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Kentrogon's a crippled imp, uncanny, lacking kin, 
The ' stabbing seed 'a Cypris made by shrinking from her skin, - 
A Cyprus? Nay, a fiend that borrowed Cyprid feet and mask, 
To cast them off when he had plied his victim-hunting task. 

From the cover of a Nauplius, one of Sacculina's daughters, 
Is launched the Cyprid coffin-ship to break beneath the waters: 
Then Kentrogon emerges from the wreckage on the floor 
And his crafty life-line to carry him ashore. 

Through the antenna of the Cypris on the hairlet of the Crab 
His fine proboscis travels and inflicts the needful stab: 
Then, gathering all the salvage that he's rescued from the rout, 
He slips along the tunnel of his own projecting snout. 

So Kentrogon, like Charon, carries souls from light to dark, 
Himself at once both ferryman and passenger and bark, - 
A Phoenix all perverse who on his desperate day of doom 
Refanned his flame to start afresh within a living tomb. 

From Walter Garetang c. 1922. 
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The biology of Secculina carcini, a parasite on the 

common shore crab, Carcinus maenas, was studied with particular 

emphasis on larval morphology, biochemical content and energetic 

demands. The prevalence and distribution of the parasite was also 

investigated. 

The field studies carried out on the populations of 

S. carcini on C. maenas in northern France and North Wales, 

together with a review of the literature, demonstrated a 

disparate distribution. The larvae of S. carcini are 

lecithotrophic and can develop within 5 days to the cyprid and 

are capable of settlement 2 days later. The highest prevalence 

for the parasite was observed to correlate with semi-enclosed 

bodies of water. It is proposed that in this situation, with the 

short development time, the larvae are retained, thus increasing 

the probability of successful cypris settlement. Such coastal 

systems are susceptible to variable conditions, consequently 

experiments were undertaken to investigate the larval tolerance 

to temperature and salinity variations. 

A morphological study was carried out on the naupliar 

stages of S. carcinl. The typical cirripede limbs were simple and 

lacked gnathobases. There was also a vestigial ventral thoracic 

process present in the stage III and stage IV nauplius. These 

observations supported the argument that the rhizocephalan 

nauplius fits within the cirripede nauplius form. 
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The energy budget study, involved the investigation of 

ash-free dry weights per larva, respirometry for each larval 

stage and analyses of the biochemical constituents using 

colorimetric and gravimetric techniques, Finally an equation was 

developed which demonstrates the energy budget for S. carcini, 

from the beginning of larval development to settlement on the 

host and the subsequent metamorphoses to the inoculation stages. 
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CHAPTER I: LARVAL BIOLOGY STUDIES :A REVIEW 

Within the subphylum Crustacea the class Cirripedia 

comprises four orders: Thoracica; Acrothoracica; Ascothoracica 

and Rhizocephala (Barnes 1980). The thoracican order contains 

free-living and commensal barnacles with six pairs of well 

developed cirri. The mantle is usually covered with calcareous 

plates. Its three suborders - Lepadomorpha, Verrucomorpha and 

Balanomorpha, boast such well studied genera as Scalpellum, 

Verruca, Chthamalus, Balanus and Tetraclita. 

The acrothoracican order is thought to have stemmed from 

the lepadomorphs, but there is some debate (Newman 1987) that 

this order may have preceded them. Acrothoracicans are naked, 

boring barnacles with 46 pairs of cirri and a chitinous 

attachment disc. 

Both ascothoracican and rhizocephalan barnacles are naked 

and parasitic. Their inclusion in the Cirripedia sensu stricto 

has generally been accepted (Hoeg & Lätzen 1985), although Newman 

(1987), has recently queried this general acceptance. Also 

Grygier (1987), when studying antennular ontogeny of 

ascothoracid nauplii, reveals proposed homologies of antennular 

segmentation and setation in the Ascothoracica, Cirripedia and 

Facetotecta (y-larvae). However, when discussing early 

planktotrophic ascothoracid nauplii (Grygier 1990), he concludes 

that the basic ontogenic pattern in these groups is not 

identical. 
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The members of the Rhizocephala are highly modified endo- 

parasites, primarily of decapod crustaceans, tunicates and some 

cirripedes. Their external morphology is simple, with few 

distinctive characteristics. Appendages and digestive tract are 

absent and it is thought that the internal root-like absorptive 

processes may be the equivalent of a peduncle. 
ýýýýý4 f. z. ts"ý ý9ý5ý 

There are 31 genera and 231 species in this order and the 

sac-like reproductive externa does not display arthropodan 

features, such as segmentation or setae (Newman 1987). However, 

as with other Cirripedia, the reproductive apparatus and the 

nerve ganglia of rhizocephalans are located in the visceral mass 

(Day 1935, Klepal 1987). The latter lies within the mantle cavity 

and is enclosed by a flexible mantle. A mantle opening is 

present, but smaller than in non-parasitic cirripedes. 

A classification for rhizocephalans was first introduced 

by Boschma in 1928. In this series of papers (1928 a, b c& d) it 

was shown that, in order to distinguish between species, 

especially of the family Sacculinidae, the externa must be 

serially sectioned. However, once the range of host species had 

been ascertained, identification of the parasite became easier. 

Within the order Rhizocephala (Hoeg & Lätzen 1985) there 

are six families; Sylonidae; Clistosaccidae; Peltogastridae; 

Lernaeodiscidae; Sacculinidae and Chthamalophilidae. These 

families have been separated into two groups (Newman 1987) using 

the criterion that kentrogon formation (female larval inoculation 

stage) has been observed in all but the latter. 

Hoeg and Lätzen (1985) however, consider such a subdivision to be 
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premature as it is based on insufficient observations. 

Nevertheless, Peltogastridae, Lernaeodiscidae and Sacculinidae do 

seem to be more closely related. 

Sacculina carcini Thompson belongs to the family 

Sacculinidae and parasitises the common shore crab, Carcinus 

maenas (Thompson 1836). Delage (1884) carried out a comprehensive 

study on the life cycle of the parasite. He observed that the 

young parasite or interne migrans, lives within the host 

haemolymph. It absorbs nutrients from the haemolymph through its 

surface (Day 1935, Bresciani & Lätzen 1980), which later takes 

the form of a network of rootlets ramifying throughout the crab 

(Ddlage 1884). Smith (1907) observed that the central tumour 

grows down the host's intestine to the junction of the thorax and 

abdomen. As it grows the adult's organs differentiate and the 

tumour arrives at the point of evagination. A primordium, or 

rudiment of the reproductive body, breaks through the host's 

abdomen and develops into an externa, connected to the rootlet 

system via the stalk. Ddlage (1884) originally thought that the 

parasite forced its way out by compression of the crab's 

integument, with the resultant necrosis allowing evagination of 

the young externa, and Smith (1907) believed evagination only to 

occur when the host crab moulted. It was noted, however, by Day 

(1935) that during ecdysis water is imbibed to swell the new 

cuticle before it is hardened. Thus, any pressure by the internal 

parasite at this stage would simply push out the soft integument 

rather than penetrate it. During his observational study of ten 

intermoult Carcinus maenas collected from Plymouth in the Spring, 
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Day (1935) noted a "pale circular area" under the surface of the 

crab's abdomen. The following morning the chitinous integument 

above this area had fallen off, exposing a virgin externa. 

Observations of cypris settlement around the mantle 

opening of this newly emerged virgin externa were repeatedly made 

by Delage (1884), Smith (1907) and Day (1935), but the 

significance was not fully appreciated. Smith (1907) thought that 

these cyprids took no part in fertilisation although Day (1935) 

termed them complemental males. 

Veillet (1943,1945) observed larval dimorphism in the 

rhizocephalan Triangulus galatheae. He reported that the large 

cyprid developed into the adult hermaphrodite, whereas the 

smaller cyprid would function as a larval male. He also suggested 

that sex determination may occur before fertilisation of the ova. 

Although he observed no larval dimorphism in Sacculina carcini he 

did surmise that there may be two physiologically different 

cypris larvae, which would function in a similar way to those of 

T. galatheae. Ichikawa and Yanagimachi (1958) reported a marked 

size difference in the eggs and subsequent larvae of 

Peltogasterella gracilis Boschma (= Peltogasterella socialis 

Kruger c. f. Reischman 1959). On development to the cypris stage 

he noted that the penultimate segment on the antennule of the 

large cyprid was much longer than that of the smaller cyprid. 

Later experiments showed the large cyprids to be male because 

they only attached to virgin externae on the abdomen of the host 

crab. Conversely the small cyprids only attached to the base of 

plumose setae on the host carapace. For this species it was shown 
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that a mature externs only ever produced 100% single sex broods. 

Some externae were male-producing whereas others, although 

morphologically identical, were female-producing (Yanagimachi 

1961). It was reported that the female-producing externs 

possessed an extra univalent 'F' chromosome. Although all the 

eggs produced by such an externa were small (Yanagimachi 1990), 

only 50% contained the extra 'F' chromosome. These eggs, having 

been fertilized, develop into small cyprids which are capable of 

attachment and infection of the host, with the resultant externa 

being female-producing. The small eggs without the 'F' chromosome 

also result in small cyprids, capable of attachment and host 

infection. However the resulting externae would produce only 

large male eggs which develop into male cyprids that can only 

attach to a juvenile female. Consequently Yanagimachi (1990) 

commented that sex determination for Peltogasterella was due to 

egg cytoplasm rather than the 'F' chromosome. 

Size difference between male and female cyprids was thus 

established for the Peltogastridae (Yanagimachi 1961) and later 

also for the Lernaeodiscidae (Ritchie & Hoeg 1981), Sylonidae and 

Clistosaccidae (Lätzen 1981b, Hoeg 1982), However, even though 

the Sacculinidae contain the largest number of species of the six 

rhizocephalan families, it was not until 1984 that Hoeg reported 

larval size differences for Saccvlina carcini. 

The small female and larger male cyprids were observed to 

settle at the base of plumose setae and on the juvenile externae 

respectively (Hoeg 1984). Fixation would only occur after the 

cyprid had spent at least two days in the free-swimming state, 
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(Ddlage 1884, Hoeg 1984) and it was originally thought to take 

place in the dark (Smith 1907). However the latter was shown not 

to be the case (Hoeg 1984). The size of larvae was seen to vary 

between sampling periods (Hoeg 1984, Lätzen 1984, Hoeg & Lätzen 

1985). 

This seasonal size variation was investigated by Walker 

(1985), who also carried out light microscope and scanning 

electron-microscope (S. E. M. ) studies on cyprid antennular 

morphology. The males were not only larger than the females, but 

also possessed an extra, thin-walled sac, attached to the third 

antennular segment. This was termed a posterior sac and made 

identification of the sexes unequivocal. Many larval broods were 

seen to be mixed, but 100% single sex broods did occur. During 

the Autumn and Winter these would be male, whereas in the Summer 

months they were female. Walker (1987) proposed that this 

progressive changeover of the sex of larvae in a brood from the 

same externa, may be linked to the physiological state of the 

externa or due to hormonal influences from the host crab. He 

proved that it was not related to abiotic factors such as 

continuous light or temperature changes. Consequently, between 

June and September in the Plymouth area, Sacculina carcini larvae 

would be predominantly female, thus coinciding with the main 

recruiting period for young Carcinus maenas (Crothers 1967). 

Although the minimum internal phase period for this 

parasite is reported as five months (Walker 1987), it can vary 

from nine months (Day 1935, Foxon 1940) through twelve months 

(Orton 1936) and twenty - one months (Ddlage 1884) to thirty - 
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four months (LÜtzen 1984). 

At the Isefjord in Denmark, Sacculina carcini is close to 

its northern limit and Lätzen (1984) observed that temperature 

clearly regulates certain events in the parasite's life cycle. He 

reported that the interns phase, varied from 33 months 

(Isefjord), to 12 months (The Channel), to 9 months (The Irish 

Sea), to 2*6 months (The French Mediterranean Coast). He also 

observed that larvae were incapable of developing to the cypris 

stage below 6'C. Consequently the maximum emergence of virgin 

externae in Denmark was between June and July and brood release 

stopped almost completely between November and April (Lätzen 

1984). 

From observations of crabs received from Plymouth (Walker 

1985), it was noted that maximum emergence of virgin externae was 

between January and June, which coincides with a high percentage 

of males in the water column. Nevertheless, the coincidence of 

both virgin externae and male cyprids would appear possible 

throughout the year in this area, as water temperatures rarely 

drop below 6'C (Walker 1985). 

Female cypris settlement for Sacculina carcini was 

originally described by Ddlage (1884). He observed and drew 

figures of the settlement, metamorphosis and injection into the 

host with the resultant stylet or kentrogon. This work was 

followed up by Veillet (1964) and Hoeg (1985a) using light or 

electron microscopy to examine this phenomenon for other 

rhizocephalan species. 

Hoeg (1984), studied the size and settling behaviour for 
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both male and female cyprids of Sacculina carcini and by 1986 he 

had observed male cyprid metamorphosis (Hoeg pers. comm. ). 

However, it was not until 1987, after observations relating 

ultrastructure and metamorphosis, for these larvae (Hoeg 1987a), 

that he produced a detailed report of male cyprid settlement 

(Hoeg 1987b) which involved scanning electron microscopy, 

transmission electron microscopy and light microscopy. He 

concluded that the trichogon was an instar consisting of several 

cell types and surrounded by cuticle, He considered it to be the 

only truly amoeboid crustacean larva with an irregular shape and 

a pseudopodium-like extension in the direction of movement. As 

both somatic and reproductive cells were present, Hoeg termed the 

trichogon "an extremely reduced dwarf male". Only a single 

trichogon can enter and successfully occupy each receptacle (Hoeg 

1987b). Five to six days after implantation these cells are 

rearranged and spermatogenesis is initiated. Consequently 

fertilisation and embryonic development for Sacculina carcini 

were seen to take place within the mantle cavity. A review on 

barnacle males, by Klepal (1987), noted that this phenomenon, 

together with the gonochoristic state, are typical of 

rhizocephalans. 

The larvae of Sacculina carcini like those of 

Lernaeodiscus porcellanae (Hoeg & Ritchie 1987), are 

lecithotrophic, develop within five days at 20'C and are capable 

of settling several days later. The four naupliar stages barely 

increase in volume between successive moults (Walker 1988), 

whereas planktotrophic balanomorphs almost double their volume at 
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each stage (Crisp 1986), through to the sixth stage nauplius. 

However the volume reduction between nauplius IV and the cypris 

stage, for S. carcini was approximately 50% for the female but 

far less for the male. 

Knight-Jones & Waugh (1949), Stubbings (1975), Lang 

(1979), Egan & Anderson (1986), Moyse (1987) and many other 

workers have published detailed studies on the larval development 

of planktotrophic thoracican barnacles. In comparison to these 

relatively complex larval forms, the lecithotrophic thoracicans 

show a simple morphology and a reduced development, often with 

direct release as cyprids from the mantle cavity of the adult 

e. g, Ibla idiotica (Batham 1945a), Pollicipes spinosus (= 

Calantica spinosa, Foster 1978), (Batham 1945b), Tetraclita 

pacifica (Crisp 1986)' and Ibla quadrivalvis (Anderson 1987). 

Tropical thoracican species, such as Tetraclita squamosa 

rufotincta (Barnes & Achituv 1981) also exhibit these traits 

with naupliar development taking 6*8 days, whether the cultures 

are fed or starved. The large eggs of this species and Tetraclita 

pacifica develop into almost spherical stage I nauplii and are 

termed "swimming embryos" by Crisp (1986). Once again, when 

considering larval form, Crisp showed that the volume remained 

almost constant between nauplius I and nauplius VI. The trend in 

this genus is to lose the trophic function in the same way as the 

non-feeding cypris settlement phase, which is dependent upon a 

finite energy store for settlement and subsequent metamorphosis 

to the juvenile. For Tetraclita divisa, an island species, the 

naupliar phase resembles an extended embryogenesis so that larval 
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release is at the cypris stage. 

Achituv & Barnes (1978a), studied the biochemistry of 

eggs of three cirripede species. For Balanus balanoides, which is 

boreo-arctic, they deduced that the large larval size was 

probably due to the necessity to feed on large food particles 

such as cold water diatoms. They surmised that the unusually 

large egg size of T. squamosa was also due to selection for 

large particulate, non-living matter, relatively abundant at 

Elat. However, Crisp (1986) thought it more likely that this 

species did not feed at all. The clear blue waters, at Elat, are 

low in inorganic nutrients and have few microalgae. 

Crisp (1986) considered that a lecithotrophic larva would 

fail to reach sufficient size, or have enough energy reserves to 

complete successful settlement and metamorphosis, if it had 

developed from an average sized egg. However, he did concede that 

many rhizocephalans do produce numerous small eggs which develop 

into non-feeding larvae. He argued that, in this case, once the 

cyprid has found the host there is a plentiful supply of 

nutrients. 

Nevertheless, the settlement target, particularly for a 

male cyprid of Sacculina carcini, is an ephemeral one. This is 

thought to be the reason for the larger size of the male, thus 

enabling it to contain increased energy reserves for an extended 

searching period (Walker 1988). Crisp (1979) considered larval 

dispersal to be a perverse and expensive adaptation because it 

must be countered by re-aggregation so that sexual exchange may 

take place. However such isolated habitats, as the surface of 
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another animal, make this dispersal essential for survival. Also, 

whereas planktotrophs must fulfill the functions of growth and 

dispersal, lecithotrophs function purely for dispersal, including 

site selection (Crisp 1984). When reviewing the literature on 

distribution and behaviour of pelagic larvae, Young & Chia 

(1987), consider predation to be the most significant source of 

larval mortality. They also discuss larval behaviour, including 

defence mechanisms, and the ability that larvae have to regulate 

their vertical position in the water column. This enables them to 

encounter water masses moving in different directions and at 

different velocities. Cronin & Forward (1986) note the 

adaptational significance of vertical migration for the larvae of 

the estuarine mud crab, Rhithropanopeus harrisli. These larvae 

are able to remain in dimly lit regions of the water column, 

where they can feed and the risk of predation is reduced. They 

also ride the residual non-tidal currents so that they are 

retained in the upper reaches of the estuary. Field data (Cronin 

1982) showed that 25% of R. harrisii larvae reached the post- 

larval stage, while remaining in the region where they were first 

released. These findings support the view that vertical migration 

must contribute substantially to survival. This view of dispersal 

differs from that held by DeWolf (1973); he reported a direct 

correlation between the number of cypris larvae of Balanus 

crenatus, Balanus improvisus and Elminius modestus in the 

Western Wadden Sea, and the amount of suspended matter in the 

water column. Consequently, he deduced that dispersal was solely 

due to water currents. 
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Strathmann (1987) notes that the adopted larval strategy 

is a compromise between parental investment, larval period and 

mortality. Todd & Doyle (1981), when considering a settlement 

timing hypothesis for nudibranch molluscs, also include the 

parameter of dispersal requirement. They suggest that the 

strategy selected for, would be that which appropriately bridges 

the period between the optimal time to spawn and settle. 

Schelterna (1986) however, when discussing models that predict 

larval dispersal, argues that natural selection eliminates the 

most maladapted, rather than "chooses" the most adapted 

individuals. As Thorson (1950) noted, 70% of all sediment- 

dwelling, temperate and tropical coastal invertebrates have a 

planktonic development. Scheltema (1986) points out that this 

infers a planktonic development must therefore be "good enough" 

for this majority. The other 30%, probably could not return to 

that mode of development (Strathmann 1978b), remaining captive of 

their past evolution. 

Strathmann (1987) argues that the differences between 

non-feeding and feeding larvae merely result in a greater 

dispersal for the latter. As Crisp (1984) states, even a single 

tidal excursion can carry a larva of short planktonic existence, 

a useful distance, with extended drift subjecting the larva to a 

higher risk of mortality from predation or starvation. Strathmann 

(1987) suggests that the primary function of larval feeding is 

growth. This allows a decrease in parental investment per 

offspring and an increased size, or increased energy reserve, at 

metamorphosis. He comments on the conservative nature of feeding 
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mechanisms, with similar structures occurring across several 

related phyla. However Strathmann (1986) notes that the 

transition between types of larval development are restricted 

because of a bias against recovery of a feeding larval stage. 

In recent years, small scale biochemical techniques have 

been successfully developed (Holland & Gabbott 1971, Holland & 

Hannant 1973) and healthy larvae can now be produced in large 

numbers under laboratory conditions. As a result several studies 

have been carried out on the energy budgets for invertebrate eggs 

and pelagic larvae e. g., Achituv & Barnes (1976 & 1978b), Lucas 

et al (1979), Lucas (1980), Achituv (1981), Achituv & Wortzlavski 

(1983), Dawirs (1983), Mann & Gallager (1985), Harms (1987) and 

Lucas & Crisp (1987). The eggs of all invertebrate larvae have a 

high lipid content even though, as in the case of some bivalves, 

glycogen is the primary energy source for the adult (Crisp 1984). 

When considering larval energy metabolism, lipid is far more 

important than protein, with carbohydrate being utilised at a 

fairly insignificant level. Lipid is the most energy rich of all 

nutrients with a high calorific content per unit weight and 

volume, consequently taking up comparatively little storage space 

(Crisp 1976). It has a lower density than water, thus providing 

buoyancy, which is especially beneficial to shelled larvae. In 

Holland's (1987) review of lipid biochemistry in barnacles, he 

largely deals with planktotrophic larvae and their adults, but, 

as the eggs, stage one larvae and cyprids of these species are 

all non-feeding, the relevance to lecithotrophs is clear. At the 

cellular level, lipids are involved in cold tolerance, cell 
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membrane structure, active transport, oxidative phosphorylation, 

cell organisation and cell replication and as a local hormone. 

Holland (1987) discusses lipid composition during egg development 

and points out that the fatty acids present are similar to those 

of other marine animals with high levels of long chain 20: 503 and 

22: 6m3 polyunsaturated fatty acids. For Balanus balanoides, 

however, Barnes (1965) discovered that protein catabolism was the 

main fuel for embryogenesis and this evidence has subsequently 

been supported by Lucas and Crisp (1987). They concluded that, 

with the excretion of ammonia, adequate flushing was essential. 

Therefore, animals living higher up the shore may use lipid in 

preference to protein as an energy source. Lucas (1980) however, 

noted an enrichment in the two main energy reserves, protein and 

neutral lipid, during the last month before egg maturity. He also 

observed variation in the neutral lipid content from one year to 

the next, compared to a very consistent phospholipid content. By 

starving the adult Balanus balanoides, which prolongs retention 

of the eggs (Crisp & Spencer 1958), substantial reduction of 

their neutral lipid content was recorded. This demonstrated the 

importance of neutral lipid as an energy reserve. 

Holland and Walker (1975), kept free-swimming Balanus 

balanoides cyprids at 8'C for eight weeks in the laboratory and 

prevented them from settling. At the end of this time these 

lecithotrophic larvae had utilised 90% of their neutral lipid 

reserves for maintenance. Changes in minor biochemical components 

of cirripede eggs for several species have been studied by Barnes 

(1965) and Achituv and Barnes (1978a and 1978b). However, Achituv 
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gt al (1980) noted gross biochemical changes during the 

transition from Stage I to Stage II nauplius for Balanus 

balanoides and in 1981 he investigated Tetraclita squamosa 

rufotincta larvae. Although these larvae were not fed, neither 

were the conditions aseptic, therefore it was possible that some 

bacteria and protozoans were present. A decrease in larval weight 

was observed with initial loss of lipids and no loss during 

naupliar development. At this stage a small amount of protein was 

utilised and at their metamorphosis to the cyprid there was a 

marked decrease. Knight-Jones and Crisp (1953) had shown that 

protein can provide the glucose and nitrogen necessary for the 

formation of chitin. Consequently it was surmised that this 

protein decrease was associated with cypris chitin formation. The 

carbohydrate levels were very low throughout, and the sample for 

analysis of lipid content was taken before they had expended much 

energy swimming, so levels were artificially high. Thus, protein 

was seen to contribute approximately 80% of the total energy 

utilised by the nauplius for maintenance and development. This 

use of protein as a major reserve, for these larvae, living in 

waters which are low in nutrients, would possibly account for 

their unusually large size. 

The methods used by these researchers to determine energy 

utilisation are related to oxygen uptake, assuming that 

respiration is fully aerobic. The two extremes under 

consideration are complete repose (Standard rate) or maximum 

activity (Active rate). Within this range, typical metabolic 

rates, including the cost of swimming activity, may be found 
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(Newell 1979). These have been termed 'routine rates' (and are 

similar to standard rates) for zooplankton organisms (Vlymen 

1970). Thus, energy loss by respiration can be compared with 

biochemically determined losses. Crisp (1984) correlated the 

figures obtained by several workers, for metabolic rates of 

lecithotrophic or starved invertebrate larvae (see Crisp 1984, 

Table 5. ) He concluded that most active larvae consume 2* 10 

ml. 02h. -'g. -' dry weight. Balanus balanoides cyprids however 

showed a consistently recurring value, an order of magnitude 

lower, being approximately 0.5m1.02h-'g-' dry weight in three 

independent studies (Zeuthen 1947, Holland & Walker 1975, Lucas 

et al 1979). This unusually low metabolic rate lengthens the 

survival time in the laboratory and, presumably also in nature. 

The dramatic increase in metabolic rate following cypris 

settlement occurs during metamorphosis and the speed of the 

latter can be governed by oxygen availability of the surrounding 

medium (Lucas et gl 1979). Consequently it is important when 

considering an energy budget for larval development of a 

particular species, to take into account the physiological and 

ecological conditions under which the larvae exist. Dawirs (1983) 

and Harms (1987) carried out studies for the larvae of Carcinus 

maenas and Elminius modest us respectively. Measurements for all 

stages were taken at three different temperatures and, as both 

species are planktotrophic, Dawirs (1983) also considered starved 

zoea. In this case he concluded that an observed dry weight gain 

of 20% throughout the first day was caused by inorganic salts 

entering the organism after the moult of the pre-zoea. The dry 
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weight then decreased as starvation continued. His observations 

showed an approximate energy loss of 657 occurring during the 

first four days and this remained constant thereafter if 

starvation continued. When considering energetics for crustaceans 

the state of the moult cycle is also relevant, as Hagerman (1976) 

noted whilst studying Crengon vulgaris. During late pro-ecdysis 

the increase in oxygen uptake exceeded the standard rate by 24 

times, possibly due to energy needed for regulation of physical 

processes within. 

For Elminius modestes (Harms 1987), the dry weight, 

elemental composition (C, H, N) and energy content were all at 

their highest values at 18'C and the lowest biomass loss by 

exuviae was also found at this temperature. During larval 

development the energy loss due to investment in growth was found 

to be much greater than that for metabolism. Thus, it was deduced 

that a higher percentage of accumulated energy was converted into 

growth of the larvae at 18'C compared to that at 12' or 240C. 

Planktotrophic larvae have to endure variable food 

availability and the consequent threat of short-term starvation, 

but the larvae of Sacculina carcini are lecithotrophic. Although 

they have their own energy resource it is finite and therefore 

the length of pelagic life is limited. Recent studies however, 

have been carried out on the uptake of dissolved organic material 

from seawater, involving mainly molluscan and echinoderm eggs and 

larvae (Manahan 1983,1989; Manahan et . 1989; Jaeckle & Manahan 

1989a, 1989b, 1989c). Manahan (1983) observed the uptake of 

dissolved glycine, following egg fertilization in Crassostrea 
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gigas and Jaeckle & Manahan (1989b) detected an energy imbalance 

and weight increase, during the development of the lecithotrophic 

molluscan larvae of Haliotis rufescens. It had previously been 

shown (Jaeckle & Manahan 1989a) that H. rufescens can take up and 

metabolise dissolved free amino acids from seawater. Nevertheless 

Shilling & Manahan (pers. comm. ), noted that the crustacean 

Artemia sauna was unable to utilise this resource. 
(ais-p 

seesiepicvs RT5ý 

Not only do the larvae of Sacculina carcini have to find 

the ephemeral settlement target, but also the conditions to which 

they are subjected, in different habitats, can be extreme. 

Pechenik (1987) reviewed the literature on the influence of 

environmental factors on larval survival and development. He 

commented that changes in conditions will alter the rate of 

utilisation of finite energy reserves for lecithotrophs. For 

planktotrophs, there would be an increase in length of time spent 

in the plankton. He notes that temperature has a greater effect 

than salinity for example, but often, variable factors interact 

making the overall effect more difficult to assess. LUtzen 

(1984), working at the Isefjord, Denmark, noted salinity varying 

from 18L to 21Z and the temperature range was 4'C 18'C. Bourdon 

(1963) found Sacculina carcini on three species of crab at 

Roscoff. Two of these host species lived sublittorally, thus 

exposing the parasite to full sea water salinity of 34%. This is 

also the case for the sublittoral population at Plymouth where 

surface water temperatures vary between 6'C and 16'C (Walker 

1985). 

In 1959, Rasmussen, also working at Isefjord, noted that 
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sacculinised male and female Carcinus maenas bearing mature 

externae migrate into deep water where they remain for up to one 

year. In the same way, berried females leave the littoral zone in 

early Summer for the deeper, more saline offshore environment. 

These normal crabs remain until their larvae hatch, then return 

to moult and copulate with the males. The egg cleaning behaviour 

carried out by such berried females, is also mimicked by 

parasitised crabs and periodic flapping of the abdomen was seen 

to increase when oxygen tension of the water was low (Rasmussen 

1959). This response was not a simple tactile one as the externa 

had to be living, thus it was probably due to feminisation of the 

host. Such observations were also made by Veillet (1945) and by 

Bishop and Cannon (1979) studying sacculinised Portunus (_ 

Liocarcinus) species. Rainbow (1979), noted increased infection 

levels, relative to habitat depth, among Carcinus maenas in the 

Pembroke area. The young intertidal crabs were 16% infected: at 3 

metres subtidally, infection was 36.2% and at 10 * 15 metres 

there were older crabs 80.4% infected. Sloan (1985), studying the 

infection of Lithodes aequispina by the rhizocephalan 

Briarosaccus callosus concluded that the levels of infection were 

related to a combination of physical and biological factors. 

Local topography may restrict crab population distribution, 

together with modified behaviour of parasitised hosts. Unlike the 

latter case many reseachers have observed that parasitism of 

C. maenas by S. carcini also prevents the host's ability to moult, 

although Lätzen (1981a) has recorded scarred crabs which do 

moult. Veillet (1945) compared parasitised with non-parasitised 
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C. maenas stating that there was a reduction in relative moult 

increment from 30% to 10% over six months during interna 

development. At this stage the male is feminised by allometric 

growth of the abdomen, thus making young parasitised males 

recognizable before the externs is visible. Once the externa has 

emerged parasitic anecdysis follows. These effects on the 

secondary sexual characters of the host were assessed by Reinhard 

(1956) to possibly result from destruction of the host endocrine 

glands by the parasite. 

A literature survey of the effects that crustacean 

parasitic castrators have on the growth of their crustacean hosts 

was carried out by O'Brien and Van Wyck (1985). They considered 

hormonal and nutritional drain to influence host growth. As there 

was minimal data available comparing parasitised to non- 

parasitised host size they suggested a more relevant parameter. 

By dividing the number of parasitised hosts by the total number 

of hosts within a size class, this would determine parasite 

prevelance as a function of host size. The increase, decrease, or 

constancy of size prevalence would infer whether different 

parasites were affecting host growth in different ways. However, 

size prevalence curves would also reflect dynamic equilibrium 

processes simultaneously occurring in the population, e. g. 

recruitment, infection rate, mortality and differential growth. 

Thus, backup data by measurement would be essential to produce 

meaningful results. Nevertheless, they do infer that for 

Sacculins carcini, smaller adult host size classes harbour the 

highest prevalence of parasites. 
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The energetic cost of any rhizocephalan parasite-host 

relationship is not known, but work on parasitism of the bopyrid 

Palaeomonetes pandalicola on the grass shrimp Palaeomonetes pugio 

was carried out by Walker (1977) and also by Anderson (1977). 

Walker found that 25% of the host haemolymph volume went daily to 

the parasite and Anderson assessed that 10% of the daily energy 

intake for the host was lost to the parasite. 

O'Brien and Van Wyck (1985) discussed the enhancement of 

somatic growth by re-apportionment of host energy reserves due to 

the presence of a parasitic castrator. However, in those 

rhizocephalan families studied there was no significant 

difference between parasitised and non-parasitised host size 

(Lernaeodiscidae - Brinkman (1936); Clistosaccidae - Hoeg 

(1982); Sylonidae - Lätzen (1981b); Thompsonidae - Potts (1915), 

Reverbel (1942), Phang (1975). 

Considerable work has also been carried out on hormonal 

activity. Andrieux et al (1981), noted that "parasitised" 

haemolymph injected into non - parasitised crabs increased the 

moult cycle length. Herberts (1982) discovered two unidentified 

protein factors in the haemolymph of sacculinised Csrcinus maenas 

that were not present in the non-parasitised crab. Consequently 

it is possible that moulting ceases due to hormonal input from 

Sacculina carcini. Alternatively the increase in rate of energy 

utilisation linked to the rhizocephalan reproductive effort may 

affect the duration of the moult cycle. Haematophagy would 

lengthen the time required to absorb sufficient energy reserves 

before ecdysis was possible. Ecdysis is also a hazardous period. 
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The host is more susceptible to predation or may not withdraw 

successfully and host death would lead to the parasite's death as 

rhizocephalans are unable to abandon and re-infect. 

From the evolutionary standpoint it would seem that 

greater host size would increase survivorship and improve 

intraspecific competitiveness for food and space. Normally it 

would also increase host fecundity but not in this case. However 

the reduced size of sacculinised C. maenas may increase parasitic 

fecundity by reducing generation time. Cole (1954) thought that 

selection should push the time of the first larval release to the 

minimum physical host size. O'Brien (1984) studying Pugettia 

producta parasitised by Heterosaccus californicus noted that this 

may be the case because there would be fewer instars before 

allometric growth began. 

Some early work was carried out on the fat content of 

crabs infected by rhizocephalan parasites but the evidence tends 

to be conflicting, largely because the parameters measured were 

different and therefore not truly comparable (Smith 1911, Robson 

1911, Fischer 1928, Dornesco & Fisher-Piette 1931 & Reinhard 

1944). 

Thus it can be seen that when determining the total 

energetic strategy of parasitism by Sacculina carclni on Carcinus 

maenas, many factors are brought into play. For the study of the 

larval energy budget a proportion of these must be considered. 

When reproductive energy is low the number of propagules, rather 

than the size or quality tend to be reduced (Crisp 1984). The 

size and composition of each individual reproductive body 
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produced by a species is determined within strict limits and 

fitness depends on correct investment with excess being wasteful 

and too little leading to extinction. 
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CHAPTER II : FIELD STUDIES ON THE DISTRIBUTION OF 

SACCULINA CARCINI ON CARCINUS MAE'NAS 

Parasitism of Carcinus maenas by Sacculina carcini has 

been reported by different authors In several geographical areas 

(see Table 1). Unfortunately methods of capture, times of 

sampling, intervals between sample periods and methods of 

recording the resultant catch, often vary. This makes any 

correlation of results from the literature very difficult. 

Consequently, there are many sites of known parasitism but little 

is known of the temporal or spatial variation that may occur 

within the populations. 

In May 1988, the opportunity arose to visit the Station 

Biologique in Roscoff, northern France. These are the 

laboratories where Yves Delage produced his works (1884) on 

Sacculina carcini and where the parasite is said to be abundant 

locally on Carcinus maenas (Jens Hoeg, pers. comm. ). An initial 

survey was carried out within the limited time available and in 

May 1989, a return visit allowed a more extensive survey to be 

undertaken. 

In November 1989, data were received from M. A. F. F. , 

Conwy (Brian Edwards, pers. comm. ) regarding sacculinised 

Carcinus maenas at Tal-y-foel, on the Menai Strait. As a result 

of this information, an investigative survey was carried out in 

the area. Observations obtained from this field work and, from 

experiments to assess the temperature and salinity tolerance of 
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Figure I. 

A 
68 cm. 

20 cm. == =l 7cm. 
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ce 
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Figure 1. Diagrams to show the sampling gear used in this study- 

A. Netlon crab trap - 5. Tn. mesh. 

B. Beam trawl fron (i) dorsal (it) frontal and 
(iii) lateral views (after Yee Ting 1990). 

b= beam; br = bridle; ce = cod end: f= flap; 
fr &c= foot rope & chain: h= hooks; 
im = inner mesh (5 mm. diem. ); am = outer mesh 
(20 mm. diaa.. ); s= skids; tc = tickler chain 
(30 mm. diam); tr = towing rope. 



the parasite larvae, together with information gleaned from the 

literature, have combined to enable a discussion on the 

distribution of Sacculina carcini on Carcinus maenas. 

MATERIALS AND METHODS 

Common shore crabs (Carcinus maenas) were captured by 

three methods; hand collection - over a 30 minute period; beam 

trawl - for thirty minute periods and, crab traps - left over two 

tidal cycles (see Figure 1. The remaining figures, tables and maps 

are at the end of the text in this chapter. ). Traps were baited 

with mackerel, octopus or horse mackerel. Carapace width was 

measured for the captured crabs and they were also sexed. The 

presence or absence of S. carcini as a mature externs, virgin 

externa or a scar, was noted for each crab. The initial survey, 

using traps and hand collection, was carried out in Roscoff, 

Brittany, northern France in May 1988 and took place over three 

days, 10th 12th May. Two traps were laid and 30 minute hand 

collections made, on two occasions and at two sites (Map 1& 

Table 2). In the aquarium of the Station Biologique, Roscoff, a 

sample of shore crabs was held. These crabs had been trawled, the 

previous week, from the littoral zone during high water (Site 3, 

Map D. The percentage of parasite incidence and the state of the 

parasite were recorded. 

The following year, in May 1989, the sampling period 

lasted seven days, from the 9th * 15th May inclusive and covered 
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six sites, from Roscoff harbour 

2). At each site 30 minute hand 

baited traps were left over two 

were measured and sexed and the 

(Table 3). Once again, a sample 

littoral zone during high water 

the aquarium. These crabs were 

the parasite recorded. 

In order to investigate 

westwards to Porz ar Street (Map 

collections were made and two 

tidal cycles. The captured crabs 

state of the parasite noted 

of shore crabs, trawled from the 

(Site 3, Map 2) was available in 

measured, sexed and the state of 

information received from 

M. A. F. F., Conwy, common shore crabs were hand collected, trapped 

and trawled along the Menai Strait, from November 1989 to 

February 1990 (Map 3, Table 4). During this period, catches of 

crabs, collected locally for two other independent surveys, were 

also monitored (Table 5). 

From February 1988 to February 1990 experiments were 

carried out to monitor the development of male and female 

S. carcini larvae at low temperatures. The larvae were collected 

from parasitised Carcinus maenas maintained at 18'C (see Walker 

1987). Approximately 300 larvae were pipetted into two, 

sterilised 500 ml. glass beakers, containing U. V. -irradiated fine 

filtered seawater and placed at room temperature. The mouth of 

each beaker was covered with a piece of card to avoid air-borne 

contamination and minimise evaporation. These beakers were used 

as the control for the experiment. In the same way, approximately 

200 larvae, were pipetted into two sterilised 500 ml. glass 

beakers full of U. V. -irradiated fine filtered sea water and 

placed in a water bath at the required temperature. Compressed 
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air was bubbled through the water in each beaker. The larvae were 

monitored regularly, using a Wild M5-97410 binocular microscope 

and any changes in the stage of development were noted. Samples 

of larvae were taken off daily and viewed under a Leitz dialux 

microscope, to measure them and verify their developmental stage 

by measurement. When observations under the low power microscope 

showed no change in stage, samples of larvae were not taken 

daily, to minimise contamination. Relevant photographs of larvae 

were taken with a Leitz Orthoplan photo microscope and cyprids 

from the control group were measured and sexed (Walker 1987). 

To assess the salinity tolerance of the larvae, seawater 

samples of different concentrations, ranging from 17% to 32X, 

were made up, using U. V. -irradiated fine filtered seawater and 

distilled deionised water, and the solutions were placed in 

sterilised 200 ml. glass beakers. The salinities were measured 

using an American Optical Corporation hand refractometer. 

Initially, the larvae were acclimated to reduced salinities (see 

acclimation times on Table 8) and two hundred larvae were 

pipetted into each beaker. The beakers were then covered and kept 

at room temperature. Daily room temperatures were recorded, 

together with larval mortality, activity and developmental stage. 

The control group was maintained as previously described in 

500 ml. glass beakers, and the cyprids measured and sexed (see 

Walker 1987). 
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RESULTS 

The data collected in Roscoff in 1988 and 1989 are given 

in Map 1, Table 2 and Map 2, Table 3, respectively. Figure 2 

shows the overall percentages of parasitised crabs captured at 

each site by the two methods of hand collection and trapping, 

during 1988 and 1989 combined. Figure 4 gives the total number of 

sacculinised crabs which were retained at the end of the sampling 

period in 1988. A size frequency distribution for crabs trawled 

at Roscoff in 1989 is shown on Figure 3. 

Results from the local survey along the Menai Strait are 

given on Map 3, Table 4 and results of the crabs examined from 

the other two independent surveys are in Table 5. Information 

received from M. A. F. F. Conwy is shown on Figures 5 and 6. 

Results from the temperature experiments are given in 

Tables 6&7. The acclimation times used to place the larvae at 

different salinities are shown on Table 8 and the results for the 

salinity experiments with male and female larvae are given in 

Tables 9& 10. 

DISCUSSION 

During the initial survey at Roscoff in May 1988, it 

immediately became evident that the rate of infection recorded 

for S. carcini on Carcinus maenas related strongly to the method 

of capture used (Table 2). A particularly high infection rate of 
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68% was observed from one hand collection that year in Roscoff 

harbour (Site 1). The area next to the harbour wall, adjacent to 

this sampling site, was dredged in the autumn of 1988 to provide 

fishing boats with a suitable channel. Such dredging activity did 

not markedly affect the population of parasitised crabs as the 

average infection rates, for both years at Sites 1&2 were 

approximately 60% * 50% using hand collection, compared with 10% 

6% using traps. On two occasions the traps were baited with 

octopus, as horse mackerel was not available. Both times this 

resulted in a poor catch (Site It Table 2& Site 1, Table 3). The 

trawled crabs, which were examined from Site 3, showed a 

consistent rate of approximately 6% parasitism in both 1988 and 

1989. The infection rates recorded at Sites 4 to 8, going 

westwards along the Brittany coast, dropped dramatically within a 

25 kilometre range. Nevertheless the different percentages 

recorded at each site, once again reflect the method of capture 

used, with a far higher rate of parasitism in the hand collected 

samples (Figure 2). This was not the case at Site 8, where 

parasitism was found to be less than 2%, using both methods. At 

Site 7, only two crabs were caught in the trap. This was probably 

because it was not sufficiently weighted down and consequently 

moved too much to be effective. It should be noted here that no 

berried crabs were captured in the traps, whereas, amongst the 

252 female crabs caught by the two other methods in May 1989, 

approximately 12% were berried. Only two of all the sacculinised 

crabs studied showed double infections (i. e. two externae). In 

1988 13% of the crabs with mature externae had not released their 
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first brood of larvae but the number of virgin externae bearing 

male cyprids was not noted. However, in 1989,30% of the mature 

externae had not released a brood and out of the 13 virgin 

externae observed, 7 had cyprids around the mantle aperture. 

Thus, of all the externae observed in 1989,47% were mature, 38% 

were immature (i. e. had not released a brood, or bore male 

cyprids), and 15% were virgin. Hoeg (pers. comm. ) collected 

Carcinus maenas bearing S. carcini at Pte. de Perharidi (Map 1?, 

west of Roscoff, in May to June, and again in September of 1986. 

In the May to June period he observed 37% were mature externae, 

19% were immature externae and 44% were virgin externae. These 

figures changed to 92%, 7% and 1% respectively for the September 

period. The apparent fall in mean annual sea temperature at 

Roscoff, since 1970, remained during 1983-1987 (Dauvin et ,. 

1989). However, the more rapid maturation of externae in May 1989 

may be due to increased temperatures resulting from the mild 

winters and warm summers of 1987 and 1988. 

The crabs which were trawled at Roscoff in 1989, were 

approximately 60% male and many of the females had recently 

released their eggs. No berried females were captured. The size 

frequency distribution is shown on Figure 3 with most crabs 

measuring between 40 and 70 mm. carapace width. The 11 

parasitised crabs ranged between 43 and 67 mm. carapace width, 

From Figure 4, it can be seen that the-majority of parasitised 

crabs, collected in 1988, ranged between 20 mm. and 45 mm. 

carapace width. During high water, the small crabs are more 

susceptible to predation by large crabs which have migrated up 
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the shore to feed (Naylor 1962). Consequently, during this 

period, many of the smaller crabs, which are more heavily 

parasitised, and therefore likely to adopt the "nursing" 

behaviour of berried females (Rasmussen 1959), may shelter 

beneath rocks in the intertidal and in the deeper sublittoral 

zones. These are possible reasons for the very low percentage 

parasitism recorded for the trawled crabs in 1988 and 1989 at 

Roscoff. 

The data collected along the Menai Strait in North Wales 

showed Sacculina carcini to be present on Carcinvs maenas at only 

two of the sites visited (Sites 6&7, Map 3). The infection rate 

observed at both these sites was less than 1%. One male with a 

virgin externs and one female with a mature externa were noted at 

Site 6, whereas the infected crab at Site 7 was a scarred female 

with live rootlets within. All three animals were captured by 

traps. The figures produced by M. A. F. F. for 1975 * 1977 at Site 6 

gave a maximum infection rate of nearly 6% (Figure 5). They used 

a beam trawl of the same dimensions as that used in the present 

study, towed along the same sublittoral area for two hours either 

side of low water. The other method of capture employed in the 22 

month study was that of funnel traps, set at low water neaps and 

fishing on the ebb tide. Recognition of the parasite was marked 

by the presence of an externs and over the first two years a 

pattern emerged showing the main incidence peak to be in August 

with a smaller peak earlier in the spring. It can also be seen 

from Figure 5, that the numbers of parasitised crabs captured by 

traps were consistently fewer than those captured by the beam 
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trawl. Once again this showed the method of capture to be an 

important consideration. 

In the Menal Strait the megalopa larvae settle out of the 

plankton and develop to first crab stage by June. It would appear 

that the megalopa is too efficient in its cleaning capabilities 

to enable S. carcini cyprids to settle successfully anywhere on 

its surface (Walker, pers. comm. ). However this is not the case 

for the first stage crab which may become infected from June 

onward, throughout the summer, with the resultant virgin externa 

emerging the following spring (Liftzen 1981a). At this time of the 

year, male larvae will predominate in the broods of Sacculina 

carcini which are released into the plankton (Walker 1987). Once 

the virgin externae have been infected by male cyprids, the 

development of the parasite may cause the host to migrate to the 

deeper sublittoral zone, with the normal berried females 

(Rasmussen 1959) and may account for the trough shown on Figure 5 

in March and April. The decrease in the number of externae 

recorded in September to November may illustrate the main period 

when externae which have survived the previous winter, or 

winters, finally drop off their host. 

During the period of study at Tal-y-foel the overall 

percentage of crabs parasitised by S. carcini decreased. Within 

the Menai Strait there is a residual south-westerly flow of water 

(Simpson gt aß, 1971). Although the decrease in parasitism may 

have continued in this area, it was thought that there may be 

evidence of S. carcini on C. maenas at Site 8 (see Map 3). However, 

this was not the case as over 2,000 crabs were examined from this 
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site alone and no signs of parasitism were observed. It is 

possible that the main parasitised crab population occurs outside 

the Menai Strait. Perhaps an estuary such as Maltraeth (see Map 

3) would be a better site for retention of larvae and consequent 

infection. Unfortunately there was insufficient time to carry out 

a survey in this area. 

From experiments undertaken in the laboratory to monitor 

the temperature and salinity tolerance of S. carcini larvae, it 

became clear that both males and females could tolerate very low 

temperatures. When male larvae were transferred directly from a 

system at 18'C to one at 2'C they survived for 25 days but did 

not develop beyond stage II. Most broods of S. carcini larvae 

consist of a high proportion of stage II's on release. When the 

system was maintained at 5.5'C t 0.5'C, the female and male 

larvae survived for 44 days and 35 days respectively. Once again 

they did not develop beyond stage II. The main problem when 

keeping larvae in a beaker for any length of time, at 

temperatures greater than 5'C, was due to contamination by 

protozoa. Although the beakers were sterilised before use, 

cessation of an experiment was usually due to such contamination 

and not because the larvae reached the limit of their energy 

resources. Nevertheless, even if these larvae could survive for 

longer periods at low temperatures in the wild, it is not known 

whether they would have sufficient energy reserves to settle and 

metamorphose successfully (see Lucas et x,,, 1979 for Balanus 

balanoides). From these experiments it appeared that male larvae 

could develop to cyprids within 16 days at 7'C - 8'C (Table 6), 
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whereas females developed within 17 days at 8'C - 9'C (Table 7). 

These were the lowest temperatures at which these larvae 

completed development. The control group, which were kept at a 

room temperature of 17.0'C ± 2.09C, developed to cyprids within 6 

days. Activity of the larvae, at the lower temperatures, 

consisted of the usual bursts of swimming but with longer periods 

spent resting on the bottom of the beaker. Contamination by 

protozoa, with the consequent attack on larval limbs in 

particular, resulted in reduced larval movement and appeared to 

lessen larval capability to moult successfully. 

When the experiments on larval salinity tolerance were 

carried out, it was necessary to acclimate the larvae gradually 

to decreasing salinities (Table 8). The lowest level tested was 

at 17L and after 6 days, the control group, at 32L, developed to 

cyprids with normal swimming activity and only a 3% mortality 

rate. At 17L, there was a 13% mortality rate, over the same 

period of time. However the activity was greatly reduced, the 

larvae merely twitching their limbs in short bursts. Such low 

activity promoted protozoan contamination and by Day 6 they were 

still at stage II. 

Development to cyprids was achieved within 6 days at 227. 

for female larvae (Table 9) and within 9 days at 21X. for males 

(Table 10). In both cases the swimming activity of the nauplii 

was greatly reduced and consequently their ability to moult 

successfully was restricted. The stage III and stage IV cuticles 

together with developing cyprid, were visible inside the stage II 

carapace. Once the cyprid was fully developed, its greater bursts 
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of swimming activity, allowed it to free itself from the other 

cuticles and continue normal activity at these salinities. 

A third experiment with male larvae was carried out at 

17.5'C ± 0.5'C. Those larvae at 18X and 19L developed to stage 

III by Day 4 but, partially due to low activity, they were 

incapable of moulting properly and remained within the stage II 

cuticle. Many larvae were seen to lose body fluid through their 

frontal horns at these low salinities, by Day 6 they were heavily 

contaminated with protozoa and by Day 8 they were all dead. The 

control group however, at 327., reached the cypris stage by Day 6. 

From these results it appeared that there is little 

difference between the temperature and salinity tolerances of 

male and female 5'. carcini larvae. A greater capability to reach 

the cypris stage at low temperatures would enhance the chances of 

successful settlement for male larvae, the majority of which are 

released over the winter months (Walker 1987). The cut-off point, 

restricting complete larval development, was seen to be 

marginally lower for males than females. The male larvae which 

developed to stage III by Day 10 at 7'0'C ± 0"25'C, were still at 

stage III by Day 21. This experiment had to be stopped because 

the dip-cooler broke down. However, if it had continued and the 

larvae had reached the cypris stage, it would have been 

interesting to observe whether they could achieve settlement on a 

virgin externe and the subsequent metamorphosis. 

Reduced salinities did extend the larval developmental 

period. However, the reduced larval activity and consequent 

protozoan contamination observed in the laboratory situation. 
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would not be the case in the wild, where larvae would be 

subjected to infinite water amassess. Nevertheless, it is 

uncertain whether they could maintain their position in the water 

column. 

Hoeg and Lätzen (1985), mapped out the distribution of 

S. carcini from the west coast of Sweden down to northern Spain 

including the patchy distribution around the British Isles, the 

Mediterranean coast of France, the northern Adriatic and the 

Black Sea. The parasite was also introduced to Burmese waters by 

Boschma in 1972. Not surprisingly, the clearest records are in 

areas close to marine stations. However, in reviewing the 

literature it appears that parasite distribution is not 

continuous and that certain conditions encourage parasite 

establishment and maintainence. 

The larvae of S. carcini develop to cyprids within five 

days at 18.0'C and are competent to settle three days later (Hoeg 

1991). This rapid lecithotrophic development seems to thrive 

under conditions where the ambient temperature is c. 18"0'C, and 

both the larvae and their prospective hosts are not widely 

distributed. This is particularly important for the male cyprids 

seeking ephemeral virgin externae. Such conditions result in very 

high infection rates. Veillet (1945), studied S. carcini on 

Carcinus maenas in L'Etang de Thau, a lagoon connected to the 

Mediterranean sea by a series of canals. Temperatures within the 

lagoon were seen to drop to 5-0'C * O"0'C in the winter but 

minimum open sea temperature was 12.0'C. Salinity varied greatly, 

depending on precipitation and consequent land run-off, but was 
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generally lower than full strength seawater. In this area, the 

larvae of C. maenas settle out of the plankton by April or May, 

they then remain in the shallow intertidal becoming sexually 

mature by July to August and vitellogenesis commences in October. 

To avoid low salinity conditions, under which eggs may develop 

abnormally (Broekhuysen 1936), berried females and those crabs 

which are parasitised, migrate towards 'the sea, entering the 

canal system at the end of November. Only males, a few non- 

ovigerous females and the non-parasitised crabs, remain in the 

deep channels of the lagoon. At the end of winter, warm seawater 

rushes into the canals and the females and parasitised crabs 

return to the lagoon. Under these conditions, cyprids were found 

in the plankton throughout the year and crabs were infected at 

all stages of development. Parasite prevalence (i. e. the 

percentage of the total number of crabs examined which were 

parasitised - Margolis 9-t x, 1982) was regularly recorded as 70% 

o 90% within the lagoon. Such an enclosed system, with crabs able 

to migrate to waters of tolerable temperature and salinity, must 

enhance the persistence of the parasite. 

On the west coast of Brittany, Bourdon (1960), reported 

Sacculina carcini on Carcinus maenas in the Baie de Quiberon. 

This is an area of coastline partially enclosed by a peninsula 

and consisting of many smaller bays and estuaries. St. Julien is 

a site sheltered by the peninsula and the incidence of parasitism 

observed here was greater than 507.. Push nets were used to 

capture the crabs studied. Thirty sites were monitored and within 

10 a 15 km. of St. Julien, parasite prevalence was seen to drop 
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suddenly. These results compare closely to-those found at Roscoff 

in 1989. Simultaneous infestation with the entoniscid Port uni on 

maenadis was also noted by Bourdon at only two of the sites 

tested. Both sites were on the Riviere de la Trinitd and 

infestations were numerous. A similar situation was recorded at 

L'Etang de Thau (Veillet 1945). The sites, at which parasitism by 

S. carcini was seen to decrease rapidly (Bourdon 1960), were at 

the point where the bay became more exposed to the open ocean. It 

seems logical that dispersal of these non-feeding larvae out to 

sea, would minimise their chances of inoculating a suitable host. 

Another semi-enclosed system where C. maenas is 

parasitised by S. carcini, was studied by Rasmussen at the 

Isefjord, Denmark, from 1953-1960 (Rasmussen 1973). Although the 

whole fjord was monitored the main study area was close to the 

laboratory at Vellerup Vig, where 19,000 crabs out of a total 

21,000, were examined. The methods of capture were prawn pots, 

eel traps and push nets. Distinction was not made between these 

methods, but Rasmussen did note that females were under- 

represented in the hauls and therefore parasite prevalence was 

probably higher than that recorded. Simultaneous infestation with 

Port union maenadis was observed but as P. maenadis also induces 

feminisation, this was not a criterion used to identify 

parasitism by S. carcini. Occasional observations were made where 

both species had infected a host, but no feminisation was 

apparent. 

Close to Vellerup Vig, parasite prevalence was much 

greater in the sublittoral than the littoral zone. From 1956-58, 
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90% of crabs with "small" externae were caught in the shallow 

water, whereas those with "large ripe" externae were from deeper 

water. Once again this was a similar situation to that reported 

in L'Etang de Thau (Veillet 1945). From 1954 (Rasmussen 1973), 

the infection rate appeared to decrease gradually reaching a low 

point in 1957. These figures rose again in 1958 with 20% (i. e. 

the highest infection rate ever recorded in the fjord), reported 

in the October. However, by July 1960,0% was recorded at the 

same site. The high numbers of small crabs observed in 1951-52 

may correlate with the high infection rate in 1953-54. The latter 

was also a good "crab year" but the parasite prevalence was seen 

to decrease after this period. The summer and autumn of 1955 were 

unusually warm with a mean temperature of 17.2'C and the 

emergence of virgin externae was observed from June to October, 

whereas emergence had only lasted throughout June and July in 

other years. In the September of 1956, an unusually warm month, a 

high number of virgin externae was again recorded. One would 

assume that under such conditions the parasite would thrive. 

Nevertheless, for some reason the male cypris settlement may have 

failed in that period. Winter temperatures were not published 

(Rasmussen 1973) but Lätzen (1984), recorded temperatures of 0'C 

* 18'C from February to August and salinities varying from 18%. 

21% in the Isefjord. During his three year study in this area, 

Lätzen (1984) concluded that between November and April 

parasitised crabs overwinter by burying themselves into the 

substratum, for he reported sand in the mantle cavity of the 

externae he examined. Lätzen (1984) noted that the larvae of 
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S. carcini could not develop through to cyprids at temperatures 

less than 6'C, therefore the winter was spent in a non-breeding 

state. He observed two breeding periods. The first began in May, 

with a peak in June, and the second was from mid-July to October, 

which were the warmest months. He noted that at least six broods 

of eggs could be released in this period and the internal phase 

took 2 years and 9 months in these waters compared to 9 months in 

the Irish Sea (Day 1935). Walker (1987) reported that virgin 

externae are no longer capable of accepting male cyprids after 8 

months. Consequently, if temperatures had remained low in the 

winter of 1956, or if high precipitation had caused low 

salinities in the fjord, male cyprids may not have developed in 

time. 

More recently, a study has been carried out in Portugal. 

In October and December of 1987 and in July 1988, observations 

including the parasitism of C. maenas by S. carcini were made in 

the lagoon of Aveiro, west Portugal (Gomez, pers. comm. ). 

Temperature, salinity and percentage parasitism were recorded at 

over sixteen sites each month. In October the temperatures were 

between 17.0'C and 19.1'C, in December they had dropped to 11.0'C 

to 13.5'C, with one site at 15.0'C. In July the temperatures 

ranged from 18.6'C to 23-7'C. Compared to these relatively stable 

temperature distributions, salinities varied greatly. For 

example, the first six salinity readings in October were 18Z., 

25Z, 127., 1.5L, 26%, & 4.8z. The number of crabs caught at each 

site varied between 100 and 500 but, below a salinity of 12Z, no 

parasitism was recorded (Figure 7). Also, out of the 24 
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recordings of parasitism made, 20 were at sites where the 

salinity was greater than 18L. Once again an enclosed system 

exists where both the larvae of host and parasite would remain 

entrained, but the controlling factor here may be salinity, with 

the host's tolerance being far greater than that of the parasite. 

Carcinus maenas is widely distributed intertidally but 

rarely reported below 10m. depth. It is often found in estuarine 

conditions with salinities ranging from 35% * 1OZ (Crothers 

1968). Temperatures up to 26'C can also be tolerated by the shore 

crab but Naylor (1965), noted that a drop in temperature was 

necessary to stimulate breeding. From the literature, some of 

which has already been cited. the presence of S. carcini on 

Carcinus maenas has been recorded at high infection rates in 

estuaries and other semi land-locked bodies of water. Rainbow (j 

* 1979) reported 80.4% and 36.2% infection rates using a beam 

trawl in the sublittoral zones of Milford Haven and Pembroke Dock 

respectively. From the intertidal zones at West Angle Bay and 

Pembroke Ferry he recorded parasite prevalence of 6.7% and 18.2%, 

however the method of capture used intertidally was not 

specified. If crab traps were used it is possible that these 

figures under-represent the actual percentage incidence of the 

parasite. This study (Rainbow t MI 1979) was carried out in 

September, a period of the year when the majority of crabs 

infected with S. carcini would bear a mature externs. This may be 

another reason for the higher percentage incidence in the 

sublittoral zone. Rainbow (pers. comm. ) trawled the same area two 

years later and reported the parasite prevalence to be 5%. This 
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variation between years is similar to the situation found by 

Rasmussen (1973) at Isefjord and from this study carried out in 

the Menai Strait. It seems possible that, because Carcinus maenas 

migrates readily, the centres of high parasite concentration may 

differ between years. This is probably not the case for S. carcini 

on Ltocarcinus holsatus, which also migrates over very long 

distances but is a species that appears to aggregate more than 

C. maenas. 

Since 1964, observations of S. carcini on Carcinus maenas 

and Ltocarcinus holsatus have been noted in Milford Haven and the 

Severn Estuary (Crothers, pers. comm. and Rainbow, pers. comm. ). 

It appears that the parasite occurs on one or the other host but 

not on both, in any single location. Fauna lists from other areas 

such as, Plymouth, Port Erin and Strangford Lough, also support 

these observations. In North Wales there is a population of 

S. carcini on Llocarcinus holsatus in the sublittoral zone of Red 

Wharf Bay, Anglesey (Map 3) (pers. obs. ), but S. carcini on 

Carcinus maenas has not been found in the same area. 

Day (1935) studied S. carcini on Liocarcinus holsatus in 

the Mersey Estuary, between November 1931 and October 1932. The 

crabs were collected by shrimp trawl and he observed a high 

infection rate of 73% in May (Figure 8). This was also the month 

in which most berried females were captured. He considered the 

fate of crabs after the externe had dropped off and observed 

crabs which did not moult, some of which died and others produced 

an externe within 5 months. He also reported crabs which did 

moult, with the males losing their abdominal characteristics of 

-42- 



feminisation and becoming a more normal shape. In this case, some 

of the roots had not necrosed whereas others had melanised, being 

cut off from the healthy tissue by a layer of chitin. Similar 

observations have been noted for Carcinus maenas in this study. 

Also the fate of the externa can vary. A large male crab which 

bore a mature externa close to the end of its abdomen was seen to 

rip the externa with its chelae and consequently remove it. 

Another observation was made when a mature externa, due 

to release its brood, was accidentally knocked off the host. The 

externs was placed in a beaker of clean sea water and one hour 

later, began to pulsate. This continued until all the larvae were 

released. The externs was maintained in clean sea water at 17.0'C 

± 2.0'C and daily observations showed it to be undergoing gentle 

waves of contraction. After 11 days it was still moving but 

became covered by a fungal infection and later no movement was 

noted. 

The final region to be discussed is around the Clyde Sea 

area where Foxon (1940), Pyefinch (1946) and Heath (1971) have 

reported S. carcini present on Carcinus maenas. Working at 

Millport, Heath (1971) observed scarred crabs which later bore 

virgin externae arising from a separate break in the cuticle. 

Although he used two methods of capture, (i. e. creels, subtidally 

and hand collection intertidally) he did not differentiate 

between the two and amassed the resultant catches. The survey 

lasted from September 1965 to September 1966 and the captured 

crabs were separated into four categories; modified males with no 

externae; scarred crabs; crabs bearing a large externs and those 
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bearing small externae. Throughout the year he was able to 

collect crabs from all categories. Each group, except for those 

crabs with small externae, displayed a marked peak during the 

year and parasite prevalence was recorded (Heath 1971) at less 

than 7%. Temperatures at Millport from 1959 * 1979 (Moore 1980), 

showed an annual mean of approximately 10'C. Each year the 

general trend was towards a minimum of 6'C * 7'C occurring in 

February and March, and a maximum of 13'C o 14'C in August. Moore 

(1980) also noted that sea surface temperatures for the decade 

1969 * 1978 were warmer than the preceding twenty years. At such 

temperatures the successful development of S. carcini nauplii 

through to the cypris stage, could be achieved during most months 

of the year. In recent years (Moore, pers. comm. and Rainbow, 

pers. comm. ), the incidence of parasitism in this area, appears 

higher than it was 15 - 20 years ago, although there are no data 

to corroborate these opinions. Consequently, the distribution of 

S. carcini on Carcinus maenas appears not only to be patchy but 

also to vary both temporally and spatially. 

In the laboratory situation, larvae of S. carcini were 

capable of withstanding a dramatic drop in temperature from 180C 

to 2'C. However the males could only complete development to the 

cypris stage at 7'C 4 8'C and the females at 8'C * 9'C. The 

developmental period at these low temperatures was approximately 

3 times that required at 18'C. When considering low salinities, 

the larvae developed to cyprid inside previous stage cuticles. 

This occurred within a similar time scale to the development of 

the control group at 32%. The reduced mobility experienced by the 
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larvae at low salinities appeared to hamper the moulting process. 

This may not be the case in the wild where the larvae are 

subjected to water currents and from the study at Aveiro (Gomez, 

pers. comm), it appears that they can withstand low salinities. 

Thus, the distribution would seem to be the result of a 

compromise. The water circulation in a relatively enclosed body 

of water, such as a harbour, estuary, lagoon or fjord may result 

in retention of larvae for both the host and the parasite. At 

L'Etang de Thau (Veillet 1945), with parasitism recorded up to 

90%, the lagoon is connected by narrow canals to a sea with a 

very small tidal range. The lagoon at Aveiro, which is only 16 

metres deep, has a similarly restricted circulation. However 

within such areas the temperature and salinity can fluctuate 

greatly. In an estuary for example, there is a seaward flow of 

lower salinity water in the upper layer, balancing a landward 

flow of higher salinity water at the bottom (Bowden 1962). This 

situation is utilised by Rhithropanopeus harrisii (Cronin & 

Forward 1986), the mud crab which has been reported with a 

parasite prevalence of 33% by the rhizocephalan Loxothylacus 

panopaei. These crab larvae undergo regular vertical migrations 

to maintain their position in the dimly lit regions of the water 

column, where they are able to feed, but there is little risk of 

visually directed predation. This also enables the larvae to ride 

the residual non-tidal currents, so they are retained high up the 

estuary. In Milford Haven, the volume of freshwater entering the 

Haven is small compared with its tidal volume (Nelson-Smith 

1965). Consequently salinities at substratum level, in the upper 
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reaches of the estuary, are high. At low slack water of a neap 

tide, the salinity at Landshipping Quay, was recorded as 26L at 

the bottom and 21L at the surface. It is further up the estuary, 

at the confluence of the East and West Cleddau Rivers that 

salinity drops to 10%. Dr. H. A. Cole, in a mimeographed report 

(1956), referred to the "unexplained mechanism" which tends to 

hold oyster larvae in the upper reaches of Milford Haven. In the 

same way, it would seem that Sacculina carclni larvae, swimming 

in short bursts and spending periods lying on the bottom, could 

also be retained within such a system. 

The flushing time, for a body of water, represents the 

time taken to completely renew the water within that volume. This 

may be calculated for a harbour, for example, by dividing the 
(Dec c4+'3). 

volume of the harbour by the tidal prism It is possible to 

calculate flushing times for the different semi-enclosed bodies 

of water described here. However, a comparison of flushing times 

with parasite prevalence would only be valid if the method of 

capture was consistent in each case. From the literature cited 

and from the surveys reported, it appears that a longer flushing 

time would coincide with higher parasite prevalence, but further 

research would be necessary to investigate this theory. It is 

true that the regions of high concentration of S. carcini on 

Carcinus maenas do tend to occur within estuaries or other semi 

land-locked bodies of water. However, within such areas 

temperature and salinity can fluctuate greatly. It is not known 

whether the parasite can acclimate to very low salinities if it 

infects a host which lives under such conditions. The experiments 
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in the laboratory were carried out on larvae released from hosts 

maintained at 18'0'C ± 1.0'C. Rubiliani (1985) discussed the 

response by two species of crab to an extract from the 

rhizocephalan parasite, Loxothylacus panopaei. He suggested that 

the sacculinid has a considerable capacity to evolve, adapting 

its physiology to that of its new host. The concept of a new 

"physiological race" of parasite, particularly among estuarine 

fauna, is not a new one (Muus 1967). However the extension of the 

larval development period, under low temperature conditions may 

be expensive in terms of energy resources. 
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Table 1: A table of some authors who have recorded 
Sacculina carcini present on Carcinus maenas. 

Author Date Site Region Method of capture 

Foxon 1940 Millport S. W. Scotland Creels 

Veillet 1945 L'Etang S. France Dredges and 
de Thau set nets 

Bourdon 1960 Baie de N. W. France Push nets 
Quiberon 

Crothers 1964 Milford S. W. England Traps 
Haven 

Heath 1968 Miliport S. W. Scotland Creels 

Rasmussen 1973 Isefjord E. Denmark Pots, push nets 
and eel traps 

M. A. F. F. 1975 Tal-y-foel N. Wales Traps and 
pers. comm. beam trawl 

Rainbow 1979 Milford S. W. Wales Beam trawl and 
et al. Haven "collection" 



ýJ N 3 
r2 

SB 

PP 1 

50_0 M. 

Map 1: Map of the Roscoff coastline to show the 
sampling sites for the May 1958 survey. 

Key SITES 

I The outer harbour; 
2 Roscoff beach; 
3 The region trawled during high water: 

J= Tetty for the Ile da Bat: ferry: 
PP = Pointe de Perharidi; 
SB = Station Biologique. 



Table 2: Table of the crabs captured in Roscoff, May 1988, to show 
the incidence of parasitism and the state of the parasite. 

SITE METHOD TOTAL CATCH INFECTED CRABS % I. M. E. V. E. SCAR 

1 Handl 22(16M 26F) 15(12M 3F) 68-2 13 2 0 

1 Handy 59(33M 26F) 29(13M 16F) 49.2 26 2 1 

1 Trap4 0 

1 Trap" 108(63M 45F) 11(7M 4F) 10.2 5 2 4 

2 Hand4 15(1OM 5F) 7(6M IF) 46.7 6 0 1 

2 Handy 23(20M 3F) 11(1IM OF) 47.8 11 0 0 

2 Trap" 49(25M 24F) 3(2M iF) 6.1 3 0 0 

3 Trawl" 219 ( n. s. ) 12 ( n. s. ) 5.5 6 2 4 

Key F= Female; M= Male; n. s. = not sexed; M. E. = Mature External 
% I. = Percentage Infected; V. E. = Virgin Externa; 
4= Mid Water; "= Low Water. 
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Map 2: Map of the coastline. west of Roscoff. to show 
the sampling sites for the May 1989 survey. 

Key : SITES 

1 Roscoff Harbour; 
2 Roscoff Beach; 
3 Trawl Site: 
4 Pointe de Perharidi; 
5 Ile de Siec; 
6 Morgueriec Harbour; 
7 Kerfissien Harbour: 
8 Porz ar Streat. 



Table 3: Table of the crabs captured in Roscoff, May 1989, to show 
the incidence of parasitism and the state of the parasite. 

SITE METHOD TOTAL CATCH INFECTED CRABS % I. M. E. V. E, SCAR 

1 Handy 40(23M 17F) 21(12M 9F> 52.5 15 3 3 

1 Trap' 11(9M 2F) 0 0 

3 Trawl" 177(103M 74F) 11(8M 3F) 6.2 2 4 5 

4 HandA 14(8M 6F) 0 0 

4 Hand4 23(11M 12F) 4(2M 2F) 17.4 2 1 1 

4 Handy 28(16M 12F) 7(5M 2F) 25.0 5 2 0 

4 Trap4 21(17M 5F) 2(1M 1F) 9.5 1 1 0 

4 Trap" 3(2M iF) 1(OM iF) 33.5 0 0 1 

5 Handy 17(4M 13F) 1(OM 1F) 5.9 0 0 1 

5 Trap" 24(16M 8F) 1(OM iF) 4.2 1 0 0 

6 Hand4 16(12M 4F) 0 0 

6 Hand' 23(9M 4F) l(IM OF) 4.4 0 0 1 

6 Trap4 10(IOM OF) 0 0 

6 Trap" 10(9M IF) 0 0 

7 Handy 26(8M 18F) 2 (IM iF) 7.7 0 2 0 

7 Trap" 2(2M OF) 0 0 

8 Handy 85(43M 42F) 1(OM IF) 1.2 1 0 0 

8 Trap" 53(20M 33F) 1(IM OF) 1.9 0 0 1 

Key :F= Female; M= Male; M. E. = Mature Externs; %I. = Percentage 
Infected; V. E. = Virgin Externa; A= High Water; 4= Mid Water 
"= Low Water. 



Figure 2. Combined data (1988 & 1989) to 
show percentage parasitism at each site. 
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Figure 3, Size frequency distribution 
for crabs trawled at Roscoff, 1989. 
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Figure 4. Size frequency distribution of 
the crabs collected in Roscoff, 1988. 
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Map 3: Map of the Menai Strait to show the sampling sites. 

Key - SITES 

I Traeth Lafan; 
2 Ynys Faelog; 
3 Pwll Fanog; 
4 Port Dinorwic; 
5 Plas Menai; 
6 Tal-y-foel; 
7 Traeth Melynog; 
8 The Foryd; 

B= Bangor; C= Caernarfon; M= Maltraeth; 
MB = Menai bridge; RWB = Red Wharf Bay. 



Table 4: Table of crabs captured along the Menaf Strait 
between November 1989 & February 1990, to show 
the incidence of parasitism. 

SITE TRAP HAND TRAWL TOTAL CATCH INFECTED CRABS 

3 4(2M 2F) 0 

3 3" 229 (168M 
. 
61F) 0 

4 / 22 (12M 10F) 0 

4 3" 134<107M 27F) 0 

5 1 4(2M 2F) 0 

5 3" 148(105M 43F) 0 

6 6" 236(119M 117F) 0 

6 184 128(82M 46F) 0 

6 184 1079(717M 362F) 2 

6 x2 16(9M 7F) 0 

6 x3 266(223M 43F) 0 

8 8" 67(40M 27F) 0 

8 8T 229<176M 53F) 0 

8 8f 136(94M 42F) 0 

8 8f 76(64M 12F) 0 

8 8' 57(47M 10F) 0 

Key :"= Low Water; u= Sublittoral. 
Each trawl lasted 20 minutes; 
M= Male; F= Female. 

N. B.: The two parasitised crabs were, one male bearing a 
virgin externs and one female bearing a mature externs. 



Table 5: Table of crabs examined, from two independent surveys 
along the Menai Strait between November 1989 
and March 1990. 

SITE TRAP TRAWL TOTAL CATCH INFECTED CRABS 

1 8" 162(86M 76F) 0 

1 8" 368(186M 182F) 0 

2 125(92M 33F) 0 

7 18" 131(40M 91F) 1 

7 18" 31(15M 16F) 0 

7 18" 42(21M 21F) 0 

7 i 13M 5F) 0 

7 30(16M 14F) 0 

8 416(265M 151F) 0 

8 / 189(115M 74F) 0 

a 220<148M 72F) 0 

8 499(354M 145F 0 

8 289(199M 90F) 0 

Key :"= Low Water; M= Male; F= Female. 

N. B. The one parasitised crab was a female bearing a scar 
and live rootlets within. 



Figure 5. Percentage infection of crabs 
at Tal-y-foel, 1975 - 1977. (M. A. F. F. ) 
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Figure 6. Parasitised crabs collected 
at Tal-y-foel, 1975-1977. (M. A. F. F. ) 
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Table 6: Results from the experiments to monitor the development 

of male S. carcini larvae at low temperatures. 

DAY STAGE TEMPERATURE('C) OBSERVATIONS / COMMENTS 

1 I& II 2.0 ± 0.5 Control group, cyprids by Day 6 
at 17.0'C ± 2. O'C 

25 II ditto 

1 I& II 5.5 ± 0.5 Control group, cyprids by Day 6 

at 17.0'C ± 2.0'C 
35 II ditto 

1 I& II 7.0 ± 0.5 Control group, cyprids by Day 6 
at 17.0'C ± 2.06C. 

10 III ditto The coolers on the tank broke on 
Day 21 and the tank rose to 10.0'C. 

21 III ditto 

1 I& II 7.5 Control group, cyprids by Day 6 
at 17.0'C ± 2.0'C. On Days 11 & 

2 II 8.0 12, temperature fell to 6-O'C 
Normal swimming activity, 

3 II 7.5 protozoa present by Day 7 and 
Stage IV's visible inside 

4 II 7.5 Stage III's by Day 8. 

7 III 7.5 

8 III & IV 8.0 

9 III & IV 8.0 

10 III & IV 8.0 

15 III & IV 8.0 

16 III, IV 
& cyprid 



Table 7: Results from the experiments to monitor the development 
of female S. carcini larvae at low temperatures. 

DAY STAGE TEMPERATURE('C) OBSERVATIONS / COMMENTS 

1 I& II 5.5 ± 0.5 Control group, cyprids by Day 6 
at 17.0'C t 2.0'C, 

44 II ditto 

1 I& II 6.0 ± 1.0 Control group, cuprids by Day 6 
at 17.0'C t 2.09C. 

42 II ditto Protozoa present by Day 12. 

1 I& II 8.5 Control group, cyprids by Day 6 
at 17.0'C t 2.0'C. 

2 II 8.5 Longer periods of time spent 
resting on the bottom of the 

3 II 8.5 beaker. 

4 II 8.5 

5 II 9.0 

7 II 9.0 

10 II 8.5 

13 II & III 8.5 

14 II, III 8.5 
IV 

17 II1 III 8.5 
IV & cyprid 



Table 8: Acclimation times for larvae of S. carcini 
subjected to low salinities. 

SALINITY DROP(L) TIME SPENT AT LOWER SALINITY(mins. ) 

32 27 30 

27 25 15 

25 22 15 

22 21 5 

21 20 5 

N. B. 

The control groups for all the salinity experiments were 

maintained at 17.0'C t 2.0'C and 32x. The larvae developed 

to the cypris stage by Day 6. The normal behaviour of 

swimming in short bursts interspersed with sinking and 

intermittent periods spent on the bottom of the beaker 

was observed. 



Table 9: Results from the experiment to monitor the development 

of female- S. carcini larvae at low salinities, 

DAY SALINITY (L) TEMP. ('C) 

17Z 22% 277. 327. 

1 I& II I& II I& II I& II 18.0 
S N N N 

2 I& II II & III III III 18.0 
T, 2D S&T N N 

3 I& II III & IV IV IV 19.0 
T, 4D S&T N&S N 

4 I& II III & IV IV IV 16.0 
T, 4D S&T, 2D N&S N&S, 2D 

5 I& II IV inside IV IV 15.5 
T, 5D III, T, 3D N&S N&S, 3D 

6 I& II IV(50%) S CYPRID CYPRID 18.0 
T, 11D CYPRID N N, 2D N, 1D 

5D 

13% 5% 1% 3% MORTALITY 

Key I, II, III, IV = Stages of larval development; D= Dead; 
N= Normal swimming activity; S= Swimming, with longer 
periods on the bottom of the beaker; T= Twitching limbs, 
lying on the bottom. 



Table 10 : Results from the experiment to monitor the development 
of male S. carcini larvae at low salinities. 

DAY SALINITY (Z) 

20Z. 21L 22x 25L 277. 32% 

1 I& II I& II I& II I& II I& II I& II 
T T S& T $ S S 

2 II, T II & III II, S II, N II & III II&III 
T 1D N, 3D N, 5D 

3 II, T II & III II III III III 
T, 4D S, T. 5D N, S, 4D N, S. 8D N, S, 10D 

4 II, T III & IV III & IV III & IV IV inside IV 
6D inside II inside II N, S, 2D III, N, S, 6D N, S, 6D 

T, 5D T, 4D 

5 IV inside IV inside III & IV III & IV III & IV IV 
II, T, 7D II, CLV, inside II N. S, 4D N. S, 12D N, S, 7D 
T, 7D T, 13D T, 4D 

6 IV inside IV inside IV inside III & IV III & IV CYPRID 
II, CLV II, CLV II CLV N. S, 5D N, S, 7D N. 6D 
T, 2D T, 4D T, 10D 

7 CYPRID CYPRID CYPRID CYPRID CYPRID CYPRID 
inside II, inside II inside II N. 7D N, 10D N, 5D 
B, 4D B, 6D 

8 CYPRID CYPRID 1 CYPRID CYPRID CYPRID CYPRID 
inside II inside II CYPRID N. 2D N. 6D N. 3D 
B, 2D B. 4D inside II 

B, 3D 

9 CYPRID 1 CYPRID 6 CYPRID CYPRID CYPRID CYPRID 
inside II CYPRID N, CYPRID N. 5D N, 2D N. 3D 
B, 6D inside II inside II 

B, 5D B. 6D 

10 CYPRID 2 CYPRID 50% CYPRID CYPRID CYPRID CYPRID 
inside II N, CYPRID N. 10D N, 5D N, 7D N, 4D 
all D inside II 

B, 24D 

Key :B= Beating; CLV = Cyprid Limbs Visible; D= Dead; N= Normal 

swimming activity; S= Swimming with long periods on the bottom; 
T= Twitching limbs, lying on the bottom, 



Figure 7. Percentage parasitism relative 
to salinity, Aveiro, 1987/88. 
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Figure 8, Percentage parasitism of crabs 
in the Mersey Estuary (Day 1935). 
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CHAPTER III : THE MORPHOLOGY OF THE NAUPLIUS STAGES OF 

Delage (1884) carried out the first comprehensive study 

on the life-cycle of Sacculina carcini, a parasite of the common 

shore crab, Carcinus maenas. He revealed this parasite to be a 

crustacean belonging to the Class Cirripedia. Although his work 

was initially questioned (Giard 1887; Coutiere 1902), Smith 

(1907) was able to produce confirmation of Ddlage's findings. 

Since then, work on this species has continued at odd 

times and particularly in recent years, when significant 

discoveries have been made on that part of the life cycle 

involving cypris larvae. Hoeg, (1984) reported that S. carcini 

larvae exhibit sexual dimorphism, with the male cyprid being 

generally larger than the female. Their respective settlement 

sites were also very specific. This knowledge was extended by 

Walker (1985), when he carried out a scanning electron microscope 

study of the cyprids with particular emphasis on their antennular 

morphology. He observed the long posterior sac emerging from the 

third antennular segment of the male cyprid alone. Thus, 

unequivocal identification of larval sex could be made. 

The description of the life-cycle by Ddlage was, for its 

time, a classic monograph which is still widely reported in 

textbooks. However it has since been amended by Hoeg (1984), 

Lätzen (1984) and Hoeg & Lätzen (1985). Hoeg (1987x) produced a 

fine structure description of male cypris metamorphosis, clearly 
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showing the penetration of the mobile trichogon into the 

receptacle duct and its resultant entry into a receptacle, to 

form the primordial cells which eventually produce sperm. This 

was followed (Hoeg 1987b) by a comparison of cypris 

ultrastructure and metamorphosis in the short-lived male 

trichogon and the female kentrogon. Walker (1988) also carried 

out a detailed study of the derivation of the cypris fourth 

antennular segment. 

This investigation aims to complement the previous 

studies on Sacculina carcini by reporting on the morphology of 

the four naupliar stages at the light and electron microscope 

levels. 

MATERIALS AND METHODS 

Shore crabs, Carcinus maenas, parasitised by the 

rhizocephalan barnacle Secculina carcini Thompson, were supplied 

from the Plymouth Marine Laboratory. The animals, which had 

been collected sublittorally by trawl net, were placed in 

seaweed, or damp newspaper, and packed in large polythene bags 

containing an ice sac for transport by rail to Bangor. 

The crabs were maintained in experimental chambers at 

18'C and fed three times a week on mussel tissue (see Walker 

1987). Broods of S. carcini nauplii were collected (Walker 1985) 

regularly between October 1987 and February 1988, and in August 

1988. The larvae were attracted to a point light source and 
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pipetted into 500m1. glass beakers full of U. V. -irradiated, fine 

filtered seawater at room temperature. The mouth of each beaker 

was covered with a piece of card to avoid air-borne contamination 

and minimise evaporation. Development of the lecithotrophic 

larvae took place without any subsequent water changes. 

Some nauplil were prepared for scanning electron 

microscopy (see below). Under the light microscope, camera lucida 

drawings were made of the limbs, together with the outline shape 

for each larval stage. Photographs were taken using a Leitz 

Orthoplan photo microscope. 

Following full larval development, the carapace lengths 

of fifty cyprids from each brood, were measured using a 

calibrated graticule within the x10 eyepiece. Their sex was 

determined by antennular morphology. 

Scanninz electron microscopy 

Approximately 100 larvae were attracted to a point light 

source and pipetted into fresh U. V-irradiated, fine filtered 

seawater and left for fifteen minutes. Twenty larvae were 

pipetted into 3m1. screw-top vials. Three vials were used for 

each larval stage. 

Nauplius larvae, at each of their four stages, were 

relaxed in 0.01% M. S. 222 (Sandoz) for twenty minutes. After three 

washings with seawater they were then fixed with 2.5% 

glutaraldehyde in seawater for two hours at room temperature. 

After two further washings with distilled water the larvae were 

dehydrated by taking them through a graded series of ethanols to 
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100%. 
Having been transferred to acetone for 30 minutes the 

larvae were critically-point dried, mounted on stubs using 

double-sided Sellotape and sputter-coated with Pt or Au. They 

were then viewed in a scanning electron microscope (I. S. I. ML7, 

Hitachi S520 or Cambridge Stereoscan 120). Relevant photographs 

were taken and drawings made to illustrate pertinent larval 

features. 

The four naupliar stages bear the standard cirripede 

larval limbs which comprise one pair of uniramous antennules, one 

pair of biramous antennae and one pair of biramous mandibles 

(Figure 1). The segments of each appendage have an array of small 

spines (Figures 4,5,6, & 28), whereas the setae bear fine hair- 

like setules (Figure 4). No gnathobases are present throughout 

development (Figures 1,2,9,20 & 28). 

The antennules of a stage I nauplius have five setae 

(Figures 2& 5), the fifth one being retained in stage II 

(Figures 1& 11) but lost in stages III and IV (Figures 1& 17). 

This is the only change in the setation formula throughout 

development, unlike planktotrophic nauplii, where the limbs 

increase in size and complexity at each stage. The final stage 

antennae of two planktotrophs and two lecithotrophs are shown in 

Figure 28. It is at stage IV (Sacculina carcini), that segment 3 
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of the antennules becomes more bulbous (Figures 1,6,20 & 21) and 

the fourth seta has a more complex appearance (Figures 6& 21). 

Internally the latter becomes the template for the subterminal 

sac of the cypris fourth segment, with the cypris terminal sac 

and three setae developing within the first antennular seta. 

Throughout the whole nauplius development the antennae 

retain their five exopodite and three endopodite setae and the 

mandibles their four exopodite and two endopodite setae (Figure 

1). 

The labrum remains a simple structure (Figures 2,7 & 20), 

with an opening, from functional labral glands, out through the 

tip of the labral papilla. No mouth is present beneath the labrum 

(Figure 7). The frontal horns point dorso-laterally on the stage 

I nauplius and are closed distally with one dorsal spine (Figure 

2). Between the antennules lie a pair of frontal filaments and 

situated directly anterior to these is a median pore (Figures 2& 

3). Both these features-remain throughout development. The 

ventral thoracic region of the first stage nauplius is smooth and 

terminates posteriorly in two readily identifiable carapace 

spines which have smaller epicuticular spines on them (Figures 

2,8 & 27). 

In comparison, the three other naupliar stages are far 

more elongate (Figure 27). This fundamental change in shape 

occurs almost immediately after hatching, when the larvae moult 

to stage II. The frontal horns in stage II nauplii point 

laterally; they are now open distally, with both dorsal and 

ventral spines at the tip (Figures 9,20 & 22). The carapace 
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spines are distinctly longer and areas of aggregated small 

cuticular spines are present on the ventral thoracic region 

(Figure 10). Figure 9, shows the moult line which is visible in 

all stages and the presence of paired spines and setae on the 

dorsal surface of the carapace. If these are present in stage I 

nauplius, they were never seen, because after preparation for 

S. E. M. ,a wrinkled dorsal carapace always resulted, hindering 

such observations. Figures 12 and 13, illustrate the smooth 

dorsal carapace of a stage IV nauplius, with small cuticular 

spines at the posterior end. The four pairs of dorsal setae and 

one pair of dorsal spines are clearly visible in Figures 12,14, 

15, and 16. This arrangement also existed in stages II and III. 

It is following the emergence of the stage III nauplius 

that the vestigial ventral thoracic process becomes evident 

(Figures 17,18,19 & 27); this process is even more prominent in 

the final stage IV nauplius (Figures 23,24,25,26 & 27). 

The final nauplius stage lFigures 20 & 24) often has a 

fold on the ventral surface which is covered with an even 

distribution of spines. The frontal horns (Figures 20 & 22), 

display 'shredded' cuticle at the open tip through which frontal 

horn gland secretion can emerge. This stage IV nauplius 'houses' 

the developing cyprid with its bivalve carapace and specialised 

antennules for settlement and attachment. 
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DISCUSSION 

Although the male nauplius of Sacculina carcini tends to 

be larger than the female, no other obvious morphological 

difference was observed. The slight volume increase between 

naupliar stages was calculated by Walker (1988) to be 1.03 a 1.09 

fold. This range correlates well with that produced by Crisp 

(1986), who analysed volume changes at each moult for 

lecithotrophic balanomorphs. Crisp discovered that for 

planktotrophic nauplii between stages II and VI the volume was 

approximately doubled for each successive stage. This compared to 

a mean 1.10 fold increase for the lecithotrophic nauplii 

examined. 

Lecithotrophy has arisen independently in several lines 

of the Cirripedia (Moyse 1987). It is considered to be advanced 

in terms of parental investment, but the condition is degenerate 

and probably irreversible in terms of naupliar morphology. 

Rainbow and Walker (1976) carried out a scanning electron 

microscope study on the planktotrophic nauplius of the thoracican 

balanomorph Salanus balanoides (= Semibalanus balanoides). This 

larva has a setulated tri-lobed labrum and gnathobases on the 

interior face of the basal segments of all limbs, which bear 

setulate setae. The ventral thoracic process (also sometimes 

termed abdominal process) bifurcates terminally and displays six 

regions corresponding to the cypris thoracic appendages which 

develop later within the sixth stage nauplius. When the nauplius 

was feeding, food particles were seen to adhere to the long setae 
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of the limbs, probably due to frontal horn secretion. However, 

food would sometimes end up between the caudal process and the 

ventral thoracic process. Rainbow and Walker (1976) observed that 

the curling up of this latter process enabled cleaning and also 

aided the spread of secretion from the labral papilla. The 

resultant 'bolus' was forced into the mouth by action of the 

gnathobases. Although there is still controversy concerning 

particle capture and transfer, the mechanisms for forward 

transport and ingestion appear to be understood (Walker, Yule & 

Nott 1987). Consequently, the importance of the rear body region 

during feeding is evident. 

Many other planktotrophic nauplii, which exhibit similar 

structural characteristics have been described (Knight-Jones & 

Waugh 1949, Stubbings 1975, Lang 1979, Egan & Anderson 1986 and 

Moyse 1987, among others). Onathobases are present in some 

lecithotrophic larvae such as Tetraclita Pacifica (Crisp 1986) 

and Ibla quadrivalvis (Anderson 1987), but only as vestigial 

spines. Also the number of limb setae is greatly reduced compared 

to planktotrophic larvae found in the same genus, 

Lecithotrophic thoracican species such as Ibla idiotica, 

Ibla quadrivalvls and Pollicipes spinosus (= Calantica spinosa) 

have been studied in detail (Batham 1945a, Anderson 1965 & 1987 

and Batham 1945b respectively). In Ibla idiotica the free 

naupliar stages are suppressed and it is the cyprids which are 

released directly from the adults. Consequently naupliar limbs 

are greatly reduced and cypris limbs precociously developed. The 

latter originate in the late embryo as a solid mass. However, as 
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Batham (1945b) commented, regarding Calantica spinosa, the 

numerous larval moults carried out in close succession for this 

species seem to represent "a phylogenetic retention of the 

primitive number of cirripede nauplius moults, rather than a 

mechanism for permitting increase in size. " Although these three 

lepadomorph species do develop a rudimentary gut, other 

characteristics of their larval morphology resemble those of 

Sacculina carcini. Their relatively short developmental period, 

simple setae that change little between stages, their reduced 

labrum and obvious internal yolk store, all reflect an advanced 

lecithotrophic condition. 

In 1986 Anderson studied Tetraclita divisa (Nilsson- 

Cantell), a circum-tropical balanomorph which releases free- 

swimming larvae at the cypris stage. The larvae develop through 

four naupliar stages within the mantle cavity. He cited the 

convergently similar modifications towards direct development, 

exhibited by the lepadomorph Ibla idiotica (Batham 1945a) and 

most acrothoracicans (Turquier 1972). Direct development is also 

the strategy for the akentrogonid rhizocephalans (Hoeg 1990) and 

the thoracican Anelasrna squalicola (Frost 1928), all of which 

have abbreviated larval development without free-swimming 

nauplii. 

The caudal papilla of Tetraclßta divisa (Anderson 1986) 

is similar in Ibla quadrivalvis (Anderson 1987) and termed the 

abdomen in Calantica spinosa (Batham 1945b). This structure would 

seem to correlate well, in position, with the ventral thoracic 

of c7trApn l's. 

process In Sacculina carclni, development of the cypris limbs 
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occurs in the same region. The basal segments of the limbs 

develop within the body of the nauplius and the tips of the setae 

aggregate at the posterior end. S. carcini is advanced in the 

lecithotrophic condition having no mouth or anus and no remnants 

of a gut, a simple labrum and no gnathobases. Thus it is 

reasonable to assume that the ventral thoracic process, 

significantly involved in feeding for planktotrophic larvae, has 

been greatly reduced to the vestigial structure observed on the 

stage III and IV nauplil. The carapace spines correspond to the 

posterior shield spines shown in the diagram of diagnostic 

morphological features of balanomorph larvae, particularly at 

stages IV, V and VI published by Lang (1979). 

Hoeg and Lätzen (1985) studied the Rhizocephala from the 

north east Atlantic area. They observed that Peltogasterella 

sulcata and Peltogaster paguri, like Sacculina carcini, develop 

through four naupliar stages. P. sulcata and S. carcini both bear 

the prominent pigmented nauplius eye and exhibit strong positive 

phototaxis to enable them to remain within the plankton. P. paguri 

(Hoeg & LUtzen 1985), and Briarosaccus callosus -a rhizocephalan 

which parasitises three species of king crab in S. E. Alaska - 

(Hawkes et ,. 
1985), have no eye, but the nauplius is encircled 

by a hollow cuticular annulus used as a flotation device. This 

would compensate for the absence of phototaxis. In both species 

the cyprids lack the paired compound eyes of non-parasitic 

Cirripedia. 

Moyse (1987) in considering the lecithotrophic condition 

in thoracicans, observed a strong correlation between the degree 
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of larval "degeneracy", with bathymetric depth range for the 

adults. He noted that species of Arcoscalpellum, with the 

exception of Scalpellum ströemi which lives between 50 and 1000 

metres, occupy depths greater than 2000 metres. They all complete 

naupliar development within the mantle cavity. As Foster (1978) 

points out, a planktotrophic larval existence below the photic 

zone would be "inept". The possession of lecithotrophic larvae is 

primitive in scalpellids (apart from pollicipids), with 

suppression of free-living larval stages and release of 

ambulatory cypris larvae. Thus, colonisation of patchily 

distributed areas of hard substratum, can be sucessfully achieved 

in the abyssal habitat (Foster 1978). Moyse (1987) proposed that 

Ibla quadrivalvis, being an intertidal barnacle, may have come to 

occupy its present niche as a refuge from competition in a 

previous deep-water habitat. This same strategy could work for 

the Rhizocephala, enabling the larvae to remain close to members 

of the host species (Hoeg 1990). 

During the evolution of thoracican adults, significant 

morphological changes have been made for adaptation to extreme 

conditions. However, such changes are only partially reflected in 

the larvae. Moyse (1987) shows the overall pattern of thoracican 

nauplius form ranging from the specialised planktotrophic form of 

Lepas anatifera, to the simplified lecithotrophic form of Ibla 

quadrivalvis. The nauplius of the rhizocephalan, Sacculina 

carcini fits well within this suggested pattern and argues for 

the retention of the Rhizocephala within the Cirripedia sensu 

stricto (contra Newman 1987). 
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Figure 1. 

Line drawings of the right side limbs of 

Sacculina carcini nauplii (stages I-IV); 

ant-antennule; anta-antenna; end-endopodite; 

ex-exopodite; mnd-mandible. 
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Figures 2*24 inclusive are scanning electron 

micrographs of Sacculina carcini nauplii :- 

Figure 2. 

A ventral view of a stage I nauplius 

Figure 3. 

An enlargement from figure 2 showing 

the median pore. 

Figure 4. 

A ventral view of the left side limbs 

of a stage I nauplius. 

Labels for figures 2a4 inclusive: - 

ant-antennule; anta-antenna; 

csp-carapace spine; dsp-dorsal spine; 

ff-frontal filaments; fh-frontal horn 

1-labrum; lp-labral papilla; mp-median pore; 

s-seta; sl-setule; sp-spine. 





The left antennule and base of the antenna 

of a stage I nauplius. 

The right antennule and antenna of a 

stage IV nauplius. 

The ventral thorax and labram of a 

stage I naupllus. 

A ventral view of the left carapace 

spine of a stage I nauplius 

Labels for figures 5*8 inclusive: - 

csp-carapace spine; 1-labrum; 

lp-labral papilla; s-seta; 

seg-segment; sp-spine. 
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Marc 9. 

Anterior ventral view of a stage II 

nauplius. 

Ventral thoracic region of a stage II 

nauplius. 

The left antennule of a stage II nauplius 

Labels for figures 9*11 inclusive: - 

fh-frontal horn; lp-labral papilla; 

s-seta; sp-spine. 





Fl. gure 1 

Dorsal view of a stage IV nauplius 

Figure 13, 

An enlargement from figure 12 showing the 

posterior dorsal region. 

Figure 14. 

fa enlargement from figure 12 shm1ng the 

anterior dorsal region with paired spines 

and setae. 

Figure 15. 

A seta on the dorsal surface of a stage IV 

nauplius. 

Figure 16. 

M enlargement fron figure 14 shoring a 

dorsal spine and a dorsal site. 

Labels for figures 12a16 inclusive: - 

csp-carapace spin.; fh-frontal horn; 

s-seta; sp-spine; 

vtp-ventral thoracic process. 
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Figure 17, 

A ventral view of a stage III nauplius. 

Figure 18, 

The ventral posterior region of a 

stage III nauplius. 

Figure 19. 

The right lateral view of the posterior 

region of a stage III nauplius. 

Labels for figures 17*19 inclusive: - 

csp-carapace spine; ff-frontal filament; 

fh-frontal horn; ml-moult line; 

vtp-ventral thoracic process. 





Figure 20. 

The ventral view of a stage IV neuplius. 

Figure 21. 

An enlargement from figure 20 showing 

the right antennule. 

Figure 22. 

An enlargement from figure 20 shoring 

the left frontal horn. 

Figure 23. 

The ventral posterior region of a stage IV 

nauplius. 

Figure 24. 

The ventral thoracic and posterior regions 

of a stage IV nauplius. 

Labels for figures 2024 inclusive: - 

csp-carapace spine; dsp-dorsal spine; 

fh-frontal horn; l-labrux 

seg-segment; shc-shredded cuticle; 

sp-spine; vsp-ventral spine; 

vtp-ventral thoracic process. 
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Figures 25 & 26 are light micrographs of 

Sacculina carcinl naupiii. 

A ventral view of two stage IV neuplii 

The right lateral view of the thoracic 

region of a stage IV nauplius 

Figure 27, 

Line drawings showing the ventral view 

of Saccullna carclnl nauplii (stages I-IVY. 

The limbs are omitted. 

Labels for figures 25 & 26: - 

cl-cypris limbs; csp-carapace spine; 

ne-nauplius eye; vtp-ventral thoracic process. 
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Figure 28. 

Line drawings of the final stage right antennae 

of four cirripede nauplii :- 

A. stage VI Lepas anati fern (After Mopse 1987). 

B. stage VI Balanus crenatus (After Lang 1979). 

C. stage VI Ibla quadrivalvis (After Anderson 1987). 

D. stage IV Sacculina carcini. 

Labels for figure 28: - 

end-endopodite; ex-exopodite; gn-gnathobase; 

sp-spine; vgn-vestigial gnathobase. 
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CHAPTER IV : METHODS TO GAIN THE ASH FREE DRY WEIGHTS 

OF SACCULINA CARCINI LARVAE 

In order to compare the energy utilisation of cirripede 

eggs and larvae already reported with that of Sacculina carcini, 

it was necessary to monitor the weight of S. carcini larvae during 

development. 

Different authors have employed different methods for 

weighing small planktonic animals. Harms (1987), was able to wash 

Elminlus modestus larvae in fresh water before placing precounted 

samples onto Whatman glass fibre filters which were put into 

silver cartridges for freeze-drying. The larvae were then weighed 

on a Perkin-Elmer AD 2 electronic autobalance. Lucas & Crisp 

(1987) washed Balanus balanoides eggs with 0'9% aqueous ammonium 

formate (see Holland & Walker 1975) before pipetting precounted 

samples into pre-freeze-dried, pre-weighed 1-0 ml. AC60 

autoanalyser cups for freeze-drying. Doohan & Rainbow (1971) 

however, washed samples of 50 rotifers with distilled water and 

dried them on cavity slides in a CaC12 desiccator for 48 hours. 

The samples were then transferred using tungsten needles onto the 

scale pan of a Cahn Gram Electrobalance. These samples were 

weighed cumulatively, up to 400 individuals. 

In this study it was originally intended to use Teflon 

boats for weighing, as these would later be used during the 

gravimetric lipid analysis of the Sacculina carcini larvae. 

However, these boats were found to weigh approximately 60 mg. 
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each and consequently were too heavy to enable accurate weighing 

of animals, less than 1 µg. dry weight per individual, in 

sufficient numbers that would be suitable to count. A method was 

devised to employ small pieces of plankton netting as selves on 

which the larvae could be washed quickly, frozen and freeze-dried 

then weighed and counted. 

MATERIALS AND METHODS 

Initially, the larvae of Saccullna carcini were washed 

free of seawater with 0.9% aqueous ammonium formate (see Holland 

& Walker 1975). However, they were seen to quickly burst and 

release body fluids through their frontal horns. Consequently, an 

experiment was carried out using a Knauer semi-micro osmometer, 

with a sample size of 50 µl., to determine the concentration of 

ammonium formate which would be isotonic with seawater (Figure 

1). A glass vial containing this isotonic solution was freeze- 

dried over 12 hours to assess whether the solution was 100% 

volatile. The larvae were washed with the solution, monitored 

under a Leitz Orthoplan photo microscope and relevant photographs 

were taken. In this way the maximum time available for washing 

the larvae, without loss of body fluids, was determined. 

At each stage of their development, S. carcini larvae were 

attracted to a point light source and pipetted into a glass 

beaker full of U. V. -irradiated fine filtered seawater. They were, 

once again, attracted to the light source and approximately 300 
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larvae were pipetted onto a1 cm2 sieve ofA plankton netting, 45 

µm. mesh size. Each net had previously been heat-sealed to 

prevent the edges from fraying. The larvae were then washed six 

times with 3.9% aqueous ammonium formate and twice with 

distilled, deionised water. Excess water was pipetted from the 

net, which was then placed in the deep freeze. Ten replicate nets 

were prepared in this way for each larval stage. These nets were 

freeze-dried for 12 hours, placed in a desiccator overnight and 

weighed the following day using a Cahn C31 microbalance. The nets 

were weighed sequentially <1 to 10) in the morning and in reverse 

order (10 to 1), after 4 hours in the desiccator. The average of 

the two weights for each net was calculated. After weighing, the 

nets were mounted on graph paper, to act as a grid, and placed 

under a Wild M3Z binocular microscope. The image was relayed by a 

Panasonic CCD video camera to a Sony Trinitron KX-14CPI monitor 

so that the exact number of larvae present on each net could be 

counted using a click counter. Replicate counts were made. After 

counting the larvae the nets were soaked in a 2% Decon solution 

overnight, rinsed in distilled deionised water, oven-dried at 

370C, placed in a desiccator overnight and then reweighed. 

In order to assess the absorption of water vapour by the 

plankton netting on exposure to air, a single net was repeatedly 

weighed over a 30 minute period. Between weighings the net was 

replaced in the desiccator and the balance tared (see Figure 2). 

Another weighing experiment was carried out for ten nets with 

larvae, and ten nets without larvae over three successive days. 

The nets were kept in a desiccator and weighed consecutively from 
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number 1 to 10 in the morning and from number 10 to 1 after a 

period of 4 hours in the desiccator. A second method of weighing 

the larvae was also employed. A number of freeze-dried larvae (25 

4 70) were placed on pre-weighed aluminium foil boats, which had 

been made from circles of aluminium foil pressed onto a foil 

lined plasticene mould. After weighing, the larvae were 

rehydrated and counted. The weighings for male and female 

nauplius stages II, III, IV and cyprids were carried out in this 

way. In order to assess whether there was any absorption of water 

vapour by the aluminium foil boats, three boats were weighed at 

hourly intervals on three occasions during one day. The boats 

were not kept in a desiccator between weighings, but were covered 

to prevent any air-borne dust particles settling. 

The inorganic fraction of S. carclni larvae, at each stage 

of their development, was then monitored. Aluminium foil boats 

were prepared and heated to constant weight at 550'C for 18 hours 

in a muffle furnace. Samples of larvae were collected and washed 

as previously described. They were poured into glass vials which 

were frozen at -196'C in liquid nitrogen and placed in a freeze- 

drier over 24 hours. The freeze-dried larvae were ground up and 

stored in a desiccator overnight. Three samples of each stage 

were placed in pre-heated, pre-weighed aluminium foil boats. 

These boats containing larvae were then weighed, heated at 550'C 

for 6 hours, placed in a desiccator for one hour and re-weighed. 

The same procedure was carried out for stage I Elminius modest us 

larvae and for three empty aluminium foil boats. The inorganic 
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fraction (ash) of the larvae and the percentage error for the 

boats could then be calculated. 

RESULTS 

Results from the experiment to determine the 

concentration of ammonium formate, isotonic with seawater, are' 

shown on Figure 1. The osmolarity of the seawater used, was 1000 

milliosmoles and from the linear regression fitted to the data, a 

3.9% solution of ammonium formate was calculated to be isotonic. 

This concentration was also found to be 100% volatile in the 

freeze-drier. When this solution was used to wash the larvae, the 

release of body fluids through their frontal horns was delayed 

for 72 seconds. This compared to a delay of only 20 seconds for 

distilled water and 30 seconds for 0.9% aqueous ammonium formate. 

Larval weights resulting from the method using plankton 

net selves, were variable. It was difficult to collect sufficient 

numbers of eggs and stage I nauplii, for the ten replicate nets. 

Often, a release consisted of a mixture of eggs, stage I and 

stage II nauplii. Also, many of the eggs were not fully 

developed. Ten replicate nets were used in order to be 

statistically viable and on viewing the nets under the 

microscope, it was evident that salt crystals or glass particles 

from the pipettes became caught within the mesh. Thus, several of 

the replicates had to be discounted. Results from the experiments 

to weigh four separate broods of S. carcini larvae, on these nets, 
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are given in Table 1 (full data in appendix Tablesl-4). 

Figure 2. shows the change in weight observed when a 

single net was repeatedly weighed over a 30 minute period and 

Tables 2 and 3 give the weights obtained when ten nets, with and 

without larvae, were re-weighed on three separate days. 

Larval weights obtained from the method employing 

aluminium foil boats, are given in Table 4, and Table 5 shows the 

relatively constant weights of the three boats weighed at hourly 

intervals. Table 6 gives the percentage ash present in the larvae 

of S. carcini, together with their organic weights, which were 

calculated from these figures and the weights obtained from the 

aluminium foil boat method. The percentage ash content of stage I 

Elminlus modestus naupiii is also given in Table 6. 

DISCUSSION 

It is difficult to obtain absolute dry weights for small 

marine animals as no matter how rigorous the drying process, some 

water will either be re-absorbed from the atmosphere or retained 

within the tissues. For this reason it was thought, that to use 

ten replicate nets for each larval stage, would be sound 

statistical practice. However, this made the method more complex, 

due to unavoidable exposure to air during weighing. As the larvae 

were counted, after drying and weighing, it was possible to 

observe and eliminate the nets which were "contaminated". Had 

these nets been included, the mean larval weights would have been 
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unrealistically high. Nevertheless, the weights obtained using 

this method were still variable (see female weights, Table 1. ). A 

calculation was undertaken to assess the approximate weight of 

male and female S. carcini eggs from their known volume, assuming 

they comprised the same constituents as the eggs of Balanus 

balanoides (Lucas & Crisp 1987). The predicted weights came out 

as 0.50 pg. and 0.38 µg. for male and female eggs, respectively. 

One brood of S. carcini eggs was successfully separated out from 

the surrounding debris and weighed by the plankton net method. 

The resultant weight was 0.76 µg. t 0.04 µg., using ten nets to 

gain this mean figure. The mean weight was a lot higher than the 

calculated figure, but the brood was later found to be a mixture 

of male and female larvae. 

The experiment to repeatedly weigh one plankton net, over 

a 30 minute period, on two consecutive days, gave a result the 

first day which was repeatable the next (Figure 2). During the 

initial 4 minutes the weight increased steeply, and began to 

level out after approximately 20 minutes. Over the 30 minute 

period, the weight increase, due to absorption of water vapour, 

was 100 . g., with an increase of 50 ug. in the first 4 minutes. 

It was noted that this could lead to a high percentage error when 

weighing 300 larvae which were less than 1 µg. each, and it would 

not have been practical to wait 20 minutes for each weighing. The 

experiment to weigh ten nets with and without larvae on 3 

separate days, also showed the variability inherent in the 

method. Day 2 was noted as a particularly humid day. This 

observation is reflected in the weights, especially those taken 
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after 4 hours in the desiccator, when each net was found to be at 

its greatest recorded weight. It is important to note however, 

that the initial weights of the day are the most closely 

repeatable, showing differences of 2.4 pg., 3.5 pg. and 1-1 µg. 

for the nets with larvae and 5.7 µg., 3.2 µg. and 8.9 pg. for the 

nets without larvae. Consequently, it was evident that the most 

consistent results were obtained by taking the first weights of 

the day, with minimum exposure to air. By taking replicates, the 

figures diverged greatly. 

Conversely, the weights of the the aluminium foil boats, 

varied by a maximum of 0.2 µg. during a period of three hours 

exposure to air and, using this method, the larvae were also 

subjected to minimum air exposure. Thus it was decided that the 

weights obtained by the aluminium foil boat method were more 

reliable. On consideration of these weights, together with those 

from the plankton net method, it appeared that stage II nauplii 

of S. carcini were much heavier than their calculated egg weights. 

The transport of dissolved organic matter, across the body 

surface of marine larvae belonging to different phyla, such as 

molluscs, echinoderms and annelids, has been studied by several 

authors (Shilling et al 1989, Dimster-Denk & Manahan 1989, 

Colwell & Manahan 1989, Manahan get gLI. 1989, Manahan 1989 and 

Manahan 1990). Also, Dawirs (1983) observed a 20% weight gain in 

the first day for the starved zoea larvae of the decapod 

crustacean, Carcinus maenas. He assumed this to be due to the 

assimilation of inorganic salts. 

A further investigation was carried out to assess whether 
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the larval weights could be successfully calculated using the 

method for estimating dry weights of freshwater planktonic 

crustaceans, from measurements of length and geometric shape, 

adopted by Lawrence p, (1987). A table was drawn up (see Table 

7. ), to compare the weights of several cirripede species, 

obtained by direct weighing, with those values calculated from 

the formulae used in that study. During the calculations, the 

assumptions employed for copepod nauplii (Lawrence et j 1987) 

were adopted for cirripede nauplii. Thus the larvae were 

considered to be ellipsoidal but with appendages lying outside 

this shape. To compensate for the apparent volume of the 

appendages, the depth dimension was modified by a factor of 1-5. 

This made the formula :- 

Dry Weight = 4/3 n a. b. 1.5c 

Where a, b, and c are half the length, 

width and depth, respectively. 

For S. carcini, with the typically reduced limbs of a 

lecithotrophic larva, the figures do correlate, but nevertheless 

underestimate the weights obtained in this study. However, for 

E. modestus, typical of the larger planktotrophic larvae which 

have much bigger more complex limbs, it is only the stage V 

nauplius which shows close correlation. When considering the eggs 

of Balanus balanoides, the actual loss of weight during 

development portrayed by the direct weighing method, is confused 
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using the calculation, due to the increase in size of the egg 

case with the developing nauplius within. 

The experiment to determine the percentage ash present in 

the larvae of S. carcini and stage I Elminius modestus, showed a 

satisfactory percentage error for the empty boats and gave 

similar results to those figures produced by Holland (1975 

unpublished data, in Lucas 1980), when he studied the biochemical 

composition of Balanus balanoides larvae. The inorganic content 

for the larvae of S. carcinl barely altered over their. development 

with male cyprids showing the highest percentage ash. A large 

standard deviation was noted for female S. carcini cyprids. This 

may have been due to the difficulty experienced in collecting 

sufficient quantities for three replicates. Each replicate, for 

female cyprids, was less than 1.0 mg. in weight before ashing, 

whereas, those of other larval stages weighed between 1.0 mg. and 

6.5 mg (see data for ash weights in appendix Table 5). 

After due consideration of all the methods undertaken, 

the larval weights to be used in subsequent calculations of the 

energy budget for S. carcini are those obtained using the 

aluminium foil boat method. The dry organic weights of S. carcini 

larvae were calculated from these figures, together with their 

percentage ash weights (Table 6- full data in appendix Table 5). 
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Table 1. The mean weights (± S. D. ) of Saccul. na carcini larvae during 
their development, using the plankton net method. 

Male Larvae 
(2 broods) 

Female larvae 
(2 broods) 

Stage Weight t S. D. (µg. ) Weight t S. D. (pg. ) 

I 0.47 t 0.15 n. d. 
(9) 

II 0.84 ± 0.14 0.81 ± 0.06 0.85 t 0.10 0.59 ± 0.06 
(3) (10) (9) (9) 

III 0.72 t 0.13 0.84 ± 0.03 0.82 t 0.07 n. d. 
(8) (8) (6) 

IV 0.87 ± 0.04 0.64 t 0.03 0.81 t 0.05 0.54 ± 0.10 
(3) (9) (3) (10) 

Cyp. 0.52 t 0.19 0.65 ± 0.06 0.35 ± 0.22 0.45 s 0.07 
(6) <5) (6) (9) 

The figures in brackets show the number of clean replicate nets. It is 
from these nets that the mean larval weights and standard deviations were 
calculated. 

The full data is in the appendix (Tables 1-4). 



Table 2. The weights of ten nets (with larvae) weighed twice daily, 
morning and afternoon, on three separate days. 

a. M. 
order 

Day 1 
(alg. ) 

Day 2 
(Mg. ). 

Day 3 
(Mg. ) 

p. in. 
order 

Ist 9.3977 9.3953 9.3942 
9.4610 9.4846 9.4794 10th 

2nd 8.6995 8.6926 8.6714 
8.7324 8.7644 8.7421 9th 

3rd 9.0378 9.0270 9,0067 
9.0638 9.0913 9.0764 8th 

4th 7.2753 7.2691 7.2549 
7.2848 7.3072 7.2915 7th 

5th 8.8678 8.8670 8.8464 
8.8730 8.8954 8.8833 6th 

6th 9.0842 9.0829 9.0558 
9.0764 9.1048 9.0861 5th 

7th 8.9228 8.9195 8.8923 
8.9026 8.9264 89112 4th 

8th 8.5959 8.6049 8.5794 
8.5748 8.6020 8.5842 3rd 

9th 8.4976 8.5059 8.4820 
8.4595 8.4838 8.4731 2nd 

10th 8.3610 8.3721 8.3462 
8.3035 8.3218 8.3014 Ist 



Table 3. The weights of ten nets (without larvae) weighed twice daily, 
morning and afternoon, on three separate days. 

a. M. 
order 

Day 1 
(Mg. ) 

Day 2 
(Mg. ) 

Day 3 
(mg. ) 

p. M. 
order 

Ist 6.8455 6.8512 6.8423 
6.8699 6.8881 6.8855 10th 

2nd 6.3805 6.3854 6.3704 
6.3911 6.3953 6.4000 9th 

3rd 6.7261 6.7326 6.7211 
6.7274 6.7378 6.7377 8th 

4th 5.9764 5.9807 5.9717 
5.9690 5.9814 5.9744 7th 

5th 6.2653 6.2692 6.2624 
6.2473 6.2645 6.2554 6th 

6th 6.4160 6.4216 6.4088 
6.3867 6.4038 6.3916 5th 

7th 9.4920 9.5184 9.4975 
9.4523 9.4811 9.4641 4th 

8th 6.7377 6.7537 6.7385 
6.6942 6.7167 6.7006 3rd 

9th 6.9943 7.0084 6.9990 
6.9363 6.9589 6.9441 2nd 

10th 7.2816 7.2947 7.2836 
7.2016 7.2206 7.1989 Ist 



Table 4. The weights of S. carcini larvae during their development, 
using the aluminium foil boat method. 

Male Larvae Female Larvae 

weight per larva weight per larva 
Stage (pg. ) (pg. ) 

II 0.85 (65) 0.58 (67) 

III 0.79 (28) 0.50 (32) 

IV 0.74 (74) 0.54 (26) 

Cyp. 0.41 (49) 0.29 (27) 

The figures in brackets denote the number of larvae in each boat. 
The full data is in appendix Table 5. 

Table 5. The weights of three aluminium foil boats at hourly 
intervals, on one day. 

Boat 1 Boat 2 Boat 3 
(Mg. ) (Mg. ) (Mg. ) 

22.8509 20.9139 179819 

22.8511 20.9141 17.9820 

22.8511 20.9140 17.9821 



Table B. Percentage ash Ct S. D. ) present in the eggs and larvae of 
Sacculina carcini, and their dry organic weights. 
The percentage ash without standard deviations are from an 
average of two values. 

Male Larvae . Female Larvae 

Stage 7 Ash Organic Weight % Ash Organic Weight 
(pg .) 

Egg n. d. n. d. 6.16 n. d 

I 5.70 ± 0.09 n. d. 6.97 s 0.18 n. d. 

II 5.18 ± 0.08 0.81 5.98 ± 0.24 0.55 

III 6.97 ± 0.58 0.74 7.01 0.47 

IV 5.99 ± 0.20 0.70 7.70 ± 0.79 0.50 

Cyp. 8.86 0.37 6.30 1 1.92 0.27 

N. L 

For total dry weights of the larvae (including ash), see Table 4, 

The percentage error using three empty boats was, 0.02y 1 0,01% 

The percentage ash in Stage I Elminlus modestus was 8.25% ± 0-05%. 

n. d. = not done. 



Table 7. Dry weights per individual, obtained by direct drying and 
weighing, compared to those weights calculated using the formula 
4/3n abl"5c for two species of cirripede larvae, and 4/3n abc 
(Lawrence g. t. 1 1987), for the eggs of one of these species. 

Species Stage Direct 
weight 
(µg. larva-' ) 

Calculated 
weight 
(µg. larva-' ) 

Author 

S. carcini II 0.85 0.47 This study 
(male III 0.79 0.50 (weights and 
larvae) IV 0.74 0.53 dimensions) 

Cyp. 0.41 0.33 

S. carcini II 0.58 0.30 This study 
(female III 0.50 0.33 (weights and 
larvae) IV 0.54 0.33 dimensions) 

Cyp. 0.29 0.21 

E. modestus II 0.41 1.19 Harms (1987) 
(larvae) III 0.75 1.39 (weights) 

IV 1.47 2.00 Knight-Iones(1949) 
V 2.62 2.78 (dimensions) 
VI 5.19 3.10 
Cyp. 5.81 2.33 

B. balanoides 1 1.32 0.26 Lucas & Crisp 
(eggs) 2 1.30 0.25 (1987) 

3 1.29 0.26 (weights and 
4 1.33 0.26 dimensions) 
5 1.25 0.28 
6 1.21 0.29 
7 1.20 0.29 
8 1.15 0.29 
9 1.17 0.32 
10 1.10 0.34 
11 1.04 0.39 
12 1.07 0.45 



Figure 1, To show ammonium formate 
osmolarity at different concentrations 
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Figure 2. Weights of a plankton net over 
30 minutes on two separate days. 
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CHAPTER V SACCULINA CARCINI: LARVAL RESPIRO? 4ETRY 

Respiration rates for small free-swimming organisms, such 

as the larvae of Sacculina carcini, can be accurately measured 

under conditions approaching those of their natural environment, 

using a method based upon the Clarke-type oxygen electrode system 

(Davenport 1976). With a microrespiration cell, oxygen-uptake 

levels are generally found to be a good indirect measurement of 

the rate of energy utilisation assuming that respiration is fully 

aerobic (Crisp 1971). In the case of non-feeding or starved 

larvae, these respiration rates may be compared with 

biochemically determined losses (Crisp 1984). This investigation 

was carried out to monitor the metabolic rates of male and female 

£ carcini larvae throughout their development and under different 

temperature conditions. 

MATERIALS AND METHODS 

Two Strathkelvin R. C. 200 microrespiration cells, 

connected to a J. J. Lloyd graphic 1002 two-pen chart recorder were 

used to measure larval respiration rates. The two respiration 

chambers and plungers were always cleaned in sequence. Firstly 

they were filled with a 17. Chloros (sodium hypochlorite) solution 

and thoroughly rinsed with deionised distilled water before 

calibration to 50 µl. volume, using a Precision micropipette. Any 
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seawater used was fine filtered and U. V. -irradiated. The chart 

recorder was switched on and the respirometers were calibrated 

for 0% and 100% oxygen concentration levels, with sodium 

dithionate dissolved in seawater and fresh seawater respectively. 

At this point, fresh seawater was pipetted into the chambers, the 

plungers inserted and the respirometers left to run as blanks for 

one hour. The chambers were then rinsed with seawater before 10 - 

100 larvae were introduced into each one. The swan necks of a 

Volpi intralux 250HL cold light were directed at the chambers to 

keep the larvae active and oxygen uptake allowed to proceed for 

40 minutes. This was the optimum time that a constant slope could 

be achieved on the chart recorder, making sure that the oxygen 

concentration level did not fall below 807 saturation (Belman & 

Childress 1973). 

The larvae were carefully pipetted out of the chambers 

into two Bogorov trays and counted under a Wild M3Z binocular 

microscope, while another blank run was carried out in the 

respirometers. Thus the average consumption rate for each oxygen 

electrode was calculated each day and subtracted from that 

obtained for the larvae. 

Initially, the respirometry was carried out at 18"0'C t 

0.1'C, for different larval stages from the same broods, measured 

on consecutive days. This was the temperature at which the 

parasitised crabs were maintained. Subsequently, the respiration 

rates at 18.0'C ± 0.1'C and 10.0'C 3 O"1'C were measured each 

day. Sacculina carcini nauplii remain as stage IV for two days, 

so it was at this point, that the respiration rates for one brood 
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were measured at 6.0'C, 8.0'C, 12.0'C, 14.0'C, 16.0'C, 20.0'C, 

22.0'C and 24.0'C (all t 0.1'C), with no acclimation. 

RESULTS & DISCUSSION 

Respiration rates measured in il. 02h. -1ind. -' at 18.0'C 

and 10.0'C for male and female S. carcini larvae, at each stage of 

their development, are shown in Tables 1,2,3, and 4. Table 5 

shows the data measured at 18.0'C converted to ml. 02h. -'g. -ldry 

weight, for each larval stage. The results from the experiments 

to measure the rates of oxygen consumption for male stage IV 

nauplii at different temperatures, are given in Table 6 and 

Figure 1, with the rates at 10.0'C and 18.0'C taken from previous 

stage IV measurements. 

To minimise handling time, an approximate number of 

larvae was pipetted into the respiration chambers and accurate 

counts taken after each experimental run was completed. No 

stirrer was necessary as the larvae were active. The number of 

larvae within each chamber was low, to prevent any contact 

interaction in the 50 µl. volume and to facilitate counting 

afterwards. Depending on the time available, two or three blank 

runs were carried out each day and the mean oxygen consumption 

was calculated. A consistent rate of between 0.01 and 0-02 

µ1.02h. -' was observed for the electrodes, However, due to the 

small numbers of larvae and their relatively low metabolic rates, 

the electrode consumption often constituted up to 50% of the 
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total oxygen consumed. Nevertheless, it was evident that the 

respiration rates obtained were clearly repeatable, as seen in 

Tables 1*5, thus endorsing the accuracy of the method. 

Observations of S. carcint cyprids showed that when they 

were photopositive, they were very active, swimming regularly in 

short bursts. However, at another time, often on the same day, 

this activity level would drop and they were no longer 

photopositive. From the oxygen consumption rates obtained, it was 

clear that when the mean rates were calculated for male and 

female cyprids at 18.0'C ± 1.0'C, the standard deviations from 

the mean were high (i. e. 0.76 t 0.38 µl. 02h. -' ind. -' and 0.64 t 

0.32 µ1.02h. -'ind. -', respectively. ). It was considered that the 

two observed levels of activity were reflected in these results. 

The data was then separated into two sets, with those rates 

greater than and less than 0.75 µl. 02h. -'ind. -'. The means and 

standard deviations of these two data sets were calculated. An 

analysis of variance carried out on these two sets of data for 

male cyprid respiration at 18.0'C, showed the rates to be 

significantly different at the 5% level (F = 5.63; P=0.05). 

Therefore it is acceptable to separate the data in this way (see 

Table 5). 

The largest standard deviation from the mean, for a 

particular larval stage, was found at stage II, for both males 

and females. When a brood is released, it comprises a mixture of 

eggs, stage I and stage II nauplii. Eggs hatch to stage I's which 

in turn, rapidly moult to stage II's within a few minutes, 

Hagerman (1976), when studying the brackish water shrimp, Crangon 
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vulgaris, noted an increase in oxygen uptake just before and just 

after a moult. He proposed that more energy was required to 

regulate the physiological processes within the animal at this 

stage. The rate recorded for stage I S. carcini nauplii, was the 

highest rate per individual at 1.17 il. 02h. -'ind. -' (see Table 5) 

and those recorded for stage II varied considerably. At this 

time, the larvae are very active and photopositive, presumably 

increasing their chances of dispersal in surface waters. 

In the normal temperature range of a poikilotherm, 

respiration increases with increasing temperature (Barnes, Calow 

& Olive 1989). As with most chemical reactions responding to 

temperature, this is not a linear relationship. Taking this into 

account, the Q, o index is widely used to indicate the effect of 

temperature on metabolism. The respiration results at 18.0'C and 

10.09C gave Q, o values ranging from 1.65 a 2.60 (see Table 8) 

over the full larval development of Sacculina carcini. Barnes and 

Barnes (1958) reported a Q10 of 2.2 for the duration of stage I 

Balanus balanoides and Tighe-Ford e _, 
j (1970) found a 

temperature coefficient of 2 for total larval development of 

Elminius modestus. The Q, o values calculated for male stage IV 

S. carcini nauplii (shown in Table 7) vary from 1.21 a 2.86, 

demonstrating a relatively temperature-independent range, often 

found when animals are readily adapted to that particular 

temperature range (Wieser 1973). There were two notable 

exceptions however (Table 7). Between 6. O'C and 8.0'C a Q10 of 

5.06 was calculated. From an earlier experiment (Chapter II, this 

study) it was observed that below 7.0'C male nauplii were unable 
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to complete larval development and were not able to progress 

beyond stage II, whereas between 7'0'C and 8"0'C the nauplil were 

capable of metamorphosis to the cyprid within 16 days. The fact 

that S. carcini nauplii are not well adapted to low temperatures 

is reflected in this high Q10 value and was demonstrated by those 

observations (this study), when larvae were incapable of moulting 

successfully, possibly due to the inability of certain enzymes to 

work at these temperatures. A similar situation occurs with 

Elminius modest us (Harms 1987). Between 12"0'C 18.0'C the Q, a's 

for stages II and IV were 4.50 and 4-95 respectively, whereas 

between 18.0'C a 24.0'C the same stages showed Q, o values of 1.41 

and 1.71. Harms (1987) commented that this may reflect the 

original subtropical habitat of the species (Luckens 1976, Foster 

1978). Another high Q, e value was noted for stage IV S. carcini 

nauplii between 12.0'C and 14"0'C. The respiration rates measured 

at 12.0'C were particularly low and the mean figure does appear 

to deviate from the general trend (see Figure 1). This may be a 

spurious result. 

The relationship between metabolism and body size for the 

animal kingdom is based on the fact that less oxygen is used on a 

weight specific basis as body size increases (Hemmingsen 1960). 

This is not the case for Balanus eburneus larvae (see Table 9) 

where the weight specific oxygen uptake increases by 60% from 

stage I to stage VI nauplius (Jorgensen & Vernberg 1982). 

Anderson (1975), when studying the larval stages of the parasitic 

isopod Probopyrus pandalicola, noted a similar situation. He 

proposed that the metabolic rate correlated more closely to the 
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"mode of existence". The low values for the free-living stage and 

higher values for the parasitic stage reflected the latter's need 

to synthesise relatively large amounts of protein required during 

development. Other workers have studied the oxygen consumption of 

marine invertebrate planktotrophic larvae including Ostrea 

edulis veliger 1, Mytilus edulis veliger 2, Littorina littorea 
r 

veliger 3, with resulting values of 1-66-4-80,2-26-2.77 and 

1.95-4'63 ml. 02h. -'g. -'dry weight, respectively (see Zeuthen 1947 

and Walne 1966). These rates are close to those of the cirripede 

larvae listed on Table 9, except for Balanus eburneus nauplii. 

Lucas & Crisp (1987) measured the weight specific oxygen 

consumption rate for Balanus balanotdes eggs during 

embryogenesis. Although a decrease in dry weight was observed 

during developoment, an increase in egg size was noted and weight 

specific oxygen consumption rates increased from 0.05 to 0.45 

ml. 02h. -' g. -'dry weight, measured at 10'C. Shilling & Manahan 

(pers. comm. ) measured the metabolic rate of one-day old embryos 

of the echinoderm Strongylocentrot us purpuratus at 17'C. From two 

spawnings, maintained in natural seawater, weight specific 

respiration rates were recalculated as 2.43 and 2.57 

m1.0ah. -'g. -' . The higher metabolic rates of these echinoderm 

embryos may be due to their active uptake of dissolved organic 

material from the seawater, as proposed by Shilling & Manahan 

(pers. comm. ). Although there appears to be a paucity of data on 

the respirationm rates of lecithotrophic larvae, Jaeckle & 

Manahan (1989b), when studying the energy budget for the non- 

feeding larvae of the gastropod mollusc, Haliotis rufescens, at 
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179C, measured the respiration rate. Their data gave an 

equivalent larval respiration rate of 1.26 ml. O2h. -'g. -'dry 

weight, which is in accord with the rates reported for Sacculina 

carcini larvae (this study). The modified cyphonautes larva of 

the bryozoan Bugula neritina however, which was reported by Crisp 

(1976, from unpublished data by Crisp & Vernberg) to have a 

respiration rate of 10.0 ml. 02h. -'g. -'dry weight, does appear to 

have a very high respiratory rate for a lecithotrophic larva (see 

Table 10). This larva is short-lived and can settle within 12 

hours from release. 

Oxygen consumption is dependent on many different 

physiological processes, including basal metabolism and swimming 

activity for lecithotrophic larvae. For planktotrophic larvae 

this includes contributions for feeding and growth (Clarke & 

Morris 1983). Basal metabolism comprises protein catabolism, 

membrane lipid turnover, ion pump activity and nervous activity 

(Clarke 1983). These processes serve to keep the animal alive. 

When considering the respiration rates measured for the larvae of 

several cirripede species (Table 9), it is evident that Balanus 

balanoides cyprids, at the exploring stage, exhibit an 

exceptionally low respiratory rate of 0.63 ml. 02h. -'g. -'dry 

weight (Lucas 1980). The weight specific oxygen consumption rates 

for cyprids from all the species listed in Table 9 are lower than 

those for their corresponding earlier naupliar stages and was 

admirably demonstrated for Balanus eburneus with an eight-fold 

drop in the rate from the stage VI nauplius to the cyprid 

(Jorgensen & Vernberg 1982). These weight specific oxygen 

-76- 



consumption rates for the non-feeding cypris stage, correlate 

closely with the figures observed throughout the lecithotrophic 

larval development of S. carctni (Tables 9& 10). The values in 

these tables will be used, in conjunction with the biochemical 

constituents determined, to calculate an energy budget for the 

larvae of Sacculina carcini (see Chapter VI). 
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Table 1. The respiration rates of male Sacculina carcini larvae at each stage, 
measured in µl. 02 h. -' ind. -' x 10-3, at 18.0'C ± 0-11; 

-. 
CH = chamber of 

respirometer; the small figures denote the number of larvae in the 
chamber; I. II, III, IV = nauplius stage; Cyp = cypris stage; 
different larval batches are separated by a line. 

CH Day 1 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 12 Day 15 Day16 
I II III IV IV Cyp. Cyp. Cyp. Cyp. Cyp. Cyp. 

m 1.16 1.04 0.61 0.89 0.82 0.52 0.39 0.48 
57 23 39 39 34 97 23 12 

0 1.17 1.04 0.90 1.00 1.12 0.90 1.12 0.42 
sr. 22 34 40 97 41 87 12 

0.89 
36 

0 1 19 
40 

0.82 1.07 0.43 0.37 0.48 
20 30 72 GB 223 

0.89 0.96 1.12 1.10 1.22 
25 33 23 30 3e 

0.86 1.05 0.99 0.33 0.39 
69 28 42 44 20 

m 0.95 0.93 1.08 0.98 1.26 1 
52 41 42 36 17 

0 0.63 0.86 0.93 1.04 
34 14 23 40 

0 0.87 0.87 0.82 0.96 
24 20 37 46 

0.65 1.12 
42 10 

0.66 1.38 
43 13 

0.49 1.14 
94 1A 

0.62 1.30 
I 40 17 

0.82 
2s 

0.83 
34 

0.34 0.38 
Z7 70 

0.34 0.43 
70 20 

m 0.86 0.47 
31 19 



Table 2. The respiration rates of female Sacculina carcini larvae at each stage, 
measured in µl. 0z h. -' ind. -' x 10-3, at 18.0'C ± 0.1'C. CH = chamber of 
respirometer; the small figures denote the number of larvae in the 
chamber; I, II, III, IV = nauplius stage; Cyp = cypris stage; 
different larval batches are separated by a line. 

CH Day I Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 12 Day 13 Day 14 
II III IV IV Cyp. Cyp. Cyp. Cyp. Cyp. Cyp. Cyp 

m 0.45 0-62 0.63 0.81 0.48 
91 27 39 99 2® 

0 0.50 0.65 0.80 0.82 0.44 
31 2S 34 42 is 

0 0.88 0.65 0.55 0.55 
419 25 L1 31 

m 0.111 0.83 0.65 0.64 0.45 
26 30 33 35 27 

m 1.34 0.78 0.83 0.86 1.40 0.43 "43 0.51 
27 30 40 19 13 39 23 10 

m 1.00 0.83 0.90 0.76 1.21 0.63 0.46 0.57 
on 33 46 303 17 24 10 16 

0 0.67 1.10 
46 is 

m 0.69 0.45 
39 12 

0 0.89 0.29 
46 to 

m 0.89 0.48 
02 43 

m 1.18 "35 23 S9 

m 0.90 1.03 
60 13 

0 0.80 
36 

m 0.94 "38 66 Z 

0 0.76 1.00 
40 21 

0.74 0.89 
3: 20 

The electrolyte was changed in the respiration chamber after 
this reading, which was not included in the calculations. 



Table 3. The respiration rates of male Sacculina carcini larvae at each stage, 
measured in µl. 02 h. -lind. -' x 10-3, at 10.0'C ± 0.1'C. CH = chamber 
of respirometer; the small figures denote the number of larvae in the 
chamber; I, II, III, IV = nauplius stage; Cyp = cypris stage; 
different larval batches are separated by a line. 

CH Day I 
II 

Day 2 
III 

Day 3 
IV 

Day 4 
IV 

Day 5 
Cyp. 

Day 6 
Cyp. 

Day 7 
Cyp. 

Day 12 
Cyp. 

Day 15 
Cyp. 

0 0.56 0.45 0.39 0.42 0.22 0.22 
33 32 SO 17 4i $1 

0.56 0.51 0.49 0.59 0.58 0.51 0.58 
4D 30 d0 30 40 34 33 

0.51 
20 

e 0.53 
AO 

0 0.41 0.51 o"50 0.43 0.49 0-23 
40 30 20 43 12 27 

m 0.47 0.56 0.50 0.45 0.60 0.48 
44 31 48 7i 7 14 

Table 4. The respiration rates of female Saccullna carcini larvae at each stage, 
measured in µl. 02 h. '' ind. -' x 10-', at 10.0'C ± 0. I'C. CH = chamber of 
respirometer; the small figures denote the number of larvae in the 
chamber; I, II, III, IV = nauplius stage; Cyp = cypris stage; 
different larval batches are separated by a line. 

CH Day 1 
II 

Day 2 
III 

Day 3 
IV 

Day 4 
IV 

Day 5 
Cyp. 

Day 6 
Cyp. 

Day 7 
Cyp. 

Day 8 
Cyp. 

Day 12 
Cyp. 

Day 13 
Cyp. 

Day 14 
Cyp. 

0 0.41 0.39 0.35 0.31 0.47 0.28 0.26 
33 35 29 30 27 « is 

0 0.57 0.39 0.46 0.25 0.38 0.28 0.31 
33 36 222 35 28 27 20 

0.48 
1z 
0.48 
20 



Table 5. The mean (± S. D. ) respiration rates of male and female S. carcini 
larvae at each stage, taken from all data (see Tables i& 2), 
measured in µ1.0; h. -'ind. '' at 18.0'C ± 0.1'C and converted 
to ml. 02h. -' g. '' dry weight. 

Stage. Mean 
individual 
organic wt. 

(µg. ) 

Average rate 
using all data. 
(pl. 02, h. -' ind. 

x10-3 

Respiration 
rate. 

(ml. 02h. 
dry weight) 

Male 
larvae 

I n. d. 1.17 ± 0.01 - 

II 0.81 0.81 t 0.23 1.00 

III 0.74 0.85 ± 0.10 1.15 

IV 0.70 0.95 = 0.10 1.36 

Cyp. 0.37 0.41 ± 0.06 1.11 
1.13 ± 0.16 3.05 

[0.76 ± 0.38* 2.0541 

Female 
larvae 

II 0.54 0.85 ± 0.26 1.57 

III 0.47 0.77 ± 0.11 1.64 

IV 0.50 0.74 ± 0.10 1.48 

Cyp. 0.27 0.45 ± 0.10 1.67 
1.11 t 0.18 4.11 

10.64 ± 0.32* 2.374] 

+ý = Cyprid respiration rates, using all the data (i. e. without 
separation into those rates greater than, or less than 
0.75 41.0; h. -' ind. '1) 



Figure 1, Oxygen consumption of Stage IV 
S. carcini, at different temperatures. 
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Table 6. The mean rates of oxygen consumption by male Stage IV 
S. carcini nauplii, at different temperatures. [The mean is 
from two results, except for 10'C and 18'C when many results 
were taken and therefore ± S. D. is given for these values. ] 

Temp. Rates of oxygen consumption. 

('C) C4,02h. -' ind. -' ) (ml. 02h. -'g. 
(± 0.1) x10-3 dry weight) 

6.0 0.33 0.47 

8.0 0.46 0.65 

10.0 0.50 ± 0.07 0.71 

12-0 0.53 0.76 

14.0 0.76 1.09 

16.0 0.92 1.31 

1810 0.94 ± 0.10 1.36 

20.0 1.02 1.46 

22.0 1.08 1.54 

24.0 1.14 1.63 

N. B, The mean organic weight of a Stage IV male nauplius was 
0 . 70 µg. [see Table 5.1. 

The rates used were an average of all the date collected 
for male Stage IV Sacculins carcini nauolii. 



Table 7. Q, 0 values, calculated for male stage IV Sacculina carcini 
larvae, using the mean respiration rates for all the data 
measured between 6-0'C and 24-0'C inclusive. 

Temperature 
range. 
CO 

6.0 - 8.0 5.06 

8.0 - 10.0 1.56 

10.0 - 12.0 1.41 

12.0 - 14.0 6.07 

14.0 - 16.0 2.51 

16.0 - 18.0 1.21 

18.0 - 20.0 1.43 

20.0 - 22.0 1.31 

22.0 - 24.0 1.33 

6.0 - 8.0 5.06 

6.0 - 10.0 2.81 

6.0 - 12.0 2.23 

6.0 - 14.0 2.86 

6.0 - 16.0 2.79 

6.0 - 18.0 2.42 

6.0 - 20.0 2.25 

6.0 - 22.0 2.10 

6.0 - 24.0 2.00 



Table 8. Q, o values, calculated for male ardfemale Sacculina carcini 
larvae, using the mean respiration rates from all the data 
measured at 18. O'C t 1-O'C and 10.0'C ± 1.0'C. 

Stage Mean respiration rates 
-'dry weight) 

Q10 

18.0'C ± 1.0'C 10.0'C ± 1.0'C 
Male 
larvae 

II 1.00 0.67 1.65 

III 1.15 0.62 2.17 

IV 1.36 0.71 2.25 

Cyp. 2.05 1.19 1.97 

Female 
larvae 

II 1.57 0.91 1.99 

III 1.64 0-83 2.34 

IV 1.48 0-69 2.60 

Cyp. 2.37 1-36 2.00 

Key: Cyp. = cyprid 

The equation used to calculate Q, values was: - 

1n Q, 10 (in R-. --1 n R, ) 
(T, - T, ) 

where R, & R2 are the respiration rates 
measured at temperatures T, & T. 



Table 9. The respiration rates of several cirripede species. The temperatures at 
which these rates were measured, by different authors are also 
included. 

Species Temp. 
('C) 

Stage Dry wt. 
larva-' 

(µg. ) 

02 consumption 
(µl. 02h. -' ind. -') 

x10-3 

°a consumption 
(m1.0. h. -' g. -' 

dry weight) 

Reference 

B. bal. 10.0 I 0.63 3.31 5.26 Lucas 
II 1.24 3.96 3.19 (1980) 
III 2.16 3.56 1.65 
IV 5.12 9.83 1.92 
V 8.41 19.81 2.35 
VI 14.81 32.73 2.21 
Cyp 33.22 36.57(s) 1.10 

21.01(e) 0.63 

B. Dal. 10.0 I n. d. 3.90 - Davenport 
VI n. d. 32.20 - (1976) 

B. ebu. 25.0 I 0.27 4.88 18.08 Jorgensen 
IV 0.68 16.52 24.29 & 
VI 1.50 50.17 33.45 Vernberg 
Cyp. 2.18 9.38 4.30 (1981) 

E. mod. 16.0 II 0.3 1.47 4.92 Bhatnagar 
to to & Crisp 
2.17 7.24 (1965) 

E. mod. 12.0 II 0-39 0.72 & 0.95 1.85 3 2.43 Harms 
III 0.71 1.67 2.35 (1987) 
IV 1.20 2.94 2.45 
V 2.33 5.34 2.29 
VI 4.27 7.28 1.70 
Cyp. 4.56 6.80 1.49 

18.0 II 0.41 1.32 & 2.32 3.22 & 5.67 
III 0.75 3.62 4.83 
IV 1.47 7.69 5.23 
V 2.62 9.95 3.80 
VI 5.19 12.10 2.33 
Cyp. 5.81 10.01 1.73 

24.0 II 0.39 2.27 & 2.86 5.83 & 7.33 
III 0.70 5.39 7.69 
IV 1.06 10.59 10.01 
V 2.45 16.35 6.68 
VI 4.39 18.33 4.18 
Cyp. 4.38 13.89 3.18 

Key: B. bal. - Balanus balanoides; B. ebj. - B31anus eburneus E. mod. - E: minius 
modestur s- swimming cyprid; e- exploring cyprid; The first rates shown 
(Harms 1987) for Stage 11 nauplii, are for newly hatched larvae. 



Table 10. Comparative table of the respiration rates of several lecithotrophic 
larvae from different phyla. 

Species 
& Stage. 

Temp. 
CO 

Dry wt. 
Larva-' 

<µg. ) 

02 consumption. 
(µl. 0;; h. -' ind. -') 

x10-3 

02 consumption. 
(ml. 02h. -' g. -' ) 

x10-3 

Reference. 

S. C. 18.0 This study 
(male) 

I n. d. 1.17 - 
II 0.81 0.81 1.00 
III 0.74 0.85 1.15 
IV 0.70 0.95 1.36 
Cyp. 0.37 0.41 Q. a. 1.11 

1.13 (h. a. 3.05 

(female) 
II 0.54 0.85 1.57 
III 0.47 0.77 1.64 
IV 0.50 0.74 1.48 
Cyp. 0.27 0.41 Q. a. 1.67 

1.11 (h. a. 4.11 

B. n. 28.0 1.5 15.00 10.00 Crisp (1976) 
Cyph. (Lucas 1980) 

H. r. 17.0 1.5 1.88 1.26 Iaeckle & 
Vel. Manahan 

(1989) 

Key: S. c. = Sacculina carcini (cirripede); B. n. = Bueula neritina (bryazoan); 
H. r. = Haliotis rufescens (gastropod); I, I, III, IV = nauplius stage: 
Cyp. = cypris stage; Cyph. = cyphonautes; Vel. = veliger; Ma. ) = high 
activity; (1. a. ) = low activity. 



CHAPTER VI : BIOCHEMICAL COMPOSITION AND ENERGY BUDGET 

The biochemical constituents contained within the body of 

a lecithotrophic larva, when it has hatched, must contain all the 

essential components for development through to the primary 

feeding stage of the animal's life. Crisp (1976) observed that 

lecithotrophs rarely survive more than 12 hours, with the urge to 

settle generally becoming irresistable after approximately 6 

hours, and many settling between one and three hours of release. 

These observations were based on the pelagic phase of the 

bryozoan, Bugula neritina, which has been noted to have a 

relatively high metabolic rate for a non-feeding larva (see 

Chapter V this study). 

However, for most larvae whose pelagic phase is 

planktotrophic, there are two critical periods when they are 

unable to obtain nutrients from the external environment and have 

to rely on their internal resources; i. e. throughout embryonic 

development and at metamorphosis (Lucas IL 121.1979 and Lucas & 

Crisp 1987). Manahan & Crisp (1983) were able to show that some 

dissolved organic compounds are taken up by the fertilised eggs 

and larvae of the bivalve Crassostrea glges. Nevertheless it is 

believed that this capacity is limited to living surfaces bearing 

microvilli and has not been demonstrated in crustaceans, which 

are surrounded by cuticle (Lucas 1980). Shilling & Manahan (pers. 

comm. ) carried out a study on the energetics of early development 
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for the sea urchins Strongylocentrotus purpuratus and Lytechinus 

pictus and the branchiopod crustacean Artemia sauna. Unlike the 

two echinoderms, A. saline was able to account for all its 

metabolic requirements from the use of endogenous reserves. 

Jaeckle & Manahan (1989b) also observed an energy imbalance 

during the development of the lecithotrophic molluscan larva, 

Haliotis rufescens, and deduced that, as long as the external 

nutrient pool was in a dissolved form this so called non-feeding 

larva can take in organics and supplement existing stores. This 

is unlikely to be the case for nauplius larvae of Sacculina 

carcini which are encased in a cuticle and develop through to the 

cypris stage within five days at 18'C. The cyprids require 

another two days before becoming competent to settle and 

subesquently metamorphose to the trichogon or kentrogon stage 

(see Hoeg 1991). Consequently, those nutrients which are required 

for development, swimming activity, settlement and subsequent 

successful metamorphosis must be contained within the fertilised 

egg. This investigation was carried out to monitor the 

utilisation of energy reserves throughout the free larval 

development of S. carcini. 

MATERIALS AND METHODS 

Broods of S. carcini larvae were collected and maintained 

at 18'C (see Chapter III). Male and female larvae were sampled at 

each stage of their development and prepared for biochemical 
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analysis. The larvae were attracted to a point light source, 

pipetted onto 45 µm. mesh plankton netting sieves and rinsed 6 

times with 3'9% aqueous ammonium formate (see Chapter IV) and 

twice with distilled deionised water. They were then washed with 

distilled deionised water, into glass vials, which were frozen at 

-196'C in liquid nitrogen. There was some doubt about the 

efficiency of the freeze-drier at this point, so the extra 

washings with distilled deionised water were a further precaution 

to avoid contamination with ammonium formate residue. After 

freeze-drying for 24 hours, the larvae were kept in a desiccator 

over CaC12. Before analysis, the freeze-dried larvae were broken 

up with a clean spatula, to increase their surface area. They 

were then stored in the desiccator overnight. Fractions from the 

same sample were taken for protein, lipid and carbohydrate 

analysis using colorimetric techniques. A gravimetric technique 

(see Folch e. -, cLI 1957) was also used to assess the total lipid 

content of male and female stage II S. carcini nauplii, After 

extraction (Folch el 1957), the fatty acids were methylated 

using a 14% boron fluoride-methanol complex (Morrison & Smith 

1964) and analysed on a Carlo Erba Vega 6180 capillary gas 

chromatograph, fitted with an Alltech carbowax 20M capillary 

column. A flame ionisation detector and a Hewlett Packard 3390A 

integrator were used to measure the peaks and calculate the 

underlying areas, which are proportional to the amounts of 

respective fraction. These lipid profiles for male and female 

nauplii were compared. 

The gravimetric lipid extraction (Folch gt gLJ_1957) was 
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used on further samples of male and female stage II S. carcini 

nauplii. Thin layer chromatography, of the resulting neutral 

lipid and phospholipid extracts, was carried out on pre-coated 

silica gel plates in a continuous solvent system. The 

phospholipid solvent was chloroform ; methanol ; acetic acid 

water, in the ratio of 65; 50: 1: 4, stained with iodine vapour and 

run in a closed tank for 90 minutes. The neutral lipid solvent 

was petroleum spirit (boiling range 40-60'C) ; diethyl ether ; 

glacial acetic acid, in the ratio of 85: 15: 1, left for 90 minutes 

at room temperature (20-25'C) then stained with iodine vapour and 

run in a closed tank for one hour. The R. f. values of the 

separated fractions were calculated. 

Colorimetric analyses 

An Eppendorf Varipette 4710 was used to dispense volumes 

in the range of 100 Al. a 1000 µl. and a Precision micropipette 

was used for 50 ul. volumes. Between 1.0 mg. and 11.0 mg. of 

dried, powdered larvae, at each stage of their development, were 

accurately weighed in aluminium foil boats on a Cahn C31 

microbalance. Each sample was homogenised with 500 ul. of 

distilled deionised water in a 1.0 ml. ground glass homogeniser, 

set in ice. The homogenate was then poured into a glass vial and 

50 µl. were pipetted into a 1.5 ml. Eppendorf polyethylene 

reaction tube, into which 150 ul. of distilled deionised water 

were added and the solution vortexed for 5 seconds. The remaining 

450 µl. of homogenate in the vial were covered and retained for 

lipid analysis, later the same day. Protein precipitation was 

then carried out on the solution in the Eppendorf tube, following 
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Figure 1. FLOW DIAGRAM 

Preparation of larvae for coloro^etric an, s1yses. 

Homogenate in 500 µl. of water 
(1.0 * 11.0 mg. dried larvae) 

3x 100 µ1.50 µ2. 

Lipid, Analysis 

Boehringer Mannheim GmbH 
Diagnostica, Test-Combination 
for total lipids, with the 
standard provided. 

Add 150 µl. water & vortex. 
Add 100 ul. cold 15% T. C. A. & 
shake for 5 =Ins. Stand at 4'C 
overnight. Centrifuge at 9950g. 
for 10 =ins. Collect 
supernatant & wash precipitate 
with 200 µ1. cold 5% T. C. A. 
Centrifuge at 9980g. for 10 =ins. 
Combine supernatant & washings. 

Supernatant 
500 Al. 

Carbohydrate Analysis 

Initial conversion of 
glycogen to glucose with 
amyloglucosidase (see text). 

Boehringer Mannheim G! nbH 
Diagnostica, Test-Combination 
for glucose. 

Precipitate 

Add 500 141.1 - ON 1130H 3r heat 
for 90 tins. at 55'C. 
Add 500 vl. 1-ON HC1 to 
neutralise the solution. 

Bio-Rad Microassay with 
B. S. A. as standard. 



the scheme adopted by Holland and Gabbott (1971). 100 til. of 15% 

trichloracetic acid (T. C. A. ) were added to the reaction tube, 

which was shaken for 5 minutes and left overnight at 4'C (see 

flow diagram, Figure D. 

The lipid analysis was carried out using a modification 

of the Boehringer Mannheim GmbH Diagnostica, Test-Combination for 

total lipids. Three, 100 ul. replicates of homogenate were 

dissolved in 2.0 ml. of concentrated H2SO4 instead of the 50 ul. 

replicate suggested. Consequently 50 ul. of conc. H. 2S04 were also 

added to the 50 µl. of standard, which was provided in the 

analysis kit, to compensate for this volume change. The reason 

for doubling the test volumes was to increase the lipid content 

and therefore improve the accuracy of the readings, taken at a 

wavelength of 530 nm., on the Cecil instruments C. E. 303 Grating 

Spectrophotometer. The absorbances were read and the percentage 

lipid in each sample was calculated and compared with the 

standard. 

The following day, the samples for protein analysis were 

centrifuged for 10 minutes at 9980 g. in an Eppendorf 5412 

centrifuge. The supernatant from each tube was pipetted out and 

retained. At this point 200 al. of 5% T. C. A. were added to the 

precipitate and the tubes centrifuged for another 10 minutes at 

9980 S. The supernatant was pipetted into that already collected 

and maintained at -20'C, for carbohydrate analysis at a later 

date. The precipitated protein was then dissolved in 500 µl. of 

1.0 N NaOH and heated for 90 minutes at 56"C, using an Eppendorf 

Thermostat 3401 heating block, to completely solubilise the 
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protein. The solution was then neutralised. with 500 Al. of 1-0 N 

HC1, before protein analysis was carried out following the Bio- 

Rad Microassay procedure using Bovine Serum Albumin standard. The 

same spectrophotometer was used to read the absorbances at a 

wavelength of 595 nm. and the percentage protein was calculated 

from the standard curve. 

Carbohydrate content was estimated following the method 

of glycogen determination described by Keppler and Decker (1974) 

and modified by Peek (1987). The 500 Al. sample of deproteinised 

supernatant was added to 500 Al. of amyloglucosidase enzyme (1mg. 

ml-1 in 0.2 M sodium acetate, pH 4.8), to convert the free sugars' 

to glucose. The solution was heated in an Eppendorf tube for 2 

hours at 37'C using the heating block, and was mixed every 15 

minutes. Analar D+ glucose was made up into six solutions of 

known concentration. Following the Boehringer Mannheim GmbH 

Diagnostics Test-Combination for glucose, absorbances were read 

for these six solutions, the kit standard and for the sample, on 

the same spectrophotometer at a wavelength of 610nm. A standard 

curve was drawn, using the absorbances for the six solutions of 

known concentration, from which the glucose concentration of the 

kit standard was read. The expected glucose concentration of the 

latter was 18.2 µg. ml. -' and the reading from the standard curve 

was 18.0 µg-ml. -'" Unfortunately, absorbances for the sample were 

so low that they were not readable on the scale. Although a low 

carbohydrate content was expected, it was assumed that there had 

been insufficient enzyme to convert all the free sugars present 

in the 500 µl. sample, to glucose during the enzyme reaction. A 
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second experiment was carried out using a smaller aliquot of the 

deproteinised supernatant (i. e. 100 µl. of supernatant with 500 

µl. of enzyme). Absorbances for the sample were once again, 

barely detectable. Consequently an experiment was carried out to 

check that there had been complete conversion of glycogen to 

glucose. Fresh enzyme, amyloglucosidase (1 mg. ml-' in 0.2 M 

sodium acetate buffer, ph 4.5) was prepared. Samples of male and 

female stage II S. carcini larvae were homogenised with distilled 

deionised water, at concentrations of 10.872 mg. ml. -' and 10.808 

mg. ml. -', respectively. A sample of glycogen from Mytilus edulis 

Type VII (Sigma), was also prepared in a 0.1 M sodium acetate 

buffer (pH 4.5) at a concentration of 1-106 mg. ml. -l- To each 

200 µl. aliquot of sample, 100 µl. of enzyme were added. Once 

again samples of the larvae gave zero readings on the 

spectrophotometer. 

The results from the gravimetric analysis for the 

extraction of total lipid and the separation into neutral lipid 

and phospholipid are given on Table 1, with tracings from the 

thin-layer chromatography (T. L. C. ) plates for neutral lipid and 

phospholipid on Figure 2- Table 2 gives the R. f values calculated 

for the T. L. C. standards and experimental samples. The fatty acid 

composition of the triacylglycerols of male and female stage II 

S. carcinl nauplii are in Table 3. 
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Results from the colorimetric analyses are given in Table 

4 and Figures 1&2, with the exception of carbohydrate. For the 

single carbohydrate analysis that produced a detectable reading, 

the percentage present in a stage II nauplius was calculated as 

0.07% of the ash free dry weight. It was noted however, that 

glycogen from the Mytilus edulis sample was successfully 

converted to glucose (the expected conversion factor was 0.96 - 

Peek 1987) when the observed conversion factor was 0.97. 

Consequently carbohydrate figures are not included in Table 4, 

but it was considered that any estimation of carbohydrate, 

present in S. carcini larvae could be calculated from the data 

obtained by Holland (1978, from unpublished data - Holland 1976), 

which gave the carbohydrate content as 3.3% of the total dry 

weight for the ' S. carcini nauplius'. For Balanus balanotdes 

cyprids, Holland & Walker (1975) measured the carbohydrate 

content as 3.5% of the cypris total dry weight. This level was 

recorded as 6.1% of the ash free dry weight, by Lucas ft M, 

(1979) but barely altered during the 8 week period that the 

cyprids were studied. 

The loss of biochemical constituents observed between 

larval stages was converted into a predicted respiration rate for 

that larval stage, to determine whether lipid or protein was the 

main energy source for metabolism. The calorific equivalents used 

were those given by Crisp (1971). 
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If X µg. = lipid loss over 24 hours per larva. 

Xx9.45 =Yx 10-3 Gals. 

1000 

Yx 10-3 =Zx 10-6 ml. 02 J. e. Zx 10-2 µ10O2 

4.8 

Zx 10-2 =Ax 10-3 91.03h, -' ind. -' 

A back calculation was also carried out, using the 

measured respiration rates, to predict the amount of biochemical 

component lost over that period, due to metabolism. The results 

of these calculations are given in Table 5, together with the 

estimates of biochemical losses due to excretion and the loss of 

exuviae. Both these factors were estimated relative to larval 

size. Figures for excretion rates, as total nitrogen, were taken 

from Lucas (1980) and converted to µg. of protein for the larval 

weight and duration of each stage of Secculina carcini larvae. As 

the exuviae of S. carcini larvae were not weighed, an estimation 

was made, based on data from Harms' (1987) study on Elminius 

modestus. The exuviae (Harms 1987) accounted for 5.5% - 8.7S of 

the total dry larval weight and although the total dry weight of 

the nauplius only increased 1.07 fold to that of the cyprid, the 
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exuvia weight increased 1.30 fold. Consequently, an average 

figure of 7.5% of the total dry larval weight of a stage II 

S. carcini nauplius was adopted for the exuvia weight of each of 

the naupliar stages and this figure was multiplied by 1.30 for 

the cypris exuvia. 

The lipid and protein content of female stage III and IV 

S. carcini nauplii appear to be the same. This cannot be the case 

in reality as the stage III nauplius is active for 24 hours'at 

18.0'C before moulting to the stage IV nauplius. This discrepancy 

occurred as a result of the calculation, using the percentage 

biochemical constituent present in the total dry weight of the 

larva. The dry weights were seen to rise from stage III to IV 

which is very unlikely to be the case in life. In order to 

calculate the energy budget for the female nauplii, the stage III 

and IV data were therefore amalgamated to give an overall larval 

period of 72 hours. 

The total lipid extraction and subsequent gravimetric 

analysis for the stage II nauplii, gave notably differing figures 

for male and female larvae. The freeze-dried male nauplii, which 

contained 26.9% total lipid, had been retained in a desiccator 

for 6 months at room temperature prior to analysis. The females 

containing 14.5% total lipid had spent one month in a desiccator 

prior to analysis and the other female sample, with 9.1% total 
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lipid, was analysed immediately following the freeze-drying. 

Thus, low lipid content did not correlate with a long period in 

the desiccator at room temperature. However, it is possible that 

the unsaturated fatty acids present in the lipid fraction may 

have become oxidised, particularly as the desiccators were not 

flushed out with nitrogen when the freshly freeze-dried larvae 

were stored in them. The host crabs, bearing the mature externae 

from which the S. carcini larvae were released, were all males of 

similar size exhibiting a similar degree of feminisation. It was 

noted that they had been maintained in the holding chambers for 

different lengths of time. The male S. carcini larvae had been 

released from the mature externs on a crab that had been held for 

2 months, compared to 7 and 8 months for the other two crabs. 

Whether these observations relate to the energetic content of the 

parasite larvae is not known, but may be worth taking into 

consideration and certainly needs further study. 

The analysis of neutral lipids and phospholipids by thin- 

layer chromatography (T. L. C. ) was carried out on two separate 

occasions, a month apart. This may be the reason for slight 

differences in some of the R. f. values for the identification 

standards (see Table 2). The neutral lipid fractions for male and 

female larvae were very similar (see Figure 2& Table 2), with 

the triacylglycerols being the dominant group, particularly in 

the female larvae. The methyl ester, which is man-made, was 

incorporated to increase the volatility of the standards and 

samples. Consequently, the spots corresponding to those of methyl 

ester for male and female larvae are probably due to glycerol 
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ether. There was no spot to correspond with the free fatty acid 

standard on the female neutral lipid plate, although possibly 

this group, of which one may expect a presence of more than 1% or 

2%, may have run on to the 24% R. f. value. The phospholipid 

T. L. C. plates also gave similar results for male and female 

S. carcini nauplii. In this case it was only the phosphatidyl 

serine standards which had different R. f. values. Phosphatidyl 

ethanolamine, for both male and female nauplii showed a small 

difference in R. f. value from the standard. This phospholipid 

together with phosphatidyl choline is a classic component of 

animal tissue. Some iodine staining was observed close to the 

solvent front on both male and female phospholipid T. L. C. plates. 

Neutral lipid would be expected in this region but, having 

already been separated out, the staining may be due to 

glycolipids. 

The fatty acid compositions of male and female stage II 

S. carcini nauplii, analysed by gas liquid chromatography (G. L. C. ) 

are not strictly quantitatively comparable as the results for the 

females cover the total lipids present, whereas the males are 

separated into neutral lipid and phospholipid fractions. However, 

as the only other main component of the lipid complement is made 

up of the membrane glycolipids, which represent a small fraction 

quantitatively, relative comparisons for male and female nauplii 

may be made. The fatty acids present in the larvae of S. carcini 

must result from endogenous de novo synthesis, together with 

uptake from the host crab haemolymph via the rootlets of the 

adult parasite. Palmitic acid (16: 0) which is synthesised de novo 
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as the normal end product of fatty acid synthesis in animals 

(Holland 1987), is present in the male and female naupili at 

21.18% & 19.49 and 14.18 respectively. By chain elongation, 

palmitic acid is converted to stearic acid (18: 0), which occurs 

in both male and female larvae at between 6% and 11%. Although 

stearic is the most common saturated fatty acid to be found in 

animal tissue there is less stearic than palmitic found in 

S. carcini, which is also the case for Balanus balanoides adults 

(Holland 1987) and is often a feature of lipids in marine 

organisms. The mono-unsaturated fatty acids, palmitoleic 

(16: 1(67), oleic (18: lcA9) and cis-vaccenic (18: 10) constitute 

more than 55% of the triacylglycerol fatty acid complement for 

both male and female S. carcini nauplii. These fatty acids could 

be readily synthesised de novo by desaturation of 16: 0 and 18: 0 

fatty acids. Certain poly-unsaturated fatty acids, termed 

essential fatty acids, are important for optimum growth, 

development and other physiological processes at the cellular 

level. Arachidonic acid (20: 4m6), was present at approximately 1% 

to 2-5% in male and female S. carchni larvae respectively. 

Eicosapentanoic (20: 5(A3) and docosahexanoic (22: 60) acids, which 

are prominent marine lipids, found in large amounts in Balanus 

balanoides adults (Holland 1987) and E1minius modestus (Took 

1978), were only present in percentage terms of 3.30 & 3.19 and 

1.24 & 3.01 respectively in male S. carcini larvae compared to 

10.34 and 7.44 in the females and was the one striking difference 

in fatty acid composition between the male and female nauplii. 

This however, may be an artefact due to the storage of the 
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freeze-dried male larvae. The female larvae used for this 

analysis were taken straight from the freeze-drier. These 

essential fatty acids cannot be synthesised de novo by animals 

(Moreno g. 1979) and a precursor, principally linolenic acid 

(18: 3w3) must be provided from previous food sources. For adult 

Balanus balanoides feeding on a wide range of planktonic 

organisms, a deficiency in essential fatty acids should not occur 

Even when starved over the winter, they are able to 

conserve essential fatty acids and utilise non-essential fatty 

acids as their energy reserve. The adult S. carcini, situated 

within the host crab is unlikely to experience starvation, 

although the nutrient levels in the haemolymph may vary 

seasonally. Any variation in nutrient acquisition by the adult 

parasite may be reflected ultimately in the amount of stored 

energy in its larvae. 

From the colorimetric analyses carried out on the larvae 

of S. carcini, it is evident that the percentages of the 

biochemical components accounted for were variable for the male 

larvae, but more consistent for the females (see Table 4). It is 

likely that the total protein content of the larvae is not 

readily accessible and may include residual proteins bound up in 

the cuticle. Crustacean cuticle is made up of a protein-chitin 

mixture (Neville 1975). Chitin has a chemical similarity to 

cellulose but with an acetamido group on the C-2 atom compared to 

the hydroxyl group in cellulose. However, Neville (1975) states 

that proteins are the main component of cuticle. Attwood & Zola 

(1967), when studying the chitin-protein ratio in the horny pen 
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of the cephalopod species Loligo, noted that some of this protein 

can be extracted by mild methods, whereas some may be covalently 

bound to chitin and therefore not readily extracted. After urea- 

extraction on Loligo pen, to solubilise the readily accessible 

protein, this material was subjected to a further extraction to 

determine the chitin-protein ratio in the remaining residue 

(Attwood & Zola 1967). The first alkaline extraction was for 5 

hours at 20'C in 0.01N NaOH and the proportion of chitin to 

protein remaining was 0.6 : 1.0. Thus, most of the protein in the 

chitin-protein complex was still bound up. After the second 

alkaline extraction for 5 hours at 50'C in 1-ON NaOH, a mean 

figure of 57% of the material was solubilised. A further alkaline 

extraction gave another 47, into solution. These solubilised 

fractions together constitute the protein liberated from the 

chitin-protein complex. The Lo1igo pen was made up of some 

readily accessible water-soluble protein, together with a chitin- 

protein complex, 61% of which was also solubilised after the 

three alkaline extractions. Unfortunately, the initial water- 

soluble protein, released by urea extraction, was not presented 

as a percentage of the original material (Attwood & Zola 1967). 

From the information available on crustacean cuticle, 

Welinder (1974) observed 36.5y chitin was present in the 

unhardened cuticle of Astacus fluviatilis compared to 71.0% in 

the hardened cuticle. These results correlated well with those 

reported by Drach & Lafon (1942) for the pre-exuvial and 

postexuvial cuticle of Cancer caLrurus and Mala squinado. However, 

with the paucity of information, in percentage biochemical terms, 
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for cirripede cuticle, and following the arguments above, it was 

decided to assume a total protein figure for S. carcinl exuvia to 

approach 66%. The protein extraction employed on the larvae of 

S. carcini (this study) is comparable to the alkaline extractions 

carried out by Attwood & Zola. Therefore it is evident that there 

is always protein bound up in the chitin-protein complex, which 

is inaccessible to analysis and may be termed residual protein. 

Thus, 66% of the S. carclni exuvia weight was regarded as protein. 

There is also lipid in the cuticle, but some biochemical 

components may be resorbed before the exuvia is shed. 

The other biochemical component - carbohydrate - was 

barely detectable in this study and from reports on the 

biochemical composition of the cypris larvae of Balanus 

balanoides, with time (Holland & Walker 1975 and Lucas 
,. 

1979), it was noted that the carbohydrate level remained 

relatively stable throughout. Consequently, when considering the 

carbohydrate content of 'the S. carcini nauplius', as determined 

by Holland (1978 from unpublished data 1976), it was not 

considered pertinent to incorporate this value as a further 

estimation in Table 4. 

As the colorimetric analyses were carried out in the 

summer months, the male larvae had been collected, freeze-dried 

and stored in a desiccator at room temperature for more than 6 

months, whereas the females were prepared 1 month prior to 

analyses. It is not known whether a prolonged period in the 

desiccator was detrimental to the biochemical content of the 

larvae other than to the fatty acid composition. 
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From the respiration rates recorded, over larval 

development and the calculated oxygen consumption rates due to 

protein loss alone (see Tables 4& 5), the metabolism of 

S. carcini larvae is not protein driven. However, there are 

anomalies in the figures for the calculated oxygen consumption 

rates due to lipid loss alone, compared to the observed rates, 

particularly for male stage II nauplii. "From colorimetric 

analysis, 23-5% lipid was recorded to be present in the male 

stage II nauplius and 16.0% for the female stage II nauplius. 

These results correlate well with those determined by gravimetric 

analysis (see Table 1). Nevertheless the lipid levels for other 

male larval stages are all relatively low for some reason. Thus, 

a considerable lipid loss is noted from stage II to stage III for 

the male larvae, which results in a very high predicted oxygen 

consumption rate over that period. The other predicted 

respiration rates due to lipid loss are also slightly higher than 

observed, in some cases two-fold. This may reflect the true 

condition in life. The respirometry was only measured over a 40 

minute period, within a 24 or 48 hour larval stage. During this 

overall larval stage time, larval activity may vary tremendously, 

particularly when the animal moults. Such activity was shown by 

Lucas get , 
(1979) for Balanus baZanoides cyprids, where the 

respiration rate was seen to increase four fold, prior to the 

moult. 

When the utilisation of protein is considered, there are 

several factors which are unquantifiable. These are mainly due to 

the proteinaceous secretions released from the active frontal 
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horn glands and labral glands. The moulting fluid also contains 

proteinaceous materials. When considering the biochemical 

constituent losses over larval development it is essential to 

remember that there are basic cell constituents which are not 

available as energy sources. After maintaining the non-feeding 

Balanus balanoides cyprids over a period of eight weeks, Lucas et 

J" (1979) measured their final biochemical composition which 

constituted 28.6% of the dry organic weight as protein and 6.0% 

as lipid. To project these proportions as the basic cell 

constituents in the male and female cyprids of Sacculina carctnl, 

predictions can be made on the length of time they could survive 

utilising the remaining lipid and protein reserves at the lower 

oxygen consumption rate measured for these cyprids. These 

calculations result in a figure of 11 days for the male and only 

4 days for the females. The longer survival time for the males 

agrees with the fact that the males are larger than the females 

and have to search out the ephemeral settlement site of a virgin 

externa. As one brood of female cyprids was seen to survive in 

the laboratory for 28 days (pers. obs, ), the reverse calculation 

was carried out to predict the amount of lipid necessary for 28 

days maintainence at the low respiration rate. A figure of 0.14 

µg. of lipid per larva results for both male and female cyprids, 

whereas only 004 AS. and 0.03 µg. were measured by colorimetric 

analysis. However if the total calories available from the 

measured lipid content of the male and female stage II nauplii 

are utilised for respiration during each stage of their naupliar 

development, the amount of lipid left in the cyprid would be 0-15 
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µg. for the male and 0.05 µg. for the female. 

The protein losses over larval development were 

calculated from the previous estimations for excretion and the 

exuviae, together with the lipid loss due to the measured 

respiration rates at each larval stage. These biochemical losses 

were converted to their calorific equivalents and compared to the 

total calorific content measured in the stage II S. carcini 

nauplius of the males and females (see Table 6). The time taken 

from release of the larval brood to the moult to the stage III 

nauplius, lasts 24 hours in total. These calculations incorporate 

the stage I& II nauplii within this larval period (see Table 6), 

and as a respiration rate was measured for the stage I male 

nauplius, it was possible to include lipid loss due to 

respiration for the first 6 hours for this stage. 

The total calorific content, measured for the stage II 

nauplius was 4.68 x 10-3 Gals, for the male and 2-6S x 10-2 cals. 

for the female. The total amount of calories utilised during 

respiration and lost with the exuviae was calculated as 2-04 x 

10-3 cals. and 1.50 x 10-3 cals. for the males and females 

respectively (Table 6). Thus it would appear from these figures 

that the larvae are well in budget. However, several other 

factors have to be incorporated. These include Cl] the calorific 

content due to the basic cell constituents [2] the calorific 

losses due to respiration and excretion during embryogenesis [3] 

secretions released throughout larval development [4] the 

energetic cost of the two metamorphoses, from stage IV nauplius 

to the cyprid and from the cyprid to the kentrogon or trichogon 
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(see Figure 5). It is only after these calorific quantities have 

been accounted for that the energy available to the cyprid to 

search for the relevant settlement target may be assessed. 
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Table 1. Results from the total lipid extraction, for male and 
female stage II S. carcini nauplii, using gravimetric analysis. 

Male larvae Female larvae 

Freeze-dried 20.85 17.64 31.11 
larvae (mg. ) 

Total lipid 5.60 (26.86) 2.56 (14.50) 2.83 ( 9.10) 
extracted 

(mg. ) 

Neutral lipid 3.00 (53.57) n. d, 2.00 (70-67) 
(mg. ) 

Phospholipid 2.40 (42.86) n. d. 0.36 (12.72) 
(Mg. ) 

0 
The figures in parentheses are: - 
1. percentages of total lipid in the complete sample of freeze- 

dried larvae, 
2. percentages of neutral lipid and phospholipid in the total 

lipid fraction. 
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Figure 2. Drawings from the thin-layer chromatography plates 
for the neutral lipid (NL) and phospholipid (PL) 
fractions from male and female S. carcini stage II 
nauplii. For the R. f. values and an explanation of 
abbreviations used, see Table 2 (opposite page). 



Table 2. The R. f. values for the neutral lipids and phospholipids of male 
and female stage II S. carcini nauplii from thin-layer chromatography, 
calculated from the drawings shown in Figure 2; 0= origin; 
SF = solvent front. 

NEUTRAL LIPIDS PHOSPHOLIPIDS 

Identification STD X Identification STD X 
standards % % standards % % 

MALE LARVAE 

(SE) sterol ester 60 62 (C) cardiolipin 64 61 

(ME) methyl ester# 47 (47) (PC) phosphetidyl choline 9 10 

(TAG) triacylglycerol 36 36 (PE) phosphatidyl ethanolemine 42 38 

(FFA) free fatty acids 17 15 (PI) phosphatidyl inositol - 28 

(S) sterol 3 5 (PS) phosphatidyl serine 20 20 

(PG) phosphatidyl glycerol - 53 

FEMALE LARVAE 

(SE) sterol ester 67 70 (C) cardiolipin 64 61 

(ME) methyl ester# 53 (52) (PC) phosphatidyl choline 9 10 

(TAG) triacylglycerol 47 47 (PE) phosphatidyl ethanolamine 42 38 

(FFA) free fatty acids - 17 (PI) phosphatidyl inositol - 28 

(S) sterol 6 6 (PS) phoshatidyl serine 27 27 

(PC) phosphatidyl glycerol - 53 

Key: f= this is man-made and is incorporated to increase volatility. 
The figures in parentheses are possibly glycerol ether. 
The letters in parentheses are the abbreviations shown on Figure 2 
(opposite page). 



Table 3. Fatty acid composition of the male and female stage II S. carcini 
nauplii, analysed by gas liquid chromatography. The percentages 
represent the relative amounts of triacylglycerols (T. A. G. ) 
present in each fraction. 

T. A. G. Trivial name P. L. N. L. 
Male 

Total lipid 
Female 

14: 0 myristic 0.79 0.93 0.38 

15: 0 0.33 

16: 0 palmitic 19.49 21.18 14.18 

16: 10 palmitoleic 5.30 9.20 3.62 

17: 0 0.44 0.18 0.78 

18: 0 stearic 11.70 6.27 8.04 

18: 1m9 oleic 42.29 41.14 44.85 

18: 10 cis-vaccenic 8.64 12.67 4.76 

18: 2w6 linoleic 0.38 1.35 0.98 

18: 3o3 linolenic 0.32 0.30 0.46 

18: 4c3 1.55 1.06 0.18 

20: 1(a9 gondoic 1.90 0.44 0.28 

20: 2c6 0.39 

20: 4w6 arachidonic 1.00 0.74 2.46 

20: 5c3 eicosapentanoic 3.19 3.30 10.34 

22: (a11 0.07 

22: 4(o6 0.26 

22: 5cA3 0.20 

22: 603 docosahexanoic 3. O1 1.24 7.44 

100.00 100.00 100.00 

Key: P. L. = phospholipid; N. L. = neutral lipid. 
The traces for the lipid profiles are in the appendix (Figure 1. ). 
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Table 6. The complete larval development from the stage I nauplius to the 
inoculation stage for the larvae of S. carc. ni in terms of the 
energetic losses which are quantifiable. 

Stage Time Lipid Protein Protein Lipid Protein Protein 
loss loss loss loss loss loss 

(hrs) due to due to due to due to due to due to 
resp. excr. exuvia resp. excr. exuvia 

(micrograms per larva) (cal ories x 10-3) 

MALE LARVAE 

I 6 0.004 0.004 0.040 0.034 0.017 0.226 

II 18 0.007 0.011 0.040 0.070 0.062 0.226 

III 24 0.010 0.013 0.040 0.098 0.072 0.226 

IV 48 0.023 0.023 0.040 0.219 0.130 0.226 

Cyp. 48 0.010 0.013 0.147 0.095 0.071 0.264 

Total ca lories = 2.04 x 10-' 

FEMALE LARVAE 

I 6 n. d. 0.002 0.027 n. d. 0.014 0.151 

II 18 0.010* 0.007 0.027 0.093 0.040 0.151 

III 24 0.010 0.008 0.027 0.089 0.046 0.151 

IV 48 0.018 0.017 0.027 0.171 0.098 0.151 

Cyp. 48 0.011 0.009 0.033 0.104 0.053 0.188 

Total ca lories = 1.50 x 10-' 

Calorific equivalents were from Crisp (1971); lipid = 9-45 cal. mg. -I, 
protein = 5.65 cal. mg. -' and 1.0 ml- 0-n at N. T. P. = 4-8 cals. 

Key: I, II, III, IV = nauplius stages: Cyp. = cypris stage; *= this lipid 
loss due to respiration was calculated over 24 hours: 
excr. = excretion: resp. = respiration. 



Figure 3. Protein and lipid present as % 
of organic fraction in S. carcini larvae. 
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Figure 4, Protein and lipid present in 
the organic fraction of S. carcini larvae 
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Figure. 5 Equations relating the energy budget of Sacculina carcini 
from the beginning of embryogenesis through to the 
cyprid and inoculation stage. 

Energy equation to the cypris stage 

TC =A+ (B - (C° + C' + C2 + C9 + M°] ) 

Energy equation to the inoculation stage 

TC =A- (A-A') + ([B+B'] -1 C° + Cl + C2 + C' + M° + M']) 

Key: TC = the total calorific content in the egg at the beginning of 
embryogenesis; 

A= the calorific content of the basic cell constituents of the 
egg; 

A' = ditto for the inoculation stage i. e. kentrogon or trichogon, 
being much less than the larval basic cell constituents. 

B= the available energy store of the egg, expressed as calories; 

B' = the difference between A and A' which will be available 
as an extra energy store in the cyprid; 

CO = the energy expressed as calories, utilised during 
embryogenesis in terms of respiration, excretion and the loss 
of the egg case; 

C' = the energy expressed as calories, utilised by the first stage 
nauplius in terms of respiration, excretion, exuvia loss and 
secretions; 

C2 = ditto for the stage II nauplius; 

C9 = ditto for the stage III nauplius; 

M° = the energy expressed as calories utilised by the stage IV 
nauplius for respiration, excretion, exuvia loss and secretions 
together with the extra energetic cost for the metamorphosis to 
the cyprid; 

M' = ditto for the cyprid together with the extra energetic cost 
for the metamorphosis to the trichogon or kentrogon. 



The presence of the parasitic barnacle Sacculina carcini 

on the common shore crab, Carcinus maenas, displays a disparate 

distribution. From field work carried out in this study (Chapter 

II) it was clear that centres of very high parasite prevalence, 

such as 50% - 60% and occasionally 90%, were a characteristic of 

the population distribution. The larvae of S. carcini are 

lecithotrophic, they develop to the cyprid within 5 days at 18'C 

and are capable of settlement on the host, 2 days later. It was 

noted that retention of the parasite larvae, within a semi- 

enclosed body of water would increase the probability of the 

parasite finding a suitable settlement target. The parasite was 

judged to be particularly successful within such systems, 

especially in the harbour at Roscoff, L'Etang de Thau and the 

sheltered area of the Baie de Quberon. Further study to calculate 

flushing times for these bodies of water, together with parasite 

prevalence, using a consistent capture method, would provide 

interesting results. However, conditions within these coastal 

systems are more variable than the open ocean and it was 

important to discover the temperature and salinity tolerances of 

the larvae. From experiments carried out in the laboratory it was 

clear that S. carcini larvae are capable of survival at very low 

temperatures, although they were unable to complete development 

below 7'C - 8'C for the males and 8'C - 9'C for the females. In 

order to test larval tolerance to low salinity it was necessary 
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to acclimate the larvae before beginning the experiment. The male 

nauplii developed through to the cypris stage within 9 days at 

217., and at 22%. the females developed to cyprids in 6 days. 

Larval activity at these low salinities was reduced and at 18L 

and 19Z the nauplii developed to stage III, however by Day 4 they 

were incapable of moulting and remained within the stage III 

cuticle. This encapsulated state encouraged protozoan 

contamination and consequent larval death. Although the 

population of S. carcini on C. maenas in the lagoon at Aveiro is 

subjected to salinities less than 102. in some areas, the highest 

parasite prevalence was at salinities between 187. and 30x, The 

larvae of S. carclni used in the laboratory were from mature 

externae on crabs maintained in 33X seawater. It may be possible 

that when crabs, infected with S. carcini are acclimated to lower 

salinities the parasite could also develop a greater tolerance. 

This would be advantageous in an estuary system where there is a 

landward flow of higher salinity water at the bottom, which 

balances the seaward flow of lower salinity water in the upper 

layer. The larvae of Rhithropanopeus harristl, the mud crab, 

which is parasitised by the rhizocephalan barnacle, Loxothylecus 

panopaei, utilise this system by vertical migration and 

consequently are retained within the estuary (Cronin & Forward 

1986 and Walker, Clare, Rittschof & Mensching - unpublished 

data). 

From the morphological study of the nauplii of S. carcini 

(Chapter III) it was shown that the larvae bore the standard 

cirripede limbs, but they were simple in structure and lacked 
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gnathobases. These features are characteristic of lecithotrophic 

larvae (see Crisp 1986). The frontal horns were open at the tip 

and a median pore was observed together with a labral papilla, 

which is the exit for the functional labral glands. The presence 

of the vestigial ventral thoracic process was evident on the 

stage III nauplius and more prominent on the stage IV nauplius. 

These features support the argument that the rhizocephalan 

nauplius fits well within the overall pattern of thoracican 

nauplius form, ranging from the specialised planktotrophic forms 

to the simplified lecithotrophic forms. The presence of the 

ventral thoracic process is further certification that 

rhizocephalans should be included in the Cirripedia sensu stricto 

(see Newman 1987 for counter argument). 

The final investigation to produce an energy budget for 

the larval stages of S. carcini proved to be a challenge. An 

essential part of an energy budget is to measure an accurate dry 

weight per larva. It is virtually impossible to obtain an 

absolute dry weight as there will always be moisture in the 

atmosphere. From the methods tested to weigh the larvae it was 

seen that it was more important to minimise handling time than to 

use many replicates. When preparing larvae for weighing and 

biochemical analysis, it was essential to quickly wash them free 

of seawater using an isotonic solution of ammonium formate, as 

they were seen to quickly burst and release their body fluids. 

This may have been the reason for some of the low results for 

biochemical constituents recorded in the colorimetric analysis. 

From the final table and equations in Chapter VI, it appeared 
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that the larvae remained in budget. The loss of calories at each 

stage due to larval secretions is an important consideration. 

Observations of cyprid behaviour showed that they are very 

'sticky' and once they have made contact with one another, they 

have to make a considerable effort to push themselves apart using 

their antennules. Also the cyprids are hydrophobic which suggests 

that lipid may be present on the outside of the cuticle. 

Unlike most other lecithotrophs, the larvae of S. carcini 
CoM(ýaýatweýý 

are produced in large numbers and areAsmall. The strategy is 

obviously geared to maximise the probability of the settling 

larval stage reaching its settlement site, by producing large 

numbers of propagules able to disperse in limited areas. The 

larvae are very active initially, increasing their chances of 

dispersal into the surface waters, but they only have a finite 

energy reserve on board. The settlement target for the female 

cyprid is the base of a seta on a crab carapace. The male cyprid 

needs to search for a virgin externa which has erupted on the 

abdomen of a crab previously infected by a female. The virgin 

externs has to be the more ephemeral settlement target. 

Consequently male larvae are larger and have been shown to have a 

greater energy store. Successful male settlement is the crucial 

point in the life-cycle of S. carcini. If a male cyprid is unable 

to settle on a virgin externa it will perish, and if a virgin 

externa is not inoculated within 8 months by male cyprids, it 

will also die (Walker 1987). Consideration has to be given for 

the migrations which C. maenas seasonally undergoes. These 

migrations may be an added reason for parasite prevalence to vary 
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both temporally and spatially. Within an enclosed body of water 

the parasite is very successful, as in L'Etang de Thau, but the 

more open the environment, the less probable it is that the 

larvae, with their finite energy reserves, will reach their 

designated settlement site and metamorphose to allow the life- 

cycle to continue. 
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ab1es 1a4: - 

All weights are in milligrams. 

A= weight of net + larvae (average of two weighings); 
B= weight of net (ditto); 
C= weight of larvae; 
D= weight per larva; 
E= number of larvae on net (average of three counts); 
0= clean net used to calculate average weight per stage; 
I, SI, III, IV = nauplius stages; Cyp = cypris stage. 

Table 1. Data from weighing a single brood of female S. carcini larvae 
throu ghout their development, using ten replicates at each 
stage (No. SFY). 

II III IV Cyp. 

A 6.74680 6.88660 6.89490 8.25580 
B 6.38380 6.75220 6.75670 8.18580 
C 0.36300 0.13440 0.13820 0.07000 
D 0.00072 0.00089 0.00105 0.00099 
E (505)" (151)0 (132) ( 71) 

A 7.91440 6.39730 7.10040 7.53930 
B 7.62860 6.29000 6.99470 7.49200 
C 0.28580 0.10730 0.10570 0.04740 
D 0.00082 0.00110 0.00095 0.00051 

E (348)0 (102) (112) ( 93)9 

A 6.70660 6.53730 6.46000 8.28880 
B 6.36460 6.40470 6.37150 8.25290 
C 0.34200 0.13260 0.08850 0.03600 
D 0.00091 0.00075 0.00103 0.00025 
E (377)0 (176)" ( 86) (147)0 

A 6.95360 7.19530 6.64100 7.28410 
B 6.65520 7.06710 6.48700 7.26300 

C 0.29840 0.12830 0.15410 0.02120 

D 0.00079 0.00082 0.00085 0.00014 
E (379)0 (157)0 (181)0 (151)" 

A 6.27190 6.75730 7.92940 7.27820 

B 6.02080 6.65690 7.79670 7.08780 

C 0.25110 0.10050 0.13270 0.10050 

D 0.00091 0.00090 0.00083 0.00225 

E (276)0 (111)0 (160)0 ( 81) 
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Table 1 continued: - 

A 7.27460 6.24210 8.93460 7.27920 

B 7.02490 6.12210 8.75870 7.22070 
C 0.24980 0.12000 0.17590 0.05850 
D 0.00091 0.00081 0.00191 0.00163 
E (274)0 (149)" (92) ( 36) 

A 6.96900 7.47350 7.89280 8.94630 

B 6.79220 7.36020 7.65170 8.94620 
C 0.16990 0.11330 0.24110 0.00010 
D 0.00110 0.00115 0.00221 0.00002 
E (154) ( 99) (109) ( 41) 

A 7.34370 6.75670 7.51380 7.12820 
B 7.12630 6.65250 7.36420 7.06710 
C 0.21740 0.10430 0.14970 0.06110 

D 0.00087 0.00096 0.00075 0.00071 
E (249)" (109)" (200)' ( 86)0 

A 7.96760 8.98750 7.42870 7.53250 

B 7.63110 8.84990 7.23910 7.52090 
C 0.33650 0.13760 0.18960 0.01160 
D 0.00086 0.00110 0.00190 0.00022 
E (391)" (126) (100) ( 53)" 

A 6.48170 6.55860 7.84570 6.65800 
B 6.17200 6.43260 7.54840 6.62950 
C 0.30970 0.12610 0.29730 0.02850 
D 0.00090 0.00075 0.00259 0.00026 

E ($46)0 (168)" (115) (108)0 
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Table 2. Data from weighing a single brood of female S. carcini larvae 
throu ghout their development, using ten replicates at each 
stage (No. 3M). 

II III IV Cyp. 

A 8.55360 - 7.32070 6.76250 
B 8.25250 - 7.14780 6.67310 
C 0.30110 - . 0.17270 0.08940 
D 0.00070 - 0.00076 0.00043 
E (430)0 - (227)0 (208)0 

A 6.87730 - 6.74320 6.65850 
B 6.67600 - 6.66310 6.54810 
C 0.20130 - 0.08020 0'11040 
D 0.00050 - 0.00057 0.00039 
E (343)0 - (141)0 (287)9 

A 9.68440 - 6.30440 6.42380 
B 9.28440 - 6.07960 6.32690 
C 0.40000 - 0.22480 0.96900 
D 0.00064 - 0.00054 0.00044 
E (623)0 - (415)0 (218). 

A 8.62550 - 6.32920 6-98130 
B 8.30060 - 6.14650 6-83640 
C 0.32490 - 0.18280 0.14490 
D 0.00058 - 0.00046 0.00048 
E (557)" - (395)0 (301)0 

A 8.57880 - 6.24760 6.96110 
B 8.36340 - 6.06590 6.82100 
C 0.21550 - 0.18180 0.14010 
D 0.00056 - 0.00046 0.00062 

E (388)" - (393)" (225)" 
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A 8.90440 - 6.80220 7.20590 
B 8.56030 - 6.59770 7.01950 
C 0.34410 - 0.20450 0.18640 
D 0.00059 - 0.00067 0.00072 
E (587)0 - (306)" (259) 

A 9.02000 - 6.99380 6.15340 
B -- 6.69140 6.06370 
c -- 0.30250 0.08970 
D -- 0.00046 0.00042 
E (579) - (652)0 (215)' 

A 8.90480 - 7.16280 6.45290 

B 8.61350 - 7.04910 6.33340 
C 0.29160 - 0.11370 0.11950 

D 0.00067 - 0.00051 0.00043 
E (436)0 - (223)0 (280)' 

A 6.95090 - 6.39080 6.62610 
B 6.56220 - 6.27640 6.50480 
C 0.38870 - 0.11440 0.12140 
D 0.00054 - 0.00048 0.00048 
E (719)0 - (238)" (253)9 

A 7.70250 - 5.78530 5.21050 

B 7.45510 - 5.62760 5.12000 
C 0.24740 - 0.15770 0.09050 
D 0.00058 - 0.00051 0.00039 
E (425)0 - (306)" (211)' 
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Table 3. Data from weighing a single brood of male S. carcinl larvae 
throughout their development, using ten replicates at each 
stage (No. M. 

II III IV Cyp. 

A 7.33960 8.76490 7.89470 9.50420 
B 7.12500 8.35280 7.78780 9.3953 
C 0.21460 0.41210 0.10690 0.10890 
D 0.00079 0.00160 0.00064 0.00074 
E (272)0 (257) (168)' (147)0 

A 7.85530 9.52040 8.68450 8.78630 
B 7.62150 9.29960 8.48090 8.42140 
C 0.23380 0.22080 0.2036 0.36490 
D 0.00086 0.00089 0.00063 0.00166 
E (272)0 (249)" (324)0 (220) 

A 8.96130 7.92140 7.69070 9111420 
B 8.74720 7.75160 7.55260 9'02740 
C 0.21410 0.26980 0.13810 0.0868 
D 0.00080 0.00102 0.00065 0.00064 
E (265)0 (269) (212)0 (135)0 

A 6.70550 7.96550 7.83080 7.35720 
B 6.53440 7.69460 7.58540 7.14020 
C 0.17110 0.27090 0.24540 0.21700 

D 0.00070 0.00082 0.00067 0.01219 
E (245)0 (331)" (365)0 (178) 

A 8.18990 7.80180 7.74620 8.92240 
B 7.95230 7.59470 7.63010 8.76120 
C 0.23760 0.20710 0.11610 0.17140 
D 0.00090 0.00081 0.00062 0.00093 
E (261)" (256)" (186)0 (184) 
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A 7.51210 10.36920 8.40620 9.13760 
B 7.34790 10.10670 8.31790 8.99660 
C 0.1642 0.26250 0.08830 0.14100 

D 0.00084 0.00082 "0.00061 0.00087 

E (196)0 (319)" (145)0 (162) 

A 8.32110 8.09260 9.39390 8.96390 
B 8.14190 7.80310 9.21660 8.87290 
C 0.17920 0.28950 0.17730 0.09100 

D 0.00079 0.00084 0.00167 0.00064 

E (227)0 (346)0 (106) (143)" 

A 8.82430 8.58130 9.43830 8.53350 
B 8.64740 8.38700 9.21680 8.43940 
C 0.17690 0.19430 0.22250 0.09410 

D 0.00078 0.00088 0.00063 0.00064 

E (227)0 (222)" (357)0 (147)" 

A 8.20320 7.41820 8.74970 8.64270 
B 7.96280 7.24110 8.42270 8.55110 

C 0.24040 0.17710 0.32700 0.09160 

D 0.00082 0.00080 0.00069 0.00059 

E (292)" (220)0 (474)9 (156)" 

A 9.11000 9.02830 9.53720 8.38220 

B 8.91970 8.81610 9.27730 8.10150 

C 0.19030 0.21220 0.25990 0.23070 
D 0.00084 0.00083 0.00063 0.00180 

E (227)0 (255)0 (411)" (156) 
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Table 4. Data from weighing a single brood of male S. carcini larvae 
throughout their deve lopment, using ten replicates at each 
stage (No. 6M). 

": 
_ 

I II III IV Cyp. 

A 7.71100 9.73500 8.30600 7.11700 7.86900 
B 7.60000 9.21000 8.09900 6.84300 7.38000 
C 0.11100 0.52500 0.20700 0.27400 0.48900 
D 0.00067 0.00135 0.00071 0.00131 0.00281 
E (167)" (388) (293)" (209) (174) 

A 7.22700 8.10200 7.71900 7.42600 7.65000 
B 7.16200 7.98000 7.57000 7.04000 7.58100 
C 0.06500 0.12200 0.14900 0.03860 0.06900 
D 0.00048 0.00072 0.00062 0.00141 0.00059 
E (136)" (170)" (242)" (274) (117)" 

A 7.79500 9.64800 10.19200 7.66000 7.06200 
B 7.56200 9.28900 9.98700 7.43200 6.95500 
C 0.23300 0.35900 0.20500 0.33400 0.10700 
D 0.00061 0.00241 0.00082 0.00147 0.00084 
E (383)" (148) (249)" (228) (128)" 

A 9.64000 8.04000 8.50900 9.59000 8.00500 
9.61100 7.70500 7.99200 9.30400 7.68800 

C 0.02900 0.33500 0.51700 0.28600 0.31700 
D 0.00035 0.00147 0.00298 0.00140 0.00293 
E ( 83)' (228) (174) (204) (108) 

A 8.01800 7.75800 8.04400 7.26900 7.36900 
B 7.78700 7.42000 7.81600 7.09800 7.33500 
C 0.23100 0.33800 0.22800 0.17100 0-03500 
D 0.00153 0.00147 0.00064 0.00083 0.00027 

-. -E (151) (230) (355)0 (205)" (126)' 
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Table 4 continued: - 

�A 
B 
C 
D 

B 
C 
D 
E 

C 
D 
E 

SA 
B 

A 
B 
C 

E 

7.64600 
7.58000 
0.06600 
0.00032 
(209)o 

8.94000 
8.86100 
0.07900 
0.00043 
(182)" 

7.72100 
7.59600 
0.12500 
0.00063 
(197)" 

10.47300 
10.36400 
0.10900 
0.00049 
(223) " 

7.77500 
7.73900 
0.03600 
0.00025 
(145)" 

7.65800 7.90200 8.13900 7.05000 
7.30500 7.69000 7.56500 6.99500 
0.35300 0.21200 0.57400 0.05500 
0.00083 0.00061. 0.00392 0.00047 
(427)10 (350)" (146) (117)" 

9.24300 7.79000 7.48100 8.59500 
8.84000 7.58700 7.33000 8.51600 
0.40300 0.20300 0.15100 0.07900 
0.00148 0.00055 0.00089 0.00056 
(273) (369)0 (170)" (141)" 

7.89700 7.20600 7.47000 7.19300 
7.66000 6.86000 7.04000 6.89000 
0.23700 0.34600 0.43000 0.30300 
0.00099 0.00245 0.00352 0.00219 
(239)" (141) (122) (138) 

8.56400 9.48400 8.40200 7.85100 
8.31400 9.39100 8.29300 7.79100 
0.25000 0.09300 0.10900 0.06000 
0.00117 0.00088 0.00089 0.00041 
(214) (105)" (123). (146)0 

7.46400 8.81700 7.38800 6.98600 
7.24600 8.65500 7.06600 6.67800 
0.21800 0.16200 0.32200 0.30800 
0.00130 0.00090 0.00187 0.00367 
(168) (180)0 (172) ( 84) 
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Table 5a. The weights of S. carcini larvae during their development 
using the aluminium foil boat method. 
I, II, III, IV = nauplius stage; Cyp. = cypris stage. 

II III IV Cyp. 

MALE LARVAE 

Boat + Larvae (mg. ) 26.280 25-110 26.213 26.046 

Boat (mg. ) 26.225 25.132 26.165 26.035 

Larvae (mg. ) 0055 0.022 0.048 0.011 

Number of larvae (65) (28) (65) (27) 

Wt. per larva (p g. ) 0.85 0.79 0.74 0.41 

FEMALE LARVAE 

Boat + Larvae (mg. ) 26-279 26.142 25.987 25.984 

Boat (mg. ) 26.241 26.126 25.973 25.970 

Larvae (mg. ) 0.038 0.016 0.014 0.014 

Number of larvae (67) (32) (26) (49) 

Wt. per larva (µg. ) 0.57 0.50 0.54 0.29 
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Table 5b. The ash weights of male and female S. carcini larvae at 
each stage of their development. 
I, II, III, IV = nauplius stage; Cyp. = cypris stage. 

Stage Boat and 
larvae 

(Mg. ) 

Boat 

(Mg. ) 

Larvae 

(Mg. ) 

Boat and 
ashed 
larvae 
(mg. ) 

Ashed 
larvae 

(Mg. ) 

% Ash 

MALE LAR VAE 

I 15.035 12.041 2.944 12.213 0.172 5.75 
13.207 10.930 2.277 11.061 0.131 5.75 
13.772 10.982 2.790 11.138 0.156 5.59 

II 16.324 12.217 4.107 12.426 0.209 5.09 
15.587 12.215 3.372 12.392 0.177 5.25 
15.736 12.087 3.649 12.277 0.190 5.21 

III 13.869 12.458 1.411 12.552 0.094 6.66 
12.421 10.912 1.402 11.091 0.107 7.63 
13.870 12.176 1.694 12.288 0.112 6.61 

IV 20.014 17.548 2.466 17.690 0.142 5.75 
20.165 17.741 2.424 17.873 0.148 6.11 
20.261 17.833 2.428 17.981 0.148 6.10 

Cyp. 13.785 12.247 1.538 12.381 0.134 8.71 
12.742 10.908 1.835 11.073 0.165 9.00 

FEMALE LA RVAE 

Egg 14.464 12.230 2.234 12.371 0.141 6.31 
14.154 12.174 1.980 12.293 0.119 6.01 

I 15.036 10.967 4.069 11.245 0.279 6.84 
14.512 10.978 3.534 11.231 0.254 7.17 
15.130 11.107 4.023 11.384 0.227 6.89 

II 16.431 10.953 5.477 11.296 0.343 6.25 
17.430 10.913 6.517 11.291 0.379 5.81 
16.661 10.917 5.744 11.254 0.338 5.88 

III 12.762 10.941 1.821 11.060 0.119 6.56 
13.134 10.906 2.228 11.072 0.166 7.45 

IV 11.126 10.793 0.333 10.818 0.025 7.53 
11.312 10.863 0.449 10.895 0.032 7.02 
11"t96 10.923 0.274 10.946 0.023 8.56 

Gyp. 11.836 10.937 0.899 10.985 0.047- 5.26 
11.501 10.976 0.533 11.003 0.027 5.12 
11.404 10.915 0.489 10.957 0.042 8.51 
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Table S. The respiration rates of several cirripede species converted to S. T. P. 
The temperatures at which these rates were measured are included. 

Species Temp. 
('C) 

Stage Dry wt. 
larva-' 

(µg. ) 

02 consumption 
(µ1.02h. -' ind. -') 

x10-' 

02 consumption 
(ml. 02h. -' g. -' 

dry weight) 

Reference 

B. ba1. 10.0 I 0.63 3.19 5.07 Lucas 
II 1.24 3.82 3.08 (1980) 
III 2.16 3.43 1.59 
IV 5.12 9.48 1.85 
V 8.41 19.11 2.27 
VI 14.81 31.57 2.13 
Cyp 33.22 35.28(s) 1.06 

20.27(e) 0.61 

B. bal. 10.0 I n. d. 3.76 - Davenport 
VI n. d. 31.06 - (1976) 

B. ebu 25.0 I 0.27 4.47 16.56 Jorgensen 
IV 0.68 15.13 22.25 & 
VI 1.50 45.98 30.64 Vernberg 
CYP" 2.18 8.59 3.94 (1981) 

E. mod. 16.0 II 0.3 1.39 4.64 Bhatnagar 
to to & Crisp 
2.05 6.84 (1965) 

E. mod. 12.0 II 0.39 0.69 & 0.91 1.77 & 2.33 
III 0.71 1.60 2.25 Harms 
IV 1.20 2.82 2.35 (1987) 
V 2.33 5.11 2.19 
VI 4.27 6.97 1.63 
Cyp. 4.56 6.51 1.43 

18.0 II 0.41 1.24 ä 2.18 3.02 & 5.32 
III 0.75 3.40 4.53 
IV 1.47 7.21 4.91 
V 2.62 9.33 3.56 
VI 5.19 11.35 2.19 
Cyp. 5.81 9.39 1.62 

24.0 II 0.39 2.09 & 2.63 5.36 & 6.74 
III 0.70 4.95 7.07 
IV 1.06 9.73 9.20 
V 2.45 15.03 6.14 
VI 4.39 16.85 3.84 
Cyp. 4.38 12.77 2.92 

Key: B. bal. - Balanus balanoides; B. ebu. - Balanus eburneus E. mod. - Elminius 
modestur s- swimming cyprid; e- exploring cyprid; The first rates shown 

(Harms 1987) for Stage II nauplii, are for newly hatched larvae. 
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Figure Ia. The traces for the fatty acid composition of male 
stage II S. csrcini nauplii, analysed by gas 
liquid chromatography (from Chapter VI, Table 3. ). 
NL = neutral lipid ; PL = phospholipid. 
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Figure 1b. The trace for the fatty acid composition of the 
total lipid fraction of female stage II 
S. carcini nauplii, analysed by gas liquid 
chromatography (from Chapter VI, Table 3. ). 
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