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Summary of Research 

In this thesis we carry out a series of investigations into the relationship between diversity 

and combination methods and diversity and AdaBoost. 

In our first investigation we study the relationships between nine combination methods. 
Two data sets are used. We consider the overall accuracies of the combination methods, 
their improvement over the single best classifier, and the correlation between the ensemble 

outputs using the different combination methods. 
Next we introduce ten diversity measures. Using the same two data sets, we study 

the relationships between the diversity measures. Then we look at their relationship to 

the combination methods previously studied. The ranges of the ten diversity measures 
for three classifiers are derived. They are compared with the theoretical ranges and their 

implications for the accuracy of the ensemble are studied. 
We then proceed to investigate the diversity of classifier ensembles built using the 

AdaBoost algorithm. We carry out experiments with two datasets using ten-fold cross 

validation. We build 100 classifiers each time using linear classifiers, quadratic classifiers 

or neural networks. We study how diversity varies as the classifier ensemble grows and 
how the different types of classifier compare. 

Next we consider ways of improving AdaBoost's performance. We conduct an in- 

vestigation into how modifying the size of the training sets and the complexity of the 
individual classifiers alter the ensemble's performance. We carry out experiments using 
three datasets. 

Lastly we consider using pareto optimality to determine which classifiers built by Ad- 

aBoost to add to the ensemble. We carry out experiments with ten datasets. We compare 

standard AdaBoost to AdaBoost with two versions of the Pareto-optimality method called 
Pareto 5 and Pareto 10, to see whether we can reduce the ensemble size without harming 

the ensemble accuracy. 
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Chapter 1 

Introduction 

1.1 Background 

Pattern recognition is concerned with the process of assigning objects to classes. Its appli- 

cations are connected with the fields of mathematics, engineering, information technology 

and computer science. 
For each problem tackled using pattern recognition methods we have 

9 The set of c class labels consists of all possible mutually exclusive classes denoted 

n= {Wl, ... , Wc}. 

" The features of an object are characteristics that can be expressed in numerical 
form, e. g. height, pressure, number of vertical strokes in an image, grey level intensity 

of a pixel, etc. 

" The n feature values are the particular values of the features for a specific object 
denoted by the vector x= [xi, 

... , Xn]T , or xE Rn. The feature values can be 

continuous, binary or categorical in nature. 

" The feature labels are the labels for each of the n features denoted X= {Xi, 
... , Xn}. 

9 The feature space is the space, consisting of all possible values of our features 

denoted Mtl. 

" The training data set is a set of objects described by their feature values and is 

denoted Z= {zi, 
... , zN}, zj E R'z. The N objects are usually labelled in the c 

classes so that zti = (xi, yi), yz E n. 

1 
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Input Processing Output Class Assignment 
XI Support for wi 

xi Classifier Support for wj 

Xn Support for w,. 
ý" 

Figure 1.1: SCHEMATIC OF HOW A CLASSIFIER WORKS 

1.2 Classifiers 

A classifier is any mapping D which assigns a class label to an object, i. e., 

D: Rn-+1, VxERn, D(x) ES2. 

Class wk 
assigned as 

it has 
maximum 
support 

(1.1) 

Classifiers usually output support for each class label being the correct one for object x 
and the label with the most support is assigned to x. Classifiers can be designed in dif- 
ferent ways, and therefore range in their ability to accurately assign a class to an object. 
The choice of type of classifier can therefore have a big impact on the accuracy of the 
classification. Figure 1.1 shows a schematic of how a generic classifier works. 

Accuracy of Classifiers 

Classification accuracy is a major characteristic of a classifier. The so called "apparent" 
accuracy of classifier D is obtained by running D on the data set Z and calculating 

Ný 
p=N (1.2) 

where NN is the number of correctly classified elements of Z. 

Example - diagnosing a patient with respiratory problems 

This is an analogy of how, in a medical setting, a classifier can work like a doctor in 
diagnosing a patient. The medical details are taken from [43]. A patient (A) presents 
with respiratory problems and several measurements are taken. The appropriate mea- 
surements (features), healthy person's values and Patient A's values are shown in the 
following table. 
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Features Normal Values 
(healthy patient) 

Patient A's 

values 
Temperature (°C) 37 38.2 
Respiratory Rate (Breaths per min) 18 25 

Blood pressure (mmHg) <s 125 
sö 

Heart rate (beats per min) 50 to 100 110 

pH of arterial blood (AB) 7.35 to 7.45 7.3 
Partial pressure of oxygen in AB (Kpa) 11 to 14 7 
Partial pressure of carbon dioxide in AB (Kpa) 4.7 to 6.0 9 
Bicarbonate ion concentration (mmol/1) 22 to 26 33 
Oxygen saturation of arterial haemoglobin (%) 95 to 98% 85 

secretion colour clear pale green 
secretion cultures (bacteria presence) none bacteria present 

The choice of possible diagnoses are the class labels, 
Class labels: 

SZ = {Emphysema, Chronic Bronchitis, Asthma, Pneumonia} 

The problem is to diagnose the respiratory problem patient A has i. e. to assign a class 
label from 1 to xa,. For this example "Chronic Bronchitis" is the most likely diagnosis. 
We will refer to this example as an analogy for further concepts throughout the thesis. 

1.3 Classifier Design 

1.3.1 Bayes 

When we wish to classify an object, wZ we need to find the posterior probabilities for each 
class, i. e., given the object x we need to know the probability of it belonging to each class. 
The posterior probabilities for each class P(wilx) are found by using the Bayes formula 

which is given by: 

p(wjlx) _ 
P(Wj)P(x wi) (1.3) Ej=1 P(wj)p(xfw9) 

where P(wj), j=1, ..., c are the prior probabilities for each class, and p(xlw1) are the 

class-conditional probabilities. 
The most natural way of classifying an object is to consider all of the posterior probabil- 

ities and then to assign the class label which has the highest value of posterior probability. 
When used in this way we call the posterior probabilities a set of discriminant functions 
(also known as decision functions or classification functions), and denote them as, gi, where 

9i. Rn-+R. (1.4) 
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Discriminant functions are not unique, in fact any set of functions, f (gi(x)), where f is 

monotonically increasing gives a practically equivalent set of discriminant functions, i. e., 
they will make the same classification decisions. For example, if we consider the Bayes 
formula, note that the denominator will be identical regardless of the class w1, and so we 
can ignore it, therefore getting another set of Bayes-optimal discriminant functions: 

9i(X) = r(w )p(xIwi) 

or we can take logarithms and obtain: 

(1.5) 

g1(x) = log(P(wi)) + log(P(xl w: )) (1.6) 

The discriminant functions we use depend on the problem at hand and the information 

available. 

1.3.2 Parametric Classifiers 

Parametric classifiers are based on estimating the parameters of the class-conditional prob- 
ability density functions (p. d. f. 's), p(xlwj), from which we obtain posterior probabilities 
as shown in equation (1.3) (53]. 

Since we usually do not have the required information, we can use estimates of these 

posterior probabilities as a set of discriminant functions to classify object x. 
We can estimate the prior probabilities P(wz) as the proportion of elements from the 

training set, Z, which come from class wi. The parametric classifiers assume a hypothetical 
form of the class-conditional p. d. f's, p(xlwi), and it is only the parameters of the p. d. f's 

which must be estimated. If we assume that the classes are normally distributed, such 
that p(xt wj) , N(mi, Si) where m1 E fit" is the mean vector for class wi and Si is the 

covariance matrix then 

p(Xlwj) = exp -1 (x - mi)'S 1(x 
- mti) (1.7) 

Vf(ij 21 

Substituting this into 1.6 we get, 

9i(x) = 1og(P(wi)) + log(p(xlwi)) 

= 1og(1'(wi)) -2 log(27r) -Z 1og(ISi 1) - 
'(X 

- mi)T Sz 1(x - mi) (1.8) 

The parameters m; and Si are estimated from the training set Z as: 

mi =1 ZJ 
Ni. 

. hYj wi 
(1.9) 

where yj E SZ is the class label of zj, Ni is the number of elements of Z from class wz and 

Si =1E (Zj - mi)(zj - mi)T. (1.10 
Ni -1Z,, vf=ws 
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1.3.3 Linear Discriminant Classifiers 

5 

For linear discriminant classifiers we take a linear form of equation (1.8). We assume that 
the p. d. f is normally distributed with the classes having different means but the same 
covariance matrix, p(xl wj) , N(mti, S). By substituting S for Si and discarding all terms 
that are not dependent on wi in equation (1.8) we obtain: 

gi(x) = 1og(P(wz)) -2 (x - mi)TS-1(X - mi) 

)) -1 = log(P(wi 2 
[xTS_lx +- mTS-imz - xTS-im= - mTS-17C] 

= log(p(wi)) - 2m'S-lmi + xTS-im1-+ + 
2mT5`-ix 

= 1og(p(wi)) -2 mT ýS-imp + mTS-ix, 

which can be written as: 

gi (x) = wio + WTx (1.11) 

where wio ER and W1 E din are coefficients. 

1.3.4 Quadratic Discriminant Classifiers 

Quadratic discriminant classifiers are obtained by discarding all terms independent of wi 
from equation (1.8). 

gi(x) = 1og(P(wz)) -2 1og(ISjI) -2 
[xTS_1x 

+ mTS-imf - xTS-imi - mTS-ixJ 

= log(P(wi)) -2 log(' S") -2 
TS-1mti +m 'S-lx 

- 
2XTS-1x, 

which can be written as: 

gi(x) = wio+WTX+XTWWx (1.12) 

where wio ER and W= E Rn are coefficients and Wz is an nxn matrix. 
The parameters for the linear and quadratic classifiers are the mZ and Si which are 

estimated as shown in equations(1.9) and (1.10) respectively. 

1.3.5 Neural Networks 

Neural networks can be thought of as a trained black box where the features of an object 
are given as input. They are then processed in some way resulting in a set of c discriminant 
functions given as output [53]. The idea behind neural networks was to model the function 

of the human brain by using the biological structures used in the brain. This initial idea 
has not progressed much further than a simplified modelling of a single neuron. However, 

more mathematical neural networks with less emphasis on the biological structures are a 
widely used tool in classification. 
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Inputs Processing Output 

u0 WO 

U, wE iq+i ui wi - rý 
v 

-" vE 

wq 

Uq o wiuz v- Y' 
ýýý 

Figure 1.2: SCHEMATIC OF AN ARTIFICIAL NEURON [53] 

Modelled neurons act as the processing unit in neural networks, they are often called 

nodes to prevent confusion with their biological versions. A neuron in the brain receives 

electrical impulses as its input and if the impulses reach a certain activation level the neu- 

ron fires and sends impulses onwards as outputs. Nodes take the input values and multi- 

plies them by a vector of synaptic weights, these values are then combined and submitted 
to an activation function. The value obtained from the activation function is then given 
as the output. Figure 1.2 illustrates how a node operates [53]. u= [uo,... 

,t 
]T E R9+1 

is the input vector given to the node, w= [WO, 
... , wq]T E ßi4+1 is the vector of synaptic 

weights, 0: i -+ t is the activation function and v =, 0(77), 17 = Eq o w2uti is the output 
from the node. There are various choices of activation function available, some of the more 
common ones are [53]: 

" The threshold function 

_ 
1, if 77 0, W 
0, otherwise. 

(1.13) 

" The sigmoid function 

(77) 
1+ exp(-rý) 

(1.14) 

" The identity function 

(n) = 77. (1.15) 

Of these the sigmoid function is most widely used as it can approximate linear and thresh- 

old functions and is easily differentiable which is necessary for neural network training 

algorithms [53]. 

In a neural network we can have many nodes where the output from the activation 
functions of some nodes act as inputs to other nodes. We may have several layers of nodes; 
the input layer, several hidden layers and an output layer. A structure of this type is the 

multi-layer perceptron (MLP). The input layer nodes take the feature values as input and 
the output layer nodes produce the set of c discriminant functions as output. MLP is 
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feed-forward in nature, because the hidden layers will take values from previous nodes as 

input and output values to the next set of nodes with no feedback allowed. Figure 1.3 

illustrates a feed-forward neural network of this type [53]. The information can only pass 

up the neural network as it is a feed-forward neural network. The box surrounds the black 

box aspect of the classifier. This is one form of classifier which may be used in the place 

of the classifier indicated in Figure I. I. 

91(x) 92 (x) 
... 9c(x) 

X1 X2 ......... Xn 

XE R" 

Output 
Discriminant 
Functions 

Output Layer 

2nd Hidden Layer 

ist Hidden Layer 

Input Layer 

Input 
Features 

Figure 1.3: A SCHEMATIC OF A FEED-FORWARD NEURAL NETWORK WITH 
TWO HIDDEN LAYERS [53] 

1.3.6 Tree Classifiers 

Similarly to neural networks, trees consist of a series of nodes. Each node will consider 

a single feature from the input data. A single root node will be connected by branches 

to a set of nodes. These nodes are linked to more nodes in the next layer further down 

the tree until a terminal node is reached which is often called a leaf node [22). The most 
commonly used decision tree classifiers are binary in nature, using a single feature at each 

node. This results in decision boundaries which are parallel to the feature axes [45]. Each 

node considers whether the feature is lesser or greater than a critical value. If it is less 
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we may follow the left branch, for example, and if it is greater we may follow the right 
branch. We follow the route down the branches until we reach a leaf where we make 
a classification. Each leaf is normally assigned a specific class label, determined by the 
training examples [46]. The tree is constructed with continual subdividing until all of the 
training examples in a node are of the same class and that is then determined to be a 
leaf node. The class label of the training examples in the leaf node is then assigned as 
the class label of the leaf. Figure 1.4 shows how a decision tree classifier works. Decision 

stumps are the simplest type of decision tree as they are classification trees with only one 
split at the root node which partitions the data into two disjoint classification regions [19]. 
Obviously the critical value is chosen to most separate the classes. Since stumps are so 
simple it is often possible to use an exhaustive search method to identify the best critical 
value, which would not be possible with more complex classifiers. 

Root Node 

(fl, 7) 
Training Data 

21, z3, Z7 

Leaf 

Z6, Z1O 

Z A f2 f3 Class 

zl 5 4 3 wl 
Z2 6 6 4 W2 
Z3 2 5 1 w, 
z4 8 2 2 w2 

z5 10 6 1 wl 
zs 8 6 3 w3 
z7 6 1 6 Wi 
Z8 8 4 1 wi 
Z9 9 5 2 W2 
z10 10 4 5 W3 

where (fi, m) denotes using critical value m for feature fi, 
O denotes the leaf nodes, w1 the class assigned by that leaf 

and zL beneath a node denotes which leaf object zi ends up in. 

Figure 1.4: A SCHEMATIC OF A DECISION TREE CLASSIFIER 

The difficulty in constructing a decision tree is to decide which is the `best' feature 
to use at each node and which is the `best' critical value for that particular feature [22]. 
Obviously the example tree shown in Figure 1.4 is by no means optimal, and indeed binary 
trees are intrinsically suboptimal for most applications [45]. However, they make up for 

zg Z5 
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this disadvantage in two major ways: 

1. Trees are considerably faster than other classifiers. 

2. We can interpret the decision rules used to classify an object in terms of the indi- 

vidual features. 

These advantages make them a popular choice for users, as does the public availability 

of several decision tree classification systems such as Breiman et al. 's CART1 [13] and 
Quinlan's C4.5 [84] which are often used as benchmarks to compare new classifiers to. 

Like neural networks, decision trees can suffer from over-training. We can simplify the 

decision tree and improve the generalisation ability by pruning the tree [22]. This is done 

using a separate validation data set with the same statistics as the original training data. 

We run the validation set through the tree and calculate the pruning error rate. We then 

consider each node above a leaf node in turn. If the pruning error rate would be improved 

by turning the node above a leaf node into a terminal node (and removing the leaf nodes 
below it) then we do this, known as pruning the tree. This process is repeated until we 

cannot improve the pruning error any more. 

The decision tree is another type of classifier which can be used in the place of the 

classifier indicated in Figure 1.1. 

When we have various different classifier types available, it is often difficult to know 

which is the best to use for a given application. Often in studies the test errors of the 

various classifiers are given and it is left to the individual to interpret and try to determine 

whether they are significantly different. Clearly, it would be better to be able to deter- 

mine if there is a statistical difference between classifiers' errors. Then the most accurate 

classifier could be used, or if they are all statistically similar, the most easily implemented 

could be chosen. Looney for instance, gives a statistical basis for comparing L classifiers 

with respect to their individual accuracy [72]. 

Another approach is to try to use the information provided by several classifiers and 

combine it in some way. The rest of this thesis is concerned with multiple classifier systems 

and combining ensembles of classifiers. 

1.4 Aims 

The main aims of this thesis are: 

" To compare the accuracies of some of the more commonly used classifier combination 
methods to each other and to the single best classifier using an ensemble of three 

classifiers. 
lhttp: //www. minet. org/ and follow the software link. 
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" To examine the Pearson's product moment correlation between the outputs from 
these classifier combination methods and to run a clustering program on the com- 
bination methods. This is in order to see whether we can identify if any of the 

combination methods perform similarly or quite differently from each other. 

" To examine the theoretical limits of ten measures which measure diversity amongst 
classifiers and to compare these limits to the actual levels of diversity attained using 
experiments on real-world data. 

" To examine the Pearson's product moment correlation between the diversity values 
obtained from these diversity measures and to run a clustering program on the 
diversity measures. This is in order to see whether we can identify whether any of 
the diversity measures are measuring the same aspect of `diversity' or whether they 
are all measuring different things. 

" To examine how the AdaBoost ensemble construction method affects the diversity 

of the ensemble of classifiers it builds and whether this diversity is related to the 
generalisation error of the ensemble on combination. 

" To examine how modifying the sample size of training data, the number of neurons 
used or both, affects the generalisation error of AdaBoost. 

" To investigate whether or not using Pareto optimal sets can produce considerably 
smaller ensembles of classifiers without significantly increasing the generalisation 
error when used with AdaBoost. 

1.5 Organisation of thesis 

Chapter 2 introduces various combination methods and studies their relationships with 
one another. 

Chapter 3 introduces various diversity measures and studies their relationships with 
one another and their relationship with the combination methods introduced in 
Chapter 2. 

Chapter 4 considers different approaches to improving the performance of ensembles of 
classifiers and in particular introduces the AdaBoost algorithm. 

Chapter 5 considers varying the sample size and varying the number of neurons with 
AdaBoost. It also considers how we can use Pareto Optimality in conjunction with 
AdaBoost. 

Chapter 6 gives the overall conclusions and future considerations. 



Chapter 2 

Combination Methods 

2.1 Why combine classifiers? 

Combining classifiers is an established research area in the fields of statistical pattern 

recognition and machine learning to develop highly accurate classification systems [3,4, 

15,37,38,44-46,48,51,66,67,71,91,109,111,115,1161. It is variously known as committees 

of learners, mixtures of experts, classifier ensembles, multiple classifier systems, consensus 

theory etc. This approach has been developed because a highly accurate and reliable 

classification is required for practical applications. 

Classifiers with different data sources, architectures, algorithms or trained on different 

feature subsets can exhibit complementary classification behaviour. If we have many 
different classifiers at our disposal, it is sensible to consider using them in some form of 

combination in the hope of increasing both reliability [66] and the overall accuracy [45]. As 

described by Battiti and Colla [4] we can therefore use our classifiers as a team similarly 
to the way that a person may consult a panel of experts before making a decision. Each 

of the classifiers obtained could attain a different accuracy, but it is unlikely that any will 
be 100% accurate, and they may not even be as good as expected. Thus, there is the 

need to integrate the results from a number of different classifiers in order to obtain an 
improved result [116]. If we recall the analogy of a respiratory patient (see 1.2) it would 
be preferable to the patient to have several doctors' opinions. This is the intuition behind 

multiple classifier systems. 
Some researchers have found that even trying many algorithms it is difficult to improve 

accuracy beyond a certain point using a single classifier. Therefore, in order to progress 
further, multiple classifiers have to be utilised. It has been reported by Lam and Suen that 

a combination of classifiers results in `a remarkable improvement in recognition results' [67]. 

It has also been proved theoretically that a group of independent classifiers improve upon 
the single best classifier when majority vote combination is used (see 2.4.4) [67,116]. It is 

11 
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generally assumed that the improvement holds for other combination methods as well. 
The classifiers in an ensemble must be accurate enough to contribute information but 

also different enough from each other to ensure the information is beneficial. Obviously 

combining an infinite set of identical classifiers with accuracy 90% is not going to obtain 

an ensemble accuracy any better than 90%! However, combining several classifiers with 

accuracies of 75% can produce an ensemble accuracy of more than 75%, maybe even 
higher than 90%, provided the classifiers are different enough, and those differences are 

complementary. We shall look in more detail at the nature of this difference or `diversity' 

in the next chapter. 
The circumstances when it is sensible to consider combining, due to a set of different 

classifiers being produced, are described succinctly by Jain et al. [45]: 

1. We may have access to a number of different classifiers, based upon different repre- 

sentations of the same problem e. g. person identification via voice, face and hand- 

writing. 

2. Different training sets may be available collected under different circumstances or at 
different times. 

3. Different classifiers may exhibit local differences with each being a specialist in a 

specific region. 

4. Unstable classifiers, such as neural networks, can have quite different results due to 
different initial conditions. Unstable refers to the fact that very small changes to the 
initial information can result in large changes to the resulting neural network and 
its output. 

Rather than selecting the best classifier, which may not be that much better than the 

others, we combine their opinions taking advantage of all of the attempts to learn the 
data. 

The following notation must also be introduced to deal with multiple classifier systems: 

" Let V= {Di, D2) .... DL} be a set of classifiers. 

" The classifier outputs are usually c-dimensional vectors Dz (x) = [di, l (x), 
... , d2, c (x)]T 

where di,, (x) is the degree of "support" given by classifier D1 to the hypothesis that 

x comes from class w1, j=1,... , c. Without loss of generality we can restrict dtj (x) 

within the interval [0,1], i=1, .... L, j=1,. .., c, and call the classifier outputs 
"soft labels". Most often di, j(x) is an estimate of the posterior probability P(wjlx). 

" Combining classifiers means we combine the L classifier outputs D1(x),... , DL(X) 

, 
(x)]T . Here µj (x) is the to get a soft label for x, denoted V(x) = [µ1(x), ... , µc 
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combined value for class w1, Le, the support to the hypothesis of object x being 

from class w1, which can be interpreted in some cases as probability or likelihood. 

" If a crisp class label of x is needed, (`crisp' refers to the need for a single choice of 
class label for an object x), we can use the maximum membership rule to calculate 
D(x), the combined classification decision, i. e., the decision made by the aggregation 
algorithm as to which class object x should be in : 

Assign x to class w, iff, 

di, 3(x) > dti, 2 (x) dj = 1, ... , c. for individual crisp labels by D1, (2.1) 

µs (x) > pt (x), Vt = 1, ... , c. for the final crisp label. (2.2) 

Ties are resolved arbitrarily. The minimum-error classifier is recovered from (2.2) 

when pi(x) = P(w2Jx). 

2.2 How multiple classifier systems work 

Figure 2.1 shows how a multiple classifier system works. The feature values for object x, 
(x1) 

... , xn), are submitted individually to the L classifiers. Each of the classifiers uses the 
feature values to classify the object. The results from the classifiers are then combined 
(see Section 2.4). The combination provides a classification for the object x. 

Two approaches to this combination are [57,115]: 

" Dynamic Classifier Selection which tries to predict which classifier is most likely 

to be correct for each object and only that classifier's output is used to assign the 

class label to x. 

" Classifier Fusion which takes all of the individual classifier outputs and combines 
them to calculate the support for each class. 

In our work we are only considering classifier fusion methods. 

2.3 Strategies for building classifier ensembles 
Figure 2.2 shows four different aspects of the multiple classifier system which we can 
choose to manipulate to try to improve the classification accuracy [54]. We can select 
the combination method used (A), the classifier models used (B), the feature subsets we 
submit to the classifiers (C) or the training set used (D). We can alter one or more of these 
at any one time. Hopefully, by changing these we can produce an ensemble of classifiers 
which are different enough from each other to provide complementary information and 
thus an improved accuracy over the individual classifiers when combined. 
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Figure 2.1: A MULTIPLE CLASSIFIER SYSTEM 

A Combination methods There are many different combination methods we could use, 
there is more information on some of them in the rest of this chapter. 

B Classifier models There are many different classifier models we could choose from, 

some of the various classifier models have already been mentioned (see 1.3). 

C Feature subsets If a set of classifiers is built on different features then intuitively 
they should be different from each other. There are two ways of obtaining different 
feature subsets, we can use 

1. Feature selection- finding as small a subset of the features as possible whilst 
still ensuring that the accuracy of the classifier using the subset is as high as 
possible. The random subspace method is a feature selection approach [41]. 

2. Feature extraction- usually uses Principal Component Analysis to perform a 
set of transformations (linear or non-linear) on the whole feature set to obtain 
a different set of features. 
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Figure 2.2: WHAT CAN WE CHANGE IN A MULTIPLE CLASSIFIER SYSTEM? [54] 

D Training sets These can be modified in several ways to obtain a different training set 
for each classifier. In this way we hope to obtain a set of different classifiers (see 4). 
Some approaches are: 

" Bagging [8,9]. Here we take bootstrap replications of the data set, i. e., if we 
have an original set of size N we take a random set of N examples from the 
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data set (allowing repeats) for each classifier. 

" AdaBoost with re-sampling [9,31]. Here instead of taking random bootstrap 

replications of the data set, weights are assigned to each example in the data 

set and those which are deemed to be difficult to classify by earlier classifiers 
have higher chance of being put in the training set for future classifiers. 

Other Approaches These are methods which do not easily fit into any of the categories 

above. 

1. Injecting Randomness. This approach involves adding an element of random- 

ness into the procedure. For neural networks this is done by randomly choosing 
the initial weights (21], and for decision trees by randomly selecting the feature 

that decides the split at each node [11]. 

2. Manipulating Output Features. We can alter the output feature for example, 
by turning a multi-class problem into a set of binary problems as in error- 

correcting output coding [76,771. Also we can include some randomness by 

randomising the outputs. This can involve introducing noise by altering some 

class labels whilst maintaining the same proportion of each (known as output 
flipping) [101. Alternatively we can create a vector for each training example 

with value 1 for the true class label and 0 for all the other possible class labels, 

rather than a single class label, and then we can add Gaussian noise to this 

vector (known as output smearing) [10]. 

2.4 Combination methods 

2.4.1 Classifier Fusion 

There are many different classifier fusion algorithms. These take the outputs of several 

classifiers to give a combined output which is hopefully more accurate than that of the 

individual classifiers. There are three classes of classifier depending on the amount of 
information produced for a given input x [116]. 

1. Abstract type - when a classifier D only outputs a single class label. 

2. Rank type - when a classifier D ranks all classes; the class with the highest rank is 

the most likely label for x (according to D) and the class with the lowest rank is the 
least likely label for x. 

3. Measurement type - when a classifier D attributes a measurement value to each class 
label according to its support for that class label (this could be a probability value 

or a distance measurement, etc. ). 
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All types of classifiers can produce information at the abstract level and so combining at 
this level is possible even for very different types of classifiers. The measurement level 

contains the most amount of information and the abstract level the least. Many classifiers 

pass through a measurement level as an intermediate stage in the classification process, 

e. g., those that approximate P(wi) and p(xJwi) or P(w; Ix) (the prior probabilities, class 

conditional p. d. f. and posterior probabilities) or those that measure the distance between 

the object x and each prototype sample, zj, from each class. In order to combine these 

different forms a transformation to a common scale would be necessary before combination 
could occur. The rank level avoids this problem since ranking can easily be obtained from 

the measurement level allowing combination of different types of classifier but still retaining 

more information than the abstract level. However, the rank level is effectively ignored 

in practice so we will only concern ourselves with the abstract and measurement levels of 
information. 

Table 2.1 gives the level of information required for a set of commonly seen algorithms. 

Table 2.1: CLASSIFIER FUSION ALGORITHMS AND THE LEVEL OF INFORMA- 
TION THEY REQUIRE 

Abstract Level Fusion Algorithms 

Voting methods including majority vote 
Naive Bayes combination 

Behavior-knowledge space and Wernecke's method 

Measurement Level Fusion Algorithms 

Minimum, maximum, average and product 
Probabilistic product 

Fuzzy integral 

Decision templates 
Dempster-Schafer combination 

2.4.2 Maximum, Minimum, Average and Product (MAX, MIN, AVR, 
PRO) [45,48] 

These are some of the simplest and most commonly used combination methods. Once 

the classifiers in the ensemble are trained, these combination methods do not require 

any further training. The equation for implementing these combination methods is given 
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below. 

µß(x) =d (dlj(x),... )dL, 9(x)), j =1,..., c. (2.3) 

where 0 is the respective operation (maximum, minimum, average or product) and dij (x) 

is the support given by classifier Di to the hypothesis that x comes from class Wj. The 

class wj with maximum pj is the assigned class for the given input x. Table 2.2 shows an 

example of how these simple combination methods work. Recall, `Crisp Decision' means 
the choice of a single class label for an object x. The highest pj(x), j=1,2, for each of 
the combination methods is underlined indicating which class will be chosen for the crisp 
decision. Note that for the same set of classifier outputs MIN and MAX give the same 

crisp decision as each other but that this is different from AVR and PRO. 

Table 2.2: AN EXAMPLE SHOWING HOW THE SIMPLE COMBINATION METHODS 
WORK 

Classifier Support for wl Support for W2 Crisp Decision 

Dl 0.8 0.2 wi 
D2 0.4 0.6 w2 
D3 0.3 0.7 W2 
D4 0.6 0.4 Wi 
D5 0.3 0.7 w2 

MIN Q3 0.2 wl 
MAX ý8_ 0.7 wl 
AVR 0.48 9.52 W2 
PRO 0.01728 0.2352 w2 

2.4.3 Voting Methods 

Threshold voting considers each classifier as a voter and assigns a threshold value to the 

situation. The general formula for threshold voting is: 

e, if Ed 1 dd, e (x) > Ed 1 dd, f (x) 
_> axLVf=1, ... , c, f 54 e, (2.4) 

c+1 otherwise 

where 0<a<1, L is the number of classifiers, d;, a is the support given by classifier Di to 

the hypothesis that x belongs to class wj and c+1 denotes the option to reject the object 
if it cannot be assigned a class label. There are various special cases of the threshold vote. 

Unanimous Consensus (UC) [116] This requires all classifiers to agree on the class 
label of an object otherwise it rejects classification. This corresponds to a=1 in 

equation 2.4. 
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Consensus with abstentions (CA) [116) This is similar to the unanimous consensus 
but allows individual classifiers to reject classification as long as no classifier supports 

a different class. This has a slightly different formula:, 

D_e, if Ed l dd, e (x) >0 and dd, f(x) =0df=1, ... , c, fOe, 
(2.5) 

c+1 otherwise 

Majority vote [116] This requires that a majority of the classifiers agree on the class 
label, i. e., that a=. in equation 2.4. If there are more than two classes the class 

with the most may not necessarily have more than half the votes. In this case 

plurality vote may be used. 

Plurality vote [116] This is the weakest combination using voting, it assigns the class 
label for which the highest number of classifiers vote. This also has a slightly different 

formula: 

D=e, if Ed 1 dd, e (X) > dd, f (X) Vf=1, ... , c, fie, 
(2.6) 

c+1 otherwise 

If there is a tie for the number of votes it may be broken randomly or a rejection 

may occur. 

2.4.4 Majority vote 

Majority vote (MAJ) takes the individual classifier opinions and assigns the object to the 

class which the majority of classifiers would assign it. We consider L classifiers acting on 

a data set of size N. Let C,, = [cij,... 
, cNj]T, CC E {0,1}N be an N-place binary vector 

formed in the following way: 

1, if zz EZ is correctly classified by Dj (2.7) cij 
0, otherwise 

where j=1, ... ,L and i=1, ... , N. Let M= [ml, 
... , mN]T be the vector containing 

the majority vote result calculated by: 

rrti 
1, if E1 Cjj >k 
0, otherwise 

(2.8) 

where i=1, ... ,N and k= Ll for odd L and k2+1 for even L. The accuracy is 
therefore: 

Pmajority =I 
MI 

N 
(2.9) 

where IMI is the sum of elements of M. 
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Let {Dl,... 
, DL} be the set of classifiers and SE = {W1, W2}. Let D2(x) = w5 i= 

1,... ,LjE {1,2}. If L is odd then no ties are possible. If L is even then ties are 
possible. If c>2 then ties are always possible whether L is odd or even. 

For example, let c=3, L=5, SZ = {Wl, w2i W3}. Suppose that for some xER, 
Di (x) = wi, D2 (x) = W2, D3 (x) = w2, D4 (x) = W3, D5 (x) = w3. Here the votes tie (two 

votes for each of w2 and w3), and, besides there is no class label for which the majority 
(50%+1, i. e., 3 in this case) is obtained. 

Another example is with c=4, L=5, i. e., S2 = {Wl, w2i w3, w4}, and D1(x) _ 
w2i D2 (x) = W4, D3 (x) = W2, D4 (x) = w3, D5(x) = wl. Here there are no ties, the 

maximum votes are for W2, but there is no class label for which the majority (3, as before) 
is reached. In cases like this it may be preferable to use the class with the most votes, 
called `plurality vote', or reject the object depending on the particular problem. 

It has been shown [52,67], that if we assume that the L classifiers are independent 

with the same probability of correct classification, p, then the probability of an accurate 
consensus P can be calculated using the binomial distribution as: 

L 

P=L pt(1 -P)L-i (2.10) 
i=k 2 

where k=L, and L is odd. k is the value at which a majority is reached, e. g., 
L=5=k=3 (3 classifiers agree gives a majority). For a justifiable combination of 
classifiers we require this P to be greater than any one of the individual classifiers and 
hence: 

LL 
E pß(1 - p)L-i >p (2.11) 

i 

Consider the case for 5 classifiers, L=5, k=3 

5 i 
pi(1 

(: )P3(1_P)2+ (: )(')+ 5 
P5 (2.12) 

i=3 5 

= p3(10 - 15p + 6p2) >p 
This is true Vp E (0.51 1). 

Provided the classifiers have individual accuracy greater than 50% and are independent, 
it is guaranteed that the majority vote will give an improvement in accuracy on the 
individual classifiers [67]. 

2.4.5 Weighted voting 

If we consider the analogy of the respiratory patient once again (Chapter 1.2), in an ideal 

world we would hope to have a team of experienced nurses, doctors and consultants all 
giving their opinion and discussing with one another. Unanimous consensus would be the 
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case where all the medical staff agree on a diagnosis. Consensus with abstentions, would 
be the case where some medical staff may decline to give an opinion and the rest would 

all agree on the diagnosis. Majority vote would be when the majority of staff agree, and 

plurality would go with the diagnosis which got the most votes from members of staff. 
In reality a consultant's opinion would be considered to carry more weight than a junior 

doctor's or a nurse's regardless of their experience. In classifier systems we encounter this 

inequality of the classifiers. Some classifiers may be much more accurate than others but 

the ensemble of classifiers could still benefit from considering all opinions. Also sometime 

a classifier may become incredibly specialised, i. e. in our analogy a consultant may be a 

specialist in respiratory care but know very little about other conditions. To deal with this 

kind of situation we can assign weights to our experts, so we may give a high weight to 

the consultant's opinion and lesser weights to the junior doctors' and nurses' opinions. In 

a similar way we assign weights to our classifiers before combining with voting [3,46,111]. 

The equation for weighted majority voting is: 

e, if Ed i wddd, e 
(X) > ýd 1 wddd, f (x) >ýVf=1, ... c, fe, 

D= 

1c+1 otherwise 
(2.13) 

where L is odd, and wd is the weight assigned to classifier Dd. 

2.4.6 Limits of majority vote 

In previously published work [64] we derived upper and lower limits on the majority vote 

accuracy with respect to individual classifier accuracy, p and the number of classifiers in 

the ensemble, L. As has been previously mentioned independent classifiers with individ- 

ual accuracy p>0.5 guarantee an improvement when combined by majority vote. We 

considered the case for dependent classifiers and how their similarity/dissimilarity could 

affect the combined accuracy. 
We did this by considering two probability distributions over the possible combinations 

of L correct /incorrect votes. Consider the pool D of L (odd) classifiers, each with accuracy 

p. For the majority vote to give a correct classification we need L2J+1 or more classifiers 
to be correct. 

Intuitively the best improvement over the individual classifier accuracy will be achieved 

when exactly l2 J+1 votes are correct (where [*J indicates the floor, or largest integer 

smaller than, *). We denoted this case the `Pattern of Success'. Any extra correct votes 

will be `wasted' as they will be unnecessary to gain the correct vote and any correct votes 
in combinations not leading to a correct combined decision will also be `wasted'. Similarly 

the `Pattern of Failure' occurs when exactly one less than the majority, i. e. L2 J, of the 

classifiers are correct. 
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Table 2.3: ACCURACY UPPER LIMITS WHEN COMBINING INDEPENDENT AND 

DEPENDENT CLASSIFIERS WITH MAJORITY VOTE 

L 3 5 7 

p Ind DepS DepF Ind 7 DepS DepF Ind DepS DepF 

0.5 0.5 0.75 0.25 0.5 0.83 0.16 0.5 0.875 0.125 
0.6 0.648 0.9 0.4 0.683 1 0.3 0.71 1 0.3 
3 0.741 1 0.790 1 0.827 1 

0.7 0.784 1 0.837 1 0.874 1 

0.8 0.896 1 0.942 1 0.967 1 

0.9 0.972 1 0.991 1 0.997 1 

In [64] we derived two formulas to give us an upper and lower limit on the majority 

vote accuracy. 

L 
`Pattern of Success', Upper limit: Pmaimax = min 1, 

Lp+1 
(2.14) 

2J 
_L 

`Pattern of Failure', Lower limit: Pmaimin = 
pL 

L+1, (2.15) 
ý2J 

and as L increases : Pmaimin = 2P -1 (2.16) 

then Pmajmax =1 but Pmajmin -+ 1 for large L. Both the pattern of success If p>1 33 

and the pattern of failure cases are cases of dependent classifiers and show the problem a 

user faces. We can achieve much higher accuracies, than by using independent classifiers, 
but we can also achieve much lower accuracies by using dependent classifiers. It is know- 

ing whether or not we will gain an improvement that is the problem. Considering the 
independent case (Ind) shown in equation 2.10 and the dependent cases Success, (DepS) 

shown in equation 2.14, and Failure shown in equation 2.15, Table 2.3 gives the various val- 

ues of majority vote accuracy obtained for L=3,5,7 individual classifiers with accuracy 

p=0.5,0.6,2 3,0.7,0.8,0.9. This illustrates both the theoretical advantages in using de- 

pendent classifiers rather than using independent classifiers and the disadvantages. These 

values show that if we have the `right' sort of dependence we can improve the accuracy 

considerably, especially with a small number of classifiers. It is therefore worth looking in 

more detail at the nature of this dependence or diversity, as we shall see in chapter 3. 

2.4.7 Naive Bayes (NB) [15,44,57,116] 

Xu et al. and others more often refer to this combination method as Bayes combination [15, 

44,116]. However this method relies on the assumption that the classifiers are mutually 
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independent. In reality this situation does not occur and this is the reason we use the term 

"naive" [57]. Consider the crisp class labels obtained from Dl (x), 
... , DL (x) by (2.1), so 

in this case Di (x) E f2, i=1, ... , L. Let si, ... , .s be the crisp class labels assigned to x 
by classifiers Dl,..., DL, respectively. The independence assumption leads to 

L 

ßj (x) « JJ P (w? I Di (x) = si) , 
(2.17) 

i=1 

where P (wj IDi (x) = si) are probability estimates calculated from the data. 

number of objects labelled sz by Ds whose true label is wj P (wýýDi(x) = si) = 
number of objects labelled si by Di 

The following example illustrates the NB combination method. Let L=3 and c=2. 
Suppose that the confusion matrices of the three classifiers, calculated on a data set Z 

with 100 objects are as shown in Table 2.4. 

Table 2.4: THE CONFUSION MATRICES OF CLASSIFIERS Dl, D2, AND D3. 

D1 D2 D3 

Guessed label Guessed label Guessed label 

wl CJ2 wl W2 wl w2 

True label wl 36 22 wl 41 17 wi 23 35 

W2 22 20 w2 20 22 W2 26 16 

Let the output of the three classifiers for some xE R'1 be such that [sl, s2i s3] _ 
[w2, wl, w2]. Majority vote would label x in w2. However, the support for that class label 

may not be very strong even though it is hypothesised by 2 of the 3 classifiers. For the 

naive Bayes combination, 

PýC`11ý51 W2) "- 42 
22 20 PP2131 = W2) - 42 

P(wlI s2 = w1) = 
si 

16 (W2182 = WO = 
61 

=51 (w21s3=W2)=56 (2.18) (w1I S3 W2) P 

x) a 22 
- 

41 
-, 0.242 > x) a 20 ' 20 * 16 - 0.05 µlý 426151 

35 
µ2ý 42 651 

Accordingly, class wi will be assigned. 

2.4.8 Behavior-Knowledge Space and Wernecke's method (BKS, WER) [44, 

112,115] 

BKS works by considering every possible combination of class labels as an index to a 

cell in a look-up table (BKS table) [44]. Recall that s= (sl, 
... , sL) E 52L are the crisp 
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class labels assigned to x by classifiers D1,... , DL, respectively. s can be considered as 

an L-dimensional random variable and we try to estimate µ1(x) = 1'(wils). We design 

the table using a labelled data set Z. For each training object, z, E Z, we consider 
Di (z f), ... , DL(zj). z2 is then placed in the cell indexed by D1(zj),... , DL(zj) and we 
tally the number of objects from each class in each cell. The class label with maximum 

occurrence is selected as the label for this cell. Sometimes we may have ties or the cell may 
be empty, in which case we resolve the ties arbitrarily, and label the empty cells either 

at random or by some other method if applicable. After the table has been designed, the 
BKS method labels an xE R" to the class of the cell indexed by Dl (x), ... , DL (x). 

For the example discussed in section 2.4.7, assume again that D1, D2 and D3 produce 

output (81,32)83) = (w2, w1, w2). As we can see in Table 2.5 there have been 22 objects 
in Z for which this combination of labels occurred; 15 having label wl, and 7 having label 

w2. Hence the table cell indexed by (w2, wl, w2) is labelled wl no matter that the majority 

of the classifiers suggest otherwise. Therefore BKS would assign class wl to object x. 

Table 2.5: EXAMPLE SHOWING HOW THE BKS TABLE IS CONSTRUCTED AND 
USED 

Dl(x), D2(x), D3(x) 1,1,1 1,1,2 1,2,1 2,1,1 1,2,2 2,1,2 2,2,1 2,2,2 

Number from class w1, w2 5 0 17 4 11 13 4 9 3 5 15 7 3 4 0 0 
Cell Label wi wi W2 W2 w2 wl W2 W2* 

* decision by majority since all three classifiers would assign class w2. 

Wernecke's model is similar to the BKS. The difference is that in constructing the 

table, Wernecke [112] considers the 95% confidence intervals of the frequencies in each 

cell. If there is overlap between the intervals, the "least wrong" classifier among the L 

members of the team is identified and authorised to label x. For this, L estimates of the 

probability P(error and Di(x) = si) are calculated. Then the classifier with the smallest 

probability is nominated for labelling the cell. For an xE Rn, the cell is identified by the 

labels assigned by Dl,..., DL and then either the cell label is recovered or the label of the 

nominated classifier is taken as the label of x. 
To continue the example illustrating BKS combination method shown in Table 2.5, we 

would calculate the 95 % confidence intervals, using Chebyshev's inequality (e. g., see [36]). 

If the confidence intervals are overlapping, estimates of P(error and Du(x) = si) have to 
be obtained. Using the data in the confusion matrices, Table 2.4, 

22 42 
= 

22 
P(error and D1(x) = w2) = P(w1Isl = w2)P(s1 = w2) =42 100 100 
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P(error and D2(x) = wi) = 
P(w2152 

= wl)P(s2 = w1) 
20 61 20 

_ - 61 100 100 0 0 
P(error and D3(x) = w2) = P(wiI 3= w2)P(s3 = w2) = 

35 
' _ 

51 
: 

35 5 
51 100 1 00 

As P (error and D2 (x) = w1) is the smallest of the three, clas sifier D2 is authorised to 
label x, and thus the assigned class is wl. 

2.4.9 Decision Templates (DT) [57] 

The classifier outputs can be conveniently organised in a decision profile as the following 

matrix 
di, 1(x) ... 

dlj (x) 
... 

dl, 
c(x) 

DP(x) = di, i(x) ... dj, j(x) ... di� (x) (2.19) 

dL, 1(X) ... 
dL, 9 (X) ... 

dL, 
c(X) 

Using decision templates (DT) for combining classifiers is proposed in [57]. Given L 
(trained) classifiers in D, c decision templates are calculated from the data, one per class. 
This approach works by comparing the c DT's produced to a characteristic template for 

each class, the decision profile. It is therefore able to use outputs for all classes to calculate 
the final support for each class unlike other methods which only use the support for that 

particular class. For each class label, i, there is a decision template, DTT, and each decision 

template is an Lxc matrix whose (k, l)th element is: 

dti (k, 1) = 
EN 1 Ind(zj, 2)dk, t (zj) 

, lc =1, ... , L, l =1, ... , c. (2.20) 
ýj=1 Ind(zj, i) 

where Ind(zj, i) is an indicator function with value 1 if zj has crisp label i, and 0 otherwise. 
DTi can be regarded as the expected DP(x) for class wi. The support for the class 

offered by the combination of the L classifiers, µi (x) is then found using a measure of 

similarity between the current DP(x) and DT1: 

µi(x) = S(DT2, DP(x)) (2.21) 

Here we use the squared Euclidean distance for calculating the similarity, i. e,. the lower 

the squared Euclidean distance between the matrices entries, the more similar they are. 
Therefore we calculate p= by taking 1 minus the squared Euclidean distance. Any other 
measure of similarity/dissimilarity can also be applied in a similar manner. 

cL 

ßi (x) =1- dE(DP(x), DTi) =1-Z Z(dk, j(x) - dt; (k, j))2, (2.22) 
j=1 k=1 

where dt2(k, j) is the k, j-th entry in decision template DT=. 
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As an example, assume that the following Decision Templates have been obtained from 

a data set Z using equation (2.20), with c=2, L=3: 

0.7 0.3 0.4 0.6 
DT1 = 0.5 0.5 , DT2 = 0.6 0.4 

0.6 0.4 0.2 0.8 

Given an object x with Decision Profile 

0.6 0.4 
DP(x) = 0.4 0.6 

0.3 0.7 

we use the squared Euclidean distance to calculate the similarity, the closer DT1 is to 
DP(x) the more similar they are, and subsequently the higher the support for class wl 
and similarly for DT2. 

dE(DP(x), DTi) = (0.6_0.7)2+(0.4-0.3)2 + (0.4 - 0.5)2 

+(0.6 - 0.5)2 + (0.3 - 0.6)2 + (0.7-0.4)2 = 0.22 

dE(DP(x), DT2) = (0.6-0.4)2 + (0.4 - 0.6)2 + (0.4 - 0.6)2 

+(0.6-0.4)2+(0.3-0.2)2+(0.7-0.8)2 =0.18 

µ1(x) =1- dE(DP(x), DT1) = 1- 0.22 = 0.78 

µ2 (x) =1- dE (DP(x), DT2) =1-0.18 = 0.82 

Since µl > P2 we assign class label wl to x. 

2.4.10 The Oracle (ORA) 

The Oracle is named after the seers of ancient mythology as it works by correctly classifying 
an object provided at least one of the L classifiers correctly classifies the object. It is 

obviously not a true combination method but an abstraction which gives the possible upper 
limit on the classification accuracy. Here we use the oracle to compare the combination 

methods' performance. 

2.4.11 Data-dependent weights and multi-level classifiers 

Data-dependent weights are often used with combination methods for multiple classifier 

systems. These weights are developed from the training data and are then used during 

combination. The weights are adjusted to improve the ensemble performance during the 

training process. 
Multi-level classifiers work by having one classifier's outputs as the inputs for another 

classifier. That is, the output decision profile, DPD4 (x), from classifier, Da,, is submitted 
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to another classifier, Db, as its input and its output is DPDb(DPDQ(x)). They are also 
known as stacked classifiers. 

2.5 Existing empirical studies of combination methods 

There have been many studies comparing various methods of combination methods (e. g. [48, 

57,111,116]. Many of these studies introduce a new combination method and then com- 

pare its performance with other popularly used methods. Kittler et al. [48] compared 

some of the simpler combination methods which do not require second level training: the 

minimum, maximum, sum, product, median rules and majority vote. They compared the 

methods using four types of base classifiers on a U. S. postal service database consisting 

of handwritten digits - CEDAR-CDROM. Their results showed that the sum and median 

rules were the best, and that in fact the sum rule is very robust despite being the rule 

with the most restrictive assumptions. The majority vote rule and maximum rule also 

performed better than the single best classifier whilst the minimum and product rules 

were both worse than each of the individual classifiers. 
Kuncheva et al. [57] introduced Decision Templates (with various similarity measures) 

and compared them with 13 other combination methods, minimum, maximum, average, 

product, majority vote, naive Bayes, behavior-knowledge space, probabilistic product, 
Dempster-Schafer, fuzzy integral, linear discriminant classifier, quadratic discriminant 

classifier, and the logistic classifier, (the latter three use the base classifier outputs as 
input allowing them to act as a combination method). Using quadratic discriminant clas- 

sifiers as the base classifiers and using the satimage and phoneme databases their results 

show that if you choose the `correct' similarity measures decision templates outperform all 
the other combination methods. They give a ranking order of the combination methods 

over the two datasets. Out of eleven similarity methods, decision templates (DT) with 5 

of the similarity measures gave higher accuracies than all other methods, and DT with 
another similarity measure was better than all combination methods apart from Product 
(which was next best after the five DT methods) and Dempster-Schafer. Minimum and 
Average were the next best followed by another DT version. The order of the remain- 
ing methods was: majority vote, fuzzy integral, logistic classifier, maximum, probabilistic 
product, behavior knowledge space and naive Bayes. All these methods were better than 
the single best individual classifiers. DT with the four remaining measures were worse 
than the single best classifier but outperformed both the linear and quadratic discriminant 

classifiers, which were ranked in that order. 
Xu et al. 's [116] study into combination methods, compared several versions of Bayesian, 

voting and Dempster-Schafer approaches on a handwritten digit recognition problem, 
taken from a US zip-code database. The database consists of 2000 examples and there 



28 CHAPTER 2. COMBINATION METHODS 

were two experiment formats: the first used the whole 2000 examples and prior knowl- 

edge, the second used the first 1000 examples for training the combination method and 
the second 1000 examples for testing the combined ensemble. Their Bayesian approach 

consists of averaging the estimated posterior probabilities and so they call it the averaged 
Bayes classifier. They also use the confusion matrices of their trained classifiers as prior 
knowledge to take the individuals errors of the classifiers into consideration. They found 

that this approach performed very well for the first format when they had the entire 2000 

examples on which to base the confusion matrices as well as for testing, but was unstable 

when using the second format of 1000 examples for deriving the confusion matrices and 
1000 examples for testing. The Dempster-Schafer approach was more robust than the 

averaged Bayesian approach as was the voting approach but the former performed better 

than the latter. 

Verikas et al. [111] studied twelve combination methods' performances on four datasets 

from the ELENA project: clouds, concentric, satimage, phoneme. They were interested 

in how methods from fuzzy logic compared with more widely used combination methods. 
They studied majority vote, average, Xu's averaged Bayes (as described above), Borda 

count, weighted average, linear order statistics, fuzzy integral using the Choquet inte- 

gral, optimised Choquet integral, fuzzy integral with data-dependent weights, weighted 

average with data-dependent weights, BADD defuzzification strategy and Zimmermann's 

compensatory operator. 
, 

They found that weighted average with data-dependent weights was the best combi- 

nation method overall closely followed by the fuzzy Choquet integral with data-dependent 

weights. BADD was one of the best methods for large training sets but could not cope 

with small training sizes. Optimised Choquet integral was found to be better than basic 

Choquet integral. Majority vote, Borda count and Bayes were found to be of little use es- 

pecially for highly correlated networks exhibiting widely varying accuracies. In particular 
they were poor when there was a network which was significantly better than all of the 

others. 
Fumera and Roli carried out experiments comparing simple average and weighted aver- 

age combining rules [35]. They discovered that when an ensemble is fairly balanced, with 

classifiers having similar performance and correlation, simple average has better perfor- 

mance. For im-balanced ensembles where there is a wider variation among the classifiers' 
performance and correlation, weighted average is superior. They found in experiments that 
in practice the weight of the worst classifiers is very close to zero. This means they are 
almost discarded from having any affect on the weighted average. If the optimal weights 
are significantly greater than zero the advantage of using weighted averaging over that of 
using simple average is relatively small. 

These empirical studies show the problem for ensemble designers in deciding what base 
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classifiers to build the ensemble from and what combination method to use to combine 
their outputs. Clearly there is no one, best choice of combination method, since for each 
of the datasets the various combination methods perform differently. The difficulty of 
implementation, computer time required and training set size required must be considered 
as well as the ensemble accuracy, with some kind of trade-off being unavoidable. 

2.6 Experimental set-up to investigate the combination meth- 
ods 

Here we are interested in comparing the accuracies of some of the commonly used com- 
bination methods to the single best individual classifier and to each other. We aim to 
examine the product moment correlation between the outputs from each of the classifier 
combination methods. We also intend to run a clustering program to identify whether any 
of the methods are behaving similarly to each other. Using this information we hope to 
be able to identify which combination methods to use on the basis of both accuracy and 
ease of implementation. If we have two methods which produce similar results and are 
clustered closely together it will make sense to use the one which is easier to implement. 
We also hope to learn more about how these methods may be related to each other despite 
having derived from a wide variety of sources. To investigate these areas we carried out 
an experimental study [99]. We used two databases both taken from the UCI Repository 

of Machine Learning Databases. They are the Wisconsin Breast Cancer Database (wbc)2 

and the Pima Indian Diabetes Database (Pima). 

From the original 30 features for the wbc data we used the first 10 so that we could 
run an exhaustive experiment with all possible partitions. We chose the first ten because 
the features in this data set were logically grouped into 1-10,11-20,21-30. The wbc data 
has 569 objects, 2 classes and 10 features and is trained using a hold-out (random halves) 

method. The Pima data has 768 objects, 2 classes and 8 features and is trained using 
ten-fold cross-validation. 

All partitions of the 10 features into 3 subsets of the form 4,3,3 (4200) and 4,4,2 (3150) 

were generated so that the first classifier has 4 features as input, the second classifier has 
3(4) features as input and the third classifier has 3(2) features as input. For each partition 
we designed one ensemble of three linear classifiers and one ensemble of three quadratic 
classifiers. Thus, the total number of ensembles for the wbc data is twice the total number 
of partitions. This set-up and the combination methods we are examining were initially 
used by Kuncheva and Whitaker in [59]. 

'available at http: //www. ics. uci. edu/-mlearn/MLRepository. html 
2Created by Dr. William H. Holberg, W. Nick Street and Olvi L. Mangasarian, University of Wisconsin 
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For the Pima data we took all partitions of the form 3,3,2 using 10-fold cross-validation 

to obtain a total of 560 ensembles. 
Table 2.6 shows a summary of the data sets and the initial experimental protocol, the 

data sets are described in more detail in Appendices B. 8 and B. 9. 

Table 2.6: SUMMARY OF THE DATA SETS AND THE EXPERIMENTS 

Name C N n (n1, n2, n3) Total number 
of ensembles 

Training/ 
Testing 

Wisconsin Breast Cancer 2 569 10 (4,4,2) 6300 Hold-out 
(4,3,3) 8400 (Random halves) 

Pima Indian Diabetes: 2 768 8 (3,3,2) 560 10-fold cross-validation 

Key 

c: number of classes N: number of objects in the data set n: number of features used 
(ni, n2i n3): partition sizes; D1 uses nl of the n features, D2 uses n2i and D3 uses n3 features. 

We consider: 

1. The overall accuracies of the combination methods and their improvement over the 

single best classifier. For each partition we select the most accurate of the three 

classifiers based on the training data and this is then considered the single best 

classifier for that partition. 

2. The correlation between each method of combination and all other methods of com- 
bination. 

The correlation coefficient used was Pearson's Product Moment correlation coefficient. 
The following combination methods were applied: 

" majority vote 

" naive Bayes 

" behaviour-knowledge space 

" Wernecke's method 

" maximum 

" minimum 

" average 

" product 
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" decision templates 

" and oracle to compare the performance of the other methods. 

2.7 Combination Method Results 

2.7.1 Overall Accuracies 

In order to compare the performances of the various combination methods, Figure 2.3 

shows the accuracies of the single best classifier, the three individual classifiers, the nine 

combination methods and the oracle. Figure 2.4 shows the percentage improvement (or 

decrease) in accuracy of the nine combination methods over the mean single best classifier 

accuracy. The circles indicate the mean accuracy and the upper and lower lines indicate 

the minimum and maximum accuracy values. For each partition of the features we have 

three different classifiers. They are built using the training data and then their accuracy 
is compared using the testing data as is that of the combination methods combining the 

three classifiers. We determine the single best classifier by examining the accuracy of 
the three classifiers on the training data. The classifier with the highest accuracy on a 

particular partition is called the single best classifier for that particular partition. The 

testing accuracy for this single best classifier is then used for that particular partition as a 
baseline to compare the accuracies of the combination methods. The single best classifier 
is determined in this way as choosing the best individual classifier on the basis of the 

testing data would make it even harder for the combination methods to compete as we 

would be using a form of hindsight which we would not have in a real-world situation. 
The dashed horizontal line is the mean accuracy of the single best classifier. 

The graphs show that the classifiers which receive more information in the form of 

additional features outperform the classifiers which receive fewer features as input, i. e., 
for wbc with the partitions 4,4,2 the third classifiers is weakest as we would expect and 
for 4,3,3 the first classifier is strongest. For the Pima partitions 3,3,2 there is not much 
difference between the three classifiers. 

For the Wisconsin breast cancer data it seems better to choose any of the combination 

methods rather than a single individual classifier even if it is the strongest one. If we pick 
the single best classifier for each particular problem based on the training accuracy, we 

can get better results than some of the combination methods, namely BKS and WER for 
linear classifiers and NB, BKS and WER for quadratic classifiers as these all have lower 

minimum values than the single best classifier. We must also note though, that apart 
from BKS and WER with quadratic classifiers, they all have mean value above that of 
the single best. 

For the Pima data the results are not so good, there is very little improvement over the 
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Figure 2.3: ACCURACY ON THE TESTING SET FOR THE INDIVIDUAL CLASSI- 
FIERS AND THE ENSEMBLES. 

single best with only decision templates having a mean accuracy above that of the single 
best classifier. Majority vote and naive Bayes are clearly under-performing. It is possible 
that this is due to the fact that Pima has some outliers which we were not aware of at the 

time of our experiments. The single best classifier is much better than any of the individual 

classifiers so it is not preferable to pick one individual classifier. If we consider the three 
individual classifiers' performances and compare them with the combination methods we 

see that the combination methods (other than MAJ or NB) are more accurate. Choosing 

the single best classifier is on a par with most of the combination methods and better than 

some. With linear and quadratic classifiers BKS and WER are on a par with the single 

k 
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Figure 2.4: IMPROVEMENT ON THE TESTING SET FOR THE INDIVIDUAL CLAS- 
SIFIERS AND THE ENSEMBLE. 

best classifier with DT being slightly better. The remaining combination methods MAX, 

MIN, AVR and PRO are all worse than the single best. 

These results show that whilst it is possible to improve upon the accuracy of an in- 
dividual classifier, the success of different combination methods varies with the data set 

and the type of classifier used. This highlights the difficulty for the practitioner of the 

problem specific nature of optimum solutions. 

12356789 
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2.7.2 Relationships among the combination methods 

We were interested in how the different combination methods might be related to each 

other. In order to investigate these relationships we calculated the correlation between 

their outputs and illustrated them as shown in Figure 2.5. The intensity of the colour is 

determined by the correlation. The stronger the correlation the lighter the colour. We 

found that the combination methods show only positive correlation amongst themselves 

as we would expect as they are all attempting to improve accuracy. 
To further aid analysis of these relationships we used a clustering program to illustrate 

the strength of the relationships between the different combination methods. Figure 2.6 

shows the dendrograms formed when we cluster the combination methods using average- 
linkage relational clustering3. The lower the branches joining the different combination 
methods the stronger the relationship between them. 

Table 2.7: THE CORRELATION COEFFICIENTS BETWEEN THE DIFFERENT 

COMBINATION METHODS FOR BOTH TYPES OF CLASSIFIER AND FOR ALL 

PARTITIONS. BOLD VALUES ARE THOSE WITH ABSOLUTE VALUES OF 0.5 OR GREATER. 

1 1 NB BKS WER MAX MIN AVR PRO DT ORA 
MAJ 0.8665 0.5290 0.4871 0.8240 0.8240 0.9474 0.9098 0.9046 0.7507 
NB 1.0000 0.5167 0.4649 0.7280 0.7280 0.8157 0.7800 0.7794 0.5685 

BKS 1.0000 0.9163 0.4158 0.4158 0.4973 0.4681 0.5262 0.4291 
WER 1.0000 0.3751 0.3751 0.4586 0.4287 0.4868 0.4043 
MAX 1.0000 1.0000 0.9018 0.9398 0.8676 0.6618 
MIN 1.0000 0.9018 0.9398 0.8676 0.6618 
AVR 1.0000 0.9700 0.9375 0.7628 
PRO 1.0000 0.9232 0.7611 

DT 1.0000 0.7832 

Table 2.7 shows the correlation coefficient values between all of the combination meth- 

ods for all of the results pooled, i. e., with both types of classifier and all partitions. The 

values show that all of the methods have a positive correlation with each other and several 
have very high correlation. 

Clearly examining the shading graphs, the dendrograms and the correlation table we 

can see that BKS and WER are in a group entirely on their own and behaviour-knowledge 

space is highly positively correlated with Wernecke's method, which can be expected, 
knowing that Wernecke's method is a "regularised" version of BKS. We also see that 

3The clustering routine and the dendrogram drawing routine are from the package PRTOOLS for 

Matlab (261 
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Figure 2.5: ILLUSTRATION OF THE CORRELATION BETWEEN THE COMBINA- 
TION METHODS. 
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Figure 2.6: THE CLUSTER DENDROGRAMS FOR THE COMBINATION METHODS. 

MAX and MIN are in fact identical for this case (for the case of two classes, it can be 

proved that maximum is always equivalent to minimum, proof in Appendix A. 1). Average 
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is highly positively correlated with product. MAJ and NB are also grouped together. 
DT is not consistently correlated with any of the other combination methods since it is 

related to AVR and PRO for the breast cancer data with quadratic classifiers, BKS and 
WER for Pima data and is fairly isolated for breast cancer data with linear classifiers. 
The overall correlation between the combination methods with the Pima data was lower 
hence there are darker shades in the correlation pictures. 

The dendrograms suggest the following grouping of the methods {(MAJ, NB), (AVR, PRO), 
(MIN, MAX), (BKS, WER), (DT), (ORA)}. These groupings are also supported by the 

correlation coefficient diagrams in Figure 2.5 as they show up as lighter coloured areas 
consistently in all of the partitions and both datasets. 

2.8 Combination Methods Conclusions 

In this chapter we introduced nine combination methods and the oracle and studied the 

relationships between them. We took a breast cancer data-set of 10 feature values for 569 

patients and using all partitions of the form (4,4,2) and (4,3,3) for two types of classifier 
(linear and quadratic), conducted a set of four enumerative experiments. We also took 

a diabetes data set of 8 feature values for 768 patients and conducted a set of ten-fold 

cross-validation experiments using all possible partitions of the form (3,3,2). 
We then considered the overall accuracies of the combination methods and their im- 

provement over the single best classifier. In the next chapter we introduce the concept of 
diversity (differences amongst classifiers) and show that the classifiers used here were not 
very diverse and this is probably why the combination methods did not improve notably 
over the single best classifier. 

We were interested in whether any of the combination methods performed in a similar 
way to each other and hoped that this would be shown by the clustering program. We 

anticipated that those combination methods which operated in a similar manner would 
consistently be clustered together early on and that those with different performances 
would end up in different clusters. We found some interesting correlation amongst the 

combination methods. In particular maximum is equivalent to minimum for the two class 
case. We also found that average has close relationship with fellow simple combination 
method product. Unsurprisingly behaviour-knowledge space is correlated with Wernecke's 

method as they both originate from the same concept but more interestingly majority vote 
is correlated strongly with naive Bayes which does not seem to have much in common with 
it in the computation process. Decision templates were found to have lower correlation 
with all the other methods. 
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Chapter 3 

Diversity in Classifier ensembles 

When we have a group of classifiers at our disposal it is intuitively accepted that the 

classifiers to be combined should be different from each other, or diverse [17,18,37,38, 

48,91]. The experimental results in chapter 2 show that sometimes it is not particularly 
beneficial to combine a set of classifiers, this can be caused by a lack of diversity amongst 
the ensemble of classifiers. If once again, we recall the analogy of the respiratory patient 
(Chapter 1.2), it obviously would be of no benefit to the patient if all the nurses, doctors 

and consultants always agreed. In that case we would only ever need one nurse, which 

whilst saving some money, would not improve the accurate diagnosis rate. By having 

differing opinions we can pool the various diagnoses and hopefully come up with correct 
one more often. 

Clearly, a set of identical classifiers does not gain us any advantage over having just 

one of them. Therefore, diversity, also related to negative dependence, independence, 

orthogonality, complementarity, among an ensemble of classifiers has been recognised as a 
key issue [18,65]. In fact, Cunningham and Carney claim that "any work with classification 
ensembles should explicitly measure diversity in the ensemble and use this measure to guide 
decisions on the constitution of the ensemble... " [18]. Giacinto and Roli believe that there 
is a fundamental need for methods aimed at designing accurate and diverse classifiers and 
that this is currently acknowledged in the field [37]. In a later study, Cunningham goes 
further and says that over-fitting can be used to provide this diversity within an ensemble, 
provided there is variety amongst the over-fitted members (17]. He says that several over- 
fitted classifiers can be combined to average out their over-fitting and give an accurate 
performance provided there is sufficient diversity amongst the classifiers. 

Theoretically, a group of independent classifiers improve upon the single best classifier 
when majority vote combination is used. Using a set of dependent classifiers may result in 

either better performance than the independent set's performance or worse performance 
than the single worst member of the team, depending on the differences. Thus diversity 

39 
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can be both beneficial or harmful [40,63]. Understanding and measuring these differences 
in diversity is an important issue in classifier combination [65] and there are several dif- 
ferent measures of diversity being used. These measures aim to quantify the dependence 
between classifiers. This chapter considers some of the diversity measures available to the 

practitioner of statistical pattern recognition and investigates how they are related to each 
other. We are also interested in whether there is any connection between combination ac- 
curacy and diversity in the ensemble. In a previous study we investigated the relationship 
between the Q-statistic and majority vote [64]. We proved that there is a functional rela- 
tionship between the Q-statistic and the upper and the lower limits of the majority vote 
accuracy. However, there is no theoretical proof of any relationship in the general case. 
Thus, in this chapter we investigate in detail whether there is any relationship between 
the diversity measures and the combination methods introduced in the previous chapter. 
We expect that those instances where the combination methods had high accuracy will 
be positively correlated to a high level of diversity amongst the ensemble's constituent 
classifiers. 

3.1 Measures of diversity 

There are different diversity measures available from different fields of research. Some of 
these measures, such as the Q-statistic and the correlation coefficient have come directly 
from mainstream statistics whilst others have developed through the field of statistical 
pattern recognition, specifically for the problems of multiple classifier systems. Some of 
these measures work on the whole group of L classifiers whilst other measures consider 
the classifiers on a pairwise basis and then average the results. We have examined ten 

measures of diversity which we have used in previous studies. We can consider the measures 
of diversity to be one of two types : 

1. measures looking for diversity: the higher the value the more diverse (t). 

2. measures looking for similarity: the higher the value the less diverse (.. ). 

The measures we have considered are as follows: 

pairwise 
Tue Q-statistic (Q), (J. ) 
The disagreement measure (D), (T) 

The correlation coefficient (p), (4. ) 

The double-fault measure (DF), (,. ) 

non-pairwise 
The Kohavi-Wolpert variance (kw), (T) 
The entropy measure (Ent), (t) 
The generalised diversity (GD), (T) 

The measurement of interrater agreement (ic), (,. ) 
The measure of difficulty (B), (,. ) 
The coincident failure diversity (CFD), (T) 



3.1. MEASURES OF DIVERSITY 

3.1.1 Pairwise Diversity Measures 
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The following diversity measures require consideration of the diversity between each of 
the pairs of classifiers and then averaging of the values. Consider two classifiers, D1 and 
Dk, and a2x2 table that summarises their outputs as shown in Table 3.1. The entries 
in the table are the probabilities for the respective pair of correct/incorrect outputs. For 

example, the value of b in the table is the proportion of examples which are correctly 
classified by classifier Dz and misclassified by classifier Dk. 

Table 3.1: THE 2x2 RELATIONSHIP TABLE WITH PROBABILITIES 

Dk correct (1) Dk wrong (0) 

Di correct (1) a b 

D1 wrong (0) c d 

Total, a+b+c+d= 1 

Table 3.2 illustrates the case of identical (ID), independent (IND) and negatively de- 

pendent (ND) pairs of classifiers. 

Table 3.2: THE 2x2 RELATIONSHIP TABLES FOR IDENTICAL, INDEPENDENT 
AND NEGATIVELY DEPENDENT CLASSIFIERS 

Identical 

D2(1) D2(0) 

D1(1) 0.6 0 
D1(0) 0 0.4 

Independent 

D2(1) D2(0) 
D1(1) 0.3 0.2 
Di(0) 0.3 0.2 

Negatively Dependent 

D2(1) D2(0) 

D1(1) 0 0.5 
Dl (0) 0.5 0 

Using real-world data we are unlikely to find a set of highly, negatively dependent 

classifiers which are also more accurate than random guessing. The most likely situation 
is an accurate but also highly, positively dependent ensemble of classifiers. From the point 
of view of a user looking for diverse classifiers the best we could hope for in the real-world 
case is a slight negative dependence (SND) between a pair of classifiers, (Table 3.3). There 

are various statistics to assess the similarity/diversity of two classifier outputs. 

The Q-statistic (Q) [118] 

Yule's Q statistic for two classifiers, e. g., Di and Dk, is 

ad-bc if abc d< 1 Qi, k= 
=' ,, (3.1) 
1, otherwise 
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Table 3.3: THE 2x2 RELATIONSHIP TABLE FOR SLIGHTLY NEGATIVE DEPEN- 
DENT CLASSIFIERS 

D2 correct (1) D2 wrong (0) 

D1 correct (1) 0.30 0.27 

Di wrong (0) 0.23 0.20 

There are several special cases taken into account here. If a=1 then both classifiers are 
identical but the denominator would be zero so that is why we have the `otherwise' case. 
If b=1, c=1 or d=1 this implies that the accuracy of one or both classifiers is zero and 

so it would not be used in an ensemble anyway. In our code only classifiers better than 

random guessing are used and if the denominator was zero then the value of Q would be 

1. For statistically independent classifiers, Qi,, = 0. Q varies between -1 and +1, with 
the lower the value the more diverse the classifiers. For a set of L classifiers, the averaged 
Q statistics of all pairs is taken. From the examples we can calculate the corresponding 

values of Q: 
0. Gx0.4-0_0.24 

QID - 0.6 x 0.4 +00.24 
0.3x0.2-0.2x0.3_0 QIND = 0.3 x 0.2 + 0.2 x 0.3 
0x0-0.5 x 0.5 -0.25 1 QND == 0x0+0.5x0.5 0.25 =- 
0.30 x 0.20 - 0.27 x 0.23 

= -0.0021 QSND = 0.30 x 0.20 + 0.27 x 0.23 0.1221 = -0.0172 

The Correlation coefficient (p) 

The correlation coefficient, p is well known in mainstream statistics. The correlation 
between two binary classifier outputs (correct/incorrect) is 

_ 
ad - be 

Pt's 
a+b c+d a+c b+d) 

(3.2) 

For the examples the corresponding values of p are: 
0.6x0.4-0 

_0.24_ PID0.6+0 0+ 0.4 0.6+0) 0+0.4 0.24 
1 

0.3x0.2-0.2x0.3 
_ Pf ND = 0.3 + 0.2) (0.3 + 0.2) 0.3 + 0.3) (0.2 + 0.2) ^0 

0x0-0.5 x 0.5 
_ 

-0.25 _ PND =0+0.5 (0.5 + 0) (0 + 0-5)(0.5 + 0) 0.25 -1 

0.30 x 0.20 - 0.27 x 0.23 
_ -0.0021 _ PSND = 0.3 + 0.27)(0.23 + 0.2 (0.3 + 0.23) 0.27 + 0.2) 0.247 - -0.0085 

As Q the correlation coefficient can also take negative values with the lower the value the 

more diverse the classifiers, and in fact, 
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Proposition 1 For any two classifiers, Q and p have the same sign, and: 

ad-be ad-be 1pI 
- (a+b)(c+d)(a+cc))(b )IC 

(a 
=+cI - 

IQI' 

Proof 

Since the numerator is the same for Q and p we have to compare the denominators. 

((a + b)(c + d)(a + c)(b + d))z _ ((a + b)(c + d)(a + c)(b + d) 

la2bc + a2cd + abc2 + aced + a2bd + 

acd2+ab2c+bc2d+abed+abd2+ 

b2cd + bcd2 + (a2d2 + 2abcd + b2c2)I 

> la2d2 + 2abcd + b2c21 

_ l(ad + bc)21 

This implies that 

a+b) c+d)(a+c b+d) 
lad+bc 

ad - be ad- be I 

a +b c+d) a+ cb +d) 
lad+ 

bc 

IPI <_ IQI 

0 

The disagreement measure (D) [41,100] 

The disagreement measure, D is used in (41,100] and is given by 

Di, k =b+c. (3.3) 

Thus, it is simply the total proportion of examples for which the two classifiers disagree. 

So for the identical, independent, and negative dependent cases we obtain: 

DID = 

DIND = 0.5 

DND =1 
DSND = 0.5 

For the disagreement method the range of possible values is from 0 to 1 and the higher 

the value the more diverse the classifiers. 
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The double-fault measure (DF) [38] 

The double-fault measure, DF is used in [38] and is given by 

DF=, k = d. (3.4) 

Thus, it is the proportion of classifiers which both classifiers fail to correctly classify. In 

this way it is, to some extent, a measure of similarity. The values of DF corresponding to 

the examples are: 

DFrD = 0.4 

DFIND = 0.2 

DFND =0 

DFSND = 0.2 

The double-fault measure takes values of between 0 and 1, with the lower the value the 

more diverse the classifiers [38]. In practice 1 only occurs when both are 100% incorrect 

so in practice the highest value we would expect to obtain is 1-p. 

3.1.2 ' Non-pairwise Diversity Measures 

For the non-pairwise measures we quote the formulae for L classifiers. Let Z= {zl, 
... , zN} 

be a labelled data set, z2 E R" coming from the classification problem in question. We 

can represent the output of a classifier D; as an N-dimensional binary vector iti = 
[cri,;, 

... , 7rN, a]T, such that lrj, z = 1, if Dz recognises correctly zj, and 0, otherwise, i= 

1, ... , L. In order to demonstrate how the following diversity measures work we use a 

small example of L=3 classifiers operating on a labelled data set Z of size N= 10. The 

values in Table 3.4 columns 2-4 are the 7rj, i mentioned above. 
The example has a degree of independence between classifiers D1 and D2, a degree of 

positive dependence between D2 and D3 and some negative dependence between D1 and 
D3. It is used to illustrate how we calculate each of the measures of diversity and to show 
how the range of values from negative to positive dependence varies amongst them. For 

these classifiers Q1,2 = 0, Q2,3 = 0.71 and Q1,3 = -0.5, i. e. D1 and D2 are independent, 

D2 and D3 are positively dependent and Dl and D3 are negatively dependent. Combining 

them gives an average value of Q=0.07 suggesting fairly independent classifiers. This 

example will be used to illustrate how all the following diversity measures are calculated 

and it will be referred to as `the Example in Table 3.4'. 

The Kohavi-Wolpert variance (KW) [50] 

Kohavi and Wolpert introduce this measure in [50]. They give a formula for the error rate 
of a classifier, showing the variability of the predicted class label b for training object, x 
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Table 3.4: AN EXAMPLE OF CLASSIFIERS FOR THE NON-PAIRWISE DIVERSITY 
MEASURES 

Train Set Classifiers kw, ic Ent 

Z Dl D2 D3 l(zj) L- l(zj) l(zj)(L - l(zj) min{l(zj), (L - l(zj))} 

zl 1 0 0 1 2 2 1 

Z2 1 0 0 1 2 2 1 

Z3 1 1 1 3 0 0 0 

Z4 0 1 1 2 1 2 1 

Z5 1 1 1 3 0 0 0 

Z6 1 1 0 2 1 2 1 

Z7 0 0 1 1 2 2 1 

Z8 1 0 1 2 1 2 1 

Z9 0 1 1 2 1 2 1 

zlo 0 0 0 0 3 0 0 
Accuracy: 0.6 0.5 0.6 Totals: 14 7 

The corresponding pairwise tables are: 

D2(1) D2(O) D3(1) D3(O) D3(1) D3(O) 

D1(1) 0.3 0.3 D2(1) 0.4 0.1 D1(1) 0.3 0.3 

D1(0) 0.2 0.2 D2(0) 0.2 0.3 D1(0) 0.3 0.1 

as 
c 

variance-, =2 1- EP(b = wIx)2 (3.5) 

i=1 

where P(b = wilx) is estimated as an average over different data sets. We adapt their 
idea by looking at the variability of b for x using the classifier models D1,... ' DL. Instead 

of considering the class labels in SZ, we consider oracle-type outputs, that is two possible 

classifier outputs: correct (1) and incorrect (0). Thus, P(b = 1ix) and P(b = Oix) will be 

obtained as an average over the set of classifiers, D. If we denote by l (z j) the number of 

classifiers from D that correctly recognise zj, i. e., l (zj) =E 17rj, i we obtain: 

P(b =l lx) =1 
(fand 

and P(b = Olx) =LL 
(X) (3.6) 

Substituting (3.6) into (3.5), 

variances =1 
(1 

- P(b = 1x)2 - P(b = OIx)2) , 
(3.7) 
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and averaging over the whole of the training set Z, we obtain the kw measure of diversity 

as 

kw = NL2 I(Z. i)(L - l(Zj))" (3.8) 
j=1 

Using the example in Table 3.4 and the values calculated in the 5th, 6th and 7th columns 
(labelled kw) we obtain: 

10 1 kw =E l(zj)(3 -1(zj)) 10x9j`1 

= 90x14=TO=0.15 

The higher the value of the Kohavi-Wolpert variance the more diverse the classifiers. 

The measurement of interrater agreement (i) [28] 

If we denote p to be the average individual classification accuracy in the ensemble, then 

j EN 11(z)(L-1(Zj)) (3 N(L -1)p(1- P) . 9) 

and so is can be shown to be related to kw and D as follows 

K=1-(L-1)P(1-P) kw=1-2p(11-pD. (3.10) 

The value of rc for the Example in Table 3.4 requires the average P which is 15+0 
3 . 6+0.6 _ 

0.56, with this we obtain: 

- 1- 
3x14 

1-x2 x0.56 x0.43 

1-0.950 = 0.0498 
4.91 

n can take negative values with the lower the value the more diverse the classifiers. 

The entropy measure (Ent) [60] 

For oracle-type, 0/1 outputs, we can obtain the highest value of diversity amongst a group 
of classifiers for a particular object, zj E Z, when LL/2J of the votes have one value (1 

or 0) and the other L- LL/2J votes have the alternative value (0 or 1). That is, just a 
majority were correct /incorrect and just less than the majority were incorrect/correct. If 
they were all 0's or all 1's, there would be no disagreement, and the classifiers could not 
be deemed diverse. One possible measure of diversity based on this concept is the entropy 
measure: 

N 
Ent = N(L - LL/2J - 1) 

Emin{l(zj), L - l(z3)} 
. (3.11) 

j_1 
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Our measure is a non-classical entropy measure because it does not use the logarithm 
function. For our study into these diversity measures [99] a referee pointed us to a more 
traditional approach given by Cunningham and Carney [18] (we denote it here as Ecc)" 
We compare these two measures to show that our measure is worthwhile. If we take the 

expectation over the whole feature space, let the number of classifiers L -+ inf, and use 

again 1(zß) as the number of 1's (correct outputs) in the team, the two expressions become 

Ent(l(z2)) =1 min{l(z5), 1 - l(zj)} and (3.12) 

Ecc(l(zj)) = -l(zj) log(l(z? )) - (1-1(z5)) log(1- l(zj)). (3.13) 

0.8 ..... .... ..... .... 

0.6 ..... ..... 

0.4 ........ 

0.2 ..... ..... ..... 

0 
0 0.2 0.4 0.6 0.8 1 

Figure 3.1: THE TWO ENTROPY MEASURES Ent(l(zj)) (THIN LINE) AND E c(l(zj)) 
(THICK LINE) PLOTTED VERSUS 1(zj). 

Figure 3.1 plots the two entropies versus t(ý(zj). We can see that the two measures 
are equivalent up to a (nonlinear) monotonic transformation. This means that they will 
both have a similar relationship with the ensemble accuracy. As Ent is easier to handle 

and quicker to calculate, we continue to use it in our experiments. 
For the Example in Table 3.4 and using the calculations in the last column (labelled 

Ent), we can calculate Ent as follows: 

1 io 
Ent = l-oEmin{l(zj), 3-1(zj)}. 

j=1 

_1 x7=O. 7 

For Ent the higher the value the more diverse the classifiers. 

The measure of difficulty (0) [39] 

For this measure, we define a discrete random variable X which takes values in { 9,11; 
, ... , 1} 

and denotes the proportion of classifiers in V that correctly classify an input x drawn ran- 
domly from the distribution of the problem. The measure of difficulty 0 is then defined 

as 
0= Var(X). (3.14) 
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For the Example in Table 3.4 the estimated probability mass function for a variable X 

with values in {23,3 
' 
23,311 is shown in Figure 3.2 

xf fx x2 fx2 

0 0 0.1 0 0 0 
3 0.3 0.1 

9 30 
2 0.4 4 4 8 

15 9 45 

1 0.2 0.2 1 0.2 
Totals: 1 17 

30 
37 
90 

Figure 3.2: AN EXAMPLE OF THE PROBABILITY MASS FUNCTION FOR THE 
MEASURE OF DIFFICULTY 

The variance is then calculated as: 

2= 
ßf2-(fX)2 

_ 
37 

-1 
(17 )2J_ 0.09 

90 30 

The lower the value of 9, the more diverse the classifier team. 

The generalised diversity, (GD) [83], and the coincident failure diversity (CFD) [82] 

For this measure of diversity, let Y be a random variable expressing the proportion of 
classifiers (out of L) that are incorrect on a randomly drawn object xE t' and let pi be 

the probability that i randomly chosen classifiers are incorrect for a randomly chosen x, 
i. e., p(Y = 1). (Note that Y=1-X, where X is the variable introduced for 0). If we 

also denote, 

L 

Lpi, (3.15) p(1) Z 
i=l 
L 

and p(2) pi. (3.16) 

t-1 L (L - 1) 

then the generalised diversity measure, GD, is calculated as: 

GD =1- 
p(2) (3.17) 
P(1) 

For the Example in Table 3.4, we have po = 0.2, pl = 0.4, p2 = 0.3 and p4 = 0.1 which 

allows us to calculate GD as, 

P(l) 5 x0.4+3 x0.3+3 x0.1=0.43 
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102132 
p(2) = 3x2x0.4+3x2x0.3+3x2x0.1=0.2 

GD = 1- 
0.2 

= 0.538 
0.43 

For GD the higher the value of the generalised diversity the more diverse the classifiers. 
The coincident failure diversity, CFD is a modification of GD proposed in (82]. 

CFD = 
0'1 

L L-i 
p0 = 1; 

(3.18) 
1-Po Z., i_1 pil Po <1 

Since po = 0.2 0 1, CFD for the Example in Table 3.4 is, 

CFD = 018 
(2 

x0.4+2 x0.3+2 x0.1) =1.25x0.55=0.6875 

Like the generalised diversity measure, for the coincident failure diversity the higher 

the value the more diverse the classifiers. 

3.2 Limits of the measures 

The upper and lower limits for the measures of diversity depend on the number of clas- 
sifiers, L, and the value of p, the individual classifier accuracy. The limits for the case 
with two classifiers with equal individual accuracy p have been determined by Kuncheva 

and Whitaker in [60]. Here we are interested in the situation with three classifiers it is 

necessary to extend this work with two classifiers to the three-classifier case. 
In order to calculate the upper and lower limits for a three classifier case, we must 

consider the most diverse and least diverse classifier outputs we can have for each particular 
measure of diversity, for a range of classifier accuracies, p. To simplify the process we 
assume that all three classifiers have identical accuracy. 

3.2.1 The case of Identical Classifiers 

The least diverse set of three classifiers we can have is always when all three are identical 

and the pairwise 2x2 table will be of the following form: 

D2 correct (1) D2 wrong (0) 

Di correct (1) p 0 
D1 wrong (0) 0 1-p 

So for the measures of diversity we can substitute these values into the formula to get 
the formula for the identical case. 

1- 0 
QavID =3X3P 1-P +0 

1, 

if a, b, c, d <1 

otherwise 
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=1 Vp 
1x3 p(1-p)-0x0 PavID -3+0 0+1- p +0 0+1-p 

_ 
p(1 -p) 

__p(1-p) _1 dp 
p 1-p p(1 -p) 

DavID =3 x3x(0+0)=0 Vp 

DFavID =3 x3x(1-p)=1-p Vp 

For each of the pairwise tables a=p, b=c=0, d=1-p, and as we are considering 
three classifiers, L=3. Recall that l(zj) is the number of classifiers from D that correctly 
recognise z2. As the three classifiers are all identical, for p of the zj, 1(z? ) =3 and 
(3 -1(zß)) =0 and for the remaining 1-p of them 1(zß) =0 and (3 - l(z1)) = 3. So 
l (z1) (3 -1(zß)) =0 for all cases. Thus we can calculate the identical case for kw, n and 
Ent. 

N 
kwJD = 9N 

E l(zj)(3 - l(zj)) = 9N x0=0 (3.19) 
j=1 

= 1- sE il(zj)(3-l(zj)) 1ID =1-0=1 (3.20) 
2Np(1 - P) 

EntID =N Emin{l(zj), 3 - l(z5)} _Ox0=0 (3.21) 
j=1 

(3.22) 

For the measure of difficulty we need to consider the p. m. f. for the three identical classifiers, 
shown in Figure 3.3.0, the variance of X, is then calculated as: 

P 

1-P 
M-- 

1 

0/3 1/3 2/3 3/3 

xf fx x2 fx2 

0 i-p 000 
3U090 
29U 

1pp1p 

Totals: 1pp 

Figure 3.3: THE PROBABILITY MASS FUNCTION FOR IDENTICAL CLASSIFIERS 

EfX2 
-/ 

EfX 2 
Ef I\ f/) 

p/2 

=p -p2 (3.23) 
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For GD and CFD, recall that we are concerned with the probability p;, that Y=, 

where Y=1-X, the proportion of classifiers that fail on an object. For the identical 

case we have : 

PO =A pi 0) p2=0andp3=1-p 
3123 

thus p(1) _E 
Zpz 

= 3P1 + 3P2 + 3p3 = p3 =1-A 

3 10 21 32 
and p(2) _32 p1_3 2p1 

+3 
2p2 

+3 
2p3 = p3 = 1- p 

soGDID = 1-pý2ý =1- 
1-p=0 

and since Po < 1.0 

(3.24) 

(3.25) 

CFDID -13 
3- i_12101 

1-ýo Pt 1-p L '-1 + -2ý2-+ -2P3] =0 (3.26) El-2 

3.2.2 The case of Highly Diverse Classifiers 

The case of the most diverse classifiers is more difficult. The problem must be split into 

two halves, the case when 0.5 <p<3 and the case when 3<p<1.0. This is because the 

possible overlaps of 0/1 outputs are different for either side of p=3. If we consider the 

three classifier case with p=3 the most diverse case is when they each have a different 3 

of the data which they misclassify. For p<3 there is an overlap where two of the three 

classifiers are incorrect but there is no instance where all three are correct. For p>3 
there are no cases when more than one classifier is incorrect but there are cases when all 

three are correct. Figures 3.4 illustrates the case when p<3 and 3.5 illustrates the case 

when p>3. 

The corresponding pairwise tables for figure 3.4 are: 

D2(1) D2(O) 

D1(1) 2p-1 1-p 

D1(0) 1 -p 0 

D3(1) D3(O) 

D2(1) p! 2 p! 2 
D2(0) p/2 1- 3p/2 

D3(1) D3(O) 

Di(1) p/2 p/2 
Di (O) p/2 1- 3P/2 

The three-way table can also be determined as: 

D2(1), D2(1) D2(1), D2(0) D2(0), D2(1) D2(0), D2(0) 

D1(1) 0 2p -1 p/2 1- 3p/2 

D1(0) p/2 1- 3p/2 0 0 
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kw, n Ent 

D1 no. D2 no. D3 no. ABAxB min 
A, 

B} 
1 0 1 2 1 2 1 

2N 

1 2 1 

(1 - p)N 0 1 2 

pN 
0 1 2 

2 1 

(1- p)N 
1 2 1 

0 1 2 

pN 

0 1 2 

(1- p)N 1 2 1 

2N 

0 1 1 2 1 2 1 
N N N Totals: 2N N 

where A= l(zj) and B= (3 -1(zß)). 

Figure 3.4: THE MOST DIVERSE CLASSIFIERS FOR p: 5 3 

We can calculate the p. m. f. of X for 0 from this information: 

xf fx x2 fx2 

00000 
12- 3p 3(2 - 3p) 9 

9(2 - 3p) 
2 3p-1 3(3p-1) 

s 
s(3p-1) 

10010 

Totals: 1pp-9 

The corresponding pairwise tables for figure 3.5 are: 

D2(1) D2(O) D3(1) D3(O) D3(1) D3(O) 
D1(1) 2p-1 1-p D2(1) 2p-1 1-p D1(1) 2p-1 1-p 
Di (0) 1-p 0 D1(0) 1- p0 D1(0) 1-p 0 
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D1 no. DZ no. D3 no. 

kw, n 

ABAxB 

Ent 

min{A, B} 

1 0 1 2 1 2 1 

(1 - p)N 

0 2N 2 1 2 1 

1 3 0 0 0 

pN 1 3 0 0 0 

0 2 1 2 1 

(1- p)N . . 
0 2 1 2 1 

pN 1 3 0 0 0 

1 3 0 0 0 

0 2N 2 1 2 1 

(1- p)N 
0 1 1 2 1 2 1 

pN pN pN Totals: 6(1 - p)N 3(1- p)N 

where A= l(zj) and B= (3 - l(zj)). 

Figure 3.5: THE MOST DIVERSE CLASSIFIERS FOR p>2 

The three-way table can also be determined as: 

D2(1), D2(1) D2(1), D2(0) D2(0), D2(1) D2(0), D2(0) 
D1(1) 3p-2 1-p 1-p 0 

D1(0) 1- p 0 0 0 

We can calculate the p. m. f. of X for 0 from this information: 

x f fx Xz fx2 

0 0 0 0 0 
1 
3 0 0 9 0 
2 3(1-p) 2(1-p) y 

3(1 -P) 
1 3p-2 3p-2 1 3p-2 

Totals: 1 p 3 (5p - 2) 

By considering the tables in the two figures 3.4 and 3.5 and in particular the pairwise 

and three-way tables we can calculate the various diversity measures for the most diverse 
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case. We denote M< to be the diversity measure for the case when p<3 and M> for 

the case when p>3. Also for the pairwise diversity measures we denote Mz, ý to be the 

pairwise diversity between classifier Di and D2. Thus, M<1,2 denotes the pairwise diversity 

between classifier D1 and D2 when p<3. Looking at figure 3.4 gives the information 

required for p<3 and figure 3.5 gives the information required for p>3. 

Q for the diverse case 

Consider the case for Q when p<3: 

(2p- 1) x 0_ (1- p)2 Q<1,2 = (2p- 1) x 0+ (1 -p)2 
-1 (3.27) 

Q<1,3 =2x 
(1 

_2- 

(2 
- 

2p (3.28) 
2x 

(1 
2)+ 

(P2-)2 1-P 

_ 
1- 2p Q<2,3 -1_p 

(3.29) 

Thus, QAV< =1 i_+1-2p+1-2p _ 
1-3p (3.30) 

3[1 -p 1 -p 3(1 -p) 

and similarly the case for Q when p>3: 

Q>1,2 = Q>1,3 = Q>2,3 = Q<1,2 = -1 (3.31) 

Thus, QAV> _ -1 (3.32) 

p for the diverse case 

Consider the case for p when p<3: 

(2p-1)x0-(1-p)2 p-1 (3 33) 
2p-1+1-p) 1-p+0 p . 

2- p2 
_ P<1 3= 

1- 2p (3.34) 
, 22 p (iP+l- 2) 

2(1 - p) 

P<2,3 = 
1- 2p 

- p) 2(1 
(3.35) 

Thus, PAV< =1 
[p -1+ 1-2p 

+ 
1-2p 

=_l 
3p2 - 3p +1 ] (3.36) 

3p 2(1 -p) 2(1 -p) 3 p(1 - p) 

and similarly the case for p when p>3: 

-1 = P<1,2 = (3.37) P>1,2 = P>1,3 = P>2,3 
p 

p 

Thus, PAy> =pp1 (3.38) 
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D for the diverse case 

Consider the case for D when p<3: 

D<1,2 = 2(1 -p) (3.39) 

D<1,3 =p (3.40) 

D<2,3 =P (3.41) 

Thus, DAV< 
2p +2- 2p 

_2 (3.42) 
33 

and similarly the case for D when p>3: 

D>1,2 = D>1,3 = D>2,3 = D<1,2 = 2(1 - p) (3.43) 

Thus, DAVE = 2(1 - p) (3.44) 

DF for the diverse case 

Consider the case for DF when p<3: 

DF<1,2 =0 (3.45) 

DF<1,3 =1- 
32 (3.46) 

DF<2,3 =1- 
3p (3.47) 

Thus, DFAV< =23 
3p (3.48) 

and similarly the case for DF when p>3: 

DF>1,2 = DF>1,3 = DF>2,3 = DF<1,2 =0 (3.49) 

Thus, DFAV> =0 (3.50) 

KW for the diverse case 

For KW we need to consider the total values calculated in the fourth large column in 

the table in figures 3.4 and 3.5 marked KW at the top. Consider the case for KW when 

p<3: 

KWG 2N 2 
= TN =5 (3.51) 

and similarly the case for KW when p>3: 

KtiV>_6(1- )N-32 
(1-P) (3.52) 
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n for the diverse case 

For P. we also need to consider the total values calculated in the fourth large column in the 

table in figures 3.4 and 3.5 marked n at the top. For this case, the average accuracy of the 

three classifiers p" =p since they are all considered to have the same accuracy. Consider 

the case for is when p<3: 

3 2N 
- -1 

3p2 - 3p -}-1 (3.53) 
2Np(1 - p) 

-3 p(1 - p) 

and similarly the case for n when p>3: 

1 
2N 

(p) 
-1- 

j 
=P-1 (3.54) 

P(1 -P) pp 

Note that these are the same as the diverse limits we established for p. 

Ent for the diverse case 

For Ent we need to consider the total values calculated in the fifth large column in the 
table in figures 3.4 and 3.5 marked Ent at the top. Consider the case for Ent when p<9 

Ent< =N=1 (3.55) 

and similarly the case for Ent when p>3: 

Ent> = 
3(1 N )N 

= 3(l -p) (3.56) 

0 for the diverse case 

In order to calculate 0 we need to consider the p. m. f. of X the proportion of classifiers 

which correctly classify an object x. Consider the case for 0 when p<3: 

Bý =p19- (i)2 =p-9- p2 (3.57) 

and similarly the case for 0 when p>3: 

9> _3 
(5p - 2) 

- (g)2 = 
5p 2- 

p2 (3.58) 
1133 

GD for the diverse case 

In order to calculate GD and CFD we need to consider, the proportion of classifiers which 
fail to correctly classify an object x. 
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p<3 p>3 

PO 0 3p-2 

pi 3p -1 3(1-p) 

P2 2_'3P 0 

P3 0 0 

From this information, we calculate: 

12 
P(1)< = 3P1+312+p3 

= (3p-2)+3(2-3p) =1-p 

p(2)< = 
3p2 

+ps = 5(2 - 3p) 

P(1)> = 
3(3(1 

-p)) =1 -p 

p(2)> =0 

Consider the case for GD when p<3: 

GD<=1-p(2) _1- 
1 

p(l) 1-P 3(1 -p) 

and similarly the case for GD when p>3: 

GD>=1- 
0 

1 =1 
_p 

CFD for the diverse case 

57 

(3.59) 

(3.60) 

(3.61) 

(3.62) 

(3.63) 

(3.64) 

Since po <1 for both cases we use the formula for CFD. Consider first the case for CFD 

when p<3: 

CFD< =110 (Pl + 
ZP2) 

= (3p - 1) +2 (2 - 3p) = 
32 (3.65) 

and similarly the case for CFD when p>3: 

-p) (3.66) 

3.2.3 Examining the limits 

The upper and lower values established for the measures of diversity are shown in Table 3.5. 
Recall the example for the non-pairwise diversity measures we considered previously as 
shown in Table 3.4. We can compare the values obtained for each of the diversity measures 
with what we now know about the theoretical values we could have obtained. This will 
give us an insight into how much real-world levels of diversity differ from the theoretical 
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Table 3.5: LIMITS FOR THE DIVERSITY MEASURES IN TERMS OF p 

Diversity 

Measure 

Diverse Value for 

p<3 

Diverse Value for 

p>3 

Identical 

Value Vp 

Q 1-3 
3 1-p _1 1 

p [' ] 1 p(1-) P 3 P 

DF 23 3p 0 -P 
0 p-9-p2 5p-3-p2 

3 p-p2 
!C 

1 32-3+1 
- 1-P 

P-1 
p 

1 

D 3 2(1-p) 0 

KW 2 
9 

2(1 -p) 0 

Ent 1 3(1 -p) 0 

GD 1 
3(1-p) 1 0 

CFD 2E 1 0 

levels of diversity attainable. The example had classifier accuracy P=0.57 and so we need 
to consider the formulae for p<3. If we recall the average value of Q for these classifiers 

was 0.07 suggesting that the ensemble was close to independent. Table 3.6 shows the 

theoretical limits, the actual value and, if we project the distance between the upper and 
lower theoretical limits onto the unit scale, the distance from 1, (with identical classifiers 

at 0 and diverse classifiers at 1). 

Table 3.6: EXAMINING THE DIVERSITY VALUES FOUND IN THE EXAMPLE 

Diversity Measure Theoretical Limits Obtained Value Projected Distance 

Q 1 to -0.55 0.07 0.6 

p 1 to -0.205 0.053 0.786 

DF 0.43 to 0.096 0.2 0.7 

0 0.245 to 0.0023 0.09 0.698 

K 1 to -0.36 0.0498 0.698 

D 0 to 0.6 0.46 0.69 
KZW 0 to 0.22 0.15 0.7 

Ent 0 to 1 0.7 0.7 

GD 0 to 0.775 0.538 0.694 

CFD 0 to 0.855 0.686 0.802 

This shows us that the diversity measures consider the ensemble from the example 
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to be diverse, since the obtained values are all much closer to the diverse, than to the 

identical end of the range. 
Using the information we now have about the theoretical limits, we can illustrate the 

range of values we can obtain for the different measures of diversity. This will enable us 

to compare the real-world situation to the theoretical possibilities in terms of range of 

diversity values obtained. Figures 3.6 and 3.7 show the upper and lower limits for the ten 

measures of diversity for the case with L=3 and pE [0.5,1.0] [99]. 

D kw Ent GD CFD 
11111 

0.5 

16-6 

0.5 0.5 

IL 

0.5 0.5 

0 
0.6 0.8 100.6 0.8 100.6 0.8 100.6 0.8 100.6 0.8 

Ppppp 

Figure 3.6: THE POSSIBLE RANGE OF VALUES (GREY AREAS) FOR THE FIVE (t) 

MEASURES OF DIVERSITY FOR pE [0.5,1.0] INDIVIDUAL CLASSIFIER ACCU- 

RACY AND L=3 CLASSIFIERS 

0 
1p 

00 

0.6 0.8 1_1 0.6 0.8 1 
pp 

K DF H 
111 

0 0.5 0.5 

-1 0.6 0.8 100.6 0.8 1 0.6 0.8 

Ppp 

Figure 3.7: THE POSSIBLE RANGE OF VALUES (GREY AREAS) FOR THE FIVE (J. ) 

MEASURES OF DIVERSITY FOR pE [0.5,1.0] INDIVIDUAL CLASSIFIER ACCU- 

RACY AND L=3 CLASSIFIERS 

3.3 Existing empirical studies of Diversity 

There are several studies investigating the nature of diversity and its relationship to conibi- 

nation methods [106-108]. Some authors have also used a measure of classifier output cor- 

relation to enforce diversity within an ensemble during training of the classifiers [68-70,90]. 

A further approach is the `overproduce and choose' strategy which can be used to produce 

an ensemble of accurate and diverse ensembles. This approach creates an initial large set 

of classifiers and then uses one of several methods to choose a subset of classifiers which 
is both accurate and diverse [37.38.89]. 
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There is a proven relationship to date due to Turner and Ghosh [106,107] who showed 
that under certain assumptions the average combination method produces accuracy which 
is related to the correlation between the classifier outputs. Extending this work they also 
showed similar relationships for combination using minimum, maximum and mean [108]. 

Also the concept of negative correlation training of neural networks has enjoyed some 
interest and has been developed showing promising practical results for both regression 

and classification [68-70,90. As with Turner and Ghosh the average combination method 
is used. Ensembles can also be built using the random subspace method, which modifies 
the training data by sampling data features to give each classifier in the ensemble a slightly 
different data set to train on. Ensembles built using the random subspace method and 
aggregated using majority vote are reported to correlate well with a diversity measure 
based on entropy [17,18]. 

Masulli and Valentini found that dependence among errors was one of the main fac- 

tors affecting the effectiveness of error correcting output codes [77]. They analysed the 

relationship between performance, design and dependence among output errors in ECOC 

learning machines. They compared the dependence between ECOC-monolithic made of a 
single multi-layer perceptron and ECOC-PND made up of a set independent and parallel 
dichotomizers on three data sets from UCI (glass, letter and optdigits) and one synthetic 
data set. Their results show that dependence among computed codeword bits is signifi- 

cantly smaller for ECOC-PND showing that ensembles of independent dichotomizers are 
better suited for implementing ECOC classification methods. 

3.4 Experimental set-up to investigate the diversity mea- 

sures 

We again used the two databases seen in Chapter 2 from the UCI Repository of Machine 

Learning Database: The Wisconsin breast Cancer Database(wbc) and the Pima Indian Di- 

abetes Database. We use the same experimental protocol as used in the previous chapter, 
in summary: We used the first 10 features from wbc so that we could run an exhaustive 

experiment with all possible partitions. The wbc data has 569 objects, 2 classes and 10 

features and is trained using a hold-out (random halves) method. The Pima data has 768 

objects, 2 classes and 8 features and is trained using ten-fold cross-validation. 
For the wbc data we use all partitions of 10 features for 3 classifiers of the form 4,3,3 

(4200 ensembles) and 4,4,2 (3150 ensembles). For each partition we designed one ensemble 

of three linear classifiers and one ensemble of three quadratic classifiers, resulting in 8400 

4,3,3 ensembles and 6300 4,4,2 ensembles. For the Pima data we took all partitions of the 

form 3,3,2 using 10-fold cross-validation to obtain a total of 560 ensembles. 

We then considered: 
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1. The range of values for the measures of diversity. 

2. The correlation between each measure of diversity and all other measures of diversity. 

3. The correlation between each of the methods of combination and each of the measures 
of diversity. 

The correlation coefficient used was Pearson's Product Moment correlation coefficient. 

3.5 Diversity Measures Results 

3.5.1 Overall Diversities 

Examining the breast cancer data results, we found that the minimum observed value 
of the individual classifier accuracy, p, was 0.6258, the maximum was 0.9579 and the 

overall mean was 0.8927. For the Pima data, the minimum was 0.6328, the maximum was 
0.7734 and the overall mean was 0.6962. Tables 3.7 and 3.8 show the observed range of 
values for the ten measures of diversity compared with their theoretical limits for wbc and 
Pima respectively. Based on the observed minimum and maximum accuracies mentioned 
previously, we have taken pE (0.6,0.95] for wbc and pE [0- 6,0.8] for Pima. The theoretical 
limits were deduced from the graphs shown previously in Figures 3.6 and 3.7. The graphical 
representation is used to illustrate how much the observed and theoretical ranges differ 
from each other. The larger rectangle represents the length of the theoretical range of 
diversities possible. The black section of the rectangle corresponds to the observed range 
of values we found in our experiments. This idea corresponds to the unit length we 
discussed earlier in reference to Table 3.6. Here however we have scaled it so that we can 
compare not only the theoretical and observed values for each diversity measure, but also 
compare the ranges of the different diversity measures to each other. For example, kw has 

a much smaller range of theoretical (and observed) values than does Q. 
Considering the breast cancer data shown in Table 3.7, Q, p and c can all take negative 

values when classifiers are negatively correlated. Given that none of these measures has 

any observed negative values, we can conclude that the classifiers are not very diverse for 

the breast cancer data. The measures where low values indicate high diversity, (4. ), except 
DF and 0, have high values, toward the right end of the range, as shown in Table 3.7. The 

measures where high values indicate high diversity, (t), except for GD and CFD, have 
low values. This suggests, that the classifiers are less diverse than they could theoretically 
be. For the Pima data we see that the range of diversity for each measure is considerably 
less than for the breast cancer data, illustrated by the narrower black bands in Table 3.8. 
The observed values do show that the classifiers are even less diverse than for the breast 

cancer data, with not even DF and 0 indicating particularly diverse classifiers. 
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Table 3.7: THE OBSERVED RANGE OF VALUES FOR THE DIVERSITY MEASURES 

COMPARED WITH THE THEORETICAL LIMITS POSSIBLE FOR THE OBSERVED 

VALUES OF p FOR THE BREAST CANCER DATA 

Diversity Theoretical Limits Observed Graphical 

Measure for pE [0-6,0.95] Range representation 

Q (.. ) [-1.00,1.00] [0.35,0.97] 
p (4. ) [-0.5,1.00] [0.19,0.70] -. ý 

DF (,. ) [0.00,0.40] [0.05,0.10] I 

' (,. ) [-0.50,1.00] [0.10,0.70] 

9 (4. ) [0.00,0.24] [0.05,0.09] [Q 

D (I-) [0.00,0.66] [0.05,0.28] 

kw (1) [0.00,0.22] [0.02,0.09] 

Ent (t) [0.00,1.00] [0.07,0.42] 

GD (t) [0.00,1.00] [0.27,0.74] 

CFD (r) [0.00,1.00] [0.43,0.86] 

(0) theoretical; () observed range of values. 

It is interesting to note that even though the measures do not indicate that all the 

classifiers are identical or close to identical, the average accuracy of the team was quite 

similar to the average best individual accuracy, especially for the wbc data. Thus a range 

of values of diversity did not span a similar range of improvement /degradation of team 

accuracy. This is an early indication of the lack of any strong, exploitable relationship 
between diversity measures and team accuracy in real-life classification problems. 

3.5.2 Relationships among the diversity measures 

For the case of correct/incorrect (1/0) classifier outputs (oracle-type outputs), kw differs 

from the averaged disagreement measure D by a coefficient [62]. Also for the case with 
L=3 classifiers, kw and Ent differ by a coefficient (Appendix A. 1, proposition 3). This 

in turn means that the disagreement measure and Entropy differ by a coefficient for the 

three classifier case, with correct/incorrect, outputs, i. e., 

kw = 
L2L 1D (1/0 outputs) 
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Table 3.8: THE OBSERVED RANGE OF VALUES FOR THE DIVERSITY MEASURES 
COMPARED WITH THE THEORETICAL LIMITS POSSIBLE FOR THE OBSERVED 
VALUES OF p FOR THE PIMA DIABETES DATA 

Measure Theoretical Limits 
for pE [0.6,0.8] 

Observed Span Graphical 

representation 

Q (4. ) [-1.00,1.00] [0.57,0.78] 

p (4. ) [-0.5,1.00] [0.30,0.46] (- 

DF (4. ) [0.00,0.40] [0.16,0.19] 

K (j. ) [-0.50,1.001 [0.29,0.46] 

0 (4. ) [0.00,0.22] [0.11,0.13] 

D (T) [0.00,0.62] [0.23,0.30] 11 .1 

kw (t) [0.00,0.22] [0.08,0.10] 

Ent (t) [0.00,1.00] [0.34,0.45] 

DGD (t) [0.00,1.00] [0.38,0.49] 

CFD (t) [0.00,1.00] [0.54,0.65] ýý 

(j) theoretical; (. ) observed range of values. 

r 

kw =3D 

kw =9 Ent 

D=3 Ent 

(1/0 and L= 3) 

(1/0 and L= 3) 

(1/O and L= 3) 

The following results are an expansion of our study into combination methods and diversity 

measures [99]. We were interested in how the different diversity measures might be related 
to each other. In order to investigate these relationships we calculated the correlation 
between their values and illustrated them as shown in Figure 3.8. Since we have two types 

of diversity measure, those measuring similarity (, 1) and those measuring diversity (t) we 

would naturally expect some of the measures to be highly negatively correlated. Since we 
are interested in any relationship and not whether it is positive or negative, we have taken 
the absolute values of the correlation coefficient. The intensity of the colour in Figure 3.8 
is determined by this correlation. The stronger the correlation the lighter the colour. 

To further aid analysis of these relationships we used a clustering program to illustrate 
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Figure 3.8: THE OVERALL CORRELATION BETWEEN THE DIVERSITY MEA- 
SURES. THE STRONGER THE CORRELATION THE LIGHTER THE COLOUR. 



3.5. DIVERSITY MEASURES RESULTS 65 

the strength of the relationships between the different diversity measures. Figure 3.9 shows 
the dendrograms formed when we cluster the diversity measures using average-linkage 

relational clustering'. The lower the branches joining the different diversity measures the 

stronger the relationship between them. 
Looking at the colours in Figure 3.8 and the height of the branches in Figure 3.9 and 

comparing them with the corresponding figures for the combination methods (2.5 and 2.6) 

we see that the colours are much lighter and the branches are much lower for the diversity 

measures showing that the diversity measures are more correlated with each other than 

the combination methods are. The colours are also lighter for the diversity measures with 
the Pima data set than with the breast cancer data indicating that the diversity measures 

were more correlated on this data set. 
Looking at both the shade diagrams and the dendrograms we can see that the relation- 

ships are more complicated than for the combination methods with quite different clusters 
for the two data sets. We can see for both data sets that D, kw and Ent are identical 

on the basis of the correlation coefficients. Looking at figures for the breast cancer data 

it is easier to identify clusters but for the Pima data the diversity measures are so closely 

correlated that it is very difficult to split them into consistent clusters. It appears that 

p, 'c, GD and CFD are fairly closely correlated to each other, but it is interesting to note 

that GD is more correlated to is (for wbc) and to 0 (for Pima) than to CFD which is 

actually a more similar measure from a derivation point of view. DF only has correlation 

with 0 and even that is not very strong for the Pima data. DF measures the proportion 

of examples which a pair of classifiers both misclassify. Based on the correlation colours 

and the cluster dendrograms it seems that this is different to the other diversity measures. 

3.5.3 Relationship with accuracy 

One of the key questions when we consider diversity is `how can we make the best use of 
diversity? ' One approach is to try to force an ensemble to be diverse. Negative correlation 

can be enforced into an ensemble to increase the accuracy of a multiple classifier sys- 
tem. Liu and Yao propose a negative-correlation training method for ensembles of Neural 

Networks with considerable success [68,69,71,117]. 

Liu and Yao have carried out a series of studies into using negatively correlated neural 

networks on two data sets from the UCI machine learning repository [68-70,117]. Using 

Australian credit card assessment data and the Wisconsin breast cancer data (which we 
have also used) they have shown that an ensemble of negatively correlated neural networks 
can perform significantly better than other systems for regression tasks without any noise. 
Their algorithm enforces negative correlation within the ensemble by encouraging different 

The clustering routine and the dendrogram drawing routine are from the package PRTOOLS for 

Matlab (26] 
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individual networks to learn different parts or aspects of the training data, and then by 
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The networks are trained simultaneously to allow interaction between different networks. 
They compare their algorithm with thirteen other algorithms and show that theirs is 

better than nearly all of them including CART, logistic discriminant, radial basis function 

and Naive Bayes (68,69). In further work they consider two approaches to breast Cancer 

diagnosis, a monolithic, feed-forward, evolutionary artificial neural network, and a set 

of several simultaneously trained, feed-forward networks to create an ensemble. They 

found on the highly non-linear, Chlorophyll-a prediction problem that negative correlation 
learning is statistically significantly better than independent training [117]. In the same 

study, using the breast cancer data again, they initially found that combining using simple 

average reduced the benefits of training with negative correlation. On analysing the causes 
they found that this was due to the fact that some of the constituent networks are more 
important than others as they have all learned different parts of the data. They found 

that by changing their combination method to combining by applying a `winner-takes-all' 

approach and for each area only using the network with the highest activation dramatically 

improved the testing error. 

Another way of using diversity is in the `overproduce and choose' strategy where a large 

set of classifiers is created and then the most accurate and diverse subset is chosen from 

them. Giacinto and Roli have produced several studies following this strategy [37,38]. 

They choose to use this overproduce and choose approach because direct generation of 

accurate and diverse ensembles is too difficult for the current state of the classification field 

of research. It also allows the exploitation of all ways of creating diverse candidates for the 

ensemble by varying net type, initial random weights, network architecture and training 
data. Their data consists of multi-sensor remote sensing images relating to an agricultural 

area near the village of Feltwell (UK) with the task of assigning one of five agricultural 

classes to each of 5238 testing pixels given 5124 training pixels and 582 validation pixels. 
They used several different overproduction phases to get different initial large sets of 
different types of classifiers. Their approach to choosing the subset of classifiers involves 

examining the number of coincident errors made by the classifiers. They cluster the 

classifiers into subsets by putting those with highly correlated coincident errors in the 

same cluster so that those in different clusters are error-diverse. At each stage of clustering 

a candidate ensemble is created by taking one classifier from each cluster and combining 
by majority voting using the validation set. Once the clustering is completed all of the 

candidate ensembles are compared and the one with the highest performance is chosen 

as the final ensemble. They proved that their approach is optimal and compared it with 
another overproduce and choose strategy and found it to be preferable. In a later study 
with Vernazza, they compared their approach to a further five strategies on the Feltwell 
data again, using three different diversity measures, Generalised Diversity, the Q-statistic 

and their own Compound Diversity which is in fact 1-Double Fault [89]. Using several 
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initial large sets from the overproduce stage, they found that it was not possible to identify 

the best `choose' strategy since it varied depending on the task at hand. 

In order to investigate how we can make use of diversity we look at the inter-relationships 

between the combination methods from the previous chapter and the diversity measures 
introduced in this chapter. 

3.5.4 Relationships between the combination methods and the diversity 

measures 

For each combination method we have a column of values, the accuracies (in the range 
[0 - 1]). There is one value for each of the different possible ensembles and there is 

one column of accuracies for each of the possible partition types (4,3,3 etc. ). For each 
diversity measure we also have a column of values, the diversities (range depending on 
the particular diversity measure, shown in Figures 3.6 and 3.7). Again there is one value 
for each of the different possible ensembles and a different column for each partition type. 
Thus each particular row for the combination methods and diversity measures corresponds 
to the same particular set of three classifiers. Therefore, we can compare the combination 

methods and diversity measures by comparing these values. We do this by calculating the 
Pearson's product moment correlation between these corresponding values. Figure 3.10 

illustrates these correlations for both the breast cancer and Pima data. 

As before the intensity of the colour in the Figure (3.10) is determined by the corre- 
lation. The stronger the correlation the lighter the colour. The darker colours in these 

shade graphs show that there is less correlation between the combination methods and the 
diversity measures than either the combination methods or the diversity measures show 

amongst themselves. In fact there is very little consistent correlation between the two. 
D/kw/Ent showed a slight correlation with MAX/MIN, 0 some correlation to MAJ and 
AVR, and DT and DF some correlation to MAJ. 

Table 3.9 shows the correlation coefficients obtained when combining all of the data 

for both wbc and Pima and comparing the diversity measure values and the combina- 
tion method accuracies. From Table 3.9, DF and 0 are the only measures which show 

correlation of size 0.5 or more with most of the combination methods. The correlation 

with BKS and WER is just under 0.5 for DF and is just under 0.5 with WER for 0. 
Overall, 0 shows stronger correlation with the combination methods than DF does. They 

show negative correlation values, which means that if the combination method has high 

accuracy then DF and 0 have low value, which reflects high diversity since they are of the 
(4. ) form. 
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Figure 3.10: THE CORRELATION BETWEEN THE COMBINATION METHODS 
AND THE DIVERSITY MEASURES. THE STRONGER THE CORRELATION THE LIGHTER THE 

COLOUR. 
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Table 3.9: THE CORRELATION COEFFICIENTS FOR THE RELATIONSHIPS BE- 
TWEEN THE COMBINATION METHODS AND THE DIVERSITY MEASURES. BOLD 
NUMBERS ARE THOSE WITH ABSOLUTE VALUE OF 0.5 OR GREATER. 

Q p[ D/kw/Ent DF n 0 GD CFD 
MAJ -0.0009 -0.1725 -0.0582 -0.8984 -0.1442 -0.9199 0.2139 0.3248 
NB 0.1461 0.0047 -0.2524 -0.7239 0.0430 -0.7660 ,, 0.0323 0.1216 
BKS -0.0902 -0.2060 0.0966 -0.4965 -0.2020 -0.5108. 0.2343 0.27764 
WER -0.0868 -0.1977 0.1014 -0.4633 -0.1955 -0.4747 0.2242 0.2661 ' 

MAX/MIN 0.1725 0.0017 -0.2430 -0.7690 0.0506 -0.7994 0.0200 0.0811 
AVR 0.0286 -0.1418 -0.0865 -0.8854 -0.1086 -0.9071 0.1768 0.2682 
PRO 0.0346 -0.1388 -0.1050 -0.8692 -0.0972 -0.8905;, , 0.1680 0.2428 
DT -0.0315 -0.2244 -0.0055 -0.8819 -0.1888 -0.9047,,, ' S", 0-2539 0.3384: 
ORA -0.4198 -0.6278 0.3822 -0.9646 -0.5817 -0.9384 0.6403 0.6886' 

3.6 Diversity Measures Conclusions 
4' 'r r 

In this chapter we introduced several diversity measures and studied the relationships 
between them and to the combination methods introduced in Chapter 2. We took a 
breast cancer data-set of 10 feature values for 569 patients and using all partitions of the 
form (4,4,2) and (4,3,3) for two types of classifier (linear and quadratic), conducted a set 
of four enumerative experiments. We also took a diabetes data set of 8 feature values for 
768 patients and conducted a set of ten-fold cross-validation experiments using all possible 

partitions of the form (3,3,2). 

We then considered the ranges of the diversity measures for the classifiers produced 

compared with the theoretical range and their implications for the accuracy of, the en- 
semble. In the previous chapter we studied the accuracy of ensembles formed fröm, these 

classifiers and found that they did not improve considerably over the average sin"gle" best 
individual classifier. This is probably due to the fact that the classifiers produced'were 
not particular diverse. 

Next we studied the correlation amongst the diversity measures. We found that for 
(0/1) classifier outputs with an ensemble of three classifiers D, kw and Ent are identical up 
to a coefficient. We also found that p, x, GD and CFD are fairly, consistently correlated 
whilst DF was not strongly correlated with any of the other measures. 

r 

w; 

We then proceeded to look at the relationship between the diversity measures and 
the combination methods introduced in Chapter 2. We found that there was very little 
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consistent correlation between the two. On combining all data, both wbc and Pima with 
all partition types, we found that DF and 0 had the strongest relationship with the 
combination methods. 

It is the fact that there is no simple, clear relationship between diversity measures and 
combination methods which makes the explicit use of diversity in multiple classifier systems 
such a thorny subject. In order to use diversity we would like to see a consistent, positive 
relationship showing that highly diverse ensembles have high accuracy on combination. 
Unfortunately we have not found this. 

Directly calculating the accuracy for the chosen combination methods currently makes 
more sense than calculating diversity and trying to predict the accuracy, with the mea- 
sures currently at our disposal. This is true even if the measure of diversity is easier to 

calculate than some combination methods, the ambiguous relationship between diversity 

and accuracy discourages optimising the diversity. It may be possible to create a hybrid 

measure which in some way combines accuracy and diversity into a single measure to be 

able to use diversity. For now, it is better to use diversity as mentioned in section 3.5.3 by 
trying to enforce diversity in the ensemble or using diversity to select an ensemble when 
following an `overproduce and choose strategy'. We shall consider this latter option in 
Chapter 5. 
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Chapter 4 

Perturb and Combine Ensemble 

Construction Methods 

So far we have considered the various ways of combining ensembles of given classifiers. We 

have also investigated how the diversity of an ensemble of classifiers can be measured and 
how this may be related to the ensemble accuracy. Now we will consider ways in which 

we can try to actively alter the diversity of the constituent classifiers in an ensemble. 
Recall figure 2.2, which showed what we can change in a multiple classifier system. Part 

D showed that we can alter the classifiers in an ensemble by modifying the training data 

on which they are built. This chapter deals with trying to create an ensemble of diverse 

classifiers by manipulating the training data in one of a various number of ways. These 

include Bagging, Boosting and Arcing algorithms [9,20,22]. These are usually referred 
to as Perturb and Combine methods because we first perturb the data to get different 

training sets and then we combine the classifiers built on them [8]. We hope that by 

doing this we can improve the ensemble performance (accuracy on combination) through 

producing more diverse classifiers. 

4.1 Bias and Variance 

There are many different definitions of bias and variance with regards to classifier combina- 
tion problems [24,50,95]. Freund and Schapire [32] found that it is not always necessarily 
easy or useful to use the bias-variance decomposition with boosting algorithms in classi- 
fication. Here we consider Breiman's definition [9]. Consider taking a large number of 
replicated training sets of size N from the same underlying distribution, and consider the 

average performance of the algorithms on them. Breiman shows that the average error 
can be decomposed into a noise term, a bias term and a variance term: 

PE(f) = 0.2 + 02(f) +V (f) (4.1) 

73 
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where f is the classifier produced by the algorithm, PE(f) is the average prediction error, 
a2 is the noise term, ß2 (f) is the bias term and V (f) is the variance term. 

Neural nets and decision trees tend to have low bias, but their problem is a high 

variance, they are unstable since they are sensitive to small changes in the learning set, or 
in the construction. For these methods the problem is how to reduce the variance. There 

are several methods that have been devised to address this problem. 

4.2 Bagging 

Breiman devised a method of manipulating the data to try to reduce the variance for 

unstable classifiers which he called bagging [7]. 
Suppose we have a training set T and we could obtain a large number of independent 

samples of this training set T1, T2, T3, ... each with the same number of objects, N, 

and coming from the same underlying distribution. If we take the ith sample we can 
construct a predictor function to act as our classifier DTi(x). Recalling the bias-variance 
decomposition of the error we can average all of the predictors to define a new predictor: 

D(x) = av=DTi(x) (4.2) 

According to Breiman, this function has the same bias as DT (x) but zero variance, result- 
ing in a lower prediction error [9]. 

Unfortunately, we cannot usually obtain the large number of independent copies Ti 

we require to take advantage of this approach. In order to overcome this problem we use 
Bootstrap Approximation. 

In Bootstrap sampling we sample from Z with replacement, for bagging we assume 
that all objects in Z have an equal likelihood of being chosen. Typically the size of the 
bootstrap sample is taken to be the same as that of Z, i. e., N. This can be carried out 
an unlimited number of times to obtain as many training sets as we wish. Each replicate 
contains on average 63.2% of the original training set [21]. Each of the bootstrap samples 
is then used to construct a different classifier which can be combined to give an ensemble. 
Bagging is useful as it is very easy to implement and construction of each bootstrap sample 
and classifier can be run in parallel thus computer run time is kept to a minimum. It is 
also resistant to errors due to noisy data [20]. However, it is not always as accurate as 
some other methods (5,20,30]. 

Skurichina and Duin investigated how the random subspace method and bagging com- 
pared when datasets have redundant features [101]. They considered one artificial, and 
five real two-class datasets from the UCI machine learning repository which they adapted 
to have high redundancy in the feature space. They found that the performance of bagging 

was unaffected by the redundancy in the dataset but rather on the data-dimensionality 
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and its relation to the training sample size. In highly redundant feature spaces where 

many of the features are noise, bagging was superior to the random subspace method 
but in datasets where the discrimination information is spread over all the features, the 

random subspace method was superior. 
Breiman has looked into new variants of bagging aimed at improving the performance 

by reducing both bias and variance in regression problems [12]. This is achieved by initially 

performing bagging and then altering the output values based on the outcomes from 

bagging. Next bagging is carried out on these altered output values. This process is then 

repeated until their stopping rule is satisfied. 

4.3 Arcing and Boosting 

Building a highly accurate classifier can be a difficult problem, however finding moderately 

accurate classifiers is a comparatively easy task. Boosting is based on the observation that 

finding many rough classifiers can be a lot easier than finding a single, highly accurate 

classifier. Boosting refers to a general and provably effective method of producing an 

accurate classification rule by combining moderately inaccurate classifiers [92]. 

To understand the idea of boosting we need to introduce the concept of weak and 

strong learners. As defined by Breiman in (8], a weaklearner is a computationally efficient 

algorithm which is only slightly better than random guessing for any distribution. While 

a stronglearner is accurate over the whole input space, not just the training set and so has 

low test error. Breiman then defines a boosting algorithm as being any algorithm which 

can take a weaklearner and boost it into being a stronglearner. 
Boosting was developed in answer to the question `Does the existence of a compu- 

tationally efficient weaklearner imply the existence of an efficient stronglearner that can 

generate arbitrarily accurate hypothesis? ' [8]. Schapire answered this question in the af- 
firmative by developing the first provable polynomial-time boosting algorithm [93]. Later 

Freund described a simpler and more efficient boosting algorithm which lie called boost- 
by-majority [29]. This had certain practical drawbacks, in that it requires prior knowledge 

of the amount they believe the classification algorithm to be better than random guessing. 
Together, Freund and Schapire then went on to develop the AdaBoost algorithm. Whilst 

not quite as efficient as boost-by-majority, AdaBoost is more practical since it is adaptive 
in nature and does not require the prior knowledge referred to above (31]. 

Breiman determines that AdaBoost and Freund and Schapire's other boosting algo- 
rithms do not in fact strictly fulfil the boosting assumptions [8]. He says that to satisfy 
the strict definition of a weaklearner the classes must not have any overlaps. He believes 

that these boosting assumptions are restrictive, since in virtually all real data situations 
there is some overlap between classes and no weaklearners exist. He prefers the term 
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`arcing' which he believes is less restrictive. Arcing stands for Adaptive Resampling and 
Combining algorithms. It refers to algorithms which 

1. assign weights to the training data 

2. build classifiers on the training data taking the weights into account, 

3. increase the weight for those data that were misclassified by the previous classifier, 

4. combine the ensemble of classifiers built to produce an overall classification rule. 

Freund and Schapire acknowledge that under the strictly defined rules of boosting there 

may be cases when there are no weak learners and that their boosting algorithms would 
indeed be called `arcing' algorithms according to Breiman's terminology [32]. The term 
boosting is commonly used to encompass these ideas, and in particular in association 

with the now renowned AdaBoost algorithm. To prevent confusion we will use the term 
Boosting in its broadest sense throughout the rest of this work. 

4.4 Which method to use? 

According to Breiman [8] the main contribution of both bagging and boosting on the 

reduction of the error is through reduction of the variance and in this, boosting is usually 
the better method. However, Freund et. al. 's experiments [32,95) showed that boosting 

can decrease both variance and bias in some cases but can also increase the variance whilst 

reducing the bias sufficiently to still ensure that the final error is reduced. 
We are particularly interested in the AdaBoost boosting algorithm [31] which has had 

considerable success with artificial and real-world data problems [5,8,30,85]. As well 

as being an off-the-shelf algorithm which only involves entering the data and hitting the 

start button, AdaBoost can usually take a good but not exceptional classifier such as 
CART and turn it into a procedure with performance close to the lowest achievable test 

set error rates. In fact, Breiman (at the NIPS workshop 1996 as quoted in [34]) referred 
to AdaBoost in combination with decision trees as the "best off the shelf classifier in the 

world". We will describe this algorithm in more detail below. It has been found that in 

circumstances without noise, boosting is clearly superior to bagging and that AdaBoost 

produces much more diverse ensembles than either bagging or randomising [20]. It is 

this diversity which can lead to greater improvement in accuracy for AdaBoost [103]. 

However bagging outperforms boosting when substantial classification noise is introduced. 

Unfortunately, it has also been observed that boosting can be paralysed [113], i. e., no 
further improvement is achieved when adding new classifiers to the team. 

For the remainder of this thesis we will be working predominantly with the boosting 

algorithm, called AdaBoost. 
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AdaBoost was originally designed to rapidly drive the training error to zero. The fact 

that it is also extremely good at reducing the testing error is a fortunate by-product [9]. 

The name AdaBoost comes from the phrase Adaptive Boosting. 
AdaBoost constructs classifiers by modifying the training set based on the previous 

classifier's performance. It does this by getting the new classifier to put more emphasis 
on those objects which the previous classifier found difficult to classify accurately. This 
is achieved by maintaining a distribution of weights over the training set, which can 
be modified as required on each iteration. Thus if the current classifier finds a certain 
object difficult to classify then that object will have greater weight for the next iteration. 
Conversely, if the current classifier finds a certain object easy to classify then that object 
will have less weight in the next iteration. 

4.5.1 The AdaBoost algorithm 

Some implementations of AdaBoost use a resampling method [9,22-24] and others use 
reweighting [5]. There is some disagreement about which to use and some studies have 

therefore compared both [9,34]. These implementations differ according to whether you 
resample from the original training set or attach weights to each data point and re-use the 

whole training set to build the next classifier. The choice of implementation does not affect 
AdaBoost too much although boosting with reweighting is a more direct implementation 

of the theory [5]. Research by Breiman suggests that there is very little difference in the 

results obtained using the two methods [9]. We have used a resampling method because 
this allows for any type of basic classifiers to be used. The reweighting method requires 
some modification of the underlying classifiers to allow them to accommodate the weights 
as input and so cannot be used with any type of classifier like the resampling method. 

For the resampling implementation, each weight determines the probability of its asso- 
ciated object being selected for the training set for an individual component classifier [24]. 
Initially all weights are set equal. On each round if a training object is not accurately clas- 
sified then its chances of being selected again for a subsequent training set are increased 
by increasing the value of its associated weight [94]. In this way the next classifier is forced 
to concentrate on the more difficult examples in the training set. In Figure 4.1 we show 
the basic algorithm for AdaBoost using the resampling implementation. 

We require as input, the training set Z and Kmax the maximum number of iterations 

we wish the algorithm to carry out. We initialise the weights associated with each element 
in the training set Wk. (i) i=I.... ,N to be equal (i. e. hr). At each iteration k, a bootstrap 

sample Sk is taken from the training set with replacement using the weights to determine 

each object's chance of being selected. On the first iteration, this process is identical to 
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Figure 4.1: THE ADABOOST ALGORITHM: THE RESAMPLING IMPLEMENTA- 
TION 

the bootstrap sample taken in bagging. As in bagging the size of the sample set is usually 
taken to be N, the same as the original training set Z. A classifier Dk is trained on this 

training set Sk and is then tested on the original training set Z to obtain the weighted 
training error, Ek: 

N 

Ek = Ed(i)lVk(i) 
i=l 

Yes 

Yea 

Let , Ok =10 

Re-initialise 
Wk(i)=, i=1---, N 

(4.3) 
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1 if Zi is misclassified by Dk 
where d(i) = 

0 if correctly classified 
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If Ek is greater than 2 then classifier Dk is considered to be too inaccurate (worse than 

random guessing for two class case). If Ek =0 we also encounter a problem since we need 
to use it as the denominator in the equation for the combining weights, , 0k, at the following 

step. Earlier implementations of AdaBoost [30] stopped when Ek >2 (error greater than 

50%) was reached and did not specify what to do with Ek = 0. Subsequently Breiman [8,9) 

suggested re-starting with re-initialised weights after either Ek =0 or Ek > and ignoring 

that iteration. We decided that it was not necessary to ignore the iteration when Ek =0 
(100% accurate individual classifier on the training set) since this gave us a good classifier 
to add to our ensemble. Instead we decided that giving a suitably large value to ß and re- 
initialising the weights was a better approach. Thus, when Ek >2 the weights Wk (i) are 

reinitialised to 1/N and we ignore that iteration. When Ek =0 we include that classifier 
in our collection, assign a value of 10 to ß1 and re-initialise the weights. 

When we obtain a classifier Dk with error 0< Ek < .1 we calculate the combination 

weight /9k as follows: 

13, _ 
1-Ek (4.4) 

rl; E 
k 

Next we update the weights for each object Wk+1(i), using the current weights Wk. 

and error Ek as 
0 

Wk+1(2) Wk(j)ß 
_ 

E 
jjy= 1 

Wk(i)ßß(9) 
(4.5) 

If we have not reached the required number of classifiers we repeat the process until 

we have obtained Km classifiers. Once we have obtained the required number we output 
the classifiers and the combination weights Dk, Ak=1, 

... , Kmax . 
The final decision for classification of a new object, x, is made by weighted voting 

between the Km classifiers. First, all classifiers label x and then for all Dk that gave 
label wt, we calculate the support for that class by 

µt(x) =Z in(ßk)" (4.6) 
Dk (x)=wt 

The class with the maximal support is chosen for x. 

4.5.2 Optimality of the combiner for AdaBoost 

The final support for each class is given by equation 4.6. If we re-call that 13 _ i7r, 
44L then 

4.6 can also be written as: 

mt(X) _Z In 
(ý1 

. 
Dk (x)=wt 

EJ: 
(4.7) 

110 was chosen after examining the sizes of 3 for various errors, Ek 
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The following theorem shows the rationale for this combiner, showing why it could be used 
as the support for each class, wt. It is described by Freund and Schapire in [31]. 

Theorem 1 Given an ensemble of classifiers D= {Dl,..., DL} with corresponding errors 
{El,..., EL}. 

Let Di(x) = si be the output of classifier Di for object x where si E SZ. 
Denote s= [sl,... 

, sL) and assume conditionally independent outputs, i. e., 
L 

P(siwi) = II P(sjlwi) j=1 

Then a set of Bayes-optimal discriminant functions are given by 

9ýýx) = log(P(wi)) + log 1 
EE3 jEI(w{) 

(4.8) 

(4.9) 

where I (wi) is the index set of all classifiers that assigned object x to class w1, i. e., D3 (x) = 
w;. 

Proof 

The set of Bayes-optimal discriminant functions are given by: 

9i(x) = log(P(wi) - P(s! wi)) i=1, ... ,c 

Taking assumption 4.8 into account, 

gi(x) = log(P(wi)) +log(P(slwi)) 
L 

= log(P(wi)) + log(II P(sj Iwi)) 
j=1 

= log(P(wi)) + log IH P(sj = wi) 
\\7Er(wi) 

= log(P(wi, )) + log II (1- E? ) 
EI (wi) 

= log(P(wi)) +E log(1-Ej)+ 
jel(wi) 

II P(sj 
7`' wi) 

ý I(w; ) 

II Ej 
ifI (wº) 

log(Ej) 
j 1(w; ) 

We call form an equivalent set of discriminant functions gi (x) by adding a term which 
does not depend on the class label i, 

L 

g1(x) = log(P(wi)) +2 log(1- EE) +E log(Ej) -E 1og(Ej) 
jEI(wi) 9 I(w; ) )=1 

= log(P(wi)) +E log(1- Ej) +E log(Ej) 
1EI(wi) W(w1) 
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-Z log(E, ) -Z log(Ej) 
9EI(ui) j4I(wi) 

= 1og(P(w1)) +Z (log(1 - EE) -1og(Ej)) 
jEI(wi) 

= 1og(P(wi)) +1 log 
(1 - Ej) 

Ej jEI(J ) 

4.5.3 Boosting the margins 
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One of the most unexpected phenomena seen in boosting experiments is that after the 

training error reaches zero the test error continues to decrease. In fact, even long after 
the training error has reached zero, even if the ensemble becomes very large, the test error 
does not usually increase due to overtraining as might be expected [8,85,95]. The main 

exceptions to this are the empirical results of Wickramaratna et. al., who found that 

boosting strong learners (radial basis function classifiers) led to performance degradation 

as the classifiers were forced to concentrate on outliers and the harder examples [1131. 

To explain this positive feature of boosting, Schapire et. al. used the concept of 

margins [32,94,95] originally suggested by Vapnik [110] and further developed in the 

context of support vector machines in his work with Cortes [16]. The main idea is that it 

is not enough to consider the training error in analysing performance, it is also necessary 
to consider how confident the classifiers are in their classification. They develop a measure 

of confidence, the margin, which allows them to prove that any improvement in the margin 

on the training set will guarantee an improvement in the upper bound of the testing error. 
Suppose that we have an ensemble of base classifiers and their associated combina- 

tion weights, normalised so that they sum to unity. For a particular example we have to 

consider the sum of weights for each class label. Schapire et. al. define the classification 

margin as follows [95]: 

Definition 1 The classification margin for an example is the difference between the weight 

assigned to the correct label and the maximal weight assigned to any single incorrect label. 

The margin is therefore a number in the range [-1,1] and to be correctly classified the 

margin of an example must be positive. The larger the margin, the more confident the 

classification. So a large, positive margin indicates a confident, correct classification. 
Schapire et. al. found that both bagging and boosting tend to result in an increase in 

the margin of examples and that they converge to a situation in which most examples 
have large positive margins [95]. Boosting, by its very nature, is aggressive in its tackling 

of examples with small margins since it actively focuses on these examples in subsequent 
rounds. This concept of margins is a possible explanation for why AdaBoost continues to 
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drive the testing error down even after the training error has reached zero. Schapire et. 

al. 's experiments show that maximising the margins usually results in better generalisation 

error. Long after the correct classification has been reached the margins are still being 

increased giving more and more confidence to the classification and resulting in better 

generalisation ability. 
The margins can be used in conjunction with algorithms other than AdaBoost as in 

the work by Hoche and Wrobel. They study the margins of training examples in order to 

actively determine the best number of features to include to get the right balance between 

speed and accuracy (42]. They develop an algorithm which monitors the average of the 

training sample margins as learners are built. When the actual improvement in the margin 
decreases below their expected improvement they add the next feature. 

Kleinberg considers that boosting algorithms are enforcing uniformity by de-emphasising 

easy examples (49]. By combining the weak learning iteration part of the AdaBoost algo- 

rithm with a stochastic-discriminant algorithm they confirmed this theory experimentally. 

4.6 Existing empirical studies about AdaBoost 

There are many experimental studies investigating various aspects of AdaBoost. Figure 4.6 

shows some of these studies and the aspect of AdaBoost with which they are concerned. 

4.6.1 AdaBoost and modifications 

Schapire (92] gives an overview of boosting. He highlights some of the main features of 
AdaBoost and shows some of the more important empirical results to date. These results 

show that AdaBoost generally performs as well as, if not significantly better than other 

methods. Schapire also highlights that one of the problems with AdaBoost, its overem- 

phasis of weight on certain examples, can in fact be turned to our advantage as a method 

of identifying outliers. Since AdaBoost concentrates weight on the harder examples, and 

outliers are hardest to classify, then those with the largest weight are often outliers. 
Kuncheva and Whitaker compared three different versions of AdaBoost an aggressive 

version, a conservative version and an inverse version (61]. They also looked at the pos- 

sibility of studying diversity, in this case the Q statistic, in conjunction with AdaBoost 

to identify the paralysis stage found by Wickramaratna in [113]. The aggressive version 
increased weights on incorrectly classified examples and decreased weights on those cor- 

rectly classified examples. The conservative version actively changes only one of these, 

either increasing weights on the incorrectly classified examples or decreasing weights on 
the correctly classified examples. The inverse version is opposite to the aggressive version, 
decreasing weights on incorrectly classified examples and increasing weights on correctly 

classified examples. This third approach may seem odd but it was included to see whether 
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Figure 4.2: THE VARIOUS ASPECTS OF, AND STUDIES INTO, ADAIIOOST 

actively avoiding overtraining by too much emphasis on incorrect examples would lead 

to better results. They found that in fact this was not the case, with the conservative 

approach having the most accurate results. They also found that the relationship between 

Q and accuracy was not particularly clear and could probably only be used to give a guide 
to the general trend in performance. 

Friedman, Hastie and Tibshirani found that AdaBoost fits an underlying model, that 

of additive logistic regression [34]. They also prove that after each weight update in the 
AdaBoost algorithm the weighted misclassification error of the most recent classifier is 

50%. This may be another reason why AdaBoost does not overfit more often. They 

use the reweighting implementation version of AdaBoost and determined that there is 
little connection between this deterministic reweighting version of AdaBoost and other 
randomized ensemble methods such as bagging and randomized trees. They compare 
four versions of AdaBoost using eight datasets from UCI and a decision tree as the base 

classifier. 
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9 Discrete AdaBoost-Freund and Schapire's [30] AdaBoost where the classifiers, D(x) : 

Rn -+ {-1, +1}. 
" Real AdaBoost-Schapire and Singer's [96] two algorithms using confidence rated 

predictions where D(x) : Rn -+ R with the sign of D(x) giving the classification and 
the size of D (x) I giving the confidence in the prediction. There are two algorithms 
because we need one for the two-class case and the other for the multi-class-case and 

are used with datasets as appropriate. 

" LogitBoost-fits additive logistic regression models by stage-wise optimisation of the 
Bernoulli log-likelihood. Again they have two versions, one for the two-class case 
and one for the multi-class case. 

" Gentle AdaBoost-works like Real AdaBoost but uses Newton steps rather than exact 

optimisation at each step. 

They found that the Real AdaBoost, LogitBoost and Gentle AdaBoost algorithms were 

on a par with each other, with the Discrete AdaBoost algorithm being slightly worse. 
In most of their experiments the error rate of Discrete AdaBoost was twice that of the 

other algorithms. They then proceed to introduce a slight modification to the algorithms 
to speed up computation running time. They do this by considering the weight of each 
training observation and only submitting those observations with weight greater than a 

certain threshold to the base classifier at each round. The weights are still updated for 

all of the training observations though, so that a particular observation can be discarded 

from some of the iterations but can be brought back in again at a later stage if its weight 
increases. Experiments using this show that very large computation reductions can be 

achieved using this simple adaptation. Another interesting point that they highlight is 

with the resampling implementation of AdaBoost. The common practice is to use the 

original sample size N to determine the bootstrap size. They identify that there is in fact 

no evidence to suggest that this is optimal in all or in any situation. This is something 

which we will look at in more detail later on. 
As has been found in other studies, one of AdaBoost biggest weaknesses is with noisy 

data, when it can concentrate too much effort on outliers and mislabelled data. Kim 

develops a new boosting algorithm, Averaged Boosting, which is more robust to noise 
than AdaBoost (47]. The difference between them is that AdaBoost uses the product of 
the classifiers and their coefficients whereas Averaged Boosting uses the average of the 

product of classifiers and their coefficients when updating the weights. The averaging 

means that not all the correctly classified examples are ignored and therefore not all the 

effort is concentrated on a few outliers and mislabelled examples in noisy situations. Kim 

carried out experiments on fourteen datasets from UCI using decision trees as the base 
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classifier. The results showed that Averaged Boosting was more robust than AdaBoost to 

noise and also outperforms bagging in low noise situations. Also, Averaged Boosting was 
comparable to bagging in high noise cases. 

Oza also looked at using averaging to increases stability and improve boosting per- 
formance [81]. The algorithm AveBoost takes into consideration all of the previous base 

classifiers distributions when calculating the next iteration's weight distribution rather 
than just the immediately preceeding distribution. This is achieved by initially calculating 
the distribution as for AdaBoost but then each element is averaged with the distributions 
from all previous iterations. Their experiments showed that this leads to results that are 
on a par with or better than those for AdaBoost on 9 datasets from UCI. 

Chawla et. al. noted that both boosting and bagging can have limitations on very 
large datasets [14]. This is because computation time becomes prohibitive. One solution 
to this is to take a subset of the data to be representative of the whole, but how do we 
ensure that vital information is not lost in the discarded data. They bypass this problem by 

partitioning the large datasets into random and disjoint subsets which are then distributed 
to different processors. As each processor is working independently the computation time 
is minimised and, hopefully we can create diverse classifiers. The classifiers produced are 
then combined by majority vote ensuring that we are utilising all available information. 
Their experiments were on three smaller (data sizes: 6435,10992,20000) datasets and one 
larger datasets (training size: 209529, testing size: 17731). Their results showed that this 
is a potentially very useful approach for very large datasets which cannot be practically 
handled by a single processor. 

Nock and Sebban investigate AdaBoost and give a theorem proving the efficiency 
of AdaBoost and an explicit version of the theorem of the upper bound of its training 

error [80]. They prove that optimising each weak hypothesis on a criterion which they 

call Z (and which is not accuracy) optimises the overall hypothesis. Using this idea they 
introduce their own boosting algorithm which they apply to the feature selection problem. 
It follows a feed-forward search method and adds the feature at each stage which increases 
the accuracy most when run using the boosting algorithm. If none of the potential features 
increase, they stop and use the current subset. They found that using this feature selection 
with boosting approach was better than using the whole feature set with neural networks 
on 13 out of 19 datasets, mostly from UCI. 

Ridgeway also looks at an alternative area for boosting to be used (88]. By viewing 
AdaBoost as a solution to the problem of minimising a loss function, boosting can become 

applicable to a variety of other problems such as non-linear regression, robust non-linear 
regression and non-linear exponential family and survival regression. He considers boosting 
to be equivalent to gradient-based functional optimisation algorithms that are able to fit 

non-linear functions to data. 
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4.6.2 Considering margins directly 

Rätsch, Onoda and Müller found that AdaBoost overfits with data where there are high 

noise levels since it asymptotically achieves a hard margin [86]. AdaBoost concentrates too 

much on a few hard-to-learn patterns and in a noisy situation this is clearly suboptimal 
behaviour. They propose a solution by introducing a note of mistrust in the data so that 

AdaBoost can ignore outliers and mislabelled data. They introduce several regularisation 

methods and generalisations of AdaBoost to achieve this. This soft approach is similar 
to, and inspired by, the route which people working with support vector machines have 

followed. Rätsch continues his work with AdaBoost in conjunction with Warmuth by 

developing the AdaBoost* algorithm [87]. This algorithm is able to explicitly maximise 
the minimum margin of the training examples up to a given precision. Thus it maximises 
the margin on separable classes and minimises the overlap between any two classes on 
inseparable cases. They compare AdaBoost* with standard AdaBoost using C4.5 decision 

trees and find that their modifications do indeed lead to an increase in the margins. 
Merler et. al. adapt AdaBoost in their experiments to deal with problems where 

there is a cost-sensitive issue [78]. They consider the two-class case for cancer diagnosis. 

Obviously a false negative diagnosis has much more serious implications than a false 

positive diagnosis. Thus they modify AdaBoost to update the weights differently for 

incorrect classification of different classes. They are actively increasing the margins of 

positive examples without modifying the margins of negative examples. 
Mason, Bartlett and Baxter decided that since AdaBoost implicitly seems to be max- 

imising the margins it may be possible to improve performance by trying to explicitly 

optimise the margins [75]. They develop the Direct Optimization Of Margins (DOOM) 

algorithm to do this. It works by using AdaBoost to generate a set of base classifiers 
before DOOM finds the optimal combination weights. They carried out experiments on 
ten datasets from UCI and on all but one dataset the combination produced by DOOM 

had lower testing error than using AdaBoost's weighted combination. Their investigation 

shows that this improved testing performance is achieved by sacrificing the training error 

rate. Also their plots of the margins suggest that the size of the minimum margin is not 
the critical factor in the generalisation performance. 

4.6.3 The multi-class case 

The version of AdaBoost which we have described and which we will be studying further is 

the two-class version. However there are other versions which are extensions to the multi- 

class case. Some of these rely on reduction of the problem to a series of binary problems. 
AdaBoost. M1 is a version which deals directly with the multi-class case but it requires 
the base classifiers to have accuracy of greater than 2 [31]. This is reasonable for the 
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two class case, where this is simply a requirement that the base classifiers be better than 

random guessing, but as the number of classes grows it becomes more and more difficult 

to achieve. To deal with this problem Eibl and Pfeiffer have modified AdaBoost. M1 by 

changing a single line of code [27]. This has resulted in an algorithm which guarantees 
to minimise the upper bound for their performance measure as long as the base classifier 
is better than random guessing, i. e., better than 1 with c classes. They also modify the 

stopping criterion to be softer. 
Schapire and Singer examined several generalisations for multi-class problems (96]. 

Their experimental results with these improved boosting algorithms showed that it is 

possible to achieve dramatic improvements in the training error when there is a reasonably 
large amount of data. On small, noisy datasets, however, the rapid decrease in the training 

error is often linked to overfitting with resulting degradation in the generalisation error. 
Takimoto and Maruoka also developed an information-based boosting algorithm which 

is able to tackle the multi-class problem without having to reduce it to a set of binary prob- 
lems [104]. Unfortunately in experiments, they found that their algorithm's performance 
was worse than other boosting algorithms such as AdaBoost. 

Allwein, Schapire and Singer consider the problem of the multi-class case with margin- 
based classifiers, and look at how it might be possible to reduce it to a set of binary 

problems [1]. They use AdaBoost and support vector machines to build the base classifiers 
using eight datasets from UCI and combine their outputs using decoding techniques which 
are similar in nature to error-correcting output codes. Interestingly they also prove that 
having mostly large margins for the training set implies that the generalisation error has 
improved bounds independent of the number of rounds of boosting. That is the bounds 

are tighter than those given by Schapire et. al. in (95]. 

4.6.4 Comparing with other methods 

Quinlan carried out his investigation into bagging and boosting with C4.5 decision trees 
in 1996 which has now become a benchmark study into AdaBoost's performance [85]. His 

experiments involved twenty-seven datasets from the UCI machine learning repository. 
They compared the reweighting implementation of AdaBoost with bagging using ten base 

classifiers in the ensemble. In this early investigation the AdaBoost algorithm stops when 
the training error reaches zero. He found that both bagging and AdaBoost substantially 
decrease the testing error with boosting generally better than bagging. However boosting 
can produce severe degradation with some datasets. He then changed the voting weights 
to a confidence measure in the classification of the training example and this led to some 
improvement. 

Following on from Quinlan's work Freund and Schapire carried out experiments com- 
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paring bagging with AdaBoost [30). They also compared their performances on twenty- 

seven datasets from UCI. They also looked in more detail at an algorithm which combines 
AdaBoost with a nearest-neighbour classifier. Their results showed that boosting is better 

with simple classifiers and is possibly helpful when observed examples have varying de- 

grees of hardness, or when the learning algorithm is sensitive to changes in the training set. 
They deduced that this was because the pseudo-loss version of AdaBoost concentrates not 

only on the hard to classify examples but more specifically on the incorrect labels which 

are hardest to discriminate. They were particularly surprised by the continued reduction 
in the testing error after the training error reaches zero. 

Bauer and Kohavi also compare bagging and AdaBoost and some of their variants 
in real-world experiments designed to look at the bias-variance decomposition [5]. They 
found that bagging and its variants always improved the performance even if only very 
slightly. They also found that boosting did not always improve performance and that it 
depended on the data. However, when boosting did improve it did so significantly. They 

also found that boosting results showed a higher variance but lower bias than bagging and 
that AdaBoost does not deal well with noisy data. 

Dietterich has also performed several investigations into AdaBoost, comparing it with 
other methods of constructing ensembles such as bagging and randomization. Randomiza- 

tion involves computing the twenty best splits at each internal node of a decision tree and 
then choosing one randomly. In experiments comparing bagging, boosting and random- 
ization using C4.5 trees, lie found that if there is little or no noise, boosting performs best 

and randomization may be slightly better than bagging [20]. However, in high noise cases 
(20%) bagging is much better than boosting and sometimes better than randomization. 
Also in large data sets bagging does not alter the training sample much and so there is not 
much improvement over the single C4.5 tree. In further experiments he identifies three 

reasons why an ensemble may work better than a single classifier [21]. These are: 

Statistical: if we have a set of decision rules with similar accuracy then we can average 
them to reduce the risk of choosing the `wrong' rule. 

Computational: decision rules can get stuck in local optima, so by starting from different 

points we can provide a better approximation to the `true' decision rule. 

Representational: often the true hypothesis cannot be represented by our available 

rules, thus a weighted sum of decision rules can expand the space of representable 
functions. 

Dietterich determined that bagging and randomization both predominantly tackle the 

statistical and to some extent the computational problem. AdaBoost however, tackles the 

representational problem and this is the reason he believes it to be fundamentally different 
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in approach to bagging and randomization. We also know that AdaBoost tends to overfit 
in high noise cases but it does not overfit as often as we might expect. Dietterich believes 

this is due to its stage-wise nature and lack of backfitting; it does not return and modify 

existing hypotheses or combination weights as it progresses. His experiments confirm these 

conclusions. 

Duffy and Heimbold use different terminology, they use the phrase `leveraging al- 

gorithm' to describe any learning algorithm which produces a combined hypothesis by 

iteratively calling a black-box learning routine to produce the individual hypotheses to be 

combined [25]. AdaBoost is therefore a leveraging algorithm and they introduce their own 

new leveraging algorithm in this paper. Their analysis suggests that their algorithm is 

likely to be better than AdaBoost on noisy data which is a known problem for AdaBoost. 

On a set of twelve, small, two-class datasets from UCI their algorithm and AdaBoost were 

comparable. They also carried out a second set of experiments involving UCI's LED arti- 
ficial data, which allows the addition of attribute noise, and with the mushroom and chess 
datasets where they flipped some labels to introduce noise. They found that for between 

10 and 20% noise their algorithm is significantly better than AdaBoost. 

Zhou, Wu and Tang have designed an overproduce and choose strategy called GASEN 

which is based on their theory that if there are many neural networks available it might 
be better to use only a subset [119]. Overproduce and choose strategies are based on 
the idea that it may be better to build a large number of classifiers and then select in 

some way the `best' subset of them. The difficulty is thus how to define what we mean 
by `best' and how to choose amongst all possible subsets. Zhou et. al. show equations 

which prove that it may be better to use a subset of neural networks and which could be 

used to identify which neural networks to omit from the ensemble. However, this method 

would be prohibitively computationally expensive for real-world applications. GASEN is 

one possible algorithm designed to help with this problem. Their experiments compare 
GASEN with bagging and AdaBoost using resampling on ten datasets from UCI. They 
found that GASEN not only generates smaller neural network ensembles but also has a 

stronger generalisation ability. 

Kleinberg compared stochastic discrimination to boosting and bagging with three dif- 
ferent underlying weak learning algorithms FindAttrTest, FindDecRule and C4.5 (49). 
Experiments with 17 datasets from UCI showed that stochastic discrimination outper- 
formed all the methods on 14 datasets. Also on 5 out of 7 datasets from Statlog stochastic 
discrimination outperformed 23 different combination methods. 
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4.6.5 Different combination methods 

Kuncheva also looked at using AdaBoost to build the base classifiers and then combining 
them in an alternative way (55]. She looked at various combination methods comparing 
fuzzy methods (fuzzy integral and decision templates) with some of the non-fuzzy meth- 

ods we have already seen (majority vote, minimum, maximum, average, product, naive 
Bayes) and weighted majority the standard method used with AdaBoost. Experiments 

carried out using three datasets available from UCI, two from ELENA and the author's 

own artificial dataset, found that the simple combining methods of minimum, maximum, 

product and average gave particularly poor results. Majority vote and naive Bayes had 

erratic performances and weighted majority, although stable, was slightly worse than the 

fuzzy combination methods. 
Lozano and Koltchinskii also use AdaBoost to create a set of classifiers before com- 

bining them using their own set of weights rather than those provided by AdaBoost [73]. 

They use an independent validation set in order to actively search for the set of weights 

which minimises the error on combining. Their algorithm involves considering the margin 

of those examples in the validation set. It is called DOOM-LP since it is directly opti- 

mising the margins as DOOM does, but the solution also involves solving a sequence of 
linear programming problems. Experiments showed that with eight out of ten datasets 

from UCI, DOOM-LP improved over using AdaBoost's normal combination weights. It is 

therefore on a par with DOOM's performance, but at a lower implementation cost. 
Skurichina and Duin study how different combination methods affect the performance 

of both bagging and boosting (102]. They carried out experiments using two artificial and 

one real dataset. Their results show that bagging is useful with unstable classifiers with 
critical training sample sizes, if the sample size is too small or too large bagging does 

not work as well. Also combining the classifiers from bagging with weighted majority 

vote, weighted average or product all produce better results than using simple majority 
vote. With boosting, the larger the training sample size the better and it does not depend 

so much on the instability of the base classifiers. Also boosting has generally better 

performance than bagging while the combining rule used is less important than in bagging. 

They conclude that the combining rule which is best is data-dependent and depends upon 
the training sample size but it is important. Also simple majority voting, which is usually 

used with bagging, tends to be the worst choice. 

4.6.6 Overproduce and choose 

Margineantu and Dietterich have taken this use of AdaBoost one stage further in an 

overproduce and choose strategy (74). AdaBoost is used to build a large set of classifiers 
before a pruning algorithm is used to choose a subset of classifiers to form an ensemble. 
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This approach is aimed at reducing the memory requirement and the computation costs 

without a serious loss of performance. They compared five different pruning algorithms 

on ten datasets from UCI using the resampling version of AdaBoost with C4.5 decision 

trees as the base classifiers. The combination weights from AdaBoost are used to combine 
the final, pruned ensemble as usual. Their results show that despite reducing the number 

of classifiers in the ensemble it is possible to obtain a nearly comparable performance to 

that obtained using the entire set. They also introduce the kappa-error diagram which 

gives a way of visualising the trade-off between accuracy and diversity and which we shall 
be considering further in the next chapter. 

Tamon and Xiang's work [105] follows on from Margineantu and Dietterich's work with 

pruning algorithms using one in particular - kappa pruning [74]. They use the reweighting 

version of AdaBoost building C4.5 decision tree classifiers. Once a classifier has been 

pruned from the ensemble their modification involves distributing the weight associated 

with it between all the remaining classifiers. They view this as a clustering-like process, 
in that the weight is distributed based upon the proximity of the other classifiers to the 

pruned classifier. Thus all the weights of the original ensemble are incorporated in the 

weighted voting to give the final hypothesis. Experiments on eight datasets show that 

this weight shifting can help improve the kappa pruning error rates sometimes. They then 

proceed to look more theoretically at how we can prune a subset of classifiers from the 

whole set in such a way as to minimise the training error of the ensemble. They do this 
by establishing a matrix where entry i, j is the margin of hi on example j and trying to 
develop an heuristic which can reduce the number of hypotheses (rows) without reducing 
the sum of the margins in each column below a certain threshold. They achieve a semi- 
feasible solution by turning this problem firstly into an integer programming problem and 
then into a linear program problem. 

4.6.7 Summary of Existing Studies of AdaBoost 

AdaBoost often has significantly better performance than other boosting methods. It 

can also be used to identify outliers since it places additional weight on those cases most 
difficult to classify which often turn out to be outliers [93]. After normalisation and 
updating of weights the weighted error of the most recent classifier on the data is 50% 

making each classifier likely to be different from the previous classifier [34]. 

AdaBoost is weakest on noisy data where it often performs considerably worse than 

other methods of classification. Some modifications to bring an averaging element into the 
AdaBoost algorithm were found to make it more robust with noisy data [47,81}. AdaBoost 

also has problems with very large data sets. These can be dealt with by using a set 
of processors each working on a disjoint partition of the data to build an ensemble of 
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classifiers separately before combining them using majority vote [14]. An alternative 

approach to deal with the noisy data problem is to build a level of mistrust into the 

AdaBoost algorithm [86]. This led to explicitly maximising the minimum margin of the 

training examples up to a certain precision [87]. 

The margins can also be used to deal with cost issues such as a difference in the 

consequences of false positive and false negative results. This is done by actively increasing 

the margins on either positive or negative examples as required [78]. This led to the DOOM 

algorithm which seeks to directly optimise the margins [75]. 

For the multi-class case there has been some work in breaking the problem down to 

a series of binary problems [1] as well as algorithms directly dealing with the multi-class 
format [31,104]. An original requirement of the AdaBoost algorithm was that the base 

classifiers had to have error of less than 50% (31], which is obviously restrictive for the 

multi-class case as the number of classes grows. Consequently there have been some 

modifications of the algorithm to deal with this [27]. 

There are many investigations comparing AdaBoost to other classification strategies [5, 

20,21,25,30,49,85,119]. They found that bagging always improves the performance and 
that boosting is generally better than bagging. However it can produce severe degradation 

with some datasets. Boosting is better with simple classifiers and on data with little noise. 
For high noise cases bagging is much better than boosting and is also sometimes better 

than randomisation. 
There are also several studies into using alternative combination methods after Ad- 

aBoost has produced an ensemble of classifiers rather than the usual weighted votes [55,73, 

103]. They show that fuzzy combination methods [55] or actively searching for an alterna- 
tive set of weights which minimise the error (73] both produce better results than the stan- 
dard weighted majority using weights provided by the AdaBoost algorithm. Skurichina 

concluded that the best combination method was not only data-dependent but also de- 

pended on the sample size of the training data [103]. 

Further studies have also shown that it is possible to use AdaBoost to build a large 

set of classifiers and then use a pruning algorithm to reduce the size of the ensemble, 

without dramatically altering the generalisation error [74,105]. We shall be looking at 
this Overproduce and Choose approach in the next chapter. 

4.7 Experimental set-up into how AdaBoost affects Classi- 

fier Diversity 

This section is based on a study presented at IPMU 2002 (98]. We are interested to see 

whether there is a link between diversity and accuracy of ensembles built by AdaBoost. 

We try to establish whether or not we could use the change in diversity as classifiers are 
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added to get the most benefit from AdaBoost. 
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For our experiments we used the Pima Indian diabetes database and the Haberman 

survival database, both taken from the UCI repository of machine learning database. 

Table 4.1 shows a summary of the data sets. The data sets are described in more detail 

in Appendices B. 9 and B. 3. 

Table 4.1: SUMMARY OF THE DATA SETS 

Name No. Classes Size of data set No. Features 

Pima Indian diabetes 2 768 8 

Haberman Survival 2 306 3 

By using AdaBoost with 10-fold cross-validation we were able to produce ensembles of 

100 classifiers. We used three types of classifiers: linear, quadratic and neural networks. 
The neural network consists of a single hidden layer of 15 neurons with a maximum of 300 

training epochs. 

As each new classifier was added to the ensemble we considered 

1. the training accuracy of the ensemble 

2. the testing accuracy of the ensemble 

3. the training diversity of the ensemble using the Q-statistic introduced earlier (3.1.1). 

For each classifier type and dataset, with both training and testing sets, we plotted the 

average change in the error against the number of classifiers. We also plotted the average 

change in training Q against the number of classifiers. We were interested in finding out 

whether Q can be used as a stopping criterion for AdaBoost. Therefore we identified the 

minimum training Q in each experiment. Our experiments showed that rather than rapidly 

reaching zero our training error actually fluctuated in value and so we also monitored the 

minimum training error. We considered these as potential stopping criteria, called `min Q' 

and `min TRE' respectively, and recorded their corresponding testing error. 
As we have already seen, AdaBoost is not particularly robust to noisy data (20,21, 

25,47,86,92] and we have subsequently found that Pima has some outliers which can 
lead to AdaBoost becoming overtrained [9]. It is not known whether Haberman also has 

significant outliers but if it does this may be the reason that the training error did not 

rapidly reach zero in our experiments as we would have expected. 



94 CHAPTER 4. ENSEMBLE CONSTRUCTION METHODS 

4.8 AdaBoost and Classifier Diversity Results 

Figures 4.3,4.4 and 4.5 show how the average training and testing errors change, and how 

the average training Q changes as AdaBoost adds classifiers to the ensemble. The top, 

left-hand graph in each figure shows the change in error versus the number of classifiers 
for the Haberman data. The top, right-hand graph shows the change in error versus the 

number of classifiers for the Pima data. The bottom, left-hand graph shows the change 
in Q for the Haberman data and the bottom, right-hand graph shows the change in Q 

for the Pima-Indian data. The thick, blue lines indicate the training run and the thin, 

red lines the testing run. Figure 4.3 shows the results for linear classifiers, Figure 4.4 the 

results for quadratic classifiers and Figure 4.5 the results for neural networks. 

Looking at the graphs we can see that the testing error is lower for the Pima data than 

the Haberman data although the difference is marginal for quadratic classifiers. Recall 

that AdaBoost is supposed to rapidly drive the training error to zero, however we see that 

with linear classifiers the training error is almost horizontal. For quadratic classifiers the 

training error is almost horizontal for the Haberman data and initially decreases before 

levelling off with the Pima data. We see slightly more of a decrease with the neural 

network classifiers before starting to level off. This is similar to the paralysis observed by 

Wickramaratna [113]. 

When we consider the testing error we see that for linear classifiers and for quadratic 

classifiers with Haberman data the graph is close to the training error and is almost 
horizontal. For quadratic and neural networks with Pima, the graph follows the same shape 

as the training error but is higher in value. For neural networks with the Haberman data 

we see that the testing error is considerably higher and fluctuates erratically suggesting 

overfitting. 

If we look at the lower, Q, graphs we see that for linear classifiers and quadratic 

classifiers with Haberman data there is almost no change in the value of Q with it being 

very close to 1. With quadratic classifiers and Pima data there is an initial decrease before 

the Q value levels off at approximately 0.8. These results suggest that the classifiers that 

are being added to the ensemble are all very similar and there is therefore not much to be 

gained by boosting them. This was reflected in the horizontal training error graphs. 
For the neural network classifiers we see that the Q value rapidly decreases as the first 

20 classifiers are added to the ensemble. After this point it continues to decrease but quite 
slowly as the rest of the classifiers are added until it reaches a value of approximately 
0.2. This suggests that the neural network classifiers are more diverse in the ensemble 
than with linear and quadratic classifiers, and the ensemble becomes more diverse as the 

ensemble grows. This seems to explain why the neural network training error reduced 

whilst the quadratic and linear classifiers training error did not. 
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From Figures 4.3,4.4 and 4.5 we can say that neither linear nor quadratic classifiers 
benefit from boosting using AdaBoost, but neural networks may be more suitable. We 

could have obtained the same level of testing error by using the first few classifiers for 

both linear and quadratic classifiers. 
Ideally we would like diversity to be more closely related to the training error. We 

had hoped that the `elbow' point on the Q graph would correspond to a similar turning 

point on the training error graph which would be where the error would slow down its 

decreasing. Then we could identify a suitable point at which to stop the AdaBoost algo- 

rithm. Unfortunately there does not appear to be a close enough relationship between the 

training error and Q to do this. Previous studies suggest that other diversity measures 

would not be much different from Q [92]. 
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Figure 4.3: CHANGE IN THE AVERAGE ERROR AND VALUE OF Q AS WE ADD 
LINEAR CLASSIFIERS TO THE ENSEMBLE. THE THICK, BLUE LINE IS THE TRAINING 
DATA AND THE THIN, RED LINE IS THE TESTING DATA 
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Figure 4.4: CHANGE IN THE AVERAGE ERROR AND VALUE OF Q AS WE ADD 
QUADRATIC CLASSIFIERS TO THE ENSEMBLE. THE THICK, BLUE LINE IS THE TRAIN- 

c ING DATA AND THE THIN, RED LINE IS THE TESTING DATA 

Figure 4.6 shows the average training and testing errors versus the average training 

Q for all data sets and all base classifiers. The blue line in the upper graph shows the 

training error and the red line in the lower graph shows the testing error. The ensemble 

consisting of a single classifier is at the far right at Q=1. As each classifier is added to 

the ensemble we plot the new value of Q and the error corresponding to it. The lines join 

these plots together and show how Q and the error changes as the ensemble grows. 

The lines have a general trend going to the left and downwards indicating that both 

the value of Q and the errors decrease as the ensemble grows. The black circles and arrows 
indicate where the minimum value of Q occurs and the pink circles and arrows indicate 

where the final N=100 classifiers occurs. These show that there is not much difference 

in the error observed at minQ and at N=100, but the minQ could reduce the number of 

v0 20 40 60 80 100 
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Figure 4.5: CHANGE IN THE AVERAGE ERROR AND VALUE OF Q AS WE ADD 

NEURAL NETWORKS TO THE ENSEMBLE. THE THICK, BLUE LINE IS THE TRAINING 

DATA AND THE THIN, RED LINE IS THE TESTING DATA 

iterations taken. The minimum testing error actually occurs before the minQ is reached 

and is not related to the value of training Q. 

We can see that there is little improvement in generalisation error gained by stopping 

the algorithm at the min Q point, however there is a computational advantage in that we 
terminate at an earlier point reducing the number of iterations. 

We now examine whether the computational advantage of terminating at an earlier 

point using minQ is consistent in all cases of our experiments. 

Table 4.2 shows the average number of iterations taken, (the number, L, of classifiers in 

the ensemble) and the corresponding test error obtained using three criteria to determine 

when to terminate AdaBoost, averaged over 10 independent runs. The stopping criteria 

PIMA 



98 CHAPTER 4. ENSEMBLE CONSTRUCTION METHODS 

Error 

72 

Trig Q 
Error 
0.255 

t .. tN=100 

minQ 

0.25 

0.245 

oll 
68 0.69 0.7 0.71 0.72 

Training Q 

Figure 4.6: AVERAGE ERROR VERSUS AVERAGE TRAINING Q FOR ALL DATA 

SETS AND BASE CLASSIFIERS. THE BLUE LINE IN THE UPPER GRAPH IS THE TRAINING 

ERROR AND THE RED LINE IN THE LOWER GRAPH IS THE TESTING ERROR. THE BLACK CIR- 

CLES INDICATE THE MINIMUM Q AND THE PINK CIRCLES INDICATE THE POINT WHERE ALL 100 

CLASSIFIERS HAVE BEEN BUILT 

used were: using all 100 classifiers (All), the minimum training error (minTRE) and 
minimum Q (minQ). The best performances for each case are shown in bold. 

The results show that all three criteria give a similar performance. Using all 100 classifiers 

and min Q are on a par with each other, with min THE slightly worse than both of them. 

However, min Q and min TRE both use less members in the ensemble, especially for linear 
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and quadratic classifiers. minTRE in particular uses considerably less than the full 100 

classifiers. 

4.9 AdaBoost and Classifier Diversity Conclusions 

In this chapter we have investigated the diversity of classifier ensembles built using the 
AdaBoost algorithm. We carried out experiments with two datasets- Haberman survival 
data with 3 features, 2 classes and 306 patients and Pima Indian diabetes data with 8 

attributes, 2 classes and 768 patients. We used ten-fold cross validation, building 100 

classifiers each time of three types: linear, quadratic and neural networks to produce a set 
of results. 

Our experiments show that there is no benefit in boosting either linear or quadratic 
classifiers, but there is a benefit in boosting neural networks using the AdaBoost algorithm. 
For neural networks we saw that AdaBoost is increasing the diversity of the ensemble (Q 

Table 4.2: TESTING ERRORS USING VARIOUS STOPPING CRITERIA 

Case Stopping Criterion mean L mean Test Error 
Pima All 100 0.2304 
Linear minTRE 11 0.2330 
Classifiers min Q 42.5 0.2304 

Pima All 100 0.2410 
Quadratic minTRE 34.5 0.2436 
Classifiers min Q 56 0.2462 

Pima All 100 0.2281 
Neural minTRE 67.3 0.2228 
Networks min Q 63.7 0.2254 

Haberman All 100 0.2624 
Linear minTRE 17.4 0.2656 
Classifiers min Q 37.9 0.2619 

Haberman All 100 0.2476 
Quadratic minTRE 9.9 0.2503 
Classifiers min Q 21.4 0.2476 

Haberman All 100 0.2729 
Neural minTRE 68.3 0.2872 
Networks min Q 65.1 0.2771 
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was decreasing) as classifiers are added to it. This may be due to the unstable nature of 

neural networks and the changing weights from AdaBoost. 

It is possible that future work may consider using the minimum Q either on its own or 
together with the minimum training error to determine a termination point for AdaBoost 

in order to increase generalisation performance. We have also found that a reasonably high 

accuracy can be obtained after the first few iterations. It may also be of use therefore, to try 

to enhance the performance of a small ensemble further by applying different combination 

methods on a reasonably accurate and diverse ensemble. Having established from our 
results that neural networks are suitable for use with AdaBoost, and from other papers 
that so are decision trees (e. g. [22]), we will only use these, discarding linear and quadratic 

classifiers from our further work. 



Chapter 5 

Improving AdaBoost 

Once again recall figure 2.2, which showed what we can change in a multiple classifier 
system. As we have seen in the previous chapter we can alter AdaBoost by manipulating 
the combination methods (figure 2.2 part A), or by using different types of classifier (fig- 

ure 2.2 part B). It has been shown that neural networks and decision trees are the most 
practical base classifier to use with AdaBoost [22]. Also, with the possible exception of 
fuzzy methods [55], the use of weighted majority to combine the classifiers produced by 
AdaBoost is on a par with other combination methods available. 

There are many works taking AdaBoost as a starting point, trying to improve it and 

modify it to different applications [25,47,74,75,78,80,81,86-88,105]. In this chapter we 
are interested in whether we can improve on the performance of standard AdaBoost with 
resampling by modifying some of its characteristics. 

The problem of complexity of the base classifier has been considered for decision trees 
by pruning, but the analogy in neural networks, examining the best number of hidden 
layers, number of neurons etc., has not. It is important to know whether complex or 
simple Neural Networks have higher ensemble accuracy on combination. Drucker [22] 

suggests that the number of hidden neurons is not crucial when used with AdaBoost, as 
the boosting algorithm compensates for any deficiencies in the constituent networks. This 
is supposedly due to the fact that AdaBoost only requires the classifiers to have error 
of less than 2. He decides on the architecture to use by running a few boosting rounds 
and comparing the error on a validation set with the training error, if they are similar 
then the architecture is assumed to be reasonable. We feel that it may be beneficial to 
investigate whether or not the choice of architecture has a greater impact on the ensemble 
performance than Drucker believes. 

The first part of this chapter therefore parallels those studies where the complexity of 
decision trees in relation to AdaBoost has been studied, for example whether or not to 

prune the trees [114]. Pruning using a separate pruning set can improve the generalisation 

101 
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of a single tree (79]. The question is whether the ensemble performance will be improved 

when the base classifiers are pruned. Dietterich (20] and Windeatt and Ardeshir [114] 

found that there was no significant difference between using a pruned tree and using the 

full tree. 
Recall that decision stumps are the simplest type of decision tree with only one split at 

the root node partitioning the data into two disjoint classification regions [19]. It is often 

possible to use an exhaustive search method to identify the best critical value for decision 

stumps, which would not be possible with more complex trees. It has been found that 

ensembles using stumps may work very well with certain distributions such as additive 
logistic models [34]. However, they may not work well if the distribution is not of the 

desired type and so it may be preferable to use more complex base classifiers in order to 

have a wider class of distributions for which we are guaranteed a good performance [6]. 

The case for decision stumps is that they are easy to implement and for most real-world 

cases they are powerful enough. However in less-common situations dependencies in the 
data may require more powerful and therefore more complex decision trees [33]. 

Clearly there would be an optimal pruning value (tree size) for every problem. We 

would expect a similar argument to hold for the neural network size. We are interested 

in whether AdaBoost benefits from a small, large or randomly mixed complexity of the 

constituent neural networks. The hope is that instead of trying to match the neural 

networks to the data, there could be a more general recommendation about the neural 

network complexity. In the first part of this chapter we consider modifying the complexity 

of the neural network base classifier and the size of the training sets sampled for each new 

classifier. 
Overproduce and choose is a strategy which is becoming widely used in association with 

combining methods [37,89,117]. It involves building a large number of base classifiers and 
then discarding some of them according to one of a variety of algorithms. This is done in 

the hope of producing a smaller ensemble of classifiers which does not significantly increase 

the ensemble error but takes considerably less computation time. In the second part of 
this chapter we consider whether we can improve on the AdaBoost ensemble's performance 
by following an overproduce and choose strategy, which reduces the size of the ensemble 
based on a combination of the error and diversity of the component classifiers. 

5.1 Modifying AdaBoost 

Drucker found that boosting neural networks outperforms boosting decision trees [22]. 

We consider the resampling implementation of AdaBoost (discussed in more detail in sec- 
tion 4.5.1) using Neural Networks as our base classifiers for our first set of experiments. 
The standard resampling implementation of AdaBoost, like that of Bagging, takes boot- 
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Table 5.1: DATA USED IN THE EXPERIMENTS 
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Data Size # Classes # Features Training Size N Testing Size Random Range 
Phoneme 5404 2 5 540 4864 270 - 1620 
Pima 

, 
768 2 8 691 77 345 - 2073 

Glass 214 6 9 192 22 96 - 576 

strap samples of the same size as that of the training data given. However as voiced by 

Friedman et al. [34] there is no obvious reason to take this value and there is no evidence 
that this is an optimal choice in all or any instance. It has been found that increasing the 

sample size (so it is greater than the training set size) for Bagging leads to a decrease in 

performance [103]. This is due to the classifiers being built on increasingly similar sample 

sets and therefore becoming less diverse. In this part of the chapter we consider the effect 

of using various values for the sample size and the number of neurons in the hidden layer. 

5.1.1 Experimental Set-up to investigate modifying the Training Set 

, Size and the Neural Network size 

For our experiments we used the Phoneme database taken from the ELENA databases, 

the Pima Indian diabetes database and the Glass Identification database, the latter two 
taken from the UCI Repository of Machine Learning Database. 2 Details of these sets of 
data are shown in Table 5.1. 

For each data set we ran various versions of AdaBoost and monitored the effects on 
the accuracy. We call bootstrap size N with 15 hidden neurons our "standard set-up", 
because this is the architecture we have been using for all our experiments with AdaBoost 

and there seems to be no standard in the literature. Each experiment was carried out 
using ten-fold cross validation so the results shown are averaged over ten runs. For the 
larger Phoneme database we used reverse-cross validation, i. e., we used one tenth of the 
data for training and kept the remaining nine tenths for testing. With the smaller Pima 

and Glass databases we used standard cross-validation training on nine tenths and testing 

on the remaining one tenth of the data. The fifth and sixth columns of Table 5.1 show the 

sizes of the training and testing sets supplied to AdaBoost. The seventh column shows 
the range of values that the sample size could take when random sample sizes were used. 

Multilayer Perceptron with a single hidden layer and 100 training epochs was used 
for all the experiments, using the routine TRAINLM from the neural network toolbox of 
Matlab 6.5 release 13. For the Glass dataset we found that the computation time was 

'Available via anonymous ftp at ftp. dice. ucl. ac. be, directory pub/neural-nets/ELENA/databases. 
2Available at http: //www. ics. uci. edu/Nmlearn/MLRepository. html. 
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Figure 5.1: THE AVERAGE TRAINING ERROR FOR PHONEME, PIMA AND GLASS 

WITH 15 NEURONS AND SAMPLE SIZE N 

excessive. Consequently, we only have results for the Glass data with bootstrap samples 

of size 2N and less, and number of hidden neurons of size 20 and less. We call this the 

restricted case when we compare with Phoneme and Pima (Res. Ph. and Res. Pim. 

respectively). 

5.1.2 Training Errors 

Figure 5.1 shows the average training error for Pima, Glass and Phoneme data. Glass and 
Pima show the shape we would expect from AdaBoost, with the training error rapidly 

going to zero. However, Phoneme shows a less typical shape. It gently decreases but does 

not go below 0.15. This is the same sort of shape as we found in the previous chapter in 

Figures 4.3,4.4 and 4.5 when we were using different parameters with the neural networks. 

This shape may be due to the fact that Phoneme is a much larger data set and we use 

a smaller proportion of the data for training, leading to less accurate classifiers. We also 

see different results for Pima in these experiments than in the experiments in Chapter 4. 

We have found out that this is because the Matlab version we were using to provide our 

neural networks was upgraded between the two sets of experiments. Also we modified the 

parameters from a maximum of 300 training epochs in the experiments in Chapter 4 to 

a maximum of 100 training epochs in the experiments in this chapter. This sees to have 

solved the training error problems we had in Chapter 4 as the training error now rapidly 

reaches zero. Unfortunately, the testing errors are not as low so it seems that the new 

neural networks are overfitting. 
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In this subsection we consider the impact on AdaBoost's performance of modifying the 

size of the bootstrap sample taken to train the classifier at each iteration. Firstly, we 
consider using a fixed value for the size of the set AdaBoost samples from the training 

set based on the original training set size N: 2 N, N, 2N, 3N, 4N, 5N. Afterwards we 
consider randomly selecting the size of the set Adaßoost samples from the training set 
from within {IN, N, 2N+1,.. ., 3N -1,3N}. 

Figure 5.2 shows results when modifying the sample size used to build the classifier 
at each iteration. In all the graphs the thicker, black line indicates the results using the 

standard bootstrap sample of same size as the original training set, denoted N, with our 
standard value of 15 neurons in the hidden layer. The x-axis in each plot shows the 

number of classifiers. The y-axis in each plot is the testing error obtained through 10-fold 

cross-validation. The lines indicate using various multiples of the training size N value, 
2N to 5N. The graphs for Phoneme and Pima are split into two parts for readability. 

Examining all of the graphs we find that using 2N or 2N have about the same if not 
slightly higher error rates than using N for Phoneme and Pima, but show slightly lower 

error rates for Glass after 20 classificrs have been added to the ensemble. Using 3N gives 
a lower testing error rate than N, with Pima and a similar testing error rate to N with 
Phoneme. 

If we used between 15 and 20 classifiers with the Pima dataset we would have consider- 
ably better performance with 3N or 4N rather than N or 5N bootstrap sample size. But 

tr for less than 10 classifiers 5N is the best choice. Similarly for Glass data, N is the best 

choice for less than 20 classifiers but 
2N is the best choice for more than 20 classifiers. 

This suggests that there is no clear reason why one sample size is better than another 
since the pattern does not show an increase or decrease in performance as the sample size 
increases. We believe therefore that the optimal sample size is data dependent to some 
extent. In order to optimise AdaBoost it may be'a good idea to conduct some preliminary 
experiments to find the best sample size to use as well as balancing computation time 

against accuracy gained. 

If we recall figure 4.5 for Pima we note that this shows a different line for 15 neurons 
and N sample size than we see in figure 5.2. This is partly because we arc averaging over 
10 runs so we will always get a slightly different result if we do not use exactly the same 
initial conditions since neural networks are unstable. However, the main reason that there 
is a difference is that there was an upgrade to Matlab between the two sets of experiments 
and we are therefore using different neural network programs thus producing different 

results. 
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5.1.4 Modifying the Number of Neurons Used 

in this subsection we consider the impact on AdaBoost's performance of modifying the 

number of neurons in the hidden layer of the neural network classifiers being built by 

AdaBoost. Firstly, we consider using a fixed value for the number of neurons: 2,5,10,12, 

15,20,30,40,50 neurons. Then we consider the effect of randomly selecting the number 

of neurons in the hidden layer from within 12,3,... 
, 
24,25} neurons. 

Figure 5.3 shows results when modifying the number of neurons in the neural network's 

hidden layer. The lines indicate different choices of the number of neurons ranging from 

2 to 50. The standard sample size N was used in all these experiments. The results for 

each data set are again shown in two subplots for readability. 

For the Phoneme data 2 neurons is a poor choice and 10 and 12 neurons gives the best 

results but there is not very much difference between the performance with 5,10,12,15,20 

and 40 neurons. For the Pima data using 2 neurons is much better than any of the others 

with 10 and 15 neurons the next best numbers of neurons to use. For the Glass dataset 2 

neurons is the worst and 5,10,12,15,20 neurons are fairly similar in performance with 10 

and 12 neurons being marginally better than the others. 

Examining all the graphs as a whole shows that the best value is data dependent and 
there is no clear overall, choice. It also shows that a variation in the number of neurons 
does affect the performance of the ensemble. This is contrary to Drucker's suggestion 
in [22) that any deficiencies in the performance of the networks due to the architecture 

will be made up for by the boosting algorithm. Our results suggest that it would be 

sensible to conduct a preliminary experiment to identify which number of neurons would 

produce the lowest testing er{or. 

5.1.5 Varying Both Sample Size and Number of Neurons 

Here we randomly select both the size of the bootstrap sample from {IN,..., 
2 3N} and 

the number of neurons from {2,3, 
... , 24,25}. 

Figure 5.4 shows results when randomly modifying the sample size, the number of 

neurons in the neural network's hidden layer or both. The graphs represent randomly 

changing the sample size, randomly changing the number of neurons in the hidden layer 

or randomly changing both, throughout the ensemble's growth. 

For the Phoneme dataset using N and 15 neurons is the worst choice, with randomly 

changing the sample size, number of neurons or both all showing a similar error rate, 
lower than our standard set-up. The results for the Pima and Glass datasets are more 

complicated. It seems that the best structure to use with these data sets depends on 
the number of classifiers you want in the ensemble. For less than 10 classifiers using 

randomly changing sample size and number of neurons is best with the Pima data set but 
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for between 15 and 30 classifiers it is considerably worse than all the other methods. For 

the Glass results after 25 classifiers have been added, randomly changing the sample size 

and randomly changing both the sample size and the number of neurons are the better 

options with randomly changing both having the slightly lower testing error. Using our 

standard of sample size N and 15 neurons is the best choice up to about 20 classifiers after 

which its performance deteriorates considerably and is the worst of them all between 25 

and 35 classifiers. 

Examining all three graphs shows that there is again no `right' choice and so consid- 

erations such as time must also come into play. Since the more parameters we modify, 
the more time is taken, random modification of N would seem to be a good compromise 
between performance and computation time. 
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Table 5.2: BEM PROCEDURE COMPARING THE ADABOOST IMPLEMENTATIONS 

Classifier 
D{ IN 

Test Error 

N 2N 3N 4N 5N 2N N 
Wins/Successes 

2N 3N 4N 5N 

1 0.229 0.237 0.266 0.235 0.269 0.271 1 0 00 0 0 

50 0.188 0.183 0.183 0.179 0.184 0.184 0 0 01 0 0 
Successes (Y;.? ) = 1 16 0 33 0 0 

We now proceed to statistically compare the various different values for the bootstrap 

sample size and the number of hidden neurons. We do this by adapting the BEM3 proce- 

dure for comparing competing pattern recognition algorithms used by Alsing et al in [2]. 

By comparing the testing errors (to find the minima) given by the classifiers for different 

implementations of AdaBoost we can select the best version for each iteration. Table 5.2 

shows the procedure for calculating the number of successes/wins for each bootstrap sam- 

ple size with the Phoneme data. For each classifier the method with the lowest error wins 

and gets 1, in the event of a tie between k methods each method gets -1. The total value 

of successes for each method is then calculated. The conditional probability of procedure 

procj being the best for data set 'W 1 is calculated as: 

P(procjlWj) - 
Ylj 

(5.1) 
vi 

10 where Y1 is the number of successes for procedure i on dataset j, and vj is the size of 
dataset jf . The total probability of procedure procj being the best for all the data sets is 

then calculated as: 
P(proci) = P(ProczlWj)P(Wj) (5.2) 

where P(Tj) is the probability of dataset j (for comparing Phoneme and Pima, P(Ph) 

P(Pim) = 0.5, and for all three P(Ph) = P(Pim) = P(Glass) = 3. 

Tables 5.3 and 5.4 show the number of successes for each bootstrap sample size and 

each number of hidden neurons. The bold numbers refer to the maxima for each dataset 

and each modification (Bootstrap size or number of neurons). 

First we consider the overall probabilities calculated by Equation (5.2) for the Phoneme 

and Pima datasets together, then we consider all three datasets (recall that we exclude 
bootstrap sample sizes > 2N and hidden neurons > 20 as we do not have this information 

for the Glass dataset). These results are shown as the final two rows of Tables 5.3 and 
5.4. The results show that the best performance for the Phoneme data is with sample size 
3N and 12 hidden neurons. For the restricted version (sample size < 3N, < 30 neurons) 

3Bechofer, Elmaghraby, and Morse 



5.1. MODIFYING ADABOOST ill 

N is the best sample size and again 12 hidden neurons. Similarly with Pima, 4N works 
best but N is best if we restrict it to less than 3N. With the number of hidden neurons 

we can see that the results for Pima are biased very much in favour of 2 neurons. With 

the Glass dataset, 2N and 10 hidden neurons are the best. If we consider the results with 
both Phoneme and Pima we find that 3N and 2 neurons are the winners. For all three 

datasets with the restricted range of values we find that N is the preferred sample size 

and 2 hidden neurons is best. The fact that the number of hidden neurons that wins is 
2 is hardly surprising considering the results for Pima. The fact that 2 neurons did so 

Table 5.3: SUCCESSES, Y{/j, FOR DIFFERENT BOOTSTRAP SAMPLE SIZES 

Data Bootstrap Sample Size 
2N N 2N 3N 4N 5N 

Phon. 1 16 0 33 0 0 
Ph. Res. 1 36 13 X X X 

Pima 4 4 1 11 19 11 

Pim. Res. 16 20 14 X X X 

Glass 28 16 6 X X X 

Total Probabilities of being the best: 

Ph&Pim 0.05 0.20 0.01 0.44 0.19 0.11 
All 0.30 0.48 0.22- 1 X X X 

Table 5.4: SUCCESSES, Y1/j, FOR DIFFERENT NUMBERS OF HIDDEN NEURONS 

Data Hidden Neurons 
25 10 12 15 20 30 40 50 

Phon. 0 1 11 22 0 3 1 8 4 
Ph. Res. 0 1 12 23 2 12 X X X 
Pima 48 0 0 0 0 0 1 1 0 

Pim. Res. 49 0 0 0 0 1 X X X 
Glass 01 51 271 171 1 0 X X X 

Total Probabilities of being the best: 

Ph&Pim 0.48 0.01 0.11 o. -22 To 0.03-1 -0'. 02 0.09 0.04 
All 0.326 0.04 1 0.26 0.26 0.02 0.086 X X X 
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well suggests that AdaBoost may be adversely affected by outliers within the Pima data. 

This has been suggested previously as a reason for the poorer performance of AdaBoost 

on this data [9]. Our results suggest that it would be sensible to conduct a preliminary 

experiment to identify which number of neurons would produce the lowest testing error. 

5.2 Kappa-error diagrams and Pareto-optimal sets 

Recall the studies using overproduce and choose strategies with AdaBoost building the ini- 

tial ensemble of base classifiers, which we discussed in the previous chapter (Chapter 4.6.6). 

This section looks in more depth at one `choose' method in particular, the method intro- 

duced by Margineantu and Dietterich: Kappa-Error Convex Hull Pruning [74]. Here we 
hope to test the hypothesis that using Kappa-Error Convex Hull Pruning produces a con- 

siderably smaller ensemble of classifiers without significantly increasing the generalisation 
error. 

5.2.1 Kappa for class label outputs 

If we have two classifiers Da and Db on our data set of N examples we can develop a 
contingency matrix, C. In this table cell Cij contains the number of examples x for which 
D,, (x) =i and Db(x) = j. If the two classifiers are identical then only the diagonal will 
contain non-zero values, and if they are very different the values off the diagonal will be 
large. If we define e, to be the probability that the two classifiers agree and e2 the 

probability that they agree by chance, 
Ei 

1Cii 81 =N (5.3) 

and, e2 = 
Cii 

" 
Cis 

(5.4) 
N 

j_1 
N 

then we can use the' E-statistic 4, 

ý1_ 2 (5.5) 
2 

to define a measure of agreement. This, as the 0/1 version rc, is a measure of diversity of 
(ý)-type, the higher the value the less diverse (see Chapter 3, Sections 3.1 and 3.1.2 for 

more information). MME =0 when the two classifiers are independent and' E=1 when the 
two classifiers are identical. Negative values can occur when there is negative correlation 
between the two but this rarely occurs in practice [74]. 

Figure 5.5 shows an example of how to calculate Mce. Note that 01 is calculated as the 

sum of the diagonal divided by the number of examples. 02 is calculated by multiplying 

'Recall the measure of interrater agreement, denoted h, introduced in section 3.1.2. It is a special case 
of i when applied to 0/1 outputs. 
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the sum of the first row, divided by the total number of examples by the sum of the first 

column, divided by the total number of examples, repeating this for the second row and 

column and so on and finally totalling them all up to give the summation. In the example 

we have c=3 classes, and N= 10 examples and four equally accurate but different 

classifiers. Note, to illustrate the range of KE we have deliberately designed classifiers 

D1 and D2 to have identical outputs on this data (D1 = D2) and D3 to have different 

outputs. D4 is such that it is independent of D3, they give the same classification on half 

of the sample objects and different classifications on the other half. Here we see that rcE 
for Dl and D2 is 1 since they are identical, is -0.18 for D1 and D3 suggesting they are 

quite diverse, 0.26 for D3 and D4 so they are slightly similar and is 0.39 for D1 and D4 so 

they are even more similar. - 

5.2.2 Kappa-error Diagrams 

Using icE we are able to follow the ideas of Margineantu and Dietterich to draw a Kappa- 

Error diagram which allows us to visualise an ensemble of classifiers [74]. A Kappa-error 

diagram is a scatterplot where each point represents a pair of classifiers. The x coordinate 

is calculated as the icE value for the pair of classifiers and the y coordinate is the average 

of their errors. 

Margineantu and Dietterich found that the r . E-error diagram for AdaBoost and that 

for Bagging showed the different nature of the two ensemble methods. The classifiers 

produced by Bagging have a much tighter cluster than those produced by AdaBoost. 

This is not particularly surprising as Bagging trains classifiers on a sample drawn from 

the same uniform distribution, whereas AdaBoost modifies the distribution samples are 

drawn from. Thus AdaBoost produces a more diverse set of classifiers. The classifiers with 

lower accuracy tend to have higher diversity (and of course lower weight in the AdaBoost 

weighted voting combining method) which compensates for the weaker accuracy. This 

gives more evidence to how and why AdaBoost outperforms Bagging. 

If AdaBoost produces very many classifiers then by careful selection of a subset of 

them we may be able to improve the ensemble performance and reduce the computation 

time; an overproduce and choose strategy. Margineantu and Dietterich used their ne-error 
diagrams to give a pruning method in order to reduce the size of an ensemble classifiers 

produced by AdaBoost. They produce a subset of the AdaBoost ensemble by calculating 
the convex hull of the of the points in the rcE-error diagram and using the corresponding 

classifiers in their subset. Since the preferred pairs of classifiers are found in the bottom left 

of the plot the convex hull is a reasonable choice. This does however, have one drawback 

in that there is no control over how many classifiers end up in the final set. A convex set 

of points is such that if two points are in the set then so are all points on the line segment 
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joining them. 
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Definition 2 The Convex Hull is the intersection of all convex sets containing a subset, 
A of a real vector space. 

True Class Z D1 D2 D3 D4 

Wi zi Wi W1 W3 W3 

W2 Z2 W2 W2 W2 W2 

W3 Z3 W2 W2 W3 W3 

W1 Z4 W1 W1 W2 WI 

W1 Z5 W3 W3 W1 Wi 

W2 Z6 W2 W2 Wi W3 

W2 Z7 W1 W1 W2 Wi 

W2 Z8 W2 W2 W2 W2 

W1 Z9 Wi Wi W3 Wi 

W3 x10 W2 W2 W3 W2 

Accuracy 0.6 0.6 0.6 0.6 

D2 
ß(D1, D2) = wl W2 W3 

Wl 400 

D1 W2 050 

W3 001 

D3 

C(D1, D3)= Wl W2 W3 

wl 022 

D1 w2 122 

W3 100 

D4 

C(D3, D4) = Wl W2 W3 

Wi 101 

D3 W2 220 

W3 112 
D4 
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wl 301 

D1 w2 032 

W3 100 

Note: D1 = D2 so we only need to 

calculate Dl's relationship with D3 and D4. 
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Figure 5.5: EXAMPLE OF CALCULATING KAPPAE 
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Figure 5.6: AN EXAMPLE OF A KAPPA-ERROR PLOT, SHOWING THE CONVEX 

HULL (THICK, RED LINE) AND THE PARETO OPTIMAL SET (THIN, BLUE LINE) 

Figure 5.6 shows an example of a Kappa-error diagram. It consists of a single run of 
AdaBoost on the Liver data5, building 50 decision tree classifiers. The convex hull and 
the Pareto-optimal set (see next subsection) are also shown. 

5.2.3 Pareto-Optimal Sets 

In practice the convex hull often discards a large proportion of the classifiers originally 
built by the AdaBoost algorithm. Also it can be overly sensitive to noise since even small 

variations in nE and the average error can change the whole shape of the convex hull and 
therefore alter the chosen set of classifiers. By calculating the Pareto-optimal set we can 

achieve a better balance between ensemble accuracy and size of the final set. 

Definition 3 The Pareto-optimal set S` CS contains all non-dominated alternatives. 

Let A= {al, ... , am} be a set of alternatives (a pair of classifiers for our case), 
These alternatives are characterised by a set of criteria C= {Cl, 

... , 
CM} (In our case 

the criteria are KE and error). 

An alternative a; is called non-dominated if there is no other alternative a3 E S, j 96 i, 

so that a3 is better than a= on all criteria. Therefore, for our case, the Pareto optimal set 

5from UCI Machine Learning repository 
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will be a superset of the convex hull. Figure 5.7 shows the difference between the convex 

hull and the Pareto optimal set. 

cl+c2 
2 

if points A and B are in the convex hull then 

point C is not since it is behind segment AB. 

However, we can see that C has lower error 

than A and is more diverse than B. Thus C is 

not worse than A on all of the criteria, nor is 

it worse than B on all of the criteria. 

Therefore, C is "non-dominated" and so would 

be included in the Pareto-optimal set. 

Figure 5.7: PARETO OPTIMALITY [56] 

5.3 AdaBoost with Pareto Optimality 

Figure 5.8 shows how we have modified the AdaBoost algorithm to take account of Pareto 

optimality. The input is the basic training set, Z, the maximum number of classifiers 

built, K,, the Pareto optimal set (initially empty), POS,,,,.,., and the maximum number 

of iteration permitted with no change in the Pareto optimal set, T*. The first classifier is 

built and then at each subsequent iteration the classifiers are built according to the original 
AdaBoost algorithm. The classifier's error is then calculated. If the error is greater than 

we reinitialise according to the original AdaBoost algorithm. If the error is less than 

the pairwise values of KE between the new classifier and all the existing classifiers 

are calculated as the points on a kappa-error diagram. The Pareto optimal set is then 

calculated. If there is no difference between this new Pareto set and the current Pareto 

set then we discard this classifier and build another one. This cycle, with no change in the 
Pareto optimal set, can be repeated up to T* times before we exit the loop and output 

the classifiers in the current Pareto optimal set as our choice of ensemble. If however, the 

new Pareto set is different from the current Pareto set then we update the current set and 

update the weights according to the original AdaBoost algorithm. This can continue until 

a maximum number of K�,. classifiers has been built. 

We can see that if the classifiers do not alter the Pareto set very much then we can 
produce quite a small ensemble. This can reduce the computation time, hopefully without 
dramatically altering the amount of information contained within the ensemble. 

----------------------------K 
E 
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Input T*, POcurr = 0, Kmax 
, 
Z, k°2 

Build classifier Di following 

the AdaBoost Algorithm 

LetT=1 

Build classifier DIT, 
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Reinitialise according to 
ý- the AdaBoost algorithm 

Calculate cc's. 
Find points on roE-error diagram. 

Find the new POnew set. 

Key: 

k the current iteration; Kmax the number of iterations; Z the training set; 
Sk the training set; Dk the classifier trained; Ek the training error; 
WV;. (i) the weight for object i; Wk = {TVk(1),..., IVk(N)} the set of weights used; 
ßk the combination weights; T' max no. iterations with no change in the Pareto optimal set; 
PO,,,,, the current Pareto optimal set; POnew the new Pareto optimal set; 

Figure 5.8: THE ADABOOST ALGORITHM WITH PARETO-OPTIMAL SETS 



118 CHAPTER 5. IMPROVING ADABOOST 

5.3.1 Experimental set-up to investigate AdaBoost with Pareto Opti- 

mality 

We are interested in how using the Pareto set compares with using the full ensemble pro- 
duced by AdaBoost on both accuracy and the number of iterations. For our experiments 

we use ten different data sets from UCI machine learning repository. These are Ecoli, Ger- 

man, Glass, Ionosphere, Liver, Pima, Sonar, Vehicle, Votes and Wisconsin Breast Cancer. 

Table 5.5 shows a summary of the datasets. The data sets are described in more detail in 

Appendix B. 

Table 5.5: SUMMARY OF THE DATA SETS 

Name No. Classes Size of data set No. Features appendix 

Ecoli 8 336 7 B. 4 

German 2 1000 23 B. 11 

Glass 7 214 9 B. 2 

Ionosphere 2 351 34 B. 6 

Livcr 2 345 6 B. 5 

Pima 2 768 8 B. 9 

Sonar 2 208 60 B. 1 
Vehicle 4 846 18 B. 10 

Votes 2 435 16 B. 7 

wbc 2 569 30 B. 8 

In these experiments we used decision trees. We chose Km,, (the maximum number 
of classifiers built) to be 50. One set of experiments was carried out using T* (the number 
of iterations with unchanged Pareto sets before exiting the algorithm) to be 5, another set 
was carried out using T* = 10 and a control set was carried out using the full 50 classifiers 
built using the original AdaBoost algorithm. Each run of experiments was repeated 100 

times and averaged to give a general view of the performances for comparison. The Pareto 

version with T* =5 is referred to as P5 and with T* = 10 as P10. 

5.3.2 AdaBoost with Pareto Optimality results 

Table 5.6 shows the error averaged over 100 runs for basic AdaBoost, AdaBoost with 
Pareto for 5 repeats and AdaBoost with Pareto for 10 repeats. As we can see, AdaBoost 

is more accurate on five of the ten datasets with P5 the best on four and P10 the best 

on one dataset. There are no significant differences between the errors. However if we 
consider the size of the ensembles we could dramatically reduce the size of ensemble needed 
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to achieve these levels of error and so reduce the computation time involved. 
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Table 5.6: THE AVERAGE ERROR FOR ADAI300ST, PARETO WITH 5 REPEATS 

AND PARETO WITH 10 REPEATS. THE NUMBERS IN BOLD SHOW TILE LOWEST ERROR. 

Data AdaBoost P5 mean error P10 mean error 
Ecoli 0.1418 0.1515 0.1515 

German 0.2798 0.2836 0.2881 
Glass 0.2350 0.2168 0.2314 

Ionosphere 0.0708 0.0642 0.0750 
Liver 0.2889 0.2997 0.3057 

Pima 0.2652 0.2756 0.2710 

Sonar 0.1748 0.1862 0.1776 
Vehicle 0.2539 0.2578 0.2498 
Votes 0.0495 0.0470 0.0523 

wbc 0.0381 0.0354 0.0374 

The top part of figure 5.9 illustrates the percentage error change of the Pareto set 

runs over the AdaBoost runs. As we can see the error has increased by up to 7% and 

reduced by nearly 10% depending on which dataset has been used. Note that for Ecoli, the.,. 

percentage change in error for both P5 and P10 is identical and so arc both represented 
by the same dot in the figure. 

The lower part of figure 5.9 shows the average range and mean of the number of runs 
taken by the two Pareto runs. Naturally Pareto with T* =5 generally uses less classifiers 
in the ensemble than Pareto with T* = 10 since it exits the algorithm after only 5 iterations 

with no change in the Pareto set rather than the 10 iterations for P10. 

If we look at the number of runs we see that for German, Liver and Pima with P5 

and P10 and for Votes with P5 the average number of classifiers in the ensemble is less 

than 40. There is a small increase in error corresponding to these of 2 to 4% for P5 and 3 

to 6% for P5 with the exception of Votes which as well as a lower average in the number 

of runs reduces the error by about 5%. For the other datasets where P5 was the best 

algorithm, Glass and Ionosphere, there tends to be a higher but still quite wide range in 

the average number of runs. For wbc there is very little variation in the number of runs, 
using between 46 and 50 classifiers in the ensemble, but there was still a quite dramatic 

reduction in the error for P5 and a slight reduction for P10. 
The results suggest that again the choice of algorithm is data-dependent but that using 

the AdaBoost with P5 is preferable to AdaBoost with P10. The choice of whether to use 
basic AdaBoost or AdaBoost with P5 will depend on several factors. The data set used 
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Figure 5.9: COMPARING THE PERCENTAGE CHANGE IN ERROR FROM THE 

STANDARD ADABOOST AND THE AVERAGE NUMBER OF RUNS WHEN USING 
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will affect the choice. If there is time, a preliminary comparison between the two on the 

specific data may be beneficial. The trade-off between accuracy and expvdiene is another 

consideration, if the computation time is the most important factor then P5 would be the 

preferable choice. 

5.4 Improving AdaBoost Conclusions 

In this chapter we considered several possible ways of improving AdaBoost. Firstly we 

conducted an investigation into how modifying the parameters of AdaBoost using resain- 

pling and neural networks affected the classifier ensemble's performance. We carried out 

experiments using three datasets, Phoneme (5 attributes, 2 classes and 5404 instances), 

Pima Indian diabetes (8 attributes, 2 classes and 768 instances) and Glass (9 attributes, 
7 classes and 214 instances). Our results suggest that we may be able to improve the 

performance of AdaBoost by using 10 or 12 neurons in the hidden layer of our neural 

network rather than using 15 as we currently do. This would also have the added advan- 

tage of taking less computation time. The size of bootstrap sample does not make much 
difference to the error rate. Keeping the bootstrap sample the same size as the training 

data should not make much difference with most data sets. The results also show that 

the best value to use for bootstrap size or number of hidden neurons can be very data 

specific. Some preliminary experiments to find the best value to use may be beneficial 

with some datasets such as we found with the Pima data. Also it may be a good idea 

to use a random modification of the sample size in some instances to avoid performance 
degradation as the ensemble grows as we found with the Glass data (see Figure 5.4). 

The second part of our investigation involved using Pareto optimality to add classifiers 
built by AdaBoost to the ensemble only if they were in the Pareto optimal set. We 

carried out experiments with ten datasets from the UCI machine learning repository. We 

compared standard AdaBoost to AdaBoost with Pareto 5, and to AdaBoost with Pareto 

10. Pareto 5 and 10 allow 5 or 10 cycles, respectively, without change in the Pareto set, 
before exiting the algorithm. Our results showed that there is no significant difference 

between the error rates for AdaBoost, Pareto 5 and Pareto 10. However the number of 

classifiers in the ensemble can be reduced. In particular the Pareto 5 approach can reduce 
the number of classifiers in the ensemble without necessarily increasing the error. Pareto 

5 may therefore be better than standard AdaBoost but it depends upon the data set. 
Overall, we have found that there are no hard and fast rules when it comes to algol-it 11 ills 

since they tend to behave differently with different datasets. Thus there is really no Option 
but to carry out preliminary experiments to guide further choices. 
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Chapter 6 

Conclusions 

6.1 Main Investigations and Findings of this Thesis 

In our first investigation we studied the relationships between nine combination meth- 
ods. Two data sets were used. We considered the overall accuracies of the combination 

methods, their improvement over the single best classifier, and the correlation between the 

ensemble outputs using the different combination methods. We found some interesting re- 
lationships and correlations amongst the combination methods. In particular, maximum 
is equivalent to minimum for the two-class case, average has a close relationship with 
product, behaviour-knowledge space is correlated with Wernecke's method and majority 
vote is correlated with naive Bayes. 

Next we introduced ten diversity measures. Using the same two data sets, we studied 
the relationships between the diversity measures. Then we looked at their relationship to 
the combination methods previously studied. The ranges of the ten diversity measures 
for three classifiers were derived. They were compared with the theoretical ranges and 
their implications for the accuracy of the ensemble were studied. We found that for (0/1) 

classifier outputs with an ensemble of three classifiers the disagreement measure, Kohavi- 
Wolpert variance and entropy measure are identical up to a coefficient. We also found that 
the correlation coefficient, measure of interrater agreement, generalised diversity and co- 
incident failure diversity are fairly consistently correlated whilst the double-fault measure 
was not strongly correlated with any of the other measures. 

Considering the relationship between the diversity measures and the combination 
methods we found that there was very little consistent correlation between the two groups. 
The largest observed correlations were as shown below: 
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Diversity Combination 
disagreement 

kw variance 

maximum 

-4 minimum 

entropy 

majority vote 
difficulty -+ average 

decision templates 

double-fault -ý majority vote 

It may be this unclear relationship between diversity measures and combination meth- 
ods which makes the explicit use of diversity in multiple classifier systems such a thorny 

subject. It is often easier to calculate the diversity of an ensemble of classifiers rather than 

using a validation set to calculate the accuracy. The current consensus is that directly 

calculating the accuracy for the chosen combination methods is much more accurate than 
first calculating diversity and trying to predict the accuracy. Thus using the diversity to 
identify an ensemble that is likely to be accurate is not necessarily a viable approach. The 

ambiguous relationship between diversity and accuracy discourages optimising the diver- 

sity. It is better to try to enforce diversity in the ensemble or to use diversity to select 
classifiers for an ensemble when following an `overproduce and choose strategy'. 

We then proceeded to investigate the diversity of classifier ensembles built using the 
AdaBoost algorithm. We carried out experiments with two datasets using ten-fold cross 
validation. We built 100 classifiers each time using linear classifiers, quadratic classifiers 
or neural networks. We studied how diversity varied as the classifier ensemble grew and 
how the different types of classifier compared. We confirmed that linear classifiers and 
quadratic classifiers are not particularly suited for use with AdaBoost. We also found that 

neural networks are better suited for use with AdaBoost, however their ability to reduce 
testing error may depend on the data. For neural networks, it seems that AdaBoost is 
increasing the diversity with each new classifier and that this is why the performance is 
improving. We have found that it may be possible to determine a good time to stop the 
AdaBoost algorithm by considering the minimum value of Q on the training data. 

Next we considered ways of improving AdaBoost's performance. We conducted an 
investigation into how modifying the size of the training sets and the complexity of the 
individual classifiers alters the ensemble's performance. We carried out experiments using 
three datasets. We found that the best values to use can be very data specific. Some 

preliminary experiments to find these best values may be beneficial. 

Lastly we considered using Pareto optimality to determine which classifiers built by 
AdaBoost to add to the ensemble. We carried out experiments with ten datasets. We 
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compared standard AdaBoost to AdaBoost with two versions of the Pareto optimality 

method called Pareto 5 and Pareto 10, to see whether we could reduce the ensemble size 

without harming the ensemble accuracy. We found that: AdaBoost was most accurate 

on five datasets, Pareto 5 was most accurate on four datasets and Pareto 10 was most 

accurate on just one dataset. We also found that the Pareto 5 approach can reduce the 

number of classifiers in the ensemble without necessarily increasing the error. In some 

cases it can reduce the error as well. Pareto 5 may therefore be better than standard 

AdaBoost but it depends upon the data set. 
Overall, we have found that there are no hard and fast rules when it comes to which 

combination method, diversity measure or ensemble construction algorithm to use since 

the best choice tends to be data-dependent. Thus there is really no other option but to 

carry out preliminary experiments to guide further choices. 

6.2 Limitations of the Thesis 

The main limitations of this study were the small number of datasets and the limited num- 
ber of experimental runs. In chapter 2 and 3, in the investigation into the relationships 
between the combination methods and the diversity measures, we used two datasets with 

random halves for one dataset and 10-fold cross-validation for the other dataset. In chap- 

ter 4, in the investigation into how AdaBoost affects classifier diversity, we again used two 

datasets with 10-fold cross-validation. In chapter 5, in the investigation into modifying 

the training set size and the neural network size with AdaBoost, we used three datasets 

and 10-fold cross validation. Also in chapter 5, in the investigation into using AdaBoost 

with Pareto optimality, we used ten datasets and used 100 runs to obtain our averages. 

If we had had the time and computation capacity it would have been better to use a 

set-up similar to this last experiment with many datasets and lots of runs to get results 

we could be more confident in. 

6.3 Summary of My Contributions 

Chapter 2- Combination Methods 

" Comparing the accuracies of some of the more commonly used classifier combi- 

nation methods: majority vote, naive Bayes, behaviour-knowledge space, Wer- 

necke's method, maximum, minimum, average, product and decision templates, 

to each other and to the single best classifier using an ensemble of three classi- 
fiers. This gave the result that the best combination method to use will depend 

on the dataset being used. 
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" Examining the Pearson's product moment correlation between the outputs from 

the classifier combination methods and running a clustering program on the 

combination methods. This gave the relationships: average is closely related to 

product, max and min are equivalent for the two class case, behavior-knowledge 

space is correlated to Wernecke's method. majority vote and naive Bayes are 
closely related and decision templates are not closely related to any of the other 
combination methods. 

Chapter 3- Diversity Methods 

" The derivation of upper and lower limits for the ten diversity measures: Q- 

statistic, the correlation coefficient, the disagreement measure, the double-fault 

measure, the Kohavi-Wolpert variance, the measure of interrater agreement, 
the entropy measure, the measure of difficulty the generalised diversity and the 
coincident failure diversity, for the three-classifier case. 

" Examining the Pearson's product moment correlation between the diversity 

values obtained from these ten diversity measures and running a clustering 
program on the diversity measures. This gave the result that double-fault is 

not strongly correlated with any of the other diversity measures. 

" The result that for three classifiers the entropy measure and the Kohavi-Wolpert 

variance (and for 0/1 outputs the disagreement method) differ only by a coef- 
ficient. 

" Examining the Pearson's product moment correlation between the outputs from 
the classifier combination methods and the values from the diversity measures. 
This gave the result that there is no strong correlation between the combination 
methods and the diversity measures. 

Chapter 4- Ensemble Construction Methods 

" Examining how the AdaBoost ensemble construction method affects the diver- 

sity of the ensemble of classifiers it builds and whether this diversity is related 
to the generalisation error of the ensemble on combination. This showed us that 
as AdaBoost added neural network classifiers to the ensemble the value of Q 
decreased indicating that the diversity of the ensemble was indeed increasing. 

Chapter 5- Modifying AdaBoost 

" Examining how modifying the sample size of training data, the number of 
neurons used, or both, affects the generalisation error of AdaBoost. The results 
show that this is data specific and preliminary experiments to identify the best 

architecture to use is the preferable approach. 
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" Investigating whether or not using Pareto optimal sets can produce considerably 

smaller ensembles of classifiers without significantly increasing the generalisa- 
tion error when used with AdaBoost. The results showed that It is indeed 

possible to reduce the size of the ensemble without significantly altering the 

testing error. 

Throughout - All examples were created by myself. 

6.4 Possible Future Considerations 

It is possible that future work may consider using the minimum Q to determine a termi- 

nation point for AdaBoost in order to increase generalisation performance. 
As we found that a reasonably high accuracy can be obtained after very few iterations 

of AdaBoost, it may also be of use to try to enhance the performance of a small ensemble. 
This could be done by applying different combination methods on a reasonably accurate 

and diverse ensemble. 
It may also be interesting to investigate modifying the re-initialisation criterion for 

AdaBoost from error> 2 to error> 1 for c classes. This would be equivalent to only 
discarding a classifier which is worse than random guessing. 
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Appendix A 

Proof of Equivalence Relationships 

A. 1 Proof that Max is equivalent to Min for two classes 
Proposition 2 Let V= {D1i... 

, DL}, St = {wi, w2}. Let al,... , aL be the outputs of 
the classifiers for class wi, and 1- al, ... ,1- aL be the outputs for class w2, a; E (0,1]. 
Then the class label assigned to x by the MAX and MIN combination rules will be the 
same. 

Proof 

Without loss of generality assume that al = mini a;, and aL = max; a;. Then the minimum 

combination rule will pick al and 1- aL as the support for wl and w2 respectively, and the 

maximum rule will pick aL and 1- ai. Consider the three possible relationships between 

al and 1- aL. 

If al >1- aL then aL >1- al, and we would select class wl with both methods, 
If al < 1- aL then aL <1- al, and we would select class w2 with both methods. 
If al =1- aL then aL = 1- al, and we will pick a class at random with both methods. 

0 

A. 2 Proof that KW, Ent and D are equivalent for 3 classi- 
fiers 

Proposition 3 Let L=3 so that V= {D1, D2, D3}. Then Ent and kw, calculated from 
a data set Z= {z1, 

... z�}, zj E R', are equivalent up to a coefficient, i. e., kw =y Ent: 

Proof 

NN 
For 3 classifiers: kw = ýN L 1(zß) (3 -1(zß)) , Ent =NE min {1(zß), 3- 1(z j)) 

j=1 1=1 
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where 1(z f) is the number of classifiers that correctly classify object zj, therefore we need 
to show that: 

yNLI(zf)(3-I(Zf)) =s 
NEmin{I(zj), 

3-I(zf)} 
J =l j=1 

Consider the possible values of l(z f) with 3 classes, and the respective values for Ent and 
kw in Table A. 1. 

Table A. 1: POSSIBLE VALUES FOR Ent AND kw FROM THE DIFFERENT VALUES 
OF l(zj) 

Ent kw 
1(z ") (3 - l(z )) min {1(z "), 3 -1(z ")} 1(z ")(3 -1(z ")) 

0 3 0 0 
1 2 1 2 
2 1 1 2 
3 0 0 0 

We can see that the sum of entries from column 4 of Table A. 1 will always be twice 
the sum of the corresponding entries from column 3 of Table A. 1. Denote B=E1 bj 

where bj = min {1(z1), 3 -1(z1)}. 

Then Ent =NB and 

kw = N2ß = Ent 

U 
Note that this only holds for the case when there are 3 classifiers. If there are four or 

more classifiers there is no linear relationship between the values for kw and Ent as in the 
table. 



Appendix B 

Data Sets Used in this Thesis 

Many of the datasets used in this thesis come from the UCI repository of machine learning' 

and the others come from the ELENA database2. This appendix gives a more detailed 

look at each of the data sets used. 
A summary of the basic statistics and an outline of the problem involved with each 

dataset is shown in the table below. 

Dataset Features Classes Examples Problem 

Sonar 60 2 208 tell mines from rocks from sonar 

signals 
Glass 9 7 214 identify source of glass fragment 

Haberman 3 2 306 survival likelihood after breast cancer 

operation 
Ecoli 7 8 336 localisation site of Ecoli bacteria 

Liver 6 2 345 identify likely sufferers of liver 

disorders 

Ionosphere 34 2 351 tell good from bad radar images 

votes 16 2 435 tell democrats from republicans 
from voting records 

Wisconsin 

breast cancer 

30 2 569 tell benign from malignant breast 

masses 
Pima Indian 
diabetes 

8 2 768 tell female Pima Indians with and 

without diabetes 
Vehicle 18 4 846 classify vehicle from its silhouette 
German 23 2 1000 tell good frone bad credit ratings in 

Germany 
Phoneme 5 2 5404 distinguish nasal from oral vowels 

'available from http: //www. ics. uci. edu/ihhlearn/. NILRepository. html 
2available via anonymous ftp at ftp. dice. ucl. ac. be, directory pub/neural"nets/ELENA /databases 
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B. 1 The Sonar Identification dataset 

Source: Terry Sejnowski, now at the Salk Institute and the University of California at 
San Diego. The data set was developed in collaboration with R. Paul Gorman of Allied- 

Signal Aerospace Technology Center. 

Maintained by: Scott E. Fahlman 
The Problem: The task is to train a network to discriminate between sonar signals 
bounced off a metal cylinder and those bounced off a roughly cylindrical rock. The object 
is to develop a system capable of distinguishing between a mine and a rock. The mine 

patterns were obtained by bouncing sonar signals off a metal cylinder at various angles 

and under various conditions. The rock patterns were obtained from rocks under similar 

conditions. The transmitted sonar signal is a frequency-modulated chirp, rising in fre- 

quency. The data set contains signals obtained from a variety of different aspect angles, 

spanning 90 degrees for the cylinder and 180 degrees for the rock. 
Statistics: 60 Features, 2 Classes, 208 Examples. 

The features: Each pattern is a set of 60 features which are all numbers in the range 0.0 

to 1.0. Each number represents the energy within a particular frequency band, integrated 

over a certain period of time. The integration aperture for higher frequencies occur later 

in time, since these frequencies are transmitted later during the chirp. 
The classes: mines (111), rocks (97). 

B. 2 The Glass Identification dataset 

Created by: B. German, Central Research Establishment Home Office Forensic Science 
Service Aldermaston, Reading, Berkshire RG7 4PN 
Donated by: Vina Spiehler, Ph. D., DABFT Diagnostic Products Corporation (213) 776- 

0180 (ext 3014) 
Date: September, 1987 
The Problem: To identify the source of a fragment of glass. The study of classification 

of types of glass was motivated by criminological investigation. At the scene of the crime, 
the glass left can be used as evidence... if it is correctly identified! 

Statistics: 9 Features, 7 Classes, 214 Examples. 

The features: 1. RI: refractive index, 2. Na: Sodium (unit measurement: weight percent 
in corresponding oxide, as are attributes 4-10), 3. Mg: Magnesium, 4. Al: Aluminium, 5. 
Si: Silicon, 6. K: Potassium, 7. Ca: Calcium, S. Ba: Barium, 9. Fe: Iron 

The classes: 1. building windows float-processed (70), 2. building windows non-float. 

processed (76), 3. vehicle windows float-processed (17), 4. vehicle windows non-float- 

processed (none in this database) (0), 5. containers (13), 6. tableware (9), 7. headlamps 

(29). 
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B. 3 The Haberman dataset 
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Donated by: Tjen-Sien Lim (limtQstat. wisc. cdu) 
Date: March 4,1999 

The Problem: The dataset contains cases from a study that was conducted between 

1958 and 1970 at the University of Chicago's Billings Hospital on the survival of patients 

who had undergone surgery for breast cancer. 
Statistics: 3 Features, 2 Classes, 306 Examples. 
The features: 1. Age of patient at time of operation, 2. Patient's year of operation, 3. 

Number of positive axillary nodes detected. 

The classes: Survival status (class attribute) 1= the patient survived 5 years or longer 

(225) 2= the patient died within 5 years (81) 

B. 4 The Ecoli dataset 

Created and maintained by: Kenta Nakai Institue of Molecular and Cellular Biology Osaka, 

University 1-3 Yamada-oka, Suita 565 Japan nakai@imcb. osaka-u. ac. jp http: //www. imcb. osaka- 

u. ac. jp/nakai/psort. html 

Donated by: Paul Horton (paulh@cs. berkeley. edu) 
Date: September, 1996 

The Problem: Identifying the localization site of the ecoli proteins. 
Statistics: 7 Features, 8 Classes, 336 Examples. 

The features: 1. mcg: McGeoch's method for signal sequence recognition. 2. gvh: von 

Heijne's method for signal sequence recognition. 3. lip: von Heijne's Signal Peptidase II 

consensus sequence score. 4. chg: Presence of charge on N-terminus of predicted lipopro- 

teins. 5. aac: score of discriminant analysis of the amino acid content of outer membrane 

and periplasmic proteins. 6. alml: score of the ALOM membrane spanning region predic- 

tion program. 7. alm2: score of ALOM program after excluding putative cleavable signal 

regions from the sequence. 
The classes: 1. cp (cytoplasm) (143) 2. im (inner membrane without signal sequence) 
(77) 3. pp (perisplasm) (52) 4. imU (inner membrane, uncleavable signal sequence) (35) 

5. om (outer membrane) (20) 6. omL (outer membrane lipoprotein) (5) 7. imL (inner 

membrane lipoprotein) (2) 8. imS (inner membrane, cleavable signal sequence) (2) 

B. 5 The Liver dataset 

Created by: BUPA Medical Research Ltd. 

Donated by: Richard S. Forsyth 8 Grosvenor Avenue Mapperley Park Nottingham NG3 

5DX 0602-621676 
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Date: 5/15/1990 
The Problem: Seems to be the identification of liver disorders in male patients. The 
first 5 variables are all blood tests which are thought to be sensitive to liver disorders that 

might arise from excessive alcohol consumption. Each line in the bupa. data file constitutes 
the record of a single male individual. 

Statistics: 6 Features, 2 Classes, 345 Examples. 
The features: 1. mcv mean corpuscular volume 2. alkphos alkaline phosphotase 3. 

sgpt alamine aminotransferase 4. sgot aspartate aminotransferase 5. gammagt gamma- 
glutamyl transpeptidase 6. drinks number of half-pint equivalents of alcoholic beverages 
drunk per day 

The classes: It appears that the two classes are those with a liver disorder and those 

without a liver disorder, however it is not clear which group is which. Class 1 (145), class 
2 (200). 

B. 6 The Johns Hopkins University Ionosphere dataset 

Source: Space Physics Group Applied Physics Laboratory Johns Hopkins University 
Johns Hopkins Road Laurel, MD 20723 Donated by: Vince Sigillito (vgs(gaplcen. apl. jhu. edu) 
Date: 1989 

The Problem: To classify radar signals as either `Good' or `Bad'. This radar data was 
collected by a system in Goose Bay, Labrador. This system consists of a phased array of 
16 high-frequency antennas with a total transmitted power on the order of 6.4 kilowatts. 
The targets were free electrons in the ionosphere. `Good' radar returns are those showing 
evidence of some type of structure in the ionosphere. 'Bad' returns are those that do not; 
their signals pass through the ionosphere. 

Statistics: 34 Features, 2 Classes, 351 Examples. 
The features: Received signals were processed using an autocorrelation function whose 
arguments are the time of a pulse and the pulse number. There were 17 pulse numbers for 
the Goose Bay system. Instances in this database are described by 2 attributes per pulse 
number, corresponding to the complex values returned by the function resulting from the 

complex electromagnetic signal. This results in 34 features, all of which are continuous 
numbers. 
The classes: Good (225), Bad (126). 

B. 7 The 1984 United States Congressional Voting Records 
dataset 

Source: Congressional Quarterly Almanac, 98th Congress, 2nd session 1984, Volume XL: 
Congressional Quarterly Inc. Washington, D. C., 1085. 
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Donated by: Jeff Schlimmer (Jeffrey. Schlimmer(ga. gp. cs. cmu. edu) 
Date: 27 April 1987 

The Problem: To identify whether a person is a democrat or a republican based upon 
their voting record on various key issues. This data set includes votes for each of the U. S. 

House of Representatives Congressmen on the 16 key votes identified by the Congressional 

Quarterly Almanac (CQA). The CQA lists nine different types of votes: voted for, paired 
for, and announced for (these three simplified to yea), voted against, paired against, and 

announced against (these three simplified to nay), voted present, voted present to avoid 
conflict of interest, and did not vote or otherwise make a position known (these three 

simplified to an unknown disposition). 

Statistics: 16 Features, 2 Classes, 435 Examples. 

The features: 1. handicapped-infants, 2. water-project-cost-sharing, 3. adoption-of- 
the-budget-resolution, 4. physician-fee-freeze, 5. el-salvador-aid, 6. religious-groups-in- 
schools, 7. anti-satellite-test-ban, 8. aid-to-nicaraguan-contras, 9. mx-missile, 10. immi- 

gration, 11. synfuels-corporation-cutback, 12. education-spending, 13. superfund-right- 
to-sue, 14. crime, 15. duty-free-exports, 16. export-administration-act-south-africa 
The options for each vote were y or n or ? for an unknown position. We have converted 
this to 1-no, 2-yes, 3-unknown position. The classes: Democrat (267), Republican (168). 

B. 8 The Wisconsin Breast Cancer dataset 

Created by: Dr. William H. Wolberg, General Surgery Dept., University of Wisconsin, 

Clinical Sciences Center, Madison, WI 53792 wolberg©eagle. surgery. wisc. edu, 
W. Nick Street, Computer Sciences Dept., University of Wisconsin, 1210 West Dayton 
St., Madison, WI 53706 streetOcs. wisc. edu 608-262-6619, 
Olvi L. Mangasarian, Computer Sciences Dept., University of Wisconsin, 1210 West Day- 

ton St., Madison, WI 53706 olvi@cs. wisc. edu 
Donated by: Nick Street 

Date: November 1995 

The Problem: o determine whether a mass within a breast is malignant or benign. Fea- 

tures are computed from a digitised image of a fine needle aspirate (FNA) of a breast 

mass. They describe characteristics of the cell nuclei present in the image. 

Statistics: 30 Features, 2 Classes, 569 Examples. 
The features: Ten real-valued features are computed for each cell nucleus: a) radius 
(mean of distances from centre to points on the perimeter) b) texture (standard deviation 

of gray-scale values) c) perimeter d) area e) smoothness (local variation in radius lengths) 
f) compactness (perimeter') g) concavity (severity of concave portions of the contour) h) 

concave points (number of concave portions of the contour) i) symmetry j) fractal dimen- 
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lion ('coastline approximation' - 1) 
The mean, standard error, and `worst' or largest (mean of the three largest values) of these 
features were computed for each image, resulting in 30 features. For instance, feature 1 is 
Mean Radius, feature 11 is Radius SE, feature 21 is Worst Radius. 
The classes: Benign (357), Malignant (212). 

B. 9 The Pima Indian Diabetes dataset 

Created by: National Institute of Diabetes and Digestive and Kidney Diseases 
Donated by: Vincent Sigillito (vgs@aplcen. apl. jhu. edu) Research Center, RMI Group 
Leader Applied Physics Laboratory The Johns Hopkins University Johns Hopkins Road 
Laurel, MD 20707 (301) 953-6231 
Date: 9 May 1990 
The Problem: The problem is to identify whether a female of Pima Indian descent 

exhibits signs of diabetes. The diagnostic, binary-valued variable investigated is whether 
the patient shows signs of diabetes according to World Health Organisation criteria (i. e., if 
the 2 hour post-load plasma glucose was at least 200 mg/dl at any survey examination or 
if found during routine medical care). The population lives near Phoenix, Arizona, USA. 
Statistics: 8 Features, 2 Classes, 768 Examples. 
The features: 1. Number of times pregnant 2. Plasma glucose concentration a2 hours 
in an oral glucose tolerance test 3. Diastolic blood pressure (mm Hg) 4. Triceps skin fold 
thickness (mm) 5.2-Hour serum insulin (mu U/ml) 6. Body mass index (wei ht ink ) 
7. Diabetes pedigree function 8. Age (years) 

(height in m)ý 

The classes: no diabetes (500), tested positive for diabetes (268). 

B. 10 The Vehicle Silhouette Identification dataset 

Created by: Turing Institute, Glasgow, Scotland. 
Donated by: Drs. Pete Mowforth and Barry Shepherd Turing Institute George House 36 
North Hanover St. Glasgow G1 2AD 
Contact: Alistair Sutherland Statistics Dept. Strathclyde University Livingstone Tower 
26 Richmond St. GLASGOW G1 1XH Great Britain Tel: 041 552 4400 x3033 Fax: 041 
552 4711 e-mail: alistair@uk. ac. strathclyde. stams 
Date: 1986-1987 
The Problem: To distinguish between four models of vehicle from their silhouettes. This 
data was originally gathered at the TI in 1986-87 by JP Siebert. It was partially financed 
by Barr and Stroud Ltd. The original purpose was to find a method of distinguishing 3D 

objects within a 2D image by application of an ensemble of shape feature extractors to the 
2D silhouettes of the objects. Four `Corgi' model vehicles were used for the experiment: 
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a double decker bus, Chevrolet van, Saab 9000 and an Opel Manta 400. This particular 

combination of vehicles was chosen with the expectation that the bus, van and either one 

of the cars would be readily distinguishable, but it would be more difficult to distinguish 

between the cars. The images were acquired by a camera looking downwards at the model 

vehicle from a fixed angle of elevation (34.2 degrees to the horizontal). The vehicles were 

placed on a diffuse back-lit surface (light-box). The vehicles were painted matt black 

to minimise highlights. The vehicles were rotated and their angle of orientation was 

measured using a radial graticule beneath the vehicle. 0 and 180 degrees corresponded 

to `head on' and `rear' views respectively while 90 and 270 corresponded to profiles in 

opposite directions. Two sets of 60 images, each set covering a full 360 degree rotation, 

were captured for each vehicle. The vehicle was rotated by a fixed angle between images. 

A further two sets of images were captured with the camera at elevations of 37.5 degrees 

and 30.8 degrees. 

Statistics: 18 Features, 4 Classes, 846 Examples. 

The features: 

1. Compactness (averaggeeper iM)2 
e d 

ius)? 2. Circularity (average ra 
area 

3. Distance Circularity area 
av ista ce from border' 

4. Radius ratio max. rad-min. rad 
av. ra ius 

5. Pr. Axis aspect ratio minor axis 
maw, 

6. Max. Length aspect ratio 
length per p. max length 

max length 
7. Scatter Ratio inertia about minor axis 

inertia about major axis 
8. Elongatedness area 

(shrink wii th)2' 
9. Pr. Axis Rectangularity area 

pr. axis lengthxpr. axis width' 
10. Scaled variance along major axis 2nd order moment about minor axis 

area ' 
11. Scaled variance along minor axis 

2nd order moment about major axis 
g area 

12. Scaled radius of gyration ma, ýä +mivar 
arc order moment about major axis 13. Skewness about major axis sigma3 min 

14. Skewness about minor axis 
3rd order moment about minor axis 

sigma, 

15. Kurtosis about minor axis 
4th order moment about major axis 

aigmamtn 

16. Kurtosis about major axis 4th order moment about minor axis 
izgmamo1 ' 

17. Hollows ratio area of hollows 
I area of bounding po ygon 

Where sigmamai is the variance along the major axis and sigmamin is the variance along 

the minor axis, and area of hollows= area of bounding poly-area of object The area of 

the bounding polygon is found as a side result of the computation to find the maximum 
length. 
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The classes: Opel (212), Saab (217), bus (218), van (199). 

B. 11 The German Credit dataset 

Source: Professor Dr. Hans Hofmann Institut für Statistik und Ökonometrie Universität 
Hamburg FB Wirtschaftswissenschaften Von-Melle-Park 5 2000 Hamburg 13 

The Problem: To identify whether a prospective customer is a `good' or `bad' credit risk 
for the purposes of obtaining a loan. The original dataset, in the form provided by Prof. 

Hofmann, contained categorical/symbolic attributes. For algorithms that need numerical 

attributes, Strathclyde University produced a second version of the dataset. This data has 

been edited and several indicator variables added to make it suitable for algorithms which 

cannot cope with categorical variables. Several attributes that are ordered categorically 
(such as attribute 17) have been coded as integer. This is the version which we have used. 
Statistics: 23 Features, 2 Classes, 1000 Examples. 

The original features are: 1. Status of existing checking account, 2. Duration in months, 
3. Credit history, 4. Purpose, 5. Credit amount, 6. Savings account / bonds, 7. Present 

employment since?, 8. Installment rate in percentage of disposable income, 9. Personal 

status and sex, 10. Other debtors / guarantors, 11. Present residence since, 12. Property?, 

13. Age in years, 14. Other installment plans, 15. Housing, 16. Number of existing 

credits at this bank, 17. Job, 18. Number of people liable to provide maintenance for, 19. 

Telephone?, 20. Foreign worker? 
The 23 features in the version of the dataset we have used have been derived from these 
by converting to numerical features. 
The classes: Good risk (700), Bad risk (300). 

B. 12 The Phoneme dataset 

Source: Dominique VAN CAPPEL (33) 92 96 45 44 THOMSON-SINTRA, 525 route des 

Dolines, BP157, F-06903 Sophia Antipolis Cedex, France 

The Problem: To identify whether spoken vowels are Nasal or Oral in nature. This 
database contains vowels coming from 1809 isolated syllables (for example: pa, ta, pan,... ). 

Statistics: 5 Features, 2 Classes, 5404 Examples. The features: Five different attributes 

were chosen to characterise each vowel: they are the amplitudes of the five first harmonics 

AHi, normalised by the total energy Ene (integrated on all the frequencies): AHi/Ene. 

Each harmonic is signed: positive when it corresponds to a local maximum of the spectrum 
and negative otherwise. Three observation moments have been kept for each vowel to 

obtain 5427 different instances: - the observation corresponding to the maximum total 

energy Ene. - the observations taken 8 msec before and 8 msec after - the observation 

corresponding to this maximum total energy. 
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From these 5427 initial values, 23 instances for which the amplitude of the 5 first 

harmonics was zero were removed, leading to the 5404 instances of the present database. 

The classes: Nasal vowels, Oral vowels. 
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