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ABSTRACT 
 

Autism is a strongly genetic disorder where risk-conferring variation in a 

number of genes contributes to the phenotype. Twin studies show 

incomplete concordance for autism in monozygotic sibling pairs, 

suggesting that environmental and/or epigenetic effects also contribute 

to the disorder. 

       This thesis investigates association of clock gene variants with 

autistic disorder. Significant indirect positive genetic association for 

autistic disorder was found for two single nucleotide polymorphisms in 

the clock gene PER1 and for two single nucleotide polymorphisms in the 

clock gene NPAS2. 

      Bioinformatics analysis of these single nucleotide polymorphisms 

showed: SNP rs885747 disrupts a splicing enhancer/suppressor 

element, SNP rs34705978 is within a differentially methylated control 

element, SNP rs6416892 is four nucleotides from the tissue specific 

binding site of sterol regulatory element binding transcription factor 2 and 

SNP rs1811399 alters the structure of a candidate microRNA. 

Investigation within the most significant haplotype in NPAS2 highlighted 

a conserved circadian regulatory element (RRE) whilst that of PER1 

contained alternative and essential splice site SNPs. Analysis of genes 

containing conserved circadian regulatory elements, the E-box, D-box 

and RRE, showed that some of the strongest candidate genes for 
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autism, schizophrenia and bipolar disorder are likely to be circadian 

clock controlled genes. 

        Synchronization of high frequency oscillations between different 

brain regions is a correlate of normal brain function that is altered in 

autism; a role for clock genes in regulating the dendritic architecture of 

high frequency neural oscillators is discussed. Interplay between the 

molecular processes of the circadian clock, the sex determination 

pathway and alternative splicing is highlighted as the basis of a 

hypothesis suggesting how clock gene mutations might also determine 

short period oscillator phenotypes.  
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1 Introduction 

  

1.1 What is autistic disorder? 

The severe neurodevelopmental disorder known as autistic disorder is 

characterized by impaired verbal and non-verbal communication, impaired 

reciprocal social interaction and a markedly restricted repertoire of 

activities and interests. These features co-occur in an individual with 

autistic disorder and are detectable by three years of age (APA 1994). The 

prevalence of autistic disorder is 0.1–0.2% with a recurrence risk ratio 

giving a twenty five fold increase of developing the disorder over 

population base-rates for a first degree relative of an individual with 

autistic disorder, a measure known as the relative risk (Freitag 2007). 90% 

of the phenotypic variation in autism is attributable to genetic variation and 

twin studies give a 60% concordance rate in monozygotic twins but no 

concordance in dizygotic twins (Bailey et al. 1995; Hyman 2008). Males 

are also at higher risk of autistic disorder than females in the approximate 

ratio of 4:1 (Fombonne 2005). Such data suggest that genetic factors 

dominate the occurrence of autistic disorder within the population but 

environmental factors such as adverse intra-uterine conditions or 

potentially protective effects may also be involved (Santangelo and 

Tsatsanis 2005). Work on differences between monozygotic embryos in 

mouse suggests it is also possible that epigenetic effects could contribute 

to the discordance observed in twin studies (Piotrowska et al. 2001; 

Piotrowska and Zernicka-Goetz 2001; Torres-Padilla et al. 2007). 

Outside of autistic disorder but excluding other syndromes such as Rett 

syndrome and fragile X syndrome that have autistic behaviour as part of 
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the phenotype (APA 1994), individuals may show milder forms of 

impairment that are similar to autistic disorder. This has lead to the idea of 

a spectrum of disorders with autistic features and the term autism 

spectrum disorders (ASD) is now in common use. ASD is thus used to 

refer to individuals who show deficit in one or perhaps two of the domains 

of the triad of impairments that define autistic disorder or individuals who 

show some measure of weakness in each domain but to a degree that 

would not elicit a diagnosis of autistic disorder according to the Diagnostic 

and Statistical Manual of Mental Disorders, Forth Edition (DSM-IV) (APA. 

1994). There is currently no clinically defined cut-off point on the autism 

spectrum that distinguishes individuals with an ASD from neuro-typical 

individuals. This thesis primarily concerns the well-defined category of 

autistic disorder. 

  

1.2 Are there biological markers for autism? 

Despite six decades of research on autism there are still no biological, 

genetic, or physiological markers, unequivocally linked with the disorder. 

There is however, some consensus that: certain brain regions such as the 

cerebellum, (Bauman and Kemper 1985; Bauman and Kemper 1988; 

Amaral et al. 2008; Scott et al. 2009), circadian rhythm disturbance 

including altered serotonin and melatonin levels (Nir et al. 1995; Cook and 

Leventhal 1996; Kulman et al. 2000; Anderson 2002; Anderson et al. 

2002; Tordjman et al. 2005; Corbett et al. 2006),  abnormalities in 

cholesterol metabolism (Tierney et al. 2001; Tierney et al. 2006; Bukelis et 

al. 2007) and increased oxidative stress and impaired methylation capacity 
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(James et al. 2004; James et al. 2006; James et al. 2008) reflect different 

aspects of damage to a pathway that leads to autism.  

    The brain region most consistently linked to autism is the cerebellum. 

From 1986 (Bauman and Kemper 1986) to current studies (Scott et al. 

2009) differences have been noted in the cerebella of autistic individuals 

that suggest changes in this brain region are linked to autism. However, 

with the exception of a small number of studies, such as the Imbalanced 

Spectrally Timed Adaptive Resonance Theory (Grossberg and Seidman 

2006)  there has been little attempt to understand how defects in a brain 

region generally thought of as mainly concerned with motor coordination, 

could contribute to affective deficits such as lack of empathy requiring a 

“theory of mind” that is diagnostically central to the presentation of autism 

(Baron-Cohen et al. 1985). It is noteworthy that variants of the gene for 

ENGRAILED2 (EN2, which has a pivotal function in cerebellum and hind-

brain development (Sgaier et al. 2007)), has been repeatedly shown to be 

associated with autism (Petit et al. 1995; Benayed et al. 2005; Brune et al. 

2008; Wang et al. 2008). 

      The results of investigations into autism-associated changes in the 

morphology of other brain regions are somewhat less consistent. Overall, 

the results of studies aimed at detecting structural brain differences linked 

to autism are difficult to interpret. This is mostly due to inconsistency in 

subject age, intelligence, degree of autism and allowed levels of co-

morbidities amongst the samples and across the different studies.  

     Some regions have been targeted for investigation on the basis of 

involvement in distinct behaviours that are disturbed in autism. The 

Amygdala Theory of Autism (Baron-Cohen et al. 2000) focuses on this 
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brain region’s involvement in emotional responses (Cahill and McGaugh 

1998). The cerebrum, the seat of cognitive function in humans, has been 

examined as a candidate region in autism because of altered levels of 

cognitive functioning in individuals with the disorder. 

       Measurements of brain volume and growth trajectories show altered 

patterns of brain growth for autistic children that can be summarized as an 

early period of excess growth followed by a period of repressed growth, as 

compared with typically developing infants and children (Courchesne et al. 

2003). More recently, nuclear magnetic resonance imaging highlights 

regions of the temporal lobe that are affected in autism (Ecker et al. 2010; 

Salmond et al. 2005). 

      Neural activity of the brain generates oscillating electro-magnetic fields 

that can be detected by skin-surface electrodes placed on the scalp 

(Buzsaki and Draguhn 2004). Investigation of autism using this principle 

together with functional nuclear magnetic resonance imaging (fNMI) 

indicates that the patterns of intra-brain communication between 

specialized neural networks are altered in autism (Minshew and Williams 

2007). This may reflect reports of anatomical differences in the inter-

hemispheric portal, the corpus callosum in autism (Piven et al. 1997). 

Abnormal functional connectivity is proposed to be a characteristic of the 

autistic brain where an exaggeration of local connectivity takes 

precedence over neurotypical integrative connectivity (Just et al. 2007). 

Coherent neuronal oscillations (< 0.1 Hz) of electrical activity of the resting 

brain (default mode network) show characteristic connectivity signatures of 

neuropsychiatric disorders including autism (Buckner and Vincent 2007; 

Broyd et al. 2009). 
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      Genes involved with synapse formation and structure are affected in 

certain autism families (Durand et al. 2007; Yamakawa et al. 2007) 

although recent population based studies do not support a role for 

common variants of the synaptic scaffold protein, SH3 and multiple 

ankyrin repeat domains 3 (SHANK3) in autism (Qin et al. 2009; Sykes et 

al. 2009). Nevertheless, multiple lines of evidence support the idea that 

abnormal synapse formation is the basis of autism pathology (Bourgeron 

2009) and the evidence for this idea is strongest when the broadest autism 

phenotype is considered (Alarcon et al. 2008). In the wider population, 

genetic variation in any of these synaptic genes does not seem to confer 

increased autism-specific risk however, that suggests a generalized 

vulnerability of brain synapses in ASDs and schizophrenia (Friedman et al. 

2008; Burbach and van der Zwaag 2009; Kirov et al. 2009).  

 

1.3 Sleep and circadian rhythm disturbance is associated with 

autism. 

Everyday experience shows that human behavior is ordered into repeating 

sleep-wake cycles. It is less evident to casual observation however, that 

even in the absence of physical cues such as dawn and dusk (and/or 

social and metabolic cues e.g. set meal-times) humans, in common with 

other mammals, display an approximately 24h periodicity in activity and 

physiological measures (Aschoff 1965; Aschoff et al. 1971). These so 

called circadian rhythms are also detectable in the workings of the 

individual organs of the body (Brown et al. 2002; Dardente and Cermakian 

2007; Kowalska and Brown 2007) and even persist in cell lines 

(Balsalobre et al. 1998). The circadian system of mammals may thus be 
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envisaged as a series of slave oscillators, the organ systems, under the 

endocrine and neurological control of a central coordinating pacemaker.  

      The central organismal pacemaker in mammals is located in the brain, 

the suprachiasmatic nuclei of the anterior hypothalamus (SCN). The 

phase of the self sustaining 24h cycles of neural activity in the SCN is set 

by neural cues from the retina to which the SCN is linked via the bundle of 

nerve fibers known as the retinohypothalamic tract (RHT). Via this tract, 

the SCN receives photic cues generated by the action of light on the rod, 

cone and melanopsin photoreceptors of the retina (Berson et al. 2002; 

Hattar et al. 2002). Subsequently, the SCN emits neuronal and hormonal 

signals, including glucocorticoid hormone that entrains the circadian 

rhythms of the peripheral organs via glucocorticoid hormone receptors 

(Balsalobre et al. 2000; Hastings et al. 2003).  

      Other factors in addition to the action of light are capable of resetting 

the phase of circadian rhythms in mammals. For example feeding regimes 

(Stokkan et al. 2001), temperature rhythms (Brown et al. 2002), social 

cues (Aschoff et al. 1971; Levine et al. 2002; Mistlberger and Skene 2004) 

and hormonal signals (Balsalobre et al. 2000), can each entrain or 

modulate circadian rhythms.  

      Within the mammalian brain it is apparent that some regions show 

circadian rhythms whilst others do not and that the phase of one region 

with respect to another varies. Thus the brain contains multiple circadian 

oscillators, which may have bearing on the phenomenon of neural network 

oscillations that appear to be a requirement for temporal ordering and long 

term storage of information (Abe et al. 2002; Buzsaki and Draguhn 2004; 

Feillet et al. 2008). Further, it would appear that the circadian rhythm of 
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the sleep-wake cycle is required for appropriate cognitive development 

through the processes of memory consolidation (Stickgold 2005).  

        Sleep disturbance is a common problem of people with autistic 

disorder (Elia et al. 2000). Parents of autistic children report difficulty 

settling their child for sleep and nights with frequent wakening (Richdale 

and Prior 1995). Melatonin is the mammalian endocrine signal for 

darkness. Its precursor, serotonin, as well as the level of urinary cortisol, 

all vary in a circadian manner and each of these measures are 

significantly altered in autism (Richdale and Prior 1992; Nir et al. 1995; 

Cook and Leventhal 1996; Corbett et al. 2006). Melatonin is currently used 

in the pharmacological treatment of poor sleep in autism (Andersen et al. 

2008).  

      Further evidence of dysregulation of the melatonin system in autism is 

seen in the association of coding sequence variants and a promoter 

variant in the acetylserotonin O-methyltransferase (ASMT) gene with 

ASDs. ASMT also called hydroxyindole O-methyltransferase (HIOMT), 

catalyses the final step in the serotonin to melatonin biosynthetic pathway 

(Melke et al. 2008). However, what may have been a neat picture is 

blurred by the concurrent finding that the abnormal melatonin levels and 

promoter variants, though statistically associated with ASDs, are also 

found in the non-autistic parents of the affected children (Melke et al. 

2008). This is interpreted as altered melatonin levels are contributory but 

not in themselves causative of ASDs. Taken together these factors 

represent a disruption of circadian regulation in autism that may extend 

down to the level of the circadian molecular clock (Nicholas et al. 2007; 

Melke et al. 2008; Hu et al. 2009). 
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      Alteration in clock genes that drive the circadian cycle could derive 

altered melatonin levels, since the circadian rhythm in melatonin level is 

under the control of the circadian molecular clock. Disruption of the core 

circadian clock mechanism could thus disrupt melatonin levels but 

presumably give additional phenotypes because of pleiotropic effects of 

the clock genes themselves.  

      Boucher (2001) proposed that an integrated series of oscillators in the 

brain spanning a frequency spectrum from milliseconds to hours is 

damaged in autism. However, it is clear that circadian disruption 

accompanies many neuropsychiatric disorders and it is currently unclear 

to what degree, and in what way, circadian rhythm collapse contributes to 

each disorder specifically, (Barnard and Nolan 2008). 

      Strong indication that the circadian disruption in autism is rooted at the 

molecular level comes from the finding that altered clock gene expression 

profiles can distinguish severe autism from neurotypical controls and even 

from mildly affected autism spectrum cases (Hu et al. 2009a; Hu et al. 

2009b). These gene-expression experiments were carried out on autism 

lymphoblastoid cell lines and thus it would appear very unlikely, that the 

altered clock gene expression is due to global neural or humoural effects 

manifesting at a systems level by an altered clock in the suprachiasmatic 

nucleus. Rather, this suggests that the circadian rhythm anomalies in 

autism result from factors that affect the core molecular clock mechanism. 

 

1.4 Autism Genetics. 

The heritability of autistic disorder has been described as involving a 

number of genes at unlinked and some epistatic loci that together 
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contribute to the phenotype (Pickles et al. 1995). There is considerable 

comorbidity of mental retardation in autism (at least 75%) and this is a 

major problem for researchers investigating the genetics of this disorder 

(Fombonne 1999). The comorbidity of mental retardation may be seen to 

dilute the autism specific phenotype from the point of view of selecting a 

homogeneous sample for genetic analysis. For example, whole genome 

screens where large sample size is required have generally had to 

sacrifice sample homogeneity, to ensure a sufficiently large number of 

samples to prioritize power requirements.  

      Severely autistic individuals with normal or superior IQ measures 

indicate however, that autism is not a result of mental retardation or must 

always co-occur with mental retardation. Thus certain studies have 

addressed the problem of sample heterogeneity by stricter control of IQ, 

selecting for more intellectually able subjects that met strict diagnostic 

criteria for autistic disorder, (Nicholas et al. 2007) or by dividing the 

sample into a number of sub categories based on analysis of the 

behavioural phenotype prior to screening (Hu and Steinberg 2009).  

      An alternative explanation of autism heritability is gleaned from 

analysis of autism risk in multiplex families (>1 affected member) where 

strong evidence for dominant transmission to male offspring is seen. This 

multiplex family data gives a good fit to a simple genetic model in which 

most autism families fell into two types. Type 1 families (a small minority of 

autism families) represent a risk of autism in male offspring of ~50% and 

type 2 (the vast majority of autism families) where male offspring have a 

lower risk. Sporadic autism with high penetrance in males and relatively 

poor penetrance in females is proposed to account for the risk in Type 2 
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families (the low-risk families) and high-risk families are from those 

offspring, most often females, who carry a new causative mutation but are 

unaffected and in turn transmit the mutation in dominant fashion to their 

offspring (Zhao et al. 2007). However, validating this proposed pattern of 

autism heritability would require an explanation that incorporated the 

function of any genes found to be associated with the disorder in terms of 

a penetrance difference in males and females. It must also be noted that 

this model is somewhat at odds with the most recent genome wide scans 

that indicate numerous common variants contribute to autism risk (Ma et 

al. 2009). 

      There are linkage findings for autism in at least two independent 

studies in regions 2q, 3q25–27, 3p25, 6q14–21, 7q31–36 and 17q11–21. 

(Bailey et al. 1998; Buxbaum et al. 2001; Cantor et al. 2005) and a 

genome wide meta-analysis found significance for autistic disorder on 

7q21-35 (Trikalinos et al. 2006). However, the genome screen results 

have been inconsistent, possibly because these studies have until 

recently, been generally under-powered to find genes of small effect set in 

a context of sample heterogeneity and diagnostic differences. 

      The most recent autism Genome Wide Association Studies employed 

a much larger sample, highlighting non-coding SNPs in an intergenic 

region on chromosome 5p as significantly associated with autism. This 

region is flanked by the cadherin genes CDH9 and CDH10; reinforcing the 

implication of impaired neuronal connectivity in autism (Ma et al. 2009; 

Wang et al. 2009). 

      Candidate gene studies in autism have tested numerous genes, on the 

basis of proximity to the peak scores of whole-genome linkage studies or 
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by their implication in neurological systems e.g. the serotonergic system. 

With the exceptions of the genes for the neurotransmitter receptor protein 

gamma-aminobutyric acid (GABA) A receptor, beta 3 (GABRB3); the 

homeobox protein ENGRAILED2, that is developmentally active in the 

formation of the cerebellum; and the serotonin transporter solute carrier 

family 6 (neurotransmitter transporter, serotonin), member 4 protein 

(SLC6A4 also known as 5-HTT), these studies remain largely un-

replicated (Cook et al. 2001; Buxbaum et al. 2002; Benayed et al. 2005). A 

further complication is that the scope of candidate gene studies in autism 

is sometimes limited by the lack of credible, integrated supporting 

hypotheses that link the function of the candidate genes to what is known 

of the pathophysiology of autism.  

 

1.4.1 MicroRNA genes 

The exons of protein coding genes represent a small proportion (~1.2%) of 

the human genome (Lunter et al. 2006). The initial idea that the remaining 

non-coding regions represented genomic “junk” has been gradually 

eroded by findings that non-coding regions may contain control elements 

essential to the regulation of gene expression and certain non-coding 

transcripts are functional molecules in their own right. It now appears that 

most of the human genome is transcribed (Hayashizaki and Carninci 

2006) and apart from transfer RNA (tRNA) and ribosomal RNA (rRNA), a 

growing collection of non-coding RNA (ncRNA) species are identified. 

Amongst these ncRNAs, microRNAs are of particular relevance to autism 

because of their important role in neural patterning (Kosik 2006), 
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developmental timing (Lee et al. 1993; Reinhart et al. 2002) and survival of 

purkinje neurons (Schaefer et al. 2007). 

      The precursors of microRNAs (pre-microRNA) may be derived from 

intergenic regions (~50%), introns of protein coding gene regions (~50%) 

or occasionally overlap protein-coding regions e.g. MIR155 (Rodriguez et 

al. 2004; Saini et al. 2007). All microRNA gene transcripts contain 

sequences capable of internal, complementary base pairing and thus 

helical hairpin structures (pri-microRNA hairpins) form within these 

transcripts. These pri-microRNAs may be up to tens of kilobases in length 

and may contain a number of hairpin regions. The hairpins are recognized 

by drosha ribonuclease type III (DROSHA) and cleaved from the rest of 

the transcript. The ~60-100nt long hairpins (called pre-microRNAs) are 

transported to the cytoplasm by EXPORTIN-5 where the loops and tails 

are removed by the dicer1 ribonuclease type III (DICER) and the 

remaining ~22nt double stranded microRNA (the mature microRNA or 

miR) is subsequently incorporated into the RNA-induced silencing 

complex (RISC) that contains argonaught protein (EIF2C) and the 

neuropsychiatrically relevant fragile x mental retardation protein (FMRP) 

and DiGeorge critical region eight protein (DGCR8) (Verkerk et al. 1991; 

Yu et al. 1991; Wang et al. 2007). The gene specific targeting of this 

silencing complex is determined by the ~22nt nucleotide sequence of the 

mature microRNA loaded RISC and particularly the seed (the first 2 to 8 

nucleotides, 5’ to 3’) of the mature microRNA (Lewis et al. 2005). Binding 

of mature microRNA loaded RISC to the UTRs of target genes causes 

translational repression of the target or rapid degradation of the transcript 

of the target gene (Wightman et al. 1993; Giraldez et al. 2006).  
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       Unlike protein coding genes, microRNA genes are difficult to predict 

bioinformatically and certain bona fide microRNAs are physically illusive 

due to expression patterns that are extremely restricted: spatially, to 

certain cell types; temporally, or both. For example miRNA lsy-6 in 

Caenorhabditis elegans is expressed in but a few neurons at a specific 

developmental time. Nevertheless, this restricted pattern of expression of 

lsy-6 is a critical determinant of the bilateral asymmetry of chemoreceptors 

in the worm that are required for typical behaviour in response to certain 

chemical stimuli (Johnston and Hobert 2003). 

      Although there is an absolute requirement for hairpin structure in pri-

microRNA and pre-microRNA transcripts the calculated mean free energy 

(MFE) of such structures cannot be used predictively with complete 

confidence (Rivas and Eddy 2000). Nevertheless, a statistical approach 

shows that the MFE of microRNA hairpins is significantly lower than that 

for random sequences. Additionally, sequence alignments of multiple 

related species shows many microRNAs are evolutionarily conserved. 

Sequence conservation has been previously used to identify evolutionarily 

conserved microRNA genes in the human genome and it is likely that the 

majority of this type of microRNA gene have now been catalogued in 

human. Other microRNAs are however primate or species-specific (Mor et 

al. 2011) and it is likely that numerous further examples of this type of 

molecule will emerge with future research. 
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Figure 1-2. MicroRNA biogenesis. Reproduced from Kim and Nam (2006): a model for 

microRNA biogenesis where the blue shaded region is the nucleus and the yellow 

shaded region the cytoplasm. MicroRNA biogenesis is envisaged as a 5-stage process 

of: 1) translation with Pol II; 2) cropping of the pri-microRNA by the microprocessor 

complex Drosha-DGCR8; 3) Export of the pre-microRNA from the nucleus by exportin-5, 

4) removal of the loop by DICER and finally incorporation of one strand of the mature miR 

duplex into the rna induced silencing complex. 

 

     The most parsimonious verification of microRNA genes relies on a 

number of stages: firstly, biochemical confirmation with directional cloning 

may be employed (Ambros and Lee 2004). In this technique, the 19-25nt 
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RNA fraction of a total RNA sample is collected by polyacrylamide gel 

electrophoresis, eluted, ligated to 5’ and 3’ adaptor molecules, and 

amplified by RT–PCR to construct a cDNA library. Sequencing of 

individual clones allows subsequent checking for genomic position with 

BLAST searches. If the BLAST searches show the clones are not derived 

from the degradation of known small RNAs (rRNA and tRNA), then: 

bioinformatics confirmation of a ~80nt hairpin structure; evolutionary 

conservation of the hairpin sequence (and particularly that of the mature 

microRNA (miR) and seed region of the hairpin) and detection by Northern 

Blot analysis is required for confirmation. It should be noted however, that 

the requirement for sequence conservation in the above verification 

process would preclude a positive result for bona fide processed hairpins 

that are species-specific or which were well conserved on a structural level 

but only weakly conserved in terms of sequence. 

       Anomalous microRNA expression has been detected in autism (Abu-

Elneel et al. 2008; Talebizadeh et al. 2008; Sarachana et al. 2010) and the 

notion that autism-associated SNPs in brain expressed introns could 

disrupt novel microRNAs was proposed by this author in 

Precedings.nature.com (hdl:10101/npre.2008.2366.1 2008). SNPs in X-

linked microRNAs are shown to alter processing and targeting of 

microRNA (Sun et al. 2009) and these may have neurological significance. 

To date however, no autism-associated SNPs are co-located in fully 

confirmed microRNA genes. However, SNPs showing association with 

autism and that are not located in protein coding regions or control 

elements could be considered for co-location with novel microRNAs. It is 

not inconceivable that such orphan SNP associations might indirectly 
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affect neuropsychiatrically relevant proteins, via an effect on novel 

microRNAs that have synaptic genes, for example, among their targets.  

      The recent discovery that the microRNAs MIR132 and MIR219 play an 

important role in the circadian molecular clock and neural functioning 

indicates a complex interaction between circadian biology and microRNA 

biogenesis (Cheng et al. 2007). Anomalies in the expression of any given 

microRNA will be functionally manifest through dysregulation of its target 

genes. The targets of some brain expressed microRNA that show 

circadian patterns of expression may include genes relevant to synaptic 

function and circadian disruption may thus affect brain synapses through 

dysregulation of microRNAs that target the mRNA of synaptic proteins.  

 

1.5 Epigenetics and autism. 

Discordance for autism in monozygotic twin sibling pairs suggests 

environmental and/or epigenetic factors might contribute to the aetiology 

of the disorder and an epigenetic contribution to autism aetiology is also 

supported by gene expression analysis of monozygotic twins discordant 

for autism (Bailey et al. 1995; Hu et al. 2006b). Thus any full explanation 

of the aetiology and prevalence of autism should account for this 

discordance and the complex patterns of heritability in autism. It is 

therefore pertinent to consider how: epigenetic mechanisms regulate gene 

expression, how certain epi-mutations are inherited and what examples of 

epigenetic psychiatric disorders there are. In this molecular-genetic 

context, epigenetic, means heritable traits that do not involve changes to 

the sequence of the DNA nucleotide code and the molecular mechanisms 
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supporting this form of heritability (Waddington 1953; Holliday and Pugh 

1975).  

 

1.5.1 Epigenetic vs. conventional genetic models of autism heritability. 

Although a plausible model of inheritance has been proposed (for the 

broader autism phenotype) that relies upon conventional genetics, this 

model also relies on evoking a large yet unexplained difference of 

penetrance for genes conferring risk of autism in males as compared with 

females (Zhao et al. 2007). Epigenetic factors could contribute to this 

differential penetrance and the discordance in twin studies (Bailey et al. 

1995; Skuse et al. 1997; Skuse 1999; Kaminsky et al. 2006). Furthermore, 

the existence of a plausible conventional model does not rule-out the 

possibility of epigenetic mechanisms playing a major role in the disorder.  

      Given the phenotypic overlap between autism, Rett syndrome and 

Fragile-X syndrome, it is noteworthy that Fragile-X syndrome and Rett 

syndrome (DSM-IV), though primarily monogenic disorders, manifest 

disease through aberrant epigenetic effects. In Prader-Willi syndrome and 

Angelman syndrome, disorders that also present with aspects of the 

autism phenotype, pathological effects on imprinting (silencing of 

chromosome regions in a parent-of-origin manner) are causative. At least 

two studies have considered autism as an imprinting disorder when 

viewed from an evolutionary standpoint (Isles et al. 2006; Crespi 2008; 

Ubeda and Gardner 2010).  

      A large proportion of all the known imprinted genes (~80 coding genes 

and ~37 non-coding RNAs) are expressed in the human brain and it has 

been proposed that this expression pattern supports the hypothesis that 
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imprinted genes are critical elements in the development and maintenance 

of social behaviours in humans (Davies et al. 2005; Isles et al. 2006).  

      In Apis melifera (honeybee), epigenetic effects appear to be required 

to maintain insect social organisation, as the colony social structure and 

division of labour is reliant on de novo DNA methylation (Kucharski et al. 

2008). Queen bees or workers are derived from the same clonal larvae, 

larval fate being determined by whether or not a given larva is fed royal 

jelly (Colhoun and Smith 1960; Schmitzova et al. 1998; Barchuk et al. 

2007). The gross difference in phenotype and fecundity between workers 

and queen bees appears to be due to de novo DNA methylation as 

knockdown of the de novo DNA methyltransferase Dnmt3 phenocopies 

the effect of royal jelly feeding (Kucharski et al. 2008). This system 

presents a good example of the complex interactions between: innate 

behaviours (feeding regimes), environmental effects (nutrients received), 

endo-phenotype (worker etc.) and social organisation that are maintained 

by epigenetic regulatory molecules. 

      Population genetics modelling suggests that genomic imprinting (the 

silencing of certain chromosomal regions in a sex-dependent manner) is 

driven by natural selection in a population where there is asymmetric 

relatedness between parents and offspring. In this model the matriarchal 

genome benefits from equal resourcing to all of the mother’s offspring over 

time (as all her offspring will certainly be her own). In contrast and where it 

is assumed that all the mother’s offspring will not (with certainty) share the 

same father, the paternal genome benefits from the transmission of genes 

that prioritise taking resource from the mother to enhance the foetus. For 

example, populations where males are typically more transient than 
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females would derive such a selective pressure. This conflict or kinship 

theory is an extension of the parent-offspring conflict theory that may be 

extended to encompass later stages of development (beyond resource 

allocation to the foetus) to cover aspects of differential sociability between 

males and females (Trivers 1974; Haig and Westoby 1989; Moore and 

Haig 1991; Isles et al. 2006).  

     In mammals, DNA methylation and histone modification associated 

with chromatin remodelling are the primary areas of understanding of the 

epigenetic process. The extra genetic information endowed by DNA 

methylation and histone modification can be envisaged as an overlay on 

the DNA nucleotide sequence code, imparting extra information to certain 

code regions without changing the underlying nucleotide sequence. In 

vertebrates, DNA methylation involves covalent modification (methylation) 

of certain cytosine residues of CG dinucleotides within a DNA sequence. 

When these methylated CG dinucleotides occur in regulatory regions of 

genes they provide binding sites for molecules such as Methyl CpG 

Binding Protein 2 (MECP2) that can act as gene expression silencers. The 

CG dinucleotides are often referred to as CpG dinucleotides, the p 

representing the phosphodiester bond between the nucleotide residues. In 

mammals 60-90% of all the CpGs are methylated however CpG rich 

regions that are coincident with the promoter regions of genes, so-called 

CpG islands, are predominantly unmethylated (Bird 1986). Within genes, 

differentially methylated regions occur, often in introns or overlapping the 

start sites of alternative transcripts. These differentially methylated regions 

are involved in the regulation of tissue specific gene expression (Miyazaki 

et al. 2009).  
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     Chromosomal DNA molecules are closely associated with globular 

nuclear proteins called histones (Kornberg 1974). Octomers of two each of 

histones H2A, H2B, H3 and H4 make up the nucleosome core around 

which ~150 nucleotides of the DNA double helix is coiled at approximately 

1.6 left handed turns per histone (Luger et al. 1997). Each nucleosome 

core is separated by a stretch of linker DNA that may be 10 to 100nt in 

length dependent on species and tissue type and histone H1 binds to the 

point of entry and exit of the DNA filament on the nucleosome core. 

Phenotypic effects that depend on covalent modification of the histone 

proteins of nucleosomes may be transmitted down a lineage of dividing 

cells by virtue of the incomplete disassociation of DNA and nucleosomes 

during mitosis (Felsenfeld and Groudine 2003). The modification of 

histones can involve acetylation, methylation, phosphorylation sumoylation 

and ubiquitination of particular amino acid residues particularly within the 

tail of the histones. Each modification alters the strength of the Histone-

DNA binding (Crosio et al. 2003; Levenson and Sweatt 2006; Tsankova et 

al. 2007). Most notably, acetylation of the K14 and K9 lysines of the tail of 

histone H3 by histone acetyltransferase enzymes (HATs) generally 

corresponds with a transcriptionally active chromatin structure while 

methylation of the K9 of H3 is associated with a silent chromatin state.  

      The clarity of this generalisation is however confounded when multiple 

modifications occur on the same Histone molecule as when tri-methylation 

of K9 is associated with transcriptionally active promoters. Tight binding of 

DNA to histones occurs where genes are transcriptionally repressed while 

an active chromatin state correlates with an open chromatin structure 

where the DNA and histones are not strongly associated (Mizzen et al. 
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1996; Taunton et al. 1996).  Modulation between these two forms of 

chromatin in different tissues and at different times is a fundamental 

mechanism that underlies the process of differential gene expression 

required for differentiation, development and circadian gene expression 

(Doi et al. 2006; Berger 2007).  

     A further level of complexity involves the protein CCCTC-binding factor, 

(zinc finger protein) (CTCF). Together with other elements of the 

epigenetic regulatory process, CTCF plays a role in the formation of 

higher-order chromatin topology, arranging chromatin into complex loop 

structures, thought to be pertinent to patterns of gene expression. In this 

way, long-range chromatin interactions mediated by CTCF can organise 

distant groups of genes into transcriptionally active units (Cai et al. 2006; 

Zhao et al. 2006).  

      Long range changes in the structure of chromatin as well as local 

changes in the physical and functional accessibility of the DNA to 

transcription factors are sometimes termed chromatin remodelling, a 

process that may occur in response to environmental or developmental 

stimuli. In a qualitatively similar manner differentially methylated regions 

within genes are recognised by chromatin remodelling complexes that can 

alter the proximities of regulatory and coding regions within the gene. By 

way of the formation of loop structures, the differentially methylated 

regions come to lie at the neck of the loop, thus bringing the region 

immediately upstream of a differentially methylated region into close 

proximity to the sequence immediately downstream of the next 

downstream differentially methylated region. Regulation of this form of 

structural reorganisation within the gene can be correlated with differential 



How could clock gene variation contribute to the causes of autism?  

   

Page 24 

tissue expression patterns and parent-of-origin effects (Murrell et al. 

2004). 

    Histone modifications and subsequent chromatin remodelling can thus 

be directed by the patterns of DNA methylation at control elements within 

genes. MECP2 for example recruits histone deacetylase to certain 

methylated promoters that leads to histone modification (Jones et al. 1998; 

Kokura et al. 2001). Aberration of the DNA methylation system is 

causative in Rett syndrome, Prada-Willi syndrome and Angelman 

syndrome and altered patterns of DNA methylation may also play a role in 

autism (Lintas and Persico; Nagarajan et al. 2008; Nguyen et al. 2010). 

     In mammals DNA methylation patterns undergo dynamic changes 

during development with two periods of global methylation remodelling 

that occur a) during gametogenesis and b) in the zygote prior to 

implantation (Morgan et al. 2005). Methylation remodelling during 

gametogenesis involves a wave of erasure of all methylation marks 

followed by a wave of remethylation that includes parent (maternal or 

paternal) specific imprints. This remethylation is mainly accomplished by 

the de novo methyltransferases DNMT3A and DNMT3B (Jeltsch 2006). 

The erasure of methylation followed by remethylation in mammalian 

gametes results in the sperm genome being predominantly methylated 

compared to the oocyte genome, which is less globally methylated 

(Morgan et al. 2005). Immediately after fertilization, the sperm genome is 

rapidly globally demethylated (apart from imprinted regions) while that of 

the oocyte is gradually demethylated (apart from imprinted regions) 

(Mayer et al. 2000; Oswald et al. 2000). Upon implantation the methylation 
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levels in the zygote begin to increase as development proceeds (Meehan 

2003). 

 

1.5.2 Gene silencing by DNA methylation. 

DNA methylation in mammals is generally correlated with the suppression 

of transcriptional activity. This may be local, as when methylation of CpG 

dinucleotides in the promoters of genes correlate with suppression of 

activity of those genes, or, widespread, for example when methylation of 

many genes on one of the pair of X chromosomes in the human female 

are inactivated (X-chromosome inactivation). In the case of X-

chromosome inactivation, this process ensures that the effective gene 

dosage of critical X-linked genes in human females is not double that of 

males.  

      In humans, chromosomes 7 and 15 also show imprinted regions.  

Within these regions, in a similar manner to the global hypermethylation of 

the inactivated X chromosome in females, hypermethylation of CpG 

dinucleotides leads to gene silencing.  However, human somatic cells are 

diploid and thus imprinting typically occurs on only one of a pair of given 

chromosomes. Whether the paternal or maternal, copy of a given pair of 

imprintable chromosomes has its imprintable region hypermethylated, 

derives the concept of a parent-of–origin effect for the imprint. Thus some 

imprinted regions may be sex specific, where, for a given gene region, it is 

typically the male or female copy that is silenced. Serious diseases linked 

to defective imprinting include the congenital cancer-predisposition 

syndrome Beckwith-Wiedemann syndrome (DeBaun et al. 2002; 

Weksberg et al. 2010) and the neurodevelopmental disorders of Prader-
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Willi Syndrome (Bittel and Butler 2005) and Angelman Syndrome (Lalande 

and Calciano 2007). 

     Prader-Willi Syndrome is characterised by symptoms that include 

obesity through compulsive eating, muscular hypotonia and mental 

retardation. The disorder is most commonly caused by lack of a functional 

paternally derived copy of the chromosomal region 15q11-q13, or 

maternal uniparental disomy of chromosome region 15q11-q13. In 

neurotypical individuals certain genes within this region are differentially 

expressed depending on whether the genes are imprinted on the 

parentally inherited copy of chromosome 15 or the maternally inherited 

copy of chromosome 15. Imprinting of chromosome region 15q11-q13, is 

controlled by the Prader-Willi Syndrome/Angelman Syndrome Imprinting 

Centre (PWS/AS-IC), within chromosome region 15q11-q13. Thus, in 

addition to gross deletion and rearrangements of this region, aberrant 

methylation of genes within chromosome region 15q11-q13 (caused by 

mutation of the PWS/AS-IC) can cause Prader-Willi Syndrome. About 70% 

of cases are caused by a de novo paternally derived chromosome 15q11-

q13 deletion while maternal disomy of chromosome region 15q11-q13 

accounts for about 25% of cases. Microdeletions or epimutations of the 

PWS/AS-IC, along with chromosome 15 translocations, complete the 

remainder.  

     The chromosome region 15q11-q13 is also affected in Angelman 

syndrome and cytogenetic analysis of autism cases shows the 

chromosome 15q11-q13 imprinted region is also the most common 

chromosomal region affected (Marshall et al. 2008). Angelman syndrome 

is characterized by: mental retardation, impaired movement or balance, 



How could clock gene variation contribute to the causes of autism?  

   

Page 27 

characteristic abnormal behaviors, and severe speech and language 

difficulties. Angelman Syndrome is caused by a lack of a functional 

(maternal) copy of ubiquitin protein ligase E3A (UBE3A) that also lies 

within the chromosome region 15q11-q13  (Kishino et al. 1997; Matsuura 

et al. 1997). In a mouse model of Angelman Syndrome Ube3a regulates 

the degredation of guanine nucleotide exchange factor ephexin-5 

(ARHGEF15) that in turn, regulates brain synapse formation. UBE3A is 

expressed from both paternal and maternal alleles in most tissues but 

preferential expression of the maternal allele occurs in human brain 

(Margolis et al. 2010). 

     For Prader-Willi Syndrome and Angelman Syndrome, perhaps the best 

“catch all” explanation of the genetic mechanism underlying their 

pathology involves the functional units of the PWS/AS-ICs: the PWS-SRO 

and the AS-SRO (SRO = Smallest Region-of-deletion Overlap) 

(Horsthemke and Wagstaff 2008). In terms of these critical regulatory 

regions that determine imprinting status in 15q11-q13, deletion of PWS-

SRO endows the gene activity and epigenetic modification of 15q11-q13 

typical of the maternal state irrespective of its maternal or paternal 

derivation. While on the other hand AS-SRO deletion in a chromosome 

with an intact PWS-SRO determines the paternal state regardless of 

maternal or paternal derivation. Typically, methylation of the PWS-SRO 

determines the maternal state for 15q11-q13, while lack of methylation of 

the PWS-SRO determines the paternal state for 15q11-q13. With 

reference to the periods of demethylation and remethylation during 

embryogenesis described above, it is clear that imprinting defects in the 

PWS/AS region could arise from failure to demethylate the PWS-SRO 
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during spermatogenesis, from failure to methylate the PWS-SRO during 

oogenesis, or from failure to maintain PWS-SRO methylation after 

fertilization.  

 

1.5.3 MECP2: an epigenetic regulator protein. 

The binding of some transcription factors such as E2F Transcription 

Factor 1 (E2F) or cAMP Responsive Element Binding Protein 1 (CREB) is 

directly inhibited by the methylation of their respective DNA motif targets 

and this inhibition correlates with the loss of transcriptional activation 

normally associated with E2F or CREB binding (Iguchiariga and Schaffner 

1989; Campanero et al. 2000). More generally, methyl-CpG binding 

proteins, e.g. MECP2, MBD1, MBD2 and MBD4 have a higher affinity for 

methylated as opposed to unmethylated DNA and on association with 

CpG dinucleotides within promoters and regulatory regions, recruit 

chromatin remodeling complexes to form a repressive chromatin 

environment (Jones et al. 1998; Nan et al. 1998; Wade et al. 1999; Fuks et 

al. 2000). These methyl-CpG binding proteins thus link the phenomena of 

DNA methylation and chromatin remodeling. 

      The prototypical methyl CpG binding protein Methyl CpG Binding 

Protein 2, (MECP2), the gene affected in the autism related disorder of 

Rett syndrome, plays a role in the process of epigenetic regulation of gene 

expression (Amir et al. 1999). The high affinity of this DNA binding protein 

for methylated CpG dinucleotides in gene promoters initially suggests a 

role as a global transcriptional silencer (Jones et al. 1998; Nan et al. 1998) 

however later work with Mecp2 null mice indicates a more limited and 

selective repressive scope (Tudor et al. 2002; Jordan et al. 2007). 
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Transcriptional profiling of Mecp2 knockout cell lines indicates MECP2 

binding may also activate certain promoters (Chahrour et al. 2008) 

Nevertheless, MECP2 mediated regulation of brain-derived neurotrophic 

factor (BDNF) via the promoter of brain-specific BDNF alternative 

transcript III is established. MECP2 occupies this promoter in polarised 

postmitotic neurons. On depolarisation and calcium influx MECP2 leaves 

the BDNF III promoter, permitting expression of the neural growth 

stimulant BDNF (Chen et al. 2003; Martinowich et al. 2003) suggesting a 

mechanism for use dependent synaptic connectivity that might support the 

processes of learning and memory (An et al. 2008; Kuczewski et al. 2009). 

      Research into the function of MECP2 is also particularly relevant to the 

field of neuropsychiatry as mutation of MECP2 causes the 

neuropsychiatric disorder of Rett Syndrome (with autism as part of the 

phenotype). Intriguingly, over-expression of MECP2 also results in 

neuropsychiatric phenotypes and autism and it has been proposed that 

normal neuronal function and development requires a homeostatic 

mechanism whereby the levels of MECP2 are maintained within strict 

limits in neurons (Ramocki and Zoghbi 2008). Too much MECP2 and 

neurons develop hyper-arborisation while too little leads to neurons that 

are depleted in dendritic spine number and complexity. Males with 

duplications at the MECP2 locus show an autism phenotype that overlaps 

with that of typical (MECP2 deleted) Rett syndrome (Meins et al. 2005; 

Van Esch et al. 2005; del Gaudio et al. 2006; Friez et al. 2006; Smyk et al. 

2008). Thus Rett Syndrome, one of the most common causes of mental 

retardation in females (Moretti and Zoghbi 2006), is now considered to be 
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phenocopied by MECP2 deletions and duplications that could both 

positively and negatively affect MECP2 levels.  

 

1.5.4 DNA methylation of clock genes in autism. 

The social timing hypothesis posits brain oscillators, that are reliant on 

clock genes that drive circadian rhythms, malfunction in autism (Wimpory 

et al. 2002). In the hypothesis, this author proposed that epigenetic and/or 

genetic mutations leads to pathological clock gene expression patterns in 

autism. Analysis of gene expression patterns in twins discordant for autism 

show epigenetic effects are likely (Hu et al. 2006b) and a methylation 

screen of monozygotic twins with discordant autism diagnoses (and their 

non autistic siblings) highlighted the clock regulated gene B-cell 

CLL/lymphoma 2 (BCL2) and the clock gene RAR-related orphan receptor 

A (RORA) as differentially methylated in the autistic twin compared with 

the co-twin and unaffected sib. Immunohistochemical analysis of autism 

brain tissue showed altered expression of BCL2 and RORA compared to 

controls and genome-wide significant, epigenetic, parent-of-origin effects 

for autism at the clock homologue (mouse) (CLOCK) locus tentatively 

implicate clock gene methylation in the disorder (Fradin et al. 2010; 

Nguyen et al. 2010). A study of clock gene promoter methylation in 

mouse, found major changes in clock gene E-Box region methylation 

around the perinatal period of development, suggesting a role for 

developmentally programmed methylation of clock gene regulatory 

elements (Ji et al. 2010). 
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1.6 Clock genes: The mammalian circadian molecular clock. 

In mammals, the core molecular clock, described for example by Looby 

and Loudon (2005) comprises a suite of epistatic genes that operates as a 

system of transcription/translation auto-regulatory feedback loops. In 

Figure 1-3 a core element, aryl hydrocarbon receptor nuclear translocator-

like (ARNTL) is shown under the synonym BMAL1.  

      A heterodimer consisting of CLOCK/ARNTL or neuronal PAS domain 

protein 2 (NPAS2)/ARNTL is the positive element of the circadian 

molecular clock that induces the transcription of the negative elements of 

the feed back loop (Gekakis et al. 1998; Bunger et al. 2000). The negative 

elements: period homolog 1 (Drosophila) and homologs 2 and 3 (PER1, 

PER2, PER3); cryptochrome 1 (photolyase-like) (CRY1) and 

cryptochrome 2 (photolyase-like) (CRY2); and nuclear receptor subfamily 

1, group D, member 1 (NR1D1 also known as REV-ERBα/β) repress the 

action of the CLOCK/ARNTL activator and thus derive oscillating 

expression of the CLOCK/ARNTL activator via protein turnover of the 

PER/CRY complex (Shearman et al. 2000). The microprotein, inhibitor of 

DNA binding 2, dominant negative helix-loop-helix protein (ID2) has 

recently been shown to also negatively regulate the CLOCK /ARNTL 

activator (Duffield et al. 2009). The established roles for this protein in 

development and immunity suggest a mechanism for clock regulated 

developmental processes and interaction between the circadian clock and 

the immune response (Hacker et al. 2003; Rankin and Belz 2011).  

      A role for the Drosophila TIM paralogue TIMEOUT in the mammalian 

circadian circuit awaits clarification, nevertheless mammalian TIMELESS 

shows ~24h oscillation and the protein physically associates with PER and 
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CRY while knockdown of Tim in SCN (rat) disrupts neuronal activity 

rhythms. This role of TIMELESS in SCN neuronal activity rhythms may 

impact circadian behaviour (Barnes et al. 2003; Jin et al. 1999; Kume et al. 

1999). Additionally, association of TIMELESS with depression and sleep 

disturbance may reflect clock function (Utge et al. 2010).  

      The CLOCK/ARNTL heterodimer drives rhythmic expression of clock-

controlled genes e.g. basic helix-loop-helix family, member e40 (BHLHE40 

also known as DEC1), basic helix-loop-helix family, member e41 

(BHLHE41 also known as DEC2), WEE1 homolog (S. pombe) (WEE1), v-

myc myelocytomatosis viral oncogene homolog (avian) (MYC also known 

as C-MYC) and MAGE-like 2 (MAGEL2) by binding to E-box activator 

elements (CACGTG or CACNNGT) in their promoter regions (Hogenesch 

et al. 1998; Honma et al. 2002; Fu et al. 2002; Matsuo et al. 2003; Kozlov 

et al. 2007; Mercer et al. 2009).  

    In addition to the E-box, the D site of albumin promoter (albumin D-box) 

binding protein (DBP) is under clock-control and binds and activates 

genes containing D-Box elements (TTATG[T/C]AA) (Ueda et al. 2005).  

The core clock elements, NR1D1 and the RAR-related Orphan receptor A, 

(RORA) regulate in a clock-controlled manner via RRE elements 

([A/T]A[A/T]NT[A/G]GGTCA) that are not necessarily within the promotor 

regions of genes (Harding and  Lazar 1993). Thus the circadian regulation 

of genes containing E-Box D-Box and RRE circadian regulatory elements, 

represent the clock-controlled output from the central oscillator. Some of 

these clock-controlled genes encode transcription factors, so that directly 

or indirectly, it is estimated that some 15% of the whole mammalian 

transcriptome shows circadian regulation per tissue (though a different set 
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of genes representing this fraction of the transcriptome may be cycling in 

each of the different tissues (Yang et al. 2007)).  

      Chromatin modification plays a central role in the mechanism of 

transcriptional activation/repression seen in the circadian molecular clock. 

CLOCK functions as a histone acetyltransferase (Doi et al. 2006) and the 

cyclic expression of CLOCK/ARNTL is also accompanied by a 

synchronous rhythm in H3 histone acetylation (H3K9) on the promoters of 

PER and CRY, catalysed by CLOCK and the histone acetyltransferase 

E1A binding protein p300 (EP300) (Etchegaray et al. 2003).  

      To balance the system, experments with mouse embryo fibroblasts 

show sirtuin 1 (SIRT1), coding a histone de-acetylase that acts upon H3 

K9/K14 of ARNTL and other circadian promoters, is under circadian 

control (Nakahata et al. 2008; Asher et al. 2008). Cyclic methylation of 

H3K27 on PER and possibly CRY promoters by the polychrome protein, 

enhancer of zeste homolog 2 (Drosophila) (EZH2) is also shown to be 

required for the maintenance of circadian rhythm, which, taken altogether, 

shows chromatin modification as an important facet of the circadian clock 

mechanism (Etchegaray et al. 2006).  

      The negative elements of the system (PERs and CRYs) operate via a 

PER/CRY heterodimer that inhibits the activating effects of the 

CLOCK/ARNTL heterodimer. The binding of CLOCK to ARNTL causes 

acetylation of ARNTL at K537 which in turn facilitates binding to and 

repression of the CLOCK/ARNTL heterodimer by the PER/CRY complex 

(Hirayama et al. 2007b). This complex also contains splicing factor 

proline/glutamine-rich (SFPQ/PSF) that recruits SIN3 homolog A, 

transcription regulator (SIN3A) and HDACs to the PER1 promoter, where 
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deacetylation of H3K9 occurs, likely reversing the activating effect of the 

histone acetylase CLOCK (Duong et al. 2011).  

      The CLOCK/ARNTL heterodimer also induces NR1D1 (REV-ERBα/β, 

a lithium sensitive gene) that represses expression of ARNTL (Preitner et 

al. 2002; Ueda et al. 2002; Yin and Lazar 2005; Yin et al. 2006). Protein 

turnover eventually degrades the negative elements, and restoration of the 

activator complex allows the cycle to start over. The inductive effect of 

protein turnover of the negative elements is also reinforced by the function 

of the retinoic acid orphan receptor alpha, beta and gamma proteins 

(RORs). Whilst being clock-controlled, also induce expression of ARNTL, 

NPAS2 and CLOCK in a feed-forward circuit of the circadian molecular 

clock (Sato et al. 2004; Akashi and Takumi 2005; Crumbley et al. 2010; 

Crumbley and Burris 2011). The duration of the molecular migration of 

proteins and mRNA to and from the nucleus respectively, together with the 

protein turnover time, broadly defines the ~24h period of this oscillatory 

system.  

      To integrate this core clock mechanism into the life of the organism as 

a whole, genes associated with resetting of the clock (e.g. CRY1, CRY2) 

serve in matching environmental time with biological time by resetting the 

clock in response to environmental cues such as day length (Berson et al. 

2002). Casein kinase 1, epsilon (CSNK1E) regulates the clock by affecting 

the stability of the PER/CRY complex through phosphorylation and other 

post translational processes e.g. sumoylation and ubiquitination of clock 

proteins also play important roles in the circadian clock mechanism (Lee et 

al. 2001; Cardone et al. 2005; Busino et al. 2007). Output pathways 

transduce the clock’s time-of-day signals into multiple physiological 
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responses that endow organisms with the ability to maintain a state of 

appropriate physiological readiness that anticipates the environmental 

demands associated with a particular time of day or night.  

      Recently it has become apparent that small molecules also play a role 

in the central circadian oscillator. The discovery that normal clock function 

in mouse requires the microRNAs miR219 and miR132, shows that the 

molecular clock in mammals is more complex than previously thought, 

involving regulation of gene transcripts by RNA interference.  

      MIR219 is a clock-controlled gene, while MIR132 is light regulated. 

Target validation in vivo confirms: regulatory factor X, 4 (RFX4); PH 

domain and leucine rich repeat protein phosphatase 1, (PHLPP1 (SCOP)); 

and, Rho GTPase activating protein 32 (ARHGAP32) as targets for these 

microRNAs. These proteins are predicted to exert their confirmed 

influence on clock function through roles in the processes of signal 

integration, chromatin remodeling and cellular excitability; that are thus 

modulated by oscillating levels of miR132 and miR219 (Cheng et al. 

2007). This microRNA requirement is additional to transcription/translation 

auto-regulatory feedback and post-transcriptional regulation by kinases 

and the deadenylase CCR4 carbon catabolite repression 4-like (S. 

cerevisiae) (CCRN4L also known as nocturnin) (Garbarino-Pico and 

Green 2007).  
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      The introduction of miRNAs to the core clock-mechanism also adds 

complexity in terms of our understanding of the pleiotropic effects of the 

clock, as microRNAs are powerful agents of multi-targeted gene 

regulation. The inclusion of genes of particular relevance to autism such  

as BDNF and MECP2 (see page 29) amongst the verified targets of the 

circadian mirR219 (Klein et al. 2007), suggests a possible role for 

circadian microRNAs in neuropsychiatric disorders. Links between the 

circadian molecular clock and the microRNA biogenesis pathway thus 

suggests how an altered circadian clock could manifest currently 

unexplained effects on memory formation (Stickgold 2005) and the co-

occurrence of circadian and neurobehavioral phenotypes (Figure 1-3). 

       In addition to their role as clock elements, certain clock genes e.g., 

PER1, PER2 and NPAS2 appear to play roles in signaling pathways, in 

DNA repair and in cancer (Chilov et al. 2001; Rutter et al. 2001; Dioum et 

al. 2002; Fu et al. 2002; Gery et al. 2006). RORA and PER2 function in 

cerebellum development and stem cell proliferation in the adult 

hippocampus respectively (Gold et al. 2007; Borgs et al. 2009) and such 

studies point toward a broader functionality for clock genes beyond a 

specific role in circadian rhythm generation. 

 

1.7 The circadian clock and genome stability: autism and cancer. 

After many years of research on mutations that disrupt the cell division 

cycle in both higher and lower organisms, it has only recently become 

clear that the circadian molecular clock plays a crucial role in the temporal 

structuring of the cell division cycle (Matsuo et al. 2003; Chen et al. 2007). 

Crosstalk between the circadian clock and the cell division cycle is 
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purported to give at least two fundamental advantages. Firstly, the 

temporal separation of DNA replication from incompatible metabolic 

processes protects DNA from, for example, oxidative damage (Chen and 

McKnight 2007). Secondly, processes that are vulnerable to adverse cyclic 

environmental factors, e.g. ultra violet radiation in sunlight, may be 

temporally-protected by being gated into safe time-windows, in this 

example, night time (Danilova et al. 2004). 

      Similarities between the signalling pathways that co-ordinate the DNA 

damage response and the circadian clock, are presented as suggesting a 

common origin for these two phenomena (Uchida et al. 2010). This idea, 

developed on a zebra fish model, is in keeping with wider evidence that 

the circadian molecular clock is involved in both temporal regulation 

(Reppert and Weaver 2002) and genome repair and replication (Gery et 

al. 2006; Kondratov and Antoch 2007). 

     In zebrafish, a common light induced signalling pathway regulates both 

the circadian clock and the cell cycle. Reactive oxygen species (ROS) 

produced by the action of sunlight on the fish derives photo-oxidative 

stress that activates a redox signalling cascade involving the cell cycle 

control regulator zWEE1 (Hirayama et al. 2005), the clock gene product 

zCRY1a and the DNA repair protein zPHR (Hirayama et al. 2007a; 

Hirayama et al. 2009). In this system, sunlight is an environmental hazard, 

a zeitgeber to the circadian clock and a promoter of photolytic DNA 

damage repair. 

     When yeast is grown under naturalistic, low-nutrient conditions, the 

cells show a 4 to 5 hour rhythm of alternating glycolytic (reductive) and 

respiratory (oxidative) phases. DNA replication is confined to the reductive 
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phase of this cycle when the potential for oxidative damage to the 

replicating DNA is less (as compared to during the oxidative phase).  

Mutants that force the cells to undergo DNA replication in the oxidative 

phase derive higher levels of spontaneous mutation while deletion of the 

checkpoint kinase, suppressor of Mec1 Lethality (sml1) that un-couples 

the circadian rhythm from these metabolic rhythms also de-synchronises 

the metabolic and cell cycles and increases mutation rates (Chen et al. 

2007). 

 

1.7.1 Clock genes and the DNA damage response. 

      The DNA damage response can be envisaged as comprising not only 

DNA repair and the activation of DNA damage checkpoints but also 

apoptosis, and transcriptional reprogramming, and that each of these is 

gated by the circadian-clock. The DNA repair process includes 

mechanisms that involve direct repair, nucleotide excision repair, base 

excision repair, and double-strand break repair. The circadian clock may 

play a role in a number of these processes but so far, only nucleotide 

excision repair is shown to be under the strict control of the circadian 

molecular clock (Kang and Sancar 2009). 

      The Nucleotide excision repair mechanism is responsible for correcting 

a wide range of DNA damage that includes pyrimidine dimers and the di-

adducts induced by cis-platin treatments. In this process, firstly, replication 

protein A1, 70kDa (RPA), xeroderma pigmentosum, complementation 

group A (XPA) and xeroderma pigmentosum, complementation group C 

(XPC) bind to the DNA damage site and recruit the general transcription 

factor IIH complex (TFIIH complex) that allows unwinding of the DNA 
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strands into the pre-incision complex 1. XPC bound to RAD23 homolog B 

(S. cerevisiae) (XPC-RAD23B) leaves the complex and is replaced by 

excision repair cross-complementing rodent repair deficiency, 

complementation group 5 protein (ERCC5) to derive the pre-incision 

complex 2 where XPA recruits excision repair cross-complementing rodent 

repair deficiency, complementation group 4 protein (ERCC4) to form the 

pre-incision complex 3.  ERCC4 (within the complex) cuts the DNA 

strands ~23 nucleotides 5’ of the damage and ERCC5 cuts the DNA 

strands between ~4 nucleotides 3’ of the lesion (Huang et al. 1992). Thus 

a ~28 nucleotide oligomer is released together with the repair factors that 

have served their role. RPA remains bridging the excision gap and recruits 

replication factor C (activator 1) 1, 145kDa protein (RFC1) and 

proliferating cell nuclear antigen protein (PCNA). DNA polymerases delta 

and or epsilon extend the DNA strands across the gap that is finally ligated 

by ligase I, DNA, ATP-dependent (LIG1). Disruption of the excision repair 

pathway by mutation causes the cancer prone and photosensitivity related 

syndrome of xeroderma pigmentosum. Individuals with this condition also 

show higher rates of neurological abnormalities (Sancar 1996).  

      XPA is a clock-controlled gene. It shows circadian patterns of 

expression in mouse liver and brain (Kang et al. 2009; Kang et al. 2010) 

and has two E-boxes in the XPA 5’ promoter region. XPA is ubiquitinated 

by hect domain and RLD 2 (HERC2), which is itself clock regulated in 

phase with XPA possibly contributing to entraining the half-life turnover 

time for XPA to ~3h (Sancar et al. 2010; Kang et al. 2010). Thus a critical 

component of the nucleotide excision repair mechanism is under circadian 

control and therefore, perturbations in the normal running of the circadian 
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molecular clock or the organismal clock driven by the SCN could 

compromise the process of nucleotide excision repair.  

 

1.7.2 DNA damage checkpoints. 

To maintain genome integrity, DNA damage repair must be carried out 

before the process of DNA replication and cell division is complete. The 

mammalian cell cycle has two time points, called check points, where 

progress through the cycle is slowed or halted in response to the presence 

of damage to the dividing DNA. Firstly the ATR-CHK1 pathway is activated 

in response to DNA damage induced by ultra violet light (UV), chemicals 

that produce similar modification to that of UV, or chemicals that cause 

stalled replication forks. Secondly the ATM-Chk2 pathway is the primary 

DNA damage response to double-strand breaks that result from ionizing 

radiation (IR) or chemicals that mimic the effects of IR.  

      The structure of these two damage response pathways can be 

considered in terms of damage sensors, signal transducers and effector 

proteins. The primary sensor kinases, ataxia telangiectasia mutated (ATM) 

and ataxia telangiectasia and Rad3 related (ATR) relay the damage 

response signal through the signal transducing kinases of CHK1 and 

CHK2 and on via effectors such as tumor protein p53 (TP53 also known 

as p53), cell division cycle 25 homolog C (S. pombe) (CDC25) and  cell 

division cycle 45 homolog (S. cerevisiae) (CDC45) to cyclin-dependent 

kinase 1 (CDK1 also known as CDC2) and cyclin-dependent kinase 2 

(CDK2) where phosphorylation of CDK1 and CDK2 results in cell cycle 

arrest at the G2/M and G1/S boundaries respectively. It is now clear that 
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certain clock genes also take part directly in this signal transduction 

mechanism.  

      In the ATM pathway; CRY, timeless homologue (Drosophila) 

(TIMELESS) and timeless interacting protein (TIPIN) join ATR and ATR 

interacting protein (ATRIP) in a complex that activates the CHK1 protein 

(Unsal-Kacmaz et al. 2005). In the ATM pathway PER1 interacts with ATR 

in the activation of CHK2 (Gery et al. 2006). The circadian clock thus 

interfaces with the cell cycle in two ways; firstly, by producing circadian 

oscillations in the availability of clock-controlled cell cycle proteins such as; 

WEE1, C-MYC, cyclin-dependent kinase inhibitor 1A (p21, Cip1) 

(CDKN1A) and XPA and secondly, by elements of the circadian molecular 

clock itself e.g. PER, TIMELESS and CRY proteins being part of the 

damage response signal transduction cascade (Fu et al. 2002; Matsuo et 

al. 2003; Sancar et al. 2004; Unsal-Kacmaz et al. 2005; Gery et al. 2006; 

Grechez-Cassiau et al. 2008). The terms serial connection and direct 

connection respectively have been applied to these two forms of 

clockgene involvement in the workings of the cell cycle. 

 

1.7.3 Circadian control of apoptosis. 

During the cell division cycle and in response to the presence of DNA 

damage, commitment to activate DNA damage response pathways or 

apoptotic pathways will be determined largely by the degree of any DNA 

damage carried by the cell. Apoptosis of cells carrying irreparable 

mutations thus protect the organism from harbouring a growing number of 

defective mutant cells. Apoptosis also plays a benign role in 

embryogenesis and development where programmed cell death is an 
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intrinsic part of the expansion and re-modelling of tissue structures and 

systems.  

  

Figure 1-4. Circadian clock proteins PER, CRY and TIMELESS in the ATM and ATR 

checkpoint pathways.  

IR indicates DNA damage induced by ionising radiation and UV indicates DNA damage 

induced by ultra violet radiation. Mutations in circadian clock genes may thus make 

neurons more vulnerable to the effects of DNA damage. The diagram also suggests that 

DNA damage might affect the clock by limiting the availability of the PER/CRY complex 

when either or both of these proteins are recruited to the checkpoint pathways.  

 

      The two canonical apoptotic pathways, the death receptor pathway 

and the mitochondrial dependent apoptotic pathway, are under circadian 

control by virtue of the central role of clock-controlled genes in both these 

pathways. In the death receptor pathway the product of the clock-

controlled tumor necrosis factor (TNF) gene, on binding to membrane 

bound death receptors, initiates a cascade of caspase enzymes that leads 

to expression of DNA fragmentation factor, 40kDa, beta polypeptide 
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(caspase-activated DNase) DFFB/CAD and subsequent chromosomal 

breakdown (Hotchkiss et al. 2009). In the mitochondrial apoptotic pathway 

TP53 acts as a regulator of the pro-apoptotic proteins BCL2-associated X 

protein (BAX) and BCL2-antagonist/killer 1 (BAK1). Though not strictly 

shown to be rhythmic, perhaps because of the complexity of its 

interactions, TP53 expression is upregulated by ARNTL and down 

regulated by CRY proteins and thus is potentially under the influence of 

oscillating levels of these canonical clock proteins (Mullenders et al. 2009).  

 

1.7.4 The circadian clock and cancer development. 

      The onset of cancer is thought to involve a breakdown of the cell’s 

normal response to DNA damage and as clock genes operate in DNA 

damage response pathways, it is not surprising that the disruption of 

circadian rhythms is associated with increased rates of cancer and 

epidemiology implicates disruption of circadian rhythms per se as an 

oncogenic factor (Davis et al. 2001). However, experiments with clock 

gene mutant mice also suggest a complex clock gene specific link to 

cancer development.  

      For example Cry1-/- Cry2-/- mice are arrhythmic but do not show 

increased rates of cancer as compared with wild type mice (Gauger and 

Sancar 2005). Further, p53-/- knockout in mice normally increases cancer 

rates but in Cry1-/- Cry2-/- mice, p53 knockout reduces the rate of early 

onset cancer and extends their median lifespan. Investigations of this 

paradox in cell lines showed p53-/- cells compared with Cry1-/- Cry2-/- p53-/- 

cells were similar with respect to UV-induced DNA damage repair and UV-

induced ATM and ATR checkpoint activation but differed with respect to 
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sensitivity to genotoxin induced apoptosis (including UV-induced 

apoptosis) which was raised in the Cry1-/- Cry2-/- p53-/- mice (Ozturk et al. 

2009). The absence of an expected incremental increased rate of cancer 

due to the p53-/- mutation added to a Cry1-/- Cry2-/- background may be 

explained by a compensating effect of Cry1-/- Cry2-/- dependent increased 

apoptosis in the Cry1-/- Cry2-/- p53-/- triple mutant.  

      Studies with Clock and Bmal1 mutant mice further indicate that rather 

than circadian disruption per se, it is pathological changes in the levels of 

certain clock proteins that are the causative link between circadian clock 

disruption and cancer (Gorbacheva et al. 2005; Kondratov et al. 2006; 

Antoch et al. 2008). In this respect it is noteworthy that altered expression 

of PER proteins are linked to breast tumour development (Fu et al. 2002) 

which may be driven by anomalous promoter methylation of PER proteins 

(Chen et al. 2005). Even though the evidence reviewed by Sancar et al., 

(2010) argues in favour of a focus on specific clock genes in cancer 

development i.e. PER CRY and TIM, other studies not cited by their 

review highlight other clock and clock related genes in cancer 

development e.g. NPAS2 (Hoffman et al. 2008), EZH2  (Etchegaray et al. 

2006; Puppe et al. 2009) and RACK1 (Hu et al. 2006a; Al-Reefy et al. 

2010; Robles et al. 2010). The growing number of reports of other clock 

and clock-controlled genes in cancer development suggests that attempts 

to define the role of the circadian clock in cancer development as centred 

on specific clock genes or on the circadian rhythm itself is somewhat 

tautological. 

      Although the exact mechanism by which clock genes impact upon 

DNA damage repair mechanisms is currently not fully understood 
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nevertheless, certain circadian clock proteins, CRY, PER1 and TIMELESS 

are shown to take part in the molecular mechanisms that underlie the DNA 

damage response and DNA repair mechanisms in mammalian cells 

(Unsal-Kacmaz et al. 2005; Gery et al. 2006). 

      An extra facet is added by considering the need for chromatin 

remodelling during the DNA damage repair process. The canonical 

circadian protein CLOCK is a histone acetyltransferase and together with 

K (lysine) acetyltransferase 5 (KAT5 also known as Tip60) is involved with 

DNA repair that depends on chromatin remodeling (Miyamoto et al. 2008). 

The histone acetyltransferase activity of CLOCK is also required for its role 

in circadian rhythm generation (Doi et al. 2006). The histone 

acetyltransferase EP300 appears to modulate the tissue specificity of 

clock gene expression by forming either a co-activator or co-repressor 

complex with PCAF/CLOCK/ARNTL or HDAC3/CLOCK/ARNTL 

respectively that targets the CLOCK/ARNTL heterodimer, with 

concomitant activation or repression respectively (Hung et al. 2007; 

Hosoda et al. 2009). EP300 acetylates H3-K56 and co-localizes with DNA 

repair sites, while SIRT1 deacetylates H3-K56 (Das et al. 2009).  

      Intriguingly SIRT1 is a critical component of the feedback loop that 

links circadian rhythms with metabolism. SIRT1 regulates the core 

circadian clock by its requirement for high amplitude circadian expression 

of the core clock genes. Also, cellular oxidative capacity (NAD+ levels) 

shows a circadian rhythm driven by CLOCK/ARNTL and SIRT1 (Nakahata 

et al. 2009).  
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Figure 1-5. Cell cycle of a typical somatic cell.  

M = mitosis and C = Cytokynesis. During G1, Cellular contents excluding the 

chromosomes are duplicated, S: chromosomes are duplicated, G2: most DNA damage 

repair occurs. 

 

SIRT1 regulates the circadian expression of nicotinamide 

phosphoribosyltransferase (NAMPT, the rate-limiting enzyme in the NAD+ 

synthesis pathway) and thus determines a circadian rhythm in the 

availability of its own cofactor, NAD+. This is reminiscent of the situation in 

yeast where the circadian and metabolic cycles are coupled (Chen et al. 

2007). On this theme, recent findings implicate SIRT1 in the maintenance 

of genome stability via a mechanism involving the deacetylation of H3-K56 

(Yuan et al. 2009) and in NAD+ related excitotoxicity of energetically 

compromised neurons (Liu et al. 2009).  

      In the SCN, circadian rhythms driven by the CLOCK/ARNTL 

heterodimer can be phenocopied by the NPAS2/ARNTL heterodimer 
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(Kennaway et al. 2006; DeBruyne et al. 2007). However, NPAS2 does not 

posses HAT activity. Therefore, the reliance of CLOCK/ARNTL driven 

circadian rhythms on the HAT activity of the CLOCK protein (Doi et al. 

2006) suggests that the NPAS2/ARNTL heterodimer generates circadian 

rhythms by virtue of other HAT containing molecules that associate with 

NPAS2/ARNTL on circadian promoters. Asher and Schibler (2006) 

propose EP300 and ATR as possible cofactors lending extra HAT capacity 

to the CLOCK/ARNTL or NPAS2/ARNTL complex.  

 

1.7.5 Cancer and autism. 

    If disrupted circadian molecular clocks contribute to autism, it follows 

that altered cancer rates could be more likely in this subpopulation. This 

increased risk may be additional to an increased risk of cancer in autism 

that is due to overlap between genes linked to autism development that 

are also linked to cancer development.  

     Certain cancer related genes also appear to be involved in autism. For 

example, mutations in Tuberous Sclerosis Complex (TSC) genes 

encoding hamartin, tuberous sclerosis 1 (TSC1) and tuberin, tuberous 

sclerosis 2 (TSC2) the phosphatase and tensin homolog (PTEN) and the 

met proto-oncogene (hepatocyte growth factor receptor)  (MET) are each 

linked to forms of cancer and increased risk of autism (Wiznitzer 2004; 

Gentile et al. 2008; Orlova and Crino 2010). However, whether the 

neuropsychological phenotype is primarily due to secondary effects 

caused by the physical disruption of brain tissues by tumors (TSCs) or 

altered brain growth patterns (PTEN and MET) remains to be seen. 

Nevertheless, where these factors are taken into account, there remains a 
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highly significant association between breast and uterine cancer and 

autism (Kao et al. 2010). This finding might have relevance to altered 

clock gene expression in autism (Hu et al. 2009a) as a number of studies 

implicate altered clock gene expression in breast cancer development 

(Chen et al. 2005; Zhu et al. 2008).  

      Increased rates of cancer in autism (Rzhetsky et al. 2007; Kao et al. 

2010) Increased genome instability (Pinto et al. 2010) in the disorder; 

anomalous expression of clock genes in severe autism (Hu et al. 2009a) 

and abnormal patterns of promoter methylation of the clock gene RORA 

(Nguyen et al. 2010) together with genetic association of PER1 and 

NPAS2 (Nicholas et al. 2007) tentatively suggests that circadian clock 

anomalies might contribute to both the neuropsychiatric phenotype and 

increased cancer susceptibility in the severe autism subpopulation.  

 

 

1.8 Autism and social timing: timing in social communication is a 

cross species phenomenon with genetically predetermined aspects.  

Interpersonal timing difficulty in autism has been highlighted as a critical 

element of this predominantly male-affecting disorder and hypotheses and 

evidence of a role for circadian, communicative and/or neurological 

aspects of timing in autism are documented (Segawa et al. 1981; Newson 

1984; Richdale and Prior 1992; Courchesne et al. 1994; Boucher 2001; 

Brock et al. 2002; Wimpory et al. 2002; Welsh et al. 2005; Hesling et al. 

2010).   

      Boucher (2000, 2001) and Brock et al. (2002) suggest a core timing-

deficit presenting different manifestations by its effect on the elements of 
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an integrated system of neural and physiological oscillators in autism. 

Wimpory et al. (2002) proposed a causative, concurrent and 

developmental role for timing deficit in autistic disorder and this author 

contributed the idea that this deficit may be derived from pathological 

genetic/epigenetic variations in clock genes (Wimpory et al. 2002).  

      In terms of the above hypotheses, timing deficit may manifest in 

autism as both temporally measured anomalies in social interaction (social 

timing) and apparently disparate symptoms such as anomalous 

performance in tasks involving perceptual and cognitive coherence that 

require synchronization of neural oscillators in distinct brain regions. 

(Feldstein et al. 1982; Tantam et al. 1993; Sears et al. 1994; Grice et al. 

2001; Townsend et al. 2001; Inui and Asama 2003; Schmitz et al. 2003; 

Szelag et al. 2004; Brown et al. 2005; Gowen and Miall 2005; Haist et al. 

2005; Trevarthen and Daniel 2005; Bebko et al. 2006). 

       In typically developing infants, rhythmic turn taking in proto-

conversations precedes the emergence of verbal language, and this 

coordinated interpersonal timing facilitates social interaction (Jaffe et al. 

2001). In a study of typically developing and Down syndrome infants, it 

was shown that the ability to coordinate interpersonal timing in the Down 

syndrome children was similar to that of normal children (though Down 

syndrome children were delayed in the development of this faculty) 

(Jasnow et al. 1988). This, together with the observations that very young 

infants engage synchronously in proto-conversations with their caregiver, 

suggests that this social timing ability is not strongly dependent on intellect 

and that it precedes (and is therefore not derived from) the cognitive–

symbolic functioning associated with word language. This point is re-
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focused by the Social-Timing hypothesis that posits a gene-derived deficit 

in social timing ability in autistic infants disrupts early infant-mother 

interaction and consequently contributes to the development of abnormal 

sociability and language (Wimpory et al. 2002). 

     Jasnow et al., (1988) proposed that the ability of infants to perform 

synchronized turn-taking interactions from an early age reflects a 

functionally adaptive social predisposition common to many species 

including frogs, birds, and insects that use sonic communication in a social 

context (Jasnow et al. 1988). For example, a neural network in the brain of 

the female cricket Gryllus bimaculatus acts as a temporal filter such that 

only certain temporal patterns within the male cricket’s song will elicit 

phonotactic response in the females (Schildberger 1984). A similar (in 

principle) neural auditory filter has been described in toads.  

      The closely related species Bufo americanus and Bufo woodhousii 

fowleri often inhabit the same ponds and are capable of inter-breeding. 

The identity of these two species is however maintained primarily by 

differences in the temporal structure of the mating call for each species. 

Neurons in the mid brain of the toads perform time domain analyses of 

inputs from the auditory pathway and act as a neural filter, only 

transducing signals corresponding to mating calls possessing the 

appropriate species-specific temporal pattern (Rose and Capranica 1984). 

Neurons of the inferior colliculus (Rattus) process the temporal patterning 

of sounds to determine social relevance (Moller 1983) indicating that a 

neural mechanism for the detection of temporally patterned socially 

relevant auditory output from conspecifics is likely to be widespread 

amongst animal species (Langner 1992). Genetically determined neural 
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circuitry is also required for the production of temporally patterned socially 

relevant auditory output from conspecifics. This concept is reinforced by 

genetic studies in the fruit fly Drosophila. 

      In Drosophila, the period gene (per) influences female receptivity to 

song and temporal elements of song production in males (Kyriacou and 

Hall 1980; Kyriacou et al. 1992; Greenacre et al. 1993). Song production 

in Drosophila is innate (Billeter et al. 2006) and a number of areas of the 

male Drosophila brain are implicated in song production with particular 

focus on the “3 + 1” neuron bundles and Giant Descending Neurons that 

are required to be male typical (i.e. not feminized) for song production 

(Moran and Kyriacou 2009).  

      There is evidence to support the notion that behavioural rhythms: 

seasonal, circadian, ultradian and sonic communicative rhythms, may 

share genetic substrates. For example: Seasonality in humans (Kovanen 

et al. 2010), time point of mating in the melon fly Bactrocera cucurbitae 

(Miyatake et al. 2002), duration of copulation in Drosophila (Beaver and 

Giebultowicz 2004) and interpulse interval in pulsatile secretion of 

leutenising hormone and cortisol in Syrian hamster (Loudon and Wayne 

1994) are all influenced by clock gene mutations. Thus the characteristic 

impairments of temporal aspects of perceptual and productive prosody 

and circadian anomalies in autism (Hesling et al. 2010; Peppe et al. 2007; 

Glickman 2010), fosters the notion that clock genes may be involved in the 

aetiology of the disorder. 
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1.8.1 Clock genes and sex-determining genes are implicated in forms of 

social communication in Drosophila.  

Female Drosophila show a circadian rhythm of mating activity that is 

dependent on a functional circadian molecular clock in the fly’s lateral 

neurons of the brain and it is this cyclic receptivity of the female that 

determines mating (Sakai and Ishida 2001). Prior to mating, male flies 

court females with gesture, grooming and a courtship song that is 

comprised of two parts: a hum (sine song) and a series of pulses (pulse 

song). In pulse song, the rests between the pulses (interpulse intervals, 

ipi) show a cyclic modulation in length, over the duration of delivery of the 

song. Studies with Drosophila per mutants show this cycle of ~55 seconds 

(K&H cycle) is regulated by the clock gene per (Kyriacou and Hall 1980; 

Alt et al. 1998) and is altered in a qualitatively similar way to which the 

same per mutations affect the circadian cycle of locomotion. In Bactrocera 

cucurbitae (melon fly), circadian mutants with short circadian locomotor 

rhythms also produce short pulse train intervals in the male courtship song 

(Miyatake and Kanmiya 2004).   

      These observations show per operating not only in a circadian 

oscillator but also in modulating high-frequency oscillators controlling 

motor function associated with a communicative behavior (Konopka and 

Benzer 1971; Konopka et al. 1996; Ritchie et al. 1999).  Further, where 

male flies interrupt their song, they restart singing in phase with the initial 

portion of the song and each fly’s song may start at a different phase of 

the K&H cycle. This suggests that the per-determined ~55s K&H cycle is 

integral with a concurrent, short-interval timing process. 
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      Germ line transformation experiments in D. melanogaster and D. 

simulans show that the region of per that determines the species-specific 

variation in pulse song lies within the central and largest exon of the gene 

(Wheeler et al. 1991). This K&H cycle determining region (KDR) consists 

of a Thr-Gly repeat motif flanked upstream by 60 amino acids and 

downstream by 122 amino acids. The Thr-Gly repeat motif is polymorphic 

within each of these two species, suggesting that it is not the number of 

repeats that regulates the K&H cycle. More likely, species-specific amino 

acid substitutions in the 122 amino acids on the 3’ flank of the Thr-Gly 

repeat motif are the K&H cycle determinants (Wheeler et al. 1991).  

      The Thr-Gly-repeat region forms a conserved type-2 beta turn 

secondary structure (Guantieri et al. 1999) even though the amino acid 

repeat sequence varies between Drosophila species. This structure/region 

appears to function in some way that compensates for the effects of 

temperature variation on the circadian clock (Sawyer et al. 1997). 

Possibly, the length of the Thr-Gly region may effect temperature 

regulation indirectly, and at the level of transcript processing, by 

influencing alternative splicing of the per transcript.  

      Initially three transcripts were identified for the per locus in Drosophila 

however, only two transcripts were subsequently confirmed in vivo (Citri et 

al. 1987; Cheng et al 1998). These two transcripts differ only in that an 

89bp intron is excised from transcript B compared to transcript A, where 

the latter retains this intron (located in the 3’UTR of the gene). Relative 

levels of transcript A and B determine the length of the cycle of locomotor 

activity. High temperature and long days enhance the level of transcript A 

by suppressing the splicing of the alternative 3’UTR intron and this leads 
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to a delay in the onset of evening activity and a longer midday nap. This is 

in keeping with a summer solar regimen and indicates an adaptive 

mechanism for seasonal compensation of the clock (Cheng et al. 1998; 

Collins et al. 2004). 

      This circadian phenotype may be manifest via the regulatory effect of 

microRNA/s acting on the 3’UTR of the per mRNA. Removal of the UTR 

intron from transcript A (to form transcript B) would deny transcript B any 

microRNA target sites present in the excised intron. Thus regulation of 

relative levels of per by microRNA may be responsible for the phase shifts 

in response to temperature. This possibility is an analogy of microRNA 

regulation of Drosophila Ubx where the length of the Ubx 3’ UTR is 

determined in a cell type and developmental stage specific manner (not by 

temperature), the shorter transcript denying the possibility of regulation by 

mir-iab-4 (Miura et al. 2011).  

      Alternative splicing determines relative levels of the long and short 

isoforms of the fungal clock protein FRQ, endowing the Neurospora 

circadian clock with temperature compensatory capacity. In this case 

temperature determines the formation of an alternative intron in the 5’ 

region of the gene and splicing of this intron removes the translation 

initiation site for the long transcript (Diernfellner et al. 2005). These 

examples suggest alternative splicing is possibly a conserved mechanism 

for buffering the clock against diurnal temperature fluctuation. The 

mechanism for this process appears to rely on the physical effect of 

temperature on the binding of the spliceosome to weak splice signals 

within the pre-mRNA, where cool conditions promote binding while higher 
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temperatures inhibit binding and therefore splicing (Ladd and Cooper 

2002; Low et al. 2008). 

      Splicing of the 3’ terminal intron in per is regulated by protein arginine 

methyl transferase 5, (PMRT5 csul/dart5) that catalyses methylation of 

arginine residues in Sm spliceosomal proteins and histones (Bedford and 

Richard 2005; Gonsalves et al. 2006; Anne et al. 2007; Sanchez et al. 

2010). The requirement for alternative splicing of transcripts of genes that 

function in clock output pathways (e.g. the Drosophila genes takeout and 

slowpoke (KCNMA1)) indicates a co-requirement of alternative splicing 

and the circadian clock.  

      Phospholipase-C appears to operate as a signaling molecule in the 

temperature sensitive splicing of the 3’UTR intron in per (Collins et al. 

2004). The association of circadian regulatory elements with the 

mammalian orthologue of norpA (phospholipase C, beta 4 (PLCB4))  

(Kumaki et al. 2008) further suggests a role for the circadian clock in 

alternative splicing, by regulating signaling in this process. The 

involvement of the circadian clock in alternative splicing is more explicit in 

Arabidopsis where activation of the spliceosome by PMRT5 dependent 

arginine methylation is under circadian control via clock regulation of 

PMRT5 (Sanchez et al. 2010). 

     The non-POU domain containing, octamer-binding protein NONO is 

also implicated in splicing, RNA export and transcriptional repression 

(Shav-Tal and Zipori 2002). NONO forms complexes with PER and the 

histone methyl transferase WDR5 and their location within the cell varies 

as a correlate of PER expression (Brown et al 2005; Gori et al. 2001; 

Wysocka et al. 2003). Thus PER might regulate the functionality of these 
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proteins (in splicing and histone methylation) through compartmentation. 

NONO/nonA is essential for normal circadian rhythm in Drosophila and 

mammals as it is required for cAMP-dependent activation of CREB target 

genes. Additionally the Drosophila orthologue nonA regulates aspects of 

male courtship behaviour that includes song production (Kyriacou and Hall 

1980; Kulkarni et al. 1988; Campesan et al. 2001; Amelio et al. 2007). 

      The circadian clock and sex-determination pathways thus share 

certain genes required for the manifestation of male courtship behaviour. 

The sexual identity of the nervous system in Drosophila is determined by, 

the gene fruitless (fru). The protein encoded by the gene transformer 

determines male-specific and female-specific splice variants of mRNA 

transcribed from fru and this process is tissue-specific, in accord with the 

somatic sex of the fly (Ryner et al. 1996; Demir 2005; Villella et al. 2005; 

Manoli et al. 2005; Salz 2011). Intriguingly, fru and another gene critical to 

the sex determination pathway, Sexlethal (Sxl) are clock regulated in 

Drosophila brain (Kadener et al. 2006). 

      The genes takeout (to) and Neuropeptide F (npf) are downstream of 

fru in the sex determination pathway and each are also output genes for 

the circadian clock. Transcription of to in brain fat bodies is induced in 

response to the male-specific forms of the transcripts of genes doublesex 

and fru leading to a significant enrichment of to product in male Drosophila 

brain. To plays a role in determining male courtship behaviour and 

circadian regulation of to appears to be primarily involved with the timing 

of feeding behaviour and a sexually dimorphic, locomotor phenotype, is 

also determined by this gene (So et al. 2000; Dauwalder et al. 2002; 

Meunier et al. 2007).  



How could clock gene variation contribute to the causes of autism?  

   

Page 58 

      Sexual dimorphism of a temporal phenotype is also seen in the 

crepuscular habit of Drosophila. Flies show two daily peaks in activity 

(dawn and dusk) and the timing of these peaks is slightly different for 

males as compared with females, such that anticipatory behaviour occurs 

~1h earlier in males (Helfrich-Förster 2000). Neuropeptide F is shown to 

modulate the timing of the evening peak in males by clock-controlled cell 

type specific expression in dorsolateral neurons (LNd) (Lee et al. 2006).  

      Such convergence of the circadian clock and sex determining 

pathways appear to represent a mechanism underlying the expression of 

temporal phenotypes that are sexually dimorphic. Epigenetic processes 

(that determine cell type specific patterns of gene expression) the 

circadian molecular clock and the sex determination pathways are thus 

implicated in aspects of developmental timing and in particular, sexually 

dimorphic temporal behaviours. Thus the circadian and behavioural timing 

anomalies, and, the strong sex bias towards males in autism, may reflect a 

disturbance in the neurotypical interplay between the circadian clock, and 

sex-and-cell-type specific splicing.  

 

1.9 Aims and structure of the thesis. 

The first aim of this work was to test the hypothesis, proposed by this 

author (Wimpory et al. 2002), that genes encoding the central oscillator of 

the circadian molecular clock are implicated in autistic disorder. If the 

association test proved positive, the possible effects of the associated 

variants would be examined and a hypothesis developed to explain how 

such clock gene variants could affect autism relevant neurology and/or 

development. The work aimed to be integrative and draw together genetic, 
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epigenetic, physiological and psychological aspects of timing and 

circadian malfunction in autism. 

      The structure of the thesis is outlined as follows. Chapter 2 tests 

genetic association of clock genes with autism by using the transmission 

disequilibrium test (TDT) on a cohort of DNA samples from autistic 

children and their parents, this test gave positive results.  

      In chapter 3 the autism-associated SNPs were cross-checked against 

up-dated versions of the human genome map. Particular attention was 

given to checking whether any clock gene autism-associated SNPs co-

locate with known regulatory features and that might be disrupted by such 

SNPs. Also, a database representing genes known to contain conserved 

circadian regulatory elements (E-box, D-Box and RRE) was scanned for 

overlap with a set of autism candidate genes. The set of putative autism 

genes (that now appears to contain a number of first order clock controlled 

genes) likely represents clock-controlled elements of a molecular pathway 

that is dysfunctional in autism. 

      Chapter 4 investigates possible novel functionality of the autism-

associated SNPs by using bioinformatics tools that employ algorithms to 

calculate bespoke solutions for the effect of SNPs on alternative splicing 

and RNA secondary structures. This chapter includes the web publication  

“Autism-associated SNPs in the clock genes NPAS2, PER1 and the 

homeobox gene EN2 alter DNA sequences that show characteristics of 

microRNA genes”. This author carried out all the bioinformatics work for 

this publication and wrote the manuscript.   

      A corollary of the idea that clock genes may harbor microRNAs is 

considered in the last section of chapter 4. The results of three published 



How could clock gene variation contribute to the causes of autism?  

   

Page 60 

studies that found dysregulation of known microRNAs in autism were re-

investigated to determine whether these “autism microRNAs” have clock 

genes amongst their predicted targets.  

      Chapter 5 discusses aspects of how variants in clock genes might alter 

neural oscillators. A hypothesis is presented that might account for the 

effect of clock gene mutations on behaviours regulated by high frequency 

biological oscillators and the observed comorbidity of neuropsychiatric 

disorder and circadian rhythm disturbance: The thesis closes with a 

summary of the main findings, conclusions and indications for future 

research. 

      Appended to the thesis are descriptions of two laboratory-based 

experiments to investigate possible DNA methylation effects in PER1 and 

a possible role for HAT1 in NPAS2 protein complex formation. Constraints 

on time, the unavailability of clinical samples and a promising line of 

bioinformatics enquiry developing out of RNA transcript analysis 

determined that the informatics and bioinformatic analysis of the results of 

the association test, would become the main focus of the rest of the thesis. 

Two pieces of bioinformatic work; on the structure of PER1 and Drosophila 

PERIOD, and transcript analysis of a schizophrenia associated gene 

(ZNF804A), are also appended. 
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2 Publication: Association of PER1 and NPAS2 

with Autistic disorder: support for the clock 

genes/social timing hypothesis 

 

2.1 General introducton and contributions to the publication. 

The following association study (Nicholas et al. 2007) (Published in 

Molecular Psychiatry 2007 12, 581–592; doi:10.1038/sj.mp.4001953) tests 

the hypothesis that there is association between strictly diagnosed autistic 

disorder and clock gene variants. The genes PER1, PER2, PER3, 

CLOCK, NPAS2, ARNTL, TIM, CRY1, CRY2, DBP and CSNK1, were 

each tested in the association study.  

 

2.1.1 Experimental contributions. 

This author was first to propose that clock genes are implicated in autism 

and that aberrant DNA methylation of clock genes and/or clock gene 

variations contribute to the disorder. This author contributed the argument 

for investigating clock genes, in terms of multi-level timing dysfunction in 

autism. In the funding proposal for this study, this aurthor used cytogenetic 

findings and evidence from autism sleep studies to show that clock gene 

anomalies could not be ruled out. This author designed the experimental 

outline for the association study, led the selection of the candiate genes 

and contributed to the informatics work surrounding sample selection. This 

was the first genetic study of clock genes in autism and since publication 

three further investigations have given results in support of a role for clock 

genes in autism (Hu et al. 2009a; Nguyen et al. 2010; Fradin et al. 2010). 
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     The psychological element of the hypothesis, that timing deficit may be 

innate in children with autism and that this timing deficit has a 

developmental effect on the emergent social-symbolic functioning of 

autistic infants, was contributed by D. Wimpory. D. Wimpory also selected 

the autism DNA samples for the transmission disequilibriunm test on the 

basis of the clinical diagnosis of the donors, a strictly autistic disorder 

phenotype.  

      G. Kirov made the detailed plan of the experimental procedure and V. 

Rudrashingham performed the practical work. G. Kirov oversaw the 

laboratory practice and the specifics of the sequencing, genotyping and 

genetics. M.J. Owen oversaw the interpretation of the genetic analysis.  

 

2.1.2 Authorship of the paper. 

This author wrote the “hypothesis” and “The candidate genes and their 

relevance to the hypothesis” sections of the paper; G. Kirov wrote the 

methods and results section; D. Wimpory and this author wrote the 

introduction and the details of sample selection. This author, D. Wimpory 

and M. J. Owen wrote the discussion section. 

 

2.2 Abstract. 

Clock gene anomalies have been suggested as causative factors in 

autism. We screened eleven clock/clock-related genes in a predominantly 

high-functioning Autism Genetic Resource Exchange sample of strictly 

diagnosed autistic disorder progeny and their parents (110 trios) for 

association of clock gene variants with autistic disorder. We found 

significant association (P< 0.05) for two single-nucleotide polymorphisms 
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in PER1 and two in NPAS2. 

       Analysis of all possible combinations of two-marker haplotypes for 

each gene showed that in NPAS2, 40 out of the 136 possible two-marker 

combinations were significant at the P < 0.05 level, with the best result 

between markers rs1811399 and rs2117714, P = 0.001. Haplotype 

analysis within PER1 gave a single significant result: a global P = 0.027 

for the markers rs2253820–rs885747. No two-marker haplotype was 

significant in any of the other genes, despite the large number of tests 

performed. Our findings support the hypothesis that these epistatic clock 

genes may be involved in the etiology of autistic disorder. Problems in 

sleep, memory and timing are all characteristics of autistic disorder and 

aspects of sleep, memory and timing are each clock-gene-regulated in 

other species. We identify how our findings may be relevant to theories of 

autism that focus on the amygdala, cerebellum, memory and temporal 

deficits. We outline possible implications of these findings for 

developmental models of autism involving temporal synchrony/social 

timing. 

 

2.3 Introduction. 

      This study aims to evaluate the hypothesis that clock genes are 

implicated in autistic disorder. This severe neuro-developmental disorder 

is characterized by three areas of abnormality: impairment in 

communication (verbal and non-verbal) and reciprocal social interaction 

together with a markedly restricted repertoire of activities and interests, all 

in evidence before 3 years of age (APA. 1994). The primary focus of this 

paper is autistic disorder, as opposed to the more heterogeneous autistic 
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spectrum disorders (ASDs). The prevalence of autistic disorder is 0.1–

0.2%; (Chakrabarti and Fombonne 2001) autistic disorder has a 60% 

concordance rate in monozygotic twins but no concordance is shown for 

autistic disorder in dizygotic twins (Bailey et al. 1995). Such data suggest 

that there is a high degree of, but not complete, genetic control over the 

occurrence of autistic disorder; adverse inter-uterine or potentially 

protective effects may be involved in the manifestation of this disorder 

(Santangelo and Tsatsanis 2005). The heritability of autistic disorder is 

best explained by a model involving a number of genes at unlinked and 

some epistatic loci that together contribute to the phenotype (Pickles et al. 

1995). There is considerable (at least 75%) comorbidity of mental 

retardation in autism (Fombonne 1999). Our study addressed sample 

heterogeneity by selecting for more intellectually able subjects that met 

strict diagnostic criteria for autistic disorder, thereby increasing 

experimental power.  

 

2.3.1   Whole-genome screens and candidate gene studies for autism 

There are significant whole-genome linkage findings for autism on 2q, 

(Palferman et al. 2001) 3q (Auranen et al. 2002) and 17q (Alarcon et al. 

2005). 2q is highlighted as most likely harboring a locus for autistic 

disorder (Philippe et al. 1999; Buxbaum et al. 2001; Palferman et al. 2001; 

Shao et al. 2002). However, the overall genome screen results are 

inconsistent, with a possible explanation being that most/all of these 

studies are underpowered to find genes of small effect set in the context of 

sample heterogeneity and diagnostic differences. Candidate gene studies 

in autism have tested numerous genes, often on the basis of their 
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proximity to LOD score peaks from whole-genome linkage studies. Such 

studies remain largely un-replicated, with the possible exceptions of 

GABRB3 (Cook et al. 1998; Buxbaum et al. 2002) ENGRAILED2 (Gharani 

et al. 2004; Benayed et al. 2005) and the serotonin transporter 5-HTT 

(Cook et al. 1997; Tordjman et al. 2001; Yirmiya et al. 2001; Kim et al. 

2002).  

      The scope of candidate gene studies in autism is generally limited by 

the lack of credible supporting hypotheses. Our candidate gene study was 

prompted by the hypothesis (Wimpory et al. 2002) that autism reflects a 

disturbance of clock gene function, from a molecular level to the 

manifestation of autistic disorder as a psychological phenomenon.  

 

2.3.2 Timing difficulties and autism  

timing difficulties have been proposed as being central to autism e.g. 

(Newson 1984), with hypotheses encompassing circadian, communicative 

and/or neurological aspects of timing  (Segawa et al. 1981; Courchesne et 

al. 1994; Richdale and Prior 1995; Boucher 2000; Boucher 2001; Brock et 

al. 2002; Wimpory et al. 2002; Welsh et al. 2005). For example, Boucher 

(2001) suggests a core timing deficit presenting different manifestations by 

its effect on the elements of an integrated system of neural and 

physiological oscillators. Wimpory et al., (2002) hypothesize a causative, 

concurrent and developmental role (Wimpory and Nash 1999) for timing 

deficit in autistic disorder and that this deficit is derived from pathological 

variations in the structure/function of clock/clock-related genes (Wimpory 

et al. 2002).  

      Drawing on the above hypotheses, we conceive that timing deficit may 



How could clock gene variation contribute to the causes of autism?  

   

Page 66 

manifest in autism as both temporally measured anomalies and apparently 

disparate symptoms (such as anomalous performance in tasks involving 

perceptual and cognitive coherence (see review, (Happe and Frith 2006), 

relational memory (episodic (Boucher and Lewis 1989; Bowler et al. 2000; 

Millward et al. 2000; Salmond et al. 2005) and diachronic thinking 

(Boucher et al. 2007)); each with some temporal and/or clock gene 

dependency. Temporally measured anomalies in autism (including high-

functioning autism and Asperger syndrome) range from circadian/sleep 

architecture (outlined below) to brain oscillations involved in neural 

binding; (Grice et al. 2001; Brown et al. 2005) information processing; 

(Szelag et al. 2004) attention (Townsend et al. 2001; Haist et al. 2005; 

Zwaigenbaum et al. 2005) including rapid attention-switching (Courchesne 

et al. 1994a; Townsend et al. 1999); and, motor coordination (from posture 

to eye-blink) (Sears et al. 1994; Inui and Asama 2003; Schmitz et al. 2003; 

Gowen and Miall 2005). They also extend to the reciprocity/temporal 

synchrony skills required for conversation (Feldstein et al. 1982; Tantam et 

al. 1993; Trevarthen and Daniel 2005; Bebko et al. 2006).  

      Objectively recorded atypical sleep architecture in young adults with 

high-functioning autism and Asperger syndrome (Limoges et al. 2005) and 

in children with autistic disorder (Elia et al. 2000) shows association 

between sleep profiles and autistic symptomatology (Elia et al. 2000; 

Limoges et al. 2005). Circadian hormone (melatonin) anomalies are found 

in autistic disorder (Nir et al. 1995; Kulman et al. 2000; Tordjman et al. 

2005) as well as altered serotonin levels in autism (Cook and Leventhal 

1996; Anderson 2002). An altered circadian clock mechanism affecting 

normal sleep wake cycles could have an effect on the levels of these 
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hormones that is additional to any other specific transport and reuptake 

effects.  

 

2.3.3 The hypothesis.  

Our study tests the hypothesis that there is association between strictly 

diagnosed autistic disorder and alterations in clock genes (specifically 

PER1, PER2, PER3, CLOCK, NPAS2, ARNTL (BMAL1), TIM, CRY1, 

CRY2, DBP and CSNK1E. Table 2-1).  

 

Table 2-1. Candidate genes and their chromosomal locations. 

TIM 12 q13.3 
ARNTL  11 p15.2 
CLOCK 4 q12 
CSNK1E 22 q31.1 
CRY1 12 q23.3 
CRY2 11 p11.2 
DBP 19 q13.33 
NPAS2 2 q11.2 
PER1 17 p13.1 
PER2 2 q37.3 
PER3 1 p36.23 

 

There is a high degree of functional and sequence similarity of canonical 

clock genes across widely different organisms (Allada et al. 1998; 

Darlington et al. 1998; Gekakis et al. 1998; Rutila et al. 1998; Hogenesch 

et al. 2000) and, in addition to affecting the circadian cycle, clock gene 

anomalies are specifically linked to sleep disorders (in humans (Ebisawa 

et al. 2001; Toh et al. 2001), altered sleep architecture and contextual 

memory (in mice (Garcia et al. 2000; Franken et al. 2006) and 

communicative timing and memory formation (in Drosophila (Kyriacou and 

Hall 1980; Alt et al. 1998; Ritchie et al. 1999; Sakai et al. 2004) all are 
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relevant to aspects of autism: sleep, (Elia et al. 2000; Limoges et al. 2005) 

memory (Boucher and Lewis 1989; Bowler et al. 2000; Millward et al. 

2000; Toichi and Kamio 2002; Toichi and Kamio 2003; Salmond et al. 

2005)  and communicative timing (Feldstein et al. 1982; Trevarthen and 

Daniel 2005). 

 

2.3.4 Molecular genetic background: clock genes. 

In mammals, the core molecular clock model (see for example, Looby and 

Loudon (2005)) comprises a suite of epistatic genes that operate as an 

integrated system of transcription/translation autoregulatory feedback 

loops. CLOCK and ARNTL, the protein products of the genes CLOCK and 

ARNTL, positive elements of the system, heterodimerize and activate the 

transcription of the genes PER1, PER2, PER3, CRY1, CRY2, REV-ERBα 

and other clock-controlled genes. The gene products of PER, CRY and 

REV-ERBα, the negative elements of the system, operate via a PER/CRY 

heterodimer that inhibits the activating effects of the CLOCK/BMAL1 

heterodimer while REV-ERBα represses expression of ARNTL. Protein 

turnover eventually releases the genes from repression and the cycle 

starts over. The time taken for the molecular migrations of proteins and 

mRNA, respectively, to and from the nucleus, together with the protein 

turnover time, broadly defines the ~24h period of this oscillatory system. 

To integrate this core clock mechanism into the life of the organism as a 

whole, genes associated with resetting the clock (CRY1, CRY2) serve in 

matching environmental time with biological time by resetting the clock in 

response to environmental cues such as day length (Berson et al. 2002). 

CSNK1E is involved with regulating the clock by affecting the stability of 
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the PER/CRY complex through phosphorylation (Lee et al. 2001) while 

output pathways transduce the clock’s time signals into physiological 

response. It is this molecular clock that endows living organisms with the 

ability to maintain a state of appropriate physiological readiness that 

anticipates the environmental demands associated with a particular time of 

day or night. In addition to their role as clock elements, certain clock genes 

(e.g., PER1, PER2 and NPAS2) appear to play roles in signaling pathways 

and in DNA repair (Chilov et al. 2001; Rutter et al. 2001; Dioum et al. 

2002; Fu et al. 2002; Gery et al. 2006). Genetic studies also point toward a 

broader functionality for clock genes beyond their role in circadian 

rhythms. For example, per in Drosophila melanogaster is shown to 

regulate a short-period oscillator involved with the fly’s courtship song, 

(Kyriacou and Hall 1980) a primitive form of sonic communication. The 

male fly, as part of the mating ritual, produces a song by rhythmic beating 

of its wings. This song has several acoustic components, including pulse 

song where a series of rhythmic pulses are separated by inter-pulse 

intervals (ipi) of ~34-ms. Kyriacou and Hall (Kyriacou and Hall 1980) 

studied song structure in Drosophila circadian per mutants (Konopka and 

Benzer 1971) and showed a cyclic modulation of ipi-duration in the pulse 

song of D. melanogaster, the Kyriacou and Hall (K&H) cycle, of ~55 s is 

also under the control of per (Kyriacou and Hall 1980; Alt et al. 1998). The 

three circadian per mutants studied pers (19 h: short period) perl (28-h: 

long period) and per0 (arrhythmic) showed K&H cycles that were also 

short, long and abolished respectively. Thus, per’s influence on the 

circadian cycle (~24h) and on a short-period (~55s) oscillatory function 

associated with the song appear to be qualitatively similar (Kyriacou and 
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Hall 1980). These observations show per operating not only in a circadian 

oscillator but also in modulating high-frequency oscillators controlling 

motor function associated with a communicative behavior (Konopka and 

Benzer 1971; Konopka et al. 1996; Ritchie et al. 1999). Kyriacou and Hall 

(Kyriacou and Hall 1980) also noted that where male flies interrupted their 

song, they restarted in phase with the initial portion of the song and that 

each fly’s song may start at a different phase of the K&H cycle. This 

suggests that the per-determined K&H cycle is integral with a concurrent, 

short-interval timing process.      

      The clock genes PER1 and NPAS2 also play key roles in memory 

formation. Experiments with Npas2 knockout mice show that the knockout 

mice performed statistically similarly to wild-type mice in a battery of 

behavioral tests apart from the test for cued and contextual fear. The 

results of this experiment suggest that Npas2-LacZ(-/-) mice are deficient 

in complex emotional memory specifically, but not in non-emotional 

memory (Garcia et al. 2000). In Drosophila, per plays a role in long-term 

memory formation, which is independent of the core circadian oscillator 

(Sakai et al. 2004).  

 

2.3.5 The candidate genes and their relevance to the hypothesis 

Because of the epistatic nature of the core clock genes, we decided to 

screen all the canonical clock elements and also NPAS2, DBP, TIM and 

CSNK1E. Apart from including the core elements (PER1, PER2, PER3 

ARNTL (BMAL1), CLOCK, CRY1 and CRY2 (see Table 2-1) for their role 

in the central circadian oscillator, we also selected candidate genes on the 

basis of their noncircadian functions and/or association with syndromes 
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implying possible links with autism.  

      Thus, we included: PER1, for its association with long-term memory 

formation (Sakai et al. 2004) and high-frequency oscillators involved with 

communicative timing in Drosophila (Kyriacou and Hall 1980; Alt et al. 

1998; Ritchie et al. 1999); PER2, for its implication in familial advanced 

sleep phase syndrome (Toh et al. 2001); and, both CSNK1E and PER3, 

for their effect on sleep disorders (Takano et al. 2004) and association 

with delayed sleep phase syndrome (Ebisawa et al. 2001; Toh et al. 

2001). We included NPAS2 because it is a paralogue of clock, expressed 

in the brain (Reick et al. 2001) and associated with complex (cued and 

contextual) memory in mice (Garcia et al. 2000). Subjects with autism also 

show impairment in complex memory (Williams et al. 2006); 

contextualized episodic memory is specifically impaired even in high-

functioning autism and Asperger syndrome (Boucher and Lewis 1989; 

Bowler et al. 2000; Millward et al. 2000; Toichi and Kamio 2003; Salmond 

et al. 2005). NPAS2 is also a transcriptional regulator of non-rapid eye 

movement sleep in mice (Franken et al. 2006); this is relevant, given the 

altered sleep architecture in high-functioning autism, autistic disorder and 

Asperger syndrome (Elia et al. 2000; Limoges et al. 2005). Finally, we 

included DBP for its role in the regulation of clock outputs such as sleep 

and locomotor activity in mice (Franken et al. 2000; Ripperger and 

Schibler 2006) and TIMELESS (tim) for its role in Drosophila circadian 

systems (Barnes et al. 2003). 
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2.4 Materials and methods.  

 

2.4.1 Subjects.  

In the interests of sample homogeneity, we selected a predominantly high 

functioning sample where all subjects were strictly diagnosed with autistic 

disorder (detailed below). We obtained DNA first from 90 probands and all 

their parents (parent–offspring trios), of whom there were 65 male and 25 

female subjects, from the Autism Genetic Resource Exchange (AGRE) 

(http:/www.agre.org/). This is a publicly available database and central 

repository founded by the Cure Autism Now Foundation (Geschwind et al. 

2001). In the second stage of the study, we obtained an additional 20 

AGRE probands (14 males and six females) to form, together with first 

wave subjects, a larger sample in which we might attempt to replicate any 

positive results that reached a significance level of P < 0.05 in the first 

wave.  

      The subjects were 91% Caucasian, 4% other and 5% unknown (see 

Table 2). All probands analyzed in this study met strict diagnostic criteria 

for autistic disorder using both the Autism Diagnostic Interview-Revised 

(ADI-R (Lord et al. 1994)) and the Autism Diagnostic Observation 

Schedule-Generic (ADOS-G (Lord et al. 2000)) compatible with the DSM-

IV definition of autistic disorder that includes high-functioning individuals. 

(1) We excluded those with borderline or ‘not quite autism’ (NQA) 

sometimes accepted as a research diagnosis.  
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Table 2-2. Diagnostic criteria and demographics of the sample. 

Diagnostic 
measures 

Total 1st stage 2nd stage 

Autistic disorder 
(ADI-R)a 

100% 
(n = 110) 

100% 
(n = 90) 

100% 
(n = 20) 

Autistic disorder 
(ADOS-G)b 

100% 
(n = 110) 

100% 
(n =90) 

100%(n = 20) 

Male  72% 
(n = 79) 

72% 
(n = 65) 

70% 
(n = 14) 

Female  28% 
(n = 31) 

28% 
(n = 25) 

30% 
(n = 6) 

Caucasian 91% 91% 90% 
Other racec 4% 3% 10% 
Unknown raced 5% 6% 0% 

 

Abreviations:  
ADI-R, Autism Diagnostic Interview Revised;  
ADOS-G, Autism Diagnostic Observation Schedule-Generic. 
A Met strict ADI-R criteria for autistic disorder. 
bMet strict ADOS-G criteria for autistic disorder (only subjects with consistent 

diagnoses were accepted; we rejected those for whom ADI-R or ADOS-G re-

assessment had changed their diagnostic status to autistic disorder from another 

diagnosis that failed to meet our criteria (e.g., ASD; ‘not quite autism’ (NQA) / 

borderline autistic disorder etc.). 
cMixed race and Pacific Islander. 
dMixed race. 
e5% mixed race and 5% Pacific Islander (n=1+1). 

 

Table 2-3. Distribution of percentile ranking (PR) from 

ability/behavioral measures and corresponding intelligence levels. 

 
 Sample 

division 
n %Total 

sample 
Men PR (IQ)a s.d Range PR (IQ)a 

R 1st wave 72 66 42 (IQ 97.3) 17.4 0.3–99 (IQ 58–
136) 

 2nd wave 19 17 21 (IQ 88.3) 17.5 1–90 (IQ 63–119) 
 1st and 2nd 

wave  
91 83 37 (IQ 95.4) 17.7  0.3–99 (IQ 58-136) 

P 1st wave  6  6 5.5 (IQ 77) 9.7  0.1–25(IQ 51–90) 
 2nd wave 1 1 0.1 (IQ 51) N/A 0.1 (IQ 51) 
 1st and 2nd 

wave 
7 6 4.8 (IQ 75) 9.1 0.1–25 (IQ 51–90) 

V 1st wave only 12 11 5.7 14.1 0.1–50 
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Abbreviations:  
R, Assessment measure: Raven’s Progressive Matrices 

P, Assessment measure: Peabody Picture Vocabulary Scales 

V, Assessment measure: Vineland Adaptive Behavior Scales 

N/A, not applicable. 

Abbreviations (continued):  
aRPM non-verbal IQ estimations, together with PPVT-III, and VABS-composite 

percentile rankings, were obtained from AGRE. For comparison purposes in this 

table, Wechsler Percentile-IQ Correspondence Scale was employed to give 

percentiles and IQ approximations (for RPM and PPVT-III, respectively). 

 

We also used assessment measures available from AGRE, prioritizing 

inclusion of subjects on the basis of intelligence (83%) over language 

(6%), and language over behavioral (11%) measures. The assessment 

measures for these three fields were Raven Progressive Matrices (RPM 

(Raven 1996)), Peabody Picture Vocabulary Test (PPVT-III (Dunn 1997)) 

and the Vineland Adaptive Behavior Scales (VABS (Sparrow 1984)) 

respectively. Our criterion for accepting subjects tested on the RPM was a 

non-verbal intelligence quotient (IQ) of at least 51. In practice, they all had 

IQs of 58 or more (mean 95.4, s.d. 17.7, range 58-136, n = 91). We 

accepted additional subjects (n = 7) with IQ approximations, equivalent to 

our RPM selection criteria, derived from PPVT-III percentiles using 

Wechsler Percentile-IQ Correspondence Scale (Wechsler 1997). 

Remaining subjects (n = 12) had VABS percentile rankings (0.1 and 

above) equivalent to those of our PPVT-III selection criterion (see Table 

3). On the Wechsler Percentile-IQ Correspondence Scale a percentile 

rank of 2 corresponds to an IQ range of 68–70 inclusive and we therefore 

used an IQ cut-off of 68 (or percentile ranking of 2) to define ‘high 

functioning’ autism (cf. Mottron (Mottron 2004)). Our total sample was 85% 
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high functioning, with remaining subjects ensuring appropriate sample 

size. We thereby derived the most able autistic disorder sample available 

from AGRE at the time of subject selection.  

      Possible non-idiopathic autistic disorder cases were excluded, as were 

probands who had any known additional major medical or neurological 

condition that might have been perceived to cause secondary autism. 

Similarly, cases with a previous or concurrent alternative diagnosis (e.g. 

ASD on ADI-R and/or schizophrenia) were excluded, together with those 

with identified chromosomal aberrations. 

 

2.4.2 Screening the candidate genes.  

Candidate clock genes were systematically screened for indirect 

association with autism by genotyping single-nucleotide polymorphisms 

(SNPs) covering the genes. We aimed at an average spacing of one 

common SNP at every 3–5kb, but this was not always possible, or 

practical. For example, some of the genes were too long to allow such a 

dense coverage within our budget (for example, for NPAS2 we tried to 

cover some 160 kb), and in some cases there were long gaps with no 

validated common SNPs at the time we performed the work. In addition, 

for some SNPs our genotyping assay could not be designed or failed. 

These reasons prevented us from providing a uniform coverage of each 

gene. SNPs were chosen from the publicly available databases HAPMAP 

(www.hapmap.org/), NCBI (www.ncbi.nlm.nih.gov/), CHIP Bioinformatics 

tools (snpper.chip.org/) (Riva and Kohane 2002). Collaboration with the 

team of Professor Vishwajit Nimgaonkar, who screened these genes in a 

study of bipolar affective disorder (Mansour et al. 2005) provided details 
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on additional SNPs that they had identified. During the course of our study 

a number of these SNPs became available in the public databases. Genes 

where only a few or no SNPs were available were screened for mutations 

in the promoter, all exons and 30 UTR using denaturing high performance 

liquid chromatography (dHPLC) analysis on a WAVE dHPLC system 

(Transgenomics Inc., Cambridge, MA, USA). In addition, we screened the 

genes that showed evidence for association after individual genotyping of 

the first stage of our sample. For mutation screening, we used 16 autistic 

probands from our sample. Temperature and solution gradients for 

individual fragments for dHPLC were calculated using the Stanford 

Genome Technology Center DHPLC Melt Program freely available on the 

web (http://insertion. stanford.edu/melt.html). In addition to screening the 

promoter regions of these genes, we also screened predicted regulatory 

regions of the gene using the Cister program 

(http://zlab.bu.edu/~mfrith/cister.shtml). This freely available automated 

resource explores clusters of cis-elements in DNA sequences and such 

regions were also included for screening. On average, we covered genes 

for screening with B20–25 DNA fragments of 400–500 bp length each. 

The genes that we screened for mutations were CLOCK, PER1 and 

NPAS2. Fragments showing possible mutations via dHPLC were 

sequenced using the ABI PRISM BigDye Terminator Cycle Sequencing 

Ready Reaction Kit, version 3.1 on an ABI PRISM 3100 Genetic Analyzer 

(Applied Biosystems, CA, USA). Individual genotyping was carried out 

using the Amplifluor SNPs Genotyping Systems (Serologicals Corporation, 

Norcross, GA, USA) (Myakishev et al. 2001), which is a one-step PCR-

based reaction using allele-specific primers. All forward and reverse 



How could clock gene variation contribute to the causes of autism?  

   

Page 77 

primers for the Amplifluor reaction were designed using the automated 

primer design software, Amplifluor AssayArchitect, freely available through 

the Serologicals Corporation website (www.asssayarchitect.com). 

Amplifluor reactions were performed in a 5ml volume in 96-well black 

propylene plates (ABgene, Epsom, UK) with 15 ng of dried genomic DNA. 

Data were analyzed using an Analyst AD fluorescence multiwell plate 

reader (LJL Biosystems, CA, USA). Every assay designed was first tested 

on one 96-well plate of DNA samples and only SNPs that gave 

satisfactory clusters and no non-mendelizations were genotyped in the full 

sample of trios. On average, some 30% of all SNPs we attempted to 

genotype failed and were therefore discarded; we present results only on 

the SNPs that produced good traces. 

 
2.4.3 Statistics.  

For statistical analysis of genotyping results we used the transmission 

disequilibrium test (TDT103) that examines the transmission of alleles 

from heterozygous parents and is thus a robust test against population 

stratification. Haplotype analysis was performed with the program 

TDTPHASE (Dudbridge 2003). 

 

2.5 Results. 

All results from individual genotyping are presented in Table2-4. The table 

also shows the genomic positions of SNPs according to the Golden Path 

database (http://www.genome.ucsc.edu/) (Build 35, May 2004). Initially, for 

the sample of 90 trios, we obtained significant evidence for association for 

two of the genes studied. In PER1 two intronic SNPs gave significant 

results: rs885747 with a P = 0.014 and rs6416892 with P = 0.035. Re-
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sequencing the gene did not identify any novel polymorphisms in the 16 

individuals we genotyped, although we found a number of SNPs already 

available in public databases. All six SNPs genotyped in the first wave 

were genotyped in the additional 20 trios. The two significant SNPs 

remained significant: P = 0.047 and 0.042, respectively. In NPAS2 we 

found one significantly associated SNP in the first wave of genotyping: 

rs1811399 at P = 0.009 level. NPAS2 was re-sequenced in an attempt to 

identify markers that were more strongly associated, or have a putative 

functional significance. We identified several new SNPs and genotyped 

them individually: a C/T polymorphism in intron 3 (called NPAS2_X3_C_T 

in Table 4), a G/A polymorphism in intron 7 (NPAS2_IN7_G_A), a G/A 

polymorphism in exon 8 (NPAS2_X8_G_A), an A/G polymorphism in 

intron 11 (NPAS2_X11_A_G), an A/T polymorphism in intron 12 

(NPAS2_X12_A_T) and a C/T polymorphism in exon 15 of the gene 

(NPAS2_X15_C_T). These, as well as all the markers typed in the first 

wave, were genotyped in the complete set of 110 trios (a total of 72 

SNPs).  
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Figure 2-1. Linkage disequilibrium within NPAS2.  

Above the diagonal: D’, below the diagonal: r2. Values above 0.5 are highlighted. 

 

As shown in Table 2-4, only one of the new markers reached statistical 

significance in the full set of trios: NPAS2_X3_C_T with a P-value of 

0.028, whereas the originally significant marker, rs1811399, remained 

significant at P = 0.018.  

      Haplotype analysis: We performed analysis of all possible 

combinations of two-marker haplotypes for each gene. In NPAS2, 40 out 

of the 136 possible two-marker haplotype combinations were significant at 

the P <0.05 level, with the best result between markers rs1811399 and 

rs2117714, P = 0.001. If we perform a Bonferroni correction for 136 tests, 

this result would lose its significance; however, this correction is over 
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conservative due to the high number of SNPs that are in linkage 

disequilibrium in NPAS2 (Figure 2-1). Within PER1 there was a single 

significant result: a global P = 0.027 for the haplotype analysis of markers 

rs2253820–rs885747. No two-marker haplotype was significant in any of 

the other genes, despite the high number of tests performed. 

 

Table 2-4.  Results of the transmission disequilibrium tests.  
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Table 2-4.  Results of the transmission disequilibrium tests (continued)  

 

 

 

2.6 Discussion. 

We hypothesized that clock genes are implicated in autistic disorder 

(Wimpory et al. 2002). In this candidate gene study, we found significant 

associations in two of the genes studied: PER1 and NPAS2, with two 

SNPs in each gene reaching conventional levels of statistical significance. 

In addition, a high proportion of all possible haplotypes in NPAS2 was also 

significant. It is difficult to interpret the real significance of these results. On 

the one hand, if we perform a correction for the multiple testing of all SNPs 

analyzed in this study, none of the results will remain significant. On the 

other hand, our sample size is too small to allow us to identify markers that 

would withstand correction for multiple testing, unless they conferred huge 

effects. This is unlikely to be the case in a disorder of complex inheritance 

such as autism where current models predict several interacting genes of 

small effect, each contributing to the phenotype of autistic disorder 
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(Pickles et al. 1995). In this context, we note that the NPAS2/ ARNTL 

(BMAL1) heterodimer is an activator of PER1 (Reick et al. 2001); It follows 

that genetic variation affecting the function of NPAS2 could be additive to 

genetic variation affecting the function of PER1.  

      We used all available cases of autistic disorder in the AGRE database 

that satisfied our strict selection criteria and we were therefore unable to 

consider replicating our initial results in a large sample. We placed 

considerable emphasis on subject diagnosis and intelligence in order to 

select a very homogeneous sample; restricting the phenotype in this way 

also increased the experimental power over a limited sample size. We 

satisfied the strictest diagnostic criteria for autistic disorder using ADOS-G 

and ADIR for each case. By selecting for more able subjects, we derived a 

sample that was predominantly (85%) high functioning and unusually 

homogeneous in this field of research to date. To confirm or refute our 

results, future studies would need to collect other samples that have a 

similar composition.  

      The expression patterns of NPAS2 (Zhou et al. 1997; Garcia et al. 

2000) and PER1, (Sun et al. 1997) when considered together, cover brain 

areas found to be altered in individuals with autism: the cerebellum, 

forebrain and limbic system including the hippocampus and amygdala  

(Bauman and Kemper 1985; Bauman and Kemper 1986; Bauman and 

Kemper 1988; Raymond et al. 1996). Non-circadian expression of PER1 

occurs in the cerebrum, hypothalamus and cerebellum (granular layer), 

while circadian PER1 expression is found in the SCN hypothalamus and 

Purkinje cells (Sun et al. 1997). The implication of NPAS2 in complex 

emotional memory (Garcia et al. 2000) and our results associating NPAS2 



How could clock gene variation contribute to the causes of autism?  

   

Page 83 

with autistic disorder, lend tentative support to findings that the thalamo-

cortico-amygdalo pathway (associated with complex emotional memory 

(Hamann 2001; Zald 2003; Phelps 2004) is dysfunctional in autism 

(Bauman and Kemper 1988; Kemper and Bauman 2002; Bauman and 

Kemper 2005). This may be relevant for related neurological and 

psychological theories that focus on episodic/contextual memory 

dysfunction and the hippocampus/limbic system (Ben Shalom 2003; 

Salmond et al. 2005) and/or the amygdala  (Baron-Cohen et al. 2000; 

Howard et al. 2000; Bachevalier and Loveland 2006).  

      Evidence of altered sleep architecture in autism is also supported by 

our positive result for NPAS2, as NPAS2 is a transcriptional regulator of 

non-rapid eye movement sleep in mice (Franken et al. 2006). Several of 

the sleep features attributable to Npas2 knockout in mice are recognized 

in high-functioning autism and Asperger syndrome: longer sleep latency, 

prolonged waking after sleep onset and reduced non-rapid-eye-movement 

sleep (Limoges et al. 2005). Franken et al. (2006) also show that the effect 

of Npas2 knock-out on sleep is modulated by the sex of the animal (with 

males being more adversely affected than females), an observation that 

may have relevance to autism, given the male to female ratio of 3.8:1 

(Fombonne 1999).  

      The role of per in modulating high-frequency oscillators concerned with 

communicative timing (Kyriacou and Hall 1980; Alt et al. 1998; Ritchie et 

al. 1999) together with our findings of association of PER1 with autistic 

disorder, strengthens the notion that temporal deficits are quintessential to 

autistic disorder (Segawa et al. 1981; Newson 1984; Courchesne et al. 

1994; Richdale and Prior 1995; Boucher 2000; Boucher 2001; Wimpory et 
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al. 2002; Szelag et al. 2004; Welsh et al. 2005). 

      Purkinje neurons are important for learning appropriate timing 

(Koekkoek et al. 2003; Kotani et al. 2003) and their abnormally low 

number in the cerebella of autistic subjects (Ritvo et al. 1986; Kemper and 

Bauman 2002) is considered a keystone biological observation implicating 

cerebella dysfunction (Courchesne et al. 1994b; Akshoomoff et al. 2002). 

In this context, reports of a PER1 interacting protein (PIPS) in rat that co-

translocates with PER1 into the nucleus (Matsuki et al. 2001) and which is 

further shown to be required for neuronal growth factor-mediated neuronal 

survival in P12 cells (Kiyama et al. 2006), tentatively suggests a role for 

PER1 in the lack of Purkinje neurons of the cerebellum in autism. We are 

currently engaged in an investigation of PIPS as well as further analysis of 

PER1 and PER2.  

      The gene ENGRAILED2 (EN2) functions in the development of the 

cerebellum (Song and Joyner 2000) and has been shown to be associated 

with autistic spectrum disorders (Gharani et al. 2004; Benayed et al. 

2005). A risk allele that interacts with EN2 variants to perturb the normal 

spatial/temporal expression of EN2 could alter normal brain development, 

a point that has resonance with PER1’s role in the cell division cycle 

(Matsuo et al. 2003) and dopamine D2 receptor-mediated signaling 

(Yujnovsky et al. 2006).  

      The timing, contextual/memory deficits and other implications 

suggested by the association of PER1 and NPAS2 with autistic disorder 

may manifest concurrently and/or developmentally, for example, through 

infant–adult interaction that is timing dependent (Murray and Trevarthen 

1985; Nadel et al. 1999; Trevarthen and Aitken 2001; Crown et al. 2002). 
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Neonatal physiological oscillations (sleep–wake cyclicity and cardiac vagal 

tone) predict mother–infant synchrony at 3 months (Feldman 2006). In 

turn, the temporal organization of 3-month-old infants’ social attention 

predicts mother–infant synchrony at 9 months (Feldman et al. 1996). 

Mother–infant synchrony itself predicts wide-ranging later developments 

(Feldman et al. 1996; Feldman et al. 1999; Jaffe et al. 2001). Temporal 

synchrony/reciprocity difficulties of autism (Feldstein et al. 1982; Tantam 

et al. 1993; Bebko et al. 2006) have also been recorded in autistic infancy 

(Kubicek 1980; Wimpory et al. 2000; Trevarthen and Daniel 2005) where 

they may serve as a functional deficit contributing to the developmental 

cascade of autistic disorder (Newson 1984; Courchesne et al. 1994; 

Wimpory et al. 1995; Trevarthen 2000; Wimpory et al. 2002).  

      Problems in timing, memory and sleep are all characteristics of autistic 

disorder and aspects of timing, memory and sleep are each clock-gene 

regulated in other species. The association of clock genes with autistic 

disorder suggests a role for these genes in autism. It also encourages 

replication of our study and the collection of further data, particularly on 

timing, sleep and emotional complex/contextual memory, in high-

functioning autistic disorder. 
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3 Are autism-associated genes clock-controlled 

genes and what possible effects might the autism-

associated SNPs in PER1 and NPAS2 have? 
 

3.1 Introduction. 

To investigate the possible functionality of the autism-associated SNPs in 

PER1 and NPAS2 a detailed examination of the SNPs and the regions 

embedding the SNPs was carried out using internet-based bioinformatics 

software and databases. The aim of this analysis was to make some 

biological sense for why these non-protein-coding SNPs should show 

association with autistic disorder. Any positive findings pertaining to the 

functionality of these SNPs could then be the starting point of further 

investigations of the effect of these polymorphisms in living cells. Direct 

biochemical experimentation in autism is clearly limited, as it is not 

feasible to obtain live brain tissue samples from autistic individuals and the 

use of postmortem material would be appropriate only for final-and-

conclusive, rather than preliminary investigations. Thus the use of 

bioinformatics to analyze possible implications of the association of these 

polymorphisms with autistic disorder is presented here as a practicable 

solution and as a next-step in investigating whether these SNPs have any 

functional effect.  

      The bioinformatic analysis began with the conventional and then 

developed to cover the possibility of novel, previously unrecognized, 

features at these locations. After re-checking and redefining the genome 

coordinates of the SNPs with the most up-to-date genetic maps of the 
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human genome publicly available, the direct effect of the SNPs on protein 

structure could be discounted as three of the SNPs were intronic while 

rs6416892 is down stream of the 3’UTR of PER1.  

      The new coordinates were different from those published (Nicholas et 

al. 2007) due to update of the human genome maps. However, the relative 

positions of the SNPs in the NPAS2 and PER1 sequences and to other 

features within the genes stayed the same between the old and new 

versions of the gene maps. Subsequently, the regions in the immediate 

vicinity of each SNP were scanned for control elements or regulatory 

regions. The haplotypes that were found to be significantly associated with 

autistic disorder were similarly scaned. Finally, transcript analysis of the 

mRNA strand that is predicted to be transcribed from these non-coding 

regions was used to look for mRNA secondary structures that could have 

regulatory potential.  

      This bioinformatic analysis took an integrative, broad approach and 

consideration of possible data sources indicated that the Ensembl 

Genome Browser would be the primary software tool, for its facility to bring 

together several data feeds from individual authoritative sources. Ensembl 

allows for example, multiple genomic features to be considered 

simultaneously and has the facility for comparing genomic regions 

between related species using the alignment tool. Additionally, the 

Ensembl BLAST search tool may be used to search genomes for similar 

DNA or protein sequences or to highlight the location of features of 

interest. Ensembl produces and maintains automatic annotation on the 

human genome and other selected genomes. This web based 

bioinformatics tool is a joint project between EMBL-EBI (The European 
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Bioinformatics institute, which is part of the European Molecular Biology 

Laboratory) and the Welcome Trust Sanger Institute. Ensembl is an open 

access site publicly available on line at http://www.ensembl.org. In addition 

to Ensembl, a number of other online resources were used in this analysis. 

On-line tools used are listed in Table 3.1 and data was cross-referenced 

between databases where possible.  

      An analysis of autism genes and clock-controlled genes was also 

made by merging an autism candidate gene dataset with a dataset of 

genes showing circadian patterns of expression in mammalian brain and a 

dataset of genes containing circadian regulatory modules. This analysis 

aimed to illuminate which genes linked to autism might be impacted by 

functional genetic variation that affects the circadian rhythm and/or clock 

gene expression.   

 
Table 3-1. Bioinformatics tools. 

Bioinformatic
s resource 

Internet addresses and summary of functions 

Autism 
Chromosome 
Rearrangemen
t Database 

http://projects.tcag.ca/autism/ 
(Chromosomal anomalies found in autistic individuals) 

ClustalW2 http://www.ebi.ac.uk/Tools/clustalw2/index.html 
(Sequence alignment tool) 

DBASS3 
 

http://www.som.soton.ac.uk/research/geneticsdiv/dbass3/ 
(Aberrant 3' splice sites causing disease in humans)  

DBASS5 
 

http://www.som.soton.ac.uk/research/geneticsdiv/dbass5/ 
(Aberrant 5' splice sites causing disease in humans)  

Ensembl http://www.ensembl.org/index.html 
(Multi species comparative genomics site with BLAST etc) 

GeneCards http://www.genecards.org/ 
(Summary of information liked to gene names) 

Genotator http://genotator.hms.harvard.edu/geno/disorder/autistic_disorde
r/ (A meta-query engine for disease associated genes) 

GLIDERS http://mather.well.ox.ac.uk/GLIDERS/  (Genome-wide Linkage 
DisEquilibrium Repository and Search engine) 

HUGO Gene 
Nomenclature 
Committee 

http://www.genenames.org/ 
(Human Genome Organization consortium for gene 
nomenclature) 
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Table 3-1. (Continued). Bioinformatics tools. 

KEGG  http://www.genome.jp/kegg/ 
(Kyoto Encyclopedia of Genes and GenomesIntegrated gene 
atlas with pathways analysis) 

MirBASE http://www.mirbase.org/ 
(MicroRNA sequence repository and sequence search facility) 

MyHits  http://myhits.isb-sib.ch/cgi-bin/index 
(Protein domains and motifs etc.) 

NHGRI 
(GWAS) 

http://www.genome.gov/26525384#1 
(National Human Genome Research Institute. Database of 
Genome Wide Association Study results) 

PEDB  http://promoter.cdb.riken.jp/circadian.html 
(Mammalian Promoter Enhancer Database: Circadian 
regulatory elements) 

RNAanalyzer http://rnaanalyzer.bioapps.biozentrum.uni-
wuerzburg.de/server.html (Predicts the 2D folding of RNA 
Molecules) 

RNA Self 
Containment 
Server 

http://w1.genomics.upenn.edu/cgi-bin/sc/sc.cgi (Predicts a RNA 
hairpin structure’s resistance to mutation 

Sequence 
Editor 

http://www.fr33.net/seqedit.php (Sequence clean up and 
conversion tool) 

SpliceScan2 http://splicescan2.lumc.edu/ (Predicts splice sites) 
TargetScan http://www.targetscan.org (microRNA target predictor) 
TESS http://www.cbil.upenn.edu/cgibin/tess/tess?RQ=WELCOME 

(Transcription Element Search System) 
Vienna RNA 
Web Servers 

http://rna.tbi.univie.ac.at/ (Predicts the 2D folding of RNA 
molecules, structural conservation etc.) 

 

 

3.2 Which autism candidate genes are clock-controlled genes? 

 

3.2.1 Introduction. 

CLOCK/ARNTL-binding elements (E-Box, = CACGTG), D site of albumin 

promoter (albumin D-box) binding protein (DBP)/Nuclear factor, interleukin 

3 regulated (NFIL3) binding elements (D-Box = TTATG[T/C]AA), and 

nuclear receptor subfamily 1, group D, member 1 (NR1D1)/RORA binding 

elements (RRE = [A/T]A[A/T]NT[A/G]GGTCA) are regulatory motifs 

associated with circadian patterns of gene expression (Hayes et al. 2005; 
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Ueda et al. 2005). In terms of genome wide distributions of these 

elements, E-boxes are typically found associated with transcription start 

sites (promoter regions), while D-boxes and RREs are not more likely to 

be near TSS (Kumaki et al. 2008). If the hypothesis, that the circadian 

clock plays a role in autism is true, and if the genes found in autism 

association and linkage studies are bona fide autism genes, then it follows 

that clock-controlled genes should be represented in the set of autism 

candidate genes.  

      This experiment tests this argument by looking for overlap between 

genes showing circadian patterns of expression in mouse prefrontal cortex 

(Yang et al. 2007) (called here PF cortex genes), genes that contain 

conserved E-box, D-Box and RRE control elements (called here E-box, D-

Box and RRE genes (Kumaki et al. 2008)) and genes that show positive 

association with autism here called autism genes, listed and in Genotator 

(Table 3-1) (Wall et al. 2010). 

 

3.2.2 Method 

The computer applications Microsoft Excel and Microsoft ACCESS were 

use to interrogate supplementary information associated with the 

publications: “Analysis and synthesis of high-amplitude Cis-elements” 

(Kumaki et al. 2008) and “Genome-wide expression profiling and 

bioinformatic analysis of diurnally regulated genes in the mouse prefrontal 

cortex” (Yang et al. 2007). Searches using The National Centre for 

Biotechnology Information (NCBI) PubMed database and data from 

genome wide association study (GWAS) database of The National Human 

Genome Research Institute (NHGRI) Bethesda, Maryland USA 
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(www.genome.gov) were also used to compile a list of autism-associated 

genes.  

      The number of elements in each dataset was: E-box genes (n = 

1,108), D-box genes (n = 2,314), RRE genes (n = 3,288), PF cortex genes 

(n = 2,645) and autism genes (n = 110). Using the standard tools of the 

Microsoft Excel and Microsoft ACCESS applications, Autism genes were 

screened for overlap with with E-box genes, D-Box genes, RRE genes 

and genes that showed circadian patterns of expression in mammalian 

prefrontal cortex in order to determine overlap between autism genes, 

genes in the cortex that show circadian regulation, and genes with 

circadian regulatory elements. This overlap should indicate autism genes 

that are likely to show circadian regulation in the human PF cortex. The 

strongest autism candidate genes (i.e. genes supported by a substantial 

body of research with compelling over-all positive results for autism) were 

investigated further by using Ensembl to check the position of the E-

boxes, D-boxes and RREs in the candidate gene.  

 

3.2.3 Results. 

A number of the autism genes were found in the mouse prefrontal cortex 

diurnaly regulated gene data set and some of theses were also identified 

in the clock gene cis-acting element data sets (E-box genes, D-Box genes 

and RRE genes). Table 3-2 shows the results of the screen for overlap 

between the data sets of autism genes and each of PF cortex genes, E-

box genes, D-Box genes and RRE genes. Table 3-3 shows the autism 

genes that are present in at least one of the clock element data sets and 

are represented amongst the PF cortex genes. 
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Table 3-2. Autism genes and circadian control element genes. 
 

 
Autism  

vs. D-BOX 
Autism  

 vs. E-BOX 
Autism  

 vs. RRE 
Autism  

 vs. PF CORTEX 
ANK3 CACNA1C ANK3 ADIPOR2 
ARX CENTG2 ARX AHI1 

CACNA1C DYRK1A ATP1A2 ANK3 
CDH10 FBXL19 CACNA1C ARX 
CDH9 LARGE CDH10 BCL2 

CNTN4 RAI1 CENTG2 BDNF 
CNTNAP2 RARA CNTN4 BZRAP1 

CSMD1 RELN DMD DMPK 
DMD RIMS3 GABRB2 DYRK1A 
EN2 SHANK3 GRIK2 FBXL19 

GAS1 TBX1 GRIN2A FOXP2 
GRIK2  GRM8 GABRB2 
GRM8  ITGA4 GAS1 
ITGA4  KCNMA1 GTF2IRD1 

KCNMA1  LARGE ITGA4 
LARGE  MET KRAS 

MET  PARK2 LIMK1 
PARK2  PRKCB1 LZTS2 
PITX1  RARA MET 

PRKCB1  RELN MSRA 
RORA  RIMS3 NIPBL 

SEMA5A  RORA OMG 
  SEMA5A RFWD2 
   SEMA5A 
   SHANK3 
   TSC1 

 

Overlapping phenotypes associated with circadian regulated genes  

Blue = bipolar and schizophrenia. 

Red = schizophrenia and autism 

Green = bipolar, autism and schizophrenia 

 

These fields were merged and filtered to find which autism genes 

contained clock regulatory elements and showed circadian expression in 

the prefrontal cortex. 
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Table 3-3. Overlap between autism genes, circadian element genes and 

cortex genes. 

 
Gene 

 
Associated disorders etc. 

ANK3 Bipolar Disorder (Ferreira et al. 2008) 
ARX Mental retardation (Shoubridge et al. 2010 ) 
DYRK1A Phosphorylates SIRT1 (Guo et al. 2010) Regulates CRY2 

(Kurabayashi et al. 2010) Down Syndrome (Altafaj et al. 2001) 
FBXL19 Gene of unknown function (located 16p11.2, an autism 

susceptibility locus) 
GABRB2 Autism (Ma et al. 2005). Schizophrenia (Shi et al. 2008) 
GAS1 Autism. (Weiss et al. 2009) 
ITGA4 Autism (Correia et al. 2009). Immune response and cancer 
MET Autism & cancer development (Campbell et al. 2008).  
SEMA5A Autism (Weiss et al. 2009). Parkinsons disease (Anantharam et 

al. 2007) 
SHANK3 Autism (Durand et al. 2007) 
 

3.2.4 Conclusion. 

Of particular note is the finding that the pre-synaptic protein SHANK3 is 

listed in the E-Box, autism genes and PF cortex gene tables. There is a 

strong case for involvement of SHANK3 in autism aetiology (Moessner et 

al. 2007; Bourgeron 2009) but as far as this author is aware this is the first 

time that SHANK3 has been highlighted as: containing a conserved clock-

control element; being a synaptic gene involved in the autism development 

pathway and showing circadian oscillation of expression in mammalian 

prefrontal cortex. It is also very interesting to note that out of only a few 

genes that have reached genome wide significance in GWAS for autism 

(Yang et al. 2009; Weiss et al. 2009) two of these genes SEMA5A and 

CDH10 are likely clock-regulated genes by virtue of conserved circadian 

control elements (Kumaki et al. 2008). 

      GWAS have recently begun to reinforce previous assertions that there 

is considerable genetic overlap between autism, bipolar disorder and 
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schizophrenia. For example SNPs in the schizophrenia susceptibility gene 

ZNF804A are also significantly associated with bipolar disorder and when 

the datasets are merged this association becomes more significant (P = 

4.1 x 10-13) (Williams et al. 2010). In common with some other 

neuropsychiatric disorders, bipolar disorder and certain types of 

schizophrenia present with circadian disruption and modest genetic 

association has been found between schizophrenia and clock genes 

(Mansour et al. 2009) while strong association between bipolar disorder 

and the circadian clock regulating kinase GSK3ß is founded on genetic 

and pharmacological evidence (Lachman et al. 2007; Beaulieu et al. 

2009). It appears plausible therefore, that the sets of genes conferring 

vulnerability to schizophrenia, bipolar disorder and autism overlap, and, 

this overlapping set of genes includes clock and clock-regulated genes. 

These findings encourage further genetic studies of clock genes in large 

data sets of pooled autism, schizophrenia and bipolar disorder samples 

and other studies focused on investigating circadian regulation of genes of 

major psychiatric relevance i.e. SHANK3, GABRB2, CNTNAP2, 

CACNA1C, ANK3 and EN2. 

 

3.3 Searching for regulatory features coincident with the autism-

associated clock gene SNPs and haplotypes. 

 

3.3.1 Introduction. 

As new issues of the human genome map supersede older versions, 

refinement and corrections can adjust the co-ordinates of genes and new 

found features are added. Therefore, the most up to date publicly available 
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genome coordinates for the autism-associated SNPs were obtained and 

these locations scrutinized with the Ensembl genome browser. The 

genome sequence data feed for Ensembl is derived from The Homo 

sapiens High Coverage Assembly from the Genome Reference 

Consortium, which is an alliance of The Wellcome Trust Sanger Institute, 

The Genome Center at Washington University, The European 

Bioinformatics Institute and The National Center for Biotechnology 

Information. The data set consists of gene models built from the gene-wise 

alignments of the human proteome as well as from alignments of human 

cDNAs using the cDNA2genome model (Slater and Birney 2005). 

 

3.3.2 Method 

Using Ensembl the SNP locations were updated and searched for 

inclusion in, or proximity to, known regulatory features, functional elements 

and zones of sequence conservation. Areas of sequence conservation 

that fell outside exons and known regulatory features were given special 

consideration because such constraint might indicate sequences of as yet 

undetermined functionality. 

      From the Ensembl home page at http://www.ensembl.org/index.html, 

the species genome was selected, in this case “Human”, Homo sapiens 

and within the Homo sapiens section, the code for the single nucleotide 

polymorphism under investigation, e.g. rs1811399, was entered into the 

search box and submitted. For rs1811399, the server confirmed the query 

matched 1 unique database entry with 7 synonyms (Table 3-4). 
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Table 3-4. Synonyms of rs1811399. 

-HGVbase:SNP001650070 
Illumina_Human660W-quad:rs1811399 
Illumina_CytoSNP12v1:rs1811399 
ENSEMBL:Venter:ENSSNP1565019 
ENSEMBL:Watson:ENSSNP6889409 
ENSEMBL:celera:ENSSNP1565019 
Illumina_Human1M-duoV3:rs1811399. 

  

       Following the hyperlink for rs1811399, the variation tab gave 

information on the alleles for rs1811399 (C/A) and the genome location for 

this SNP, 2:101479014 (forward strand). The figure 2 before the colon 

refers to the chromosome number and after the colon, the genome co-

ordinates. Hyperlinks to the validation status, Linkage disequilibrium data 

and flanking sequence for rs1811399 were also to be found on this page.  

      By selecting the “region in detail” link, the genome browser displayed 

the chromosomal location and gene context of NPAS2 and indicated the 

location of the SNP in NPAS2 with a vertical red bar. By using the zoom 

feature in the “location” toolbar it was possible to zoom-in to determine the 

precise coordinates of features of interest such as regulatory features or 

conserved sequence elements that appeared close or coincident with the 

SNPs. After gaining a graphical fix on the SNP in relation to local 

regulatory features etc. the co-incidence or proximity of the features to the 

SNP was confirmed arithmetically by comparing the numerical genome 

coordinates of the SNP with the numerical co-ordinates of the feature. 

      Each graphical feature on the browser display has a unique Ensembl 

reference code that includes the genome coordinates. This information is 

accessible by following the hyperlink associated with the feature. Thus 

each SNP was screened for co-occurrence with regulatory elements, small 

RNAs etc. The locations of the SNPs and features were subjected to 
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crosschecks. For example, the location of each SNP as given in the text 

on the Ensembl variation page was cross referenced with the location of 

the SNP as shown on the scale bar at the bottom of the gene map on the 

Ensembl “region in detail” page. Each view was “customized” by switching 

on/off selectable tracks so that all relevant data feeds were searched. 

      Where sequence data external to Ensembl was used, for example 

from a database of high-amplitude Cis-elements in the mammalian 

circadian clock (Kumaki et al. 2008), the query sequences were used in 

Ensembl BLAST searches to find exact unique matches and thus locate 

and confirm the position of these regulatory elements in terms of the 

current genome coordinates. This process was repeated for each of the 

SNPs analyzed.  

      After the SNPs were investigated singly, the most significant haplotype 

pairs were analysed. In this context, the term haplotype describes pairs of 

SNPs on a single chromatid that are analysed together in statistical tests, 

such as is carried out with the programme TDTPHASE (Dudbridge 2003). 

Significant haplotype pairs define sequence blocks that may contain 

additional SNPs associated with the phenotype other than the SNPs 

making up the boundaries of the block. Haplotype analysis is valuable 

where the SNP density of an association study is low or for checking for 

functional associations by focussing on sections of the gene likely to 

harbour a functional variant of interest. Significant haplotype pairs may 

thus delineate a DNA region containing SNPs that are more strongly 

associated with the phenotype under investigation.  

      In order to increase the resolution of haplotypes, The GLIDERS 

(Genome-wide LInkage DisEquilibrium Repository and Search engine) tool 
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was used to attempt to impute linkage between the autism associated 

SNPs and other SNPs within the region that were not assayed in the 

association study. The GLIDERS search engine searches for SNPs that 

are in linkage disequilibrium with other SNPs genotyped in The 

International HapMap Consortium database. The search engine attempts 

to match the query SNP with one of a pair of SNPs that have been 

previously calculated to be in linkage disequilibrium. The parameters of 

the search can be varied such that any pair-wise combination of HapMap 

SNPs can be considered. The GLIDERS linkage disequilibrium statistics 

stored in the database were obtained by calculating the linkage 

disequilibrium between every possible HapMap phase 2 and 3 SNP 

pairing where both SNPs had minor allele frequency (MAF) ≥ 5%. The 

SNPs and haplotypes are listed in Table 3-5. 

 

Table 3-5. Summary of the autism associated SNPs and haplotypes in 

NPAS2 and PER1.  

 
Gene name 

 
SNP code 

 Genome 
coordinate* 

Gene 
region  

 
Alleles 

rs1811399 2:101479014 Intron 1 A/C 
rs2117714 2:101521777 Intron 2 G/A 

 
NPAS2 

rs34705978 2:101541872 Intron 3 T/C 
rs885747 17:8050737 Intron 12 C/G 
rs2253820 17:8048169 Exon 17 T/C 

 
PER1 

rs6416892 17:8042860 downstream C/A 

 

The SNPs underlined are the autism-associated haplotypes with the most 

significant p values. SNPs in bold have individually significant p values (< 0.05). 

Alleles in red are autism-enriched alleles.  
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3.3.3 Results. 

3.3.3i NPAS2, SNPs individually (rs1811399 and rs34705978). 

The NPAS2 gene is located on the long arm of chromosome 2 close to the 

centromere region in band q11.2 (forward strand). The closest fully 

annotated genes are PDCL3, RPL31 and TBC1D8. PDCL3 is 

approximately 0.25mb upstream of NPAS2 while RPL31 and TBC1D8 are 

immediately downstream of NPAS2. A novel microRNA gene, 

ENSG00000238574, is located within TBC1D8 towards the 3’ end of the 

gene (Figure 3-1). 

       The autism-associated SNP rs1811399 is located in the first intron of 

NPAS2 at genome coordinate 2:101479014. Using all possible filter tracks 

of Ensembl no features of interest coincided with the location of this SNP. 

The SNP rs2117714 (that together with rs1811399 makes up the best 

haplotype) is located down stream of rs1311399 just beyond the first exon. 

The SNP rs2117714, of itself, did not show significant association with 

autism nor was it found to coincide with any regulatory elements or other 

features of interest (Figure 3-2). 

       SNP rs34705978 showed significant association with autistic disorder 

from the association test (chapter 2) and is located in the third intron of 

NPAS2 at 2:101541872, immediately down-stream of exon 3. There are 

currently no synonyms in the database for this SNP. This SNP is located 

within a regulatory feature ENSR00000123315 and its core maps to 

coordinates 2:101540977-101542157. This regulatory feature contains a 

differentially methylated region where CpG dinucleotides are methylated 

(or not) in a tissue dependent manner (Figure 3-3 and Figure 3-4). 
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3.3.3ii NPAS2, most significant haplotype.  

 Haplotype analysis (Dudbridge 2003) of NPAS2 showed 40 out of the 136 

possible two-marker combinations were significant at the P < 0.05 level. 

The best result was between SNPs rs1811399 and rs2117714, P = 0.001. 

Using Ensembl this haplotype block of 42,763bp was searched for 

regulatory features. This region of genome coordinates 2:101479014 to 

2:101521777 covers the second half of the first intron of NPAS2 and just 

includes the very small second exon of the gene. This haplotype contains 

one of the three conserved RREs of NPAS2 (Table 3-6) along with a 

number of cell-line specific protein binding sites (Table 3-8). 

      From the analysis of conserved circadian control elements (chapter 

3.2) a RORA/NR1D1 binding element (RRE) was found to be located in 

the central region of the autism haplotype (Figure 3-2, Table 3-6 and Table 

3-7). This binding site was checked with a whole genome (human) BLAST 

search to see if it matched the RRE listed in the database of conserved 

clock gene regulatory elements (Kumaki et al. 2008). Notably this is one of 

only four such RREs listed for NPAS2 and it has the highest score. The 

score relates to the false discovery rate (FDR) where the FDR is inversely 

proportional to the score The scoring formula was developed using Hidden 

Markov Model analysis trained on known circadian elements in the mouse 

genome (Kumaki et al. 2008).  
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BLAST search for the location of NPAS2 RRE 1 (with the current Ensembl  

human genome sequence gave 100% unique match (23 bp) at location: 2 

101504350 to 101504372 (+), within the first intron of NPAS2 (RRE 1, 

Table 3-6). The conservation and the manner in which the database of 

RREs was compiled indicate this element is likely to be a bona fide RRE 

(Table 3-7) (Kumaki et al. 2008).  

 

Table 3-6. The conserved RREs of NPAS2 

 
RORA / NR1D1 binding sites in NPAS2 

 
RRE 1 

 
Mouse TTATGC TGACCCACTTT TGCTGT 
      | | || ||||| ||||| |  ||| 
Human TCAAGC TGACCTACTTT TCTTGT score 19.41 INTRON, 
 
 

RRE 2 
 
Mouse AGAGAA TGACCTACTTT ACTGGG 
      |||||| ||||||||||| || ||| 
Human AGAGAA TGACCTACTTT ACAGGG score 16.8 PROMOTER, 
 
 

RRE 3 
 
Mouse GAAAAA TATGTAGGTCA GTGGAA 
      |||||| ||||||||||| |||||| 
Human GAAAAA TATGTAGGTCA GTGGAA score 15.08 PROMOTER, 
 
 

RRE 4 
 
Mouse GATCCT TGACCCATTTT CCTGAC 
       ||||| ||||||||||| || ||| 
Human CATCCT TGACCCATTTT CCGGAC score 13.78 PROMOTER, 
 
 

 
Human BLAST with RRE 1 as query 

 
query          1 TCAAGCTGACCTACTTTTCTTGT 23 
                 ||||||||||||||||||||||| 
Sbjct: 101504350 TCAAGCTGACCTACTTTTCTTGT 101504372 NPAS2  
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Table 3-7.  The conserved RRE in the first intron of NPAS2. 
 

Species Conserved RRE Common 
name 

Homo sapiens GCTGACCTACTTTTCTTGTTTGCCCACAGCAGG  Human 
Pan troglodytes GCTGACCTACTTTTCTTGTTTGCCCACAGCAGG  Chimpanzee 
Gorilla gorilla GCTGACCTACTTTTCTTGTTTGCCCACAGCAGG  Gorilla 
Pongo 
pygmaeus 

GCTGACCTACTTTTCTTGTTTGCCCACAGCAGG  Orang-utan 

Macaca mulatta GCTGACCTACTTTTCTTGTTTGCCCACAGCAGG  Macac 
Callithrix jacchus GCTGACCTACTTTTCTTGTTTGCCCACAGCAAG   Marmoset 
Tarsius syrichta  GCTGACCTACTTTTCCTGTTTGCCCACAGCAGG  Tarsier  
Microcebus 
murinus  

GCTGACCTACTTTTCCTGTTTGCCCACAGCAGG  Mouse Lemur 

Otolemur 
garnettii  

GCTGACCTACTTTTCCTGTTTGCCCACAGCAGG  Greater 
Galago 

Tupaia belangeri  -CTGACCTACTTTTCCTGTTTGCCCACAGCAGG  Treeshrew 
Cavia porcellus  GCTGACCTACTTTT-------------------  Guinea pig  
Dipodomys ordii  GCTGACCTACTTTGCT-GTTTGCCCACAGCACA  Kangaroo Rat 
Mus musculus   GCTGACCCACTTTTGCTGTGTGCCCACAGCAGG  Mouse 
Rattus 
norvegicus 

GCTGCCCCACTTTTGCTGTTTTCCCACAGCAGG  Rat 

Ochotona 
princeps 

GCTGACCTACTTTTCCTGTTTGCCCTCAGCAGG  American Pika 

Oryctolagus 
cuniculus 

TCTGACCTACTTTCCCTGCTTGCCCTCAGCAGG  European 
Rabbit 

Bos Taurus GCTGACCTACTTTTCCTGTTTGCCTGCAGAAGG  Cow 
Sus scrofa GCTGACCTACTTTTGCTGTGTGCCCACGGCAAG  Pig 
Canis lupus 
familiaris 

GCTGACCTACTTTTCCTGTTTGCCCACAGCAGG  Dog 

Felis catus GCTGACCTACTTTTCCTGTTTGCCCACAGCAGG  Cat 
Equus caballus  GCTGACCTACTT-TCCTGTGTGCCCACAGCAGG  Horse 
Pteropus 
vampyrus  

GCTGACCTACTTTTCCTGTTTGCCCGCAGCAGG  Fruit Bat 

Erinaceus 
europaeus  

GCTGACCTACTTTTCCTGTTTGCTCA-AGCAGG  Hedgehog 

Dasypus 
novemcinctus 

ACTGACCTGCTTCCCC-GCCCGCC-ACGTCAGG  Armadillo 

Echinops telfairi  GCTGACCTACTTTCCCTGTTTGC-------AGG  Tenrec 
hedgehog 

Loxodonta 
Africana 

-CTGACCTACTTTCCT-GTTTGCCCACAGCAGG  African 
elephant 

Procavia 
capensis  

-CTGACCTACTTTCGCTGTTTGCCCACAGCAGG   Rock Hyrax 

 

The grey shaded portion shows the RRE of consensus 

[A/T]A[A/T]NT[A/G]GGTCA 
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Table 3-8. Cell-type specific transcription factor binding sites in the NPAS2 

haplotype. 

Feature location Peak summit 
Cjun - K562 2:101508611-101509013 101508776 
Cfos - HeLa 2:101510247-101510767 101510499 
Cmyc - HeLa Enriched 2:101510231-101510738 101510469 
Max - HeLa Enriched 2:101510152-101510805 101510487 
Cfos - K562 2:101510312-101510638 101510494 
Cjun - K562 2:101510293-101510648 101510484 
Cfos - HeLa 2:101519216-101519736 101519503 
Max - HeLa 2:101519349-101519780 101519509 
Cjun - K562 2:101519355-101519717 101519496 

 

      The most significant SNP (rs1811399) from the association study did 

not coincide with any known regulatory element, or other genomic feature 

listed in Ensembl (Table 3-8).  It was considered possible that this SNP is 

in linkage with other near-by SNPs that are themselves functional in some 

way. For example perhaps this SNP is in linkage with common variants in 

or near RRE1. Understandably the RRE was not found to contain SNPs 

but common variants exist that flank this conserved element e.g. 

rs72627425 at 2:101504425.  

       In order to explore possible linkage of rs1811399 with other functional 

SNPs in the region, GLIDERS was used to search for SNPs in linkage 

disequilibrium with rs1811399. The results for this search show that a 

number of SNPs in the vicinity of rs1811399 are in strong linkage 

disequilibrium with this SNP (Table 3-9). However, the SNP in strongest 

linkage with rs1811399 was not found to coincide with any features likely 

to have functional consequence nor did the linkage disequilibrium region 

cover the RRE. The SNPs rs12472319 and rs12472321 (that are 

separated by 11 nucleotides), both are in linkage disequilibrium with 

rs1811399 (Table 3-9) and both lie in a DNase1 enriched site (HepG2 

cells) and a CTCF binding site  



How could clock gene variation contribute to the causes of autism?  

   

Page 108 

 



How could clock gene variation contribute to the causes of autism?  

   

Page 109 

3.3.3iii     PER1 SNPs individually (rs885747 and rs6416892) 

Using Ensembl as described, PER1  is shown to be located on the short 

arm of chromosome 17 towards the telomere region (p13.1). The gene is 

flanked immediately upstream by the vesicle-associated membrane 

protein 2 gene, VAMP2 and on the downstream side by HES7 an element 

of the NOTCH signalling pathway and component gene of the somite 

segmentation clock (Figure 3-5). It is perhaps noteworthy that HES7 is an 

essential gene in the ultradian segmentation clock pathway that regulates 

the ~2h waves of cell division that define the developing somites during 

embryogenesis (Kageyama et al. 2007). 

      The autism-associated SNP rs885747 lies approximately equi-distant 

from the 3’ and 5’ ends of PER1 in Intron 12 at genome coordinate 

17:8050737. This SNP has four synonyms (Table 3-10).  

Table 3-10. Synonyms of rs885747. 

TSC: TSC0109140 
ENSEMBL Celera: ENSSNP1385387 
ENSEMBL Venter: ENSSNP1385387  
 HGVbase: SNP000957527 

 

 As is the case for NPAS2, alternative transcripts are derived from the 

PER1 locus. PER1 is transcribed from the reverse strand with 2 alternative 

transcripts PER1-201, PER1-202. The SNP rs885747 is indicated in an 

intron of each of these transcripts. The SNP is not located within a 

regulatory region but its position close to an intron/exon boundary 

suggests it may have an influence on splicing of intron 12. 
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Figure 3-6. Alternative transcripts of PER1. 
 
The red vertical lines show the positions of the autism-associated SNPs. The 

horizontal orange arrow marks the extent of the best haplotype. The blue vertical 

line is the SNP rs2253820 that together with rs885747 makes up the best 

haplotype. 

 

      The other autism associated SNP in PER1, rs6416892, has one 

synonym, ENSEMBL: Venter ENSSNP1385372. The SNP is located 

down-stream of PER1 at 17:8042860 within the regulatory feature 

ENSR00000573321, core location 17:8041371-8043207. Detailed analysis 

of this regulatory region shows that it contains the following cell type 

specific binding sites validated in a number of different cell lines: FOS, 

MAX, CTCF, SREBF2, MYC, JUN, DNASE1. The SNP rs6416892 is 

located 5 nucleotides from the binding site peak of sterol regulatory 

element binding transcription factor 2  (SREBF2) in HepG2 cells (Figure 3-

7). This SNP is also close to a CpG island at 8041980-8042415 and very 

close to a tRNA (Thr) gene that is located at 8042770-8042843.  

rs2253820  rs885747  rs641689
22 

A  
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Figure 3-7. The autism-associated SNP rs6416892 is located in a SREBF2 

binding-peak.  

The grey bar with green highlight shows a portion of regulatory region 

ENSR00000573321 containing FOS, MAX, CTCF, SREBF2, MYC, JUN, DNASE1 

binding sites. The light blue bar shows the extent of the SREBF2 binding region. 

The SREBF2 binding-peak is shown by the vertical grey line within the light blue 

bar. The peak is 5nt 3’ of the SNP. 

 

3.3.3iv     PER1, most significant haplotype.  

Haplotype analysis (Dudbridge 2003) within PER1 gave a single 

significant result: a global P = 0.027 for the markers rs885747-rs2253820 

located at 17:8050773-17:8048169. Using Ensembl as described above, 

this region was shown to be devoid of any notable control elements but it 

does contain a number of essential splice site SNPs and other variations 

that could possibly cause functional changes in the PER1 protein. It is 

possible these sSNPs are in linkage disequilibrium with rs885747. The 

SNPs that are essential splice sites and frame shift SNPs within the best 

haplotype of PER1 (Table 3-11) may have a functional role in autism by 
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influencing which transcript variants for this gene preside in a given 

genotype.  

 

Table 3-11. Five common variants within the region of PER1 delineated by 

the best autism-associated haplotype.  

 

SNP code Location Alleles Type of SNP 
GA032060 8048313 T/C Essential splice site 
GA013944 8049274 A/G Essential splice site 
rs35505654 8049703 & 8049704 -/C Frame shift Coding 
rs3027184 8050017 G/A Non-synonymous coding 
rs3027183 8050325 G/A Splice Site 

 

 

Table 3-12. Summary of the features coincident with and delineated by the 

NPAS2 and PER1 autism-associated SNPs and haplotypes respectively. 

Gene SNPs  Coincident features 
rs1811399 None 
Haplotype 

rs1811399 - 
rs2117714 

Conserved RRE (NR1D1/RORA) binding site. 
Cell-line specific TFBS and differentially methylated 
region. 

 

NPAS2 
rs34705978 Polymorphic CpG within differentially methylated 

region  
rs885747 Full linkage disequilibrium with rs6416892 in 

Ensembl populations. Possible splicing variant 
Haplotype 
rs885747- 
rs2253820 

Haplotype contains three splice sites (one essential 
splice site) and two coding variants 

 

PER1 

rs6416892 SNP within regulatory region at binding peak for 
SREBP2  

 

3.3.4 Conclusion. 

This analysis of the autism-associated SNPs in the clock genes NPAS2 

and PER1, made subsequent to the publication of the association study 

(Nicholas et al. 2007), updates the genomic coordinates for these SNPs. 

In doing so, the SNPs are now seen in the context of regulatory features 
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etc. (Table 3-12) that were unreported in the public databases at the time 

of publication.  

      This new analysis locates two of the significant SNPs, rs34705978 

(NPAS2) and rs6416892 (PER1) within regulatory features. For 

rs34705978 in NPAS2 the SNP (C/T with T enriched in the autism) lies in 

a differentially methylated control region. This SNP, when the C allele is 

present, forms a CpG pair (Figure 3-4) and thus the autism allele 

represents a knock out of a potential methylation site in this control 

element. This CpG pair is one of two pairs in the region that shows 

differential methylation in different tissues. Association of this SNP with 

autism suggests that this SNP may be a functional variant that could affect 

the tissue specific regulation of NPAS2 expression. The importance of this 

regulatory feature may be reflected in the rarety of the T|T haplotype in 

human populations (Ensembl, Table 3-1).  

      For rs6416892 in PER1, Ensembl curated evidence 

(ENSR00000573321) from cell lines shows the SNP to be within a control 

region spanning bp 17:8041371-8043207. The SNP rs6416892 is located 

5 nucleotides from the binding site peak of sterol regulatory element 

binding transcription factor 2 (SREBF2).  

      SREBF2 plays a major role in lipogenesis and cholesterol metabolism 

(Shimano et al. 1999) and is functionally implicated in a mouse model of 

Altzymer’s disease where high mitochondrial cholesterol levels (produced 

by over expressing SREBF2) derive amyloid-beta dependent neurotoxicity 

(Fernandez et al. 2009). This anti-psychotic-medication activated regulator 

of cholesterol biosynthesis is also implicated in the etiology of 

schizophrenia (Le Hellard et al.) and may play a role in autism via 
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SREBF2 dependent regulation of PER1. Abnormalities in cholesterol 

metabolism are reported in autism (Tierney et al. 2006) which is highly 

comorbid with the cholesterol metabolism disorder Smith-Lemli-Opitz 

syndrome where ~50% of cases meet ADI-R criteria for autistic disorder 

(Tierney et al. 2001; Bukelis et al. 2007). 

      SREBF2 functions in other pathways that might have specific 

relevance to autism. For example, this transcription factor regulates cell-

type-specific genes in male germ cells where, like PER1 it is highly 

expressed in a stage specific manner (Wang et al. 2002; Alvarez et al. 

2003; Morse et al. 2003; Wang et al. 2004).  

      The most significant PER1 haplotype in this study covers a relatively 

small section located centrally in PER1 that contains splice site SNPs. 

(Two essential splice sites that were not genotyped in the association 

study). Experiments in Drosophila indicate that alternative splicing of per 

derives different circadian periods in the fly (Cheng et al. 1998).  It is 

therefore noteworthy that these splice site SNPs in the most significant 

PER1 haplotype suggest alternative splicing that could possibly affect 

circadian rhythms in humans. 

      Even though the SNP rs1811399 had the lowest p value of the four 

significant SNPs of the association study this SNP did not co-locate with 

any regulatory feature. The results of the GLIDERS analysis show strong 

linkage disequilibrium between this SNP and SNPs immediately 

downstream but this strong linkage disequilibrium region ended before the 

RRE and its peak did not coincide with any other regulatory elements. 

       Overall, this analysis of the clock gene autism-associated SNPs 

strengthens the notion that these are functional SNPs that may impact 
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tissue specific expression of NPAS2 (rs34705978), cholesterol metabolism 

(rs6416892) and alternative splicing (rs885747). However, reasons for the 

association of rs1811399 with autistic disorder remain unclear at this point, 

the SNP appearing to have significance of itself but without being 

implicated in any regulatory region or feature.  

 

3.4 Do the autism-associated SNPs in NPAS2 and PER1 coincide 

with transcription factor binding site motifs? TESS analysis of 

rs1811399, rs34705978 rs885747 and rs6416892. 

 

3.4.1 Introduction. 

Certain intronic motifs can act as binding sites for transcription factors that 

regulate the expression levels of the host gene (Tokuhiro et al. 2003). 

Thus it is possible that the autism-associated SNPs in the clock genes 

NPAS2 and PER1 affect the binding of transcription factors that regulate 

the temporal, tissue specificity or levels of clock gene expression. To 

begin testing whether the autism-associated SNPs in the clock genes 

PER1 and NPAS2 could function as transcription factor binding sites, a 

bioinformatics screen of the SNP regions was carried out using the 

internet-based Transcription Element Search System (TESS, Table 3-1 

and described in Current Protocols in Bioinformatics ISBN: 978-0-471-

25093-7). TESS identifies binding sites by using site or consensus strings 

and positional weight matrices from the TRANSFAC, JASPAR, IMD, and 

University of Pennsylvania’s CBIL-GibbsMat database.  
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3.4.2 Method 

TESS was interrogated with query sequences of 10 nucleotides flanking 

each side of the autism-associated SNPs. To test the system, the EN2 

SNPs rs1861972 and rs1861973 were entered into the TESS search. As 

expected, the search gave similar results to those published (Benayed et 

al. 2009). Using the autism-associated SNPs in NPAS2 and PER1 as 

query sequences a number of possible binding sites were found to overlap 

with the location of some of these SNPs. The blue or red bars indicated a 

transcription factor binding site on the same DNA strand as the gene or on 

the complimentary DNA strand respectively, described as forward or 

reverse with respect to the query sequence. The binding sites on the same 

strand as the gene were recorded (Table 3-13). 

 

3.4.3 Results.  

One transcription factor (TF), binding motif is indicated to overlap the SNP 

location rs1811399 GT-IIBa. This motif was first recognized as an 

enhancer element for SV40 viral replication (Xiao et al. 1987). However, 

this site is indicated for the reverse strand. The NPAS2 gene is encoded 

on the forward strand and thus no score is given for the A allele of 

rs1811399 for overlap with a known transcription site according to TESS. 

One TF binding motif is indicated to overlap rs1811399 when the autism-

enriched C allele is present. This NF-1 site is indicated for the forward 

strand, on which NPAS2 is encoded. This motif is shown to play a role in 

the cell specific expression pattern of the neural cell adhesion molecule 

(NCAM) that is targeted by Nuclear Factor-1 type enhancer proteins 

(Hirsch et al. 1990). However the low sore, as the full consensus is 
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TTGGC(N)5GCCAA (Gronostajski 2000), suggests that this is not a strong 

signal. For the NPAS2 SNP rs34705978, TESS does not predict TF 

binding site overlap with the SNP’s location for either the C or the autism-

enriched T allele.  

 

Table 3-13. TESS transcription factor binding site predictions. 

Predicted sites overlapping the four autism-associated clock gene SNPS 

rs1811399, rs34705978, rs885747 and rs6416892 

Gene SNPs TFBs 
NPAS2 SNP rs1811399 = A 
CATGGTGATA CAGCGGCTGC 

None 
None 

NPAS2 SNP rs1811399 = C 
CATGGTGATC CAGCGGCTGC  

            == == (8.00) NF-1 
NF-1 (weak) 

NPAS2 SNP rs34705978 = C 
CAGCCTTACC GGTCGAGGGC 

None 

 
None 

 

 

NPAS2 

NPAS2 SNP rs34705978 = T 
CAGCCTTACT GGTCGAGGGC   

None 
None 

PER1 SNP rs885747 = G 
GTGGGAAGCG GGGTCAAGCC 

             = ===(8.00) GAL4 
                    = ======(14.00) RXR-α/β 

GAL4 
 

RXR-α, 
RXR-β 

(half site) 
PER1 SNP rs885747 = C 
GTGGGAAGCC GGGTCAAGCC 

None 
none 

PER1 SNP rs6416892 = A  
ATCTTGAGGA ACACCTGTTT    

                  =====   (10.00) GAL4 
GAL4 

 

 

PER1 

PER1 SNP rs6416892 = C 
ATCTTGAGGC ACACCTGTTT   

          =====   (8.7167) T-Ag 
T-Ag 

 

    In PER1 The SNP rs885747 (G allele) gave a GAL4 site and a RXR-

alpha, RXR-beta site however these sites were knocked out by the 

presence of the C allele. For SNP rs6416892 the A allele gave a GAL4 

site that was replaced in the same location by a T-Ag site by the autism 

enriched C allele. These results together with details of the sequences and 

positions of the binding motifs are shown in Table 3-13.  
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3.4.4 Conclusion 

The TESS analysis shows that for rs1811399 there is a weak match with 

an NF-1 binding site when the autism-enriched C allele is present. The 

poor score for this site suggests this is not a major feature. Nevertheless, 

an intronic Nuclear Factor-1 (NF-1) binding sites is involved in governing 

the cell-type-specific expression of the neural cell adhesion molecule gene 

NCAM (Schneegans et al. 2009) and NF-1 sites in the first intron of the 

cystic fibrosis gene regulate its cell-type-specific expression (Ott et al. 

2009).  

       For rs885747 in PER1, with the G allele TFBS for GAL4 and RXR-

α/RXR-β are found. However, when the autism enriched C allele is 

present, these are lost. Retinoid X receptors are required for normal 

embryonic development (Mark et al. 2009) and circadian rhythms 

(McNamara et al. 2001). These ligand-inducible transcription factors 

(RXRs) bind to the hexameric DNA sequence AGGTCA. When this 

sequence occurs in promoter regions as a direct repeat with a one-base 

pair spacer, the motif facilitates binding of retinoid X receptor homodimers 

and the sequence GGGGTCA is the highest affinity retinoid X receptor 

binding site known. However, the sequence GGGGTCA does not occur as 

a repeat at this point in the PER1 sequence and a half-site does not 

support 9-cis-RA induced RXR mediated gene expression (Subauste et al. 

1994). RXR alpha is understood to undertake a hormone-dependent 

interaction with CLOCK and NPAS2 (McNamara et al. 2001) so an 

interaction of RXRs with another element of the circadian clock (PER1) 
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would at least be in keeping with these receptors’ known function in 

circadian rhythms (McNamara et al. 2001). 

        For rs6416892, an overlapping TFBS is predicted for both alleles but 

with the GAL4 site predicted for the A allele being replaced by a T-Ag site 

when the autism enriched C allele is present. The Ensembl analysis given 

previously for this SNP reinforces the indication that this SNP might have 

functional implications in the regulation of PER1. It is however, not 

possible to draw any firm conclusions from the above analysis without 

further recourse to experiments such as foot-printing, gel mobility-shift 

assays and site directed mutagenesis to test the validity of these predicted 

binding sites.  

 

4 Investigating possible novel functionality of 

the autism-associated clock gene SNPs with web 

based bioinformatics modeling tools 

 

4.1 Introduction 

Web based bioinformatics tools complement the large amount of data 

stored in web-server linked databases. These bioinformatics tools 

calculate bespoke solutions to specific queries such as alignments 

between sequences, secondary structural predictions etc. and can use 

algorithms that balance a number of conflicting variables e.g. those 

associated with complex dynamic processes such as intron splicing and 

the folding of a linear RNA molecule into a double-stranded helix. The 

following chapter describes the use of such tools to investigate possible 
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novel functional effects of the autism-associated clock gene SNPs and 

related questions. Particular focus is given to the SNPs rs885747 in PER1 

and rs1811399 in NPAS2 as these SNPs did not show co-location with 

any regulatory feature or functional element highlighted by the database 

searches described above.  

 

4.2 Could the autism-associated SNP rs885747 affect splicing of 

PER1? 

 

4.2.1 Introduction. 

Serious human diseases e.g. Phenylketoneurea can be caused by intronic 

mutation that affect pre-mRNA splicing (Dworniczak et al. 1991). Intron 

splicing requires three elements within the intron: a 5’ donor site signal, 

the branch point and the 3’ polypirimidine acceptor sequence signal. 

These features of themselves are insufficient to support accurate and 

efficient splicing of all exons. Exonic splicing enhancers, intronic splicing 

enhancers, exonic splicing silencers, and intronic splicing silencers (that 

are located close to the exon/intron boundaries) fine tune splice site signal 

recognition by the spliceosome (Mount 2000; Lim and Burge 2001). 

      These enhancer and silencer elements are particularly important when 

short exons (such as those in the central region of PER1) have the effect 

of weakening the splicing signals, or when the splicing signal motifs 

themselves are weak. The proximity of rs885747 to the intron-12 exon-13 

boundary in PER1 suggested that this SNP might influence splicing and 

this idea was tested using the bioinformatics tool SpliceScan2 (Churbanov 

et al. 2010). 
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      The internet based bioinformatics tool SpliceScan2 (Table 3-1) scores 

splice sites based on an exon definition model. SpliceScan2 

simultaneously scores exon length, acceptor and donor signals and the 

contribution of exonic/intronic enhancer/silencer elements, as it is the 

balance of all these factors that determines the pattern of splicing. The 

scores are in terms of the LOD (Log of the odds) (logarithm base 2) of a 

true splice site versus a decoy splice site. Selectable outputs from the 

SpliceScan2 server gives tables of LOD scores as well as a graphical 

display showing the position of introns exons and splice site enhancers 

and suppressors. 

 

4.2.2 Method. 

      Two copies of the nucleotide sequence of PER1 were entered into 

SpliceScan2 in turn. The files were identical except that at the genome 

coordinate corresponding to rs885747 one sequence file contained 

rs885747 C allele while the second sequence file contained rs885747 G 

allele. The output, in the form of LOD scores was also noted. The 

graphical output was given as a portable document format file. 

 

4.2.3 Results.   

      The portable document format file was scrutinised for differences 

overall and in the region where the programme predicted the 12th intron 

exon boundary. For the input file containing the autism-associated C allele 

no 3’ Intronic enhancer/silencer element was noted. However, the 

presence of an intronic enhancer/silencer element was noted for the file 

containing the G allele (Figure 4-1). The scores for this exon were also 
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recorded and scrutinised. The output files were identical apart from the 

differences associated with rs885747. 

 

 

 

Figure 4-1. Splice Scan2 alternative splicing: PER1.  

Splice Scan2 was used to test for effects of the SNP rs885747 on splicing of 

intron 12 in PER1. The software predicted the loss of an enhancer/suppressor 

signal for the autism-associated C allele of rs885747 as indicated by the red 

triangle missing in the C allele test (thin red arrow).  

 

4.2.4 Conclusion. 

      The autism-associated SNP is indicated to knockout an intronic 

splicing silencer/enhancer element and similar mutations are known which 

cause serious diseases e.g. Phenylkentoneurea (Dworniczak et al. 1991). 

This intronic splicing silencer/enhancer element may have a phenotypic 

effect as two other reports find association of rs885747 with prostate 

cancer risk; the degree of disease aggressiveness in prostate cancer (Zhu 
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et al. 2009) and depression and early morning awakening, specifically in 

men (Utge et al. 2010). Loss of the splice site enhancer element by SNP 

rs885747 lowers the definition of the intron 12 boundaries (Figure 4-1) 

possibly introducing splicing errors into the mRNA in this region. 

Concommittant alterations in the protein sequence might alter the protein’s 

reported interactivity with the AR (androgen receptor) compromising PER 

function in male typical developmental pathways (Cao et al. 2009). SNP 

rs885747 is therefore tentatively suggested to have some phenotypic 

impact through an influence on splicing and that this effect is sexually 

dimorphic. 

 

4.3 Structural analysis of RNA transcripts containing autism-

associated SNPs in NPAS2, PER1, EN2 and the psychosis 

susceptibility variant rs1344706 in ZNF804A 

 

The loss of function of single genes can lead to specific disorders e.g. 

mutation of the gene for phenylalanine hydroxylase, PAH, causes 

Phenylketoneurea (Dilella et al. 1987) and loss of function of FMR1 the 

fragile X mental retardation 1 gene derives Fragile-X Syndrome (Yu et al. 

1991). However, the strongly genetic neuropsychiatric disorders of autism 

and schizophrenia have not been found to be the result of single gene 

mutation despite a great deal of genetic and molecular genetic 

investigation of these disorders. Moreover, current evidence suggests that, 

to a large degree, the heritable element of these disorders is contributed 

by a constellation of variants of small effect with perhaps epistatic effects 

magnifying the importance of some of these “small effect” genes. This may 
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be the case for the autism-associated variants in the epistatic clock genes 

PER1 and NPAS2 for example. 

      Where replication of results has confirmed that a particular risk variant 

is reliably linked to psychiatric disorder, (for example: the rs1861972-

rs1861973 haplotype of EN2 in autism; the ZNF804A SNP rs1344706 in 

schizophrenia; and, SNP rs1006737 of CACNA1C in bipolar disorder) 

paradoxically, these variants appeared at first to be non-functional 

polymorphisms in the introns of these genes (Benayed et al. 2005; 

O'Donovan et al. 2008; Ferreira et al. 2008). Despite detailed re-

examination of EN2 and ZNF804A no other SNPs were found to be more 

strongly associated with the phenotypes under investigation than the 

intronic SNPs and thus the risk alleles remain as intronic SNPs of currently 

unknown function (O'Donovan et al. 2008; Benayed et al. 2009).  

      This author suggests that certain autism-associated SNPs, appearing 

as non-functional polymorphisms in introns, may alter the secondary 

structure and function of the mRNA transcripts expressed from these 

introns (Nature Preceedings hdl:10101/npre.2008.2366.1.). For example, 

the intronic transcripts embedding rs18111399 in NPAS2 and rs1861973 

in EN2 are predicted to take up allele dependent hairpin formations that 

resemble microRNA precursors and which may be processed by the 

microRNA biogenesis pathway into gene-silencing small RNAs.  

      However, Benayed et al. (2009) provide evidence for an effect of the 

EN2 SNPs rs1861972 and rs1861973 on the levels of expression of EN2 

that is due the binding of transcription factors to the EN2 intron at these 

SNP locations. These two possibilities are not necessarily mutually 

exclusive, as multiple predicted TFBS can coincide with the DNA 
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sequences corresponding to verified microRNA hairpins, as screening 

bona fide microRNA hairpins with TESS/Ensembl/MyHits tools can 

demonstrate. 

      Introns in numerous protein coding genes harbor microRNA genes that 

are transcribed along with the host gene and microRNAs are implicated in 

the development of Fragile-X syndrome Tourette’s syndrome 

schizophrenia and autism (Abelson et al. 2005; Lin et al. 2006a; Kim and 

Kim 2007; Perkins et al. 2007; Abu-Elneel et al. 2008; Sarachana et al. 

2010). This investigation considered whether the transcripts derived from: 

intron regions containing the autism-associated SNPs rs1811399 and 

rs34705978 in NPAS2; rs885747 rs6416892 in PER1 and rs1861972 and 

rs1861973 in EN2, show characteristics typical of microRNA genes. The 

SNPs in EN2 were included as they have perhaps the strongest case of 

any SNP for association with autism, the function of these SNPs are 

unresolved and EN2 is listed amongst genes with conserved-D-Box 

elements suggesting EN2 might be regulated by the circadian clock 

(Kumaki et al. 2008). 

     To justify searching for microRNA genes that, it might be argued, 

should have come to light in previous gene discovery studies, it is 

necessary to consider the primary bioinformatics methods use to discover 

microRNAs. Bioinformatics discovery of microRNA has followed the 

principles of sequence conservation of functional elements within related 

genomes, thus novel microRNAs have been discovered in a given 

genome, human say, by comparison with homologous sequences from 

other well-defined genomes e.g. mouse. However, non-conserved 

microRNAs are known that appear to be species specific or at least occur 
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only in closely related species hsa-mir-1273 for example in Pan 

troglodytes (chimpanzee) and Homo sapiens. 

       Laboratory based microRNA discovery has until very recently incurred 

a strong bias in favour of the discovery of constitutively and/or highly 

expressed microRNAs. Thus microRNAs that are neither highly 

expressed, expressed only at specific developmental stages, expressed 

only in particular tissues, or intermittently and are not evolutionarily 

conserved, could evade detection by routine laboratory based microRNA 

screens.  

 

 

4.4 Internet publication: Autism-associated SNPs in the clock 

genes NPAS2, PER1 and the homeobox gene EN2 alter DNA 

sequences that show characteristics of microRNA genes. 

 

(Nature Preceedings: http://precedings.nature.com/documents/2366/) 

 

B. Nicholas, M. J. Owen, D. C. Wimpory and T. Caspari. 

 

4.4.1 Contributions to this publication. 

This author (B. Nicholas) performed all the bioinformatic analysis and 

wrote the manuscript. M. J. Owen, D. C. Wimpory and T. Caspari 

contributed critical intellectual input in the preparation of the manuscript. 

 
4.4.2 Abstract. 

Intronic single nucleotide polymorphisms (SNPs) in the clock genes 

NPAS2 and PER1 and the homeobox gene EN2 are reported to be 
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associated with autism. This bioinformatic analysis of the intronic regions 

that contain the autism-associated SNPs rs1861972 and rs1861973 in 

EN2, rs1811399 in NPAS2, and rs885747 in PER1, shows that these 

regions encode RNA transcripts with predicted structural characteristics of 

microRNAs. These microRNA-like structures are disrupted in silico by the 

presence of the autism-enriched alleles of rs1861972, rs1861973, 

rs1811399 and rs885747 specifically, as compared with the minor alleles 

of these SNPs. The predicted gene targets of these microRNA-like 

structures include genes reported to be implicated in autism (GABRB3, 

SHANK3) and genes causative of diseases co-morbid with autism 

(MECP2 and RAI1). The inheritance of the AC haplotype of rs1861972 - 

rs1861973 in EN2, the C allele of rs1811399 in NPAS2, and the C allele of 

rs1234747 in PER1 may contribute to the causes of autism by affecting 

microRNA genes that are co-expressed along with the homeobox gene 

EN2 and the circadian genes NPAS2 and PER1. 

 

4.4.3 Introduction. 

A number of genes are considered to contribute to the heritability of the 

neurodevelopmental disorder autism (APA 1994; Pickles et al. 1995). 

Numerous candidate gene studies have been deployed (reviewed by Yang 

and Gill, (2007) for example) to bring further detail to epidemiological 

studies of autism.  

      The choice of candidate genes has been guided by: the results of 

whole genome screens for autism (for example, Palferman et al. (2001)); 

cytogenetic studies of affected individuals (for example, Wolff et al. 
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(2002)); and, genetic studies of disorders that show co-morbidity with 

autism (reviewed, for example, by Zafeiriou, (2007)). Overall, these 

candidate gene studies have not yet found any protein coding sequence 

changes that are significantly associated with autistic disorder. Single 

nucleotide polymorphisms (SNPs) in the introns of genes have however, 

been reported to show significant association with autistic disorder and 

some of these results have withstood replication. In EN2, a gene involved 

in cerebellum development (Sgaier et al. 2007), the association of the 

intronic SNPs rs1861972 and rs1861973 with autistic disorder has been 

re-investigated a number of times with overall positive but complex results 

that support evidence for abnormal cerebellar development in autism 

(Kemper and Bauman 2002; Benayed et al. 2005; Brune et al. 2008; 

Wang et al. 2008). 

      The reported association of PER1 and NPAS2 with autistic disorder  

(Nicholas et al. 2007) is noteworthy given that specific sleep anomalies 

(Limoges et al. 2005) altered circadian rhythm (Corbett et al. 2006) and 

increased measures of oxidative stress are reported to be associated with 

autism  (James et al. 2004).  

      PER1 and NPAS2 regulate sleep in mammals (Sun et al. 1997; 

Franken et al. 2006) and NPAS2 effects redox signaling (Rutter et al. 

2001; Dioum et al. 2002). The protein products of these genes interact 

(Reick et al. 2001) perhaps magnifying the effect of minor variations in 

these genes in autism. Altered expression levels of circadian genes have 

also been linked to bipolar disorder (Yang et al. 2009) and schizophrenia 

(Aston et al. 2004), both indicated to share genetic overlap with autism 

(Rzhetsky et al. 2007).  
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      The autism-associated SNPs in PER1, NPAS2 and EN2 are however, 

all intronic. Parsimoniously they are considered to indicate that other 

functional changes may be in linkage disequilibrium with these autism-

associated SNPs. But despite further investigation by the teams reporting 

association of rs1861972 (EN2), rs1861973 (EN2), rs1811399 (NPAS2), 

and rs885747 (PER1) with autism, no other autism linked functional 

changes in these genes were established (Benayed et al. 2005; Nicholas 

et al. 2007).  

      Recent findings in the field of small RNAs show that the introns of 

protein coding genes may harbor microRNA genes that encode small 

RNAs capable of regulating the function of many other genes at 

chromosomal locations remote from that of the micro-RNA gene itself (Lin 

et al. 2006b). MicroRNA genes within the introns of protein coding genes 

are transcribed concurrently along with the host gene and the genes EN2, 

NPAS2 and PER1 are all expressed in brain regions relevant to autism 

(Millen et al. 1994; Sun et al. 1997; Reick et al. 2001).  

      In this study we sought to investigate whether the intron regions 

containing the autism-associated SNPs: rs1861972 (EN2); rs1861973 

(EN2); rs1811399 (NPAS2) and, rs885747 (PER1) show characteristics of 

human microRNA genes that might be affected by the autism-associated 

SNPs. MicroRNAs regulate development (Lee et al. 1993). They are 

abundant in the mammalian central nervous system (Bak et al. 2008) and 

are reported to play a role in Fragile-X syndrome (Lin et al. 2006a), 

Tourette’s syndrome (Abelson et al. 2005) and perhaps schizophrenia 

(Perkins et al. 2007; Hansen et al. 2007) and autism (Abu-Elneel et al. 

2008). 
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      Mammalian mature microRNAs are short (21 to 23 nucleotide) RNA 

molecules that together with proteins of the RISC complex effect gene 

silencing (Lewis et al. 2005). The precursors of microRNAs are derived 

from intergenic microRNA genes (Saini et al. 2007) or microRNA genes 

within introns of protein coding genes. Indeed some 50% of human 

microRNA genes appear to be intronic (Rodriguez et al. 2004). MicroRNA 

gene transcripts contain complementary base paired hairpin regions (pri-

microRNA hairpins) that are processed into pre-microRNA hairpins by the 

action of the enzyme DROSHA. The length, stability, architecture and 

sequence of the pri-microRNA hairpin are determinants of DROSHA-

processing and distinguish microRNA hairpins from random hairpins within 

the genome (Stark et al. 2007a; Stark et al. 2007b).  The ~60-100nt long 

pre-microRNA hairpins are transported to the cytoplasm by EXPORTIN-5 

where the loops and tails are removed by the RNase III enzyme, DICER 

and the remaining ~22nt double stranded mature microRNA loaded into 

the protein complex RISC. The gene specific targeting of this silencing 

complex is determined by the nucleotide sequence of the mature 

microRNA loaded RISC and particularly the seed (the first 2 to 8 

nucleotides, 5’ to 3’) of the mature 22-nucleotide microRNA. Binding of 

mature microRNA loaded RISC to the UTRs of target genes causes 

translational repression of the target (Wightman et al. 1993) or rapid 

degradation of the transcript of the target gene (Giraldez et al. 2006).  

      MicroRNAs regulate cellular processes that are relevant to the study of 

autism e.g.: developmental timing (Lee et al. 1993; Reinhart et al. 2002); 

cell death (Jovanovic and Hengartner 2006); the patterning of the nervous 

system (Kosik 2006) and, the survival of Purkinje neurons (Schaefer et al. 
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2007), a cell type affected in cases of autism (Kemper and Bauman 2002). 

SNPs in microRNA genes can profoundly affect the target specificity and 

gene silencing power of microRNAs (Duan et al. 2007; Saunders et al. 

2007). We wondered, therefore, whether intronic SNPs that are associated 

with autistic disorder might represent allelic variation in microRNA genes 

transcribed from the introns of EN2, NPAS2 and PER1. In this report we 

analyse the intronic autism-associated SNPs rs1861972 (EN2); rs1861973 

(EN2); rs1811399 (NPAS2) and rs885747 (PER1) to consider whether the 

RNA transcripts of the intron regions containing these autism-associated 

SNPs have features typical of microRNAs and, if so, whether their 

predicted target genes are relevant to autism. 

 

4.4.4 Materials and Methods. 

We carried out a bioinformatic analysis of the RNA transcripts encoded by 

introns 1, 2, and 12 of human EN2, NPAS2 and PER1, respectively. 

Initially, we scanned for pri-microRNA-like structures using the web-based 

bioinformatics tool RNAanalyser (Table 3-1) (Bengert and Dandekar 

2003). We subsequently determined whether the autism-associated SNPs 

rs1861972, rs1861973, rs1811399 and rs885747 are co-located within any 

computer predicted pri-microRNA-like structures. Where hairpins were 

found, special attention was given to: the overall energy of the hairpin, the 

number of nucleotides in the hairpin, the number and distribution of 

symmetric vs. asymmetric bulges, the number of nucleotides in each arm 

of the hairpin and the size of the terminal loop. The results were analysed 

with reference to the principles of microRNA discovery described by 

Berezikov et al. (2006) and Stark et al. (2007a). 
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      Any pri-microRNA-like structures found to contain an autism-

associated SNP were re-analysed to find the effect of the autism-

associated SNPs on the structure of any pri-microRNA-like hairpins. This 

was an important step because even if the computer predicted promising 

pri-microRNA-like structures, unless one or other allele made some 

substantial difference to the hairpin, by altering its structure or affecting a 

potential seed sequence, the overall argument would fail. SNPs lying 

within candidate seed regions of any pre-microRNA-like structures were 

deemed of greater impact over SNPs lying outside the seed, but, SNPs 

that disrupted the configuration of the hairpin would a priori have greatest 

impact overall.  

      Using the bioinformatics tool Microprocessor SMV in silico DROSHA 

(Helvik et al. 2007) Pri-microRNA-like structures were screened for 

DROSHA processing sites that are required to generate a pre-microRNA 

from a pri-microRNA. To determine what would be the predicted target 

genes of a mature microRNA derived from any such hairpins found 

harboring one of the autism-associated SNPs, each arm of the pre-

microRNA-like structures was analysed to indicate the likely 5’ start of the 

mature microRNA region. Using the principles of mature microRNA 

recognition described by Stark et al. (2007a) and Berezikov et al. (2006) 

both the 5’ and 3’ arms of candidate pre-microRNAs were analysed since 

experimentally confirmed microRNAs have been reported to be produced 

from both 5’ and 3’ microRNA arms (hsa-mir-10b and hsa-mir-10b*, for 

example (Michael et al. 2003). 

    Primary consideration was given to the number of complimentary 

matches between each candidate seed and the nucleotide sequences of 
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the 3’ UTRs (microRNA targets) of all known protein coding genes in the 

human genome. For this analysis the TargetScan tool (Table 3-1) was 

used (Griffiths-Jones et al. 2006). It has been shown that verified 

microRNAs generally have numerous (~150-300) targets and the start 

point of verified mature microRNAs often coincides with a trend peak in a 

seed vs. number-of-seed-matches plot, for a given microRNA (Stark et al. 

2007a). Thus if candidate seeds are considered (by a heptomer window 

moved one nucleotide at a time along a hairpin arm) and the number of 

predicted targets recorded for each seed, then a trend in the number of 

targets (increasing to a peak then decreasing over a section of the span of 

the microRNA arm) can indicate the start point of the mature microRNA 

contained within that arm (Stark et al. 2007a). However, when looking for 

target number trends it is important to consider the position of the 

candidate seeds in relation to the overall structure of the candidate 

hairpins. For example, seeds in the 3’ arm which represent start points of 

candidate microRNAs shorter than 22 nucleotides were disregarded, as 

were seeds in 5’arms that would define candidate microRNAs where the 3’ 

end of the mature microRNA coincided with the loop region of the 

candidate hairpin. We noted candidate seed sequences containing 

mismatches (likely start points) and uracil nucleotides at the start of a 

candidate microRNA because nucleotide-one of verified mature 

microRNAs is biased towards being uracil (Stark et al. 2007a). 

      BLASTN and SSEARCH tools were also used to consider sequence 

conservation. Searches were performed using the web-based tools in 

MirBASE (Table 3-1) (Griffiths-Jones et al. 2006). Thus a number of 

arguments were deployed against the notion that hairpins containing 
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autism-associated SNPs are bona fide microRNA genes. 

      The two SNPs (rs1861972 and rs1861973) in EN2, reported by 

Benayed et al. (2005) to be associated with autistic disorder, are 

physically close together in the single intron of EN2 and were therefore 

analysed together. The analysis took account of all four possible 

combinations of allele; A-C, A-T, G-C and G-T. The results were 

compared with the haplotype analysis of Benayed et al. (2005) that 

showed the A-C haplotype to be significantly associated with autism (p = 

0.0000067 narrow phenotype). We also considered the effect of any other 

common SNPs reported in this region.  

      For rs1811399 in NPAS2, an intronic code block of some 300 

nucleotides surrounding the SNP was analysed. This block contained no 

variation according to http://www.ensembl.org (release 50) apart from the 

autism-associated SNP. Thus only 2 structures were computed for the 

region containing NPAS2 rs1811399, one for the A allele and one for the 

autism enriched C allele. 

      Two SNPs occur in intron 12 of PER1 (Ensembl release 50), rs885747 

(C/G), that is reported to be associated with autism (Nicholas et al. 2007) 

and rs885953 (G/C) that has not been investigated in autism. The four 

possible combinations of allele for the SNPs in intron 12 of PER1 were 

used in the computation of transcript structures.  

      Finally using TargetScan (Table 3-1) (Griffiths-Jones et al. 2006) we 

analysed the best candidate mature microRNAs of any pre-microRNA-like 

structures found, to determine what would be the predicted targets for 

these microRNA-like structures. Sets of target genes thus derived were 

scanned for overlap and for genes with particular relevance to autism.  
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      In summary, we set out to answer four main questions: Firstly, could 

the genomic DNA sequence fragment containing the autism-associated 

SNP generate a pri-microRNA-like hairpin? Secondly, do the autism-

enriched alleles specifically disrupt pri-microRNA-like structures or change 

the seed sequence of a candidate mature microRNA-like region? Thirdly, if 

candidate microRNAs are detected, what are the predicted target genes of 

the candidate microRNAs? And finally, is there overlap between the 

targets of each of the candidate microRNAs and if so, are the common 

targets relevant to autism? 

 

4.4.5 Results. 

 

4.4.5i Analysis of EN2 intron 1 sequence fragment containing the autism-

associated SNPs rs1861972 (A/G) and rs1861973 (T/C).  

      The autism-associated haplotype rs1861972 (A)-rs1861973 (C) is 

estimated to contribute to the risk of disease in 40% of cases in the 

general population (Benayed et al. 2005). These SNPs are situated in the 

3’ half of the single large intron that divides the two exons of EN2 (7q 

36.3). The two SNPs are 151 nucleotides apart and were analysed 

together in a 300-nucleotide genomic DNA sequence fragment (Ensembl 

2008 release 50).  

      Two other SNPs are present in this sequence fragment; rs35529773 

(C/-) for which linkage disequilibrium data was not publicly available and 

rs3824067 (T/A) that is well characterised and has T as the ancestral 

allele (Ensembl release 50). We took account of these SNPs in our 

analysis, computing transcript structures for all the possible combinations 
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of alleles (four-marker haplotypes) of the two autism-associated SNPs 

together with rs35529773 and rs3824067. Eight out of the sixteen possible 

allele combinations (four-marker-haplotypes) permitted the formation of a 

long 103 nucleotide pri-microRNA-like hairpin (Figure 4-3) with a 4-

nucleotide loop. The 3’ arm was 58 nucleotides long and the 5’ arm 43 

nucleotides long. (The total number of nucleotides in 90% of validated 

microRNAs ranges from 73 to 102 with arm length between 31 and 47 and 

loops between 4 and 26). This hairpin was always completely disrupted by 

the presence of the autism-associated rs1861972 (A)-rs1861973(C) 

haplotype but never disrupted by the presence of the rs1861972(G)-

rs1861973(T) haplotype, regardless of which alleles of SNPs rs35529773 

and rs3824067 accompanied rs1861972 A/G-rs1861973C/T (Figure 8-2). 

The rs1861972 (G)-rs1861973(C) haplotype induced a small central bulge 

in the main stem and a change in a candidate seed sequence of the 

mature mirRNA-like region of the hairpin. Further analysis using 

Microprocessor SMV in silico DROSHA (Helvik et al. 2007) gave a positive 

predictive value (PPV: the proportion of positive test results that are 

correct predictions) >0.47 for a DROSHA processing site for this hairpin 

with the T allele present in the hairpin and a PPV <0.3 for the hairpin with 

the C allele. 

       No trend peak was found in the number of seed matches along the 5’ 

arm. The 3’ arm however, showed two regions of target number trend with 

the central region of the 3’ arm of this pre-microRNA–like structure 

encoding the seed sequences of three different established microRNAs. 

(More than one mature microRNA can be expressed from a given arm of a 

micro RNA (Yu et al. 2008)). The overlapping seed sequences of miR-10, 
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miR-339 and miR-504 each contain the autism-associated SNP (Figure 4-

2). Intriguingly, miR-10 is reported to play a role in hind-brain development 

that is in keeping with the function of the EN2 gene in cerebellum 

development and with reports of cerebellum anomalies in autism (Kemper 

and Bauman 2002; Sgaier et al. 2007; Woltering and Durston 2008). For 

the 3’ arm of this EN2 hairpin we took the two best candidate seeds for 

investigating predicted targets of this hairpin; UACAGCG and ACCCUGU, 

the seed of human miR-10. 

 
 

Figure 4-2. The EN2 candidate microRNA containing the autism-associated 

SNP rs1861973. Note the seed sequences of three known human microRNAs 

are represented in the candidate mature microRNA region of the 3’ arm. 
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Figure 4-3. Effects of SNPs rs1861972 and rs1861973 on secondary structure of 
mRNA transcribed from an EN2 intron fragment. 
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4.4.5ii Analysis of the intron region of NPAS2 containing the autism-

associated SNP rs1811399 (C/A). 

      A 300 nucleotide DNA sequence fragment (Ensembl release 50) 

centred upon the SNP rs1811399 in NPAS2 was analysed to determine 

the predicted structural characteristics of the RNA transcript of this intron 

region. Two DNA sequence fragments were analysed for this SNP, 

identical except that one contained the A allele and the other the autism 

enriched C allele of rs1811399. The results of the analysis gave two 

different RNA structures as shown in Figure 4-4. The 5’ arm of the hairpin 

computed with the A allele of rs1811399 contains 50nt. The loop 4nt, the 

3’ arm, 44nt and the hairpin in total 101nt. These measures are in keeping 

with the majority of verified microRNAs (Stark et al. 2007a). The 

rs1811399 SNP is predicted to be located within the 5’ arm of the long 

RNA hairpin containing the A allele of rs1811399, towards the loop of this 

pri-microRNA-like structure. Figure 4-4 shows the folding of the fragment 

containing the rs1811399 SNP. Disruption of the hairpin containing the A 

allele of rs1811399 is predicted when the A allele is replaced by the 

autism enriched C allele. 

A C 

Figure 4-4. A or C Alleles of rs1811399 determine two different mRNA 

structures. 
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      To further challenge the plausibility of this structure being a precursor 

for a functional microRNA, we searched for DROSHA binding sites within 

the pri-microRNA-like hairpin. Using the web based bioinformatics tool, 

Microprocessor SVM in silico DROSHA (Helvik et al. 2007) we were able 

to detect a DROSHA processing site that would derive a pre-microRNA-

like structure shown in Figure 4-5. This was used to investigate the 

predicted targets of this hairpin using the web based tool TargetScan 

(Griffiths-Jones et al. 2006). 

 

4.4.5iii     Analysis of intron 12 of PER1 containing the autism-associated 

SNP rs885747 (C|G).  

Intron 12 of PER1 contains two SNPs: rs885747 that Nicholas et al (2007) 

found to be associated with autistic disorder (C allele) and rs885953 that 

was not analysed in their experiment. The PPV for the DROSHA sites in 

this hairpin were >0.38 for the C allele and <0.36 for the fragment 

containing the A allele. Seed-match target number trends were observed 

along the 5’ and 3’ arms of this hairpin. In the 5’ and 3’ arms, seed-match 

trend peaks coincided with base pairing mismatches and were taken as 

likely mature microRNA start points. There is remarkable conservation 

amongst primates of the predicted hairpin structure of the RNA transcripts 

of this intron. In H. sapiens this hairpin structure is strongly affected by the 

allele combination at these two loci (Figure 4-6). Due to the small size of 

the intron, the conservation of predicted hairpin structure amongst 

primates and the high GC content of this intron, 61.36% compared with 

55.6 +/- 1.56 for short introns in general (Duan et al. 2007) we considered 
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that this intron may best be analysed in terms of the structural features of 

mirtrons (Berezikov et al. 2007; Ruby et al. 2007). 

      Mirtrons are mircoRNAs transcribed from small introns that by-pass 

the DROSHA cleavage step in the micro RNA pathway by way of splicing 

at the intron/exon boundaries and where the pri-microRNA hairpins lack 

an extended tail. The mature microRNA within such mirtrons is located in 

the closely base paired region distal to the central loop as compared with 

canonical pri-microRNAs where the mature microRNA is generally located 

proximal to the loop of the pri-microRNA. In silico analysis shows that the 

G-C and C-G haplotypes of these two SNPs allow folding into mirtron-like 

hairpins while the G-G and C-C haplotypes preclude hairpin formation. To 

predict start points of candidate mature microRNAs produced from these 

hairpins, trends in the number of seed-matches along the 5’ and 3’ arms 

were considered. For the hairpins containing the C-G and G-C haplotypes, 

two peaks indicated plausible start points, one in the 5’arm of the closely 

paired region and one in the 3’ arm of the closely paired region. Seed-

match trend peaks that fell outside of the closely paired region of the 

hairpin, in the more loosely base-paired region towards the loop, were 

disregarded as being less likely to contribute to a candidate mirtron 

(Figure 4-6). The G-C haplotype containing the autism enriched C allele of 

rs885747 presents a conformation that shifts the location of the 5’ arm 

seed-match trend peak (relative to its position in the 5’end of the closely 

paired region in the C-G haplotype) to a region of the G-C hairpin where it 

is less likely to represent a start point for a mature microRNA; a start point 

corresponding to a mature microRNA with a 3’ end extending beyond the 

closely base paired region of the hairpin.  
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Subtle structural changes between G-C and C-G haplotypes affecting the 

region at the start of the closely-base-paired region of the 3’ arm may have 

an effect, but no gross change in the 3’arm’s closely-base-paired region is 

associated with the difference between the two alleles of rs885747 

(according to our analysis). Therefore we focused on further investigation 

of the effect of rs885747 on the 5’ arm’s candidate mature microRNA and 

specifically the 22 nucleotide closely paired region at the 5’ end of the 

hairpin as the region of the candidate mirtron affected by the autism-

associated SNP rs885747.  

 

4.4.5iv     Overlap between the sets of predicted targets for the EN2 

NPAS2 and PER1 candidate microRNAs:  

The predicted targets of the candidate microRNAs from EN2, NPAS2 and 

PER1 included a number of autism candidate genes: RAI1, GABRB3, 

GABRB2, SHANK3, NRXN3, RELN, PITX1, SHANK3-INTERACTING-

PROTEIN-1, A2BP1, STK39 and DLX1  (Yang and Gill 2007; Zafeiriou et 

al. 2007). We further screened the total target data for overlap and found 

six target genes were common to the data sets corresponding to each of 

the candidate microRNA’s predicted targets. The common targets were 

ACVR1B, DAB2IP, MAP2K4, MTMR4 and RAI1. The relationship between 

autism relevant targets of the candidate microRNAs and the candidate 

host genes are summarized in Table 4-1. 
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Table 4-1. The predicted targets of the candidate microRNAs in EN2, NPAS2 
and PER1. 
 

Host gene NPAS2 EN2 PER1 
Arm of candidate 
microRNA 

5’              3’ 5’              3’ 5’              3’ 

Seed of candidate 
mature 
microRNA 

UCUGGAG  ACAGUCA ACCCTGT  TTACAGC 
hsa-mir-10 

GGACAGG 

Number of 
predicted targets 

246 235 178 

Autism relevant 
targets 
of the candidate 
microRNAs 

GABRB2 
MECP2 
NLGN2 
ARID1A 
GABRB3 
PITX1 
NRXN3 
RAI1 
RELN 
STK39 
TLK1- 
MITF+ 
ProSAPiP1 

BDNF 
SHANK3^ 
NF1 
FLT1+ 
A2BP1^ 
AUTS2 
DLX1 
GABRB3 
HTR2A 
RAI1 
ARID1A 
SCHIP1+ 
TLK1- 

DYRK1A 
RAI1 
FLOT2- 
KIF1A 

Targets common to candidate microRNAs from each gene ACVR1B, DAB2IP, 
MAP2K4, MTMR4, RAI1 

 

Table 4-1 (footnote). The symbols + or - after a gene name indicate genes that 

are reported to show altered expression levels in autism. Similarly, ^ indicates 

genes that are found in micro-deletions associated with autism. Bold indicates 

genes that are reported to show positive association with autism and genes 

shown in italics are considered to play a causative role in disorders co-morbid 

with autism. The synaptic protein ProSAPiP1 is included as a SHANK3 

interacting protein (Yang and Gill 2007). 

 

4.4.6 Discussion 

The above findings suggest that introns 1, 1 and 12 of the genes EN2, 

NPAS2 and PER1 respectively, may harbor microRNA genes that are 

affected by the autism-associated SNPs rs1861972, rs1861973, 

rs1811399 and rs885747. We have shown that all of these SNPs alter 

microRNA-like structures, predicted for the mRNA transcripts of the 

genomic DNA sequence fragments containing these SNPs. The presence 
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of one (the autism enriched) but not the other, allele of each SNP disrupts 

hairpin structure or changes a candidate seed sequence and thereby the 

predicted target specificity of the microRNA-like structure.  

      For EN2, the RNA structural analysis was extended by the presence of 

four SNPs (rs3824067, rs1861972, rs35529773 and rs1861973) in the 

region of interest. We found that eight of the sixteen possible combinations 

of allele gave a long hairpin that always formed in the presence of the G-T 

rs1861972-rs1861973 haplotype. Notably, this hairpin structure never 

formed when the autism-associated A-C rs1861972-rs1861973 haplotype 

was present and which may relate to the highly significant association for 

the A-C haplotype observed by Benayed et al. (2005). Further comparing 

our results we see that in all of the samples presented by Benayed et al. 

(2005) (AGRE 1, AGRE 2, NIMH and the DSP siblings), the A-C haplotype 

was always over-transmitted from parents to affected individuals while the 

G-T haplotype was always under-transmitted to affected individuals and 

occurred less in the set of unaffected sibs in the DSP (discordant sib pair) 

test.  

      Our structural findings precisely mirror the data for Benayed et al. 

(2005), showing that the autism-associated A-C haplotype always 

accompanies hairpin disruption while the G-T haplotype always supports a 

predicted hairpin structure. Recently, Brune et al. (2008) confirmed 

association of rs1861972 with autism (rs1861973 was not analysed in their 

study). However, according to Brune et al. (2008) the A and G alleles of 

rs1861972 both proved positive but in different samples within their study. 

Our findings offer an explanation supporting and additional to that 

presented by Brune et al. (2008). Our structural analysis shows that the A 
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and C alleles of the rs1861972-2861973 haplotype are required for 

disruption of the hairpin regardless of the genetic background (i.e. which 

alleles of the other two SNPs in this fragment accompany the A-C 

rs1861972-rs1861973 haplotype). However, the G-C rs1861972-

rs1861973 haplotype causes complete disruption when accompanied by 

the A allele of rs3824067 but only partial disruption with the T allele of 

rs3824067. If, in the populations studied by Brune et al. (2008) and 

Benayed et al. (2005), disruption of this EN2 hairpin contributes to the 

cause of autism then the presence of either the A or G allele of rs1861972 

could effect this disruption and thus be linked with autism. We therefore 

tentatively suggest that variation at rs1861972 and rs1861973 affects 

microRNA mediated regulation of the levels of targets such as A2BP1, 

AUTS2, BDNF, GABRB3, HTR2A, NF1, SHANK3 and RAI1 in cells 

expressing the homeobox gene EN2 in autism (Table 4-1).  

      In NPAS2, the disruption of the hairpin by the presence of the autism 

enriched C allele of rs1811399 is also in keeping with the notion of a loss 

of microRNA mediated regulation in NPAS2-expressing cells in autism. 

This is consistent with the route to disequilibrium in autism reported for 

rs1811399 (Nicholas et al. 2007) as the enrichment of the C allele 

(disrupted hairpin) in autism occurred through an under-transmission of 

the A allele (intact hairpin). The gene targets of the candidate microRNA 

(Figure 4-5) containing the A allele of rs1811399 includes genes of 

particular relevance to autism: RAI1, GABRB3, GABRB2, NLGN2, PITX1, 

SHANK3-INTERACTING-PROTEIN-1, STK39, NRXN3, DLX1 AND RELN 

(see Table1). We therefore tentatively suggest that the enrichment of the 

C allele of rs1811399 in autism compromises the potential for microRNA 
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dependent gene regulation in NPAS2 expressing cells. The results for 

PER1 suggest that intron 12 of PER1 may encode a mirtron (microRNAs 

expressed from small introns). They also indicate how the autism-

associated SNP rs885747 in intron 12 may cause disruption of the more 

likely functional structure represented by the C-G haplotype of rs885953-

rs885747 when the rs885747 C allele is accompanied by the rs885953-G 

allele. Loss of the structure represented by the C-G haplotype of 

rs885953-rs885747 may equate to a loss of microRNA mediated 

regulation of targets that include the autism linked RAI1 (Bi et al. 2007; 

Potocki et al. 2007) and the Down syndrome related kinase DYRK1A  

(Altafaj et al. 2001; Fotaki et al. 2002; Dowjat et al. 2007; Zafeiriou et al. 

2007). If this microRNA exists and is active in autism then our model 

would also implicate rs885953, a SNP that is not currently fully 

characterized (www.hapmap.org). Thus, for the autism-associated SNP 

rs1811399 in NPAS2 and the rs1861972-rs2861973 A-C haplotype in EN2 

the autism-associated allele of rs885747 in PER1 appears to force a 

structural change in a predicted hairpin that may result in the loss of 

microRNA mediated regulation. 

      It is likely that a number of genes contribute to the heritability of autism 

(Pickles et al. 1995). We therefore considered whether the effect of hairpin 

disruption by the autism-associated SNPs in the genes EN2, NPAS2 and 

PER1 might be additive, in terms of lost targeting, and we proposed that 

this could be represented by overlap between the data sets of targets of 

these candidate microRNAs and that the genes common to each data set 

should have relevance to autism. We pooled the target data for each of 

the candidate microRNAs in EN2, NPAS2 and PER1 and found five genes 
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that appeared in each of the target gene sets of the candidate microRNAs. 

These genes were ACVR1B, DAB2IP, MAP2K4, MTMR4 AND RAI1. 

Intriguingly RAI1 and MAP2K4 are both located at the autism susceptibility 

locus 17p11.2, a chromosomal region where deletion or duplication is 

linked to Smith Magenis Syndrome or Potocki-Lupski Syndrome, 

respectively, and which convey an autism phenotype. Evidence suggests 

that genes in this region, especially RAI1, affect neural development in a 

dose-dependent manner (Zhang et al. 2004). MAP2K4 (17p11.2) is linked 

to the cellular response to oxidative stress (Wang et al. 1998) and along 

with NPAS2, may be implicated in oxidative stress induced apoptosis of 

dopaminergic neurons (Anantharam et al. 2007). ACVR1B (12q 13.13) is 

the activinA receptor, type IB gene. Activin is found to modulate anxiety-

related behaviour and adult neurogenesis in mouse and to play a role in 

recovery from ischemic brain injury (Ageta et al. 2008). DAB2IP (9q33.2) 

transduces TRAF2-induced ASK1-JNK activation (Zhang et al. 2004) and 

thus plays a central role in the oxidative stress response pathway (Shen et 

al. 2004) that is reported affected in autism (James et al. 2004). MTMR4 

(17q22) is a lipid phosphatase for phosphatidinositol-3-phosphate 

(PTDINS3P) (Lorenzo et al. 2006) and disrupted phosphatidylinositol 

signaling is also reported in autism (Serajee et al. 2003).  

      It is not currently possible to verify the existence of microRNA genes 

on the basis of bioinformatic analysis alone and substantiation of the 

above findings would require additional experiments beyond the scope of 

this study. However, our results suggest a mechanism whereby certain 

intronic autism-associated SNPs may have functional significance and 

moreover how common SNPs may act in combination to alter phenotype.  
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4.5 Further candidate microRNA analysis using MirBASE, The 

Vienna RNA Web Server and the RNA Self Containment Web Server. 

 

4.5.1 Introduction. 

Since the publication presented in chapter 4.4 additional bioinformatics 

tools have become publicly available and existing facilities expanded. For 

example, the Vienna RNA Web Server (Table 3-1) allows detailed analysis 

of hairpin structures as individual sequences and multi-species 

assemblies. This facility enabled the structures to be tested for 

evolutionary conservation independently of sequence conservation. 

Additions to the MirBASE collection were also taken into consideration. 

Thus The Vienna RNA Web Server was used to search for candidate 

microRNA genes in the 300bp intronic sequence fragments containing the 

autism-associated SNP: rs1811399, rs885747 and rs1861973; that 

showed positive results in scans with the RNA Analyser described in 

chapter 4.4.  

 

4.5.2 Method 

In addition to calculating the minimum free energy for an individual hairpin, 

the Vienna RNA Web Server allows multi species alignments to be 

analysed. For this analysis, sequences from five primates and containing 

the candidate human hairpins were used. These sequences were obtained 

with Ensembl sequence database and the Ensembl alignment tool or 

clustalW alignment tool. The Vienna RNA Web Server was used to 

calculate base pair probabilities, mean free energy and entropies for each 

element, as well as giving a “best fit” structure for the assembly overall, a 
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consensus alignment. The output shows whether the overall structure of 

the hairpin is withstanding base changes between species. If so, this is 

taken to indicate conservation of structure (although sequence variation is 

occurring that is not disrupting hairpin structure overall).  

       Dot plots of a hairpin assembly allowed exploration of the probability 

of the occurrence of a particular secondary structure contained in the 

whole Boltzmann ensemble (all possible structures a hairpin might take 

up, between a single strand and the structure with the lowest mean free 

energy). The output for this application is a base pairing probability matrix, 

the so-called dot plot, which takes the form of an upper, and a lower 

triangle of a diagonally divided square matrix. Each letter of the primary 

structure (linear input sequence) is assigned to a matrix index, i.e. 

arranged sequentially along the two dimensions of the square. The small 

squares that make up the matrix grid are shaded in to show base pairings. 

Shaded box (dot) size is proportional to the probability of base pairing. The 

lower triangle shows the secondary structure with minimal free energy and 

where the color of the dots represents sequence variation when an 

assembly of hairpins is analysed. Dot plots can show how some 

microRNAs that have disorganized MFE structures are still capable of 

making hairpins when the whole Boltzmann ensemble is considered. In 

these cases, a structure within the ensemble and which is not the MFE 

structure, is nevertheless sufficiently stable and common, to allow 

processing by the microprocessor complex. 

       Using the Vienna RNA Web Server, a 300 nucleotide DNA sequence 

fragment (centered upon the autism SNPs in NPAS2, PER1 and EN2) was 

thus analyzed to determine the predicted structural characteristics of the 
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RNA transcript containing these SNPs. The effect of the SNPs on 

structures was noted. The graphical results were recorded as portable 

document files output from the Vienna RNA Web Server.   

 

4.5.3 Results. 

4.5.3i NPAS2 rs1811399 hairpin. 

The results for the NPAS2 rs1811399 hairpin are shown below in the 

figures and tables. (The analysis also corrects a typographic error in the 

NPAS2 sequence presented in Figure 4-5, the Nature Preceedings 

submission (page 183) where a nucleotide (C) is gained at the 5’ side of 

the first bulge distal to the central loop of the hairpin. The revised 

structures in this chapter show that no overall change of structure is made 

to the hairpin by this copying error). 

 

Table 4-2. Reference sequences for the NPAS2 rs1811399 hairpin. 

NPAS2 sequence fragment  Notes 
 
300bp fragment starting 2:101478854 
 
TTCATCGGGCTGTATTTAACTTCTGCTTTTGTCTGA 
AAAGCAAAGTTGGAGGGTTTCATTGCCTCGTAGCTT 
AATTTTTATTTCAAATCAAGGGCTGGTATTAACCAT 
AGCTTGGCAGTGCAGAAGGCTGTGGTCAGGTCTGGA 
GGTCAGGGCATGGTGATMCAGCGGCTGCCTGACAGT 
CACTGCCCAGAGCTTCCCTTACCATAACCTTCCTCA 
GTAGACTAGAAAAGGTTTTCAGGTTTGCCCAGGTTA 
TCCACACGTACCATGGCATAGTTTCTCCAGCAAGTC 
AGCACACTGCCG 

 
C allele DROSHA fragment. Score -0.257 
 
GTCAGGTCTGGAGGTCAGGGCATGGTGATCCAGCGG 
CTGCCTGACAGTCACTGCCCAGAGCTTCCCTTACCA 
T   (double loop =forked end) 
 
A allele DROSHA fragment. Score 0.068 
 
AGGTCTGGAGGTCAGGGCATGGTGATACAGCGGCTG 
CCTGACAGTCACTGCCCAGAGCTTCCCTTAC 
 

 
M = rs1811399 A/C 
 
Grey = fragment for in silico 
DROSHA. 
 
 
Pink = the limit of the long hairpin 
structure 
 
 
Grey = candidate pre-miRNA as 
predicted by Interagon (A allele) 
 
 
GCTG = position of central loop 
 
 
CTGGAGG top seed match 5’ 
 
ACAGTCA top seed match 3’ 
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Table 4-2. Reference sequences for the NPAS2 rs1811399 hairpin (foot 

note). 

The predicted in silico DROSHA scores and predicted excision sites are as for 

the results given by the Interagon in silico DROSHA tool described in Chapter 4.4  

 

Table 4-3. Vienna RNA Web server RNAfold output statistics for the NPAS2 

hairpin containing the SNP rs1811399. 

 

NPAS2 hairpin 

C Allele 
rs1811399 

A Allele 
rs1811399 

hsa-let-7f-2 
(Forked MIR) 

Optimal MFE structure  -41.60 kcal/mol  -39.50 kcal/mol -42.1 kcal/mol  

FE ensemble  -42.57 kcal/mol -41.14 kcal/mol -43.85 kcal/mol 

Frequency of the MFE  
structure in the 
ensemble 

20.65 % 6.94% 5.8% 

Ensemble diversity  5.70  12.57 6.64 
Centroid MFE -41.60 kcal/mol  -35.21 kcal/mol  -41.90 kcal/mol 

 

 

Table 4-4. Vienna RNA Web Server RNAz output statistics for the NPAS2 

rs1811399 hairpin for five primate sequences. 

 

Length 92nt  
strand forward  
Mean pair wise identity  95.92 
Mean single sequence MFE  -41.22 
Consensus MFE  -36.97 
Energy contribution  -36.53 
Covariance contribution  -0.44 
Combinations/Pair  1.16 
Mean z-score  -3.18 
Structure conservation index  0.90 
SVM decision value  3.77 
SVM RNA-class probability  0.999597 
Prediction  RNA 
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1  
CAGAAGGCTGTGGTCAGGTCTGGAGGTCAGGGCATGGTGATACAGCGGCTGCCTGACAGTCACTGCCCAGAGCTTCCCTTACCATAACCTTCCT 
..(((((.((((((.(((...((((.((.(((((..(((((....(((....)))...)))))))))).)).))))))).)))))).)))))..  

 
2 

 

 

Figure 4-7. The NPAS2 rs1811399 hairpin: A allele; RNAfold, Vienna RNA 

Web Server. 

The NPAS2 sequence shown in panel 1 and containing the SNP rs1811399 (A) 

is predicted to form a long RNA hairpin with the Vienna RNA Web Server 

RNAfold. The sequence is under laid by the secondary structure for the hairpin 

given in dot and bracket notation. The coloured strip indicates the base pairing 

probability where red =1 and violet = 0. Predicted seeds are shown in blue. The 

grey shading is the predicted pre-microRNA with the 5’ and 3’ candidate miRs 

underlined. In panel 2, the hairpin structure is shown graphically.  



How could clock gene variation contribute to the causes of autism?  

   

Page 156 

 

 

1  
CAGAAGGCTGTGGTCAGGTCTGGAGGTCAGGGCATGGTGATACAGCGGCTGCCTGACAGTCACTGCCCAGAGCTTCCCTTACCATAACCTTCCT 
..(((((.((((((.(((...((((.((.(((((..(((((....(((....)))...)))))))))).)).))))))).)))))).))))).. 

 
 

 
2 

 

MFE PP        MFE PE       Centroid  PP  Centroid  PE 
 

 

 

Figure 4-8. The NPAS2 rs1811399 hairpin: A allele; RNAfold, Vienna RNA 

Web Server MFE and centroid structures. 

Panel 1 is as described for figure 4-7 above. In panel 2, the hairpin structure is 

shown graphically. The mean free energy (MFE) structures are shaded to show 

positional probability of the bases (MFE PP) where red = 1 and violet = 0 and 

positional entropy (MFE PE) where red = 0 and violet = 1.4. The centroid 

structures, indicating a “common structure” for the whole assembly of possible 

structures have the same colour code.  
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1  
CAGAAGGCTGTGGTCAGGTCTGGAGGTCAGGGCATGGTGATCCAGCGGCTGCCTGACAGTCACTGCCCAGAGCTTCCCTTACCATAACCTTCCT 
..(((((.((((((.(((...((((.((.((((((((....)))..(((((.....)))))..))))).)).))))))).)))))).))))).. 

 
 
2 

 
 

 

 

Figure 4-9. The NPAS2 hairpin: C allele; RNAfold, Vienna RNA Web Server. 

Panel1: sequence detail in the hairpin structure and base pair probabilities are 

shown for the dot and bracket structure. The predicted seeds are shown in blue 

and the grey shading is the predicted pre-microRNA with the 5’ candidate miR 

underlined. Note the 3’ miR for the A allele hairpin now places across the central 

loop.  Panel 2 MFE structure. Other conventions are as for figure 4-7.  
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1  
CAGAAGGCTGTGGTCAGGTCTGGAGGTCAGGGCATGGTGATCCAGCGGCTGCCTGACAGTCACTGCCCAGAGCTTCCCTTACCATAACCTTCCT 
..(((((.((((((.(((...((((.((.((((((((....)))..(((((.....)))))..))))).)).))))))).)))))).))))).. 

 
 
2 

MFE PP MFE PE Centroid  PP Centroid  PE 
 

 

Figure 4-10. The NPAS2 hairpin: C allele; RNAfold, Vienna RNA Web Server 

MFE and centroid structures. 

The NPAS2 sequence shown in panel 1 and containing the SNP rs1811399 (C) 

is predicted to form a forked RNA hairpin. The sequence is under laid by the 

secondary structure for the hairpin given in dot and bracket notation. The shading 

of the sequence strip indicates the base pairing probabilities where red =1 and 

purple = 0.  In panel 2, the hairpin structure is shown graphically. The mean free 

energy (MFE) structures are shaded to show positional probability of the bases 

(MFE PP) where red = 1 and violet = 0 and positional entropy (MFE PE) where 

red = 0 and purple = 1.4). The centroid structures (that indicate an “average” 

structure for the whole ensemble of possible structures) follow the same 

convention.  
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Figure 4-13.  Consensus structure of the rs1811399 hairpin in primates.  
Conventions are as for figure 4-12 above. 
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Figure 4-14. Dot plot for the rs1811399 hairpin.  

Conventions are as for Figure 4-14 above. The diagonal arrangement of dots 

indicates low diversity for the ensemble of possible structures with the hairpin 

formation dominant. 

 

In Figure 4-9 and Figure 4-11, it is noteworthy that the formation of the 

forked hairpin (C allele) has the candidate 3’ seed (as for the for the A 

allele ACAGUCA) now located in an unlikely region of the hairpin, i.e. 

encroaching into the end loop. it is possible that fork formation due to the 

presence of the C allele in the rs1811399 hairpin would thus alter the seed 

of the 3’ candidate miR or disfavour the formation of the 3’ candidate miR. 

Altogether. 



How could clock gene variation contribute to the causes of autism?  

   

Page 163 

4.5.3ii EN2 rs1861973 hairpin 

For the EN2 sequence there is conservation of an irregular structure 

amongst primates. The results for this SNP are shown below in the tables 

and figures. 

 

Table 4-5. EN2 sequence fragment. 

EN2 sequence fragment  Notes 
 
300bp fragment starting 101478854 
 
AAACCCAGAGGCGAGGTCACCACTCCCTGCCAgTGG 
CCTTGCCCCCTTCTTCCCCCACAGGGAACGCCAGGG 
GGTTGAGCCTCTTATCACCAAAAAGAAACTGATGAC 
ACTTCCCTCCTTCTGCTCTCCTCCCTCTGCCCTTTC 
CCCATGGATAGCAGGTCCTAGAAGCCTTACAGCGAC 
CCTGcCCAAAACCTGGGGCAGGTCCACAGGGAGAAG 
GCCAGGTCAGGTTCATAAGTCTGAATCCCAGTTGGG 
AGGCACAGTGGGGAGGGTCAGAAGTGGACCTGGACA 
AGGTCAGCTGGG  
PPV >0.47 for the predicted DROSHA 
processing site with the T allele 
 
PPV <0.3 for the predicted  DROSHA 
processing site  with the C allele 
 
N.B. the predicted pre-mir containing the C 
allele does not support hairpin formation.  
 

g = rs1861972 G/A 

t = rs1861973 C/T 
 
Grey = fragment for in silico 
DROSHA. 
 
Pink = the limit of the long 
hairpin structure 
 
Grey = candidate pre-miRNA 
as predicted by Interagon SVM 
 
GAAGCC = position of central 
loop 
 
ACCCTGT = seed of MIR10b 

 
 
Table 4-6. Statistics for the EN2 hairpin containing the SNP rs1861973. 
 
 

EN2 hairpin rs1861973  
C Allele 

rs1861973 
(irregular structure) 

T Allele 
rs1861973 
(hairpin) 

hsa-let-7f-2 
 

Optimal MFE structure  -39.5 kcal/mol  -42.50 kcal/mol -42.1 kcal/mol  

MFE ensemble  -42.42 kcal/mol -44.34 kcal/mol -43.85 kcal/mol 

Frequency of the MFE  
structure in the ensemble 

0.87 % 5.07% 5.8% 

Ensemble diversity  26.92  9.05 6.64 

Centroid MFE -30.74 kcal/mol  -42.4 kcal/mol  -41.90 kcal/mol 
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1 
CUCUCCUCCCUCUGCCCUUUCCCCAUGGAUAGCAGGUCCUAGAAGCCUUACAGCGACCCUGTCCAAAACCUGGGGCAGGUCCACAGGGAGAAGGCCA 
.(((.((((((.((..(((.((((((((((((..((((((((....))...)).))))))))))).....))))).)))..)).)))))).)))... 

 
2 

                                   MFE PP                                        MFE PE      
 
 

   Centroid PP                                                                         Centroid PE 
 
 

 
Figure 4-15. The EN2 hairpin, T allele (RNAfold, Vienna RNA Web Server). 
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Figure 4-15 (continued). The EN2 hairpin, T allele (RNAfold, Vienna RNA 

Web Server). 

The EN2 sequence shown in panel 1 and containing the SNP rs1861973 

(indicated by T) is predicted to form a long stable RNA hairpin. The seeds of 

miR504, miR10 and miR339 are shown in blue. The sequence is under laid by 

the secondary structure for the hairpin given in dot and bracket notation. The 

shading convention and terms are as for NPAS2 above in Figure 4-7. 

 
1 

CUCUCCUCCCUCUGCCCUUUCCCCAUGGAUAGCAGGUCCUAGAAGCCUUACAGCGACCCUGCCCAAAACCUGGGGCAGGUCCACAGGGAGAAGGCCA 
.............(((.((((((..(((((....((((((((....))...)).))))((((((........)))))))))))..)))))).))).. 

 
2 

                              
 
 
                   MFE PP                                                        Centroid PP 

 
Figure 4-16. The EN2 hairpin, C allele RNAfold, Vienna RNA Web Server. 

The EN2 sequence shown in panel 1 and containing the SNP rs1861973 (C) is 

predicted to form an irregular RNA structure of high MFE. The sequence is under 

laid by the secondary structure given in dot and bracket notation. The shading 

convention and terms are as for NPAS2 in Figure 4-7 above. 
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Structural conservation in EN2 hairpin region containing the SNP rs1861973 
>Hom  MFE -36.70 
CUCUCCUCCCUCUGCCCUUUCCCCAUGGAUAGCAGGUCCUAGAAGCCUUACAGCGACCCUGCCCAAAACCUGGGGCAGGUCCACAGGGAGAAGGCCA 
.............(((.((((((..(((((....((((((((....))...)).))))((((((........)))))))))))..)))))).)))..  
 
>Pan MFE -39.70 
CUCUCCUCCCUCUGCCCUUUCCCCAUGGAUAGCAGGUCCUAGGAGCCUUACAGCAACCCUGCCCAAAACCUGGGGCAGGUCCAUAGGGAGAAGGCCA 
.............(((.((((((.(((((..(((((((....)).)))....))...(((((((........)))))))))))).)))))).)))..  
 
>Gor43.30 
CUCUCCUCCCUCUGCCCUUUCCCCAUGGAUAGCAGGUCCUAGGAGCCUUACAGCGACCCUGCCCAAAACCUGGGGCAGGUCCAUAGGGAGGAGGCCA  
.((((((((((((((....(((....)))..))))......(((((......))...(((((((........))))))))))..))))))))))...  
 
>Pon46.10 
CUCUCCUCCCUCUGCCCUUUCCCCAUGGAUACCAGGUCCUAGGAGCCUUACAGCGACCCUGCCCCAAACCUGGGGCAGGUCCACAGGGAGGAGGCCA 
.((((((((((..(((((....((.(((...)))))....))).))......(.(..(((((((((....)))))))))..).)))))))))))...  
 
>Mac41.80 
CUCUCCUCCCUCUGCUCUUUCCCCACGGAUAGCAGGUCCUAGGAGCCUUAGAUCGACCCUUCCCAAAACCUGGGGUAGGUCCAUAGGGAGGAGGCCA 
.((((((((((.((((...(((....))).))))((((..((....))..))))((((..(((((.....)))))..))))...))))))))))... 
 
>consensus-30.94 
CUCUCCUCCCUCUGCCCUUUCCCCAUGGAUAGCAGGUCCUAGGAGCCUUACAGCGACCCUGCCCAAAACCUGGGGCAGGUCCACAGGGAGGAGGCCA 
.((((((((((.((..(((.(((((.((...(((((((....))((......))...)))))......))))))).)))..)).))))))))))... 
 

 

Figure 4-17. Sequence conservation of the EN2 rs1861973 region in dot and 

bracket notation. An irregular structure is conserved in five primates. 

A 
 

 
 
 
B 

                               
 
 

Figure 4-18. Sequence conservation in the EN2rs1861973 region.  

Panel A shows structure in dot and bracket notation and sequences. Panel B 

shows graphical secondary structure, an irregular branched formation. The 

conventions are as for Figure 4-12. 
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Table 4-7. Statistics for the conservation of RNA structure around SNP 

rs1861973 analysed with the Vienna Web Server. 

Length  113 
RNAz 1.0 Sequences 6 
Columns 113 
Reading direction forward 
Mean pairwise identity 75.99 
Mean single sequence MFE -42.72 
Consensus MFE -28.33 
Energy contribution -29.15 
Covariance contribution 0.82 
Combinations/Pair 1.40 
Mean z-score -3.79 
Structure conservation index 0.66 
SVM decision value 2.47 
SVM RNA-class probability 0.994367 
Prediction RNA 

 
 
 
4.5.3iii    PER1 rs885747 hairpin 
 
The sequence fragment containing intron 12 of PER1 was anaysed with 

the Vienna RNA analysis tools. The results are shown in the annotated 

tables and Figures. 

 

Table 4-8. Sequence and SNP details of intron 12 PER1. 
 
 
 

PER1 sequence fragment Notes 
 
300bp fragment starting 101478854 
 
CCAGCTCCCTCCYTGGACACTGATATCCAGGAGCTGTCA 
GAGCAGATCCACCGGCTGCTGCTGCAGGTGAGAGTAGCG 
GASAGGGAGCCTGGGAGGTGAGAAAAGGTGTGGGAAGCS 
GGGTCAAGCCATCTAACCTGCCCTCTCCCTGCTGCAGCC 
CGTCCACAGCCCCAGCCCCACRGGACTCTGTGGAGTCGG 
CGCCGTGACATCCCCAGGCCCTCTCCACAGCCCTGGGTC 
CTCCAGTGATAGCAACGGGGGTGATGCAGAGGGGCCTGG 
GCCTCCTGCGCCAGTGAGTGACCTGCT  
 

 

Y = rs3027181 C/T 
 
S = rs885953 G/C 
 
S = rs885747 C/G 
 
S = rs35859165 G/A 
 
Grey = intron 12. 
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Table 4-9. Vienna RNA Web Server RNAfold output statistics for the PER1 

hairpin containing the autism-associated SNP rs885747 and rs885953 C. 

 

 

PER1 hairpin 
(Values when rs885953 is C) 

C Allele 
rs885747 

G Allele 
rs885747 

hsa-let-7f-2 
(Forked MIR) 

Optimal MFE structure  -41.2kcal/mol  -39.20 kcal/mol -42.1 kcal/mol  

FE ensemble  -41.62 kcal/mol -40.44 kcal/mol -43.85 kcal/mol 

Frequency of the MFE  
structure in the ensemble 

9.93 % 13.44% 5.8% 

Ensemble diversity  7.77  8.13 6.64 
Centroid MFE 
 

-40.90 kcal/mol  -42.4 kcal/mol  -41.90 kcal/mol 

 

 

 

Table 4-10. Vienna RNA Web Server RNAfold output statistics for the PER1 

hairpin containing the autism-associated SNP rs885747 and rs885953 G. 

 
PER1 hairpin 

(Values when rs885953 is G) 
C Allele 

rs885747 
G Allele 

rs885747 
hsa-let-7f-2 

(Forked MIR) 

Optimal MFE structure  -38.10kcal/mol  -35.9kcal/mol  -42.1 kcal/mol  

FE ensemble  -39.87kcal/mol -37.5 kcal/mol -43.85 kcal/mol 

Frequency of the MFE  
structure in the ensemble 

5.69% 6.92 % 5.8% 

Ensemble diversity  31.93 33.14  6.64 
Centroid MFE 
 

-24.78kcal/mol  -21.93 kcal/mol  -41.90 kcal/mol 

 

 

Further examination with the structural conservation tools of the Vienna 

RNA Web Server indicated no hairpin structural conservation for this 

sequence in primates. 

 



How could clock gene variation contribute to the causes of autism?  

   

Page 169 

Table 4-11 Structural conservation for the PER1 hairpin 

Location  0 – 105 
Length  105 
RNAz 1.0 Sequences 5 
Columns 105 
Reading direction forward 
Mean pairwise identity 89.33 
Mean single sequence MFE -43.28 
Consensus MFE -34.74 
Energy contribution -35.38 
Covariance contribution 0.64 
Combinations/Pair 1.10 
Mean z-score -1.38 
Structure conservation index 0.80 
SVM decision value -0.01 
SVM RNA-class probability 0.526804 
Prediction RNA 

 

4.5.4 Conclusion 

This analysis of the autism-associated SNPs with the Vienna RNA Web 

Server has strengthened the possibility that the hairpin containing the SNP 

rs1811399 in NPAS2 is a candidate microRNA. For EN2 rs1861973 only 

the T allele supports hairpin formation. Structural conservation analysis 

suggests an irregular structure is conserved at this locus. The results for 

PER1 do not further support a candidate microRNA in the 12th intron. 

      Confirmation of the positive results would have to come from 

experimental work in cell lines or tissue samples but these findings are 

encouraging especially for rs1811399 given the lack of any other clear 

indication of possible functionality for this SNP. The GLIDERS results 

(Table 3-9) showing a group of SNPs in linkage disequilibrium with 

rs1811399 further suggests this SNP is implicated in the association signal 

specifically, perhaps lending further support in favour of the functionality of 

the rs1811399 hairpin. 
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4.5.5 Analyzing Self Containment with the RNA Self Containment Web 

Server.  

 

4.5.5i Introduction. 

The RNA Self Containment Web Server (Table 3-1) calculates a Self-

Containment Index (SC) (Lee and Kim 2008) that is a measure of the 

robustness of RNA hairpins to changes in their surrounding sequence 

context, which is proposed as a hallmark of structural modularity. SC 

values range from 0.0 (no self containment) to 1.0 (completely self 

contained). Based on empirical results, a typical mRNA sequence has an 

SC value of approximately 0.54 whereas microRNA hairpins have an 

average SC of 0.9 (Lee and Kim 2008). 

 

4.5.5ii Method. 

Using the sequence fragments encoding the long hairpins containing 

SNPs rs1811399, rs885747 and rs1861973 as above. Each sequence was 

submitted in turn to the server and the data output for each hairpin noted. 

This was repeated for both alleles of the hairpins containing the SNPs. 

 

4.5.5iii Results. 

The results are shown in Table 4-11. For the NPAS2 hairpin the SC index 

is keeping with the values of microRNAs (~0.9). For the PER1 and EN2 

hairpins the SC index does not support the notion that they are microRNA 

related hairpins. 

 



How could clock gene variation contribute to the causes of autism?  

   

Page 171 

Table 4-12. Self Containment Index data for the EN2, NAPS2 and PER1 

hairpins. 

 

Gene Hairpin containing SNP SC index 
rs1811399 = C 0.91 NPAS2 
rs1811399 = A 0.87 
rs885747  = C 0.75 PER1 
rs885747  = G 0.23 
rs1861973 = T 0.48 EN2 
rs1861973 = C 0.50 

 

 

4.5.5iv Conclusion. 

The results for the NPAS2 hairpin are in keeping with the values expected 

for MicroRNAs. This is also reflected in the results of the Vienna RNA Web 

Server. For the PER1 and EN2 hairpins this test together with the results 

of the Vienna RNA Web Server indicates that these hairpins are not 

microRNA candidates.  

 

4.5.6 Searching MirBASE for sequence homology between the NPAS2, 

PER1 and EN2 hairpins using BLAST and SSEARCH tools. 

 

4.5.6i Introduction. 

The MirBASE database is a searchable database of miRNA sequences 

that have been published that are curated together along with details of 

annotation of MicroRNAs. The search tools available in MirBASE include 

BLAST and SSEARCH functions that in this case were used to compare 

the hairpins containing rs1811388, rs885747 and rs1861973 with the 

sequences of all known microRNAs stored in the database.  
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4.5.6ii    Method. 

The hairpins, each containing the major and minor alleles of the autism-

associated SNPs were used in the searches. The sequences were 

entered into the MirBASE search window and the appropriate search tool 

selected dependent on the string length of the query.  For long hairpins, 

BLASTN and stem loop sequence were selected, while SSEARCH and 

“mature sequence” were used when searching with a ~22nt candidate 

mature sequence taken from each arm of the candidate microRNA under 

investigation. 

  

4.5.6iii     Results. 

 

The results of the searches are shown below in Figure 4-19. 

NPAS2 
score: 91 evalue: 0.23 
  
UserSeq              
35  uggugauacagcggcugccugacagucacugcccagag  72 
    ||| |||   || ||||||||  ||| ||| | || || 
40  uggggauguugcagcugccugggagugacuucacacag  77   

    hsa-mir-1301         

PER1 
score: 99  evalue: 0.053  
 
UserSeq              
83  ggugugggaagccgggucaagccaucuaaccugcccucucccugc  39 
    |||| |||| || |||| | ||| | || | || ||   ||| || 
32  ggugcgggaugcagggugaggccuuguaccuuggcccagcccagc  76   

hsa-mir-3620         
 
 

Figure 4-19. Best matches from MirBASE searches with the EN2, NPAS2 

and PER1 hairpins. 
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4.5.6iv Conclusion 

Although alignments could be made between the NPAS2 query hairpin 

and known microRNAs the match is weak and the position of the mature 

MIR in relation to the homology suggests that this alignment is probably 

not biologically significant. For example in Figure 4-19 the highest scoring 

alignment matched the mature microRNA region of hsa-mir-1301 with the 

loop region of the NPAS2 candidate microRNA. Also, the hsa-miR-1301 

seed matches the region immediately upstream of the loop in the 

candidate MIR thus discounting these seed as functional in the NPAS2 

candidate MIR. 

 

Table 4-13. Summary of the attributes of the hairpin structures. 

rs1811399 
NPAS2 
hairpin 

rs885747 
PER1 
hairpin 

rs1861973 
EN2 

hairpin 
Hairpin  
length >60nt 

yes yes yes 

Energy  
= or < 35kJ/mole 

yes yes yes 

Positive  
DROSHA score 

yes no yes 

Self Containment  
> 0.9 

yes no no 

Vienna RNA Web Servers  
Predicts hairpin conservation 

yes no no 

 

 

4.5.7 General conclusion from the RNA secondary structure analysis.  

The RNA secondary structure analysis, summarized in Table 4-13, 

indicates there are grounds to consider further investigation of the NPAS2 

hairpin in terms of a candidate microRNA. The SNP rs1811399 clearly 

affects the predicted structure of the NPAS2 hairpin but the data does not 

allow determination of whether the A, C or both forms of the rs1811399 
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hairpin are the more likely to be processed into a silencing molecule. This 

is due to the following factors: bona fide microRNAs may have short 

forked ends (e.g. hsa-let-7f-2); the in silico DROSHA score is better for the 

A hairpin than the C hairpin (Figure 4-20); the MFE score is better for C 

form than the A hairpin (Table 4-3) thus taken together, the date suggest 

there is no outright winner between the two possible structures for the 

NPAS2 candidate microRNA.  

A  B  

 

Figure 4-20. NPAS2 candidate microRNA and hsa-let-7f-2 compared.  

Similar structures for the forked microRNA hsa-let-7f-2 and the candidate hairpin 

containing the SNP rs1811399. 

 

However consideration of the hairpin fine structure (Figure 4-8 and Figure 

4-10) suggests that the position, and thus, the target complimentarity of 

the seed sequence, may differ between the two structures.  

       Ensembl genotyped populations show that there is a strong bias 

against the homozygous CC genotype in all the Ensembl populations, 

even though the ancestral allele is C. The association study results (Table 

2-4) also indicate that the significant association of the C allele of 
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rs1811399 with autism derives from an under-transmission of the A allele 

rather than the over-transmission of the C allele from parents to their 

children with autism. Tentatively these results suggest that the A allele of 

rs1811399 (long hairpin) confers some advantageous or protective effect 

in contemporary neurotypical populations that is not the case for the 

ancestral, autism-associated C allele. 

       It is interesting that the revised top targets of the 3’ candidate seed 

(ACAGUCA) contain the dosage dependent autism genes, RAI1 and 

DGCR8. Possibly the C allele of rs1811399 affects the availability of the 3’ 

candidate miR only, by moving this sequence into the unfavourable 

position in the end loop (Figure 4-14).  Loss of both copies of the 3’ mirR 

(corresponding to the CC genotype) might thus disturb the levels of RAI1 

and DGCR8 in cells expressing NPAS2 and with a CC genotype. Also, the 

most likely 5’ seed (and the next 3 seeds down stream) present CLOCK 

amongst their top conserved predicted targets, suggesting a possible 

mechanism for subduing CLOCK levels in cells expressing NPAS2. Lack 

of this possible functionality could thus cause undesirable CLOCK and 

NPAS2 co-expression. 

      The evidence for the PER1 hairpin being a candidate microRNA is 

weaker by not satisfying the DROSHA prediction, self-containment, or the 

Vienna Web server structural conservation tests. Nevertheless the intron 

is predicted to form a symmetrical hairpin in the presence of certain 

combinations of allele of the SNPs rs885953 and rs885747. These results, 

together with those of the EN2 hairpin, are against the PER1 and EN2 

hairpins being candidate microRNAs in the conventional sense.  
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      Nevertheless, and especially in the case of the EN2 hairpin, the 

structural analysis shows how SNPs might create de novo hairpins out of 

irregular RNA structures. Such hairpins, if processed by DROSHA etc. 

might have advantageous or deleterious effect. It is interesting to note that 

the EN2 hairpin contains a candidate miR with a seed sequence identical 

to the seed of MIR10. The involvement of MIR10 in the same 

developmental pathway as EN2, supports the notion that the formation of 

a novel hairpin, a novomir say, in the transcript derived from this EN2 

intron may interfere with brain development that is reliant on the 

expression of EN2. Notably the candidate seeds surrounding the SNP 

rs1861973 in EN2 are those of the bona fide microRNAs MIR10 (BDNF), 

MIR339 (CACNA1C SHANK3), and MIR504 (NRXN1). The genes in the 

brackets are amongst the top ten predicted targets for each of these 

microRNAs and each gene is strongly implicated in neuronal 

function/development and autism. 

      The frequency of genotypes of the SNP rs1861973 in neurotypical 

populations, support the hypothesis that the TT homozygote may be linked 

to a pathological phenotype. Ensembl data on genotypes shows that the 

TT genotype is the least frequent of the four possible genotypes in all the 

populations assessed and is absent in a number of populations (Table 4-

14). 

Additionally, EN2 is a target of MIR504 (Figure 4-3) thus expression of the 

rs1861973 hairpin (T allele dependent) could lead to the down regulation 

of EN2 levels. This is in keeping with the finding of up regulation of EN2 

expression with the C allele of rs1861973 (Benayed et al. 2009). 
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Table 4-14. Genotypes for the autism-associated SNP rs1861973 in 

neurotypical populations. 

 

Population C|C T|C T|T 
Japanese, (Tokyo) 79 6 0 
Han Chinese in Beijing 36 5 0 
Chinese in Metropolitan Denver 71 14 0 
Han Chinese in Beijing 32 11 0 
Yoruba Ibadan, (Nigeria) 69 37 6 
Mexican ancestry in Los Angeles 28 19 2 
Utah, N. and W. European ancestry 61 47 5 
Luhya in Webuye, Kenya 53 27 10 
Toscans in Italy 43 39 6 
Gujarati Indians in Houston 41 40 7 
African ancestry in Southwest USA 18 26 5 

 

      This hypothesis is not refuted by recent results that find that the 

autism-associated C allele of rs1861973 is nevertheless, associated due 

its protective effect in the disorder (Yang et al. 2010). The presence in the 

gene pool of a dosage dependent pathological allele (T rs1861973) that 

affects molecular pathways already compromised in autism, could thus 

satisfy the otherwise complicated results for this gene in autism (Petit et al. 

1995; Benayed et al. 2005; Brune et al. 2008; Wang et al. 2008). This 

analysis also suggests that the conservation of the irregular structure 

linked to the C allele of rs1861973 holds in abeyance the possibility of 

pathogenic hairpin formation with the T allele. In autism, gene variants 

conferring risk may compromise a molecular pathway containing EN2 that 

becomes critically overburdened by the presence of the T allele of 

rs1861973. 
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4.6 Analysis of the results of three, autism microRNA expression 

studies in relation to clock gene targets. 

 

4.6.1 Introduction 

If clock genes play a role in autism aetiology, then any microRNAs that are 

dysregulated in autism might feature clock genes prominently amongst 

their targets. Three studies to date have looked at microRNA expression in 

autism: Abu-Elnee et al. (2008), Talebizadeh et al. (2008) and Sarachana 

et al. (2010). The latter, performed pathway analysis that showed the 

circadian rhythm pathway was significantly associated with their data set 

of microRNAs dysregulated in autism. However, Abu-Elneel et al. (2008) 

did not undertake molecular pathway analysis, nor were specific circadian 

gene targets identified by Sarachana et al. (2010). 

   Target prediction is based on empirical sequence matching between 

microRNA seeds and matching sequences in the 3’ untranslated region of 

genes. The prediction will of course generate false positive results, as the 

biological validity of the microRNA/target interaction will depend on the co 

-expression of the micro RNA and the target. In general this aspect is not 

currently possible to model bioinformatically. However, the target 

predictions are resistant to false negative results and thus inclusion of 

clock genes among the targets of the autism microRNAs could indicate 

that clock gene dysregulation in autism could (at least in part) be caused 

by the dysregulation of clock gene targeting microRNAs. 
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4.6.2 Method 

The microRNAs from each of the three studies were listed under the 

headings of El Neel, Talebizadeh and Saracharna.  For each microRNA 

the current location was found with Ensembl and the location cross 

referenced with the Autism Chromosome Re-arrangement Database  

(ACRD, Table 3-1) to see if any of these microRNAs were to be found in 

insertions or deletions found in autistic individuals. 

Using MirBASE the sequence of each microRNA was copied and the seed 

sequence entered into the TargetScan web server. The output file 

containing the predicted targets for each microRNA was then searched 

with a list of clock/clock related genes: ARNTL, CLOCK, CRY1, CRY2, 

CSNK1E, NPAS2, NR1D1, PER1, PER2, PER3, RORA and SIRT1. 

 

4.6.3 Results 

The results are given in the following tables. 
 
Table 4-15. El-Neel. MicroRNAs up-regulated. 

 
MIR 

Up-regulated 
 

 
Chr. 

 
Clock gene target 

 
ACRD 

hsa-mir-484 16 p13.11 PER1 no 
hsa-mir-21 17 q23.1  no no 
hsa-mir-212 17 p13.3 no no 
hsa-mir-23a 19 p13.13 no no 
hsa-mir-598 8 p23.1 no no 
hsa-mir-129 7 q32.1 no yes 
hsa-mir-431 14 q32.2 no no 
hsa-mir-7 9 q21.32 CRY2 no 
hsa-mir-15a 13 q14.2 CLOCK no 
hsa-mir-27a 19 p13.13 no no 
hsa-mir-15b 3 q25.33 CLOCK no 
hsa-mir-148b 12 q13.13 CLOCK no 
hsa-mir-132 17 p13.3 Circadian regulator MIR no 
hsa-mir-128 2 q21.3 SIRT1 no 
hsa-mir-93 7 q22.1 CLOCK, NPAS2, CRY2 no 
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Table 4-16. El-Neel. MicroRNAs down-regulated. 

 

 
MIR 

Down-
regulated 

 

 
Chr. 

 
Clock gene target 

 
ACRD 

hsa-mir-93 7 q22.1 CLOCK, NPAS2, CRY2 no 
hsa-mir-106a X q26.2 CRY2, CLOCK, NPAS2 no 
hsa-mir-539 14 q32.31 no no 
hsa-mir-652 X q23  no no 
hsa-mir-550 7 p14.3  no no 
hsa-mir-432 14 q32.2 no no 
hsa-mir-193b 16 p13.12 no no 
hsa-mir-181d 19 p13.13 SIRT1 no 
hsa-mir-146b 10 q24.32  no no 
hsa-mir-140 16 q22.1 no no 
hsa-mir-381 14 q32.31 no no 
hsa-mir-320a 8 p21.3  NPAS2, PER2 CSNK1E no 
hsa-mir-106b 7 q22.1 CRY2, CLOCK, NPAS2 no 

 

 

Table 4-17. Talebizadeh. MicroRNAs up-regulated. 

 
MIR 

Up-regulated 
 

 
location 

 
Clock gene target 

 
ACRD 

hsa-mir-23a 19 p13.13 no no 
hsa-mir-23b 9 q22.32 no no 
hsa-mir-132 17 p13.3 Circadian regulator MIR no 
hsa-mir-146a 5 q34 no no 
hsa-mir-146b 10 q24.32 no no 
hsa-mir-663 20 p11 no no 

 

 

Table 4-18. Talebizadeh. MicroRNA down-regulated. 

MIR 
Down-

regulated 
 

 
location 

 
Clock gene target 

 
ACRD 

hsa-mir-92  13 q31.3 PER2 no 
hsa-mir-320 8 p21.3 PER2, NPAS2 no 
hsa-mir-363 X q26.2 PER2 no 
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Table 4-19. Saranchana. MicroRNAs up-regulated. 

MIR 
UP-regulated 

 

 
location 

 
Clock gene target 

 
ACRD 

hsa-mir-185  22 q11.21 no no 
hsa-mir-103 5 q34  CLOCK, NPAS2, PER3 yes 
hsa-mir-107 10 q23.31 CLOCK, NPAS2, PER3 no 
hsa-mir-29b 7 q32.3  PER1, PER3,  no 
hsa-mir-194 1 q41  CLOCK no 
hsa-mir-524  19 q13.42 NPAS2 yes 
hsa-mir-191  3 p21.31 no no 
hsa-mir-376a 14 q32.31 no no 
hsa-mir-451  17 q11.2  no no 
hsa-mir-23b  9 q22.32 no no 
hsa-mir-195 17 p13.1 CLOCK no 
hsa-mir-342 14 q32.2 no yes  
hsa-mir-23a 19 p13.13 no no 
hsa-mir-186  1 p31.1  no no 
hsa-mir-25  7 q22.1  PER2 no 
hsa-mir-519c 19 q13.42 no yes 
hsa-mir-346 10 q23.2  no no 
hsa-mir-205 1 q32.2  no no 
hsa-mir-30c 1 p34.2 CLOCK, PER2, PER3 no 
hsa-mir-93 7 q22.1 CRY2, NPAS2  no 
hsa-mir-186 1 p31.1  no no 
hsa-mir-106b 7 q22.1  CRY2, CLOCK, NPAS2 no 

 
Table 4-20. Saranchana. MicroRNAs down-regulated. 

MIR 
Down-regulated 

 

 
location 

 
Clock gene target 

 
ACRD 

hsa-mir-182 7q32.2  CLOCK no 
hsa-mir-136  14q32.2 no no 
hsa-mir-518a  19q13.42 no yes 
hsa-mir-153 2q35  no no 
hsa-mir-520b  19 q13.42 RORA yes 
hsa-mir-455  9q32  no no 
hsa-mir-326  11q13.4 CRY2 no 
hsa-mir-199b  9q34.11 NPAS2 no 
hsa-mir-211  15q13.3  SIRT1 yes, multiple 
hsa-mir-132  17p13.3 Circadian regulator MIR no 
hsa-mir-495  14q32.31 CLOCK PER2 no 
hsa-mir-16 13q14.2 CLOCK no 
hsa-mir-190  15q22.2 CLOCK no 
hsa-mir-219  6p21.32 Circadian regulator MIR no 
hsa-mir-148b  12q13.13 no no 
hsa-mir-189/24-1  9q 22.32 PER1 PER2 CRY2 no 
hsa-mir-133b  6p12.2  SIRT1  no 
hsa-mir-106b  7q22.1  CRY2, CLOCK, NPAS2 no 
hsa-mir-367  4q25  PER2 no 
hsa-mir-139  11q13.4 no no 
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Table 4-21. Overlap between the results of El-Neel, Talebizadeh and 

Saranchana. 

 

Common 
to the 3 
studies 

 
Clock gene 

targets 

 
Common to  

2 studies 

 
Clock gene 

targets 
hsa-mir-132 Circadian regulator hsa-mir-106b CRY2, CLOCK, NPAS2 
hsa-mir-23a no hsa-mir-146b no 
  hsa-mir-148b no 
  hsa-mir-23b no 
  hsa-mir-93 CLOCK, NPAS2, CRY2 

 

4.6.4 Conclusion 

Most notably, all three studies find altered expression of the circadian 

microRNA MIR132 and hsa-mir-23a that targets CLOCK at a 

nonconserved site in the 3’UTR. Secondly, clock genes contain 3’UTR 

target sites for almost all of these microRNAs and conserved sites as 

shown in the tables. All the microRNAs that are common to two studies 

also target core clock genes at unconserved sites and conserved sites as 

shown. MIR132 and MIR106b are also reported to show altered 

expression patterns in schizophrenia (Kim et al. 2010). 

       The results of this meta-analysis show that circadian microRNAs are 

repeatedly found to be dysregulated in autism cases, which is compatible 

with a role for a disturbance of circadian clock function in autism. The 

involvement of MIR132 in the circadian molecular clock (Cheng et al. 

2007) implies that dysregulation of this microRNA could cause 

dysregulation of the core clock components. Also MIR 182 is shown to be 

clock regulated and CLOCK is a potential target of this microRNA (Xu et 

al. 2007; Yang et al. 2008). It is noteworthy that different microRNAs were 

dysregulated in different autistic individuals and some of these microRNAs 
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are located in microdeletions found in individuals with autism, according to 

the ACRD. Each of these ACRD microRNAs target core clock genes.  

      Supposing the dysregulated microRNAs do contribute to autism, this 

could be seen as an example of how a phenotype that is linked to the 

disruption of a biological pathway, might be difficult to capture 

experimentally in terms of genotype. In this case, different genetic 

variations, in different microRNAs, in different individuals, might contribute 

to a similar outcome (circadian disruption) if the microRNAs have clock 

gene targets in common. Such a mechanism might be additive to variation 

in clock genes specifically.  
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5 Discussion 

Disruption of circadian rhythms accompanies several neuropsychiatric 

disorders including autism (Barnard and Nolan 2008). Whether and to 

what degree however, altered circadian rhythms contribute to the causes 

or progress of these disorders is currently unclear. Circadian rhythms in 

mammals are generated by cyclic activity of transcription factors; the 

products of so called clock genes and the work described in this thesis 

begins testing the hypothesis that clock genes are implicated in autism.  

 
 
5.1 Summary of the main findings. 
 
This thesis reports that SNPs in the clock genes NPAS2 and PER1 are 

associated with autistic disorder. Further analysis of the autism-associated 

SNPs shows that:- 

• The SNP rs34705978 (NPAS2) is a polymorphic nucleotide in a 

differentially methylated control element. The autism-enriched allele 

denies the possibility of methylation-directed regulation at this CpG 

pair.  

• The most significant autism-associated haplotype in NPAS2 

contains a conserved RORA/NR1D1 binding site, a likely NPAS2 

regulatory motif. 

• The SNP rs1811399 in NPAS2 is located within a region of the 

gene that gives rise to an RNA transcript that is predicted to form a 

hairpin structure that is reminiscent of a pre-microRNA. 

• The autism enriched allele of SNP rs885747 (PER1) knocks-out a 

predicted splice site enhancer /suppressor element. 

• Autism and prostate cancer share disease associated loci in PER1 

and NPAS2. 
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• Cardinal autism genes have circadian regulatory elements and 

show diurnal patterns of expression in mammalian prefrontal cortex. 

  

 
5.1.1 Clock controlled genes include autism-associated genes. 

Abnormal patterns of melatonin secretion and altered sleep profiles in 

autism indicate circadian disruption. Lymphoblastoid cell lines derived 

from autistic individuals have altered clock gene expression profiles 

indicating this disturbance is at the level of the circadian molecular clock 

(Hu et al. 2009a). The results presented in this thesis, support the idea 

that the circadian disruption seen in autism may stem from variation in the 

circadian molecular clock.  

      Evidence is also presented that shows several genes implicated in the 

disease process leading to autism have conserved clock control elements 

(E-box, D-Box and RRE) and/or show diurnal levels of expression in 

mammalian prefrontal cortex. These genes are therefore likely to be 

regulated by the circadian molecular clock and their typical expression 

altered by malfunction of the circadian molecular clock. Notably, the major 

regulator of synaptic plasticity, MAPK1 (Samuels et al. 2008), is under 

circadian control along with SHANK3 and MET that are strongly implicated 

in autism. Similarly, the five genes with genome wide levels of significance 

for association with autism: SEMA5A, CNTNAP2, TAS2R1, CDH9 and 

CDH10 are to be found in the set of genes with circadian regulatory 

elements (Kumaki et al. 2008). 

 

5.1.2 The autism-associated clock gene SNPs rs885747, rs6416892 and 

rs34705978 have predicted function. 
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      The bioinformatic analysis of the SNPs rs885747 (splice site 

enhancer/suppressor), rs34705978 (SREBF2 binding site) and 

rs34705978 (allelic methylation target, CpG dinucleotide) indicates 

functionality leading to possible adverse phenotypic effects. This is in 

keeping with the low allele frequencies for the autism-associated alleles 

observed in the general population. The processes linked to each of these 

predicted functions are each capable of altering gene expression in a 

tissue-specific manner. 

 

5.1.3 Could point mutation generate de novo silencing RNAs? 

The autism-associated SNPs rs1811399 in NPAS2, rs1861973 in EN2 and 

the psychosis variant rs1344706 in ZNF804A are located in intron regions 

that encode RNA transcripts predicted to form long RNA hairpin structures 

that are reminiscent of primary microRNAs. Analysis of these candidate 

microRNA hairpins tentatively supports the notion that the NPAS2, EN2 

and ZNF804A hairpins could be processed into silencing RNA molecules. 

If these candidate hairpins do generate microRNAs, why have they not 

been found in microRNA screens and previous bioinformatics discovery? 

This may be because: Firstly, bioinformatics discovery of microRNAs has 

primarily centered on looking for conserved sequences, an approach that 

would miss novel and evolutionarily recent hairpins. Secondly, microRNAs 

that are expressed at low levels in a tissue specific manner or at a 

particular developmental time point could evade tissue and developmental 

stage specific laboratory-based screens. Thirdly, the SNPs in these 

hairpins (that disrupt the hairpin structure) would militate against them 

being found consistently since individual genotype of the sample would 
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determine the presence of the hairpin. An interesting perspective gleaned 

from these results is that point mutation can generate hairpins from 

otherwise irregular RNA structures. This suggests that the potential for 

evolutionary effects from point mutation in non-coding regions may be 

underestimated if certain SNPs induce de novo hairpins that could be 

processed into functional gene silencing molecules.  

      The structure of the NPAS2 rs1811399 hairpin is conserved between 

primates, it passed all of the bioinformatics quality controls and therefore 

received the most scrutiny given the available time and resources. 

Analysis of the predicted targets of the 5’arm of the NPAS2 hairpin 

appears to match the biological function of NPAS2 (its host gene). Two 

circadian genes CRY2 and CLOCK are prominent predicted targets of this 

candidate microRNA, suggesting a role for this candidate microRNA in 

circadian rhythm regulation. A mechanism (a microRNA in NPAS2 

targeting CLOCK) that diminished CLOCK levels at the same time that 

expression levels of NPAS2 are high would make sense as the levels of 

CRY2 and NPAS2 are normally out of phase, as the CRY2 complex is an 

inhibitor of the CLOCK/NPAS2/ARNTL complex.  

      In relation to cell type, NPAS2 and CLOCK are able to serve the same 

function in the circadian pacemaker (Reick et al. 2001) but in some tissues 

may be required to be exclusive with regards to their expression patterns. 

In tissues reliant on NPAS2/CLOCK functional exclusivity, disruption of 

this candidate microRNA could force co-expression of these proteins. 

Added to this, the seed GGAGAGG of the autism-associated C allele 

hairpin (rs885747 in PER1) targets PER1, with the possible implication of 

shortening the circadian cycle and denying PER1 dependent pleiotropic 
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effects (Cermakian et al. 2001). It is currently unclear why clock gene 

paralogues should show characteristic expression patterns in the 

neurotypical brain although altered clock gene expression patterns appear 

to underpin circadian disruption in several neuropsychiatric disorders 

(Barnard and Nolan 2008). Thus forced co-expression of NPAS2 and 

CLOCK (due to the lack of a clock-targeting microRNA in NPAS2 and a 

shortened cycle due to the candidate microRNA in PER1) might thus 

affect memory formation and plasticity; known circadian rhythm correlates 

(Figure 5-1). 

      Up-regulation of NPAS2 with a concomitant down regulation of the 

targets of the NPAS2 candidate miRNA may be reflected in altered gene 

expression in a Parkinson’s disease cell line model where up-regulation of 

NPAS2 co-occurs with down regulation of neuronal pentraxin receptor 

(NPTXR) and semaphorin 5A (SEMA5A) (Anantharam et al. 2007). 

NPTXR is a predicted target of this NPAS2 candidate microRNA as is 

autism-associated SEMA5A (Weiss et al. 2009). Genetic overlap is 

indicated for Parkinson’s disease and autism (Rzhetsky et al. 2007). 

 

 5.1.4 Autism and prostate cancer share disease-associated clock gene 

SNPs: autism as a male sex hormone/clock gene related disorder. 

An outstanding feature of autism is the unexplained predominance of 

males with the disorder while the reason for male exclusivity in prostate 

cancer is obvious. The promoting effect of androgens on disease 

progression in prostate cancer reflects the implication of androgen 

sensitive molecular pathways in prostate cancer development. The 

extreme male brain theory of autism proposes that neurotypical brain  
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Figure 5-1. Possible effects of candidate microRNAs in NPAS2, that targets CLOCK 

and in PER1 that targets PER1.  

The candidate microRNA co-transcribed with NPAS2 maintains tissue specific exclusivity 

of NPAS2 in relation to CLOCK, Expression of the candidate microRNA in PER1 leads to 

diminished PER1 levels, shortening the circadian cycle (Cermakien et al. 2001) and 

possibly impacting on circadian plasticity (Mehnert et al. 2007) 

 

tissue has sex-specific sensitivities to androgens and that these are 

altered in autism (Baron-Cohen 2002).  

      The NPAS2 SNP rs2305160 (Ala394thr) is a biomarker for raised 

serum testosterone (Chu et al. 2008). It is possible therefore that the near-

by autism-associated SNP rs34705978 (Nicholas et al. 2007) gains its 

significant association with autism through linkage disequilibrium with 

other functional common variants in NPAS2 e.g. rs2305160 that are 
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associated with testosterone regulation. However, this study tested this 

androgen biomarker SNP (rs2305160) in autism (see Table 2-3) and 

although it showed a trend for association and was the 6th best p value of 

all the SNPs surveyed (p<0.08) it did not reach the p<0.05 level of 

significance. It is noteworthy that sex hormone levels are under circadian 

control (Vitzthum et al. 2009) and NPAS2 and PER1 interact with the 

androgen receptor (AR) (Mukhopadhyay et al. 2006; Cao et al. 2009). A 

possible explanation could be that although variants of NPAS2 linked to 

hormone levels may have an effect in autism, intronic SNPs (e.g. 

rs34705978) in regulatory regions of NPAS2 that directly affect the 

expression levels of NPAS2 via epigenetic regulation for example, have a 

stronger effect. Common mutations in AR are not associated with autism 

(Yan et al. 2004; Henningsson et al. 2009).  

    Intriguingly the SNP rs885747 shown here to be associated with autism 

and that is predicted to be a splice site signal modulator, is shown to be 

associated with prostate cancer (Zhu et al. 2009). Together with 

rs2289591, rs885747 delineates a sequence block that covers the same 

region of PER1 as does the most significant autism haplotype. PER1 

physically interacts with the androgen receptor (AR), inhibits 

transactivation of the AR in cells over expressing AR and interaction 

between PER1 and AR reduces the expression of androgen-sensitive 

genes following stimulation with dihydrotestosterone in LNCaP cells (Cao 

et al. 2009). The autism/prostate cancer haplotype contains a number of 

SNPs that enforce alternative splicing events. Also, the 3’ end of the 

autism haplotype roughly coincides with the end point of the shorter of the 

two isoforms of PER1. This tentatively suggests that androgen sensitive 
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alternative splicing of PER1 may be implicated in autism and prostate 

cancer.       

      Notably, there is also overlap between NPAS2 SNPs associated with 

prostate cancer and autism. The NPAS2 SNPs most strongly associated 

with prostate cancer overlap the best NPAS2 haplotype for autism (Zhu et 

al. 2009) and the SNP rs17024926 (most strongly associated with prostate 

cancer) is at the centre of the autism haplotype close to the RRE identified 

in chapter 3 (1.7kb). Tentatively the SNPs adjacent to this RRE may thus 

be risk variants for autism and prostate cancer. 

      The extreme male brain theory of autism (Baron-Cohen 2002) is 

however difficult to reconcile alongside conditions such as adrenal 

hyperplasia that manifest high levels of fetal testosterone without 

increased risk of autism (Barbeau et al. 2009). Nevertheless, fetal 

testosterone levels are correlated with dimensions of personality that have 

been described as autistic traits (Chura et al. 2010) and thus it appears 

that androgen levels in the foetus might determine neural circuitry 

necessary for forms of cognition described as systematizing that are 

pathologically exaggerated in autism (Baron-Cohen 2002). As there is no 

genetic evidence in strong support of implicating the androgen receptor 

gene in autism (Yan et al. 2004; Henningsson et al. 2009) a possible 

resolution could evoke variations in elements of the androgen receptor 

interactome e.g. NPAS2 and PER1 as risk factors for autism that interact 

with and could exaggerate effects in androgen related physiology.  

 

5.1.5 How could clock genes affect the frequency of neural oscillators? 

Tuning of oscillators by clock genes: a hypothesis 
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     A central tenet of the social timing hypothesis (Wimpory et al. 2002) is 

that clock genes are dysregulated in the autism brain through processes 

that include epigenetic (methylation) effects that determine tissue specific 

clock gene expression patterns. Altered clock gene expression patterns in 

autism are suggested to adversely affect neural oscillators linked to 

communication and cognition.  

      In Drosophila, circadian clock regulated neuropeptide (pdf) secretion 

causes diurnal remodeling of neuronal architecture in brain clock circuits.  

In motor neurons, the levels of expression of clock genes per and tim can 

determine the degree of neuronal branching (Mehnert et al. 2007; 

Fernández et al. 2008). Clock genes can regulate developmental timing 

(Kyriacou et al. 1990) and indications that the molecular circadian clock 

and the sex determining pathways work together to determine the sex-

specificity of certain cell types supports the notion that the circadian clock 

may play a role in differentiation. Particularly, in ensuring the correct layout 

of male-typical and female-typical cell patterning within neural tissue 

(Kadener et al. 2006; Bur et al. 2009; Robinett et al. 2010). 

      The strong sex-bias towards males in the autism population increases 

very significantly for the subset of individuals who show no comorbid 

mental retardation and certain male-typical behaviours seem to be 

exaggerated to a pathological degree in the disorder (Baron-Cohen 2002). 

Even though the effects of higher levels of foetal androgens correlate with 

increased levels of autistic traits in individuals, levels of foetal androgens 

do not show significant association with a diagnosis of autistic disorder 

(Knickmeyer and Baron-Cohen 2006). This finding might be interpreted as 

suggesting foetal androgen levels may be contributory to autism but 
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require interaction with other pathways to elicit an autism phenotype. The 

possibility that genetic effects in the androgen system interact with genetic 

effects in the circadian clock in autism has not been explored. 

      Nevertheless, evidence against circadian and gender effects in autism 

notwithstanding, if clock gene variation contributes to autism, an 

explanation is required of how altered clock genes might affect neural 

oscillators (operating in milliseconds, seconds and minutes) that are 

involved in the behavioural phenotypes of autism. The genetic link 

between the circadian oscillator and other short duration timing 

phenomena such as the K&H cycle and duration of copulation in 

Drosophila (Kyriacou and Hall 1980; Beaver and Giebultowicz 2004) 

leaves unexplained the mechanism of how the molecules of the circadian 

clock might function to regulate such short duration phenomena.  

      Five publications to date implicate clock genes in autism (Wimpory et 

al. 2002; Bourgeron 2007; Nicholas et al. 2007; Hu et al. 2009a; Nguyen 

et al. 2010). This author proposes a hypothesis in terms of clock genes 

acting as morphogens, where this action is partly dependent on interplay 

with the sex-determination pathway in a cell-type-specific fashion. If clock 

gene determined neuronal branching patterns are a characteristic of 

certain neuronal oscillatory networks, it follows that altered expression 

patterns of clock genes in these tissues could alter the oscillatory 

properties of the network (if these depended on the degree of inter-

branching). The basis for this tuning of oscillators by clock genes 

hypothesis is developed from the suggestion that clock genes regulate 

proteins involved in synaptic plasticity (Panda et al. 2002) the effect of per 

and tim on Drosophila neuronal structures (Mehnert et al. 2007), per 
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modulated oscillators regulating timing phenomena in Drosophila courtship 

behaviour (Kyriacou and Hall 1980) and on the mechanism of oscillatory 

circuits in insect brain (Lagier et al. 2007). In principle, it could be 

applicable to oscillators involved with social communication and cognitive 

functions in the human brain and builds on the tenet that oscillatory 

synchrony between brain regions is critical to normal cognition and 

memory function (Wang 2010). 

 

5.1.5i Hypothesis. 

The clock genes per and tim regulate the size of Drosophila motor terminal 

boutons in a circadian manner and alter the number of neuronal 

projections in motor neurons in a developmental manner. Flies with 

mutated tim showed hyper-branching while mutants for per show hypo-

branching, indicating tim suppresses branching while per promotes 

branching in these Drosophila motor neurons. The double mutant (per/tim) 

however has a normal phenotype with regards to this branching (Mehnert 

et al. 2007; Mehnert and Cantera 2008). 

      It is conceivable that differential clock gene expression in different cell 

types of the brain could developmentally regulate the degree of inter-

arborization of adjacent neurons of different cell types. Further, the degree 

of interconnectivity between the cellular elements of a neuronal oscillator 

circuit could affect the overall frequency of the oscillator, measured in the 

order of milliseconds. For example, the frequency of γ20-80Hz oscillations 

in mouse olfactory bulb that occurs in response to certain odors appears 

to be determined by a dendrodendritic inhibitory feed back circuit in mitral 

and granule cells of the bulb (two adjacent cell types). Mutation of 
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GABAAR-α1 subunit that alters the signal strength of the inhibitory limb of 

the circuit also alters the frequency of the oscillator. Computer modeling 

based on these experimental findings shows that the effect of GABAAR-α1 

loss can be mimicked by a reduction in the number of inhibitory synapses 

(Lagier et al. 2007).  

      In principle, a neural oscillator can be envisaged where clock genes 

regulate the degree of arborization between adjacent neuron types (carrier 

and inhibitor) and therefore the number of inhibitory synapses. In this 

oscillator, epigenetic processes could regulate the tissue-specific 

expression pattern of clock proteins in a sex-appropriate manner. 

Confluence of the sex-determination pathway and circadian clock is 

envisaged to be a requirement for appropriate sex-specific splicing of 

transcripts that support sex-specific architecture of the oscillator circuit.  

      Promoter methylation of PER might determine cell-type specificity of 

expression and sex-specific alternative splicing (that requires clock 

regulated elements of the spliceosome) might determine sex-specific 

functionality. Thus mutation that affects the dosage, tissue distribution or 

pleiotropic function of PER (but not necessarily the circadian function) 

might also influence high frequency oscillator networks reliant on PER. 

PER forms complexes with the polypyrimidine tract-binding protein-

associated splicing factor (PSF) and NONO (also implicated in splicing). 

Thus it is possible that PER may play a direct role in a protein complex 

concerned with the production of alternative transcripts (Shav-Tal and 

Zipori 2002; Duong et al. 2011).  
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5.1.6 Convergence between the circadian molecular clock and microRNA 

biogenesis pathways: A genetic focus for neuropsychiatric phenotypes. 

 MicroRNAs have been recently discovered as components of the 

mammalian molecular clock. Circadian expression of MIR129 regulates 

brain synaptic plasticity by CAMK2 dependent regulation of NMDA 

receptor signaling, that is a target of dizocilpine, used in treating 

neuropsychiatric disorder (Cheng et al. 2007; Kocerha, et al. 2009). 

MIR132 is also clock regulated and modulates the sensitivity of the SCN 

clock to resetting by light (Cheng et al. 2007). These recent discoveries 

may contribute to an explanation of why circadian dysfunction is common 

in neuropsychiatric disorder (Impey et al. 2010). Loss of function of the 

microRNA pathway may thus create neuropsychiatric phenotypes in part, 

by dysregulation of the circadian clock with concomitant effects on 

neuropsychictrically relevant genes that are clock controlled e.g. 

monoamine oxidase A (MAOA) (Hampp et al. 2008).  

       A key element of the microRNA biogenesis pathway, The Fragile-X 

Mental Retardation Protein (FMRP) causes neuropsychiatric phenotypes 

that include profound circadian dysfunction and frequently autism (Verkerk 

et al. 1991; Yu et al. 1991). FMRP is an RNA binding protein important in 

RNA trafficking in axons (Lugli et al. 2005). FMRP regulates the degree of 

dendritic spine formation in neurons (Comery et al. 1997) and FMRP loss 

or over expression causes abnormal dendritic arbors and neural 

connectivity (Weiler et al. 1997). These effects are likely manifest through 

the proteins roles in RNA transport as well as being critical component of 

the RISC protein complex in the microRNA biosynthesis pathway (Li et al. 

2008). MicroRNAs are shown to be critical to synaptic plasticity (Impey et 
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al. 2009). Thus loss of function of FMR1 leading to altered dendritic 

arbors, may produce circadian disruption through interfering with the 

neuronal connectivity in the SCN and/or affect circadian clock function by 

knockout of MIR312 and MIR219-1 (upon which normal mammalian 

circadian clock function appears to depend (Cheng et al. 2007)). 

Additionally the E-box containing, circadian regulated and light sensitivity 

controlling MIR132, directly regulates synaptogenesis by activity-induced 

control of dendritic spine formation via regulation of RAC1-PAK signaling 

(Impey et al. 2009) that is the probable mechanism of this microRNA’s 

influence on neuronal plasticity (Wayman et al. 2008). 

     Deletion of DGCR8 on 22q11.21 contributes to the numbers of autism 

and schizophrenia cases (Vorstman et al. 2006; Kobrynski and Sullivan 

2007). The DGCR8 protein (also known as pasha) is, together with FMRP, 

a component of the microprocessor complex (Wang et al. 2007). Thus 

deletion or over expression of DGCR8 by deletion or duplication of the 

22q11.21 region should affect microRNA biogenesis which should, 

concomitantly, disrupt circadian rhythms that are dependent on the 

microRNA biogenesis pathway (Cheng et al. 2007). Recent findings show 

dysregulation of DGCR8 with concomitant generalized unregulated 

microRNA levels in Schizophrenia (Beveridge et al. 2010). DGCR8 

appears to be a clock-controlled gene in the prefrontal cortex (of mouse) 

(Yang et al. 2007), thus making a potentially circular argument out of the 

question: does circadian disruption cause microRNA pathway dependent 

neuropsychiatric dysfunction, or is the converse true? In this context it is 

also noteworthy that MECP2 is under homeostatic regulation by the 

circadian microRNA MIR219 (Klein et al. 2007). Loss of function of 
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MECP2 causes Rett syndrome a neuropsychiatric disorder with an autistic 

phenotype and a regression phase in early infancy that occurs at roughly 

the same developmental stage that autistic regression is observed (APA 

1994). 

 

Figure 5-2. Possible co-reliance of the circadian molecular clock and MicroRNA 

biosynthetic pathways in neurons. 

Circadian regulation of an essential element of the microRNA pathway (DGCR8) 

creates co-reliance between these two pathways.  Knockout of the two circadian 

microRNAs via knockout of FMR1/DGCR8 derives circadian phenotypes. At least 

in mouse prefrontal cortex (PC), DGCR8, a critical component of the microRNA 

biosynthesis pathway, is under circadian clock control (Yang et al. 2007). Thus 

clock gene variation that affects the normal circadian expression of DGCR8 in the 

PC could affect microRNA biosynthesis and thus microRNA dependent neuronal 

plasticity in this brain region. Synaptic proteins and autism candidate genes e.g. 

SHANK3 and MET that are under circadian control in the PC are also highlighted. 

The model is proposed as a reason for the common co-morbidity between 

neuropsychiatric disorders and circadian rhythm dysfunction.  
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5.1.7 There are many ways to break a clock. 

The number and variety of genes comprising the circadian molecular clock 

reflects the complexity of this circadian oscillator. Thus a global 

phenotype, circadian rhythm disruption, may be caused by many possible 

variations within each of the genetic elements that together comprise the 

circadian molecular clock. If, as proposed here, circadian rhythm 

dysfunction due to clock gene variation might contribute to autism, then 

the division of labour between the clock genes suggests that the impact of 

genetic variability within this gene network might well be understated in 

association tests, unless the analyses takes account of epistatic effects 

within the network as a whole. It is also clear that the one phenotype of 

circadian disruption may be accompanied by other pleiotropic effects that 

depend on which of the interacting clock genes is affected and even 

perhaps, different types of mutation within one particular clock gene.  

      Mutation that affects the tissue specific expression patterns of clock 

genes for example might be as powerful in producing neuropsychiatric 

phenotypes as gene knockouts, as it is clear that brain regions differ with 

regards circadian patterns of gene expression. However the impact of 

alterations of regionality of circadian expression has not been determined.  

        This concept of altered patterns of clock gene expression in the 

brains of individuals with autism is considered in the social timing 

hypothesis. Genetic and epigenetic mutation including altered clock gene 

methylation are proposed as determining factors for aberrant clock gene 

expression patterns in autism (Wimpory et al. 2002). Support for this 

notion has recently emerged in terms of: epigenetic effects at the CLOCK 

locus in a large autism population based study (Fradin et al. 2010); the 
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association of a polymorphic CpG site in NPAS2 with autism (Chapter 2 

and Chapter 7.3.3), and, altered promoter methylation of RORA in autism 

(Nguyen et al. 2010). 

 

5.1.8 Final conclusion and indications for further research. 

Further genetic tests in larger samples are needed to confirm and 

measure the risk associated with the NPAS2 and PER1 variants showing 

positive association with autism in this study. The considerable overlap 

between autism candidate genes and clock-controlled genes suggests the 

role of the circadian clock in regulating these autism candidate genes 

should be explored further. Future genetic studies of clock genes and 

autism genes such as SHANK3 may reveal epistatic effects. 

     The finding that the autism-associated SNP rs34705978 is within a 

differentially methylated region, together with recent evidence of altered 

clock gene methylation in autism, encourages further exploration of this 

SNP. If altered methylation of rs34705978 is associated with autism, the 

effect of the epi-allele could be additive to the effects of nucleotide 

substitution at this SNP.  

      The amenability of the circadian clock to non-invasive monitoring and 

to mild behavioral/pharmacological manipulation, makes the circadian 

molecular clock a potential therapeutic target in autism. Addressing 

pathological methylation might also be more tractable than compensation 

for DNA sequence changes. 
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APPENDICES 

 

Appendix A 

 

Methylation status of a CpG rich element in PER1: a 

preliminary investigation. 

 

A.1 Introduction. 

To investigate whether clock genes might be anomalously methylated in 

autism a preliminary investigation was carried out to test the feasibility of a 

small-scale study of clock gene methylation in autism DNA samples. This 

work was undertaken prior to the publication of the results showing 

abnormal methylation of the clock gene RORA and parent-of-origin effects 

on SNPs near CLOCK in autism (Nguyen et al. 2010; Fradin et al. 2010). 

       The association test described in chapter 2 identified two SNPs in 

PER1 (rs885747 and rs6416892) that showed positive association with 

autistic disorder. A CpG repeat element (CGGCGCCGTG) was found 

close to both SNPs suggesting that the SNPs may be in linkage 

disequilibrium with methylation of this motif. The feasibility of analysing 

this sequence in autism samples was investigated in experiments with 

Polymerase Chain Reaction (PCR) and methylation-specific PCR and 

autism DNA samples (Table A-1, A-2, and A-3). 

     The technique of methylation-specific PCR (Herman et al. 1996) can be 

divided into two main steps (Figure A-1). Firstly, a modification step, where 
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all un-methylated cytosine residues in the DNA sample are converted to 

uracil (but methylated cytosine residues are protected and not converted). 

Secondly, the modified sample is split into two aliquots and amplified by 

standard PCR procedures. For example, a sequence TTAACGTTAA will 

be converted to TTAAUGTTAA after sodium bisulphite treatment if the 

central CpG dinucleotide was not methylated. If the central CpG 

dinucleotide is methylated, it will be left unconverted. One of the aliquots is 

amplified by PCR with primers designed for unmodified (methylated) DNA. 

For the other aliquot, a set of primers specific for the (unmethylated) DNA 

is used and therefore the modified sequence, if present, is amplified. 

Using paired-primer-controls the presence or absence of methylation of 

CpG dinucleotides within the primer sequences is thus determined by 

whether or not amplification occurs. PCR amplification is determined by 

agarose gel electrophoresis followed by ethidium bromide staining, 

visualisation by ultra violet (UV) fluorescence and image capture.  

 

 

 

Figure A-1. Bisulphite reaction and the conversion of cytosine to uracil via a 

sulphonated intermediate. 
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A.2 Materials and Methods 

A.2.1 Materials  

• DNA Samples: Human genomic DNA supplied by the AGRE 

consortium (from autistic children and their parents) (Geschwind et 

al. 2001). The DNA samples were supplied dissolved in water in 96-

well polypropylene plates and stored at -30’C. Stock solutions were 

at a concentration of 1µg DNA /100µl distilled water. 

 

• Bisulphite conversion kit: Qiagen EpiTect Kit (catalogue No 

59104/2006) for bisulphite conversion and clean up of DNA for 

methylation analysis. 
 

• Fermentas, Gene Ruler™: Standard DNA markers. 

 

A.2.1i Buffers and solutions 

• Tris Borate EDTA Buffer (TBE): for agarose gel electrophoresis  

10 x Stock Solution 

0.89M Trisma base 

0.02M EDTA 

0.89M Boric acid 

 

• DNA Sample Loading Buffer  

10x stock solution 

0.005% bromophenol blue,  

50% glycerol. 

 

• Agarose gel mix 

1 x TBE buffer 

1% Agarose 

0.5µg/ml ethidium bromide 
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A2.1ii Primer Sequences. 
 

Table A-1. Native primers for PER1 
Y1 = SNP rs117343376 C/T, R= SNP rs rs55655060 G/A, S = SNP rs760218 G/A , Y= 

SNP rs3027181 C/T.These SNPs were not publicly reported at the time of the 

experiment. 

 
 
Table A-2. Fragment size calculations from Ensembl database sequences. 
 
 
 
 
 
 
 
 
 
 
Table A-3. Methylation Specific Primers for PER1. 
 

 
*In primer Bis-892-1A  Y1 = SNPrs117343376 C/T 

Native Primers 
Code Primer sequence PER1 genomic sequence 

747-1 5’-CTCAGCTCTCCCTCCC-3’ 5’-CTCAGCTCTCCCTCCC-3’ 
747-2 5’-GATGTCACGCGCCCG-3’ 5’-CGGCGCCGTGACATC-3’ 
892-1 5’-CTCTGTCACCCAGCTGG-3’ 5’-CTCTGTCACCY1AGCTGG-3’ 
892-2 5’-GCCACGGCGCCGGCG-3’ 5’-CGCCGGCGCCGTGGC-3’ 
Aut-1 5’-CTCCTCCTTTCCCACTTCC-3’ 5’-CTCCTCCTTTCCCACTTCC-3’ 
Aut-3 5’-CACACATCATCATCAACTCAC-3’ 5’-GTGAGTTGATGATGATGTRTG-3’ 
PER1-1 5’-CAGGTACTGGCTGTGATCG-3’ 5’-CAGGTACTGGCTGTGATC-3’ 
PER1-2 5’-CTCTTGCTGCTCTCAGTGGTC-3’ 5’-GACCACTGAGAGCAGCAAGAG-3’ 
PER1-3 5’-CCTGGACACTGATATCCAGG-3’ 5’-CCTGGACACTGATATCCAYG-3’ 
PER1-4 5’-GATCTGCTGGAAAGTCACCTG-3’ 5’-CAGGTGACTTTCCASCAGATC-3’ 
PER1-5 5’-GGAAGAATGGAGAAGCAAAGC-3’ 5’-GGAAGAATGGAGAAGCAAAGC-3’ 
PER1-6 5’-TCCACCCGCGCCGCCTAGAG-3’ 5’-CTCTAGGCGGCGCGGGTGGA-3’ 

Primer pair code Separation distance in bp 
PER1-747-1 & PER1-747-2 547 
PER1-892-1 & PER1-892-2 560 

Aut-1 & Aut-3 976 
PER1-1 & PER1-2 417 
PER1-5 & PER1-6 649 

PER1-747-1 & PER1-3 371 
PER1-3 & PER1-4 540 

Methylation Specific Primers 

 
Code 

 
Primer sequence 

Corresponding 
PER1 genomic sequence etc. 

 
 
Bis-892-1A* 

 
 
5’-TATCACCCAACTAAAATAC-3’ 
 

5’-TGTCACCY1AGCTGGAGTGC-3’ 
genome seq. 
5’-GCACTCCAGCTGGZTGACA-3’ 
antisense seq. 
5’-GUAUTUUAGUTGGZTGAUA-3’  
mod antisense seq. 

 
Bis-PER1-7 

 
5’-CTTCCATACTCTTGAGGAC-3’  

5’-GTCCTCAAGAGTATGGAAG-3’ 
genome seq. 
5’-GTUUTUAAGAGTATGGAAG-3’  
mod genome seq. 
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 The oligonucleotides used as the primers were synthesized and supplied 

by MWG BIOTECH. Anzinger str. 7, 85560 Ebersberg, Germany. 

 
A 

8054278 CACTCCCATCAGTCCTGCAGGAGGCCAGGCAGGGGGAAGGTCTGAGTGAAGCCAGCAGGT 8054219 
8054218 GYTCYGGARTTAAACCAGCTTTCTGCAAGCCCTGCTTCCTGGTCTCCCTCTCCAGGTACT 8054159 
8054158 GGCTGTGATCGAACTTCTCAACCCTCAGAGACTTAGATCTTCCACCTCACTCCCTCAGCC 8054099 
8054098 AAGCCTCCAGGCCCCCTCGTGCATYCGTGGTGGCCTCTCTGCCTTCTCTGTTCTGTTCTC 8054039 
8054038 CCCATGGCCCAGACATGAGTGGCCCCCTAGAAGGGGCTGATGGGGGAGGGGACCCCAGGC 8053979 
8053978 CTGGGGAATCATTTTGTCCTGGGGGCGTCCCATCCCCTGGGCCCCCACAGCACCGGCCTT 8053919 
8053918 GYYCAGGCCCCAGCCTGGYCGATGACACYGATGCCAACAGCAATGGTTCAAGTGGCAATG 8053859 
8053858 AGTCCAACGGGCATGAGTCTAGAGGCGCATCTCAGCGGAGCTCACACAGCTCCTCCTCAG 8053799 
8053798 GCAACGGCAAGGACTCAGCCCTGCTGGAGACCACTGAGAGCAGCAAGAGGTGTGTATGGA 8053739 
8053738 TGTGTRTGTTGGGTCTAGGAATGGTCTTGTGAGCAGGCAGAGCTGGGTGACAGGCCYCGC 8053679 

B 
8051338 TCATGCTGGCTATCCACAAGAAGAGTGAGTTCCTCTCGCCCTGCTCGCCCTTCCCRCTGT 8051279 
8051278 CCTGGGCTTTTGAGTGGCTGCCCTTGTGGTTGTGTCTCTTKGTGCCTTGGTCTCCTGGAT 8051219 
8051218 CTCTAGTGGCATGGCCTCCCTCTTACTCAGCTCTCCCTCCCTTTGACCGCTCCTCCTTTC 8051159 
8051158 CCACTTCCATCAGTTCTGCAGTTGGCGGGCCAGCCCTTTGACCACTCCCCTATCCGCTTC 8051099 
8051098 TGTGCCCGCAACGGGGAGTATGTCACCATGGACACYAGCTGGGCTGGCTTTGTGCACCCC 8051039 
8051038 TGGAGCCGCAAGGTAGCCTTCGTGTTGGGCCGCCACAAAGTACGCACGTAAGTGGGCCAY 8050979 
8050978 GCCCCCGAGCTGGCGTTGGGGATAGGGCAGTGYGGTGGGGGACAGGACCGGGCCAGGGCT 8050919 
8050918 GGATTCACTCTTCACTCTACAGGGCCCCCCTGAATGAGGACGTGTTCACTCCCCCGGCCC 8050859 
8050858 CCAGCCCAGCTCCCTCCYTGGACACTGATATCCAGGAGCTGTCAGAGCAGATCCACCGGC 8050799 
8050798 TGCTGCTGCAGGTGAGAGTAGCGGASAGGGAGCCTGGGAGGTGAGAAAAGGTGTGGGAAG 8050739 
8050738 CSGGGTCAAGCCATCTAACCTGCCCTCTCCCTGCTGCAGCCCGTCCACAGCCCCAGCCCC 8050679 
8050678 ACRGGACTCKGTGGAGTCGGCGCCGTGACATCCCCAGGCCCTCTCCACAGCCCTGGGTCC 8050619 
8050618 TCCAGTGATAGCAACGGGGGTGATGCAGAGGGGCCTGGGCCTCCTGCGCCAGTGAGTGAC 8050559 
8050558 CTGCTCCTACCTCACCCTCTAATCGCCCTTTCCCCTCTCCTTCTTGGAACCAGCMCTGCC 8050499 
8050498 AGTCCCAGAGTCTTGCCCGATCCTCCTTTGCCCTCTSCTTCCTGCCTTTTCCTTCTTGTC 8050439 
8050438 CTGCTCCCATCAAGGCGTCTGTGCCTCCCCACTGGTACCTTCTTGTTTTATTGTGCCCTT 8050379 
8050378 GGCCCCTGACACTGGCGACACCCCCTGGTTCTGCTCACTGTGGTGCTGTGTCYYACAGGT 8050319 
8050318 GACTTTCCARCAGATCTGTAAGGATGTGCATCTGGTGAAGCACCAGGGCCAGCAGCTTTT 8050259 
8050258 TATTGAGTCTCGGGCCCGGCCTCAGTCCCGGCCCCGCCTCCCTGGTGAGTTGATGATGAT 8050199 
8050198 GTRTGGGTGAAGAGACAGACCTGGGGGGTCCCCTGACCTTCACCCCCAACCCATTTGCTG 8050139 

C 
8043838 GATATTTGTGTCTGTTACTACTTTTTTAATACAAAAAGATAAAAACGCCCAGGACTTTGT 8043779 
8043778 GGAATGAAGTTTGGGGTTGGGGTGARGGGAGCATGTCAAGGGGAGATGTGGCCCTGCTTT 8043719 
8043718 TGGGAAGGTTGTAGTGAGGGTGTACAGGGCCATCTCCTGACGACCCCCATTCCTCTTTTC 8043659 
8043658 CCCCATCCTGTCCAGGTGAGGGCCCTGCTGAGCCCGCTACGTCCACGTCCAGCTCAGACT 8043599 
8043598 CTGCTGTCCCCTCTAGCATGGCCTCAGCTGGGTTTGCCCTGGGAAGGAGAGCTGAGAGGT 8043539 
8043538 GCGTGTGGCCAAGGGCTTGGGTAAGCTCCAGCCCGGGTCACGGGTGGCCAAGGCAGAGGA 8043479 
8043478 ACCCTGCTTAACTCCGTGGTGCCCTGAGGTATTCGAGGGTGTTTGTCTTCCTTGGCTTCC 8043419 
8043418 TTTTTTTTATTTGAGACGGAATTTCRCTCTGTCACCYAGCTGGAGTGCAATGGTGCAATC 8043359 
8043358 TCGGCTCGCTGCAACGTCTGCCTCCCRGGTTCAAGCGATTCTCCTGCCTCAGCCTCCCGA 8043299 
8043298 GTAGCTGGGATTATAGGTGCCCACCACCGCGCCCGGCTAATTTTGTATTTTTAGTAGCGA 8043239 
8043238 TGGGGTTTCACCATTTTTGGTCAGGCTGGTCGCGGACTCCTGACCTTAGGTGATCTGCCC 8043179 
8043178 GCCTTGGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCGCGCCCGGCYTTCCTTG 8043119 
8043118 GCTTCTTGGTCACCACACAGAGAGGGCCCTTCAGCAGGTCAGTCTAGGTAGCTAAGGGAC 8043059 
8043058 ACATGGAGTCATGTGCTCACTCATGGTTGAGTTGGCCCCAAAGGTGTGGAAGAATGGAGA 8042999 
8042998 AGCAAAGCATTAACMCTTTGGCTCAGAACCTGAAAGGGAAGAGGCACCTTAGGAAGGGAT 8042939 
8042938 GAGTCACTGAGGAACCACTGCAGGCAGTTTGCTGATTTTCACTTACTGTCACCCACTAAG 8042879 
8042878 AGTTGATTTATCTTGAGGMACACYTGTTTTACGCCGGCGCCGTGGCTTAGCTGGTTAAAG 8042819 
8042818 CGCCTGTCTAGTAAACAGGAGATCCTGGGTTCGAATCCCAGCGGTKCCTGARTTAGYGGG 8042759 
8042758 GAGTGATRTATTATTGCTGCAAGTACACTTCTCCACTTTCAAAGGGCCTTTCTAAGAAAC 8042699 
8042698 ATTTCTTCTAGACTCTCCCTAAGATTCTTCTTACATGCCAATCCGTCTTTGGACCTCCGT 8042639 
8042638 TTCCCTGCACTTTTAGTGTGTATTGGAAACTACAGATTCTCACTTCGGTTTCATGAAGTA 8042579 
8042578 GCCTGAAGTAGGCATCTCAGGGTCTGTCCTCAAGAGTATGGAAGACAGGGCTCGGATTTG 8042519 
8042518 GACCCGTTTTGTTTCCATCCTATGCTCAGGGAGGAGAGGGAGAATAGGAAGGCTGCCGCT 8042459 
8042458 CCAATGGGGCTGCTGACGTCTGCTGGAGGGAAGGCATGGTCTGCGCCACCGAGCAGAGGC 8042399 
8042398 GCACGAGCGCAGACGTCTCTAGGCGGCGCGGGTGGAGCYGGGCGGAGCSGGGYGGAGCCG 8042339 
8042338 GSTGGAGGCGGGCGTGTTGATAGGCAGCTATAGTTGCACASGGCCRACASCGCACGCGGC 8042279 

 
 
Figure A-2. PER1 sequence  fragments. 

Sequence A shows the first large exon of PER1 in brown shading and the primer pair 

PER1-1/PER1-2 is shown in pink letters covering the 5’ and 3’ ends of the exon. 

Sequence B is the region of PER1 centred on intron 12 where S = SNP rs885747. The 



How could clock gene variation contribute to the causes of autism?  

   

Page 206 

primer pairs are shown colour coded as in Table A-2 e.g.PER1 747-1/PER1 747-2 is in 

red letters. SNPs are shown highlighted with single letter ambiguity codes. In sequence 

C, brown lettering shows the end of the PER1 3’UTR. M = autism SNP rs6416892 and 

genome co-ordinates are given at the beginning and end of each line of the sequence. 

 

A.2.2 Methods. 

A.2.2i Agarose gel electrophoresis. 

The gel plate from an electrophoresis apparatus (e.g. Bio-Rad Mini-Sub) 

was prepared by sealing the ends with adhesive paper tape. The gel plate 

was placed on a level surface and the comb from the apparatus adjusted 

so that the teeth of the comb were level and about 1.5mm above the floor 

of the gel plate. Subsequently, agarose powder was dissolved in 1 x TBE 

buffer (1% weight to volume) by heating the mixture in a microwave oven.  

On cooling the molten gel solution to 55°C, ethidium bromide solution was 

added, to a final concentration of 0.5µg/ml and the solution was mixed 

carefully, to avoid the formation of bubbles. Typically 50ml of the molten 

gel was made at a time, enough to fill a mini gel plate to a depth of 5mm. 

The molten gel with ethidium bromide was poured into the gel plate on a 

level surface and allowed to set at room temperature (~20 minutes). After 

removing the comb followed by the sealing tapes from the set gel, the tray 

was placed in the electrophoresis chamber and covered with 1 x TBE 

buffer. 1 to 5µl of DNA sample was mixed with 5µl of 6 x loading buffer 

and the samples loaded into the wells of the gel with a micropipette. At 

lease one lane on each gel was reserved for DNA fragment size markers 

e.g. Gene RulerTM. After connecting the electrophoresis chamber to the 

transformer, the gel was run at 120 V and the progress of the fragments 

observed by visually checking the movement of the marker dye-front in the 
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gel. When the marker dye had migrated to the end of the gel or to an 

appropriate prior point, the gel was transferred to a ultra-violet trans-

illuminator for visualization and digital photography.  

 

A.2.2ii Polymerase Chain Reaction (PCR): standard procedure. 

Samples of human genomic DNA (1µg/100µl) from autism families, 

dissolved in nuclease free water and stored at -30°C, were thawed and a 

20µl working aliquot taken from selected wells of the coded 96-well 

storage plates such that each DNA sample selected represented a single 

test individual (parent or child) with all codes recorded.  

      To make the reaction mixture, 4µl of human genomic DNA was added 

to a mixture consisting of: 5µl of a 5µM solution of primer 1, 5µl of a 5µM 

solution of primer 2, 5µl of 10x Taq buffer (Fermentas (NH4)2 SO4 solution 

free of magnesium chloride), 5µl of dNTPs 2mM, 3µl of MgCl (25mM, 

giving 1.5mM final concentration), 23µl purified water and 1µl (1.25 units) 

of Fermentas Taq polymerase enzyme. This mixture was made in a 500µl 

plastic PCR tube, mixed with a vortex mixer and the tube and contents 

transferred to a thermal cycler set to generate the conditions listed in 

Table A-4. 

Table A-4.  Thermal cycler settings for standard PCR reactions. 
 
 
 
 

 

 

 

 

 

Step Time Temperature 
1 2min 94’C 
*2 30min 94’C 
*3 30min 55’C 
*4 60min 72’C 
5 10min 72’C 
6 hold 10’C 
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* Steps 2, 3 and 4 of Table A-4 were repeated 30x before moving on to steps 5 and 6. 

When finished, the PCR tube contents were mixed with 5µl of 6 x gel loading buffer and 

20µl of this final mixture run at 7V/cm for 45 minutes on a 1% agarose 8cm gel in TBE 

buffer. 

 

A.2.2iii   PCR: methylation-specific procedure. 

Genomic human DNA samples were selected as for the standard PCR 

reaction described above. Each 20µl sample (0.2µg DNA) aliquot was 

placed in a sterile PCR tube to which was added 85µl of dissolved 

Bisulphite Mix from the EpiTect kit. The Bisulphite Mix was prepared by 

adding 800µl of RNase free water to each aliquot of Bisulphite Mix 

supplied in the kit and, so prepared, each aliquot of bisulphite mix was 

enough for 8 conversion reactions. 35µl of DNA Protect Buffer (supplied in 

the EpiTect kit) was then added to the PCR tube containing the 20µl 

sample aliquot and the 85µl of dissolved Bisulphite Mix. The contents were 

mixed thoroughly with a vortex mixer and the mixture checked to ensure 

the Protect Buffer turned from green to blue indicating sufficient mixing 

and the correct pH for the conversion reaction. The samples were kept at 

room temperature before being placed in the thermal cycler under the 

conditions shown in Table A-5. After bisulphite conversion in the thermal 

cycler the PCR tubes were spun in a micro-centrifuge at 3000rpm for 30 

seconds after which the contents were transferred to 1.5ml micro 

centrifuge tubes. 
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Table A-5. Thermal cycler settings for the methylation-specific PCR reactions. 

 

 

 

 

 

 

560µl of freshly prepared Buffer BL was then added to the mixture in each 

microcentrifuge tube. No carrier RNA is required if the sample contains 

>100ng DNA and this was the case for this experiment. The whole 

contents of each microcentrifuge tube was then added to an EpiTect spin 

column and spun in a microcentrifuge at maximum speed for 1min after 

which the flow through was discarded, the DNA having bound to the 

column. The column was then washed by adding 500µl of wash buffer 

(Buffer BW) followed by microcentrifugation of the spin column at 

maximum speed for 1 min. 500µl of desulphonation buffer (Buffer BD) was 

then added and the spin column incubated for 15 min at room 

temperature. The column was then spun in a microcentrifuge at maximum 

speed for 1 minute. After discarding the flow-through 500µl of Buffer BW 

was added to the spin column and spun at maximum speed in a 

microcentrifuge for 1 minute. This step was repeated once over. The spin 

column was then transferred to a new 1.5ml collection tube and spun at 

max in a microcentrifuge for 1 minute to remove any residual liquid from 

the column. Subsequently the spin column was placed into a new 1.5ml 

microcentrifuge tube and 20µl of Buffer EB was carefully dripped onto the 

centre of the membrane at the top of the spin column using a micropipette. 

Step Time Temperature 
Denaturation 5min 99’C 
Incubation 25min 60’C 
Denaturation 5min 99’C 
Incubation 1h 25min 60’C 
Denaturation 5min 99’C 
Incubation 2h 55min 60’C 
Hold overnight 20’C 
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The purified DNA was collected by spinning the column for 1 minute at 

maximum speed in a microcentrifuge (~15,000 x g 12,000rpm). The 

concentration of the recovered DNA was measured using a quartz cuvette 

and a Sanyo spectrophotometer set to measure the absorbance of the 

solution at 260nm and where 1 absorbance unit was equivalent to 

50µg/DNA per ml of solution. 

 

A.3 Results. 

A.3.1 Standard PCR reactions. 

Amplification of human DNA samples from neurotypical parents and 

autistic children using the primers described in Table A-1 was 

demonstrated. Table A-6 shows which samples were amplified: with which 

primer sets, the predicted fragment size of the amplified fragment, and the 

observed fragment size. Figures A-3 and A-4 show typical agarose gels 

from the experiments from which the data in Table A-6 was derived. 

      For most primer-pairs, amplification gave bands corresponding to 

fragment sizes in keeping with the predictions from the genomic PER1 

sequence. However, some tests gave multiple bands and some samples 

were recalcitrant to amplification. For example, the primer pair PER1-747-

1 / PER1-747-2 gave unexpected results in family AU064. With sample 

AU064004 (autistic child) a band of ~1350 bp was seen, with a fainter 

band at ~1500bp (547bp expected) and multiple bands ~1200 & 500 & 

250bp in the DNA sample from the mother. Amplifying the same region of 

sample AU064004 with different primer set PER1-747-1/ PER-3 (371 bp 

expected) also gave multiple bands of ~1350 & 900 & 500 & 400 bp. 

 



How could clock gene variation contribute to the causes of autism?  

   

Page 211 

A.3.2 Methylation specific PCR reactions. 

The PCR reactions set up with the methylation specific primers 

consistently showed no amplification product in contrast to the unmodified 

autism DNA. Firstly the yield of modified sample DNA was considered. 

Measurement with the Sanyo spectrophotometer and quartz cuvette at 

260nm showed yields of nucleic acid of up to 70% of the starting sample  

 

Table A-6. Primer pairs PER1 and the observed fragment sizes. 

 

based on OD of 1 = 50 µg/ml for double-stranded DNA. However, when 

this modified DNA was examined on an agarose mini gel, as a direct 

sample and after precipitating the DNA and re-dissolving in TE buffer, no 

Sample 
code 

Primer set Predicted fragment 
size (bp) 

Observed fragment size (bp) 

AU067404 
(Aut) 

Aut-1 
Aut-3 

976 ~1000 

AU067402 
(NM) 

Aut-1 
Aut-3 

976 ~1000 

AU004102 
(NM) 

PER1-1 
PER1-2 

417 ~417 

AU01001 
(Aut) 

PER1-1 
PER1-2 

417 ~417 

AU064001 
(NF) 

PER1-1 
PER1-2 

417 ~417 

AU064004 
(Aut) 

PER1-1 
PER1-2 

417 ~417 

AU066401 
(NF) 

PER1-1 
PER1-2 

417 >400 to <500 

AU064004 
(Aut) 

PER1-5 
PER1-6 

649 ~650 

AU064001 
(NF) 

PER1-747-1 
PER1-747-2 

547 ~1200 & 500 & 250 

AU064004 
(Aut) 

PER1-747-1 
PER1-747-2 

547 ~1350  

AU064004 
(Aut ) 

PER1-892-1 
PER1-892-2 

560 ~560 

AU064004 
(Aut ) 

PER1-892-1 
PER1-5  

1030 ~1030 

AU064004 
(Aut ) 

PER1-747-1 
PER1-3 

371 ~1350 & 900 & 500 & 400 

AU067208 
(Aut ) 

PER1-892-1 
PER1-5 

1030 ~700 & 800 & 300  
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trace of DNA was apparent suggesting that the DNA may be highly 

fragmented. 

 

 
 
 
 
Figure A-3. PCR amplifications of fragments of PER1 in autistic male child AUO 

64004.  

Tracks show: A = PER1-3 & PER1-4 (540), B = PER1-5 & PER1-6 (694), C = PER1 747-

1 & PER1 747-2 (547) and D = PER1 892-1 & PER1 892-2 (560). Fragment sizes 

predicted from the genomic sequence are shown in the brackets. The weak amplification 

in lane A may be due to the presence of alleles of SNP rs76021 and/or SNP rs3027181 in 

the sample DNA sequence that were incompatible with primers PER1-3 & PER1-4. 

These SNPs were unreported and not accounted for in the primer design at the time of 

the experiment. 

 

The modification procedure was repeated several times with different 

samples and with varying the parameters suggested in the manual 

supplied with the methylation specific PCR kit (temperature and time for 
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modification) however no signal was obtained from any of the 

amplifications using modified DNA as a substrate, with any primer pair. 

 
 
 
Figure A-4. Sample A: AUO 64001 and B :AUO 66401 amplifed with primers PER1-1 

and PER1-2.   

The gel shows a single band for both samples of between 400-500bp The fragment size 

expected from the sequence shown in Figure A-2 was 417bp. 

 

A.4 Discussion. 

These preliminary trials showed that generally, the human DNA samples 

were amenable to standard PCR amplification. However, some of the 

samples were recalcitrant to amplification (e.g. sample AUO64004 with 

primers PER1-3 & PER1-4 (Figure A-3)) or gave unexpected results as with 

primer-pair PER1-747-1/ PER1-747-2 (Figure A-3). Amplification of 

sample AUO64004 with primers PER1-3 & PER1-4 may have failed because 

of the presence of SNP rs760218 and/or SNP rs3027181 in the sample 



How could clock gene variation contribute to the causes of autism?  

   

Page 214 

DNA. These SNPs were not known at the time of experimentation and so 

the primer design did not take account of this possibility.  

      With primers PER1-747-1/ PER1-747-2 inappropriate size and multi 

banding was seen when the region was amplified in AUO64004 (autistic 

male child) and AUO64001 (his mother). Neither did varying the 

concentration of magnesium ions in the PCR reaction mix, nor using a 

different primer pair (PER1-747-1 / PER1-3) to amplify this region (11th 

and 12th Exons) help to achieve a single band. However amplification of a 

nearby region of sample AUO64004 with two other primer-pairs gave a 

single band of expected size. This suggests that there is not a general 

problem with the DNA of sample AUO64004. Given that two different 

primer pairs that covered the region PER1-747-1 to PER1-747-2 in these 

two related samples (mother and son) gave anomalous banding and that 

these samples gave expected results with primers amplifying a nearby 

region of PER1, it is possible that there is a sequence anomaly in these 

samples in the region delineated by the primer-pair.  

      The intended focus of this experiment was on finding good working 

matches between sample and primers such that unambiguous 

amplification of fragments containing the CpG rich element could be used 

as the basis for subsequent investigation within the sample population. 

Thus the possible reasons for the fragment size differences were not fully 

explored.  

      Technical problems precluded successful testing of the 

CGGCGCCGTG sequence with methylation specific PCR even though the 

trial methylation specific primers (Table A-3) were designed to contain no 

protected (methylated) CpGs (Ambiguities might arise if more than one 
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CpG occurred in the primer sequence and selective methylation of CpGs 

occurred). Nevertheless, if the results of this methylation specific PCR had 

shown positive results, such differences would require considerable further 

investigations in a sample size similar to that of the association test 

described in chapter 2, if these differences were to be shown to be 

associated with autism specifically. At the outset it was considered this 

might have been feasible with the samples to hand. However the results of 

this trial, apart from the technical difficulty with getting the methylation 

specific PCR working, indicted that time constraints/costs would not allow 

enough data to be collected to give meaningful results when for example, 

resequencing to allow for new SNPs is taken into account. For this reason 

and because the CpG motifs were not directly linked to the association 

signals described in chapter 2, in deciding which of the preliminary 

experiments to follow up, experiments that did not specifically involve the 

autism-associated SNPs were considered less important than experiments 

that could show results that were allele specific for these SNPs. 

Experiments that built directly on the positive results of the association 

study SNPs specifically were given priority. 
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Appendix B 

 
Does NPAS2 form a complex with HAT1? 
 

B.1 Introduction. 

It is clear that the circadian clock plays an important role in genome 

maintenance but the details of exactly how this is achieved are sill to be 

clarified. The brain is a highly metabolically active organ and terminally 

differentiated neurons in the brain are especially sensitive to damage by 

the bi-products of oxidative metabolism (Fishel et al. 2007). DNA repair in 

brain neurons is thus a vital process to maintain normal neuronal function 

and avoid apoptosis.  

     The large number of NPAS2 haplotypes showing association with 

autism (see chapter 2), the protein’s role as a redox signaling molecule 

(Rutter et al. 2001) and the findings that cerebellar purkinje cells (that are 

particularly sensitive to oxidative damage) are reported to undergo 

premature apoptosis in autism (Bauman and Kemper 1985) informed the 

notion that possibly currently undefined histone acetyltransferases 

required for DNA repair may partner NPAS2 in a DNA damage response 

mechanism. CLOCK, a closely related protein to NPAS2 (Reick et al. 

2001), has inherent histone acetyltransferase activity and together with, K 

(lysine) acetyltransferase 5 (KAT5 also known as Tip60), is involved with 

DNA repair that depends on chromatin remodeling (Miyamoto et al. 2008). 

Thus NPAS2 might partner with a molecule that offers HAT activity and 

facilitates DNA repair.  
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     Histone acetyltransferase 1 (HAT1) was selected as a candidate 

because: it is a histone acetyl transferase involved with the repair of DNA 

double stranded breaks (Qin and Parthun 2006) that are common in active 

neurons (Fishel et al. 2007), it is located in a region considered as an 

autism susceptibility locus (Marshall et al. 2008), it is linked to breast 

cancer development (Sorbello et al. 2003) which is significantly increased 

in autism (Kao et al. 2010) and its domain structure is somewhat similar to 

that of the CLOCK interacting protein HAT KAT5 (Tip60). Also, it appeared 

from review of available literature that HAT1 had received only modest 

investigation and the full spectrum of HAT1 function and interaction was 

yet to be defined. 

      The histone acetyltransferase HAT1 (Kleff et al. 1995) has two roles 

that are in keeping with its localization as a cytoplasmic protein and a 

nuclear protein (Ai and Parthun 2004) In the cytoplasm HAT1 acetylates 

newly synthesized H4 histone molecules. In the nucleus HAT1 takes part 

in DNA damage repair (Benson et al. 2007). In the cytoplasm HAT1 

acetylates newly synthesized H4 histone molecules in a conserved pattern 

at lysines 5 and 12 but within one hour of acetylation, de-acetylation of H4 

facilitates nucleosome formation (Jackson et al. 1976; Annunziato and 

Seale 1983).  Experiments with yeast show that Hat1 (s.cereviciae) 

associates with Hat2 (RBBP7 in H. sapiens (Eberharter et al. 1996) in a 

complex known as the HAT-B complex (Verreault et al. 1998). The 

interaction of these two proteins increases the affinity of the HAT-B 

complex for H4 ten fold. Further, in the nucleus, Hat1p acetylates histone 

H4 at position 12 in the process of telomeric silencing (Kelly et al. 2000). 

In S.pombe hat1 deletion has been shown to increase the sensitivity of 
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cells to methyl methanesulfonate, indicating a role for Hat1 in DNA double 

strand break repair  (Qin and Parthun 2002; Barman et al. 2006; Qin and 

Parthun 2006) that can in vivo be substituted for by alternative means of 

acetylation of Lys-5 and Lys-12 (Benson et al. 2007).  

 

 

B.2 Materials and Methods. 

B2.1 Media, buffers, solutions, gels and antibodies. 

Cell Culture: Reagents: 

• Dulbecco's Modified Eagle Medium (D-MEM GlutaMAX™) 

• Phosphate-Buffered Saline GIBCO® (PBS pH 7.4) 

• Fetal Bovine Serum GIBCO® 

• Trypsin-EDTA (Phosphate-Buffered Saline, pH 7.4 and containing 

0.025% trypsin and 0.01% EDTA pH7.4) 

• Penicillin-Streptomycin, liquid. (Invitrogen™ penicillin G (sodium salt) and 

streptomycin sulfate in 0.85% saline). 

 

Protease inhibitors for soluble protein extract: 

• 50mM NaF 

• 1mM Na3VO4 

• 5mM N-ethylmethimid 

• 1mM PMSF 

• 1 Protease Inhibitor Cocktail Tablet (Roche, cat no 11836 153 001) per 

10ml HEPES buffer.  

 

HEPES Buffer: 

• 50mM HEPES, (pH 8.0) 

• 150mM NaCl 

• 0.1% NP40 

• 10% glycerol 

• 5mM EDTA 

 

SDS PAGE Loading Buffer x2: 

• 4% SDS 
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• 10% 2-mercaptoehtanol 

• 20% glycerol 

• 0.004% bromophenol blue 

• 0.125M TrisHCl pH 6.8 

 

• SDS PAGE Running Buffer (pH ~8.3): 

• 25mM Tris base 

• 190mM glycine 

• 0.1% SDS 

• Western Blot Transfer Buffer (pH 8.3): 

• 25mM Tris base 

• 190mM glycine 

• 10% methanol 

• 0.1% SDS 

 

Tris Buffer Saline x10, (TBS x 10): 

• 24.23g Trizma HCl (pH 7.6). 

• 80.06g NaCl 

• 800ml Distilled water 

 

Tris Buffer Saline Tween20, (TBST): 

• 100ml of TBS x10 

• 900ml Distilled water 

• 1ml Tween20 

 

Membrane Blocking Buffer:  

• 3 - 5% powder milk or BSA in TBST buffer. 

 

• Polyacrylamide Gel Mixes: 

Table B-1a. SDS Polyacrylamide resolving gel mix (10 ml). 

Gel percentage  
Reagent 7.5%       10%      12.5% 

10% SDS 100 µl 100 µl 100 µl 
1.5M Tris (pH 8.8) 2.5 ml 2.5 ml 2.5 ml 
30% Acrylamide 2.5 ml 3.34 ml 4.2 ml 
Distilled water 4.84 ml 4 ml 3.14 ml 
10% APS 50 µl 50 µl 50 µl 
10µl Temed 10 µl 10 µl 10 µl 
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Table B-1b. SDS Polyacrylamide stacking gel mix. 

Reagent volume 
10% SDS 50 µl 
0.5M Tris (pH 6.8) 1.25 ml 
30% Acrylamide 0.65 ml 
Distilled water 3.05 ml 
10% APS 50 µl 
10µl Temed 10 µl 

 

 

Antibodies. 

• NPAS2: Mouse antibody against a partial recombinant NPAS2 

fragment. Storage buffer: 1 x PBS, pH 7.2. Working solution; 1µl 

antibody in 500 µl Membrane Blocking Buffer. The antibody was 

supplied by The Abnova Corporation: 9F No. 108, Jhouzih St., 

Niehu, Taipei, Taiwan.  

 

• HAT1: Rabbit polyclonal to HAT1 where the immunogen peptide is 

EKFLVEYKSAVEKK corresponding to amino acids 8-21 of human 

HAT1. Working solution: 1µl antibody in 500 µl of Membrane 

Blocking Buffer. Antibody supplied by ABCam, 330 Cambridge 

Science Park, Cambridge, CB4 0FL UK. 

 

• PCAF: Rabbit antibody supplied by Sigma Aldrich, Fancy Road, 

Poole, Dorset. BH12 4QH. Developed from synthetic peptide 

corresponding to amino acids 817-832 of human PCAF. Working 

solution: 1µl antibody in 500 µl of Membrane Blocking Buffer. 

 

B.2.2 Tissue culture with HeLa cells.  

HeLa cells were grown in plastic Petri dishes containing D-MEM plus fetal 
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calf serum (10% v/v), penicillin G (5000 U/ml) streptomycin 5000µg/ml, 

2mM L-glutamine, and 1mM sodium pyruvate and incubated at 37ºC in 

water saturated air and 5% CO2. The 60mm diameter plates of area 

2,827mm2 and containing pre-warmed culture medium were seeded at 0.8 

x 106 cells per plate such that after ~2-3 days in the incubator the cells at 

confluency had a density of 3.2 x 106 cells per plate.  

      Cells were maintained in continuous culture by inoculating fresh 

medium in Petri dishes with a suspension of cells, made by removing the 

medium of a stock plate with an aspirator, washing the cells adhering to 

the plate with 1.5ml PBS, removing the supernatant with the aspirator and 

treating the cell layer with 1.5ml Trypsin-EDTA solution and incubating for 

about 1-3 minutes. Freeing the cells from the surface of the dish was 

judged to have occurred when the cell layer was seen to slide slowly down 

the dish when it was inclined and tapped (i.e. < 3 minutes). The freed cells 

were taken up by pipette and mixed with 5ml of pre-warmed culture 

medium (containing fetal bovine serum which neutralizes the trypsin) and 

precipitated by centrifugation at 1000rpm for 2 minutes. The supernatant 

was removed with the aspirator and the cells resuspended in 10ml of 

medium in a sterile plastic tube. The density of the cell suspension was 

checked with a haemocytometer and the appropriate volume of this 

preparation used to inoculate 60mm plates that contained 8ml of pre-

warmed growth medium.  

     A single passage through this cycle took 2-3 days and this cycle of 

regenerating the cultures was maintained to ensure the fitness of the cells. 

The cells were checked by observation with a light microscope to estimate 

how close to confluence the spreading plaque was. The medium changed 
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from pink to yellow with age (decreasing pH), and was changed before it 

reached the yellow stage. At all stages where the cells were exposed 

(inoculation, trypsinisation etc.), the procedure was carried out using 

sterile technique and in a sterilized, laminar-flow, positive air pressure, 

filter hood. 

 

 B.2.3 Protein extraction from HeLa cells.  

90% confluent HeLa cells, adhering to a 60mm diameter Petri dish were 

washed three times with PBS. 700µl of IGEPAL CA-630 (Octylphenyl-

polyethylene glycol) Lysis Buffer was then added to the washed cells. The 

protease inhibitors aprotinin (A) and Leupeptin (L), were added to the 

Lysis Buffer to give a final concentration of 1µg/ml and 

phenylmethanesulfonylfluoride (PMSF), to give a final concentration of 

1mM. The plates containing the lysing cells were placed on an automatic 

rocker in a cold room at 4ºC for 30 minutes. The orientation of each plate 

was changed by rotating each plate on the rocker by 90º at 15 minutes 

into the lysing process. The lysate so produced was transferred by 

micropipette into microcentrifuge tubes and spun at 13,000rpm in a bench 

top microcentrifuge for 15 minutes. The supernatant and pellet were both 

collected, and after removing the supernatant the pellet was mixed with 

enough fresh lysis buffer to resuspend it.  

 

B.2.4 Protein fractionation by size exclusion chromatography.  

      Size exclusion chromatography separates molecules in solution 

according to their size. Smaller molecules are able to enter the pores of 

the gel matrix of the column and take longer to elute as compared with the 
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solution surrounding the gel where larger molecules too big to enter into 

the gel matrix elute faster since they are excluded from the pores. A 

Superdex 200 HR column (Amersham Pharmacia Biotech) was placed at 

4°C in a cold room and connected to an Aekta Basic 10 chromatography 

System. The column was equilibrated with HEPES Buffer and calibrated 

as described in the manual. 200µl to 500µl of soluble protein extract was 

loaded on the column and eluted at a rate of 0.25 ml/min. Fractions were 

monitored for protein with the UV sensor and computer interface of the 

system and the zone of fractions containing protein were saved and stored 

at -80 °C. 

 

B.2.5 SDS Polyacrylamide gel electrophoresis (SDS PAGE) and western 

blot. 

Casting and running the gel: Aurogene™ PAGE Sub Vertical 

Electrophoresis System VS10D, VS10DSYS, VS10DCAST and 

OmniPAGE Molecular Electroblotting Units SB10, VS10BI were used for 

running the SDS PAGE and western blots. The gel plate apparatus was 

set up as described in the manufacturer’s recommendations and resolving 

gel mix introduced by pipette into the space between the two glass plates. 

A few drops of isopropanol were placed onto the surface of the gel to 

ensure a flat surface and to exclude air. After 15 minutes the isopropanol 

was poured off and the gel surface washed with a jet of distilled water from 

a wash bottle. The comb was then inserted into the gap between the 

plates but only to about 5mm depth to allow bubbles to escape when the 

liquid gel was pipetted in. The stacker gel mix was pipetted into the space 

between the plates making sure no bubbles formed at the bottom of the 
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teeth of the comb and subsequently, the comb was carefully pushed down 

to the correct level such that wells of approximately 1cm depth would be 

formed by the teeth displacing the stacker gel mix. The stacker gel was left 

to set for 10 minutes. After removing the comb the gel in its gel plate 

apparatus was set up in the electrophoresis tank and 1 x SDS PAGE 

running buffer was poured in. Bubbles that formed at the bottom of the gel 

plate and in the wells of the gel were removed with a jet of running buffer 

ejected from a syringe and needle. The protein samples were mixed with 

SDS PAGE Loading Buffer X2 (1:1 vol/vol) and heated at 95oC in a 

heating block for 5 minutes. An aliquot of pre-stained protein marker stock 

was also heated at 95oC for 5 minutes in the heating block. 

      Western blotting and visualizing the proteins with antibodies and 

chemiluminesence: After running, the gel was removed from the apparatus 

and set up in the Aurogene™ OmniPAGE Molecular Electro-blotting Units 

as described in the manufacturer’s recommendations, with pre-wet 

(Western Blot Transfer Buffer) sponges and filter papers. Transfer took 

approximately 1 hr at 100 volts. Subsequently, and after disassembly of 

the blotting sandwich, the membrane was blocked with Membrane 

Blocking Buffer overnight at 4ºC or for one hour at room temperature. To 

visualize the proteins on the western blots with antibodies and 

chemiluminescence, the blot was sealed in a plastic bag containing 

Membrane Blocking Buffer with all air bubbles removed by squeezing the 

liquid covering the blot in the bag to the open end of the bag before 

sealing. The bag and contents (Membrane Blocking Buffer plus primary 

antibody) was incubated on a rocking platform for 60 min at room temp, or 

overnight at 4°C, after which the blot was washed 3 x for 5 min with TBST. 
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Subsequently and in a similar manner to the first incubation, the blot was 

incubated for one hour at room temp with the secondary antibody diluted 

in Membrane Blocking Buffer and then washed 3 times for 10 min with 

TBST. Finally, the blot was immersed in the freshly mixed 

chemiluminescence reagents and immediately loaded into a loaded 

autoradiography cassette under darkroom conditions and procedures and 

exposed overnight. 

 

B.3 Using protein fractionation, SDS-PAGE and western blot to 

investigate NPAS2 and HAT1 protein complex formation. 

 

B.3.1 Methods. 

Nuclear and cytoplasmic protein extracts were prepared from HeLa cells 

and analysed with SDS-PAGE followed by western blot as described 

above. Protein fractionation (by size exclusion column chromatography) 

was also performed on protein extracts from HeLa cells and the fractions 

analysed with SDS-PAGE and western blot. The resulting filter bound 

proteins were challenged with antibodies against K(lysine) 

acetyltransferase 2B (KAT2B also known as p300/CBP-associated factor, 

PCAF) as a control, NPAS2 and HAT1.  

      The fraction number of eluate from the column correlated with the 

molecular weight range of native proteins and complexes in each fraction. 

Analyzing each fraction by SDS-PAGE segregated the individual proteins 

present in each fraction. Pre-stained protein size markers were used to 

determine the approximate molecular weight of the bands on the western 

blot membrane that showed reactivity with the antibodies against HAT1, 
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KAT2B and NPAS2.  

 

B.3.2 Results.  

The experiment aimed to test whether cytoplasmic and/or nuclear extracts 

of HeLa cells contained HAT1/NPAS2 protein complexes. To test the 

competence of the system to detect protein bands likely to be NPAS2, 

HAT1 and PCAF, SDS-PAGE of nuclear and cytoplasmic protein extracts 

from HeLa cells, followed by western blot and probing with antibodies was 

carried out. A strong and clear band with the anti-HAT1 sera was seen 

and the pre-stained molecular weight markers indicated a molecular  

 

Figure B-1. Autoradiograph of western blots of nuclear and cytoplasmic protein 

extracts from HeLa cells. Track1 and 2 represent cytoplasmic and nuclear extract 

respectively, both without protease inhibitors in the extraction mix. Tracks 3 and 4 

represent cytoplasmic and nuclear protein extract with protease inhibitors. The same 

convention is kept for tracks 5-12. Tracks1-4 were probed with HAT1 antibody, 5-8 

KAT2B (PCAF) antibody and tracks 9-12 with NPAS2 antibody. 

1    2      3    4  5    6   7  8  
8 

9  10  11 12 

HAT1  PCAF  NPAS2 

25  

47  

70  
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weight for this band that was in keeping with the known molecular weight 

for HAT1 (~46 KDa). Only a faint band could be detected with the NPAS2 

antibody. Increasing the sample loading of the gel and/or decreasing the 

stringency of the washes did not help to visualize a distinct band with the 

NPAS2 antibody. Moreover, the size of the faint band (~60KDa) (Figure B-

1) was not inkeeping with the molecular weight of the full length NPAS2 

isoform, nor any of the other substantially smaller isoforms. The KAT2B 

(PCAF); (a control for the exclusion column experiment, a ~93KDa 

histoneacetyltransferase known to interact with a number of proteins 

(particularly, EP300 (264KD); TP53 (43.6KD); and CLOCK (Curtis, Seo et 

al. 2004)) showed 2 bands on the gel. The indicated molecular weight of 

the largest band was an approximate match with the molecular weight of 

this proten. 

    The sequence of fractions eluted from the non-denaturing exclusion 

column represented proteins and protein complexes of decreasing 

molecular size. Subsequent SDS-PAGE and western blot of this sequence 

of fractions showed cross-reactivity for HAT1 antibody in fractions 8-12 

(Figure B-2). Fractions 8 and 9 appeared to contain most of the signal, 

with equal (reduced) reactivity in fractions 10-12.  

 

 9  8  7  6   10   11   12   13  

25  

47  
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Figure B-2. Western blot of size-exclusion column chromatography fractions from 

a nuclear extract of HeLa cells. The blot was probed with anti-HAT1 antibody. Lanes 6-

13 represent fraction number and the figures with arrows indicate molecular weights in 

KDa. The signal covers an indicated molecular weight range of approximately 400 

(fraction 8) to 200 (fraction 12) KDa. 

 

B.3.3 Discussion. 

Following SDS-PAGE and western blot of HeLa protein extracts, HAT1 

antibody in conjunction with chemiluminescent detection and 

autoradiography revealed a clear single band on blots of nuclear and 

cytoplasmic protein extracts (Figure B-1). This is in keeping with the 

occurrence of HAT1 as a nuclear and cytoplasmic protein. The signal for 

HAT1 was strong and similar results were obtained with or without 

protease inhibitors in the extraction buffer. For PCAF (KAT2B) that was to 

be used as a control in the column experiment, clear consistent bands 

were seen but protease inhibitors were required in the extraction medium. 

The PCAF antibody in addition to detecting a single clear band of 

appropriate size (~94 KDa) also detected some subsidiary bands. The 

product information suggested this was likely and the size of the lower 

molecular weight band was in keeping with an isoform of PCAF. Thus it 

appears that the extraction and detection system worked efficiently for 

HAT1 and PCAF.   

      For NPAS2 and despite repeated trials, no strong, clear bands 

~90KDa could be seen with the NPAS2 antibody. The faint band seen at 

~60KDa (Figure B-1) is present only in the tracks representing nuclear 

extract which is in keeping with NPAS2 as a nuclear protein.  The NPAS2 
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antibody is raised against a partial recombinant NPAS2 corresponding to a 

fragment of the 18th exon of this 20-exon, 92KDa protein. NPAS2 has 

seven isoforms in humans: NPAS2-001, NPAS2-004, NPAS2-005, 

NPAS2-007, NPAS2-010, NPAS2-012 and NPAS2-201. Isoforms 004, 

007, 010 and 012 are all approximately a quarter of the size of the full-

length isoform in terms of amino acid number whereas isoform 005 is half 

this size.  It appears unlikely therefore that this faint band ~60 KDa relates 

to one of these isoforms but rather suggest it is showing cross reactivity to 

some other component in the nuclear extract. 

     The results of the column chromatography suggest that HAT1 does 

form complexes with other proteins in the cell extract. The observation that 

HAT1 is found in fractions corresponding to proteins over 150 kDa does 

not rule out the possibility that HAT1 might complex with NPAS2.  To 

further ascertain which proteins might form complexes with HAT1, 

stripping and re-probing the blots of the fractions showing HAT1 cross 

reactivity was planed. Subsequently reprobing with NPAS2 antibody might 

show cross reactivity with protein within the same fraction. A positive 

result, suitably controlled, could suggest that NPAS2 in the protein extract 

is complexed with another protein, possibly HAT1.  Further tests would 

then be required, such as co-immunoprecipitation and yeast two-hybrid 

tests to validate this possibility.  Costs, limited time and the imperative that 

investigations showing promise and that focused on the direct implications 

of the noncoding SNPs already showing positive association with autism 

would be favoured determined that this preliminary investigation though 

interesting was not pursued further.  
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Appendix C 

 

ZNF804A and the SNP rs1344706: A psychosis-

susceptibility variant and its possible relevance to 

autism 

 

C.1 Introduction. 

ZNF804A encodes a zinc finger protein of currently unknown function. 

Genetic analysis of ZNF804A shows positive association for SNPs in this 

gene with schizophrenia and bipolar disorder individually and more so 

when the data sets for these disorders are merged (Williams et al. 2010). 

The primary association of ZNF804A with schizophrenia susceptibility has 

thus been superseded by the idea that variations in this gene confer 

susceptibility to psychosis.  

      A large-scale retrospective analysis of autism comorbidities indicated 

genetic overlap between autism, schizophrenia and bipolar disorder 

(Rzhetsky et al. 2007) and this concept is reinforced by genetic studies 

(Carroll and Owen 2010). In order to investigate this probable genetic 

overlap between schizophrenia autism and bipolar disorder, ZNF804A was 

screened for inclusion in autism databases and with   bioinformatics RNA 

structure analysis tools. 
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C.2 Method. 

Literature searches for ZNF804A were made followed by searches using 

The Autism Chromosomal Rearrangement Database (ACRD Table 3-1). 

Ensembl was also used to define the chromosomal location of ZNF804A 

and to look for paralogues. The ACRD was also searched for inclusion of 

any paralogues of ZNF804A. Bioinformatics transcript analysis was 

performed as described above (chapter 8) for the clock genes. 

 

C.3 Results.  

C.3.1 Autism Chromosomal Rearrangement Database. 

Using ZNF804A as the query in searches with the ACRD, positive results 

were found for ZNF804A on chromosome 2q 32.1 where three reports of 

autism-associated micro-indels that contained the ZNF804A gene were 

listed (Marshall et al. 2008). Using Ensembl, searches were made for 

paralogues. ZNF804B was the only human paralogue of ZNF804A. This 

paralogue was also used as the query in searches with the ACRD. 

Intriguingly ZNF804B was also to be found amongst the autism-associated 

micro-indels (Table C-1) and further the nature of the anomalies 

(insertions) were in keeping with the effects of the pathological A allele of 

rs1344706 that increases the mRNA expression level of ZNF804A (Riley 

et al. 2010).  

There is no mention of ZNF804A in the PubMed or Thompson Web of 

Science database in relation to autism, though ZNF804A has possible 

implication in cerebellum function and interacts with ATXN1 (Lim et al. 

2006).  
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Table C-1. ZNF804A/B in autism cases from the ACRD. 

 
Locus 

 
Gain/Loss 

 
Cytoband 

Genes in 
each locus 

chr2:184152739..186310739 
chr2:184505739..186310739 
chr2:185184739..186774739 

gain 
gain 
gain 

2q32.1 
2q32.1 
2q32.1 

ZNF804A 
FLJ44048 

chr7:87960048-89325785 
  

gain 
gain 

7q21.13 
7q21.13, 

C7orf62 
ZNF804B 

 
With reference to Figure 1-1, it can be seen that the genes ZNF804A is located in 

one of the 12 recurrent autism indels recorded on the human karyotype diagram 

and ZNF804B is located in one of 26 de novo indels (Marshall et al. 2008). 

 

C.3.2 Candidate MIR scans using MirBASE and The Vienna RNA Web 

Server. 

      Analysing the sequence block containing the SNP rs1344706 gave a 

long, 145nt hairpin formation where rs1344706 alters the stability of the 

structure (Figure C-1, Figure C-2 and Table C-2). This candidate 

microRNA is predicted with Targetscan (Table 3-1) to have: p21 protein 

(Cdc42/Rac)-activated kinase 2 (PAK2); G patch domain containing 8 

(GPATCH8); and, ZNF804A amongst its primary targets. BLAST searches 

show GPATCH8 is the most similar protein to ZNF804A (Figure C-3) 

although the homology between ZNF804A and GPATCH8 is restricted to 

the N-terminal end of the two proteins, encoding the zinc finger domains 

Znf_C2H2  (IPR007087) and Znf_U1  (IPR003604).  

     MirBASE was searched for homologies with known microRNAs 

however no homologies could be found that matched the stem regions of 

this hairpin. Some weak matches were found across the loop region or 

across regions of the hairpin that would define sequences too short to be 
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considered realistic mature microRNA candidates. This hairpin did not 

show sequence conservation amongst primates when analysed with the 

Vienna RNA Web Server. 

 

Table C-2. Stability of the ZNF804A hairpin containing the SNP rs1344706 

ZNF804A  rs1344706 hairpin C Allele A Allele 
MFE -42.90 kcal/mol  -42.90 kcal/mol  
MFE: thermodynamic ensemble  -46.49 kcal/mol. -46.27 kcal/mol. 
Frequency: MFE structure  0.30 %. 0.42 %. 
Ensemble diversity  54.15 . 48.49 
Centroid secondary structure -23.21 kcal/mol  -33.80 kcal/mol  

 

     Further hairpin scans were made throughout the intron of ZNF804A 

containing rs1344706 with particular attention given to the region with the 

high scoring SNP cluster as shown in Figure C-5. Intriguingly a ~349nt 

sequence was found within the region bounded by the cluster of high 

scoring SNPs that is identical to a sequence in UHMK1 (Figure C-6). It is 

exceedingly unlikely that this match has occurred by chance (2.8e -262 

according to Ensembl BLAST calculations). UHMK1, like ZNF804A is 

associated with schizophrenia (Puri et al. 2008), tentatively indicating 

possible relevance of this feature to schizophrenia. In UHMK1 the 

ZNF804A homologous sequence is to be found within the 3’UTR .  
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GPATCH          KSLQGRTDPIPIVVKYDVMGMGRMEMELDYAEDATERRRVLEVEKEDTEELRQKYKDYVD 120  
ZNF             ------MECYYIVISSTHLSNG-------------HFRNIKGVFRGPLSKNGNKTLDYAE 41  
                       :   **:.   :. *             . *.:  * :   .:  :*  **.:   
 
GPATCH          KEKAIAKALEDLRANFYCELCDKQYQKHQEFDNHINSYDHAHKQRLKDLKQREFARNVSS 180  
ZNF             KENTIAKALEDLKANFYCELCDKQYYKHQEFDNHINSYDHAHKQRLKELKQREFARNVAS 101  
                **::********:************ *********************:**********:*   
 
GPATCH          RSRKDEKKQEKALRRLHELAEQRKQAECAPGSGPMFKPTTVAVDEEGGEDDKDESATNSG 240  
ZNF             KSRKDERKQEKALQRLHKLAELRKETVCAPGSGPMFKSTTVTVRENCNEISQRVVVDSVN 161  
                :*****:******:***:*** **:: **********.***:* *: .* .:   . . .   
 
GPATCH          TGATASCGLGSEFSTDKGGPFTAVQITNTTGLAQAPGLASQGISFGIKNNLGTPLQKLGV 300  
ZNF             NQQDFKYTLIHSEENTKDATTVAEDPESANNYTAKNNQVGD-------QAQGIHRHKIGF 214  
                .    .  *  . .. *... .* :  .:.. :   . ..:       :  *   :*:*.  
 

 

Figure C-3. Alignment of protein sequence fragment of ZNF804A and 

GPATCH8 showing conservation of the amino acid sequence of the zinc 

finger DNA binding domain.  
 

 
 
 

Sequence Probability Entropy 

 

MFE structure 

 

Red =1        Blue = 0 

 

Red = 0       Blue = 3 

 
CACATGCTTGTTATCTTT/TCCTCGATTCAGTGATCATTCAGTTCCTGTAAACCTTTGATTACTTTCCAG 
ATAGA/TATCCAAGAAGTTGATTCTGATC/AGTTTTTGATTCTTT   
 
C/A = rs1344706, CCTGTA = central loop, /  = ends of the predicted pre-MIR, 
dark grey = portion of the long hairpin, ATTCAGT= seed with ZNF804A as 
target. The colour coding is described as for NPAS2 hairpin in figure 4-7.  

 

Figure C-4. Structure of a candidate pre-MIR in the ZNF804A hairpin.  
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Table C-3. Predicted DROSHA scores for the ZNF804A hairpin 

Predicted DROSHA site score SNP 
0.228   rs1344706  A allele 
0.173 rs1344706  C allele 

 
 
 
 
Table C-4. Targets of the ZNF804A candidate mir 5’arm. 
 
Candidate seed 5’ Number of matches Schizophrenia gene 

targets 
TCGATTC 5 none 
CGATTCA 6 none 
GATTCAG 207 PAK2 
ATTCAGU 341 ZNF804A 
 
 
 
 
Table C-5. Targets of the ZNF804A candidate mir 3’arm. 
 
Candidate seed 3’ Number of matches Schizophrenia gene 

targets 
AACCUUU =242  5 none 
ACCUUUG =251 6 none 
CCUUUGA =341  207 none 
 

 

 

 

Figure C-5. P-values for genotyped SNPs in ZNF804A. Reproduced from 

Williams et al. (2010). 
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Alignment score      : 1525 
E-value             : 2.8e -262 
Alignment length       : 349 
Percentage identity: 93.70 

rs76078567 marks this region in ZNF804A and rs10737484 in UHMK1 
 
 
UHMK1:       388 ttgtaatattcttgtagttctgaggtgaaggtaaaccaacaggagagattactccttgta 329 
                 |||||| |||||||| ||||||||||||||||||| ||||||||||||||||| ||||||  
ZNF:   185744603 ttgtaacattcttgtggttctgaggtgaaggtaaatcaacaggagagattactgcttgta 
185744662 
 
 
UHMK1:       328 actggctttggtttaagtgatctttcacatttttt-ctaaccataccttcttataaaaaa 270 
                 ||||||||||||||||| ||| ||||||||||||| |||| ||||||||||||| |||||  
ZNF:   185744663 actggctttggtttaagcgatttttcacatttttttctaagcataccttcttatcaaaaa 
185744722 
 
 
UHMK1:       269 tgtagcaattacatgttactgagggaaaacagtactaggttttaatattcacaaccaact 210 
                 ||||||||||||||||||||||||||||| |||||||||||||||||||  |||||||||  
ZNF:   185744723 tgtagcaattacatgttactgagggaaaatagtactaggttttaatatttgcaaccaact 
185744782 
 
 
UHMK1:       209 actccagctgacacaggatgccatcaaccattaaaatttattgatcatacttagattttc 150 
                 ||| ||||||||||||||||||||||||  ||||||||||||||||||| ||||||||||  
ZNF:   185744783 acttcagctgacacaggatgccatcaactgttaaaatttattgatcatagttagattttc 
185744842 
 
 
UHMK1:       149 taaggctgatcaacagatagcaaagatggaacccttttgggaaaaaataaaatcccttct 90 
                 ||||  ||||| |||||||||||||||||| |||||||||||||||||||||||||||||  
ZNF:   185744843 taagagtgatcgacagatagcaaagatggagcccttttgggaaaaaataaaatcccttct 
185744902 
 
 
UHMK1:        89 accccagttttgacactgttaagaggttataaaggaatgttaaattatt 41 
                 ||||||| |||| ||||||||||||||||||||||||||||||||||||  
ZNF:   185744903 accccagatttgtcactgttaagaggttataaaggaatgttaaattatt 185744951  

 
 

 

Figure C-6. Sense-antisense complementarity between ZNF804A and the 

3’UTR of UHMK1. 

 

The position of this antisense complementary region in relation to the 

schizophrenia associated SNPs in ZNF804A is between rs1344706 

(indicated with the arrow) and the SNP immediately to its left (Figure C-5). 

The UHMK1 sequence and the ZNF804A sequence are anti parallel in 

relation to their host genes, forward on UHMK1 and reverse on ZNF804A. 

Nevertheless the presence of an expressed pseudogene and ESTs for the 

reverse strand of ZNF804A at this location and ESTs from the forward and 

reverse strands of UHMK1 at this position indicates that RNA transcripts 
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with matching sequence are possible from either strand. No common 

variation is indicated within the ZNF804A/UHMK1 complementary 

sequence. The SNP rs76078567 is immediately adjacent to this region but 

Williams et al. (2010) did not investigate this SNP.  

 

C.4    Conclusion. 

   The schizophrenia risk allele (A) of rs1344706 is also associated with 

increased mRNA levels of ZNF804A but it appears that rs1344706 is not 

the eQTL and it is more likely to be in linkage disequilibrium with the true 

eQTL (Williams et al. 2010). The results from the Autism Chromosomal 

Rearrangement Database also shows that the autism-associated indels for 

ZNF804A and ZNF804B are all duplications indicating that over 

expression of ZNF804A may be relevant in autism as well as in 

schizophrenia.  

      The candidate microRNA indicated above is predicted (Targetscan) to 

target the schizophrenia associate genes PAK2 (Mulle et al. 2010) and 

ZNF804A itself, as well as GPATCH8 (that shows homology with the N 

terminal half of ZNF804A (Figure C-3)). The candidate microRNA is 

indicated to be more stable and have better Interagon SVM DROSHA 

score when the A allele of rs1344706 is present in the hairpin (Table C-3, 

Figure C-1 and Figure C-2). This is at odds with the A allele being 

associated with increased expression of ZNF804A in schizophrenia (Riley 

et al. 2010). 

      The likelihood of the ZNF804A / UHMK1 antisense complementarity 

being due to chance is extremely remote (E-value 2.8e -262) and the 

position of this feature in the 3’-UTR of UHNK1 suggests that it could be a 
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regulatory natural antisense transcript potentially allowing the expression 

of ZNF804A to regulate the function of UHNK1 or vice versa (Sun, Hurst et 

al. 2005; Faghihi and Wahlestedt 2009). A possible mechanism of action 

of ZNF804A in schizophrenia might be via UHMK1 (functionally linked with 

RNA transport and axon development in neurons). SNP rs1344706   

regulates ZNF804A expression directly and concurrently regulates 

UHMK1 indirectly, in trans, through sense-antisense silencing (Cambray et 

al. 2009). This hypothesis implicates ZNF804A and UHMK1 in the same 

genetic/biological system with regards to schizophrenia risk, although no 

genetic interaction for ZNF804A and UHMK1 has been reported to date. 

 

Appendix D 

 

Human PER1: a comparison with Drosophila 

PERIOD in relation to the K&H cycle determining 

region and an autism/cancer associated haplotype. 

 

D.1 Introduction. 

The region of the Drosophila PERIOD gene (per) that determines the K&H 

cycle phenotype, is centrally located in the gene and immediately down 

stream of the region coding for the Thr-Gly repeats (Wheeler et al. 1991). 

The autism-associated haplotype also covers a relatively small central 

region of human PER1. With the autism Social Timing hypothesis in mind 

(Wimpory et al. 2002), the question arises, of whether the autism-linked 
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haplotype in PER1 covers the region corresponding to the Kyriacou and 

Hall cycle determining region of Drosophila per (here called the KDR).  

      The human PER1 locus is known to derive two protein isoforms, long 

and short. The short form superficially appears to be the long isoform 

terminated at a point corresponding to the mid region of the long form. The 

indication that the autism-associated SNP rs885747 and other SNPs 

within the most significant autism haplotype for PER1 may influence 

splicing (Chapter 4.2) prompts investigation of the difference in biological 

potential of the two isoforms and, if recognized, the relevance of the KDR 

in PER1.   

 

D.2 Method. 

Ensembl was used to scrutinize the overall protein domain structure of the 

two isoforms of PER1. Ensembl protein sequences of PER1 and 

Drosophila PERIOD were also downloaded for analysis. Alignment of the 

protein sequences with ClustalW2 (Table 3-1) was followed by 

identification of the Thr-Gly repeat in the Drosophila sequence and 

corresponding regions in the human PER1 sequence noted. The 

alignments took account of the two isoforms of human PER1.  

      The region immediately downstream of the Thr-Gly repeat was 

searched for possible protein modification sites and other functional motifs 

with the MyHits server and Ensembl tools (Pagni et al. 2004; Pagni et al. 

2007). Alignments of the two isoforms of PER1 (long, and short (Figure D-

2)) were also used to determine whether any KDR-like region was missing 

from the short isoform. The autism-associated haplotype was also mapped 

onto the protein sequences to enable comment on its location, relative to 
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the short and long isoform. Any different functional capacity (suggested by 

differing domains and signatures) between the isoforms was noted and 

related to how this could have biological relevance.  

 

D.3 Results. 

The KDR-like fragment was found to be present in the long isoform of 

human PER1 (Figure D-1) but the sequence of 56 amino acids towards 

the C-terminal end of the KDR-like region is altered in the short isoform 

(Figure D-4). The protein transduction domain, the histamine receptor 

domain, the proline rich region and the serine rich region are also absent 

in the short isoform (Figure D-1). 

      The Drosophila PER and human PER1 protein sequence alignments, 

showed that a region of PER1 that was similar to the Drosophila Thr-Gly 

repeats was identified within the autism haplotype (Figure D-2). Local re-

alignment of the Drosophila Thr-Gly repeat and the corresponding human 

sequence showed that the downstream ends of these repeat regions show 

an identical pattern with respect to threonine residues (Drosophila) and 

proline residues (human). A phosphorylation site, at 15 or 16 amino 

residues from the ends of the Drosophila and human repeat regions 

respectively was also noted (Figure D-4). 

      The KDR in the Drosophila sequence was found to contain several 

predicted phosphorylation sites, as did the corresponding region of the 

human sequence (Figure D-3). This region of the human PER1 sequence 

was also found to contain a protein transduction zone (Yang et al. 2005) 

and to match the DOUBLETIME (CSNK1E) binding domain in Drosophila 

PER (Kim et al. 2007) (Figure D-3). 
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ClustalW alignment of D. melanogaster PER and human PER1 
 
Dros     VNPWSRKLEFVVGHHRVFQGPKQCNVFEAAPTCKLKISEEAQSRNTRIKEDIVKRLAETV 538  
Hum      VHPWSRKVAFVLGRHKVRTAPLNEDVFTPP---APSPAPSLDTDIQELSEQIHRLLLQPV 501 
         *:*****: **:*:*:*  .* : :** ..     . : . ::   .:.*:* : * :.*   
 
Dros     SRPSDTVKQEVSRRCQALASFMETLMDEVSRADLKLELPHENELTVSERDSVMLGEISPH 598  
Hum      HSPSPTGLCGVGAVTSPGPLHSPGSSSDSNGGDAEGPGPPAPVTFQQICKDVHLVKHQGQ 561 
                  ** *    *.   .. . .     .: . .* :   *       .  ..* * : . :   
 
Dros     HDYYDSKSSTETPPSYNQLN-YNENLLRFFN--------SKPVTAPAELDPPKTEPPEPR 649  
Hum      QLFIESRARPQSRPRLPATGTFKAKALPCQSPDPELEAGSAPVQAPLALVPEEAERKEAS 621 
         : : :*:: .:: *     . :: : *   .        * ** **  * * ::*  *.    
 
   S = Serine 657 GSKB binding site and serine 661 GSKB binding enhancer site 
 
Dros     GT---CVSGASGPMSPVHEGSGGSGSSGNFTTASNIHMSSVTNTSIAGTGGTGTGTGTGT 706  
Hum      SCSYQQINCLDSILRYLESCNLPSTTKRKCASSSSYTTSSASDDDRQRTGPVSVGTKKDP 681 
         .     :.  .. :  :.. .  * :. : :::*.   **.:: .   ** ...** ...   
 
Dros     GTGTGTGTGTGTGTGTGTG------------------------TGTGTGTG--------- 733  
Hum      PSAALSGEGATPRKEPVVGGTLSPLALANKAESVVSVTSQCSFSSTIVHVGDKKPPESDI 741 
          :.: :* *: . . . .*                        :.* . .*            
 
Dros     ------TGTGNGTNSGTGTGTASSSKGGSAAIPPVTLTESLLNKHNDEMEKFMLKKHRES 787  
Hum      IMMEDLPGLAPGPAPSPAPSPTVAPDPAPDAYRPVGLTKAVLSLHTQKEEQAFLSRFRDL 801 
               .* . *. .......: :.. .. *  ** **:::*. *.:: *: :*.:.*:    
 
Dros     RGRTGEKSKKSANDTLKMLEYSGPGHGIKRGGSHSWEGEANKPKQQLTLGTDAIKGAAGS 847  
Hum      GRLRGLDSSSTAPSALGERGCHHGPAPPSR--RHHCRSKAKRSRHHQNPRAEAPCYVSHP 859 
             * .*..:* .:*            .*   *  ..:*::.::: .  ::*   .: .   
 
Dros     AGGAVGTGGVGSGGAGVAGGGGSGTGVAGTPEGRATTTSGTGTPGGAGGGGGAGAAAAAG 907  
Hum      SPVPPSTPWPTPPATTPFPAVVQPYPLPVFSPRGGPQPLPPAPTSVPPAAFPAPLVTPMV 919 
         :  . .*    . .:    .  .   :.  .   .. .  ..... . ..  *  .:.     
 

 

Figure D-2. Protein sequence alignment: Drosophila PER and human PER1.  

The sequence segment shaded grey indicates the protein region that is covered 

by the most significant autism-associated haplotype. The protein transduction 

domain is shown in yellow and the K&H cycle mutations are shown in green 

letters (Wheeler et al. 1991). The pink lettering is the Drosophila Thr-Gly repeat. 

Red letters describe the GSK3B phosphorylation sites in Drosophila (Ko et al. 

2010). Amino acid number is given at the right of the sequence.  
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ClustalW alignment of D. melanogaster PER and human PER1 Thr-Gly region 
 

A 
Dros  GTGTGTGTGTGTGTGTGTG------------------------TGTGTGTG--------- 733  
Hum   PSAALSGEGATPRKEPVVGGTLSPLALANKAESVVSVTSQCSFSSTIVHVGDKKPPESDI 741 
       :.: :* *: . . . .*                        :.* . .*            
 
Dros  ------TGTGNGTNSGTGTGTASSSKGGSAAIPPVTLTESLLNKHNDEMEKFMLKKHRES 787  
Hum   IMMEDLPGLAPGPAPSPAPSPTVAPDPAPDAYRPVGLTKAVLSLHTQKEEQAFLSRFRDL 801 
            .* . *. .......: :.. .. *  ** **:::*. *.:: *: :*.:.*:    
 
Dros  RGRTGEKSKKSANDTLKMLEYSGPGHGIKRGGSHSWEGEANKPKQQLTLGTDAIKGAAGS 847  
Hum   GRLRGLDSSSTAPSALGERGCHHGPAPPSR--RHHCRSKAKRSRHHQNPRAEAPCYVSHP 859 
          * .*..:* .:*            .*   *  ..:*::.::: .  ::*   .: .   
 
Dros  AGGAVGTGGVGSGGAGVAGGGGSGTGVAGTPEGRATTTSGTGTPGGAGGGGGAGAAAAAG 907  
Hum   SPVPPSTPWPTPPATTPFPAVVQPYPLPVFSPRGGPQPLPPAPTSVPPAAFPAPLVTPMV 919 
      :  . .*    . .:    .  .   :.  .   .. .  ..... . ..  *  .:.     
 

 

Figure D-3. Alignment of Drosophila PER and human PER1; KDR region 

detail. 

Sequence A shows ClustalW alignment of human PER1 (long isoform) and 

Drosophila melanogaster protein sequences. The bold black underlined letters 

are MyHits phosphorylation site predictions (CSNK1E/D, PKC). The start of the 

first phosphorylation site (human sequence) is coincident with the end of the 

autism haplotype. Residues that show species specific variation in Drosophila are 

shown in green (Wheeler et al. 1991). Turquoise highlight shows Drosophila PER 

DOUBLETIME (CSNK1E/D) binding domain (Kim et al. 2007) Grey shading with 

black lettering in the human sequence shows where PER1 (long) and PER1 

(short) are identical. Grey shading with orange lettering shows the limit of PER1 

(short). This terminal region of the short isoform, in orange, differs from that of 

PER1 long (long displayed). The C-terminal end of the KDR is indicated by the 3 

G residues, shaded blue. The yellow highlight shows the protein transduction 

domain. The FLSRF motif (blue letters) is suggested to be a mammalian 

CSNK1E/D binding domain (Kim et al. 2007). The GEKSK motif in the Drosophila 

sequence overlapping a species-specific amino acid variation is predicted to be a 

nuclear localization signal (MyHits, Table 7-1). 
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Dros   -----tGtGtGtGtGtGtGnGtnsGtGtGtASSSKGGSAAIPPVTLTESLLNKHNDEMEKFMLKKHRES 787  
Hum    IMMEDLPGLaPgPaPsPaPsPtvaPdPaPdAYRPVGLTKAVLSLHTQKEEQAFLSRFRDLGRLRGLDSS 810 
 
Dros    RGRTGEKSKKSANDTLKMLEYSGPGHGIKRGGSHSWEGEANKPKQQLTLGTDAIKGAAGS      847  
Hum     STAPSALGERGCHHGPAPPSRRHHCRSKAKRSRHHQNPRAEAPCYVSHPSPVPPSTPWPTPPATT 870  

                                                    SHLGPPGACPLPSLGLDCWGVGLKGGVSAPGTQAGVASTTRPCLGTGPSLASPH 
 
E = non synonymous coding variant rs3027189 

 
 

Figure D-4. Local alignment of Drosophila PER sequence and human PER1 

centered on the Thr-Gly repeat region. 

Conservation of a repeating pattern of amino acid residues is seen for the end of 

the Thr-Gly repeat region (pink letters). Other colour codes are as for Figure D-3 

above. The sequence shown with yellow letters and olive highlight is the C 

terminal region of the short PER1 isoform, that differs from that of the long as 

shown. 

 

D.4 Conclusion 

Sequence conservation allows the tentative identification of a region of the 

human PER1 protein that corresponds to the KDR of Drosophila PER. 

This KDR-like sequence in PER1 contains a functional membrane 

transduction domain (Yang et al. 2005). The corresponding sequence in 

Drosophila is different but as it is not feasible to predict with certainty 

whether such a domain is present on sequence alone, it would be 

interesting to discover whether this region of Drosophila PER also endows 

membrane transduction capability (Yang et al. 2005). The region also 

contains what appears to be a conserved repeat pattern identical to the 

terminal region of the Drosophila Thr-Gly repeat region (although the 

sequence of amino acids is not conserved) suggesting possible 

structural/functional conservation.  
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      The autism haplotype in PER1 spans exon 11 to 16 in the (20 exon) 

long isoform and corresponds to the last 6 exons of the short isoform 

(Figure D-1). An almost identical region is also delineated by SNPs 

associated with increased prostate cancer risk, especially the aggressive 

form of prostate cancer (Zhu et al. 2009). This autism haplotype contains a 

number of common variants that determine essential and alternative splice 

sites that may alter the protein structure in this region or may affect which 

isoform of PER1 is expressed (Ladd and Cooper 2002). 

       Notably, the 5’ limit of the autism and cancer haplotypes is delineated 

by the SNP rs885747, that this study indicates is a polymorphic splice site 

enhancer/suppressor (Chapter 4). The association of the same SNP and 

region in cancer and autism tentatively suggests that rs885747 might alter 

the strengths of the splice sites within this central region and possibly 

influence the balance of alternatively spliced isoforms.  

      A GSK3B phosphorylation site is present in the Drosophila sequence 

that is indicated to correspond to the centre of the autism/cancer 

haplotype. In Drosophila this phosphorylation site is important in PER 

transport from cytoplasm to nucleus (Ko et al. 2010). It is tempting to 

suggest that the genetic association of these SNPs is reflecting the effect 

of these and/or other SNPs (in linkage disequilibrium within the haplotype 

region) on a GSK3B phosphorylation site in mammalian PER1.  

       The Drosophila species-specific song-variants are however 

downstream of the GSK3B phosphorylation site and the Thr-Gly repeat. 

These amino acid changes are adjacent to a region of Drosophila PER 

known to bind the clock regulating kinase, DOUBLETIME (CSNK1E/D) 

(Kim et al. 2007). The boundaries of this binding region are seen here to 
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have further phosphorylation sites and a nuclear transportation signal 

motif that spans one of the Drosophila species-specific amino acid 

variants. This is in keeping with the understanding that multiple 

phosphorylation events, at multiple sites on PER, determine the rate of 

degradation and the balance of levels of nuclear and cytoplasmic PER 

(Leloup and Goldbeter 2011). Perhaps the circadian, ultradian and 

temperature compensating effects of PER may be resolved by a 

mechanism involving: the balance of cytoplasmic and nuclear PER; a role 

for PER in alternative splicing (including PER mRNA); variation that affects 

phosphorylation/location, and, variation that affects splicing. 

        With regards to the domain structure of the two isoforms of human 

PER1, the short and long isoform share PAS PAC domain-containing 

regions. The long isoform however, is distinguished as being the only one 

of the isoforms that has a histamine H3 receptor domain and it is likely that 

the different domain composition of each isoform is reflected in different 

functionality of the isoforms. The H3 receptor domain may indicate a 

neuronal signaling role for the long isoform since this domain is found in 

H3 histamine receptors in the presynaptic regions of histamine-containing 

neurons (Lovenberg et al. 1999). The Drosophila protein contains a Kv1.6 

voltage-gated calcium channel signature in this region, tentatively 

suggesting that that some neuronal function for this region of the protein 

has been conserved. 

      The proline rich signature is implicated in mechanochemical functions 

linked to cell adhesion and vesicle trafficking (Williamson 1994), two 

processes that have relevance to cancer development and 

synaptogenesis.  Proteins containing proline rich regions are an ill-defined 
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class in terms of their sequence conservation. Nevertheless, poly-proline 

regions like those in PER1 have been implicated in strong and rapid 

molecular binding processes of low specificity typical of the vesicle-

associated proteins, the RNA polymerase II pre-initiation complex, and the 

SH3 domain binding proteins that regulate hormone receptors.  

      The presence of the protein transduction and histamine receptor 

domains together with the indication that the proline rich extensin 

signature may be involved in vesicle trafficking has resonance with recent 

implication of synaptic vesicle recycling in the clock function of the SCN 

(Deery et al. 2009) and with circadian rhythms of vesicle size and location 

in Drosophila motor terminals (Ruiz et al.). Could PER1 (long) have some 

kind of SNARE or actin attachment function? 

     Valproate and lithium are both used in the treatment of autism (Gillberg 

1991; Myers 2007) and both drugs have powerful effects on circadian 

rhythms where lithium is an inhibitor of GSK3B (Figure 1-3) (Cordeiro et al. 

2004; Dokucu et al. 2005; Tsujino et al. 2007). Peculiarly, valproate 

administration in a narrow time window during pregnancy can also cause 

autism (Moore et al. 2000) and this effect has been modeled in rat 

(Schneider and Przewlocki 2005).  

      Both valproate and lithium interfere with synaptic vesicle associated 

proteins (Cordeiro et al. 2004) and the effect of valproate on vesicle 

trafficking is highly conserved (Bellringer et al. 1988; Miyatake et al. 2007). 

In a yeast-model of valproate action, the acid inhibits the action of vps45. 

VPS45 is highly expressed in the brain and is indicated to facilitate vesicle 

transport from the Golgi complex to synaptic vesicles (El-Husseini et al. 

1997). Valproate and lithium both affect trafficking of large dense-core 
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vesicles (LDCVs) (Cordeiro et al. 2004) and anomalies in dense-core 

granules, which closely resemble LDCVs are found in blood platelets of 

autism cases. Further the D-Box and E-box containing neurobeachin 

(NBEA) and secretory carrier membrane protein 5 (SCAMP5) have each 

been genetically implicated in autism and regulate secretion of LDCVs in 

mouse beta-TC3 cells (Castermans et al. 2010). Inhibition of GSK3B 

activated migration of PER1, that affects vesicle trafficking via clock-

controlled genes, might also contribute an effect on the cell’s vesicle 

transport capacity if the long isoform of PER1 does have vesicle 

interacting function. 
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