of modE it is diffleult to imagine a combination more
unlikely to involve a glide than a clustered \(/ \mathrm{r} /\). The remaining item peruse was unfamiliar to many participants.

\section*{5112 Word initial}

When the environment is word initial, a glide is always present. This applles both to native words and to borrowings considered to be sufficiently anglicized. In the case of the Itallan car, the flat una printed advertisements have used the an form of the indefinite article. (See the comment by Philip Howard In The Tlmes 890314). Presumably this implies we are to pronounce the noun glideless. I have included in this section those tokens of peruse, which were clearly interpreted as compounds of use. This distinction was made on the basis of the pause between the 2 syllables, and on the lack of any suggestion of /r/. I have also included those words with initial orthographic 〈 \(h\) 〉 where \([h]\) is dropped. They amount to 21 tokens, \(10 \%\) of those for \(/ \mathrm{h} /\). Age appears to be important: the glide being dropped 12 out of 13 times in the younger groups. Most \([\mathrm{h}\) d dropping occurs in the clty centre school (27/36).

Labiodental /f v/
In terms of range of lexical ltems, the lablodentals cover a number of words which sharply divide into the ordinary and the arcane (app 731112). All participants exhibited no hesitation in gliding the words selected, which are of the former kind. There are in English las opposed to the selection of words used in these tests), about six dozen lexical items covered by the /f/ environment: 2 dozen are compounds of fuse, fusion Many of the remainder are infrequent items lika euphulsm, fumarole, vermifuge. Variation in the relevant vowel in furious, which produced 10 tokens of \(\mathrm{m} /\)
and 66 of \(/ 5: /\), had no effect on gliding. The /f/ environment is not as monolithic as this suggests, particularly where unusual words are involved. An example (which did not occur durling the interviews) concerns the name of a road in a new small housing development in West Derby, Liverpool. There the given name was Trefula Park, which 1 have only heard unglided, stressed on the second syllable and with the first open. This author glides it, with the first syllable stressed and closed, perhaps on the analogy of scrofula, which is probably not what the developers intended. This example does ralse the issue of how the individual speaker approaches an unfamiliar item. In this case, gliding may not have been considered by the nongliders. The variation llustrates the concomitant effects on the selection of a variant, of an open or closed syllable and stress.

5120 The labials

The three lablal PCs form a subgroup of virtually consistently glided environments. When loss did occur, it was concentrated in Cl (8/16 tokens), and in the item impudent (6 tokens).

The volced bllabial stop /b/
For \(/ \mathrm{b} /\), whether the syllable was stressed or not, the results show near categorical gliding. In the reading passage beautlful was always with a glide. (*07 did change from an unglided form to a glided version). The deviations are easily accounted for. In Cl, a single token from subject \#11 for the word bureau prevented this word being totally gllded. But the item proved probleinatical to many subjects in this group, teing unaccustomed to the printed form of the word. Subject *15 after attempting burrow, beret,
was prompted with the phrase citizens advice and immediately responded with a glided pronunciation of the appropriate word. "19 was possibly under the influence of the contents of the reading passage The evils of drink. His response was brewery. The distribution of vowels for bureau was almost even at 32 for /u/ and 31 for 19:/. While in C1, C6 and 51, 19:/ was used about a half more than /u/, the position was totally reversed in S6, where /u/ was recorded in 14 of the 16 tokens, confirming that in words with \(\langle-r\rangle\) the vowel does not affect gllding.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{Table 51-01 Variants for \(10 /\)} \\
\hline \multirow[t]{2}{*}{264} & Cl & & C6 & & S1 & & S6 & & |b1 & \\
\hline & +g & -g & +g & -g & +g & & +g & -9 & +g & -g \\
\hline b1 bureau & 10 & 1 & 20 & 0 & 16 & 0 & 16 & 0 & 62 & 1 \\
\hline b2 tribunal & 12 & 0 & 19 & 0 & 17 & 0 & 16 & 0 & 64 & 0 \\
\hline b3 abuse & 19 & 0 & 20 & 0 & 21 & 0 & 16 & 0 & 76 & 0 \\
\hline b4 february & 18 & 0 & 12 & 1 & 18 & 0 & 11 & 1 & 59 & 2 \\
\hline \(\Sigma\) & 59 & 1 & 71 & 1 & 72 & 0 & 59 & 1 & 261 & 3 \\
\hline \(\%\) & 98 & 2 & 99 & 1 & 100 & 0 & 98 & 2 & 99 & 1 \\
\hline
\end{tabular}

5122 The unvoiced bilablal stop /p/
Of the items representing /p/, spew, has a preceding tautosyllabic /s/; the others pupll, computer, impudent contaln the relevant syllable with and without stress. Only 3\% were mispronounced or misread. Sometimes impudent was stressed on the second syllable. Most gildeless verstons affected this item, with stress on the first syllable and a reduced vowel. The lower returns for item p2 pupll, reflect a serlous difficulty in the aufitory perception of the glide. It was most notlceabln in Cl . With the extremer Scouse speakers, (using a centrallzed unrounded vowel), the word
appeared to sound as if it had been misread for peopla This seems very unlikely. it is difficult to tell if this vowel ls masking gllde loss. The nine instances have been omitted from the data.


Use of this vowel became less prominent as we move both upwards in age and outwards in location. Six examples were recorded in C6, 2 In S1 and none in 56. The pronunciation of this word, along with book is almost an archetypal indicator of Scouseness. I have in the clty centre school heard book pronounced as a hypercorrect form with the centrallzed vowel and with a glide.

5123 The bilabial nasal /m/

The bilablal nasal /m/ was overwhelmingly gllded as expected. 4 out of the 6 occasions where the glide was omitted, occurred in Cl , half of these originating with subject \#15. Informant \#16 attempted formula with a gllde but changed this to a glideless version. Item \(m 4\) communal was stressed on the second syllable in 15 out of the 16 valld tokens in Cl. Alterition of stress did not affect gliding.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{\begin{tabular}{l}
Table 51-03 \\
Variants for \(/ \mathrm{m} /\)
\end{tabular}} \\
\hline \multirow[t]{2}{*}{291} & \(C 1\) & & C6 & & S1 & & S6 & & 1m/ & \\
\hline & tg & -9 & tg & -g & tg & & +g & -g & tg & -g \\
\hline nl amusing & 17 & 2 & 17 & 1 & 20 & 0 & 16 & 0 & 70 & 3 \\
\hline n2 emut & 20 & 0 & 19 & 0 & 20 & 0 & 16 & 0 & 75 & 0 \\
\hline m 3 formula & 18 & 1 & 20 & 0 & 19 & 0 & 16 & 0 & 73 & 1 \\
\hline nat communal & 15 & 1 & 19 & 0 & 17 & 1 & 16 & 0 & 67 & 2 \\
\hline \(\sum\) & 70 & 4 & 75 & 1 & 76 & 1 & 64 & 0 & 285 & 6 \\
\hline \(\%\) & 95 & 5 & 99 & 1 & 99 & 1 & 100 & 0 & 98 & 2 \\
\hline
\end{tabular}

In the list, 〈mu> was word medial or final. Word initlal position was tested in the reading passage. Musician was notable for glide loss, with an overall percentage of \(22 \%\). The differences between groups of informants, both in range of subjects and in amount of glide loss are important. The city school while providing a half of all the subjects, has nearly \(4 / 5\) of the ungllded participants and \(3 / 4\) of the unglided tokens. I am not sure why the largest percentage was recorded in C6. Phonologlcally what is important is that the relevant syllable is word initlal. This again indicates a weak point.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Table \\
Gllde
\end{tabular} & \begin{tabular}{l}
\[
51-04
\] \\
oss in music
\end{tabular} & & \\
\hline Group & Informants & Tokens & 8 \\
\hline Cl & 7 & 10144 & 23 \\
\hline C6 & 9 & 16141 & 39 \\
\hline S1 & 2 & 3142 & 7 \\
\hline S6 & 3 & 6132 & 19 \\
\hline \(\Sigma\) & 21 & 35/159 & 22 \\
\hline
\end{tabular}

The velars form another secure gliding subgroup like the lablals. The reason they are placed after them is the lower level of palatal gllding recorded for \(/ \mathrm{g} /\). But a single item only was tested. It may be added that a word like figure is now more likely to be unglided by many British speakers, but not necessarily its derivatives, where shwa is less common.

Bailey (1977:45) recounts the observation that as an American southerner, when he moved to the northern states, he found that speakers may drop the glide after a velar even if it is word initial, as in gubernatorial, culinary or in recuperate. He recalls hearing an announcer on the BBC saying ['ridikul] for ridicule. Nothing is sacred. And Inclusion of the word cullnary emphasizes the demise of sacrosanctity, in Britain it is now generally glideless and with a stressed [^]. Jones (1945:102), while giving this as standard, also cites the pronunciation with a glide, which he says is old fashioned. Word initial position again demonstrating its place as a weak point in glide loss.

5131 The unvoiced velar stop/k/
Of the seven items for \(/ \mathrm{k} /\), five had first syllable stress, five had the relevant syllable in word final position, and in six it was unstressed. The choice of words may have affected the large level of gliding. Unstressed syllables with vowel reduction to shwa, and where main stress was on the syllable immediately preceding, as in particularly are prone to gilde loss. It is again important to note that seven out of the 9 unglided forms were recorded in Cl . Overall, in terms or lexical items, ridiculous collected 6 out of the 9 drops. This was accompanled by shwa. It followed an unstressed
syllable, and was the longest word of the set, so that post tonic stress was minimal. Of the four instances in Cl , glide loss followed an aspirated \(\left[\mathrm{k}^{n}\right]\) in 2 cases. Also in this group, the item ridicule was quite unfamillar.

Table 51-09
Variants for \(/ k /\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{512} & & \multicolumn{2}{|l|}{Cl} & \multicolumn{2}{|l|}{C6} & \multicolumn{2}{|l|}{S1} & \multicolumn{2}{|l|}{S6} & \multicolumn{2}{|l|}{/k/} \\
\hline & & & -9 & & -9 & tg - & & & g & +g & -g \\
\hline k 1 & excuse & 18 & 0 & 19 & 0 & 20 & 0 & 16 & 0 & 73 & 0 \\
\hline k2 & rescue & 20 & 0 & 20 & 0 & 21 & 0 & 16 & 0 & 77 & 0 \\
\hline k3 & barbecue & 19 & 1 & 20 & 0 & 21 & 0 & 16 & 0 & 76 & 1 \\
\hline k4 & ridicule & 4 & 1 & 16 & 0 & 20 & 0 & 16 & 0 & 56 & 1 \\
\hline k5 & prosecute & 20 & 0 & 20 & 0 & 21 & 0 & 16 & 0 & 71 & 0 \\
\hline k6 & accurate & 19 & 1 & 20 & 0 & 21 & 0 & 16 & 0 & 76 & 1 \\
\hline k7 & ridiculous & 15 & 4 & 19 & 1 & 19 & 0 & 15 & 1 & 68 & 6 \\
\hline & \(\sum\) & 115 & 7 & 134 & 1 & 143 & 0 & 111 & 1 & 503 & 9 \\
\hline & \% & 94 & 6 & 99 & 1 & 100 & 0 & 99 & 1 & 98 & 2 \\
\hline
\end{tabular}

5132
The voiced velar stop \(/ \mathrm{g} /\)
In contrast to the seven items for \(/ \mathrm{k} /\), the \(/ \mathrm{g} /\) environment was tested using a single item, due to lts low functional load (app 7362). There was consequently a small number of tokens. which fall marginally below the \(90 \%\) cutoff for glides. Because it is separated from the PCs in the probabllistic group by more percentage points than those in the \(\mathcal{Q}\) group, it is more conventent to treat it as the latter. Abetter item is regular.

In S6 the gliding percentages for /g/ were lower than any of the other groups. This was due to the use of the labiovelar [w] in place of the palatal glide. Regarding the \(/ g /\) environment, \(I\) mention In passing, the comment of a friend concerning his aunt. He reports that she always referred to her. car as a Ford Angular. She had no connectlons with east Anglla.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{Table 51-10 Variants for /g/} \\
\hline 76 & Cl & & C6 & & S1 & & S6 & & 191 & \\
\hline & +g & -9 & +g & -g & +g & & +g & -9 & +g & g \\
\hline gl jaguar & 17 & 2 & 18 & 2 & 20 & 1 & 13 & 3 & 68 & 8 \\
\hline \(\Sigma\) & 17 & 2 & 18 & 2 & 20 & 1 & 13 & 3 & 68 & 8 \\
\hline \(\%\) & 89 & 11 & 90 & 10 & 95 & 5 & 81 & 19 & 89 & 11 \\
\hline
\end{tabular}


5140
The dental fricative /O/

The rarity of \(/ 8 /+/ \mathrm{ju} / \mathrm{is}\) emphasized by such words as Thucydides, Thule, Thuringla; and thurible, thurifer with the related word for incense thus \([\theta(j) u s l\). Because of this rarlty, a single word only was used. Hughes \& Trudgill (1979:35) were of the opinion that glide use with this PC had disappeared in much of the north of England, (without belng more specific). Yet the evidence from these recordings shows that it has a dominant presence In Liverpool, with a glide in \(92 \%\) of tokens. The response to untested words is difficult to assess, but it is worth noting that over half of the items for this PC have the relevant syllable word inltlally, (App 7321). This may predispose an unglided pronunciation espectally if the word is unfamlliar.

The varlable (th) sometimes ralses problems, since the lablo dental fricative [f] can be substituted for [ \(\theta\) ]. Romaine 1975 excluded such speakers from a group index. I include here, those using [f] for / \(8 /\). Both Instances of glide loss in S 1 were by [f] use:'s, which is categorical for them elsewhere. It may have a bearing on their perception of \(10 /\).


5150
The glottal fricative h/
/h/ has a more complex patterning than the other PCs in this section. If it appears as a fricative it may be regarded as a strong voiceless onset of the following vowel. Alternatively it may be omitted, or It may be palatalized. Here, \(/ \mathrm{h} /\) was glided \(78 \%\) with a glottal form, and \(16 \%\) with the palatalized version [q.J]. This leaves \(6 \%\) for the unglided variant. In C1 /h/ was pronounced in most tokens, suggesting a level of formality greater than natural speech, where it is more likely to be omitted. In fact only \#19 omitted \(/ \mathrm{h} / \mathrm{In}\) each of the three words. in Cl of the five unglided tokens, three were provided by subject \#14 (and all with [h]). They were accompanied by a fronted vowel, which can mask or elliminate a glide.
/h/ is treated separately from the four main coalescing consonants for the following reasons. First its palatalized form is not phonemic. In the context \(/ \mathrm{h} /+/ \mathrm{J} /+/ \mathrm{L} /\), as in hue, the phonetic realization (in RP) is often the voiceless palatal fricative [ \(¢\) ], giving rise to oppositions between \(/ \mathrm{J} /\), /h/ and [\&]. Gimson (1980:212) has raised the possibllity of phonemle status
for [ç], exemplifying this with the trlo you, who, nue. But the number of words involved is quite small, and as alternative pronunciations are available, \([c ̧]\) is treated as a realization of \(/ \mathrm{h} /+/ \mathrm{J} /\). (Gimson 1980; Roach 1983). The second reason for separate treatment lnvolves the omission of [h]. In the words used here, it promotes the vowel to segment initial position, and this induces automatic gliding. Third, it is easler to make comparisons with Horvath 1985 since she used only the four phonemic coalescents. Lastly, Chomsky \& Halle 1968 have rule 121 specifically for that group (84112).
```

Table 51-08
Variants for /h/

```

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & Cl & & & C6 & & \\
\hline & & pa & tg & -9 & pa & +g & -9 \\
\hline n1 & huge & 5 & 9 & 3 & 0 & 16 & 0 \\
\hline h2 & human & & 12 & 1 & 0 & 17 & 0 \\
\hline h3 & humorous & 1 & 15 & 1 & 0 & 16 & 1 \\
\hline \(\sum\) & & 9 & 36 & 5 & 0 & 49 & 1 \\
\hline 8 & & 18 & 72 & 10 & 0 & 98 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline SI & & & S6 & & \\
\hline pa & +g & -g & pa & tg & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(n 1\) & huge & 3 & 15 & 2 & 1 & 14 & 0 \\
\hline h2 & human & 10 & 9 & 1 & 9 & 6 & 0 \\
\hline h3 & humorous & 1 & 15 & 4 & 0 & 15 & 0 \\
\hline \(\Sigma\) & & 14 & 39 & 7 & 10 & 35 & 0 \\
\hline 8 & & 23 & 65 & 12 & 22 & 78 & 0 \\
\hline 205 & & /h/ & & & 8 & & \\
\hline & & pa & +g & -9 & pa & tg & -9 \\
\hline hl & huge & 9 & 54 & 5 & 13 & 79 & 7 \\
\hline \(n 2\) & human & 22 & 44 & 2 & 32 & 65 & 3 \\
\hline h3 & humorous & 2 & 61 & 6 & 3 & 88 & 9 \\
\hline \(\Sigma\) & & 33 & 159 & 13 & 16 & 78 & 6 \\
\hline
\end{tabular}

5161 Evidence from slips of the tongue
During the course of the interviews, a number of sllps in pronunciation occurred. Some were genuine slips of the tongue: others were due to unfamiliarity with a word, either spoken or printed. Rather than discard them, those relevant to the present research were collected. They do at least provide an example of a different kind of elicitation. Their distribution was uneven and incomplete. Only 10 out of the 17 preceding environments were covered. Often only a single lexical ltem within each PC gave rise to the slips. And the older suburban group S6, were less prone than those in the other three groups. Within the groups concerned, not all individual speakers were affected. But despite the evidence being erratic and incomplete, some useful confirmations do emerge, I shall examine the coalescing environments separately from the basically plain consonants.

The slips which affected the plain consonants, confirmed the status of most of the near categorically glided PCs. For three speakers, hallucinate produced [-kju-] as a result of the transfer of \(\langle c\rangle\) to before the vowel \(/ \mathrm{u} /\). The same word for another led to \([-h j u-1\). For six speakers, pleurisy had Initial ['pj-]; while the voiced counterpart was noticeable in three slips involving blue [bjul, a version of soluble ['solibjuld, and the progressive assimilation by \(\$ 54\) in lure birds [ljo: bjaidz] - the latter not a strict example of the /Cju/ sequence. In Cl , \#07 caused himself some amusement by degliding the start of beautlful. It was rapldly corrected. Voluminous with metatheses produced [-mju-]. The use of gliding word medially for \(/ \mathrm{m} /\),
corroborates the distinction between this and the initial position, where glide loss seems to be making inroads.

5162
The plain nonprobabilistic PCs in general
For most of the plain nonprobabllistic PCs, and for most lexical items within them, the glide is retained. But they are not completely monolithic. Occasionally gliding is lost. The results from the \(Q\) consonants emphasize the categorical rather than the quasl. Appendix 7212 which records individual responses, shows an overwhelming sea of pluses with only the occasional islands of minuses and outcrops of mispronunciations. Out of 2233 tokens collected, only 52 were unglided. A few minor differences exist between the four groups of participants. Of these, the younger group in the suburban school stands out by its adhesion to gllding. This is in contrast to their coevals in the city centre. Of the 52 unglided tokens almost a half (22) came from Cl , the remainder being almost equally divided between the other three groups. Of the 52, thirty were shared almost equally between four lexical items impudent, ridiculous, enthuslastic, jaguar, the first pair Illustrating weak points for glide loss, particularly the effects of post tonic stress and the reduction of the /u/ vowel to shwa. This is a factor noted by Wells 1982:386, especially after non coronal consonants. In the case of musician, the confusion of following palatalizable consonants may have caused slips of the tongue in the flrst syllable, but it is this which is the most likely weak point (ef culinary, gubematorial). How far they spread is another question. If these deviations are the first steps in the process of glide loss, then their greater number \(\ln \mathrm{Cl}\) suggests that members of this group are (or were) in the forefront of change. Less than a half (31) of the total of partlcipants (77), were affected by unglided varlants. The greatest
number within a group was 12 in Cl , with the rest evenly divided between the other three groups. Most individuals were affected by gllde loss in a single environment: only 5 individuals covered another PC.

Glide loss progresses from word to word, or by subenvironment, rather than from PC to PC. But in the plain PCs there is (with the possible exception of \(/ \mathrm{h} /\) ) only a palr of alternatives - to glide or not to glide. With the coalescing consonants in the next section, there is the extra dimension of phonemic palatalization.

\section*{5200 The coalescing consonants /t \(d s 2 /\)}

The key and distingulshing feature of the coalescing series is that in British English 3 main variants exist - glide retention (including earller restoration), gllde loss, and phonemic coalescence. In this investigation the coalescing consonants provided a total of 1300 valld tokens out of 1386 posslble. Of these 560 (43\%) were coalesced, 378 (29\%) were glided; and 362 (28\%) were unglided. At first glance this indicates an overall preference for coalescence. Table 52-01 which gives the results for each \(P C\), shows that only the volced consonants \(/ d z /\) appear to have coalescence as the dominant varlant. /s/ is predominantly unglided, while /t/ is almost evenly split between coalescence and gliding. There is also a distinction between the stops and the contlnuants. The use of [- glide] in the latter is particularly outstanding, and to a lesser extent, the degree of coalescence in the former.


If the raw data are broken down by groups of particlpants, further observations can be made, based on the table and the graphs In 52-02.

Figure 52-02
\% variants for the 4 separate coalescing consonants: complete data


1 The same order for [- glide] in decreasing levels for each of the groups: le /s > z > d > t/

2 The overall similarity of each of the groups for \(/ t /\) and for \(/ d /\).
3 The similarity in the overall results for both groups in the suburban school, and to a lesser extent for the city centre school.

4 The distinction between schools for the volced consonants in coalescence and gliding.

5 An increase in gllding at the expense of coalescence for older pupils compared with younger.

6 C1 always has the lowest proportion of [t glidel; almost the greatest of [- glide]; and always the greatest for coalescence for each PC.

More coalescence in the city centre and low gliding for Cl characterize their position as leaders in glide loss. This is contrasted with the suburban school, where despite the more heterogeneous nature of the informants, gliding is still dominant.

But these conclusions need to be interpreted with caution and circumspection. I shall show that most. importantly, any results will be dependent on the items used for testing. This is due to the existence of identifiable subenvironments within a PC, which can colour the characteristics of each. Some of these have their own dominant variant, which may be categorical. Not all are categorical in the use of a single variant: those with more balance may be described as miero varlables. How extensive these subenvironments are in the present enquiry, will emerge from the details of the raw results below, (ie before removing the categorical chunks).

The overall results of the 446 tokens for this PC suggest a near equal split between coalescence and gliding, with a minimal fragment of \(1 \%\) for unglided tokens, and none for [čju]. But what this conclusion obscures is the existence of subenvironments and their \(Q\) nature.

Table 52-03
Variants for raw /t/
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{44} & & \multicolumn{3}{|l|}{\(C 1\)} & \multicolumn{3}{|l|}{C6} & \multicolumn{3}{|l|}{S1} & \multicolumn{3}{|l|}{S6} & \multicolumn{3}{|l|}{(t)} & \multicolumn{3}{|l|}{\(\%\)} \\
\hline & & co & +g & -g & co & tg & -g & co & tg & -9 & co & +g & -9 & co & +g & -9 & co & +g & -9 \\
\hline 11 & tune & 20 & 0 & 0 & 17 & 3 & 0 & 16 & 3 & 0 & 11 & 5 & 0 & 64 & 11 & 0 & 85 & 15 & 0 \\
\hline t2 & costume & 0 & 19 & 1 & 1 & 19 & 0 & & 21 & 0 & & 16 & 0 & 1 & 75 & 1 & 0 & 99 & 1 \\
\hline t3 & stew & 0 & 19 & 1 & 0 & 19 & 1 & 0 & 19 & 2 & 0 & 16 & 0 & 0 & 73 & 4 & 0 & 95 & 5 \\
\hline 14 & stupid & 3 & 17 & 0 & 2 & 18 & 0 & 1 & 20 & 0 & 0 & 16 & 0 & 6 & 71 & 0 & 9 & 92 & 0 \\
\hline t5 & literature & 18 & 0 & 0 & 16 & 1 & 0 & 17 & 0 & 0 & 16 & 0 & 0 & 67 & & 0 & 99 & 1 & 0 \\
\hline \(t 6\) & miniature & 16 & 0 & 0 & 19 & 0 & 0 & 21 & 0 & 0 & 16 & 0 & 0 & 72 & 0 & 0 & 100 & 0 & 0 \\
\hline \(\Sigma\) & & 57 & 55 & 2 & 55 & 60 & 1 & 55 & 63 & 2 & 43 & 53 & 0 & 210 & & 5 & & & \\
\hline 2 & & 50 & 48 & 2 & 47 & 52 & 1 & 46 & 53 & 2 & 45 & 55 & 0 & & & & 48 & 51 & 1 \\
\hline
\end{tabular}

The distribution of varlants for all slx words lumped together over the four participant groups was tested for significant differences. Since the number of tokens for the unglided variant was low, they were added to the figures for coalescence, and listed as not gllde (~g). The \(4 \times 2\) contingency table is given in 52-04, Testing showed that for \(v=3, X^{2}=1.047\) which is not significant at \(10 \%\). From this we can conclude that the four groups of subjects are not definitely different, with respect to the words tested.
\begin{tabular}{|c|c|c|c|}
\hline & - 9 & +g & \(\Sigma\) \\
\hline \(C 1\) & 59 & 55 & 114 \\
\hline C6 & 56 & 60 & 116 \\
\hline S1 & 57 & 63 & 120 \\
\hline S6 & 43 & 53 & 96 \\
\hline \(\Sigma\) & 215 & 231 & 446 \\
\hline
\end{tabular}

In connection with this analysis, PJS has suggested that by lumping the data for all words together, it was possibly bending the rules regarding the independence requirement for \(x^{2}\). He therefore proposed a separate \(x^{2}\) test for the responses on each word. When thls was carried out (with the exception of miniature which was \(100 \%\) coalesced), the values obtained were
\begin{tabular}{llr} 
tune & \(x^{2}=6.974\) & significant at \(5 \%\) \\
costume & \(x^{2}=1.899\) & not significant at \(10 \%\) \\
stew & \(x^{2}=1.679\) & not signlficant at \(10 \%\) \\
stupid & \(x^{2}=3.202\) & not significant at \(10 \%\) \\
literature \(x^{2}=3.045\) & not significant at \(10 \%\).
\end{tabular}

The test results indicate 3 distinct subenvironments. Of these 2 are categorical: the suffix <-ture> which coalesces, and the cluster /st/ which is glided. It is only when the syllable is In word initial position that any significant differences occur. For tune whlle the overall flgures showed \(85 \%\) coalescence and \(15 \%\) gliding, and while these figures were matched almost Identically by \(C 6\) and 51 , the percentages for the remalring groups were
quite disparate. The younger pupils in the city centre were all coalescers. At the other extreme for the older suburbanites, coalescence occurred only twice as often as gliding, with percentages of 69 and 31 respectively. As we move across the four groups of pupils in the order \(\mathbf{C 1}, \mathrm{C} 6,51\) and 56 , there is a marginal increase in gliding. In return there is a small decrease in coalescence. This represents an example of a pattern in this investigation indicating the locus of divergence from \(R P\), which is to recur in other PCs. The components of the \(X^{2}\) analysis for tune show that the differences are due to the greater level of gliding in S6, and the nll level in Cl .

To evaluate the importance of these subenvironments in the totallty of the /t/ PC, 1 carried out a scan of dictionaries for relevant words (app 7331). While this makes no claims to be exhaustive, it did identify about 200 lexical items. Between 20 and 25 per cent fall into the <-ture〉 class. Most of the <-ture> items which exist are unstressed on the relevant syllable. The exceptions are mature and its compounds, and barblturia which do not have <-ture> as a morpheme suffix. These words are gllded in RP, but coalescence is also prevalent. Jones 1945 gave the glided form as an alternative for literature, and only the coalesced form for miniature. Both types used here were invariably pronounced with the coalesced consonant [ \(k\) ] and the shwa vowel (or the Scouse fronted [e]).

The other subenvironment involves the cluster /st/ which Pitts 1986 did not find distinctive (being generally ungllded). Surprlsingly, Jones 1945 gives as a rare variant of stupid the unglided form. In this survey, whether the cluster was tautosyllabic or not, the results show an overwhelming preference (94\%) for gliding. PJS has suggested that an explanation why the cluste- /st/ resists coalescerice may Involve three factors.
(f1) Normally after plain /t/ there is friction. In standard English this is aspiration [ \(t^{n}\) ]. In Scouse it can be affrication [t=]. No friction occurs for /st/.
(f2) Coalescence also results in friction after /t/, as [t*].
(f3) Coalescence is therefore less popular after /st/ because it will introduce friction, rather than (as in the cases of tune, literature), replacing the kind of friction in factor 1, with that of factor 2.

PJS concludes that in the case of /st/, the appearance of coalescence will be very prominent. His argument is borne out by a tendency, (most noticeable in the city centre school. where the participants are mainly Scouse speakers), to an affricated version in stupid used by \(12 \mathrm{k} \%\). This variant was most obvious if there was a momentary pause after the initial [s], (as with \#02). The momentary pause turns /st/ into /s/ \(+/ t /\). Thls sequence can more readlly recelve affrication than the cluster.
\(10 \%\) of Items found in the dictionary scan had /st/. When wo include <-ture>, a third of the lexical items in /t/ will show little or no variation both in Scouse and in RP. The remaining 65 per cent or so have the syllable elther word inltial (just under \(10 \%\) of the overall total), or word medial. Of the latter group, a sizeable number, (about 20\% overall, Incorporate the suffix <-tude>. In most forms of RP this is more llkely to be glided rather than coalesced. However the results for <-ture>, suggest the converse is more likely in Scouse and perhaps in Liverpool in general. Together, these subenvironments leave only about \(k\) of /t/ potentlally variable.

In three words of the reading list, /d/ occurred initially (and stressed). In the case of introduce it was morpheme initlal (and subject to either first or third syllable stress). Table 52-05 shows the distribution of variants recorded for each item. Degliding occurs only 4\% of the time. Jones (1945:133) had referred to a deglided varlant for duke, but classed this as facetious.

Table 52-05
Variants for raw /d/
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{29} & & \multicolumn{3}{|l|}{Cl} & \multicolumn{3}{|l|}{C6} & \multicolumn{3}{|l|}{St} & \multicolumn{3}{|l|}{S6} & \multicolumn{3}{|l|}{|d|} & \multicolumn{3}{|l|}{1} \\
\hline & & co & +g & -9 & co & tg & 9 & co & +g & -g & co & +g & -g & co & +g & -g & co & +g & -9 \\
\hline dl & duke & 20 & 0 & 0 & 15 & 5 & 0 & 9 & 12 & 0 & 8 & 7 & 1 & 52 & 24 & 1 & 68 & 31 & 1 \\
\hline d2 & dual & 16 & 1 & 0 & 17 & 3 & 0 & 18 & 1 & 1 & 10 & 6 & 0 & 61 & 11 & 1 & 84 & 15 & 1 \\
\hline d3 & during & 20 & 0 & 0 & 20 & 0 & 0 & 18 & 3 & 0 & 15 & 1 & 0 & 73 & 1 & 0 & 95 & 5 & 0 \\
\hline 04 & introduce & 8 & 5 & 5 & 12 & 7 & 1 & 3 & 12 & 2 & 9 & 7 & 0 & 32 & 31 & 9 & 44 & 43 & 13 \\
\hline \(\Sigma\) & & 64 & 6 & 6 & 64 & 15 & 1 & 48 & 28 & 3 & 42 & 21 & 1 & 218 & 70 & 11 & & & \\
\hline \(\%\) & & 84 & 8 & 8 & 80 & 19 & 1 & 61 & 35 & 4 & 66 & 33 & 2 & & & & 73 & 23 & 4 \\
\hline
\end{tabular}

The pattern of increased gliding and reduced coalescence as we move outwards and upwards in age is almost broken in the suburban school. When we conflate the results for [- glide] and coalescence, the \(X^{2}\) value for \(v=3\) is 20.71 which is significant at \(0.1 \%\). The greatest contribution to this analysis of groups came from the low amount of gllding in Cl , which attained only \(8 \%\). Coalescence appears to be more widespread for /d/ than for /t/. This may be attributed in part to the inhibiting factors assoclated with the /st/ subenvironment. But the extent of subenvironments is different. Appendix 733i shows that out of \(100 \mathrm{/d} /\) Items, \(40 \%\) are word initial. In this position /d/ was predominantly reallzed as the coalesced form [ J ], with a range from
\(68 \%\) to \(95 \%\) in the three words tested. But besides lexical differences, there were differences in the proportions used by each of the four participant groups. These are shown in table 52-06.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Table 52-06} \\
\hline & co & tg & -g \\
\hline Cl & 98 & 2 & 0 \\
\hline C6 & 87 & 13 & 0 \\
\hline S 1 & 73 & 26 & 2 \\
\hline S6 & 69 & 29 & 2 \\
\hline
\end{tabular}

The schools are differentiated by the use made of the coalesced and gllded forms. The city school (especially the younger participants) has a marked preference for the former. But in the suburban, the ratios between coalescence and [t glide] are closer. Among 56 the glided forms approach a half of the palatalized forms.

In the case of introduce, (representing about 10\% of the total lexical stock for /d/J, the overall percentages of \([+\) glide] and coalescence were more evenly divided. The younger pupils in the city school provided a source of greater interest in that a third of their tokens were unglided. Given the innovative role of \(C 1\), this suggests another incursion of \([-\mathrm{glide}]\) in Liverpool, in a position which is not as prominent as word inltlal. At the other end of the scale in 51. \(70 \%\) of tokens were gllded. This may reveal a less spontaneous approach to the interview than that of the younger puplls in the city school, or it may reflect a more careful enunclation.

The figures for /z/ rely on a single type presume. To further reduce the number of tokens, there was variable voicing across individuals. The unvoiced varlants are glven under /s/. Gimson (1980:213) had noted the increasing use of the unglided variant for this word, and he regarded the coalesced form [之] as old fashioned. All three forms were recorded here (see table 55-02), with considerable variation across the four groups of participants.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|l|}{\begin{tabular}{l}
Table 52-07 \\
Variants for raw \(/ 2 /\)
\end{tabular}} \\
\hline 64 & Cl & & & C6 & & & SI & & & 56 & & & 121 & & \\
\hline & co & +g & -9 & co & +g & -g & co & +g & -9 & co & +g & -9 & co & \(+9\) & -9 \\
\hline 21 presume & 8 & 0 & 4 & 12 & 4 & 3 & 6 & 6 & 6 & 2 & 10 & 3 & 28 & 20 & 16 \\
\hline 2 & 67 & 0 & 33 & 63 & 21 & 16 & & 33 & 33 & 13 & 67 & 20 & 44 & 31 & 25 \\
\hline
\end{tabular}

The most striking feature is the change in level of gllding from the nil recorded in Cl to the \(67 \%\) in 56 . The increase in gliding and decrease in coalescence (already been observed for \(/ t /\), as we go from inner to outer and from younger to older), obtains here as well. Despite the expected value for [+ gllde] in Cl beling less than 5, a \(X^{2}\) test was carrled out. For \(v=6\), the value was 18.75 . In proper circumstances this is significant at \(0.5 \%\). This value was attributable to the large number of glided tokens in S6. The results are less rellable being based on only 64 tokens.

For／s／the seven words tested include three monosyllablus，a pair of unstressed word initials，and an unstressed word final．The medial example consumer，has the syllable stressed．In addition，those tokens for presume with unvoiced sibilants are counted here．The total of tokens recorded for all words shows a preponderance of［－glide］．Again these overall figures obscure the subenvironments．As with／t \(d /\) the effects of word initial position are notable．In the five types where 〈su〉 was word inltial，94\％of the tokens were unglided，with only \(6 \% \mathrm{glided}\) and none coalesced．For si and s2 sues and suit，this may be because of possible homophonic confusion with shoes，shoos，and shoot．But word inltial 〈su〉 does not always have this preference as may be seen from words llke sugar，sure，where in RP the palatalized forms predominate over gllded．In the case of sugar，this is attested in spellings like＜shugar＞as far back as the 16c．Indeed in the 17 c and 18 c several words at present with／sju／were pronounced with／s／． Gimson（1980：190）gives as examples sult，supreme，assume．Whichever direction an individual word or speaker goes \(\ln\) ，word inltlal 〈su〉 is most susceptible to glide loss．He points out that in many other words the deglided varlant has become increasingly common，especially with the preflx super－．That this is widespread is confirmed by Petyt 1985．Traditional dialect forms in west Yorkshire were glided， 13 out of his 18 informants using a glide after／s／were aged over 60．But in the towns［－glide］is most common．

Gimson also notes the difference between assume with／sJ／and assure with \(/ \mathbf{3} /\) ．The latter pronunclation may be due to the influence of sure with／š／（but see my analysls in 54101）．The coalesced form for assume Gimson regards as old fashioned．Even when 〈su〉 is word medial，gllde
presence is not particularly strong. In the tests tissue was never unglided, but there were seven times as many palatalized tokens as glided with a ratio of \(88: 12\). Again the suburban school exhibited a preference for gllding in that it recorded 8 out of the 9 glides for tissue.
```

Table 52-08
Varlants for raw/s/

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 491 & & \[
\begin{array}{ll}
\mathrm{Cl} \\
\mathrm{co}
\end{array}
\] & +g & -9 & c6
co & +g & & \[
\begin{aligned}
& \mathrm{Sl} \\
& \mathrm{co}
\end{aligned}
\] & tg & -9 & S6 & +g & -9 & /s/ & +g & -9 & co & +g & -9 \\
\hline s1 & sues & 0 & 0 & 15 & 0 & 1 & 16 & 0 & 1 & 15 & 0 & 1 & 15 & 0 & 3 & 61 & 0 & 5 & 95 \\
\hline 52 & suit & 0 & 1 & 16 & 0 & 2 & 18 & 0 & 1 & 15 & 0 & 3 & 13 & 0 & 7 & 62 & 0 & 10 & 90 \\
\hline s3 & suet & 1 & 0 & 2 & 0 & 0 & 14 & 0 & 2 & 7 & 0 & 0 & 15 & 1 & 2 & 38 & 2 & 5 & 93 \\
\hline s4 & consumer & 10 & 2 & 7 & 8 & 8 & 4 & 6 & 12 & 2 & 5 & 8 & 3 & 29 & 30 & 16 & 39 & 40 & 21 \\
\hline s5 & super b & 0 & 0 & 20 & 0 & 1 & 19 & 0 & 1 & 20 & 0 & 1 & 15 & 0 & 3 & 74 & 0 & 4 & 96 \\
\hline s6 & supreme & 0 & 0 & 20 & 0 & 1 & 19 & 0 & 0 & 20 & 0 & 1 & 15 & 0 & 2 & 74 & 0 & 3 & 97 \\
\hline 57 & tissue & 20 & 0 & 0 & 19 & 1 & 0 & 16 & 5 & 0 & 13 & 3 & 0 & 69 & 9 & 0 & 88 & 12 & 0 \\
\hline 21 & presume & 5 & 0 & 2 & 0 & 1 & 0 & 1 & 0 & 2 & 0 & 0 & 1 & 6 & 1 & 5 & 50 & - & 42 \\
\hline \(\Sigma\) & & 36 & 3 & 82 & 27 & 15 & 90 & 23 & 22 & 81 & 18 & 17 & 71 & 104 & & & & & \\
\hline \(\%\) & & 30 & 2 & 68 & 20 & 11 & 68 & 18 & 17 & 64 & 16 & 15 & 69 & 21 & 12 & 67 & & & \\
\hline
\end{tabular}

While the other words tested appear to be largely following a single specific variant of the competing sound change directlons, only consumer produced a more balanced distribution. The younger group in the city school (C1) had a preponderance of coalesced forms, with half the tokens coalesced and 8 unglided. Only 2 tokens were glided. The inclusion of the results for presume (with /s/) show far less [t gilde] than with /z/). They are not as evenly spread as for consumer, suggesting that the role of the morpheme may not be strong in the choice of varlants. But tokens are few.

Levels of [- glide] are almost ldentlical for each of the four groups of farticipants. In the suburban school l+ glidej and ccalescence are on an equal footing, but in the city centre there is more coalescence. A \(X^{2}\) test
produced a value of 19.98 for \(v=6\). This value ls significant at 0.5\%. The main contribution comes from the low number of tokens for the gllded variant recorded in Cl .

5205
Some explanatory variables tested
For word frequency 1 used the same source as Phillips 1981, and both methods of applying the data therein: lower case only, and the combined entries (upper and lower, plurals etc). The Spearman rank correlation coefficients were calculated for each PC (52-09).
\begin{tabular}{|c|c|c|}
\hline Tabl Rank & \begin{tabular}{l}
\[
52-09
\] \\
orrelation coeff
\end{tabular} & or the coalescents \\
\hline & single entry & combined entries \\
\hline all & \(r=-0.01\) & \(r=+0.19\) \\
\hline At & \(r=+0.09\) & \(r=+0.31\) \\
\hline /d/ & \(r=-0.20\) & \(r=-0.20\) \\
\hline |s/ & \(r=-0.44\) & \(r=+0.09\) \\
\hline
\end{tabular}

None of the coefficients can be regarded as sufficlently large as to register any convincing correlation. Like Pitts 1986 I conclude that no obvious patterning or relationship exists between gilde retention and word frequency for the 4 coalescents. 1 then examined the 18 items for stress and selection of variant. 11 were stressed, (including 6 monosyllables). There were small areas of varlation: the morphemes -sume and -duce. (With regard to the latter, item d4 recelved stress on the first or third syllables). Table 52-10 summarizes the environments found. It suggests that stress plays a less prominent role in determining the cholee of varlants whether taken over the four coalescents considered together or separately.

Table 52-10
Stress and the coalescent variants
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{PC} & \multicolumn{2}{|c|}{+ stress} & \multicolumn{2}{|c|}{- stress} \\
\hline & subenr & varlant & subenv & varlant \\
\hline \multirow[t]{2}{*}{(t)} & initial & coalesce & -ture & coalesce \\
\hline & /st/ & + glide & /st/ & + glide \\
\hline \multirow[t]{2}{*}{\(|d|\)} & Initial & coalesce & & \\
\hline & -duce & variable & -duce & varlable \\
\hline \(|s|\) & Initial & - glide & Initial & - glide \\
\hline 121 & -sume & variable & & \\
\hline
\end{tabular}


However Horvath (1985:112) came to the conclusion that [- stress] favoured palatalization. "A variable rule analysis of palatallzation... will show that following stress does not block the process categorically but it is certainly the case that an unstressed vowel position promotes palatalization." Her results show stressed syllables reglsterlng 20\% palatalization, and unstressed \(48 \%\). If we make allowances for the lesser extent of female coalescence, this conclusion is reinforced. I estimate that for males only, stressed syllables reach \(26 \%\), but unstressed attain \(64 \%\). This gives a ratio of \(2 k: 1\) in favour of [- stressl. The Liverpool results are not as dramatic. Palatalization rises, but only from \(41 \%\) to \(46 \%\) for \([+\) stress) versus [- stress].

In the coalescents, the sequence of \(C+/ J /\) elther becomes merged to \(\Varangle\) in the intermediate alveopalatal area as a sort of assimilation, or it develops to bare \(C\) as a kind of disslmilation. Wells is not sure why the stops coalesce rather thail deglide. There may be an element of stigma associated with the latter. What baslcally motivates (and possibly dictates)
the dominant variant in the Items tested, ls the nature of the subenvironments. While three main variants exist in theory, in practlce there are extensive subenvironments which can be categorical in their use of a particular variant, leaving a resldue of miero varlables. These subenvironments are defined by linguistic features such as word position (particularly initial), or may be morpheme based. A more probing analysis of stress and the subenvironments is carried out in 65504.

5206 The subenvironments
It was seen earller (in 53033) that some phonologlcal variables in Scouse (and in Liverpool in general) can be complex, or at least different. The situation with the coalescents brings its own attendant problems. These concern the categorical subenvironments and their implications regarding the status of the \(P C\) as a mivariable. Similar issues have been ralsed by Hudson 1980b. He suggests that too much emphasls has been placed on the phoneme per se, and prefers to regard the true phonologlcal varlable as a phoneme in a context. His remarks are based on the concept of the varlable within the standard Labovian paradigm, and while this does not necessarlly apply in this work, his comments are pertinent to the coalescents. As an example he gives ( \(t\) ), whlch can appear as [t] or as [?] (or even a combination). If /t/ appears before a consonant there is no varlability, but when prevocalic, there is. Hudson clalms that these cases must not be treated as instances of the same varlable. In the case of /t/ as a PC for the palatal glide, I have shown that (In Liverpool at least), over \(k\) of the items constituting the lexlcal range of thls PC exhibit little or no varlation. In the case of \(/ \mathrm{s} /\), word initlal position commands about \(\%\) of the ltems, but if we extend super to include those words where it is a prefix, this
proportion is doubled. Taken with -sure (which is mainly coalesced), about \# of /s/ can have a categorical varlant. What is left, can vary, I have referred to this as the micro variable.

In the plain consonants, word initial position was shown to be favourable to glide loss. In the coalescents, the loss la largely represented by coalescence in the stops and by [- glidel in the continuants. Most importantly we must establish the incidence of the individual lexical items of a given PC (as 1 have tried to do in the appendices), and their categorality or otherwise, in order to get an idea of the distribution and contribution of such items. The repercussions of the (near) categorical subenvironments must be taken into account when assessing the gliding status of any coalescing consonant as a mini variable. The findings of other researchers need to be subjected to greater scrutiny than the figures in their pooled results appear to indicate. Experimental results can be influenced by the unwitting selection of categorical classes. Different distributions of lexical items and subenvironments may lead to correspondingly determined distributions of variants.

5207 Slips of the tongue
With regard to evidence from sllps of the tongue, what there is for the continuants \(/ s \mathrm{z} /\) is based on 2 participants only. in \(\mathrm{Cl}, * 07\) in his pronunciations of musician was so affected by the anticipatory assimilation of the palatalized [s] in the third syllable as to palatalize the expected voiced sibilant /z/ in the second. His three attempts were
mjul'zisslan
mju['zis]an
mjul'zisjlan

Apart from the range of the three maln realizations of \(/ \bar{s} /\), (bare [sl, coalesced [s] and glided [sj]), it is to be observed that the gllded form occurred in the third attempt, which was the most carefully enunclated of all. This may reinforce the observation that the glided varlant tends to be associated with careful speech. (This instance is not a strict example of the sequence being studied here, since it does not involve the back vowel /u/7. The evidence relating to \(/ z /\) is restricted to a single particlpant with a single word pleurisy. In each of the four elicitations, "33 (in C6) pronounced this as [ple'zuresl] reflecting the overall predominance for the coalesced variant, and indeed echoing his own pronunclation of presume

For the stops, the coalesced form [ C ] was supreme in /t/, whether used word initially or medially. On four occasions, lupins was percelved as tulips with [č]. In salutary (for \#14 and \#55), /t/ was transferred before the lu/, and realized as [x]. Mispronunclations of glutinous also involved [ \(x\) ] for \#02 and \#16. When /d/ became medial, as in the metathesls by \#09 in prelude producing \([-d]]\), and a misreading of salutary by \#i2 gave ['sandjuti], it was glided. But these are hardly substantial examples and may be due to hesitation. The use of \([+g l i d e]\) In the metathesized prelude rather than a coalesced form is especially interesting since the standard pronunciation of the word is always glided with ///.

I now propose to leave the (categorical) subenvironments and concentrate on the micro variable parts of the coalescents. This means looking at the main variable subenvironments or words.

The immediate consequence of excluding (near) categorical items was that only seven remained. While not intended to be equable, any imbalance between PCs was reduced by eliminating the 2 least varlable, dual 84\%, tissue 88\%. Five items represent only 375 tokens. But they do include the most variable words, bringing into greater relief any distinguishing characteristics. The set of five is used to test age, school and group differences, the linguistic features of volcing and manner of articulation: and to construct an index of gliding. The set of 5 comprises tune, duke, introduce, presume, consumer. Group means and standard deviations were calculated (table 52-11). Scoring is 1 for [t glide] with 0 for coalescence or [- glide]. As the scores were based on five items, the bulk are represented by \(0 \%, 20 \%, 40 \%, 60 \%\) or \(100 \%\), S1 recorded mispronunclations which resulted in other percentages.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Table 52-11} \\
\hline & group & & thmetic mean & & & \\
\hline Cl & centre younger & \(\bar{\chi}\) & \(=7\) & 0 & = & 9.5 \\
\hline C6 & centre older & \(\bar{\chi}\) & \(=27\) & 0 & & 28.5 \\
\hline S1 & suburb younger & \(\bar{\chi}\) & \(=45\) & 0 & & 22.3 \\
\hline S6 & suburb older & & \(=46\) & & & 37.2 \\
\hline
\end{tabular}

The disparlty in extent of gliding between Cl and the three other groups, is noticeable from the mean scores. Similarly the distinction between the schools. The standard deviations show the greater homogenelty of the younger city centre group, and the more heterogeneous nature of the older
groups. This is attributed to the fact that while each secondary school in Liverpool had a restricted catchment area when the research was carried out, the sixth forms represented the final year of a citywide intake. In any case the suburban school drew on a wider background both numerlcally and socially. The distributions of the individual scores for these groups are given in fig 52-12, where each symbol represents a participant.

The charts in 52-12 bring into better focus the differences in the composition of the groups. While the other groups extend across the spectrum, there is a concentration of low scoring participants in \(\mathbf{C l}\), confirming the internal homogeneity. It also serves to indicate the internal consistency with respect to gliding (in this case, of non use) over the four PCs tested, using the set of 5 . The distribution for C6 has twin peaks below the mean at \(0 \%\) and \(20 \%\) but these older participants extend the range as far as the maximum. With SI, the modes are at \(40 \%\) and \(60 \%\) emphasizing the more extensive use of a glide. The 2 modal values for 56 are at opposite ends of the range, \(0 \%\) and \(100 \%\) making it the most heterogeneous group. This reflects the intake from a broader band of soclal backgrounds.

1 shall now test the observed differences based on the comblned data for the four coalescents in table 52-13. Globally the differences between the variants used are very signlficant. In a contingency table for 3 variants across 4 participant groups, \(x^{2}=48.59, p>0.01\) for \(v=6\). The component \((0-E)^{2} / E\) values indicate that the differences are least with respect to the levels of [- glide]. The most substantial part of the \(X^{2}\) value derives from the [t glldel figures. C6 adheres most closely to the norm as designated by the expected frequencles, followed by S6. The group which agaln stands out most is Cl .

Figure 52-12
Individual scores on the coalescent set of 5 by groups






5211 Age and school differences
The results for both age groups in graph \(52-14\) show an almost equal use of the coalesced variant (57\% and 55\%). There was a third more use of the glide (up from 27\% to 36\%) among the older puplls, accompanied by a reduction of a half (from \(16 \%\) to \(9 \%\) ) for gllde loss. The changes in the percentages must not be allowed to mislead. This was confirmed by the \(x^{2}\) test. ( \(x^{2}=6.44, p<0.05\) ). When the data for each PC were tested separately no significant differences emerged.
\[
\begin{array}{ll}
x_{t}^{2}=2.10, & p>0.1 \\
x^{2}=0.0007, & p>0.1 \\
x^{2}=2.44, & p>0.1 \\
x^{2}=3.97, & p>0.1
\end{array}
\]

The age data were obtalned by combining the similar age groups from each school. This may have led to differences between schools belng cancelled out. While the dominant variant in the city centre ( \(C 1+C 6\) ) is coalescence (which outnumbers the other variants combined), in the suburbs ( \(S 1+S 6\) ), the glided form is the main variant. That the differences are very significant is confirmed by testing. \(x^{2}=35.55, p<0.01\). The distinction with the age factor can be seen in graph 52-15.


Figure 52-14
Coalescents set of 5 Young \(v\) old

Figure 52-15
Coalescents set of 5
Centre v suburbs




5212 Comparisons with other research: soclal aspects
In order to effectively compare the Liverpool results with those from Sydney, some arithmetical modifications are necessary to bring those results more into line with the social parameters in the present survey. Horvath does not give individual figures for palatalization or gllding for any of her nine words, only comblned percentages for varlous factors. Since
the observed frequencies were not provided In her book, I have attempted to excise the contributions of sex and ethnicity. I was able to produce an estimate of frequencies for males only (and later for Anglo males only). The rellability of my approach is vouchsafed by the fact that it does preserve the fundamental ratios of distinction between the results of the binary groupings (both linguistic and soclal) which Horvath used. For example, my calculations preserve the fundamental (approximate) ratlo of \(2: 1\) for palatallzation, which Horvath obtained for her male: female grouping.

For Horvath, males palatalized \(43 \%\) of the time: females 22\%. The former percentage is identical with the result for coalescence in Liverpool, (using the raw results), where all the informants were male. The coincidence is more fortuitous than significant. If the figures of Horvath are modified to include only Anglo males (so as to match better the Liverpool groups), then the Sydney level of coalescence rises to \(48 \%\). If the present figures include only the set of 5 , (to match better the varlable words of the Horvath survey, then the Liverpool level rises to \(56 \%\).

Horvath included adults as well as teenagers, and found that teenagers coalesced their consonants marginally more than adults, (all Anglos), by \(33 \%\) to \(26 \%\). Among the teenagers there was a tripartite ethnic division into Anglos, Greeks and Itallans, with levels of palatalization of \(36 \%, 32 \%\) and 24\% respectively. In the Sydney survey, teenagers used the palatalized varlant a third of the time. This fall to a quarter for adults. If an allowance is made for the impllelt lowering of the overall scores, then the percentages for Anglo only teenagers will be correspondingly greater, thus reducing the gap between them and the (Anglo only) adults, In the present sarvey, for the set of five, increase in age was accompanied by a
minimal decrease in coalescence, from 57\% to 55\%.
For the results of her Sydney survey, Horvath clalms that
"All of the social factors are significant except perhaps for socioeconomic class. The results indicate that palatalization is more frequent among males, Anglos, and teenagers. It is disfavoured by the middle class."
(op cit:117)
The three socioeconomic groupings that Horvath used did show a consistent pattern in their use of coalescence. Those speakers characterized as lower working class used the palatalized forms for \(36 \%\) of the tokens. This fell marginally to \(33 \%\) for the upper working elass, and fell again to \(25 \%\) for the middle class. These results are repeated with emphasis in the present enquiry. If we regard the city centre school as being almost exclusively working class in income and outlook, and the suburban school as a mixture of middle class and working class, then my data reveal a decrease from \(69 \%\) for the city school to \(43 \%\) for the suburban school in the use of coalescence, based on the more variable items.

In the American studies, what had been reported by Stephenson 1970 was the increasing glidelessness of southern speakers, with the young in the forefront of change. Age difference was most marked when the subgroups of oldest and youngest were considered: glide use fell from \(90 \%\) to \(40 \%\). While. the age range of 40 to 20 years was not mirrored in the present survey, there was a tendency towards greater glide loss among the youngar subjects, but only in the city centre. It did not occur in the suburban school where the results over the four PCs were simllar for both age groups, and where gliding was the dominant variant, since speech In intervlews ls likely to be more carefully monitored.

The data for the four individual micro varlable coalescents are collected in table 52-16, with the combinations for voice and articulation.
Table 52-16
PC data for 4 coalescents: set of 5


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & 1 & & & & & & & & & \\
\hline & s & & 1 & & 5 & + & 2 & & & & \multicolumn{2}{|l|}{2} \\
\hline & & & 1 & & & & & & & & & \\
\hline co & +g & -9 & 1 & co & & +g & & -9 & & co & tg & -g \\
\hline 35 & 31 & 21 & 1 & 63 & & 51 & & 37 & & 28 & 20 & 16 \\
\hline 40 & 36 & 24 & 1 & 42 & & 34 & & 25 & & 4 & 31 & 25 \\
\hline
\end{tabular}

It suggests that, when there is scope for varlation, the stops are again more likely to palatalize than the continuants (ep table 52-01). But the stops are word initial, which is not conducive to gliding. A minl hierarchy is as follows: /t \(d z\) s/.

Horvath showed that the voiced coalescents /d z/ attract a greater level of palatalization than volceless /t \(5 /\). The difference was not substantial, being of the order of \(38 \%\) to \(29 \%\). If males only are considered, their greater propensity to palatalize has the effect of increasing the ratio to \(51 \%\) and \(39 \%\). Horvath used twice as many unvoiced (6) as voiced (3) items (54133). Only a single instance of each was word initial. In the volced PCs this potentially provides a greater proportion of coalescing variants. When the five variable words here are used, the voiced PCs register 53\% palatalization, with the voiceless counterparts on 61\%, thus contrasting with the Syaney figures.

Figure 52-17a Coalescents set of 5 l- voicel young \(v\) old \(\qquad\)

Figure 52-17b
Coalescents set of 5 It voice] young vold


In Liverpool a decrease in coalescence, accompanied by an increase in gliding as we pass from younger to older, is preserved for the volceless environments \(/ t \mathrm{~s} /\). The voiced \(\mathrm{PCs} / \mathrm{d} \mathrm{z} / \mathrm{go}\) marginally against this trend, with a small increase in c:oalescence as well as in gliding, for older ruplls. Testing revealed that the differences in both instances were not significant.
\(X_{t=0}^{2}=4.46, p<0.1 ; X_{\text {2 }}^{2}=4.32, p<0.1\). The graphs \(\ln 52-17\) show this by the similar slopes of the lines.

On the other hand there is a noticeable difference between the schools best seen in graph 52-18.

\begin{tabular}{ll} 
Figure 52-18a & Figure \(52-18 b\) \\
Coalescents set of 5 & Coalescents set of 5 \\
\(1-\) voice centre \(v\) suburbs & it volce) centre \(\vee\) subs
\end{tabular}


The centre maintains an almost equal distribution of variants for \([+\) volce] and [- voicel, with coalescence being dominant. In the suburbs, as [- gllde] is kept constant, there is a reversal of the roles of the other variants. Gliding is assoclated with the voiced consonants, coalescence with the unvoiced. The differences between the schools are very significant. When tested for both aspects of voice, [tvoice] gives a \(X^{2}\) value of 27.37. \(p\) < 0.01. [-voice] produces \(X^{2}=9.47, p<0.1\). The variant mainly contributing to the difference is the low level of [t glide] in the city centre, and the above average figure in the suburbs.

Of the four groups C6 may again be sald to be most typlcal. Their results for /t s/, approach nore closely the overall figures. The group most distinct from the global results is again Cl. This is conflrmed by
statistical testing. \(X^{2}\) to \(=17.40, p<0.01\), for which low gliding in Cl is largely responsible. If Cl is excluded and the three other groups are tested on their own, \(x^{2}\) t. \(=1.23\), a non significant result. This is shown visually in graph 52-19.

\begin{tabular}{ll} 
Graph \(52-19\) & Graph \(52-20\) \\
Coalescents \([\) - voice & Coalescents \([+\) volce
\end{tabular}


The same conclusions emerge from the volced coalescents. \(X^{2}\) ou \(=\) 34.57, \(p<0.01\). Low gliding in Cl is the main contributor; and above average gliding and low coalescence \(\ln \mathrm{SI}\) also of importance. (See graph 52-20 which shows the distinction between the schools).

When the consonants are classlfled according to manner of articulation, Horvath found that the stops \((42 \%)\) were more favourable to palatalization than the continuants \((18 \%)\). The ratio of \(2 \%: 1\) is preserved in the estimate 1 made of male only results, \(557 \%\) for the stops and \(25 \%\) for the continuants). In my own tests the untreated results for all words tested, produce almost identical figures 57:24. Using the figures from the pruned set of five, \(/ t \mathrm{~d}\) produce palatallzed varlants totalling \(66 \%\), with \(/ \mathrm{s} z /\) on \(42 \%\). But in Liverpool, there is a propensity to palatalize word initial syllables in the stops. The continuants demonstrate a more even distribution of variants, as they share the same morpheme <-sume>, like Horvath.

The distribution of varlants for the stops \(/ t \mathrm{~d} /\). is almost identical for both age groups, (fig 52-21a). \(x^{2}=0.24, p>0.1\), which is too low to indicate a significant difference. The results for the continuants \(/ \mathrm{s} z /\) show a greater use of gliding among the older puplls, but the differences were still not significant \(\left(x^{2}=5.54, p>0.05\right)\). See graph 52-21.


Figure 52-21a Coalescents set of 5 Stops: young vold

Figure 52-21b
Coalescents set of 5
Continuants: young vold

lall


In the data for manner of articulation, the coalesced forms for both schools show a drop of about twenty percentage points from the stops to the continuants. In both cases they are replaced by the ungllded varlants. The glided forms remain much the same within schools, but the suburban school uses gliding about \(2 \%\) times more often than the clty school. Because of the Low expected value for the suburban [- glide] in the stops, a \(2 \times 2\) contingency table was made contrasting the glided variant with a combined non glided form. The differences between the schools were signlficant. \(X^{2}\) ted \(=18.29, p<\) 0.01. The main cause of this lay in the levels of gllding referred to above. Similar results were obtained from a \(3 \times 2\) table for the continuants, \(x^{2}=\) 17.14, \(p<0.01\). Again levels of [t glide] were the discriminating factor. (Fig 52-22).

\begin{tabular}{ll} 
Figure \(52-22 a\) & Figure \(52-22 b\) \\
Coalescentsi set of 5 & Coalescents: set of 5 \\
Stops: centre \(v\) suburbs & Conts: centre \(v\) suburbs
\end{tabular}




In general the stops exhibit a greater propensity to coalesce (but note the incidence of word initlal position, which is most marked in the city centre school. The younger puplls in each school are at opposite ends of
the range of [t glide] (graph 52-23). Results from the signiflcance tests bring these comments into greater relief, \(X^{2}\) ta \(=24.24, p>0.01\), where the main contributions to this statistic come from the levels of gliding in the groups just mentioned. In contrast the three variants of the continuants /s z/ are more evenly distributed overall. But while the city centre favours coalescence, the suburbs favour gliding. The most outstanding feature of the very significant result of the test \(\left(x^{2}=\equiv=25.43, p>0.001\right.\) ), is the low level of gliding in C1. Their older counterparts C6 emerge as the group closest to the norm for both stops and continuants (graph 52-24).


Graph 52-23
Coalescents set of five Stops by groups

Graph 52-24
Coalescents set of five Continuants by groups
\(\%\)
varlants


8

variants

《tyu》 clearly demonstrates the overwhelming dominance in word initial position，of the coalesced forms for all four groups of informants， together with the complete absence of glidelessness．The similarlty of each group is reflected in the analysis．\(x_{t}^{2}=6.97\) ．For \(v=3\) ，this is not significant as it is near the \(10 \%\) level．In contrast，《dyu》 indicates greater variety between the groups．As the main shared feature is the low level of glidelessness，the analysis contrasted［t glide］and non glide（the combined ［－glide］and coalesced variants），\(X^{2}{ }_{a}=22.42, p<0.01\) ．The variety is manlfested in the opposing roles of Cl and 51 ，the former with less gliding， the latter with more．

The most internally diverse is 《zyu》．The most obvious difference is between the schools．The city centre coalesces more than the suburban school． This is matched by the gliding figures for the older suburban pupils．In a sense，S6 are almost a mirror image of Cl ．Because of low expected frequencies，a \(X^{2}\) test was not applicable．More conslstency across groups is shown in the unvoiced counterpart 《syul．Three of the groups，C6，S1，and S6 have a preponderance of glided variants，with coalescence marginally more popular than glidelessness．Conversely \(C f\) reverse the dominant distribution of glided forms，but maintain the same pattern with regard to the other varlants．The \(x^{2}\) ．test on the basis of a division between glide and non glide，using a \(4 \times 2\) ，table gave a statistic of 13.04 ，which 1 s significant at the \(1 \%\) level．This result depends on the low gliding frequency for Cl ．

Having excluded those subenvironments which were categorical for most speakers, we are left with the micro variable coalescents. How extensive they are depends on the method of counting words or morphemes. How important they are depends on their extent and on their ease of identification. 'What is left' does not satisfactorlly identlfy those variable components. They need to be positively demarcated, in so far as this is possible. Whether this is done by means of linguistic features, or by lexical specification (or both) depends on how extensive and how numerous the invarlable parts are.

Comparisons with other research may be unrellable. The items tested have a bearing on the results. We can not be sure if other results also conceal categorical subenvironments to the extent that these dominate much of the coalescents in Liverpool. There is also the question of range of variants. In the American studies what distingulshes this varlety in general terms from other Englishes ls the Insignlficant level of coalescence, especially word initially. B Phillips 1984 rejected a coalesced token (the only initial affricate she recorded) because "it represents a different direction of sound change" (op clt:75). Within British English the coalescent stops do not usually have [- glidel. The basic alternative to it gllded is coalescence. But dunes, duplication, vituperation have been heard unglided. In /s \(2 /\) while all variants are avallable in theory, they are not necessarily distributed over each suffix or lexical Item (table 55-02). And 1 suspect there stlll exists a conslstent use of a single varlant within individual speakers. When variation does occur, it if across speakers and more obviously across groups. This aspect will merit deeper investigation.

Unlike some other British urban areas, gllding in the \(/ \mathrm{n} /\) environment was belleved to be entrenched in Liverpool, even among those sectors of the population associated with glide erosion and loss elsewhere. But the results suggest that \(/ n /\) is better classified as a mini variable. While the composite figures show the glide being present three times more than it is absent, they obscure the variation which occurs between lexical items and between the groups of particlpants.

For some informants, 1 was unable to make a clear decision on the presence or absence of a glide, even after repeated listening to the tapes and vacillating between those variants. But by attempting to mimic the articulation of these problematic tokens, the conclusion was reached that sometimes neither [+ glide] nor [- glide] was being produced. What was appearing was a non anterlor allophone of \(/ \mathrm{n} /\). 人 This occurred more in polysyllabic words when the relevant syllable was initlal and stressed. Corroboration for this development has appeared in other dialects. Wells 1982 has commented that
"In some Irish or Scottish speech it can be argued that the [ g ] used in words like new [fuild merits phonemic status, rather than being regarded as a realization of \(/ \mathrm{nJ} / \mathrm{I}^{11}\)
(op cit:179)
He also suggests that something comparable may happen with /nJ iJ/ in American speech. These he feels, may produce ( K 人) , as in annual, fallura. A similar tendency was noted here with (lyu) but it was not as extensive as with \{nyu), due perhaps to the result of extenslve glide loss \(\ln / 1 /\).

Data for (nyu): all items
The data for the seven items tested are given in tablo 53-01. An Immediate distinction may be made between the three items which are basically glided (january, genuine, avenue), and the other four which exhibit greater variability (cp diagram 41-01). On this basls, a pair of subenvironments may be tentatively distinguished: word initial and word medial. Equally they may be divided between stressed and unstressed.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
Table 53-01 \\
Variants for (nyu)
\end{tabular}} \\
\hline 529 & tok & & & & & \\
\hline & pa & +g & - 9 & pa & tg & -g \\
\hline nl new & 3 & 52 & 23 & 4 & 67 & 29 \\
\hline n2 nuclear & 12 & 27 & 37 & 16 & 36 & 49 \\
\hline n3 neutral & 12 & 35 & 28 & 16 & 47 & 37 \\
\hline \(n 4\) january & 2 & 73 & 1 & 3 & 96 & 1 \\
\hline n5 genuine & 0 & 77 & 0 & 0 & 100 & 0 \\
\hline no avenue & 2 & 75 & 0 & 3 & 97 & 0 \\
\hline n7 nutrition & 3 & 35 & 32 & 4 & 50 & 46 \\
\hline \(\Sigma\) & 34 & 374 & 121 & 6 & 71 & 23 \\
\hline
\end{tabular}


5302
Word frequency
The conclusions reached after analyzing the Phillips data on frequency, emphasized the dangers of drawing positive conclusions from the calculation of a composite coefficient of correlation. They suggest that a different starting point can produce noticeably different results. If we include all seven ltems used in the test, \(r_{0}=0.04\). This indicates a total lack of correlation between the variables. When genuine, avenue are omitted, the resuli is far more impressive: \(\%=0.60\). Further excluding january did not produce a larger coefficlent. Using the four most varlable words, \(r_{\text {. }}\) fell
to 0.40 . When the three invariable words were taken on their own the coefficient was 0.19. The range of values for correlation indicates that general word frequency is not an important factor in glide loss. It must be kept in mind that in using so few words, results are much less rellable. The greater level of gliding for new may lend support to the onset of change in infrequent words, but factors like word position are more efficacious in promoting glide loss.

\section*{5310 The micro variable knyu>}

I have gathered the group data for each of the 4 varlable words in table 53-02. In the variable word inltial subenvironment of \(/ \mathrm{n} / \mathrm{l}\) [+ glide] can be seen to be the dominant variant with \(51 \%\) of the tokens; but [- gllde] reaches \(40 \%\). The non anterior variant produced an averaged result of \(9 \%\). Three questions need posing. Why \(/ n /\) ? Why this subenvironment? Why Liverpool now?

Parallels are to be expected for articulatory reasons with other alveolars \(/ t \mathrm{~d} /\), rather than with other nasals, it is word initlal position which, from the evidence of the tests (and from observations elsewhere), is most vulnerable to gllde loss.

Absence of the gllde may be due to the influence of dialects where it is more prominent, I gather that (south) London accents, especlally the demotic forms, where loss after \(/ n /\) is common, have in recent years recelved greater exposure on television.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
Table 53-02 \\
Token and percentage data for varlable 《nyu》 words
\end{tabular}} \\
\hline \multirow[t]{2}{*}{296} & & & & & & \\
\hline & pa & tg & -9 & pa & tg & -9 \\
\hline \multicolumn{7}{|l|}{Cl ( 1 e} \\
\hline nuclear & 1 & 3 & 15 & 5 & 16 & 79 \\
\hline nutrition & 0 & 2 & 13 & 0 & 13 & 87 \\
\hline neutral & 1 & 4 & 14 & 5 & 21 & 74 \\
\hline new & 1 & 7 & 12 & 5 & 35 & 60 \\
\hline totals & 3 & 16 & 54 & 4 & 22 & 74 \\
\hline \multicolumn{7}{|l|}{C6} \\
\hline nuclear & 3 & 6 & 12 & 14 & 29 & 57 \\
\hline nutrition & 1 & 9 & 10 & 5 & 45 & 50 \\
\hline neutral & 5 & 7 & 8 & 25 & 35 & 40 \\
\hline new & 1 & 14 & 6 & 5 & 67 & 29 \\
\hline totals & 10 & 36 & 36 & 12 & 44 & 44 \\
\hline \multicolumn{7}{|l|}{St} \\
\hline nuclear & 3 & 10 & 7 & 15 & 50 & 35 \\
\hline nutrition & 2 & 12 & 2 & 13 & 75 & 13 \\
\hline neutral & 3 & 15 & 2 & 15 & 75 & 10 \\
\hline new & 0 & 18 & 3 & 0 & 86 & 14 \\
\hline totals & 8 & 55 & 14 & 10 & 71 & 18 \\
\hline \multicolumn{7}{|l|}{56} \\
\hline nuclear & 3 & 8 & 5 & 19 & 50 & 31 \\
\hline nutrition & 0 & 12 & 4 & 0 & 75 & 25 \\
\hline neutral & 4 & 9 & 3 & 25 & 56 & 19 \\
\hline new & 0 & 14 & 2 & 0 & 88 & 13 \\
\hline totals & 7 & 43 & 14 & 11 & 67 & 22 \\
\hline \multicolumn{7}{|l|}{all groups} \\
\hline nuclear & 10 & 27 & 39 & 13 & 36 & 51 \\
\hline nutrition & 3 & 35 & 29 & 4 & 52 & 43 \\
\hline neutral & 13 & 35 & 27 & 17 & 47 & 36 \\
\hline new & 2 & 53 & 23 & 3 & 68 & 29 \\
\hline totals & 28 & 150 & 118 & 9 & 51 & 40 \\
\hline
\end{tabular}

There is also the influence of pronunclation from the USA．Instances were recorded in the interviews of the solecism［＇nukjule］，which seems to bear out this observation．PJS has suggested that the ungllded forms may sound trendy．To this we can offer the［kul dudz］of pre and not \(s 0\) pre teenspeak．To have the radically awesome effect（of enhancing the street cred of the speaker），this variant is better used in noticeable subenvironments．For maximal impact deglide word initlally．The degllders were mainly found in C1，the home of gllde loss．

The non anterior varlant was distributed almost evenly over three of the four groups．The exception was the group of younger puplis in the elty centre school，where the dominant variant was［－glide］．Some initial observations may be made about the four groups．As we have now come to expect，there is a marked increase in the use the gllded variants in both suburban groups，compared with those in the clty centre．And there is a corresponding reduction in unglided forms as we move from the city centre to the suburbs．

5311 Age，school and group comparlsons for Knyu》
Table 53－03 summarizes the group data for the varlable words in the《nyu》 word initial micro variable．The participant groups occupy the four corners，with age and school combinations in the middle of the sides．

A test comparing younger with older shows that for \(v=2, X^{2}=\) 3．494，which is not significant at \(10 \%\) ．This is reflected in the similar shapes of their graphs（53－04）．It repeats the conclusion from the coalescents．In the suburban school the differences between the age groups are also negligible．A \(x^{2}\) score of 0.621 for \(v=2\) is not significant at \(10 \%\) ． It is when we turn to the clty school that age differences are more evident．

Gliding increased by \(20+\) percent in the older pupils, and glidelessness decreased by thirty percent. While the older group is evenly divided between [+ glide] and [- glide] at 44\% each, the younger informants show a marked predilection for glidelessness at 74\%. This value for the dominant varlant is the largest of any recorded in the four groups of subjects. The \(x^{2}\) value of 14.59 for \(v=2\) is significant at 0.1\%.


For 《nyu》 the differences between the schools are epltomized by the doubling of the percentage of glided tokens in the suburban school, and the equally dramatic drop in glidelessness, from 58\% to 19\%. (See figure 53-05).
\begin{tabular}{lll} 
Figure \(53-04\) & Figure \(53-05\) & Figure \(53-06\) \\
Age variation 《nyu》 & School varlation 《nyu» & Group variation 《nyu》
\end{tabular}


While the tendency towards a palatalized variant remains low for both schools，the differences in the proportions of the other variants clearly shows that the focus of glide loss for 《nyul is again firmly sited in the city centre school．The dominant variant for the clty centre is glldelessness at 58\％．Even more striking are the flgures for the dominant varlant in the suburbs．Here gliding reaches \(69 \%\) ．The distinction is conflrmed by the \(x^{2}\) test which produces a value of 47.49 for \(v=2\) ．This is a result significant at \(0.1 \%\) ．Its significance is located in the point just made about the opposed levels of gliding．

Both older groups show equivalence with respect to palatallzation， but there the difference ends．While the clty centre is evenly spllt between glided and unglided forms，the suburbs show a \(3: 1\) preference for gllding．\(X^{2}\) \(=8.743\) for \(v=2\) ，which is significant at \(2.5 \%\) ．The younger suburban group is only affected by glide loss to the extent of \(17 \%\) ．Contrast thls with the amount of glide loss in the city centre which reaches \(74 \%\) ．Measured by \(X^{2}\) ， the value for \(v=2\) is 49．42．This is signlficant at \(0.1 \%\) ，

The different natures of the four participant groups are more easlly distinguished in figure 53-06 which shows the percentages for the three variants over the four groups. The results for the groups in the suburban school are notable for their simllarities. Besides the low palatalization (which is common to all groups except C 1 ), it is the similarity of the levels of the predominant variant [t glide] and the comparatively low incidence of [- glide] which show up in the almost parallel graphs. This serves to emphasize the lower inclination of the suburban school to glide loss in this new area. In the centre, the outstanding aspect is that the predominant variant for Cl is [- glide]. in C 6 this has equal status with \([+\) glidel.


Individual scores on the 《nyu》 index show why the differences are most marked between the schools. The frequency distributions of individual indices are given in table 53-07 and lllustrated in figure 53-08. The suburban groups attain index means of 76 and 80 . These are much greater than the elty centre values of 52 and 20 . For both suburben groups the model band is the topmost, with over half the partlcipants in each group belonging
to this band. And while both groups had members at the lowest level, they were too few to exert much influence on the value of the mean. This state of affairs is almost entirely reversed in Cl. Here the modal value is the lowest, with over half the particlpants. There is nobody in the top band. The older city centre school group has a bimodal distribution, with the centres of gravity at both extremes. This is reflected in their standard deviations. All these data emphasize the distinctive nature of \(C 1\).


Figure 53-08
Frequency distributions for 《nyu》 indices by groups

fig 53-08b C6


fig 53-08d 56



5312 Lexical patterns in 《nyu》
The most striking observation (apart from all being word initial), is that a clear implicational scale can be establlshed for the four words and for the four groups of participants, patterning in both directions. The percentages for [- glide] only, are given in table 53-09. They do not include the non anterior variant of \(/ \mathrm{n} /\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Table 53-09 \\
Percentage glide loss for varlable 《nyu》 words
\end{tabular}} \\
\hline Item & Cl & C6 & S1 & S6 & overall \\
\hline nuclear & 79 & 57 & 35 & 31 & 51 \\
\hline nutrition' & 87 & 50 & 13 & 25 & 43 \\
\hline neutral & 74 & 40 & 10 & 19 & 36 \\
\hline new & 60 & 29 & 14 & 13 & 29 \\
\hline
\end{tabular}

The scale in table 53-10 puts each item \(\ln\) order of gllde loss across the 4 groups, ( 1 = most glide loss). It can be seen that there are some similarities in the order. First, there is the general constancy of an increase in gliding as we move across the 4 groups in the order \(\mathrm{Cl}, \mathrm{Cb}\), and the suburban groups. There is an Inversion of S6 and Si for nutrition and neutral, but when it is realized that a single token can for this data entall a percentage change of five points, the disparity in this pair of figures may be treated as insignificant, confirmed by the totals in the bottom line.


It is clear that \(C 1\) are firmly in the forefront of gllde loss; thelr coevals in the sidburbs are almost is firmly in the forefront of gllde retention. If we now look at how the Items are located in each group we can
see a general decrease in［－glide］for each group，in the order nuclear， nutrition，neutral，new．
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Table 53－11 \\
Scale for variable 《nyu》 words by lexical items
\end{tabular}} \\
\hline Item & \(C 1\) & C6 & S1 & S6 & total \\
\hline nuclear & 2 & 1 & 1 & 1 & 5 \\
\hline nutrition & 1 & 2 & 3 & 2 & 8 \\
\hline neutral & 3 & 3 & 4 & 3 & 13 \\
\hline new & 4 & 4 & 2 & 4 & 14 \\
\hline
\end{tabular}

There is the exception of nutrition for C1 and S1．But for the reason given above，the order of words for SI needs to be interpreted with caution．The relatively low position of new for［－glide］may be llnked to its greater frequency，but it is more likely that given the importance elsewhere of word initial position，its salience is greater in polysyllable words．It is also possible that orthographic 〈eu〉 and 〈ew＞，in contalning 2 vowels look as if they have 2 vowel sounds．

5313 （nyu）：a wider context
In the \(/ n /\) environment，yod dropping is commonly heard in British working class speech．It is typical of places llke the west midands and the capital．Wells 1982 gives examples from the latter of both stressed and unstressed syllables：neutral［＇nu：trou］and pneumonia［nu：＇maunle］．But Bowyer 1973，cited in Wells，found in his survey of，south London pronunciation that \([n]\) was less common than［nj］．This investigation has shown that gllda loss In inyu）is most common among the younger Scouse speaking clty centre pupils．Liverpool has jolned the national trend．

Section 54 is the final section detalling the results of the empirical investigation. It begins by presenting the data for the mini variable flyu) from the panconsonantal word list and the main study incorporating the reading passage and word list. It looks at the focus and locus of varlation together with factors affecting the choice of varlant.

Given the initial impetus of glide loss after /r/ and /Cl/ for articulatory and phonotactic reasons, the subsequent lexical diffusion of loss after plain /// resides primarily in the subenvironments of word and morpheme initial positions. If we take the list of \(/ 1 /\) words in appendix 57340 as a guide, these subenvironments occupy about \(4 / 5\) of the stock. While the lists are not exhaustive, and while it is easier to locate word and morpheme initial words in dictionaries, their extensive coverage goes some way towards accounting for the widespread loss in this environment. .

What retention there is is accounted for by the relevant syllable being heterosyllabic and occupying a position of post tonic stress (those lists headed \((2,1)\) in the appendix, where the first digit indicates the place of \(\langle u\rangle\), and the second the syllable with stress, as with 'value). But apart from these words glide insertion after /// is now so rare in almost every dialect, as to sound unusual, distinctive, old fashioned, pedantic cor some combination of these), when it is used. The comment of Fowler (1926, 1965) noted earlier \(\ln\) 81221, that use of the glide was de rigeur, has been turned on its head. Of the words he cited which were still capable of taking a glide (dilute, prelude, delude, allude, only prelude persists. It is a \((2,1)\) word. If we allow for the stock of catigorical words like \(\{2,1\) with heterosyllable post tonic stress, the number of varlably glidable items ls now tiny.

The amount and extent of variation (defined over the total results), whether lexical, stylistic or idiolectal, was small, Out of the 37 words tested, 17 items were categorical (mostly deglided), leaving 20 with some (often minimal) variation. Only half a dozen words of those tested can be properly regarded as being varlable. This indicates that the sound change after /// is approaching completion for the speakers tested in this survey, as indeed it is for most people elsewhere.

5401 (lyu) data from the panconsonantal word list
In the panconsonantal word list elicited as the final part of the interview, a single item absolute is categorically unglided. of the remaining six words, four are QC. These are salute, Illumination, interlude (unglided), and insoluble (glided). Only deluge, prelude vary, due to the nonstandard use of tautosyllablc [lu].

5402 (lyu) data from the main enquiry
Of the 31 items in the reading passage, seventeen were totally categorical in all elicitations. The eleven with a consonant cluster were of course unglided; as were four ltems with 〈lu〉 in word initial position, viz lukewarm, lunacy, luminous, lupins, Only volume, valuable were consistently glided, having heterosyllable [l\$u]. 8 of the remainder were classed as quasl categorical, but apart from soluble which was 4\% ungllded, they were all \(95 \%+\). The 8 are:
dllute, aluminium, lewd, eluslve, lute, hallucinate, polluted If we take these items and break down the data by Informant groups, what is revealed is the by now famlliar increasis in gliding as we move in both spheres: age and location. In terms of the factors affecting variants, stress
on the relevant syllable is accompanied by a large degree of glide loss. Conversely glide presence occurs in soluble which has an unstressed syllable, but which has a heterosyllabic //.

Those items exhibiting wider varlabllity over the four ellcitations are recorded in appendix 7213. Table 54-01 shows the percentages of glide use for the 6 variable words. The effects of stress are evident at the division, supporting the observation just made. The first ltems are examples of my ( 2,1 ) group which (when we discount non standard pronunciations) are together with prefixes (3,2), the last bastions of glide preservation, even attracting possible hypercorrect glided variants in illustrate.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Table 54-01 \\
Variants for 《lyu》 wordsi all ellcitations
\end{tabular}} \\
\hline \multirow[t]{2}{*}{1159} & \multicolumn{2}{|l|}{tokens} & \multicolumn{2}{|l|}{percent} \\
\hline & +g & -9 & +g & -9 \\
\hline deluge & 108 & 14 & 89 & 11 \\
\hline salutary & 73 & 27 & 73 & 27 \\
\hline voluminous & 40 & 129 & 24 & 76 \\
\hline lurid & 48 & 191 & 20 & 80 \\
\hline lure & 50 & 252 & 17 & 83 \\
\hline delude & 22 & 205 & 10 & 90 \\
\hline \(\Sigma\) & 341 & 818 & 29 & 71 \\
\hline
\end{tabular}

What was strange was the level of gliding in lure, lurid Stranger stlll was the link in C6 with method of elleltation. This is Illustrated later in table 54-06.

The six most variable items will now be investigated from social, stylistic, lexical and phonological viewpoints, with attention to those factors put forward as influencing the choice of variants.

Table 54-02
Group data for 《lyu》 variable words


\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & & 1 & \multirow{3}{*}{56} & & & 1 & \multicolumn{2}{|c|}{\multirow{3}{*}{cb}} \\
\hline & & 1 & & + & c6 & 1 & & \\
\hline & & 1 & & & & 1 & & \\
\hline +g & -9 & 1 & +g & & -9 & 1 & +g & -9 \\
\hline & & 1 & & & & 1 & & \\
\hline 140 & 175 & 1 & 255 & & 381 & 1 & 115 & 206 \\
\hline 14 & 56 & 1 & 40 & & 60 & 1 & 36 & 64 \\
\hline & & , & & & & & & \\
\hline
\end{tabular}
-

5411 Social varlation: age, school and group
1 have arranged the group data in table 54-02. There is a consistent increase in gliding in the order \(\mathrm{Cl}<51<\mathrm{Cb}^{\text {< }}\) \& S6. A \(\mathrm{X}^{2}\) test gave 95.98. A value of this size for \(v=3\) is very significant at \(p=0.1 \%\). The
main contributory groups are Cl and 56. The former have an observed level of gliding well below statistical expactation: the latter are above. If all the younger pupils are compared with all the older, the biggest difference lles in glide loss. A reduction of about a quarter occurred, from 84\% to 60\%. This reduction was compensated for by a percentage difference in gliding for the older pupils of. \(2 k\) times what the younger groups recorded. The importance of these differences was confirmed by a \(X^{2}\) test, which attained a value of 76.17. For \(v=1\) this is significant at \(0.1 \%\). An equally large gap is opened up between the age groups in the city centre. There is a quadrupling in the gliding percentages in the older group compared with the younger. The intra group proportions of [+ glide] to [- glide] change from \(1: 10\) in Cl to almost 1:2 in C6. The differences were found to be significant at \(0.1 \%\) with \(x^{2}=\) 54.26. In the suburban school there is less distinction between the older and younger pupils than in the city. The older group glldes twice as much as the younger pupils, and lags correspondingly in glide loss. The value for \(x^{2}\) at 27.36 is less than the other comparisons made above, but is still significant at \(0.1 \%\). In general the differences between the schools are not as dramatic as those measured by age. Gliding increases by a half from 24\% In the centre to \(35 \%\) in the suburbs. The corresponding percentage drop in glldelessness is not as striking being based on a larger figure. However \(X^{2}\) at 15.64, is significant at \(0.1 \%\). If the comparisons are made on a narrower basis, by looking at the figures for the corresponding age groups in each school, differing conclusions emerge. The younger puplls exhlbit more varlation than the older. Comparing Cl with S1, gliding trebles in the suburbs. \(X^{2}=18.59\) which is significant at \(0.1 \%\). The older puplls show less differentiation and this is borne out by testing. A value of 4.56 for \(x^{2}\) is only signtilcant \(a\) : 5\%.


I give the frequency distributions of the individual indices by groups in figure 54-03. The index was based on the six probabllistle words <app 7222). It was calculated as number of glided variants divided by the number of valid tokens, and converted to a percentage. Each group apart from Cl occupies most of the avallable range of scores. Cl is notable for the preponderance of low scores and consequently its low mean.

5412
Stylistic variation
A typical feature of linguistic variables in other studies has been the correlation of what are seen as more prestiglous varlants socially, with more formal registers of speech. In the present work the use of varlants in the \{lyu\} mini variable was observed over three methods of elicltation - a word list, the reading passages and the replles to the questions interpreted as being in descending order of formallty. The low incidence and implied difficulty in collecting examples of \(\{l y u)\) words in everyday speech (whether guarded or unguarded) militated against using thls method for the elicitation of data. When we compare the different methods of elicltation, the variation can be likened to ever decreasing circles. Any variation which tenuously exists on an overall, or group, or even word level, finally disappears like a dot in the centre of the diminishing circles, and from this point of view represents nonentity. I give in table 54-04 the flgures culled from the indivldual data in appendix 7222. They are given for each of the four elicitations for each of the four groups of participants. The numbers represent glided tokens.


Table 54-04
Glided tokens by elicitations for the four groups
\begin{tabular}{lrrrrr}
\hline & M & \(R P 1\) & \(R P 2\) & \(Q\) & \(\sum\) \\
& & & & & \\
\(C l\) & 7 & 6 & 6 & 4 & 23 \\
\(C 6\) & 31 & 28 & 33 & 23 & 115 \\
\(S 1\) & 19 & 21 & 14 & 9 & 63 \\
\(S 6\) & 36 & 37 & 38 & 29 & 140 \\
& & 93 & 92 & 91 & 65
\end{tabular}

The bottom line shows that there is virtually no difference between the four elicitations in the number of glided tokens. The apparent exception, (replies to the questions), is affected by the number of times some items were not ellcited, especially among the younger groups with single diglt responses. Thus in Cl deluge had no valld tokens at all; in 56, delude was only elicited twice out of a possible 16 . The minute evidence of styllstle variation is confirmed by a significance test which shows that for \(v=9, X^{2}\) \(=3.366\), which is not slgnlficant even at the \(10 \%\) level. The lack of variation also shows itself elsewhere. There is little varlation within each of the four groups of particlpants, especlally Cl and 56 . There is little variation within individual words. And there is relatively little varlation within participants. (But see 35413 for lure, lurid).

The reasons for this unlformity are not hard to find. The palatal glide is not a salient distinguishing feature of pronunclation in this environment. Some speakers are not aware of the potentlal for gllding. The pronunciation of famlliar items is fixed for a given indlvidual. Only those words which were unfamiliar, were for that reason, open to a variable if non standard pronunciation whether with glide or stress, as In deluge, salutary.

The tenor of some of the interviewees does raise the issue of the reliability of levels of formality in a linguistle interview. The format of traditional dialectology tended to be based (for a varlety of reasons) on a restricted method of elicitation, frequently designed to produce single word responses. The use by Labov of levels of formallty in speech led to the idea of a set of discrete styles. Given the major distinction between casual and formal speech and the situations they are associated with, a group of subdivisions was made. A frequently used array for stylistlc differentlation covers the gamut from casual speech, via formal speech and reading passage style to word llst style, "the most formal of all" (Chambers \& Trudgill 1980:71). The range may be extended by using a minimal pairs list. Investigations have shown that this methodology can reflect quantitative differences in pronunciation, related to the accepted levels of formallty. But there are aspects generated by my interviews, which question the universal application and distinction of these levels.

We can accept that the different levels of formallty represent objectively recognized steps in a cline. What \(l\) wish to question is the assumption that a given level represents the same degree of formallty for every individual. In the Liverpool interviews there was a standard majority pattern of response. But it was clear that the approach and reaction of some subjects to the interview was markedly different from this norm. Some approached with a degree of caution, nervousness, reserve and diffldence. Others made it an opportunity to display their latent thesplan talents. for the latter pariticipants, the tone of most of the intervlew was far more casual than for any of the former. Participants had different attitudes and expectations which put their responses for the objectlve levels on a different footing.

Another factor which may influence the individual pitching of the formality level is the extent to which participants are aware, in advance, of the range of possibilities. For example, if the general tenor of the interview was to move from relatively less formal to more formal, but this is not indicated in advance, then some subjects may pitch their initial level of noncasual speech in such a way that it is difficult for them to make a more formal adjustment when they encounter a word list. Those doing this were largely in S1. If subjects were told before they start what is involved, some may be able to adjust the level of their responses 'appropriately', in terms of the stylistic continuum above, rather than imposing their own level of formality at the beginning of an interview.

5413 Lexical variation: frequency and shape
The exercise relating glide loss to word frequency was repeated for /I/. For the complete set of words tested, but omitting all clusters except pleurisy, so that \(n=27\), the rank correlation coefficient was calculated to be 0.00 , a fairly conclusive indication of nil correlation. The 8 items where \(\langle l u\rangle\) is word initial produced a coefficlent of \(-0,1\). Finally \(\mid\) took the seven most variable words deluge, salutary, prelude, voluminous, lurid, lure, delude. They produced a coefficient of +0.53 . For that size sample this value is insufficient to make any positive conclusions. Fowler had commented that the strongholds of /iju/ were in unaccented syllables and in less common words. This reinforces my view that less common words are used by speakers with a longer exposure to the processes of education, and may thereby be more inclined to monitor their speech more closely, especially in interviews.

Word frequency on its own may not contribute much to the explanation of selection of varlants or to glide loss. With words of simllar
morphological shape it was felt that a variant will be consistent in words containing the same morpheme. To test this, 2 pairs of words each with contrasting stress and possibly syllabification, were examined. The figures for the varlants are in table 54-05. The data for volume are omitted since it was invariably glided.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
Table 54-05 \\
Gliding tokens for words of similar morphological shape
\end{tabular}} \\
\hline word & & Cl & & C6 & & S1 & & S6 \\
\hline & tg & -g & tg & -9 & tg & -g & tg & -g \\
\hline salute & 0 & 20 & 4 & 16 & 2 & 18 & 0 & 14 \\
\hline salutary & 4 & 12 & 32 & 1 & 7 & 7 & 30 & 7 \\
\hline voluminous & 13 & 20 & 7 & 33 & & 26 & 9 & 50 \\
\hline
\end{tabular}

Overall, salute was 8\% glided compared with 73\% for salutary. When we take the tokens by groups it is obvious that in terms of age the dominant variant for both older groups for salutary is [t glide]. The dominant variant for salute ls always [- glide]. When the global figures were tested, \(X^{2}\) produced a value of 69.65 . For \(v=1\), this is very significant at \(p=0.1\). The reasons for the difference must lle somewhere else than in similar shape. With the other palr, categorical gllding for volume compares with 24\% gllding for voluminous. Not all partlcipants made the connection. This was more noticeable among the younger pupils. They may have seen the longer word for the first time. I suspect that if there was a choice as to which analogy to use, volume or luminous, then if it was the former, gllding occurred. If the latter, there was no gliding. This susplcion is based on the results of Cl where the large number of glided varlants recorded can be
attributed to the effects of hesitation over an unfamlliar word, and the influence of analogy.

The hypothesis to be tested concerning words of slmilar phonologleal shape, was that, especially for a sound change, such words were more likely to be similar in their use of a variant, not only by groups but also by individuals. But the fact that many of the words tested were categorical and that most were quasi categorical, means that consistency did indeed rule supreme. And if the proof of a pudding is in the eating, then the conslstency was unglided. It was possible to compare five sets of words, producing some interesting results in the final pair.

In lute, lewd only the voicing of the final alveolar distinguishes them. Since both words were \(Q C\), the amount of gllding was minimal. it is of course possible that for a poor reader, lute may have been mistaken for loot. The only special feature relating to consistency here is that "46 was involved in the glided forms: lute in RP2 and lewd in RP1 and 2.

With regard to the 5 <lute>s, lute, dilute, salute, polluted, absolute, for \(C l\) they were totally unglided, except by \#19. The figures for C6 show little difference, a single individual contributing nearly half of the glided tokens. The general loss of the glide in these five words is epltomized by \#36. In WL2 when he came to the Item salute, he pronounced it first with a glide, snorted and smiled, and then produced an emphatle unglided form. Otherwise \#46 (again) was in the forefront registering 4 out of the 10 glided versions.

There is some group correspondence between the use of the gllde in the three <lude> items, prelude, interlude, delude. But it needs to be tempered by the facts that interlude was virtually categorically glldeless, and that prelude registered very few standard tokens. Any concluslons
therefore lack conviction.
The distribution of variants for deluge, delude appears to substantiate the suggestion that stress and gliding are closely linked. (But the same can be said about syllabicity.) The stressed item ls unglided; the unstressed vowel is mainly glided. The four subjects in C6 using a glide for delude, also glided deluge with first syllable stress.

The most interesting of the five sets of phonologleally similar words are lure and lurid and in particular, some of the participants in C6, with their link between gliding and types of elicitation. For the older group in the city centre, the total of 27 glided tokens was almost evenly divided by occurrence between RP1 (7), Q (7), WL (5) and RP2 (8). Over half the subjects ( \(11 / 20\) ) were glideless in both words. But among the gllders there was an internal consistency as table 54-06 shows. it is designed to demonstrate the connection between the gliding of both words in each of the possible 16 combinations of elicitations.

What is remarkable is the leading diagonal. This shows that gliding occurred in a given individual for both words in the same elleltation. So from the table, \#40 glided both words in the first rendition of the reading passage; participant "36 glided both in the questions, word list and RP2. At the edges of the table (outside of the double lines), the rows marked indicate that only a single word was Involved. Thus at the bottom, \#33 and *45 gllded lure in RP2, but there was no glided response for lurid anywhere. Of all the subjects in C6 therefore, \#36 and \#33 are the most conslstent gilders in this pair of words. On the other hand "35 is notable for his inconsistency in this pair.

Table 54-06
Gliding and method of elicitation in lure and lurid for Cb



5414 Fhonological variables; stress and syllabification

Having found that nelther frequency, nor simllar word shapes were sufficiently useful as explanatory varlables, the comments indicating that stress plays a decisive role, needed closer investigation here. Since Jones 1956 has covered the /// environment in some detall, it is his observations which will be tested, bearing in mind that his remarks apply to an earller standard of Received Pronunclation. As seen \(\ln\) 84101, he was forced to be Inconclusive (or al best quasl categorlcal). If the relevant syllablo (RS) was stressed, the glide was varlable but largely absent. If the syllable was
unstressed and followed by stress, the gllde was also variable. Only if an unstressed syllable was preceded by stress was he able to conclude that a glide was always present. These simple statements ignore the influence of possible interrelated factors, linguistic or otherwlse. I shall now compare my empirical results with Jones three statements, by referring to appendix 7340 where words of \(\& 4\) syllables are classifed according to the position of the RS ( \(x\) ) and tonic stress ( \(y\) ).

To test whether stress on the relevant syllable promotes glide loss, table 54-07 gives my overall percentages for gliding in stressed items.

Table 54-07
Stressed syllables and the level of gliding
\begin{tabular}{llll} 
\% glide & \& & glide \\
1 & lute & 8 & salute \\
1 & hallucinate & 10 & delude \\
1 & polluted & 17 & lure \\
2 & elusive & 20 & lurid \\
3 & lewd & 28 & voluminous
\end{tabular}


The rule largely holds; but a few items exhibit degrees of gilding from \(17 \%\) to \(28 \%\) ). In the case of voluminous, gllding ls more common (60\%) in the younger participants, for the reason in 55413. On the other hand, for lure, lurid \(80 \%\) of the glided tokens occur in the older groups, possibly reflecting greater exposure to that varlant, rather than the effect of the following \(\langle-r\rangle\) or a lowered vowel. In all three items the gllded forms were to a considerable extent the preserve of Individual speakers, rather than being scattered haphazardly across a group. In a wider context the dlagram
relates to groups \((1,1),(2,2)\) and \((3,3)\) in app 7340 .
My data for unstressed syllables are given in diagram 54-08, where I have added an extension to the observations of Jones. I make a distinction between syllables where the stress is immediately contiguous to the relevant syllable, and those where it is not. My appendix groupings are bracketed.
```

Diagram 54-08

```

Non stressed syllables and the level of gllding


As Jones implied, gliding is promoted only when non stress is (immediately) preceded by a stressed syllable, (with the caveat of reduction to shwa which may produce gllde loss). More distant previous stress, (le where \(|x-y|>1\), is associated with glide loss. Following stress (whether immediate or not) favours glide loss. On the basls of the scant empirical evidence, it is presumptuous to claim that Jones has captured the essence of the problem. Yet together with the minor modification for non contlguous syllables, stress has helped to explain more of the variation. Even so, another influence seemed to be at work, but not as obvious as stress. 1
began to suspect that the most glided words - prelude, salutary, deluge, soluble, volume, valuable - had another feature in common, apart from the relevant syllable being in post tonic position (my (2,1) (3,2) groups). This other feature, syllabification, may possibly serve as an alternative explanation, to be used where irresolution still occurred.

Less attention has been given to syllablfication, probably because of the difficulties in observing distinctions in speech. Only the comments of Bailey 1977 have indicated the importance which (I felt) it deserves. If we assume that this feature acts on its own, its Influence can be easily stated. The propensity to glide is diminished if the PCs are tautosyllabic (thus accounting for the vulnerabllity of word initial position, and loss in medial clusters). Conversely heterosyllabicity favours the glide. I have chosen to test these propositions in conjunction with stress. In order to examine the combined effects on the production of varlants, 5 words with easily discernible syllabification were selected: delude, prelude, salute, salutary, voluminous. These were varlable, not only in the use of nonstandard pronunciations, but in the distribution of varlants, the allocation of stress and the careful syllabification assoclated with hesitant articulation.

The propositions will be tested with reference to a tree diagram (54-09) showing the combinations of variant, stress, and syllablelty.

The first division is made according to whether the glide is present or not. This gives 2 groups: g and -g .

The relevant syllable is allocated between a pair of sections depending on whather that syllable is stressed or not. it is independent of the standard pronunclation of a vord. This split produces 4 sections.

Finally, the sections are subdivided according to whether the relevant syllable begins with a consonant or not.

Taking prelude as an example, the corpus revealed a spllt between: prelsude the previous syllable closed. The RS is heterosyllabic, not beginning with [l-]; symbolized by \(-c\). This makes the vowel in the sequence syllable initial. Like words with a zero PC leg euphony), this favours a glide.
preslude the previous syllable open. The relevant syllable is tautosyllabic begining with [l-]; and symbolized by +c

There are consequently 8 classes. Using 0 for absence of a feature and 1 for its presence, in the order gsc, (which can stand elther for glide, stress, consonant, or group, section, class), the 8 classes are given a binary notation from 000 to 111 (in denary 0 to 7 ).

Diagram 54-09
Subdivisions for analyzing syllabification and stress

\(\begin{array}{llll}000 & 001 & 010 & 011 \\ 10 & 1 & 12 & 13\end{array}\)

\(100 \quad 101 \quad 110 \quad 111\)
\(14 \quad 5 \quad 6 \quad 7\)

This octad can accummodate those mispronunclations which did not appear to be different words, unlike the rest of the analysis where they are excluded.

If we take the variables of syllabification and stress in conjunction, a pair of fundamental propositions are tested.
(P1) tautosyllabicity and [t stress] work together to favour gllde deletion 3
(P2) heterosyllabicity and [- stress] work together to favour glide insertion \(\downarrow 4\)

If the varlables do not act in conjunction but contrarily, four combinations emerge (capitals refer to the columns in table 54-10).
\[
\begin{aligned}
& \text { [+ stress] acts with a heterosyllable consonant, then } \\
& \text { B if [+ glide] results, stress wins over syllableity to give } 6 \\
& \text { C if [- glide] results, syllabicity wins over stress to give } 2 \\
& \text { [- stress] acts with a tautosyllabic consonant, then } \\
& \text { C if [+ glide] results, syllabiclty wins over stress to give } 5 \\
& \text { B if }[- \text { glide] results, stress wins over syllablcity to give } 1
\end{aligned}
\]

In addition the variables may operate disjunctively to produce the opposite effect of that predicted in the basic palr of propositions.

D If i- stress] and heterosyllable combine for [- gllde], then 0
D If [+ stress] and tautosyllable comblne for \([+\) glldel, then 7
1 shall use data from my investigation to evaluate the effect of each feature in table 54-10. When the percentages for pronunclations are arranged to reflect this classification, the effects of stress and syllablification become clearer.
```

Table 54-10

```

Stress and syllabiflcation for 5 《lyu》 words
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{1} & \multicolumn{2}{|c|}{8} & \multicolumn{2}{|c|}{C} & \multicolumn{2}{|c|}{D} \\
\hline & \multicolumn{2}{|c|}{Both correct} & \multicolumn{2}{|c|}{Stress vins} & \multicolumn{2}{|c|}{Syllab wins} & \multicolumn{2}{|l|}{Neither correct} \\
\hline & 13 & 14 & 11 & -6 & 42 & 45 & \$0 & ¢7 \\
\hline delude & 88 & 3 & 0 & 5 & 0 & 0 & 0 & 4 \\
\hline salute & 87 & 3 & 3 & 8 & 0 & 0 & 0 & 0 \\
\hline voluminous & 55 & 22 & 5 & 15 & 0 & 0 & 1 & 1 \\
\hline salutary & 34 & 37 & 6 & 6 & 0 & 0 & 18 & 0 \\
\hline prelude & 43 & 22 & 22 & 10 & 1 & 0 & 1 & 0 \\
\hline
\end{tabular}

Regrettably they tend to undermine my original bellef in the superlority of syllabification over stress in the determination of varlants. But in its favour, it can be seen from the table that syllabification works \(2 / 3\) to \(9 / 10\) of the time. The columns in \(A\) show the percentages which uphold the palr of propositions on the conjunction of stress and syllablfication. It can be seen that all five words are 'correct' for at least \(\chi\) of their utterances. The D columns show what happens when the features conspire to produce a result contrary to that enunclated in the propositions. It very rarely happens. The fluke result for salutary (the main odd case that appears to go agalnst Balley, is due to confusion with the non tested word solitary, which appeared frequently as response for salutary. The 18 responses generally represent a mixed version of both words. Columns \(B\) and \(C\) show what happens when stress and syllablfication are in conflict. Stress trlumphs.

\begin{abstract}
The broad divisions of this summary of the Liverpool tests, cover the evidence from the interviews of linguistic and soclal aspects of glide use and explanatory variables, together with general observations on the role of certain suffixes. (yu) cannot be treated as a single concept. It must be broken down into components, most readily specified by the PCs. For a PC and its gliding status, the use of distinctive features better summarizes my empirical findings, and may go some way to providing a contributory systemic reason for glide loss. Using the features anterior and coronal, they produce three divisions into which the 16 PCs (excluding 0 ) may be placed.
\end{abstract}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 01 & [-cor][tant] & \(\Rightarrow\) & /f v/ & /p b/ & /m/ \\
\hline D2 & [-cor][-ant] & \(\Rightarrow\) & /k g/ & /h/ & \\
\hline D3 & [+cor][tant] & \(\Rightarrow\) & 101 ln & /t d & 1 1 \\
\hline
\end{tabular}

For completeness, the fourth subset is stated and exemplified.

The order in which I have listed the consonants baslcally represents the order in which the PCs appear in terms of gliding. At last, glide tidings of great joy.

With regard to the four divisions, the following points are made.
(a) The PCs most likely to retain the palatal gllde are those in DI \& D2, articulated furthest away from yod, le lablals and velars. This suggests the fundamental motivation for glide loss, and explains why of the nasals \(/ \mathrm{m} /\) rather than \(/ \mathrm{m} /\) is likely to undergo glide loss. In thls thesis the PCs are represented by my categorical and quasi categorical divisions (85010). .
(b) Ir division 4 a glide is never piesent after the palato olveolar affricates \(/ \mathrm{c} \mathrm{J} /\), and, except in rare individual cases lexically and
idiolectally), after the fricatives \(/ \mathrm{z} z / .1\) indicated in 82104 that the glide may be defined as [tcor][-ant] cor maybe hovering on the border depending on whether neutral is [ \(\varepsilon\) ] or shwa). If [+cor] is admitted, then the effects of articulatory similarity are clearer, as it represents a common feature.
(c) It is division 3 which needs most attention. Of the PCs in this division, most attracted to the glide is \(/ 8 /\), because of its dental articulation. it is really in a set on its own, being less close to yod than the alveolars. As far as Liverpool is concerned, all accents from Scouse to RP are distinctive gliders with /8/. The group of alveolars incorporates subgroups reflecting wide differences in levels of gliding, as well as coalescence. /n/ occupies a special position in this investigation on account of its innovatory status with regard to the extent of glide loss. At the lower end of the gliding spectrum is \(/ / /\) which has lost almost all contact with the glide not only in Liverpool but elsewhere (except in the specific post tonic stress context). Finally there is /r/, totally ungllded. Both /r/ and \(/ / /\) in addition to the features mentioned, share with \(/ \mathrm{j} /\) the features sonorant and continuant emphasizing their similarity. Conversely, /kg/share none of the four. Dissimilation has the effect that a sound close to yod, rejects yod.

5501
The lexical incldence of PCS
Frequency of incldence depends on the PC. I have noted that the distribution of lexical Items for each PC is far from equal. Some PCs like /k
 PCs such as \(/ v\) 日/. From an ldiolectal standpoint, it is not necessarlly the overall frequency of an item, as revealed in a general frequency llst, which is always relevant. It is possible to concelve of somebody working in a
publishing house and specializing in the monastic and legend lists. Three /日/ words (Methuen, carthusian, arthurian) will have a greater frequency. But it is the converse situation which is emphasized here. For \(/ v \theta /\) there may exist speakers with only a single item in each, namely view, enthusiast (and their derivatives). Let us further suppose, that the /v/ item is glided, and the /8/ item is unglided, and this applles to the derived words, then the idiolectal status of a PC can depend on a single lexical item.

Comparisons with other glide investigators
As far as the plain consonants are concerned, the combined data for my four groups of subjects reveal close similarities with both RP (84101), and the hierarchy of Balley ( \(\$ 4120\) ). The conclusions recorded here reflect those noted by Wells 1982. The data recorded in my survey also conform, in so far as it is possible to make comparisons, with those of Trudgill 1974. There is substantial agreement between the order of PCs based on place of articulation. The dichotomy is between lablals and velars, and the more variegated alveolars. All dialects (except east Angllan) agree on the association of gliding with the non coronals. It is within the alveolars that variability occurs. While the position of \(/ r /\) at the base of the gllding spectrum is shared by all dialects, it is the relative order of the phonemically palatalizing consonants \(/ t\) d \(s z /\), the phonetically palatallzable consonants \(/ \mathrm{h} \cap \mathrm{n} / \mathrm{t}\) together with \(18 /\) which is in question. If we consider the quadruplets first, while the three maln varlants are generally present in British and Australian English, Amerlcan researchers Indlcate the comparative absence of coalescence, so that dialects are not simply comparable. Another aspect militating against direct comparisons is the fragmentary evidence for the existence of palatalized varlants for the trlo \(/ \mathrm{h} \mathrm{n} / / \mathrm{In}\) Liverpool. While
this is very specific, and relatively insignificant compared with the pancoronal explanatory variables for glide loss, it does suggest itself as a sultable area for further investigation. Whether such post alveolar articulations represent a trend in the direction of glide absence remains to be seen. Auditory impressions can be suspect, whereas spectrographic methods provide a more objective foundation for analysis. In the case of \(10 /\). Its small lexical load confers on it a perlpheral importance in the order of PCs. It is at this juncture that comparisons between lects become more problematical, even if they are based on rank rather than percentage values of gliding. The extent of vocabulary for an Individual speaker may affect the degree to which he glldes in a PC. In general therefore, Liverpool appears to be broadly in line with urban basllects in the rest of the country, more notably with regard to \(/ \mathrm{n} /\) as far as my limited testing indicates.

\section*{5503 \\ The subenvironments}

A crucial point which needs separate treatment is the exlstence of subenvironments within the minl varlables, (and its converse, the existence of small areas of varlabillty within the otherwise monolithic gllded plain consonants). Thelr importance is related to their lexical incidence. They can be disguised in the overall data for a PC, and a concatenation of categorlcal suffixes can predetermine any results obtained from empirical testing, l have chosen to differentlate the ldea of the micro variable from that of the subenvironment. Strictly the micro varlable represents a varlable subenvironment whlch can be characterlzed by reference to a unlfying identity (such as word initial position), rather than the detritus or residue remaining after extensive glide loss. For future research and comparisons. they need to be positively identlfled in order to avold misleading
conclusions, since mini variables can have categorlcal subparts. (See 85206 for the opinions of Hudson 1980b on invarlable subsets of a phoneme). It is not clear whether other researchers were aware of such subenvironments and hence reported inadequately. Whichever, it can make comparablilty unrellable.

Role of the explanatory varlables

Of the explanatory varlables tested, the PC provides the most usual basis for discussion. But regarding the PC, 2 were of far reaching influence. They were stress and word initial position, confirming the conclusions of earlier work.



My hypothesis that syllablfication does have an influence (ln tandem with stress), was cemonstrated in 55414. But when they opereite against each other, stress wins. Stress also scores as an explanatory varlable since it is more
easily segmented than syllablfication, In any case, syllablfication may be more susceptible to idiolectal variation which is not as easlly detected. But stress is not just a question of plus or minus. In the latter case it matters whether tonic stress occurs before or after the relevant syllable (see table 55-01 where - means not applicable, and signifies no examples found). For /// contiguous and non contiguous syllables are distinguished. Morphological similarity between words was not as frultful an Influence on cholce of variant, except in those instances where a word was unfamiliar and thus unrepresentative.

Table 55-02
Stress and variants for variable PCs in Liverpool: suffix subenvironments
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{PC} & 1 & \multicolumn{3}{|c|}{+str} & 1 & \multicolumn{3}{|c|}{-str} & 1 & \multicolumn{2}{|l|}{suffix 1} & \multicolumn{3}{|l|}{examples} & 1 \\
\hline & 1 & co & +g & -9 & 1 & co & +g & -9 & 1 & & 1 & +str & -st & & 1 \\
\hline \multirow[t]{4}{*}{It} & 1 & 1 & 1 & * & 1 & 1 & 1 & * & 1 & -ude & 1 & multitudinous & attit & & 1 \\
\hline & 1 & 1 & 1 & \(\times\) & 1 & 1 & 1 & \(\times\) & 1 & -ure & 1 & mature & furnl & & I \\
\hline & 1 & 1 & 1 & 1 & 1 & 1 & , & \(\times\) & 1 & -ute & 1 & constitution & const & lutive & 1 \\
\hline & 1 & & & & 1 & & & & 1 & & 1 & & & & , \\
\hline \multirow[t]{2}{*}{1 d} & 1 & 1 & 1 & \(\times\) & 1 & 1 & 1 & * & 1 & -uce & 1 & deduce & reduc & & 1 \\
\hline & 1 & & & & 1 & & & & 1 & & 1 & & & & 1 \\
\hline \multirow[t]{4}{*}{Is/} & 1 & \(\times\) & 1 & 1 & 1 & 1 & 1 & \(\times\) & 1 & -sue & 1 & ensue & Issue & & 1 \\
\hline & 1 & 1 & * & \(\times\) & 1 & 1 & \(\times\) & \(\times\) & 1 & -ure & 1 & unsure & press & & 1 \\
\hline & 1 & 1 & 1 & 1 & , & - & * & - & 1 & -une & 1 & assume & & & 1 \\
\hline & 1 & & & & , & & & & 1 & & 1 & & & & , \\
\hline \multirow[t]{3}{*}{121} & 1 & 1 & 1 & 1 & 1 & - & * & - & 1 & -ume & 1 & resume & & & 1 \\
\hline & 1 & & & & & & & & 1 & & 1 & & & & 1 \\
\hline & 1 & & & & 1 & & & & 1 & & 1 & & & & 1 \\
\hline 111 & 1 & - & - & - & 1 & - & 1 & * & 1 & -ute & 1 & & (2,1) & \((3,2)\) & 1 \\
\hline & 1 & & & & , & & & & I & & , & & & & , \\
\hline Inl & 1 & - & 1 & 1 & 1 & - & d & \(\times\) & , & -ude & 1 & & \((2,1)\) & \((3,2)\) & I \\
\hline
\end{tabular}

A further distinction must be made for those tams which take suffixes. My conclusions based on observation and referring broadly to British Engllsh, are summarized in table 55-02 with speclfic and group
examples. The suffix tested in the continuants 《-ume》, shows apparent social stratification, with coalescence dominant in the central school and l+glidel in the suburbs.

5505
Diffusion of change: linguistic aspects
For the process of diffusion to start within a PC, weak points must exist., In the case of the glide, the Liverpool tests confirmed that when the relevant syllable was in word initial position or immediately followed tonic stress, these constituted such environments. It may possibly apply to environmental diffusion in terms of PCs, or even to conditional diffusion in terms of the operative linguistic constraints. This second pattern is also closely linked to another aspect of the basis of the model suggested by Chen \& Wang 1975. That is, the scope of the operation of a phonological rule - in this case, glide loss and palatalization - extends to an increasingly larger portion of the lexicon untll all relevant items have been transformed. The key words here are all and relevant. What I shall argue is that there is a necessary difference between a linguistic definition of relevance and an individual interpretation. The former is objectively defined in terms of lexical categorles. The latter is subjectively interpreted, perhaps on an ad hoc basis or by a version of folk etymology. Using the lingulstic definition provides a standard against which the diffusion across the lexicon may be measured. But individual interpretations of word relatedness, because they may not coincide with linguistic definitions, wlll introduce a stochastic dimension into the dispersion of glide loss. An example previously mentioned is that of voluminous. The pronunclation of this word, and by implication its giding status, can depend 0.1 whether it is seen as baing related to voluma or luminous.

It has to be admitted that this process mainly applles to less familiar items, or to items encountered for the first time in print. Subsequent contact with a word may result in a modified pronunciation. No firm conclusions may be drawn about the direction in which individuals will modify.

5506
Diffusion of change: soclal aspects
The model proposed by Chen \& Wang 1975, provides no clues about the individuals or groups likely to be in the forefront of change. Trudgill 1974 had shown that in Norwich, gllde loss over the complete spectrum of PCs was largely ldentified with working class speakers. But in east Anglla (yu) has more of the essentlal characteristics of a linguistic varlable. In Liverpool speech in general, and in Scouse in particular, the low profile of the palatal glide in public awareness ensures that its insertion or omission from many lexical items within the mlcro varlables, goes largely unobserved. However in this context a comment by the friend with the Ford Angular aunt, is relevant. He had noticed that when he was younger, there were differing pronunclations of the word nude. He associated the glided form with more middle class speakers, while the unglided form was definitely identifled with more common speech.

Since the particlpants in Liverpool were not chosen to be statistically representative of any socio economic groupings, and while there are dangers in relfying such groups as they were put in for analysis, the variety of lects examined produced results largely according to the expectation that those with access to a wider range of speech patterns (notably S6), were thereby capable of greater gllde use, even If intra individual variation was restricted. A progression by age and school was
discernible. Outstanding in glide loss and erosion was the younger group of the city centre school, main location of the broad Scouse varlety.
(a) Their loss was more advanced in ///.
(b) They had made inroads in word initial position in \(/ \mathrm{n} /\), which were more extensive than previously lmagined.
(c) There was greater use of coalescence in /t \(\mathbf{d} \mathbf{s} \mathbf{z} /\).

It seems likely that the greater homogenelty in social background of the city centre school has facilltated the process of innovation. The problem of actuation may be partially accounted for by the collective recognition and acceptance of a new and trendier way of using a change in pronunciation to signal the awareness of an imported cultural epiphenomenon.

So some changes do have social implications. In particular the loss after \(/ \mathrm{n} /\) started with young, central urban speakers of the basllect. As such it may be interpreted as a change emanating socially from below. Some evidence of loss after \(/ n /\) occurs in the older central group. 1 have no indication if those members of this older group currently showing no loss after \(/ n /\) have always glided, or whether if they dld have loss earlier, they have now modified their pronunclation in the direction of the standard glided form.

In summary there is an age and school progression towards the preservation of glided varlants upwards in age and outwards from the central city.
recapltulatlon
```

CHAPTERG

```

GLIDESHED

REVISITED

6000 Glideshed revisited

The final chapter completes this thesis by showing to what extent the objectives set in the introductory chapter were achleved. I ended the introductory chapter with a quotation from Horvath 1985, on the varlation inherent in the palatal gllde in the context of the /Cju/ sequence.
"The variation assoclated with this sequence both within a given dialect and between dialects is very complex and ... has never been satisfactorily treated." (1985:109)

1 try to resolve the dual aspects of this observation. 1 also refer to shortcomings which have become evident in this investigation; proposals for improvements in methodology; as well as suggestions for further research.

The first chapter showed how the original sources, both native and French, from late \(O E\) and early \(M E\), provided the phonological and lexical bases for the sequence \(/ \mathrm{Cju} /\), and how thls stock was extended by the Influx of (mainly learned) vocabulary in the 16c and after, it also demonstrated the fragility of the glide after [tcor][tant] consonants. The causes of glide loss are phonetic and phonological. Phonotactic constraints operated initlally in /Cr/ and /Cl/, on the principle of ease of articulation. There is also the systemic argument that approximants do not readily cluster (82103). In the development of the sequence and the subsequent erosion of the glide, stress and the quicksands of shifting stress have played an important part. Shift within the diphthong /lu/ presaged the emergence of /ju/. Shift within borrowed lexical items bringing them more into line with native vowels and prosodies by changing oxytone to paroxytone, precipitated loss in <-ure>, especially after /t/. Glide loss, and later advancement to palatallzation began to occur after /t \(\mathrm{d} \mathrm{s} 2 \%\) Reduction of the relevant vowel to shwa, especially when immediately post tonic (par'ticular, 'manufacture), and word initial position (cullinary) have created sporadic loss in a range of PCs extending to the noncoronal lablals and velars. Stress is stlll potent in accounting for contemporary glide variation. Of all the explanatory varlables proposed and tested in this work, it has proved to be the most consistently effective. Glide loss was more extensive across PCs in other dlalects than in RP; in partlcular the Generallzed Yod Dropping in east Anglla. The presence of this dialect In the settlement of the east coast of north America and its longer term influence was described. The sallence of the gllde was increased by its loss, precipitating social factors to operate in tandem. in 19c

America they were instrumental in reducing the extent (34102), as they did in the 19 c English restoration (by some speakers) after the alveotars \(/ t \mathrm{~d} \mathrm{n} /\) (51224). This was a product of prescription and by extension, social correctness, and as such secondary influences. The primary motivators have involved a combination and sequence of articulatory factors.

While Chambers \& Trudglll (1980:63) have posited the morpheme as the primary vehicle for phonetic change, when we look at the dispersion of glide loss across the lexicon, the overwhelming impression ts of diffusion by subenvironment. These are not necessarily morphemic. In well established environments like the coalescents, when glide loss began, subenvironments were smaller than they are now. The 〈-ure> and <-ude> sets in \(/ t /\), being productive suffixes, have expanded with later additions conforming to the established pattern. In PCs subject to more recent loss, word initial position or shwa reduction are the most favoured subenvironments for starting the process. This process need not come to a complete conclusion. Some features (like heterosyllabicity) may exert a residual influence, so that in \(/ 1 /\) items like volume in my group ( 2,1 ), may be trapped llke a word in a gllded cage.

Scouse, the urban basllect of the Liverpool region, provides a focus and locus for gllde loss. The speakers tested ranged from varletles of Scouse to the acrolect of near RP. The results of the tests to determine the distribution of varlants across the 17 PCs , as well as the influence of the more important explanatory varlables, were reported. Compared with the earlier stages, the \(20 c\) has seen a stabllization in the extent of variation. Except as is common among the coronals, what was confirmed is the pervasive lack of variation across (yu) in Liverpool. The sequence had to be split into its constituent micro variables, using the minl varlable PCs as a reference point, in order to isolate the areas of variation.

Variation, rather like the love of money (1 Tim 6:10), is held to be the root of all evolution. The term variation can have a singular plurality of applications. Horvath 1985 has drawn attention to the complexity within and between dialects, but not to variation within individuals. If this implles that idiolectal variation is minimal, then the present investigation confirms this. Consequently the \(\mathbb{C J u /}\) sequence is microlinguistically simple while being macrolinguistically complex. I try to provide a clarification by disentangling the within and the between, using the conclusions arrived at on the basis of my investigations.

If we begin on the large scale with national standard varletles, differences occur in the PCs affected by glide loss. While the varlable PCs are in the set of [tcor][tantl, the extent of loss after \(\ln / \ln\) America sets this variety apart, as does this loss in British urban dialects. There is scope for more important variation in the range of varlants which are available, and it is in the coalescent stops that the range is most striking. In the British and Australlan standards [-glide] is not an option. However this broadly based comparison does not reflect the differences which can exist within dialects both standard and nonstandard.

Finer detall reveals variation which is not only linguistically based, but which is manifested in and correlated to social factors. Emplrical studies have concentrated on the coalescents. The ranges of varlants which can occur here within dialects superficially appear to introduce complexity, l belleve that if a simplification is made by contrasting glide presence with glide absence (whichever form this takes), the interpretation becomes easler. This is more so if we base our observations on the parasocial feature of
prestige (defined for convenience if tautologically in terms of the acrolect), and treat the glided forms as reflecting this bearing in mind the discrepancy in the southern states of America). Acrolects tend to greater use of \([+\) glide] than basilects. There is general agreement in the conclusions of the main surveys with regard to the operation of soclal factors. But basically they reflect universal features of the human condition. The lower strata of society are assoclated with the non acrolectal prestige variants. The younger groups use more non prestige variants. (As they grow older the proportion may stay the same, thus cementing the sound changes; or people may modify their pronunciation in the direction of the standard, ontogeny overrides phylogeny.) In general males are more disposed than females to use non prestige forms.

A similar approach may be taken to reducing the linguistic varlation within dialects to comprehensible proportions. However my attempt to retrieve cosmos from chaos is not necessarily based on the most apposite emplifical evidence. Research has often been based only on items in word initial position. This as I have shown, is an explanatory varlable in itself when it comes to glide loss. We have seen that morphemes in the coalescents do have variable realizations across the totality of speakers (table 55-02) and so have to be lexically specified. Yet selection by Individual users of a varlant within a morpheme is usually consistent. Gllding may be optional provided variants are not conditioned by factors of prestige or, (In the continuant coalescents /s z/ especially) the consequence of diachronic diversity.

This investigation was conceived as an exercise in aspects of variation in \(M\), but test results did not live up to expectations. A mere six of the original items exhibited variabllity. If the pllot test had taken place in Liverpool with speakers of school age, it may have revealed the extent of glide loss in this environment, as well as features which now require further investigation, especially after \(/ \mathrm{n} /\), and also the special place of Scouse speakers. This reinforces the statement of Trudgill (1978:13) that
"intuition based work is unrellable in the study of areas of the language which are undergoing linguistic change or are subject to variation of some kind."

Some shortcomings in the preparation of the materials used in the interview became evident. The balance of ltems allocated to each PC had been based on the overall distribution of consonants in English calculated by Fry 1947 ( 54321 ). A better approach involves basing the frequency of items to be tested on the lexical incidence for each PC as subsequently revealed in the appendices. In addition, within some PCs there was an imbalance of subenvironments. In /t/ too many /st/ were used; in \(/ n\) / too few medial examples. Possible variation was not adequately anticipated. The presence of so many clustered types with /CI/ may have influenced the response to gliding. Within the panconsonantal list there were Insufficlent distractors. A greater sprinkling of non relevant ltems eases transeription, espectally when this is done using a tape recorder without a pause facllity for multiple repetition.

In the interview itself, asking subjects to read in their best volce (like a newscaster) did not recessarlly achleve the desired effect. My perception of a radio volce appears to have been at varlance with theirs. If
subjects of their age do listen to the radio, it is more likely to be local rather than national. At times, the former can sound like the llliterate reading the inarticulate. A different elicitation technique can be to ask subjects to retell the story in their own words. But there is no guarantee the words you want will appear.

In making transcriptions of the interviews, the difficulty of identifying a particular speaker can be moderated by interpolating at regular intervals the name of the interviewee. In addition, the use of a photograph to recall each subject will aid identification, especially when there is no real opportunity to return for further testing.

Finally a better grasp of the nature of cause, determinism and explanation (Lass 1980, 1987; Bhaskar 1975, 1979; Pateman 1987) will have produced a more informed analysis.

6031 Suggestions for future research
It can be disconcerting (but salutary) to find that many of my 'originall ideas and suggestions had been ventllated by others more experienced and expert. I feel however that there is scope for further research on aspects of the palatal gllde in areas not covered here. The treatment of loan words with original ly] from German and French leg muesil, duvet), will repay investigation. Results may be compared with similar borrowings into Bulgarian and Russian. Danchev 1985 has shown that if a western language has [y] it always becomes [ju] In slavic languages. For non scientific glideable loan words from Engllsh into Welsh, where orthographle variety occurs in the use of \(l w, e w, w\) and \(u_{1}\) see Gray 1978. Conclusions regarding explanatory variables may be retested by using polysyllabic made up words where stress and syllable juncture can be indicated and varled.

An extension of the enquiry to adult and female speakers will provide added dimensions to current usage as well as possible Indications of sound change in progress. Sallence or perception of the palatal gllde can be measured using matched guise tests. Since erosion In Liverpool is more a feature of the basilect, the correlation of loss with archetypal aspects of Scouse (like affrication or centrallzation of back vowels), seems worthy of attention.

6032 Lexical diffusion and chaos theory
"The misshapen chaos of well seeming forms." (Romeo and wilet l:1)
Superficially chaos is misshapen, but according to recent mathematical developments, below the surface there may be well seeming forms which have structure and pattern. Deterministic chaos originated in the physical and biological sclences, but has appllcations for many dlsclplines. (Gleick 1988; Stewart 1989; Butler 1990; New Scientist 1989 \& 1990). To some extent the theory of chaos has taken on the mantle of the 19 c Darwinlan theory of evolution, or the early \(20 c\) Heisenbergian uncertainty principle, In that it has been seen by some observers in very different flelds, as a powerful stimulus to a new evaluation and interpretation of what appear to be the confusing complexities of everyday life. Its baslc princlple has been described in a leading article in the New Sclentist of 891021.
"Chaos theory presents a Universe that is deterministic, obeying
fundamental physlcal laws, but with a predisposition for disorder,
complexity, and unpredictabllity."
(vol 124: num 1687) The ideas underlying the theory of chaos may help to refine and llluminate the contributions of individuals to the overall spread of phonologlcal change acros: the lecicon, especially when few explanatory varlables are involved.

The use and usage of the glide in British English can present problems for non native speakers, In his guide to pronunclation, MacCarthy confirms that
"The rules governing the insertion of \(J\) before \(u u\) are rather complicated." (MacCarthy 1950:147)

1 hope to have made some contribution to this fleld. The present position regarding loss has been governed by a mixture of historical factors, linguistic constraints, social acceptance, and most micro lingulstically of all, lexically. Even Chomsky \& Halle 1968 fall back on 'arbitrary lexical categorization' (54112).

The systematic classification of the factors influencing the cholce of variants of the palatal glide, needs, as Wells (1982:66) noted for the RP alternation between [ \(\omega \boldsymbol{\partial}\) ] and [כ:], "a comblnation of optlonallty, varlabillty and lexical specification".

Stephenson 1970 had predicted the demlse of the glide after the alveolars in the United States within a generation. Potter (1969:20) had sald that the ungllded variant after /// was obviously the pronunclation of the future ( 51221 ). Altchison (1978:143) goes further. Commenting on the fact that [j] is disappearing, she claims that "Soon, it may have dropped out entirely, as it has in east Anglla." I hope these forecasts are incorrect. The palatal gllde, like music for Congreve, hath charms. I shall not speculate, but in conclusion adapt an aphorism of Wittgensteln:

\footnotetext{
Whereof I am not sure, thereof I shall not speak.
}
-••andcoda

APPENDICES
```

7100 Materials tested

```

7110
The raading passage

\section*{THE EVILS OF DRINK}

Hugh was an old recluse. He lived on his own in a quiet secluded village in north Wales. It was peaceful there and well away from the polluted air of the towns where he used to work. This was better for him, as he now suffered from pleurisy, In his younger days he had been a musician, He used to play a special kind of flute made of aluminium, but his favourite instrument was an old fashioned lute.

During the good weather, he spent much of his time outdoors in the garden, where he had a beautiful display of blue lupins. He used to try and lure birds into the garden by leaving scraps of food. But they proved very elusive, and usually flew away when he appeared at the door, dressed in his voluminous overcoat.

Sometimes he tried to brew his own beer. He made it from kits which included everything apart from water. On one occasion however, he added too small a volume of water. As a result, the hops which were supposed to be soluble, didnt dissolve. The result was a sticky glutinous mess. He attempted to dilute it with some lukewarm water. Then - big mistake - he trled to delude himself into thinking it was drinkable.
it was definitely an act of lunacy, because it caused him to hallucinate. In this dreadful state, he imaglned he saw luminous figures in the darkened room, dressed in lurid clothes, and singing lewd songs in fluent Welsh. This really blew his mind.

So he trled to exclude these horriflc lmages from his head. But as he did so, he spllled the contents of his pint glass all over himself. Thls deluge of beer woke him up suddenly. The flgures disappeared. He decided never to let it happen again. Thus, desplte the mess, he learned hls lesson. It was a valuable and salutary experience.

7111 Comprehension questions on the reading passage

1 What was the name of the man?
2 How was the village described?
3 How was the town air different?
4 What llinesss did he have?
5 What instrument did he play?
5a What was it made of?
6 What was his favourite instrument?
7 What kind of flowers did he have in the garden?
8 What did he try to do with the birds?
9 What did they prove to be?
10 How did the passage describe his overcoat?
11 What mistake did he make in brewing beer?
12 What are hops supposed to be?
13 What did he get when they didnt dissolve?
14 How did he try to improve the situation?
15 What was his big mistake?
16 Why was this dangerous?
17 What did he Imagine he saw?
18 How were they dressed?
19 What were they singing?
20 What did he try to do then?
21 Which word is used to describe the beer he spllled?
22 Was it a good experience?

Did you notice anything about the words in the passage?

7121 The /l/ list from the reading passage WLI
\begin{tabular}{ll} 
recluse & soluble \\
secluded & glutinous \\
polluted & dilute \\
pleurisy &. \\
flute & lukewarm \\
& delude
\end{tabular}
aluminium lunacy
lute hallucinate
blue luminous
lupins lurid
lure lewd
elusive fluent
flew blew
voluminous exclude
included deluge
volume valuable

\section*{salutary}
\begin{tabular}{|c|c|c|}
\hline january february & barbecue communal & \begin{tabular}{l}
stew \\
excuse
\end{tabular} \\
\hline march & prelude & spew \\
\hline april & during & truant \\
\hline may & genuine & supreme \\
\hline june & ridiculous & deluge \\
\hline july & pupil & abuse \\
\hline august & costume & human \\
\hline refuse & amusing & avenue \\
\hline interview & accurate & salute \\
\hline acoustic & choose & computer \\
\hline union & new & insoluble \\
\hline cruel & tribunal & Iterature \\
\hline rescue & enthusiastic & emu \\
\hline presume & duke & stupid \\
\hline school & sult & shoot \\
\hline huge & superb & peruse \\
\hline jaguar & tissue & ridicule \\
\hline dual & jewel & miniature \\
\hline furious & nuclear & shoes \\
\hline sues & Impudent & bureau \\
\hline tune & introduce & prosecute \\
\hline humorous & unit & few \\
\hline screw & suet & formula \\
\hline nutrition & blue & Interlude \\
\hline consumer & neutral & absolute \\
\hline lllumination & chews & \\
\hline
\end{tabular}

Individual data from the main study

\section*{7201 Symbols used in the tables}

The following section explains the significance of the symbols in the individual data tables.

Subjects and schools
After the table number, \(C\) refers to the city centre school; 5 refers to the suburban. The numbers down the sides of each page represent the subjects.
01-20 City centre first year C1
31-50 City centre sixth form C6

51-71 Suburban first year S1
81-96 Suburban sixth form S6

Gllding
- absence of glide
\(+\quad\) presence of glide
1 noticeable vocalic quallty
\(\pm \quad\) glide present altered to glide absent
; glide absent altered to glide present
P palatalized consonants \(/ t\) J s i/
- item omitted

Mispronunclations
M affecting relevant sounds; eg seludad
\(m \quad\) not affecting relevant sounds; eg fluat for fluont it represents [- glide] unless shown as mt
D . read as different word; eg solitary for salutary
d read as another testable item in lists; eg deluge for delude
\(f\) for 01 , realized as [f]
\(r\) for b4, [februeri] in place of the vernacular [febjuerl]
For /// items in 57231 and 57232 , the subjects are listed down the page; the lexical items across the page. Each Item has 4 columns. In order they represent
(a) word list \(1 ;\) with /// words from list 2: given as Item 3;
(b) the passage read in the ordinary dellvery: given as item if
(c) the passage read in what the subject felt was a BBC or posh delivery: glven as item 4;
(d) the words elicited from the questions: glven as item 2.

F not elicited (for test 2 'questions' only)
\(x\) test omitted (subject \#15 in test 4 'second reading of passage' only)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \% & Ifl & & 191 & /rl & 1 & & \\
\hline & 123 & 1 & 123 & 1231 & & Yor & used \\
\hline 01 & \(t+t\) & \(t\) & \(t+1\) & \(D-H=\) & 01 & 11 & fer \\
\hline 02 & \(t+t\) & \(t\) & \(t+t\) & 1- \({ }^{-1}\) & 02 & 12 & furlous \\
\hline 03 & \(t+t\) & \(t\) & \(t+1\) & - - - - & 03 & 13 & refuse \\
\hline 04 & \(t+t\) & \(t\) & \(t+1\) & - - M- & 04 & & \\
\hline 05 & \(t+t\) & + & \(t+1\) & \(D-n-\) & 05 & \(v 1\) & Interview \\
\hline 06 & \(t+t\) & \(t\) & \(t+t\) & 1-H- & 06 & 1 & unit \\
\hline 07 & \(t+t\) & + & \(t+1\) & O-M- & 07 & 12 & union \\
\hline 08 & \(t+t\) & \(t\) & \(t+1\) & - - H - & 08 & 3 & per + use \\
\hline 09 & \(t+t\) & \(t\) & \(t+1\) & D \(\cdots\) & 09 & & \\
\hline 10 & \(t+t\) & + & \(t+1\) & - - - & 10 & & \\
\hline 11 & \(t+t\) & \(t\) & \(t+1\) & - - - - & 11 & 1 & peruse \\
\hline 12 & \(t+t\) & \(t\) & \(t+t\) & 1... & 12 & \(p 2\) & crual \\
\hline 13 & \(t+t\) & \(t\) & \(t+t\) & \(1 \cdots \cdots\) & 13 & P3 & truant \\
\hline 14 & \(t+t\) & \(t\) & \(t+t\) & 1- \({ }^{-1}\) & 14 & 14 & strew \\
\hline 15 & \(t+t\) & \(t\) & \(t+1\) & - - - & 15 & & \\
\hline 16 & \(t+t\) & \(t\) & \(t+1\) & H-- & 16 & 1 & not applicable \\
\hline 17 & \(t+t\) & \(t\) & \(t+t\) & \(1-\cdots\) & 17 & & \\
\hline 18 & \(t+0\) & \(t\) & \(t+t\) & \(1-\cdots\) & 18 & & \\
\hline 19 & \(t+t\) & \(t\) & \(t+1\) & - M - & 19 & & \\
\hline 20 & \(t+t\) & \(t\) & \(t+t\) & 1- - & 20 & & \\
\hline 31 & \(t+t\) & \(t\) & \(t+1\) & & 31 & & \\
\hline 32 & \(t+t\) & \(t\) & \(t+\) & D \(-\cdots\) & 32 & & \\
\hline 33 & \(t+t\) & \(t\) & \(t+\) & D*- & 33 & & \\
\hline 34 & \(t+t\) & \(t\) & \(t+t\) & 1** & 34 & & \\
\hline 35 & \(t+0\) & \(t\) & \(t+1\) & - - - & 35 & & \\
\hline 36 & \(t+t\) & \(t\) & \(t+1\) & - - - & 36 & & \\
\hline 37 & \(t+t\) & \(t\) & \(t+t\) & 1 & 37 & & \\
\hline 38 & \(t+t\) & \(t\) & \(t+1\) & - - & 38 & & \\
\hline 39 & \(t+t\) & \(t\) & \(t+1\) & - \(=\) & 39 & & \\
\hline 40 & \(t+t\) & + & \(t+1\) & - - - & 40 & & \\
\hline 41 & \(t+t\) & \(t\) & \(t+1\) & - & 41 & & \\
\hline 42 & \(t+0\) & \(t\) & \(t+1\) & *** & 42 & & \\
\hline 43 & \(t+t\) & \(t\) & \(t+\) & D-* & 43 & & \\
\hline 44 & \(t+t\) & + & \(t+1\) & - - - - & 44 & & \\
\hline 45 & \(t+t\) & + & \(t+t\) & 1-1. & 15 & & \\
\hline 46 & \(t+t\) & \(t\) & \(t+1\) & - - - & 46 & & \\
\hline 47 & \(t+0\) & \(t\) & \(t+1\) & 1-1. & 47 & & \\
\hline 48 & \(t+t\) & \(t\) & \(t+t\) & \(1-\mathrm{n}=\) & 18 & & \\
\hline 49 & \(t+t\) & \(t\) & \(t+1\) & - - - - & 49 & & \\
\hline 50 & \(t+t\) & t & \(t+1\) & - - - - & 50 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & \[
\begin{aligned}
& 1 f 1 \\
& 123
\end{aligned}
\] & \[
\begin{aligned}
& \text { IvI } \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 101 \\
& 123
\end{aligned}
\] & \[
\begin{aligned}
& 1+1 \\
& 1294
\end{aligned}
\] & 1 & Vord & used \\
\hline 51 & \(t+t\) & \(t\) & \(t+t\) & 1-M- & 51 & 11 & fer \\
\hline 52 & \(t+t\) & + & \(t+t\) & 1-.. & 52 & 12 & furlous \\
\hline 53 & \(t+t\) & \(t\) & \(t+t\) & 1-- & 53 & 13 & refuse \\
\hline 54 & \(t+t\) & \(t\) & \(t+t\) & 1-. & 54 & & \\
\hline 55 & \(t+t\) & \(t\) & \(t+t\) & 1-- & 55 & \(v 1\) & Intervier \\
\hline 56 & \(t+t\) & + & \(t+t\) & 1-- & 56 & 01 & unit \\
\hline 57 & \(t+t\) & + & \(t+t\) & 1-. & 57 & 12 & union \\
\hline 58 & \(t+t\) & + & \(0+1\) & D... & 58 & 13 & per t use \\
\hline 59 & \(t+t\) & \(t\) & \(t+1\) & - - & 59 & & \\
\hline 60 & \(t+t\) & + & \(t+1\) & D..- & 60 & & \\
\hline 61 & \(t+t\) & + & \(t+t\) & 1... & 61 & \(r 1\) & peruse \\
\hline 62 & \(t+t\) & \(t\) & \(t+1\) & - - - - & 62 & \(r 2\) & cruel \\
\hline 63 & \(t+t\) & + & \(+01\) & - - - - & 63 & 13 & truant \\
\hline 64 & \(+\mathrm{D}+\) & + & \(t+t\) & 1-. & 64 & 1 & screw \\
\hline 65 & \(t+t\) & + & \(t+t\) & 1-. & 65 & & \\
\hline 66 & \(t+t\) & + & \(t+1\) & - - - & 66 & 1 & not applicable \\
\hline 67 & \(t+t\) & + & \(t+t\) & 1-. & 67 & & \\
\hline 68 & \(t+t\) & \(t\) & \(t+t\) & 1-n- & 68 & & \\
\hline 69 & \(t+t\) & + & \(t+1\) & , & 69 & & \\
\hline 70 & \(t+t\) & + & \(t+t\) & 1-. & 70 & & \\
\hline 71 & \(t+t\) & + & \(t+1\) & D... & 11 & & \\
\hline 81 & \(t+t\) & + & \(t+1\) & & 81 & & \\
\hline 82 & \(t+t\) & + & \(t+t\) & 1-- & 82 & & \\
\hline 83 & \(t+t\) & + & \(t+1\) & - - - & 83 & & \\
\hline 84 & \(t+t\) & + & \(t+1\) & & 81 & & \\
\hline 85 & \(t+t\) & + & \(t+1\) & +... & 85 & & \\
\hline 86 & \(t+t\) & \(t\) & \(++1\) & - - - & 86 & & \\
\hline 87 & \(t+t\) & + & \(t+1\) & - & 87 & & \\
\hline 88 & \(t+t\) & + & \(t+1\) & - & 88 & & \\
\hline 89 & \(t+t\) & + & \(t+1\) & , & 89 & & \\
\hline 90 & \(t+t\) & + & \(t+t\) & 1-. & 90 & & \\
\hline 91 & \(t+t\) & + & \(t+1\) & - - - & 91 & & \\
\hline 92 & \(t+t\) & \(t\) & \(t+1\) & - & 92 & & \\
\hline 93 & \(t+t\) & + & \(t+1\) & "- & 93 & & \\
\hline 94 & \(t+t\) & + & \(t+1\) & - - & 94 & & \\
\hline 95 & \(t+t\) & \(t\) & \(t+1\) & +..- & 95 & & \\
\hline 96 & \(t+t\) & \(t\) & \(t+t\) & 1-. & 96 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(|p|\) & 101 & & & 181 & \(|g|\) & & & & \\
\hline t & 1234 & 1234 & 1234567 & 1234 & 1 & 1 & 123 & 1 & Yord & \\
\hline 01 & \(t+t+\) & \(N H+t\) & \(t++M+t-\) & \(t+t M\) & \(+\) & \(t\) & \(P P+\) & 01 & \(p 1\) & spew \\
\hline 02 & \(-t+M\) & \(\mathrm{Mn}+\mathrm{t}\) & \(t++D+t+\) & \(t++M\) & H & \(t\) & 10 M & 02 & P2 & pupll \\
\hline 03 & \(t+t+\) & \(t+t+\) & \(t+-M+t+\) & \(D+t+\) & \(t\) & + & \(P+1\) & 03 & p3 & computer \\
\hline 04 & \(t+t+\) & \(t+t+\) & \(t+t+t+t\) & \(t+t+\) & \(t\) & \(t\) & \(+P+\) & 04 & pl & Impudent \\
\hline 05 & +? + + & \(\cdots+t+\) & D + t+t+t+ & \(t+t+\) & \(t\) & - & \(P P P\) & 05 & & \\
\hline 06 & +? + - & \(\mathrm{nH}+4\) & \(t+t n+t+\) & \(t+t+\) & \(t\) & \(t\) & POt & 06 & 01 & bureau \\
\hline 07 & \(t ?+t\) & \(t++0\) & \(t+t+t+t\) & \(t+t+\) & \(t\) & \(t\) & \(t+t\) & 07 & \(b 2\) & tribunal \\
\hline 08 & \(t ?+t\) & \(\cdots \mathrm{H}+\mathrm{t}\) & \(t+t+t-\) & \(t+n+\) & H & \(t\) & - +1 & 08 & 63 & abuse \\
\hline 09 & \(t+t+\) & \(t+t+\) & \(t++M++t\) & \(t+t M\) & \(t\) & \(t\) & \(-t+\) & 09 & 14 & february \\
\hline 10 & +? + + & \(t+t+\) & \(t++B+t+\) & \(t+t+\) & + & + & POt & 10 & & \\
\hline 11 & \(t+t+\) & \(-+t+\) & \(t+t M+t+\) & \(t+t+\) & \(t\) & \(t\) & \(t+t\) & 11 & k & excuse \\
\hline 12 & \(t+t+\) & \(t h+t\) & \(t++B++t\) & \(t+t D\) & \(t\) & \(t\) & \(t+t\) & 12 & k2 & rescue \\
\hline 13 & \(t+t+\) & \(t+t+\) & \(t++M++-\) & \(t+t+\) & \(t\) & \(t\) & 1tt & 13 & \(k 3\) & barbecue \\
\hline 14 & ittt + & MnMt & \(t++M++t\) & \(t+t+\) & N & M & -- & 14 & k4 & ridicule \\
\hline 15 & \(t+t+\) & \(t+t+\) & \(t++n++n\) & - + + - & \(t\) & + & \(t+t\) & 15 & kS & prosecute \\
\hline 16 & \(t+t+\) & \(D+t+\) & \(n+t-t+t\) & + + \(1+\) & + & \(t\) & \(t+t\) & 16 & k6 & accurste \\
\hline 17 & \(t ?+t\) & \(t+t r\) & \(t++n+t+\) & \(t+t+\) & \(t\) & \(t\) & \(t+t\) & 17 & k7 & ridiculous \\
\hline 18 & + ? + - & \(+M++\) & \(t++B++-\) & \(t+t+\) & \(t\) & + & \(t+t\) & 18 & & \\
\hline 19 & \(t+t+\) & D + + + & \(t++M+t+\) & \(t+t+\) & \(t\) & + & 10 H & 19 & & \\
\hline 20 & \(t ?+t\) & \(\mathrm{OH}+\mathrm{t}\) & \(t++D+t+\) & \(-t+t\) & + & - & \(++n\) & 20 & & \\
\hline 31 & \(t ?+t\) & \(t+t+\) & \(t+t M+t+\) & \(t+t+\) & \(t\) & - & 000 & 31 & n 1 & amusing \\
\hline 32 & \(t+t+\) & \(t+t+\) & \(t+t+t+t\) & \(t+t+\) & \(t\) & \(t\) & \(t+t\) & 32 & \(n 2\) & onus \\
\hline 33 & \(t+t+\) & \(t+t+\) & \(t++M+t+\) & \(t+t+\) & + & \(t\) & \(t+t\) & 33 & 03 & formula \\
\hline 34 & \(t+t+\) & \(t+t r\) & \(t+t+t+t\) & \(0+t+\) & \(t\) & + & \(t+t\) & 34 & nt & communal \\
\hline 35 & \(t+t+\) & \(t+t r\) & \(t+t+t+t\) & \(t+t+\) & + & + & \(t+t\) & 35 & & \\
\hline 36 & \(t+t+\) & \(t+t+\) & \(t+t+t+t\) & \(t+t+\) & + & + & \(t+t\) & 36 & 81 & enthuslastle \\
\hline 37 & \(t+t+\) & \(t+t+\) & \(t+t+t+t\) & \(t+t+\) & \(t\) & + & \(t+t\) & 31 & & \\
\hline 38 & \(t+t+\) & \(t+t+\) & \(t+t+t+t\) & \(t+t+\) & \(t\) & \(t\) & \(0+t\) & 38 & & \\
\hline 39 & \(t+t+\) & \(t+t+\) & \(t+t+t+t\) & \(t+t+\) & \(t\) & \(t\) & + + + & 39 & & \\
\hline 40 & \(t+t+\) & \(t+t r\) & \(t+t+t+t\) & \(t+t+\) & + & + & \(t+t\) & 10 & \(g 1\) & Jaguar \\
\hline 41 & \(t+t+\) & \(t+t-\) & \(t+t+t+t\) & \(t+t+\) & - & \(t\) & \(t+t\) & 41 & H1 & huge \\
\hline 42 & \(t+t+\) & \(t+t+\) & \(t+t+t+t\) & \(0+t+\) & \(t\) & \(t\) & tit + & 42 & \(n 2\) & human \\
\hline 43 & + ? + + & \(t+t+\) & \(t++M+t+\) & \(t+t+\) & - & \(t\) & 10 & 13 & n3 & humorous \\
\hline 44 & + ? + - & \(t+t r\) & \(t+t+t+t\) & \(t+t+\) & \(t\) & \(t\) & \(t+t\) & 44 & & \\
\hline 45 & +? + + & \(+n+r\) & \(n++n+t+\) & \(t+t+\) & \(t\) & + & \(t+t\) & 45 & & \\
\hline 46 & \(t ?+t\) & \(t+t r\) & \(t+t+t+t\) & \(t+t+\) & + & + & \(t+t\) & 16 & & \\
\hline 47 & \(t+t+\) & \(t+t+\) & \(t+t+t+\cdots\) & \(+n+n\) & it & \(t\) & \(t+t\) & 47 & & \\
\hline 48 & \(t++M\) & \(t+t+\) & \(t+t+t+t\) & \(t+t+\) & \(t\) & \(t\) & 11 & 18 & & \\
\hline 49 & \(t+t+\) & \(t+t r\) & \(t+t+t+t\) & \(t+t+\) & + & \(t\) & \(t+1\) & 19 & & \\
\hline 50 & \(t+t+\) & \(t+t+\) & \(t+t+t+t\) & \(-t+t\) & \(t\) & - & + + - & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\pm\) & \(1 p /\)
1234 & 161
1234 & 1 kl
1234567 & \[
\begin{aligned}
& 1 a 1 \\
& 1234
\end{aligned}
\] & \[
\begin{gathered}
181 \\
1
\end{gathered}
\] & \[
|g|
\] & \[
\begin{aligned}
& \mathrm{lH} \\
& 123
\end{aligned}
\] & 1 & Yords & used \\
\hline 51 & \(n+t+\) & \(\cdots n+t\) & \(t+t+t+n\) & \(+0+n\) & \(+\) & + & \(t+t\) & 51 & pl & sper \\
\hline 52 & \(t+t+\) & \(t+t+\) & \(t+t+t+t\) & \(t+t+\) & + & + & \(t+t\) & 52 & p2 & pupil \\
\hline 53 & \(t+t+\) & \(t+t+\) & \(t+t+t+t\) & \(t+t+\) & \(t\) & \(t\) & \(t P+\) & 53 & P3 & computer \\
\hline 54 & \(t+t-\) & \(+0+n\) & \(t+t+t+t\) & \(t+t+\) & \(t\) & + & --- & 54 & p4 & impudent \\
\hline 55 & \(t+t+\) & \(t+t+\) & \(t+t+t+t\) & \(t+t+\) & \(t\) & + & \(P P P\) & 55 & & \\
\hline 56 & \(t+t+\) & \(n+t r\) & \(n+t+t+t\) & \(t+t+\) & \(t\) & \(+\) & \(p+t\) & 56 & bl & buraau \\
\hline 57 & \(t+t+\) & \(n++t\) & \(t+t+t+M\) & \(t+M-\) & \(+\) & + & - P- & 57 & b2 & tribunal \\
\hline 58 & \(t+t M\) & \(\cdots+t+\) & \(t+t+t+t\) & \(D+t M\) & \(n\) & + & \(n+t\) & 58 & b3 & abuse \\
\hline 59 & \(t+t+\) & \(t+t+\) & \(t+t+t+t\) & \(t+t+\) & \(t\) & - & \(t+t\) & 59 & 04 & february \\
\hline 60 & \(t+t+\) & \(+\mathrm{H}++\) & \(t+t+t+t\) & \(t+t M\) & + & + & \(t+-\) & 60 & & \\
\hline 61 & \(t+t+\) & \(t+t+\) & \(t+t+t+t\) & \(t+t+\) & \(t\) & \(t\) & \(t+t\) & 61 & kl & excuse \\
\hline 62 & \(t+t+\) & \(t+t+\) & \(t++D+t+\) & \(t+t+\) & ft & + & \(t+-\) & 62 & k2 & rescue \\
\hline 63 & \(t+t+\) & \(t+t+\) & \(t+t+t+t\) & \(t+t+\) & \(t\) & + & \(t+t\) & 63 & k3 & barbecue \\
\hline 64 & \(t+t-\) & \(t+t+\) & \(t+t+t+t\) & \(t+t+\) & \(t\) & \(t\) & \(+P+\) & 64 & K & pldicule \\
\hline 65 & \(+D+M\) & \(+0+t\) & \(t+t+t+t\) & \(t+0+\) & f- & \(\pm\) & \(+P+\) & 65 & kS & prosecute \\
\hline 66 & \(t+t+\) & \(t+t r\) & \(t+t+t+t\) & \(t+t+\) & \(+\) & \(t\) & \(+p+\) & 66 & \(k 6\) & accurate \\
\hline 67 & \(t+t+\) & \(t+t+\) & \(t+t+t+t\) & \(t+t+\) & + & \(t\) & \(P P+\) & 67 & \(k 7\) & ridiculous \\
\hline 68 & \(t \mathrm{Dt+}\) & \(t+t+\) & \(t+t+t+t\) & \(t+t+\) & f- & \(t\) & \(+P+\) & 68 & & \\
\hline 69 & \(t+t+\) & \(n+t+\) & \(t+t+t+t\) & \(t+t+\) & \(t\) & + & \(+P+\) & 69 & & \\
\hline 70 & \(t+t+\) & \(t+t+\) & \(t+t+t+t\) & \(t+t+\) & \(t\) & \(t\) & \(+0\) & 10 & & \\
\hline 71 & \(t+t+\) & \(t+t+\) & \(t+t+t+t\) & \(t+t+\) & \(t\) & \(+\) & \(+P+\) & 71 & & \\
\hline 81 & \(t+t+\) & \(t+t r\) & \(t+t+t+t\) & \(t+t+\) & + & \(t\) & \(P P+\) & 81 & \(m 1\) & amusing \\
\hline 82 & \(t+t+\) & \(t+t+\) & \(t+t+t+t\) & \(t+t+\) & \(t\) & - & \(+P+\) & 82 & m2 & ens \\
\hline 83 & \(t+t+\) & \(t+t+\) & \(t+t+t+t\) & \(t+t+\) & + & \(t\) & \(+P+\) & 83 & m3 & formula \\
\hline 84 & \(t+t+\) & \(t+t-\) & \(t+t+t+t\) & \(t+t+\) & \(+\) & \(t\) & + + + & 84 & nt & communal \\
\hline 85 & \(t+t+\) & \(t+t+\) & \(t+t+t+t\) & \(t+t+\) & \(+\) & \(t\) & \(t+t\) & 85 & & \\
\hline 86 & \(t+t+\) & \(t+t+\) & \(t+t+t+t\) & \(t+t+\) & \(t\) & \(t\) & \(+P+\) & 86 & 01 & enthusiastic \\
\hline 87 & \(t+t+\) & \(t+t+\) & \(t+t+t+t\) & \(t+t+\) & \(t\) & \(t\) & \(+P+\) & 87 & & \\
\hline 88 & \(t+t-\) & \(t+t+\) & \(t+t+t+t\) & \(t+t+\) & \(t\) & - & \(+P+\) & 88 & & \\
\hline 89 & \(t+t+\) & \(t+t+\) & \(t+t+t+t\) & \(t+t+\) & \(t\) & \(+\) & \(t+t\) & 89 & & \\
\hline 90 & \(t+t+\) & \(t+t+\) & \(t+t+t+-\) & \(t+7+\) & \(t\) & - & \(t+t\) & 90 & \(g 1\) & jaguar \\
\hline 91 & \(t+t+\) & \(t+t+\) & \(t+t+t+t\) & \(t+t+\) & + & - & + P + & 91 & h & huge \\
\hline 92 & \(t+t+\) & \(t+t r\) & \(t+t+t+t\) & \(t+t+\) & \(t\) & \(t\) & \(t+t\) & 92 & 12 & human \\
\hline 93 & \(t+t+\) & \(t+t r\) & \(t+t+t+t\) & \(t+t+\) & + & \(t\) & \(t p+\) & 93 & 13 & humorous \\
\hline 94 & \(t+t+\) & \(t+t r\) & \(t+t+t+t\) & \(t+t+\) & - & \(t\) & \(+P+\) & 84 & & \\
\hline 95 & \(t+t+\) & \(t+t+\) & \(t+t+t+t\) & \(t+t+\) & \(t\) & \(t\) & \(t+t\) & 95 & & \\
\hline 96 & \(t+M+\) & \(t+t+\) & \(t+t+t+t\) & \(t+t+\) & \(+\) & \(t\) & 101 & 86 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1 & \[
\begin{aligned}
& 111 \\
& 1234567
\end{aligned}
\] & \[
\begin{aligned}
& |n| \\
& 1234567
\end{aligned}
\] & Index (nyu) & * & \multicolumn{2}{|l|}{Vords used} \\
\hline 01 & - M-...- & \(\cdots+t^{+}+\) & 0 & 01 & & \\
\hline 02 & \(\cdots+\cdots\) & \(-N D+t+-\) & 0 & 02 & 11 & salute \\
\hline 03 & \(\cdots+{ }^{-\cdots}\) & \(-t+t+t+\) & 75 & 03 & 12 & deluge \\
\hline 04 & - - + + - & \(t-+t+t-\) & 50 & 04 & 13 & prelude \\
\hline 05 &  & \(t-\cdots+t+\cdots\) & 25 & 05 & 14 & insoluble \\
\hline 06 & - - + + - - & \(t-\cdots+t+\cdots\) & 25 & 06 & 15 & interlude \\
\hline 07 & --- + - - & \(t-t+t+t\) & 75 & 07 & 16 & absolute \\
\hline 08 & \(\cdots+\cdots\) & \(\cdots+\cdots+t n\) & 0 & 08 & 11 & Illumination \\
\hline 09 & - M \(n+\cdots \mathrm{C}\) & \(\cdots+\cdots++\) & 0 & 09 & & \\
\hline 10 & \(\cdots+\cdots\) & \(\cdots+t+\cdots\) & 0 & 10 & & \\
\hline 11 & -... + - - & + + - - & 0 & 11 & \(n 1\) & new \\
\hline 12 & \(\cdots+\cdots\) & \(\cdots+\cdots+n\) & 0 & 12 & \(n 2\) & nuclear \\
\hline 13 & - - + + & PPPP+t+- & 0 & 13 & n3 & neutral \\
\hline 14 & \(\cdots+\cdots\) & \(\cdots+\cdots+t-\) & 0 & 14 & \(n 4\) & january \\
\hline 15 & \(\cdots+\cdots\) & \(t+-t+t-\) & 50 & 15 & n5 & genuine \\
\hline 16 & - - + - - & + + + + + + - & 75 & 16 & n6 & avenue \\
\hline 17 & - & + - + + + + - & 25 & 17 & \(n 7\) & nutrition \\
\hline 18 & \(-\mathrm{H}-+-\mathrm{H}\) & \(\cdots+{ }^{-\cdots+}\) & 0 & 18 & & \\
\hline 19 & \(\cdots+\cdots\) & \(\cdots+{ }^{-\cdots+}\) & 0 & 19 & & \\
\hline 20 & \(\cdots+\cdots\) & \(\cdots+\cdots+\) & 0 & 20 & & \\
\hline 31 & \(t++t-\cdots\) & \(t+t+t+t\) & 100 & 31 & & \\
\hline 32 & \(\cdots+\cdots\) & \(t+t+t+t\) & 100 & 32 & & \\
\hline 33 & \(\cdots+t+\cdots\) & t+t+t+t & 100 & 33 & & \\
\hline 34 & \(t-\cdots+\cdots\) & \(t+t+t+t\) & 100 & 34 & & \\
\hline 35 & \(\cdots+t+\cdots\) & \(\cdots++t+\) & 0 & 35 & & \\
\hline 36 & \(\pm+t+\cdots\) & \(t-t+t+t\) & 75 & 36 & & \\
\hline 37 & \(\cdots+\cdots+\cdots\) & \(\cdots+t^{+}+\) & 0 & 31 & & \\
\hline 38 & \(\cdots+\) & \(t \cdots+t+\cdots\) & 25 & 38 & & \\
\hline 39 & \(\cdots+\cdots+\cdots\) & \(t+t+t+t\) & 100 & 39 & & \\
\hline 40 & \(\cdots+++\cdots\) & \(t-t+t+t\) & 75 & 40 & & \\
\hline 41 & \(++\mp+\cdots\) & \(t--t+t+\) & & 41 & & \\
\hline 42 & \(t++t-\cdots\) & \(t-t+t+=\) & 50 & 12 & & \\
\hline 43 & \(\cdots+\cdots+\cdots\) & \(\cdots+t+t-\) & 0 & 43 & & \\
\hline 44 & \(\cdots+t+\cdots\) & \(\cdots+\cdots+\cdots\) & 0 & 4 & & \\
\hline 45 & \(\cdots \cdots+\cdots\) & \(t-0+t+-\) & 33 & 15 & & \\
\hline 46 & \(++t+\cdots\) & \(t+t+t+t\) & & 46 & & \\
\hline 47 & \(\cdots+\cdots\) & \(t P P+t+-\) & 50 & 41 & & \\
\hline 48 & - - + - - & \(t+t+t+=\) & 75 & 48 & & \\
\hline 49 & \(\cdots+\cdots\) & \(\cdots+{ }^{+}+{ }^{+}\) & 0 & 49 & & \\
\hline 50 & \(\cdots+\cdots-n-\) & \(\cdots+\) - + & & 50 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1 & \[
\begin{aligned}
& 111 \\
& 1234567
\end{aligned}
\] & \[
\begin{aligned}
& \ln \mid \\
& 1234567
\end{aligned}
\] & \begin{tabular}{l}
index \\
(nyu)
\end{tabular} & 1 & & used \\
\hline 51 & +--t-- & \(t+t+n+ \pm\) & 80 & 51 & & \\
\hline 52 & - + - t- & \(t+t+t+t\) & 100 & 52 & 11 & salute \\
\hline 53 & - + - + - & \(t m+t+t+\) & 100 & 53 & 12 & deluge \\
\hline 54 & - - \(n+\) - & \(\cdots++M H\) & 0 & 54 & 13 & prelude \\
\hline 55 & \(\cdots+n-\) & \(t-p+t+p\) & 50 & 55 & 14 & Insoluble \\
\hline 56 & ---t & \(t-t+t+-\) & 50 & 56 & 15 & Intarlude \\
\hline 57 & + & \(\cdots+\cdots+t-\) & 0 & 57 & 16. & absolute \\
\hline 58 & - \(\mathrm{H}-+\cdots\) & \(t-0+t+M\) & 50 & 58 & 17 & Illuaination \\
\hline 59 & - \(0+\) & \(t-t-t+t\) & 75 & 59 & & \\
\hline 80 & \(-+t+t-t\) & \(t+t+t+t\) & 100 & 60 & & \\
\hline 61 & \(\cdots+t+\cdots\) & titt+t+t & 80 & 61 & \(n 1\) & ney \\
\hline 62 & - - M - & t+t+t+t & 100 & 62 & \(n 2\) & nuclear \\
\hline 63 & \(\cdots+\cdots\) & \(t+t+t+t\) & 100 & 63 & n3 & neutral \\
\hline 64 & \(\cdots-D-M\) & \(-t+t+t-\) & 50 & 64 & \(n 4\) & january \\
\hline 65 & \(\cdots-D-M\) & \(t+t+-t M\) & 100 & 65 & \(n 5\) & genuine \\
\hline 86 & \(-+t+-\) & \(t+t+t+t\) & 100 & 66 & n6 & avenue \\
\hline 67 & - + - + - - & \(t+t+t+t\) & 100 & 67 & n7 & nutrition \\
\hline 68 & - - + - - - & \(t+t+t+t\) & 100 & 68 & & \\
\hline 69 & \(t+t+\cdots\) & \(t+t+t+t\) & 100 & 69 & & \\
\hline 70 & + - + - - & \(t+t+t+t\) & 100 & 70 & & \\
\hline 71 & - 「- + - - & \(t+t+t+t\) & 100 & 71 & & \\
\hline 81 & \(t\) & \(t+t+t+t\) & 100 & 81 & & \\
\hline 82 & - - - - - & \(\cdots+{ }^{+-}+t+\) & 0 & 82 & & \\
\hline 83 & \(\cdots+++\cdots\) & \(t+t+t+t\) & 100 & 83 & & \\
\hline 84 & \(\cdots+++-=-\) & \(t+t+t+t\) & 100 & 84 & & \\
\hline 85 & \(\cdots+\cdots\) & \(\cdots+t+t\) & 25 & 85 & & \\
\hline 86 & - + + + - - & \(t+t+t+t\) & 100 & 86 & & \\
\hline 87 & \(\cdots+\cdots+\cdots\) & \(t-t+t+\cdots\) & 50 & 81 & & \\
\hline 88 & \(t+t+\cdots\) & \(t+t+t+t\) & 100 & 88 & & \\
\hline 89 & \(\cdots++t-\cdots\) & \(t+t+t+t\) & 100 & 89 & & \\
\hline 90 & \(\cdots+\) - & \(t+t+-t+\) & .100 & 90 & & \\
\hline 91 & \(\cdots++\) - - & \(t-\cdots+t+1\) & 50 & 91 & & \\
\hline 92 & - - + + - & \(t+t+t+t\) & 100 & 92 & & \\
\hline 93 & \(\cdots+++\cdots\) & \(t+t+t+t\) & 100 & 93 & & \\
\hline 94 & \(\cdots++t-\cdots\) & \(t+t+t+t\) & 100 & 91 & & \\
\hline 95 & \(\cdots++t-\cdots\) & \(t+t+t+t\) & 100 & 95 & & \\
\hline 96 & \(\cdots+\) & +-t+t+* & 50 & 96 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 & \[
\begin{aligned}
& \text { It/ } \\
& 123456
\end{aligned}
\] & \[
\begin{aligned}
& 1 d 1 \\
& 1234
\end{aligned}
\] & \[
\begin{aligned}
& 151 \\
& 1234567
\end{aligned}
\] & \[
\begin{gathered}
|2| \\
1
\end{gathered}
\] & Index & 1 & & tested \\
\hline 01 & \(P-t+p p\) & PDP - & \(\cdots-D-P\) & 2- & 0 & 01 & 11 & tune \\
\hline 02 & \(P++P P P\) & \(P P P+\) & \(\cdots-D-P\) & \(5 p\) & 20 & 02 & 12 & costume \\
\hline 03 & \(P+t+P P\) & PPPM & - PPP-P & \$P & 0 & 03 & 13 & slow \\
\hline 04 & \(P+t+P P\) & \(P P P+\) & - - DP - - \(P\) & \$P & 20 & 01 & 11 & stupld \\
\hline 05 & \(P++P P P\) & PPP & \(D \sim D P \cdots P\) & 8- & 0 & 05 & 15 & llierature \\
\hline 06 & \(P+t+p P\) & PPPP & --D---P & \(2-\) & 0 & 06 & 16 & miniature \\
\hline 07 & \(P+t+P P\) & PPPP & \(\cdots-P \cdots\) & 2 P & 0 & 07 & & \\
\hline 08 & \(P+t+M M\) & PDP & \(\cdots-D+\cdots{ }^{-}\) & 2- & 20 & 08 & & \\
\hline 09 & \(P+t+P M\) & PPPP & \(\cdots-D P=P\) & \(2 P\) & 0 & 09 & & \\
\hline 10 & \(P+t+P P\) & PPPP & \(D \cdots D+\cdots P\) & 2 P & 20 & 10 & & \\
\hline 11 & \(P+++P P\) & \(P P P P\) & - .... \(P\) & 2- & 0 & 11 & \(d 1\) & duke \\
\hline 12 & \(P+++P M\) & \(P P P P\) & - DD- - P & \(8-\) & 0 & 12 & \(d 2\) & dual \\
\hline 13 & \(P+t+P P\) & \(P P P P\) & KDDP - & 2 P & 0 & 13 & \(d 3\) & duping \\
\hline 14 & \(P+-+M P\) & PPP - & - MDM--P & M & 0 & 14 & \(d 4\) & introduce \\
\hline 15 & \(P+F+P P\) & PDP - & - DP-P & \(s p\) & 0 & 15 & & \\
\hline 16 & \(P+t P P P\) & \(P P P+\) & \(\cdots-1-P\) & \(2 P\) & 20 & 16 & 81 & sues \\
\hline 17 & \(P+++P P\) & \(P P P+\) & \(D+D \cdots P\) & \(2 P\) & 20 & 17 & 52 & sult \\
\hline 18 & \(P+t+P P\) & \(P+P-\) & - \(-D P=-P\) & \({ }_{6 P}\) & 0 & 18 & 53 & suat \\
\hline 19 & \(P+t+P P\) & \(P P P+\) & \(D-D P=P\) & \(2 P\) & 20 & 19 & 54 & consumer \\
\hline 20 & \(P+t+P M\) & PPPP & \(-D P=P\) & \(2 P\) & 0 & 20 & \$5 & suparb \\
\hline 31 & \(P+++P P\) & \(P P P P\) & \(-p-p\) & 24 & 20 & 31 & 56 & supreme \\
\hline 32 & \(P+++P P\) & \(P P P P\) & \(\cdots+\cdots\) & \(2-\) & 20 & 32 & 87 & tissue \\
\hline 33 & \(P+t+P P\) & \(t+P+\) & \(\cdots-\cdots\) & \(2 p\) & 60 & 33 & & \\
\hline 34 & \(P+t+P P\) & PPPP & \(n=-P=P\) & \(2{ }^{2}\) & 40 & 34 & 21 & presume \\
\hline 35 & \(P+t++P\) & \(P P P+\) & \(\cdots-+\cdots\) & 2 P & 10 & 35 & & \\
\hline 36 & \(P+t+p p\) & \(P P P P\) & \(\cdots p=p\) & 2 P & 0 & 36 & & \\
\hline 37 & \(P+t+P P\) & \(P P P P\) & \(\cdots-D+\cdots P\) & st & 10 & 31 & & \\
\hline 38 & \(P+t+P P\) & \(P P P P\) & -- - \(P-P\) & 2 P & 0 & 38 & & \\
\hline 39 & \(P+t+P P\) & \(+P P+\) & ---t--p & 2 P & 60 & 39 & & \\
\hline 40 & \(t+t+P P\) & \(t+P+\) & \(\cdots \cdots+\cdots\) & 27 & 100 & 10 & & \\
\hline 41 & \(P P+P D P\) & \(P P P P\) & \(\cdots-p-p\) & 3 P & 0 & 11 & & \\
\hline 42 & \(P+++P P\) & \(+P P P\) & \(\cdots P-P\) & \(2 P\) & 20 & 12 & & \\
\hline 43 & \(P++P P P\) & \(P P P P\) & --DP-P & \(2 P\) & 0 & 43 & & \\
\hline 44 & \(P+-+P P\) & PPP & -.... \(P\) & \(2-\) & 0 & 14 & & \\
\hline 45 & \(t+t+O P\) & PPPP & D--P-P & 2 P & 0 & 45 & & \\
\hline 46 & \(t+t+p p\) & \(t+P+\) & \(t+-t--p\) & IP & 80 & 16 & & \\
\hline 47 & \(P+t+P M\) & PPPP & \(\cdots D=\cdots{ }_{+}\) & st & 20 & 47 & & \\
\hline 48 & \(P+t+0 P\) & PPPPP & \(\cdots-D-P\) & 2- & 0 & 18 & & \\
\hline 49 & \(P+t+P P\) & \(P P P+\) & - + NP + + P & \(2 P\) & 20 & 49 & & \\
\hline 50 & \(P+++P P\) & \(P P P+\) & -...-. \(p\) & \(2 P\) & 20 & 50 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 & \[
\begin{aligned}
& \text { It/ } \\
& 123456
\end{aligned}
\] & \[
\begin{aligned}
& 181 \\
& 1234
\end{aligned}
\] & \[
\begin{aligned}
& 181 \\
& 1234567
\end{aligned}
\] & \[
\begin{gathered}
121 \\
1
\end{gathered}
\] & index & 1 & \multicolumn{2}{|l|}{Vords tested} \\
\hline 51 & \(P+t+D P\) & \(+0+p\) & \(\cdots 0+\cdots\) & \(s p\) & 40 & 51 & 11 & tune \\
\hline 52 & \(P+t+P P\) & + PP + & ---t-P & 24 & 80 & 52 & 12 & costume \\
\hline 53 & \(P+t+P P\) & \(+P P+\) & \(\cdots\) - DPM - & 2 P & 40 & 53 & 13 & ster \\
\hline 54 & \(P+-P N P\) & PPPM & --DM--Pt & \(2+\) & 33 & 54 & 14 & stupid \\
\hline 55 & \(P+++D P\) & PPP+ & --P-P \(-P\) & \(2-\) & 20 & 55 & 15 & llieratura \\
\hline 56 & \(t+t+P P\) & \(p-1+\) & --DP--t & 24 & 60 & 56 & 16 & miniature \\
\hline 57 & \(P+++P P\) & \(p+p-\) & \(n-\cdots+\cdots\) & 8 - & 20 & 51 & & \\
\hline 58 & \(P+++P P\) & \(P+P M\) & \(--D++M P\) & 5 & 25 & 58 & & \\
\hline 59 & \(P+++P P\) & \(P++n\) & \(\cdots{ }^{-D+\cdots}\) & 24 & 50 & 59 & & \\
\hline 60 & \(D+t+P P\) & \(+P P+\) & -t-t+-P & 2- & 75 & 60 & & \\
\hline 61 & \(P+t+P P\) & \(+P P+\) & \(n \cdots+\cdots\) & \(2 P\) & 60 & 61 & \(d\) & duke \\
\hline 62 & \(0+t+0 P\) & \(+P P P\) & \(\cdots+P \cdots+\) & 2- & 25 & 62 & 12 & dual \\
\hline 63 & \(P+++P P\) & \(+P P P\) & \(n-n+\cdots+\) & 24 & 60 & 63 & \(d 3\) & during \\
\hline 64 & \(P+t+P P\) & \(+P P+\) & - DD- - P & 2 P & 40 & 64 & \(d 4\) & introduce \\
\hline 65 & \(P+t+P P\) & PPPM & \(\cdots-P \cdot P\) & 2- & 0 & 65 & & \\
\hline 66 & \(P+t+p p\) & \(+P P+\) & MO-t-P & 21 & 80 & 66 & 81 & sues \\
\hline 67 & \(t+t+P P\) & \(+P P+\) & \(t-+t \cdots+\) & 2 P & 80 & 67 & 52 & sult \\
\hline 68 & \(t+ \pm+P P\) & PPP & \(\cdots-D-P\) & \(2-\) & 20 & 68 & 83 & suet \\
\hline 69 & \(P+t+P P\) & \(++P+\) & \(\cdots+\cdots\) & 2- & 60 & 69 & 84 & consumep \\
\hline 70 & \(P+t+P P\) & PPP+ & \(\cdots-D+\cdots\) & \(2 p\) & 10 & 70 & 85 & suparb \\
\hline 71 & \(P+t+P P\) & \(+P P+\) & \(-D-P-P\) & 2 P & 10 & 71 & s6 & supr time \\
\hline 81 & \(P+t+P P\) & PPPPP & \(\cdots+\cdots\) & \(2 P\) & 20 & 81 & 81 & Ilssue \\
\hline 82 & \(t+t+P P\) & \(-+P+\) & \(\cdots \cdots+\) & \(2-\) & 40 & 82 & & \\
\hline 83 & \(P++t P P\) & PPPPP & \(\cdots+\cdots\) & 24 & 10 & 83 & & \\
\hline 84 & \(P++t P P\) & PPPP & \(\cdots-P=P\) & 2- & 0 & 81 & & \\
\hline 85 & \(P+t+P P\) & \(++P P\) & \(\cdots+\cdots\) & 24 & 60 & 85 & 21 & presume \\
\hline 86 & \(p+t+p p\) & \(t P P+\) & - \(+-P=-p\) & & 60 & 86 & & \\
\hline 87 & \(P+t+P P\) & \(t+P+\) & \(\cdots-P-P\) & 24 & 60 & 87 & & \\
\hline 88 & \(P+++P P\) & PPPPP & \(\cdots P=-p\) & \(2 P\) & 0 & 88 & & \\
\hline 89 & \(P+t+P P\) & \(P P P P\) & ---- - \(p\) & 2* & 0 & 89 & & \\
\hline 90 & \(P+t+P P\) & PPPP & \(\cdots+\cdots+1\) & 21 & 40 & 90 & & \\
\hline 91 & \(P+t+P P\) & PPPP & \(\cdots-P-p\) & 24 & 20 & 91 & & \\
\hline 92 & \(t+t+P P\) & \(t+t+\) & \(\cdots+p+p\) & \(2 t\) & 100 & 92 & & \\
\hline 93 & \(t+t+P P\) & \(t+P+\) & \(-+-t+-p\) & \(2+\) & 100 & 93 & & \\
\hline 94 & \(t+t+P P\) & \(t P P+\) & \(\cdots-\cdots+\cdots\) & \(2 t\) & 100 & 94 & & \\
\hline 95 & \(t+t+P P\) & \(t+P+\) & \(t+-t=-t\) & 24 & 100 & 95 & & \\
\hline 96 & \(P+t+P P\) & PPPP & - DP - - \(P\) & 8 - & 0 & 86 & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{gathered}
\text { lute } \\
3142
\end{gathered}
\] & \[
\begin{gathered}
\text { lewd } \\
3142
\end{gathered}
\] & \begin{tabular}{l}
soluble \\
3142
\end{tabular} & \begin{tabular}{l}
polluted \\
3142
\end{tabular} & \begin{tabular}{l}
elusive \\
3142
\end{tabular} & \[
\begin{aligned}
& \text { pleurisy } \\
& 3142
\end{aligned}
\] & \[
\begin{aligned}
& \text { dilute } \\
& 3112
\end{aligned}
\] & \[
\begin{aligned}
& \text { hallucl } \\
& 3142
\end{aligned}
\] & \begin{tabular}{l}
alunini \\
3142
\end{tabular} & 123 & \\
\hline 51 & & - - F & \(t+t+\) & & n-m- & 0 M M & - m-- & OHMn & & +-t & 51 \\
\hline 52 & & -... & \(t+t+\) & & & & - - F & - \(\mathrm{m}^{\text {- }}\) - & & \(t\) & 52 \\
\hline 53 & & .... & \(t+t+\) & & & & & - + - - & & + & 53 \\
\hline 54 & & & \(t+-F\) & -... & - - - F & & - - F & amm & & - & 54 \\
\hline 55 & & ---- & \(t+t F\) & & & -- - \(F\) & & -... & & \(t\) & 55 \\
\hline 56 & - - 0 & & \(t+t+\) & ---F & \(\cdots \mathrm{F}\) & --MF & 0 & & & \[
t
\] & \[
56
\] \\
\hline \[
57
\] & & & \(t++F\) & & & - \(\mathrm{H}-\mathrm{H}\) & & - \(n\) M & & \[
t
\] & \[
57
\] \\
\hline \[
58
\] & & & \(t+t 0\) & & m n F & & ---f & - - - - & -- - F & \[
t
\] & \[
58
\] \\
\hline \[
59
\] & & & \(t-+F\) & \(\cdots\) & \(\cdots\) & & & MMAF & & \[
t
\] & \[
59
\] \\
\hline 60 & & & \(t+t F\) & & \(t--1\) & mnn - & 1 - - F & \(\cdots\) & & - +1 & 60 \\
\hline 61 & & & \(t+t+\) & & - - F & & & & & - \(\dagger\) & 61 \\
\hline 82 & & F & \(t++F\) & \(\cdots\) & & --m F & & & & \(\cdots\) & 62 \\
\hline 63 & & & \(t s+F\) & & - & & & & & \[
t
\] & 63 \\
\hline 64 & - F & & + msF & & - \(m\) & MOnF & F & n \(n-F\) & & \[
-\mathrm{Hd}
\] & \[
64
\] \\
\hline 65 & & & \(\cdots\) & & \(\cdots\) & \[
\mathrm{HMmm}
\] & & - - - & & \[
-M O
\] & 65 \\
\hline 66 & & & \(t+t+\) & & a- \({ }^{\text {a }}\) & MMAH & & & & \(t\) & 66 \\
\hline 67 & & \(\cdots+F\) & \(t++F\) & & & mma & \(\cdots-F\) & mnn \(n\) & & + t & 67 \\
\hline 68 & & & \(t+t+\) & & D--F & mmon & ---f & man & & \(t\) & 68 \\
\hline 69 & & & \(t+t+\) & & & \(\cdots+\) & & & & nt- 1 & 69 \\
\hline 70 & & & \(t+t+\) & & & n & - - - & & & \(+\mathrm{H}+\) & 70 \\
\hline 71 & & & \(t+t F\) & & D-F & & - \(1 \pm F\) & & & + & 11 \\
\hline 81 & & & \(t+t+\) & & & & & & \(t+\dagger\) & & 81 \\
\hline 82 & & & \[
t+t F
\] & & & + + - & - - F & & - - 1 & 1 & 82 \\
\hline 83 & & & +t+t & & & & t- + - & & & - + & 83 \\
\hline 84 & & & \[
t+t+
\] & & & & & & & 1 & 84 \\
\hline 85 & & --F & \[
t+t F
\] & & & & - - F & & & 1 & 85 \\
\hline 86 & & & \(t+t F\) & & & & - - F & & & --1 & 86 \\
\hline 87 & & & \[
t+t F
\] & - D-F & & & & & & \(\cdots+1\) & 87 \\
\hline 88 & & & \[
t+t+
\] & & & & & & & nt- 1 & 88 \\
\hline 89 & & & \(t+t+\) & & & & & & - - 1 & - - 1 & 89 \\
\hline 90 & & m \(n\) n \(n\) & \(t+t+\) & & & & & & & - - 1 & 90 \\
\hline 91 & & -... & \(t+t+\) & & & \(t=+\) & - & & & M-1 & 91 \\
\hline 92 & & & \(t+t+\) & & & - & - - + & & & - & 92 \\
\hline 93 & & + + & \(t+t+\) & +-.- & & - .-- & 1 - - & & & - & 93 \\
\hline 94 & & & \(t+t F\) & & & - + & & & & \(t\) & 81 \\
\hline 95 & & \(t+-F\) & \(t+t+\) & - + - - & \(t-+F\) & - - - - & \(t+s F\) & - - 1 & *- & + + & 95 \\
\hline 96 & - - & \(\cdots\) & \(t+t+\) & & ---F & & -- F & & & \(t\) & 96 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & lure
\[
3142
\] & \[
\begin{aligned}
& \text { lurid } \\
& 3142
\end{aligned}
\] & \[
\begin{aligned}
& \text { deluge } \\
& 3142
\end{aligned}
\] & \[
\begin{aligned}
& \text { delude } \\
& 3142
\end{aligned}
\] & volumin
\[
3142
\] & salutar
\[
31 \nmid 2
\] & \(p\) & 1 & (lyu) index \\
\hline 01 & - \(\pm\) & - \({ }^{-1}\) & s s sf & - F & Hs. - & \(D+00\) & - & 01 & 14 \\
\hline 02 & ---F & & S S S 5 & & HMMM & DND + & - & 02 & 08 \\
\hline 03 & + + + & & \(\boldsymbol{s} \mathbf{S} \mathbf{5}\) & & ¢ ¢ ¢ & DODO & - & 03 & 17 \\
\hline 04 & & & S S 5 s & & \(n+m\) - & 日 0 m & - & 04 & 07 \\
\hline 05 & - -- & n- & HSMF & & \(t-t m\) & \% m m & - & 05 & 20 \\
\hline 06 & --- & n- & sssf & F & n \(n\) - \(n\) & ¢ 5ss & - & 06 & 0 \\
\hline 07 & ---- & & \(\cdots\) - \(\mathcal{F}\) & & \(s+s\) & \% 85 & - & 07 & 01 \\
\hline 08 & & D-. & ¢ ¢ \% F & & s \(n+m\) & MDmm & - & 08 & 08 \\
\hline 09 & & DDn \(n\) & MMMF & & s MMm & M M \({ }^{\text {HF }}\) & H & 09 & 0 \\
\hline 10 & & \(n-n\) & ss-s & & s - + - & & - & 10 & 06 \\
\hline 11 & & & \(\mathbf{s} \mathbf{s} \mathbf{s}\) & - - - & - \(n\) & - O- & - & 11 & 0 \\
\hline 12 & - - - & 0 & \& \(0 \leqslant 5\) & & & MAHM & - & 12 & 0 \\
\hline 13 & & & s \(\mathrm{Hs}_{5}\) & & 8 - & s-s s & - & 13 & 0 \\
\hline 14 & & MMHM & s S SF & OODD & \(s+s \mathrm{~s}\) & + M M & - & 14 & 33 \\
\hline 15 & x- & \(x-\) & S S X S & HD×0 & S-xm & - \(\boldsymbol{s x s}\) & - & 15 & 0 \\
\hline 16 & & & s sfs & & s H s n & \(n \geq M n\) & - & 16 & 0 \\
\hline 17 & F & s-s- & \(\mathrm{nc} \mathrm{m}_{\mathrm{s}}\) & F & sms- & -8 & - & 17 & 0 \\
\hline 18 & -F & MOOH & smss & & \(s m\) & OOOs & - & 18 & 0 \\
\hline 19 & & & ¢ S S S & & \(t+t+\) & OOON & - & 19 & 25 \\
\hline 20 & + - : - & & \(\boldsymbol{s} \mathbf{S} \mathbf{s}\) & & + ¢ ¢ t & Mns H & - & 20 & 33 \\
\hline 31 & & & \(t+t+\) & \(t--F\) & \(t+t+\) & \(t+t F\) & + & 31 & 55 \\
\hline 32 & & & \(\boldsymbol{s} \boldsymbol{s} \boldsymbol{s} \mathbf{s}\) & & HMMM & \(t+t F\) & - & 32 & 21 \\
\hline 33 & \(t-+t\) & \(t-\cdots\) & \(t s+t\) & \(\cdots\) & \(\boldsymbol{s} \boldsymbol{s} \mathbf{s}\) & \(\boldsymbol{s} \boldsymbol{s} \mathrm{f}\) & + & 33 & 57 \\
\hline 34 & - + + - & mat \({ }^{\text {a }}\) & \(t+t+\) & - - F & \(M H-H\) & ¢ ¢ ¢ & - & 34 & 54 \\
\hline 35 & - - - & \(t+t+\) & \(t+t F\) & - D-F & s-1- & +t+F & + & 35 & 80 \\
\hline 36 & \(t+t-\) & \(t+t+\) & \(t+t+\) & \(s+t F\) & & \(t+t F\) & + & 36 & 76 \\
\hline 37 & & -m-F & - s s - & ---F & & \(m \leqslant \leqslant F\) & \(\cdots\) & 31 & 0 \\
\hline 38 & & & s--s & & \(n\) & +1-t & - & 38 & 15 \\
\hline 39 & & & \(t s t+\) & ---F & & \(t+t+\) & - & 39 & 30 \\
\hline 10 & - +-- & - 4 - & \(t+t+\) & & n \(\dagger\) & \(t+t+\) & \(\dagger\) & 10 & 50 \\
\hline 41 & & + & \(s s t+\) & ---F & nmo & \$88 & * & 41 & 29 \\
\hline 42 & & - m- - & \(t+t+\) & + - - - & ¢nms & \(+\mathrm{D}++\) & \(\dagger\) & 12 & 11 \\
\hline 43 & & Dmmm & HMMM & -F & **** & OHDN & \(t\) & 13 & 0 \\
\hline 44 & & & \(t+t+\) & & - H - - & \(H+N M\) & 1 & 44 & 26 \\
\hline 45 & - + - & ODOD & \(n \operatorname{Mn}\) & ---F & \& S \% \(\dagger\) & HODM & - & 45 & 25 \\
\hline 46 & & + + - & \(t+t+\) & \(t+t F\) & - - - - & 888 & \(\dagger\) & 16 & 11 \\
\hline 47 & - F & In \(n\) & \(s \cap \cap\) & - \(\quad\) - \(F\) & \(m\) mm & + NMH & - & 41 & 17 \\
\hline 48 & - - - & & dasF & - - F & n m m & 88 ms & & 18 & 0 \\
\hline 49 & - - - & m--n & S S 5 F & - F & - - - - & \(t+t+\) & - & 49 & 21 \\
\hline 50 & - - & - . - & \(t-t+\) & - - - F & m m \(n\) & nODO & & 50 & 20 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & lure & lurid & deluge & delude & volumin & salutar & \(p\) & 1 & (1yu) \\
\hline & 3142 & 3142 & 3142 & 3142 & 3142 & 3112 & & & Index \\
\hline 51 & + - - & - F & HMsf & - d d d & MMM & \(+\mathrm{OH}+\) & - & 51 & 30 \\
\hline 52 & & & + \(\mathrm{s} \boldsymbol{s} \mathrm{s}\) & & ェ - - - & ssss & - & 52 & 17 \\
\hline 53 & & & \(t+t+\) & & s ms & ss 5 & - & 53 & 25 \\
\hline 54 & - +-F & & s ss s & -d-- & HH F & DMDF & H & 54 & 11 \\
\hline 55 & & -- - \(f\) & \(\mathrm{H} \boldsymbol{s} \mathrm{f}\) & --F & HM, H & - HMF & - & 55 & 0 \\
\hline 56 & - - - F & n m m & msff & \(\cdots\) & \(t+t-\) & \(+H+n\) & - & 56 & 12 \\
\hline 57 & -- F & emf & mma & mma & \(m+ \pm m\) & \(-n+s\) & - & 57 & 43 \\
\hline 58 & & man \(n\) & mana & 1--F & \(m \mathrm{~m}\) ¢ \(m\) & HHMn & - & 58 & 13 \\
\hline 59 & \(\pm+-F\) & -- -7 & s S Sf & - - - F & 8 - & --sF & ? & 59 & 13 \\
\hline 60 & - 7 & & \(t+t s\) & \(s++F\) & ¢ ¢ ¢ & HMSH & + & 60 & 43 \\
\hline 61 & & --F & t+t+ & \(s--F\) & \(s M H+\) & \(\cdots+m\) & \(\pm\) & 81 & 10 \\
\hline 62 & -- & & ss MF & --F & \(-t-m\) & S 0 s \(F\) & - & 62 & 08 \\
\hline 63 & & & t+t+ & --F & \(n+n+\) & s\%ss & - & 63 & 35 \\
\hline 64 & & m \(n\) n \(F\) & HSMF & tmaf & \(s+F\) & HHSF & - & 64 & 33 \\
\hline 65 & & & \(\boldsymbol{s} \boldsymbol{s} \mathbf{s}\) & \(M H-M\) & MAMM & \(n-n m\) & - & 65 & 0 \\
\hline 66 & - + - & \(\cdots+\cdots\) & \(t+t+\) & \(s--F\) & & n Mn m & + & 66 & 33 \\
\hline 67 & + - + - & \(t+t+\) & ssss & \(t-+F\) & & - MMn & - & 67 & 50 \\
\hline 68 & --F & & \(n+n\) & n \(n\) n \(F\) & n m \(n\) & OMDO & - & 68 & 14 \\
\hline 69 & & & stst & n- - & & - + 0 - & + & 69 & 15 \\
\hline 70 & + & & \(\boldsymbol{s} \boldsymbol{s} \mathbf{s}\) & & \$ \$ ¢ 5 & ssms & - & 70 & 15 \\
\hline 71 & & & \(\boldsymbol{s} \mathbf{5} 5\) & - - F & & H 5 s s & - & 71 & 0 \\
\hline 81 & & & \(s+t F\) & - - F & & \(t+t+\) & & & 30 \\
\hline 82 & - - : - & & \(\boldsymbol{s} \boldsymbol{s} \boldsymbol{s}\) & -- F & - & \(-n-n\) & & 82 & 08 \\
\hline 83 & & & \(t+t+\) & ---F & & \(t+t+\) & \(t\) & 83 & 35 \\
\hline 84 & - + + & & \(\cdots+F\) & & & \(t+-t\) & \(t\) & 84 & 27 \\
\hline 85 & - & \(-++F\) & \(t+t+\) & - - F & - & + sst & - & 85 & 45 \\
\hline 86 & \(t+t+\) & \(t+t+\) & \(t+t+\) & s- - F & & \(t+t+\) & + & & 73 \\
\hline 87 & \(t--F\) & \(\cdots\) & \(t+t+\) & - - & & \(t m+t\) & - & 87 & 10 \\
\hline 88 & & & \(t+t+\) & \&-F & & HDNK & \(t\) & 88 & 22 \\
\hline 89 & & & \(t+t+\) & \(s--F\) & & \(t+t+\) & + & 89 & 36 \\
\hline 90 & & & -ss 5 & - \(\pm+F\) & + + - + & & - & 90 & 24 \\
\hline 91 & \(t+{ }^{+}+5\) & \(t+t+\) & \(t+t+\) & - - + F & & \(t m+t\) & \(t\) & 91 & 65 \\
\hline 92 & \(t+t+\) & \(t+t+\) & ¢ ¢ 58 & - + & & \& \% 8 & - & 92 & 56 \\
\hline 93 & \(t+t+\) & \(t+-t\) & \(t+t+\) & \(-t+F\) & + & \& \% 1 & \(t\) & 93 & 10 \\
\hline 94 & \(t-\cdots+\) & \(t+t+\) & \(t+t+\) & \(t--F\) & \(t-+\) - & stst & \(\dagger\) & 94 & 11 \\
\hline 95 & \(t+t-\) & \(t+t F\) & \(t+t F\) & \(\cdots++F\) & - t+ - & \& ¢ 80 & + & 95 & 76 \\
\hline 96 & \(t--F\) & \(\cdots\) & - + - - & \(D=-F\) & s+nn & nmaf & - & 96 & 21 \\
\hline
\end{tabular}


Table \(73-11\)
(-cor) \((\) tant \()\)
\begin{tabular}{|c|c|c|c|c|}
\hline word initl & & -fuse & -fusion & medial \\
\hline \begin{tabular}{l}
feu \\
feud \\
feudal \\
feudalize \\
few \\
fewtrils \\
fuchsia \\
fucic \\
fucus \\
fuel \\
fugacious \\
fugitive \\
fugle (man) \\
fugue \\
fugal \\
ruliginous \\
fumado \\
fumaria \\
fumarole \\
fume \\
fumet \\
fumigate \\
fumitory \\
funambulist \\
funis
\end{tabular} & \begin{tabular}{l}
funeral \\
funest \\
funicle \\
furacious \\
furibund \\
furious \\
furore \\
furuncle \\
fury \\
fusain \\
fusarol \\
fuse \\
fusee \\
fuselage \\
fusel \\
fusiform \\
fusil \\
fusus \\
futile \\
future \\
fusion \\
phew
\end{tabular} & \begin{tabular}{l}
circumfuse confuse defuse diffuse effuse infuse interfuse perfuse profuse rediffuse refuse \\
reinfuse retransfuse suffuse transfuse
\end{tabular} & \begin{tabular}{l}
affusion \\
confusion diffusion effusion infusion \\
profusion rediffusion \\
transfusion
\end{tabular} & confucian confute confutation curfer euphuism febrlfuge feverfew flamfew infuriate infusoria perfume refute refutation subterfuge sulphuric vermifuge \\
\hline
\end{tabular}

Table 73-12
(-cor)(tant) |v|
\begin{tabular}{llll} 
& & \\
gravure & view & bravura & ovule \\
autogravure & interview & revue & ovular \\
photogravure & preview & rivulet \\
rotogravure & review & convolvulus
\end{tabular}
```

Table 73-13
[-cor](tant] /p/

```
\begin{tabular}{lllll}
\hline & & & & \\
initial & -pute & -pulate & medial & \\
& & & \\
pew & amputate & copulate & Apulia & corpulent \\
puce & amputation & copulation & capuchin & impugn \\
puke & compute & epulation & copula & Impunity \\
pule & computation & populate & corpulent & impure \\
puma & depute & population & coupure & llliputian \\
puna & deputation & & cupule & oppugn \\
Punic & deputy & & depurate & scapula \\
puny & dispute & & despumate & impudent \\
pupa & disputation & & empusa & \\
pupil & disrepute & & epulotic & tempura \\
pure & impute & & & hippuric \\
purify & imputation & & & hypural \\
putrid & repute & & & \\
spew & reputation & & & \\
spume & & & & \\
sputum & & & & \\
pusillanimous & & &
\end{tabular}

Table 73-14
[-cor][tant] /b/
\begin{tabular}{|c|c|c|c|c|}
\hline word initia & & -bute & medial & \\
\hline Beaufort & buplever & arbute & abuse & cattabu \\
\hline Beaulieu & buprestis & attribute & abusive & confabulate \\
\hline Beaumaris & bureau. & attribution & abutilon & cunabula \\
\hline beauty & bureaucracy & contribute & acetabulum & Debussy \\
\hline bubo & burette & contribution & albugineous & disabuse \\
\hline bubonic & burin & distribute & albugo & flbula \\
\hline Bucephalous & butadiene & distribution & albula & funambulist \\
\hline bucoli & butane & retribute & albumen & I imbue \\
\hline bufo & butea & retribution & albumin & incunabula \\
\hline bugle & butte & tribute & ambulacrum & Infibulate \\
\hline bugloss & & scorbutic & ambulance & Infundibular \\
\hline bugong & & & arbutus & sonambullst \\
\hline buhl & & & balbutient & rebuke \\
\hline bulimia & & & barbula & tribunal \\
\hline buna & & & bibulous & vestlbule \\
\hline bunodont & & & carburettor & vocabulary \\
\hline
\end{tabular}
```

Table 73-15
[-cor]ltant] /m/

```
word initial
\begin{tabular}{lllll} 
meuse & accumulate & commune & cumulus & formula \\
meute & accumulation & communicate & cumulative & immew \\
mew & ammunition & communication demure & immune \\
mewl & amulet & communion & disimmure & immute \\
mu & amuse & communique & dismutation & simulate \\
mucic & bemuse & communism & dissimulate & stimulate \\
muesll & Bermuda & communist & emu & \\
mule & cassumunar & community & emulate & tumulus \\
Munich & circummure & commute & famulous & simulacrum \\
mural & communal & commuter & flammule &
\end{tabular}
muse
music
musical
mute
mutate
mutation
mutiny
smew

\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Table } 73-21 \\
& \text { [tcor } 3 \text { (tant }
\end{aligned}
\] & 181 & & & \\
\hline Arethusa Arthurian Carthusian & ent & & Thule thurifer thews thujones thurible & thulla thulite thullum thus \\
\hline \multicolumn{5}{|l|}{Table 73-22 [+cor)ltant] |r|} \\
\hline \multirow[t]{2}{*}{initial} & \multicolumn{2}{|l|}{Cr initial} & \multirow[t]{2}{*}{mor pheme} & medial \\
\hline & brew & prude & & erudite \\
\hline rheum & bruise & prudent & bestrew & garrulous \\
\hline rubric & brume & prune & construe & peruke \\
\hline rude & bruit & screw & untrue & peruse \\
\hline rue & brute & shrew & & verruca \\
\hline rued & crew & sprew & detrude & virulent \\
\hline rule & crude & sprue & Intrude & abstruse \\
\hline rumour & cruet & strew & extrude & accrue \\
\hline rune & cruel & threw & protrude & Imbrue \\
\hline \multirow[t]{7}{*}{rural} & crevel & true & subtrude & cerulean \\
\hline & crural & truant. & obtrude & cerumen \\
\hline & drew druid & & withdrew & ceruse \\
\hline & druple & & corkscrew & \\
\hline & grew & & thumscrew & \\
\hline & gru & & unscrew & \\
\hline & grue & & & \\
\hline
\end{tabular}

word medial
\begin{tabular}{lllll} 
accentuatz & actual & actuary & actuate & amateur \\
anfractuous & attuition & attune & fortune & importune \\
opportune & bitumen & cartulary & centuple & century \\
centurion & coloratura & contumacious & contumacity & contumacy \\
contumelious & contumely & contuse & contusion & datura \\
denaturalize & -ation & detumescence & electuary & emphyteusis \\
fatuous & rluctuate & fortuitous & fortune & gargantuan \\
gratuity & gratuitous & heptateuch & hexateuch & octateuch \\
pentateuch & impromptu & infatuate & infatuation & infructuous \\
intellectual & intubate & intuition & intultive & intumescence \\
intuse & obtuse & pertuse & retuse & octuor \\
octuple & octuplet & noctuid & noctuary & noctule \\
lin) situ & situate & situation & virtue & virtuous \\
virtual & virtuosity & virtuoso & vituperate & maturlty \\
sumptuary & sanctuary & statue & statute & pltuitary \\
absquatulate & capitulate & congratulate & gratulatory &
\end{tabular}
/st/
\begin{tabular}{lllll} 
angostura & astute & distune & blastula & constuprate \\
costume & fistula & frustule & impostume & expostulate \\
testudo & estuary & & & \\
stew & steward & stupe & stupid & stupor \\
stupefy & stupendous & studio & studious & Stuart \\
stupendous & [Stiffkey & & &
\end{tabular}


Table 73-32
[tcor) \((\) tant \(] / \mathrm{d} /\)
\begin{tabular}{lllll} 
word initial & & & \\
& & & \\
Duane & deuce & deutero- & dew & dual \\
dubious & dubitate & dubitable & ducal & dude \\
dudeen & due & duel & duenna & duet \\
dugong & duke & dulla & duly & duma \\
Dumas & dumose & dune & duo & dupe \\
duple & duplicate & durable & dural & durlan \\
duvet & duramen & durance & duration & duress \\
during & duty & duumvir & duraluminium \\
Deucalion & deuced & deutzia & dublety & duplex
\end{tabular}
morpheme initial
\begin{tabular}{|c|c|c|c|c|}
\hline bedew & abduce & reduce & archduke & \\
\hline endew & adduce & reproduce & & \\
\hline honeydew & conduce & seduce & endure & ondurance \\
\hline mildew & deduce & superinduce & indure & \\
\hline subdue & educe & traduce & perdure & \\
\hline endue & induce & produce & epidural & \\
\hline indue & introduce & & subdural & \\
\hline word medial & & & & \\
\hline acidulate & adieu & adulation & arduous & caduac \\
\hline caduceous & caducity & caducous & calendula & fraudulent \\
\hline carduus & coadunate & conduplicate & corduroy & credulous \\
\hline incredulous & deciduous & educate & education & eglandular \\
\hline fiducial & fiduciary & Honduras & individual & indubious \\
\hline indubitable & induline & indumentum & induna & indurate \\
\hline indusium & induvial & Medusa & module & nodule \\
\hline residue & residual & schedule & & \\
\hline
\end{tabular}

```

Table 73-33
[+cor][tant] /s/

```
word initial
\begin{tabular}{lllll} 
pseudo & suet & suey & sugar & sult \\
sural & sure & super (40t) & superb & supreme \\
sue & sewer & suicide & sultable & superior \\
supernal & supine & sudarium & sudatory & superstition \\
sudorific & sumach & Susan & Suez & Sumata \\
suitor & sutor & suture & sussuration & suversed
\end{tabular}
morpheme initial
\begin{tabular}{llll} 
unsure & assure & assume & ensue \\
ensure & reassure & subsume & pursue \\
coinsure & cynosure & consume & pursuit \\
insure & & consumer &
\end{tabular}
word medial
\begin{tabular}{|c|c|c|c|c|}
\hline capsule & cassumunar & casuarina & commensurate & desuetude \\
\hline flexura & grossular & hirsute & Insular & insulator \\
\hline insulin & issue & mensuration & nasute & Odysseus \\
\hline pharmaceutical & sensuous & sexual & tissue & pressure \\
\hline esurience & marsupial & tonsure & peninsula & insulation \\
\hline censure & dysuria & consular & insulate & \\
\hline
\end{tabular}

Table 73-34
itcorlltant] /zl
\begin{tabular}{|c|c|c|c|c|}
\hline Ahazuerus & azure & caesura & casual & casualiy \\
\hline casuist & casulstry & chasuble & -plzeuxis & exuberant \\
\hline exude & exurial & jesult & luxurious & resumé \\
\hline presume & resume & transude & usual & usually \\
\hline visual & zeugma & 2euxls & Zeus & \\
\hline closure & erasure & lelsure & measure & pleasure \\
\hline seizure & treasure & & & \\
\hline
\end{tabular}

The tables are arranged by number of syllables. For polysyllabic words they are further divided by reference to stress and the position of the relevant syllable (RS) within the word. The lists are coded according to this classification. The first digit denotes the position of the relevant syllable 《usually tautosyllabic /lu/); the second shows the syllable whlch has primary stress. Thus \((2,1)\) 'curlew has \(R S\) in the second syllable and the stress on the first; (2,3) alu'minium has RS in the second ayllable and stress on the third. The starred words are those used in the reading passage and word list. Some items are repeated since the number of syllables can vary. The set ( 2,1 ) which retains the glide not only has immediate post tonic stress, but /// is usually heterosyllabic.

Monosyllabic words


Table 73-41
(lyu) words of 1 syllable ( \(k=8\) )
\begin{tabular}{|c|c|c|c|}
\hline Luke & Iune & lute & luce \\
\hline lewd & leud & lieu & lure \\
\hline
\end{tabular}

Bisyllabic words
Bisyllabic words have 4 possible cells of which three were used.
RS occurs first and is stressed eg lupins. Metrlcally thls is a trochalc foot.

RS occurs second and is stressed eg dl'lute. This constitutes an lambic foot.

RS is second but the first is stressed eg 'volume This is also trochaic but the relevant syllable is unstressed. This cell represents those wordswith post tonic stress which are most immune to glide loss. Where this does occur, it is usually the result of a reduced vowel (shwa) in the RS.

RS is first, with second syllable stress. Lu'nette ls an example.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Table 73 (lyu) words & 42 of 2 syll & \[
\text { les } \mathbb{k}=
\] & & & \\
\hline \multicolumn{4}{|c|}{(1,1)} & & \((1,2)\) \\
\hline ludo & Lucan & lupins & Lucas & & lunette \\
\hline lupine & Lucy & lupus & lutist & & lucarne \\
\hline lucid & lure & lucent & lurid & & lucerne \\
\hline lues & lunule & lucre & Lutine & & \\
\hline lukewarm & lubric & lumen & lumine & & \\
\hline lunar & lutine & Iunate & & & \\
\hline \multicolumn{2}{|l|}{(2,1)} & & & \multicolumn{2}{|r|}{\((2,2)\)} \\
\hline curlew & purlieu & & & dilute & salute \\
\hline pilule & value & & & pollute & volute \\
\hline volume: & prelude : & & & elude & delude \\
\hline deluge & alure & & & collude & allude \\
\hline postlude & & & & lllude & lllume \\
\hline
\end{tabular}

Trisyllabic words
Trisyllabic words have 9 possible cells; but only 3 were used in the tests. No examples are given of (1,3) or (3,2). A possible example of \((2,3)\) occurs in balustrade Jones 1.945 gives it as ungllded with shwa; John le Carré (in a radio broadcast) did glide.
(T1) RS occurs first and is stressed eg 'lunacy. This is dactylle, (1,1).
(T2) RS occurs second with stress eg pol'luted (2,2)
(T3) Stress is on the first syllable but Rs is elsewhere, eg 'solubla This is also dactylic but without stress on the relevant syllable.
(T4) Stress is on the second syllable but RS is elsewhere. Lu'bricious was a possible example but was not used.
(T5) RS occurs third and is stressed. A recent word perl'lune is a rare instance of a stressed anapestic foot.
(T6) No examples were found of unstressed RS in words with final stress.

Table 73-43
(lyu) words of 3 syllables \((k=92)\)
\begin{tabular}{|c|c|c|c|}
\hline & \((1,1)\) & & \((1,2)\) \\
\hline lucifer & lunacy : & luminal & lubricious \\
\hline ludicrous & lunatic & luminance & Lutetian \\
\hline lubricant & lubricate & luminant & leucoma \\
\hline lucency & luminous & luminist & lunated \\
\hline lupercal & lucigen & lutenist & \(l\) leutescent \\
\hline lucidly & lucidest & lutein & lunation \\
\hline lucrative & luzula & luteius & luetic \\
\hline Lusiad & lucumo & Iunary & leukemia \\
\hline lunula & lucubrate & lunarist & Lucina \\
\hline lurid & leucocyte & lunulate & \\
\hline Lutheran & leucoblast & & \\
\hline Lupercal & leucotome & & \\
\hline lubricous & lumina & & \\
\hline
\end{tabular}
\((2,1)\)
\begin{tabular}{ll} 
toluene & soluble \\
valuable & voluble \\
cellular & alula \\
illustrate & aludel \\
alunite & calutron \\
preludize & calumet \\
celluloid & cellulose \\
salutary & pullulate
\end{tabular}
\((2,2)\)
\begin{tabular}{ll} 
delusion & allusion \\
collusion & lllusion \\
allusive & elusive \\
illumine & aleurone \\
seleucid & telluric \\
solution & dilution \\
pollution & volution \\
translucid & pellucid \\
aleutian paludal \\
polluted & dluted \\
prelusion prelusive
\end{tabular}
\((3,1)\)
absolute : resolute
dissolute interlude:
convolute obvolute involute
\((3,3)\)
perllune chevelure

In words having 4, no examples were found elther of stress in the final syllable or on the RS. (3,2) mainly contains words with preflxes where the base is usually glided.


Table 73-44
(lyu) words of 4 syllables ( \(k=68\) )



Words of 5 syllables or more are unclassified.

Table 73-45
(1yu) words of 5 syllables or nore \(\quad(x=16)\)
\begin{tabular}{|c|c|c|}
\hline luminosity & lupercalia & luminiferous \\
\hline absolutism & absolutary & anacoluthon \\
\hline antediluvian & Itacolumite & Insalubrious \\
\hline volubility & lllumination & llluminated \\
\hline hallucination & eleusinean & eleutherian \\
\hline luminarism & & \\
\hline
\end{tabular}

\section*{7346 Clustered Items}
l conclude the /// lists with some of the (primarily tautosyllabic)
clustered items

Table 73-46
Clustered (1yu) words \(k=40\)
\begin{tabular}{lll} 
& & \\
conclude & conclusion & ablution \\
exclude & exclusion & ablutionary \\
include & inclusion & agglutinate \\
oclude & occlusion & \\
preclude & recluse & reclusive \\
seclude & seclusion & \\
postlude & \\
word initial
\end{tabular}
\begin{tabular}{lll} 
blew & blue & fluke \\
clew & clue & flume \\
flew & flue & flute \\
slew & glue & plume \\
& sleuth & plute? \\
& \\
cluniac & fluent & flu \\
fluid & glucic & pleural \\
Sleurisy & plural & slult
\end{tabular}

The same approach as for (lyu) was adopted for words in the inyu) micro variable. Again the lists are not exhaustive. And again the increasingly rare and arcane nature of the words is evident. Some words are repeated because of varlable stress or syllables.



Words of three syllables were difflcult to find with stress on the final syllable. For \((3,3)\) recourse was had to a district in Dublin. This is a very similar pattern to that for \{lyu\}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Table 73-53 (nyu) words of 3 syllables ( \(k=52\) )} \\
\hline \multicolumn{3}{|c|}{(1, 1)} & \((1,2)\) \\
\hline nucleole nubilous numinous numeral numerous nutritive & nubiform nubia nutrient numerate nutriment nutria & \begin{tabular}{l}
nuclear \\
numulite \\
nudism \\
nudity \\
neutralize
\end{tabular} & nutrition nutation neuralgic nucellar nutritious nucellus neurotic \\
\hline \multicolumn{3}{|c|}{\((2,1)\)} & \((2,2)\) \\
\hline \begin{tabular}{l}
annual \\
granular \\
sinuous \\
fenugreek \\
cannula
\end{tabular} & annular penury genuine genuflect anurous & \begin{tabular}{l}
cernuous \\
inula \\
inulase \\
inulin \\
hanuman
\end{tabular} & \begin{tabular}{l}
ichneumon \\
renewal \\
aneurin \\
denuded \\
lanugo
\end{tabular} \\
\hline \multicolumn{2}{|c|}{(3, 1)} & \((3,2)\) & \((3,3)\) \\
\hline avenue retinue comminute & revenue detinue & continue & Terenure disinure \\
\hline
\end{tabular}

Four syllable \{nyu) words exhlbit a pattern similar to that for (lyu) words. It was almost impossible to discover. any words that fitted in (4) section, that is, stress on the final syllable or (nyu) in the final syllable.
```

Table 73-54
(nyu) words of 4 syllables (k = 50)

```
\begin{tabular}{|c|c|c|c|}
\hline \((1,1)\) & \multicolumn{2}{|c|}{\((1,2)\)} & \((1,3)\) \\
\hline numerable nugatory numerary neutralizer numerator & nucivorous nubigenous numerical nubiferous nutritional & nuciterous nucivorous numismatist nubecula nutational & numismatic numeration \\
\hline (2,1) & \multicolumn{2}{|l|}{\((2,2)\)} & (2.3) \\
\hline \multirow[t]{5}{*}{manufacture january aneurism} & annuity venusian connumerate innumerate enumerate connubial & anuria enucleate minutiae inusitate lanuginous lanuginose & sinusoldal manufacture eneuresis Innuendo denudation genuflection \\
\hline & \multicolumn{2}{|l|}{\((3,2)\)} & \((3 ; 3)\) \\
\hline & \multicolumn{2}{|l|}{insinuate extenuste diminutive attenuate ingenuous Emmanuel campanula.} & comminuted comminution imminution diminution hermeneutic \\
\hline & \multicolumn{2}{|l|}{\((4,2)\)} & \((4,4)\) \\
\hline & \multicolumn{2}{|l|}{hypoteneuse} & discontinue \\
\hline
\end{tabular}

Table 73-55
(nyu) words of 5 or more syllables \((k=12)\)
\begin{tabular}{llll} 
& & & \\
innumerable & diminutively & numerically & sternutatory \\
cornucopia & ingenuity & numerology & disingenuous \\
continuation & amanuensis & diminuendo & circumutation
\end{tabular}


```

Table 13-61
[-cor][-ant] /k/

```
word initial
\begin{tabular}{llllll} 
Cuba & cube & cubeb & cubica & cublcle & cublt \\
cucullate & cucumber & cucurblt & cue & culel & culex \\
cumic & cumin & cumulate & cumulus & cunabula & cuneal \\
cunette & cupel & cupid & cuple & cupola & cupric \\
cupressus & cuprous & cupule & curacao & curare & curasson \\
curate & curator & cure & curetiage & curla & curle \\
curio & curious & curium & curlicue & curule & culaneous \\
cue & cute & kudos & kufic & queue & \\
scuba & scute & skew & skua & &
\end{tabular}
word medial

```

Table 73-62
[-cor)[-ant] /g/

```
\begin{tabular}{lllll} 
ageusi & ague & ambigulty & amblguous & angular \\
argue & argute & cingulum & coagulate & configurate \\
contiguous & effigurate & energumen & eugubine & exiguous \\
figuline & figure & gules & gulosity & fulgurate \\
hegumen & inaugurate & integument & jaguar & jugular \\
legume & leguminous & lugubrious & & \\
augury & & & &
\end{tabular}

Table 73-63
(-cor)(-ant) /h/
\begin{tabular}{llll} 
& & & \\
exhume & inhume & heugh & heulandite \\
hew & hubris & hudibras & hue \\
Hugh & human & humic & humect \\
humerus & humid & humillate & humilliy \\
humour & humourous & humus & huon
\end{tabular}
whew

Table 73-64
(-cor)(-ant) /j/
eucaine
euclase
eudialy
dalyte
eugubine
Eumenides
euonymun
euphobia
eureka
eurus
eusol
euterpe
euthyneura
ewe
ural
yule
maieutic
\begin{tabular}{ll} 
euchlorine & euchologion \\
eucrite & eucyclic \\
euge & eugenol \\
euhemerism & eulachon \\
eumycetes & eunuch \\
eupepsia & euphemism \\
euphrasy & euphrosnye \\
euripus & euroclydon \\
eurypterid & euseblan \\
eustachian & eustyle \\
euthanasia & euthenics \\
eutropy & outychlan \\
ukelele & unlon \\
usage & use
\end{tabular}
euchre eudemonism ougenic oulogy Eunice euphony euphulsm ouropean euskarian outaxy eutheris euxenite unlt yew
heuristle nuge humestant humogen hutis
(-cor)l-ant) /j/

\footnotetext{

}
BIBLIOGRAPHY
```

AINSWORTH W A \& PALIWAL K K (1984)
'Correlation between the production and perception of the Engllsh glldes
/w r l j/'
Journal of Phonetics 12: 237-244
AITCHISON JEAN (1978) P121
Linguistics
Hodder \& Stoughton: Sevenoaks
AITCHISON JEAN (1981) P142.A4
Language change: progress or decay?
Fontana: London
ALFORD HENRY (1864)
The queens English
(No publisher given)
ANON (1879)
Vulgarities of speech corrected
(No publisher given): London
ANSRE G (1961)
The tonal structure of Ewe
Hartford studies in linguistles 1: Hartford: Connecticut
ANTTILA RAIMO (1972)
An introduction to historical and comparative linguistics
Macmillan: New York
BAILEY C JN (1977)
'Variation and linguistic analysis'
Papiere_zur linguistik 12: 5-56
BARBER CHARLES (1964) PEIO87.B3
Lingulstic change in present day Engllsh
Oliver \& Boyd: Edinburgh
bARBER CHARLES (1976)
PEL081, B3
Early modern English
Deutsch: London
BARRY M V (1984)
'Manx English'
P Trudgill (ed) 1984: 167-177
BAUER L (1985)
'Tracing phonetic change in the recelved pronunclatlon of British
English'
Journal of Phonetics 13: 61-81

```
```

BEAKEN M A (1971)
A study of phonological development in a primary school population of
east London
PhD thesis: University of London
BERNARD J R (1981)
Australian pronunciation The Macquarie dictionary
Macquarie Library: Sydney
BHASKAR ROY (1975)
A realist theory of science
Harvester Press: Brighton
BHASKAR ROY (1979)
The possibility of naturalism
Harvester Press: Brighton
BLISS A J (1969)
'Vowel quantity in Middle English borrowings from Anglo Norman'
R Lass (ed) 1969: 164-207
BOWYER R (1973)
A study of social accents in a south london suburb
MPhil dissertation: University of Leeds
BRUNNER K (1963)
PE531.B713
An outline of Middle English grammar
Basil Blackwell: Oxford
BRUNOT F \& BRUNEAU C (1949)
PC2101. B75
Précis de grammalre historique de la langue francalse
Masson: Paris
BURCHFIELD R (ed) (1972-1986)
PE1625.097
The Oxford English Dlctionary: supplement
Oxford University Press: Oxford
BULLOKAR WILLIAM (1580)
Book at large
BUTLER ALISON (1990)
'A methodological approach to chaos: are economlsts missing the point?'
Eederal Reserve Bank of St Louls: Revlew vol 72/2: 36-48 \& vol 72/3; 2
BUTLER CHARLES (1633)
The English grammar
BUTLER C (1985)
Statistics in lingulstics
Basil Blackwell: Oxford
CARROLL J, DAVIES P \& RICHMAN B (1971)
The American heritage word frequency book
American Heritage Publishing Company: New York

```

\section*{CARUS WILSON ELEANORA MARY (ed) (1954)}

HC13. 2E85
Essays in economic history
E Arnold: London

CHAMBERS J K \& TRUDGILL P (1980) P367.C42
Dlalectology
Cambridge University Press: Cambridge
CHEN M (1972)
' The time dimension: contribution toward a theory of sound change' Eoundations of language 8: 457-498

CHEN M (1976)
'Relative chronology: three methods of reconstruction' Journal of linguistics 12: 209-258

CHEN M \& WANG \(S\) (1975)
'Sound change: actuation and implementation'
Language 51: 255-281
CHERRY COLIN (ed) 1956
Q350595
Information theory
Butterworths scientific publications: London
CHOMSKY NOAM \& HALLE MORRIS (1968)
PE1133.C5
The sound pattern of English
Harper \& Row: New York
CHRISTIE WM (ed) (1976)
Current progress in historical ingulsties
North Holland: Amsterdam
CLARKE G \& COOKE D (1978)
A basic course in statistics
Edward Arnold: London
COOLEY MARIANNE (1978)
'Phonological constraints and sound changes'
Glossa 12: 125-136
COOPER CHRISTOPHER (1685)
Grammatica Lingus Anglicank
CRYSTAL DAVID (1985) P29.C65
A dietionary of ilngulsties and phonetles
Blackwell: London
CRYSTAL DAVID (1987)
P29. C64
The Cambridge encyclopedia of langunge
Cambrltze University Press: Cambrlage
```

 DANCHEV ANDREI (1985)
 'On analysis and synthesis in sound change'
 Papers from the sixth international conference on_histerical
 Linguistics: 83-104
 John Benjamins: Amsterdam; & Adam Mlcklewicz University Press: Poznan
 DANIELSSON B (1963)
 John Harts works on English orthography and pronunclation
 Almqvist & Wiksell: Stockholm
 DE LYON H B (1981)
 A sociolinguistic study of aspects of the Liverpool accent.
 Unpublished M Phil dissertation: Liverpool
DITTMAR N (1976)
P40.D513
Sociolinguistics
Edward Arnold: London
DOBSON E J (1968)
PEI137.D58
English pronunclation 1500-1700
Clarendon Press: Oxford
EKWALL EILERT (1975)
A history of modern English sounds and morphology
Blackwell: Oxford
EMERSON O F (1909)
A middle English reader
Macmillan: New York and London
FALLON PAUL (1986)
Orthography revision
Unpublished MA dissertation: University of Wales
FIDELHOLZ JAMES (1975)
'Word frequency and vowel reduction In English'
R E Grossman et al: 200-213
FOSTER BRIAN (1968)
The changing Engllish language
Penguin: Harmondsworth
FOWLER H W (1926)
A dictionary of modern Engllsh usege
Clarendon Press: Oxford
FOWLER H W (rev) E GOWERS (1965)
A dictionary of modern Engllsh_usage
Clarendon Press: Oxford
FRANCIS W N \& KUCE:3A H (;982)
P:2839. F7
Erequency analysis of English usagei_Lexicon and grammar
Houghton Mlfflln: Boston

```
```

FRY D B (1947)
'The frequency of occurrence of speech sounds In southern Engllsh'
Archives neerlandaises de phonetique experlmentale 20: 103-106
FUCKS W (1956)
'The mathematical theory of word formation'
C Cherry (ed) 1956: 154-170
GEDDIE WILLIAM (ed) (1959)
PE1628.C4176
Chambers twentleth century dictionary
W \& R Chambers: Edinburgh
GILL W W (1934)
Manx dialect words and phrases
Arrowsmith: London \& Bristol
GIMSON A C (1980)
PE1135.G5
An introduction to the pronunclation of English
Edward Arnold: London
GLEICK JAMES (1988)
Choos: making a new science
Sphere Books: London
GREY CLIVE GARETH (1978)
'English loanwords in Welsh: some aspects'
Unpublished BA dissertation: UNCW/CPGC Bangor
GROSSMAN R E, SAN L J \& VANCE T J (eds) (1975)
Papers from the il regional meeting Chleggo Lingulstic Soclety
Chicago Linguistic Soclety: Chicago
GUDSCHINSKY S C (1956)
'The ABCs of lexlcostatlstlcs (glottochronology)'
Word }1
HALLE M, BRESNAN J, \& MILLER G A (eds) (1978)
Linguistic theory and psychological reality
MIT Press: Cambrldge Massachusetts
HART J (1569 rep 1972)
PE1142.H28
Orthographie
Scolar press: Menstone
HEYWOOD T (1861)
'On the south Lancashlre dialect'
Iransactions of the Chetham Society 57: 1-36
HILL A A (1958)
PEIIOS.HS
Introduction to llngulstlc st cuctures.
Harcourt Brace \& World: New York
HODGES RICHARD (1643)
A speclal help to orthographle

```
```

HOLMEERG B (1964)
PE1137.H6
On the concept of standard English_and the history of modern English
pronunclation
Gleerup: Lund
HORVATH BARBARA (1985)
Variotion in Australian_Engllsh; the soclolects of Sydnex
Cambridge University Press: Cambridge
HORVATH BARBARA \& SANKOFF DAVID (1987)
'Delimiting the Sydney speech community'
Linguistics 25: 257-282
HOOPER JOAN (1976)
'Word frequency and lexlcal diffusion and the source of
morphophonological change'
W M Christie (ed) 1976: 95-105
HOWARD PHILIP (1989)
'A brief history from the A to the An'
The Times: 890314
HUDSON R A (1980a)
P40.H8
Sociolinguistics
Cambridge University Press: Cambridge
HUDSON RICHARD (1980b)
'A note on phonological variables6
York papers in linguistics 8: 55-60
HUGHES ARTHUR \& TRUDGILL PETER (1979) PEI711.H8
English accents and dialects
Edward Arnold: London
HURFORD JR (1967)
The speech of one famlly; a phonet ic comporlson of three generatlons ln
a family of east hondoners
PhD thesis: University of London
HYMAN LARRY (1975)
P217.H9
Phonology theory and ondysis
Holt Rinehart Winston: New York
JAKOBSON R, FANT G \& HALLE M (1951)
Preliminaries to speech analysls
Massachusetts Institute of Technology Press: Cambrldge Massachusetts
JAMES CARL (1980)
Contrastive analysis
Longman: Harlow
JONES DANIEL (1945)
An English oronounclng dictlonory
J M Dent \& sons: London

```
```

JONES DANIEL (1956)
PE1135.J67
An outline of English phonetics
Heffer: Cambridge
JONES DANIEL (1967)
PE1135.J66
The pronunciation of Engllsh
Cambridge University Press: Cambridge
JONES DANIEL \& GIMSON A C (1977)
PE1137.J6
Everymans English pronouncing dictionary
Dent: London
JONES J R (1947)
The Welsh builder on Merseyside
Jones: Liverpool
JORDAN R (ed) E J CROOK (1974)
PE540.J613
Handbook of middle English grammar: phonology
Mout on: The Hague
KAPLAN ABRAHAM (1965)
'Noncausal explanation'
D Lerner (ed) 1965: 145-155
KENYON J S \& KNOTT T A (1944)
PE1137.K37
A pronouncing dictionary of Americon English G \& C Merriami Springfield Massachusetts
KERSWILL PAUL \& WRIGHT SUSAN (1990)
' The validity of phonetlc transcription: limitations of a sociolinguistic research tool'
Language variation and change 2: 255-275
KNOWLES GERALD (1974)
Scouse; the urban dialect of Liverpool
Unpublished PhD thesis: University of Leeds
KNOWLES GERALD (1977)
'The nature of phonological variables in Scouse'
York papers in lingulstles 7: 129-149
KNOWLES GERALD (1978)
' The nature of phonological varlables In Scouse'
P Trudgill (ed) 1978: 80-91
KNOWLES GERALD (1987)
Patterns of spoken English
Longman: London \& New York
KRAPP G P (1925)
PE2808. K7
I Ie Engli in language in Anerlea vols 1. 2
Ungar: New York

```
```

KRATOCHVIL PAUL (1968)
The Chinese language today
Hutchinson University Llbrary: London
KRISTENSSON G (1967)
PE525. K7
A survey of middle English dialects 1290 - 1350; the slx northern
counties and Lincolnshire
Gleerup: Lund
KURATH H \& MCDAVID R I (1961)
PE2841.K78
The pronunciation of English in the Atlantic states
University of Michigan Press: Ann Arbor
LABOV WILLIAM (1966)
The social stratification of English in New York city
Center for applied linguistics: Washington
LABOV WILLIAM (1972)
P41.L26
Sociolinguistic patterns
University of Pennsylvania Press: Phlladelphla
LADEFOGED PETER (1971)
Prelininaries to linguistic phonetics
University of Chicago Press: Chicago \& London
LADEFOGED PETER (1982)
A course in phonetics
Harcourt Brace Jovanovich: New York
LANGLEY RUSSELL (1968)
Practical statistics
Pan: London
LASS ROGER (ed) (1969)
PE1075.L33
Approaches to English historical linguisties
Holt Rinehart \& Winston: New York
LASS ROGER (1980)
P142.L3
On explalning language change
Cambridge University Press: Cambridge
LAWTON R (1953)
'Genesls of population' [of the Liverpool region]
W Smith (ed) 1953: 120-131
LEITH R (1983)
PE1075.L44
A social history of Engllsh
Routledge \& Kegan Paul: London
LERNER D (ed) (1965)
Cause and effect. The Hayden collogulum on selentlfle methoc and concent
Free Press: New York

```
```

 LESLAU WOLF (1969)
 'Frequency as determinant of linguistic change in the Et.hiopian
 languages'
 Word 25: 180-189
 LEVINS PETER (1570)
 Manipulus vocabulorum
 ed H B Wheatley (1867) Early English Text Soclety
 MacCARTHY P A D (1950)
 English pronunciation
 Heffer: Cambridge
 MARSACK C C (1962)
Samoan
English Universities Press: London
MATTHEWS W (1938 rep 1972)
Cockney past and present
Routledge \& Kegan Paul: London
MCCALLUM M (1959)
Phonetic reader book 2
Angus \& Robertson: Sydney
MENCKEN HL (1963)
PE2808.M43
The American language
Routledge \& Kegan Paul: London
MENGER L E (1904)
PC2944.M5
The Anglo Norman dialect
Columbia Universlty Press: New York
MILROY LESLEY (1987)
P40.3.M54
Observing and analysing natural language
Basil Blackwell: Oxford
MOLIN D H (1984)
PN2071.F6M57
Actors encyclopedia of dlalects
Sterling: New York
MOSSÉ F (1952)
PE535.M6213
A handbook of middle_Engllsh
John Hopkins: Baltimore
NARO ANTHONY (1980)
Review: Linguistic variation: models and methods D Sankoff (ed) (1978)
Language 56: 158-170

```
    NEWMEYER FREDERICK (ed) (1988)
                            P121.L567
    Linguistics: the Cambridge survey,4 Language; the seciecultural centext
    Cambridge University Press: Cambridge
    NEW SCIENTIST (1989)
    Leading article on chaos: vol 124: num }168
OCONNOR J D (1973)
Phonetics
Penguin: Harmondsworth
PAINTER COLIN (1979)
P221. P3
An introduction to instrumental phonetics
University Park Press: Baltimore
PATEMAN TREVOR (1987)
                                    P121. P337
banguage in mind and language in society
Clarendon Press: Oxford
PETERS S (ed) (1972)
P106.G58
Goals of linguistic theory
Prentice Hall: Englewood Cllffs New Jersey
PETYT K M (1985)
Dialect and accent in west Yorkshire
John Benjamins: Amsterdam & Phlladelphla
PHILLIPS BETTY (1980)
'Old English an ~ on: a new appraisal'
Journal of English_Lingulstics 14: 20-23
PHILLIPS BETTY (1981)
'Lexical diffusion and southern tune, duke, news'
American Speech 56: 72-78
PHILLIPS BETTY. (1984)
'Word frequency and the actuation of sound change'
Language 60: 320-342
PHILLIPS KENNETH (1984)
                                    PE1085.P45
Language and class in victorian England
Blackwell: Oxford
PICTON J A (1865)
'Notes on the south Lancashire dialect'
Proceedings of the literary and phllosophical soclaty of liverpool
19:17-56
PICTON J A (1875)
Memprials of Liverpool volume 2
Longmans Green & co: London; and G; Walmsluy: Liverpool
```

```
    PITTS ANN (1986)
    'Flipflop prestige in American tune, duke, news'
    American Speech 61: 130-138
    POTTER SIMEON (1969)
Changing_English
Deutsch: London
PRICE OWEN (1668 rep 1972)
English orthographie
Francis Titon:. Oxford; Rep Scolar Press: Menston
PRINS A A (1974) PEll35.P75
A history of English_phonemes
Leiden University Press: Leiden
pulgram E (1970)
Syllable. word, nexus, cursus
Mouton: The Hague
PYLES T (1971)
PE1075. P9
The origins and development of the English language
Harcourt Brace Jovanovich: New York
RECASENS DANIEL (1990)
'The articulatory characteristlcs of palatal consonants'
Journal of phonetics 18: 267-280
REID EUAN (1978)
'Social and stylistic variation in the speech of children: some evidence
from Edinburgh'
P Trudgill (ed): 158-171
RICKARD P (1974)
A history of the French language
Hutchinson: London
ROACH PETER (1983)
                                    P1072
English phonetics and phonology
Cambridge University Press: Cambridge
ROBINSON ROBERT (1617)
The art of pronuntiation
ROCKEY DENISE (1973)
PE1137. R53
Phonetic lexicon
Heyden: London
ROMAINE SUZANNE (1975)
'Linguistic variabillty in the speech of some Edinburgh sehoolchlloren' M Litt thesis: University of Edinburgh
```

```
    ROMAINE SUZANNE (1978)
    'Postvocalic /r/ in Scottish English: sound change in progress?' In
    P Trudgill (ed): 144-157
    ROMAINE SUZANNE (1982a)
    Sociohistorical linguistics: its status and methodology
    Cambridge University Press: Cambrldge
    ROMAINE SUZANNE (ed) (1982b)
                            P120.V3756
Sociolinguistic variation in speech communities
Edward Arnold: London
RYAN NICHOLAS (1948)
St Francls Xaviers church centenary Liverpool
Kilburns: Liverpool
SANKOFF DAVID (ed) (1978)
P120.V37L52
Lingulstic varlation: models and methods
Academic Press: New York
SAVAGE W (1833)
The vulgarisms and improprieties of the English language
(No publisher given): London
SCHLAUCH M (1959)
PE1075.S37
The English language in modern tlmes (since 1400)
Panstwowe Wydawnictwo Naukowe: Warsaw
SCHOLFIELD PHILIP (1987)
'Cluster analysis in the study of language varlatlon: a revlew and an
example' Mimeograph
SCHOLFIELD PHILIP
Measuring language
(awaiting publication)
SCHUCHARDT HUGO (1885)
Uber die Lautgesetze: gegen die Junggrammatlker
Translation in Theo Vennemann & Terence Wllbur (1972)
Schuchardt, the Neogrammarlans, and the transformatlonal theory of
phonological change: 39-72
Athenăum: Frankfurt
SERJEANTSON MARY S (1935)
                                    PE1582.A354
A history of forelgn words in English
Routledge & Kegan Paul: London
SHERMAN D (1973)
'Noun verb stress alternation: an example of the lexical diffuslon of
sound change in Engllsh'
fOLA reports Second se:les 17: 46-82
```

```
                        SIVERTSEN E (1960)
    Cockney phonology
    Oslo Universi'y Press: Oslo
    SMART B H (1836)
    Walker remodelled: a new critical pronouncing dlctlonary of the Engllsh
language
(No publisher given): London
SMITH NEIL V (1989)
                                    P121. S577
The twitter machine
Basll Blackwell: London
SMITH THOMAS (1568)
Qe recta & emendatg llngus anglics serlotione, dialogus
Paris
SMITH W (ed) (1953)
A scientific study of Merseyside
University Press of Liverpool: Liverpool
STEPHENSON EDWARD (1970)
'Linguistic predictions and the waning of southern [ju] in tune, duke,
news'
American Speech 45: 297-300
STETSON R H (1951)
Motor phonetics
Nijhoff: Amsterdam
STEWART IAN (1989)
Does God play dice?: the mathematies of choos
Basil Blackwell: Oxford
STRANG B M H (1970)
                                    PE1075.S85
A history of English
Methuen: London
TAWNEY R H (1954a)
'The rise of the gentry 1558-1640'
E M Carus Wilson (ed): 173-206
TAWNEY R H (1954b)
'The rlse of the gentry: a postscript'
EM Carus Wilson (ed) 1954: 206-214
THELANDER MATS (1982)
'A qualititative approach to the quantltative data of speech varlation'
S Romaine (ed): 65-83
TOON T E (1983)
The politics of early old English sound chonge
Academic Press: New York & London
```

```
    TRUDGILL PETER (1974)
    The soclal differentiation of English in Norwich
    Cambridge University Press: Cambridge
    TRUDGILL PETER (ed) (1978)
    Sociolinguistic patterns in_British Engllsh
    Arnold: London
TRUDGILL PETER (1983)
    P40.T7
On dialect: social and geographlcal perspectives
Basil Blackwell: Oxford
TRUDGILL PETER (1990)
                                    P1711.T74
The dialects of England
Basil Blackwell: Oxford
TRUDGILL PETER (ed) (1984) P551.G1
Language in the British lsles
Cambridge University Press: Cambridge
TRUDGILL PETER & HANNAH JEAN (1985) PE2751.T7
International English
Edward Arnold: London
WALLER P J (1981)
Democracy and sectarianism; a political and secial history of civerpeal
1868-1939
University of Llverpool Press: Liverpool
WALLER ROBERT (1983)
                                    JN558
The almanac of British politics
Croome Helm: London & Canberra
WALLIS JOHN (1653)
Grammatica Lingus Anglicang
WALTERS KEITH (1988)
'Dialectology'
F Newmeyer (ed) }1988\mathrm{ vol 4: 119-139
WANG S (1969)
'Competing changes as a cause of residue'
Language 45: 9-25
WANG 5 (ed) (1977)
The lexicon in phonological change
Mouton: The Hague
WELLS J C (1982)
PE1137.
Accents of English
Camuridge Universlty Press: Cambridge
```

```
WIJK A (1966)
PE1137.W5
Rules of pronunciation for the English language
Oxford University Press: London
WRIGHTSON K (1987)
'Estates, degrees and sorts in Tudor and Stuart England'
History Today 37: 17-22
WYLD HENRY CECIL (1914)
PE\101.W8
A short history of English
Murray: London
WYLD HENRY CECIL (1920) PEI075.W9
A history of modern colloquial English
Fisher Unwin: London
WOODS A, FLETCHER P & HUGHES A (1986)
P138.5.W66
Statistics in language studies
Cambridge University Press: Cambridge
ZACHRISSON RE (1927)
PE1141. 23
The English pronunciation at Shakespeare's time
Almqvist \& Wiksell: Uppsala
ZIPF G K (1932)
Selected studies of the principle of relative frequency in language Cambridge University Press: Cambridge Massachusetts
```

