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Summary of Research

In this thesis we carry out a series of investigations into the relationship between diversity
and combination methods and diversity and AdaBoost.
In our first investigation we study the relationships between nine combination methods.

Two data sets are used. We consider the overall accuracies of the combination methods,

their improvement over the single best classifier, and the correlation between the ensemble
outputs using the different combination methods.

Next we introduce ten diversity measures. Using the same two data sets, we study
the relationships between the diversity measures. Then we look at their relationship to
the combination mecthods previously studied. The ranges of the ten diversity measures
for three classifiers are derived. They are compared with the theoretical ranges and their
implications for the accuracy of the ensemble are studied.

We then proceed to investigate the diversity of classifier ensembles built using the
AdaBoost algorithm. We carry out experiments with two datasets using ten-fold cross
validation. We build 100 classifiers each time using linear classifiers, quadratic classifiers
or neural networks. We study how diversity varics as the classifier ensemble grows and
how the different types of classifier compare.

Next we consider ways of improving AdaBoost’s performance. We conduct an in-
vestigation into how modifying the size of the training sets and the complexity of the
individual classifiers alter the ensemble’s performance. We carry out experiments using
three datasets.

Lastly we consider using pareto optimality to determine which classifiers built by Ad-
aBoost to add to the ensemble. We carry out experiments with ten datasets. We compare
standard AdaBoost to AdaBoost with two versions of the Pareto-optimality method called
Pareto 5 and Pareto 10, to see whether we can reduce the ensemble size without harming

the ensemble accuracy.
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Notions, Notations and

Abbreviations

For convenience the commonly used notations and abbreviations are placed here for easy

referral.

General General notations

e O ={wy,...,wc}- The set of Class labels

¢ c¢- the number of class labels

e 1™ the feature space

e X ={Xi,...,X}- the set of feature labels

¢ n- the number of features

e x =[z1,...,Zp]%, or x € R"- the feature vector describing object x
e 7;- the class label of object x;

e Z ={z1,...,2ZN}, 2; € R"- the training data set
o z; = (X, yi))- the labelled training data

e N- the number of training examples

e D:R*" > QVx e R*s.t. D(x) € Q- a classifier

° D= TNvﬂ-the apparent accuracy of a classifier where N, is the number of correctly

classified elements of Z

e g;(x)- the discriminant function
Multiple Classifier Systems Additional notations for MCS

e D={D,,...,Dr}- a set of classifiers
e D;(x) = [di1(x),...,d;(x)]T-classifier outputs

e d;;(x)- the degree of support given by classifier D; to hypothesis that x comes

from class w;
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o D(x) = [u1(x)y. .y 1c(x)]¥- the combined output of the classifiers for object x
e 1;(x)- the combined support to the hypothesis that x comes from class w;

o D(x)- the aggregated classification decision

Combination Abbreviations Abbreviations used for different combination methods

o MAX- the maximum

o MIN- the minimum

e AV R- the average

e PRO- the product

e M AJ-the majority vote

o [NB- the naive Bayes

e BKS- the behavior-knowledge space

e WER- Wernecke’s method

o DT- decision templates

e ORA- the oracle

Diversity Abbreviations Abbreviations used when dealing with diversity

e (- the Q-statistic

e p- the correlation coeflicient

e D- the disagreement measure

¢ DF- the double-fault measure

o kw- the Kohavi-Wolpert variance

o k- the measure of interrater agreement
e Ent- the entropy measure

e §- the measure of difficulty

o GD- the generalised diversity

o UFD- the coincident failure diversity

AdaBoost notations Notations used with the AdaBoost algorithm

¢ Kmax- the number of iterations required
o k- the current iteration
o Sk- the training set for iteration k

e D- the classifier trained on iteration k
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o wy(i)- the weight for object ¢ at iteration k&
e Wi = {wi(1),...,wi(IN)}- the set of weights at iteration &
e ;- the combination weight for classifier Dy

e BEM- Bechofer, Elmaghraby and Morse’s procedure for comparing competing

pattern recognition algorithms used in [2]

e Kg- the kappa-statistic used by Margineantu and Dietterich for their s-error

diagrams [74]
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Chapter 1

Introduction

1.1 Background

Pattern recognition is concerned with the process of assigning objects to classes. Its appli-
cations are connected with the fields of mathematics, engineering, information technology

and computer science.

For each problem tackled using pattern recognition methods we have

e The set of ¢ class labels consists of all possible mutually exclusive classes denoted

Q —_— {wl,.--,wC}-

o The features of an object are characteristics that can be expressed in numerical

form, e.g. height, pressure, number of vertical strokes in an image, grey level intensity

of a pixel, etc.

o The n feature values are the particular values of the features for a specific object
denoted by the vector x = [z1,...,Z,]%, or x € R™. The feature values can be

continuous, binary or categorical in nature.

e The feature labels are the labels for each of the n features denoted X = {X1,...,Xp}.

e The feature space is the space, consisting of all possible values of our features
denoted R™.

e The training data set is a set of objects described by their feature values and is
denoted Z = {z1,...,2n}, z; € R*. The N objects are usually labelled in the c
classes so that z; = (x;,¥:i), v; € Q.
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Input Processing Output Class Assignment

Support for wy

z
, 1 . \ Class wy
: / : assigned as

it has

T Classifier Support for wj ——— maximum
: / \ : support
Tn Support for w, —

Figure 1.1: SCHEMATIC OF HOW A CLASSIFIER WORKS

1.2 Classifiers

A classifier is any mapping D which assigns a class label to an object, i.e.,
D:R"—=Q, YxeR", D(x)eEANn. (1.1)

Classifiers usually output support for each class label being the correct one for object x
and the label with the most support is assigned to x. Classifiers can be designed in dif-
ferent ways, and therefore range in their ability to accurately assign a class to an ob ject.
The choice of type of classifier can therefore have a big impact on the accuracy of the

classification. Figure 1.1 shows a schematic of how a generic classifier works.

Accuracy of Classifiers
Classification accuracy is a major characteristic of a classifier. The so called “apparent”
accuracy of classifier D is obtained by running D on the data set Z and calculating

D= — 1.2
N (1.2
where N, is the number of correctly classified elements of Z.

Example - diagnosing a patient with respiratory problems

This 13 an analogy of how, in a medical setting, a classifier can work like a doctor in
diagnosing a patient. The medical details are taken from [43]. A patient (A) presents
with respiratory problems and several measurements are taken. The appropriate mea-
surements (features), healthy person’s values and Patient A’s values are shown in the
following table.
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Features Normal Values Patient A’s
(healthy patient) values

Temperature (°C) 37 38.2
Respiratory Rate (Breaths per min) 18 25

| Blood pressure (mmHg) < -15%9- %’-

' Heart rate (beats per min) 50 to 100 110

| pH of arterial blood (AB) | 7.35 to 7.45 7.3 !
Partial pressure of oxygen in AB (Kpa) 11 to 14
Partial pressure of carbon dioxide in AB (Kpa) 4.7 to 6.0 9
Bicarbonate ion concentration (mmol/1) 22 to 26 33
Oxygen saturation of arterial haemoglobin (%) 95 to 98% 85
secretion colour clear pale green
secretion cultures (bacteria presence) none bacteria present

The choice of possible diagnoses are the class labels,

Class labels:
(? = {Emphysema, Chronic Bronchitis, Asthma, Pneumonia}

The problem 1s to diagnose the respiratory problem patient A has i.e. to assign a class
label from §} to x,. For this example “Chronic Bronchitis” is the most likely diagnosis.

We will refer to this example as an analogy for further concepts throughout the thesis.

1.3 Classifier Design

1.3.1 Bayes

When we wish to classify an object, w; we need to find the posterior probabilities for each
class, 1.e., given the object x we need to know the probability of it belonging to each class.
The posterior probabilities for each class P(w;|x) are found by using the Bayes formula

which is given by:

P(wi)p(x|wi)
Pwi|x) = 201 07 (1.3)
t 2j=1 P (wj)p(x|w;)
where P(wj), j =1,...,c are the prior probabilities for each class, and p(x|w;) are the

class-conditional probabilities.

The most natural way of classifying an object is to consider all of the posterior probabil-
ities and then to assign the class label which has the highest value of posterior probability.
When used in this way we call the posterior probabilities a set of discriminant functions

(also known as decision functions or classification functions), and denote them as, g;, where

gi ' R" = R. (1.4)
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Discriminant functions are not unique, in fact any set of functions, f(gi(x)), where f is
monotonically increasing gives a practically equivalent set of discriminant functions, i.e.,
they will make the same classification decisions. For example, if we consider the Bayes

formula, note that the denominator will be identical regardless of the class w;, and so we

can ignore it, therefore getting another set of Bayes-optimal discriminant functions:

gi(x) = P(w;)p(x|w;) (1.5)

or we can take logarithms and obtain:

gi(x) = log(P(w;)) + log(p(x|w;)) (1.6)

The discriminant functions we use depend on the problem at hand and the information
available.

1.3.2 Parametric Classifiers

Parametric classifiers are based on estimating the parameters of the class-conditional prob-
ability density functions (p.d.f.’s), p(x|w;), from which we obtain posterior probabilities
as shown in equation (1.3) [53].

Since we usually do not have the required information, we can use estimates of these
posterior probabilities as a set of discriminant functions to classify object x.

We can estimate the prior probabilities P(w;) as the proportion of elements from the
training set, Z, which come from class w;. The parametric classifiers assume a hypothetical
form of the class-conditional p.d.f’s, p(x|w;), and it is only the parameters of the p.d.f’s
which must be estimated. If we assume that the classes are normally distributed, such

that p(x|w;) ~ N(m;, S;) where m; € R" is the mean vector for class w; and S; is the

covariance matrix then

1 1 -
p(xlwi) —— _EW_TTTS'—- exp {—--é-(x - m,f)TS,; l(x — m;)} (1.7)
Substituting this into 1.6 we get,

9i(x) = log(P(w;)) +103(P(xlwi))1 1

n -~
= log(P(w)) — 3 log(2m) = 5 log(Sil) — 5 (x ~ my)" 7' (x —m;)  (L.8)
The parameters m; and S; are estimated from the training set Z as:
1
In; = -I-v— z ZJ‘ (1'9)
: Z4,Y; =Wy

S; = ———— (z; — m;)(z5 — m;)7. (1.10)
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1.3.3 Linear Discriminant Classifiers

For linear discriminant classifiers we take a linear form of equation (1.8). We assume that
the p.d.f is normally distributed with the classes having different means but the same
covariance matrix, p(x|w;) ~ N(m;, S). By substituting S for S; and discarding all terms

that are not dependent on w; in equation (1.8) we obtain:

1 -
i(x) = log(P(wy)) - (x = my)TS™ (x — my)
= log(P(w;)) — % xT571x + mF5~'m; — TS~ m,; - m7$~!x]
1
= log(P(w;)) — -é-m?S"lm,- -+ %xTS"lm,: -+ -;-m;rS'lx
1
= log(P(w;)) — Em;-rS"lm,- T m?S"'lx,
which can be written as:
gi(x) = wip+W/x (1.11)

where w;g € ® and W; € R™ are coefficients.

1.3.4 Quadratic Discriminant Classifiers

Quadratic discriminant classifiers are obtained by discarding all terms independent of w;

from equation (1.8).

1
gi(x) = log(P(w;)) — = log(|S;]) —- ! [xTS'lx + m?S"lmi - x7 8 m; — szS"lx]

2 2
1 1
= log(P(ws)) ~ 5 log((Sil) = 3mT S~ m; + mT' 5™\ ~ LT 1x,
which can be written as:
g; (x) = W0+ W,Tx —+ xTW,-x (1.12)

where w;p € R and W; € R” are coefficients and W; is an n X n matrix.
The parameters for the linear and quadratic classifiers are the m; and S; which are

estimated as shown in equations(1.9) and (1.10) respectively.

1.3.5 Neural Networks

Neural networks can be thought of as a trained black boxr where the features of an object
are given as input. They are then processed in some way resulting in a set of ¢ discriminant

functions given as output [53]. The idea behind neural networks was to model the function
of the human brain by using the biological structures used in the brain. This initial idea
has not progressed much further than a simplified modelling of a single neuron. However,

more mathematical neural networks with less emphasis on the biological structures are a

widely used tool in classification.
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Inputs Processing Output
Uo K
u,w e Ry W ? v €R
y
Ug n=Li=zoWiti v=2%(n)

Figure 1.2: SCHEMATIC OF AN ARTIFICIAL NEURON {53]

Modelled neurons act as the processing unit in neural networks, they are often called
nodes to prevent confusion with their biological versions. A neuron in the brain receives
electrical impulses as its input and if the impulses reach a certain activation level the neu-
ron fires and sends impulses onwards as outputs. Nodes take the input values and multi-

plies them by a vector of synaptic weights, these values are then combined and submitted
to an activation function. The value obtained from the activation function is then given
as the output. Figure 1.2 illustrates how a node operates [53]. u = [ug,...,us]’ € Rt
is the input vector given to the node, w = [wy,...,w,]T € RI*! is the vector of synaptic
weights, 1 : R — R is the activation function and v = 9¥(n), 7 =X/ ,w;u; is the output
from the node. There are various choices of activation function available, some of the more

common ones are [53):

e The threshold function

1, ifn>0,
vl = { 0, otheZwise. (1.13)
e The sigmoid function
b = e (114
e The identity function
Y(n) = 1. (1.15)

Of these the sigmoid function is most widely used as it can approximate linear and thresh-
old functions and is easily differentiable which is necessary for neural network training
algorithms [53].

In a neural network we can have many nodes where the output from the activation
functions of some nodes act as inputs to other nodes. We may have several layers of nodes;
the input layer, several hidden layers and an output layer. A structure of this type is the

multi-layer perceptron (MLP). The input layer nodes take the feature values as input and

the output layer nodes produce the set of ¢ discriminant functions as output. MLP 1s
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feed-forward in nature, because the hidden layers will take values from previous nodes as
input and output values to the next set of nodes with no feedback allowed. Figure 1.3
illustrates a feed-forward neural network of this type [53]. The information can only pass

up the neural network as it is a feed-forward neural network. The box surrounds the black

boz aspect of the classifier. This is one form of classifier which may be used in the place

of the classifier indicated in Figure 1.1.

Output

Discriminant
Functions

g1(x) g2(x) ... ge(x)

Qutput Layer

2nd Hidden Layer

1st Hidden Layer

il . S

Input Layer

Input

T Z2 Tn Features

Figure 1.3: A SCHEMATIC OF A FEED-FORWARD NEURAL NETWORK WITH
TWO HIDDEN LAYERS [53]

1.3.6 Tree Classifiers

Similarly to neural networks, trees consist of a series of nodes. Each node will consider
a single feature from the input data. A single root node will be connected by branches

to a set of nodes. These nodes are linked to more nodes in the next layer further down

the tree until a terminal node is reached which is often called a leaf node (22]. The most
commonly used decision tree classifiers are binary in nature, using a single feature at each

node. This results in decision boundaries which are parallel to the feature axes [45]. Each

node considers whether the feature is lesser or greater than a critical value. If it is less
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we may follow the left branch, for example, and if it is greater we may follow the right
branch. We follow the route down the branches until we reach a leaf where we make
a classification. Each leaf is normally assigned a specific class label, determined by the

training examples {46]. The tree is constructed with continual subdividing until all of the
training examples in a node are of the same class and that is then determined to be a
leaf node. The class label of the training examples in the leaf node is then assigned as
the class label of the leaf. Figure 1.4 shows how a decision tree classifier works. Decision
stumps are the simplest type of decision tree as they are classification trees with only one
split at the root node which partitions the data into two disjoint classification regions [19].
Obviously the critical value is chosen to most separate the classes. Since stumps are so
simple it is often possible to use an exhaustive search method to identify the best critical

value, which would not be possible with more complex classifiers.

Root Node
(f 1y 7)
. Training Data
< >

(f 21 5) (.f 3y ‘2)
@ @ 4
< > < > 1
Leaf Leaf ( f3,1) Leaf 0
® ( @ 1
<1y 23y 27 < > 26y 210 9

(f 2) 5) Leat
( © )
1

< > 24, 29
Leaf Leaf 2
(W (w3 :

<8 <5

where (f;,m) denotes using critical value m for feature fi,
O denotes the leaf nodes, w; the class assigned by that leaf

and 2; beneath a node denotes which leaf object z; ends up in.

Figure 1.4: A SCHEMATIC OF A DECISION TREE CLASSIFIER

The difficulty in constructing a decision tree is to decide which is the ‘best’ feature
to use at each node and which is the ‘best’ critical value for that particular feature [22].

Obviously the example tree shown in Figure 1.4 is by no means optimal, and indeed binary

trees are intrinsically suboptimal for most applications [45]. However, they make up for
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this disadvantage in two major ways:
1. Trees are considerably faster than other classifiers.

2. We can interpret the decision rules used to classify an object in terms of the indi-

vidual features.

These advantages make them a popular choice for users, as does the public availability
of several decision tree classification systems such as Breiman et al.’s CART! [13] and

Quinlan’s C4.5 [84] which are often used as benchmarks to compare new classifiers to.

Like neural networks, decision trees can suffer from over-training. We can simplify the
decision tree and improve the generalisation ability by pruning the tree [22]. This is done
using a separate validation data set with the same statistics as the original training data.
We run the validation set through the tree and calculate the pruning error rate. We then
consider each node above a leaf node in turn. If the pruning error rate would be improved
by turning the node above a leaf node into a terminal node (and removing the leaf nodes
below it) then we do this, known as pruning the tree. This process is repeated until we
cannot improve the pruning error any more.

The decision tree is another type of classifier which can be used in the place of the
classifier indicated in Figure 1.1.

When we have various different classifier types available, it is often difficult to know
which is the best to use for a given application. Often in studies the test errors of the
various classifiers are given and it is left to the individual to interpret and try to determine
whether they are significantly different. Clearly, it would be better to be able to deter-
mine if there is a statistical difference between classifiers’ errors. Then the most accurate
classifier could be used, or if they are all statistically similar, the most easily implemented
could be chosen. Looney for instance, gives a statistical basis for comparing L classifiers
with respect to their individual accuracy [72].

Another approach is to try to use the information provided by several classifiers and
combine it in some way. The rest of this thesis is concerned with multiple classifier systems

and combining ensembles of classifiers.

1.4 Ailms

The main aims of this thesis are:

e To compare the accuracies of some of the more commonly used classifier combination
methods to each other and to the single best classifier using an ensemble of three
classifiers.

‘http://www.mlnet.org/ and follow the software link.



10

CHAPTER 1. INTRODUCTION

o To examine the Pearson’s product moment correlation between the outputs from

these classifier combination methods and to run a clustering program on the com-

bination methods. This is in order to see whether we can identify if any of the

combination methods perform similarly or quite differently from each other.

To examine the theoretical limits of ten measures which measure diversity amongst

classifiers and to compare these limits to the actual levels of diversity attained using
experiments on real-world data.

To examine the Pearson’s product moment correlation between the diversity values
obtained from these diversity measures and to run a clustering program on the
diversity measures. This is in order to see whether we can identify whether any of

the diversity measures are measuring the same aspect of ‘diversity’ or whether they
are all measuring different things.

To examine how the AdaBoost ensemble construction method affects the diversity
of the ensemble of classifiers it builds and whether this diversity is related to the

generalisation error of the ensemble on combination.

'Io examine how modifying the sample size of training data, the number of neurons

used or both, affects the generalisation error of AdaBoost.

To investigate whether or not using Pareto optimal sets can produce considerably
smaller ensembles of classifiers without significantly increasing the generalisation
error when used with AdaBoost.

1.5 Organisation of thesis

Chapter 2 introduces various combination methods and studies their relationships with

one another.

Chapter 3 introduces various diversity measures and studies their relationships with

one another and their relationship with the combination methods introduced in
Chapter 2.

Chapter 4 considers different approaches to improving the performance of ensembles of

classifiers and in particular introduces the AdaBoost algorithm.

Chapter 5 considers varying the sample size and varying the number of neurons with

AdaBoost. It also considers how we can use Pareto Optimality in conjunction with
AdaBoost.

Chapter 6 gives the overall conclusions and future considerations.



Chapter 2

Combination Methods

2.1 Why combine class_iﬁers?

Combining classifiers is an established research area in the fields of statistical pattern
recognition and machine learning to develop highly accurate classification systems [3, 4,
15,37,38,44-46,48,51,66,67,71,91,109,111,115,116). It is variously known as committees
of learners, mixtures of experts, classifier ensembles, multiple classifier systems, consensus

theory etc. This approach has been developed because a highly accurate and reliable

classification is required for practical applications.

Classifiers with different data sources, architectures, algorithms or trained on difierent
feature subsets can exhibit complementary classification behaviour. If we have many
different classifiers at our disposal, it is sensible to consider using them in some form of
combination in the hope of increasing both reliability [66] and the overall accuracy [45]. As
described by Battiti and Colla [4] we can therefore use our classifiers as a team similarly
to the way that a person may consult a panel of experts before making a decision. Each
of the classifiers obtained could attain a different accuracy, but it is unlikely that any will
be 100% accurate, and they may not even be as good as expected. Thus, there is the
need to integrate the results from a number of different classifiers in order to obtain an
improved result [116]. If we recall the analogy of a respiratory patient (see 1.2) it would
be preferable to the patient to have several doctors’ opinions. This is the intuition behind

multiple classifier systems.

Some researchers have found that even trying many algorithms it is difficult to improve

accuracy beyond a certain point using a single classifier. Therefore, in order to progress

further, multiple classifiers have to be utilised. It has been reported by Lam and Suen that
a combination of classifiers results in ‘a remarkable improvement in recognition results’ [67].

It has also been proved theoretically that a group of independent classifiers improve upon

the single best classifier when majority vote combination is used (see 2.4.4) [67,116]. It is

11
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generally assumed that the improvement holds for other combination methods as well.
The classifiers in an ensemble must be accurate enough to contribute information but
also different enough from each other to ensure the information is beneficial. Obviously
combining an infinite set of identical classifiers with accuracy 90% is not going to obtain
an ensemble accuracy any better than 90%! However, combining several classifiers with
accuracies of 75% can produce an ensemble accuracy of more than 75%, maybe even
higher than 90%, provided the classifiers are different enough, and those differences are

complementary. We shall look in more detail at the nature of this difference or ‘diversity’
in the next chapter.

The circumstances when it is sensible to consider combining, due to a set of different

classifiers being produced, are described succinctly by Jain et al. [45]:

1. We may have access to a number of different classifiers, based upon different repre-

sentations of the same problem e.g. person identification via voice, face and hand-
writing,

2. Different training sets may be available collected under different circumstances or at

different times.

3. Different classifiers may exhibit local differences with each being a specialist in a
specific region.

4, Unstable classifiers, such as neural networks, can have quite different results due to
different initial conditions. Unstable refers to the fact that very small changes to the

initial information can result in large changes to the resulting neural network and
its output.

Rather than selecting the best classifier, which may not be that much better than the
others, we combine their opinions taking advantage of all of the attempts to learn the

data.

The following notation must also be introduced to deal with multiple classifier systems:
e Let D={Dy,D,,...,Dr} be a set of classifiers.

o The classifier outputs are usually c-dimensional vectors D;(x) = [di 1(x),...,dic(x)]F
where d; ;(x) is the degree of “support” given by classifier D; to the hypothesis that
x comes from class w;, j = 1,...,c. Without loss of generality we can restrict d; ;(x)
within the interval [0,1], ¢ = 1,...,L, 7 = 1,...,c, and call the classifier outputs
“soft labels”. Most often d; j(x) is an estimate of the posterior probability P (w;|x).

e Combining classifiers means we combine the L classifier outputs D;(x),..., Dr(x)
to get a soft label for x, denoted D(x) = [u1(X),...,Hc(x)]?. Here pj(x) is the



2.2. HOW MULTIPLE CLASSIFIER SYSTEMS WORK 13

combined value for class wj, i.e, the support to the hypothesis of object x being

from class w;, which can be interpreted in some cases as probability or likelihood.

e If a crisp class label of x is needed, (‘crisp’ refers to the need for a single choice of
class label for an object x), we can use the maximum membership rule to calculate
ﬁ(x), the combined classification decision, i.e., the decision made by the aggregation

algorithm as to which class object x should be in :

Assign x to class wy iff,

d;,s(x) d;;(x) Vi=1,...,c. for individual crisp labels by D;, (2.1)

pus(x) 2 wmw(x), V¢=1,...,c. for the final crisp label. (2.2)

IV

Ties are resolved arbitrarily. The minimum-error classifier is recovered from (2.2)

when p;(x) = P(w;]x).

2.2 How multiple classifier systems work

Figure 2.1 shows how a multiple classifier system works. The feature values for object x,

(z1,...,2n), are submitted individually to the L classifiers. Each of the classifiers uses the

feature values to classify the object. The results from the classifiers are then combined

(see Section 2.4). The combination provides a classification for the object x.

Two approaches to this combination are [57,115):

e Dynamic Classifier Selection which tries to predict which classifier is most likely

to be correct for each object and only that classifier’s output is used to assign the

class label to x.

e Classifier Fusion which takes all of the individual classifier outputs and combines

them to calculate the support for each class.

In our work we are only considering classifier fusion methods.

2.3 Strategies for building classifier ensembles

Figure 2.2 shows four different aspects of the multiple classifier system which we can
choose to manipulate to try to improve the classification accuracy [54]. We can select
the combination method used (A), the classifier models used (B), the feature subsets we
submit to the classifiers (C) or the training set used (D). We can alter one or more of these
at any one time. Hopefully, by changing these we can produce an ensemble of classifiers
which are different enough from each other to provide complementary information and

thus an improved accuracy over the individual classifiers when combined.
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Figure 2.1: A MULTIPLE CLASSIFIER SYSTEM

A Combination methods There are many different combination methods we could use,

there is more information on some of them in the rest of this chapter.

B Classifier models There are many different classifier models we could choose from,

some of the various classifier models have already been mentioned (see 1.3).

C Feature subsets If a set of classifiers is built on different features then intuitively

they should be different from each other. There are two ways of obtaining different
feature subsets, we can use

1. Feature selection- finding as small a subset of the features as possible whilst
still ensuring that the accuracy of the classifier using the subset is as high as

possible. The random subspace method is a feature selection approach {41].

2. Feature extraction- usually uses Principal Component Analysis to perform a

set of transformations (linear or non-linear) on the whole feature set to obtain

a diflerent set of features.
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Figure 2.2: WHAT CAN WE CHANGE IN A MULTIPLE CLASSIFIER SYSTEM? [54]

D Training sets These can be modified in several ways to obtain a different training set
for each classifier. In this way we hope to obtain a set of different classifiers (see 4).

Some approaches are:

e Bagging [8,9]. Here we take bootstrap replications of the data set, i.e., if we

have an original set of size N we take a random set of N examples from the
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data set (allowing repeats) for each classifier.

e AdaBoost with re-sampling [9, 31]. Here instead of taking random bootstrap
replications of the data set, weights are assigned to each example in the data
set and those which are deemed to be difficult to classify by earlier classifiers

have higher chance of being put in the training set for future classifiers.

Other Approaches These are methods which do not easily fit into any of the categories

above.

1. Injecting Randomness. This approach involves adding an element of random-
ness into the procedure. For neural networks this is done by randomly choosing
the initial weights [21], and for decision trees by randomly selecting the feature
that decides the split at each node [11].

2. Manipulating Output Features. We can alter the output feature for example,

by turning a multi-class problem into a set of binary problems as in error-
correcting output coding (76, 77]. Also we can include some randomness by
randomising the outputs. This can involve introducing noise by altering some
class labels whilst maintaining the same proportion of each (known as output
flipping) [10]. Alternatively we can create a vector for each training example
with value 1 for the true class label and 0 for all the other possible class labels,
rather than a single class label, and then we can add Gaussian noise to this

vector (known as output smearing) [10].

2.4 Combination methods

2.4.1 Classifier Fusion

There are many different classifier fusion algorithms. These take the outputs of several
classifiers to give a combined output which is hopefully more accurate than that of the
individual classifiers. There are three classes of classifier depending on the amount of

information produced for a given input x [116].
1. Abstract type - when a classifier D only outputs a single class label.

2. Rank type - when a classifier D ranks all classes; the class with the highest rank is

the most likely label for x {according to D) and the class with the lowest rank is the
least likely label for x.

3. Measurement type - when a classifier D attributes a measurement value to each class

label according to its support for that class label (this could be a probability value

or a distance measurement, etc.).
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All types of classifiers can produce information at the abstract level and so combining at
this level is possible even for very different types of classifiers. The measurement level
contains the most amount of information and the abstract level the least. Many classifiers
pass through a measurement level as an intermediate stage in the classification process,
e.g., those that approximate P(w;) and p(x|w;) or P(w;|x) (the prior probabilities, class
conditional p.d.f. and posterior probabilities) or those that measure the distance between
the object x and each prototype sample, z;, from each class. In order to combine these
different forms a transformation to a common scale would be necessary before combination
could occur. The rank level avoids this problem since ranking can easily be obtained from
the measurement level allowing combination of different types of classifier but still retaining
more information than the abstract level. However, the rank level is effectively ignored
in practice so we will only concern ourselves with the abstract and measurement levels of
information.

Table 2.1 gives the level of information required for a set of commonly seen algorithms.

Table 2.1: CLASSIFIER FUSION ALGORITHMS AND THE LEVEL OF INFORMA-
TION THEY REQUIRE

Abstract Level Fusion Algorithms

Voting methods including majority vote
Naive Bayes combination

Behavior-knowledge space and Wernecke’s method

Measurement Level Fusion Algorithms
Minimum, maximum, average and product
Probabilistic product
Fuzzy integral
Decision templates

Dempster-Schafer combination

2.4.2 Maximum, Minimum, Average and Product (MAX, MIN, AVR,
PRO) [45,48]

These are some of the simplest and most commonly used combination methods. Once
the classifiers in the ensemble are trained, these combination methods do not require

any further training. The equation for implementing these combination methods 1s given
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below.
“j(x) = O (dl,j(x)a s o adL,j(x)) ’ .7 - 11 o0y Ce (2-3)

where O is the respective operation {(maximum, minimum, average or product) and d; ;(x)
is the support given by classifier D; to the hypothesis that x comes from class w;. The
class w; with maximum y; is the assigned class for the given input x. Table 2.2 shows an
example of how these simple combination methods work. Recall, ‘Crisp Decision’ means
the choice of a single class label for an object x. The highest p;(x), j = 1,2, for each of
the combination methods is underlined indicating which class will be chosen for the crisp
decision. Note that for the same set of classifier outputs MIN and MAX give the same
crisp decision as each other but that this is different from AV R and PRO.

Table 2.2: AN EXAMPLE SHOWING HOW THE SIMPLE COMBINATION METHODS
WORK

I T R N R
RN Y S R R RS
N R A
S T S R
T T A
A N T

2.4.3 Voting Methods

Threshold voting considers each classifier as a voter and assigns a threshold value to the

situation. The general formula for threshold voting is:

5ol e  HTEidie(x) > Tindas(x) 2axL Vfi=1....c, f #e, 2.4
c+1 otherwise

where 0 € a £ 1, L is the number of classifiers, d; ; is the support given by classifier D; to
the hypothesis that x belongs to class w; and c+ 1 denotes the option to reject the object
if it cannot be assigned a class label. There are various special cases of the threshold vote.

Unanimous Consensus (UC) [116] This requires all classifiers to agree on the class

label of an object otherwise it rejects classification. This corresponds to a@ = 1 in
equation 2.4.
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Consensus with abstentions (CA) [116] This is similar to the unanimous consensus
but allows individual classifiers to reject classification as long as no classifier supports

a different class. This has a slightly different formula: .

D =

5. & HTEade)>0anddy(x) =0V f =10 fEe, o0
¢+ 1 otherwise

Majority vote [116] This requires that a majority of the classifiers agree on the class
label, i.e., that o = 11; in equation 2.4. If there are more than two classes the class

with the most may not necessarily have more than half the votes. In this case

plurality vote may be used.

Plurality vote [116] This is the weakest combination using voting, it assigns the class
label for which the highest number of classifiers vote. This also has a slightly different

formula:

D = © if Eg:l dd,e(x) > dd,f(x) vi=1..,¢ fFe, (2.6)
c+1 otherwise '

If there is a tie for the number of votes it may be broken randomly or a rejection

may occur.

2.4.4 Majority vote

Majority vote (M AJ) takes the individual classifier opinions and assigns the object to the
class which the majority of classifiers would assign it. We consider L classifiers acting on
a data set of size N. Let C; = [c14,...,¢n;]f, C; € {0, 1}¥ be an N-place binary vector

formed in the following way:

?

1 i . . |
=4 b if z; € Z 1s correctly classified by D; (2.7)
0, otherwise

where y = 1,...,L and i = 1,...,N. Let M = [m,,...,my]! be the vector containing

the majority vote result calculated by:

: L ..
m; = 1, if X5 qci2k | (2.8)
0, otherwise

wherez = 1,...,N and £ = % for odd L and & = 52’- 4+ 1 for even L. The accuracy is

therefore:

_ M| (2.9)

Pmajority - -

where |M| is the sum of elements of M.
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Let {D1,...,Dr} be the set of classifiers and Q = {wi,wa}. Let Di(x) = w; ¢ =
l,...,L j € {1,2}. If L is odd then no ties are possible. If L is even then ties are
possible. If ¢ > 2 then ties are always possible whether L is odd or even.

For example, let ¢ = 3, L = 5, Q = {w;,w2,w3}. Suppose that for some x € R,
Di(x) = w1, Da(x) = wo, D3(x) = wy, D4(x) = w3, Ds(x) = w3. Here the votes tie (two
votes for each of wy and wj3), and, besides there is no class label for which the majority
(50%+1, i.e., 3 in this case) is obtained.

Another example is with ¢ = 4, L = 5, i.e.,, Q = {w1,ws,ws3,ws}, and D;(x) =
w2, Da(x) = wy, D3(x) = wa, Dy(x) = w3, Ds(x) = w;. Here there are no ties, the
maximum votes are for wg, but there is no class label for which the majority (3, as before)
is reached. In cases like this it may be preferable to use the class with the most votes,
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