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Summary 

 
Schizosaccharomyces pombe Casein kinase 1 (Hhp1) is a dual-specific kinase phosphorylating 

serine and threonine residues as well as tyrosine side chains. S. pombe Hhp1 kinase is 

homologous to Saccharomyces cerevisiae Hrr25, Drosophila double-time (dbt), and mammalian 

Casein kinase 1-epsilon (CKIε). CK1 enzymes regulate the circadian clock, Wnt (wingless) 

signalling, cell death, cell cycle progression and DNA repair. How one group of enzymes is able 

to execute so many functions is still poorly understood, especially because of the large number 

of isoforms and splice varinants in mammalian cells. This study uses the fission yeast as a model 

to research the roles of CK1 in the response to broken DNA replication forks. S.pombe Hhp1 is 

closely related to human CKIε and was previously implicated in DNA repair. A combination of 

genetic, biochemical and cell biological technologies revealed a novel role of Hhp1 kinase in the 

regulation of the DNA structure-specific endonuclease Mus81-Eme1. When DNA replication 

forks break in the presence of the topoisomerase 1 inhibitor camptothecin (CPT), Mus81-Eme1 

acts on the broken chromosomes. Hhp1 is predicted to phosphorylate the regulatory subunit 

Eme1 jointly with the cell cycle regulator Cdc2 and the DNA damage checkpoint kinase Chk1. 

Genetic tests showed that all three kinases act in the same CPT-response pathway. The re-

creation of CK1 mutations of the circadian clock (hhp1.R180C, hhp1.P49S, and hhp1.M82I) and 

of CK1 mutations found in human breast cancers (hhp1.L51Q) in S.pombe Hhp1 revealed that 

different kinase activity levels are crucial for the regulation of DNA repair and cell cycle 

progression. While a limited drop in Hhp1 kinase activity, for example by widening its ATP 

binding site (methionine-84 to glycine), considerably  delays the exit from a G2 arrest in the 

presence of damaged replication forks (CPT), it does not significantly impair DNA repair and 

cell survival. Only a dramatic drop in kinase activity, for example by replacing the active site 

residue lysine-40 with an arginine side chain, affects DNA repair and cell survival. How 

different kinase activity levels can have distinct biological outputs is discussed in the context of 

how CK1 recognises primed and acidic phosphorylation motifs.  

 Taken together, the outcomes of this work imply that the complex phenotypes of CK1 mutations 

in the circadian clock or in cancer cells are caused by mutations which impact differently on its 

kinases activity.  
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Chapter 1: Introduction and Project Aims 
-------------------------------------------------------------------- 
 

1. Introduction 

     This project aims to use the model organism Schizosaccharomyces pombe to understand how 

mutations in CKІε promote cancer formation, neurological disorder and cell cycle abnormalities. 

Mutations of conserved amino acids, which were found in human and fly ckІ, will be created in 

S.pombe Hhp1, and their effects on cell cycle regulation and the DNA damage response will be 

studied.  

 

1.1. Background 

     CkІ is a highly conserved serine/threonine kinase found in all eukaryotic cells (4). CKІ 

enzymes have important roles in regulation of several cellular processes such as, cell division 

and cell differentiation in mammals (1, 384, 560). CKІ activities may be affected via various 

factors like extracellular stimulants, different subcellular localisation, distinct interaction partners 

and autophosphorylation (1). CKІ play an important role in the circadian clock in mammals (e.g. 

mouse and Syrian hamster) (1), also in Drosophila and yeast (e.g. Saccharomyces cerevisiae and 

Schizosaccharomyces pombe) (1, 5). Interestingly, there is a suggested link between the cell 

division cycle and the circadian clock in cancer growth (6), and cancer and neurodegenerative 

diseases may result from mutations in CKІ genes (1, 384, 560). 

 

1.1.2. The CKІ isoforms 

     The isoforms of CKІ kinases are well characterized in different species including the fission 

yeast Schizosaccharomyces pombe (10, 13), the budding yeast Saccharomyces cerevisiae (9, 13), 

the fruitfly Drosophila (1) and mammals (1). There are seven mammalian CKІ isoforms: CKІα, 

CKІβ, CKІγ1, CKІγ2, CKІγ3, CKІδ and CKІε. Some of them have splices variants. For example: 

CKІε has three splices products CKІε1, CKІε2, CKІε3, and CKІα has also three splice variants 

CKІαL, CKІαS, and CKІαLS (1, 8, 14). The different CKІα isoforms have different activities, 

different subcellular localisations and biochemical properties (1, 384). Schizosaccharomyces 

pombe cell contains five CKІ genes: Hhp1, Hhp2, CKІ-1, CKІ-2 and CKІ-3 (90). CKІ (1-3) are 

linked to vesicular trafficking and cytokinesis, whereas Hhp1 and Hhp2 are involved in cell 

cycle progression and DNA repair (130). Saccharomyces cerevisiae has  four CKІ genes: Hrr25,  
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CKІ1, CKІ-2 and CKІ-3 (12, 15). Mammalian CKІ isoforms function in Wnt signalling, circadian 

rhythms, DNA repair and transcription (5, 7, 11, 384). 

 

1.1.3. Substrates and Key Regulatory Proteins 

     CKІ substrates are characterized by the canonical consensus sequence S/T (P)-X1–X2-S/T. 

Unlike most other kinases, CKІ enzymes are constitutively active and are normally regulated by 

a priming kinase which phosphorylates the N-terminal serine or threonine residue (Figure: 

1.1.4.1; Figure: 1.1.4.2; Figure: 1.1.4.3; Figure: 1.1.4.4) within the consensus sequence (125, 

126). This requirement of a priming phosphorylation by another kinase restricts CKІ activity to a 

hierarchical phosphorylation cascade (1). Marin et al. (128) and Graves et al. (123) showed that 

acidic amino acids can substitute for the N-terminal phosphorylation event (3). Notably, non-

canonical motifs like the sequence SLS (serine-leucine-serine) could be identified by CKІ when 

accombined with a complex of acidic amino acid residues on the C-terminal side of the 

phosphoacceptor site. Phosphorylation of non-canonical motifs in the human proteins NF-AT 

and β-catenin by CKІ, is between 15 and 25 fold less efficient than motifs that are primed by a 

phospho-amino acid (21). CKІ phosphorylate substartes may not depend on the consensus 

sequence and may phosphorylate substartes dependent on the tertiary structure of the substrate 

(1, 116). While CKІ enzymes normally phosphorylate only serine and threonine residues, 

Xenopus CKІα, S.pombe Hhp1 and S.cerevisiae Hrr25 do also phosphorylate tyrosine residues in 

vitro and in vivo (12). Table 1.1.3 gives an overview of known CKІ substrates (384).  
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Functional groups  CK1 substrates 
Cytoskeleton-
associated proteins, 
adhesion factors, and 
scaffolding proteins 

Myosin, troponin, ankyrin, spektrin 3, filamin, vinculin, neurofilamentaryproteins, 
dynein , α-/β-tubulin, microtubule-associatedprotein(MAP)1A, MAP 4, stathmin, tau, 
keratin17, desmolein, annexin II, centaurin-α (p42IP4), neuralcell-adhesionmolecule 
(NCAM), E-cadherin, RhoB, myelinbasicprotein (MBP), kinesin-likeprotein10A 
(KLP10A), lectinL-29, galectin-3, endbinding1(EB1), Sid4, connexin-43, 
metastasissuppressor1(MTSS1), and Hsp79 and Hsp90 

Receptors β-Subunit of the insulin-receptor, TNFa-receptor, muscarin M3-receptor, Ste2p (α-
factor-receptor), Ste3p (α-factor-receptor), platelet derived growth factor (PDGF) 
receptor, retinoid X receptor (RXR), low density lipoprotein-related receptor protein 
(LRP) 6, type I interferon receptor (IFNAR1), estrogen receptor α (ERα), amplified in 
breast cancer1(AIB1), calmodulin (CaM), and Ror2 

Membrane 
transporters 

Erythrocytes anion transporter, uracil permease (Saccharomycescerevisiae), translocase 
of the outer  mitochondrial membrane22 (Tom22), and α-T663-hENaC 

DNA-/RNA-
associated proteins 

Non-histone chromatin proteins, RNA polymerase I and II, topoisomeraseIIα, Star-
poly(A) polymerase (Star-PAP), Rec8, DNA methyl-transferase (Dnmt1), TAR DNA-
binding protein of 43kDa (TDP-43), DEAD-box RNA helicase DDX3, Ubiquitin-
like,with PHD,and RING finger domains1(UHRF1) 

Ribosome-related 
proteins  

15 kDa, 20 kDa, 35 kDa, L4, L8, L13, ribosomal protein S6 (rpS6), and ENP1/BYSL 
and LTV1 

Transcription and 
splice factors 

p53, cyclic AMP responsive element modulator (CREM), Swi6, nuclear factor of 
activated T-cells (NFAT), serine/arginine-rich (SR) proteins, T-cellfactor (Tcf)3, brain 
and muscle Arnt-like protein(BMAL) 1, cryptochrome 1(CRY), β-catenin, armadillo, 
SMAD 1–3 and 5, osmotic response element-binding protein(OREBP), cubitus 
interruptus (Ci), forkhead box G1(FoxG1), SNAIL, tafazzin (TAZ), yes-associated 
protein (YAP), proliferator-activated  receptor γ co-activator 1α (PGC-1α), Drosophila 
Myc (d-Myc), cyclic AMP response element-binding protein (CREB), Sre1N 
(yeaststerol  regulatoryel ement-binding protein homolog), and NFkB (nuclearfactor 
“kappa-light-chain-enhancer”of activatedB-cells) subunit p65 

Translation factors Initiation factors (IF) 4B, 4E 
Viral proteins Simian virus 40 large T-antigen (SV40 T-Ag), hepatitis C virus non-structural 5A 

(NS5A), human cytomegalovirus ppUL44, Poa semilatent hordeivirus triple gene block 
1 (TGB1), Kaposi sarcoma-associated herpesvirus latency associated nuclear antigen 
(LANA), and yellow fever virus methyl-transferase 

Kinases and 
phosphatases  

Cyclin-dependent kinase 5 (Cdk5), protein kinase C (PKC), protein kinase D2 (PKD2), 
cell division cycle 25 (Cdc25), and PH domain and leucine rich repeat protein 
phosphatase 1 (PHLPP1) 

Inhibitors and 
modulators 

Inhibitor 2 of  PPA 1, dopamine and cAMP regulated phosphoprotein of 32 kDa 
(DARPP-32), disheveled, mammalian period circadian protein (mPER), adenomatous 
polyposis coli (APC), Bid, protein kinase C potentiated myosin phosphatase inhibitor of 
17 kDa (CPI-17), nm23-H1, 14-3-3 proteins, MDM2, MDMX, FREQUENCY (FRQ), 
WHITE COLLAR-1 (WC-1), CARD containing MAGUK protein (CARMA1)/caspase 
recruitment domain (CARD11), SLR1, endogenous meiotic inhibitor 2 (Emi2), Chk1-
activating domain (CKAD) of claspin, PER2, protein S, Rap guanine nucleotide 
exchange factor 2 (RAPGEF2), and Sprouty2 (SPRY2)  

Enzymes 
(miscellaneous) 

Acetyl-CoA carboxylase, glycogen synthase, yeast endoprotease Ssy5, and neural 
precursor cell expressed developmentally down-regulated protein 4 (Nedd4)  

Vesicle- and 
trafficking-associated 
proteins 

SV2, β3A- and β3B-subunit oftheAP-3 complex, snapin, and ceramide transfer protein 
(CERT) 

Receptor-associated 
proteins 

Fas-associated death domain (FADD), receptor interacting protein 1 (RIP1)  

Factors of neuro-
degenerative diseases 

Presenilin-2, tau, β-secretase, parkin, and α-synuclein  

Metastatic tumor 
antigens 

Metastatic tumor antigen 1, short form (MTA1s)  

Table 1.1.3: Known CKІ substrates ( 384).  
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1.1.4. CKІ Expression and Activity Regulation 

     Active CKІ isoforms are monomeric kinases and were identified in many different tissues and 

organisms (97). Activation or modulation of CKІ isoforms is influenced by several factors, such 

as the level of insulin in cells, treatment with γ-irradiation and viral transformation (74, 96). The 

activity of CKІα declines in nervous cells and red blood cells (erythrocytes) when 

phosphatidylinositol-4, 5-biphosphate (PIP2) concentrations increase in the membrane (108, 109, 

110). Kinase-substrate interactions may be influenced by the subcellular localisation and  

compartmentalisation (1). In yeast, activation of CKІ can be regulated by their subcellular 

position which brings the kinase and substrate together. For example, S.cerevisiae CKI localises 

to the plasma membrane to which the kinase binds via a lipid anchor (9, 10). Vancura et al. (10) 

showed that S.cervisiae deletion mutant in the nuclear kinase hrr25 is complemented by the 

membrane-associated CKІ  isoform when the isoprenyl-lipid anchor to the plasma membrane is 

removed. Conversly, deletion mutants of the membrane bound CKІ  isoform are complemented 

by substitution of the nuclear localisation signal (NLS) of the Hrr25 kinase by an isoprenylation 

site (10, 113).  

 

 

 
Figure: 1.1.4.1: Amino acid sequence and domains of Hhp1 in S.pombe (source: 
http://www.pombase.org/spombe/result/SPBC3H7.15.) The mutated amino acids are highlighted. Domains: 
kinase domain (11aa-279aa); ATP binding site (17aa-40aa); HIPYR = microtuble binding domain; TKKQKY = 
nuclear localisation domain. 
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Figure: 1.1.4.3: Structure of human CKІδ (1). An N-terminal domain of 5-amino acid is followed by the kinase 
domain (5aa-295aa). The C-terminal domain starts from amino acid 317 to 415. NLS = nuclear localisation 
domain. 

 

 
Figure: 1.1.4.4: Structure of human CKІε. The N-terminal domain has 11 amino acids and is followed by the 
kinase domain (11aa-241aa) with the ATP binding domain located between 17aa and 40aa. The C-terminal 
domain starts from amino acid 241 to 365. NLS = nuclear localisation domain.  

 

Another important regulatory mechanism is the inhibitory autophosphorylation of CKІ isoforms 

that affects their activity. The subcellular localisation of human CKІδ relies on its kinsae activity 

(120) and its inhibition by autophosphorylation (Figure: 1.1.4.3) in its C-terminal domain (114, 

117, 123, 124) and also in its kinase domain (115). The C-terminal domains of human CkІ δ, ε 

and γ3 are large and may work as pseudosubstrates inhibiting the kinase activity (117, 122, 123,  

Figure: 1.1.4.2: Crystal 
structure of S.pombe Cki1 
(CK1) kinase. The ATP 
molecule in the active site 
and one manganese and 
one sulfate ion are shown. 
The kinase domain (11aa-
279aa) is shown in red, the 
C-terminal regulatory 
domain is shown in blue. 
Please note that the C-
terminal 148aa are missing 
from the structure. (PDB 
ID: 1CSN, Source: 
Polyview3D. 
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124). Interestingly, Carmel et al. (114) and Cegielska et al. (116) observed an increase in kinase 

activity upon truncation of the C-terminal domain which supports the idea that the C-terminal 

domain blocks the activity of the N-terminal kinase domain. Gietzen and Virshup (115) stated 

that in vivo dephosphorylation of the autophosphorylation sites may happen by cellular 

phosphatases resulting in the activation of CK1ε.  Swiatek et al. (119) managed to enhance the 

activity of human CKІε in the Wnt-signaling pathway by reducing CKІε autophosphorylation, 

which is normally observed in  neostriatal neurons when the metabotrophic glutamate receptors 

are activated. In this case, dephosphorylation of CK1ε by phosphatase PP2B activates the 

enzyme (20). As shown in Figure 1.1.4.4, S.pombe Hhp1 is most closely related to human 

CK1ε/δ, as CKIα carries an insertion of  28 amino acids in its kinase domain. While the N-

terminal kinase domains are highly related (Hhp1: 11aa-279aa; CK1ε: 11aa-241aa; CKIδ: 5aa-

295aa) (Figure 1.1.4.3; Figure 1.1.4.34; Figure 1.1.4.5), the homology is much reduced in the C-

terminal regulatory domains.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure: 1.1.4.5: Alignment of S.pombe Hhp1 with human CKI-alpha, delta and epsilon. (source: PRALINE 
sequence alignment tool; available at: http://zeus.few.vu.nl/jobs/0fa74434fdb50c270e6fdec103c18c5c/; 
accessed 13 October 2015). Human CKIε: NP_689407.1, CKIδ: P48730.2, CKIα: NP_001020276.1, and 
SPHhp1: CAA20311.1.  
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1.1.5. S. pombe Hhp1 and S. cerevisiae Hrr25 

      The gene products of hhpl and hhp2 encode the fission yeast Schizosaccharomyces pombe 

homologus of CKІε and CKІδ, respectively. Both proteins are closely related to Hrr25 kinase in 

the budding yeast Saccharomyces cerevisiae (15). Like the human CK1 enzymes, all yeast CK1s 

are protein serine/threonine kinases, but unlike the human kinases, they also phosphorylate 

tyrosine residues (12). Moreover, both Hhp1 and Hrr25 kinases are involved in the response to 

genotoxic damage (102), and S. pombe Hhp1 is suggested to have a role in DNA repair 

especially when chromosomes break upon ionising radiation or when DNA is methylated (15, 

91, 92, 94, 96). The biological roles of Hhp1 in DNA repair and cell cycle regulation are still 

enigmatic.  The role of Hhp2 is currently unknown, but genetic studies indicate that the kinase 

acts as a back-up enzyme for Hhp1. While deletion of the hhp2 gene on its own has no 

phenotype, the hhp1.hhp2 double mutant is more DNA damage sensitive than the hhp1 single 

deletion (15).  

     The alignment shown in Figure 1.1.5.1 reveals the greatest degree of divergence between 

S.pombe Hhp1 and Hhp2 in the C-terminal regulatory domain. Interestingly, some of the highly 

conserved amino acids like D24 in Hhp1, which is present in human CKI-α, CKI-δ and CKI-ε 

(Figure 1.1.4.5) is replaced by an uncharged glutamine (Q25) in Hhp2. This implies that there 

are differences in the kinase activity of both Hhp enzymes in fission yeast. 

 

 
Figure: 1.1.5.1: Alignment of S.pombe Hhp1 and Hhp2. (source: PRALINE sequence alignment 
tool; available at: http://zeus.few.vu.nl/jobs/f49a99ed96971c208165d210b3c5ca0b/; accessed 13 
October 2015). SPHhp1: CAA20311.1, and SPHhp2: CAB16883.1. 
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S.cerevisiae Hrr25 plays a second role in the response to DNA damage by up-regulating gene 

expression by phosphorylating the transcription factor Swi6 (Figure: 1.1.5.2).  Swi6 is known as 

a cell cycle regulated transcription factor, which works to activate gene expression in the G1 

phase of cell cycle (9). It serves as a transcription factor by communicating with different DNA 

binding partners. Swi6 forms the SBF complex when interacting with Swi4. This complex is 

activated in G1 by the Cdc28 (CDK1) cell cycle regulator to promote gene expression after its 

binding to MCB DNA motives in gene promotors (137). MCB elements were discovered in many 

promotors of cell cycle regulated  genes like Cdc9 and Pol1 and Rnr genes, and also in genes 

required for DNA repair Cdc9, Pol1, Rnr1, RAD51 and Rad54. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     CKІ kinases are also involved in microtuble related processes like mitotis and vesicle 

transport. For example, CKІ activity in vertebrates regulates the position of the mitotic spindle 

and localises to the centrosome (84). S.cerevisiae Hrr25 plays important roles in meiosis 

regulating monopolar spindle attachment and sister chromatid separation (84, 138, 139). 

Location of CKІ to the centrosome and spindle microtuble may be authorized by 

phosphorylation catalyzed by the cell cycle regulator Cdc2 (CDK1) kinase activity of these 

components together may initiate a sequential or hierarchical cascade of phosphorylation events 

required for spindle assembly and chromosomal separation.  

 

Figure: 1.1.5.2: DNA 
repair pathway. Role of 
Hrr25 kinase and Swi4-
Swi6 (SBF) in 
transcriptional response 
to DNA damage. Hrr25 
phosphorylate Swi6 in 
the response to DNA 
damage. A Hrr25-
independent pathway 
could act through Swi4. 
Both pathways active 
SBF to promote 
transcription of repair 
genes (9). 
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1.1.6. CKІ kinase as Autonomous Timers 

 

1.1.6.1. The Circadian Clock   

    ''Circadian'' has a Latin word. It is built of two parts: circa means around, and diem means day 

(31). The human circadian clock operates in a period of approximately 24 hours (34, 58, 61).  

Circadian rhythms are observed in plants, animals, fungi and bacteria. The circadian clock is 

triggered by light which reaches the brain via the optic nerve. Amongst the main outputs are the 

cell cycle, activity patterns (sleep/wake) and DNA repair. Deregulation of the clock affects the 

cell division cycle in diseases like cancer, delayed sleep phase syndrome (DSPS) and familiar 

advanced sleep phase syndrome (FASPS) (34, 68, 72). The circadian clock contains three 

components: a signal transduction pathway integrating external signals with the rhythm time; a 

central oscillator that produces the circadian signal; and a signal transduction pathway that 

defines the outputs in several biology processes (1). Experiments conducted with Drosophila, 

Neuerospora, Synechococcus and mice (Table: 1.1.6.1.1) led to the discovery of many clock 

genes: period (per), timeless (tim), doubletime (dbt), clock (Clk/Jrk) and cycle (cyc) in 

Drosophila; frequency (frq), White Collar 1 (wc-1) and White Collar 2 (wc-2) in Neuerospora; 

kaiA, kaiB and kaiC in Synechococcus and per1, per2, per3, tim, Clock and bmal1/mop3 in 

Mouse (32). Human genes include the period genes  (hPer1), hPer2, hPer3, and hDec1 (33).  

     These clock genes produce oscillators that lead to a regulated transcription loop which is 

regulated by positive and negative post-translational modifications. The main circadian 

transcription factors in mammals are CLOCK and BMAL1, which activate the transcription 

factors Period (PER1-3) and Cryptochrome (CRY1-2). Period and Cryptochrome act as inhibitors 

of BMAL-1 and Clock (Figure: 1.1.6.1.2) (1).  BMAL-1 and Clock from a hetero-dimeric 

transcription factor that binds to E-box sequences in the promoter regions of PER1-3, CRY1-2 

and PEV-ERBα (1, 32).  

 

Organisms Clock genes names 
Drosophila per tim dbt clk/jrk cyc 
Neuerospora frq wc-1 wc-2 
Synechococcus  kaiA kaiB kaiC 
Mice per1 per2 per3 clock bmal1/mop3 
Human hPer1 hPer2 hPer3 hDec1 

 Table: 1.1.6.1.1: Clock genes names (1, 32, 33). 
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This interdependent loop results in the peak of BMAL1-Clock activity during the day and Per-

Cry activity during the night. This cycle would stop after one round if it wouldn’t be CKІδ/ε  

kinase which associates with the Period proteins to facilitate the inactivation of Clock and 

BMAL-1 by giving the Period proteins access to the nucleus as well as by intiating the 

degradation of the Period proteins (Figure: 1.1.6.1.2). The PER-CRY-CKІδ/ε complex 

translocates into the nucleus to block BMAL-1 and Clock. How one kinase can have such 

diveres outputs is yet unknown, but may be linked with differences in its activity levels or 

interaction partners. 

     In mammals, the transcription factor Clock interacts with the histone acetylase p300 which is 

required for the activation of PER and CRY transcription (54). Modification of PER and CRY by 

CKІδ/ε triggers their ubiqitination and destruction by the proteasome (55, 60). This 

phosphorylation was discovered in Drosophila (1), where the Doubletime protein (DBT) which 

is very similar to CK1ε in mammals phosphorylates DmPER proteins (62). CK1δ/ε 

phosphorylates also PER1-3 in mammals (55, 56).  

     In mammals, CK1δ/ε phosphorylation causes a conformation changes in PER masking a 

nuclear localisation signal (58). CRY proteins bind to PER and protect the protein from 

phosphorylation so that the complexes of CRY-PER-CK1δ/ε can enter the nucleus (55, 56). This 

complex inhibits transcription of the genes BMAL1 and Clock (Figure: 1.1.6.1.2). In addition, 

CK1δ/ε effects the clock by phosphorylating BMAL1 and CRY directly (1). However, PER2 

may able to stimulate transcription of BMAL1 as well and causing another positive feedback loop 

(71). Since CK1δ/ε is a clock protein, its mutations  could be linked with diseases. Mutations in 

dbt in Drosophila result in changes in both, the phosphorylation and stability of the Per proteins 

as reviewed by  Knippschild et al. (1) and confirmed by Price et al. (64). A good example of a 

mutation in CKІ is the tau mutation discovered in CKІε of the Syria hamster. This mutation 

(R178C) removes a positively charged arginine residue that makes contact with the negatively 

charged ATP in the active site. As a consequence of this, CK1ε autophosphorylation changes 

reducing its kinase activity. This results in a shorter circadian rhythm (69). The mutated CKІε 

(R178C) binds to PER and CRY but the kinase function is not hight enough to phosphorylate 

PER, and PER becomes more stable and the circadian rhythm in hamster becomes shorter than 

normal reducing it to 22 hours instead of 24 hours (1, 51). The equivalent residue in SpHhp1 is 

R180 (Figure 1.1.6.1.1). 
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Figure: 1.1.6.1.2: A model of the clock in Drosophila: CKІs regulates the circadian clock. BMAL1-CLOCK 
binds to the E-box sequence upstream of the genes PER1–3, CRY1 and CRY2, and REV–ERBa. In the 
cytoplasm CKІ phosphorylate PER and forms the CK1-Per-Cry complex which translate to the nucleus to block 
the heterodimeric transcription factor CLOCK-BMAL1 (1). 

 
 
     Another interesting mutation CKIε.S408N is linked with familiar advanced sleep phase 

syndrome (FASPS). It is characterized by a long circadian rhythm caused by a polymorphism of 

in the CKІε gene that removes the auto-phosphorylation site serine 408 by mutating it to 

asparagine (S408N). This mutation increases the activity of CKІε (57). Another mutation linked 

to FASPS in mice is a permutation of serine-662 to glycine in the Per2 protein which interfers 

with the binding of mPer2 to mCKІε decreasing CK1ε mediated phosphorylation of mPER (68). 

The polymorphism of V647G in human Per3 also influences CKІδ/ε binding and causes delayed 

sleep phase syndrome (DSPS) (72). 

R180
(RDm178C, tau)

Figure: 1.1.6.1.1: Model of S.pombe Hhp1. 
The model is based on the crystal structure of 
S.pombe Cki1 (PDB ID: 1CSN). The model 
was produced with the Swiss Model tool 
(http://swissmodel.expasy.org/interactive; 
accessed 03 April 2015). The protein 
sequence identity is 57.39% and the covered 
sequence ranges from 5aa-294aa. The 
position of the arginine residue R180 in 
SpHhp1 is shown. This residue is equivalent 
to the tau mutation R178C in the Syrian 
hamster CKI protein. 
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1.1.6.2. Circadian rhythm and the cell cycle 

     The circadian clock is involved in cell cycle regulation in humans and mice (43). One major 

target of the circadian clock is Wee1 kinase, a negative regulator of cell cycle progression 

(Figure: 1.1.6.2.1). Wee1 regulation is known as Serial Coupling, also called the two-process 

model. In this, expression of Wee1 kinase (cell cycle gene) and of the transcription factor c-Myc 

(cell growth regulation gene) is regulated by the clock in a circadian manner to modulate onset 

of mitosis and DNA replication, respectively. In other words, the idea here is that proteins in one 

cycle regulate gene expression in another cycle. By controlling expression of Wee1 and c-Myc 

(Figure: 1.1.6.2.1), the clock  changes the threshold for mitotic onset (Wee1) and DNA 

replication (c-myc) (101). 

     A more direct involvement of the clock is known as direct coupling, also called parallel 

coupling. Here, the circadian protein Timeless (Tim) (which is homologous to Swi1 in fission 

yeast) is necessary for both, the circadian clock and cell cycle regulation in the response to DNA 

replication problems (Figure: 1.1.6.2.2). In other words, Tim is a direct element of both cycles: 

the circadian cycle and the cell cycle. Thus, elimination of Tim would impaire both cycles. 

However, the circadian cycle can operate in the absence of the cell cycle, as illustrated by the 

muscular circadian cycle, the liver circadian cycle and the neural circadian cycle. A direct role of 

clock proteins in cell cycle regulation is limited to some circadian factors like Tim, Period and 

Cryptochrome (101). 

 

 
Figure: 1.1.6.2.1: Serial Coupling between circadian rhythm and the cell cycle: Synchronization of cell cycle and 
circadian clock may happened via co-operation among Wee1 and c-Myc. Reactions and expression of proteins in 
one cycle may control genes expression in another cycle. In other words, the circadian clock may control the cell 
cycle steps by regulating Wee1 kinase and the transcription factor c-myc. The effects of both cycles, the cell cycle 
and the circadian clock on each other are depended on the strength of the coupling between both cycles (101). 
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Figure: 1.1.6.2.2: Direct Coupling between the circadian rhythm and the cell cycle. Timeless (Tim) contributes to 
both cycles at the same time by forming two discrete protein complexes with Per and Cry2, and ATR-ATRIP and 
Chk1, respectively. ATR kinase binds to single-stranded DNA via its subunit ATRIP where ATR phosphorylates 
Chk1 kinase to mediate repair and to arrest cell cycle progression in the context of the DNA damage checkpoint  
(101). 
 

 

1.1.6.3. Role of Circadian Proteins in the Direct Regulation of the Cell Cycle 

     Cell cycle controls response to DNA damage in all organisms, in a process known as DNA 

damage checkpoints. DNA damage stimulates these cellular stress response pathways and can 

cause cell cycle arrest, apoptosis and DNA repair. DNA damage is detected by ATR and ATM 

kinases, and the inhibitory cell cycle signal is conveyed by Chk1 and Chk2 kinase, respectively. 

While ATM binds to broken chromosomes, ATR detects single-stranded DNA (43, 66, 132, 

499). 

     Interestingly, some circadian proteins such as Per1, Timeless and Per2 influence this DNA 

damage response. Per1 works as a tumour suppressor and regulates ATM kinase (Figure:  

1.1.6.3.1) directly in the context of the detection of broken chromosomes (132). Overexpression 

of Per1 in cancer increases apoptosis caused by ionizing radiation which induces DNA double-

strand breaks. Inhibition of Per1 has the opposite effect reducing apoptosis. Ionizing radiation 

may result in nuclear translocation of Per1 coinciding with the induction of c-Myc expression 

and repression of the CDK inhibitor p21 (Waf1/Cip1) (132). In summary, Per1 performs a 

second important role as regulator of ATM kinase in the context of apoptosis induced by broken 

chromosomes, a key function to suppress tumour formation (66). 

     In a similar way, Timeless interacts with ATR kinase (Figure: 1.1.6.3.1) to modulate the 

response to DNA replication problems (43). Like Per1, Per2 acts as tumour suppressor as 

indicated by the observation that Per2 mutant mice develop γ-radiation induced lymphomas in a 

high ratio compared with wild type controls resulting from a partial impairment of p53-mediated 

apoptosis.  Disruption of the circadian clock itself does not impact on DNA repair and DNA  
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damage checkpoints highlighting the fact that only some selected circadian proteins adopted this 

function (66). 

 

Figure: 1.1.6.3.1: ATM/Chk2/Per1 and ATR/Chk1/Tim1 activities. An interaction between circadian clock and cell 
cycle proteins. Per1 and Tim1 are both required to activate the DNA damage checkpoint kinases ATR-Chk1 in S 
phase and  ATM-Chk2 in G2 (499). 
                                                                                        
 

1.1.6.4. Clock Genes and Aberrant Expression in Cancer 

     The circadian clock genes CKIε, Per1, Per2, Per3, Cry1, Cry2, Clock, and Bmal1 are all 

involved in cancer development. Deregulation of clock gene expression is found in various 

cancer types (133, 134). Many breast cancer cells expressed Per genes abnormally due to 

changes in the methylation patterns at the Per gene promoters. This resulted in the use of the 

Per3 gene as a biomarker for diagnosis of breast cancer in pre-menopausal women (66). 

Expression of Per1 and Per2 may be decreased in sporadic breast tumors compared to normal 

breast tissue (105), demonstrating the tumor suppressive nature of Per2. Per2 activity can be 

promoted in the presence of its normal clock partner Cry2. Additionally, Per2 expression in 

cancer cell lines is associated with a significant decrease in the expression of Cyclin D1 and an 

up-regulation of the tumor-suppressor p53 (103).  

     Proliferation in ovarian cancer cells has been found to follow a pattern of peaks and troughs 

that is out of phase with the circadian rhythm compared to normal tissue (93). Expression levels 

of Per1, Per2, Cry2, Clock, and CKIε in ovarian cancers are lower than expression levels in 

normal ovaries. In normal tissues Cry1 expression is higher then Per3 and Bmal1, and also  
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expression levels of Per1 are lower than Cry1 in non-tumour tissues compared to cases of   

endometrial carcinoma (EC) (84). Per1 expression decreases in endometrial carcinoma (EC) 

possibly caused by DNA methylation of the promoter or other factors which lower Per1 gene 

expression thereby disrupting the circadian rhythm or the DNA damage response helping 

endometrial cancer cells to survive (134). Per1 is also down-regulated in human prostate cancer 

(136). The beneficial role of low Period protein levels is further illustrated by the observation 

that over-expression of Per1 in prostate cancer cells leads to growth inhibition and apoptosis 

(136), and by the finding that expression of Per1, Per2, Per3, Cry1, Cry2, and Bmal1 is strongly 

reduced in the chronic phase and blast crisis of chronic myeloid leukemia (CML) (135). 

 
1.1.7. CKІ, the Tumor-suppressor p53 and the Oncogene mdm2   

     CkI of the subtypes δ and ε are also involved in cancer formation. Both CKІδ and ε 

phosphorylate the important tumour suppressor p53 in vitro and in vivo (100). Since it is difficult 

to distinguish between both kinases many papers refer to CKІδ/ε when discussing the role of 

these kinases. CKІδ/ε phosphorylates murine p53 at serine 4, 6 and 9, and human p53 at serine 6, 

9 and 15 and threonine 18 (96, 97, 98). Phosphorylation of the N-terminal serine 15 and 

threonine 18 by CKІ may result in the inhibitation of the interaction of p53 with MDM2, its 

partner protein required for the down-redulation and destruction of p53. Thus, CKІδ/ε 

phosphorylation is expected to stabilise the transcription factor p53 protecting organisms from 

damaged and potentially dangerous cells (97, 98, 99). Knippschild et al. (96) stated that CKІδ/ε 

phosphorylation of p53 is a feedback loop under stress situations. Consistent with this idea, 

CKІδ/ε phosphorylates MDM2 at serine 240, 242, 246 and 383 in the C-terminal domain (1). 

CKІ is maybe suggested to play partly a role in aberrant proliferation of cells, because of dual 

roles of the oncogene mdm2 and CKІ-mediated modification of the tumor-suppressor p53 in the 

context of the role of CKI in Wnt signalling (i.e.  inhibition of β-catenin). The tumor-suppressor 

activities of CKI are linked with the induction of apoptosis and with the stabilisation of the  

microtubule network and centrosome functions.  CKІγ was also implicated in the development of 

kidney cancer (1). While, Frierson et al. (76) identified a role of CKIε  in adenoid cystic 

carcinomas (ACC) in the salivary gland,  and Masuda et al. (77) recognized an impact of CKІ 

activity on Acute Myelogenous Leukemia (AML). In mice, immunoreactivity for CKІδ was 

confirmed in cells of hyperplastic B follicles and advanced B-cell lymphomas in p53-deficient 

cells (75), and CKІδ activity was detected in choriocarcinomas (1, 560). CKІδ and ε  
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immunoreactivily were found in breast carcinomas in many nuclei and the cytoplasm of ductal 

and acinar epithelial cells in the malignant tissue (78). Moreover, CKІε has high 

immunoreactivity in invasive tumors of the breast tissue (78).  

 

1.1.8. The role of CKІ in Cell Physiology 

     CkІ isoforms have a role in many cell processes such as the cell cycle and mitosis in 

eukaryotes. For example, Hrr25 (CKІδ/ε) in S.cerevisiae directly regulates mitosis and meiosis 

(86). The other two CKI isoforms in S.cervisiae, ScCKІ and ScCKІІ, have roles in bud formation 

(cell division) and cytokinesis (82, 83). Mammalian CKІα is involved in spindle dynamics and 

chromosome segregation (84, 85), while CKІδ is active at the spindle apparatus and the mitotic 

centrosomes (79). CKІδ phosphorylates tubulin, and the microtubule-associated proteins MAP4, 

MAP1A, Tau, and Stathmin in response to genotoxic stress that could result in genomic 

instability (79). Human CKІδ/ε may regulate some centrosome functions, because it interacts 

with the centrosomal scaffold protein AKAP450 (87). Taken together, CKІδ/ε are important to 

prevent uneven chromosome distribution in mitosis which could result in aneuploidy frequently 

observed in cancer cells. The latter may also explain why CKІδ/ε upregultes the tumour 

suppressor p53 which can remove such cells by inducing apoptosis (80, 81). Interestingly, 

SpHhp1 contains a potential microtuble binding domain (HIPYR) between histidine-167 (H167) 

and arginine-171 (R171) located in a loop above the ATP binding site (Figure 1.1.4.1; Figure 

1.8.1). 

 

                                                                                                  
                                                                  
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

R171
H167

Figure: 1.1.8.1: Model of S.pombe 
Hhp1. The model is based on the 
crystal structure of S.pombe Cki1 
(PDB ID: 1CSN). The model was 
produced with the Swiss Model 
tool 
(http://swissmodel.expasy.org/inter
active; accessed 03 April 2015). 
The protein sequence identity is 
57.39% to the model template 
CK1δ and the covered sequence 
ranges from 5aa-294aa. The 
position of microtuble binding 
domain 167-HIPYR-171 in 
SpHhp1 is shown. Arginine R171 
is highlighted. 
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1.1.9. Reaction and Action of CKІ in Apoptosis 

     Beyaert et al. (70) stated that CKІ isoforms retard apoptosis by several pathways which 

includes phosphorylation of receptor for p75 tumor necrosis factor alpha (TNFα). In this context, 

CKІ, especially CKІα, may prevent cell death by interfering with tumor necrosis-factor-related 

apoptosis including ligand (TRAIL) induced apoptosis. CKІ mediated phosphorylation of the 

DISC complex, which forms at the cytoplasmic side of the TNFα receptor, may block activation 

of the caspase cells death response (41). CKІ α, δ, and ε play also a role in the regulation of Fas-

mediated apoptosis. Fas-mediated apoptosis is caused by caspase-8 activation  (1). The induction 

of apoptosis through this pathway depends on caspase-8 mediated cleavage of the proapoptotic 

Bcl2 family member Bid at aspartate-59, which is negatively influenced by CKI dependent 

phosphorylation in direct neighbourhood to the cleavage site (48). In the case of mouse Bid, 

modification of serine-61 by a priming kinase stimulates phosphorylation of serine-64 and 

serine-66 by CKІ thereby blocking cleavage of mBid (1, 39).  

     CK1α interferes with cell death mediated by the RXR class of retinoic acid receptors. The 

nuclear retinoic acid (RXR) receptors are able to build heterodimers with NGF1-B, insulin- like 

growth factor binding protein 3 (IGFBP) and β-catenin, which all play an important role in 

regulating cell survival. Upon an apoptotic stimuli through 9-cis retinoic acid and its derivatives, 

NGF1-B is released from the complex which then relocates to mitochondria where it induces the 

release of cytochrome C and apoptosis (36, 37, 42, 44, 47, 73). CKІα represses apoptosis by 

phosphorylating RXR without affecting RXR regulated gene transcription. Both proteins RXR 

and NGF1-B were discovered in interchromatin granule clusters, which led to the idea that the 

phosphorylated RXR–CKIα complex might be responsible for the relocalisation to the chromatin 

which would block apoptosis as RXR cannot move to the mitochondria (38, 45).  

 
1.1.10. CKІ and the Wnt Pathway 

     In both vertebrates and invertebrates the wingless (Wnt) signalling pathway performs 

important roles in development, for example, in forming the dorsal axis, the growth of tissues 

and the proliferation and differentiation of cells (e.g. neural cells, mammary cells and embryonic 

stem cells) (7, 17, 18). In fact, mutations in the Wnt-signaling components   contribute to cancer 

in patients suffering from skin, liver, breast, brain, and colon tumours (1,7, 19). 

     The Wnt signaling pathway begins when the secreted wnt protein ligand binds to the frizzled 

receptors at the plasma membrane (Figure: 1.1.10.1) (22). This signal actives the frizzled   



New roles of CKІε in DNA Replication Stress 2015 
 

41| P a g e  

 

 

receptor and causes phosphorylation of the protein dishevelled (Dvl) (18, 22). At the heart of this 

signalling pathway is the Axin protein complex. Axin is a scaffold protein to which the kinases 

CK1 and Glycogen Synthase Kinase- 3β (GSK-3β) bind to phosphorylate the transcription factor 

β-catenin (1, 20). Another member of this complex is the protein Adenomatous Polyposis Coli 

(APC) which is lost in approximately 90% of colon cancer cases  (1, 18, 22). Phosphorylation of 

β-catenin by CKІ and GSK3β reveals a recognition motif of β-transducin repeats which are a 

target of ubiquitin ligases that trigger the destruction of the phosphorylated β-catenin thereby 

preventing Wnt signalling (1, 20). These events take place in the absence of the wnt ligand to 

ensure that cells do not divide. Once the wnt ligand engages with the frizzled receptor, 

phosphorylation of β-catenin by GSK-3β and CKI stops which stabilises β-catenin and activates 

a nuclear transcriptional response (Figure: 1.1.10.1) (23). 

     CKІ is predicted to phosphorylate β-catenin at serine 45 (24). Knippschild et al. (1) reviewed 

that CKI is a negative regulator of  Wnt signaling, because it may phosphoryate β-catenin at 

serine 45, and this action could initiate GSK3β-mediated phosphorylation of β-catenin at serine 

33, serine 37 and threonine 41 (20). Loss of CKI activity would therefore prevent degradation of 

β-catenin in the absence of wnt signalling, a key event in cancer formation (1). 

     Althought CKІ is known as a negative regulator of wnt signalling, recent research has 

revealed that CKІ family members have also positive roles in this pathway (7, 25). Axin, Dvl and 

APC may also be a CKІ substrate resulting in a positive effect on Wnt signaling (7, 26). The 

precise functions of Dvl are however still unknown (7, 27).  CKІε-mediated phosphorylation of 

the Dvl causes disintegration of the Dvl, axin, GSK3β complex by recruitning Frat to the 

complex (Figure: 1.1.10.1) (28). The phosphatase PP2A might activate CKІε when Wnt 

signalling decreases by reducing phosphorylation of the C-terminal inhibitory 

autophosphorylation sites of CKІε (30).  

     Another mechanism by which CKІε could act as a positive regulator of Wnt signalling is 

through the phosphorylation of Tcf3. CKІε and Tcf3 act synergistically, and phosphorylated 

Tcf3 binds to β-catenin thereby inhibiting its phosphorylation and degradation. In addition,  

CKІε could act as molecular switch between two pathways: the canonical Wnt-signiling pathway 

and the planar cell polarity/JNK pathway. The latter regulates, the organization of the 

cytoskeleton and Dvl is involved in both pathways. Interestingly, over-expression of Dvl and 

inhibition of CKІε may stimulate the JNK pathway (1). 
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Figure: 1.1.10.1: Mechanism of CKІ in the wingless (wnt) pathway. In the absence of Wnt-signalling, CKІ and 
GSK3β (glycogen synthase kinase 3β) both phosphorylate β-catenin at its N-terminus. This reveals the β-TRCP (β-
transducin repeat containing protein) domain of β-catenin. This allows the binding of β-TRCP which leads to the 
ubiquitination and destruction of β-catenin. In the presence of the Wnt ligand, which binds to the Fzl receptor 
(Frizzled receptors), the Dvl (dishevelled) protein is phosphorylated. The phosphorylation of Dvl enables it to bind 
to axin and to block the phosphorylation of β-catenin by GSK3β and CKIε (1).  
 
 

 

1.1.11: CKІ and the Response to DNA damage 

     As mentioned earlier in Chapter 5 CKI enzymes may regulate the DNA damage response via 

their role in the circadian clock. Especially in the case of ScHrr25, SpHhp1 and SpHhp2 there is 

evidence that CKI enzymes play a direct role in the DNA damage response (169, 171, 172). As 

shown in Figure 1.1.11.1, S.pombe cells contain the paraloge kinases of ATM (Tel1), and ATR 

(Rad3), but in contrast to mammalian cells, Tel1 (ATM) plays only a minor role in the DNA 

damage response. The reason for this is the rapid conversion of double-stranded DNA breaks 

into single-stranded DNA which activates Rad3 (ATR) kinase (179). In S-phase, Rad3  activates 

Cds1 (Chk2) kinase to signal replication stress, whereas in G2-phase Rad3 activates Chk1 kinase 

(Figure 1.1.11.1) (169, 171, 172, 179). 

    In G2, Chk1 phosphorylation at serine 345 by Rad3 kinase requires the loading of the Rad9-

Rad1-Hus1 ring onto the ssDNA-dsDNA junction by the Rad17-RFC complex. In the presence 

of the scaffold proteins Rad4 (TopBP1) and Crb2 (53BP1), Rad3 phosphorylates Chk1 at S345  
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which results in a G2-M delay as Chk1 enforces the inhibitory phosphorylation of Cdc2 kinase at 

tyrosine 15 by stimulating Wee1 kinase and by removing Cdc25 phosphatase from the nucleus 

(169, 171, 172, 224, 395, 483, 484).  

 

 
Figure: 1.1.11.1: The DNA Damage Response in S.pombe. Tel1 (ATM) kinase is recruited to DNA double-strand 
breaks (DSBS) by the Rad50-Mre11-NBS1 (MRN) complex to activate Chk1 kinase which associates with the 
scaffold protein Crb2 (53BP1). Since DSBS are rapidly converted into single-stranded DNA (ssDNA), which 
activates Rad3 (ATR) kinase, Tel1 plays only a minor role in fission yeast. Rad3 is recruited to ssDNA by Rad26 
(ATRIP) where it phosphorylates Cds1 (Chk2) kinase in S and Chk1 kinase in G2. Cds1 binds to stalled DNA 
replication forks via the scaffold protein Mrc1. Tel1 may modulate activation of Cds1 by phosphorylating Mrc1. 
Activation of Cds1 and Chk1 prolongs the inhibitory phosphorylation on Cdc2 at tyrosine 15 (Y15) which blocks 
entry into mitosis. Chk1 activates Wee1 kinase and removes Cdc25 phosphatase from the nucleus. This maintaince 
Y15 phosphorylation. Activation of Chk1 requires the presence of the Rad9-Rad1-Hus1 (9-1-1) ring which is loaded 
by Rad17-RFC, and the presence of a second scaffold protein Rad4 (TopBP1) (169, 171, 172).   
 

      

      In S phase, Rad3 activates Cds1 (Chk2) to stabilise and protect DNA replication forks, and to 

block cell cycle progression. Cds1 is recruited to stalled replication forks by the scaffold protein 

MRC1 (237). Zhou and  Elledge (169) stated that Cds1  kinase has about 70%  similar   to 

ScRad53, and that Cds1 kinase is required for cell survival caused by introducing the 

ribonucleotide reductase inhibitor hydroxyurea (HU). When replication forks break, Rad3 

switches from Cds1 to Chk1 to signal DNA damage (236, 272). As activation of Chk1, 

phosphorylation of Cds1 requires the presence of the 9-1-1 ring at stalled forks. Unlike Ck2 

which is involved in the response to DNA damage (502), there is so far only limited evidence of  
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a role of CKI enzymes. In S.cerevisiae and in S.pombe, Hrr25 and Hhp1 are required for the 

repair of DNA breaks (102, 169, 171). Similar evidence is not yet available in higher eukaryotic 

cells. The role of Hhp1 in DNA break repair could be linked with its association with the Rad50 

protein (497). 

     The MRE11–RAD50–NBS1 (MRN) complex plays important roles at a DNA double-

stranded break as it recruits via its Nbs1 subunit Tel1 (ATM) kinase (173, 332, 502) and helps to 

convert the break into ssDNA to activate Rad3 (ATR) kinase via its Mre11 exonuclease subunit. 

Hence the association between Hhp1 and Rad50 could affect these important DNA damage 

activities of the MRN complex (162). Given that the MRN complex acts in homologous 

recombination (HR) and Non-Homologous End Joining (NHEJ) it is possible that Hhp1 

influences the choice of the repair pathways to mend broken chromosomes. Since the Cdc2-

cyclin B kinase complex promotes HR and blocks NHEJ in G2 (272, 501), and because Hhp1 

associates with Cdc2 and cyclin B (Cdc13) (272, 497), CKI could also affect the repair response 

indirectly via the main cell cycle regulator Cdc2-cyclin B. 

 

1.2. Aims of this Study 

     Currently the study of CK1 enzymes in mammalian cells is complicated by the large number 

of isoforms and by the limited availability of specific reagents. The overarching aim of this work 

is to utilize the model eukaryote S.pombe to understand the consequences of mutations in 

conserved amino acids or domains of CK1ε (Hhp1) on DNA repair, mitosis and cell cycle 

regulation. 

     Previous work in the group revealed a novel function of Hhp1 kinase in the response to DNA 

replication stress caused by replication of methylated templates (methylmethanesulfonate, MMS) 

or when replication forks collide with Topoisomerase 1 proteins immobilized by the anti-cancer 

drug camptothecin (CPT). Genetic data suggest that Hhp1 acts downstream of the DNA 

replication protection complex consisting of Swi1 (Timeless) that travels which the   DNA 

replication fork (Figure: 1.2.3), and the scaffold protein MRC1 (Clasplin) which  activates a 

DNA damage response specifically in S-phase (Figure: 1.1.11.1; Figure: 1.2.2) (Caspari, 

unpublished). Given the close link between the circadian clock, the DNA damage checkpoint and 

cell cycle regulation (Chapter 5), regeneration of the circadian tau mutation in Hhp1 (R180C) 

which results in a changed auto-phosphorylation pattern (69), was also included.   
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Figure: 1.2.1: Alignment of S.pombe Hhp1, S.cerevisiae Hrr25 and human CK1ε. The conserved residues 
involved in kinase activity, circadian clock functions and disease development are indicated (numbers refer to 
the human protein). (source: PRALINE sequence alignment tool; available at: 
http://zeus.few.vu.nl/jobs/ad211873028694a24fd126b6d9ae7064/; accessed 13 October 2015). Human CKIε: 
NP_689407.1, SPHhp1: CAA20311.1, and SCHrr25: CAA97918.1. 
 

 
Figure: 1.2.2: Model of S.pombe Hhp1 with the mutation sites indicated. The model is based on CKI (PDB ID: 
3SVO) (500) with 70.43% identity ranging from 4aa-297aa which covers the complete kinase domain but only the 
beginning of the C-terminal domain. The model was generated with Swiss Model 
(http://swissmodel.expasy.org/interactive; accessed 04 April 2015). The numbers refer to the amino acid position in 
S.pombe Hhp1 kinase. 



New roles of CKІε in DNA Replication Stress 2015 
 

46| P a g e  

 

 

Unpublished work revealed that S.pombe cells expressing the tau mutation are partly sensitive to 

the topoisomerase 1 poison CPT and have an extended G2 arrest in response to this type of DNA 

damage (Williams and Caspari, unpublished). 

      In addition to the previously generated mutation in the ATP binding site (K40R) and the 

circadian clock mutation tau (R180C) (Figure: 1.2.2), the following mutations will be re-created 

in Hhp1 (Figure: 1.2.2). A replacement of leucine-38 by glutamine in human CKI is frequently 

found in aggressive breast cancers ( ̴ 12% of 42 screened breast cancer patients) (141, 142), but 

the biological consequences of this mutation are currently unknown (Hhp1: L41Q). The 

Drosophila mutations doubletime short (P47S; Hhp1.P49S) and doubletime long (M80I; 

Hhp1.M82I) lengthen or shorten the circadian clock in the fruit fly, respectively. Both decrease 

the kinase activity in vitro. Interestingly P49 in Hhp1 is replaced by a serine residue in Hhp1 

(Figure: 1.2.2). Serine 183 is a potential phosphorylation site of the DNA damage response 

kinase Chk1 which was identified during this study (Sayed and Caspari,  unpublished). In 

addition to these point mutations, the highly conserved microtuble and nuclear localisation 

(TKKQKY-227) domains (Figure: 1.2.2) will be deleted in frame, and the conserved tyrosine 

residues within both domains, which may act as phosporylation sites (Hhp1: Y169F; Y227F), 

will be replaced by a phenylalanine  residue. The resulting mutant strains will be tested in (i) 

DNA damage sensitivity assays, (ii)  cell cycle assays and (iii) their phosphoryaltion status will 

be tested using isoelectric focusing. 
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Figure: 1.2.3: Implication of Swi1 in response to replication fork arrest. Swi1 is implicated in the response to 
fork arrest during S-phase (118). Recruitment of Swi1 that travels with the replication fork is important to 
activate Cds1 kinase in response to DNA replication lesions. This activation requires also the scaffold protein 
Mrc1 (Clasplin).  Swi1 and Mrc1 act jointly with the DNA damage checkpoint kinase a Rad3-Rad26 and the 
PCNA-like ring complex Rad9-Rad1-Hus1  (49, 118).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 



New roles of CKІε in DNA Replication Stress 2015 
 

48| P a g e  

 

Chapter 2: Materials and Methods 
-------------------------------------------------------------------- 
 

2. Materials and Methods 

2.1. Materials 

2.1.1. Media 

2.1.1.1. S.pombe media: 

 

2.1.1.1.1. YEA (Yeast extract Agar) 

  0.5% w/v yeast extract  

  3.0% w/v glucose 

  0.01% w/v adenine  

  H2O 

  2% w/v agar  

 

2.1.1.1.2. YEA broth medium 

  0.5% w/v yeast extract  

  3.0% w/v glucose 

  0.01% w/v adenine  

  H2O 

 

2.1.1.1.3. YEA+ 5-FOA 

   0.5% w/v yeast extract  

   3% w/v glucose               

   0.01% w/v adenine phosphate 

   2% w/v Agar                    

   dH2O 

   after autoclaving add in amount of 1mg/ml 5-fluororotic acid 

 

2.1.1.1.4. G418 ((Geneticin) aminoglycoside antibiotic) 

  0.5% w/v yeast extract  

  3% w/v glucose               

  0.01% w/v adenine phosphate 
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  2% w/v agar                    

  dH2O 

  after autoclaving add in amount of 75-100μg/ml G418 

 

2.1.1.1.5. YEA+CPT (camptothecin) 

  0.5% w/v yeast extract  

  3% w/v glucose               

  0.01% w/v adenine phosphate 

  2% w/v agar                    

  dH2O 

  after autoclaving add camptothecin (CPT) from a 10mM stock solution in DMSO to the 

required final concentration  

 

2.1.1.1.6. YEA+MMS (methyl methanesulfonate) 

  0.5% w/v yeast extract  

  3% w/v glucose               

  0.01% w/v adenine phosphate 

  2% w/v agar                    

  dH2O 

after autoclaving add MMS from a 99% stock solution (SIGMA 129925) to the required final 

solutions of 0.005% or 0.01% MMS  

 

2.1.1.1.7. Minimal Media minus Leucine or Adenine or Uracil (MM-L or A or U) 

    3% w/v glucose  

    2% w/v agar     

    dH2O (1litre) 

    Yeast nitrogen base 6.7g (dissolve into 40 ml dH2O, spin at 3000rpm for three minutes and 

then filter sterilize onto the recipe) 

    Adenine 7.5mg/ml 30x 33.2 ml/L 

    Uracil   3.5mg/ml 15x 66.6 ml/L 

    Leucine  7.5mg/ml 30x 33.2 ml/L 
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2.1.1.1.8. EMM (Edinburgh minimal medium) 

    3.0% w/v glucose 

    0.67% w/v yeast nitrogen base  

    0.5% w/v NH4Cl 

    225mg/L of supplement: adenine / histidine /uracil / leucine 

    pH = 5.5 adjusted with KOH 

    H2O 

    2% w/v agar  

 

2.1.1.1.9. ME (Malt extract) 

    3% w/v Bacto-malt extract 

    225mg/L of supplement: adenine / histidine /uracil / leucine 

    dH2O 

    pH 5.5 adjusted with NaOH. 

    2% w/v agar  

 

2.1.1.2. E. coli media 

2.1.1.2.1.  LB Medium (Luria-Bertani broth) 

    1% w/v tryptone               

    0.5% w/v yeast extract        

    1% w/v NaCl                    

    dH2O (to 1Liter) 

 

2.1.1.2.2.  LB Agar Medium 

    10g/L tryptone               

    5g /L yeast extract        

    10g/L NaCl                    

    20g/L agar                     

    dH2O (to 1Liter) 

 

2.1.1.2.3.  LB Agar Medium+ ampicillin 

     10g/L tryptone               
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    5g/L yeast extract        

    10g/L NaCl                    

    20g/L agar                     

    dH2O (to 1Liter), after autoclaving add ampicillin (100 mg/ml) 

 

2.1.2. Buffers and others 

2.1.2.1. 10X DNA loading dye  

    0.025g xylene cyanol 

    0.025 g  bromophenol blue 

    1.25ml of 10% SDS 

    12.5ml glycerol 

    6.25ml dH2O 

                

2.1.2.2. 4% Paraformaldehyde (10ml volume) 

    0.4g Paraformaldehyde 

    2μl 10M NaOH 

    dH2O 

 

2.1.2.3. 10X PBS buffer (phosphate- buffered saline) 4 litre volume (pH 7.2) 

    360g NaCl 

    43.6g Na2HPO4 

    12.8g NaH2PO47HPO4 

    dH2O 

 

2.1.2.4. 10X SDS buffer (4 litre volume) 

    576g Glycine 

    40g SDS 

    121g Tris-HCl 

    dH2O 

 

2.1.2.5. 10X Transfer buffer (4 litre volume) 

    124g Tris-base 
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    56g Glycine 

     dH2O 

  

2.1.2.6. 50X TAE buffer (Tris-Acetate-EDTA) (1 litre volume) 

    242g Tris base 

    47.1ml glacial acetic acid 

    37.2g Na2EDTA. 2H2O 

    dH2O 

 

2.1.2.7. 10 X TBE buffer (for agarose gel electrophoresis) (1 litre volume) 

    108g Tris base (890mM) 

    55gBoric acid (890mM) 

    40ml EDTA pH8 (20mM) 

     dH2O 

  

2.1.2.8. 1X TE buffer (Tris-EDTA) 

    10mM Tris-HCl pH7.5 

    1mM EDTA pH8 

 

2.1.2.9. 100% TCA (Trichloroacetic Acid) 

    500g TCA 

     350ml dH2O 

 

2.1.2.10. 10mM dNTPs 

    10ul dATP 100mM stock solution 

    10ul dCTP 100mM stock solution 

    10ul dGTP 100mM stock solution 

    10ul dTTP 100mM stock solution 

    60ul  dH2O 

 

2.1.2.11. Lithiumacetat buffer 

    100mM lithiumacetate 
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  10mM Tris pH6.5 

    1mM EDTA pH8 

  

2.1.2.13. 30X Adenine (7.5 mg/ml) (250 ml volume) 

    1.9g adenine  

    dH2O 

 

2.1.2.14. 15X Uracil (3.5 mg/ml) (250 ml volume) 

    0.9g uracil 

    dH2O 

 

2.1.2.15. 30X Leucine (7.5 mg/ml) (250 ml volume) 

    1.9g leucine 

    dH2O 

 

2.1.2.16. DNA extraction buffer (genomic DNA) 

    2% w/v triton 100x 

    1% w/v SDS 

    100mM NaCl 

    10mM Tris-HCl pH8 

    1mM EDTA 

 

2.1.2.17. 1X SDS running buffer (1 Litre volume) 

    50 ml 10x SDS buffer (dissolve 30g of Tris base, 144g of glycine, and 10g of SDS in 1L of  

water. The pH of the buffer should be 8.3)  

    dH2O (to1 Liter) 

  

2.1.2.18. 1X transfer buffer (5 Litre volume) 

    100ml 10x Transfer buffer 

    750ml Methanol  

    dH2O 
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2.1.2.19. 1X PBS + 0.05 % Tween 20 

    200ml 10x PBS pH7.2 (80g NaCl, 2g Kcl, 14.4g Na2 HPO4, 2.4g KH2PO4 in 800ml water, 

adjust pH to 7.2, adjust volume to 1L with additional distilled water) 

    1mL Tween 20 

    dH2O (to 2000ml) 

 

2.1.2.20. 40% Polyethylglycol (PEG) (100ml volume) 

    40g PEG 4000 

    100ml Yeast Transformation Buffer 

 

2.1.2.21. 1M Lithium acetate (250ml volume) 

    25.505g Lithium acetate 

    dH2O 

 

2.1.2.22. 0.5M EDTA pH 8 (1 Litre volume) 

    186.1g Na2EDTA.2H2O 

    dH2O 

Note: use 10M NaOH to adjust the pH 

  

2.1.2.23. 1M Tris HCl pH 6.8/8.8 

    1M Tris Base 121.1g adjust pH with concentrated hydrochloric acid 

    add H2o up to 1000 ml 

 

2.1.2.24. Buffer H 

    50mM HEPES, pH = 8.0 

    150mM NaCl 

    0.1% w/v NP40 

    10% w/v glycerol 

    5mM EDTA 

60mM β-glycerophosphate 

 

 



New roles of CKІε in DNA Replication Stress 2015 
 

55| P a g e  

 

 

2.1.2.25. Protease inhibitors for soluble protein extract 

    50mM NaF 

    1mM Na3VO4  

    5mM N-ethylmethylamine  

    1mM PMSF 

    1 Protease Inhibitor Cocktail Tablet (Roche, cat no 11836 153 001) per 10ml of 

buffer H 

 

2.1.2.26. Transfer buffer for Western blotting 

    25mM Tris base 

    190mM glycine 

    15% methanol 

    pH around 8.3 

Note: For proteins larger than 80kD, it was recommended that SDS was included at a final 

concentration of 0.1% and concentration of methanol was reduced to 10%. 

 

2.1.2.27. Blocking membrane buffer (milk buffer) 

    3 - 5% milk powder or BSA in PBST buffer. 

    1x PBS 

    0.05% Tween 20 

 

2.1.2.28. Running buffer for SDS-PAGE (Tris-glycine buffer) 

    25mM Tris base 

    190mM glycine 

    0.1% w/v SDS 

    pH around 8.3 

 

2.1.2.29. 1X Soc medium (1Litre volume) 

    20g yrypton 

    5g yeast extract 

    0.5g NaCl 

    dH2O    
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Note:- aliquot in 50ml and autoclave 

 

2.1.2.30. 5M NaCl (500ml volume) 

    146g NaCl 

    dH2O 

 

2.1.2.31. 20% SDS 

    40g SDS 

    dH2O (in 500 ml) 

  

2.1.2.32. Yeast Tranformation buffer pH 68 

    100mM lithium acetate 

    10mM Tris-HCl pH6.8 

    1mM EDTA pH8 

Note: Acetitic Acetate can be used to adjust the pH 

 

2.1.2.33. 40% Polyethyleneglycol 

    100mM lithium acetate 

    10mM Tris-HCl pH6.8 

    1mM EDTA pH8 

 

2.1.2.34. 1M HEPES (1Litre volume) 

    238.3g HEPES 

    dH2O 

 

2.1.2.35. 4X SDS sample buffer 

    40% w/v glycerol 

    240 mM Tris-HCl pH6.8 

    8% w/v SDS 

    0.04% w/v bromophenol blue 

    5% w/v β-mercaptoethanol 
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2.1.2.36. Ponceau Stain 

    0.1% w/v ponceau  

    5% w/v acetic acid 

 

2.1.3. Agarose gel 

    1% w/v agarose  

    1x TAE buffer/or 1x TBE buffer 

    heat in microwave until agarose is completely dissolved 

    0.5μg/ml ethidium bromide  

 

2.1.4. SDS polyacrylamide gel 

2.1.4.1. Resolving gel/bottom gel (total of 10 ml)                                              

Reagent Gel percentage 

8% 10% 12% 15% 

H2O 8.5ml 7.5ml 6.5ml 5ml 

1M TrisHCL pH8.8 7.5ml 7.5ml 7.5ml 7.5ml 

20% SDS 150μl 150μl 150μl 150μl 

40% Acrylamide/Bis 

Solutin, 37.5:1 

4ml 5ml 6ml 7.5ml 

10% APS 100μl 100μl 100μl 100μl 

TEMED 20μl 20μl 20μl 20μl 

   Table: 2.1.4.1.1: Recipe for the resolving acrylamide gels 

 

2.1.4.2. Stacking gel/top gel                                              

Components Gel percentage  4% 

H2O 7.5ml 

1M TrisHCL pH6.8 1.5ml 

20% SDS 50μl 

40% Acrylamide/Bis 

Solutin, 37.5:1 

1ml 

10% APS 100μl 

TEMED 10μl 

   Table: 2.1.4.2.1: Recipe for the stacking acrylamide gel 
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2.1.5. E.coli strain used in this study  

The E.coli strain used to amplify plasmids was TOP10. Genotype: F-mcraD(mrr-hsdRMS-

mcrBC) f80lacZDM15 DlacX74 deoR recA1 araD139 D(ara-leu)7697 galK rpsL (StrR) endA1 

nupG. 

 

2.1.6. Plasmids used  

Plasmids names  References  

pAW8 Plasmid  Watson Adam, Garcia Valerie, Bone Neil,  Carr Antony  and Armstrong John. 

(2008). Gene tagging and gene replacement using recombinase-mediated cassette 

exchange in Schizosaccharomyces pombe. Gene, (407): 63–74. 

Plasmid pREP41-Leu2+ Prudden John, Evans Joanne, Hussey Sharon, Deans Bryan, O'Neill Peter, Thacker 

John and Humphrey Tim. (2003). Pathway utilization in response to a site-specific 

DNA double-strand break in fission yeast. The EMBO Journal, (22): 1419-1430. 

Table: 2.1.6.1: Plasmids  used in this study  

 

 

 

2.1.7. List of antibodies used in this study 

Antibody Company Catalog 

Number 

Description Concentration 

MYC tag  Covance  MMS-150R  Mouse monoclonal   1:1000 

MYC tag  

 

Santa Cruz  SC40 Mouse monoclonal  

 

 1:1000 

HA tag Covance MMS-101R Mouse monoclonal  

 

 1:1000 

HA tag    Santa Cruz SC7392 Mouse monoclonal  1:1000 

HA tag Santa Cruz 

Biotechnology 

sc-7392 Mouse monoclonal  1:1000 

Cdc2  Abcam  AB70860 & 

ab5467 

Mouse monoclonal  1:1000 

Anti-Rabbit IgG Sigma A 6154 Horseradish Peroxidase-

conjugated Affinity Pure 

Goat 

 1:5000 

Anti-Rabbit IgG  DacoCytomation P 0399  Horseradish Peroxidase-

conjugated Swine 

polyclonal  

 1:5000 
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Anti-Mouse IgG DacoCytomation P 0161 Horseradish Peroxidase-

conjugated Rabbit 

polyclonal 

 1:5000 

Anti-Mouse IgG, Light 

ChainSpecific 

Jackson 

ImmunoResearch 

115-035-174 

 

Horseradish Peroxidase-

conjugated Affinity Pure 

Goat 

 1:5000 

Anti-mouse secondary 

AB-HRP anti-light chain 

Jackson 

ImmunoResearch 

115-035-174 Horseradish Peroxidase-

conjugated  

1:10,000 

STREP Tag Source Bioscience ABE3837 rabbit 1:1000 

Anti-HA Tag Covance MMS 101R Mouse 1:1000 

Anti-HA Tag (best for 

Chk1-HA) 

ABCAM AB9110 Rabbit 1:1000 

Anti-mouse HRP 

secondary AB 

Sigma A4416 Goat 1:10,000 

Anti-rabbit HRP 

secondary AB 

Sigma A6154 Goat 1:10,000 

Table: 2.1.7.1: List of Antibodies  used in this is study. 

 

 

2.1.8.  S. pombe strains used in this study 

Name Genotype 

hhp1-HA-wt  (1388) h- ade6-M216 leu1–32 ura-D18 hhp1::hhp1-HA3-kanMX4 

hhp1 base strain (1495)  h- loxP-hhp1--loxM ade6-M216 leu1-32 ura4-D18 

hhp1.R180C-C-terminal.deletion (2007) h- hhp1::loxP-hhp1-Δ298-356-HA-loxM  ade6-M216 leu1-32 ura4-D18 

hhp1.M82I h- hhp1::loxP-hhp1-M82I-HA-loxM  ade6-M216 leu1-32 ura4-D18 

hhp1.L51Q h- hhp1::loxP-hhp1-L51Q-HA-loxM  ade6-M216 leu1-32 ura4-D18 

hhp1.S183A h- hhp1::loxP-hhp1-S183A-HA-loxM  ade6-M216 leu1-32 ura4-D18 

hhp1.R180C.K40R (1986) h- hhp1::loxP-hhp1-R180C K40R-HA-loxM  ade6-M216 leu1-32 ura4-D18 

hhp1.M84G (2008) h- hhp1::loxP-hhp1-M84G-HA-loxM  ade6-M216 leu1-32 ura4-D18 

hhp1.M84G.R180C h- hhp1::loxP-hhp1-M84G R180C-HA-loxM  ade6-M216 leu1-32 ura4-D18 

hhp1.P49S h- hhp1::loxP-hhp1-P49S-HA-loxM  ade6-M216 leu1-32 ura4-D18 

hhp1.NLS.deletion.M84G h- hhp1::loxP-hhp1-Y227F Δ298-356-HA-loxM  ade6-M216 leu1-32 ura4-D18 

hhp1.Y227F.M84G h- hhp1::loxP-hhp1-Y227 M84G-HA-loxM  ade6-M216 leu1-32 ura4-D18 

hhp1.Y169F.M84G h- hhp1::loxP-hhp1-Y169F M84G-HA-loxM  ade6-M216 leu1-32 ura4-D18 

chk1.HA (1682) chk1.HA ura4.D18 ade6.M210leu1.32 

∆cds1 (1043) h- ade6-M210 cds1::ura4+ ura4-D18 

cdc2.1w ∆srs2    cdc2.1w srs2::kanMX4 ade6-M216 leu1-32 ura4-D18  

∆srs2 (1405) ade6-M216 srs2::kanMX4 leu1-32 ura4-D18 
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cdc2.1w  cdc2.1w ade6-M216 leu1-32 ura4-D18 

wild type 804  h- ade6-M216 leu1-32 ura4-D18 

∆srs2∆chk1∆hhp1 srs2::kanMX4 chk1::ura4+ hhp1::hphMX6 leu1–32 ura4-D18 ade6-M210  

∆hhp1∆chk1  (1251) chk1::ura4+ hhp1::hphMX6 leu1–32 ura4-D18 ade6-M210  

∆chk1.hhp1. S183A chk1::ura4+  hhp1::loxP-hhp1-S183A-HA-loxM  ade6-M216 leu1-32 ura4-D18 

∆chk1.hhp1.M82I chk1::ura4+  hhp1::loxP-hhp1-M82I-HA-loxM  ade6-M216 leu1-32 ura4-D18 

∆chk1.hhp1.M84G.R180C 
chk1::ura4+  hhp1::loxP-hhp1-M84G R180C-HA-loxM  ade6-M216 leu1-32 

ura4-D18 

crb2-T215A crb2::ura4+  ade6-M216 leu1-32 ura4-D18 

∆rqh1 (881) rqh1::kanMX4  leu1–32 ura4-D18 ade6-M210  

∆rqh1∆hhp1 (1048) hhp1::hphMX6  rqh1::kanMX4  leu1–32 ura4-D18 ade6-M210  

∆tel1 tel1::leu2  leu1–32 ura4-D18 ade6-M210  

∆tel1:L∆hhp1 hhp1::hphMX6 tel1::leu2  leu1–32 ura4-D18 ade6-M210  

∆mus 81∆hhp1 (1109) hhp1::ura4+ mus81::kanMX4  leu1–32 ura4-D18 ade6-M210  

Hhp1.HA ∆chk1  (2068) chk1::ura4+  ade6-M216 leu1–32 ura-D18 hhp1::hhp1-HA3-kanMX 

hsk-1312 (1188) h- hsk1-1312 ura4-D18 leu1-32 ade6-M210 

hsk-1312 Δhhp1 (1123) hsk1-1312 hhp1::ura4+  leu1–32 ura4-D18 ade6-M210  

 ∆hhp1 ∆rad3 (2222) hhp1::hphMX6 rad3::ade6+  leu1–32 ura4-D18 ade6-M210  

hhp1.K40R ∆chk1 chk1::ura4+  hhp1::loxP-hhp1-K40R-HA-loxM  ade6-M216 leu1-32 ura4-D18 

hhp1.M82I-∆wee1 wee1::ura4+  hhp1::loxP-hhp1-M82I-HA-loxM  ade6-M216 leu1-32 ura4-D18 

hhp1.L51Q-∆chk1 chk1::ura4+  hhp1::loxP-hhp1-L51Q-HA-loxM  ade6-M216 leu1-32 ura4-D18 

Hhp1.K40R-R180C-∆chk1 
chk1::ura4+  hhp1::loxP-hhp1-R180C K40R-HA-loxM  ade6-M216 leu1-32 

ura4-D18 

hhp1.M84G ∆chk1 chk1::ura4+  hhp1::loxP-hhp1-M84G-HA-loxM  ade6-M216 leu1-32 ura4-D18 

hhp1.M84G.R180C-∆Chk1 
chk1::ura4+  hhp1::loxP-hhp1-M84G R180C-HA-loxM  ade6-M216 leu1-32 

ura4-D18 

hhp1.M82I-∆Chk1 
chk1::ura4+  hhp1::loxP-hhp1-M82I S183A-HA-loxM  ade6-M216 leu1-32 

ura4-D18 

hhp1.R180C.C-terminal.deletion hhp1::loxP-hhp1-R180C Δ298-356-HA-loxM  ade6-M216 leu1-32 ura4-D18 

 ∆wee1 (868) h- wee1::ura4+  ade6-M216 leu1-32 ura4-D18 

∆wee1 (869) h+ wee1::ura4+  ade6-M216 leu1-32 ura4-D18 

hhp1.R180C-C-terminal.deletion-∆chk1 
chk1::ura4+ hhp1::loxP-hhp1-Δ298-356-HA-loxM  ade6-M216 leu1-32 ura4-

D18 

hhp1.Y169F-∆chk1 
chk1::ura4+ hhp1::loxP-hhp1-Y169F M84G-HA-loxM  ade6-M216 leu1-32 

ura4-D18 

hhp1.K40R-∆chk1 chk1::ura4+ hhp1::loxP-hhp1-K40R-HA-loxM  ade6-M216 leu1-32 ura4-D18 

hhp1.K40R-R180C-∆chk1 
chk1::ura4+ hhp1::loxP-hhp1-K40R R180C-HA-loxM  ade6-M216 leu1-32 

ura4-D18 
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crb2.YFP (820) h-  leu1-32 ura4-D18 crb2yep2HA6::ura4+ 

chk1.Myc.His (2256) h-  leu1-32 ura4-D18 chk1-9myc2HA6His::ura4+ 

hhp1.Y169F.M84G-∆chk1 
chk1::ura4+ hhp1::loxP-hhp1-M84G Y169F M84G-HA-loxM  ade6-M216 

leu1-32 ura4-D18 

∆hhp1.ura4+-∆mus7::KAH (1157) mus7::kanMX4  hhp1::ura4+ leu1–32 ura4-D18 ade6-M210  

∆mus7::KAH (1128) mus7::kanMX4   leu1–32 ura4-D18 ade6-M210  

cdc2.1w  cdc2.1w ade6-M210 leu1–32 ura4-D18 ade6-L469-ura4+- ade6-M375 

cdc2.1w Δsrs2  
h- cdc2.1w srs2::kanMX4 ade6-M210 leu1–32 ura4-D18 ade6-L469-ura4+-

ade6-M375 

wild-type 804 (804) h- ade6-M210 leu1–32 ura4-D18  

Δchk1:u (1174) h- ade6-M210 chk1::ura4+ leu1–32 ura4-D18 

cdc2.1w  h- ade6-M210 leu1–32 ura4-D18 cdc2.1w 

cdc25.22  (833) h cdc25.22 ade6-M210 leu1–32 ura4-D18 

Δhhp1:H (1824) h- ade6-M210 hhp1::hphMX6 leu1–32 ura4-D18 

Δwee1 h- ade6-M210 wee1::ura4+ leu1–32 ura4-D18 

hhp1-HA h- ade6-M210 leu1–32 ura-D18 hhp1::hhp1-HA3-kanMX4 

ku70-GFP-HA h90 ade6-M210 leu1–32 lys1–131 ku70::ku70-GFPHA3-kanMX4 

ku80-HA h90 ade6-M210 leu1–32 ura-D18 ku80::ku80-HA3-ura4+ 

srs2-Myc  h- ade6–216 leu1–32 ura-D18 srs2::srs2-HA3-kanMX4 

cdc13-HA  h- ade6–216 leu1–32 ura-D18 cdc13::cdc13-HA3-ura4+ 

hhp1-GFP  (2262) h90 hhp1-GFP-kanMX4 ade6–216 leu1–32 ura4-D18 

Δchk1  h90 ade6-M210 chk1::kanMX4 leu1–32 ura4-D18 

Δrad3  h90 ade6-M210 rad3::ade6+ leu1–32 ura4-D18 

 Δcrb2:u h90 ade6-M210 crb2::ura4+ leu1–32 ura4-D18 

Δ swi1:Leu (1692) h-  swi1::LEU2  ura4-D18 leu1-32 ade6-M216 

Δ mrc1:G418R (1499) h-  MRC1::KANMX ura4-D18 leu1-32 ade6-M216 

Δ hhp1:uΔswi1:L    h-  hhp1::hphMX4 swi1::LEU2 ura4-D18 leu1-32 ade6-M216 

Δhhp1:u Δmrc1:KR    h-  hhp1::hphMX4mrc1::kanMX ura4-D18 leu1-32 ade6-M216 

Δhhp1 Δku80 h-  hhp1::hphMX4ku80::ura4+  ura4-D18 leu1-32 ade6-M216 

Δ hhp1Δwee1.50 (1527) h-  hhp1::ura4+ wee1.50  ura4-D18 leu1-32 ade6-M216 

Δ hhp1Δcdc2.1w h-  hhp1::ura4+ cdc2.1w   ura4-D18 leu1-32 ade6-M216 

hhp1.R180C (1885) h-  hhp1-R180C ura4-D18 leu1-32 ade6-M216 

hhp1.K40R  (1886) h-  hhp1-K40R  ura4-D18 leu1-32 ade6-M216 

rad4.116 h+  rad4-116, ura4-D18, leu1-32, ade6-M210  

rad9.HA h-  rad9::ura4+, ura4-D18, leu1-32, ade6-704 

hus1.Myc hus1::13myc, ura4-D18, leu1-32, ade6-704 

rad3.KD (918) rad3-KD, ura4-D18, leu1-32, ade6-704 

cds1 cds1::ura4+, ura4-D18, leu1-32 
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rad9.Myc rad9::13myc ura4-D18, leu1-32, ade6-704 

cdc25.22 h-  ura4.D18leu1.32 

cdc25.22cdc2.1w cdc25.22cdc2.1w ura4.D18 ade6.M210leu1.32 

cdc2.1w (834) h-  ura4-D18 ade6.M210leu1.32 

cdc2.1w h+  ura4-D18 ade6.M210leu1.32 

∆chk1:u Chk1::ura4.D18 ade6.M210leu1.32 

∆chk1 Cdc2.1w Chk1::ura4 cdc2.1w D18 ade6.M210leu1.32 

∆ku70 (978) h-  ku70::kan MX6 ura4.D18 ade6.M210leu1.32 

∆ku70 h+  ku70::kan MX6 ura4.D18 ade6.M210leu1.32 

∆mus81 (1053) h+  mus81::kan MX6 ura4.D18leu1.32 

Table: 2.1.8.1: List of  S. pombe strains used in this study. 

 

2.1.9. Oligonucleotides used in this study 

Name Sequence 5’ to 3’ 

Hhp1-B3.1 CGAAGTTATGCATGCATCGCATGCTAACTTGCTCTACTTTTTCGAACCCC 

Rad9.S8.1 GCTATCACACTAGTTAGACTAGTCAGATCTATATTACCCTGTTATCCC 

Hhp1-forward ATCTTACAGGTACTGCTTGCTATGCTAGCATCAATAC 

Hhp1-reverse   GTATTGATGCTAGCATAGCAAGCAGTACCTGTAAGAT 

Hhp1-

Microtiuble.Del.forward 

GTATCGTGATCACAAAACTCCCTGGCTGCACCTCCCAAGGACAACAAGAATCTTACAG

G 

Hhp1-

Microtiuble.Del.reverse   

CAGTACCTGTAAGATTCTTGTTCTCCTTCGCAGGTCCAGCCAGGTGAGTTTTGTGATCA

C 

Hhp1-Del.NLS.forward CTGCCTTGGCAGGGATTGAAGGCTACCGAAAAGATTATGGAGAAGAAGATCTCTACGC 

Hhp1-Del.NLS.reverse   GCGTAGAGATCTTCTTCTCCATAATCTTTTCGGTAGCCTTCAATCCCTGCCAAGGCAG 

Hhp1-L41Q.forward GGTGAAGAGGTCGCTATCAAGCAAGAATCAACTCGTGCTAAACAC 

Hhp1-L41Q.reverse   GTGTTTAGCACGAGTTGATTCTTGCTTGATAGCGACCTCTTCACC 

Hhp1-P49S.forward TCAACTCGTGCTAAACACTCTCAATTGGAGTATGAATAC 

Hhp1-P49S.reverse   GTATTCATACTCCAATTGAGAGTGTTTAGCACGAGTTGA 

Hhp1-M82I.forward TGTGATTACAACGCTATTGTGATGGATTTATTG 

Hhp1-M82I.reverse   CAATAAATCCATCACAATAGCGTTGTAATCACA 

Hhp1-Y277F.forward CCACGAAAAAGCAAAAGTTTGAAAAGATTATGGAG 

Hhp1-Y277F.reverse   CTCCATAATCTTTTCAAACTTTTGCTTTTTCGTGG 

Hhp1-Y169F.forward CACCTGCACATTCCTTTTCGCGAGAACAAGAATC 

Hhp1-Y169F.reverse   GATTCTTGTTCTCGCGAAAAGGAATGTGCAGGTG 

Hhp1-L51Q.forward GCTAAACACCCTCAACAAGAGTATGAATAC 

Hhp1-L51Q.reverse   TCTGTATTCATACTCTTGTTGAGGGTGTTT 

Hhp1-S103R.forward CAATCGAAAGTTTAGATTGAAAACAGTTC 

Hhp1-S103R.reverse   CAAAAATTAAACAAGTCTTCC 
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Hhp1-S183A.forward CTTACAGGTACTGCACGCTATGCTGCTATC 

Hhp1-S183A.reverse   AATACCTAAATGAGTATTGATAGCATAGCGTGCGTACCTGTAAG 

Hhp1-M84G.forward GATTACAACGCTATGGTGGGAGATTTATTG 

Hhp1-M84G.reverse   GAAGGACCCAATAAATCTCCCACCATAGCG 

Hhp1-K40R.forward CTGGTGAAGAGGTCGCTATCCGTCTAGAATCAACTCGTGC 

Hhp1-K40R.reverse   GCACGAGTTGATTCTAGACGGATAGCGACCTCTTCACCAG 

Hhp1-R180C.forward ATCTTAACAGGTACTGCTTGCTATGCTAGCATCAATAC 

Hhp1-R180C.reverse   GTATTGATGCTAGCATAGCAAGCAGTACCTGTAAGAT 

Hhp1-C-

terminal.deletion.forward 

CTATATGTTTGATTGGACCTTGAAGAGAAAGGGAGCTCAATATATCAACACACCTAAT 

Hhp1- C-

terminal.deletion.reverse   

ATTAGGTCTGTTGATATATTGAGCTCCCTTTCTCTTCAAGGTCCAATCAAACATATAG 

Table: 2.1.9.1:  List of oligonucleotides f used in this study. 

 

Note:- Some of S.pombe mutants were made but DNA sequencing had confirmed they are not 

right. They are: Hhp1. S103A; Hhp1. L41Q (those two are cancer mutants); Hhp1.MBD. 

deletion;  Hhp1.NLS. deletion; Hhp1.Y169F; Hhp1.Y227F; and Hhp1.C-terminal.deletion.  

 

2.2. Methods 

2.2.1. Molecular biological and biochemical methods 

 

2.2.1.1. Preparation of genomic DNA from S. pombe cells 

     YEA cultures  Hhp1.HA.wt cells were grown overnight at 30 oC. Yeast cells were harvested at 

3000 rpm in a Sorvall RT Legend benchtop centrifuge for 3-5 minutes. The supernatant was 

discarded and the pellet was resuspended in 20ml of dH2O. The cells were spun again at 3000 

rpm for 3-5 minutes and the pellet was resuspended in 1ml dH2O, and then transferred to a 2ml 

screw-lid tube. Cells were pelleted at 12000rmp for one minute. 200μl DNA extraction buffer, 

200μl Phenol:Chloroform:Isoamylalcohol (25:24:1), and 6-7 micro-spoons of silica or glass 

beads were added to the cell pellet. The mixture was shaken for 10-12 minutes on a cell disrupter 

vortex at maximum speed. The tube was spun at 12000rpm for five minutes, the aqueous phase 

was moved to an eppenorf tube and the genomic DNA was precipitated with 1ml ethanol 99% by 

spining the mixture for five minutes at 12000rpm. The supernatant was discarded and the DNA 

pellet was resuspend in 400μl TE buffer containing 5μl RnaseA. The RNA was degraded for a 

period of  20-30 min at 37 0C.  1ml 99% ethanol and 40μl 4M ammonium acetate was added to 

precipitate the DNA. The tube was spun for five minutes at 12000rpm. The supernatant was  
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discarded and the tube was placed upside down on a paper tissue for several minutes. The dried 

pellet was resuspended in 100-500μl TE buffer and an aliquot was analysed on a 1% agarose gel 

(Figure: 2.2.1.1.1). 

 

 
  Figure: 2.2.1.1.1: Image of Hhp1 genomic DNA. 

 

 

2.2.1.2. Polymerase chain reaction (PCR) 

     The reaction mixtures and cycles for the amplification of different fragments and to generate 

fusion PCR products were prepared on ice. 

 

2.2.1.2.1. PCR to generate the hhp1 mutants 

One PCR reaction contains: 

     2μl genomic DNA  

     10μl 5Х HF buffer (Finnzymes) 

     5μl 2mM dNTPs 

     0.5μl PhusionTM DNA polymerase (Finnzymes) 

     28 μl dH2O 

A master mix was made and divided into several tubes and then the following pairs of primers 

were added to make fragment A and fragment B as following: 

Tube A:  

     2.5μl Rad9.S8.1 and 2.5μl Hhp1-(specific nucleotide mutation)-Forward                           

Tube B:  

     2.5μl Hhp1.B3.1 and 2.5μl Hhp1-(specific nucleotide mutation)-Reverse 

The PCR was run for 30 cycles. 
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Note:  

1):- stock concentration 10 μM for Rad9.S8.1 and Hhp1.B3.1 primers. 

2):- heated lid of PCR machine is 98 0C, 30 cycles: 98 0C for ten seconds, 55 0C for thirty 

seconds, 72 0C for one and half minute, and hold at 10 0C. 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

2.2.1.2.2. Fusion PCR for such Hhp1-specific Mutant 

Mix fragment A and fragment B to achieve creation of certain mutant as following: 

     5μl fragment A 

     5μl fragment B 

Figure: 2.2.1.2.1.1. Fusion 
PCR. The first PCR reaction 
amplifies two hhp1 fragments 
which overlap by 25-25bp in 
the region of the desired 
mutation. The mutation is 
encoded in the internal 
primers. The two flanking 
primers contain a SphI 
(forward) and SpeI (reverse) 
restriction site. The two 
fragments were purified and 
mixed with only the flanking 
primers present. This results in 
the full-length hhp1 fragment 
which can be clone using the 
SphI and SpeI sites.  

Figure: 2.2.1.2.1.2: Images 
of DNA fragments after 
purification of DNA, one 
fragment has size of about 
1000-1200 Kb and related 
fragment has size of 1000-
1200 Kb, so when they join 
together they suppose to 
give DNA size in about 
1500Kb which is the 
estimated size for Hhp1 with 
its HA tag. 
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    10μl 5Х GC buffer 

     5μl 2mM dNTPs 

     0.5μl PhusionTM DNA polymerase (Finnzymes) 

     20 μl dH2O 

 

The mix was placed in a PCR machine under these conditions: heated lid is 98 0C, 15 cycles: 98 
0C for thirty seconds, 55 0C for thirty seconds, 72 0C for one and half minute, and hold at 10 0C. 

After the PCR had finished , the following  materials were added to each tube: 

     15μl 5Х GC buffer 

     10μl 2mM dNTPs 

     1μl PhusionTM DN polymerase (Finnzymes) 

     15μl dH2O 

     5μl Rad9.S8.1  

     5μl Hhp1.B3.1  (PCR was run again for 35 cycles).  

 

 

 

 

 

 

 

 

 

 

 
Figure: 2.2.1.2.2.2. An example iImage of purified hhp1-HA fusion PCR fragments  

 

Figure: 2.2.1.2.2.1:  
Addition of the HA tag. 
The primer Rad9.S8.1 
binds down-stream of 
the haemagglutinin tag 
sequence which is 
common to all integrated 
HA tags (653). Since the 
genomic DNA was 
prepared from a hhp1-
HA strain, the PRC 
fragment contains the 
three HA epitopes. 
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Note: after each PCR step DNA products were purified by using 1% agarose gel in 1x TAE 

buffer and GenEluteTM Gel Extraction Kit (SIGMA Product Code NA1111) (Figure: 2.2.1.2.2.3). 

 

 

 

 

 

 

 

 

 

 

2.2.1.3. Elution of DNA fragments from agarose gels 

     DND fragments (fusion PCR products) were run on a 1% agarose gel with 0.5 μg/ml 

ethidiumbromide. The DNA bands were cut out under blue light, and extracted from the gel slice 

using the GenElute® Gel Extraction Kit. Gel extractions were processed according to the 

manufacturers’ instructions. The DNA eluted from the columns was stored at -20 oC (Figure: 

2.2.1.2.2.3).   

 

2.2.1.4. Restriction digest 

     Restriction enzymes and buffers were from New England Biolabs (NEB); reaction conditions 

were processed according to the manufacturer’s recommendations. 

 

 
       Figure: 2.2.1.4.1: Examples of digested pAW8 fragments (left panel) and purified fusion PCR products ( i.e.    
       hhp1.M84G.Y227F, hhp1.M84G.NLS.deletion, and hhp1.M84G.Y169F (right panel) 
 

 

 

Figure: 2.2.1.2.2.3. Size of 
the PCR products after gel 
purification. 5μl of each 
PCR  product was mixed 
with 2μl of  DNA loading 
dye and loaded onto a 1% 
agarose gel. The two small 
fragments were fused to the 
larger size. 
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Note: the digest of the PCR products and the vector pAW8 were done according to New England 

BioLabs (NEB) (https://www.neb.com/protocols/2012/12/07/optimizing-restriction-

endonuclease-reactions). 

 

2.2.1.4.1. Restriction Digest for the PCR Products (certain Hhp1 mutant) 

     30 μl of DNA (fusion PCR product)  

     1μl Sph І  

     1μl Spe І  

     5μl NEB 2 (10x) buffer   

     15 μl ddH2O 

The reaction was incubated for 1-2 hours at 37 oC. 

 

Note: Digest protocol with restriction enzymes is in this website (NEB): 

https://www.neb.com/protocols/2014/05/07/double-digest-protocol-with-standard-restriction-

enzymes 

 

2.2.1.4.2. Restriction Digest for the Vector pAW8 

     10 μl of DNA (fusion PCR product)  

     0.5 μl Sph І  

     0.5 μl Spe 

     5 μl NEB2 (10x) buffer   

     14 μl ddH2O 

The digested reaction was incubated for 1-2 hours at 37 oC incubator. 

After the digest all DNA fragments were loaded onto a 1% agarose gel and purified in order to 

check for the right size of the products and to deactivate the restriction enzymes, which was also 

after the digest for 20 min at 70°C.  

5μl of each sample was tested on a 1% agarose Gel in 1X TAE buffer. 

 

Note: Restriction Digest Enzyme SpeІ DNA sequence is provied form the NEB website   

(https://www.neb.com/products/r0133-spei) as below: 
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Restriction Digest Enzyme SphІ DNA sequence is provied form the NEB website   

(https://www.neb.com/products/r0182-sphl) as below: 

 

 

 

2.2.1.5. Ligation 

     Digested inserts and vector (pAW8 plasmid) were incubated with 10Х DNA ligation buffer, 

one unit of T4 DNA ligase in a final volume of 20μl in a 16 oC water bath overnight: 

     5μl pAW8 plasmid (digested and purified)  

     5μl PCR product (digested and purified)  

     2μl (10x) DNA ligase buffer 

     1μl 10U/μl ligase enzyme 

     7μl ddH2O 

 

The rationale behind the Cre-Lox integration system is explained in Watson  et. al.  (258). The 

digested hhp1 fragments were cloned into the unique SphI and SpeI sites of pAW8 (Figure: 

2.2.1.5.1).   
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The Cre/lox site-specific recombination system is based on the sequence specific recombination 

between the idential loxP and loxM3 sequences in the base strain and in the pAW8 plasmid. The 

Cre enzyme catalyses the exchange between the identical sequences thereby exchanging the ura4 

marker gene in the base strain for the mutated DNA fragment in pAW8 (Figure: 2.2.1.5.2). Loss 

of the active ura4+ gene can be selected on 5-FOA plates as cells containing the active ura4 

gene convert the prodrug 5-Fluororotic (5-FOA) into a toxic drug (e.g. cells which underwent the 

exchange are ura4 negative and 5-FOA resistant). 

 

 
Figure: 2.2.1.5.2:  The Cre-Lox cassette exchange system. See text for details  (258). 

 

Figure: 2.2.1.5.1:  The pAW8 
Plasmid. Insertion of the mutated 
hhp1 between the loxP (P) and 
loxM3 (M3) recognition 
sequences for the Cre 
recombinase. The Cre/lox site-
specific recombination enzyme is 
encoded by the cre gene on the 
plasmid. It will recognize the 
corresponding sites at the 
modified hhp1 locus in the base 
strain and insert the fragment 
from the plasmid thereby 
removing the ura4+ marker gene 
which resides between loxP and 
loxM3 at the hhp1 locus in the 
base strain 1495.  
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2.2.1.6. Transformation of E. coli Top10 Competent Cells 

     50μl competent cells were used for one transformation. Cells were purchased from Bioline. 

Cells were thawed on ice and mixed by flicking the tube. 5μl of the ligation mixture was added 

to the cells, which were then incubated ice for 30 minutes on ice. After the heat shock at 42 0C 

for 45 seconds, cells were incubated for one minute on ice before 1ml of LB broth was added. 

Cells were then incubated for one hour in a 37 oC shaker at 200rpm. Cells were harvested by a 1 

min spin at 12,000rpm and the cell pellet was plated on a LB+ampicillin plate. Plates were 

incubated at 37 0C overnight.  

 

Note: Transformation is done by following steps in NEB website: 

https://www.neb.com/protocols/1/01/01/transformation-protocol-c2528 

 

2.2.1.7. Preparation of plasmid DNA from E.coli 

     Plasmid DNA for cloning was prepared using the GenElute® Plasmid Miniprep Kit according 

to the manufacturer’s instructions. Samples of 5μl from the final product were digested again   

with SpeІ and SphІ to test the plasmid (Figure: 2.2.1.7.1). 

 

 
Figure: 2.2.1.7.1: Examples of pAW8 plasmids (about 8000kb) containing hhp1 (approximately 1,500bp) inserts. 
 

 

2.2.1.8. Transformation of S.pombe Cells 

     Cells (Hhp1 base strain 1495) were grown in minimal medium overnight as this increases the 

transformation efficiency. Cells were harvested by centrifugation at 3000 rpm for three minutes. 

The supernatant was discarded and the pellets were washed with 20ml sterile water ddH2O) and  
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centrifuged again. This step was repeated with transformation buffer. The cell pellet that was 

then suspended in 1ml transformation buffer and cells were harvested. 100μl aliquots of cells 

were transferred to an eppendorf tube and the plasmid DNA plus 2μl carrier DNA (10μg/ml 

sonicated & heated [5 min 95°C] salmon sperm DNA) were added. The samples were incubated 

for ten minutes at room temperature before adding 260 μl 40% PEG. Incubation was continued 

for one hour at 30 0C before 43μl DMSO were added. After five minute heat shock at 40-42 0C, 

cells were washed in 1ml of sterile water and plated on selective agar plates (minimal medium 

minus leucine, plus uracil and adenine).  In case of counter selection for ura negative colonies, 

the transformed cells (leu2+) were replica plated onto a YEA plate with 5-FOA. 

 

2.2.1.9. Total Cell Extract with Trichloroacetic acid (TCA) 

     For 1 sample 5x108 cells were harvested, washed in dH2O, wash in 1ml  20% (w/v) 

trichloroacetic acid (TCA) and re-suspended in 200 μl of 20% TCA with 6-8 micro-spoon of  

silica or glass beads, and proteins were extracted on the  fastprep machine.  

The protein extract was moved to an eppendorf tube and proteins were pelleted for five minutes 

at 12,000rmp. The protein pellet was re-susbended in 150μl of  4x SDS sample buffer and 150 μl 

Tris-HCl pH8.8. Finally, the sample was heated at 95°C for 5 minutes and either stored at -20°C 

or used directly for further analysis (230). 

 

2.2.1.10. SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) and Western Blotting  

     SDS-PAGE gels were used to analyze/value protein extracts. Proteins were run through 

acrylamide gel and stoped at certain location which is indicated its size. 

     In this experiment two types of gels are used in top of each other, the stacking gel or focus gel 

with sample wells and the separation or resolving gel. The stacking Gel contains normally  4%  

acrylamide (Table: 2.1.10.1). The resolving gel (Table: 2.1.10.2) separates proteins according to 

their molecular weight (Table: 2.1.10.3). Large proteins required a small gel percentage (Table: 

2.1.10.3). 
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Stacking Gel 

Components Gel percentage  4% 

H2O 7.5ml 

1M TrisHCL pH6.8 1.5ml 

20% SDS 50μl 

40% Acrylamide 1ml 

10% APS 100μl 

TEMED 10μl 

Table: 2.1.10.1: Recipe of stacking acrylamide get for focusing stained 
protein samples.     

 

 

Separation Gel                                          

Reagent Gel percentage 

8% 10% 12% 15% 

H2O 8.5ml 7.5ml 6.5ml 5ml 

1M TrisHCL pH8.8 7.5ml 7.5ml 7.5ml 7.5ml 

20% SDS 150μl 150μl 150μl 150μl 

40% Acrylamide 4ml 5ml 6ml 7.5ml 

10% APS 100μl 100μl 100μl 100μl 

TEMED 20μl 20μl 20μl 20μl 

Table: 2.1.10.2: Recipe of resolving acrylamide gets in 10 ml volume for 
protein seperations. 

 

 

Protein Size (kDa) Gel % 
4 to 40 20% 
12 to 45 15% 
10 to 80 12% 
15 to 100 10% 
25 to 20 8% 

Table: 2.1.10.3: Protein size range and required acrylamide concentrations.  
 

Gels were run at 100V for 2-2:30 hours. The protein size standard from ThermoScientific 

(PageRuler Pre-stained Protein Ladder, cat.no.26616) was used.  

After the run, proteins were transferred in 1x Transfer buffer onto nitrocellulose blotting 

membrane (Amersham HybondTM-Ecl)  for 2hr at 65V or overnight at 10V for 12 hours. Free 

membrane space was blocked with Blocking buffer (3% Milk buffer: 3g Milk powder (fat-free),  
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10ml of 10x PBS, 0.05% Tween-20 and dH2O up to 100ml) for at least 30-45 minutes at room 

temperature.  

Incubation with the primary antibody was performed in blocking buffer at 4 oC on a rocking 

platform overnight. The membranes were sealed with 2ml antibody solution in a plastic bag. 

Before incubation with the secondary antibody,  membranes were washed three times with 1x 

washing buffer for 10 minutes. The secondary antibody was applied for  1-1:30 hours at room 

temperature in blocking buffer.  

Finally, the  membranes were washed three times with 1x washing buffer as previously, 

incubated in the  Western Lightning® Plus-Enhanced Chemiluminescence substrate solution and 

exposed to an X-ray film (Exposure film) in a light tight developing cassette. The membrane was 

placed between two plastic sheets and the film was placed on top of the plastic. Films were 

developed using the X-ray film processor (MI-5, JENCONS-PLS).  

 

Note: All Western blot steps are explained at this website: 

http://www.piercenet.com/method/overview-western-blotting 

 

2.2.1.11. Soluble Protein Extract 

     For one sample 5x108 cells were harvested, washed in dH2O,  and re-suspended in 300 μl of 

buffer H with inhibitors and with 6-8 micro-spoons of  silica or glass beads. Proteins were 

extracted on the fastprep machine for 10 min. The protein extract was moved to an eppendorf 

tube and the insoluble material was pelleted for five minutes at 12,000 rmp. The protein 

supernatant was moved to a new tube and used for further analysis.  

 

2.2.1.12. Isoelectric Focusing and 2D-PAGE (Two-dimentional electrophoresis) 

     Between 10-30μl of soluble protein extract were mixed to a final volume of 125μl of in 

Destreak™ rehydration solution with 0.2% of the corresponding IPG buffer (pH 3-10). Samples 

were loaded onto linear Immobiline™ DryStrip gels pH3-10 7cm (GE Healthcare) and run 

according to the manufacturer`s specifications (468).  

Running conditions: Biorad PROTEAN IEF cell; rehydration at 50V for 12 hours, followed by 

the rapid focusing program at 10,000Vh.  

After the run, the strips were placed in a IPG tray and wash with 2 ml equilibration buffer I (6M 

urea 0.375M Tris-HCl (pH8.8), 2% SDS, 20% glycerol, 2% (w/v) DTT) for 10 minutes at room  
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temperature on a rocking platform, and then washed again for 10 minutes in equilibration buffer 

II (6M urea, 0.375M Tris-HCl (pH8.8), 2% SDS, 20% glycerol, 2.5% (w/v) Iodoacetamide). 

Strips were then placed on the top of a 10% resolution acrylamide gel and run under normal 

conditions (120V/2h) (229). 

 

2.2.1.13. Taking Cell Images 

     Cells were grown in YEA broth overnight to logarithmic phase at 30 oC.  5X108 cells per 

sample were harvested and treated as required (e.g 40μM CPT at 30 oC for four hours). Cells 

were harvested and fixed in 300μl 99% methanol at room temperature. Cells can be stored at 

room temperture over a long period of time in methanol. 

Cells were pelleted and washed three times with the staining solution (DAPI:Calcofluor) as 

described in (229). 

 

10μl of cells were applied to a poly-L-lysine coated cover slip (64mm long) and covered with a 

second cover slip. Images were taken with a Nikon ECLIPSE TE2000-U fluorescence 

microscope  (60x objective with oil) (262). 

 

 
Figure: 2.2.1.13.1: Cell Images. Example images of untreated (left panel) and CPT treated 
cdc2.1w cells (right panel) The  camptothecin  (CPT) concentration was 40μϺ.  

 

2.2.1.14. Lactose Gradient Centrifugation 

     Lactose gradients were performed as described previously (259) with the following changes. 

Cells were grown at 30°C in rich medium to a low cell number 106–107 cells/ml, and 5×108 cells 

were harvested from these cultures. Lactose gradients were centrifuged at 750 rpm for 7 min in a 

Sorvall RT Legend bench top centrifuge and small G2 cells were taken from the top of the cell  
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cloud. G2 cells were washed in rich medium and resuspended in 1 ml YEA medium. For the 

heat-induced G2 arrest, one sample (500μ1) was mixed with 500μl YEA (30°C) and incubated at 

30°C, whereas the second sample was mixed with 500μl YEA (40°C) and incubated at 40°C. For 

the CPT-induced G2 arrest, one sample (500μ1) was mixed with 500μl YEA, whereas the second 

sample was mixed with 500μl YEA containing 80μM CPT. All samples were incubated at 30°C. 

40 µl aliquots were withdrawn in 20 min intervals and added to 200 µl methanol. Cells were 

pelleted and stained with 30 µl of a Hoechst (1:1000)-calcofluor (1:100) solution (stocks: 

calcoflour 1 mg/ml in 50 mM sodium citrate, 100 mM sodium phosphate pH 6.0; Hoechst 10 

mg/ml in water) prior to scoring under a fluorescence microscope. 5μl of fixed and stained cells 

were placed on a microscope slide and examined under a fluorescent microscope. For each 

sample, 100 cells were counted and the percentage of the G1/S phase (sepated cells without sign 

of separation) was scored (229, 230). 

 

Number of tube 7%  Lactose 30%  Lactose 
1 10 0 
2 8.75 1.25 
3 7.5 25 
4 6.25 3.75 
5 5 5 
6 3.75 6.25 
7 2.5 7.5 
8 1.25 8.75 
9 0 10 

Table: 2.2.1.14.1: Preparation of the different lactose concentrations from a 7% (w/v) and 30% (w/v) stock 
solutions in YEA medium. 1ml from each mixture was overlayed (blue tip with narrow end cut off) with 1ml from 
the next highest concentration starting with 1ml 30% and finishing with 1ml 7% lactose.  
 

 

2.2.2. Genetic Methods for S.pombe 

2.2.2.1. The Acute DNA Sensitivity Assay 

     Cultures were grown in YEA broth at 30 oC overnight. The cell concentration was determined 

and cells were diluted in 10ml of YEA medium to 5x104 cells/ml.  From this dilution 500μl of 

cells were mixed with 500μl of 80μM CPT or 0.01% MMS.  An initial aliquot of 75μl was taken 

and plated on one YEA plate (zero hour or start time (T=0)). All samples were then incubated in 

a 30 oC shaker at 200 rpm and further 75μl aliquots were taken at the indicated time points and 

plated on YEA plates. After 3 to 4 days the surviving colonies were counted (229, 230). If 

different MMS doses were tested, six eppendorf tubes were set up and 0, 5, 10, 15, 20, or 25μl of  
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1% MMS was added to 500μl cells. Cells were incubated for the indicated time and the MMS 

was inactivated by the addition of 500μl 2% sodium thiosulfate. 75μl aliquots were plated from 

each sample on one YEA plate.   

 

2.2.2.2. The Chronic DNA Sensitivity Assay and Heat Test 

     Cultures were grown in YEA broth at 30 oC overnight. The cell number was determined and 

cells were diluted in 1ml of YEA medium to a final concentration of 1×107/ml. A 10-times serial 

dilution was then prepared by diluting 100μl to 900μl YEA broth. From each dilution, 5μl of 

cells were dropped on YEA plates containing the indicated drug concentrations or no drug. 

Plates were incubated for 3 to 4 days and images were taken. To test for temperature-sensitive 

growth, YEA plates were incubated at 37°C instead of 30°C. 

 

2.2.2.3. Strain Construction 

     To construction new strains by mating, two strains of the opposite mating type were mixed in 

a drop of sterile water (dH2O) on a mating plate (Malt Extract Plate). The plate was then 

incubated at 25 oC for 2–4 days (Figure: 2.2.2.6.1). Successful mating was indicated by the 

formation of asci, which was confirmed by microscopic examination of samples taken from the 

mating plate. Spores were isolated from vegitative cells by incubating a small amount of cell 

material with asci in   500μl  30% ethanol for 20 to 30 minutes. 10-20μl of this solution was than 

plated on one YEA plate. After 3-4 days, the colonies formed by the surviving spores were 

further analysed to select the desired double mutant.  

 

 
Figure: 2.2.2.3.1: Example of mating cell patches on a malt    
extract plate after 4 days at 25 oC. 
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Chapter 3: The Role of Hhp1 Kinase in the Repair of 
broken DNA Replication Forks 
-------------------------------------------------------------------- 
 
Chapter summary 

     The role of the dual-specific kinase Hhp1 (CK1) in the response to DNA lesions is not well 

understood. While early work in 1994 suggested a function for the kinase when chromosomes 

break in the presence of methyl-methanesulfonate (MMS), the cellular details remained so far 

unexplained. Lit this chapter summerises genetic and cell cycle experiments which place Hhp1 

kinase firmly in the regulatory network which controls the activity of the structure-specific 

endonuclease Mus81-Eme1. When DNA replication forks stall, Cds1 kinase is recruited to the 

inactive fork by the scaffold protein Mrc1 where the kinase inactivates the Mus81-Eme1 

endonuclease to protect the fork. When replication forks break in the presence of the 

topoisomerase 1 inhibitor camptothecin (CPT), this inhibition needs to be reversed as Mus81 is 

important for the repair. The results of this chapter suggest that the Mrc1-Cds1 pathway primes 

Mus81-Eme1 for its phosphorylation by Hhp1 kinase. Hhp1 is predicted to phosphorylate Eme1 

and that this modification is important for the activation of the endonuclease. The deletion of the 

hhp1 gene is epistatic with loss of cds1, mrc1, swi1 (Swi1 binds also to the Mrc1-Cds1 

complex), hsk1-1312 (Hsk1 kinase regulates the Mrc1-Cds1 complex), mus81, mus 7 (Mus7 acts 

in the Mus81 repair pathway) and chk1 (Chk1 phosphorylates Eme1) in the presence of CPT. 

The Hhp1 kinase may be important for the switch from the Cds1-dependent protective mode to 

the Chk1-dependent repair mode when cells exit S phase with a broken DNA replication fork. 

The repair activities of the Hhp1-Mus81 pathway are independent of the recombination protein 

Rad51, the DNA end binding protein Ku70 and the nuclease Ctp1. 

     The chapter also reveals a role for Hhp1 in cell cycle regulation. Cells without Hhp1 delay 

exit from a CPT-induced G2 arrest by 100 min to 120 min compared to the short delay (20 min-

40 min) of wild type cells. The cell cycle activities of Hhp1 may be distinct from its DNA repair 

functions. Cells without Hhp1 are highly CPT and MMS sensitive.  
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3. Introduction  

     Previous work revealed sensitivities of S.pombe cells deleted for hhp1 to the alkylating agent 

methyl-methanesulfonate (MMS), ionising radiation (IR) and chronic exposure to the replication 

inhibitor hydroxyurea (HU), but not to UV light (15). This led to the conclusion that Casein 

kinase 1 (Hhp1) is required for the repair of broken chromosomes. It transpired however later 

that MMS is unlikely to cause DNA double-strand breaks (DSBs) directly as the initial DNA 

lesion, methylated adenine and guanine, is excised by base excision repair (503) and that 

especially methylated adenine causes DNA replication stress (504). Since UV photoproducts  

interfer also with DNA replication (505), it is unlikely that Δhhp1 cells are defective in by-

passing modified bases or in translesion synthesis during S phase. The sensitivity to chronic HU 

exposure, which breaks DNA replication forks (506), and to IR points more towards a role of 

Hhp1 kinase when DNA replication forks break. Such a link between CKI and DNA replication 

may also indicate a link between the circadian clock and DNA replication.  

     For example, in human the risk of breast cancer is increased among females who work night 

shifts (185), which could be explained by an accumulation of DNA replication linked mutations. 

Such a link is supported by the regulation of DNA replication by the metabolic clock in 

S.cerevisiae where replication does not take place under high oxidative conditions (507). 

Interestingly, the intra-S DNA checkpoint kinase Rad53 (Cds1, Chk2) is essential for this 

regulation in budding yeast. Supporting evidence for a role of CKI in the response to DNA 

replication stress comes from work in Xenopus where CKІγІ phosphorylates a domain in the 

scaffold protein Claspin (Mrc1) which  activates Chk1 kinase at damaged replication forks (267). 

In higher eukaryotic cells, Chk1 kinase protects stalled forks from breakage (508), a role which 

is covered by Cds1 kinase in S.pombe (509). Interestingly, Chk1 phosphorylates at CK1δ at 

serine 328, 331, 370, and threonine 397 as well as the human CK1δ variants 1 and 2 which 

results in a decrease in CKI kinase activity (268). Mammalian Chk1 acts as a priming kinase for 

CKІα  to prepare Cdc25A phosphatase for degradation upon activation of the DNA damage 

checkpoint in G1/S (269). 
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3.1. S.pombe cells without Hhp1 are sensitive to DNA Replication Fork Damage caused by 

the Topoisomerase 1 Inhibitor Camptothecin 

     To test whether Hhp1 acts on broken DNA replication forks, wild type, Δhhp1 and Δcds1 

cells were incubated with the topoisomerase 1 poison camptothecin (CPT) which breaks DNA 

replication forks (510) either on plates (Figure: 3.1.1) or of a period of 5 hours (Figure: 3.1.2).  

While cells without Cds1, which only acts on intact but stalled forks, were CPT resistant, cells 

devoid of Hhp1 were highly sensitive. This supports the conclusion that CKI performs important 

functions when DNA replication forks break. This experiment revealed also a slow growth 

phenotype of Δhhp1 cells at 37 oC even in the absence of CPT. 

     Consistent with the work by Dhillon N, and Hoekstra M (15), Δhhp1 cells are sensitive to 

methyl-methanesulfonate (MMS) on plates (Figure: 3.1.3) and when exposed to 0.05% for five 

hours (Figure: 3.1.4). Interestingly, Δcds1 cells were not MMS sensitive at 0.01% MMS on 

plates (Figure: 3.1.3), but displayed a sensitive when exposed to 0.05% for 5 hours (Figure: 

3.1.4) which is in line with the limited requirement of Cds1 kinase for the response to alkylated 

bases (511). 

 

 

 
Figure: 3.1.1: Cells without Hhp1 kinase are highly camptothecin (CPT) sensitive. Serial dilutions of the indicated 
strains were spotted onto rich medium plates containing the indicated CPT concentrations. Plates were incubated for 
4 days at 30°C. Cells lacking Tel1 (ATM) kinase or Tel1 and Cds1 kinase were also included. 
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Figure: 3.1.2: Acute camptothecin (CPT) survival test. The indicated yeast strain cells were cultured in YEA 
medium overnight at 30 oC.Cells were harvested and treated with 40μϺ CPT and incubated for five hours at 30 oC. 
Aliquots of 75 μl were collected every hour and pated on one YEA plate.  
      

 

 
Figure: 3.1.3: Cells without Hhp1 kinase are highly methyl-methanesulfonate (MMS) sensitive. Serial dilutions 
of the indicated strains were spotted onto rich medium plates containing the indicated MMS concentrations. 
Plates were incubated for 4 days at 30°C. Cells lacking Tel1 (ATM) kinase or Tel1 and Cds1 kinase were also 
included. 
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Figure: 3.1.4: Acute methyl-methanesulfonate (MMS) survival test. The indicated strains were exposed to 0.05% 
MMS for three hours. Aliquotes were withdrawn and plated on rich medium plates every 30 min. Plates were 
incubated for 4 days at 30°C and colonies were counted. 

 

     To test the effect of broken replication forks on cell cycle progression, wild type (hhp1-HA) 

cells expressing a C-terminally HA (haemagglutinin)-tagged Hhp1 kinase from its endogenous 

locus and Δhhp1 cells were synchronised in early G2 by lactose gradient centrifugation and 

released into rich medium with or without 40μM CPT. As shown in Figure: 3.1.5.A, hhp1-HA 

cells delay only for 20 min entry into the second cycle when replication forks break. A similar 

short delay has been reported in S.cerevisiae where CPT-induced breaks are repaired in G2 

(234). In contrast, cells without Hhp1 delayed for 120 min in CPT medium (Figure: 3.1.5.B). 

The extended G2 delay of Δhhp1 cells could be caused by a repair defect when DNA replication 

forks collide with the immobilised topoisomerase 1 enzyme in the previous S phase (first peak of 

septation) or it could be caused be a delayed re-activation of the cell cycle machinery (i.e. Cdc2 

kinase). 
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Figure: 3.1.5: Cell cycle for S.pombe strains. A: Hhp1-HA wild type cells were 
synchronised in G2 by lactose gradient centrifugation and released into rich medium 
with or without 40μM camptothecin (CPT). The percentage of septated cells, which 
are a readout for G1/S cells, was scored (%). B: Cells without Hhp1 (Δhhp1) were 
treated in the same way. ∆hhp1 cells have an extended G2 delay compared to wild 
type hhp1.HA.wt cells. 
 
 
 

3.2. Hhp1 Kinase and Tel1 (ATM) Kinase act in Parallel Pathways 

     Since Tel1 (ATM) kinase responds to unprocessed DNA double-stranded breaks after its 

recruitment by the Rad50-Mre11-Nbs1 (MRN) complex (512), the requirement of Tel1 for the 

response to CPT-induced DNA breaks was analysed in Δtel1 and Δtel1Δhhp1 cells. As shown in 

Figure: 3.2.1, cells without Tel1 are only very mildly CPT sensitive suggesting a minor role of 

this checkpoint kinase when DNA replication forks break. The increased CPT sensitivity of the 

Δtel1Δhhp1 double mutant compared to the Δhhp1 single mutant shows that both kinases act in 

two parallel repair pathways under these conditions. In line with a minor role of Tel1 in the 

response to broken replication forks,  G2-synchronised Δtel1 cells arrest for approximately 40 

min in CPT medium (Figure: 3.2.2), 20 min longer than wild type cells, but 100 min shorter than  
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Δhhp1 cells. The Δtel1Δhhp1 double mutant displayed an extended G2 arrest in CPT medium (80 

min) that was somewhat shorter compared to the Δhhp1 single mutant (120 min) (Figure: 3.2.3) 

which could suggest that Tel1 plays a role in the extended G2 arrest in the absence of Hhp1 

kinase. 

 

 

 
Figure: 3.2.1: Tel1 kinase and Hhp1 kinase act in two parallel pathways in the presence of camptothecin (CPT). 
Serial dilutions of the indicated strains were spotted onto rich medium plates containing the indicated CPT 
concentrations. Plates were incubated for 4 days at 30°C. S.pombe cells without Hhp1 and Tel1 cannot grow in 
CPT medium.  

 

 

 

 
Figure: 3.2.2: Δtel1 G2 arrest. Cells without Tel1 (Δtel1) were synchronised in G2 by 
lactose gradient centrifugation and released into rich medium with or without 40μM 
camptothecin (CPT). The percentage of sepated cells, which are a readout for G1/S 
cells, was scored (%).  
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The expended G2 arrest in the absence of Hhp1 kinase strongly implies a role of CK1 in the 

repair of broken DNA replication forks. The conclusion that Tel1 and Hhp1 act in two parallel 

repair pathways extended as well to MMS as indicated by the increased sensitivity of the 

Δtel1Δhhp1 double mutant  (Figure: 3.2.4). This parallel activity extended also to the slow 

growth at 37°C of Δhhp1 cells which was worsened by the deletion of tel1.  

 

 
Figure: 3.2.3: Δtel1Δhhp1 G2 arrest. Cells lacking both Tel1 and Hhp1 
(Δtel1Δhhp1) were synchronised in G2 by lactose gradient centrifugation and 
released into rich medium with or without 40μM camptothecin (CPT). The 
percentage of septated cells, which are a readout for G1/S cells, was scored (%).  

 

 
Figure: 3.2.4: testing Tel1 kinase and Hhp1 kinase. Tel1 kinase and Hhp1 kinase act in two parallel pathways in 
the presence of methyl-methanesulfonate (MMS). Serial dilutions of the indicated strains were spotted onto rich 
medium plates containing the indicated MMS concentrations. Plates were incubated for 4 days at 30°C.  

 

 

3.3. Loss of Cds1 Kinase partly reduces the CPT and Heat Sensitivity, but has no Impact 

on the extended G2 Arrest in CPT Medium 

     Currently there is only indirect evidence linking Tel1 and Cds1 kinase in S.pombe since Tel1 

phosphorylates the scaffold protein Mrc1 (Claspin) which recruits Cds1 to stalled DNA  
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replication forks (352). Cds1 was considered because its human paralogoue Chk2 acts 

downstream of ATM kinase at broken chromosomes (513). 

 

 

 
Figure: 3.3.1: Loss of Cds1 reduces the CPT (camptothecin) and heat sensitivity of cells without Hhp1 kinase. 
Serial dilutions of the indicated strains were spotted onto rich medium plates containing the indicated CPT 
concentrations. Plates were incubated for 4 days at 30°C. The data reveals epistatic genatic association between 
Hhp1 and Cds1. 

 

 

 
Figure:3.3.2: CPT (camptothecin) acute genetic survival test. Loss of Cds1 kinase in S.pombe cells renders 
cells less sensitive to  CPT-induced DNA damage. 
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Unexpectedly, deletion of cds1 in Δhhp1 cells partially reduced the temperature and CPT 

sensitivity (Figure: 3.3.4). The suppression of the CPT sensitivity was limited to concentrations 

of 2μM CPT or less. Loss of Cds1 on its own had no impact on cell survival as expected from its 

role at stalled, but not at broken forks (509). A similar weak reduction in CPT sensitivity was 

also evident when the same strains were exposed to 40μM CPT for 5 hours (Figure: 3.3.2).  

A similar suppression was not observed in the presence of the DNA alkylation agent MMS 

(Figure: 3.3.4, Figure: 3.3.5). 

 

 
Figure: 3.3.4: Loss of Cds1 does not reduce the methyl-methanesulfonate (MMS) of cells without Hhp1 kinase. 
Serial dilutions of the indicated strains were spotted onto rich medium plates containing the indicated MMS 
concentrations. Plates were incubated for 4 days at 30°C.  

 

     To test whether loss of cds1 would also reduce the CPT-induced G2 arrest of Δhhp1 cells, the 

Δcds1.Δhhp1 double mutant was synchronised in G2 and released into rich medium with and 

without CPT. As shown in Figure: 3.3.6, inactivation of Cds1 had no real impact on the extended 

G2 arrest as the double mutant arrested for approximated 100 min (Δhhp1: 120 min; Figure: 

3.1.5). 

     Taken together, these observations point towards a role of Cds1 kinase upstream of Hhp1 at 

low CPT concentrations and under heat stress conditions. Since heat effectively blocks S-phase 

progression without causing DNA breaks (514), it might be possible that DNA replication only 

slows down in the presence of low CPT concentrations. Cds1 kinase would then be required to   

stabilise the replication forks. When forks break at higher CPT concentrations (above 2μM CPT 

in plates), Cds1 would no longer be required since Chk1 would be activated (236). Since CKI 

kinase often require a priming kinase, Cds1 might act as such priming kinase on a yet unknown 

substrate which is later modified by Hhp1 when forks stall under heat stress conditions or at low 

CPT concentrations. 
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Figure: 3.3.5: Acute methyl-methanesulfonate (MMS) survival tested ∆hhp1.∆cds1. The indicated strains were 
exposed to 0.005% MMS at 30°C for the 3-hour. Aliquotes were withdrawn every 30 min and plated on rich 
medium plates. Plates were incubated for 4 days at 30°C and colonies were counted. As response to MMS-DSBs 
hhp1 and cds1 are acting in similar DNA repair pathway. 

 

 

 
Figure: 3.3.6: Δcds1.Δhhp1 cell cycle arrest. Loss of Cds1 does not affect the 
extended G2 arrest in the absence of Hhp1. Cells lacking both Cds1 and Hhp1 
(Δcds1Δhhp1) were synchronised in G2 by lactose gradient centrifugation and 
released into rich medium with or without 40μM camptothecin (CPT). The 
percentage of septated cells, which are a readout for G1/S cells, was scored (%).  

 
 

3.3.1. Hhp1 Kinase acts jointly with Mus81 Endonuclease and the DNA Repair Protein 

Mus7   

     Given that Cds1 phosphorylates Mus81 to protect stalled DNA replication forks from 

cleavage (509), the endunuclease Mus81 could be a target of Hhp1 kinase (Figure: 3.3.2.5). To 

test this idea, the deletion of hhp1 was combined with gene deletions of mus81 and mus7.  
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Mus7 is a large protein (1888aa, 217.43 kDa) with unknown function which acts jointly with 

Mus81 when DNA is methylated by methyl-methanesulfonate (MMS) (257). As shown in 

Figure: 3.3.1.1, deletion of  hhp1 in cells without Mus81 (Δhhp1Δmus81) did not further increase 

the high camptothecin (CPT) sensitivity of the Δmus81 single mutant. Consistent with the 

conclusion that Hhp1 kinase and Mus81 endonuclease act in the same CPT response pathway, 

deletion of mus7 in the Δhhp1Δmus81 double mutant (Δhhp1Δmus81Δmus7) did not further 

increase the CPT sensitivity. This epigenetic relationship was confirmed in an acute survival test 

when cells were exposed to 40μM CPT for 5 hours (Figure: 3.3.1.2). The close functional link 

between the kinase and the endonuclease extended also to the DNA methylating drug MMS 

(Figure: 3.3.1.3). To confirm this important finding, the deletion of hhp1 was combined with a 

deletion of mus7 (Δhhp1Δmus7) and the tests were repeated. As in the case of the Δhhp1Δmus81 

strain, the Δhhp1Δmus7 double mutant was as CPT sensitive as the Δmus7 single mutant (Figure: 

3.3.1.5, Figure: 3.3.1.6). In some experiments (Figure: 3.3.1.1, Figure: 3.3.1.5), the 

Δhhp1Δmus7Δmus81 triple mutant was slightly more CPT sensitive especially at higher CPT 

concentrations. While this is not arguing against an epigenetic relationship between the three 

proteins, the triple mutant may however be defective in an additional repair response which 

becomes more important at higher CPT concentrations. Interestingly, Dehé P et al. (515) stated 

that 'Mus81-Eme1 activation prevents gross chromosomal rearrangements in cells lacking the 

BLM-related DNA helicase Rqh1'. However, according to Figure: 3.3.1.7, and Figure: 3.3.1.8 

Hhp1 kinase and Rqh1 are more likely to act in different pathways in the presence of CPT since 

the Δrqh1 Δhhp1 double mutant is more sensitive compared to the corresponding single mutants 

(Figure: 3.3.1.8). 

     In summary, these results place Hhp1 kinase in the Mus81-Mus7 DNA damage repair 

pathway when DNA replication forks break in the presence of the topoisomerase 1 inhibitor CPT 

or when replication forks encounter a methylated DNA template (MMS). Since Hhp1 and Cds1 

are also epistatic (Figure: 3.3.1), it is possible that Cds1 acts as a priming kinase for Hhp1 to 

regulate Mus81 endonuclease (Figure: 3.3.2.5). When DNA replication stalls, Cds1 

phosphorylates Mus81 to remove it from the nucleus (509). This inhibition of Mus81 could be 

reversed by the subsequent phosphorylation of Mus81 by Hhp1. Since active Mus81 forms a 

complex with Eme1 and because Eme1 undergoes regulatory phosphorylations by Rad3 and 

Cdc2 kinase (515), it could well be that Hhp1 modifies Eme1 instead of Mus81 (Figure: 3.3.2.5).  
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Figure: 3.3.1.1: Mus81, Mus7 and Hhp1 act in the same CPT response pathway. Drop test with the indicated 
strains on YEA plates containing between 0.25μM and 10μM camptothecin (CPT). All plates but one were 
incubated at 30°C for 4 days. One plate was incubated at 37°C to test for the temperature sensitivity of the hhp1 
deletion.  

 

 

 
Figure: 3.3.1.2: Mus81, Mus7 and Hhp1 act in the same CPT (camptothecin) response pathway. Yeast strain cells 
were cultured in YEA medium overnight at 30o C. Cells were harvested and treated with 40μϺ CPT and 
incubated for five hours at 30 oC. Aliqots of 75 μl were collected every hour and plated on one YEA plate.  
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Figure: 3.3.1.3: MMS (methyl-methanesulfonate) spot test for the indicated strains. Mus81, Mus7 and Hhp1 act in 
the same MMS response pathway. Drop test with the indicated strains on YEA plates containing 0.005% or 0.01% 
methyl mathanesulfonate (MMS). All plates were incubated at 30°C for 4 days. Cells without Hhp1 kinase are 
highly methyl-methanesulfonate (MMS) sensitive. Serial dilutions of the indicated strains were spotted onto rich 
medium plates containing the indicated MMS concentrations were plated, ∆hhp1 cells lacking  Mus81 (∆mus81) or 
both Mus81 (∆mus81) and Mus7 (∆mus7) were also included. 

 
 

 

 
 

 
Figure: 3.3.1.4: Mus81 and Hhp1 act in the same MMS (methyl-methanesulfonate) response pathway. The indicated 
strains were exposed for 5 hours to 0.005% MMS concentrations at 30°C. Samples were withdrawn every one hour 
and plated on YEA plates. Colonies were scored after 4 days.  
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Figure: 3.3.1.5: CPT spot test for Mus7 and Hhp1. Mus7 and Hhp1 act in the same CPT response pathway. Drop test 
with the indicated strains on YEA plates containing between 0.25μM and 10μM camptothecin (CPT). All plates 
except one were incubated at 30°C for 4 days. One plate was incubated at 37°C to test for the temperature sensitivity 
of the hhp1 deletion. The Δmus81 Δhhp1 Δmus7 triple mutant is slightly more CPT and heat sensitive. 
 

 

 
Figure: 3.3.1.6: Mus81, Mus7 and Hhp1 act in the same CPT (camptothecin) response pathway. Yeast strain cells 
were cultured into YEA medium overnight at 30o C. Cells were harvested and treated with 40μϺ CPT and incubated 
for five hours at 30 oC. Aliqots of 75 μl were collected every hour and plated on one YEA plate.  
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Figure: 3.3.1.7: Rqh1 DNA helicase acts in a parallel pathway to Hhp1. Serial dilutions of the indicated strains were 
applied to YEA plates with increasing concentrations of CPT (camptothecin). All plates, except one, were incubated 
at 30°C for 4 days. One plate was incubated at 37°C to test for the temperature sensitivity of the hhp1 deletion. The 
Δrqh1Δhhp1 mutant is slightly more CPT and heat sensitive. 
 

 

 
Figure: 3.3.1.8: Rqh1 and Hhp1 act in different CPT (camptothecin) response pathways. Yeast cells were cultured in 
YEA medium overnight at 30o C. Cells were harvested and treated with 40μϺ CPT and incubated for five hours at 
30 oC. Aliqots of 75 μl were collected every hour and plated on one YEA plate.  
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3.3.2. Hhp1 Kinase acts jointly with Mrc1   

     An alternative explanation for the role of Hhp1 kinase at damaged replication forks may be 

provided by the role of the scaffold protein Mrc1. Mrc1binds directly to stalled forks or D-loop 

structures in the chromatin (516) and recruits Cds1 to stalled forks (237). May be Hhp1 kinase 

could impact on the Cds1-Mus81 pathway more indirectly by modulating the activity of Mrc1 

rather than Mus81-Eme1 directly. This idea was tested by analysing the CPT and MMS 

sensitivity of a Δmrc1Δhhp1 double mutant. Interestingly loss of Mrc1 suppresses the CPT 

sensitivity of the Δhhp1 mutant at concentration of below 2μM CPT (Figure: 3.3.2.1) close 

resembling the suppression upon loss of cds1 (Figure: 3.3.1). This suppression was limited to 

CPT and not evident when cells were treated with MMS. As shown in Figure: 3.3.2.2, and 

Figure: 3.3.2.3, the Δmrc1Δhhp1 double mutant was as MMS sensitive as the  Δhhp1 strain 

placing both proteins in the same pathway. The suppression of the CPT sensitivity at low 

concentrations implies that Hhp1 kinase acts down-stream of Mrc1 and Cds1 as a genetic 

suppression often infers that the suppressing mutation abolishes a cellular event which later 

requires the activity of the down-stream protein, Hhp1 kinase in this case. A later function of 

Hhp1 after Mrc1 recruited Cds1 to stalled forks is therefore more consistent with a role of CK1 

in the regulation of the Mus81-Eme1 endonuclease. This conclusion is further supported by an 

extension of the G2 arrest in CPT medium upon deletion of mrc1 in Δhhp1 cell (Δmrc1.Δhhp1) 

(Figure: 3.3.2.4). The double   mutant delays approximately 40 min longer than the Δhhp1 single 

mutant which implies a further DNA repair defect when replication forks break. Since Mus81-

Eme1 is required for the resolution of recombination intermediates during DNA repair after 

replication fork collapse (515, 539), damaged forks may remain unrepaired for longer in the 

Δmrc1 Δhhp1 double mutant. This indicates that Hhp1 kinase has at least two repair execution 

points under these conditions, from which one is very likely the Mus81-Eme 1 endonuclease. 
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Figure: 3.3.2.1: Loss of mrc1 partly suppresses the CPT (camptothecin) sensitivity of the Δhhp1 mutant. Serial 
dilutions of the indicated strains were spotted onto rich medium plates which indicated the CPT concentrations. 
Plates were incubated for 4 days at 30°C. A plate was incubated at 37°C to test the temperature sensitivity of the 
Δhhp1 strain. The data revels that Hhp1 and Mrc1 are genetically connected. 
 

 

 
Figure: 3.3.2.2: Mrc1 and Hhp1 act in the same MMS (methyl-methanesulfonate) response pathway. The 
indicated strains were exposed for 3 hour to 0.05% MMS at 30°C. Samples (75µl)  were withdrawn every 30 min 
and plated on YEA plates. Colonies were scored after 4 days.  
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Figure: 3.3.2.3: Mrc1 and Hhp1 act in same pathway. Mrc1 and Hhp1 act in the same MMS (methyl-
methanesulfonate) response pathway. Introducing the deletion of mrc1 into ∆hhp1 cells results in a similar MMS 
sensitivity as in case of the Δhhp1 single mutant. All plates were incubated at 30°C or 37°C for 4 days.  

 

 
Figure: 3.3.2.4: Loss of Mrc1 extends the G2 delay in Δhhp1 cells. Wild type (hhp1-
HA), Δhhp1 and ∆mrc1∆hhp1 cells were synchronised in G2 by lactose gradient 
centrifugation and released into rich medium with or without 40μM camptothecin 
(CPT). The percentage of septated cells, which are a readout for G1/S cells, was 
scored (%).  
 

 
Figure: 3.3.2.5: Model for the co-operation of Hhp1 (CK1) kinase with Cds1 and Mus81. Hhp1 is required for the 
activation of the endonuclease Mus81-Eme1 when replication forks break. Upon replication fork arrest (stalled 
forks), Cds1 initially phosphorylates Mus81 to remove it from the nucleus. Mrc1 recruits Cds1 to stalled forks. 
When stalled forks break, this inhibition may be reversed by a second phosphorylation event executed by Hhp1 
kinase. In this context, Cds1 would act as the priming kinase for Hhp1. 
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3.3.3. Hhp1 Kinase acts jointly with Srs2 DNA helicase  

    Given the recent finding that Srs2 DNA helicase associates with Mus81-Eme1 to process 

recombination intermediates in S.cerevisiae (517), the genetic relationship between Δhhp1 and 

Δsrs2 was tested. Binding of Srs2 stimulates the endonuclease activity of Mus81, and Srs2 

removes Rad51 from single-stranded DNA so that Mus81 can cleave the recombination 

structure.  

 

 
Figure: 3.3.3.1: Genetic association test for hhp1, chk1, and srs2. Serial dilutions of the indicated 
strains were spotted onto rich medium plates containing the indicated CPT (camptothecin) 
concentrations. Plates were incubated for 4 days at 30°C. hhp1.HA.wt is used as positive control but 
here at this graph association among hhp1 kinase and srs2 helicase is an epistatic, hhp1 kinase and 
chk1 kinase is an epistatic as well, and chk1 kinase and srs2 helicase is epistatic, too.  

 
 
 
Loss of srs2 in a wild type background had little impact on the CPT sensitivity (Figure: 3.3.3.1) 

which suggests that the helicase is not important when DNA replication forks break. Deletion of 

srs2 in the Δhhp1 mutant (Δsrs2.Δhhp1) did not further increase the high sensitivity of the Δhhp1 

strain. This places the DNA helicase and Hhp1 (CK1) in the same CPT response pathway. 

Interestingly, loss of Chk1 kinase in the Δsrs2.Δhhp1 double mutant (Δsrs2.Δchk1.Δhhp1) 

resembled the Δsrs2 single mutant (Figure: 3.3.3.1). This unexpected rescue implies that Chk1 

kinase becomes unregulated in the absence of both, Srs2 DNA helicase and Hhp1 kinase. Since 

the extended G2 arrest of Δhhp1 cells in the presence of CPT (Figure: 3.1.5: B) indicates a repair 

defect when DNA replication forks break, the experiment was repeated with the Δsrs2.Δhhp1 

strain. As in the case of the CPT survival test, loss of the DNA helicase had very little impact on 

the extended G2 arrest of  Δhhp1 cells (Figure: 3.3.3.2). 
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Figure: 3.3.3.2: The G2 cell cycle arrest of the Δhhp1.Δsrs2 double mutant. The 
indicated strains were synchronised in G2 by lactose gradient centrifugation and 
exposed to 40μM CPT (camptothecin) at 30°C. Aliquots were withdrawn every 20 
min and kept in methanol overnight. The percentage of septated cells, which are a 
readout for G1/S cells, was scored (%).  

 

While these findings do not rule out a role of Srs2 DNA helicase in the repair of broken DNA 

replication forks, it is evident that loss of Hhp1 kinase has a much stronger impact on the repair 

process compared to the DNA helicase. A role of Srs2 in the recombinational repair of broken 

replication forks is however supported by a previous publication (243). It is generally assumed 

that the recombinational repair of broken replication forks is postponed until the majority of the 

genome has been replicated. For example, while loss of the S-phase checkpoint kinase Cds1 has 

little impact on the CPT sensitivity of S.pombe cells, deletion of the chk1 gene has a more 

pronounced effect although not as profound as UV or MMS damage (235). This implies that 

collapsed forks are repaired once cells have switched from the intra-S (Cds1) to the G2-M 

(Chk1) checkpoint. This conclusion is in line with the finding that S.cerevisiae cells repair 

damaged forks once they have completed S-phase (234). 

     What was however unexpected is the effective suppression of the CPT sensitivity of the 

Δsrs2.Δhhp1 double mutant by the loss of Chk1 kinase. Since this implies that Chk1 becames 

aberrantly active in the absence of the DNA helicase and Hhp1 kinase, the genetic link between 

Chk1 and Hhp1 was investigated. 

 

3.4. Hhp1 Kinase acts jointly with Chk1 Kinase  

     To test the requirement of Chk1 kinase for the repair of broken forks in the context of Hhp1 

kinase, the chk1 gene was deleted in the Δhhp1 strain (Δchk1.Δhhp1). Loss of Chk1 renders cells 

sensitive to higher CPT concentrations (Figure: 3.4.1). The  Δchk1.Δhhp1 double mutant was as 

CPT sensitive as the  Δhhp1 strain implying that both kinases act in the same pathway.  
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Although the CPT sensitivity of the Δchk1 strain is not as high as the sensitivity of the Δhhp1 

mutant, an epigenetic relationship is possible since loss of Chk1 kinase suppresses the heat 

sensitivity of the Δhhp1 strain (Figure: 3.4.1, Figure: 3.4.2). 

 

 
Figure: 3.4.1: Drop test for the ∆chk1.∆hhp1 strain. Serial dilutions of the indicated strains were spotted onto rich 
medium plates containing the indicated CPT (camptothecin) concentrations. Plates were incubated for 4 days at 
30°C. hhp1.HA.wild type is used as a positive control. 

 

 

 
Figure: 3.4.2: Testing Hhp1 kinase and Chk1 kinase. Drop test with the indicated strains on YEA plates containing 
0.005% or 0.01% methyl mathanesulfonate (MMS). The plates were incubated at 30°C for 4 days. One YEA plate 
was incubated at 37°C. 

 

The epigenetic relationship between Chk1 and Hhp1 may be specific to CPT as it does not 

extend to DNA alkylation damage by methyl-methanesulfonate (MMS). When cells were treated  

with this drug, the Δchk1.Δhhp1 double mutant was more sensitive than either of the  single 

mutants (Figure: 3.4.2). The suppression of the heat sensitivity was again observed in this  

experiment. This difference suggests that Chk1 and Hhp1 cooperate when replication forks break  
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but not when alkylation damage is removed by base excision repair. Since Hhp1 acts jointly with 

Mus81-Eme1 under these conditions (Figure: 3.3.1.1, Figure: 3.3.2.5), the link between Chk1 

and Hhp1 would place Chk1 also in the Mus81 pathway (Figure: 3.4.1, Figure: 3.4.3). This is a 

novel conclusion as there is so far only one publication linking S.pombe Chk1 with the 

phosphorylation of the  Mus81-Eme1 complex (518). 

 

 

 
Figure: 3.4.3: Model for the co-operation of Hhp1 with Chk1 and Cds1. Hhp1 is required for the activation of the 
endonuclease Mus81-Eme1 when replication forks break. Upon replication fork arrest (stalled forks), Cds1 initially 
phosphorylates Mus81 to remove it from the nucleus. Mrc1 recruits Cds1 to stalled forks. When stalled forks break, 
this inhibition may be reversed by a second phosphorylation event executed by Hhp1 kinase. In this context, Cds1 
would act as the priming kinase for Hhp1. However, under CPT (camptothecin) condition Chk1 also phosphorylates 
Eme1 (518) which may explain the genetic link between Hhp1 and Chk1.   

 
 

     To find out whether Chk1 kinase impacts on the repair of broken forks, Δchk1 cells were 

synchronised in G2 and released into rich medium with and without 40μM CPT. Loss of chk1 

had no significant impact on the normal G2 arrest as Δchk1 cells delayed progression through the 

second G2 phase for approximately 40 min (Figure: 3.4.4) as observed for wild type cells 

(Figure: 3.1.5: A).   
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Figure: 3.4.4: Cell cycle arrest for ∆chk1 strain. Δchk1 cells were synchronised in G2 
by lactose gradient centrifugation and released into rich medium with or without 
40μM camptothecin (CPT). The percentage of septated cells, which are a readout for 
G1/S cells, was scored (%).  

 

 
Figure: 3.4.5: Cell cycle arrest for ∆chk1.∆hhp1 strain. Δhhp1 cells without chk1 
(Δchk1) were synchronised in G2 by lactose gradient centrifugation and released into 
rich medium with or without 40μM camptothecin (CPT). The percentage of septated 
cells, which are a readout for G1/S cells, was scored (%).  

  

     The same assay was applied to the Δchk1.Δhhp1 double mutant which arrested in G2 for 

approximately 80 min before slowly coming out of the arrest thus resembling the extended arrest 

of the Δhhp1 single mutant (100 min – 120 min, Figure: 3.4.5).  

     Taken together, these observations suggest that Hhp1 affects cell cycle regulation under these 

conditions, whereas Chk1 does not despite its epigentic relationship with Hhp1. One possible 

role of Chk1 could be to regulate Cds1 kinase when replication forks break in CPT medium 

since Cds1 inhibits Mus81 when replication forks stall (509). The hand-over between Cds1 and 

Chk1 is not well understood but needs to happen when stalled forks cannot be recovered. Since 

Cds1 and Chk1 are both activated by Rad3 (ATR) kinase in S.pombe (226) and because both 

kinases are epistatic with hhp1 (e.g. loss of cds1 suppresses the MMS sensitivity and loss of chk1  
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is epistatic in the presence of CPT), a  Δrad3.Δhhp1 double mutant was constructed and 

analysed. Consistent with the close relationship between Hhp1 and the two down-stream kinases 

(Cds1 and Chk1), the hhp1 deletion was epistatic with loss of rad3 (Figure: 3.4.6). 

 

 
Figure: 3.4.6: CPT (Camptothecin) drop assay for the ∆rad3∆hhp1 strain. Serial dilutions of the indicated strains 
were spotted onto rich medium plates containing the indicated CPT concentrations. Plates were incubated for 4 
days at 30°C. One plate was incubated at 37°C. 

 

 

 
Figure: 3.4.7: MMS drop assay for the ∆rad3∆hhp1 strain. The indicated strains were applied to YEA plates 
containing 0.005% or 0.01% methyl mathanesulfonate (MMS). The plates were incubated at 30°C for 4 days. 
One plate was incubated at 37°C. 

 

     To obtain further evidence for a role of Hhp1 in the repair of broken forks, cells without the 

main recombination protein Rad51 were studied. Rad51 is loaded onto 3`-single stranded DNA  
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by Rad52 (Rad22 in S.pombe) which also facilitates the invasion of the sister chromatid  by the 

Rad51-ssDNA nucleoprotein filament (519). Interestingly, Mus81 acts closely with Rad22 

(Rad52) in a Rad51-independent manner when DNA replication forks break in the presence of 

CPT (520). Based on the previous finding, which placed Hhp1 in the same pathway as Mus81, it 

was anticipated that the Δrad51.Δhhp1 double mutant is more CPT sensitive than the Δrad51 

single mutant. This was indeed the case as shown in Figure: 3.4.8. The double mutant was also 

more heat sensitive than the Δhhp1 strain.  

 

 
Figure: 3.4.8: Hhp1 and Rad51 act not in the same CPT (camptothecin) repair pathway. Serial dilutions of the 
indicated strains were spotted onto rich medium plates containing the indicated CPT concentrations. Plates were 
incubated for 4 days at 30°C. One plate was incubated at 37°C. 
 

 

This is an interesting finding as it implies that the Hhp1-Mus81 DNA repair function at broken 

replication forks requires Rad22 (Rad52) but not Rad51. Since Rad51 forms the 3`-ssDNA 

nucleoprotein filament, which acts at the heat of homologous recombination, it was also tested 

whether loss of Ctp1 (CTIP in human cells, Sae2 in S.cerevisiae), which is crucial for the 

resection of a DNA double-stranded break into the 3`-ssDNA Rad51 substrate (521, 522),  would 

also increase the CPT sensitivity of the hhp1 deletion strain.  As shown in Figure: 3.4.9, the 

Δctp1.Δhhp1 double mutant was more CPT sensitive than the single Δcpt1 mutant.  This increase 

in sensitivity extended also to MMS induced DNA damage (Figure: 3.4.10). 
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Figure: 3.4.9: Ctp1 and Hhp1 do not act in the same CPT (camptothecin) response pathway. Serial dilutions of 
the indicated strains were spotted onto rich medium plates containing the indicated CPT concentrations. Plates 
were incubated for 4 days at 30°C.  One plate was incubated at 37°C. 
 

 

 
Figure: 3.4.10: Ctp1 and Hhp1 do not act in the same CPT response pathway. The indicated strains were applied 
to YEA plates containing 0.005% or 0.01% methyl methanesulfonate (MMS). The plates were incubated at 30°C 
for 4 days. One plate was incubated at 37°C. 
 

 
 

Given that the Ku70-Ku80 heterodimer competes with the end processing enzymes like Ctp1 for 

access to a broken chromosome (203), the genetic link between Hhp1 and Ku70 was tested. As 

shown in Figure: 3.4.11, loss of Ku70 (Δku70) had no impact on the CPT sensitivity of Δhhp1 

cells. The same applied to the MMS sensitivity of the Δku70.Δhhp1 double mutant (Figure: 

3.4.12). The extended G2 arrest of Δhhp1 cells in the presence of CPT was also not affected by  
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loss of ku70 (Figure: 3.4.13). Taken together these data imply that an increased access to broken 

DNA replication forks in the absence of Ku70 does not affect the repair role of the Hhp1-Mus81 

pathway.  

 

 
Figure: 3.4.11: The DNA binding protein Ku70 does not act in the same CPT (camptothecin) pathway as Hhp1 
kinase. Serial dilutions of the indicated strains were spotted onto rich medium plates containing the indicated 
CPT concentrations. Plates were incubated for 4 days at 30°C.  One plate was incubated at 37°C. 

 
 
 

 
Figure: 3.4.12: The DNA binding protein Ku70 does not act in the same CPT pathway as Hhp1 kinase. The 
indicated strains were applied to YEA plates containing 0.005% or 0.01% methyl methanesulfonate (MMS). The 
plates were incubated at 30°C for 4 days. One plate was incubated at 37°C. 
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Figure: 3.4.13: Cell cycle G2-delay for ∆hhp1∆ku70 cells. Δhhp1 cells without Ku70 
(Δku70) were synchronised in G2 by lactose gradient centrifugation and released into 
rich medium with or without 40μM camptothecin (CPT). The percentage of septated 
cells, which are a readout for G1/S cells, was scored (%).    

 
 
3.5. Hhp1 Kinase acts jointly with Hsk1 (Cdc7) Kinase  

     S.pombe Hsk1 (Cdc7) kinase belongs to a group of enzymes which is related to cyclin-

dependent kinases (531). The regulatory subunit of Hsk1 is Dfb1/Him1. Expression of Dfb1 

peaks at the G1-S transition and the activity of the Hsk1-Dfb1 complex is required for the onset 

of DNA replication by phosphorylating subunits of the replicative MCM2-7 DNA helicase (532). 

The complex exerts also an important activity during DNA replication as it is a target of the 

intra-S checkpoint kinase Cds1 and maintains the structural integrity of replication  structures 

(357, 533). The kinase acts jointly with the Swi1-Swi3 DNA replication complex in the response 

to MMS damage (511), and releases the Rad9-Rad1-Hus1 complex from chromatin at the end of 

the DNA damage checkpoint response (534). Cds1 and Hsk1 associate both the scaffold protein 

Mrc1 which also binds Swi1 (535). Since the Swi1-Swi3 dimer recruits Mrc1 to stalled DNA 

replication forks (516), the Hsk1-Dfb1 complex may fine tune the DNA damage checkpoint 

response executed by Cds1 and the Rad9-Rad1-Hus1 ring in S-phase. So far there are no data 

linking Hsk1 kinase to Hhp1 or Mus81-Eme1. Given the genetic link between Cds1, Mrc1 and 

Hhp1 (Figure: 3.4.3), a temperature sensitive allele of the essential S.pombe hsk1 gene (hsk1-

1312, S314I) was used to study the connection to Hhp1 kinase. The hsk1-1312 allele encodes a 

kinase with a serine-to-isoleucine substitution at codon 314 (TCT to ATT) (357). 
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Figure: 3.5.1: Hsk1 (Cdc7) kinase and Hhp1 act in the same CPT (camptothecin) response pathway. Serial 
dilutions of the indicated strains were spotted onto rich medium plates containing the indicated CPT 
concentrations. Plates were incubated for 4 days at 30°C. One plate was incubated at 37°C. 

 
 

 

Even at the semi-permissive temperature of 30°C hsk1-1312 cells are highly CPT sensitive 

(Figure: 3.5.1). Interestingly, loss of Hhp1 suppressed the slow growth phenotype at 30°C but 

not at 37°C. The hsk1-1312.Δhhp1 double mutant grew also better in the presence of low  CPT 

concentrations. It is however difficult to decide whether this increased CPT resistance is a 

consequence of a faster growth of the double mutant or a true increase in resistance.  

     To distinguish between the two possibilities, an acute CPT test was performed. As shown in 

Figure: 3.5.2, the hsk1-1312.Δhhp1 double mutant was as CPT sensitive as the hsk1-1312 single 

mutant when cells were exposed to 40μM of the topoisomerase 1 inhibitor. This suggests that 

Hhp1 and Hsk1 act in the same CPT response pathway. The same epigentic relationship 

extended also to MMS induced DNA damage (Figure: 3.5.3). 
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Figure: 3.5.2: Hsk1 kinase and Hhp1 are epistatic for CPT (camptothecin). Hhp1.HA.wild type, ∆hsk1-
1312∆hhp1, ∆hhp1, and ∆hsk1-1312 yeast strains were cultured in YEA medium overnight at 30o C. Cells were 
harvested and treated with 40μϺ CPT for five hours at 30 oC. Aliquots of 75 μl were collected every hour and 
plated on one YEA plate.  

 
 

 

 

 
Figure: 3.5.3:  Hsk1 kinase and Hhp1 are epistatic for MMS (methyl-methanesulfonate). Hhp1.HA.wild type, 
∆hsk1-1312∆hhp1, ∆hhp1, and ∆hsk1-1312 yeast strains were cultured in YEA medium overnight at 30o C. Cells 
were harvested and treated with 0.05% MMS for three hours at 30 oC. Aliquots of 75 μl were collected every 
hour and plated on one YEA plate.  
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Figure: 3.5.4: G2 arrest of the  hsk1-1312 Δhhp1 strain.  Cells were synchronised in 
G2 by lactose gradient centrifugation and released into rich medium with or without 
40μM camptothecin (CPT). The percentage of septated cells, which are a readout for 
G1/S cells, was scored (%).  

 

 

The hsk1-1312.Δhhp1 double mutant was also synchronised in G2 and released into medium 

containing 40μM CPT. Interestingly a reduction in Hsk1 activity at the semi-permissive 

temperature of 30°C in the absence of Hhp1 kinase (Δhhp1) extended the G2 arrest of Δhhp1 

cells by approximately one hour (Figure: 3.5.4). This implies a more complex genetic 

relationship between the two kinases as they are epistatic for CPT survival but not for the cell 

cycle arrest. The extended G2 arrest in the hsk1-1312.Δhhp1 double mutant may be caused by an 

increased deficiency in the repair of broken forks or it could be a problem with the termination of 

the checkpoint signal at the end of repair as Hsk1 is required to remove the Rad9-Rad1-Hus1 

complex from the chromatin (534). It is noteworthy that a similar extended G2 arrest was evident 

in the Δmrc1.Δhhp1 double mutant (Figure: 3.5.5, and Figure: 3.4.3). Given that Hsk1 associates 

with Mrc1 (535), and phosphorylates Cds1 (357), this places the Hsk1-Dfb1 complex in the CPT 

response pathway which may be required to prime the Mus81-Eme1 complex for the 

phosphorylation by Hhp1 (Figure: 3.5.6). 

     This conclusion is supported by the epistatic relationship between Swi1 and Hhp1 in the 

presence of CPT induced DNA damage (Figure: 3.5.7). 
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Figure: 3.5.5: Cell cycle delay of ∆mrc1∆hhp1 cells. Δhhp1 cells without Mrc1 
(Δmrc1) were synchronised in G2 by lactose gradient centrifugation and released 
into rich medium with or without 40μM camptothecin (CPT). The percentage of 
septated cells, which are a readout for G1/S cells, was scored (%).  

 

 

 

 
Figure: 3.5.6: Model of the roles of Hhp1 (CK1) in the regulation of Mus81-Eme1. Hhp1 is required for the 
activation of the endonuclease Mus81-Eme1 when replication forks break. Upon replication fork arrest (stalled 
forks), Cds1 initially phosphorylates Mus81 to remove it from the nucleus. Mrc1 recruits Cds1 to stalled forks. 
When stalled forks break, this inhibition may be reversed by a second phosphorylation event executed by Hhp1 
kinase. In this context, Cds1 would act as the priming kinase for Hhp1.  Hsk1 kinase, which binds to Mrc1, may 
switch the activity of Cds1 from its intra-S mode to its G2 mode. This may be important to reverse the inhibition 
of the Mus81-Eme1 complex.  
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Figure: 3.5.7: Swi1 (Timeless) and Hhp1 act in the same CPT (camptothecin) pathway. Serial dilutions of the 
indicated strains were spotted onto rich medium plates containing the indicated CPT concentrations. Plates were 
incubated for 4 days at 30°C.  
 

 

     In summary these findings support a role of Hhp1 kinase in the regulation of the Mus81-

Eme1 structure specific endonuclease when DNA replication forks break upon their collision 

with the immobilised topoisomerase 1 enzyme (CPT induced). Since the repair response is 

postponed till cells exit S-phase (234), and coincides with the activation of Chk1 kinase (235). It 

is quite  possible that the Mrc1-Cds1-Hsk1-Swi1 complex at the damaged fork is involved in 

switching the response from the intra-S (Cds1-dependent) to the G2 (Chk1-dependent) DNA 

damage checkpoint (Figure: 3.5.6). How this transition is initiated is not yet known. One 

important outcome of this change is the activation of the Mus81-Eme1 endonuclease which is 

needed for the repair of collapsed forks but inactivated by Cds1 (509, 536). This switch could be 

triggered by the appearance of a DNA break at a stalled fork and the subsequent recruitment of 

DNA repair and DNA damage checkpoint proteins, or it could be dependent on the cyclin-

dependent kinase Cdc2 which switches the repair response to broken chromosomes from Non-

Homologous End Joining (NHEJ) to Homologous Recombination (HR) when cells pass from G1 

to G2 (537). The possible role of the cell cycle regulator Cdc2 will be discussed in the next 

chapter.  
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Gene Gene product 
Impact     on     CPT 
Sensitivity of Δhhp1 

Impact on G2 arrest  of 
Δhhp1 in CPT medium  

hsk1 Serine Protein Kinase epistatic Extended by 60 min 

Δtel1 
Serine/Threonine Protein Kinase, ATM 
Checkpoint Kinase 

Not epistatic Extended by 60 min 

Δcds1 
Serine/Threonine Protein Kinase, 
Replication Checkpoint Kinase 

epistatic Like Δhhp1 (140 min) 

Δsrs2 ATR-dependent DNA helicase epistatic Like Δhhp1 (120 min) 

Δmus81 
Crossover junction endonuclease Mus81, 
Holliday junction resolvase subunit 

epistatic - 

Δmus7 DNA repair protein epistatic - 
Δmrc1 Mediator of replication checkpoint protein 1  epistatic Extended by 40 min 

Δchk1 Serine/Threonine Protein Kinase epistatic Extended by 20 min 

Δrad3 
Serine/Threonine Protein Kinase, ATR 
Checkpoint Kinase 

epistatic - 

Δrad51 
DNA repair protein RAD51, RecA family 
recombinase Rad51 

Not epistatic - 

Δctp1 Double-strand break repair protein ctp1, 
CtIP-related endonuclease Not epistatic - 

Δku70 ATP-dependent DNA helicase II subunit 1, 
Ku domain protein Pku70 epistatic Like Δhhp1 (120 min) 

Δswi1 
Transcription regulatory protein Swi1, 
replication fork protection complex subunit 
swi1 

Not epistatic - 

Table: 3.5.1: Summary table Chapter 3. Activities of Hhp1 kinase has tested with other cell proteins, the aim was 
to investigated how those proteins cooperated with Hhp1 kinase when DNA replication forks broken as response 
to introduced CPT (camptothecin) to cells. As result the kinase is in epistatic interaction with some proteins (i.e. 
hsk1, cds1, srs2, mus81, mus7, rad3, and ku70) and other not (i.e. tel1, rad51 ctp1, and swi1). 
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Chapter 4: A novel Role of Crb2 in the regulation of 
DNA Repair at broken Replication Forks 
-------------------------------------------------------------------- 
Some sections of this Chapter were published, see appendix 2 
 
Salah Adam Mahyous Saeyd, Katarzyna Ewer-Krzemieniewska, Boyin Liu, and Thomas 
Caspari. (2014). Hyperactive Cdc2 kinase interferes with the response to broken replication forks 
by trapping S.pombe Crb2 in its mitotic T215 phosphorylated state. Nucleic Acids Research, 
(42): 7734-7747. 
------------------------------------------------------------------------------------------------------------------ 

 

Chapter Summary 

     The phosphorylation of Crb2 (53BP1) at threonine 215 by Cdc2 in mitosis was known for 

several years to be important for the coordination of the DNA damage response. The results 

summarised in this chapter strongly support a new role for this DNA binding protein and its 

T215 modification. The premature accumulation of Cdc2 activity in a cdc2.1w mutant (G146D), 

which is insensitive to Wee1 inhibition, results in an extended G2 arrest when DNA replication 

forks break in the presence of the topoisomerase 1 inhibitor camptothecin (CPT). Since the 

mutation of T215 to an alanine residue abolishes this arrest, it is postulated that the hyperactive 

Cdc2 kinase prolongs the mitotic T215 phosphorylation well into the next cell cycle. The 

abrrantly modified Crb2 protein may then block the activation of the endonuclease Mus81-Eme1 

thereby delaying the repair of broken forks. As it has been reported that the full activation of 

Mus81-Eme1 depends on Srs2 DNA helicase, Cdc2 and Chk1 kinase, the results in this chapter 

support the idea that Crb2 has to be removed when Mus81-Eme1 cannot be activated by Srs2. 

Interestingly, loss of Crb2 abolishes also the extended G2 arrest of CPT-treated hhp1 deletion 

cells which is consistent with the results reported in Chapter 3. Like Srs2, Hhp1 is important to 

activate Mus81-Eme1 probably phosphorylation Eme1. The inability to perfom this modification 

may prolong the CPT-induced G2 arrest since the endonuclease is not fully active. The deletion 

of hhp1 is epistatic with the deletion of srs2, the deletion of chk1 and the cdc2.1w mutation. In 

summary, the results support the conclusion that Cdc2, Srs2, Chk1 and Hhp1 all regulate the 

activity of Mus81-Eme1 in a Crb2-dependent manner. Since Crb2 binds directly to chromatin it 

may shield broken forks from Mus81-Eme1 in the absence of Srs2 or Hhp1, or when Cdc2 

activity is aberrantly high. 
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4.1.  Introduction  

     Work over recent years established an important role of Cyclin-dependent kinases (CDKs) in 

the regulation of the DNA damage response (DDR) (197, 198, 199). Early experiments in 

S.pombe revealed a role of cyclin B in homologous recombination (HR) (198) which was later 

confirmed by findings in S.cerevisiae showing that Cdc28 (Cdc2, CDK1) kinase activity is 

important for the conversion of double-stranded DNA breaks in 3'-single stranded DNA at the 

start of HR (197). The temporal regulation of HR by CDK1-Cyclin B restricts this process to late 

S-phase and G2-phase when the sister chromatid is available for repair. Interestingly, the second 

break repair pathway, Non-homologous End Joining (NHEJ), is active throughout the cell cycle 

in higher eukaryotic cells, but down-regulated when yeast cells pass through G2-phase (199). 

The choice of the repair pathway is governed by the competitive binding of the Ku heterodimer 

(Ku70-Ku80) and the Rad50-Mre11-Nbs1 (MRN) complex (203). Work in S.cerevisiae showed 

that end resection is a two-step process where initially between 50 and 200 base pairs are 

removed by the MRN complex in association with the endonuclease Sae2 (Ctp1, CtIP) (521). 

The second step is the extensive resection of up to several kilobases by Exonuclease 1 (Exo1) or 

the DNA helicase complex Sgs1-Top3-Rmi1 (STR) jointly with the nuclease DNA2 (204, 521). 

Inactive Sae2 forms large oligomeric structures, which are converted into active Sae2 dimers 

upon its phosphorylation at serine-267 by Cdc28 kinase (523). The inability to phosphorylate 

Sae2 leads to a high camptothecin (CPT) sensitivity and faulty DNA end processing. The Ku 

heterodimer has a low affinity for single-stranded DNA and is removed by the endonuclease 

activity of Mre11 in the MRN complex to give Sae2 access to the broken chromosome (324). 

The second important execution point for Cdc28 kinase is the phosphorylation of Dna2 nuclease, 

which causes its relocalisation from the cytoplasm to the nucleus in S/G2 (524). In human cells, 

CDK promotes DSB end resection through the phosphorylation of NBS1 in the MRN complex 

and the Sae2 related protein CtIP (525). 
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Figure: 4.1.1: CDK1 regulation of Sae2 and DNA2 in S.cerevisiae. CDK1  
phosphorylates the nucleases Sae2 and DNA2 to produce ssDNA  coated  by RPA 
(green circles) at the break site. RPA is then replaced by Rad51(red circles) to initiate 
homologous recombination. 

 

CDK1 may regulate Sae2 and DNA2 in S.cerevisiae, CDK1  phosphorylates the nucleases Sae2 

and DNA2 to produce ssDNA  coated  by RPA (green circles) at the break site (Figure: 4.1.1). 

RPA is then replaced by Rad51(red circles) to initiate homologous recombination (529, 530). 

The cell cycle regulation of DNA end resection is achieved in a slightly different way in fission 

yeast. The Sae2 related protein Ctp1 is controlled at its gene expression level rather than by 

direct Cdc2 phosphorylation as its transcription peaks during the G1/S transition (315). A key 

role in this regulatory process is dependent on the Cdc2 dependent phosphorylation of the 

scaffold protein  Crb2 (53BP1). Crb2 is phosphorylated by Cdc2-cyclin B at threonine-215 when 

cells pass through mitosis (215, 289) which is important to promote HR in S/G2 and to sustain 

the activated Chk1 dependent checkpoint signal (198, 215) (Figure: 4.1.2). The threonine-125 

together with a second Cdc2 phosphorylation event at threonine-235 primes Crb2 for a third 

Cdc2 phosphorylation  at the non-canonical site threonine-187. This enables the modified Crb2 

protein to assemble with the DNA replication and checkpoint factor Rad4 (TopBP1) (290). The 

Crb2-Rad4 complex recruits then the DNA damage checkpoint kinase Chk1 (526). While the 

initial modification at T215 occurs in mitosis at the peak of Cdc2-cyclin B activity, this 

modification declines when cells progress through S phase. The latter may be important to allow 

binding of the G2 DNA damage kinase Chk1. Independently of these phosphorylation events, 

Crb2 can bind directly to DNA. Its tudor domain recognises K20-methylated histone H4 and its  
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BRCT domains bind to phosphorylated histone H2A (216, 218). This regulatory network is 

conserved in human cells as the Crb2 related protein 53BP1 is also a target of CDK1 (Cdc2) 

kinase (214). Consistent with the earlier finding that a mutation in cyclin B affects a late step in 

HR (230), S.pombe Cdc2 was recently shown to phosphorylate  Eme1 which associates with the 

structure-specific endonuclease Mus81 to resolve late recombination intermediates in the 

absence of the DNA helicase Rqh1 (BLM) (515).  

 

 
Figure: 4.1.2: Cdc2-dependent regulation of Crb2. Crb2  has  one tutor domain and two C-terminal BRCT domains. 
Phosphorylation of threonine-215 during mitosis by the Cdc2-cyclin B complex primes Crb2 for its G1 activities. 
Dephosphorylation of T215 during the S phase may be important to promote binding of the G2 DNA checkpoint 
kinase Chk1.  
 

      In human cells, 53BP1 (Crb2) loads Rif1 onto broken DNA in G1 to block end resection. 

This step is later antagonised in S/G2 by BRCA1 in co-operation with CtIP (CtP1, Sae2) (205, 

209, 211). While 53BP1 prevents end resection in G1-phase, it is required for this process in G2 

in collaboration with BRCA1 (212, 213).  It seems that human 53BP1 acts as a switch between 

NHEJ in G1 and HR in G2 (Figure: 4.1.3). Human BRCA1 is modified by CDK1 (Cdc2) at 

serine-1497, serine-1189 and serine-S1191 which is important for the intra-S DNA damage 

checkpoint response (527). BRCA2, which loads the recombination protein Rad51 onto single-

stranded DNA is also modified by human CDKs at serine-3291, but this modification peaks in 

mitosis to block the BRCA2-Rad51 interaction (527). During S-phase, the human Mre11 

subunit, which is  part of the MRN (Mre11- Rad50-Nbs1) complex, recruits  CDK2-Cyclin A to 

broken chromosomes to facilitate the formation of a complex between BRCA1 and the 

endonuclease CtIP (Ctp1, Sae2) to promote end resection (208, 209). 
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Figure: 4.1.3: Crb2 associated with Cdc2 to guide DNA repair. Cdc2 phosphorylated Crb2 at G1-phase and this 
phosphorylation is continued in G2-phase and result in use HR instead NHEJ (215, 198). 
 

     In summary, CDK phosphorylation events control the balance between NHEJ and HR at the 

level of end resection by promoting or preventing the recruitment of Sae2 (Ctp1, CtIP) 

endonuclease to the break. The MRN complex and the scaffold proteins Crb2 (53BP1) and 

BRCA1 do play key roles in this regulation. CDK enzymes affect HR also at a later step when 

recombination intermediates are processed by DNA Rqh1 (BLM) DNA helicase or the structure-

specific endonuclease Mus81-Eme1. A third execution point appears to be in mitosis when HR 

proteins like BRCA2 are inactivated. 

     This chapter summarises the work on a hyperactive cdc2 allele (cdc2.1w; wee2-1) in S. pombe 

which renders cells specifically sensitive CPT. The cdc2.1w mutant strain enters mitosis 

prematurely due to a dominant mutation in the vicinity of its ATP binding site (G146D) (222). 

This glycine-to-aspartate mutations renders Cdc2.1w kinase  insensitivity to inhibition by Wee1 

kinase (222, 223). Interestingly, loss of wee1 results in a much wider DNA damage sensitivity 

profile than the cdc2.1w mutation (224, 226) although both mutant strains enter mitosis 

prematurely. This implies that the dominant G146D mutation in Cdc2.1w affects specifically the 

DNA damage response when DNA replication forks collide with immobilised topoisomerase 1 

and break. 

 

4.2. A hyper-active Cdc2.1w Kinase enhances the Camptothecin Sensitivity 

      Why the G146D mutation close to the ATP binding site of Cdc2 (Figure:4.2.1) renders the 

kinase insensitivity to Wee1 inhibition is not yet clear. To test the DNA sensitivity profile of 

cdc2.1w and Δwee1 deletion strains, a drop test was performed. 

      As shown in Figure:4.2.3, Figure:4.2.4, Figure:4.2.5, Figure:4.2.6, Figure:4.2.7, Figure:4.2.8, 

∆wee1 cells have a much wider DNA damage sensitivity spectrum than cdc2.1w cells despite the  
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fact that both mutants enter mitosis prematurely (224, 225, 226). Cells without Wee1 are also 

temperature sensitive. Hyper-activation of Cdc2 by the G146D mutation affects the response to 

CPT suggesting a role of the kinase in the repair of broken replication forks. To test whether 

Cdc2 and Wee1 act in the same DNA damage response pathway, a Δwee1 cdc2.1w double 

mutant was tested. The data shown in Figure:4.2.5 and Figure:4.2.7 imply that both kinases act 

in the same pathway for CPT and MMS induced DNA lesions. To find out whether the CPT 

sensitivity of cdc2.1w cells is a direct consequence of the enhanced Cdc2 activity which 

accumulates prematurely in early G2 (245), a drop test on CPT plates was performed with a 

cdc2.1w cdc25.22 double mutant. The point mutation in Cdc25 phosphatase, which removes the 

inhibitory Y15 phosphorylation from Cdc2 is expected to lower the impact of Cdc2.1w activity 

by prolonging G2 (221). Indeed, the double mutant was CPT resistant compared to the cdc2.1w 

single mutant (Figure: 4.2.9) which supports the conclusion that the premature activation of 

Cdc2 impairs the repair of broken replication forks. As reported previously (221), the cdc2.1w 

cdc25.22 double mutant was less temperature sensitive because the hyper-active Cdc2.1w kinase 

partly overcomes the low Cdc25 phosphatase activity. Given that cells without Hhp1 kinase 

suffer from a defective response to broken replication forks (see  Chapter 3), the genetic 

relationship between Wee1 and Cdc2.1w and Ck1 was explored. Repeated attempts to cross the 

deletion of hhp1 with the deletion of wee1 failed to produce the correct strain which suggests 

that loss of both kinases may be a lethal event. To circumvent this problem, the wee1-50 

temperature sensitive loss-of-function allele was used. Even at the semi-permissive temperature 

of 30°C, wee1-50 cells are MMS and  ionising radiation sensitive (164, 538). As shown in 

Figures: 4.2.5 and Figures: 4.2.7, the Δhhp1 wee1-50 strain was as CPT and MMS sensitive as 

the Δhhp1 single mutant which places both kinases in the same pathway. A Δhhp1 cdc2.1w strain 

was also constructed and tested (Figures: 4.2.9), consistent with the earlier finding that Cdc2.1w 

and Wee1 act in the same pathway, the Δhhp1 cdc2.1w double mutant was as (CPT and MMS) 

sensitive as the Δhhp1 single mutant ( Figures: 4.2.10, Figures: 4.2.11).  

     These observations place Hhp1 kinase firmly together with the cell cycle regulators Wee1 and 

Cdc2 in the same DNA damage response pathway. Since Hhp1 is also closely linked with the 

Mus81-Eme1 complex (Chapter 3), it is very likely that Wee1 and/or Cdc2 regulate this 

endonuclease. This conclusion is supported by the physical association of Wee1 and Mus81 in 

human cells (539), and by the requirement of Cdc2 for the phosphorylation of Eme1 when  
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fission yeast cells progress through G2 (515) (Figures: 4.2.2). Whether Cdc2 and Wee1 target the 

Mus81-Eme1 endonuclease directly or indirectly via Hhp1 and/or Chk1 kinase is not yet known.  

     To get an insight into this, total extracts were prepared from Hhp1-HA cells and Hhp1-HA 

cdc2.1w cells either from untreated cultures or cultures treated with 40µM CPT for 4 hours. All 

extracts were then subjected to isolectric focusing on a linear pH gradient from 3 to 10. As 

shown in Figure: 4.2.12, two spots with distinct isoelectric points were present in untreated 

Hhp1-HA extracts. In contrast to the earlier experiments shown in Chapter 3, the three alkaline 

Hhp1 forms closer to the negative end of the strip did not separate well as they merged into one 

signal. Elevated Cdc2 activity (hhp1-HA cdc2.1w) led to an increase in the more acidic form 

(number 2 in Figure: 4.2.12) which suggests that the post-translational modification pattern of 

Hhp1 kinase changes when Cdc2 activity increases. Interestingly, treatment of the hhp1-HA 

cdc2.1w strain with CPT resulted in the appearance of hyper-modified forms which had a more 

negative isoelectric point running closer to the positive end of the strip (Figure: 4.2.12). This 

indicates that Hhp1 is aberrantly modified when cells with high Cdc2 activity experience CPT 

damage. This also suggests that Cdc2 may directly target Hhp1. 

 

 
Figure: 4.2.1: Cdc2.1w kinase is mutated at glycine 146 (G146D). The 
aspartate mutation affects a loop at the entrance to the ATP binding site. 
The inhibitory tyrosine 15 (Y15) phosphorylation site is indicated in blue. 
Wee1 and Mik1 kinase phosphorylate Y15 in fission yeast CDK1 (Cdc2). 
The closely related structure of the human CDK2-cyclin A complex (PDB 
ID:1FIN (253)) has been visualised using the Polyview 3D program 
(adopted from my paper (272)). 
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Figure: 4.2.2: The genetic linkage between Wee1, Cdc1 and Hhp1 could be explained by the regulation of the 
Mus81-Eme1 endonuclease. While the endonuclease is excluded from the nucleus in S phase upon its 
phosphorylation by Cds1, its activity is required for the repair of broken replication forks in G2. 
 

 

 
Figure: 4.2.3: cdc2.1w cells are mainly CPT sensitive. Serial dilutions of the indicated strains were droped on rich 
medium plates with or without drugs. All plates, except one, were incubated at 30°C for 4 days. One plate without a 
drug was incubated at 37°C to test for temperature sensitivity. CPT (camptothecin), HU (hydroxyurea), 4NQO (4-
nitroquinoline oxide), MMS (methyl methanesulfonate). 
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Figure: 4.2.4: A reduction in Cdc2.1w activity by a decrease of Cdc25 phosphatase activation (cdc25.22 ) suppresses 
the CPT (camptothecin) sensitivity. Serial dilutions of the indicated strains were droped on rich medium plates with 
or without drugs. All plates, except one, were incubated at 30°C for 4 days. One plate without a drug was incubated 
at 37°C to test for temperature sensitivity.  
 

 

 

 

 
Figure: 4.2.5: Wee1 and Hhp1 act in the same CPT (camptothecin) response pathway. Serial dilutions of the 
indicated strains were droped on rich medium plates with or without drugs. All plates, except one, were incubated at 
30°C for 4 days. One plate without a drug was incubated at 37°C to test for temperature sensitivity.  
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Figure: 4.2.6: Wee1 and Hhp1 act in the same CPT (camptothecin) response pathway. The indicated yeast strain 
cells were cultured in YEA medium overnight at 30o C. Cells were harvested and treated with 40μϺ CPT for five 
hours at 30 oC. Aliquots of 75 μl  were collected every hour and the surviving colonies were scored after plating 
on YEA plates.  

 
 

 

 

 
Figure: 4.2.7: Wee1 and Hhp1 act in the same MMS response pathway. Serial dilutions of the indicated strains were 
droped on rich medium plates with or without drugs. All plates, except one, were incubated at 30°C for 4 days. One 
plate without a drug was incubated at 37°C to test for temperature sensitivity. MMS (methyl-methansulfonate). 
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Figure: 4.2.8:  Wee1 and Hhp1 act in the same MMS (methyl-methanesulfonate) response pathway. The 
indicated yeast strain cells were cultured in YEA medium overnight at 30o C. Cells were harvested and 
treated with 0.05% MMS three hours at 30 oC. Aliquots of 75 μl were collected at the indicated time points 
and the surviving colonies were scored after plating on YEA plates.  

 

 

 

 

 
Figure: 4.2.9: Cdc2.1w and Hhp1 act in the same CPT (camptothecin) response pathway. Serial dilutions of the 
indicated strains were droped on rich medium plates with or without drugs. All plates, except one, were incubated at 
30°C for 4 days. One plate without a drug was incubated at 37°C to test for temperature sensitivity.  
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Figure: 4.2.10: Cdc2.1w and Hhp1 act in the same CPT (camptothecin) response pathway. The indicated yeast 
strain cells were cultured in YEA medium overnight at 30o C. Cells were harvested and treated with 40μϺ CPT 
for five hours at 30 oC. Aliquots of 75 μl were collected every hour and the surviving colonies were scored after 
plating on YEA plates.  

 

 

 

 
Figure: 4.2.11: Cdc2.1w has no impact on the methyl-methanesulfonate (MMS) sensitivity of cells without Hhp1. 
Serial dilutions of the indicated strains were droped on rich medium plates with or without drugs. All plates, except 
one, were incubated at 30°C for 4 days. One plate without a drug was incubated at 37°C to test for temperature 
sensitivity.  Elevated Cdc2.1w activity improves growth of Δhhp1 cells at 37°C. 
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Figure: 4.2.12: Aberrant modification of Hhp1 kinase at elevaled Cdc2 levels. Total protein extracts were first 
separated on a linear pH3-10 strip before being separated by size (proteins visualised by using an anti-HA antibody) 
on a 10% SDS PAGE (Westerb blot). Spot 1 is a combination of three Hhp1 forms which merged into one signal. 
The intensity of the more negative (acidic) signal 2 increases in cdc2.1w cells and more negative forms of Hhp1 
appear when hhp1-HA cdc2.1w cells were treated with 40 μM CPT (camptothecin) at 30 oC for 4 hours.  
 

 

4.3.  Elevated Cdc2 Activity Prolongs the G2 Arrest when Replication Forks Break 

     Since loss of Hhp1 kinase prolongs the G2 arrest when DNA replication forks break (Figure: 

3.1.5.B), the duration of the G2 arrest was measured in wild type (hhp1-HA), Δchk1, cdc2.1w, 

cdc25.22 and cdc2.1w cdc25.22 strains. Wild type cells arrest only briefly for 20-40 min in the 

second G2 phase in the presence of 40µM CPT (Figure: 4.3.1). The arrest happens in the second 

G2 phase since CPT acts only in S-phase and cells won`t experience DNA breaks before they 

passed through the first round of DNA replication. Deletion of Chk1 kinase, which is activated 

by CPT treatment (193), abolishes this transient arrest (Figure: 4.3.2). Unexpectedly, the 

premature rise in Cdc2 activity in the cdc2.1w strain resulted in a prolonged G2 arrest for up to 

100 min despite the early onset of mitosis in untreated cells (Figure: 4.3.3). This prolonged arrest 

resembles the extended G2 delay of Δhhp1 cells (100-120 min) (Figure: 3.1.5.B) and suggests 

that broken forks are either not efficiently repaired or that the arrest signal cannot be inactivated 

in the presence of elevated Cdc2 activity. This defect was not suppressed by the point mutation 

in cdc25 as the cdc2.1w cdc25.22 strain retained the prolonged arrest of the cdc2.1w single 

mutant (Figure: 4.3.4). The mutation in cdc25 on its own had little impact on the short G2 delay 

of 20 min in the presence of CPT although the unperturbed cell cycle was delayed by 20-40 min  
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in untreated cells as expected from cells with a reduction in the activating activity of Cdc25 

phosphatase (Figure: 4.3.5).  

 

 
Figure: 4.3.1: CPT-induced (Camptothecin-induced) G2 arrest in wild type cells. Wild 
type cells (hhp1.HA.wt) only briefly delay in the second G2 in the presence of CPT. 
Wild type cells were synchronised in G2 by lactose gradient centrifugation and released 
into rich medium with or without 40μϺ CPT at 30 oC. Samples were withdrawn at the 
indicated time points and the percentage of septated G1-S cells were scored. Cells were 
fixed in methanol and stained with DAPI (DNA) and calcofluor (septum).   

 

 

 
Figure: 4.3.2: ∆chk1 cells and DNA replication. Here ∆chk1 cells cultured with and 
without 40μϺ CPT (camptothecin). Treated cells had G2 delay about forty minutes at 
the second peak which is response to replication fork collapse.   
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Figure: 4.3.3: High Cdc2 activity results in an extended G2 arrest in the presence of 
CPT. cdc2.1w cells were synchronised in G2 by lactose gradient centrifugation and 
released into rich medium with or without 40μϺ CPT (camptothecin) at 30 oC. 
Samples were withdrawn at the indicated time points and the percentage of septated 
G1-S cells were scored. Cells were fixed in methanol and stained with DAPI (DNA) 
and calcofluor (septum).    

 

 

 
Figure: 4.3.4: A reduction in Cdc25 phosphatase activity does not abolish the 
extended G2 arrest in cdc2.1w cells. cdc25.22 cdc2.1w cells were synchronised in 
G2 by lactose gradient centrifugation and released into rich medium with or without 
40μϺ CPT (camptothecin) at 30 oC. Samples were withdrawn at the indicated time 
points and the percentage of septated G1-S cells were scored. Cells were fixed in 
methanol and stained with DAPI (DNA) and calcofluor (septum). 
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Figure: 4.3.5: The mutation in Cdc25 phosphatase has little impact on the CPT-
induced G2 arrest, but cells delay progression through the unperturbed cell cycle. 
cdc25.22 cells were synchronised in G2 by lactose gradient centrifugation and 
released into rich medium with or without 40μϺ CPT (camptothecin) at 30 oC. 
Samples were withdrawn at the indicated time points and the percentage of septated 
G1-S cells were scored. Cells were fixed in methanol and stained with DAPI (DNA) 
and calcofluor (septum).    

    

 

4.4.  Cds1 and Chk1 influence both the G2 arrest in cdc2.1w cells 

    The extended G2 arrest in cdc2.1w cells suggests that damaged replication forks are not 

efficiently repaired which would cause a prolonged DNA damage checkpoint signal. To test 

whether Chk1 or Cds1 are required for this arrest, both kinase genes were either individually 

deleted in cdc2.1w cells (Δchk1 cdc2.1w, Δcds1 cdc2.1w) or simultaneously removed (Δcds1 

Δchk1 cdc2.1w). Interestingly only the deletion of both kinases at the same time abolished the 

extended G2 arrest which suggests that both kinases are required (Figure: 4.3.3, Figure: 4.4.1, 

Figure: 4.4.2, Figure: 4.4.3). It is well established that Chk1 acts in G2 after the execution point 

of Cds1 in S (285, 540) which is normally explained by the appearance of DNA damage in the 

absence of Cds1 which then activates Chk1 (236). It is therefore possible that elevated Cdc2 

activity triggers a problem at DNA replication forks which initially activates Cds1 and is then 

transferred to Chk1 if Cds1 is absent. 

     In summary, these experiments support the idea that the premature accumulation of Cdc2 

activity early in the cell cycle interfers with the response to broken DNA replication forks in the 

presence of the topoisomerase 1 inhibitor camptothcin (CPT). This triggers the sequential 

activation of Cds1 and Chk1 resulting in a prolonged G2 arrest. 
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Figure: 4.4.1: Deletion of chk1 does not reduce the G2 arrest in cdc2.1w cells. Δchk1 
cdc2.1w cells were synchronised in G2 by lactose gradient centrifugation and 
released into rich medium with or without 40μϺ CPT (camptothecin) at 30 oC. 
Samples were withdrawn at the indicated time points and the percentage of septated 
G1-S cells were scored. Cells were fixed in methanol and stained with DAPI (DNA) 
and calcofluor (septum).    

 

 

 
Figure: 4.4.2: Deletion of cds1 does not reduce the G2 arrest in cdc2.1w cells. Δcds1 
cdc2.1w cells were synchronised in G2 by lactose gradient centrifugation and 
released into rich medium with or without 40μϺ CPT (camptothecin) at 30 oC. 
Samples were withdrawn at the indicated time points and the percentage of septated 
G1-S cells were scored. Cells were fixed in methanol and stained with DAPI (DNA) 
and calcofluor (septum).    
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Figure: 4.4.3: Deletion of both, chk1 and cds1, abolishes the G2 arrest in cdc2.1w 
cells. Δchk1 Δcds1 cdc2.1w cells were synchronised in G2 by lactose gradient 
centrifugation and released into rich medium with or without 40μϺ CPT 
(camptothecin) at 30 oC. Samples were withdrawn at the indicated time points and 
the percentage of septated G1-S cells were scored. Cells were fixed in methanol and 
stained with DAPI (DNA) and calcofluor (septum).    

 
 

4.5. Cdc2 targets the DNA Binding Protein Crb2 at Threonine-215 to regulate Cds1 and 

Chk1 

     To find a requirement of Cds1 for the extended G2 arrest in cdc2.1w cells (Figure: 4.4.2) was 

a surprise as Cds1 is normally only activated when replication forks stall (237). Given that Cdc2 

phosphorylates the DNA binding protein Crb2 (53BP1) at threonine-215 (T215) (215), and since 

Crb2 associates with Chk1 (270), the requirement of Crb2 and the T215 phosphorylation for the 

extended G2 arrest in cdc2.1w cells was tested. 
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Figure 4.5.1: Fluorescence 
microscope screening S.pombe 
strains. The indicated strains were 
cultured in YEA medium overnight 
at 30 oC. Cells were harvested and 
treated with 40μϺ CPT 
(camptothecin) or left untreated  for 
four  hours at 30 oC. Cells were 
fixed in methanol, and the DNA 
and thecell wall were stain using 
Hoechst and calcofluor respectively 
(adopted from my paper (272)). 
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The cdc2.1w.Δcrb2 strain had a very small and heterogeneous cell size as cells entered mitosis 

early (Figure: 4.5.1). Since this made it very difficult to synchronise cells, the asynchronous 

cdc2.1w Δcrb2 strain was incubated in rich medium with 40µM CPT for 5 hours together with 

hhp1-HA wild type cells, the cdc2.1w strain and the double mutant cdc2.1w.Δchk1. Every hour 

samples were taken, fixed and strained with Hoechst (DNA) and calcofluor (new septum) to 

examine the cells under the microscope. As shown in Figure: 4.5.1, loss of crb2 prevented 

elongation of the cells after they have been exposed to the topoisomerase 1 inhibitor CPT for 5 

hours. Cell elongation, which was evident for the other three strains, indicates checkpoint 

activation and a G2 arrest (226). Consistent with the absence of a G2 arrest, the septation index  

of the cdc2.1w.Δcrb2 strain did not drop while the cdc2.1w and cdc2.1w.Δchk1 strains showed a 

clear decline (Figure: 4.5.2).  

 

 

 
Figure: 4.5.2: Loss of Crb2 abolishes the extended G2 arrest in cdc2.1w cells. The indicated strains were exposed to 
40μϺ CPT (camptothecin) at 30 oC for 5 hours. Samples were withdrawn every hour, fixed in methanol and stained 
with Hoechst and calcofluor. The percentage of septated cells is shown. A drop in the number of septated cells 
indicated a G2 arrest. Cells from the 4 hour time point are shown in Figure 4.5.1.  
 

Wild type cells showed only a modest drop at the 2-hour time point consistent with the 20-40 

min delay when cells are synchronised. The requirement of Crb2 for the extended G2 delay was 

very unexpected since loss of Chk1 had not the same impact. Interestingly, the ability to arrest 

for longer is not linked with the survival of the double mutants as both, and cdc2.1w.Δchk1 and  
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cdc2.1w.Δcrb2, lost viability to a similar degree in the presence of 40µM CPT (Figure: 4.5.5). 

Both double mutants were more CPT sensitive than the single mutants and the cdc2.1w.Δchk1 

strain was also temperature sensitive (Figure: 4.5.3, Figure: 4.5.4). This implies that Cdc2.1w, 

Chk1 and Crb2 affect more than one pathway. The data also reveal that the T215 modification of 

Crb2 by Cdc2 is important to activate Cds1 and Chk1 in the cdc2.1w mutant since the cdc2.1w 

crb2.T215A mutant (Figure: 4.5.6) resembles the cdc2.1w Δcds1 Δchk1 strain (Figure: 4.4.3).  

     Since Chk1 is phosphorylated at serine-345 in the presence of CPT (235), the phosphorylation 

status of Chk1 was tested in chk1.HA wild type cells, chk1.HA.cdc2.1w and  

chk1.HA.cdc2.1w.Δcrb2 strains. As reported previously (229), Chk1 is phosphorylated even in 

the absence of  DNA damaging agents in a cdc2.1w strain (Figure: 4.5.5). CPT treatment induced 

the checkpoint-dependent phosphorylation in all strains with the exception of the 

chk1.HA.cdc2.1w Δcrb2 strain (Figure: 4.5.5). The requirement of Crb2 for the activation of  

Chk1 has been reported previously (246). Why Chk1 becomes phosphorylated in a cdc2.1w 

strain is not yet clear. Either the hyperactive Cdc2 kinase targets Chk1 directly or causes a form 

of DNA damage which indirectly activates Chk1. 

 

 

 
Figure: 4.5.3: S.pombe cdc2.1w cells without chk1 or crb2 are highly CPT sensitive. The indicated yeast strain 
cells were cultured in YEA medium overnight at 30o C. Cells were harvested and treated with 40μϺ CPT for five 
hours at 30 oC. Aliquots of 75 μl were collected every hour and the surviving colonies were scored after plating on 
YEA plates. 
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Figure: 4.5.4: Deletion of chk1 or crb2 increases the CPT sensitivity of cdc2.1w cells. Serial dilutions of the 
indicated strains were droped on rich medium plates with or without drugs. All plates, but one, were incubated at 
30°C for 4 days. One plate without a drug was incubated at 37°C to test for temperature sensitivity.   

 
 

 
Figure: 4.5.5: Chk1 is phosphorylated in untreated cdc2.1w cells (chk1-HA cdc2.1w) and in the presence of CPT. 
Deletion of crb2 abolishes the CPT-induced phosphorylation. After a 4 hour incubation in the presence of 40μϺ 
CPT in YEA medium, 15 μl of total protein extracts were run on a 10% acrylamide gel. The proteins were visualised 
by using an anti-HA antibody after Western blot (adopted from my paper (272)). 
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     To test whether the Cdc2 dependent phosphorylation of Crb2 at T215 is required for the 

extended G2 arrest, the cdc2.1w.crb2.T215A strain was synchronised in G2 and released in rich 

medium with or without 40µM CPT. As shown in Figure: 4.5.6, loss of the phosphorylation site 

completely abolished the G2 arrest. Consistent with the close link between Cdc2 and Crb2, the 

cdc2.1w.crb2.T215A strain was as CPT and MMS sensitive as the crb2.T215A mutant (Figure: 

4.5.7, Figure: 4.5.8, Figure: 4.5.9). This finding is important as it reveals how Cdc2.1w could 

affect the G2 arrest. Hyper-active Cdc2.1w could aberrantly modify Crb2 at T215 at a time in the 

cell cycle at which T215 should not be modified. The phosphorylation of Crb2 at T215 peaks 

when cells pass through mitosis and correlates with re-entry into the cell cycle after a G2 arrest 

induced by UV damage (215). Since Cdc2.1w becomes active much earlier in the cell cycle 

(245), the T125 modification could also appear earlier thereby interfering with the response to 

broken  DNA replication forks break in the presence of CPT (Figure: 4.5.10). Since Cds1 and 

Chk1 are both required for this extended arrest (Figure: 4.4.3), the aberrantly T215 

phosphorylated Crb2 protein may interfere not only with the activation of Chk1 but also with the 

regulation of Cds1. 

 

 

                        
Figure: 4.5.6: Loss of the Cdc2 phosphorylation site threonine-215 (T215A) abolished 
the CPT-induced G2 arrest in cdc2.1w cells. crb2-T215A cdc2.1w cells were 
synchronised in G2 by lactose gradient centrifugation and released into rich medium 
with or without 40μϺ CPT (camptothecin) at 30 oC. Samples were withdrawn at the 
indicated time points and the percentage of septated G1-S cells were scored. Cells 
were fixed in methanol and stained with DAPI (DNA) and calcofluor (septum).    
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Figure: 4.5.7: Crb2.T215A and Cdc2.1w act in the same CPT (camptothecin) response pathway. Serial dilutions of 
the indicated strains were spotted onto rich medium plates containing the indicated CPT concentrations. Plates were 
incubated for 4 days at 30°C. 
 

 
 

 
Figure: 4.5.8: crb2.T215A.cdc2.1w and crb2.T215A resistance to CPT (camptothecin) effects. The indicated yeast 
strain cells were cultured in YEA medium overnight at 30o C. Cells were harvested and treated with 40μϺ CPT for 
five hours at 30 oC. Aliquots of 75 μl were collected every hour and the surviving colonies were scored after 
plating on YEA plates. 
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Figure: 4.5.9: Crb2.T215A and Cdc2.1w act in the same MMS (methyl-methanesulfonate) response pathway. Serial 
dilutions of the indicated strains were spotted onto rich medium plates containing the indicated MMS concentrations. 
Plates were incubated for 4 days at 30°C. 
 

 

 

 
Figure: 4.5.10: Hyperactive Cdc2.1w interferes with the regulation of Crb2. Crb2 has three domains: the N-terminal 
Chk1 binding domain, the tudor domain which interacts with methylated histones and the two C-terminal BRCT 
domains which bind to phosphorylated histones (216). T215 is normally phosphorylated when cells pass through 
mitosis which is important for the normal regulation of Chk1 in G2 (215). The premature rise in cdc2.1w activity 
may extend the T215 phosphorylation into G1-S thereby interfering with the regulation of Chk1 and Cds1 kinase 
when DNA replication forks break in S phase.  
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4.6. Srs2 DNA Helicase acts in the Cdc2.1w Pathway 

     Since Srs2 DNA helicase is a Cdc2 target in S.cerevisiea where it is phosphorylated by Cdc28 

(Cdc2) to promote the process of homologous recombination HR) (240), a cdc2.1w.Δsrs2 strain 

was tested.  In S.pombe, Srs2 removes the recombination protein Rad51 from single-stranded 

DNA thereby preventing unwanted HR, but the helicase can also promote recombinational repair 

in the presence of UV-induced DNA damage. Interestingly, Srs2 and Mus81-Eme1 act in the 

same UV repair pathway (243). As shown in Figure: 4.6.1, the cdc2.1w.Δsrs2 strain is as CPT 

sensitive at the Δsrs2 single deletion which places both proteins in the same CPT response 

pathway. The same epigenetic relationship applies also to MMS (Figure: 4.6.2) 

 

 

 
Figure: 4.6.1: Srs2 DNA helicase and Cdc2.1w act in the same CPT (camptothecin) response pathway. Serial 
dilutions of the indicated strains were spotted onto rich medium plates containing the indicated CPT concentrations. 
Plates were incubated for 4 days at 30°C. One plate was incubated at 37°C. 
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Figure: 4.6.2: ∆srs2.cdc2.1w response to 0.005% MMS (methyl-methanesulfonate) concentrations. The indicated 
yeast strain cells were cultured in YEA medium overnight at 30o C. Cells were harvested and treated with 40μϺ 
CPT for five hours at 30 oC. Aliquots of 75 μl were collected every hour and the surviving colonies were scored 
after plating on YEA plates. 
 

 

Since the link with Cdc2.1w suggests a role for Srs2 in the extended delay, the Δsrs2 single 

deletion strain was synchronised and tested. Interestingly, loss of srs2 extends the G2 arrest in 

the presence of CPT (Figure: 4.6.3), although not to the same extent as the cdc2.1w mutation. 

The combination of cdc2.1w with the deletion of srs2 (cdc2.1w.Δsrs2) produced a long G2 arrest 

(Figure: 4.6.4) resembling the cdc2.1w single mutation. This supports the conclusion that Srs2 

DNA helicase and Cdc2.1w act in the same CPT response pathway. This idea is further 

supported by the reduction of the CPT-induced G2 delay of Δsrs2 cells upon the introduction of 

the crb2.T215A mutation (crb2.T215A.Δsrs2) (Figure: 4.6.5). 

     Interestingly, as in the case of the cdc2.1w Δchk1 mutant (Figure: 4.4.1), the Δsrs2.Δchk1 

double mutant displayed a G2 arrest which resembled the longer delay of the Δsrs2 strain 

(Figure: 4.6.6). This is in line with the finding that only loss of Crb2 but not loss of Chk1 

abolishes the extended CPT arrest in cdc2.1w mutant cells (Figure: 4.5.6). It also suggests that 

hyper-active Cdc2 and loss of Srs2 DNA helicase result in similar problems at a broken 

replication fork. 
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Figure: 4.6.3: Loss of the DNA helicase srs2 prolongs the G2 arrest in the presence of 
CPT (camptothecin). ∆srs2.cdc2.1w cells were synchronised in G2 by lactose gradient 
centrifugation and released into rich medium with or without 40μϺ CPT at 30 oC. 
Samples were withdrawn at the indicated time points and the percentage of septated G1-
S cells were scored. Cells were fixed in methanol and stained with DAPI (DNA) and 
calcofluor (septum).     

 
 
 
 

 
Figure: 4.6.4: Loss of the DNA helicase srs2 does not reduce the G2 arrest in cdc2.1w 
cells in the presence of CPT (camptothecin). Δsrs2 cdc2.1w cells were synchronised in 
G2 by lactose gradient centrifugation and released into rich medium with or without 
40μϺ CPT at 30 oC. Samples were withdrawn at the indicated time points and the 
percentage of septated G1-S cells were scored. Cells were fixed in methanol and stained 
with DAPI (DNA) and calcofluor (septum).    
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Figure: 4.6.5: Loss of the Cdc2 phosphorylation site threonine-215 (T215A) strongly 
reduces the G2 arrest in the presence of CPT (camptothecin). ∆srs2.crb2.T215A cells 
were synchronised in G2 by lactose gradient centrifugation and released into rich 
medium with or without 40μϺ CPT at 30 oC. Samples were withdrawn at the 
indicated time points and the percentage of septated G1-S cells were scored. Cells 
were fixed in methanol and stained with DAPI (DNA) and calcofluor (septum).     

 
 
 

 
Figure: 4.6.6: Loss of Chk1 only reduces the G2 delay in ∆srs2 cells in the presence of 
CPT (camptothecin).  Δsrs2.∆chk1 cells were synchronised in G2 by lactose gradient 
centrifugation and released into rich medium with or without 40μϺ CPT at 30 oC. 
Samples were withdrawn at the indicated time points and the percentage of septated G1-
S cells were scored. Cells were fixed in methanol and stained with DAPI (DNA) and 
calcofluor (septum).    
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This also implies that the longer delay in the absence of Srs2 DNA helicase depends on the Cdc2 

phosphorylation of Crb2 at T215 but not on the interaction between Crb2 and Chk1. This raises 

the intriguing questions of how Srs2 could affect the response to broken DNA replication forks 

and what could go wrong in the Cdc2.1w strain? As explained earlier, the hyperactive Cdc2.1w 

kinase may extend the T215 phosphorylation well into S and G2 which could affect the ability of 

Crb2 to coordinate the response to broken forks. Since the T215 phosphorylation normally peaks 

in mitosis (215), this mitotic pattern of Crb2 activity could be extended into the next S phase and 

G2. Part of this mitotic imprint seems to be the inability to regulate Chk1 kinase. In relation to 

the results discussed in Chapter 3, which place Chk1 and Hhp1 kinase in the same repair 

pathway as Mus81, it is interesting to note that Srs2 and Mus81 physically interact and that Srs2 

activates the endonuclease on a variety of DNA substrates. The DNA helicase activity of Srs2 is 

not necessary for this stimulation (517). As shown in Figure: 4.6.7, Cdc2 and Srs2 could come 

together at the level of the Mus81-Eme1 complex with Srs2 regulating the activity of Mus81 and 

Cdc2 modifying Eme1. The DNA binding protein Crb2 could either affect the activities of the 

kinases Cds1 and Chk1 or it could interact with the Mus81-Eme1 complex at the chromatin. 

Crb2 can associate with methylated and phosphorylated histones through its Tudor and BRCT 

domains, respectively (215, 218). The absence of Srs2 (Δsrs2) could extend the G2 arrest in the 

presence of CPT since Mus81 would not be activated which could delay the repair of broken 

forks. Premature activation of Cdc2 in the Cdc2.1w strain may have a similar effect either by 

aberrantly modifying Eme1 or by indirectly extending the mitotic phosphorylation pattern of 

Crb2. A third possibility is that hyper-active Cdc2.1w targets Srs2 directly as reported for Srs2 in 

budding yeast (240). 
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Figure: 4.6.7: Model of Mus81-Eme1 regulation by Srs2, Cdc2 and Hhp1. Srs2 DNA helicase and Cdc2 could both 
regulate the activity of the structure-specific endonuclease Mus81-Eme1 at broken DNA replication forks. Loss of 
Srs2 (Δsrs2) or hyper-activation of Cdc2 (cdc2.1w) could block this enzyme thereby delaying the repair of broken 
forks which would explain the extended G2 arrest in the presence of the topoisomerase 1 inhibitor CPT 
(camptothecin). 
 

4.7.  Hhp1 Kinase acts with Srs2 and Cdc2.1w in the same CPT Response Pathway  

     Given the close genetic link between Hhp1 kinase, Cdc2 and the endonuclease Mus81-Eme1 

(see Chapter 3), the relationship between Srs2 and Hhp1, and between Cdc2.1w and Hhp1 was 

studied. As shown in Figure: 4.7.1, the deletion of srs2 in the Δhhp1 strain (Δsrs2.Δhhp1) does 

not increase the CPT sensitivity. The same epigenetic relationship extends to MMS although the 

deletion of srs2 is not MMS sensitive under these conditions (Figure: 4.7.2). Loss of Srs2 in a 

Δhhp1 mutant had no major impact of the extended G2 arrest in the absence of Hhp1 kinase 

(Figure: 4.7.3). In summary, these findings are in line with the earlier conclusion (see also 

Chapter 3) that Hhp1 kinase targets Eme1 (Figure: 4.6.7). This proposed modification by Hhp1 

seems to be important for the activation of the Mus81-Eme1 complex, which also needs the Srs2 

protein. To contribute effectively to the repair of broken DNA replication forks, the Mus81-

Eme1 complex appears to require Srs2, Cdc2 and Hhp1. The role of Crb2 in this regulatory 

network is not yet clear, but as in the case of cdc2.1w (Figure: 4.5.6), the deletion of crb2 in the  
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Δhhp1 strain abolished the extended G2 arrest (Figure: 4.7.4). Since loss of Crb2 shortened the 

long delay in Δhhp1 and cdc2.1w cells, and because Cdc2 and Hhp1 may be required to activate 

Mus81-Eme1, it is possible that Crb2 blocks the endonuclease (i.e. deletion of crb2 may 

overcome the absence of  Srs2 or the inhibitory Cdc2 modification in the cdc2.1w mutant). This 

blockage could be direct since Crb2 binds to chromatin or it could be indirect if Crb2 is to 

blocking Cdc2 and/or Hhp1 kinase (Figure: 4.6.7). 

 

 
Figure: 4.7.1: Srs2 DNA helicase and Hhp1 act in the same CPT (camptothecin) response pathway. Serial dilutions 
of the indicated strains were spotted onto rich medium plates containing the indicated CPT concentrations. Plates 
were incubated for 4 days at 30°C. One plate was incubated at 37°C. 
 

 
Figure: 4.7.2: Srs2 DNA helicase and Hhp1 act in the same MMS (methyl-methanesulfonate) response pathway. 
Serial dilutions of the indicated strains were spotted onto rich medium plates containing the indicated MMS 
concentrations. Plates were incubated for 4 days at 30°C. One plate was incubated at 37°C. 
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Figure: 4. 7.3: Loss of the DNA helicase Srs2 has little impact on the extended G2 arrest 
in the absence of Hhp1 kinase. ∆hhp1.∆srs2 cells were synchronised in G2 by lactose 
gradient centrifugation and released into rich medium with or without 40μϺ CPT 
(camptothecin) at 30 oC. Samples were withdrawn at the indicated time points and the 
percentage of septated G1-S cells were scored. Cells were fixed in methanol and stained 
with DAPI (DNA) and calcofluor (septum).    

 

 

 

 
Figure: 4. 7.4: Deletion of crb2 abolishes the extended G2 arrest in the absence of Hhp1 
kinase when DNA replication forks break in CPT (camptothecin) medium. ∆crb2.∆hhp1 
cells were synchronised in G2 by lactose gradient centrifugation and released into rich 
medium with or without 40μϺ CPT at 30 oC. Samples were withdrawn at the indicated 
time points and the percentage of septated G1-S cells were scored. Cells were fixed in 
methanol and stained with DAPI (DNA) and calcofluor (septum).    

 

 

0

5

10

15

20

25

30

0 40 80 120 160 200 240 280 320

%

Time in minutes

Cell Cycle Arrest

∆hhp1∆srs2

∆hhp1∆srs2+CPT

0

5

10

15

20

25

0 40 80 120 160 200 240 280 320

%

Time in minute

Cell Cycle Arrest

∆crb2∆hhp1

∆crb2∆hhp1+cpt



New roles of CKІε in DNA Replication Stress 2015 
 

145| P a g e  

 

 

Consistent with this model, deletion of crb2 in the Δhhp1 strain (Δcrb2.Δhhp1) did not increase 

the CPT and MMS sensitivity of the Δhhp1 single mutant (Figure: 4.7.5, Figure: 4.7.6). The 

same epigenetic relationship applied to the cdc2.1w mutant (Figure: 4.7.7). Interestingly, the 

hyper-active cdc2.1w mutation improved the growth of cells without hhp1 at elevated 

temperatures. This positive impact of elevated Cdc2 activity extended also to the short term 

exposure of cells to CPT. As shown in Figure: 4.7.8, the cdc2.1w Δhhp1 double mutant lost 

viability later compared to the Δhhp1 strain. A similar effect could also be produced when Cdc2 

activity was increased by impairing its inhibition by Wee1 kinase (wee1-50.Δhhp1). This shows 

that high Cdc2 activity levels can partly override the loss of Hhp1 (Figure: 4.7.8). 

 

 

 

 
Figure: 4.7.5: Crb2 and Hhp1 act in the same CPT (camptothecin) response pathway. Serial dilutions of the indicated 
strains were spotted onto rich medium plates containing the indicated CPT concentrations. Plates were incubated for 
4 days at 30°C. One plate was incubated at 37°C. 
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Figure: 4.7.6: Crb2 and Hhp1 act in the same MMS (methyl-methanesulfonate) response pathway. Serial dilutions of 
the indicated strains were spotted onto rich medium plates containing the indicated MMS concentrations. Plates were 
incubated for 4 days at 30°C. One plate was incubated at 37°C  
 

 

 

 
Figure: 4.7.7: Cdc2.1w and Hhp1 act in the same CPT (camptothecin) response pathway. Serial dilutions of the 
indicated strains were spotted onto rich medium plates containing the indicated CPT concentrations. Plates were 
incubated for 4 days at 30°C. One plate was incubated at 37°C 
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Figure: 4.7.8: Wee1 render Hhp1 resistant. The indicated yeast strain cells were cultured in YEA medium overnight 
at 30o C. Cells were harvested and treated with 40μϺ CPT (camptothecin) for five hours at 30 oC. Aliquots of 75 μl 
were collected every hour and the surviving colonies were scored after plating on YEA plates. 
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Chapter 5: Tyrosine 227 within the Nuclear 
Localisation Sequence may act as a switch between the 
DNA Repair and Cell Cycle Activities of Hhp1 Kinase  
------------------------------------------------------------------- 
 

Chapter Summary 

 How CK1 regulate DNA repair and cell cycle progression is so far only poorly 

understood. This chapter presents results which identify tyrosine 227 within the nuclear 

localisation sequence (NLS) as a potential regulatory switch. Mutation of Y227 to a 

phenylalanine residue increases strongly the DNA damage sensitivity while having only a small 

effect on the cell cycle regulation of Hhp1. Deletion of the complete NLS in frame causes a 

similar phenotype. This implies that nuclear localisation is much more important for the DNA 

repair activities of Hhp1 than for its cell cycle functions. Interestingly, the high DNA damage 

sensitivity of the NLS mutants is partly suppressed upon deletion of the DNA damage 

checkpoint kinase 1 (Chk1). A model is presented in which Chk1 activates the DNA repair 

endonuclease Mus81-Eme1 and Hhp1 inhibits this enzyme. A similar phenotype applies also to a 

Hhp1 mutant kinase which lacks the potential Chk1 phosphorylation site serine 183. The chapter 

also contains results which identify the ATP analogoue-sensitive M84G mutant as a separation-

of-function mutant which affects the cell cycle but not the DNA repair activities of Hhp1. 
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5.1. The ATP-analogoue sensitive Methionine-84 to Glycine Mutation is a Separation-of-

Function Mutation  

      Casein kinase 1 epsilon (CK1ε = Hhp1) is a member of the CK1 protein family of 

ubiquitously expressed,  monomeric serine/threonine-specific kinases (14). Human cells express 

seven CK1 isoforms: CK1α; CK1δ; CK1γ1; CK1γ2; CK1γ3; CK1β; and CK1ε (Hhp1), which 

can have additional splice variants. The structure of CK1 enzymes is highly conserved. The 

kinase domain is located in the smaller N-terminal domain (small lobe, Figure: 5.1.1), while the 

larger C-terminal domain encompasses the rest of the protein (large lobe) (1). 

 

 
Figure: 5.1.1: Structure of Hhp1 kinase. The visualisation of Hhp1 kinase is based on the structure of the N-terminal 
297 amino acids of the highly related S.pombe CK1 protein Cki1 (488). The conserved residues K40 (K41Cki1), 
L51 (L52Cki1), M84 (I84Cki1), Y169 (Y171Cki1), R180 (R183Cki1), K224 (K227Cki1) and Y227 (Y230Cki1) are 
shown. A: Front view: the ATP binding site in the small lobe with K40, L51Q and M84 is shown. R180C sits at the 
interface between the two lobes. B: Back view: The nuclear localisation domain with K224 and Y227 is located in a 
small grove at the top of the large lobe. Y169 is located at the side of the large lobe. Protein ID: 1CSN. The picture 
was generated with Polyview3D. 
 

     CK1 family members were identified in the nucleus, cytoplasm, and attached to the plasma 

membrane (1). CK1 isoforms phosphorylate a large number of substrates which regulate 

different cellular processes like cell differentiation (24), cell proliferation, apoptosis (42), 

circadian clock regulation (491), chromosome segregation (138), DNA repair (15) and vesicle 

transport (120). Mutations or changes in CK1 kinases have an impact on diseases including 

neurodegeneration (428) and cancer of the pancreas (490), the mammary gland (78), and in 

adenoid cystic carcinomas (76). 

     To understand more about the function and regulation of CK1 (Hhp1) in the context of the 

response to DNA damage especially when DNA replication forks break in the presence of the  
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topoisomerase 1 inhibitor camptothecin (CPT), five mutant versions of Hhp1 are discussed in  

this chapter. They include hhp1.S183A, hhp1.M84G, hhp1.M84G.NLS.deletion, 

hhp1.M84G.Y227F, hhp1.M84G.Y169F. 

 

MALDLRIGNK YRIGRKIGSG SFGDLYLGTN VVSGEEVAIK LESTRAKHPQ 

LEYEYRVYRI LSGGVGIPFV RWFGVECDYN AMVMM84GDLLGPS LEDLFNFCNR 

KFSLKTVLLL ADQLISRIEF IHSKSFLHRD IKPDNFLMGI GKRGNQVNII 

DFGLAKKYRD HKTHLHIPYY169FR ENKNLTGTAR YASS183AINTHLGI EQSRRDDLES 

LGYVLVYFCR GSLPWQGLKA TTKKQKYY227FEKI MEKKISTPTE VLCRGFPQEF 

SIYLNYTRSL RFDDKPDYAY LRKLFRDLFC RQSYEFDYMF DWTLKRKTQQ 

DQQHQQQLQQ QLSATPQAIN PPPERSSFRN YQKQNFDEKG GDINTTVPVI 

NDPSATGAQY   INRPN  

Figure: 5.1.2: Amino acid sequence of S.pombe Hhp1. The location of the mutated amino acids has been indicated. 
 

Methionine 84 is located inside the ATP binding site (Figure: 5.1.1) and has been previously 

mutated to a smaller glycine residue (M84G) to allow for the binding of a bulky ATP analogue 

which cannot by hydrolysed (381). This mutation was recreated in this study. Serine 183 was 

mutated since it resembles a potential Chk1 phosphorylation site (544) although the residue may 

not be accessible from the outside based on the structure of the highly related S.pombe CK1 

enzyme Cki1 (Figure: 5.1.3). 

 
Figure: 5.1.3: Structure of Hhp1 kinase. The visualisation of Hhp1 kinase is based on the structure of the N-
terminal 297 amino acids of the highly related S.pombe CK1 protein Cki1 (488). The conserved residues Y169 
(Y171Cki1), R180 (R183Cki1), and S183 (S186Cki1) are shown. A: Cartoon view of the beta sheets, alpha helices 
and loops: the side chains of the indicated amino acids are shown. B: Surface view: Note that the side chain of 
S183 is not accessible from the outside in this conformation. The image was generated with Polyview3D. 
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The sequence 183-SINT-186 in S.pombe Hhp1 resembles the highly phosphorylated Chk1 motifs 

176-SINF-179 in human cyclin G or 699-SIPAF-703 in human Mad1A (544). The nuclear 

localisation sequence of Hhp1 (222-TKKQKY-227) forms a grove at the tip of the larger C-

terminal lobe (Figure: 5.1.2). The potential phosphorylation site Y227 sits at the bottom of this 

grove, while K224 protrudes into the space of the grove. The second potential phosphorylation 

site Y169 is located at the surface of the larger lobe. 

 

 

 
Figure: 5.1.4: Protein Expression Levels of Hhp1 kinase strains. Total protein was isolated, 15μl of the protein 
seperated on a 10% SDS gel, transferred onto nitrocellulose membrane and detected with an anti-HA antibody. Two 
positive controls used were hhp1HA.wt, and hhp1M84G strains, and the negative control  is the deletion strain 
(∆hhp1)..All  strains expresses full-length Hhp1.  
 

 

     All mutant strains were constructed using the Cre-Lox base strain technology (258). The 

mutant alleles of hhp1-HA were generated by fusion-PCR and integrated at the endogenous hhp1 

locus on chromosome 2. All integrated and mutated hhp1 genes were amplified from the isolated 

strains and the mutations were confirmed by DNA sequencing. Protein expression levels were 

then analysed by Western blot using an anti-HA antibody. As shown in Figure: 5.1.4, all mutant 

proteins are well expressed.   
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Figure: 5.1.5: MMS (methyl-methanesulfonate) drop test for the hhp1.S183A strain. Serial dilutions of the indicated 
strains were spotted onto rich medium plates containing the indicated MMS concentrations. Plates were incubated 
for 4 days at 30°C. One plate was incubated at 37°C.  
 

 
Figure: 5.1.6: CPT (camptothecin) drop test for the hhp1.S183A strain. Serial dilutions of the indicated strains were 
spotted onto rich medium plates containing the indicated MMS concentrations. Plates were incubated for 4 days at 
30°C. One plate was incubated at 37°C. 
 

 

Cells expressing either hhp1.M84G-HA or hhp1.S183A-HA were as MMS and CPT resistant as 

hhp1-HA wild type cells (Figure: 5.1.5, Figure: 5.1.6). This shows that the widening of the ATP 

binding site (M84G) or the replacement of S183 by an alanine residue has no impact on cell 

viability in the presence of these drugs. This conclusion is in line with the previous report on 

M84G (382). To test whether either mutation has an effect on the CPT or heat induced G2 arrest, 

cells were synchronised in G2 by lactose gradient centrifugation and released into rich medium 

with or without 40µM CPT, or into rich medium at 30°C or 40°C.  While heat stress arrested 

wild type cells in the first G2 phase for approximately 180 min (Figure: 5.1.10), CPT delayed the 

progression through the second G2 only briefly for 20-40 min after cells were damaged in the  
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previous S phase (Figure: 5.1.9). Cells with the M84G mutation initiated the G2 arrest at 40°C 

but did not maintain the arrest for the same duration as wild type cells. They started to re-enter 

the cell cycle after 60 min (Figure: 5.1.7) while wild type cells delay for up to 180 min (Figure: 

5.1.10). Very unexpectedly, the mutation had the opposite effect on the CPT-induced G2 delay. 

In contrast to wild type cells, M84G cells delayed entry into mitosis throughout the duration of 

the experiment (Figure: 5.1.8). This shows that  the widening of the ATP binding site strongly 

affects the cell cycle activities of Hhp1 but not the survival of cells in the presence of DNA 

damage. If the M84G mutation may reduce the kinase activity, this reduction does not impact on 

the survival of the cells in the presence of MMS or CPT, but on the ability of Hhp1 to regulate 

the G2 arrest when DNA replication forks break or when cells are exposed to heat stress. Why 

the mutation affects the heat and DNA damage-induced G2 delay in opposite ways is not yet 

clear. The main conclusion of these findings is that the analogue-sensitive M84G mutation 

behaves like a separation-of-function mutation. 

 

 

 

 
Figure: 5.1.7: Cell Cycle Arrest of the hhp1.M84G strain. Indicated cells were 
synchronised in G2 by lactose gradient centrifugation and released into rich medium 
at 30 oC or 40 oC. Samples were withdrawn at the indicated time (20 min) points. 
Cells were fixed in methanol and stained with DAPI (DNA) and calcofluor 
(septum). The percentage of septated cells, which are a readout for G1/S, was scored 
(%). Heat stress at 40 oC delayed the first G1/S peak by 40-60 min. Then the cell 
cycle pattern continued normally. 
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Figure: 5.1.8: Cell Cycle for Hhp1.M84G cells in the presence of CPT (camptothecin). 
Indicated cells were synchronised in G2 by lactose gradient centrifugation and released 
into rich medium with or without 40μM camptothecin (CPT). Samples were withdrawn 
at the indicated time (20 min) points. Cells were fixed in methanol and stained with 
DAPI (DNA) and calcofluor (septum). The percentage of septated cells, which are a 
readout for G1/S cells, was scored (%). 40μϺ CPT cause a severe G2 arrest. 

 

 

 

 

 

 
Figure: 5.1.9: Cell Cycle Arrest of hhp1.HA.wild type cells. Cells were synchronised in 
G2 by lactose gradient centrifugation and released into rich medium with or without 
40μM camptothecin (CPT). Samples were withdrawn at the indicated time (20 min) 
points. Cells were fixed in methanol and stained with DAPI (DNA) and calcofluor 
(septum). The percentage of septated cells, which are a readout for G1/S cells, was 
scored (%). Hhp1.HA.wt cells have a  G2 delay of about 20-40 min due to broken 
replication forks. 
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Figure: 5.1.10: Cell Cycle Arrest for the hhp1.HA.wild type strain. Cells were 
synchronised in G2 by lactose gradient centrifugation and released into rich medium at 
30 oC or 40 oC. Samples were withdrawn at the indicated time (20 min) points. Cells 
were fixed in methanol and stained with DAPI (DNA) and calcofluor (septum). The 
percentage of septated cells, which are a readout for G1/S cells, was scored (%). Heat 
stress at 40 oC delayed the first G1/S peak by approximately 160 min. Then the cell 
cycle pattern continued normally. 

 

 

 

5.2. Mutation of the potential Chk1 Phosphorylation Site Serine-183 affects specifically the 

Cell Cycle Activities of Hhp1 Kinase  

   As explained earlier, serine-183 was mutated to an alanine residue because it resembles a 

potential Chk1 phosphorylation site. The chk1 deletion was also found to be epistatic with the 

hhp1 deletion (Chapter 3). Interestingly, cells expressing Hhp1 with the S183A mutation 

displayed a significant longer G2 delay in the presence of CPT (Figure: 5.2.1) compared to wild 

type cells (Figure: 4.1.10). Hhp1.S183A also showed an extended G2 phase in the absence of the 

topoisomerase 1 poison (Figure: 5.2.1). In contrast to wild type cells, the two G1/S peaks were 

clearly further apart (approx. 80 min). This indicates that the S183A mutation affects cell cycle 

progression independently of DNA damage.  

     Under heat stress conditions, hhp1.S183A-HA cells entered a G2 arrest which was however 

shorter compared to hhp1-HA wild type cells (Figure: 5.2.2). Taken together, both experiments 

indicate a defect in cell cycle regulation when serine-183 has been replaced by an  alanine 

residue. Whether this is caused by an impact on the kinase activity or caused by the loss of a 

possible phosphorylation event by Chk1 kinase is not yet clear. 
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Figure: 5.2.1: Cell Cycle Arrest for the hhp1.S183A strain. Cells were synchronised in 
G2 by lactose gradient centrifugation and released into rich medium with or without 
40μM camptothecin (CPT). Samples were withdrawn at the indicated time (20 min) 
points. Cells were fixed in methanol and stained with DAPI (DNA) and calcofluor 
(septum). The percentage of septated cells, which are a readout for G1/S cells, was 
scored (%). Treatment of the hhp1.S183A strain with  40μϺ CPT resulted in an extended 
G2 arrest. 

 

 

 
Figure: 5.2.2: Heat stress and cell cycle arrest of the hhp1.S183A strain. Cells were 
synchronised in G2 by lactose gradient centrifugation and released into rich medium 
with or without introducing heat stress at 40 oC. Samples were withdrawn at the 
indicated time (20 min) points. Cells were fixed in methanol and stained with DAPI 
(DNA) and calcofluor (septum). The percentage of septated cells, which are a readout 
for G1/S cells, was scored (%). Hhp1.S183A cells initiate the G2 arrest but do not 
maintain it as well as wild type cells. 

 

     To test whether the hhp1.S183A mutation acts in the same pathway as the deletion of chk1, a 

hhp1.S183A-HA Δchk1 double mutant was constructed. The loss of Chk1 had no impact on the 

protein levels of the mutated Hhp1 kinase (Figure: 5.2.3).  
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The combination of the S183A mutation with the deletion of  chk1 had a small but interesting 

impact on the CPT and heat sensitivity (Figure: 5.2.4). Both, the hhp1.S183A-HA Δchk1 and 

Δhhp1 Δchk1 strains grew better at 37°C and at higher CPT concentrations (2-5µM) (Figure: 

5.2.4). This rescue effect could indicate a closer functional relationship between both kinases, 

which is supported by their epigenetic relationship discussed in Chapter 3. It may also imply that 

S183 is a genuine Chk1 phosphorylation site. 

 

 
Figure: 5.2.4: CPT (camptothecin) drop test for the hhp1.S183.∆chk1 strain. Serial dilutions of the indicated strains 
were spotted onto rich medium plates containing the indicated CPT concentrations. Plates were incubated for 4 days 
at 30°C. One plate was incubated at 37°C.  
 

The analysis of the cell cycle arrest of G2 synchronised Δchk1 hhp1.S183A-HA cells revealed 

also an interesting observation. While the S183A mutant delayed for approximately 60 min in 

the presence of 40µM CPT (Figure: 5.2.1) loss of Chk1 kinase reduced this extended delay to 20  

 

Figure: 5.2.3: Protein levels of 
the hhp1.S183A∆chk1 strain. 
Total protein was isolated, 15μl 
of the protein seperated on a 
10% SDS gel, transferred onto 
nitrocellulose membrane and 
detected with an anti-HA 
antibody. Positive control is the 
hhp1HA.wild type strain, and 
the negative control  is the 
∆hhp1 deletion strain. 
expresses full-length of hhp1.   
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min  (Figure: 5.2.5). It also reduced the extended gap between the G1/S peaks in the absence of 

CPT. 

This implies that Chk1 may become hyper-activated in the S183A mutant thereby enforcing a 

prolonged inhibitory phosphorylation on the cell cycle regulator Cdc2 either during the normal 

cell cycle or in the response to CPT. Again this supports the idea that Chk1 and Hhp1 share a 

close functional link.  

 

 
Figure: 5.2.5: Cell Cycle Arrest for the hhp1.S183A.∆chk1 strain. Cells were 
synchronised in G2 by lactose gradient centrifugation and released into rich medium 
with or without 40μM camptothecin (CPT). Samples were withdrawn at the indicated 
time (20 min) points. Cells were fixed in methanol and stained with DAPI (DNA) and 
calcofluor (septum). The percentage of septated cells, which are a readout for G1/S 
cells, was scored (%). Deletion of chk1 reduces the delayed cell cycle progression of the 
hhp1.S183A mutant. 

 

 

5.3. Mutated Hhp1 tyrosine-169-phenylalanine change Hhp1 kinase activities 

     CK1 homolougus in yeast differ from their human counterparts as they are dual specific 

kinases which phosphorylate tyrosine as well as serine and threonine residues (12). Hhp1 

contains two tyrosine residues with an interesting locations on the kinase. As shown in Figure: 

5.1.1, tyrosine 169 (Y169) is exposed at the surface of the larger regulatory domain and Y227 is 

located at the bottom of a small grove which forms the nuclear localisation domain. While Y227 

has a phosphorylation probability of 90% according to the Netphos 2.0 analysis tool, Y169 

scores  only 2.5%. To test whether both tyrosine residues are important for the DNA damage 

response, they were individually mutated to a phenylalanine residue which shares a benzene ring 

with tyrosine but lacks the hydroxyl group which could undergo phosphorylation. Both mutants  
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were generated in the analogue-sensitive M84G background which itself has no impact on the 

cell survival (381) (Figure: 5.1.5, Figure: 5.1.6). To test the significance of the nuclear 

localisation sequence (222-T KKQKY-227), all six amino acids were deleted in frame. All 

mutant alleles were integrated at the endogenous hhp1 locus and re-amplified for DNA 

sequencing. 

   Like the M84G single mutant (Figure: 5.1.5), the hhp1.M84G.Y227F-HA strain grows better at 

37° which implies that the higher (Figure: 5.3.1) resistance to temperature stress is dependent on 

the M84G mutation in the ATP binding site and not on the mutation of Y227.  Rather 

unexpectedly, removal of the hydroxyl group at  position 227 had a strong impact on the MMS 

and CPT sensitivity of the M84G mutant (Figure: 5.3.1, Figure: 5.3.2). While the single M84G 

mutant is as resistant as wild type cells (Figure: 5.1.5, Figure: 5.1.6), the hhp1.M84G.Y227F-HA 

strain was significantly more sensitive to both drugs (Figure: 5.3.1, Figure: 5.3.2, Figure: 5.3.3). 

While it is difficult to exclude the possibility that this sensitivity is a combination of both 

mutations (M84G and Y227F), it indicates an important role of Y227 in the DNA damage 

response. 

 

 

 
Figure: 5.3.1: MMS (methyl-methanesulfonate) drop test for the hhp1.M84G.Y227F strain. Serial dilutions of the 
indicated strains were spotted onto rich medium plates containing the indicated MMS concentrations. Plates were 
incubated for 4 days at 30°C. One plate was incubated at 37°C. 
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Figure: 5.3.2: CPT (camptothecin) drop test for the hhp1.M84G.Y227F strain. Serial dilutions of the indicated strains 
were spotted onto rich medium plates containing the indicated CPT concentrations. Plates were incubated for 4 days 
at 30°C. One plate was incubated at 37°C.  
 

 

 

 
Figure: 5.3.3: CPT (camptothecin) survival assay for the hhp1.M84G.Y227F strain. Yeast strains cells were cultured 
in YEA medium overnight at 30 oC. Cells were harvested and treated with 40μϺ CPT. Samples (75µl) were 
withdrawn at the indicated time points and plated on one YEA plate. The surviving colonies were scored after 3-4 
days at 30°C.  
 

As shown in Figure: 5.3.3, the hhp1.M84G.Y227F-HA strain was only slightly less sensitive than 

the hhp1 deletion strain under acute conditions. While the mutation of Y227 had a clear impact  
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on the cell survival in the presence of DNA damage, it had little impact on the cell cycle delay. 

Like the M84G single mutant, the hhp1.M84G.Y227F-HA strain delayed significantly longer in 

the presence of DSBs (Figure: 5.3.4). Although this shows that the main change to the G2 delay 

in the presence of replication fork damage originates from the M84G mutation and not from the 

Y227F replacement, the mutation may have a small impact on the G2 delay under heat stress 

conditions. As shown in Figure: 5.3.5, hhp1.M84G.Y227F-HA cells postpone entry into mitosis 

for 160 min while the M84G strain re-entered the cell cycle already after 60 min (Figure: 5.1.7). 

The main conclusion from these experiments is the requirement of the hydroxyl group at position 

227 for the survival of MMS and CPT induced DNA damage rather than for the regulation of the 

cell cycle. 

 

 

 

 
Figure: 5.3.4: Cell Cycle Arrest for the hhp1.M84G.Y227F strain. Cells were 
synchronised in G2 by lactose gradient centrifugation and released into rich medium 
with or without 40μM camptothecin (CPT). Samples were withdrawn at the indicated 
time (20 min) points. Cells were fixed in methanol and stained with DAPI (DNA) and 
calcofluor (septum). The percentage of septated cells, which are a readout for G1/S 
cells, was scored (%).  
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Figure: 5.3.5: Heat stress induced cell cycle arrest of the hhp1.M84G.Y227F strain. 
Indicated cells were synchronised in G2 by lactose gradient centrifugation and released 
into rich medium with or without (30°C) heat stress at 40 oC. Samples were withdrawn 
at the indicated time (20 min) points. Cells were fixed in methanol and stained with 
DAPI (DNA) and calcofluor (septum). The percentage of septated cells, which are a 
readout for G1/S cells, was scored (%).  

 

Given that Y227 sits at the bottom of the grove which forms the nuclear localisation domain, the 

mutation of Y227 may affect the nuclear shuttling of the kinase thereby causing a deletion-like 

phenotype with regard to cell survival. Consistent with this idea, the hhp1.M84G.ΔNLS-HA 

strain resembles closely the hhp1.M84G.Y227F-HA strain. Deletion of the NLS in frame, 

rendered the M84G mutant CPT (Figure: 5.3.6) and MMS (Figure: 5.3.7)  sensitivity, and 

resulted in cell cycle delays which are reminiscent of the M84G mutant although the G2 arrest in 

CPT medium was shorter (Figure: 5.3.9). Taken together these findings imply a role for the 

nuclear localisation domain in the cell survival when DNA becomes damaged by alkylation 

(MMS) or by replication fork breakage (CPT).  

 

 
Figure: 5.3.6: CPT (camptothecin) drop test for the hhp1.M84G.NLS.deletion strain. Serial dilutions of the indicated 
strains were spotted onto rich medium plates containing the indicated CPT concentrations. Plates were incubated for 
4 days at 30°C. One plate was incubated at 37°C.  
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Figure: 5.3.7: MMS (methyl-methanesulfonate) survival assay for the hhp1.M84G.NLS.deletion strain. Yeast strains 
cells were cultured in YEA medium overnight at 30 oC. Cells were harvested and treated with 0.05% MMS. Samples 
(75µl) were withdrawn at the indicated time points and plated on one YEA plate. The surviving colonies were scored 
after 3-4 days at 30°C. 
 

 

 

 
Figure: 5.3.8: Heat stress induced cell cycle arrest for the hhp1.M84G.NLS.deletion. 
Cells were synchronised in G2 by lactose gradient centrifugation and released into rich 
medium with 30 oC or 40 oC heat. Samples were withdrawn at the indicated time (20 
min) points. Cells were fixed in methanol and stained with DAPI (DNA) and calcofluor 
(septum). The percentage of septated cells, which are a readout for G1/S cells, was 
scored (%).  
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Figure: 5.3.9: Cell cycle arrest for hhp1.M84G.NLS.deletion strain in the presence of 
CPT. Indicated cells were synchronised in G2 by lactose gradient centrifugation and 
released into rich medium with or without 40μM camptothecin (CPT). Samples were 
withdrawn at the indicated time (20 min) points. Cells were fixed in methanol and 
stained with DAPI (DNA) and calcofluor (septum). The percentage of septated cells, 
which are a readout for G1/S cells, was scored (%).  

 

In contrast to the mutation of Y227, the replacement of Y169 by a phenylalanine residue had no 

impact on the DNA damage sensitivity. The hhp1.M84G.Y169F-HA strain survived as well as 

the M84G single mutant and wild type cells in the presence of CPT (Figure: 5.3.10) and MMS 

(Figure: 5.3.11). This shows that the high sensitivity of the hhp1.M84G.Y227F-HA strain is most 

likely due to the mutation at position 227. 

 

 

 
Figure: 5.3.10: CPT (methyl-methanesulfonate) drop test for the hhp1.M84G.Y169F strain. Serial dilutions of the 
indicated strains were spotted onto rich medium plates containing the indicated CPT concentrations. Plates were 
incubated for 4 days at 30°C. One plate was incubated at 37°C.  
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Figure: 5.3.11: MMS (methyl-methanesulfonate) survival assay for the hhp1.M84G.Y169F strain. Yeast strains cells 
were cultured in YEA medium overnight at 30 oC. Cells were harvested and treated with 0.05% MMS. Samples (75µl) 
were withdrawn at the indicated time points and plated on one YEA plate. The surviving colonies were scored after 3-
4 days at 30°C.  
 

 

 

 
Figure: 5.3.12: Heat stress induced cell cycle arrest for the hhp1.M84G.Y169F strain. 
Indicated cells were synchronised in G2 by lactose gradient centrifugation and released 
into rich medium at 30°C or at 40 oC as heat stress. Samples were withdrawn at the 
indicated time (20 min) points. Cells were fixed in methanol and stained with DAPI 
(DNA) and calcofluor (septum). The percentage of septated cells, which are a readout 
for G1/S cells, was scored (%). 
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Figure: 5.3.13: Cell cycle arrest for the hhp1.M84G.Y169F strain in the presence of CPT. 
Cells were synchronised in G2 by lactose gradient centrifugation and released into rich 
medium with or without 40μM camptothecin (CPT). Samples were withdrawn at the 
indicated time (20 min) points. Cells were fixed in methanol and stained with DAPI 
(DNA) and calcofluor (septum). The percentage of septated cells, which are a readout 
for G1/S cells, was scored (%).  

 

As in the case of the Y227F mutation, the replacement of Y169 had no real impact on the G2 

arrest changes induced by the M84G mutant (Figure: 5.3.12, Figure: 5.3.13).  

     In summary, the dominant phenotype of the tyrosine mutants (Y169 or Y227 to a 

phenylalanine) was the strong increase in MMS and CPT sensitivity of the Y227F mutation 

which affects the nuclear localisation sequence. This is supported by the similar increase in 

MMS and CPT sensitivity of the NLS deletion strain. Interestingly, neither the Y227F mutation 

nor the deletion of the NLS had a strong impact on the cell cycle defect caused by the M84G 

single mutation.  

 

5.4) Mutation of Tyrosine 227 within the the Nuclear Localisation domain (NLS) effects the 

DNA Repair Activities of Hhp1 kinase  

     Since deletion of chk1 reduced the CPT-induced G2 delay of the S183A mutant (Figure: 

5.2.5), the hhp1.M84G.Y227F-HA double mutation was combined with the deletion of chk1 

(Δchk1 hhp1.M84G.Y227F-HA). Loss of Chk1 kinase had no impact on the expression levels of 

the mutated Hhp1 protein (Figure: 5.4.1), but restored MMS and CPT resistance (Figure: 5.4.2, 

Figure: 5.4.3, Figure: 5.4.4). The impact of the loss of Chk1 was stronger for CPT compared to 

MMS. This suppression phenotype is in line with the more subtle restoration of CPT resistance 

in the Δchk1 hhp1.S183A-HA strain (Figure: 5.2.4) and strongly suggests that Chk1 may be 

aberrantly active in the hhp1 mutant or that Chk1 starts a DNA repair event which requires wild  
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type Hhp1 kinase at a later stage. In combination with the results summarised in Chapter 3, the 

rescue effect could be explained if both kinases were to converge on the Mus81-Eme1 

endonuclease. Loss of Chk1 may rescue the CPT sensitivity of the hhp1.M84G.Y227F-HA 

(Figure: 5.4.3) and hhp1.S83A-HA strain (Figure: 5.2.4) because Mus81-Eme1 may be aberrantly 

active in these hhp1 mutants. Chk1 phosphorylates and activates the endonuclease in G2 to help 

with the repair of broken DNA  replication forks (515). As in the case of the Δchk1 hhp1.S183A-

HA mutant, loss of Chk1 reduced the extended G2 delay in CPT medium (Figure: 5.4.5).  This 

would be in line with the idea that Mus81 is hyperactive in the hhp1 mutant cells thereby 

triggering a repair problem which prolongs the checkpoint signal and re-entry into mitosis 

(Figure: 5.4.6). Loss of Chk1 may prevent this hyper-activation thereby rendering the inhibition 

of Mus81-Eme1 by Hhp1 redundant. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 

 

 
Figure: 5.4.2: MMS (methyl-methanesulfonate) drop test for the hhp1.M84G.Y227F.∆chk1 strain. Serial dilutions of 
the indicated strains were spotted onto rich medium plates containing the indicated MMS concentrations. Plates were 
incubated for 4 days at 30°C. One plate was incubated at 37°C.  
 

Figure: 5.4.1: Protein 
levels of the 
hhp1.M84G.Y227F.∆c
hk1 strain. Total 
protein was isolated, 
15μl of the protein 
seperated on a 10% 
SDS gel, transferred 
onto nitrocellulose 
membrane and 
detected with an anti-
HA antibody.  



New roles of CKІε in DNA Replication Stress 2015 
 

168| P a g e  

 

 

 
Figure: 5.4.3: CPT (camptothecin) drop test for hhp1.M84G.Y227F.∆chk1 strain. Serial dilutions of the indicated 
strains were spotted onto rich medium plates containing the indicated CPT concentrations. Plates were incubated for 
4 days at 30°C. One plate was incubated at 37°C. 
 

 

 

 
Figure: 5.4.4: Acute CPT (camptothecin) survival assay for the hhp1.M84G.Y227F.∆chk1 strain. Yeast strains cells 
were cultured in YEA medium overnight at 30 oC. Cells were harvested and treated with 40μϺ CPT. Samples (75µl) 
were withdrawn at the indicated time points and plated on one YEA plate. The surviving colonies were scored after 
3-4 days at 30°C.  
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Figure: 5.4.5: Cell cycle arrest  for the hhp1.M84G.Y227F.∆chk1 strain. Cells were 
synchronised in G2 by lactose gradient centrifugation and released into rich medium 
with or without 40μM camptothecin (CPT). Samples were withdrawn at the indicated 
time (20 min) points. Cells were fixed in methanol and stained with DAPI (DNA) and 
calcofluor (septum). The percentage of septated cells, which are a readout for G1/S 
cells, was scored (%).  

 

 

 

 

 
Figure: 5.4.6: Model of Mus81-Eme1 and Hhp1 and Chk1 activities. Mutations in Hhp1 may reduce the 
inhibitory impact of the kinase on the endonuclease Mus81-Eme1 resulting in its aberrant up-regulation. 
Since Chk1 phosphorylation of Eme1 is necessary for  the activation of the endonuclease in G2 when 
DNA replication forks break in the presence of the topoisomerase 1 inhibitor camptothecin (CPT), 
deletion of chk1 may rescue the CPT sensitivity and reduce the CPT-induced G2 delay because Mus81 
would no longer be hyperactive. 
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To find out whether the rescue of the CPT sensitivity upon loss of Chk1 is specific to the 

hhp1.M84G.Y227F-HA strain, the deletion of chk1 was also combined with the 

hhp1.M84G.ΔNLS-HA double mutation.  

 

                   
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

As in the case of the Y227A mutation, loss of chk1 had no impact on the total amount of the 

Hhp1.M84G.ΔNLS-HA protein (Figure: 5.4.7), and it reduced the sensitivity to CPT (Figure: 

5.4.8, Figure: 5.4.9). This indicates that it has the inability to shuttle between the nucleus and  the 

cytoplasm which causes the DNA repair defect when DNA replication forks break. Moreover 

this indicates that the inhibitory activity of Hhp1 on Mus81-Eme1 is executed in the nucleus.  

 

 
Figure: 5.4.8: CPT (camptothecin) drop test for the hhp1.M84G.NLS.deletion.∆chk1 strain. Serial dilutions of the 
indicated strains were spotted onto rich medium plates containing the indicated CPT concentrations. Plates were 
incubated for 4 days at 30°C. One plate was incubated at 37°C. 
 

Figure: 5.4.7: Protein 
levels of the 
hhp1.M84G.NLS.delet
ion.∆chk1strain. Total 
protein was isolated, 
15μl of the protein 
seperated on a 10% 
SDS gel, transferred 
onto nitrocellulose 
membrane and 
detected with an anti-
HA antibody.  
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Figure: 5.4.9: Acute CPT (camptothecin) survival for the hhp1.M84G.NLS.deletion.∆chk1 strain. Yeast strains cells 
were cultured in YEA medium overnight at 30 oC. Cells were harvested and treated with 40μϺ CPT. Samples (75µl) 
were withdrawn at the indicated time points and plated on one YEA plate. The surviving colonies were scored after 
3-4 days at 30°C.  
 

 

 

 
Figure: 5.4.10: Cell cycle arrest  for the hhp1.M84G.NLS.deletion.∆chk1 strain in the 
presence of CPT. Cells were synchronised in G2 by lactose gradient centrifugation and 
released into rich medium with or without 40μM camptothecin (CPT). Samples were 
withdrawn at the indicated time (20 min) points. Cells were fixed in methanol and stained 
with DAPI (DNA) and calcofluor (septum). The percentage of septated cells, which are a 
readout for G1/S cells, was scored (%).  

 

There was however one important difference between the Y227F and ΔNLS mutants. While 

deletion of chk1 reduced the G2 delay in case of the Y227F mutation, it did not result in a  

similar reduction when Y227 and the rest of the nuclear localisation sequence was deleted  
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(Figure: 5.4.10). This led to the conclusion that while the NLS and Y227 are both important for 

the DNA repair response of Hhp1,Y227 may act independently of the NLS in the case of the cell 

cycle regulation. The latter function may require the phosphorylation of Y227. 

 

 

 

 
Figure: 5.4.11: MMS drop test for the hhp1.M84G.NLS.deletion.∆chk1 strain. Serial dilutions of the indicated strains 
were spotted onto rich medium plates containing the indicated MMS concentrations. Plates were incubated for 4 
days at 30°C. One plate was incubated at 37°C. 
 

 

The same explanation may also help to understand why loss of Chk1 does not restore the 

resistance to MMS (Figure: 5.4.11). How loss of Y227 in the ΔNLS mutant could cause a 

different phenotype compared to the single Y227F mutation could be explained if the 

phenylalanine at the bottom of the small grove which forms the NLS domain still allows the 

domain to function whilst abolishing any phosphorylation at this position. In this sense, the 

Y227F mutation could be a separation-of-function mutation. If phosphorylation of Y227 were to 

regulate nuclear shuttling of Hhp1, the un-phosphorylated NLS may cause the kinase to 

accumulate in one compartment causing the separation of function. Unfortunately, all attempts to 

visualise the HA-tagged Hhp1 proteins in cells were unsuccessful. 
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Chapter 6: The Circadian Clock Mutations in Hhp1 
affect mainly its Cell Cycle Functions 
------------------------------------------------------------------- 
Chapter Summary 

     Casein kinase 1 plays key roles in the mammalian circadian clock and most CK1 mutations 

affecting the clock reduce the kinase activity towards the PERIOD proteins. Three circadian 

clock mutations in S.pombe Hhp1 are the main feature of this chapter. The tau mutation found in 

Syrian Hamster CK1ɛ.R178C (Hhp1.R180C) and other two mutantions found in Drosophila: 

double-time long dbtL.M80I (Hhp1.M82I) and double-time short dbtS.P47S (Hhp1.P49S). All 

three mutations affect the cell cycle activity of Hhp1 while having only a very limited impact on 

cell survival in the presence of the topoisomerase 1 inhibitor camptothecin (CPT). Mutant cells 

expressing the circadian mutations have an extended G2 arrest in the presence of CPT. The main 

conclusion from these findings is that a drop in kinase activity affects mainly the cell cycle but 

not the DNA repair functions of Hhp1. The relationship between Hhp1 and the S.pombe paralog 

of TIMELESS (Swi1) was also investigated. Swi1 associates with the DNA replication fork and 

loads the DNA damage checkpoint protein Mrc1. Deletion of swi1 renders Δhhp1 more CPT 

sensitive strongly suggesting that both proteins act in parallel pathways when DNA replication 

forks break.  

     Given that Wee1 is regulated by the mammalian clock, the genetic link between Wee1 and 

Hhp1 was studied. A drop in Wee1 activity, which increases activity levels of the main cell cycle 

regulator Cdc2 kinase, partly reduces the heat and CPT sensitivity of Δhhp1 and the double-time 

short (hhp1.P49S) mutation. A similar suppression was observed when Cdc2 activity is increased 

by the gain-of-function mutation cdc2.1w (G146D). The rescue upon an increase in Cdc2 activity 

could be explained by the regulation of the endonuclease Mus81-Eme1 since the endonuclease 

complex is phosphorylated by Cdc2 and most likely also by Hhp1. The chapter also presents a 

biochemical analysis of Hhp1 and its mutant forms using isoelectric focusing. Wild type Hhp1 

separates into four forms on a linear pH gradient from 3 to 10 independently of DNA damage. 

The tau mutation (hhp1.R180C-HA) shifts one form to a more positive (alkaline) isoelectric 

point, while the double-time long mutation (hhp1.M82I-HA) increases the number of the 

negative forms. Two of the forms reside or require the C-terminal domain of Hhp1 as they 

disappear upon deletion of the tail domain. A kinase-dead  mutant of Hhp1 (hhp1.K40R-HA) still 

possesses the four forms strongly implying that auto-phosphorylation is not important. 
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6.1. Introduction 

     The circadian clock defines the daily biological cycle of activities based on a 24 hours period of 

time. The circadian rhythm influences the daily alternation between light and dark and the rhythm 

between sleep and activity in mammals (361). The circadian system is based on the oscillating 

expression of key genes including CLOCK or NPAS2, BMAL1, PERIOD 1-3 and 

CRYPTOCHROME 1-2 (360). Casein kinase 1 (CKI) performs divers roles in the circadian 

clock. It promotes the nuclear localisation of Period 1 to down-regulate the dimeric master 

transcription factor CLOCK-BMAL1 (1).  The phosphorylation of the PER proteins by CK1 

increases over the course of the circadian day and peaks when the repression of the positive 

transcription factors CLOCK and BMAL1 is maximal. The role of many CK1 phosphorylation 

sites is however not known. Some phosphorylation events target the PER proteins for 

degradation while others are important for their nuclear localisation. The breakdown of the PER 

proteins can reset the clock because it removes the inhibition of the CLOCK-BMAL1 hetero-

dimer.  BMAL1 is also phosphorylated by CK1 which is linked with an increase in its 

transcriptional activity (545). Two important outputs of the clock are cell cycle regulation and 

DNA repair. Bjarnason Georg, and Richard Jordan (366) stated that the mammalian clock 

regulates cell cycle progression by influencing the transcription of Wee1, c-myc, and cyclin D1. 

Wee1 kinase inhibits cell cycle progression by phosphorylating Cdc2 kinase at tyrosine 15, the 

transcription factor c-myc promotes G1-S progression whereas the cyclin D1-CDK4 complex 

keeps cells in G1 by blocking members of the retinoblastoma (RB) protein family.  Interestingly, 

the mammalian Timeless (Tim) protein promotes the circadian rhythm (101, 364, 372, 379) and 

is required for the activity of the intra-S DNA damage checkpoint by directly regulating ATR-

Chk1 signalling (101, 111, 546). Proteins closely related to the human Tim protein exist in 

Drosophila (dTim-2/dTimeout) (101, 365), in the budding yeast S. cerevisiae (Tof1) (269, 378) 

and the fission yeast S. pombe (Swi1) (118, 373). Both, Swi1 and Tof1 associate directly with 

DNA replication forks and are  mediators of the DNA damage checkpoint. Swi1 prevents 

replication fork collapse (101, 118) and Tof1 forms a complex with Csm3 and Mrc1 at the DNA 

replication fork (547). 
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6.2. The Circadian Clock Mutations analysed in Hhp1 

     Three mutants were created in the hhp1 gene of the fission yeast Schizosaccharomyces pombe 

(S. pombe): hhp1.R180C which equals the mammalian tau mutation R178C in CK1ɛ of the 

Syrian Hamster (367), hhp1.M82I which is identical to the Double-time long mutation (dbtL. 

M80I) in Drosophila and Hhp1.P49S which is similar to Double-time short (dbtS. P47S) in 

Drosophila (142) (Figure: 6.2.1, Figure: 6.2.2).  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

  

 
   Figure: 6.2.2: Loaction of the mutations in the amino acid sequence of S.pombe Hhp1.  

Figure: 6.2.1: Position of the 
three circadian clock 
mutations in S.pombe Hhp1. 
Interestingly, all three 
mutations face the ATP 
binding site of the kibase. The 
model is based on the highly 
related structure of S.pombe 
casein Kinase 1 (Csk1) (582) 
While proline 49 (proline 50: 
Csk1) and arginine 180 
(arginine 183 in Csk1) are 
conserved, methionine 82 is 
replaced by a leucine residue 
at position 83 in Csk1. The 
image was generated with 
Polyview3D (PDB ID: 1CSN). 
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Figure: 6.2.3: Domain structure of S.pombe Hhp1 kinase. The C-terminal tail domain (tail domain) contains the 
inhibitory autophosphorylation sites. The three  circadian mutantions are located within the kinase domain close to 
the ATP binding site.  
 

The first mutation, hhp1.R180C is called the tau mutantion in the Syrian hamster which shortens 

the period of the circadian clock period (363, 367). Meng Qing-Jun et. al. (368) published that 

the tau mutation reduces the period of the clock from 24 hours to 20 hours which correlates with 

the  destabilisation of the Period proteins as their turnover increases.   

      The second mutation, hhp1.M821 (in Drosophila named dbtL.M80I) extends the period of the 

circadian clock (62, 142), while the third mutation, hhp1.P49S (in Drosophila, named  

dbtS.P47S), shortens the circadian clock  (62, 142).  Interestingly, all three mutations face the 

ATP binding site of the kinase (Figure: 6.2.1) which suggests that they may either increase or 

decrease the kinase activity thereby affecting the regulatory network between the PERIOD 

inhibitors and the activating CLOCK-BMAl1 complex.  

     All mutant alleles were generated by fusion PCR and integrated at the endogenous hhp1-HA 

locus using the Cre-lox integration system (258). The integrated alleles were amplified from 

genomic DNA and sequenced to confirm the mutations and to exclude the presence of additional 

mutations.  

 

6.2.1. The tau mutation Hhp1.R180C 

     The tau mutation was the first circadian clock mutation which was identified in 1988 (CK1ɛ. 

R178C) by Ralph and Menaker (363). The mammalian tau mutation leads to the aberrant 

autophosphorylation of CK1 which may increase its catalytic activity. 
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Figure: 6.2.1.1: Protein levels of the Hhp1 mutant proteins. Total protein was isolated, 15μl of the protein seperated 
on a 10% SDS gel, transferred onto nitrocellulose membrane and detected with an anti-HA antibody. A): all three 
bands for Hhp1.HA.wt, Hhp1.K40R, and Hhp1.K40R.R180C run in same level and gave protein size around 55 kDa. 
B): Hhp1.HA.wt, Hhp1.M84G, and Hhp1.M84G.R180C expressed same proteins size level. C): Hhp1.R180C.C-
terminal.deletion expressed a smaller sized protein of around 35 kDa 
 

The introduction of a cysteine residue at position 180 (R180C) had no impact on the expression 

levels of Hhp1 (Figure: 6.2.1.1). Neither did the mutation affect cell survival in the presence of 

CPT or MMS (Figure: 6.2.1.2, Figure: 6.2.1.3). 

 

 
Figure: 6.2.1.2: CPT (camptothecin) drop test for the tau mutant and the C-terminal.deletion mutant. Serial dilutions 
of the indicated strains were spotted onto rich medium plates containing the indicated MMS concentrations. Plates 
were incubated for 4 days at 30°C. One plate was incubated at 37°C. 
 

 



New roles of CKІ
 

178| P a g e  

 

 

Figure: 6.2.1.3: MMS (methyl-methanesulfonate) 
the indicated strains were spotted onto rich medium plates containing the indicated 
incubated for 4 days at 30°C. One plate was incubated at 37°C.
 

 

What was however unexpected is the impact of the 

in the presence of CPT. While wild type cells delay transition into

(Figure: 6.2.1.4), the hhp1.R180C

returned slowly into the cell cycle (

separation of function mutation which affects the cell cycle regulation of Hhp1 but not the DNA 

damage sensitivity. 

 

Figure: 6.2.1.4: CPT-induced 
type cells.Cells were synchronised in G2 by lactose gradient centrifugation and released 
into rich medium with or without 40
oC shaker. 75ul samples were collected and kept in methanol over night. The percentage 
of septated cells, which are a readout for G1/S cells, was scored (%). Cells were fixed in 
methanol and stained with DAPI (DNA) and calcofluor (septum).
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What was however unexpected is the impact of the tau mutation on the duration of the G2 arrest 

in the presence of CPT. While wild type cells delay transition into G2 only briefly for 20

hhp1.R180C-HA mutant arrested for much longer (~140 min) and the cells 

returned slowly into the cell cycle (Figure: 6.2.1.5). This indicates that the tau

n which affects the cell cycle regulation of Hhp1 but not the DNA 
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Figure: 6.2.1.5: CPT
hhp1.R180C cells. Cells were synchronised in G2 by lactose gradient centrifugation 
and released into rich medium with or without 40
incubated at 30 oC shaker. 75ul samples were collected and kept in methanol over 
night. The percentage of sept
scored (%). Cells were fixed in methanol and stained with DAPI (DNA) and 
calcofluor (septum).  

 

 

 

Figure: 6.2.1.6: Heat-induced cell cycle arrest of 
synchronised in G2 by lactose gradient centrifugation and released into rich medium 
with 30 oC or 40 oC treatment
were collected and kept in methanol over night. The percentage of septated 
are a readout for G1/S cells, was scored (%). Cells were fixed in methanol and stained 
with DAPI (DNA) and calcofluor (septum). 
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Figure: 6.2.1.7: Heat-induced cell cycle arrest of the  
synchronised in G2 by lactose gradient centrifugation and released into rich medium 
30 oC or 40 oC. 75μl samples were collected and kept in methanol over night. The 
percentage of septated cells, which are a readout for G1/S cells, was scored (
were fixed in methanol and stained with DAPI (DNA) and calcofluor (septum).
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produced also four forms but the position of form 4 moved away from the positive a
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negatively charged as a result of the tau mutation. This was unexpected since the R180C 

mutation removes one positive charge from the surface of the protein (Figure
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should move all forms closer to the positively charged anode. As this was not the case, the tau 

mutation may affect the post-translational in a more complex manner. One conclusion which can 

be drawn from this experiment is that the change in form 4 correlates with the cell cycle defect 

of the R180C mutation. Which may identify form number 4 as being involved in cell cycle 

regulation. 

 

 

 
Figure: 6.2.1.8: Isoelectric focusing of Hhp1. Total protein extracts were prepared from the indicated 
strains without drug treatment. Aliquots were then loaded on a liner pH gradient strip (range 3-10) and 
separated by charge (isoelectric points). After the run, the strips were placed on a 10% SDS PAGE and 
the proteins were separated by size. The protein was visualised after the Western blot with the anti-HA 
antibody. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: 6.2.1.9: Isoelectric focusing of 
wild type Hhp1. Total protein extracts 
were prepared from hhp1-HA wild type 
cells in the presence or absence of 
DNA damage. Cells were exposed to 
40µM camptothecin (CPT) or 12mM 
hydroxyurea (HU) for 4 hours at 30°C. 
While CPT breaks DNA replication 
forks, HU only arrests forks. Cells 
were also exposed to 0.05% methyl-
methanesulfonate (MMS) for 1 hour at 
30°C. MMS causes single-stranded 
breaks by methylating adenine residues 
in the DNA.   
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     To test whether the post-translational modification pattern changes in the response to DNA 

damage, hhp1-HA wild type cells were exposed to 40µM camptothecin (CPT) or 12mM 

hydroxyurea (HU) for 4 hours at 30°C. While CPT breaks DNA replication forks, HU only 

arrests forks. Cells were also exposed to 0.05% methyl-methanesulfonate (MMS) for 1 hour at 

30°C. MMS causes single- stranded breaks by methylating adenine residues in the DNA.  As 

shown in Figure: 6.2.1.9 the overall pattern was very similar under all conditions which implies 

that Hhp1 does not undergo significant changes in its modification pattern in the response to 

DNA damage. In addition to the four main forms (numbers 1-4), one low abundant form which 

migrated closer to the anode was detected in all experiments (number 6 in Figure 6.2.1.9). 

 
Figure: 6.2.1.10: Isoelectric focusing of Hhp1. Total protein extracts were prepared from the 
indicated strains either grown at 30°C or after having been exposed to 40°C for 1 hour. The arrow 
heads highlight temperature induced changes in the post-translational modification pattern. 

 

It was also tested whether the pattern changes under heat stress conditions. As shown in Figure: 

6.2.1.10, there was no change in the case of the wild type (hhp1-HA). There was however a small 

change in the case of the R180C mutant. Form number 6 was not very abundant at 30°C but 

increased in its amount at  40°C at a position slightly closer to the negative cathode. A kinase-

dead (hhp1.K40R-HA) strain was also tested. While the pattern of signals resembled WT at 30°C, 

the intensity of form number 4 strongly declined at 40°C (Figure: 6.2.1.10). It is also noteworthy 

that the kinase-dead protein shares a very similar post-translational modification pattern with the 

wild type protein (Figures: 6.2.1.8, Figure: 6.2.1.10). This implies that the modifications are not 

caused by auto-phosphorylation of the kinase or that the K40R mutation still enables the kinase  
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to under-go autophosphorylation. The latter is less likely as the kinase

hhp1 gene deletion. 

     Since mammalian Hhp1 kinase undergoes autophosphorylation in its C

most of this domain (298aa to 356aa) wa

HA mutant. The last 9 amino acids were left in place as they are highly conserved.

 

Figure: 6.2.1.11: Domain organisation of 
domain are highlighted. The in

 

As shown in Figure: 6.2.1.8, the truncated protein (

molecular weight compared to the wild type protein. Very unexpectedly, loss of this large 

section of the C-terminal domain had no impact on the DNA damage sensitivity (

Figure: 6.2.1.12). It had also only a small impact on the CPT

delay was only slightly longer compared to wild type (

 

Figure: 6.2.1.12: Acute CPT (camptothecin)
indicated S.pombe strains cells were cultured in YEA medium overnight at 30 
with 40μϺ CPT for five hours period 
hours.  
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most of this domain (298aa to 356aa) was deleted in frame (Figure: 6.2.1.11) in the 

mutant. The last 9 amino acids were left in place as they are highly conserved.

rganisation of S.pombe Hhp1. The kinase domain and the C
domain are highlighted. The in-frame deletion of the tail domain (298aa to 356aa) is shown.

, the truncated protein (hhp1.R180C.ΔC-HA) migrated at a smaller 

compared to the wild type protein. Very unexpectedly, loss of this large 

terminal domain had no impact on the DNA damage sensitivity (

). It had also only a small impact on the CPT-induced cell cycle arrest 

delay was only slightly longer compared to wild type (Figure: 6.2.1.13). 

amptothecin) survival assay for tau mutant and the C-terminal.deletion mutant. The 
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CPT for five hours period at 30 oC. 75 μl samples were collected every hour for 
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Figure: 6.2.1.13: CPT
hhp1.R180C.C-terminal.deletion
gradient centrifugation and released into rich medium wit
30°C. 75ul samples were collected and kept in m
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fixed in methanol and stained with DAPI (DNA) and calcofluor (septum). 

 
 

 

     The truncated Hhp1 protein was also subjected to isoelectric focusing. As shown in 

6.2.1.8, the loss of the C-terminal domain resulted in the disappearance of the two, more 

negative forms of Hhp1 as the hhp1.R180C.

that the two more negative forms require post

terminal domain. The lack of CPT sensitivity and the small impact on the CPT

cycle delay are also consistent with the earlier 

an important role for S.pombe Hhp1.

     Given the genetic linkage between Hhp1 and Chk1 (

the hhp1.R180C-HA strain. Loss of the checkpoint kinase had no impact on the

of the Δchk1 hhp1.R180C.ΔC

sensitivity (Figure: 6.2.1.15). This increase suggests that Chk1 and Hhp1.R180C act in parallel 

pathways when DNA replication forks break in the presenc

This could be explained if Hhp1.R180C affects mainly the cell cycle response whereas Chk1 

affects the repair of broken forks by the Mus81

5). 
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of septated cells, which are a readout for G1/S cells, was scored (%). Cells were 
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The truncated Hhp1 protein was also subjected to isoelectric focusing. As shown in 

terminal domain resulted in the disappearance of the two, more 

hhp1.R180C.ΔC-HA strain produced only two forms. This implies 

that the two more negative forms require post-translational modifications within the deleted C

terminal domain. The lack of CPT sensitivity and the small impact on the CPT

cycle delay are also consistent with the earlier statement that autophosphorylation does not play 

Hhp1. 

Given the genetic linkage between Hhp1 and Chk1 (Chapter 3), the chk1 

strain. Loss of the checkpoint kinase had no impact on the

ΔC-HA strain (Figure: 6.2.1.14) but increased slightly the CPT 

). This increase suggests that Chk1 and Hhp1.R180C act in parallel 

pathways when DNA replication forks break in the presence of the topoisomerase 1 inhibitor. 

This could be explained if Hhp1.R180C affects mainly the cell cycle response whereas Chk1 

affects the repair of broken forks by the Mus81-Eme1 endonuclease (see Chapte
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Figure: 6.2.1.14: MMS (methyl-methanesulfonate) drop test for the hhp1.R180C.∆chk1 strain. Serial dilutions of the 
indicated strains were spotted onto rich medium plates containing the indicated MMS concentrations. Plates were 
incubated for 4 days at 30°C. One plate was incubated at 37°C. 
 

 

 
Figure: 6.2.1.15: CPT (camptothecin) drop test for the hhp1.R180C.∆chk1 strain. Serial dilutions of the indicated 
strains were spotted onto rich medium plates containing the indicated CPT concentrations. Plates were incubated for 
4 days at 30°C. One plate was incubated at 37°C. sensitivity CPT pattern higher than Hhp1.R180C strain as a result 
of deleting Chk1 kinase from Hhp1.R180C cells. 
 

 

6.2.2. The Hhp1.M82I  double-time long Mutant 

     The S. pombe Hhp1.M82I mutant is homologous to dbtL.M80I (double-time long M80I) in 

Drosophila (142). The dbtL (M80I) mutation alters the oscillation pattern of the PERIOD  
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proteins as it may reduce the kinase activity (549) which leads to a delayed degradation of the 

PERIOD proteins (550). 

     The equivalent mutation in S.pombe Hhp1 (M82I) had neither an impact on the temperature 

sensitivity nor on the growth of cells in the presence of MMS (Figure: 6.2.2.1). The hhp1.M82I-

HA strain displayed however a low sensitivity to high doses of CPT (Figure: 6.2.2.2) and the 

protein level of the mutant may be reduced (Figure: 6.2.2.3). What was however interesting is 

the observation that the second, faster migrating Hhp1 band may be absent in the mutant strain. 

A change in the post-translational modification pattern by the M82I mutation within the ATP 

binding domain (Figure: 6.2.1) is supported be the aberrant isoelectric focusing pattern (Figure: 

6.2.2.4). While wild type cells (hhp1.HA) contain the four forms of the kinase, hhp1.M82I-HA 

cells appear to express more forms which are all low abundant. Some forms appear to be more 

negative which indicates a higher degree of phosphorylation. Since the equivalent mutation in 

Drosophila lowers the kinase activity, the break up in more forms with diverse post-translational 

modifications may have a negative impact on the kinase. If this were to be case, the M82I mutant 

should have an extended G2 arrest in the presence of CPT as the reduction of Hhp1 kinase 

activity, for example upon the deletion of the gene, extends the normally short delay (Figure: 

3.1.5B). Indeed this was the case, as shown in Figure: 6.2.2.5, hhp1.M82I-HA cells delay 

significantly longer than wild type cells when DNA replication forks break. This interesting 

finding strongly suggests that the response to DNA damage and the cell cycle regulation by 

Hhp1 require either different forms of the kinase or different levels of kinase activity. While a 

reduction in kinase activity has only a minor impact on the survival in the presence of MMS or 

CPT, the cell cycle delay in the presence of CPT is significantly longer. 

 

 
Figure: 6.2.2.1: MMS (methyl-methanesulfonate) drop test for hhp1.M82I strain. Serial dilutions of the indicated 
strains were spotted onto rich medium plates containing the indicated MMS concentrations. Plates were incubated 
for 4 days at 30°C. One plate was incubated at 37°C. 
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Figure: 6.2.2.2: CPT (camptothecin) drop test for hhp1.M82I strain. Serial dilutions of the indicated strains were 
spotted onto rich medium plates containing the indicated CPT concentrations. Plates were incubated for 4 days at 
30°C. One plate was incubated at 37°C. 

 

 

 

                              
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

 
Figure: 6.2.2.4: Isoelectric focusing of the  Hhp1.M82I protein. Total protein extracts were 
prepared from hhp1-HA wild type cells and hhp1.M82I mutant cells, and separated by charge on a 
linear 3-10 strop prior to running the samples on a 10% SDS page. Hhp1-HA was visualised with 
an anti-HA antibody.  

 

 

 

Figure: 6.2.2.3: 
Western blot for 
hhp1.M82I. Total 
protein was isolated, 
15μl of the protein 
seperated on a 10% 
SDS gel, transferred 
onto nitrocellulose 
membrane and 
detected with an anti-
HA antibody.  
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Figure: 6.2.2.5: CPT
Hhp1.M82I strain. Cells were synchronised in G2 by lactose gradient centrifugation 
and released into rich medium with or without 40
oC shaker. Samples were collected and cells were fixed in methanol over night. and 
stained with DAPI (DNA) and calcofluor (septum). The percentage of septated cells, 
which are a readout for G1/S cells, was scored (%). 

 

 

6.2.3. The Hhp1.P49S double-

     The dbts.P47S (double-time short P47S) mutation in 

negative impact on the kinase activity and does not change the degradation pattern of the 

PERIOD proteins (142, 550).  In cell culture experiments, the PERIOD proteins become hyper

phosphorylated in this mutant background

double-time short mutation (P49S

MMS and CPT only very slightly (
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for 4 days at 30°C. One plate was incubated at 37°C.
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negative impact on the kinase activity and does not change the degradation pattern of the 

In cell culture experiments, the PERIOD proteins become hyper

phosphorylated in this mutant background (549). Like the double-time long mutation (M82I), the 

P49S) in S.pombe Hhp1 (hhp1.P49S-HA) reduces the sensitivity to 

MMS and CPT only very slightly (Figure: 6.2.3.1, Figure: 6.2.3.2). 
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Figure: 6.2.3.2: CPT (camptothecin) drop test for the hhp1.P49S strainSerial dilutions of the indicated strains were 
spotted onto rich medium plates containing the indicated CPT concentrations. Plates were incubated for 4 days at 
30°C. One plate was incubated at 37°C. 
 

 

The isoelectric focusing assay revealed however a striking difference between both mutants. 

While the M82I (dbt-L) increased the number of Hhp1 forms, the P49S (dbt-S) decreased the 

number of forms with a clear reduction in the more negative variants (Figure: 6.2.3.4). 

Interestingly, the impact of this change on the CPT-induced G2 delay were similar to the 

extended delay caused by the M82I mutation (Figure: 6.2.3.5), although the hhp1.P49S-HA cells 

re-entered the cell cycle faster after 100 min. In summary, these observations strengthen the 

conclusion that a reduction in Hhp1 activity levels affects the recovery from a CPT-induced G2 

arrest, but  has only a small impact on DNA repair and cell survival (Figure: 6.2.3.6). The two 

double-time mutations reduce both CK1 activity to a different extend and the behaviour changes 

in the mutant flies may be linked with the distinct degradation pattern of the PERIOD proteins. 

 

                      
 

Figure: 6.2.3.3: Western blot for 
hhp1.P49S. Protein was isolated, 
15μl of the protein seperated on a 
10% SDS gel, transferred onto 
nitrocellulose membrane and 
detected with an anti-HA 
antibody. hhp1.P49S mutant 
proteins sizes as shown by 
electrophoresis full-length of 
hhp1 proteins. 
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Figure: 6.2.3.4: Isoelectric focusing of the  Hhp1.P49S protein
prepared from hhp1-HA wild type cells
linear 3-10 strop prior to running the samples on a 10% SDS page. Hhp1
an anti-HA antibody.  

 

Figure: 6.2.3.5: CPT-induced 
strain. Cells were synchronised in G2 by lactose gradient centrifugation and released 
into rich medium with or without 40
methanol and stained with DAPI (DNA) and calcofluor (septum). The percentage of 
septated cells, which are a readout for G1/S cells, was scored (%). 

 

Figure: 6.2.3.6: Different activity levels of the kina
and cell cycle regulation. A reduction in kinase activity by the circadian mutations 
delays re-entry into the c
damage.  
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into rich medium with or without 40μM CPT. Cells samples were collected and fixed in 
methanol and stained with DAPI (DNA) and calcofluor (septum). The percentage of 
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6.3. The Relationship between Hhp1 kinase and Timeless (Swi1) 

     The TIMELESS (TIM) protein acts jointly with the PERIOD proteins in the negative 

feedback loop which controls the activating of the CLOCK-BMAL1 transcription factor. The 

degradation of TIM in the early morning promotes the progressive phosphorylation of the 

PERIOD proteins by CK1 and their degradation (551). Independent of its functional link with the 

PERIOD proteins, TIM is also important for the progression through DNA replication and the 

activity of the intra-S ATR-Chk1 DNA damage checkpoint (111, 552). The S.pombe protein 

which may be the paralogue of TIM is Swi1. Swi1 binds to chromatin and facilitates the 

recruitment of the S phase checkpoint protein Mrc1 (516). Swi1 acts in a DNA replication 

pathway jointly with Hsk1 (Cdc7) kinase in the response to stalled replication forks (535), and 

may regulate the recombinational repair of broken forks (553). 

    To test the relationship between Hhp1 and Swi1 a Δhhp1 Δswi1 double mutant was 

constructed. As shown in Figure: 6.3.1, the double mutant was as CPT sensitive as the Δhhp1 

single mutant suggesting that Swi1 (TIM) and Hhp1 act in the same pathway when DNA 

replication forks break. Since the strains are very sensitive to CPT, the test was repeated under 

acute survival conditions. When cells were exposed to 40µM CPT for 5 hours, the Δhhp1 Δswi1 

double mutant (Figure: 6.3.2) was more sensitive than the two single deletion strains. This shows 

that Swi1 and Hhp1 act in two parallel pathways when DNA replication forks break. Cells 

without Swi1 (Δswi1) delay progression through G2 briefly for 40 min (Figure: 6.3.3), while the 

Δhhp1 Δswi1 double mutant displayed a longer delay of approximately 80 min (Figure: 6.3.4) 

which resembles the extended G2 arrest of the Δhhp1 single mutant (Figure: 3.1.5B). Taken 

together, these data do not support a close link between Swi1 and Hhp1 when DNA replication 

forks break in the presence of CPT. 
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Figure: 6.3.1: CPT (camptothecin) drop test for 
spotted onto rich medium plates containing the indicated 
30°C. One plate was incubated at 37°C.
 

 

 

Figure: 6.3.2:  Acute CPT (camptothecin)
were cultured in YEA medium overnight at 30 
again for five hours at 30 oC. 75 μl samples were collected every hour for 
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drop test for ∆hhp1∆swi1 strain. Serial dilutions of the indicated strains were 
spotted onto rich medium plates containing the indicated CPT concentrations. Plates were incubated for 4 days at 

One plate was incubated at 37°C. 

amptothecin) survival assay for the ∆hhp1∆swi1 strain. The indicated
were cultured in YEA medium overnight at 30 oC. Cells were harvested and treated with 40μ

μl samples were collected every hour for the duration of five hours. 
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Serial dilutions of the indicated strains were 

concentrations. Plates were incubated for 4 days at 

 
indicated S.pombe strains  

ells were harvested and treated with 40μϺ CPT and incubated 
duration of five hours.  
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Figure: 6.3.3: CPT-induced 
single mutant. Cells were synchronised in G2 by lactose gradient centrifugation and 
released into rich medium with or without 40
and cells were fixed in methanol and stained with DAPI (DNA) and calcofluor (septum). 
The percentage of septated cells, which are a readout for G1/S cells, was scored (%). 

 

 

 

 

Figure: 6.3.4: CPT-induced (Camptothecin
∆hhp1∆swi1 double mutant. Cells were synchronised in G2 by lactose gradient 
centrifugation and released into rich medium with or without 40
Samples were collected and cells were fixed in methanol and stained with DA
and calcofluor (septum). The percentage of septated cells, which are a readout for G1/S 
cells, was scored (%). Cells were fixed in methanol and stained with DAPI (DNA) and 
calcofluor (septum).  
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Given that the circadian clock directly regulates the expression of Wee1 kinase (375), the link 

between Hhp1, its circadian mutations and Wee1 was explored. In S.pombe, cells without Wee1 

kinase (Δwee1) are alive but DNA damage sensitive (224) (Figure: 6.3.5). This DNA damage 

sensitivity is not shared by the gain-of-function cdc2.1w (G146D) mutation in Cdc2 which is 

insensitive to the inhibition by Wee1 via its tyrosine 15 phosphoryaltion (272). Since both strains 

(Δwee1 and cdc2.1w) enter mitosis earlier than wild type (220), the DNA damage sensitivity of 

Wee1 is probably unrelated to the cell cycle defect. Indeed recent results indicate that the 

sensitivity is linked with the accumulation of unphosphorylated Cdc2 in Δwee1 cells (554). The 

unphosphorylated pool of Cdc2 associates with the DNA damage checkpoint kinase Chk1 and 

may directly affect the response to DNA damage. As shown in Figure: 6.3.5, Δwee1 cells are 

sensitive to a broad range of drugs whereas the cdc2.1w mutant is mainly sensitive to CPT. Cells 

without Wee1 are also temperature sensitive and resemble in this respect the Δhhp1 strain 

(Figure: 4.2.7).   

 

 
Figure: 6.3.5: DNA damage sensitivity profile of cells without Wee1 or with a hyper-active Cdc2 
kinase (insensitive to Wee1 inhibition). Serial dilutions of wild type (WT), Δwee1 and cdc2.1w 
(G146D) cells were dropped on rich medium plates containing the indicated drug [MMS (Methyl-
methanesulfonate), CPT (Camptothecin), HU (Hydroxyurea), and NQO (4-nitroquinoline 1-oxide)] 
concentrations and incubated at 30°C for 3 days. One plate without a drug was incubated at 37°C. 

 

     To test the relationship between the hhp1 deletion and the wee1-50 loss-of-fuction, and the 

gain-of-function cdc2.1w mutation, Δhhp1wee1-50 and Δhhp1 cdc2.1w strains were constructed. 

The loss-of-fuction wee1-50 allele was used as several attempts to construct a Δhhp1 Δwee1 

strain failed. As shown in Figure: 6.3.6, an increase in Cdc2 kinase activity by either lowering 

the inhibitory Wee1 kinase or by introducing the G146D mutation in cdc2, partially reduces the  
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CPT  sensitivity of the hhp1 

response pathway to broken replication

 

Figure: 6.3.6: A drop in Cdc2 kinase activity suppresses the CPT 
cells. The indicated S.pombe strains were cultured in YEA medium overnight at 30 
treated with 40μϺ CPT and incubated again for five hours 
duration of five hours.  

 

Consistent with this conclusion, the 

sensitive as the wee1 deletion (Δ

 

 

Figure: 6.3.7: MMS (methyl-methanesulfonate)
the indicated strains were spotted onto rich medium plates containing the indicated 
were incubated for 4 days at 30°C. One plate was incubated at 37°C.
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Figure: 6.3.8: CPT (camptothecin) drop test for the hhp1.R180C.∆wee1 strain. Serial dilutions of the indicated 
strains were spotted onto rich medium plates containing the indicated CPT concentrations. Plates were incubated 
for 4 days at 30°C. One plate was incubated at 37°C.  
 
 

 
Figure: 6.3.9: MMS (methyl-methanesulfonate) drop test for the hhp1.M82I.∆wee1 strain. Serial dilutions of the 
indicated strains were spotted onto rich medium plates containing the indicated MMS concentrations. Plates were 
incubated for 4 days at 30°C. One plate was incubated at 37°C. 
 
 

 
Figure: 6.3.10: CPT (camptothecin) drop test for the hhp1.M82I.∆wee1 strain. Serial dilutions of the indicated 
strains were spotted onto rich medium plates containing the indicated CPT concentrations. Plates were incubated 
for 4 days at 30°C. One plate was incubated at 37°C. 
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Figure: 6.3.11: MMS (methyl-methanesulfonate) drop test for the hhp1.P49S.∆wee1 strain. Serial dilutions of the 
indicated strains were spotted onto rich medium plates containing the indicated MMS concentrations. Plates were 
incubated for 4 days at 30°C. One plate was incubated at 37°C.  
 

 
Figure: 6.3.12: CPT (camptothecin) drop test for the hhp1.P49S.∆wee1 strain. Serial dilutions of the indicated 
strains were spotted onto rich medium plates containing the indicated CPT concentrations. Plates were incubated for 
4 days at 30°C. One plate was incubated at 37°C.  

 
 

 
Figure: 6.3.13: Protein levels of the hhp1 mutants with the wee1 deletion. Total protein was isolated, 
15μl of the protein seperated on a 10% SDS gel, transferred onto nitrocellulose membrane and 
detected with an anti-HA antibody.  Proteins bands sizes around 55kDa.  
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     In the case of the dbt-S (P49S) and dbt-L (M82I) mutations, the deletion of wee1 slightly 

reduced the CPT sensitivity (Figure: 6.3.10, Figure: 6.3.12) as observed for the wee1-50 Δhhp1 

double mutant strain (Figure: 6.3.6). The two circadian clock mutants differed however in the 

response to MMS, while the Δwee1 hhp1.M82I-HA double mutant was as MMS sensitive as the 

wee1 deletion strain (Figure: 6.3.9), the Δwee1 hhp1.P46S-HA strain was more MMS resistant 

than cells without wee1 (Figure: 6.3.11). However, the protein levels of the mutated Hhp1 kinase 

was not affected by the loss of Wee1 (Figure: 6.3.13). 

     These findings imply that a drop in Hhp1 kinase activity caused by the circadian clock 

mutations or the deletion of hhp1 can be partly compensated by loss of Wee1. Since the 

unphosphorylated pool of Cdc2, which interacts with Chk1 (554), accumulates in the absence of 

Wee1, it is possible that Hhp1 kinase is required for the formation of this Cdc2 DNA damage 

response complex. This would also explain why Chk1 is epistatic with hhp1 mutations. Whether 

the Mus81-Eme1 complex is also part of this repair network is not yet known, but is very likely 

since both, Cdc2 and Chk1, need to activate the Mus81-Eme1 endonuclease (515). 

 

 
Figure: 6.3.14: Model of the Role of Hhp1 in the regulation of Mus81-Eme1. There is a suggested genetic link 
between Wee1, Cdc2, and Chk1 which may regulate the Mus81-Eme1 complex. Cdc2 phosphorylates Eme1 to 
facilitate the phosphorylation event on Eme1 by Chk1 when DNA damage is present. Also Hhp1 kinase is required 
to phosphorylate Eme1 to activate the Mus81-Eme1 complex. 
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The genetic links between Wee1, Cdc2 and Chk1 could be explained by a combined regulation 

of the endonuclease Mus1-Eme1 (Figure: 6.3.14). Eme1 is first phosphorylated by Cdc2 in G2 

which primes the endonuclease for the phosphorylation by Chk1 in the presence of DNA damage 

(515), Hhp1 could also modify Eme1 which could be important for the formation of the Mus81-

Eme1 complex. Alternatively Hhp1 could also be functionally linked with Chk1 kinase. Cdc2 in 

the complex with Chk1 is not phosphorylated (554). Loss of Wee1, which phosphorylates Cdc2 

at tyrosine 15 and threonine 14 (233), results in an increase in the unphosphorylated Cdc2 pool 

which could compensate for a reduction in Hhp1 kinase activity either in response to the 

circadian clock mutations or upon deletion of the hhp1 gene.  
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Chapter 7: The Breast Cancer Mutation Hhp1.L51Q 
affects specifically the DNA Damage but not the Heat 
Response 
-------------------------------------------------------------------- 
 

Chapter Summary 

     Common breast cancer mutants in human CK1 are CK1ε.L39Q (Hhp1.L40Q), beside 

CK1ε.L49Q (Hhp1.L51Q), CK1ε.N78T (Hhp1.N80T), and CK1ε.S101R (Hhp1.S103R). To find 

out how these mutations affect DNA repair and cell cycle progression, the beside CK1ε.L49Q 

(Hhp1.L51Q) mutation was created in S.pombe. Very unexpectedly, the replacement of leucine 

51 by a glutamine residue at the transition point between the loop which spans across the ATP 

binding site and the beginning of an alpha-helix, affects only the DNA repair and cell cycle 

responses to the topoisomerase 1 inhibitor CPT, but not to heat stress. S.pombe cells harbouring 

this mutation are CPT sensitive and delay G2 for longer. The heat sensitivity and cell cycle delay 

is however normal at 40°C. Both, the CPT sensitivity and the extended G2 arrest are suppressed 

upon loss of Chk1 kinase. Since Chk1 acts on the endonuclease Mus81-Eme1, the inability to 

activate this DNA repair enzyme may explain the suppression. 

     The breast cancer mutation displays also an interesting genetic interaction with the cell cycle 

regulator Cdc25 phosphatase. Cdc25 removes the inhibitory tyrosine (Y) 15 phosphorylation 

from Cdc2 which is attached by Wee1 kinase. The L51Q mutation overcomes loss of Cdc25 

activity as the cdc25.22 hhp1.L51Q mutant strain regains the ability to grow again at the 

restrictive temperature of 37°C. This rescue could be explained by a re-activation of the mutated 

Cdc25 enzyme or a inhibition of Wee1 when Hhp1 kinase levels drop. 
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7.1. Hhp1 Kinase and Cancer  

          Cancer is one of  the most challenging diseases worldwide. Several mutations in human 

CK1ε (Hhp1) kinase were suggested to cause  breast cancer i.e., CK1ε.L39Q (Hhp1.L40Q), 

CK1ε.L49Q (Hhp1.L51Q), CK1ε.N78T (Hhp1.N80T), and CK1ε.S101R (Hhp1.S103R) (6, 88),   

The hhp1 mutation at L51Q is commonly diagnosed in breast cancer. The leucine-51 to 

glutamine mutation leads to aberrant cells growth which is recognized as cancer (88). The 

circadian clock was also linked to breast cancer and colorectal cancers as both  increase amongst 

night shift workers (370, 420). This link between the circadian clock and the cell cycle may well 

be linked to mutations in CK1 (421). Filipski E, et al., (424) stated that changes in the expression 

pattern of mouse Per2, Bmal1, and Rev-erbα genes effected cancer proliferation. Another 

possible link between the molecular clock and the cell cycle machinery could be regulation of  

Wee1 kinase expression  (375). Given that the transcription factor c-myc is an oncogene, its 

regulation by the BMAL1-CLOCK complex may also result in uncontrolled cell growth (423). 

Mammalian Per1 and Per2 may directly regulate the tumour suppressor p53 via their link with 

Mdm2 which controls the nuclear localisation and stability of p53 (394, 423, 425, 370, 427).  

CK1ε (Hhp1) is directly linked with circadian disorders of rest-activity or sleep-wakefulness 

rhythms in mammals (6, 421, 428). For example, the phosphorylation of Per2 at serine-662 is 

required to prevent the familial advanced sleep phase syndrome (6, 68).  

 

7.2. The Hhp1.L51Q Breast Cancer Mutation  

     Mammary carcinomas (breast cancer) are one of the most common neoplasias in women (88). 

Interestingly mutations in highly conserved amino acids of human casein kinase 1ε were 

detected in breast cancer patients. (78). CK1ε is a Serine/Threonine kinase which regulates cell 

proliferation, differentiation, cell migration, and the circadian clock (88). CK1ε is involved in 

p53 regulation and the Wnt signalling pathway, DNA repair and cell cycle regulation (1, 78). 

The following mutations were detected in the N-terminal kinase domain of human CK1ε (Hhp1): 

CK1ε.L39Q (Hhp1.L41Q), CK1ε.L49Q (Hhp1.L51Q), and CK1ε.S101R (Hhp1.S103R) (78, 88) 

(Figure: 7.2.1). 
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Figure: 7.2.1: Location of the human breast cancer mutations L39Q, L49Q and S101R in the Hhp1 protein. 
(source: PRALINE sequence alignment tool; available at: 
http://zeus.few.vu.nl/jobs/5688f2f65cc5ce5d62b41c7c506eebfe/;accessed 13 October 2015). Human CKIε: 
NP_689407.1, SPHhp1: CAA20311.1, and SCHrr25: CAA97918.1. Human CKIε: NP_689407.1, and SPHhp1: 
CAA20311.1.  
 

 

 
Figure: 7.2.2: Location of the breast cancer mutations in Hhp1 kinase. The structure of S.pombe Hhp1 was modelled 
using the tool Swiss Model (protein template: 3sv0.1.A (500), identity: 76.4%, cover: amino acids 4-297 (81%). L41 
is located in a beta-sheet which faces the ATP binding site (active site). L51 and S103 are both located at the end of 
an alpha helix (red arrows). The N and C-termini are indicated.  
 

 



New roles of CKІε in DNA Replication Stress 2015 
 

203| P a g e  

 

 

Interestingly, leucine 51 and serine 103 are both located at the transition point between an alpha 

helix and a loop region (Figure: 7.2.2), while L41 is part of a beta-sheet which forms the  ATP 

binding site (active site). These mutations may affected the activity of the kinase as they may  

have an impact on its structure or conformational changes, and may therefore contribute to 

tumour progression (88). Characterized CK1ε mutants (CK1ε.L39Q, CK1ε.L49Q, and 

CK1ε.S101R) which were identified in mammary carcinomas have limited kinase activity and 

that may therefore lead to a reduced phosphorylation of physiological targets, for example in  the 

Wnt/β-catenin pathway (88, 429) which may decrease cell adhesion and promote cell migration 

(429). Importantly, there is very little known of how these mutations (CK1ε.L39Q (Hhp1.L40Q), 

CK1ε .L49Q (Hhp1.L51Q), and CK1ε.S101R (Hhp1.S103R)) affect the kinase and how they 

impact on the DNA damage response. Work in human cell lines has shown that the mutation 

L39Q affects the ability of CK1ε to phosphorylate the Wnt signalling protein Dishevelled (88). 

This reduction in wnt signalling leads to the up-regulation of the small G protein Rac1 which 

reduces cell adhesion. 

 

7.3. Characterisation of Hhp1.L51Q  

     Since no information is available on how the mutation L49Q affects the human kinase, the 

corresponding amino acid leucine-51 was replaced by a glutamine residue using the Cre-Lox 

technology (258), and the point-mutated hhp1.L51Q-HA gene (C-terminally haemagglutinin 

tagged) was integrated at its endogenous locus in the hhp1 base strain. The mutated 

hhp1.L51Q.HA gene was re-amplified from the integration strain by PCR and sequenced to 

confirm the mutation. As shown in Figure: 7.3.2, the mutation had no impact on the overall 

amount of the kinase.  

 

 

 

 

 

 

 

Figure: 7.3.1: Location of 
the L51Q mutation of 
Hhp1.  Leucine 51 is 
located at the transition 
from the loop arching over 
the active site to the alpha 
helix of the larger second 
lobe. Lysine 40, which 
makes contact with the 
ATP in the active site is 
also shown. 
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Figure: 7.3.2: Protein levels of Hhp1.L51Q. Total protein 
was isolated, 15μl of the protein seperated on a 10% SDS 
gel, transferred onto nitrocellulose membrane and detected 
with an anti-HA antibody. The protein size is between 
40kDa and 55kDa. 

 

 
Figure: 7.3.3: CPT-Drop (Camptothecin-Drop) test for the hhp1.L51Q strain. Serial dilutions of the indicated 
strains were spotted onto rich medium plates containing the indicated CPT concentrations. Plates were incubated 
for 4 days at 30°C. One plate was incubated at 37°C. 
 

     To find out whether the replacement of leucine 51 by a glutamine residue at the transition 

from a loop, which connects one of the beta-sheets of the active site with the first alpha helix of 

the second, larger domain of Hhp1 (Figure: 7.3.1), has an impact on the DNA damage response, 

the hhp1 deletion strain was tested against the hhp1.L51Q.HA strain and hhp1.HA wild type cells 

(Figure: 7.3.3).  
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Figure: 7.3.4:  Acute CPT 
indicated yeast strains 
harvested and treated with 40
samples were collected every hour. 

 

 

While hhp1.L51Q.HA cells were clearly CPT sensitive, they were slightly less sensitive than the 

deletion strain (Figure: 7.3.3, 

temperature sensitive like the gene deletion

is reduced but not completely abol

activity in the circadian clock mutant (

breast cancer L51Q mutant may have a much stronger effect on the kinase activity.

 

Figure: 7.3.5: MMS-Drop (Methyl-methanesulfonate
indicated strains were spotted onto rich medium plates containing the indicated MMS concentrations. Plates were 
incubated for 4 days at 30°C. 
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CPT (camptothecin) survival assay for the hhp1.L51Q 
 were cultured in YEA medium overnight at 30 oC. 

harvested and treated with 40μϺ CPT and incubated again for five hours at 30 
samples were collected every hour.  

cells were clearly CPT sensitive, they were slightly less sensitive than the 

, Figure: 7.3.4). Interestingly, the point mutant strain is not 

like the gene deletion. This implies that the kinase activity of Hhp1

is reduced but not completely abolished. Given that the more subtle reduction of the kinase

activity in the circadian clock mutant (Chapter 6) only affects the cell cycle but not survival, the 

breast cancer L51Q mutant may have a much stronger effect on the kinase activity.

methanesulfonate-Drop) test for the hhp1.L51Q strain
indicated strains were spotted onto rich medium plates containing the indicated MMS concentrations. Plates were 
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 Cells were 
30 0C.75 μl 

cells were clearly CPT sensitive, they were slightly less sensitive than the 

). Interestingly, the point mutant strain is not 

. This implies that the kinase activity of Hhp1.L51Q 

reduction of the kinase 

) only affects the cell cycle but not survival, the 

breast cancer L51Q mutant may have a much stronger effect on the kinase activity. 

 
strain. Serial dilutions of the 

indicated strains were spotted onto rich medium plates containing the indicated MMS concentrations. Plates were 
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Figure: 7.3.6: Acute MMS 
strain. The indicated yeast strain
were harvested and treated with 0.05% 
oC.75 μl samples were collected every 30

 
 

 

Compared to CPT, the MMS sensitivity of the 

grew on rich medium plates containing up to 0.01% of the alkylating drug (

acute survival test at 0.05% MMS revealed however a subtle sensitivity 

to this drug for more than 2 hours (

threshold of the Hhp1 kinase activity may be different for different types of DNA damage. The 

response to broken replication forks may req

methylated DNA which is repaired by base excision repair. It also shows that the L51Q mutation 

is a partial loss-of-activity mutation.

     To test how this reduction in activity affects the G2 arre

wild type, Δhhp1 and hhp1.L51Q.HA

centrifugation and released in rich medium with or without the topoisomerase 1 inhibitor CPT. 

As shown in Figure: 7.3.8, Figure: 7.

arrest as the deletion of hhp1. While wild type delayed only briefly for 20

the G2 arrest lasted approximately 80

line with the high CPT sensitivity of the mutant strain and supports the idea that 

mutation has a strong impact on

 

CKІε in DNA Replication Stre

MMS (methyl-methanesulfonate) survival assay for the 
. The indicated yeast strains were cultured in YEA medium overnight at 30 

were harvested and treated with 0.05%  MMS and incubated again for three hours 
l samples were collected every 30 min.  

Compared to CPT, the MMS sensitivity of the hhp1.L51Q.HA strain was much lower as cells 

w on rich medium plates containing up to 0.01% of the alkylating drug (

acute survival test at 0.05% MMS revealed however a subtle sensitivity when cells were exposed 

to this drug for more than 2 hours (Figure: 7.3.6). This unexpected finding suggests that the 

threshold of the Hhp1 kinase activity may be different for different types of DNA damage. The 

response to broken replication forks may require a higher kinase activity than the response to 

methylated DNA which is repaired by base excision repair. It also shows that the L51Q mutation 

activity mutation. 

To test how this reduction in activity affects the G2 arrest in the presence of CPT, 

hhp1.L51Q.HA cells were synchronised in G2 by lactose gradient 

centrifugation and released in rich medium with or without the topoisomerase 1 inhibitor CPT. 

Figure: 7.3.9, the L51Q mutation resulted in a similarly extended G2 

. While wild type delayed only briefly for 20

the G2 arrest lasted approximately 80 min in the L51Q mutant (Figure: 7.3.

ith the high CPT sensitivity of the mutant strain and supports the idea that 

mutation has a strong impact on Hhp1 kinase as both, DNA repair and cell cycle are affected.
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the hhp1.L51Q 

were cultured in YEA medium overnight at 30 oC. Cells 
MMS and incubated again for three hours  at 30 

strain was much lower as cells 

w on rich medium plates containing up to 0.01% of the alkylating drug (Figure: 7.3.5). An 

when cells were exposed 

). This unexpected finding suggests that the 

threshold of the Hhp1 kinase activity may be different for different types of DNA damage. The 

uire a higher kinase activity than the response to 

methylated DNA which is repaired by base excision repair. It also shows that the L51Q mutation 

he presence of CPT, hhp1.HA 

cells were synchronised in G2 by lactose gradient 

centrifugation and released in rich medium with or without the topoisomerase 1 inhibitor CPT. 

, the L51Q mutation resulted in a similarly extended G2 

. While wild type delayed only briefly for 20 min (Figure: 7.3.7), 

.9). This finding is in 

ith the high CPT sensitivity of the mutant strain and supports the idea that the breast cancer 

as both, DNA repair and cell cycle are affected. 
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Figure: 7.3.7: Cell Cycle G2 arrest for 
in YEA medium overnight at 30 
released into YEA medium at 30°C
peak in septation coincides with G1/S. 
 
 
 
 
 
 

Figure: 7.3.8: Cell Cycle G2 arrest for 
medium overnight at 30 
into YEA medium at 30°C
septation coincides with G1/S. 
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.7: Cell Cycle G2 arrest for hhp1.HA.wild type. Yeast cells were cultured 
in YEA medium overnight at 30 oC.ells were harvested, synchronised in G2
released into YEA medium at 30°C with orwithout 40μϺ CPT (camptothecin
peak in septation coincides with G1/S.   

Cell Cycle G2 arrest for ∆hhp1. Yeast cells were cultured in YEA 
medium overnight at 30 oC. Cells were harvested, synchronised in G2 and 
into YEA medium at 30°C with o rwithout 40μϺ CPT (camptothecin). The peak in 
septation coincides with G1/S.   
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, synchronised in G2 and 
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Figure: 7.3.9 : Cell Cycle G2 arrest for 
YEA medium overnight at 30 
released into YEA medium at 30°C
peak in septation coincides with G1/S. 
. 

 

 

     Since previous work has shown that elevated temperatures arrest 

phase after the release from a lactose gradient, the synchronised cells were released in rich 

medium at 30°C and 40°C. Consistent with the previous 

arrested for approximately 140

Loss of Hhp1 (Δhhp1) extended this G2 arrest significantly and cells failed to re

cycle during the course of the experiment (up to 340

kinase activity by the L51Q muta

7.3.12). This mutant arrested for 160

extended heat arrest is in line with the absence of a temperature sensitivity when cells are grown 

at 37°C (Figure: 7.3.3). Taken together, this implies that cells can restart the cell cycle after a 

temperature stock with low Hhp1 activity levels

kinase. It also reveales a significant difference between heat and CPT induced G2 arrests. While 

the breast cancer mutation L51Q prolongs the CPT

on the heat arrest. 
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l Cycle G2 arrest for hhp1.L51Q. Yeast cells were cultured in 
YEA medium overnight at 30 oC. Cells were harvested, synchronised in G2
released into YEA medium at 30°C with or without 40μϺ CPT (camptothecin
peak in septation coincides with G1/S.   

Since previous work has shown that elevated temperatures arrest S.pombe

phase after the release from a lactose gradient, the synchronised cells were released in rich 

medium at 30°C and 40°C. Consistent with the previous findings, hhp1

arrested for approximately 140 min at 40°C before re-entering the cell cycle (

) extended this G2 arrest significantly and cells failed to re

cycle during the course of the experiment (up to 340 min) (Figure: 7.3.11). A reduction in the

he L51Q mutation had  only a very small impact on the G2 arrest (

This mutant arrested for 160 min before re-entering the cell cycle. Th

is in line with the absence of a temperature sensitivity when cells are grown 

). Taken together, this implies that cells can restart the cell cycle after a 

temperature stock with low Hhp1 activity levels, but not, or only very slowly

It also reveales a significant difference between heat and CPT induced G2 arrests. While 

the breast cancer mutation L51Q prolongs the CPT-induced G2 arrest, it has not the same impact 
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lls were cultured in 

, synchronised in G2 and 
camptothecin). The 

S.pombe cells in the first G2 

phase after the release from a lactose gradient, the synchronised cells were released in rich 

hhp1-HA wild type cells 

entering the cell cycle (Figure: 7.3.10). 

) extended this G2 arrest significantly and cells failed to re-ender the cell 

). A reduction in the 

only a very small impact on the G2 arrest (Figure: 

entering the cell cycle. The absence of an 

is in line with the absence of a temperature sensitivity when cells are grown 

). Taken together, this implies that cells can restart the cell cycle after a 

but not, or only very slowly, without Hhp1 

It also reveales a significant difference between heat and CPT induced G2 arrests. While 

induced G2 arrest, it has not the same impact 
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Figure: 7.3.10: Heat-induced c
synchronised in G2 by lactose gradient centrifugation and released into rich medium 
at 30 oC or 40 oC. Samples were withdrawn at the indicated time points
Cells were fixed in methanol and stained with DAPI (DNA) and calcofluor (septum). 
The percentage of septated cells, which are a readout for G1/S cells, was scored (%).

 

 

 

 

 

Figure: 7.3.11: Heat
were synchronised in G2 by lactose gradient centrifugation and released into rich 
medium at 30 oC or 40
(20 min). Cells were fixed in methanol and stained with DAPI (DNA) and 
calcofluor (septum).
G1/S cells, was scored (%).
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induced cell cycle G2 arrest for hhp1.HA.wild type. C
synchronised in G2 by lactose gradient centrifugation and released into rich medium 

. Samples were withdrawn at the indicated time points 
methanol and stained with DAPI (DNA) and calcofluor (septum). 

The percentage of septated cells, which are a readout for G1/S cells, was scored (%).

Heat-induced cell cycle G2 arrest for Δhhp1 deletion cells
were synchronised in G2 by lactose gradient centrifugation and released into rich 

or 40 oC. Samples were withdrawn at the indicated time points
min). Cells were fixed in methanol and stained with DAPI (DNA) and 

calcofluor (septum). The percentage of septated cells, which are a readout for 
G1/S cells, was scored (%). 
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. Cells were 

synchronised in G2 by lactose gradient centrifugation and released into rich medium 
 (20 min). 

methanol and stained with DAPI (DNA) and calcofluor (septum). 
The percentage of septated cells, which are a readout for G1/S cells, was scored (%). 

 
deletion cells. Cells 

were synchronised in G2 by lactose gradient centrifugation and released into rich 
. Samples were withdrawn at the indicated time points 

min). Cells were fixed in methanol and stained with DAPI (DNA) and 
The percentage of septated cells, which are a readout for 
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Figure: 7.3.12: Heat-induced c
were synchronised in G2 by lactose gradient centrifugation and released into rich 
medium at 30 oC or 40
min). Cells were fixed in methanol and stained with DAPI (DNA) and calcofluor 
(septum). The percentage of septated cells, which are a readout for G1/S cells, was 
scored (%).  

 
 

7.3.1. The Breast Cancer Mutation Hhp1.L51Q affects Chk1 Function 

     Given the genetic link between Hhp1 and Chk1 kinase (

mutant allele was combined with the deletion of 

7.3.1.1, the hhp1.L51Q strain is mildly MMS sensitive whereas cells without Hhp1 or Chk1 are

highly MMS sensitive. Interestingly, the reduction in kinase activity 

reduces the MMS sensitivity of 

strain. This suggests a role of Hhp1 upstream of Chk1 as the reduction in Hhp1 function may 

affect a DNA response activity which is later dependent on Chk1 kinase.

     The same set of strains was also tested for the response to CPT. In the acute exposure

(Figure: 7. 3.1.2), hhp1.L51Q 

The Δchk1.hhp1.L51Q strain was as CPT sensitive as the 

supports the conclusion that both kinases act in the same pathway.

     Under chronic exposure conditions, the 

than the hhp1.L51Q strain (Figure: 7.

(Figure: 7. 3.1.1). To find out whether the reduction in CPT sensitivit

Δchk1 and Δchk1 hhp1.L51Q cells were synchronised in G2 and released into rich medium with 

and without 40µM CPT. Since both strains showed a G2 delay between 20
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induced cell cycle G2 arrest for the hhp1.L51Q strain
were synchronised in G2 by lactose gradient centrifugation and released into rich 

or 40 oC. Samples were withdrawn at the indicated time points
min). Cells were fixed in methanol and stained with DAPI (DNA) and calcofluor 

The percentage of septated cells, which are a readout for G1/S cells, was 

7.3.1. The Breast Cancer Mutation Hhp1.L51Q affects Chk1 Function  

Given the genetic link between Hhp1 and Chk1 kinase (Figure: 3.3.3

mutant allele was combined with the deletion of chk1 (Δchk1.hhp1.L51Q). As shown in 

strain is mildly MMS sensitive whereas cells without Hhp1 or Chk1 are

highly MMS sensitive. Interestingly, the reduction in kinase activity due to the L51Q mutation 

reduces the MMS sensitivity of Δchk1 cells to the lower levels observed for the 

strain. This suggests a role of Hhp1 upstream of Chk1 as the reduction in Hhp1 function may 

affect a DNA response activity which is later dependent on Chk1 kinase. 

The same set of strains was also tested for the response to CPT. In the acute exposure

cells were only mildly sensitive and Δchk1 

strain was as CPT sensitive as the hhp1.L51Q single mutant which 

supports the conclusion that both kinases act in the same pathway. 

Under chronic exposure conditions, the Δchk1 hhp1.L51Q double mutant was less sensitive 

Figure: 7. 3.1.3) which is in line with its reduced MMS sensitivity 

). To find out whether the reduction in CPT sensitivity is related to the G2 arrest, 

cells were synchronised in G2 and released into rich medium with 

and without 40µM CPT. Since both strains showed a G2 delay between 20 min and 40
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strain. Cells 

were synchronised in G2 by lactose gradient centrifugation and released into rich 
. Samples were withdrawn at the indicated time points (20 

min). Cells were fixed in methanol and stained with DAPI (DNA) and calcofluor 
The percentage of septated cells, which are a readout for G1/S cells, was 

 

.3.1), the hhp1.L51Q 

). As shown in Figure: 

strain is mildly MMS sensitive whereas cells without Hhp1 or Chk1 are 

due to the L51Q mutation 

cells to the lower levels observed for the hhp1.L51Q 

strain. This suggests a role of Hhp1 upstream of Chk1 as the reduction in Hhp1 function may 

The same set of strains was also tested for the response to CPT. In the acute exposure test 

 cells were resistant. 

single mutant which 

double mutant was less sensitive 

) which is in line with its reduced MMS sensitivity 

y is related to the G2 arrest, 

cells were synchronised in G2 and released into rich medium with 

min and 40 min in the  



New roles of CKІ
 

211| P a g e  

 

 

presence of the topoisomerase 1 

hhp1.L51Q double mutant is linked with the G2 arrest (

 

Figure: 7. 3.1.1: Acute MMS (methyl
cells were cultured in YEA medium overnight at 30 
incubated again for three hours  at 30 
days at 30°C and colonies were counted. 
 

 

Figure: 7.3.1.2: Acute CPT (Camptothecin
cultured in YEA medium overnight at
again for five hours at30 oC. 75 μl samples were collected every hour. Plates were incubated for 4 days at 30°C 
and colonies were counted.  
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presence of the topoisomerase 1 inhibitor, it is unlikely that the increased survival of the 

double mutant is linked with the G2 arrest (Figure: 7. 3.1.4, Figure: 7.

methyl-methanesulfonate) survival assay for hhp1.L51Q.∆chk1
cells were cultured in YEA medium overnight at 30 oC.Cells were harvested and treated with 0.05% MMS and 

30 oC. 75 μl samples were collected every hour. Plates were incubated for 4 
days at 30°C and colonies were counted.  

amptothecin) survival assay for the hhp1.L51Q.∆chk1 strain
cultured in YEA medium overnight at 30 oC.Cells were harvested and treated with 40μ

μl samples were collected every hour. Plates were incubated for 4 days at 30°C 
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survival of the Δchk1 

4, Figure: 7. 3.1.5). 

 
∆chk1 cells. Yeast strain 

ells were harvested and treated with 0.05% MMS and 
l samples were collected every hour. Plates were incubated for 4 

 
strain. Yeast cells were 

ells were harvested and treated with 40μϺ CPT and incubated 
l samples were collected every hour. Plates were incubated for 4 days at 30°C 
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Figure: 7.3.1.3: CPT-Drop (Camptothecin
indicated strains were spotted onto rich medium plates containing the indicated 
incubated for 4 days at 30°C. One plate was incubated at 37°C.

 

 

Figure: 7.3.1.4: CPT-
Δchk1 strain. Cells were synchronised in G2 by lactose gradient centrifugation and 
released into rich medium 
withdrawn at the indicated
stained with DAPI (DNA) and calcofluor (septum). The percentage of septated cells, 
which are a readout for G1/S cells, was scored (%).
Indicated cells were synchronised 
released into rich medium with or without 40
withdrawn at the indicated time (20
stained with DAPI (DNA) and calcofluor (septum). 
which are a readout for G1/S cells, was scored (%). 
40μϺ CPT processed 80
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amptothecin-Drop) test for the hhp1.L51Q.∆chk1 strain. 
indicated strains were spotted onto rich medium plates containing the indicated CPT concentrations. Plates were 

One plate was incubated at 37°C.  

-induced (Camptothecin-induced) cell cycle G2 arrest for the 
lls were synchronised in G2 by lactose gradient centrifugation and 

released into rich medium at 30 oC with or without 40µM CPT. Samples were 
withdrawn at the indicated time points (20 min). Cells were fixed in methanol and 
stained with DAPI (DNA) and calcofluor (septum). The percentage of septated cells, 
which are a readout for G1/S cells, was scored (%).Cell Cycle G2 arrest for 
Indicated cells were synchronised in G2 by lactose gradient centrifugation and 
released into rich medium with or without 40μM camptothecin (CPT). Samples were 
withdrawn at the indicated time (20 min) points. Cells were fixed in methanol and 
stained with DAPI (DNA) and calcofluor (septum). The percentage of septated cells, 
which are a readout for G1/S cells, was scored (%). ∆chk1 cells were treated without 

CPT processed 80 min delay in G2. 
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concentrations. Plates were 

 
cycle G2 arrest for the 

lls were synchronised in G2 by lactose gradient centrifugation and 
. Samples were 

min). Cells were fixed in methanol and 
stained with DAPI (DNA) and calcofluor (septum). The percentage of septated cells, 

Cell Cycle G2 arrest for ∆chk1. 
in G2 by lactose gradient centrifugation and 

M camptothecin (CPT). Samples were 
min) points. Cells were fixed in methanol and 

The percentage of septated cells, 
chk1 cells were treated without 
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Figure: 7.3.1.5: CPT-
Δchk1 hhp1.L51Q strain
centrifugation and released into rich medium 
Samples were withdrawn at the indicated time points
methanol and stained with
septated cells, which are a readout for G1/S cells, was scored (%).

 

Taken together these findings are consistent with the earlier results for the 

they place both kinases in the same pathway. What is novel is the conclusion that Hhp1 may act 

down-stream of Chk1 kinase. 

 

7.3.2.  Hhp1.L51Q affects the cell cycle regulator  Cdc25 phosphatase

     The cdc25.22 allele is a temperature

which carries a tyrosine residue at position 532 instead of a cysteine 

reduced Cdc25 activity remain for longer in G2 since the inhibitory tyrosine 15 phosphorylation 

of Cdc2 cannot be removed (543

S148, S178, S192, S204, S206, T226, S234, S359, T561, S567, and T569

suggested to phosphorylate Cdc25 

(310, 486). S. pombe Cdc2 (CDK1)

stage. The G1/S cyclins Cig1, Cig2 and Puc1, and the G2/M cyclin Cdc13. Amongst them, 

Cdc13 is the only essential cyclin as all other cyclins can be deleted without affecting 

progression through the cell cycle

tyrosine 15 to delay cell cycle progression

the response to unreplicated DNA 

the important role of cell cycle regulators in cancer development 

was combined with the  cdc25.22 
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-induced (Camptothecin-induced) cell cycle G2 arrest for the 
strain. Cells were synchronised in G2 by lactose gradient 

centrifugation and released into rich medium at 30 oC with or without 40µM CPT
Samples were withdrawn at the indicated time points (20 min). Cells were fixed in 
methanol and stained with DAPI (DNA) and calcofluor (septum). The percentage of 
septated cells, which are a readout for G1/S cells, was scored (%). 

Taken together these findings are consistent with the earlier results for the Δchk1.

both kinases in the same pathway. What is novel is the conclusion that Hhp1 may act 

affects the cell cycle regulator  Cdc25 phosphatase  

temperature sensitive loss-of-function mutant of

which carries a tyrosine residue at position 532 instead of a cysteine (C532Y)

reduced Cdc25 activity remain for longer in G2 since the inhibitory tyrosine 15 phosphorylation 

543). S. pombe Cdc25 has multiple phosphorylation sites: S99, 

S148, S178, S192, S204, S206, T226, S234, S359, T561, S567, and T569

e Cdc25 are Cds1 kinase, Chk1 kinase, Sty1 kinase

Cdc2 (CDK1) associates with different cyclins dependent on the cell cycle 

stage. The G1/S cyclins Cig1, Cig2 and Puc1, and the G2/M cyclin Cdc13. Amongst them, 

Cdc13 is the only essential cyclin as all other cyclins can be deleted without affecting 

cycle (478). The kinases Wee1 and Mik1 phosphorylate Cdc2 at 

tyrosine 15 to delay cell cycle progression (479, 480). Mik1 may act specifically in S phase in 

unreplicated DNA (483), whereas Wee1 is active  during the cell cycle. Given 

the important role of cell cycle regulators in cancer development (542), the 

.22 allele (hhp1.L51Q.cdc25.22). 
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cycle G2 arrest for the 

lls were synchronised in G2 by lactose gradient 
µM CPT. 

min). Cells were fixed in 
DAPI (DNA) and calcofluor (septum). The percentage of 

Δchk1.Δhhp1 strain as 

both kinases in the same pathway. What is novel is the conclusion that Hhp1 may act 

of Cdc25 phosphatase 

(C532Y) (233). Cells with 

reduced Cdc25 activity remain for longer in G2 since the inhibitory tyrosine 15 phosphorylation 

tiple phosphorylation sites: S99, 

S148, S178, S192, S204, S206, T226, S234, S359, T561, S567, and T569. Kinases which are 

Cds1 kinase, Chk1 kinase, Sty1 kinase, and Srk1 kinase 

associates with different cyclins dependent on the cell cycle 

stage. The G1/S cyclins Cig1, Cig2 and Puc1, and the G2/M cyclin Cdc13. Amongst them, 

Cdc13 is the only essential cyclin as all other cyclins can be deleted without affecting 

phosphorylate Cdc2 at 

act specifically in S phase in 

the cell cycle. Given 

, the  hhp1.L51Q mutant 
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Figure: 7.3.2.1: MMS-Drop (Methyl-methanesulfonate-Drop) test for Hhp1.L51Q.cdc25.22. Serial dilutions of the 
indicated strains were spotted onto rich medium plates containing the indicated MMS concentration. Plates were 
incubated for 4 days at 30°C.  
 
 

Cells with reduced Cdc25 activity (cdc25.22) are unable to grow at 37°C since cells accumulate 

in G2 with tyrosine 15 phosphorylated Cdc2 (Figure: 7.3.2.1). This cell cycle defect is not 

associated with DNA damage sensitivity. Very unexpectedly, a reduction in Hhp1 activity by the 

L51Q mutation restored some growth of the hhp1.L51Q.cdc25.22 strain at the restrictive 

temperature. There was no impact of the MMS sensitivity of the hhp1.L51Q mutation. This 

suppression could be explained in two ways. Either a drop in Hhp1 activity reduces the levels of 

the inhibitory tyrosine 15 phosphorylation or it re-activates the mutated Cdc25 phosphatase. 

 

 
Figure: 7.3.2.2: CPT-Drop (Camptothecin-Drop) test for Hhp1.L51Q.cdc25.22. Serial dilutions of the indicated 
strains were spotted onto rich medium plates containing the indicated CPT concentrations. Plates were incubated 
for 4 days at 30°C.  
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In the presence of the topisomerase 1 inhibitor CPT, the genetic linkage between 

hhp1.L51Q was however more complex. In addition to restoring growth at the restrictive 

temperature of 37°C, the hhp1.L51Q 

7.3.2.2). 

 

Figure: 7.3.2.3: CPT-
cdc25.22 strain. Cells were synchronised in G2 by lactose gradient centrifugation 
and released into rich medium 
withdrawn at the indicated time points
stained with DAPI (DNA) and calcofluor (septum). The percentage of septated cells, 
which are a readout for G1/S cells, was scored (%).

 

 

Figure: 7.3.2.4: CPT-
cdc25.22 hhp1.L51Q 
centrifugation and released into rich medium 
Samples were withdrawn at the indicated time points
methanol and stained with DAPI (DNA)
septated cells, which are a readout for G1/S cells, was scored (%).
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Since Cdc25 regulates the G2-M transition (Figure: 7.3.2.7), cdc25.22 and hhp1.L51Q cdc25.22 

cells were synchronised in G2 and released in medium with and without 40µM CPT. As shown 

in Figure: 7.3.2.3, the reduction in Cdc25 activity on its own had little impact on the G2 arrest. 

The short 20-40 min delay observed in wild type cells was not evident in this experiment which 

may be the consequence of the slower progression through the cell cycle of this mutant strain. 

While the cdc25.22 single mutant delays in G2 for 20-40 min (Figure: 7.3.2.3), the hhp1.L51Q 

cdc25.22 double mutant displayed an extended arrest which resembles the long arrest of hhp1 

deletion cells (Figure: 7.3.2.4).  

      To test whether the Hhp1 protein is required for this genetic link, the DNA sensitivity tests 

were repeated with a Δhhp1 cdc25.22 strain in which no Hhp1 protein is expressed. Loss of the 

kinase suppressed the growth defect of the cdc25.22 mutant at 37°C (Figure: 7.3.2.6), but had 

only a very small impact on the CPT sensitivity of the double mutant (Figure: 7.3.2.5). This 

indicates that a low Hhp1 activity is necessary to restore some of the CPT resistance of the 

hhp1.L51Q cdc25.22 double mutant and to allow cdc25.22 cells to over-come the G2 block at 

the restrictive temperature of 37°C. A loss of Hhp1 kinase activity could either reactivate 

Cdc25.22 or it could reduce the inhibitory function of Wee1. In both cases the inhibitory Y15 

modidication of Cdc2 would decline allowing cells to grow again (Figure 7.1.4.7). 

 

 
Figure: 7.3.2.5: Chronic CPT (camptothecin) exposure for Cdc25.22∆hhp1. Serial dilutions of the indicated 
strains were spotted onto rich medium plates containing the indicated CPT concentrations. Plates were incubated 
for 4 days at 30°C.  
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Figure: 7.3.2.6: Chronic MMS (methyl-methanesulfonate) exposure for Cdc25.22∆hhp1. Serial dilutions of the 
indicated strains were spotted onto rich medium plates containing the indicated MMS concentrations. Plates were 
incubated for 4 days at 30°C.  

 

 

 

 
Figure: 7.3.2.7: Model of Hhp1 kinase activities with Wee1 and Cdc25. The impact of a reduction 
in Hhp1 activity could allow cells with a low Cdc25 phosphatase level to grow again at the 
restrictive temperature if Hhp1 either activates Wee1 or inactivates Cdc25. The drop in Hhp1 
activity by the breast cancer mutation L51Q could reduce the accumulation of the inhibitory 
tyrosine 15 (Y15) phosphorylation of Cdc2 if Hhp1 activates Wee1. Alternatively, if Hhp1 blocks 
Cdc25, a reduction in its activity could allow the Cdc25.22 phosphatase to be more active. 
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Chapter 8: Final Discussion and Conclusion  

-------------------------------------------------------------------- 
 

8.1. Discussion of Key Findings 

     The aim of this study was to dissect how CK1 (Hhp1) regulates DNA repair and cell cycle 

progression. Although CK1 enzymes play important roles in the circadian clock, Wnt signalling, 

cell cycle regulation and disease development, little is known about their DNA repair roles. 

Early work by Dhillon N, and Hoekstra M (15) reported that S.pombe cells without Hhp1 kinase 

are sensitive to ionising radiation and DNA alkylation by methyl-methanesulfonate (MMS). 

They concluded that the kinase is important for the repair of broken replication forks. This work 

confirms initial findings and extends the sensitivity profile of hhp1 deletion cells to the 

topoisomerase 1 inhibitor camptothecin (CPT). This anti-cancer drug stabilises the 

topoisomerase 1- DNA cleavage complex in front of advancing replication forks. The collition of 

forks with this obstacle leads to a S phase specific DNA (559). Eukaryotic cells employ two 

DNA damage checkpoint pathways which respond differentially dependent on the DNA 

replication problem. When replication forks stall in the absence of nucleotides, S.pombe cells 

activate Cds1 kinase which is recruited to the fork by the scaffold protein Mrc1 (194, 237). The 

breakage of forks triggers the activation of Chk1 kinase which is recruited by the scaffold protein 

Crb2 to the damaged chromosome (246). How cells change from one system to the other system 

is largely unknown. Work in S.cerevisiae indicates that the response to broken forks is delayed 

until cells exit S phase (558). One key player in the repair of damaged forks is the structure-

specific endonuclease Mus81-Eme1 (515, 539). Stalled forks are protected by Cds1 which 

phosphorylates Mus81 to remove the endonuclease from the nucleus. How the enzyme returns 

later from the cytoplasm to repair broken forks is still unclear, but it requires the dual 

phosphorylation of the regulatory subumit Eme1 first by the cell cycle regulator Cdc2 and later 

by Chk1 kinase (515) (Figure: 8.1.1). Cdc2 phosphorylates the repair complex during each G2 

phase which primes the enzyme for its activities in the nucleus. Chk1 activates the enzyme when 

broken forks are detected. To be fully active, the Mus81-Eme1 complex requires also the DNA 

helicase Srs2 although this requirement does not depent on its helicase activity (517). 
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Figure: 8.1.1: How CK1 (Hhp1) may affect the repair of broken replication forks. Hhp1 is predicted to activate the 
endonuclease Mus81-Eme1 once it has been phosphorylated by Cdc2 and Chk1 kinase in G2. When DNA 
replication foks stall in the absence on nucleotides, Cds1 phosphorylates Mus81 to remove it from the nucleus. How 
the endonuclease returns to the nucleus to repair broken forks in G2 is not yet clear but may require the Cdc2-
dependent phosphorylation of Eme1 which occurs during the normal cell cycle. Activation by Chk1 occurs in the 
presence of broken replication forks and is expected to intiate repair. The full activity of the endonuclease depends 
also on Srs2 DNA helicase in a manner which is independent on its helicase activity. The activating phosphorylation 
of the Mus81-Eme1 complex by CK1 (Hhp1) may promote, for example, the association of Srs2 with the primed 
Mus81-Eme1 complex. 
 

 

     The results presented in Chapter 3 place Hhp1 genetically in the same pathway as Cds1, 

Mrc1, Srs2, Hsk1, Mus81 and Mus7. Interestingly the loss of Cds1, Mrc1 and Chk1 share the 

tendency to slightly reduce the sensitivity of hhp1 deletion cells (Figure: 3.3.1, Figure: 3.3.2.1, 

Figure: 3.3.3.1). This indicates that the execution point of Hhp1 is after the activities of these 

three proteins. The involvement of Hsk1 (Cdc7) kinase and the fork protection protein Swi1 

(Timeless) is in line with their requirements to activate and recruit Cds1 to stalled forks (118).  
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Consistent with a close link between Hhp1 and Mus81, Hhp1 kinase acts in parallel to the DNA 

recombination factor Rad51 and the DNA end processing protein Ctp1 (Figure: 3.4.8, Figure: 

3.4.9). The same characteristics also apply to Mus81 (Figure: 3.3.1.1). This raises the interesting 

question of how Hhp1 kinase could activate the Mus81-Eme1 complex? As reported in Chapter 

4, Srs2 DNA helicase and Hhp1 kinase act in the same camptothecin response pathway (Figure: 

3.3.3.1). Since Srs2 is important to fully activate Mus81-Eme1, Hhp1 phosphorylation of either 

the Mus81-Eme1 endonoclease or the Srs2 DNA helicase could promote the association between 

these proteins therby promoting the repair of broken forks. An alternative explanation is 

provided by the interesting observation that loss of Crb2 abolishes the extended G2 arrest of 

hhp1 deletion cells (Figure: 4.7.3). While wild type cells arrest only briefly (20-40 min) in G2 

after cells were treated with CPT (Figure: 3.1.5A), Δhhp1 cells arrest for 120-180 min (Figure: 

3.1.5B). This prolonged arrest could by linked with the failure to activate DNA repair byMus81-

Eme1 or it could be a failure to switch off the checkpoint signal. Since the G2 delay of Δsrs2 

cells, which display a slightly longer G2 arrest of approximately 60 min (Figure: 4.6.3), is also 

suppressed upon deletion of crb2 (272), it is possible that Crb2 needs to be removed from DNA 

to either allow the activation of Mus81-Eme1 or to enable an alternative repair pathway to take 

over. Crb2 binds directly to methylated DNA via its Tudor domain, and to DNA which is 

phosphorylated at break sites at histone H2A via its two C-reminal BRCT domains (216). 

Chapter 4 also provides evidence for a second important role of Cdc2 kinase in the regulation of 

this repair process. During mitosis, Cdc2 phosphorylates Crb2 at threonine 215 (272, 557), and 

the removal of this phosphorylation site (crb2.T215A) is as efficient as the deletion of crb2 to 

abolish the extended G2 arrest in Δhhp1 and Δsrs2 cells (Figure: 4.6.5, Figure: 4.7.3). This 

implies that the T215 phosphorylated Crb2 protein blocks the repair of broken replication forks 

by Mus81-Eme1 possible because it still carries the mitotic imprint. Hhp1 kinase (CK1) may be 

required for the removal of this imprint thereby switching the DNA repair system from its M/G1 

mode to its G2 mode (272) (Figure: 8.1.2). 

     In Chapters 5, 6 and 7, different Hhp1 point mutants have been studied. This work identified 

two important separation-of-function mutants. The enlargement of the ATP binding site upon 

replacement of methionine 84 by a smaller glycine residue (M84G) has very little impact on the 

DNA damage sensitivity, but results in a prolonged G2 arrest when DNA replication forks break 

(Figure: 5.1.8). This difference implies that different levels of Hhp1 kinase activity are required  
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Figure: 8.1.2: The alternative activity of Hhp1 (CK1) kinase could be related to the removal of the mitotic 
phosphorylation of Crb2 at threonine 215 by Cdc2 as this modification may allow Crb2 to block the repair of broken 
replication forks by Mus81-Eme1. 
 

 

for Hhp1 kinase activity are required for the regulation of DNA repair and the cell cycle. While a 

small drop in activity affect the cell cycle delay, it does not affect DNA repair. One way to 

explain this may be provided by the different modes of target recognition by CK1 (Hhp1). While 

most CK1 sites require a priming kinase, which phosphorylates the N-terminal serine or 

threonine of the S/T (P)-X1-X2-S/T motive first, this priming event can be substituted by acidic, 

negatively charged amino acids (1). If the phosphorylation of the primed sites were to be more 

efficient than the modification of the acidic motifs, a limited decline in Hhp1 activity may affect 

the acidic motives first.  If this were to be the case, two different key targets are important for the 

DNA repair and cell cycle activity of Hhp1. The DNA repair target is most likely Mus81-Eme1, 

whereas the cell cycle target could be linked with Cdc25.  
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     Chapter 7 reports that the breast cancer mutation L51Q in Hhp1 suppresses the temperature 

sensitivity of the cdc25.22 mutation (Figure: 7.3.2.2). Since the inhibitory tyrosine  15 

modification of Cdc2 is removed by Cdc25 phosphatase (363, 395, 412), normally mutations 

which increase Cdc2 activity like the deletion of wee1 kinase, which phosphorylates Y15, or the 

gain-of-function allele of cdc2, cdc2.1w, which renders Cdc2 insensitive to Wee1 inhibition 

(220, 221, 222, 224, 226, 272), suppress cdc25 mutations, it is possible that loss of Hhp1 kinase 

activity increases Cdc2 kinase levels. If this were to be the case, loss of Hhp1 could lead to a 

prolonged G2 arrest indirectly by increasing Cdc2 activities (Figure: 8.1.3). This conclusion is 

supported by the extended G2 arrest of cdc2.1w cells in the presence of CPT (Figure: 4.3.3) 

which is abolished upon mutation of the T215 phosphorylation site in Crb2 (Figure: 4.5.6). 

Hence, deletion of Hhp1 may extend the mitotic imprint of Crb2 indirectly by elevating Cdc2 

activity. 

 

 

 
Figure: 8.1.3: Cell Cycle regulation by Hhp1 (CK1). Loss of Hhp1 (CK1) activity may either reduce 
the inhibitory function of Wee1 kinase or enhance the activating function of Cdc25 phosphatase. This 
would result in an increase in Cdc2 activity, as in the cdc2.1w mutant, and the accumulation of the 
mitotic imprint on Crb2 which blocks the repair activity of Mus81-Eme1. Hhp1 may also directly 
target Cdc2 as indicated by its association with the cell cycle regulator (272). 
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     There is however one problem with this explanation since Δhhp1 cells are elongated (i.e. 

delayed in G2) and not short (i.e. advance into mitosis linke cdc2.1w cells), which shows that  

the cell cycle promoting activity of Cdc2 is not elevated. This conundrum could be resolved by 

the finding that S.pombe cells express five phosphorylated and two unphosphorylated forms of 

Cdc2 (554). Only two phosphorylated forms regulate cell cycle progression, whereas the two 

unphosphorylated forms regulate DNA repair. There is also one phosphorylated form with 

unknown function which is not the target of Wee1. Hhp1 may phosphorylate this form of Cdc2 

directly to coordinate Crb2 and Mus81. A direct link between Cdc2 and Hhp1 is supported by 

the physical association between both kinases (272). 

     The second interesting separation-of-function mutant is the breast cancer mutation L51Q. As 

summarised in Chapter 7, this mutation affects the cell cycle delay only when DNA replication 

forks break in CPT medium but not when cells are exposed to heat stress. As reported previously 

(229), heat stress triggers an extended G2 arrest in wild type cells of approximately 180 min 

(Figure: 7.3.10) which is extended to 340 min in the absence of Hhp1 (Figure: 7.3.11) (Table: 

8.1.1). Why the L51Q mutation in the vicinity of the ATP binding site only affects  the DNA 

damage induced G2 arrest but not the heat induced G2  arrest is as yet unclear. 

     As shown in Chapter 5, the DNA repair and cell cycle functions of Hhp1 could also be 

separated by a mutation in the nuclear localisation sequence. Replacing tyrosine 227 

(hhp1.Y227F-HA) at the bottom of the cleft which forms the nuclear localisation domain, had 

only a small impact on the cell cycle delay in CPT medium (Figure: 5.3.4) while turning the cells 

highly CPT sensitive (Figure: 5.3.2). Deletion of the entire NLS in frame caused a similar 

phenotype (Figure: 5.3.6, Figure: 5.3.9). This implies that nuclear localisation is important for 

the DNA repair activity but not for the cell cycle function of Hhp1. This is in line with the 

proposed regulation of the endonuclease Mus81-Eme1 in the nucleus (Figure: 8.1.4). Given that 

the cell cycle regulator Cdc2 resides at the spindle pole body in S.pombe, which is accessible 

from the cytoplasm (210, 556), there may be no need for Hhp1 to enter the nucleus to target 

Cdc2. 
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 Resistance to DNA 

damage 

Lethal 

rate 

G2 delay 

(CPT)  

 

G2 delay 

(40 oC) 

 

Kinase 

activity 

(high/ low) DSBs-

CPT 

MMS 

hhp1.HA.wt yes yes low 20-40 min 

control 

180 min 

control 

normal 

∆ hhp1 no no high ›120 min  ›340 min --- 

hhp1.M84G yes yes low 180 min 60 min low 

hhp1.M84G.Y169F yes yes low 40 min 200 min low 

hhp1.M84G.Y227F no no high 160 min 220 min high 

hhp1.M84G.NLS.del no no high 80 min 200 min high 

hhp1.L51Q no no high 80 min 220 min high 

hhp1.S183A yes yes high ›120 min  240 min low 

hhp1.R180C yes yes low 60 min ›240 min high 

hhp1.R180C.K40R no no high ›120 min long 240 min low 

hhp1.R180C.M84G no no high ›120 min short --- low 

hhp1.R180C.C-

terminal.del 

yes yes low 60 min 180 min Very low 

hhp1.K40R no no high ›120 min long ›280 min low 

hhp1.M82I no yes high ›120 min 220 min low 

hhp1.P49S no no high 80 min 160 min high 

Table: 8.1.1: Characterizing summary of Hhp1 kinae smutants. Some Hhp1 mutants are sensitive to DSBs and 
that enhanced lethal ratio, as consequence they will  have a long G2-arrest. This is theory maybe right for almost 
the Hhp1 mutants, but existing of mutant at any site of the kinase could make a phenotype and change the kinase 
activities i.e., Hhp1.S183A, and Hhp1.M84G. 

 

 
Figure: 8.1.4: Mutations in the Nuclear Localisation Sequence separate the DNA repair and cell cycle activities of 
Hhp1 kinase. An intact NLS is important to regulate the repair enzyme Mus81-Eme1 in the nucleus, while the cell 
cycle regulator resides at the spindle pole body (SPB) and may be accessible from the cytoplasm. Loss of Chk1 
partly suppressed the CPT sensitivity of the NLS mutants (Figure: 5.4.3) probably because Mus81-Eme1 is not 
primed which may allow an alternative repair pathway to take over. 
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     Chapter 6 reports the finding that the three circadian clock mutations (R180C, M82I and 

P49S) all affect the cell cycle activity but only to a very small extend the DNA repair function. 

This finding is in line with the earlier discussion point that enlargement of the ATP binding site 

(M84G) results in a similar separation of function. All four mutations probably only reduce the 

kinase activity of Hhp1, which is consistent with similar observations in Drosophila (62, 64), 

and could be explained by a different affinity of Hhp1 for primed versus acidic target sequences. 

What was however novel are the biochemical changes caused by the circadian clock mutations. 

Isoelectric focusing revealed four to five forms of wild type Hhp1 which did not change in the 

response to DNA damage (Figure: 6.2.1.9, Figure: 6.2.1.10). In the tau mutation R180C, which 

shortens the clock in hamster (69), caused the change of one form of isoelectric points (Figure: 

6.2.1.9) which became more positive. This could identify this form of Hhp1 as the form which 

regulates Cdc2 as the R180C mutant had a cell cycle defect but a normal DNA repair response. 

Two of these forms, the two more negative forms, disappeared upon deletion of the C-terminal 

tail domain which places both post-translational modifications in this part of Hhp1. It was also 

interesting to find that the kinase dead mutant (K40R) contained all forms of the kinase which 

strongly implies that auto-phosphorylation is not the cause of these modifications.  

 
 

8.2. Conclusion 

     The main conclusions from this work are (i) that CK1 (Hhp1) has two important cellular 

execution points: the repair of broken DNA replication forks and G2 cell cycle arrests in the 

presence of DNA damage or when cells are exposed to heat stress; (ii)  that CK1 is an important 

regulator of the DNA repair enzyme Mus81-Eme1 which acts on broken replication forks; (iii)  

that mutations which are linked with cancer and disorders of the circadian clock cause a partial 

loss of kinase activity which could be explained by different affinities of CK1 to primed (first 

phosphorylated by a priming kinase) and acidic phosphorylation sites; and (iv) that CK1 exists in 

at least six forms in fission yeast with different isolectic points which may explain how one 

kinase can cover such a broad range of functions. 

     Further work is however required to translate these important findings from the model 

organism Schizosaccharomyces pombe to human cells. 
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10. Appendix 1 
 

Epistatic Relationships Among S. pombe Proteins 
Protein Name Protein Name References 

hhp1 
 

srs2 =ATP-dependent DNA helicase Thesis data 
chk1 =protein kinase Thesis data 
rad3 =ATR checkpoint kinase Thesis data 
cds1 =replication checkpoint kinase Thesis data 
rad22 =DNA recombination protein Thesis data 
mus7 =DNA repair protein Thesis data 
mus81 =Holliday junction resolvase subunit Thesis data 
ku70 =domain protein Pku70 Thesis data 
sty1 =MAP kinase Thesis data 
hsk1 =Dbf4(Dfp1)-dependent protein kinase Thesis data 
mrc1 =mediator of replication checkpoint 1 Thesis data 
fbh1 =DNA helicase I Thesis data 
cdc25 =M phase inducer tyrosine phosphatase Thesis data 
wee1 =M phase inhibitor protein kinase Thesis data 
mad2 =spindle checkpoint protein Thesis data 
mik1 =mitotic inhibitor kinase Thesis data 
crb2 =DNA repair protein Thesis data 
ku80 =domain protein Pku80 Thesis data 
cdc2 = cyclin-dependent protein kinase Thesis data 

srs2  
 

hhp1 =serine/threonine protein kinase Thesis data 
chk1 =protein kinase Thesis data 
rqh1 =RecQ type DNA helicase 250, 254, 184 
rad51 =RecA family recombinase 238, 255, 184 
rad22 =DNA recombination protein 238, 255, 184 
cdc25 =phase inducer tyrosine phosphatase Thesis data 

cdc2 = cyclin-dependent protein kinase 
Thesis data, and 
240 

chk1  
 

hhp1 =serine/threonine protein kinase Thesis data 
rad3 =ATR checkpoint kinase 179, 293 
cdc2 =cyclin-dependent protein kinase Thesis data 
srs2 =ATP-dependent DNA helicase Thesis data 

tel1  cds1 =replication checkpoint kinase Thesis data 

rad51  
rqh1 =RecQ type DNA helicase 184 
rad22 =DNA recombination protein 322, 277 
fbh1 =DNA helicase I 318 

rad22 rqh1 =RecQ type DNA helicase 238, 255, 184 
crb2  cdc2 =cyclin-dependent protein kinase Thesis data 

mus81  
rad22 =DNA recombination protein 277 
mus7 =DNA repair protein 257 

Table: 10.1: Discovery of Epistatic Relationships Among S. pombe Proteins. Here in this is table above an 
epistatic genatic co-operations were identified among yeast proteins in association of cellular DNA repair events. 



278 | P a g e 
 

 

11. Appendix 2 

 
7734–7747   Nucleic Acids Research, 2014, Vol. 42, No. 12                                                          Published online 26 May 2014 
doi: 10.1093/nar/gku452 

 

Hyperactive Cdc2 kinase interferes with the response 
to broken replication forks by trapping S.pombe Crb2 
in its mitotic T215 phosphorylated state 

 

Salah Adam Mahyous Saeyd, Katarzyna Ewert-Krzemieniewska, Boyin Liu and 
Thomas Caspari* 
Genome Biology Group, College of Natural Sciences, School of Biological Sciences, Bangor University, Brambell 
Building, Deiniol Road, Bangor LL57 2UW, Wales, United Kingdom 
Received October 20, 2013; Revised May 03, 2014; Accepted May 7, 2014 

 
ABSTRACT 
Although it is well established that Cdc2 kinase                   
phosphorylates the DNA damage checkpoint protein 
Crb253BP1 in mitosis, the full impact of this modifica- tion 
is still unclear. The Tudor-BRCT domain protein Crb2 binds 
to modified histones at DNA lesions to mediate the 
activation of Chk1 by Rad3ATR kinase. We demonstrate 
here that fission yeast cells har- bouring a hyperactive 
Cdc2CDK1 mutation (cdc2.1w) are specifically sensitive to 
the topoisomerase 1 in- hibitor camptothecin (CPT) which 
breaks DNA repli- cation forks. Unlike wild-type cells, 
which delay only briefly in CPT medium by activating Chk1 
kinase, cdc2.1w cells bypass Chk1 to enter an extended cell- 
cycle arrest which depends on Cds1 kinase. Intrigu- ingly, 
the ability to bypass Chk1 requires the mitotic Cdc2 
phosphorylation site Crb2-T215. This implies that the 
presence of the mitotic phosphorylation at Crb2-
T215channels Rad3 activity towards Cds1 in- stead of Chk1 
when forks break in S phase. We also provide evidence that 
hyperactive Cdc2.1w locks cells in a G1-like DNA repair 
mode which favours non-homologous end joining over 
interchromosomal recombination. Taken together, our data 
support a model such that elevated Cdc2 activity delays the 
transition of Crb2 from its G1 to its G2 mode by block- ing 
Srs2 DNA helicase and Casein Kinase 1 (Hhp1). 
 
INTRODUCTION 
Despite   the   importance   of   cyclin-dependent    
kinases (CDKs)  for the regulation  of the DNA  damage  
response (DDR)   (1,2,3),  it  is  still  enigmatic  how  
CDKs   act  as activators  of DNA  repair  while being 
down-regulated by the DNA damage checkpoint.  Two 

possible answers to this puzzle may lie in the temporal  
or spatial  organization of CDKs. 
The activity of CDK1-cyclin B kinase peaks early in 
mitosis (4) and this rise could prime DDR  proteins  for 
their roles in the next cell cycle. Between the end of G2 
and the start of the subsequent S phase, cells repair broken 
chromo- somes by non-homologous end-joining (NHEJ) 
(5,6). To fa- cilitate NHEJ, the Ku70-Ku80  DNA  binding 
complex and the chromatin protein  53BP1Crb2,Rad9  prevent 
the resection of broken  DNA  ends (7,8,9). It is widely 
assumed that the transition from NHEJ  to homologous 
recombination (HR) in S phase requires the activity of 
CDKs. Interestingly,  nei- ther progression  through  S 
phase nor  the presence of the sister chromatid are 
necessary to initiate HR (10). 

Alternative to this temporal regulation, the DNA repair 
choice could be controlled by CDKs directly at the 
chromatin. In fission yeast, Cdc2-cyclin B kinase associates 
with origins of replication on chromosomal pool of Cdc2 
also activates HR is currently unknown. In human cells, the 
Mre11 subunit of the MRN (Mre11-Rad50-Nbs1) complex 
recruits CDK2-cyclin A to broken chromosomes to promote 
the formation of a complex between BRCA1 and the 
endonuclease CtIPCtp1, Sae2 (12,13). This BRCA1-CtIP 
complex stimulates end resection and HR. Such a spatial 
separation would allow the DNA damage checkpoint to 
stop progression into mitosis by targeting CDK at the 
centrosome (14) while leaving the chromosomal CDK pool 
active to promote DNA repair. 
A DDR  protein  which exhibits an oscillating change in 
its activity throughout the cell cycle is the BRCT  and 
tu- dor domain  protein  53BP1Crb2,Rad9 . In G1, human  
53BP1 recruits  Rif1  to  broken  DNA  to  block  end  
resection,  a step which is antagonized in S/G2 by 
BRCA1  in associ- ation  with  CtIPCtp1,Sae2  (13,9,15). 
After  the  G1/S  transi-
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tion, 53BP1 turns into an activator  to promote  the associa- 
tion between the checkpoint kinases ATM Tel1 and Chk2Cds1 

(16). This activator  role is later switched off by Polo-like ki- 
nase when cells enter mitosis (17). Despite this cyclic regu- 
lation,  the relationship between human  53BP1 and CDKs 
is only poorly  understood (17). At the mechanistic  level, 
much more is known  about  the CDK1-dependent regula- 
tion of the 53BP1 paralog, Crb2, in fission yeast (Schizosac- 
charomyces pombe). Cdc2 phosphorylates the N-terminus 
of Crb2 at threonine-215  in mitosis which triggers the for- 
mation of a complex between Crb2 and the BRCT domain 
protein Rad4Cut5,Dpb11,TopBP1 on the chromatin (18,19). The 
cellular  activities  of the  mitotic  Crb2-Rad4 complex  are 
not known and are not related to the recruitment of Crb2 
to  a broken  chromosome. The latter  process  depends  on 
the association  of Crb2 with phosphorylated histone H2A 
through its C-terminal BRCT domains and with K-20 
methylated histone H4 through its Tudor domains (20). The 
mitotic T215 phosphorylation primes, however, the Crb2- 
Rad4 complex for its rearrangement in G2. Once Cdc2 ac- 
tivity has increased again at the start of G2, Rad4 recruits 
the kinase to the complex where it modifies a non-canonical 
Cdc2 site at T187. This enables Crb2 to bind to Chk1, and 
Rad4  to  associate  with  the  Rad9-Rad1-Hus1 checkpoint 
clamp (21). 

Since most studies concerning  the DNA  repair  roles of 
CDKs were conducted with inhibitors or proteins lacking a 
CDK  phosphorylation site (22), we took advantage  of the 
hyperactive  cdc2.1w allele in S. pombe to investigate  how 
the untimely activation of CDK1Cdc2 might affect the DDR. 
Like most wee mutations (‘wee’ cells are short), the cdc2.1w 
(wee2–1) mutant  enters  mitosis  prematurely (23,24). The 
Cdc2.1w kinase carries a glycine-to-aspartate (G146D) re- 
placement in the vicinity of its ATP binding site which ren- 
ders it insensitive to the inhibition  by Wee1 kinase (25). Al- 
though  cdc2.1w and wee1 deletion cells share the same cell 
cycle phenotype,  only ∆wee1 cells are known  to be sensi- 
tive to the DNA replication inhibitor hydroxyurea, UV light 
and ionizing radiation (26,27). 

We report  here  that  elevated  Cdc2  activity  renders  S. 
pombe cells specifically sensitive to the topoisomerase 1 poi- 
son camptothecin (CPT), an anti-cancer drug which breaks 
DNA  replication  forks. While wild-type cells delay mitosis 
only briefly in G2 when replication  forks collapse by acti- 
vating  the Rad3ATR -Crb253BP1 -Chk1 checkpoint  pathway, 
cdc2.1w cells enter  a prolonged  G2  arrest  independently 
of Chk1. Our data  suggest that  hyperactive Cdc2.1w traps 
Crb2 in its G1 mode by blocking Srs2 DNA  helicase and 
Casein Kinase 1 (Hhp1). As this correlates with an increase 
in NHEJ  and a decrease in interchromosomal recombina- 
tion, the repair of broken replication  forks may be delayed 
leading to the aberrant activation  of Cds1 and an extended 
G2 arrest. 
MATERIAL AND METHODS  

Strains 
 

The  following  S.pombe  strains  were  used  in  this  study: 
wild-type  804 (h- ade6-M210  leu1–32 ura4-D18),  ∆chk1 
(h-  ade6-M210  chk1::ura4+  leu1–32 ura4-D18),  cdc2.1w 
(h- ade6-M210  leu1–32 ura4-D18 cdc2.1w), cdc25.22 (h- 

cdc25.22 ade6-M210 leu1–32 ura4-D18), ∆hhp1 (h- ade6- 
M210 hhp1::hphMX6 leu1–32 ura4-D18), ∆wee1 (h- ade6- 
M210 wee1::ura4+ leu1–32 ura4-D18), Hhp1-HA3 (h- ade6- 
M210 leu1–32 ura-D18 hhp1::hhp1-HA3-kanMX4),  Ku70- 
GFP-HA3  (h90 ade6-M210 leu1–32 lys1–131 ku70::ku70- 
GFPHA3-kanMX4),  Ku80-HA3   (h90  ade6-M210   leu1– 
32 ura-D18 ku80::ku80-HA3-ura4+), Rad16-GFP-HA3 
(h90 ade6–216 leu1–32 lys1–131  ura4-D18  rad16::rad16- 
GFP-HA3-kanMX4),  Srs2-Myc13    (h-  ade6–216  leu1–32 
ura-D18 srs2::srs2-HA3-kanMX4), Cdc13-HA3  (h- ade6– 
216  leu1–32  ura-D18  cdc13::cdc13-HA3-ura4+),   Chk1- 
HA3    (28),  Myc13 -Rqh1  (2),  Mus81-Myc13    (29),  Hhp1- 
GFP  (hhp1-GFP-kanMX4 ade6–216 leu1–32 ura4-D18) 
(30).  To  construct   multiple  deletion  strains,  the  follow- 
ing gene deletions were employed: ∆cds1 (ade6-M210 
cds1::ura4+ ura4-D18), ∆chk1 (ade6-M210 chk1::kanMX4 
leu1–32 ura4-D18), ∆srs2 (ade6-M210 srs2::kanMX4  leu1– 
32  ura4-D18),  ∆rad3  (ade6-M210   rad3::ade6+  leu1–32 
ura4-D18), ∆crb2 (ade6-M210  crb2::ura4+ leu1–32 ura4- 
D18). The crb2-T215 mutant  is described in (18). 
 
Biochemical techniques 
 

Isoelectric focusing, native protein  extracts  and total  pro- 
tein extracts are described in (31) and size fractionation is 
documented  in (32). 
 
Cell synchronisation and DNA repair assays 
 

The preparation of lactose gradients  has been reported  in 
(31) and  the inter-sister  recombination assay is described 
in (33). The strains  used in the recombination tests were: 
wild type (h- ade6-M210 leu1–32 ura4-D18 ade6-L469- 
ura4+ -ade6-M375),  ∆srs2  (h-  ade6-M210  srs2::kanMX4 
leu1–32 ura4-D18  ade6-L469-ura4+ -ade6-M375),  cdc2.1w 
(cdc2.1w ade6-M210  leu1–32 ura4-D18 ade6-L469-ura4+ - 
ade6-M375) and cdc2.1w ∆srs2 (h- cdc2.1w srs2::kanMX4 
ade6-M210    leu1–32    ura4-D18    ade6-L469-ura4+ -ade6- 
M375). 

Break-induced      recombination:     The     assay     uses 
the   S.cerevisiae  HO   (Homothallic  switching)   endonu- 
clease  to  cleave  the  Ch16 -MG  minichromosome  at  one 
defined DNA sequence as described in (34). The assay was 
performed  with the following changes: wild-type cells and 
cdc2.1w cells containing  Ch16 -MG were transformed with 
the plasmid pREP81X-HO-Leu2+ and maintained on min- 
imal medium plates (+thiamine, + uracil). Single colonies 
were grown into stationary phase either in the absence or 
presence of thiamine  (15  M thiamine  (5ug/ml))  at  30◦C 
in 10 ml of minimal  medium  (+  uracil).  Dilutions  were 
plated  on  minimal  medium  plates  (+thiamine, +uracil). 
Colonies were then replica-plated onto rich medium plates 
with  75   g/ml G418  to  determine  the  ration  of recom- 
binogenic cells. Adenine was omitted  at all stages to avoid 
false-positive colonies which can arise due to the loss of the 
mini-chromosome. 

Plasmid repair assay: cells were transformed with equal 
amounts  of either cut (SacI) or uncut pREP41-Leu2+  plas- 
mid.  Cells were  plated  on  minimal  medium  plates  with 
uracil and adenine  and leu2+  colonies were counted  after 
4–5 days at 30◦C.
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Antibodies 

 

The   following   antibodies   were  used:   anti-HA    (Santa 
Cruz:  SC7392), anti-Myc  (Santa  Cruz  SC40), anti-Cdc2 
(Abcam   AB70860),  anti-GFP  (Roche   Applied   Science 
11814460001). 

 
GFP-Trap 

Soluble protein  extracts were prepared  by breaking  5×108 

cells in lysis buffer (50 mM HEPES pH 8.0 200 mM KoAC, 
20 mM NaCl,  1 mM EDTA,  0.1% Nonidet,  20 mM beta- 
glycerol phosphate, 0.1 mM  NaF,  1:100 diluted  Melford 
protease inhibitors (IV, P2402), 1 mM DTT). Proteins fused 
to the Green  Fluorescent Protein  (GFP)  were purified by 
adding 10   l of GFP-nAb Agarose (Insight Biotechnology, 
ABP-NAB-GFPA025) to 1 ml of the lysis buffer containing 
100–200 ul soluble protein extract. 

 
RESULTS 

Elevated Cdc2 activity renders S. pombe cells sensitive to 
CPT 

 

We took advantage  of the cdc2.1w (wee2–1) mutation in fis- 
sion yeast to find out  whether  elevated CDK  levels inter- 
fere with the DDR. The Cdc2.1w kinase is hyperactive due 
to a glycine-to-aspartate (G146D)  replacement  at the en- 
trance  to its ATP binding  site (Figure 1A). This mutation 
renders  Cdc2.1w insensitive to the inhibition  by Wee1 ki- 
nase (23,24). Although  loss of Wee1 (∆wee1) advances en- 
try into mitosis like the cdc2.1w mutation, only ∆wee1 cells 
are known to be DNA damage sensitive (26,27). 

Our own survival assays performed with wild type, ∆wee1 
and cdc2.1w cells confirmed the previous findings for ∆wee1 
cells, but also revealed a yet unknown sensitivity of cdc2.1w 
cells to the topoisomerase 1 (Top1)  poison  camptothecin 
(CPT) (Figure 1B). CPT immobilises Top1 at the DNA  in 
front of advancing replication forks which break upon their 
collision with this obstacle  (35). To test whether  the CPT 
sensitivity is a consequence of elevated Cdc2 activity, we in- 
troduced  a temperature-sensitive loss-of-function  allele of 
Cdc25 phosphatase (cdc25.22) into the cdc2.1w strain. This 
mutant  allele is known to lower Cdc2 activity due to the re- 
duced removal  of the inhibitory  tyrosine-15 phosphoryla- 
tion (Figure 1A) (36). As shown in Figure 1C, the cdc2.1w 
cdc25.22 double  mutant  was CPT  resistant  strongly  indi- 
cating that  high Cdc2 activity interferes with the repair of 
broken  replication  forks.  We also  constructed a cdc2.1w 
∆wee1 double mutant  to test whether  Cdc2.1w and Wee1 
act jointly in the response to CPT.  Although  the cdc2.1w 
∆wee1 strain grew more slowly in the presence of the drug, 
the sensitivity of the double mutant  was not increased thus 
placing both kinases in the same pathway  (Supplementary 
Figure S1A). 

 
Hyperactive Cdc2 prolongs the G2/M arrest when replication 
forks break 

 

Yeast cells differ in their response to collapsed replication 
forks  from  human  cells which arrest  in S phase,  as they 
progress through S phase without a delay before briefly (20– 
40 min) arresting in G2 (37). 

We  used  lactose  gradients   to  synchronze   wild  type, 
∆chk1, cdc2.1w and cdc2.1w cdc25.22 cells in G2 to anal- 
yse their cell-cycle response to 40   M CPT. Synchronized 
cells were released into rich medium with and without  the 
drug, and samples were withdrawn  every 20 min over 6 h. 
As shown in Figure 1D, wild-type cells progressed with the 
same rate through  the first G1/S phase (first peak of sep- 
tation),  but delayed entry into the second cycle by 20 min 
in CPT medium. As expected, this checkpoint response was 
abolished upon deletion of chk1 (Figure 1E). Cells with el- 
evated Cdc2 activity showed, however, an unexpected  be- 
haviour.  They postponed entry into mitosis for 2 h before 
slowly continuing to cycle (Figure 1F). This extended G2 ar- 
rest could be caused by unrepaired replication  forks, which 
continue to send a Rad3ATR -Chk1 signal, or by the inabil- 
ity of cdc2.1w cells to restart  the cell cycle. In contrast  to 
the CPT sensitivity, a reduction  in Cdc2.1w activity by the 
introduction of the cdc25.22 allele failed to suppress the ex- 
tended arrest (Figure 1G). This intriguing observation im- 
plies that the CPT sensitivity and the prolonged  G2/M ar- 
rest are two distinct manifestations of the cdc2.1w mutation. 
A possible explanation for the inability of Cdc25.22 to cor- 
rect the cell-cycle defect lies within mitosis. Although  the 
point  mutation lowers the phosphatase activity during  in- 
terphase,  this effect may be neutralised  by the 10-fold in- 
crease in Cdc25 activity in mitosis (4). If this were to be the 
case, Cdc2.1w may trigger the cell-cycle defect while cells 
progress  through  mitosis,  whereas  the  hyperactive  kinase 
may affect the repair of collapsed forks in G2. 
 
 
The G2 arrest in cdc2.1w cells is independent of Chk1 
 

Intrigued  by  this  finding,  we asked  whether  hyperactive 
Cdc2 would also impose a G2/M arrest in ∆chk1 cells given 
the importance of the Rad3ATR -Crb253BP1 -Chk1 signalling 
pathway in the presence of CPT (38). Rather  unexpectedly, 
synchronized  cdc2.1w ∆chk1 cells showed  a similarly ex- 
tended  G2  arrest  in CPT  medium  as the  cdc2.1w single 
mutant  (Figure 2C). This shows that hyperactive Cdc2 by- 
passes Chk1 to block entry into mitosis when replication 
forks break. Since Rad3 kinase signals either through  Chk1 
or Cds1Chk2  (39), we also tested a cdc2.1w ∆cds1 double mu- 
tant. Elevated Cdc2 activity did also impose a G2 arrest in 
the absence of Cds1 but this arrest was ∼1 h shorter  com- 
pared to the cdc2.1w ∆chk1 mutant  (Figure 2D). The abil- 
ity of the cdc2.1w ∆cds1 mutant  to arrest and the observa- 
tion that Chk1 is not required in cdc2.1w cells (Figure 2C) 
could be explained in two ways. Either a third unknown ki- 
nase is involved, or Chk1 is not important in cdc2.1w cells 
as long as Cds1 is intact. To distinguish between these possi- 
bilities, we measured the cell-cycle arrest of a ∆chk1 ∆cds1 
cdc2.1w triple mutant in CPT medium. Interestingly, loss of 
both kinases completely abolished the G2/M arrest (Figure 
2E) showing that Cds1 acts first in cdc2.1w cells when forks 
break rendering Chk1 redundant. This is an intriguing ob- 
servation since Chk1 is normally the key kinase in the pres- 
ence of CPT (38).
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Figure 1. Cells with hyperactive  Cdc2.1w kinase are CPT sensitive and enter an extended  cell-cycle arrest.  (A) The G146D  mutation in the S. pombe 
Cdc2.1w kinase and the highly conserved Y15 phosphorylation site have been mapped  onto the structure  of the closely related human  CDK2-cyclin  A 
complex (PDB ID: 1FIN) using the program  Polyview 3D. (B) Drug sensitivity of cdc2.1w cells. Serial dilutions (10-fold; starting with 107 cells/ml) of the 
listed strains were spotted onto YEA plates containing the indicated drugs. The plates were incubated  at 30◦C for 3 days. One YEA plate was incubated  at 
37◦C. (C) Introduction of the cdc25.22 allele into cdc2.1w cells suppresses the CPT sensitivity. (D–G) Hyperactive  Cdc2.1w causes an extended cell-cycle 
arrest in the presence of CPT which is not suppressed by the cdc25.22 allele. The indicated strains were synchronized by lactose gradient centrifugation in 
early G2 and released into YEA medium with or without  40   M CPT at 30◦C. 40   l aliquots  were withdrawn  in 20 min intervals and added to 300   l 
methanol.  Cells were stained with hoechst (1:1000) and calcofluor (1:100) (calcoflour 1 mg/ml in 50 mM sodium citrate, 100 mM sodium phosphate pH 
6.0; hoechst 10 mg/ml in water) prior to scoring under a fluorescence microscope. Open symbols: no CPT, closed symbols: 40   M CPT.
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Figure 2. The extended cell-cycle arrest of cdc2.1w cells is independent  of Chk1 but requires Crb2 and its Cdc2 phosphorylation site T215. (A–E, J) Crb2, 
its phosphorylation site T215 and Cds1 are required for the extended arrest. The indicated strains were synchronized in G2 and released into YEA medium 
with or without  40   M CPT at 30◦C. Open symbols: no CPT, closed symbols: 40   M CPT. (F) CPT (40   M) was added to asynchronous cultures of the 
indicated strains in YEA medium at 30◦C and the septation  index was analysed over 5 h. (G) Loss of crb2, but not deletion of chk1 prevents cell elongation 
in the presence of CPT. Cells harvested  at the start  of the experiment  (t = 0 h) and after 4 h (t = 4 h) were inspected under a fluorescence microscope 
after staining with hoechst (DNA) and calcofluor (septum). (H) Cell survival was analysed by incubating  5 × 104 cells/ml of the indicated strains for 8 h 
in the presence of 40   M CPT in YEA medium at 30◦C. Samples were withdrawn  at the indicated  time points, plated on YEA plates and incubated  for 
3 days to analyse viability by colony formation. (I) Crb2 is required  for the phosphorylation of Chk1 in cdc2.1w cells. Chk1-HA  cells (WT), Chk1-HA 
cdc2.1w and Chk1-HA  cdc2.1w ∆crb2 cells were left untreated or were incubated  for 4 h with 40   M CPT in YEA medium at 30◦C. Total protein extracts 
were separated  on a 10% SDS PAGE  and the Chk1 protein  was visualized with an anti-HA  antibody  after western blot. The arrow highlights the slower 
migrating phospho-band of Chk1. The low levels of phosphorylated Chk1 in undamaged cdc2.1w cells as well as the DNA damage induced modification 
are dependent on Crb2.
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The G2 arrest in cdc2.1w cells requires the CDK phosphory- 
lation site T215 in Crb2 

 

Although cdc2.1w cells bypass Chk1, we still wanted to test 
the requirement of the Chk1-adaptor protein Crb253BP1,Rad9 

given that  Cdc2 phosphorylates Crb2  at  T215 in mitosis 
(18). Deletion of crb2 in cdc2.1w cells resulted in very short 
cells which were difficult to synchronise (Figure 2G). To cir- 
cumvent  this problem,  we added  40   M CPT  directly to 
asynchronous cultures of wild type, cdc2.1w, ∆chk1 cdc2.1w 
and ∆crb2 cdc2.1w cells and followed the septation  index 
over 5 h. As shown  in Figure  2F,  the septation  index of 
cdc2.1w and  ∆chk1 cdc2.1w cells dropped  after  the  fi rst 
hour to 2% and started  to rise again after 4 h. This decline 
in dividing cells is consistent  with an extended  G2/M ar- 
rest. We also took samples at the start of the experiment (t 
= 0) and after 4 h to examine cells under  the microscope. 
Fission yeast cells which stop in G2 continue  to grow and 
become elongated  (27). While cdc2.1w and cdc2.1w ∆chk1 
cells clearly elongated in CPT medium, cdc2.1w ∆crb2 cells 
maintained their short cell size (Figure 2G). Consistent with 
the absence of cell elongation,  the septation  index of this 
double  mutant  failed to drop  (Figure  2F). These findings 
show that Crb2 is required for the arrest in cdc2.1w cells de- 
spite the independence on Chk1. Since cdc2.1w ∆crb2 and 
cdc2.1w ∆chk1 cells lost their viability to a similar extent 
in the presence of CPT (Figure 2H), the ability to postpone 
mitosis is not linked with enhanced cell survival. 

To identify Crb2 but not Chk1 as a component of the ex- 
tended G2 arrest in cdc2.1w cells was a surprise especially 
since our earlier observations implicated Cds1 kinase which 
is normally  activated  by Mrc1 and not by Crb2 (40). The 
requirement  for Crb2 left us, however, with a conundrum 
since we and  others  have found  that  Chk1 is phosphory- 
lated in undamaged cells with hyperactive Cdc2 as well as in 
the presence of CPT (Figure 2I) (41,31). Consistent with the 
role of Crb2 as a Chk1 adaptor, the band shift caused by the 
phosphorylation of Chk1 at S345 in response to CPT was 
abolished  in cdc2.1w ∆crb2 chk1-HA  cells (Figure 2I). An 
explanation of why Chk1 is modified in a Crb2-dependent 
manner in cdc2.1w cells in the presence of DNA damage de- 
spite its unimportance for the mitotic arrest could be pro- 
vided by the two independent modes of Crb2 recruitment to 
DNA.  Phosphorylation of Crb2 at T215 by Cdc2 in mito- 
sis directs the protein to undamaged DNA (18), whereas its 
T215-independent interactions  with methylated  and phos- 
phorylated histones  direct Crb2 to damaged  DNA  in G2 
(20). Hence, hyperactive Cdc2.1w may only affect the T215 
phosphorylated pool  of Crb2,  but  not  the DNA  damage 
activated pool. Consistent  with this notion, replacement of 
T215 by an alanine residue (T215A) prevented crb2-T215A 
cdc2.1w cells from arresting  the cell cycle in CPT medium 
(Figure 2J). This important finding suggests that the mitotic 
modification  of Crb2-T215 by Cdc2 may interfere with the 
activation  of Chk1 when replication  forks break in cdc2.1w 
cells. 

 
Elevated Cdc2 activity locks cells in a G1-like DNA repair 
state 

 

Given the importance of Cdc2Cdc28  activity for the recom- 
binogenic repair of broken chromosomes in S.cerevisiae (1), 

we wanted  to  test  whether  elevated  recombination levels 
interfere  with the repair  of collapsed  replication  forks  in 
cdc2.1w cells. To test this idea, we measured break-induced 
HR  by using  a  genetic  system  which  allows  for  the  ge- 
netic exchange  between  chromosome  III  and  the homol- 
ogous  mini-chromosome Ch16 -MG  upon  its cleavage  by 
HO  endonuclease  (Figure  3A) (34). Prior  to  HO  expres- 
sion from the inducible nmt81 promotor (pREP81X-HO), 
cells containing  Ch16 -MG grow in the absence of adenine 
(ade6+ ) and in the presence of the antibiotic G418 (G418R ). 
Following  HO induction,  the cleavage of Ch16 -MG  at its 
unique HO site within the engineered rad21 gene will trigger 
DNA  repair.  While  homologous  recombination between 
the two rad21 genes will result in the loss of the G418 re- 
sistance cassette due to DNA end resection (ade6+  G418S ), 
NHEJ  of the HO break will retain the antibiotic  resistance 
(ade6+  G418R ). Approximately 30%–40% of wild-type cells 
grown in minimal medium without  thiamine  (repressor  of 
the  nmt81 promotor) underwent  recombination, whereas 
only  ∼10%  were recombinogenic  in the  presence  of  the 
repressor  (Figure  3B). The latter  is due to  the  leaky na- 
ture  of the  nmt81 promotor. Unexpectedly,  less than  2% 
of cdc2.1w cells underwent  recombination in thiamine-free 
medium (Figure 3B). This intriguing  finding suggests that 
elevated Cdc2.1w activity favours NHEJ  over interchromo- 
somal recombination as previously  reported  for S. pombe 
cells arrested  in G1 (3). While this observation contradicts 
the importance of Cdc2Cdc28   activity for DNA  end resec- 
tion as observed in S.cerevisiae (1), it is consistent with a re- 
cent report showing that an aberrant increase in Cdc2 activ- 
ity blocks interchromosomal recombination in human cells 
(42). 

Since  this  finding  suggests  an  increase  in  NHEJ   in 
cdc2.1w cells, we measured  NHEJ  using a plasmid  repair 
assay (3). The plasmid pREP41 was linearized at its unique 
SacI restriction  site (Figure 3C) and equal amounts  of cut 
and  uncut  plasmid  were transformed into  asynchronous 
wild type, cdc2.1w and NHEJ-deficient ∆ku70 cells. While 
less than 20% of wild type cells were able to repair the plas- 
mid, more than 90% of cdc2.1w cells were proficient in this 
assay (Figure 3D). As G1 cells utilize NHEJ  over HR (3), 
we analysed  the DNA  content  of asynchronous wild type 
and cdc2.1w cultures grown in rich and minimal medium us- 
ing flow cytometry (43). Although G2 is ∼20 min shorter in 
cdc2.1w cells than in wild type cells (Figure 1F, Supplemen- 
tary Figure S1B–E), we did not detect an increase in G1 cells 
in cdc2.1w cultures  independently of the growth  medium 
(Figure 3E). Taken together, these experiments support  the 
conclusion  that  elevated Cdc2 activity locks S.pombe cells 
in a G1-like DNA  repair state which may compromise  the 
recovery of collapsed replication  forks. 
 

 
Cdc2 associates with Srs2 DNA helicase, Hhp1 kinase, Chk1 
kinase and the Ku70-Ku80 DNA binding complex 
 

To find out how Cdc2.1w affects Crb2 and the DNA repair 
status  of cells, we performed  a small-scale immunoprecip- 
itation  screen to identify DDR  proteins  which bind to the 
kinase. Soluble extracts prepared  from undamaged strains 
expressing affinity-tagged  versions of Srs2 DNA  helicase, 
Rqh1BLM  DNA  helicase, Ku70,  Ku80,  Mus81 endonucle-
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Figure 3. Elevated Cdc2 activity locks cells in a G1-like DNA  repair  mode. (A) Principle of the Ch16 -MG Assay. (B) Wild-type cells and cdc2.1w cells 
containing  the mini-chromosome Ch16 -MG were grown in the absence of the HO endonuclease  (No HO, pREP41  plasmid) or the presence of the HO 
enzyme either with (HO Repressed) or without  thiamine (HO Induced).  The averages of ade6+ G418S colonies from three independent experiments are 
shown. (C) Principle of the plasmid repair assay. (D) The average ratios of tranformants for the linearized vector normalized  against the uncut plasmid 
from three independent experiments  are shown. (E) The DNA  content  was measured  using flow cytometry  from asynchronous wild type and cdc2.1w 
cultures grown in rich medium or in minimal medium (EMM).  Wild-type cells were arrested  at the G1/S boundary with 12 mM HU for 4 h to have an 
internal standard for a 1C DNA content (WT HU). To exclude the presence of genetic alterations in the cdc2.1w strain, the strain was back-crossed against 
wild-type strains and the analysis was repeated (backcross).
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Figure 4. Cdc2 associates  with Srs2, Ku70,  Ku80,  Hhp1  and  Chk1.  (A) 
Native  protein  extracts  (T) (150    l) prepared  from  untreated cells were 
incubated  with  5   l of an  unrelated  IgG  antibody  or  5   l of an  anti- 
Cdc2  antibody  over  night.  Protein-antibody complexes  were harvested 
from the supernatant by the addition  of 30    l protein  A/G beads (Cal- 
biochem) and analysed using an affinity tag-specific antibody  (Srs2-Myc, 
Myc-Rqh1,  Ku70-GFP-HA, Ku80-HA,  Mus81-Myc,  Rad16-GFP-HA, 
Chk1-HA,  Hhp1-HA). (B) Size fractionation of the affinity tagged strains 
on a Superdex-200 column. (Total = native protein extract). The fractions 
obtained  from the Cdc13-HA extract were also probed with an anti-Cdc2 
antibody. 

 
ase, Rad16XPF , Chk1 kinase or Casein kinase 1 (Hhp1) were 
incubated with an anti-Cdc2 antibody  and an unrelated im- 
munoglobulin G (IgG) antibody  and then precipitated  with 
protein A/G beads. As shown in Figure 4A, small amounts 
of Ku70-Ku80,  Srs2, Chk1  and  Hhp1  were pulled  down 
with the anti-Cdc2  antibody  identifying  these proteins  as 
potential  binding  partners. Casein Kinase  1 was included 
in this experiment because we noted a strong genetic inter- 
action between a loss-of-function wee1 mutation (wee1–50) 
and the deletion of hhp1 in an independent experiment (Fig- 
ure 6A). 

Size fractionation of soluble extracts obtained from these 
strains revealed two peaks of Cdc2 and cyclin B (Cdc13) at 
600 kDa and 250 kDa, respectively (Figure 4B). All poten- 
tial Cdc2 binding partners  coeluted with Cdc2 in the higher 
molecular  weight range  of 600 kDa  suggesting that  they 
form larger protein complexes. Interestingly, monomeric 
protein  was only detected for Ku70 and Hhp1, whereas all 
other  proteins  eluted  with an apparent molecular  weight 
well above their expected sizes. 

For the rest of the project, we focused on Srs2 and Hhp1 
since deletion of either gene was epistatic with the cdc2.1w 
mutation. The biology  of the interaction between Ku70– 
Ku80 and Cdc2 will be reported  somewhere else. 

 
 

Loss of Srs2 DNA helicase prolongs the CPT-induced G2 ar- 
rest in a crb2-T215A dependent manner 

 

Srs2 is a multifunctional DNA helicase which helps to join 
DNA  ends with microhomologies during NHEJ  (44), pre- 
vents  unwanted   HR  by  dismantling  Rad51-ssDNA fila- 
ments (45), promotes  HR  by resolving D-loop  structures 
during strand  invasion (46) and binds to different replica- 
tion structures  in vitro (47). These opposing  activities are 

regulated  by CDK1  in S.cerevisiae which phosphorylates 
Srs2 at multiple sites to stimulate HR in S/G2 (46). 

Consistent with the association of Cdc2 with Srs2 (Figure 
4A), we found an epistatic relationship between a srs2 dele- 
tion and the cdc2.1w allele for the survival in the presence 
of CPT (Figure 5A). Since loss of srs2 increases the spon- 
taneous  exchange between sister chromatids (48), we mea- 
sured inter-sister recombination rates by employing an as- 
say which monitors the restoration of adenine independence 
upon the recombination between two tandem ade6-negative 
heteroalleles  which  are  separated   by  a  functional   ura4+ 

marker (ade6-L469-ura4+ -ade6-M375) (33). The ura4+ gene 
enabled us to distinguish ade6+ recombinants that had lost 
(deletion type) or retained  (conversion  type) the interven- 
ing DNA  between the ade6 repeats.  Deletion  of the ura4+ 

marker  is indicative  of recombination at  collapsed  forks 
(49), whereas  spontaneous recombination between  sister 
chromatids in G2 retains the intervening sequence (conver- 
sion type). As shown in Figure 5B, wild type and cdc2.1w 
cells both suffered from a 5-fold increase in gene deletions 
in the presence of 10   M CPT (WT: no drug: 0.8 × 10−4 ; 
CPT: 4.3 × 10−4 ; cdc2.1w: no drug: 0.8 × 10−4 ; CPT: 3.7 
× 10−4 ). This finding confirms the recombinogenic  nature 
of collapsed forks, but also shows that uncontrolled genetic 
exchange at  these structures  is not  the cause of death  in 
cdc2.1w cells. Although  recombination at broken  forks  is 
normal in cdc2.1w cells, the spontaneous exchange between 
sister chromatids in undamaged cells was 3-fold higher than 
in wild-type cells (WT: 1.3 × 10−4 ; cdc2.1w: 3.6 × 10−4 ) 
(Figure  5B). Since such  unwanted  recombination is pre- 
vented by Srs2 (48), we measured  the conversion  rates  in 
undamaged wild type, cdc2.1w, ∆srs2 and  ∆srs2 cdc2.1w 
cells. Cells without  Srs2 had a 6-fold higher rate compared 
to wild type, which was not further  increased in the ∆srs2 
cdc2.1w double  mutant  (WT: 0.7 × 10−4 ; cdc2.1w: 2.7 × 
10−4 ; ∆srs2: 4.5 × 10−4 ; cdc2.1w ∆srs2: 4.3 × 10−4 ) (Fig- 
ure 5C). In summary,  these results imply that  hyperactive 
Cdc2 has two effects on Srs2. Its anti-recombination activ- 
ity is down-regulated in undamaged cells leading to elevated 
rates of spontaneous inter-sister exchange and also its DNA 
repair  function  is blocked  when replication  forks collapse 
resulting in CPT sensitivity. This close functional  relation- 
ship between Cdc2 and Srs2 implies that  the kinase mod- 
ifies Srs2. Although  S.cerevisiae Srs2 is phosphoryated by 
Cdc2Cdc28  (46), a similar modification  has not yet been re- 
ported in S. pombe. 

Given the close functional  link between Cdc2 and Srs2, 
we measured  the G2 arrest  in synchronized  ∆srs2,  ∆srs2 
∆chk1, ∆srs2 cdc2.1w and ∆srs2 crb2-T215A cells. Intrigu- 
ingly, loss of the helicase resembled the hyperactive cdc2.1w 
mutation because the extended G2 arrest of ∆srs2 cells was 
independent of Chk1 (Figure 5E) but required the phospho- 
rylation  of Crb2 at T215 (Figure 5F). One important dif- 
ference between cdc2.1w and ∆srs2 cells was, however, the 
shorter G2 arrest when forks collapsed in the absence of the 
DNA helicase. While cdc2.1w cells delayed entry into mito- 
sis for up to 2 h (Figure  1F), ∆srs2 cells delayed only for 
40–60 min (Figure 5D). 

In summary, these findings imply that Cdc2 kinase targets 
Srs2 in S.pombe and that the hyperactive kinase may switch 
Srs2 activity from the prevention of spontaneous inter-sister
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Figure 5.  Hyperactive Cdc2.1w blocks Srs2 DNA helicase and loss of srs2 arrests cell-cycle progression in a Crb2-T215 dependent manner. (A) Cdc2.1w and 
Srs2 act in the same CPT response pathway. (B) CPT induces deletion type recombination events. Wild type and cdc2.1w cells containing the recombination 
cassette (ade6-L469-ura4+ -ade6-M375) were grown in 5 ml YEA medium with or without  10   M CPT from a single colony into stationary phase. Cell 
dilutions  were plated onto minimal medium plates (100 mg/L uracil, 100 mg/L leucine, 200 mg/L guanine) to select for cells with a restored  ade6 gene 
(= recombination event). Loss of the ura4 marker (= deletion event) was determined  by replica-plating  onto minimal medium plates (100 mg/L leucine, 
200 mg/L guanine).  Open boxes = deletion events, closed boxes = conversion  events. (C) Cdc2.1w increases spontaneous gene conversion  events in a 
Srs2-dependent manner.  Strains of the indicated genotypes were grown in YEA medium without drug into stationary phase and analysed. (D–G) Loss of 
Srs2 delays cell-cycle progression in the presence of CPT independently  of Chk1, but dependent on the Cdc2 phosphorylation site Crb2-T215. Cells of the 
indicated genotypes were synchronized in G2 and released in YEA medium with or without 40   M CPT at 30◦C. Open symbols: no CPT, closed symbols: 
40   M CPT. 

recombination to the promotion of NHEJ. They also show 
that elevated Cdc2 activity has distinct effects on HR. While 
break-induced recombination between homologous  chro- 
mosomes is blocked (Figure 3B), sponatenous recombina- 
tion between sister chromatids, which are attached  by the 
cohesion complexes, is increased (Figure 5B and C). 

 
 
Casein kinase 1 (Hhp1) is aberrantly modified in cdc2.1w 
cells 

 

We became interested  in CK1 because the CPT sensitivity 
of the ∆hhp1 deletion strain was partly suppressed  by ele- 
vated Cdc2 activity (cdc2.1w or wee1–50) (Figure 6A). This 

suppression  was, however, limited to the acute exposure of 
cells to the topoisomerase 1 inhibitor  as it was not evident 
when cells were grown for several days in the presence of the 
drug. This rescue places both kinases in the same CPT re- 
sponse, a conclusion supported by their physical association 
(Figure  4A). Since Hhp1  is known  to undergo  autophos- 
phorylation (50), we employed isoelectric focusing to inves- 
tigate  the modification  pattern of the kinase in wild type 
and cdc2.1w cells treated with 40   M CPT for 4 h or left un- 
treated. Separation of soluble Hhp1-HA protein on a linear 
pH strip ranging  from pH3 to pH10 revealed two species 
of CK1 (Figure 6B). The intensity of the more acidic form 
(number 1 in Figure 6B) increased in cdc2.1w hhp1-HA cells
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Figure 6. Cdc2 targets Casein kinase 1 (Hhp1) and loss of Hhp1 delays the cell cycle independently of Chk1 but requires Cds1 and the Cdc2 phosphorylation 
site Crb2-T215. (A) Hyperactive  Cdc2.1w partly suppresses the CPT sensitivity of ∆hhp1 cells (40   M CPT in YEA medium at 30◦C). (B) Cdc2 targets 
Hhp1 kinase. Isoelectric focusing of total protein  extracts prepared  from Hhp1-HA and Hhp1-HA cdc2.1w cells either treated  with 40   M CPT at 30◦C 
for 4 h or left untreated. (C) Hhp1-GFP was purified from wild-type cells in the absence or presence of CPT (40   M, 4 h) and from untreated Hhp1-GFP 
cdc2.1w cells using the GFP-trap. Samples of the total  soluble extracts  and of the purified material  were probed  with an anti-GFP and an anti-Cdc2 
antibody. Samples of the supernatant after the pull-down were probed with the anti-GFP antibody.  (D) Hhp1 kinase acts in the same CPT response as Srs2 
and Chk1. (E–O) Loss of Hhp1 delays cell-cycle progression  in the presence of CPT independently  of Chk1, but dependent on the Cdc2 phosphorylation 
site Crb2-T215, Rad3 and Cds1. Cells of the indicated  genotypes were synchronized  in G2 and released in YEA medium with or without  40   M CPT 
30◦C. Open symbols: no CPT, closed symbols: 40   M CPT. 

 
independently of CPT. This observation, together  with the 
direct association between the two kinases (Figure 4A), im- 
plies that Cdc2 phosphorylates Hhp1. 

While Hhp1  was not  further  modified  in CPT-treated 
wild-type  cells,  several  hypermodified   species  appeared 
when cdc2.1w hhp1-HA were incubated  with the drug (Fig- 
ure 6B, panel 4). These additional modifications could arise 

from aberrant Cdc2 activity in the presence of CPT, from 
a change in autophosphorylation of Hhp1 in cdc2.1w cells 
or from a yet unknown  kinase targeting  Hhp1 under these 
conditions. 

To test whether the association  of Cdc2 with Hhp1 is af- 
fected by CPT treatment or elevated Cdc2 activity, we puri- 
fied Hhp1-GFP protein complexes from growing cells, cell
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treated for 4 h with 40   M CPT or untreated cdc2.1w Hhp1- 
GFP  cells using the novel GFP-trap. As shown in Figure 
6C, the high affinity GFP-binding protein depleted the sol- 
uble Hhp1-GFP protein from the extract. The purified pool 
of Hhp1-GFP contained  a significant amount  of Cdc2 ki- 
nase independently of CPT treatment and high Cdc2 activ- 
ity suggesting a stable interaction between the kinases. 

Informed  by the previous finding that  hyperactive  Cdc2 
down-regulates  Srs2 (Figure 5), we tested the CPT sensitiv- 
ity of ∆srs2 ∆hhp1 cells and found an epistatic relationship 
between CK1 and the helicase. We also found an epistatic 
relationship between  Chk1  and  Srs2, and  between  Chk1 
and Hhp1 (Figure 6D). Taken together,  these observations 
imply that Hhp1 and Srs2 both have to be active for Chk1 
to become stimulated  by broken replication  forks. 

 
Deletion of Casein Kinase 1 prolongs the G2 arrest in a crb2- 
T215A dependent manner 

 

To test whether Hhp1 acts in the G2 arrest of cdc2.1w cells, 
we synchronized wild type, ∆hhp1 and cdc2.1w ∆hhp1 cells 
and measured  cell-cycle progression  in the presence of 40 
 M CPT. Interestingly, deletion of hhp1 on its own was suf- 
ficient to delay entry into mitosis by ∼2 h (Figure 6F) in a 
Chk1-independent manner  (Figure 6H). In light of the as- 
sociation of Hhp1 with Cdc2 (Figure 4A) and the Cdc2.1w- 
dependent  change  in its phosphorylation pattern (Figure 
6B), it seems very likely that  hyperactive  Cdc2 alters Crb2 
activities  by blocking  Hhp1  kinase.  Consistent  with  this 
conclusion,  loss of crb2 (Figure  6L) or mutation of T215 
to alanine  (Figure  6M) abolished  the G2 arrest  of ∆hhp1 
cells in the presence of CPT. 

Since our  earlier data  on cdc2.1w strongly  suggest that 
the mitotic  Crb2-T215  modification  allows Rad3  to acti- 
vate Cds1 instead  of Chk1  (Figure  2E), we deleted  cds1, 
rad3 or cds1 and chk1 in the ∆hhp1 mutant. While loss of 
Cds1 on its own had  no effect on the arrest  (Figure  6I), 
concomitant deletion of cds1 and chk1 or deletion of rad3 
abolished  the G2 delay (Figure 6J and K). These observa- 
tions are in agreement with our previous finding that ∆cds1 
∆chk1 cdc2.1w cells fail to stop in CPT medium (Figure 2E) 
and show that Chk1 becomes only important in ∆hhp1 cells 
when Cds1 is inactivated.  In line with the epistatic relation- 
ship between Hhp1  and Srs2 (Figure  6D), loss of Srs2 in 
∆hhp1 or in ∆hhp1∆chk1 cells had no further effect on the 
arrest although  the ∆hhp1∆chk1∆srs2 triple mutant  reen- 
tered the cell cycle earlier compared to the ∆hhp1∆srs2 dou- 
ble mutant  (Figure 6N and O). 

 
DISCUSSION 

 

We report  here that  fission yeast cells with a hyperactive 
Cdc2 kinase (cdc2.1w) are specifically sensitive to the topoi- 
somerase  1 inhibitor  CPT (Figure  1B), enter a prolonged 
G2 arrest  when replication  forks break  in the presence of 
CPT (Figure 1F) and maintain  a G1-like DNA repair state 
with high levels of NHEJ  and  low levels of interchromo- 
somal recombination (Figure 3). Our genetic data strongly 
suggest that  the CPT sensitivity and  the extended  G2 ar- 
rest are two independent  manifestations of elevated Cdc2 
activity. While the introduction of a loss-of-function  muta- 
tion in Cdc25 phosphatase (cdc25.22), which is known  to 

 

 
 

 
 
Figure 7. Model.  (A) The domain  structure  of Crb2.  In the presence of 
DNA  damage,  the C-terminal  Tudor  and BRCT  domains  allow Crb2 to 
bind to methylated and phosphoryalated histones, respectively. Cdc2 phos- 
phorylates  Crb2 at threonine 215 (T215) in mitosis thereby promoting the 
association  of Crb2 with Rad4 independently  of DNA  damage. Chk1 as- 
sociates with Crb2 after the Rad3-dependent phosphorylation of T73 and 
S80 in the response to DNA lesions once Crb2 has been modified at T187 
by Cdc2 in G2. (B) Model.  In wild-type  cells, the Crb2-Rad4 complex 
changes from its M/G1 configuration  to its G2 configuration  when cells 
exit S phase. This transition is promoted by Srs2 DNA helicase and Hhp1 
(CK1) kinase, and by the G2 modification  of T187 by Cdc2. In cdc2.1w 
cells, this transition is delayed due to the inhibition  of Srs2 and Hhp1 by 
the hyperactive Cdc2.1w kinase. This locks the Crb2-Rad4 complex in its 
M/G1 mode.  The repair  of broken  replication  forks  may be delayed as 
cdc2.1w cells favour  NHEJ  over interchromosomal recombination. This 
leads to the activation  of Cds1 instead of Chk1, and an extended G2 ar- 
rest. 
 
lower Cdc2.1w activity (24), suppresses the CPT sensitivity 
(Figure 1C), it fails to restore a normal G2/M delay (Figure 
1G). This difference could be explained by the dynamics of 
Cdc2 throughout the cell cycle. In vitro kinase assays have 
shown that Cdc2 activity starts to increase half way through 
G2 in normal  fission yeast cells, but starts very early in G2 
and then rises at twice the rate in cells with hyperactive Cdc2 
kinase (51). This change in Cdc2 levels throughout the cell 
cycle could have a profound effect on Crb2 as Cdc2 targets 
the protein  at least twice in one cycle. At its activity peak 
in mitosis, Cdc2 phosphorylates Crb2 at T215 which allows 
Crb2 to bind to Rad4 (18,19). The mitotic Crb2-Rad4 com- 
plex may exist until the start  of G2 when sufficient Cdc2 
activity accumulated again to modify the complex at T187, 
a non-canonical Cdc2 site closer to the N-terminus of Crb2 
(Figure 7) (21). The phosphorylation of T187 rearranges the 
Crb2-Rad4 complex so that  Crb2 can bind to Chk1, and 
Rad4 to the Rad9-Rad1-Hus1 complex (21). This temporal 
order  of modifications  may be affected by the higher and 
faster rising levels of Cdc2 in cdc2.1w cells as they fail to 
activate Chk1 when replication  forks collapse (Figure 2C). 
Intriguingly,  cdc2.1w cells activate Cds1 kinase under these 
conditions (Figure 2D and E) which implies that the mitotic 
Crb2-Rad4 complex targets this kinase instead of Chk1. El- 
evated Cdc2 activity may either expand the mitotic pool of 
the T215 phosphorylated Crb2-Rad4 complex or it may ini- 
tiate further modifications like the phosphorylation of T187 
prematurely. As a result  of this,  the Crb2-Rad4 comple
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may become trapped  in its mitotic  state (52) thereby  pro- 
moting NHEJ  over interchromosomal recombination (Fig- 
ure 3). If replication forks were to break under these condi- 
tions, their repair may be delayed explaining the extended 
G2 arrest  (Figure  7). Interestingly,  the aberrant modifica- 
tion of the Crb2-Rad4 complex in cdc2.1w cells requires the 
inhibition of Hhp1 kinase and Srs2 DNA helicase as ∆hhp1 
and ∆srs2 mutants  both show an extended G2 arrest which 
is abolished  upon mutation of T215 (Figures 5F and 6M). 
Since Hhp1 and Srs2 associate both with Cdc2 (Figure 4), 
the hyperactive  kinase may either block or modulate  their 
activities to promote  NHEJ  and/or to expand the pool of 
T215 modified Crb2-Rad4 complexes. 

Budding  yeast  Srs2  possesses  several  functions  which 
may help to explain how a multifunctional helicase could 
regulate  Crb2.  Srs2Sc  binds  in vitro to  junctions  between 
single-  and   double-stranded  DNA   (47)  and   promotes 
NHEJ  in G1 (44). If Crb2, like human 53BP1, prevents the 
resection of DNA  ends in G1, Srs2 may terminate  this ac- 
tivity by binding to these junctions at the G1/S transition. 
In normal  cells, Srs2 may therefore  be down-regulated by 
Cdc2 until  cells initiate  DNA  replication.  This inhibition 
may well be extended beyond the start of S phase in cdc2.1w 
cells causing problems with the activation of the DNA dam- 
age checkpoint  kinases when forks break. Although  hyper- 
active Cdc2.1w clearly blocks Srs2 as indicated  by the in- 
crease in the  spontaneous inter-sister  recombination rate 
(Figure 5C), it is as yet unclear whether this is by a Cdc2- 
dependent  modification  of the helicase. The latter is, how- 
ever, supported by the physical association  between Cdc2 
and Srs2 (Figure 4A), and by similar findings in S.cerevisiae 
(46). Alternatively,  Cdc2 could regulate Srs2 indirectly via 
Hhp1  given the epistatic  relationship between  ∆srs2 and 
∆hhp1 for the CPT sensitivity (Figure 6D) and the G2 arrest 
(Figure 6O). 

Hhp1 is most closely related to human  Casein kinase 1 
(53), which performs  diverse roles in the circadian  clock, 
DNA  repair  and  wnt-  -catenin  signaling  (54). CK1  en- 
zymes are monomeric  kinases which are regulated  by au- 
tophosphorylation and require in many cases a priming ki- 
nase to recognize a substrate  (54). There are several ways 
how Hhp1  could  regulate  Crb2.  Hhp1  could  act through 
Srs2, but this is less likely since the duration of the G2 ar- 
rest is significantly longer in ∆hhp1 cells (Figure 6F) than 
in ∆srs2 cells (Figure  5D).  Alternatively,  Srs2 may asso- 
ciate with and regulate Hhp1. This idea is based on the re- 
cent discovery that human  CK1   associates with the RNA 
helicase DDX3  to control wnt-  -catenin signalling (55). A 
third possibility is that Cdc2 primes Crb2 for the phospho- 
rylation by Hhp1 and that this modification  is required for 
Srs2 to act on Crb2.  In line with this notion,  additional 
phosphorylation bands were observed once Crb2 was mod- 
ified by Cdc2 at T215 (18). Whether  this hyperphosphory- 
lation of Crb2 is dependent on CK1 is not yet clear, but the 
S.cerevisiae paralog of Crb2, Rad9, is modified by Polo-like 
kinase and Casein kinase 2 when cells reenter the cell cycle 
from a G2 arrest (56). 

In summary,  our  data  entertain  a model  (Figure  7) in 
which Cdc2 retains  the Crb2-Rad4 complex in its M/G1 
mode by blocking Srs2 DNA helicase and Hhp1 kinase un- 
til cells enter G2 phase. This would silence Chk1 until suffi- 

cient Cdc2 kinase has accumulate  at the start of G2, which 
may be a prerequisite to promote  NHEJ  in G1 in wild-type 
cells. In cdc2.1w cells, this inhibition  of Chk1 seems to con- 
tinue beyond  the start  of G2 resulting in the aberrant ac- 
tivation  of Cds1 and  a long G2 arrest  when forks  break 
in a chromatin environment that favours NHEJ  over inter- 
chromosomal recombination. Further work is, however, re- 
quired  to establish  how Cds1 is activated  in cdc2.1w cells 
and how Hhp1 and Srs2 are regulated by Cdc2 to modulate 
Crb2. 
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