
Bangor University

DOCTOR OF PHILOSOPHY

A study on diversity in classifier ensembles

Shipp, Catherine

Award date:
2004

Awarding institution:
Bangor University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 24. Apr. 2025

https://research.bangor.ac.uk/portal/en/theses/a-study-on-diversity-in-classifier-ensembles(3925bebe-5203-4477-8ef3-a2b49e423ed4).html

A Study on Diversity in Classifier Ensembles

Catherine A. Shipp

December 9,2004

I'W DDEFNYDDIO %NY
LLYFRGELLYN UNIG

TO BE CONSULTED IN THE
LIBRARY ONLY

UWB Deiniol Thesis
2004: S143
30110007183818

iv

Summary of Research

In this thesis we carry out a series of investigations into the relationship between diversity

and combination methods and diversity and AdaBoost.

In our first investigation we study the relationships between nine combination methods.
Two data sets are used. We consider the overall accuracies of the combination methods,
their improvement over the single best classifier, and the correlation between the ensemble

outputs using the different combination methods.
Next we introduce ten diversity measures. Using the same two data sets, we study

the relationships between the diversity measures. Then we look at their relationship to

the combination methods previously studied. The ranges of the ten diversity measures
for three classifiers are derived. They are compared with the theoretical ranges and their

implications for the accuracy of the ensemble are studied.
We then proceed to investigate the diversity of classifier ensembles built using the

AdaBoost algorithm. We carry out experiments with two datasets using ten-fold cross

validation. We build 100 classifiers each time using linear classifiers, quadratic classifiers

or neural networks. We study how diversity varies as the classifier ensemble grows and
how the different types of classifier compare.

Next we consider ways of improving AdaBoost's performance. We conduct an in-

vestigation into how modifying the size of the training sets and the complexity of the
individual classifiers alter the ensemble's performance. We carry out experiments using
three datasets.

Lastly we consider using pareto optimality to determine which classifiers built by Ad-

aBoost to add to the ensemble. We carry out experiments with ten datasets. We compare

standard AdaBoost to AdaBoost with two versions of the Pareto-optimality method called
Pareto 5 and Pareto 10, to see whether we can reduce the ensemble size without harming

the ensemble accuracy.

V

vi

Acknowledgements

I do of course need to thank my supervisor, Lucy Kuncheva, profusely. Without your
constant support, encouragement and motivation I would never have come close to finish-
ing this work. Your insistence on my writing and submitting papers and attending and
presenting them at conferences has meant that I have had to grow in confidence despite

myself.
I would also like to thank Chris Whitaker who, along with Lucy I have had the pleasure

of collaborating with on other research. You, and our other colleagues, who attended
discussions and brain-storming sessions with regards to this thesis were always able to

bring a fresh eye and a new angle to my work.
On a personal level, I would like to thank my family and friends for putting up with

my moods over the past three years. Now I have finally finished my work I will no longer
have an excuse and will have to try to behave better to all of you.

Finally, I would like to thank my husband Mathew for never complaining if I stayed
late or was in a bad mood after fighting the computer all day and for nagging me until I
finally finished my corrections.
Thank you with love.

Catherine Allison Shipp,

December 2004

vii

viii

Contents

Notions, Notations and Abbreviations xvii

1 Introduction 1

1.1 Background1
1.2 Classifiers

2

1.3 Classifier Design
3

1.3.1 B ayes 3

1.3.2 Parametric Classifiers
4

1.3.3 Linear Discriminant Classifiers 5

1.3.4 Quadratic Discriminant Classifiers
5

1.3.5 Neural Networks 5

1.3.6 Tree Classifiers 7

1.4 Aims
9

1.5 Organisation of thesis 10

2 Combination Methods 11

2.1 Why combine classifiers? 11

2.2 How multiple classifier systems work 13

2.3 Strategies for building classifier ensembles 13

2.4 Combination methods 16
2.4.1 Classifier Fusion 16

2.4.2 Simple combination methods 17

2.4.3 Voting Methods 18

2.4.4 Majority vote 19

2.4.5 Weighted voting
20

2.4.6 Limits of majority vote 21

2.4.7 Naive Bayes 22

2.4.8 Behavior-Knowledge Space and Wernecke's method 23

2.4.9 Decision Templates 25

2.4.10 The Oracle 26

ix

x CONTENTS

2.4.11 Data-dependent weights and multi-level classifiers 26

2.5 Existing empirical studies of combination methods 27

2.6 Experimental set-up 29

2.7 Combination Method Results 31

2.7.1 Overall Accuracies 31

2.7.2 Relationships among the combination methods 34

2.8 Combination Methods Conclusions 37

3 Diversity in Classifier ensembles 39

3.1 Measures of diversity 40

3.1.1 Pairwise Diversity Measures 41

3.1.2 Non-pairwise Diversity Measures 44
3.2 Limits of the measures 49

3.2.1 The case of Identical Classifiers 49

3.2.2 The case of Highly Diverse Classifiers 51

3.2.3 Examining the limits
...... 57

3.3 Existing empirical studies of Diversity 59

3.4 Experimental set-up for diversity measures 60

3.5 Diversity Measures Results 61

3.5.1 Overall Diversities 61

3.5.2 Relationships among the diversity measures 62
3.5.3 Relationship with accuracy 65

3.5.4 Relationships between the combination methods and the diversity

measures 68
3.6 Diversity Measures Conclusions

....... 70

4 Ensemble Construction Methods 73

4.1 Bias and Variance 73
4.2 Bagging 74
4.3 Arcing and Boosting 75

4.4 Which method to use? 76
4.5 AdaBoost

...... 77

4.5.1 The AdaBoost algorithm 77
4.5.2 Optimality of the combiner for AdaBoost 79

4.5.3 Boosting the margins 81

4.6 Existing empirical studies about AdaBoost 82

4.6.1 AdaBoost and modifications 82
4.6.2 Considering margins directly

.............. 86

. FAý

CONTENTS xi

4.6.3 The multi-class case 86
4.6.4 Comparing with other methods 87
4.6.5 Different combination methods 90
4.6.6 Overproduce and choose 90

4.6.7 Summary of Existing Studies of AdaBoost 91
4.7 Experimental Set-Up

...... 92
4.8 AdaBoost and Classifier Diversity Results 94
4.9 AdaBoost and Classifier Diversity Conclusions 99

5 Improving AdaBoost 101

5.1 Modifying AdaBoost 102
5.1.1 Experimental set-up 103
5.1.2 Training Errors 104

5.1.3 Varying the Sample Size
.................... 105

5.1.4 Modifying the Number of Neurons Used 108
5.1.5 Varying Both Sample Size and Number of Neurons 108

5.2 Kappa-error diagrams and Pareto-optimal sets 112

5.2.1 Kappa for class label outputs 112
5.2.2 Kappa-error Diagrams 113
5.2.3 Pareto-Optimal Sets 115

5.3 AdaBoost with Pareto Optimality
..... 116

5.3.1 Experimental set-up to investigate AdaBoost with Pareto Optimality 118

5.3.2 AdaBoost with Pareto Optimality results 118

5.4 Improving AdaBoost Conclusions
..... 121

6 Conclusions 123
6.1 Main Investigations and Findings of this Thesis 123
6.2 Limitations of the. Thesis 125
6.3 Summary of My Contributions

.... 125
6.4 Possible Future Considerations

. 127
6.5 My References 127

A Proof of Equivalence Relationships 129
A. 1 Proof that Max is equivalent to Min for two classes 129
A. 2 Proof that KW, Ent and D are equivalent for 3 classifiers 129

B Data Sets Used in this Thesis 131
B. 1 The Sonar Identification dataset

..... 132
B. 2 The Glass Identification dataset

. 132

xii CONTENTS

B. 3 The Haberman dataset 133
B. 4 The Ecoli dataset 133
B. 5 The Liver dataset 133
B. 6 The Johns Hopkins University Ionosphere dataset 134

B. 7 The 1984 United States Congressional Voting Records dataset 134
B. 8 The Wisconsin Breast Cancer dataset 135
B. 9 The Pima Indian Diabetes dataset 136
B. 10 The Vehicle Silhouette Identification dataset 136
B. 11 The German Credit dataset

....................... 138
B. 12 The Phoneme dataset 138

List of Figures

1.1 Schematic of how a classifier works
2

1.2 Schematic of an artificial neuron
6

1.3 A feed-forward neural network 7

1.4 A decision tree classifier 8

2.1 A multiple classifier system 14

2.2 What can we change in a multiple classifier system? 15

2.3 Testing set accuracy for the individual classifiers and the ensemble 32

2.4 Improvement on the testing set for the individual classifiers and the ensemble .. .
33

2.5 Illustration of the correlation between the combination methods 35

2.6 The cluster dendrograms for the combination methods 36

3.1 Comparing the two entropy measures 47

3.2 Example probability mass function for the measure of difficulty
48

3.3 Probability mass function for identical classifiers 50

3.4 The most diverse classifiers for p<3... 52

3.5 The most diverse classifiers for p>3. 53

3.6 Possible range of values for the five measures of diversity
59

3.7 Possible range of values for the five measures of similarity
59

3.8 Overall correlation between the diversity measures
64

3.9 Cluster dendrograms for the diversity measures
66

3.10 Correlation between the combination methods and the diversity measures 69

4.1 Resampling implementation of the AdaBoost algorithm
78

4.2 Various aspects of, and studies into, AdaBoost
83

4.3 Change in the average error and value of Q as we add linear classifiers to the ensemble 95

4.4 Change in the average error and value of Q as we add quadratic classifiers to the

ensemble 96

4.5 Change in the average error and value of Q as we add neural networks to the ensemble 97

4.6 Average error versus average training Q...................... 98

X111

xiv LIST OF FIGURES

5.1 The training error for 15 neurons and sample size N 104

5.2 The effect on the testing error of varying the sample size 106

5.3 The effect on the testing error of varying the number of neurons in the hidden layer 107

5.4 The effect on the testing error of randomly varying the sample size and/or the

number of neurons 109
5.5 Example of calculating KappaE 114

5.6 Example of a Kappa-error plot showing the convex hull and the Pareto-optimal set 115

5.7 Pareto-optimality 116

5.8 The AdaBoost algorithm with Pareto-optimal sets 117

5.9 Comparing percentage change in error and average number of runs with the two

Pareto versions 120

I

List of Tables

2.1 Classifier fusion algorithms
17

2.2 How the simple combination methods work
18

2.3 Accuracies on combining with majority vote 22

2.4 The confusion matrices of three classifiers
23

2.5 How the behavior-knowledge space table works 24

2.6 Summary of datasets and the experiments 30

2.7 The correlation coefficients between the different combination methods
34

3.1 The 2x2 relationship table with probabilities
41

3.2 The 2x2 relationship tables for identical, independent and negatively dependent

classifiers
41

3.3 The 2x2 relationship table for slightly negative dependent classifiers
42

3.4 An example of classifiers for the non-pairwise diversity measures 45

3.5 Limits for the diversity measures in terms of p................... 58

3.6 Examining the diversity values found in the example
58

3.7 Observed range and theoretical range of diversity measures for the breast cancer

data ..
62

3.8 Observed range and theoretical range of diversity measures for the Pima data ...
63

3.9 Correlation coefficients for the relationships between the combination methods and

the diversity measures 70

4.1 Summary of the data sets
93

4.2 Testing error using various stopping criteria
99

5.1 Data used in the experiments 103

5.2 BEM procedure comparing the AdaBoost implementations
110

5.3 Successes for' different bootstrap sample sizes
111

5.4 Successes for different numbers of hidden neurons 111

5.5 Summary of the data sets 118

5.6 Average error for AdaBoost, Pareto 5 and Pareto 10
119

xv

xvi LIST OF TABLES

A. 1 Possible values for Ent and kw 130

Notions, Notations and
Abbreviations

For convenience the commonly used notations and abbreviations are placed here for easy

referral.

General General notations

" S2 = {wl,
... , wý}- The set of Class labels

" c- the number of class labels

" din the feature space

"X= {X1,.
.., X, ti}- the set of feature labels

" n- the number of features

"x= [X1,
... , xn]T, or xER n- the feature vector describing object x

" yi- the class label of object xi

"Z= {zl,
... , zN}, zj E din- the training data set

" zi = (xi, yz))- the labelled training data

" N- the number of training examples

"D: stn -+ St Vx E R" s. t. D(x) E S2- a classifier

"p=N -the apparent accuracy of a classifier where N, is the number of correctly

classified elements of Z

" g=(x)- the discriminant function

Multiple Classifier Systems Additional notations for MCS

"V= {Dj,
... , DL}- a set of classifiers

" Di (x) = [dti, l (x),.
--, di, c(x)]T_classifier outputs

" d=, j (x)- the degree of support given by classifier Di to hypothesis that x comes

from class wj

xvii

xviii NOTIONS, NOTATIONS AND ABBREVIATIONS

" D(x) = [µl (x), ... , µc(x)]T- the combined output of the classifiers for object x

" Fc1 (x)- the combined support to the hypothesis that x comes from class wj

" D(x)- the aggregated classification decision

Combination Abbreviations Abbreviations used for different combination methods

" MAX- the maximum

" MIN- the minimum

" AVR- the average

" PRO- the product

" MAJ- the majority vote

" NB- the naive Bayes

" BKS- the behavior-knowledge space

" WER- Wernecke's method

" DT- decision templates

" ORA- the oracle

Diversity Abbreviations Abbreviations used when dealing with diversity

" Q- the Q-statistic

" p- the correlation coefficient

" D- the disagreement measure

" DF- the double-fault measure

" kw- the Kohavi-Wolpert variance

" s- the measure of interrater agreement

" Ent- the entropy measure

" 0- the measure of difficulty

" GD- the generalised diversity

" CFD- the coincident failure diversity

AdaBoost notations Notations used with the AdaBoost algorithm

" Kma- the number of iterations required

" k- the current iteration

" Sk- the training set for iteration k

" Dk- the classifier trained on iteration k

xix

" wk(i)- the weight for object i at iteration k

" Wk _ {wk (1),
... , wk (N) }- the set of weights at iteration k

" , ßk- the combination weight for classifier Dk

" BEM- Bechofer, Elmaghraby and Morse's procedure for comparing competing

pattern recognition algorithms used in [2]

"n E- the kappa-statistic used by Margineantu and Dietterich for their n-error
diagrams [74]

I

xx NOTIONS, NOTATIONS AND ABBREVIATIONS

Chapter 1

Introduction

1.1 Background

Pattern recognition is concerned with the process of assigning objects to classes. Its appli-

cations are connected with the fields of mathematics, engineering, information technology

and computer science.
For each problem tackled using pattern recognition methods we have

9 The set of c class labels consists of all possible mutually exclusive classes denoted

n= {Wl, ... , Wc}.

" The features of an object are characteristics that can be expressed in numerical
form, e. g. height, pressure, number of vertical strokes in an image, grey level intensity

of a pixel, etc.

" The n feature values are the particular values of the features for a specific object
denoted by the vector x= [xi,

... , Xn]T , or xE Rn. The feature values can be

continuous, binary or categorical in nature.

" The feature labels are the labels for each of the n features denoted X= {Xi,
... , Xn}.

9 The feature space is the space, consisting of all possible values of our features

denoted Mtl.

" The training data set is a set of objects described by their feature values and is

denoted Z= {zi,
... , zN}, zj E R'z. The N objects are usually labelled in the c

classes so that zti = (xi, yi), yz E n.

1

2 CHAPTER 1. INTRODUCTION

Input Processing Output Class Assignment
XI Support for wi

xi Classifier Support for wj

Xn Support for w,.
ý"

Figure 1.1: SCHEMATIC OF HOW A CLASSIFIER WORKS

1.2 Classifiers

A classifier is any mapping D which assigns a class label to an object, i. e.,

D: Rn-+1, VxERn, D(x) ES2.

Class wk
assigned as

it has
maximum
support

(1.1)

Classifiers usually output support for each class label being the correct one for object x
and the label with the most support is assigned to x. Classifiers can be designed in dif-
ferent ways, and therefore range in their ability to accurately assign a class to an object.
The choice of type of classifier can therefore have a big impact on the accuracy of the
classification. Figure 1.1 shows a schematic of how a generic classifier works.

Accuracy of Classifiers

Classification accuracy is a major characteristic of a classifier. The so called "apparent"
accuracy of classifier D is obtained by running D on the data set Z and calculating

Ný
p=N (1.2)

where NN is the number of correctly classified elements of Z.

Example - diagnosing a patient with respiratory problems

This is an analogy of how, in a medical setting, a classifier can work like a doctor in
diagnosing a patient. The medical details are taken from [43]. A patient (A) presents
with respiratory problems and several measurements are taken. The appropriate mea-
surements (features), healthy person's values and Patient A's values are shown in the
following table.

1.3. CLASSIFIER DESIGN 3

Features Normal Values
(healthy patient)

Patient A's

values
Temperature (°C) 37 38.2
Respiratory Rate (Breaths per min) 18 25

Blood pressure (mmHg) <s 125
sö

Heart rate (beats per min) 50 to 100 110

pH of arterial blood (AB) 7.35 to 7.45 7.3
Partial pressure of oxygen in AB (Kpa) 11 to 14 7
Partial pressure of carbon dioxide in AB (Kpa) 4.7 to 6.0 9
Bicarbonate ion concentration (mmol/1) 22 to 26 33
Oxygen saturation of arterial haemoglobin (%) 95 to 98% 85

secretion colour clear pale green
secretion cultures (bacteria presence) none bacteria present

The choice of possible diagnoses are the class labels,
Class labels:

SZ = {Emphysema, Chronic Bronchitis, Asthma, Pneumonia}

The problem is to diagnose the respiratory problem patient A has i. e. to assign a class
label from 1 to xa,. For this example "Chronic Bronchitis" is the most likely diagnosis.
We will refer to this example as an analogy for further concepts throughout the thesis.

1.3 Classifier Design

1.3.1 Bayes

When we wish to classify an object, wZ we need to find the posterior probabilities for each
class, i. e., given the object x we need to know the probability of it belonging to each class.
The posterior probabilities for each class P(wilx) are found by using the Bayes formula

which is given by:

p(wjlx) _
P(Wj)P(x wi) (1.3) Ej=1 P(wj)p(xfw9)

where P(wj), j=1, ..., c are the prior probabilities for each class, and p(xlw1) are the

class-conditional probabilities.
The most natural way of classifying an object is to consider all of the posterior probabil-

ities and then to assign the class label which has the highest value of posterior probability.
When used in this way we call the posterior probabilities a set of discriminant functions
(also known as decision functions or classification functions), and denote them as, gi, where

9i. Rn-+R. (1.4)

4 CHAPTER 1. INTRODUCTION

Discriminant functions are not unique, in fact any set of functions, f (gi(x)), where f is

monotonically increasing gives a practically equivalent set of discriminant functions, i. e.,
they will make the same classification decisions. For example, if we consider the Bayes
formula, note that the denominator will be identical regardless of the class w1, and so we
can ignore it, therefore getting another set of Bayes-optimal discriminant functions:

9i(X) = r(w)p(xIwi)

or we can take logarithms and obtain:

(1.5)

g1(x) = log(P(wi)) + log(P(xl w:)) (1.6)

The discriminant functions we use depend on the problem at hand and the information

available.

1.3.2 Parametric Classifiers

Parametric classifiers are based on estimating the parameters of the class-conditional prob-
ability density functions (p. d. f. 's), p(xlwj), from which we obtain posterior probabilities
as shown in equation (1.3) (53].

Since we usually do not have the required information, we can use estimates of these

posterior probabilities as a set of discriminant functions to classify object x.
We can estimate the prior probabilities P(wz) as the proportion of elements from the

training set, Z, which come from class wi. The parametric classifiers assume a hypothetical
form of the class-conditional p. d. f's, p(xlwi), and it is only the parameters of the p. d. f's

which must be estimated. If we assume that the classes are normally distributed, such
that p(xt wj) , N(mi, Si) where m1 E fit" is the mean vector for class wi and Si is the

covariance matrix then

p(Xlwj) = exp -1 (x - mi)'S 1(x
- mti) (1.7)

Vf(ij 21

Substituting this into 1.6 we get,

9i(x) = 1og(P(wi)) + log(p(xlwi))

= 1og(1'(wi)) -2 log(27r) -Z 1og(ISi 1) -
'(X

- mi)T Sz 1(x - mi) (1.8)

The parameters m; and Si are estimated from the training set Z as:

mi =1 ZJ
Ni.

. hYj wi
(1.9)

where yj E SZ is the class label of zj, Ni is the number of elements of Z from class wz and

Si =1E (Zj - mi)(zj - mi)T. (1.10
Ni -1Z,, vf=ws

1.3. CLASSIFIER DESIGN

1.3.3 Linear Discriminant Classifiers

5

For linear discriminant classifiers we take a linear form of equation (1.8). We assume that
the p. d. f is normally distributed with the classes having different means but the same
covariance matrix, p(xl wj) , N(mti, S). By substituting S for Si and discarding all terms
that are not dependent on wi in equation (1.8) we obtain:

gi(x) = 1og(P(wz)) -2 (x - mi)TS-1(X - mi)

)) -1 = log(P(wi 2
[xTS_lx +- mTS-imz - xTS-im= - mTS-17C]

= log(p(wi)) - 2m'S-lmi + xTS-im1-+ +
2mT5`-ix

= 1og(p(wi)) -2 mT ýS-imp + mTS-ix,

which can be written as:

gi (x) = wio + WTx (1.11)

where wio ER and W1 E din are coefficients.

1.3.4 Quadratic Discriminant Classifiers

Quadratic discriminant classifiers are obtained by discarding all terms independent of wi
from equation (1.8).

gi(x) = 1og(P(wz)) -2 1og(ISjI) -2
[xTS_1x

+ mTS-imf - xTS-imi - mTS-ixJ

= log(P(wi)) -2 log(' S") -2
TS-1mti +m 'S-lx

-
2XTS-1x,

which can be written as:

gi(x) = wio+WTX+XTWWx (1.12)

where wio ER and W= E Rn are coefficients and Wz is an nxn matrix.
The parameters for the linear and quadratic classifiers are the mZ and Si which are

estimated as shown in equations(1.9) and (1.10) respectively.

1.3.5 Neural Networks

Neural networks can be thought of as a trained black box where the features of an object
are given as input. They are then processed in some way resulting in a set of c discriminant
functions given as output [53]. The idea behind neural networks was to model the function

of the human brain by using the biological structures used in the brain. This initial idea
has not progressed much further than a simplified modelling of a single neuron. However,

more mathematical neural networks with less emphasis on the biological structures are a
widely used tool in classification.

6 CHAPTER 1. INTRODUCTION

Inputs Processing Output

u0 WO

U, wE iq+i ui wi - rý
v

-" vE

wq

Uq o wiuz v- Y'
ýýý

Figure 1.2: SCHEMATIC OF AN ARTIFICIAL NEURON [53]

Modelled neurons act as the processing unit in neural networks, they are often called

nodes to prevent confusion with their biological versions. A neuron in the brain receives

electrical impulses as its input and if the impulses reach a certain activation level the neu-

ron fires and sends impulses onwards as outputs. Nodes take the input values and multi-

plies them by a vector of synaptic weights, these values are then combined and submitted
to an activation function. The value obtained from the activation function is then given
as the output. Figure 1.2 illustrates how a node operates [53]. u= [uo,...

,t
]T E R9+1

is the input vector given to the node, w= [WO,
... , wq]T E ßi4+1 is the vector of synaptic

weights, 0: i -+ t is the activation function and v =, 0(77), 17 = Eq o w2uti is the output
from the node. There are various choices of activation function available, some of the more
common ones are [53]:

" The threshold function

_
1, if 77 0, W
0, otherwise.

(1.13)

" The sigmoid function

(77)
1+ exp(-rý)

(1.14)

" The identity function

(n) = 77. (1.15)

Of these the sigmoid function is most widely used as it can approximate linear and thresh-

old functions and is easily differentiable which is necessary for neural network training

algorithms [53].

In a neural network we can have many nodes where the output from the activation
functions of some nodes act as inputs to other nodes. We may have several layers of nodes;
the input layer, several hidden layers and an output layer. A structure of this type is the

multi-layer perceptron (MLP). The input layer nodes take the feature values as input and
the output layer nodes produce the set of c discriminant functions as output. MLP is

1.3. CLASSIFIER DESIGN 7

feed-forward in nature, because the hidden layers will take values from previous nodes as

input and output values to the next set of nodes with no feedback allowed. Figure 1.3

illustrates a feed-forward neural network of this type [53]. The information can only pass

up the neural network as it is a feed-forward neural network. The box surrounds the black

box aspect of the classifier. This is one form of classifier which may be used in the place

of the classifier indicated in Figure I. I.

91(x) 92 (x)
... 9c(x)

X1 X2 Xn

XE R"

Output
Discriminant
Functions

Output Layer

2nd Hidden Layer

ist Hidden Layer

Input Layer

Input
Features

Figure 1.3: A SCHEMATIC OF A FEED-FORWARD NEURAL NETWORK WITH
TWO HIDDEN LAYERS [53]

1.3.6 Tree Classifiers

Similarly to neural networks, trees consist of a series of nodes. Each node will consider

a single feature from the input data. A single root node will be connected by branches

to a set of nodes. These nodes are linked to more nodes in the next layer further down

the tree until a terminal node is reached which is often called a leaf node [22). The most
commonly used decision tree classifiers are binary in nature, using a single feature at each

node. This results in decision boundaries which are parallel to the feature axes [45]. Each

node considers whether the feature is lesser or greater than a critical value. If it is less

8 CHAPTER 1. INTRODUCTION

we may follow the left branch, for example, and if it is greater we may follow the right
branch. We follow the route down the branches until we reach a leaf where we make
a classification. Each leaf is normally assigned a specific class label, determined by the
training examples [46]. The tree is constructed with continual subdividing until all of the
training examples in a node are of the same class and that is then determined to be a
leaf node. The class label of the training examples in the leaf node is then assigned as
the class label of the leaf. Figure 1.4 shows how a decision tree classifier works. Decision

stumps are the simplest type of decision tree as they are classification trees with only one
split at the root node which partitions the data into two disjoint classification regions [19].
Obviously the critical value is chosen to most separate the classes. Since stumps are so
simple it is often possible to use an exhaustive search method to identify the best critical
value, which would not be possible with more complex classifiers.

Root Node

(fl, 7)
Training Data

21, z3, Z7

Leaf

Z6, Z1O

Z A f2 f3 Class

zl 5 4 3 wl
Z2 6 6 4 W2
Z3 2 5 1 w,
z4 8 2 2 w2

z5 10 6 1 wl
zs 8 6 3 w3
z7 6 1 6 Wi
Z8 8 4 1 wi
Z9 9 5 2 W2
z10 10 4 5 W3

where (fi, m) denotes using critical value m for feature fi,
O denotes the leaf nodes, w1 the class assigned by that leaf

and zL beneath a node denotes which leaf object zi ends up in.

Figure 1.4: A SCHEMATIC OF A DECISION TREE CLASSIFIER

The difficulty in constructing a decision tree is to decide which is the `best' feature
to use at each node and which is the `best' critical value for that particular feature [22].
Obviously the example tree shown in Figure 1.4 is by no means optimal, and indeed binary
trees are intrinsically suboptimal for most applications [45]. However, they make up for

zg Z5

1.4. AIMS 9

this disadvantage in two major ways:

1. Trees are considerably faster than other classifiers.

2. We can interpret the decision rules used to classify an object in terms of the indi-

vidual features.

These advantages make them a popular choice for users, as does the public availability

of several decision tree classification systems such as Breiman et al. 's CART1 [13] and
Quinlan's C4.5 [84] which are often used as benchmarks to compare new classifiers to.

Like neural networks, decision trees can suffer from over-training. We can simplify the

decision tree and improve the generalisation ability by pruning the tree [22]. This is done

using a separate validation data set with the same statistics as the original training data.

We run the validation set through the tree and calculate the pruning error rate. We then

consider each node above a leaf node in turn. If the pruning error rate would be improved

by turning the node above a leaf node into a terminal node (and removing the leaf nodes
below it) then we do this, known as pruning the tree. This process is repeated until we

cannot improve the pruning error any more.

The decision tree is another type of classifier which can be used in the place of the

classifier indicated in Figure 1.1.

When we have various different classifier types available, it is often difficult to know

which is the best to use for a given application. Often in studies the test errors of the

various classifiers are given and it is left to the individual to interpret and try to determine

whether they are significantly different. Clearly, it would be better to be able to deter-

mine if there is a statistical difference between classifiers' errors. Then the most accurate

classifier could be used, or if they are all statistically similar, the most easily implemented

could be chosen. Looney for instance, gives a statistical basis for comparing L classifiers

with respect to their individual accuracy [72].

Another approach is to try to use the information provided by several classifiers and

combine it in some way. The rest of this thesis is concerned with multiple classifier systems

and combining ensembles of classifiers.

1.4 Aims

The main aims of this thesis are:

" To compare the accuracies of some of the more commonly used classifier combination
methods to each other and to the single best classifier using an ensemble of three

classifiers.
lhttp: //www. minet. org/ and follow the software link.

10 CHAPTER 1. INTRODUCTION

" To examine the Pearson's product moment correlation between the outputs from
these classifier combination methods and to run a clustering program on the com-
bination methods. This is in order to see whether we can identify if any of the

combination methods perform similarly or quite differently from each other.

" To examine the theoretical limits of ten measures which measure diversity amongst
classifiers and to compare these limits to the actual levels of diversity attained using
experiments on real-world data.

" To examine the Pearson's product moment correlation between the diversity values
obtained from these diversity measures and to run a clustering program on the
diversity measures. This is in order to see whether we can identify whether any of
the diversity measures are measuring the same aspect of `diversity' or whether they
are all measuring different things.

" To examine how the AdaBoost ensemble construction method affects the diversity

of the ensemble of classifiers it builds and whether this diversity is related to the
generalisation error of the ensemble on combination.

" To examine how modifying the sample size of training data, the number of neurons
used or both, affects the generalisation error of AdaBoost.

" To investigate whether or not using Pareto optimal sets can produce considerably
smaller ensembles of classifiers without significantly increasing the generalisation
error when used with AdaBoost.

1.5 Organisation of thesis

Chapter 2 introduces various combination methods and studies their relationships with
one another.

Chapter 3 introduces various diversity measures and studies their relationships with
one another and their relationship with the combination methods introduced in
Chapter 2.

Chapter 4 considers different approaches to improving the performance of ensembles of
classifiers and in particular introduces the AdaBoost algorithm.

Chapter 5 considers varying the sample size and varying the number of neurons with
AdaBoost. It also considers how we can use Pareto Optimality in conjunction with
AdaBoost.

Chapter 6 gives the overall conclusions and future considerations.

Chapter 2

Combination Methods

2.1 Why combine classifiers?

Combining classifiers is an established research area in the fields of statistical pattern

recognition and machine learning to develop highly accurate classification systems [3,4,

15,37,38,44-46,48,51,66,67,71,91,109,111,115,1161. It is variously known as committees

of learners, mixtures of experts, classifier ensembles, multiple classifier systems, consensus

theory etc. This approach has been developed because a highly accurate and reliable

classification is required for practical applications.

Classifiers with different data sources, architectures, algorithms or trained on different

feature subsets can exhibit complementary classification behaviour. If we have many
different classifiers at our disposal, it is sensible to consider using them in some form of

combination in the hope of increasing both reliability [66] and the overall accuracy [45]. As

described by Battiti and Colla [4] we can therefore use our classifiers as a team similarly
to the way that a person may consult a panel of experts before making a decision. Each

of the classifiers obtained could attain a different accuracy, but it is unlikely that any will
be 100% accurate, and they may not even be as good as expected. Thus, there is the

need to integrate the results from a number of different classifiers in order to obtain an
improved result [116]. If we recall the analogy of a respiratory patient (see 1.2) it would
be preferable to the patient to have several doctors' opinions. This is the intuition behind

multiple classifier systems.
Some researchers have found that even trying many algorithms it is difficult to improve

accuracy beyond a certain point using a single classifier. Therefore, in order to progress
further, multiple classifiers have to be utilised. It has been reported by Lam and Suen that

a combination of classifiers results in `a remarkable improvement in recognition results' [67].

It has also been proved theoretically that a group of independent classifiers improve upon
the single best classifier when majority vote combination is used (see 2.4.4) [67,116]. It is

11

12 CHAPTER 2. COMBINATION METHODS

generally assumed that the improvement holds for other combination methods as well.
The classifiers in an ensemble must be accurate enough to contribute information but

also different enough from each other to ensure the information is beneficial. Obviously

combining an infinite set of identical classifiers with accuracy 90% is not going to obtain

an ensemble accuracy any better than 90%! However, combining several classifiers with

accuracies of 75% can produce an ensemble accuracy of more than 75%, maybe even
higher than 90%, provided the classifiers are different enough, and those differences are

complementary. We shall look in more detail at the nature of this difference or `diversity'

in the next chapter.
The circumstances when it is sensible to consider combining, due to a set of different

classifiers being produced, are described succinctly by Jain et al. [45]:

1. We may have access to a number of different classifiers, based upon different repre-

sentations of the same problem e. g. person identification via voice, face and hand-

writing.

2. Different training sets may be available collected under different circumstances or at
different times.

3. Different classifiers may exhibit local differences with each being a specialist in a

specific region.

4. Unstable classifiers, such as neural networks, can have quite different results due to
different initial conditions. Unstable refers to the fact that very small changes to the
initial information can result in large changes to the resulting neural network and
its output.

Rather than selecting the best classifier, which may not be that much better than the

others, we combine their opinions taking advantage of all of the attempts to learn the
data.

The following notation must also be introduced to deal with multiple classifier systems:

" Let V= {Di, D2) DL} be a set of classifiers.

" The classifier outputs are usually c-dimensional vectors Dz (x) = [di, l (x),
... , d2, c (x)]T

where di,, (x) is the degree of "support" given by classifier D1 to the hypothesis that

x comes from class w1, j=1,... , c. Without loss of generality we can restrict dtj (x)

within the interval [0,1], i=1, L, j=1,. .., c, and call the classifier outputs
"soft labels". Most often di, j(x) is an estimate of the posterior probability P(wjlx).

" Combining classifiers means we combine the L classifier outputs D1(x),... , DL(X)

,
(x)]T . Here µj (x) is the to get a soft label for x, denoted V(x) = [µ1(x), ... , µc

2.2. HOW MULTIPLE CLASSIFIER SYSTEMS WORK 13

combined value for class w1, Le, the support to the hypothesis of object x being

from class w1, which can be interpreted in some cases as probability or likelihood.

" If a crisp class label of x is needed, (`crisp' refers to the need for a single choice of
class label for an object x), we can use the maximum membership rule to calculate
D(x), the combined classification decision, i. e., the decision made by the aggregation
algorithm as to which class object x should be in :

Assign x to class w, iff,

di, 3(x) > dti, 2 (x) dj = 1, ... , c. for individual crisp labels by D1, (2.1)

µs (x) > pt (x), Vt = 1, ... , c. for the final crisp label. (2.2)

Ties are resolved arbitrarily. The minimum-error classifier is recovered from (2.2)

when pi(x) = P(w2Jx).

2.2 How multiple classifier systems work

Figure 2.1 shows how a multiple classifier system works. The feature values for object x,
(x1)

... , xn), are submitted individually to the L classifiers. Each of the classifiers uses the
feature values to classify the object. The results from the classifiers are then combined
(see Section 2.4). The combination provides a classification for the object x.

Two approaches to this combination are [57,115]:

" Dynamic Classifier Selection which tries to predict which classifier is most likely

to be correct for each object and only that classifier's output is used to assign the

class label to x.

" Classifier Fusion which takes all of the individual classifier outputs and combines
them to calculate the support for each class.

In our work we are only considering classifier fusion methods.

2.3 Strategies for building classifier ensembles
Figure 2.2 shows four different aspects of the multiple classifier system which we can
choose to manipulate to try to improve the classification accuracy [54]. We can select
the combination method used (A), the classifier models used (B), the feature subsets we
submit to the classifiers (C) or the training set used (D). We can alter one or more of these
at any one time. Hopefully, by changing these we can produce an ensemble of classifiers
which are different enough from each other to provide complementary information and
thus an improved accuracy over the individual classifiers when combined.

14 CHAPTER 2. COMBINATION METHODS

Classification of x

Aggregation

"vA

d{"' ýö
`i

l

{

ýý ýýý ýi ýý ýýr ýý i Classifier 1 Classifier 2 '_, Classifier L:

xi X2 x n

Figure 2.1: A MULTIPLE CLASSIFIER SYSTEM

A Combination methods There are many different combination methods we could use,
there is more information on some of them in the rest of this chapter.

B Classifier models There are many different classifier models we could choose from,

some of the various classifier models have already been mentioned (see 1.3).

C Feature subsets If a set of classifiers is built on different features then intuitively
they should be different from each other. There are two ways of obtaining different
feature subsets, we can use

1. Feature selection- finding as small a subset of the features as possible whilst
still ensuring that the accuracy of the classifier using the subset is as high as
possible. The random subspace method is a feature selection approach [41].

2. Feature extraction- usually uses Principal Component Analysis to perform a
set of transformations (linear or non-linear) on the whole feature set to obtain
a different set of features.

2.3. STRATEGIES FOR BUILDING CLASSIFIER ENSEMBLES 15

Combiner

Classifier Classifier Classifier

1iL
....

X

A Different combination schemes

Combiner

Classifier Classifier ClýssCier

....
1iL

Y

B Different Classifier models

Combiner

Cl ifi Cl ifi ifi ass er ass er Class er

1 i L

x

C Different feature subsets

z1

D Di ffe

Z2

rent traini ng

Z3

sets

Figure 2.2: WHAT CAN WE CHANGE IN A MULTIPLE CLASSIFIER SYSTEM? [54]

D Training sets These can be modified in several ways to obtain a different training set
for each classifier. In this way we hope to obtain a set of different classifiers (see 4).
Some approaches are:

" Bagging [8,9]. Here we take bootstrap replications of the data set, i. e., if we
have an original set of size N we take a random set of N examples from the

16 CHAPTER 2. COMBINATION METHODS

data set (allowing repeats) for each classifier.

" AdaBoost with re-sampling [9,31]. Here instead of taking random bootstrap

replications of the data set, weights are assigned to each example in the data

set and those which are deemed to be difficult to classify by earlier classifiers
have higher chance of being put in the training set for future classifiers.

Other Approaches These are methods which do not easily fit into any of the categories

above.

1. Injecting Randomness. This approach involves adding an element of random-

ness into the procedure. For neural networks this is done by randomly choosing
the initial weights (21], and for decision trees by randomly selecting the feature

that decides the split at each node [11].

2. Manipulating Output Features. We can alter the output feature for example,
by turning a multi-class problem into a set of binary problems as in error-

correcting output coding [76,771. Also we can include some randomness by

randomising the outputs. This can involve introducing noise by altering some

class labels whilst maintaining the same proportion of each (known as output
flipping) [101. Alternatively we can create a vector for each training example

with value 1 for the true class label and 0 for all the other possible class labels,

rather than a single class label, and then we can add Gaussian noise to this

vector (known as output smearing) [10].

2.4 Combination methods

2.4.1 Classifier Fusion

There are many different classifier fusion algorithms. These take the outputs of several

classifiers to give a combined output which is hopefully more accurate than that of the

individual classifiers. There are three classes of classifier depending on the amount of
information produced for a given input x [116].

1. Abstract type - when a classifier D only outputs a single class label.

2. Rank type - when a classifier D ranks all classes; the class with the highest rank is

the most likely label for x (according to D) and the class with the lowest rank is the
least likely label for x.

3. Measurement type - when a classifier D attributes a measurement value to each class
label according to its support for that class label (this could be a probability value

or a distance measurement, etc.).

2.4. COMBINATION METHODS 17

All types of classifiers can produce information at the abstract level and so combining at
this level is possible even for very different types of classifiers. The measurement level

contains the most amount of information and the abstract level the least. Many classifiers

pass through a measurement level as an intermediate stage in the classification process,

e. g., those that approximate P(wi) and p(xJwi) or P(w; Ix) (the prior probabilities, class

conditional p. d. f. and posterior probabilities) or those that measure the distance between

the object x and each prototype sample, zj, from each class. In order to combine these

different forms a transformation to a common scale would be necessary before combination
could occur. The rank level avoids this problem since ranking can easily be obtained from

the measurement level allowing combination of different types of classifier but still retaining

more information than the abstract level. However, the rank level is effectively ignored

in practice so we will only concern ourselves with the abstract and measurement levels of
information.

Table 2.1 gives the level of information required for a set of commonly seen algorithms.

Table 2.1: CLASSIFIER FUSION ALGORITHMS AND THE LEVEL OF INFORMA-
TION THEY REQUIRE

Abstract Level Fusion Algorithms

Voting methods including majority vote
Naive Bayes combination

Behavior-knowledge space and Wernecke's method

Measurement Level Fusion Algorithms

Minimum, maximum, average and product
Probabilistic product

Fuzzy integral

Decision templates
Dempster-Schafer combination

2.4.2 Maximum, Minimum, Average and Product (MAX, MIN, AVR,
PRO) [45,48]

These are some of the simplest and most commonly used combination methods. Once

the classifiers in the ensemble are trained, these combination methods do not require

any further training. The equation for implementing these combination methods is given

18 CHAPTER 2. COMBINATION METHODS

below.

µß(x) =d (dlj(x),...)dL, 9(x)), j =1,..., c. (2.3)

where 0 is the respective operation (maximum, minimum, average or product) and dij (x)

is the support given by classifier Di to the hypothesis that x comes from class Wj. The

class wj with maximum pj is the assigned class for the given input x. Table 2.2 shows an

example of how these simple combination methods work. Recall, `Crisp Decision' means
the choice of a single class label for an object x. The highest pj(x), j=1,2, for each of
the combination methods is underlined indicating which class will be chosen for the crisp
decision. Note that for the same set of classifier outputs MIN and MAX give the same

crisp decision as each other but that this is different from AVR and PRO.

Table 2.2: AN EXAMPLE SHOWING HOW THE SIMPLE COMBINATION METHODS
WORK

Classifier Support for wl Support for W2 Crisp Decision

Dl 0.8 0.2 wi
D2 0.4 0.6 w2
D3 0.3 0.7 W2
D4 0.6 0.4 Wi
D5 0.3 0.7 w2

MIN Q3 0.2 wl
MAX ý8_ 0.7 wl
AVR 0.48 9.52 W2
PRO 0.01728 0.2352 w2

2.4.3 Voting Methods

Threshold voting considers each classifier as a voter and assigns a threshold value to the

situation. The general formula for threshold voting is:

e, if Ed 1 dd, e (x) > Ed 1 dd, f (x)
_> axLVf=1, ... , c, f 54 e, (2.4)

c+1 otherwise

where 0<a<1, L is the number of classifiers, d;, a is the support given by classifier Di to

the hypothesis that x belongs to class wj and c+1 denotes the option to reject the object
if it cannot be assigned a class label. There are various special cases of the threshold vote.

Unanimous Consensus (UC) [116] This requires all classifiers to agree on the class
label of an object otherwise it rejects classification. This corresponds to a=1 in

equation 2.4.

2.4. COMBINATION METHODS 19

Consensus with abstentions (CA) [116) This is similar to the unanimous consensus
but allows individual classifiers to reject classification as long as no classifier supports

a different class. This has a slightly different formula:,

D_e, if Ed l dd, e (x) >0 and dd, f(x) =0df=1, ... , c, fOe,
(2.5)

c+1 otherwise

Majority vote [116] This requires that a majority of the classifiers agree on the class
label, i. e., that a=. in equation 2.4. If there are more than two classes the class

with the most may not necessarily have more than half the votes. In this case

plurality vote may be used.

Plurality vote [116] This is the weakest combination using voting, it assigns the class
label for which the highest number of classifiers vote. This also has a slightly different

formula:

D=e, if Ed 1 dd, e (X) > dd, f (X) Vf=1, ... , c, fie,
(2.6)

c+1 otherwise

If there is a tie for the number of votes it may be broken randomly or a rejection

may occur.

2.4.4 Majority vote

Majority vote (MAJ) takes the individual classifier opinions and assigns the object to the

class which the majority of classifiers would assign it. We consider L classifiers acting on

a data set of size N. Let C,, = [cij,...
, cNj]T, CC E {0,1}N be an N-place binary vector

formed in the following way:

1, if zz EZ is correctly classified by Dj (2.7) cij
0, otherwise

where j=1, ... ,L and i=1, ... , N. Let M= [ml,
... , mN]T be the vector containing

the majority vote result calculated by:

rrti
1, if E1 Cjj >k
0, otherwise

(2.8)

where i=1, ... ,N and k= Ll for odd L and k2+1 for even L. The accuracy is
therefore:

Pmajority =I
MI

N
(2.9)

where IMI is the sum of elements of M.

20 CHAPTER 2. COMBINATION METHODS

Let {Dl,...
, DL} be the set of classifiers and SE = {W1, W2}. Let D2(x) = w5 i=

1,... ,LjE {1,2}. If L is odd then no ties are possible. If L is even then ties are
possible. If c>2 then ties are always possible whether L is odd or even.

For example, let c=3, L=5, SZ = {Wl, w2i W3}. Suppose that for some xER,
Di (x) = wi, D2 (x) = W2, D3 (x) = w2, D4 (x) = W3, D5 (x) = w3. Here the votes tie (two

votes for each of w2 and w3), and, besides there is no class label for which the majority
(50%+1, i. e., 3 in this case) is obtained.

Another example is with c=4, L=5, i. e., S2 = {Wl, w2i w3, w4}, and D1(x) _
w2i D2 (x) = W4, D3 (x) = W2, D4 (x) = w3, D5(x) = wl. Here there are no ties, the

maximum votes are for W2, but there is no class label for which the majority (3, as before)
is reached. In cases like this it may be preferable to use the class with the most votes,
called `plurality vote', or reject the object depending on the particular problem.

It has been shown [52,67], that if we assume that the L classifiers are independent

with the same probability of correct classification, p, then the probability of an accurate
consensus P can be calculated using the binomial distribution as:

L

P=L pt(1 -P)L-i (2.10)
i=k 2

where k=L, and L is odd. k is the value at which a majority is reached, e. g.,
L=5=k=3 (3 classifiers agree gives a majority). For a justifiable combination of
classifiers we require this P to be greater than any one of the individual classifiers and
hence:

LL
E pß(1 - p)L-i >p (2.11)

i

Consider the case for 5 classifiers, L=5, k=3

5 i
pi(1

(:)P3(1_P)2+ (:)(')+ 5
P5 (2.12)

i=3 5

= p3(10 - 15p + 6p2) >p
This is true Vp E (0.51 1).

Provided the classifiers have individual accuracy greater than 50% and are independent,
it is guaranteed that the majority vote will give an improvement in accuracy on the
individual classifiers [67].

2.4.5 Weighted voting

If we consider the analogy of the respiratory patient once again (Chapter 1.2), in an ideal

world we would hope to have a team of experienced nurses, doctors and consultants all
giving their opinion and discussing with one another. Unanimous consensus would be the

2.4. COMBINATION METHODS 21

case where all the medical staff agree on a diagnosis. Consensus with abstentions, would
be the case where some medical staff may decline to give an opinion and the rest would

all agree on the diagnosis. Majority vote would be when the majority of staff agree, and

plurality would go with the diagnosis which got the most votes from members of staff.
In reality a consultant's opinion would be considered to carry more weight than a junior

doctor's or a nurse's regardless of their experience. In classifier systems we encounter this

inequality of the classifiers. Some classifiers may be much more accurate than others but

the ensemble of classifiers could still benefit from considering all opinions. Also sometime

a classifier may become incredibly specialised, i. e. in our analogy a consultant may be a

specialist in respiratory care but know very little about other conditions. To deal with this

kind of situation we can assign weights to our experts, so we may give a high weight to

the consultant's opinion and lesser weights to the junior doctors' and nurses' opinions. In

a similar way we assign weights to our classifiers before combining with voting [3,46,111].

The equation for weighted majority voting is:

e, if Ed i wddd, e
(X) > ýd 1 wddd, f (x) >ýVf=1, ... c, fe,

D=

1c+1 otherwise
(2.13)

where L is odd, and wd is the weight assigned to classifier Dd.

2.4.6 Limits of majority vote

In previously published work [64] we derived upper and lower limits on the majority vote

accuracy with respect to individual classifier accuracy, p and the number of classifiers in

the ensemble, L. As has been previously mentioned independent classifiers with individ-

ual accuracy p>0.5 guarantee an improvement when combined by majority vote. We

considered the case for dependent classifiers and how their similarity/dissimilarity could

affect the combined accuracy.
We did this by considering two probability distributions over the possible combinations

of L correct /incorrect votes. Consider the pool D of L (odd) classifiers, each with accuracy

p. For the majority vote to give a correct classification we need L2J+1 or more classifiers
to be correct.

Intuitively the best improvement over the individual classifier accuracy will be achieved

when exactly l2 J+1 votes are correct (where [*J indicates the floor, or largest integer

smaller than, *). We denoted this case the `Pattern of Success'. Any extra correct votes

will be `wasted' as they will be unnecessary to gain the correct vote and any correct votes
in combinations not leading to a correct combined decision will also be `wasted'. Similarly

the `Pattern of Failure' occurs when exactly one less than the majority, i. e. L2 J, of the

classifiers are correct.

22 CHAPTER 2. COMBINATION METHODS

Table 2.3: ACCURACY UPPER LIMITS WHEN COMBINING INDEPENDENT AND

DEPENDENT CLASSIFIERS WITH MAJORITY VOTE

L 3 5 7

p Ind DepS DepF Ind 7 DepS DepF Ind DepS DepF

0.5 0.5 0.75 0.25 0.5 0.83 0.16 0.5 0.875 0.125
0.6 0.648 0.9 0.4 0.683 1 0.3 0.71 1 0.3
3 0.741 1 0.790 1 0.827 1

0.7 0.784 1 0.837 1 0.874 1

0.8 0.896 1 0.942 1 0.967 1

0.9 0.972 1 0.991 1 0.997 1

In [64] we derived two formulas to give us an upper and lower limit on the majority

vote accuracy.

L
`Pattern of Success', Upper limit: Pmaimax = min 1,

Lp+1
(2.14)

2J
_L

`Pattern of Failure', Lower limit: Pmaimin =
pL

L+1, (2.15)
ý2J

and as L increases : Pmaimin = 2P -1 (2.16)

then Pmajmax =1 but Pmajmin -+ 1 for large L. Both the pattern of success If p>1 33

and the pattern of failure cases are cases of dependent classifiers and show the problem a

user faces. We can achieve much higher accuracies, than by using independent classifiers,
but we can also achieve much lower accuracies by using dependent classifiers. It is know-

ing whether or not we will gain an improvement that is the problem. Considering the
independent case (Ind) shown in equation 2.10 and the dependent cases Success, (DepS)

shown in equation 2.14, and Failure shown in equation 2.15, Table 2.3 gives the various val-

ues of majority vote accuracy obtained for L=3,5,7 individual classifiers with accuracy

p=0.5,0.6,2 3,0.7,0.8,0.9. This illustrates both the theoretical advantages in using de-

pendent classifiers rather than using independent classifiers and the disadvantages. These

values show that if we have the `right' sort of dependence we can improve the accuracy

considerably, especially with a small number of classifiers. It is therefore worth looking in

more detail at the nature of this dependence or diversity, as we shall see in chapter 3.

2.4.7 Naive Bayes (NB) [15,44,57,116]

Xu et al. and others more often refer to this combination method as Bayes combination [15,

44,116]. However this method relies on the assumption that the classifiers are mutually

2.4. COMBINATION METHODS 23

independent. In reality this situation does not occur and this is the reason we use the term

"naive" [57]. Consider the crisp class labels obtained from Dl (x),
... , DL (x) by (2.1), so

in this case Di (x) E f2, i=1, ... , L. Let si, ... , .s be the crisp class labels assigned to x
by classifiers Dl,..., DL, respectively. The independence assumption leads to

L

ßj (x) « JJ P (w? I Di (x) = si) ,
(2.17)

i=1

where P (wj IDi (x) = si) are probability estimates calculated from the data.

number of objects labelled sz by Ds whose true label is wj P (wýýDi(x) = si) =
number of objects labelled si by Di

The following example illustrates the NB combination method. Let L=3 and c=2.
Suppose that the confusion matrices of the three classifiers, calculated on a data set Z

with 100 objects are as shown in Table 2.4.

Table 2.4: THE CONFUSION MATRICES OF CLASSIFIERS Dl, D2, AND D3.

D1 D2 D3

Guessed label Guessed label Guessed label

wl CJ2 wl W2 wl w2

True label wl 36 22 wl 41 17 wi 23 35

W2 22 20 w2 20 22 W2 26 16

Let the output of the three classifiers for some xE R'1 be such that [sl, s2i s3] _
[w2, wl, w2]. Majority vote would label x in w2. However, the support for that class label

may not be very strong even though it is hypothesised by 2 of the 3 classifiers. For the

naive Bayes combination,

PýC`11ý51 W2) "- 42
22 20 PP2131 = W2) - 42

P(wlI s2 = w1) =
si

16 (W2182 = WO =
61

=51 (w21s3=W2)=56 (2.18) (w1I S3 W2) P

x) a 22
-

41
-, 0.242 > x) a 20 ' 20 * 16 - 0.05 µlý 426151

35
µ2ý 42 651

Accordingly, class wi will be assigned.

2.4.8 Behavior-Knowledge Space and Wernecke's method (BKS, WER) [44,

112,115]

BKS works by considering every possible combination of class labels as an index to a

cell in a look-up table (BKS table) [44]. Recall that s= (sl,
... , sL) E 52L are the crisp

24 CHAPTER 2. COMBINATION METHODS

class labels assigned to x by classifiers D1,... , DL, respectively. s can be considered as

an L-dimensional random variable and we try to estimate µ1(x) = 1'(wils). We design

the table using a labelled data set Z. For each training object, z, E Z, we consider
Di (z f), ... , DL(zj). z2 is then placed in the cell indexed by D1(zj),... , DL(zj) and we
tally the number of objects from each class in each cell. The class label with maximum

occurrence is selected as the label for this cell. Sometimes we may have ties or the cell may
be empty, in which case we resolve the ties arbitrarily, and label the empty cells either

at random or by some other method if applicable. After the table has been designed, the
BKS method labels an xE R" to the class of the cell indexed by Dl (x), ... , DL (x).

For the example discussed in section 2.4.7, assume again that D1, D2 and D3 produce

output (81,32)83) = (w2, w1, w2). As we can see in Table 2.5 there have been 22 objects
in Z for which this combination of labels occurred; 15 having label wl, and 7 having label

w2. Hence the table cell indexed by (w2, wl, w2) is labelled wl no matter that the majority

of the classifiers suggest otherwise. Therefore BKS would assign class wl to object x.

Table 2.5: EXAMPLE SHOWING HOW THE BKS TABLE IS CONSTRUCTED AND
USED

Dl(x), D2(x), D3(x) 1,1,1 1,1,2 1,2,1 2,1,1 1,2,2 2,1,2 2,2,1 2,2,2

Number from class w1, w2 5 0 17 4 11 13 4 9 3 5 15 7 3 4 0 0
Cell Label wi wi W2 W2 w2 wl W2 W2*

* decision by majority since all three classifiers would assign class w2.

Wernecke's model is similar to the BKS. The difference is that in constructing the

table, Wernecke [112] considers the 95% confidence intervals of the frequencies in each

cell. If there is overlap between the intervals, the "least wrong" classifier among the L

members of the team is identified and authorised to label x. For this, L estimates of the

probability P(error and Di(x) = si) are calculated. Then the classifier with the smallest

probability is nominated for labelling the cell. For an xE Rn, the cell is identified by the

labels assigned by Dl,..., DL and then either the cell label is recovered or the label of the

nominated classifier is taken as the label of x.
To continue the example illustrating BKS combination method shown in Table 2.5, we

would calculate the 95 % confidence intervals, using Chebyshev's inequality (e. g., see [36]).

If the confidence intervals are overlapping, estimates of P(error and Du(x) = si) have to
be obtained. Using the data in the confusion matrices, Table 2.4,

22 42
=

22
P(error and D1(x) = w2) = P(w1Isl = w2)P(s1 = w2) =42 100 100

2.4. COMBINATION METHODS 25

P(error and D2(x) = wi) =
P(w2152

= wl)P(s2 = w1)
20 61 20

_ - 61 100 100 0 0
P(error and D3(x) = w2) = P(wiI 3= w2)P(s3 = w2) =

35
' _

51
:

35 5
51 100 1 00

As P (error and D2 (x) = w1) is the smallest of the three, clas sifier D2 is authorised to
label x, and thus the assigned class is wl.

2.4.9 Decision Templates (DT) [57]

The classifier outputs can be conveniently organised in a decision profile as the following

matrix
di, 1(x) ...

dlj (x)
...

dl,
c(x)

DP(x) = di, i(x) ... dj, j(x) ... di� (x) (2.19)

dL, 1(X) ...
dL, 9 (X) ...

dL,
c(X)

Using decision templates (DT) for combining classifiers is proposed in [57]. Given L
(trained) classifiers in D, c decision templates are calculated from the data, one per class.
This approach works by comparing the c DT's produced to a characteristic template for

each class, the decision profile. It is therefore able to use outputs for all classes to calculate
the final support for each class unlike other methods which only use the support for that

particular class. For each class label, i, there is a decision template, DTT, and each decision

template is an Lxc matrix whose (k, l)th element is:

dti (k, 1) =
EN 1 Ind(zj, 2)dk, t (zj)

, lc =1, ... , L, l =1, ... , c. (2.20)
ýj=1 Ind(zj, i)

where Ind(zj, i) is an indicator function with value 1 if zj has crisp label i, and 0 otherwise.
DTi can be regarded as the expected DP(x) for class wi. The support for the class

offered by the combination of the L classifiers, µi (x) is then found using a measure of

similarity between the current DP(x) and DT1:

µi(x) = S(DT2, DP(x)) (2.21)

Here we use the squared Euclidean distance for calculating the similarity, i. e,. the lower

the squared Euclidean distance between the matrices entries, the more similar they are.
Therefore we calculate p= by taking 1 minus the squared Euclidean distance. Any other
measure of similarity/dissimilarity can also be applied in a similar manner.

cL

ßi (x) =1- dE(DP(x), DTi) =1-Z Z(dk, j(x) - dt; (k, j))2, (2.22)
j=1 k=1

where dt2(k, j) is the k, j-th entry in decision template DT=.

26 CHAPTER 2. COMBINATION METHODS

As an example, assume that the following Decision Templates have been obtained from

a data set Z using equation (2.20), with c=2, L=3:

0.7 0.3 0.4 0.6
DT1 = 0.5 0.5 , DT2 = 0.6 0.4

0.6 0.4 0.2 0.8

Given an object x with Decision Profile

0.6 0.4
DP(x) = 0.4 0.6

0.3 0.7

we use the squared Euclidean distance to calculate the similarity, the closer DT1 is to
DP(x) the more similar they are, and subsequently the higher the support for class wl
and similarly for DT2.

dE(DP(x), DTi) = (0.6_0.7)2+(0.4-0.3)2 + (0.4 - 0.5)2

+(0.6 - 0.5)2 + (0.3 - 0.6)2 + (0.7-0.4)2 = 0.22

dE(DP(x), DT2) = (0.6-0.4)2 + (0.4 - 0.6)2 + (0.4 - 0.6)2

+(0.6-0.4)2+(0.3-0.2)2+(0.7-0.8)2 =0.18

µ1(x) =1- dE(DP(x), DT1) = 1- 0.22 = 0.78

µ2 (x) =1- dE (DP(x), DT2) =1-0.18 = 0.82

Since µl > P2 we assign class label wl to x.

2.4.10 The Oracle (ORA)

The Oracle is named after the seers of ancient mythology as it works by correctly classifying
an object provided at least one of the L classifiers correctly classifies the object. It is

obviously not a true combination method but an abstraction which gives the possible upper
limit on the classification accuracy. Here we use the oracle to compare the combination

methods' performance.

2.4.11 Data-dependent weights and multi-level classifiers

Data-dependent weights are often used with combination methods for multiple classifier

systems. These weights are developed from the training data and are then used during

combination. The weights are adjusted to improve the ensemble performance during the

training process.
Multi-level classifiers work by having one classifier's outputs as the inputs for another

classifier. That is, the output decision profile, DPD4 (x), from classifier, Da,, is submitted

2.5. EXISTING EMPIRICAL STUDIES OF COMBINATION METHODS 27

to another classifier, Db, as its input and its output is DPDb(DPDQ(x)). They are also
known as stacked classifiers.

2.5 Existing empirical studies of combination methods

There have been many studies comparing various methods of combination methods (e. g. [48,

57,111,116]. Many of these studies introduce a new combination method and then com-

pare its performance with other popularly used methods. Kittler et al. [48] compared

some of the simpler combination methods which do not require second level training: the

minimum, maximum, sum, product, median rules and majority vote. They compared the

methods using four types of base classifiers on a U. S. postal service database consisting

of handwritten digits - CEDAR-CDROM. Their results showed that the sum and median

rules were the best, and that in fact the sum rule is very robust despite being the rule

with the most restrictive assumptions. The majority vote rule and maximum rule also

performed better than the single best classifier whilst the minimum and product rules

were both worse than each of the individual classifiers.
Kuncheva et al. [57] introduced Decision Templates (with various similarity measures)

and compared them with 13 other combination methods, minimum, maximum, average,

product, majority vote, naive Bayes, behavior-knowledge space, probabilistic product,
Dempster-Schafer, fuzzy integral, linear discriminant classifier, quadratic discriminant

classifier, and the logistic classifier, (the latter three use the base classifier outputs as
input allowing them to act as a combination method). Using quadratic discriminant clas-

sifiers as the base classifiers and using the satimage and phoneme databases their results

show that if you choose the `correct' similarity measures decision templates outperform all
the other combination methods. They give a ranking order of the combination methods

over the two datasets. Out of eleven similarity methods, decision templates (DT) with 5

of the similarity measures gave higher accuracies than all other methods, and DT with
another similarity measure was better than all combination methods apart from Product
(which was next best after the five DT methods) and Dempster-Schafer. Minimum and
Average were the next best followed by another DT version. The order of the remain-
ing methods was: majority vote, fuzzy integral, logistic classifier, maximum, probabilistic
product, behavior knowledge space and naive Bayes. All these methods were better than
the single best individual classifiers. DT with the four remaining measures were worse
than the single best classifier but outperformed both the linear and quadratic discriminant

classifiers, which were ranked in that order.
Xu et al. 's [116] study into combination methods, compared several versions of Bayesian,

voting and Dempster-Schafer approaches on a handwritten digit recognition problem,
taken from a US zip-code database. The database consists of 2000 examples and there

28 CHAPTER 2. COMBINATION METHODS

were two experiment formats: the first used the whole 2000 examples and prior knowl-

edge, the second used the first 1000 examples for training the combination method and
the second 1000 examples for testing the combined ensemble. Their Bayesian approach

consists of averaging the estimated posterior probabilities and so they call it the averaged
Bayes classifier. They also use the confusion matrices of their trained classifiers as prior
knowledge to take the individuals errors of the classifiers into consideration. They found

that this approach performed very well for the first format when they had the entire 2000

examples on which to base the confusion matrices as well as for testing, but was unstable

when using the second format of 1000 examples for deriving the confusion matrices and
1000 examples for testing. The Dempster-Schafer approach was more robust than the

averaged Bayesian approach as was the voting approach but the former performed better

than the latter.

Verikas et al. [111] studied twelve combination methods' performances on four datasets

from the ELENA project: clouds, concentric, satimage, phoneme. They were interested

in how methods from fuzzy logic compared with more widely used combination methods.
They studied majority vote, average, Xu's averaged Bayes (as described above), Borda

count, weighted average, linear order statistics, fuzzy integral using the Choquet inte-

gral, optimised Choquet integral, fuzzy integral with data-dependent weights, weighted

average with data-dependent weights, BADD defuzzification strategy and Zimmermann's

compensatory operator.
,

They found that weighted average with data-dependent weights was the best combi-

nation method overall closely followed by the fuzzy Choquet integral with data-dependent

weights. BADD was one of the best methods for large training sets but could not cope

with small training sizes. Optimised Choquet integral was found to be better than basic

Choquet integral. Majority vote, Borda count and Bayes were found to be of little use es-

pecially for highly correlated networks exhibiting widely varying accuracies. In particular
they were poor when there was a network which was significantly better than all of the

others.
Fumera and Roli carried out experiments comparing simple average and weighted aver-

age combining rules [35]. They discovered that when an ensemble is fairly balanced, with

classifiers having similar performance and correlation, simple average has better perfor-

mance. For im-balanced ensembles where there is a wider variation among the classifiers'
performance and correlation, weighted average is superior. They found in experiments that
in practice the weight of the worst classifiers is very close to zero. This means they are
almost discarded from having any affect on the weighted average. If the optimal weights
are significantly greater than zero the advantage of using weighted averaging over that of
using simple average is relatively small.

These empirical studies show the problem for ensemble designers in deciding what base

2.6. EXPERIMENTAL SET-UP 29

classifiers to build the ensemble from and what combination method to use to combine
their outputs. Clearly there is no one, best choice of combination method, since for each
of the datasets the various combination methods perform differently. The difficulty of
implementation, computer time required and training set size required must be considered
as well as the ensemble accuracy, with some kind of trade-off being unavoidable.

2.6 Experimental set-up to investigate the combination meth-
ods

Here we are interested in comparing the accuracies of some of the commonly used com-
bination methods to the single best individual classifier and to each other. We aim to
examine the product moment correlation between the outputs from each of the classifier
combination methods. We also intend to run a clustering program to identify whether any
of the methods are behaving similarly to each other. Using this information we hope to
be able to identify which combination methods to use on the basis of both accuracy and
ease of implementation. If we have two methods which produce similar results and are
clustered closely together it will make sense to use the one which is easier to implement.
We also hope to learn more about how these methods may be related to each other despite
having derived from a wide variety of sources. To investigate these areas we carried out
an experimental study [99]. We used two databases both taken from the UCI Repository

of Machine Learning Databases. They are the Wisconsin Breast Cancer Database (wbc)2

and the Pima Indian Diabetes Database (Pima).

From the original 30 features for the wbc data we used the first 10 so that we could
run an exhaustive experiment with all possible partitions. We chose the first ten because
the features in this data set were logically grouped into 1-10,11-20,21-30. The wbc data
has 569 objects, 2 classes and 10 features and is trained using a hold-out (random halves)

method. The Pima data has 768 objects, 2 classes and 8 features and is trained using
ten-fold cross-validation.

All partitions of the 10 features into 3 subsets of the form 4,3,3 (4200) and 4,4,2 (3150)

were generated so that the first classifier has 4 features as input, the second classifier has
3(4) features as input and the third classifier has 3(2) features as input. For each partition
we designed one ensemble of three linear classifiers and one ensemble of three quadratic
classifiers. Thus, the total number of ensembles for the wbc data is twice the total number
of partitions. This set-up and the combination methods we are examining were initially
used by Kuncheva and Whitaker in [59].

'available at http: //www. ics. uci. edu/-mlearn/MLRepository. html
2Created by Dr. William H. Holberg, W. Nick Street and Olvi L. Mangasarian, University of Wisconsin

30 CHAPTER 2. COMBINATION METHODS

For the Pima data we took all partitions of the form 3,3,2 using 10-fold cross-validation

to obtain a total of 560 ensembles.
Table 2.6 shows a summary of the data sets and the initial experimental protocol, the

data sets are described in more detail in Appendices B. 8 and B. 9.

Table 2.6: SUMMARY OF THE DATA SETS AND THE EXPERIMENTS

Name C N n (n1, n2, n3) Total number
of ensembles

Training/
Testing

Wisconsin Breast Cancer 2 569 10 (4,4,2) 6300 Hold-out
(4,3,3) 8400 (Random halves)

Pima Indian Diabetes: 2 768 8 (3,3,2) 560 10-fold cross-validation

Key

c: number of classes N: number of objects in the data set n: number of features used
(ni, n2i n3): partition sizes; D1 uses nl of the n features, D2 uses n2i and D3 uses n3 features.

We consider:

1. The overall accuracies of the combination methods and their improvement over the

single best classifier. For each partition we select the most accurate of the three

classifiers based on the training data and this is then considered the single best

classifier for that partition.

2. The correlation between each method of combination and all other methods of com-
bination.

The correlation coefficient used was Pearson's Product Moment correlation coefficient.
The following combination methods were applied:

" majority vote

" naive Bayes

" behaviour-knowledge space

" Wernecke's method

" maximum

" minimum

" average

" product

2.7. COMBINATION METHOD RESULTS 31

" decision templates

" and oracle to compare the performance of the other methods.

2.7 Combination Method Results

2.7.1 Overall Accuracies

In order to compare the performances of the various combination methods, Figure 2.3

shows the accuracies of the single best classifier, the three individual classifiers, the nine

combination methods and the oracle. Figure 2.4 shows the percentage improvement (or

decrease) in accuracy of the nine combination methods over the mean single best classifier

accuracy. The circles indicate the mean accuracy and the upper and lower lines indicate

the minimum and maximum accuracy values. For each partition of the features we have

three different classifiers. They are built using the training data and then their accuracy
is compared using the testing data as is that of the combination methods combining the

three classifiers. We determine the single best classifier by examining the accuracy of
the three classifiers on the training data. The classifier with the highest accuracy on a

particular partition is called the single best classifier for that particular partition. The

testing accuracy for this single best classifier is then used for that particular partition as a
baseline to compare the accuracies of the combination methods. The single best classifier
is determined in this way as choosing the best individual classifier on the basis of the

testing data would make it even harder for the combination methods to compete as we

would be using a form of hindsight which we would not have in a real-world situation.
The dashed horizontal line is the mean accuracy of the single best classifier.

The graphs show that the classifiers which receive more information in the form of

additional features outperform the classifiers which receive fewer features as input, i. e.,
for wbc with the partitions 4,4,2 the third classifiers is weakest as we would expect and
for 4,3,3 the first classifier is strongest. For the Pima partitions 3,3,2 there is not much
difference between the three classifiers.

For the Wisconsin breast cancer data it seems better to choose any of the combination

methods rather than a single individual classifier even if it is the strongest one. If we pick
the single best classifier for each particular problem based on the training accuracy, we

can get better results than some of the combination methods, namely BKS and WER for
linear classifiers and NB, BKS and WER for quadratic classifiers as these all have lower

minimum values than the single best classifier. We must also note though, that apart
from BKS and WER with quadratic classifiers, they all have mean value above that of
the single best.

For the Pima data the results are not so good, there is very little improvement over the

32

1

0.9

0.8

0.7

0.9

0.8

0.7

0.9

0.8

0.7

nA

wbc 442 linear classifiers

Accuracy

0,6 E
0

S12345678 910
ab

5 10

wbc 433 linear classifiers

Accuracy

CHAPTER 2. COMBINATION METHODS

1

0.9

0.8

0.7

j 0.6 E
15 0

125678 910
34

a

05 10 15

Pima 332 linear classifiers

Accuracy
ý' (D 1 0.9

Sabc12345678 910 1

0.9

0.8

0.7

wbc 442 quadratic classifiers

Accuracy

I
s12345678 910

ab

r

5 10 15

wbc 433 quadratic classifiers
Accuracy

11ý15678 910
S234

a

05 10 15

Pima 332 quadratic classifiers

Accuracy

0.8

0.7

nn

Sabc12345678 910

05 10 15 05 10 15

S- Single best a- Dl b- D2 c- D3 1-MAJ 2-NB 3- BKS

4-WER 5-MAX 6-MIN 7-AVR 8-PRO 9-DT 10-ORA

Figure 2.3: ACCURACY ON THE TESTING SET FOR THE INDIVIDUAL CLASSI-
FIERS AND THE ENSEMBLES.

single best with only decision templates having a mean accuracy above that of the single
best classifier. Majority vote and naive Bayes are clearly under-performing. It is possible
that this is due to the fact that Pima has some outliers which we were not aware of at the

time of our experiments. The single best classifier is much better than any of the individual

classifiers so it is not preferable to pick one individual classifier. If we consider the three
individual classifiers' performances and compare them with the combination methods we

see that the combination methods (other than MAJ or NB) are more accurate. Choosing

the single best classifier is on a par with most of the combination methods and better than

some. With linear and quadratic classifiers BKS and WER are on a par with the single

k

2.7. COMBINATION METHOD RESULTS

5

0

_5

5

0

-5

wbc 442 linear classifiers

Improvement

123456789

J) Q- -1) -

5

0

-5

wbc 442 quadratic classifiers

Improvement

3456789

10 02468

wbc quadratic classifiers
Improvement

02468

wbc 433 linear classifiers

Improvement

3456789

0

5

0

-5

2468

Pima 332 linear classifiers

Improvement

5

0

-5

10

123456789

10 02468 10

Pima 332 quadratic classifiers

Improvement
5

0

-5

,n _JO L
0 2468

123456

-ýv
10 0 2468 10

33

1-MAJ 2-NB 3-BKS 4-WER 5-MAX

6-MIN 7-AVR 8-PRO 9-DT

Figure 2.4: IMPROVEMENT ON THE TESTING SET FOR THE INDIVIDUAL CLAS-
SIFIERS AND THE ENSEMBLE.

best classifier with DT being slightly better. The remaining combination methods MAX,

MIN, AVR and PRO are all worse than the single best.

These results show that whilst it is possible to improve upon the accuracy of an in-
dividual classifier, the success of different combination methods varies with the data set

and the type of classifier used. This highlights the difficulty for the practitioner of the

problem specific nature of optimum solutions.

12356789

34 CHAPTER 2. COMBINATION METHODS

2.7.2 Relationships among the combination methods

We were interested in how the different combination methods might be related to each

other. In order to investigate these relationships we calculated the correlation between

their outputs and illustrated them as shown in Figure 2.5. The intensity of the colour is

determined by the correlation. The stronger the correlation the lighter the colour. We

found that the combination methods show only positive correlation amongst themselves

as we would expect as they are all attempting to improve accuracy.
To further aid analysis of these relationships we used a clustering program to illustrate

the strength of the relationships between the different combination methods. Figure 2.6

shows the dendrograms formed when we cluster the combination methods using average-
linkage relational clustering3. The lower the branches joining the different combination
methods the stronger the relationship between them.

Table 2.7: THE CORRELATION COEFFICIENTS BETWEEN THE DIFFERENT

COMBINATION METHODS FOR BOTH TYPES OF CLASSIFIER AND FOR ALL

PARTITIONS. BOLD VALUES ARE THOSE WITH ABSOLUTE VALUES OF 0.5 OR GREATER.

1 1 NB BKS WER MAX MIN AVR PRO DT ORA
MAJ 0.8665 0.5290 0.4871 0.8240 0.8240 0.9474 0.9098 0.9046 0.7507
NB 1.0000 0.5167 0.4649 0.7280 0.7280 0.8157 0.7800 0.7794 0.5685

BKS 1.0000 0.9163 0.4158 0.4158 0.4973 0.4681 0.5262 0.4291
WER 1.0000 0.3751 0.3751 0.4586 0.4287 0.4868 0.4043
MAX 1.0000 1.0000 0.9018 0.9398 0.8676 0.6618
MIN 1.0000 0.9018 0.9398 0.8676 0.6618
AVR 1.0000 0.9700 0.9375 0.7628
PRO 1.0000 0.9232 0.7611

DT 1.0000 0.7832

Table 2.7 shows the correlation coefficient values between all of the combination meth-

ods for all of the results pooled, i. e., with both types of classifier and all partitions. The

values show that all of the methods have a positive correlation with each other and several
have very high correlation.

Clearly examining the shading graphs, the dendrograms and the correlation table we

can see that BKS and WER are in a group entirely on their own and behaviour-knowledge

space is highly positively correlated with Wernecke's method, which can be expected,
knowing that Wernecke's method is a "regularised" version of BKS. We also see that

3The clustering routine and the dendrogram drawing routine are from the package PRTOOLS for

Matlab (261

2.7. COMBINATION METHOD RESULTS

wbc 442 linear classifiers
MAJ

NB

MAX

MIN

AVR

PRO

DT

BKS

WER

ORA

MAJ

NB

MAX

MIN

AVR

PRO

DT

BKS

WER

ORA

MAJ

NB

AVR

PRO

ORA

MAX

MIN

BKS

WER

DT

35

MAJ

NB

AVR

PRO

DT

MAX

MIN

BKS

WER

ORA

wbc 442 quadratic classifiers

MAJ NB AVR PRO DT MAX MIN BKS WER ORA

wbc 433 quadratic classifiers
MAJ

NB

AVR

PRO

DT

MAX

MIN

BKS

WER

ORA
mop*

MAJ

NB

MAX

MIN

AVR

PRO

RKS

WER

DT

ORA

Figure 2.5: ILLUSTRATION OF THE CORRELATION BETWEEN THE COMBINA-
TION METHODS.

MAJ NB MAX MIN AVR PRO DT BKS WER ORA

wbc 433 linear classifiers

MAJ NB AVR PRO DT MAX MIN BKS WER ORA

Pima 332 quadratic classifiers

MAJ NB MAX MIN AVR PRO DT BKS WER ORA

Pima 332 linear classifiers

MAJ NB MAX MIN AVR PRO 13KS WhH UI ORA MAJ NB AVR PRO ORA MAX MIN BKS WER DT

CHAPTER 2. COMBINATION METHODS 36

wbc 442 linear classifiers wbc 442 quadratic classifiers

-'L

wbc 433 quadratic classifiers

Figure 2.6: THE CLUSTER DENDROGRAMS FOR THE COMBINATION METHODS.

MAX and MIN are in fact identical for this case (for the case of two classes, it can be

proved that maximum is always equivalent to minimum, proof in Appendix A. 1). Average

MAJ NO MAX MIN AVR PRO DT BKS WER ORA

wbc 433 linear classifiers

MAJ NB AVR PRO DT MAX MIN BKS WER ORA

MAJ NB MAX MIN AVR PRO DT BKS WER ORA

Pima 332 linear clapsifiers

MA) NB AVR DT PRO MAX MIN BKS WER ORA

MAJ NB AVR PRO ORA MAX MIN BKS WER DT

Pima 332 quadratic classifiers

2.8. COMBINATION METHODS CONCLUSIONS 37

is highly positively correlated with product. MAJ and NB are also grouped together.
DT is not consistently correlated with any of the other combination methods since it is

related to AVR and PRO for the breast cancer data with quadratic classifiers, BKS and
WER for Pima data and is fairly isolated for breast cancer data with linear classifiers.
The overall correlation between the combination methods with the Pima data was lower
hence there are darker shades in the correlation pictures.

The dendrograms suggest the following grouping of the methods {(MAJ, NB), (AVR, PRO),
(MIN, MAX), (BKS, WER), (DT), (ORA)}. These groupings are also supported by the

correlation coefficient diagrams in Figure 2.5 as they show up as lighter coloured areas
consistently in all of the partitions and both datasets.

2.8 Combination Methods Conclusions

In this chapter we introduced nine combination methods and the oracle and studied the

relationships between them. We took a breast cancer data-set of 10 feature values for 569

patients and using all partitions of the form (4,4,2) and (4,3,3) for two types of classifier
(linear and quadratic), conducted a set of four enumerative experiments. We also took

a diabetes data set of 8 feature values for 768 patients and conducted a set of ten-fold

cross-validation experiments using all possible partitions of the form (3,3,2).
We then considered the overall accuracies of the combination methods and their im-

provement over the single best classifier. In the next chapter we introduce the concept of
diversity (differences amongst classifiers) and show that the classifiers used here were not
very diverse and this is probably why the combination methods did not improve notably
over the single best classifier.

We were interested in whether any of the combination methods performed in a similar
way to each other and hoped that this would be shown by the clustering program. We

anticipated that those combination methods which operated in a similar manner would
consistently be clustered together early on and that those with different performances
would end up in different clusters. We found some interesting correlation amongst the

combination methods. In particular maximum is equivalent to minimum for the two class
case. We also found that average has close relationship with fellow simple combination
method product. Unsurprisingly behaviour-knowledge space is correlated with Wernecke's

method as they both originate from the same concept but more interestingly majority vote
is correlated strongly with naive Bayes which does not seem to have much in common with
it in the computation process. Decision templates were found to have lower correlation
with all the other methods.

38 CHAPTER 2. COMBINATION METHODS

Chapter 3

Diversity in Classifier ensembles

When we have a group of classifiers at our disposal it is intuitively accepted that the

classifiers to be combined should be different from each other, or diverse [17,18,37,38,

48,91]. The experimental results in chapter 2 show that sometimes it is not particularly
beneficial to combine a set of classifiers, this can be caused by a lack of diversity amongst
the ensemble of classifiers. If once again, we recall the analogy of the respiratory patient
(Chapter 1.2), it obviously would be of no benefit to the patient if all the nurses, doctors

and consultants always agreed. In that case we would only ever need one nurse, which

whilst saving some money, would not improve the accurate diagnosis rate. By having

differing opinions we can pool the various diagnoses and hopefully come up with correct
one more often.

Clearly, a set of identical classifiers does not gain us any advantage over having just

one of them. Therefore, diversity, also related to negative dependence, independence,

orthogonality, complementarity, among an ensemble of classifiers has been recognised as a
key issue [18,65]. In fact, Cunningham and Carney claim that "any work with classification
ensembles should explicitly measure diversity in the ensemble and use this measure to guide
decisions on the constitution of the ensemble... " [18]. Giacinto and Roli believe that there
is a fundamental need for methods aimed at designing accurate and diverse classifiers and
that this is currently acknowledged in the field [37]. In a later study, Cunningham goes
further and says that over-fitting can be used to provide this diversity within an ensemble,
provided there is variety amongst the over-fitted members (17]. He says that several over-
fitted classifiers can be combined to average out their over-fitting and give an accurate
performance provided there is sufficient diversity amongst the classifiers.

Theoretically, a group of independent classifiers improve upon the single best classifier
when majority vote combination is used. Using a set of dependent classifiers may result in

either better performance than the independent set's performance or worse performance
than the single worst member of the team, depending on the differences. Thus diversity

39

40 CHAPTER 3. DIVERSITY IN CLASSIFIER ENSEMBLES

can be both beneficial or harmful [40,63]. Understanding and measuring these differences
in diversity is an important issue in classifier combination [65] and there are several dif-
ferent measures of diversity being used. These measures aim to quantify the dependence
between classifiers. This chapter considers some of the diversity measures available to the

practitioner of statistical pattern recognition and investigates how they are related to each
other. We are also interested in whether there is any connection between combination ac-
curacy and diversity in the ensemble. In a previous study we investigated the relationship
between the Q-statistic and majority vote [64]. We proved that there is a functional rela-
tionship between the Q-statistic and the upper and the lower limits of the majority vote
accuracy. However, there is no theoretical proof of any relationship in the general case.
Thus, in this chapter we investigate in detail whether there is any relationship between
the diversity measures and the combination methods introduced in the previous chapter.
We expect that those instances where the combination methods had high accuracy will
be positively correlated to a high level of diversity amongst the ensemble's constituent
classifiers.

3.1 Measures of diversity

There are different diversity measures available from different fields of research. Some of
these measures, such as the Q-statistic and the correlation coefficient have come directly
from mainstream statistics whilst others have developed through the field of statistical
pattern recognition, specifically for the problems of multiple classifier systems. Some of
these measures work on the whole group of L classifiers whilst other measures consider
the classifiers on a pairwise basis and then average the results. We have examined ten

measures of diversity which we have used in previous studies. We can consider the measures
of diversity to be one of two types :

1. measures looking for diversity: the higher the value the more diverse (t).

2. measures looking for similarity: the higher the value the less diverse (..).

The measures we have considered are as follows:

pairwise
Tue Q-statistic (Q), (J.)
The disagreement measure (D), (T)

The correlation coefficient (p), (4.)

The double-fault measure (DF), (,.)

non-pairwise
The Kohavi-Wolpert variance (kw), (T)
The entropy measure (Ent), (t)
The generalised diversity (GD), (T)

The measurement of interrater agreement (ic), (,.)
The measure of difficulty (B), (,.)
The coincident failure diversity (CFD), (T)

3.1. MEASURES OF DIVERSITY

3.1.1 Pairwise Diversity Measures

41

The following diversity measures require consideration of the diversity between each of
the pairs of classifiers and then averaging of the values. Consider two classifiers, D1 and
Dk, and a2x2 table that summarises their outputs as shown in Table 3.1. The entries
in the table are the probabilities for the respective pair of correct/incorrect outputs. For

example, the value of b in the table is the proportion of examples which are correctly
classified by classifier Dz and misclassified by classifier Dk.

Table 3.1: THE 2x2 RELATIONSHIP TABLE WITH PROBABILITIES

Dk correct (1) Dk wrong (0)

Di correct (1) a b

D1 wrong (0) c d

Total, a+b+c+d= 1

Table 3.2 illustrates the case of identical (ID), independent (IND) and negatively de-

pendent (ND) pairs of classifiers.

Table 3.2: THE 2x2 RELATIONSHIP TABLES FOR IDENTICAL, INDEPENDENT
AND NEGATIVELY DEPENDENT CLASSIFIERS

Identical

D2(1) D2(0)

D1(1) 0.6 0
D1(0) 0 0.4

Independent

D2(1) D2(0)
D1(1) 0.3 0.2
Di(0) 0.3 0.2

Negatively Dependent

D2(1) D2(0)

D1(1) 0 0.5
Dl (0) 0.5 0

Using real-world data we are unlikely to find a set of highly, negatively dependent

classifiers which are also more accurate than random guessing. The most likely situation
is an accurate but also highly, positively dependent ensemble of classifiers. From the point
of view of a user looking for diverse classifiers the best we could hope for in the real-world
case is a slight negative dependence (SND) between a pair of classifiers, (Table 3.3). There

are various statistics to assess the similarity/diversity of two classifier outputs.

The Q-statistic (Q) [118]

Yule's Q statistic for two classifiers, e. g., Di and Dk, is

ad-bc if abc d< 1 Qi, k=
=' ,, (3.1)
1, otherwise

42 CHAPTER 3. DIVERSITY IN CLASSIFIER ENSEMBLES

Table 3.3: THE 2x2 RELATIONSHIP TABLE FOR SLIGHTLY NEGATIVE DEPEN-
DENT CLASSIFIERS

D2 correct (1) D2 wrong (0)

D1 correct (1) 0.30 0.27

Di wrong (0) 0.23 0.20

There are several special cases taken into account here. If a=1 then both classifiers are
identical but the denominator would be zero so that is why we have the `otherwise' case.
If b=1, c=1 or d=1 this implies that the accuracy of one or both classifiers is zero and

so it would not be used in an ensemble anyway. In our code only classifiers better than

random guessing are used and if the denominator was zero then the value of Q would be

1. For statistically independent classifiers, Qi,, = 0. Q varies between -1 and +1, with
the lower the value the more diverse the classifiers. For a set of L classifiers, the averaged
Q statistics of all pairs is taken. From the examples we can calculate the corresponding

values of Q:
0. Gx0.4-0_0.24

QID - 0.6 x 0.4 +00.24
0.3x0.2-0.2x0.3_0 QIND = 0.3 x 0.2 + 0.2 x 0.3
0x0-0.5 x 0.5 -0.25 1 QND == 0x0+0.5x0.5 0.25 =-
0.30 x 0.20 - 0.27 x 0.23

= -0.0021 QSND = 0.30 x 0.20 + 0.27 x 0.23 0.1221 = -0.0172

The Correlation coefficient (p)

The correlation coefficient, p is well known in mainstream statistics. The correlation
between two binary classifier outputs (correct/incorrect) is

_
ad - be

Pt's
a+b c+d a+c b+d)

(3.2)

For the examples the corresponding values of p are:
0.6x0.4-0

0.24 PID0.6+0 0+ 0.4 0.6+0) 0+0.4 0.24
1

0.3x0.2-0.2x0.3
_ Pf ND = 0.3 + 0.2) (0.3 + 0.2) 0.3 + 0.3) (0.2 + 0.2) ^0

0x0-0.5 x 0.5
_

-0.25 _ PND =0+0.5 (0.5 + 0) (0 + 0-5)(0.5 + 0) 0.25 -1

0.30 x 0.20 - 0.27 x 0.23
_ -0.0021 _ PSND = 0.3 + 0.27)(0.23 + 0.2 (0.3 + 0.23) 0.27 + 0.2) 0.247 - -0.0085

As Q the correlation coefficient can also take negative values with the lower the value the

more diverse the classifiers, and in fact,

3.1. MEASURES OF DIVERSITY 43

Proposition 1 For any two classifiers, Q and p have the same sign, and:

ad-be ad-be 1pI
- (a+b)(c+d)(a+cc))(b)IC

(a
=+cI -

IQI'

Proof

Since the numerator is the same for Q and p we have to compare the denominators.

((a + b)(c + d)(a + c)(b + d))z _ ((a + b)(c + d)(a + c)(b + d)

la2bc + a2cd + abc2 + aced + a2bd +

acd2+ab2c+bc2d+abed+abd2+

b2cd + bcd2 + (a2d2 + 2abcd + b2c2)I

> la2d2 + 2abcd + b2c21

_ l(ad + bc)21

This implies that

a+b) c+d)(a+c b+d)
lad+bc

ad - be ad- be I

a +b c+d) a+ cb +d)
lad+

bc

IPI <_ IQI

0

The disagreement measure (D) [41,100]

The disagreement measure, D is used in (41,100] and is given by

Di, k =b+c. (3.3)

Thus, it is simply the total proportion of examples for which the two classifiers disagree.

So for the identical, independent, and negative dependent cases we obtain:

DID =

DIND = 0.5

DND =1
DSND = 0.5

For the disagreement method the range of possible values is from 0 to 1 and the higher

the value the more diverse the classifiers.

44 CHAPTER 3. DIVERSITY IN CLASSIFIER ENSEMBLES

The double-fault measure (DF) [38]

The double-fault measure, DF is used in [38] and is given by

DF=, k = d. (3.4)

Thus, it is the proportion of classifiers which both classifiers fail to correctly classify. In

this way it is, to some extent, a measure of similarity. The values of DF corresponding to

the examples are:

DFrD = 0.4

DFIND = 0.2

DFND =0

DFSND = 0.2

The double-fault measure takes values of between 0 and 1, with the lower the value the

more diverse the classifiers [38]. In practice 1 only occurs when both are 100% incorrect

so in practice the highest value we would expect to obtain is 1-p.

3.1.2 ' Non-pairwise Diversity Measures

For the non-pairwise measures we quote the formulae for L classifiers. Let Z= {zl,
... , zN}

be a labelled data set, z2 E R" coming from the classification problem in question. We

can represent the output of a classifier D; as an N-dimensional binary vector iti =
[cri,;,

... , 7rN, a]T, such that lrj, z = 1, if Dz recognises correctly zj, and 0, otherwise, i=

1, ... , L. In order to demonstrate how the following diversity measures work we use a

small example of L=3 classifiers operating on a labelled data set Z of size N= 10. The

values in Table 3.4 columns 2-4 are the 7rj, i mentioned above.
The example has a degree of independence between classifiers D1 and D2, a degree of

positive dependence between D2 and D3 and some negative dependence between D1 and
D3. It is used to illustrate how we calculate each of the measures of diversity and to show
how the range of values from negative to positive dependence varies amongst them. For

these classifiers Q1,2 = 0, Q2,3 = 0.71 and Q1,3 = -0.5, i. e. D1 and D2 are independent,

D2 and D3 are positively dependent and Dl and D3 are negatively dependent. Combining

them gives an average value of Q=0.07 suggesting fairly independent classifiers. This

example will be used to illustrate how all the following diversity measures are calculated

and it will be referred to as `the Example in Table 3.4'.

The Kohavi-Wolpert variance (KW) [50]

Kohavi and Wolpert introduce this measure in [50]. They give a formula for the error rate
of a classifier, showing the variability of the predicted class label b for training object, x

3.1. MEASURES OF DIVERSITY 45

Table 3.4: AN EXAMPLE OF CLASSIFIERS FOR THE NON-PAIRWISE DIVERSITY
MEASURES

Train Set Classifiers kw, ic Ent

Z Dl D2 D3 l(zj) L- l(zj) l(zj)(L - l(zj) min{l(zj), (L - l(zj))}

zl 1 0 0 1 2 2 1

Z2 1 0 0 1 2 2 1

Z3 1 1 1 3 0 0 0

Z4 0 1 1 2 1 2 1

Z5 1 1 1 3 0 0 0

Z6 1 1 0 2 1 2 1

Z7 0 0 1 1 2 2 1

Z8 1 0 1 2 1 2 1

Z9 0 1 1 2 1 2 1

zlo 0 0 0 0 3 0 0
Accuracy: 0.6 0.5 0.6 Totals: 14 7

The corresponding pairwise tables are:

D2(1) D2(O) D3(1) D3(O) D3(1) D3(O)

D1(1) 0.3 0.3 D2(1) 0.4 0.1 D1(1) 0.3 0.3

D1(0) 0.2 0.2 D2(0) 0.2 0.3 D1(0) 0.3 0.1

as
c

variance-, =2 1- EP(b = wIx)2 (3.5)

i=1

where P(b = wilx) is estimated as an average over different data sets. We adapt their
idea by looking at the variability of b for x using the classifier models D1,... ' DL. Instead

of considering the class labels in SZ, we consider oracle-type outputs, that is two possible

classifier outputs: correct (1) and incorrect (0). Thus, P(b = 1ix) and P(b = Oix) will be

obtained as an average over the set of classifiers, D. If we denote by l (z j) the number of

classifiers from D that correctly recognise zj, i. e., l (zj) =E 17rj, i we obtain:

P(b =l lx) =1
(fand

and P(b = Olx) =LL
(X) (3.6)

Substituting (3.6) into (3.5),

variances =1
(1

- P(b = 1x)2 - P(b = OIx)2) ,
(3.7)

46 CHAPTER 3. DIVERSITY IN CLASSIFIER ENSEMBLES

and averaging over the whole of the training set Z, we obtain the kw measure of diversity

as

kw = NL2 I(Z. i)(L - l(Zj))" (3.8)
j=1

Using the example in Table 3.4 and the values calculated in the 5th, 6th and 7th columns
(labelled kw) we obtain:

10 1 kw =E l(zj)(3 -1(zj)) 10x9j`1

= 90x14=TO=0.15

The higher the value of the Kohavi-Wolpert variance the more diverse the classifiers.

The measurement of interrater agreement (i) [28]

If we denote p to be the average individual classification accuracy in the ensemble, then

j EN 11(z)(L-1(Zj)) (3 N(L -1)p(1- P) . 9)

and so is can be shown to be related to kw and D as follows

K=1-(L-1)P(1-P) kw=1-2p(11-pD. (3.10)

The value of rc for the Example in Table 3.4 requires the average P which is 15+0
3 . 6+0.6 _

0.56, with this we obtain:

- 1-
3x14

1-x2 x0.56 x0.43

1-0.950 = 0.0498
4.91

n can take negative values with the lower the value the more diverse the classifiers.

The entropy measure (Ent) [60]

For oracle-type, 0/1 outputs, we can obtain the highest value of diversity amongst a group
of classifiers for a particular object, zj E Z, when LL/2J of the votes have one value (1

or 0) and the other L- LL/2J votes have the alternative value (0 or 1). That is, just a
majority were correct /incorrect and just less than the majority were incorrect/correct. If
they were all 0's or all 1's, there would be no disagreement, and the classifiers could not
be deemed diverse. One possible measure of diversity based on this concept is the entropy
measure:

N
Ent = N(L - LL/2J - 1)

Emin{l(zj), L - l(z3)}
. (3.11)

j_1

3.1. MEASURES OF DIVERSITY 47

Our measure is a non-classical entropy measure because it does not use the logarithm
function. For our study into these diversity measures [99] a referee pointed us to a more
traditional approach given by Cunningham and Carney [18] (we denote it here as Ecc)"
We compare these two measures to show that our measure is worthwhile. If we take the

expectation over the whole feature space, let the number of classifiers L -+ inf, and use

again 1(zß) as the number of 1's (correct outputs) in the team, the two expressions become

Ent(l(z2)) =1 min{l(z5), 1 - l(zj)} and (3.12)

Ecc(l(zj)) = -l(zj) log(l(z?)) - (1-1(z5)) log(1- l(zj)). (3.13)

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

Figure 3.1: THE TWO ENTROPY MEASURES Ent(l(zj)) (THIN LINE) AND E c(l(zj))
(THICK LINE) PLOTTED VERSUS 1(zj).

Figure 3.1 plots the two entropies versus t(ý(zj). We can see that the two measures
are equivalent up to a (nonlinear) monotonic transformation. This means that they will
both have a similar relationship with the ensemble accuracy. As Ent is easier to handle

and quicker to calculate, we continue to use it in our experiments.
For the Example in Table 3.4 and using the calculations in the last column (labelled

Ent), we can calculate Ent as follows:

1 io
Ent = l-oEmin{l(zj), 3-1(zj)}.

j=1

_1 x7=O. 7

For Ent the higher the value the more diverse the classifiers.

The measure of difficulty (0) [39]

For this measure, we define a discrete random variable X which takes values in { 9,11;
, ... , 1}

and denotes the proportion of classifiers in V that correctly classify an input x drawn ran-
domly from the distribution of the problem. The measure of difficulty 0 is then defined

as
0= Var(X). (3.14)

48 CHAPTER 3. DIVERSITY IN CLASSIFIER ENSEMBLES

For the Example in Table 3.4 the estimated probability mass function for a variable X

with values in {23,3
'
23,311 is shown in Figure 3.2

xf fx x2 fx2

0 0 0.1 0 0 0
3 0.3 0.1

9 30
2 0.4 4 4 8

15 9 45

1 0.2 0.2 1 0.2
Totals: 1 17

30
37
90

Figure 3.2: AN EXAMPLE OF THE PROBABILITY MASS FUNCTION FOR THE
MEASURE OF DIFFICULTY

The variance is then calculated as:

2=
ßf2-(fX)2

_
37

-1
(17)2J_ 0.09

90 30

The lower the value of 9, the more diverse the classifier team.

The generalised diversity, (GD) [83], and the coincident failure diversity (CFD) [82]

For this measure of diversity, let Y be a random variable expressing the proportion of
classifiers (out of L) that are incorrect on a randomly drawn object xE t' and let pi be

the probability that i randomly chosen classifiers are incorrect for a randomly chosen x,
i. e., p(Y = 1). (Note that Y=1-X, where X is the variable introduced for 0). If we

also denote,

L

Lpi, (3.15) p(1) Z
i=l
L

and p(2) pi. (3.16)

t-1 L (L - 1)

then the generalised diversity measure, GD, is calculated as:

GD =1-
p(2) (3.17)
P(1)

For the Example in Table 3.4, we have po = 0.2, pl = 0.4, p2 = 0.3 and p4 = 0.1 which

allows us to calculate GD as,

P(l) 5 x0.4+3 x0.3+3 x0.1=0.43

3.2. LIMITS OF THE MEASURES 49

102132
p(2) = 3x2x0.4+3x2x0.3+3x2x0.1=0.2

GD = 1-
0.2

= 0.538
0.43

For GD the higher the value of the generalised diversity the more diverse the classifiers.
The coincident failure diversity, CFD is a modification of GD proposed in (82].

CFD =
0'1

L L-i
p0 = 1;

(3.18)
1-Po Z., i_1 pil Po <1

Since po = 0.2 0 1, CFD for the Example in Table 3.4 is,

CFD = 018
(2

x0.4+2 x0.3+2 x0.1) =1.25x0.55=0.6875

Like the generalised diversity measure, for the coincident failure diversity the higher

the value the more diverse the classifiers.

3.2 Limits of the measures

The upper and lower limits for the measures of diversity depend on the number of clas-
sifiers, L, and the value of p, the individual classifier accuracy. The limits for the case
with two classifiers with equal individual accuracy p have been determined by Kuncheva

and Whitaker in [60]. Here we are interested in the situation with three classifiers it is

necessary to extend this work with two classifiers to the three-classifier case.
In order to calculate the upper and lower limits for a three classifier case, we must

consider the most diverse and least diverse classifier outputs we can have for each particular
measure of diversity, for a range of classifier accuracies, p. To simplify the process we
assume that all three classifiers have identical accuracy.

3.2.1 The case of Identical Classifiers

The least diverse set of three classifiers we can have is always when all three are identical

and the pairwise 2x2 table will be of the following form:

D2 correct (1) D2 wrong (0)

Di correct (1) p 0
D1 wrong (0) 0 1-p

So for the measures of diversity we can substitute these values into the formula to get
the formula for the identical case.

1- 0
QavID =3X3P 1-P +0

1,

if a, b, c, d <1

otherwise

50 CHAPTER 3. DIVERSITY IN CLASSIFIER ENSEMBLES

=1 Vp
1x3 p(1-p)-0x0 PavID -3+0 0+1- p +0 0+1-p

_
p(1 -p)

__p(1-p) _1 dp
p 1-p p(1 -p)

DavID =3 x3x(0+0)=0 Vp

DFavID =3 x3x(1-p)=1-p Vp

For each of the pairwise tables a=p, b=c=0, d=1-p, and as we are considering
three classifiers, L=3. Recall that l(zj) is the number of classifiers from D that correctly
recognise z2. As the three classifiers are all identical, for p of the zj, 1(z?) =3 and
(3 -1(zß)) =0 and for the remaining 1-p of them 1(zß) =0 and (3 - l(z1)) = 3. So
l (z1) (3 -1(zß)) =0 for all cases. Thus we can calculate the identical case for kw, n and
Ent.

N
kwJD = 9N

E l(zj)(3 - l(zj)) = 9N x0=0 (3.19)
j=1

= 1- sE il(zj)(3-l(zj)) 1ID =1-0=1 (3.20)
2Np(1 - P)

EntID =N Emin{l(zj), 3 - l(z5)} _Ox0=0 (3.21)
j=1

(3.22)

For the measure of difficulty we need to consider the p. m. f. for the three identical classifiers,
shown in Figure 3.3.0, the variance of X, is then calculated as:

P

1-P
M--

1

0/3 1/3 2/3 3/3

xf fx x2 fx2

0 i-p 000
3U090
29U

1pp1p

Totals: 1pp

Figure 3.3: THE PROBABILITY MASS FUNCTION FOR IDENTICAL CLASSIFIERS

EfX2
-/

EfX 2
Ef I\ f/)

p/2

=p -p2 (3.23)

3.2. LIMITS OF THE MEASURES 51

For GD and CFD, recall that we are concerned with the probability p;, that Y=,

where Y=1-X, the proportion of classifiers that fail on an object. For the identical

case we have :

PO =A pi 0) p2=0andp3=1-p
3123

thus p(1) _E
Zpz

= 3P1 + 3P2 + 3p3 = p3 =1-A

3 10 21 32
and p(2) _32 p1_3 2p1

+3
2p2

+3
2p3 = p3 = 1- p

soGDID = 1-pý2ý =1-
1-p=0

and since Po < 1.0

(3.24)

(3.25)

CFDID -13
3- i_12101

1-ýo Pt 1-p L '-1 + -2ý2-+ -2P3] =0 (3.26) El-2

3.2.2 The case of Highly Diverse Classifiers

The case of the most diverse classifiers is more difficult. The problem must be split into

two halves, the case when 0.5 <p<3 and the case when 3<p<1.0. This is because the

possible overlaps of 0/1 outputs are different for either side of p=3. If we consider the

three classifier case with p=3 the most diverse case is when they each have a different 3

of the data which they misclassify. For p<3 there is an overlap where two of the three

classifiers are incorrect but there is no instance where all three are correct. For p>3
there are no cases when more than one classifier is incorrect but there are cases when all

three are correct. Figures 3.4 illustrates the case when p<3 and 3.5 illustrates the case

when p>3.

The corresponding pairwise tables for figure 3.4 are:

D2(1) D2(O)

D1(1) 2p-1 1-p

D1(0) 1 -p 0

D3(1) D3(O)

D2(1) p! 2 p! 2
D2(0) p/2 1- 3p/2

D3(1) D3(O)

Di(1) p/2 p/2
Di (O) p/2 1- 3P/2

The three-way table can also be determined as:

D2(1), D2(1) D2(1), D2(0) D2(0), D2(1) D2(0), D2(0)

D1(1) 0 2p -1 p/2 1- 3p/2

D1(0) p/2 1- 3p/2 0 0

52 CHAPTER 3. DIVERSITY IN CLASSIFIER ENSEMBLES

kw, n Ent

D1 no. D2 no. D3 no. ABAxB min
A,

B}
1 0 1 2 1 2 1

2N

1 2 1

(1 - p)N 0 1 2

pN
0 1 2

2 1

(1- p)N
1 2 1

0 1 2

pN

0 1 2

(1- p)N 1 2 1

2N

0 1 1 2 1 2 1
N N N Totals: 2N N

where A= l(zj) and B= (3 -1(zß)).

Figure 3.4: THE MOST DIVERSE CLASSIFIERS FOR p: 5 3

We can calculate the p. m. f. of X for 0 from this information:

xf fx x2 fx2

00000
12- 3p 3(2 - 3p) 9

9(2 - 3p)
2 3p-1 3(3p-1)

s
s(3p-1)

10010

Totals: 1pp-9

The corresponding pairwise tables for figure 3.5 are:

D2(1) D2(O) D3(1) D3(O) D3(1) D3(O)
D1(1) 2p-1 1-p D2(1) 2p-1 1-p D1(1) 2p-1 1-p
Di (0) 1-p 0 D1(0) 1- p0 D1(0) 1-p 0

3.2. LIMITS OF THE MEASURES 53

D1 no. DZ no. D3 no.

kw, n

ABAxB

Ent

min{A, B}

1 0 1 2 1 2 1

(1 - p)N

0 2N 2 1 2 1

1 3 0 0 0

pN 1 3 0 0 0

0 2 1 2 1

(1- p)N . .
0 2 1 2 1

pN 1 3 0 0 0

1 3 0 0 0

0 2N 2 1 2 1

(1- p)N
0 1 1 2 1 2 1

pN pN pN Totals: 6(1 - p)N 3(1- p)N

where A= l(zj) and B= (3 - l(zj)).

Figure 3.5: THE MOST DIVERSE CLASSIFIERS FOR p>2

The three-way table can also be determined as:

D2(1), D2(1) D2(1), D2(0) D2(0), D2(1) D2(0), D2(0)
D1(1) 3p-2 1-p 1-p 0

D1(0) 1- p 0 0 0

We can calculate the p. m. f. of X for 0 from this information:

x f fx Xz fx2

0 0 0 0 0
1
3 0 0 9 0
2 3(1-p) 2(1-p) y

3(1 -P)
1 3p-2 3p-2 1 3p-2

Totals: 1 p 3 (5p - 2)

By considering the tables in the two figures 3.4 and 3.5 and in particular the pairwise

and three-way tables we can calculate the various diversity measures for the most diverse

54 CHAPTER 3. DIVERSITY IN CLASSIFIER ENSEMBLES

case. We denote M< to be the diversity measure for the case when p<3 and M> for

the case when p>3. Also for the pairwise diversity measures we denote Mz, ý to be the

pairwise diversity between classifier Di and D2. Thus, M<1,2 denotes the pairwise diversity

between classifier D1 and D2 when p<3. Looking at figure 3.4 gives the information

required for p<3 and figure 3.5 gives the information required for p>3.

Q for the diverse case

Consider the case for Q when p<3:

(2p- 1) x 0_ (1- p)2 Q<1,2 = (2p- 1) x 0+ (1 -p)2
-1 (3.27)

Q<1,3 =2x
(1

_2-

(2
-

2p (3.28)
2x

(1
2)+

(P2-)2 1-P

_
1- 2p Q<2,3 -1_p

(3.29)

Thus, QAV< =1 i_+1-2p+1-2p _
1-3p (3.30)

3[1 -p 1 -p 3(1 -p)

and similarly the case for Q when p>3:

Q>1,2 = Q>1,3 = Q>2,3 = Q<1,2 = -1 (3.31)

Thus, QAV> _ -1 (3.32)

p for the diverse case

Consider the case for p when p<3:

(2p-1)x0-(1-p)2 p-1 (3 33)
2p-1+1-p) 1-p+0 p .

2- p2
_ P<1 3=

1- 2p (3.34)
, 22 p (iP+l- 2)

2(1 - p)

P<2,3 =
1- 2p

- p) 2(1
(3.35)

Thus, PAV< =1
[p -1+ 1-2p

+
1-2p

=_l
3p2 - 3p +1] (3.36)

3p 2(1 -p) 2(1 -p) 3 p(1 - p)

and similarly the case for p when p>3:

-1 = P<1,2 = (3.37) P>1,2 = P>1,3 = P>2,3
p

p

Thus, PAy> =pp1 (3.38)

3.2. LIMITS OF THE MEASURES 55

D for the diverse case

Consider the case for D when p<3:

D<1,2 = 2(1 -p) (3.39)

D<1,3 =p (3.40)

D<2,3 =P (3.41)

Thus, DAV<
2p +2- 2p

_2 (3.42)
33

and similarly the case for D when p>3:

D>1,2 = D>1,3 = D>2,3 = D<1,2 = 2(1 - p) (3.43)

Thus, DAVE = 2(1 - p) (3.44)

DF for the diverse case

Consider the case for DF when p<3:

DF<1,2 =0 (3.45)

DF<1,3 =1-
32 (3.46)

DF<2,3 =1-
3p (3.47)

Thus, DFAV< =23
3p (3.48)

and similarly the case for DF when p>3:

DF>1,2 = DF>1,3 = DF>2,3 = DF<1,2 =0 (3.49)

Thus, DFAV> =0 (3.50)

KW for the diverse case

For KW we need to consider the total values calculated in the fourth large column in

the table in figures 3.4 and 3.5 marked KW at the top. Consider the case for KW when

p<3:

KWG 2N 2
= TN =5 (3.51)

and similarly the case for KW when p>3:

KtiV>_6(1-)N-32
(1-P) (3.52)

56 CHAPTER 3. DIVERSITY IN CLASSIFIER ENSEMBLES

n for the diverse case

For P. we also need to consider the total values calculated in the fourth large column in the

table in figures 3.4 and 3.5 marked n at the top. For this case, the average accuracy of the

three classifiers p" =p since they are all considered to have the same accuracy. Consider

the case for is when p<3:

3 2N
- -1

3p2 - 3p -}-1 (3.53)
2Np(1 - p)

-3 p(1 - p)

and similarly the case for n when p>3:

1
2N

(p)
-1-

j
=P-1 (3.54)

P(1 -P) pp

Note that these are the same as the diverse limits we established for p.

Ent for the diverse case

For Ent we need to consider the total values calculated in the fifth large column in the
table in figures 3.4 and 3.5 marked Ent at the top. Consider the case for Ent when p<9

Ent< =N=1 (3.55)

and similarly the case for Ent when p>3:

Ent> =
3(1 N)N

= 3(l -p) (3.56)

0 for the diverse case

In order to calculate 0 we need to consider the p. m. f. of X the proportion of classifiers

which correctly classify an object x. Consider the case for 0 when p<3:

Bý =p19- (i)2 =p-9- p2 (3.57)

and similarly the case for 0 when p>3:

9> _3
(5p - 2)

- (g)2 =
5p 2-

p2 (3.58)
1133

GD for the diverse case

In order to calculate GD and CFD we need to consider, the proportion of classifiers which
fail to correctly classify an object x.

3.2. LIMITS OF THE MEASURES

p<3 p>3

PO 0 3p-2

pi 3p -1 3(1-p)

P2 2_'3P 0

P3 0 0

From this information, we calculate:

12
P(1)< = 3P1+312+p3

= (3p-2)+3(2-3p) =1-p

p(2)< =
3p2

+ps = 5(2 - 3p)

P(1)> =
3(3(1

-p)) =1 -p

p(2)> =0

Consider the case for GD when p<3:

GD<=1-p(2) _1-
1

p(l) 1-P 3(1 -p)

and similarly the case for GD when p>3:

GD>=1-
0

1 =1
_p

CFD for the diverse case

57

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

Since po <1 for both cases we use the formula for CFD. Consider first the case for CFD

when p<3:

CFD< =110 (Pl +
ZP2)

= (3p - 1) +2 (2 - 3p) =
32 (3.65)

and similarly the case for CFD when p>3:

-p) (3.66)

3.2.3 Examining the limits

The upper and lower values established for the measures of diversity are shown in Table 3.5.
Recall the example for the non-pairwise diversity measures we considered previously as
shown in Table 3.4. We can compare the values obtained for each of the diversity measures
with what we now know about the theoretical values we could have obtained. This will
give us an insight into how much real-world levels of diversity differ from the theoretical

58 CHAPTER 3. DIVERSITY IN CLASSIFIER ENSEMBLES

Table 3.5: LIMITS FOR THE DIVERSITY MEASURES IN TERMS OF p

Diversity

Measure

Diverse Value for

p<3

Diverse Value for

p>3

Identical

Value Vp

Q 1-3
3 1-p _1 1

p ['] 1 p(1-) P 3 P

DF 23 3p 0 -P
0 p-9-p2 5p-3-p2

3 p-p2
!C

1 32-3+1
- 1-P

P-1
p

1

D 3 2(1-p) 0

KW 2
9

2(1 -p) 0

Ent 1 3(1 -p) 0

GD 1
3(1-p) 1 0

CFD 2E 1 0

levels of diversity attainable. The example had classifier accuracy P=0.57 and so we need
to consider the formulae for p<3. If we recall the average value of Q for these classifiers

was 0.07 suggesting that the ensemble was close to independent. Table 3.6 shows the

theoretical limits, the actual value and, if we project the distance between the upper and
lower theoretical limits onto the unit scale, the distance from 1, (with identical classifiers

at 0 and diverse classifiers at 1).

Table 3.6: EXAMINING THE DIVERSITY VALUES FOUND IN THE EXAMPLE

Diversity Measure Theoretical Limits Obtained Value Projected Distance

Q 1 to -0.55 0.07 0.6

p 1 to -0.205 0.053 0.786

DF 0.43 to 0.096 0.2 0.7

0 0.245 to 0.0023 0.09 0.698

K 1 to -0.36 0.0498 0.698

D 0 to 0.6 0.46 0.69
KZW 0 to 0.22 0.15 0.7

Ent 0 to 1 0.7 0.7

GD 0 to 0.775 0.538 0.694

CFD 0 to 0.855 0.686 0.802

This shows us that the diversity measures consider the ensemble from the example

3.3. EXISTING EMPIRICAL STUDIES OF DIVERSITY 59

to be diverse, since the obtained values are all much closer to the diverse, than to the

identical end of the range.
Using the information we now have about the theoretical limits, we can illustrate the

range of values we can obtain for the different measures of diversity. This will enable us

to compare the real-world situation to the theoretical possibilities in terms of range of

diversity values obtained. Figures 3.6 and 3.7 show the upper and lower limits for the ten

measures of diversity for the case with L=3 and pE [0.5,1.0] [99].

D kw Ent GD CFD
11111

0.5

16-6

0.5 0.5

IL

0.5 0.5

0
0.6 0.8 100.6 0.8 100.6 0.8 100.6 0.8 100.6 0.8

Ppppp

Figure 3.6: THE POSSIBLE RANGE OF VALUES (GREY AREAS) FOR THE FIVE (t)

MEASURES OF DIVERSITY FOR pE [0.5,1.0] INDIVIDUAL CLASSIFIER ACCU-

RACY AND L=3 CLASSIFIERS

0
1p

00

0.6 0.8 1_1 0.6 0.8 1
pp

K DF H
111

0 0.5 0.5

-1 0.6 0.8 100.6 0.8 1 0.6 0.8

Ppp

Figure 3.7: THE POSSIBLE RANGE OF VALUES (GREY AREAS) FOR THE FIVE (J.)

MEASURES OF DIVERSITY FOR pE [0.5,1.0] INDIVIDUAL CLASSIFIER ACCU-

RACY AND L=3 CLASSIFIERS

3.3 Existing empirical studies of Diversity

There are several studies investigating the nature of diversity and its relationship to conibi-

nation methods [106-108]. Some authors have also used a measure of classifier output cor-

relation to enforce diversity within an ensemble during training of the classifiers [68-70,90].

A further approach is the `overproduce and choose' strategy which can be used to produce

an ensemble of accurate and diverse ensembles. This approach creates an initial large set

of classifiers and then uses one of several methods to choose a subset of classifiers which
is both accurate and diverse [37.38.89].

60 CHAPTER 3. DIVERSITY IN CLASSIFIER ENSEMBLES

There is a proven relationship to date due to Turner and Ghosh [106,107] who showed
that under certain assumptions the average combination method produces accuracy which
is related to the correlation between the classifier outputs. Extending this work they also
showed similar relationships for combination using minimum, maximum and mean [108].

Also the concept of negative correlation training of neural networks has enjoyed some
interest and has been developed showing promising practical results for both regression

and classification [68-70,90. As with Turner and Ghosh the average combination method
is used. Ensembles can also be built using the random subspace method, which modifies
the training data by sampling data features to give each classifier in the ensemble a slightly
different data set to train on. Ensembles built using the random subspace method and
aggregated using majority vote are reported to correlate well with a diversity measure
based on entropy [17,18].

Masulli and Valentini found that dependence among errors was one of the main fac-

tors affecting the effectiveness of error correcting output codes [77]. They analysed the

relationship between performance, design and dependence among output errors in ECOC

learning machines. They compared the dependence between ECOC-monolithic made of a
single multi-layer perceptron and ECOC-PND made up of a set independent and parallel
dichotomizers on three data sets from UCI (glass, letter and optdigits) and one synthetic
data set. Their results show that dependence among computed codeword bits is signifi-

cantly smaller for ECOC-PND showing that ensembles of independent dichotomizers are
better suited for implementing ECOC classification methods.

3.4 Experimental set-up to investigate the diversity mea-

sures

We again used the two databases seen in Chapter 2 from the UCI Repository of Machine

Learning Database: The Wisconsin breast Cancer Database(wbc) and the Pima Indian Di-

abetes Database. We use the same experimental protocol as used in the previous chapter,
in summary: We used the first 10 features from wbc so that we could run an exhaustive

experiment with all possible partitions. The wbc data has 569 objects, 2 classes and 10

features and is trained using a hold-out (random halves) method. The Pima data has 768

objects, 2 classes and 8 features and is trained using ten-fold cross-validation.
For the wbc data we use all partitions of 10 features for 3 classifiers of the form 4,3,3

(4200 ensembles) and 4,4,2 (3150 ensembles). For each partition we designed one ensemble

of three linear classifiers and one ensemble of three quadratic classifiers, resulting in 8400

4,3,3 ensembles and 6300 4,4,2 ensembles. For the Pima data we took all partitions of the

form 3,3,2 using 10-fold cross-validation to obtain a total of 560 ensembles.

We then considered:

3.5. DIVERSITY MEASURES RESULTS 61

1. The range of values for the measures of diversity.

2. The correlation between each measure of diversity and all other measures of diversity.

3. The correlation between each of the methods of combination and each of the measures
of diversity.

The correlation coefficient used was Pearson's Product Moment correlation coefficient.

3.5 Diversity Measures Results

3.5.1 Overall Diversities

Examining the breast cancer data results, we found that the minimum observed value
of the individual classifier accuracy, p, was 0.6258, the maximum was 0.9579 and the

overall mean was 0.8927. For the Pima data, the minimum was 0.6328, the maximum was
0.7734 and the overall mean was 0.6962. Tables 3.7 and 3.8 show the observed range of
values for the ten measures of diversity compared with their theoretical limits for wbc and
Pima respectively. Based on the observed minimum and maximum accuracies mentioned
previously, we have taken pE (0.6,0.95] for wbc and pE [0- 6,0.8] for Pima. The theoretical
limits were deduced from the graphs shown previously in Figures 3.6 and 3.7. The graphical
representation is used to illustrate how much the observed and theoretical ranges differ
from each other. The larger rectangle represents the length of the theoretical range of
diversities possible. The black section of the rectangle corresponds to the observed range
of values we found in our experiments. This idea corresponds to the unit length we
discussed earlier in reference to Table 3.6. Here however we have scaled it so that we can
compare not only the theoretical and observed values for each diversity measure, but also
compare the ranges of the different diversity measures to each other. For example, kw has

a much smaller range of theoretical (and observed) values than does Q.
Considering the breast cancer data shown in Table 3.7, Q, p and c can all take negative

values when classifiers are negatively correlated. Given that none of these measures has

any observed negative values, we can conclude that the classifiers are not very diverse for

the breast cancer data. The measures where low values indicate high diversity, (4.), except
DF and 0, have high values, toward the right end of the range, as shown in Table 3.7. The

measures where high values indicate high diversity, (t), except for GD and CFD, have
low values. This suggests, that the classifiers are less diverse than they could theoretically
be. For the Pima data we see that the range of diversity for each measure is considerably
less than for the breast cancer data, illustrated by the narrower black bands in Table 3.8.
The observed values do show that the classifiers are even less diverse than for the breast

cancer data, with not even DF and 0 indicating particularly diverse classifiers.

62 CHAPTER 3. DIVERSITY IN CLASSIFIER ENSEMBLES

Table 3.7: THE OBSERVED RANGE OF VALUES FOR THE DIVERSITY MEASURES

COMPARED WITH THE THEORETICAL LIMITS POSSIBLE FOR THE OBSERVED

VALUES OF p FOR THE BREAST CANCER DATA

Diversity Theoretical Limits Observed Graphical

Measure for pE [0-6,0.95] Range representation

Q (..) [-1.00,1.00] [0.35,0.97]
p (4.) [-0.5,1.00] [0.19,0.70] -. ý

DF (,.) [0.00,0.40] [0.05,0.10] I

' (,.) [-0.50,1.00] [0.10,0.70]

9 (4.) [0.00,0.24] [0.05,0.09] [Q

D (I-) [0.00,0.66] [0.05,0.28]

kw (1) [0.00,0.22] [0.02,0.09]

Ent (t) [0.00,1.00] [0.07,0.42]

GD (t) [0.00,1.00] [0.27,0.74]

CFD (r) [0.00,1.00] [0.43,0.86]

(0) theoretical; () observed range of values.

It is interesting to note that even though the measures do not indicate that all the

classifiers are identical or close to identical, the average accuracy of the team was quite

similar to the average best individual accuracy, especially for the wbc data. Thus a range

of values of diversity did not span a similar range of improvement /degradation of team

accuracy. This is an early indication of the lack of any strong, exploitable relationship
between diversity measures and team accuracy in real-life classification problems.

3.5.2 Relationships among the diversity measures

For the case of correct/incorrect (1/0) classifier outputs (oracle-type outputs), kw differs

from the averaged disagreement measure D by a coefficient [62]. Also for the case with
L=3 classifiers, kw and Ent differ by a coefficient (Appendix A. 1, proposition 3). This

in turn means that the disagreement measure and Entropy differ by a coefficient for the

three classifier case, with correct/incorrect, outputs, i. e.,

kw =
L2L 1D (1/0 outputs)

3.5. DIVERSITY MEASURES RESULTS 63

Table 3.8: THE OBSERVED RANGE OF VALUES FOR THE DIVERSITY MEASURES
COMPARED WITH THE THEORETICAL LIMITS POSSIBLE FOR THE OBSERVED
VALUES OF p FOR THE PIMA DIABETES DATA

Measure Theoretical Limits
for pE [0.6,0.8]

Observed Span Graphical

representation

Q (4.) [-1.00,1.00] [0.57,0.78]

p (4.) [-0.5,1.00] [0.30,0.46] (-

DF (4.) [0.00,0.40] [0.16,0.19]

K (j.) [-0.50,1.001 [0.29,0.46]

0 (4.) [0.00,0.22] [0.11,0.13]

D (T) [0.00,0.62] [0.23,0.30] 11 .1

kw (t) [0.00,0.22] [0.08,0.10]

Ent (t) [0.00,1.00] [0.34,0.45]

DGD (t) [0.00,1.00] [0.38,0.49]

CFD (t) [0.00,1.00] [0.54,0.65] ýý

(j) theoretical; (.) observed range of values.

r

kw =3D

kw =9 Ent

D=3 Ent

(1/0 and L= 3)

(1/0 and L= 3)

(1/O and L= 3)

The following results are an expansion of our study into combination methods and diversity

measures [99]. We were interested in how the different diversity measures might be related
to each other. In order to investigate these relationships we calculated the correlation
between their values and illustrated them as shown in Figure 3.8. Since we have two types

of diversity measure, those measuring similarity (, 1) and those measuring diversity (t) we

would naturally expect some of the measures to be highly negatively correlated. Since we
are interested in any relationship and not whether it is positive or negative, we have taken
the absolute values of the correlation coefficient. The intensity of the colour in Figure 3.8
is determined by this correlation. The stronger the correlation the lighter the colour.

To further aid analysis of these relationships we used a clustering program to illustrate

64

0

P

K

GD

CFD

D

kw

Ent

DF

0

0

P

K

GD

CFD

D

kw

Ent

DF

e

a

p

K

0

GD

CFD

0

kw

Ent

DF

CHAPTER 3. DIVERSITY IN CLASSIFIER ENSEMBLES

wbc 442 linear classifiers

tAv 0pK GD CFD D kw Ent DF 0

wbc 433 linear classifiers

l

,. "t.:

0p is B GD CFDD kw Em DF

0
P

K

GD

CFD

0

kw

Ent

DF

0

a

p

K

GD

CFD

D

kw

Ern

DF

0

0
P

K

D

kw

Ent

DF

0

GD

CFD

wbc 442 quadratic classifiers

511- . L11Mu
GYýlp Ron

Opw GD CFD D kw Ent DF 0

wbc 433 quadratic classifiers

Qpc GD CFD D kw Erd DF 6

Pima 332 quadratic classifiers

QpxD kw EM DF 0 GD CFD

Figure 3.8: THE OVERALL CORRELATION BETWEEN THE DIVERSITY MEA-
SURES. THE STRONGER THE CORRELATION THE LIGHTER THE COLOUR.

3.5. DIVERSITY MEASURES RESULTS 65

the strength of the relationships between the different diversity measures. Figure 3.9 shows
the dendrograms formed when we cluster the diversity measures using average-linkage

relational clustering'. The lower the branches joining the different diversity measures the

stronger the relationship between them.
Looking at the colours in Figure 3.8 and the height of the branches in Figure 3.9 and

comparing them with the corresponding figures for the combination methods (2.5 and 2.6)

we see that the colours are much lighter and the branches are much lower for the diversity

measures showing that the diversity measures are more correlated with each other than

the combination methods are. The colours are also lighter for the diversity measures with
the Pima data set than with the breast cancer data indicating that the diversity measures

were more correlated on this data set.
Looking at both the shade diagrams and the dendrograms we can see that the relation-

ships are more complicated than for the combination methods with quite different clusters
for the two data sets. We can see for both data sets that D, kw and Ent are identical

on the basis of the correlation coefficients. Looking at figures for the breast cancer data

it is easier to identify clusters but for the Pima data the diversity measures are so closely

correlated that it is very difficult to split them into consistent clusters. It appears that

p, 'c, GD and CFD are fairly closely correlated to each other, but it is interesting to note

that GD is more correlated to is (for wbc) and to 0 (for Pima) than to CFD which is

actually a more similar measure from a derivation point of view. DF only has correlation

with 0 and even that is not very strong for the Pima data. DF measures the proportion

of examples which a pair of classifiers both misclassify. Based on the correlation colours

and the cluster dendrograms it seems that this is different to the other diversity measures.

3.5.3 Relationship with accuracy

One of the key questions when we consider diversity is `how can we make the best use of
diversity? ' One approach is to try to force an ensemble to be diverse. Negative correlation

can be enforced into an ensemble to increase the accuracy of a multiple classifier sys-
tem. Liu and Yao propose a negative-correlation training method for ensembles of Neural

Networks with considerable success [68,69,71,117].

Liu and Yao have carried out a series of studies into using negatively correlated neural

networks on two data sets from the UCI machine learning repository [68-70,117]. Using

Australian credit card assessment data and the Wisconsin breast cancer data (which we
have also used) they have shown that an ensemble of negatively correlated neural networks
can perform significantly better than other systems for regression tasks without any noise.
Their algorithm enforces negative correlation within the ensemble by encouraging different

The clustering routine and the dendrogram drawing routine are from the package PRTOOLS for

Matlab (26]

66 CHAPTER 3. DIVERSITY IN CLASSIFIER ENSEMBLES

wbc 442 quadratic classifiers
C

Pima 332 quadratic classifiers

Figure 3.9: THE CLUSTER DENDROGRAMS FOR THE DIVERSITY MEASURES

individual networks to learn different parts or aspects of the training data, and then by

using a novel correlation penalty term in the error function to encourage this specialisation.

Qpx GD CFD D kw Ent DF 8

wbc 442 linear classifiers

wbc 433 linear classifiers wbc 433 quadratic classifiers

Pima 332 linear classifiers

ap is D kw Ent DF 0 GD CFD

3.5. DIVERSITY MEASURES RESULTS 67

The networks are trained simultaneously to allow interaction between different networks.
They compare their algorithm with thirteen other algorithms and show that theirs is

better than nearly all of them including CART, logistic discriminant, radial basis function

and Naive Bayes (68,69). In further work they consider two approaches to breast Cancer

diagnosis, a monolithic, feed-forward, evolutionary artificial neural network, and a set

of several simultaneously trained, feed-forward networks to create an ensemble. They

found on the highly non-linear, Chlorophyll-a prediction problem that negative correlation
learning is statistically significantly better than independent training [117]. In the same

study, using the breast cancer data again, they initially found that combining using simple

average reduced the benefits of training with negative correlation. On analysing the causes
they found that this was due to the fact that some of the constituent networks are more
important than others as they have all learned different parts of the data. They found

that by changing their combination method to combining by applying a `winner-takes-all'

approach and for each area only using the network with the highest activation dramatically

improved the testing error.

Another way of using diversity is in the `overproduce and choose' strategy where a large

set of classifiers is created and then the most accurate and diverse subset is chosen from

them. Giacinto and Roli have produced several studies following this strategy [37,38].

They choose to use this overproduce and choose approach because direct generation of

accurate and diverse ensembles is too difficult for the current state of the classification field

of research. It also allows the exploitation of all ways of creating diverse candidates for the

ensemble by varying net type, initial random weights, network architecture and training
data. Their data consists of multi-sensor remote sensing images relating to an agricultural

area near the village of Feltwell (UK) with the task of assigning one of five agricultural

classes to each of 5238 testing pixels given 5124 training pixels and 582 validation pixels.
They used several different overproduction phases to get different initial large sets of
different types of classifiers. Their approach to choosing the subset of classifiers involves

examining the number of coincident errors made by the classifiers. They cluster the

classifiers into subsets by putting those with highly correlated coincident errors in the

same cluster so that those in different clusters are error-diverse. At each stage of clustering

a candidate ensemble is created by taking one classifier from each cluster and combining
by majority voting using the validation set. Once the clustering is completed all of the

candidate ensembles are compared and the one with the highest performance is chosen

as the final ensemble. They proved that their approach is optimal and compared it with
another overproduce and choose strategy and found it to be preferable. In a later study
with Vernazza, they compared their approach to a further five strategies on the Feltwell
data again, using three different diversity measures, Generalised Diversity, the Q-statistic

and their own Compound Diversity which is in fact 1-Double Fault [89]. Using several

68 CHAPTER 3. DIVERSITY IN CLASSIFIER ENSEMBLES

initial large sets from the overproduce stage, they found that it was not possible to identify

the best `choose' strategy since it varied depending on the task at hand.

In order to investigate how we can make use of diversity we look at the inter-relationships

between the combination methods from the previous chapter and the diversity measures
introduced in this chapter.

3.5.4 Relationships between the combination methods and the diversity

measures

For each combination method we have a column of values, the accuracies (in the range
[0 - 1]). There is one value for each of the different possible ensembles and there is

one column of accuracies for each of the possible partition types (4,3,3 etc.). For each
diversity measure we also have a column of values, the diversities (range depending on
the particular diversity measure, shown in Figures 3.6 and 3.7). Again there is one value
for each of the different possible ensembles and a different column for each partition type.
Thus each particular row for the combination methods and diversity measures corresponds
to the same particular set of three classifiers. Therefore, we can compare the combination

methods and diversity measures by comparing these values. We do this by calculating the
Pearson's product moment correlation between these corresponding values. Figure 3.10

illustrates these correlations for both the breast cancer and Pima data.

As before the intensity of the colour in the Figure (3.10) is determined by the corre-
lation. The stronger the correlation the lighter the colour. The darker colours in these

shade graphs show that there is less correlation between the combination methods and the
diversity measures than either the combination methods or the diversity measures show

amongst themselves. In fact there is very little consistent correlation between the two.
D/kw/Ent showed a slight correlation with MAX/MIN, 0 some correlation to MAJ and
AVR, and DT and DF some correlation to MAJ.

Table 3.9 shows the correlation coefficients obtained when combining all of the data

for both wbc and Pima and comparing the diversity measure values and the combina-
tion method accuracies. From Table 3.9, DF and 0 are the only measures which show

correlation of size 0.5 or more with most of the combination methods. The correlation

with BKS and WER is just under 0.5 for DF and is just under 0.5 with WER for 0.
Overall, 0 shows stronger correlation with the combination methods than DF does. They

show negative correlation values, which means that if the combination method has high

accuracy then DF and 0 have low value, which reflects high diversity since they are of the
(4.) form.

3.5. DIVERSITY MEASURES RESULTS

MAJ

NB

MAX

MIN

AVR

PRO

DT

BKS

WER

ORA

MAJ

NB

MAX

MIN

AVR

PRO

DT

BKS

WER

ORA

0px GO CFD D kw Ent OF 0

Pima 332 linear classifiers
MAJ

NB

AVR

PRO . =omits

ORA

MAX

MIN

BKS

WER

DT

MAJ

NB

AVR

PRO

DT

MAX

MIN

BKS

WER

ORA

MAJ

NB

AVR

PRO

DT

MAX

MIN

BKS

WER

ORA

MAJ

NB

MAX

MIN

AVR

PRO

BKS

WER

DT

ORA

69

apK0 kw EM DF 0 GD CFD

Figure 3.10: THE CORRELATION BETWEEN THE COMBINATION METHODS
AND THE DIVERSITY MEASURES. THE STRONGER THE CORRELATION THE LIGHTER THE

COLOUR.

wbc 442 linear classifiers wbc 442 quadratic classifiers

Qpr GD CFO D kw Ent OF 0

wbc 433 linear classifiers

QPK GD CFD D kw Ent DF e

wbc 433 quadratic classifiers

0PK GD CFD 0 kw Ent DF e

Pima 332 quadratic classifiers

Qpke GD CFD D kw EM DF

70 CHAPTER 3. DIVERSITY IN CLASSIFIER ENSEMBLES

Table 3.9: THE CORRELATION COEFFICIENTS FOR THE RELATIONSHIPS BE-
TWEEN THE COMBINATION METHODS AND THE DIVERSITY MEASURES. BOLD
NUMBERS ARE THOSE WITH ABSOLUTE VALUE OF 0.5 OR GREATER.

Q p[D/kw/Ent DF n 0 GD CFD
MAJ -0.0009 -0.1725 -0.0582 -0.8984 -0.1442 -0.9199 0.2139 0.3248
NB 0.1461 0.0047 -0.2524 -0.7239 0.0430 -0.7660 ,, 0.0323 0.1216
BKS -0.0902 -0.2060 0.0966 -0.4965 -0.2020 -0.5108. 0.2343 0.27764
WER -0.0868 -0.1977 0.1014 -0.4633 -0.1955 -0.4747 0.2242 0.2661 '

MAX/MIN 0.1725 0.0017 -0.2430 -0.7690 0.0506 -0.7994 0.0200 0.0811
AVR 0.0286 -0.1418 -0.0865 -0.8854 -0.1086 -0.9071 0.1768 0.2682
PRO 0.0346 -0.1388 -0.1050 -0.8692 -0.0972 -0.8905;, , 0.1680 0.2428
DT -0.0315 -0.2244 -0.0055 -0.8819 -0.1888 -0.9047,,, ' S", 0-2539 0.3384:
ORA -0.4198 -0.6278 0.3822 -0.9646 -0.5817 -0.9384 0.6403 0.6886'

3.6 Diversity Measures Conclusions
4' 'r r

In this chapter we introduced several diversity measures and studied the relationships
between them and to the combination methods introduced in Chapter 2. We took a
breast cancer data-set of 10 feature values for 569 patients and using all partitions of the
form (4,4,2) and (4,3,3) for two types of classifier (linear and quadratic), conducted a set
of four enumerative experiments. We also took a diabetes data set of 8 feature values for
768 patients and conducted a set of ten-fold cross-validation experiments using all possible

partitions of the form (3,3,2).

We then considered the ranges of the diversity measures for the classifiers produced

compared with the theoretical range and their implications for the accuracy of, the en-
semble. In the previous chapter we studied the accuracy of ensembles formed fröm, these

classifiers and found that they did not improve considerably over the average sin"gle" best
individual classifier. This is probably due to the fact that the classifiers produced'were
not particular diverse.

Next we studied the correlation amongst the diversity measures. We found that for
(0/1) classifier outputs with an ensemble of three classifiers D, kw and Ent are identical up
to a coefficient. We also found that p, x, GD and CFD are fairly, consistently correlated
whilst DF was not strongly correlated with any of the other measures.

r

w;

We then proceeded to look at the relationship between the diversity measures and
the combination methods introduced in Chapter 2. We found that there was very little

3.6. DIVERSITY MEASURES CONCLUSIONS 71

consistent correlation between the two. On combining all data, both wbc and Pima with
all partition types, we found that DF and 0 had the strongest relationship with the
combination methods.

It is the fact that there is no simple, clear relationship between diversity measures and
combination methods which makes the explicit use of diversity in multiple classifier systems
such a thorny subject. In order to use diversity we would like to see a consistent, positive
relationship showing that highly diverse ensembles have high accuracy on combination.
Unfortunately we have not found this.

Directly calculating the accuracy for the chosen combination methods currently makes
more sense than calculating diversity and trying to predict the accuracy, with the mea-
sures currently at our disposal. This is true even if the measure of diversity is easier to

calculate than some combination methods, the ambiguous relationship between diversity

and accuracy discourages optimising the diversity. It may be possible to create a hybrid

measure which in some way combines accuracy and diversity into a single measure to be

able to use diversity. For now, it is better to use diversity as mentioned in section 3.5.3 by
trying to enforce diversity in the ensemble or using diversity to select an ensemble when
following an `overproduce and choose strategy'. We shall consider this latter option in
Chapter 5.

72 CHAPTER 3. DIVERSITY IN CLASSIFIER ENSEMBLES

Chapter 4

Perturb and Combine Ensemble

Construction Methods

So far we have considered the various ways of combining ensembles of given classifiers. We

have also investigated how the diversity of an ensemble of classifiers can be measured and
how this may be related to the ensemble accuracy. Now we will consider ways in which

we can try to actively alter the diversity of the constituent classifiers in an ensemble.
Recall figure 2.2, which showed what we can change in a multiple classifier system. Part

D showed that we can alter the classifiers in an ensemble by modifying the training data

on which they are built. This chapter deals with trying to create an ensemble of diverse

classifiers by manipulating the training data in one of a various number of ways. These

include Bagging, Boosting and Arcing algorithms [9,20,22]. These are usually referred
to as Perturb and Combine methods because we first perturb the data to get different

training sets and then we combine the classifiers built on them [8]. We hope that by

doing this we can improve the ensemble performance (accuracy on combination) through

producing more diverse classifiers.

4.1 Bias and Variance

There are many different definitions of bias and variance with regards to classifier combina-
tion problems [24,50,95]. Freund and Schapire [32] found that it is not always necessarily
easy or useful to use the bias-variance decomposition with boosting algorithms in classi-
fication. Here we consider Breiman's definition [9]. Consider taking a large number of
replicated training sets of size N from the same underlying distribution, and consider the

average performance of the algorithms on them. Breiman shows that the average error
can be decomposed into a noise term, a bias term and a variance term:

PE(f) = 0.2 + 02(f) +V (f) (4.1)

73

74 CHAPTER 4. ENSEMBLE CONSTRUCTION METHODS

where f is the classifier produced by the algorithm, PE(f) is the average prediction error,
a2 is the noise term, ß2 (f) is the bias term and V (f) is the variance term.

Neural nets and decision trees tend to have low bias, but their problem is a high

variance, they are unstable since they are sensitive to small changes in the learning set, or
in the construction. For these methods the problem is how to reduce the variance. There

are several methods that have been devised to address this problem.

4.2 Bagging

Breiman devised a method of manipulating the data to try to reduce the variance for

unstable classifiers which he called bagging [7].
Suppose we have a training set T and we could obtain a large number of independent

samples of this training set T1, T2, T3, ... each with the same number of objects, N,

and coming from the same underlying distribution. If we take the ith sample we can
construct a predictor function to act as our classifier DTi(x). Recalling the bias-variance
decomposition of the error we can average all of the predictors to define a new predictor:

D(x) = av=DTi(x) (4.2)

According to Breiman, this function has the same bias as DT (x) but zero variance, result-
ing in a lower prediction error [9].

Unfortunately, we cannot usually obtain the large number of independent copies Ti

we require to take advantage of this approach. In order to overcome this problem we use
Bootstrap Approximation.

In Bootstrap sampling we sample from Z with replacement, for bagging we assume
that all objects in Z have an equal likelihood of being chosen. Typically the size of the
bootstrap sample is taken to be the same as that of Z, i. e., N. This can be carried out
an unlimited number of times to obtain as many training sets as we wish. Each replicate
contains on average 63.2% of the original training set [21]. Each of the bootstrap samples
is then used to construct a different classifier which can be combined to give an ensemble.
Bagging is useful as it is very easy to implement and construction of each bootstrap sample
and classifier can be run in parallel thus computer run time is kept to a minimum. It is
also resistant to errors due to noisy data [20]. However, it is not always as accurate as
some other methods (5,20,30].

Skurichina and Duin investigated how the random subspace method and bagging com-
pared when datasets have redundant features [101]. They considered one artificial, and
five real two-class datasets from the UCI machine learning repository which they adapted
to have high redundancy in the feature space. They found that the performance of bagging

was unaffected by the redundancy in the dataset but rather on the data-dimensionality

4.3. ARCING AND BOOSTING 75

and its relation to the training sample size. In highly redundant feature spaces where

many of the features are noise, bagging was superior to the random subspace method
but in datasets where the discrimination information is spread over all the features, the

random subspace method was superior.
Breiman has looked into new variants of bagging aimed at improving the performance

by reducing both bias and variance in regression problems [12]. This is achieved by initially

performing bagging and then altering the output values based on the outcomes from

bagging. Next bagging is carried out on these altered output values. This process is then

repeated until their stopping rule is satisfied.

4.3 Arcing and Boosting

Building a highly accurate classifier can be a difficult problem, however finding moderately

accurate classifiers is a comparatively easy task. Boosting is based on the observation that

finding many rough classifiers can be a lot easier than finding a single, highly accurate

classifier. Boosting refers to a general and provably effective method of producing an

accurate classification rule by combining moderately inaccurate classifiers [92].

To understand the idea of boosting we need to introduce the concept of weak and

strong learners. As defined by Breiman in (8], a weaklearner is a computationally efficient

algorithm which is only slightly better than random guessing for any distribution. While

a stronglearner is accurate over the whole input space, not just the training set and so has

low test error. Breiman then defines a boosting algorithm as being any algorithm which

can take a weaklearner and boost it into being a stronglearner.
Boosting was developed in answer to the question `Does the existence of a compu-

tationally efficient weaklearner imply the existence of an efficient stronglearner that can

generate arbitrarily accurate hypothesis? ' [8]. Schapire answered this question in the af-
firmative by developing the first provable polynomial-time boosting algorithm [93]. Later

Freund described a simpler and more efficient boosting algorithm which lie called boost-
by-majority [29]. This had certain practical drawbacks, in that it requires prior knowledge

of the amount they believe the classification algorithm to be better than random guessing.
Together, Freund and Schapire then went on to develop the AdaBoost algorithm. Whilst

not quite as efficient as boost-by-majority, AdaBoost is more practical since it is adaptive
in nature and does not require the prior knowledge referred to above (31].

Breiman determines that AdaBoost and Freund and Schapire's other boosting algo-
rithms do not in fact strictly fulfil the boosting assumptions [8]. He says that to satisfy
the strict definition of a weaklearner the classes must not have any overlaps. He believes

that these boosting assumptions are restrictive, since in virtually all real data situations
there is some overlap between classes and no weaklearners exist. He prefers the term

76 CHAPTER 4. ENSEMBLE CONSTRUCTION METHODS

`arcing' which he believes is less restrictive. Arcing stands for Adaptive Resampling and
Combining algorithms. It refers to algorithms which

1. assign weights to the training data

2. build classifiers on the training data taking the weights into account,

3. increase the weight for those data that were misclassified by the previous classifier,

4. combine the ensemble of classifiers built to produce an overall classification rule.

Freund and Schapire acknowledge that under the strictly defined rules of boosting there

may be cases when there are no weak learners and that their boosting algorithms would
indeed be called `arcing' algorithms according to Breiman's terminology [32]. The term
boosting is commonly used to encompass these ideas, and in particular in association

with the now renowned AdaBoost algorithm. To prevent confusion we will use the term
Boosting in its broadest sense throughout the rest of this work.

4.4 Which method to use?

According to Breiman [8] the main contribution of both bagging and boosting on the

reduction of the error is through reduction of the variance and in this, boosting is usually
the better method. However, Freund et. al. 's experiments [32,95) showed that boosting

can decrease both variance and bias in some cases but can also increase the variance whilst

reducing the bias sufficiently to still ensure that the final error is reduced.
We are particularly interested in the AdaBoost boosting algorithm [31] which has had

considerable success with artificial and real-world data problems [5,8,30,85]. As well

as being an off-the-shelf algorithm which only involves entering the data and hitting the

start button, AdaBoost can usually take a good but not exceptional classifier such as
CART and turn it into a procedure with performance close to the lowest achievable test

set error rates. In fact, Breiman (at the NIPS workshop 1996 as quoted in [34]) referred
to AdaBoost in combination with decision trees as the "best off the shelf classifier in the

world". We will describe this algorithm in more detail below. It has been found that in

circumstances without noise, boosting is clearly superior to bagging and that AdaBoost

produces much more diverse ensembles than either bagging or randomising [20]. It is

this diversity which can lead to greater improvement in accuracy for AdaBoost [103].

However bagging outperforms boosting when substantial classification noise is introduced.

Unfortunately, it has also been observed that boosting can be paralysed [113], i. e., no
further improvement is achieved when adding new classifiers to the team.

For the remainder of this thesis we will be working predominantly with the boosting

algorithm, called AdaBoost.

4.5. ADABOOST

4.5 AdaBoost

77

AdaBoost was originally designed to rapidly drive the training error to zero. The fact

that it is also extremely good at reducing the testing error is a fortunate by-product [9].

The name AdaBoost comes from the phrase Adaptive Boosting.
AdaBoost constructs classifiers by modifying the training set based on the previous

classifier's performance. It does this by getting the new classifier to put more emphasis
on those objects which the previous classifier found difficult to classify accurately. This
is achieved by maintaining a distribution of weights over the training set, which can
be modified as required on each iteration. Thus if the current classifier finds a certain
object difficult to classify then that object will have greater weight for the next iteration.
Conversely, if the current classifier finds a certain object easy to classify then that object
will have less weight in the next iteration.

4.5.1 The AdaBoost algorithm

Some implementations of AdaBoost use a resampling method [9,22-24] and others use
reweighting [5]. There is some disagreement about which to use and some studies have

therefore compared both [9,34]. These implementations differ according to whether you
resample from the original training set or attach weights to each data point and re-use the

whole training set to build the next classifier. The choice of implementation does not affect
AdaBoost too much although boosting with reweighting is a more direct implementation

of the theory [5]. Research by Breiman suggests that there is very little difference in the

results obtained using the two methods [9]. We have used a resampling method because
this allows for any type of basic classifiers to be used. The reweighting method requires
some modification of the underlying classifiers to allow them to accommodate the weights
as input and so cannot be used with any type of classifier like the resampling method.

For the resampling implementation, each weight determines the probability of its asso-
ciated object being selected for the training set for an individual component classifier [24].
Initially all weights are set equal. On each round if a training object is not accurately clas-
sified then its chances of being selected again for a subsequent training set are increased
by increasing the value of its associated weight [94]. In this way the next classifier is forced
to concentrate on the more difficult examples in the training set. In Figure 4.1 we show
the basic algorithm for AdaBoost using the resampling implementation.

We require as input, the training set Z and Kmax the maximum number of iterations

we wish the algorithm to carry out. We initialise the weights associated with each element
in the training set Wk. (i) i=I.... ,N to be equal (i. e. hr). At each iteration k, a bootstrap

sample Sk is taken from the training set with replacement using the weights to determine

each object's chance of being selected. On the first iteration, this process is identical to

78

Initialise W (i) = R, i=1...

Input Kmix, Z, k =1

k=k+l

Key:

Train DI, on Sk sampled from Z
using «k (i), i=1, ... ,N

Calculate the Weighted Training Error
Ek of Dk (by testing on Z)

CHAPTER 4. ENSEMBLE CONSTRUCTION METHODS

[Ek > 1? J

No

LEA
_0?

J

INo

Calculate the combination weight ßk

Update the weights Wk+l
using EA; and W,,

No
Lk= Ifm. x?

Jý-----

Yes

Output classifiers Dk
and the combination weights

A, k=1, ... , Kmax

k the current iteration; Km. x the number of iterations; Z the training set;
SM the kth training set; Dk the k°h classifier trained; Ek the kth training error;
ßk the kt" combination weight; Wk(i) the kth weight for object i;

WA, = {tiVk(1),..., TVk(N)} the kph set of weights used.

Figure 4.1: THE ADABOOST ALGORITHM: THE RESAMPLING IMPLEMENTA-
TION

the bootstrap sample taken in bagging. As in bagging the size of the sample set is usually
taken to be N, the same as the original training set Z. A classifier Dk is trained on this

training set Sk and is then tested on the original training set Z to obtain the weighted
training error, Ek:

N

Ek = Ed(i)lVk(i)
i=l

Yes

Yea

Let , Ok =10

Re-initialise
Wk(i)=, i=1---, N

(4.3)

4.5. ADABOOST

1 if Zi is misclassified by Dk
where d(i) =

0 if correctly classified

79

If Ek is greater than 2 then classifier Dk is considered to be too inaccurate (worse than

random guessing for two class case). If Ek =0 we also encounter a problem since we need
to use it as the denominator in the equation for the combining weights, , 0k, at the following

step. Earlier implementations of AdaBoost [30] stopped when Ek >2 (error greater than

50%) was reached and did not specify what to do with Ek = 0. Subsequently Breiman [8,9)

suggested re-starting with re-initialised weights after either Ek =0 or Ek > and ignoring

that iteration. We decided that it was not necessary to ignore the iteration when Ek =0
(100% accurate individual classifier on the training set) since this gave us a good classifier
to add to our ensemble. Instead we decided that giving a suitably large value to ß and re-
initialising the weights was a better approach. Thus, when Ek >2 the weights Wk (i) are

reinitialised to 1/N and we ignore that iteration. When Ek =0 we include that classifier
in our collection, assign a value of 10 to ß1 and re-initialise the weights.

When we obtain a classifier Dk with error 0< Ek < .1 we calculate the combination

weight /9k as follows:

13, _
1-Ek (4.4)

rl; E
k

Next we update the weights for each object Wk+1(i), using the current weights Wk.

and error Ek as
0

Wk+1(2) Wk(j)ß
_

E
jjy= 1

Wk(i)ßß(9)
(4.5)

If we have not reached the required number of classifiers we repeat the process until

we have obtained Km classifiers. Once we have obtained the required number we output
the classifiers and the combination weights Dk, Ak=1,

... , Kmax .
The final decision for classification of a new object, x, is made by weighted voting

between the Km classifiers. First, all classifiers label x and then for all Dk that gave
label wt, we calculate the support for that class by

µt(x) =Z in(ßk)" (4.6)
Dk (x)=wt

The class with the maximal support is chosen for x.

4.5.2 Optimality of the combiner for AdaBoost

The final support for each class is given by equation 4.6. If we re-call that 13 _ i7r,
44L then

4.6 can also be written as:

mt(X) _Z In
(ý1

.
Dk (x)=wt

EJ:
(4.7)

110 was chosen after examining the sizes of 3 for various errors, Ek

80 CHAPTER 4. ENSEMBLE CONSTRUCTION METHODS

The following theorem shows the rationale for this combiner, showing why it could be used
as the support for each class, wt. It is described by Freund and Schapire in [31].

Theorem 1 Given an ensemble of classifiers D= {Dl,..., DL} with corresponding errors
{El,..., EL}.

Let Di(x) = si be the output of classifier Di for object x where si E SZ.
Denote s= [sl,...

, sL) and assume conditionally independent outputs, i. e.,
L

P(siwi) = II P(sjlwi) j=1

Then a set of Bayes-optimal discriminant functions are given by

9ýýx) = log(P(wi)) + log 1
EE3 jEI(w{)

(4.8)

(4.9)

where I (wi) is the index set of all classifiers that assigned object x to class w1, i. e., D3 (x) =
w;.

Proof

The set of Bayes-optimal discriminant functions are given by:

9i(x) = log(P(wi) - P(s! wi)) i=1, ... ,c

Taking assumption 4.8 into account,

gi(x) = log(P(wi)) +log(P(slwi))
L

= log(P(wi)) + log(II P(sj Iwi))
j=1

= log(P(wi)) + log IH P(sj = wi)
\\7Er(wi)

= log(P(wi,)) + log II (1- E?)
EI (wi)

= log(P(wi)) +E log(1-Ej)+
jel(wi)

II P(sj
7`' wi)

ý I(w;)

II Ej
ifI (wº)

log(Ej)
j 1(w;)

We call form an equivalent set of discriminant functions gi (x) by adding a term which
does not depend on the class label i,

L

g1(x) = log(P(wi)) +2 log(1- EE) +E log(Ej) -E 1og(Ej)
jEI(wi) 9 I(w;))=1

= log(P(wi)) +E log(1- Ej) +E log(Ej)
1EI(wi) W(w1)

4.5. ADABOOST

-Z log(E,) -Z log(Ej)
9EI(ui) j4I(wi)

= 1og(P(w1)) +Z (log(1 - EE) -1og(Ej))
jEI(wi)

= 1og(P(wi)) +1 log
(1 - Ej)

Ej jEI(J)

4.5.3 Boosting the margins

81

One of the most unexpected phenomena seen in boosting experiments is that after the

training error reaches zero the test error continues to decrease. In fact, even long after
the training error has reached zero, even if the ensemble becomes very large, the test error
does not usually increase due to overtraining as might be expected [8,85,95]. The main

exceptions to this are the empirical results of Wickramaratna et. al., who found that

boosting strong learners (radial basis function classifiers) led to performance degradation

as the classifiers were forced to concentrate on outliers and the harder examples [1131.

To explain this positive feature of boosting, Schapire et. al. used the concept of

margins [32,94,95] originally suggested by Vapnik [110] and further developed in the

context of support vector machines in his work with Cortes [16]. The main idea is that it

is not enough to consider the training error in analysing performance, it is also necessary
to consider how confident the classifiers are in their classification. They develop a measure

of confidence, the margin, which allows them to prove that any improvement in the margin

on the training set will guarantee an improvement in the upper bound of the testing error.
Suppose that we have an ensemble of base classifiers and their associated combina-

tion weights, normalised so that they sum to unity. For a particular example we have to

consider the sum of weights for each class label. Schapire et. al. define the classification

margin as follows [95]:

Definition 1 The classification margin for an example is the difference between the weight

assigned to the correct label and the maximal weight assigned to any single incorrect label.

The margin is therefore a number in the range [-1,1] and to be correctly classified the

margin of an example must be positive. The larger the margin, the more confident the

classification. So a large, positive margin indicates a confident, correct classification.
Schapire et. al. found that both bagging and boosting tend to result in an increase in

the margin of examples and that they converge to a situation in which most examples
have large positive margins [95]. Boosting, by its very nature, is aggressive in its tackling

of examples with small margins since it actively focuses on these examples in subsequent
rounds. This concept of margins is a possible explanation for why AdaBoost continues to

82 CHAPTER 4. ENSEMBLE CONSTRUCTION METHODS

drive the testing error down even after the training error has reached zero. Schapire et.

al. 's experiments show that maximising the margins usually results in better generalisation

error. Long after the correct classification has been reached the margins are still being

increased giving more and more confidence to the classification and resulting in better

generalisation ability.
The margins can be used in conjunction with algorithms other than AdaBoost as in

the work by Hoche and Wrobel. They study the margins of training examples in order to

actively determine the best number of features to include to get the right balance between

speed and accuracy (42]. They develop an algorithm which monitors the average of the

training sample margins as learners are built. When the actual improvement in the margin
decreases below their expected improvement they add the next feature.

Kleinberg considers that boosting algorithms are enforcing uniformity by de-emphasising

easy examples (49]. By combining the weak learning iteration part of the AdaBoost algo-

rithm with a stochastic-discriminant algorithm they confirmed this theory experimentally.

4.6 Existing empirical studies about AdaBoost

There are many experimental studies investigating various aspects of AdaBoost. Figure 4.6

shows some of these studies and the aspect of AdaBoost with which they are concerned.

4.6.1 AdaBoost and modifications

Schapire (92] gives an overview of boosting. He highlights some of the main features of
AdaBoost and shows some of the more important empirical results to date. These results

show that AdaBoost generally performs as well as, if not significantly better than other

methods. Schapire also highlights that one of the problems with AdaBoost, its overem-

phasis of weight on certain examples, can in fact be turned to our advantage as a method

of identifying outliers. Since AdaBoost concentrates weight on the harder examples, and

outliers are hardest to classify, then those with the largest weight are often outliers.
Kuncheva and Whitaker compared three different versions of AdaBoost an aggressive

version, a conservative version and an inverse version (61]. They also looked at the pos-

sibility of studying diversity, in this case the Q statistic, in conjunction with AdaBoost

to identify the paralysis stage found by Wickramaratna in [113]. The aggressive version
increased weights on incorrectly classified examples and decreased weights on those cor-

rectly classified examples. The conservative version actively changes only one of these,

either increasing weights on the incorrectly classified examples or decreasing weights on
the correctly classified examples. The inverse version is opposite to the aggressive version,
decreasing weights on incorrectly classified examples and increasing weights on correctly

classified examples. This third approach may seem odd but it was included to see whether

4.6. EXISTING EMPIRICAL STUDIES ABOUT ADAB00ST

AdaBoost

AdaBoost Considering The

II
Comparing

and margins multi-class with other
odification directly case I Lmethods

Kuncheva& [61]
Rätsch& [86] Friedman& (34]
Rätsch& [87]

Kim [47]
Eibl& [27]

Merler& [78]
Oza [81]

Takimoto& [104]
Mason& [75]

Schapire (92]
Lozano& [73]

Allwein& [1]
Schapire& [96]

Chawla& [14]
Schapire [94]

Nock& [80]
Ridgeway [88]
Wickramaratna& [113]

In the diagram & means et. al.

83

Different
combination

Overproduce
&

methods choose
r. n fw At

Quinlan [85] margineantusL ti-4]
Freund& [30] Tamon& [105]

Bauer& [5] Kuncheva [55]
Dietterich& [20]Lozano& (73]
Dietterich& (21]Mason& [75]
Duffy& (25] Skurichina& (102]
Zhou& (119]
Kleinberg [49]

Figure 4.2: THE VARIOUS ASPECTS OF, AND STUDIES INTO, ADAIIOOST

actively avoiding overtraining by too much emphasis on incorrect examples would lead

to better results. They found that in fact this was not the case, with the conservative

approach having the most accurate results. They also found that the relationship between

Q and accuracy was not particularly clear and could probably only be used to give a guide
to the general trend in performance.

Friedman, Hastie and Tibshirani found that AdaBoost fits an underlying model, that

of additive logistic regression [34]. They also prove that after each weight update in the
AdaBoost algorithm the weighted misclassification error of the most recent classifier is

50%. This may be another reason why AdaBoost does not overfit more often. They

use the reweighting implementation version of AdaBoost and determined that there is
little connection between this deterministic reweighting version of AdaBoost and other
randomized ensemble methods such as bagging and randomized trees. They compare
four versions of AdaBoost using eight datasets from UCI and a decision tree as the base

classifier.

84 CHAPTER 4. ENSEMBLE CONSTRUCTION METHODS

9 Discrete AdaBoost-Freund and Schapire's [30] AdaBoost where the classifiers, D(x) :

Rn -+ {-1, +1}.
" Real AdaBoost-Schapire and Singer's [96] two algorithms using confidence rated

predictions where D(x) : Rn -+ R with the sign of D(x) giving the classification and
the size of D (x) I giving the confidence in the prediction. There are two algorithms
because we need one for the two-class case and the other for the multi-class-case and

are used with datasets as appropriate.

" LogitBoost-fits additive logistic regression models by stage-wise optimisation of the
Bernoulli log-likelihood. Again they have two versions, one for the two-class case
and one for the multi-class case.

" Gentle AdaBoost-works like Real AdaBoost but uses Newton steps rather than exact

optimisation at each step.

They found that the Real AdaBoost, LogitBoost and Gentle AdaBoost algorithms were

on a par with each other, with the Discrete AdaBoost algorithm being slightly worse.
In most of their experiments the error rate of Discrete AdaBoost was twice that of the

other algorithms. They then proceed to introduce a slight modification to the algorithms
to speed up computation running time. They do this by considering the weight of each
training observation and only submitting those observations with weight greater than a

certain threshold to the base classifier at each round. The weights are still updated for

all of the training observations though, so that a particular observation can be discarded

from some of the iterations but can be brought back in again at a later stage if its weight
increases. Experiments using this show that very large computation reductions can be

achieved using this simple adaptation. Another interesting point that they highlight is

with the resampling implementation of AdaBoost. The common practice is to use the

original sample size N to determine the bootstrap size. They identify that there is in fact

no evidence to suggest that this is optimal in all or in any situation. This is something

which we will look at in more detail later on.
As has been found in other studies, one of AdaBoost biggest weaknesses is with noisy

data, when it can concentrate too much effort on outliers and mislabelled data. Kim

develops a new boosting algorithm, Averaged Boosting, which is more robust to noise
than AdaBoost (47]. The difference between them is that AdaBoost uses the product of
the classifiers and their coefficients whereas Averaged Boosting uses the average of the

product of classifiers and their coefficients when updating the weights. The averaging

means that not all the correctly classified examples are ignored and therefore not all the

effort is concentrated on a few outliers and mislabelled examples in noisy situations. Kim

carried out experiments on fourteen datasets from UCI using decision trees as the base

4.6. EXISTING EMPIRICAL STUDIES ABOUT ADABOOST 85

classifier. The results showed that Averaged Boosting was more robust than AdaBoost to

noise and also outperforms bagging in low noise situations. Also, Averaged Boosting was
comparable to bagging in high noise cases.

Oza also looked at using averaging to increases stability and improve boosting per-
formance [81]. The algorithm AveBoost takes into consideration all of the previous base

classifiers distributions when calculating the next iteration's weight distribution rather
than just the immediately preceeding distribution. This is achieved by initially calculating
the distribution as for AdaBoost but then each element is averaged with the distributions
from all previous iterations. Their experiments showed that this leads to results that are
on a par with or better than those for AdaBoost on 9 datasets from UCI.

Chawla et. al. noted that both boosting and bagging can have limitations on very
large datasets [14]. This is because computation time becomes prohibitive. One solution
to this is to take a subset of the data to be representative of the whole, but how do we
ensure that vital information is not lost in the discarded data. They bypass this problem by

partitioning the large datasets into random and disjoint subsets which are then distributed
to different processors. As each processor is working independently the computation time
is minimised and, hopefully we can create diverse classifiers. The classifiers produced are
then combined by majority vote ensuring that we are utilising all available information.
Their experiments were on three smaller (data sizes: 6435,10992,20000) datasets and one
larger datasets (training size: 209529, testing size: 17731). Their results showed that this
is a potentially very useful approach for very large datasets which cannot be practically
handled by a single processor.

Nock and Sebban investigate AdaBoost and give a theorem proving the efficiency
of AdaBoost and an explicit version of the theorem of the upper bound of its training

error [80]. They prove that optimising each weak hypothesis on a criterion which they

call Z (and which is not accuracy) optimises the overall hypothesis. Using this idea they
introduce their own boosting algorithm which they apply to the feature selection problem.
It follows a feed-forward search method and adds the feature at each stage which increases
the accuracy most when run using the boosting algorithm. If none of the potential features
increase, they stop and use the current subset. They found that using this feature selection
with boosting approach was better than using the whole feature set with neural networks
on 13 out of 19 datasets, mostly from UCI.

Ridgeway also looks at an alternative area for boosting to be used (88]. By viewing
AdaBoost as a solution to the problem of minimising a loss function, boosting can become

applicable to a variety of other problems such as non-linear regression, robust non-linear
regression and non-linear exponential family and survival regression. He considers boosting
to be equivalent to gradient-based functional optimisation algorithms that are able to fit

non-linear functions to data.

86 CHAPTER 4. ENSEMBLE CONSTRUCTION METHODS

4.6.2 Considering margins directly

Rätsch, Onoda and Müller found that AdaBoost overfits with data where there are high

noise levels since it asymptotically achieves a hard margin [86]. AdaBoost concentrates too

much on a few hard-to-learn patterns and in a noisy situation this is clearly suboptimal
behaviour. They propose a solution by introducing a note of mistrust in the data so that

AdaBoost can ignore outliers and mislabelled data. They introduce several regularisation

methods and generalisations of AdaBoost to achieve this. This soft approach is similar
to, and inspired by, the route which people working with support vector machines have

followed. Rätsch continues his work with AdaBoost in conjunction with Warmuth by

developing the AdaBoost* algorithm [87]. This algorithm is able to explicitly maximise
the minimum margin of the training examples up to a given precision. Thus it maximises
the margin on separable classes and minimises the overlap between any two classes on
inseparable cases. They compare AdaBoost* with standard AdaBoost using C4.5 decision

trees and find that their modifications do indeed lead to an increase in the margins.
Merler et. al. adapt AdaBoost in their experiments to deal with problems where

there is a cost-sensitive issue [78]. They consider the two-class case for cancer diagnosis.

Obviously a false negative diagnosis has much more serious implications than a false

positive diagnosis. Thus they modify AdaBoost to update the weights differently for

incorrect classification of different classes. They are actively increasing the margins of

positive examples without modifying the margins of negative examples.
Mason, Bartlett and Baxter decided that since AdaBoost implicitly seems to be max-

imising the margins it may be possible to improve performance by trying to explicitly

optimise the margins [75]. They develop the Direct Optimization Of Margins (DOOM)

algorithm to do this. It works by using AdaBoost to generate a set of base classifiers
before DOOM finds the optimal combination weights. They carried out experiments on
ten datasets from UCI and on all but one dataset the combination produced by DOOM

had lower testing error than using AdaBoost's weighted combination. Their investigation

shows that this improved testing performance is achieved by sacrificing the training error

rate. Also their plots of the margins suggest that the size of the minimum margin is not
the critical factor in the generalisation performance.

4.6.3 The multi-class case

The version of AdaBoost which we have described and which we will be studying further is

the two-class version. However there are other versions which are extensions to the multi-

class case. Some of these rely on reduction of the problem to a series of binary problems.
AdaBoost. M1 is a version which deals directly with the multi-class case but it requires
the base classifiers to have accuracy of greater than 2 [31]. This is reasonable for the

4.6. EXISTING EMPIRICAL STUDIES ABOUT ADABOOST 87

two class case, where this is simply a requirement that the base classifiers be better than

random guessing, but as the number of classes grows it becomes more and more difficult

to achieve. To deal with this problem Eibl and Pfeiffer have modified AdaBoost. M1 by

changing a single line of code [27]. This has resulted in an algorithm which guarantees
to minimise the upper bound for their performance measure as long as the base classifier
is better than random guessing, i. e., better than 1 with c classes. They also modify the

stopping criterion to be softer.
Schapire and Singer examined several generalisations for multi-class problems (96].

Their experimental results with these improved boosting algorithms showed that it is

possible to achieve dramatic improvements in the training error when there is a reasonably
large amount of data. On small, noisy datasets, however, the rapid decrease in the training

error is often linked to overfitting with resulting degradation in the generalisation error.
Takimoto and Maruoka also developed an information-based boosting algorithm which

is able to tackle the multi-class problem without having to reduce it to a set of binary prob-
lems [104]. Unfortunately in experiments, they found that their algorithm's performance
was worse than other boosting algorithms such as AdaBoost.

Allwein, Schapire and Singer consider the problem of the multi-class case with margin-
based classifiers, and look at how it might be possible to reduce it to a set of binary

problems [1]. They use AdaBoost and support vector machines to build the base classifiers
using eight datasets from UCI and combine their outputs using decoding techniques which
are similar in nature to error-correcting output codes. Interestingly they also prove that
having mostly large margins for the training set implies that the generalisation error has
improved bounds independent of the number of rounds of boosting. That is the bounds

are tighter than those given by Schapire et. al. in (95].

4.6.4 Comparing with other methods

Quinlan carried out his investigation into bagging and boosting with C4.5 decision trees
in 1996 which has now become a benchmark study into AdaBoost's performance [85]. His

experiments involved twenty-seven datasets from the UCI machine learning repository.
They compared the reweighting implementation of AdaBoost with bagging using ten base

classifiers in the ensemble. In this early investigation the AdaBoost algorithm stops when
the training error reaches zero. He found that both bagging and AdaBoost substantially
decrease the testing error with boosting generally better than bagging. However boosting
can produce severe degradation with some datasets. He then changed the voting weights
to a confidence measure in the classification of the training example and this led to some
improvement.

Following on from Quinlan's work Freund and Schapire carried out experiments com-

88 CHAPTER 4. ENSEMBLE CONSTRUCTION METHODS

paring bagging with AdaBoost [30). They also compared their performances on twenty-

seven datasets from UCI. They also looked in more detail at an algorithm which combines
AdaBoost with a nearest-neighbour classifier. Their results showed that boosting is better

with simple classifiers and is possibly helpful when observed examples have varying de-

grees of hardness, or when the learning algorithm is sensitive to changes in the training set.
They deduced that this was because the pseudo-loss version of AdaBoost concentrates not

only on the hard to classify examples but more specifically on the incorrect labels which

are hardest to discriminate. They were particularly surprised by the continued reduction
in the testing error after the training error reaches zero.

Bauer and Kohavi also compare bagging and AdaBoost and some of their variants
in real-world experiments designed to look at the bias-variance decomposition [5]. They
found that bagging and its variants always improved the performance even if only very
slightly. They also found that boosting did not always improve performance and that it
depended on the data. However, when boosting did improve it did so significantly. They

also found that boosting results showed a higher variance but lower bias than bagging and
that AdaBoost does not deal well with noisy data.

Dietterich has also performed several investigations into AdaBoost, comparing it with
other methods of constructing ensembles such as bagging and randomization. Randomiza-

tion involves computing the twenty best splits at each internal node of a decision tree and
then choosing one randomly. In experiments comparing bagging, boosting and random-
ization using C4.5 trees, lie found that if there is little or no noise, boosting performs best

and randomization may be slightly better than bagging [20]. However, in high noise cases
(20%) bagging is much better than boosting and sometimes better than randomization.
Also in large data sets bagging does not alter the training sample much and so there is not
much improvement over the single C4.5 tree. In further experiments he identifies three

reasons why an ensemble may work better than a single classifier [21]. These are:

Statistical: if we have a set of decision rules with similar accuracy then we can average
them to reduce the risk of choosing the `wrong' rule.

Computational: decision rules can get stuck in local optima, so by starting from different

points we can provide a better approximation to the `true' decision rule.

Representational: often the true hypothesis cannot be represented by our available

rules, thus a weighted sum of decision rules can expand the space of representable
functions.

Dietterich determined that bagging and randomization both predominantly tackle the

statistical and to some extent the computational problem. AdaBoost however, tackles the

representational problem and this is the reason he believes it to be fundamentally different

4.6. EXISTING EMPIRICAL STUDIES ABOUT ADABOOST 89

in approach to bagging and randomization. We also know that AdaBoost tends to overfit
in high noise cases but it does not overfit as often as we might expect. Dietterich believes

this is due to its stage-wise nature and lack of backfitting; it does not return and modify

existing hypotheses or combination weights as it progresses. His experiments confirm these

conclusions.

Duffy and Heimbold use different terminology, they use the phrase `leveraging al-

gorithm' to describe any learning algorithm which produces a combined hypothesis by

iteratively calling a black-box learning routine to produce the individual hypotheses to be

combined [25]. AdaBoost is therefore a leveraging algorithm and they introduce their own

new leveraging algorithm in this paper. Their analysis suggests that their algorithm is

likely to be better than AdaBoost on noisy data which is a known problem for AdaBoost.

On a set of twelve, small, two-class datasets from UCI their algorithm and AdaBoost were

comparable. They also carried out a second set of experiments involving UCI's LED arti-
ficial data, which allows the addition of attribute noise, and with the mushroom and chess
datasets where they flipped some labels to introduce noise. They found that for between

10 and 20% noise their algorithm is significantly better than AdaBoost.

Zhou, Wu and Tang have designed an overproduce and choose strategy called GASEN

which is based on their theory that if there are many neural networks available it might
be better to use only a subset [119]. Overproduce and choose strategies are based on
the idea that it may be better to build a large number of classifiers and then select in

some way the `best' subset of them. The difficulty is thus how to define what we mean
by `best' and how to choose amongst all possible subsets. Zhou et. al. show equations

which prove that it may be better to use a subset of neural networks and which could be

used to identify which neural networks to omit from the ensemble. However, this method

would be prohibitively computationally expensive for real-world applications. GASEN is

one possible algorithm designed to help with this problem. Their experiments compare
GASEN with bagging and AdaBoost using resampling on ten datasets from UCI. They
found that GASEN not only generates smaller neural network ensembles but also has a

stronger generalisation ability.

Kleinberg compared stochastic discrimination to boosting and bagging with three dif-
ferent underlying weak learning algorithms FindAttrTest, FindDecRule and C4.5 (49).
Experiments with 17 datasets from UCI showed that stochastic discrimination outper-
formed all the methods on 14 datasets. Also on 5 out of 7 datasets from Statlog stochastic
discrimination outperformed 23 different combination methods.

90 CHAPTER 4. ENSEMBLE CONSTRUCTION METHODS

4.6.5 Different combination methods

Kuncheva also looked at using AdaBoost to build the base classifiers and then combining
them in an alternative way (55]. She looked at various combination methods comparing
fuzzy methods (fuzzy integral and decision templates) with some of the non-fuzzy meth-

ods we have already seen (majority vote, minimum, maximum, average, product, naive
Bayes) and weighted majority the standard method used with AdaBoost. Experiments

carried out using three datasets available from UCI, two from ELENA and the author's

own artificial dataset, found that the simple combining methods of minimum, maximum,

product and average gave particularly poor results. Majority vote and naive Bayes had

erratic performances and weighted majority, although stable, was slightly worse than the

fuzzy combination methods.
Lozano and Koltchinskii also use AdaBoost to create a set of classifiers before com-

bining them using their own set of weights rather than those provided by AdaBoost [73].

They use an independent validation set in order to actively search for the set of weights

which minimises the error on combining. Their algorithm involves considering the margin

of those examples in the validation set. It is called DOOM-LP since it is directly opti-

mising the margins as DOOM does, but the solution also involves solving a sequence of
linear programming problems. Experiments showed that with eight out of ten datasets

from UCI, DOOM-LP improved over using AdaBoost's normal combination weights. It is

therefore on a par with DOOM's performance, but at a lower implementation cost.
Skurichina and Duin study how different combination methods affect the performance

of both bagging and boosting (102]. They carried out experiments using two artificial and

one real dataset. Their results show that bagging is useful with unstable classifiers with
critical training sample sizes, if the sample size is too small or too large bagging does

not work as well. Also combining the classifiers from bagging with weighted majority

vote, weighted average or product all produce better results than using simple majority
vote. With boosting, the larger the training sample size the better and it does not depend

so much on the instability of the base classifiers. Also boosting has generally better

performance than bagging while the combining rule used is less important than in bagging.

They conclude that the combining rule which is best is data-dependent and depends upon
the training sample size but it is important. Also simple majority voting, which is usually

used with bagging, tends to be the worst choice.

4.6.6 Overproduce and choose

Margineantu and Dietterich have taken this use of AdaBoost one stage further in an

overproduce and choose strategy (74). AdaBoost is used to build a large set of classifiers
before a pruning algorithm is used to choose a subset of classifiers to form an ensemble.

4.6. EXISTING EMPIRICAL STUDIES ABOUT ADABOOST 91

This approach is aimed at reducing the memory requirement and the computation costs

without a serious loss of performance. They compared five different pruning algorithms

on ten datasets from UCI using the resampling version of AdaBoost with C4.5 decision

trees as the base classifiers. The combination weights from AdaBoost are used to combine
the final, pruned ensemble as usual. Their results show that despite reducing the number

of classifiers in the ensemble it is possible to obtain a nearly comparable performance to

that obtained using the entire set. They also introduce the kappa-error diagram which

gives a way of visualising the trade-off between accuracy and diversity and which we shall
be considering further in the next chapter.

Tamon and Xiang's work [105] follows on from Margineantu and Dietterich's work with

pruning algorithms using one in particular - kappa pruning [74]. They use the reweighting

version of AdaBoost building C4.5 decision tree classifiers. Once a classifier has been

pruned from the ensemble their modification involves distributing the weight associated

with it between all the remaining classifiers. They view this as a clustering-like process,
in that the weight is distributed based upon the proximity of the other classifiers to the

pruned classifier. Thus all the weights of the original ensemble are incorporated in the

weighted voting to give the final hypothesis. Experiments on eight datasets show that

this weight shifting can help improve the kappa pruning error rates sometimes. They then

proceed to look more theoretically at how we can prune a subset of classifiers from the

whole set in such a way as to minimise the training error of the ensemble. They do this
by establishing a matrix where entry i, j is the margin of hi on example j and trying to
develop an heuristic which can reduce the number of hypotheses (rows) without reducing
the sum of the margins in each column below a certain threshold. They achieve a semi-
feasible solution by turning this problem firstly into an integer programming problem and
then into a linear program problem.

4.6.7 Summary of Existing Studies of AdaBoost

AdaBoost often has significantly better performance than other boosting methods. It

can also be used to identify outliers since it places additional weight on those cases most
difficult to classify which often turn out to be outliers [93]. After normalisation and
updating of weights the weighted error of the most recent classifier on the data is 50%

making each classifier likely to be different from the previous classifier [34].

AdaBoost is weakest on noisy data where it often performs considerably worse than

other methods of classification. Some modifications to bring an averaging element into the
AdaBoost algorithm were found to make it more robust with noisy data [47,81}. AdaBoost

also has problems with very large data sets. These can be dealt with by using a set
of processors each working on a disjoint partition of the data to build an ensemble of

92 CHAPTER 4. ENSEMBLE CONSTRUCTION METHODS

classifiers separately before combining them using majority vote [14]. An alternative

approach to deal with the noisy data problem is to build a level of mistrust into the

AdaBoost algorithm [86]. This led to explicitly maximising the minimum margin of the

training examples up to a certain precision [87].

The margins can also be used to deal with cost issues such as a difference in the

consequences of false positive and false negative results. This is done by actively increasing

the margins on either positive or negative examples as required [78]. This led to the DOOM

algorithm which seeks to directly optimise the margins [75].

For the multi-class case there has been some work in breaking the problem down to

a series of binary problems [1] as well as algorithms directly dealing with the multi-class
format [31,104]. An original requirement of the AdaBoost algorithm was that the base

classifiers had to have error of less than 50% (31], which is obviously restrictive for the

multi-class case as the number of classes grows. Consequently there have been some

modifications of the algorithm to deal with this [27].

There are many investigations comparing AdaBoost to other classification strategies [5,

20,21,25,30,49,85,119]. They found that bagging always improves the performance and
that boosting is generally better than bagging. However it can produce severe degradation

with some datasets. Boosting is better with simple classifiers and on data with little noise.
For high noise cases bagging is much better than boosting and is also sometimes better

than randomisation.
There are also several studies into using alternative combination methods after Ad-

aBoost has produced an ensemble of classifiers rather than the usual weighted votes [55,73,

103]. They show that fuzzy combination methods [55] or actively searching for an alterna-
tive set of weights which minimise the error (73] both produce better results than the stan-
dard weighted majority using weights provided by the AdaBoost algorithm. Skurichina

concluded that the best combination method was not only data-dependent but also de-

pended on the sample size of the training data [103].

Further studies have also shown that it is possible to use AdaBoost to build a large

set of classifiers and then use a pruning algorithm to reduce the size of the ensemble,

without dramatically altering the generalisation error [74,105]. We shall be looking at
this Overproduce and Choose approach in the next chapter.

4.7 Experimental set-up into how AdaBoost affects Classi-

fier Diversity

This section is based on a study presented at IPMU 2002 (98]. We are interested to see

whether there is a link between diversity and accuracy of ensembles built by AdaBoost.

We try to establish whether or not we could use the change in diversity as classifiers are

4.7. EXPERIMENTAL SET-UP

added to get the most benefit from AdaBoost.

93

For our experiments we used the Pima Indian diabetes database and the Haberman

survival database, both taken from the UCI repository of machine learning database.

Table 4.1 shows a summary of the data sets. The data sets are described in more detail

in Appendices B. 9 and B. 3.

Table 4.1: SUMMARY OF THE DATA SETS

Name No. Classes Size of data set No. Features

Pima Indian diabetes 2 768 8

Haberman Survival 2 306 3

By using AdaBoost with 10-fold cross-validation we were able to produce ensembles of

100 classifiers. We used three types of classifiers: linear, quadratic and neural networks.
The neural network consists of a single hidden layer of 15 neurons with a maximum of 300

training epochs.

As each new classifier was added to the ensemble we considered

1. the training accuracy of the ensemble

2. the testing accuracy of the ensemble

3. the training diversity of the ensemble using the Q-statistic introduced earlier (3.1.1).

For each classifier type and dataset, with both training and testing sets, we plotted the

average change in the error against the number of classifiers. We also plotted the average

change in training Q against the number of classifiers. We were interested in finding out

whether Q can be used as a stopping criterion for AdaBoost. Therefore we identified the

minimum training Q in each experiment. Our experiments showed that rather than rapidly

reaching zero our training error actually fluctuated in value and so we also monitored the

minimum training error. We considered these as potential stopping criteria, called `min Q'

and `min TRE' respectively, and recorded their corresponding testing error.
As we have already seen, AdaBoost is not particularly robust to noisy data (20,21,

25,47,86,92] and we have subsequently found that Pima has some outliers which can
lead to AdaBoost becoming overtrained [9]. It is not known whether Haberman also has

significant outliers but if it does this may be the reason that the training error did not

rapidly reach zero in our experiments as we would have expected.

94 CHAPTER 4. ENSEMBLE CONSTRUCTION METHODS

4.8 AdaBoost and Classifier Diversity Results

Figures 4.3,4.4 and 4.5 show how the average training and testing errors change, and how

the average training Q changes as AdaBoost adds classifiers to the ensemble. The top,

left-hand graph in each figure shows the change in error versus the number of classifiers
for the Haberman data. The top, right-hand graph shows the change in error versus the

number of classifiers for the Pima data. The bottom, left-hand graph shows the change
in Q for the Haberman data and the bottom, right-hand graph shows the change in Q

for the Pima-Indian data. The thick, blue lines indicate the training run and the thin,

red lines the testing run. Figure 4.3 shows the results for linear classifiers, Figure 4.4 the

results for quadratic classifiers and Figure 4.5 the results for neural networks.

Looking at the graphs we can see that the testing error is lower for the Pima data than

the Haberman data although the difference is marginal for quadratic classifiers. Recall

that AdaBoost is supposed to rapidly drive the training error to zero, however we see that

with linear classifiers the training error is almost horizontal. For quadratic classifiers the

training error is almost horizontal for the Haberman data and initially decreases before

levelling off with the Pima data. We see slightly more of a decrease with the neural

network classifiers before starting to level off. This is similar to the paralysis observed by

Wickramaratna [113].

When we consider the testing error we see that for linear classifiers and for quadratic

classifiers with Haberman data the graph is close to the training error and is almost
horizontal. For quadratic and neural networks with Pima, the graph follows the same shape

as the training error but is higher in value. For neural networks with the Haberman data

we see that the testing error is considerably higher and fluctuates erratically suggesting

overfitting.

If we look at the lower, Q, graphs we see that for linear classifiers and quadratic

classifiers with Haberman data there is almost no change in the value of Q with it being

very close to 1. With quadratic classifiers and Pima data there is an initial decrease before

the Q value levels off at approximately 0.8. These results suggest that the classifiers that

are being added to the ensemble are all very similar and there is therefore not much to be

gained by boosting them. This was reflected in the horizontal training error graphs.
For the neural network classifiers we see that the Q value rapidly decreases as the first

20 classifiers are added to the ensemble. After this point it continues to decrease but quite
slowly as the rest of the classifiers are added until it reaches a value of approximately
0.2. This suggests that the neural network classifiers are more diverse in the ensemble
than with linear and quadratic classifiers, and the ensemble becomes more diverse as the

ensemble grows. This seems to explain why the neural network training error reduced

whilst the quadratic and linear classifiers training error did not.

4.8. ADABOOST AND CLASSIFIER DIVERSITY RESULTS 95

From Figures 4.3,4.4 and 4.5 we can say that neither linear nor quadratic classifiers
benefit from boosting using AdaBoost, but neural networks may be more suitable. We

could have obtained the same level of testing error by using the first few classifiers for

both linear and quadratic classifiers.
Ideally we would like diversity to be more closely related to the training error. We

had hoped that the `elbow' point on the Q graph would correspond to a similar turning

point on the training error graph which would be where the error would slow down its

decreasing. Then we could identify a suitable point at which to stop the AdaBoost algo-

rithm. Unfortunately there does not appear to be a close enough relationship between the

training error and Q to do this. Previous studies suggest that other diversity measures

would not be much different from Q [92].

HABERMAN PIMA
Error Error

Q
L

Q

io

0

L

)O
LL

Figure 4.3: CHANGE IN THE AVERAGE ERROR AND VALUE OF Q AS WE ADD
LINEAR CLASSIFIERS TO THE ENSEMBLE. THE THICK, BLUE LINE IS THE TRAINING
DATA AND THE THIN, RED LINE IS THE TESTING DATA

96 CHAPTER 4. ENSEMBLE CONSTRUCTION METHODS

HABERMAN
Error

Q

PIMA

Error

L
Q

ýo
L

in

LL

Figure 4.4: CHANGE IN THE AVERAGE ERROR AND VALUE OF Q AS WE ADD
QUADRATIC CLASSIFIERS TO THE ENSEMBLE. THE THICK, BLUE LINE IS THE TRAIN-

c ING DATA AND THE THIN, RED LINE IS THE TESTING DATA

Figure 4.6 shows the average training and testing errors versus the average training

Q for all data sets and all base classifiers. The blue line in the upper graph shows the

training error and the red line in the lower graph shows the testing error. The ensemble

consisting of a single classifier is at the far right at Q=1. As each classifier is added to

the ensemble we plot the new value of Q and the error corresponding to it. The lines join

these plots together and show how Q and the error changes as the ensemble grows.

The lines have a general trend going to the left and downwards indicating that both

the value of Q and the errors decrease as the ensemble grows. The black circles and arrows
indicate where the minimum value of Q occurs and the pink circles and arrows indicate

where the final N=100 classifiers occurs. These show that there is not much difference

in the error observed at minQ and at N=100, but the minQ could reduce the number of

v0 20 40 60 80 100

4.8. ADABOOST AND CLASSIFIER DIVERSITY RESULTS 97

HABERMAN

Error

Q

Error

ýo -
L

Q

ýo

L

ýo
LL

Figure 4.5: CHANGE IN THE AVERAGE ERROR AND VALUE OF Q AS WE ADD

NEURAL NETWORKS TO THE ENSEMBLE. THE THICK, BLUE LINE IS THE TRAINING

DATA AND THE THIN, RED LINE IS THE TESTING DATA

iterations taken. The minimum testing error actually occurs before the minQ is reached

and is not related to the value of training Q.

We can see that there is little improvement in generalisation error gained by stopping

the algorithm at the min Q point, however there is a computational advantage in that we
terminate at an earlier point reducing the number of iterations.

We now examine whether the computational advantage of terminating at an earlier

point using minQ is consistent in all cases of our experiments.

Table 4.2 shows the average number of iterations taken, (the number, L, of classifiers in

the ensemble) and the corresponding test error obtained using three criteria to determine

when to terminate AdaBoost, averaged over 10 independent runs. The stopping criteria

PIMA

98 CHAPTER 4. ENSEMBLE CONSTRUCTION METHODS

Error

72

Trig Q
Error
0.255

t .. tN=100

minQ

0.25

0.245

oll
68 0.69 0.7 0.71 0.72

Training Q

Figure 4.6: AVERAGE ERROR VERSUS AVERAGE TRAINING Q FOR ALL DATA

SETS AND BASE CLASSIFIERS. THE BLUE LINE IN THE UPPER GRAPH IS THE TRAINING

ERROR AND THE RED LINE IN THE LOWER GRAPH IS THE TESTING ERROR. THE BLACK CIR-

CLES INDICATE THE MINIMUM Q AND THE PINK CIRCLES INDICATE THE POINT WHERE ALL 100

CLASSIFIERS HAVE BEEN BUILT

used were: using all 100 classifiers (All), the minimum training error (minTRE) and
minimum Q (minQ). The best performances for each case are shown in bold.

The results show that all three criteria give a similar performance. Using all 100 classifiers

and min Q are on a par with each other, with min THE slightly worse than both of them.

However, min Q and min TRE both use less members in the ensemble, especially for linear

4.9. ADABOOST AND CLASSIFIER DIVERSITY CONCLUSIONS 99

and quadratic classifiers. minTRE in particular uses considerably less than the full 100

classifiers.

4.9 AdaBoost and Classifier Diversity Conclusions

In this chapter we have investigated the diversity of classifier ensembles built using the
AdaBoost algorithm. We carried out experiments with two datasets- Haberman survival
data with 3 features, 2 classes and 306 patients and Pima Indian diabetes data with 8

attributes, 2 classes and 768 patients. We used ten-fold cross validation, building 100

classifiers each time of three types: linear, quadratic and neural networks to produce a set
of results.

Our experiments show that there is no benefit in boosting either linear or quadratic
classifiers, but there is a benefit in boosting neural networks using the AdaBoost algorithm.
For neural networks we saw that AdaBoost is increasing the diversity of the ensemble (Q

Table 4.2: TESTING ERRORS USING VARIOUS STOPPING CRITERIA

Case Stopping Criterion mean L mean Test Error
Pima All 100 0.2304
Linear minTRE 11 0.2330
Classifiers min Q 42.5 0.2304

Pima All 100 0.2410
Quadratic minTRE 34.5 0.2436
Classifiers min Q 56 0.2462

Pima All 100 0.2281
Neural minTRE 67.3 0.2228
Networks min Q 63.7 0.2254

Haberman All 100 0.2624
Linear minTRE 17.4 0.2656
Classifiers min Q 37.9 0.2619

Haberman All 100 0.2476
Quadratic minTRE 9.9 0.2503
Classifiers min Q 21.4 0.2476

Haberman All 100 0.2729
Neural minTRE 68.3 0.2872
Networks min Q 65.1 0.2771

100 CHAPTER 4. ENSEMBLE CONSTRUCTION METHODS

was decreasing) as classifiers are added to it. This may be due to the unstable nature of

neural networks and the changing weights from AdaBoost.

It is possible that future work may consider using the minimum Q either on its own or
together with the minimum training error to determine a termination point for AdaBoost

in order to increase generalisation performance. We have also found that a reasonably high

accuracy can be obtained after the first few iterations. It may also be of use therefore, to try

to enhance the performance of a small ensemble further by applying different combination

methods on a reasonably accurate and diverse ensemble. Having established from our
results that neural networks are suitable for use with AdaBoost, and from other papers
that so are decision trees (e. g. [22]), we will only use these, discarding linear and quadratic

classifiers from our further work.

Chapter 5

Improving AdaBoost

Once again recall figure 2.2, which showed what we can change in a multiple classifier
system. As we have seen in the previous chapter we can alter AdaBoost by manipulating
the combination methods (figure 2.2 part A), or by using different types of classifier (fig-

ure 2.2 part B). It has been shown that neural networks and decision trees are the most
practical base classifier to use with AdaBoost [22]. Also, with the possible exception of
fuzzy methods [55], the use of weighted majority to combine the classifiers produced by
AdaBoost is on a par with other combination methods available.

There are many works taking AdaBoost as a starting point, trying to improve it and

modify it to different applications [25,47,74,75,78,80,81,86-88,105]. In this chapter we
are interested in whether we can improve on the performance of standard AdaBoost with
resampling by modifying some of its characteristics.

The problem of complexity of the base classifier has been considered for decision trees
by pruning, but the analogy in neural networks, examining the best number of hidden
layers, number of neurons etc., has not. It is important to know whether complex or
simple Neural Networks have higher ensemble accuracy on combination. Drucker [22]

suggests that the number of hidden neurons is not crucial when used with AdaBoost, as
the boosting algorithm compensates for any deficiencies in the constituent networks. This
is supposedly due to the fact that AdaBoost only requires the classifiers to have error
of less than 2. He decides on the architecture to use by running a few boosting rounds
and comparing the error on a validation set with the training error, if they are similar
then the architecture is assumed to be reasonable. We feel that it may be beneficial to
investigate whether or not the choice of architecture has a greater impact on the ensemble
performance than Drucker believes.

The first part of this chapter therefore parallels those studies where the complexity of
decision trees in relation to AdaBoost has been studied, for example whether or not to

prune the trees [114]. Pruning using a separate pruning set can improve the generalisation

101

102 CHAPTER 5. IMPROVING ADABOOST

of a single tree (79]. The question is whether the ensemble performance will be improved

when the base classifiers are pruned. Dietterich (20] and Windeatt and Ardeshir [114]

found that there was no significant difference between using a pruned tree and using the

full tree.
Recall that decision stumps are the simplest type of decision tree with only one split at

the root node partitioning the data into two disjoint classification regions [19]. It is often

possible to use an exhaustive search method to identify the best critical value for decision

stumps, which would not be possible with more complex trees. It has been found that

ensembles using stumps may work very well with certain distributions such as additive
logistic models [34]. However, they may not work well if the distribution is not of the

desired type and so it may be preferable to use more complex base classifiers in order to

have a wider class of distributions for which we are guaranteed a good performance [6].

The case for decision stumps is that they are easy to implement and for most real-world

cases they are powerful enough. However in less-common situations dependencies in the
data may require more powerful and therefore more complex decision trees [33].

Clearly there would be an optimal pruning value (tree size) for every problem. We

would expect a similar argument to hold for the neural network size. We are interested

in whether AdaBoost benefits from a small, large or randomly mixed complexity of the

constituent neural networks. The hope is that instead of trying to match the neural

networks to the data, there could be a more general recommendation about the neural

network complexity. In the first part of this chapter we consider modifying the complexity

of the neural network base classifier and the size of the training sets sampled for each new

classifier.
Overproduce and choose is a strategy which is becoming widely used in association with

combining methods [37,89,117]. It involves building a large number of base classifiers and
then discarding some of them according to one of a variety of algorithms. This is done in

the hope of producing a smaller ensemble of classifiers which does not significantly increase

the ensemble error but takes considerably less computation time. In the second part of
this chapter we consider whether we can improve on the AdaBoost ensemble's performance
by following an overproduce and choose strategy, which reduces the size of the ensemble
based on a combination of the error and diversity of the component classifiers.

5.1 Modifying AdaBoost

Drucker found that boosting neural networks outperforms boosting decision trees [22].

We consider the resampling implementation of AdaBoost (discussed in more detail in sec-
tion 4.5.1) using Neural Networks as our base classifiers for our first set of experiments.
The standard resampling implementation of AdaBoost, like that of Bagging, takes boot-

5.1. MODIFYING ADABOOST

Table 5.1: DATA USED IN THE EXPERIMENTS

103

Data Size # Classes # Features Training Size N Testing Size Random Range
Phoneme 5404 2 5 540 4864 270 - 1620
Pima

,
768 2 8 691 77 345 - 2073

Glass 214 6 9 192 22 96 - 576

strap samples of the same size as that of the training data given. However as voiced by

Friedman et al. [34] there is no obvious reason to take this value and there is no evidence
that this is an optimal choice in all or any instance. It has been found that increasing the

sample size (so it is greater than the training set size) for Bagging leads to a decrease in

performance [103]. This is due to the classifiers being built on increasingly similar sample

sets and therefore becoming less diverse. In this part of the chapter we consider the effect

of using various values for the sample size and the number of neurons in the hidden layer.

5.1.1 Experimental Set-up to investigate modifying the Training Set

, Size and the Neural Network size

For our experiments we used the Phoneme database taken from the ELENA databases,

the Pima Indian diabetes database and the Glass Identification database, the latter two
taken from the UCI Repository of Machine Learning Database. 2 Details of these sets of
data are shown in Table 5.1.

For each data set we ran various versions of AdaBoost and monitored the effects on
the accuracy. We call bootstrap size N with 15 hidden neurons our "standard set-up",
because this is the architecture we have been using for all our experiments with AdaBoost

and there seems to be no standard in the literature. Each experiment was carried out
using ten-fold cross validation so the results shown are averaged over ten runs. For the
larger Phoneme database we used reverse-cross validation, i. e., we used one tenth of the
data for training and kept the remaining nine tenths for testing. With the smaller Pima

and Glass databases we used standard cross-validation training on nine tenths and testing

on the remaining one tenth of the data. The fifth and sixth columns of Table 5.1 show the

sizes of the training and testing sets supplied to AdaBoost. The seventh column shows
the range of values that the sample size could take when random sample sizes were used.

Multilayer Perceptron with a single hidden layer and 100 training epochs was used
for all the experiments, using the routine TRAINLM from the neural network toolbox of
Matlab 6.5 release 13. For the Glass dataset we found that the computation time was

'Available via anonymous ftp at ftp. dice. ucl. ac. be, directory pub/neural-nets/ELENA/databases.
2Available at http: //www. ics. uci. edu/Nmlearn/MLRepository. html.

104 CHAPTER 5. IMPROVING ADABOOST

error
0.25 ý- T

me

0.15

0.2

LGIass

0.1

0.05

10 20 30 40 50

Figure 5.1: THE AVERAGE TRAINING ERROR FOR PHONEME, PIMA AND GLASS

WITH 15 NEURONS AND SAMPLE SIZE N

excessive. Consequently, we only have results for the Glass data with bootstrap samples

of size 2N and less, and number of hidden neurons of size 20 and less. We call this the

restricted case when we compare with Phoneme and Pima (Res. Ph. and Res. Pim.

respectively).

5.1.2 Training Errors

Figure 5.1 shows the average training error for Pima, Glass and Phoneme data. Glass and
Pima show the shape we would expect from AdaBoost, with the training error rapidly

going to zero. However, Phoneme shows a less typical shape. It gently decreases but does

not go below 0.15. This is the same sort of shape as we found in the previous chapter in

Figures 4.3,4.4 and 4.5 when we were using different parameters with the neural networks.

This shape may be due to the fact that Phoneme is a much larger data set and we use

a smaller proportion of the data for training, leading to less accurate classifiers. We also

see different results for Pima in these experiments than in the experiments in Chapter 4.

We have found out that this is because the Matlab version we were using to provide our

neural networks was upgraded between the two sets of experiments. Also we modified the

parameters from a maximum of 300 training epochs in the experiments in Chapter 4 to

a maximum of 100 training epochs in the experiments in this chapter. This sees to have

solved the training error problems we had in Chapter 4 as the training error now rapidly

reaches zero. Unfortunately, the testing errors are not as low so it seems that the new

neural networks are overfitting.

5.1. MODIFYING ADABOOST

5.1.3 Varying the Sample Size

105

In this subsection we consider the impact on AdaBoost's performance of modifying the

size of the bootstrap sample taken to train the classifier at each iteration. Firstly, we
consider using a fixed value for the size of the set AdaBoost samples from the training

set based on the original training set size N: 2 N, N, 2N, 3N, 4N, 5N. Afterwards we
consider randomly selecting the size of the set Adaßoost samples from the training set
from within {IN, N, 2N+1,.. ., 3N -1,3N}.

Figure 5.2 shows results when modifying the sample size used to build the classifier
at each iteration. In all the graphs the thicker, black line indicates the results using the

standard bootstrap sample of same size as the original training set, denoted N, with our
standard value of 15 neurons in the hidden layer. The x-axis in each plot shows the

number of classifiers. The y-axis in each plot is the testing error obtained through 10-fold

cross-validation. The lines indicate using various multiples of the training size N value,
2N to 5N. The graphs for Phoneme and Pima are split into two parts for readability.

Examining all of the graphs we find that using 2N or 2N have about the same if not
slightly higher error rates than using N for Phoneme and Pima, but show slightly lower

error rates for Glass after 20 classificrs have been added to the ensemble. Using 3N gives
a lower testing error rate than N, with Pima and a similar testing error rate to N with
Phoneme.

If we used between 15 and 20 classifiers with the Pima dataset we would have consider-
ably better performance with 3N or 4N rather than N or 5N bootstrap sample size. But

tr for less than 10 classifiers 5N is the best choice. Similarly for Glass data, N is the best

choice for less than 20 classifiers but
2N is the best choice for more than 20 classifiers.

This suggests that there is no clear reason why one sample size is better than another
since the pattern does not show an increase or decrease in performance as the sample size
increases. We believe therefore that the optimal sample size is data dependent to some
extent. In order to optimise AdaBoost it may be'a good idea to conduct some preliminary
experiments to find the best sample size to use as well as balancing computation time

against accuracy gained.

If we recall figure 4.5 for Pima we note that this shows a different line for 15 neurons
and N sample size than we see in figure 5.2. This is partly because we arc averaging over
10 runs so we will always get a slightly different result if we do not use exactly the same
initial conditions since neural networks are unstable. However, the main reason that there
is a difference is that there was an upgrade to Matlab between the two sets of experiments
and we are therefore using different neural network programs thus producing different

results.

Il l6

error

o. 26

0.2

0.18

0.16

0 10 20 30 40 50

L

error

CHAPTER 5. IMPROVING ADABOOST

error Phoneme

Pima error Pima

1/2N 0.3

2N 0.28

0.26

0.24

0.22
10 20 30 40 50 0

L

error Glass

o.

Figure 5.2: THE EFFECT ON THE TESTING ERROR OF VARYING THE SAMPLE

SIZE

0 10 20 30 40 50

L

Phoneme

10 20 30 40 50

L

10 20 30 40 50

L

5.1. MODIFYING ADABOOST 11)7

error Phoneme error Phoneme

0.26 0.26

1ONN
0.24 2NN 0.24

12NN
0.22 15NN 0.22 3ONN 5ONN

5NN
0.2 L 0.2 20NN

40NN

0.18 0.18

0.16 0.16

0 10 20 30 40 50 0 10 20 30 40 50

L L

error Pima error Pima
0.32 --- - --- I 0.32 - -I

15NN 12NN 40NN 5ONN
0.3 0.3 2ONN i

5NN 30NN !
0.28 1ONN 2NN 0.28

.., 1

0.26 0.26

0.24 0.24h

0. 0.2 Ö
10 20 30 40 50 0 10 20 30 40 50

L L

error Glass
-

error Glass

2NN
ý +

0.4 0.4
;.

2ONN
0.35 5NN 0.35 15NN 12NN

10NN

0.3 0.3

0 10 20 30 40 50 0 10 20 30 40 50

L L

Figure 5.3: THE EFFECT ON THE TESTING ERROR OF VARYING THE NUMBER
OF NEURONS IN THE HIDDEN LAYER

108 CHAPTER 5. IMPROVING ADABOOST

5.1.4 Modifying the Number of Neurons Used

in this subsection we consider the impact on AdaBoost's performance of modifying the

number of neurons in the hidden layer of the neural network classifiers being built by

AdaBoost. Firstly, we consider using a fixed value for the number of neurons: 2,5,10,12,

15,20,30,40,50 neurons. Then we consider the effect of randomly selecting the number

of neurons in the hidden layer from within 12,3,...
,
24,25} neurons.

Figure 5.3 shows results when modifying the number of neurons in the neural network's

hidden layer. The lines indicate different choices of the number of neurons ranging from

2 to 50. The standard sample size N was used in all these experiments. The results for

each data set are again shown in two subplots for readability.

For the Phoneme data 2 neurons is a poor choice and 10 and 12 neurons gives the best

results but there is not very much difference between the performance with 5,10,12,15,20

and 40 neurons. For the Pima data using 2 neurons is much better than any of the others

with 10 and 15 neurons the next best numbers of neurons to use. For the Glass dataset 2

neurons is the worst and 5,10,12,15,20 neurons are fairly similar in performance with 10

and 12 neurons being marginally better than the others.

Examining all the graphs as a whole shows that the best value is data dependent and
there is no clear overall, choice. It also shows that a variation in the number of neurons
does affect the performance of the ensemble. This is contrary to Drucker's suggestion
in [22) that any deficiencies in the performance of the networks due to the architecture

will be made up for by the boosting algorithm. Our results suggest that it would be

sensible to conduct a preliminary experiment to identify which number of neurons would

produce the lowest testing er{or.

5.1.5 Varying Both Sample Size and Number of Neurons

Here we randomly select both the size of the bootstrap sample from {IN,...,
2 3N} and

the number of neurons from {2,3,
... , 24,25}.

Figure 5.4 shows results when randomly modifying the sample size, the number of

neurons in the neural network's hidden layer or both. The graphs represent randomly

changing the sample size, randomly changing the number of neurons in the hidden layer

or randomly changing both, throughout the ensemble's growth.

For the Phoneme dataset using N and 15 neurons is the worst choice, with randomly

changing the sample size, number of neurons or both all showing a similar error rate,
lower than our standard set-up. The results for the Pima and Glass datasets are more

complicated. It seems that the best structure to use with these data sets depends on
the number of classifiers you want in the ensemble. For less than 10 classifiers using

randomly changing sample size and number of neurons is best with the Pima data set but

5.1. MODIFYING ADABOOST

error Phoneme

0.26 FN and random
._ neurons

0.24 1o neurons

0.22 random N
random N
and neurons

0.2

0.18
0.16

0

error

10 20 30 40 50 `Ö

L

error Glass

109

Pima

random
neurons random N

10 20 30 40 50

L

N and random N
random 15 neurons neurons

random N
and neurons

10 20 30 40 50

L

Figure 5.4: THE EFFECT ON THE TESTING ERROR OF RANDOMLY VARYING

THE SAMPLE SIZE, OR THE NUMBER OF NEURONS IN THE HIDDEN LAYER,

OR BOTH

for between 15 and 30 classifiers it is considerably worse than all the other methods. For

the Glass results after 25 classifiers have been added, randomly changing the sample size

and randomly changing both the sample size and the number of neurons are the better

options with randomly changing both having the slightly lower testing error. Using our

standard of sample size N and 15 neurons is the best choice up to about 20 classifiers after

which its performance deteriorates considerably and is the worst of them all between 25

and 35 classifiers.

Examining all three graphs shows that there is again no `right' choice and so consid-

erations such as time must also come into play. Since the more parameters we modify,
the more time is taken, random modification of N would seem to be a good compromise
between performance and computation time.

110 CHAPTER 5. IMPROVING ADABOOST

Table 5.2: BEM PROCEDURE COMPARING THE ADABOOST IMPLEMENTATIONS

Classifier
D{ IN

Test Error

N 2N 3N 4N 5N 2N N
Wins/Successes

2N 3N 4N 5N

1 0.229 0.237 0.266 0.235 0.269 0.271 1 0 00 0 0

50 0.188 0.183 0.183 0.179 0.184 0.184 0 0 01 0 0
Successes (Y;.?) = 1 16 0 33 0 0

We now proceed to statistically compare the various different values for the bootstrap

sample size and the number of hidden neurons. We do this by adapting the BEM3 proce-

dure for comparing competing pattern recognition algorithms used by Alsing et al in [2].

By comparing the testing errors (to find the minima) given by the classifiers for different

implementations of AdaBoost we can select the best version for each iteration. Table 5.2

shows the procedure for calculating the number of successes/wins for each bootstrap sam-

ple size with the Phoneme data. For each classifier the method with the lowest error wins

and gets 1, in the event of a tie between k methods each method gets -1. The total value

of successes for each method is then calculated. The conditional probability of procedure

procj being the best for data set 'W 1 is calculated as:

P(procjlWj) -
Ylj

(5.1)
vi

10 where Y1 is the number of successes for procedure i on dataset j, and vj is the size of
dataset jf . The total probability of procedure procj being the best for all the data sets is

then calculated as:
P(proci) = P(ProczlWj)P(Wj) (5.2)

where P(Tj) is the probability of dataset j (for comparing Phoneme and Pima, P(Ph)

P(Pim) = 0.5, and for all three P(Ph) = P(Pim) = P(Glass) = 3.

Tables 5.3 and 5.4 show the number of successes for each bootstrap sample size and

each number of hidden neurons. The bold numbers refer to the maxima for each dataset

and each modification (Bootstrap size or number of neurons).

First we consider the overall probabilities calculated by Equation (5.2) for the Phoneme

and Pima datasets together, then we consider all three datasets (recall that we exclude
bootstrap sample sizes > 2N and hidden neurons > 20 as we do not have this information

for the Glass dataset). These results are shown as the final two rows of Tables 5.3 and
5.4. The results show that the best performance for the Phoneme data is with sample size
3N and 12 hidden neurons. For the restricted version (sample size < 3N, < 30 neurons)

3Bechofer, Elmaghraby, and Morse

5.1. MODIFYING ADABOOST ill

N is the best sample size and again 12 hidden neurons. Similarly with Pima, 4N works
best but N is best if we restrict it to less than 3N. With the number of hidden neurons

we can see that the results for Pima are biased very much in favour of 2 neurons. With

the Glass dataset, 2N and 10 hidden neurons are the best. If we consider the results with
both Phoneme and Pima we find that 3N and 2 neurons are the winners. For all three

datasets with the restricted range of values we find that N is the preferred sample size

and 2 hidden neurons is best. The fact that the number of hidden neurons that wins is
2 is hardly surprising considering the results for Pima. The fact that 2 neurons did so

Table 5.3: SUCCESSES, Y{/j, FOR DIFFERENT BOOTSTRAP SAMPLE SIZES

Data Bootstrap Sample Size
2N N 2N 3N 4N 5N

Phon. 1 16 0 33 0 0
Ph. Res. 1 36 13 X X X

Pima 4 4 1 11 19 11

Pim. Res. 16 20 14 X X X

Glass 28 16 6 X X X

Total Probabilities of being the best:

Ph&Pim 0.05 0.20 0.01 0.44 0.19 0.11
All 0.30 0.48 0.22- 1 X X X

Table 5.4: SUCCESSES, Y1/j, FOR DIFFERENT NUMBERS OF HIDDEN NEURONS

Data Hidden Neurons
25 10 12 15 20 30 40 50

Phon. 0 1 11 22 0 3 1 8 4
Ph. Res. 0 1 12 23 2 12 X X X
Pima 48 0 0 0 0 0 1 1 0

Pim. Res. 49 0 0 0 0 1 X X X
Glass 01 51 271 171 1 0 X X X

Total Probabilities of being the best:

Ph&Pim 0.48 0.01 0.11 o. -22 To 0.03-1 -0'. 02 0.09 0.04
All 0.326 0.04 1 0.26 0.26 0.02 0.086 X X X

112 CHAPTER 5. IMPROVING ADABOOST

well suggests that AdaBoost may be adversely affected by outliers within the Pima data.

This has been suggested previously as a reason for the poorer performance of AdaBoost

on this data [9]. Our results suggest that it would be sensible to conduct a preliminary

experiment to identify which number of neurons would produce the lowest testing error.

5.2 Kappa-error diagrams and Pareto-optimal sets

Recall the studies using overproduce and choose strategies with AdaBoost building the ini-

tial ensemble of base classifiers, which we discussed in the previous chapter (Chapter 4.6.6).

This section looks in more depth at one `choose' method in particular, the method intro-

duced by Margineantu and Dietterich: Kappa-Error Convex Hull Pruning [74]. Here we
hope to test the hypothesis that using Kappa-Error Convex Hull Pruning produces a con-

siderably smaller ensemble of classifiers without significantly increasing the generalisation
error.

5.2.1 Kappa for class label outputs

If we have two classifiers Da and Db on our data set of N examples we can develop a
contingency matrix, C. In this table cell Cij contains the number of examples x for which
D,, (x) =i and Db(x) = j. If the two classifiers are identical then only the diagonal will
contain non-zero values, and if they are very different the values off the diagonal will be
large. If we define e, to be the probability that the two classifiers agree and e2 the

probability that they agree by chance,
Ei

1Cii 81 =N (5.3)

and, e2 =
Cii

"
Cis

(5.4)
N

j_1
N

then we can use the' E-statistic 4,

ý1_ 2 (5.5)
2

to define a measure of agreement. This, as the 0/1 version rc, is a measure of diversity of
(ý)-type, the higher the value the less diverse (see Chapter 3, Sections 3.1 and 3.1.2 for

more information). MME =0 when the two classifiers are independent and' E=1 when the
two classifiers are identical. Negative values can occur when there is negative correlation
between the two but this rarely occurs in practice [74].

Figure 5.5 shows an example of how to calculate Mce. Note that 01 is calculated as the

sum of the diagonal divided by the number of examples. 02 is calculated by multiplying

'Recall the measure of interrater agreement, denoted h, introduced in section 3.1.2. It is a special case
of i when applied to 0/1 outputs.

5.2. KAPPA-ERROR DIAGRAMS AND PARETO-OPTIMAL SETS 113

the sum of the first row, divided by the total number of examples by the sum of the first

column, divided by the total number of examples, repeating this for the second row and

column and so on and finally totalling them all up to give the summation. In the example

we have c=3 classes, and N= 10 examples and four equally accurate but different

classifiers. Note, to illustrate the range of KE we have deliberately designed classifiers

D1 and D2 to have identical outputs on this data (D1 = D2) and D3 to have different

outputs. D4 is such that it is independent of D3, they give the same classification on half

of the sample objects and different classifications on the other half. Here we see that rcE
for Dl and D2 is 1 since they are identical, is -0.18 for D1 and D3 suggesting they are

quite diverse, 0.26 for D3 and D4 so they are slightly similar and is 0.39 for D1 and D4 so

they are even more similar. -

5.2.2 Kappa-error Diagrams

Using icE we are able to follow the ideas of Margineantu and Dietterich to draw a Kappa-

Error diagram which allows us to visualise an ensemble of classifiers [74]. A Kappa-error

diagram is a scatterplot where each point represents a pair of classifiers. The x coordinate

is calculated as the icE value for the pair of classifiers and the y coordinate is the average

of their errors.

Margineantu and Dietterich found that the r . E-error diagram for AdaBoost and that

for Bagging showed the different nature of the two ensemble methods. The classifiers

produced by Bagging have a much tighter cluster than those produced by AdaBoost.

This is not particularly surprising as Bagging trains classifiers on a sample drawn from

the same uniform distribution, whereas AdaBoost modifies the distribution samples are

drawn from. Thus AdaBoost produces a more diverse set of classifiers. The classifiers with

lower accuracy tend to have higher diversity (and of course lower weight in the AdaBoost

weighted voting combining method) which compensates for the weaker accuracy. This

gives more evidence to how and why AdaBoost outperforms Bagging.

If AdaBoost produces very many classifiers then by careful selection of a subset of

them we may be able to improve the ensemble performance and reduce the computation

time; an overproduce and choose strategy. Margineantu and Dietterich used their ne-error
diagrams to give a pruning method in order to reduce the size of an ensemble classifiers

produced by AdaBoost. They produce a subset of the AdaBoost ensemble by calculating
the convex hull of the of the points in the rcE-error diagram and using the corresponding

classifiers in their subset. Since the preferred pairs of classifiers are found in the bottom left

of the plot the convex hull is a reasonable choice. This does however, have one drawback

in that there is no control over how many classifiers end up in the final set. A convex set

of points is such that if two points are in the set then so are all points on the line segment

114

joining them.

CHAPTER 5. IMPROVING ADABOOST

Definition 2 The Convex Hull is the intersection of all convex sets containing a subset,
A of a real vector space.

True Class Z D1 D2 D3 D4

Wi zi Wi W1 W3 W3

W2 Z2 W2 W2 W2 W2

W3 Z3 W2 W2 W3 W3

W1 Z4 W1 W1 W2 WI

W1 Z5 W3 W3 W1 Wi

W2 Z6 W2 W2 Wi W3

W2 Z7 W1 W1 W2 Wi

W2 Z8 W2 W2 W2 W2

W1 Z9 Wi Wi W3 Wi

W3 x10 W2 W2 W3 W2

Accuracy 0.6 0.6 0.6 0.6

D2
ß(D1, D2) = wl W2 W3

Wl 400

D1 W2 050

W3 001

D3

C(D1, D3)= Wl W2 W3

wl 022

D1 w2 122

W3 100

D4

C(D3, D4) = Wl W2 W3

Wi 101

D3 W2 220

W3 112
D4

C(D1ºD4) = wl w2 w3

wl 301

D1 w2 032

W3 100

Note: D1 = D2 so we only need to

calculate Dl's relationship with D3 and D4.

(D1, D2) : 01 =
C11"ß+22+C33

_4+5+1
10

' 10 10 0

02 = _
445511 42 1-0.42

, NE _7 1 x + x + x 100 - 0.42 10 10 10 10 10 10

): O1 =
(D1, D3

1 2=0.2,02 (C11 + C12 + C13
x

C11 + C21 + C31

+ =1 10 \ 10 10 1
C31 + C32 + C33 C12 + C22 + C32 C13 + C23 + C33 1 C21 + C22 + C23

X X +C
(

10 10 10 10
+2 2+2 1+0 +0 1 r1+2 +0 +1 +2 0+1 0+2 2 2 +0 x

)+(
0

ý
0 0 0 1x +l 0 10 i J

0.2-0.32 42541 32
_ _

010x10
+(10x10)+(10x10 100ýE 1-0.32 --0.18

(D3i D..) : 01 524434 3_ 32
_

0-5-0.32
= = 0.59 02 = 26 =0 ' rE x + x x + 10 . 10 10 10 100 10 10 10 1-0.32

(D1, D4) : 01 G44531 3_34
_0.6-0.34 = O. G, 02 = 39 = =0 + x x ' KE x + . 10 10 10 100 10 10 10 1- 0.34 10

Figure 5.5: EXAMPLE OF CALCULATING KAPPAE

5.2. KAPPA-ERROR DIAGRAMS AND PARETO-OPTIMAL SETS

el +e2
2

*.. «............;. s

Y

ssý

r r»

Z. lb .4
1

..............................

r ...,... ý

0.18'
0 0.1 0.2 0.3 0.4 0.5

KE

115)

Figure 5.6: AN EXAMPLE OF A KAPPA-ERROR PLOT, SHOWING THE CONVEX

HULL (THICK, RED LINE) AND THE PARETO OPTIMAL SET (THIN, BLUE LINE)

Figure 5.6 shows an example of a Kappa-error diagram. It consists of a single run of
AdaBoost on the Liver data5, building 50 decision tree classifiers. The convex hull and
the Pareto-optimal set (see next subsection) are also shown.

5.2.3 Pareto-Optimal Sets

In practice the convex hull often discards a large proportion of the classifiers originally
built by the AdaBoost algorithm. Also it can be overly sensitive to noise since even small

variations in nE and the average error can change the whole shape of the convex hull and
therefore alter the chosen set of classifiers. By calculating the Pareto-optimal set we can

achieve a better balance between ensemble accuracy and size of the final set.

Definition 3 The Pareto-optimal set S` CS contains all non-dominated alternatives.

Let A= {al, ... , am} be a set of alternatives (a pair of classifiers for our case),
These alternatives are characterised by a set of criteria C= {Cl,

... ,
CM} (In our case

the criteria are KE and error).

An alternative a; is called non-dominated if there is no other alternative a3 E S, j 96 i,

so that a3 is better than a= on all criteria. Therefore, for our case, the Pareto optimal set

5from UCI Machine Learning repository

116 CHAPTER 5. IMPROVING ADABOOST

will be a superset of the convex hull. Figure 5.7 shows the difference between the convex

hull and the Pareto optimal set.

cl+c2
2

if points A and B are in the convex hull then

point C is not since it is behind segment AB.

However, we can see that C has lower error

than A and is more diverse than B. Thus C is

not worse than A on all of the criteria, nor is

it worse than B on all of the criteria.

Therefore, C is "non-dominated" and so would

be included in the Pareto-optimal set.

Figure 5.7: PARETO OPTIMALITY [56]

5.3 AdaBoost with Pareto Optimality

Figure 5.8 shows how we have modified the AdaBoost algorithm to take account of Pareto

optimality. The input is the basic training set, Z, the maximum number of classifiers

built, K,, the Pareto optimal set (initially empty), POS,,,,.,., and the maximum number

of iteration permitted with no change in the Pareto optimal set, T*. The first classifier is

built and then at each subsequent iteration the classifiers are built according to the original
AdaBoost algorithm. The classifier's error is then calculated. If the error is greater than

we reinitialise according to the original AdaBoost algorithm. If the error is less than

the pairwise values of KE between the new classifier and all the existing classifiers

are calculated as the points on a kappa-error diagram. The Pareto optimal set is then

calculated. If there is no difference between this new Pareto set and the current Pareto

set then we discard this classifier and build another one. This cycle, with no change in the
Pareto optimal set, can be repeated up to T* times before we exit the loop and output

the classifiers in the current Pareto optimal set as our choice of ensemble. If however, the

new Pareto set is different from the current Pareto set then we update the current set and

update the weights according to the original AdaBoost algorithm. This can continue until

a maximum number of K�,. classifiers has been built.

We can see that if the classifiers do not alter the Pareto set very much then we can
produce quite a small ensemble. This can reduce the computation time, hopefully without
dramatically altering the amount of information contained within the ensemble.

----------------------------K
E

5.3. ADABOOST WITH PARETO OPTIMALITY

Input T*, POcurr = 0, Kmax
,
Z, k°2

Build classifier Di following

the AdaBoost Algorithm

LetT=1

Build classifier DIT,

117

Reinitialise according to
ý- the AdaBoost algorithm

Calculate cc's.
Find points on roE-error diagram.

Find the new POnew set.

Key:

k the current iteration; Kmax the number of iterations; Z the training set;
Sk the training set; Dk the classifier trained; Ek the training error;
WV;. (i) the weight for object i; Wk = {TVk(1),..., IVk(N)} the set of weights used;
ßk the combination weights; T' max no. iterations with no change in the Pareto optimal set;
PO,,,,, the current Pareto optimal set; POnew the new Pareto optimal set;

Figure 5.8: THE ADABOOST ALGORITHM WITH PARETO-OPTIMAL SETS

118 CHAPTER 5. IMPROVING ADABOOST

5.3.1 Experimental set-up to investigate AdaBoost with Pareto Opti-

mality

We are interested in how using the Pareto set compares with using the full ensemble pro-
duced by AdaBoost on both accuracy and the number of iterations. For our experiments

we use ten different data sets from UCI machine learning repository. These are Ecoli, Ger-

man, Glass, Ionosphere, Liver, Pima, Sonar, Vehicle, Votes and Wisconsin Breast Cancer.

Table 5.5 shows a summary of the datasets. The data sets are described in more detail in

Appendix B.

Table 5.5: SUMMARY OF THE DATA SETS

Name No. Classes Size of data set No. Features appendix

Ecoli 8 336 7 B. 4

German 2 1000 23 B. 11

Glass 7 214 9 B. 2

Ionosphere 2 351 34 B. 6

Livcr 2 345 6 B. 5

Pima 2 768 8 B. 9

Sonar 2 208 60 B. 1
Vehicle 4 846 18 B. 10

Votes 2 435 16 B. 7

wbc 2 569 30 B. 8

In these experiments we used decision trees. We chose Km,, (the maximum number
of classifiers built) to be 50. One set of experiments was carried out using T* (the number
of iterations with unchanged Pareto sets before exiting the algorithm) to be 5, another set
was carried out using T* = 10 and a control set was carried out using the full 50 classifiers
built using the original AdaBoost algorithm. Each run of experiments was repeated 100

times and averaged to give a general view of the performances for comparison. The Pareto

version with T* =5 is referred to as P5 and with T* = 10 as P10.

5.3.2 AdaBoost with Pareto Optimality results

Table 5.6 shows the error averaged over 100 runs for basic AdaBoost, AdaBoost with
Pareto for 5 repeats and AdaBoost with Pareto for 10 repeats. As we can see, AdaBoost

is more accurate on five of the ten datasets with P5 the best on four and P10 the best

on one dataset. There are no significant differences between the errors. However if we
consider the size of the ensembles we could dramatically reduce the size of ensemble needed

5.3. ADABOOST WITH PARETO OPTIMALITY

to achieve these levels of error and so reduce the computation time involved.

119

Table 5.6: THE AVERAGE ERROR FOR ADAI300ST, PARETO WITH 5 REPEATS

AND PARETO WITH 10 REPEATS. THE NUMBERS IN BOLD SHOW TILE LOWEST ERROR.

Data AdaBoost P5 mean error P10 mean error
Ecoli 0.1418 0.1515 0.1515

German 0.2798 0.2836 0.2881
Glass 0.2350 0.2168 0.2314

Ionosphere 0.0708 0.0642 0.0750
Liver 0.2889 0.2997 0.3057

Pima 0.2652 0.2756 0.2710

Sonar 0.1748 0.1862 0.1776
Vehicle 0.2539 0.2578 0.2498
Votes 0.0495 0.0470 0.0523

wbc 0.0381 0.0354 0.0374

The top part of figure 5.9 illustrates the percentage error change of the Pareto set

runs over the AdaBoost runs. As we can see the error has increased by up to 7% and

reduced by nearly 10% depending on which dataset has been used. Note that for Ecoli, the.,.

percentage change in error for both P5 and P10 is identical and so arc both represented
by the same dot in the figure.

The lower part of figure 5.9 shows the average range and mean of the number of runs
taken by the two Pareto runs. Naturally Pareto with T* =5 generally uses less classifiers
in the ensemble than Pareto with T* = 10 since it exits the algorithm after only 5 iterations

with no change in the Pareto set rather than the 10 iterations for P10.

If we look at the number of runs we see that for German, Liver and Pima with P5

and P10 and for Votes with P5 the average number of classifiers in the ensemble is less

than 40. There is a small increase in error corresponding to these of 2 to 4% for P5 and 3

to 6% for P5 with the exception of Votes which as well as a lower average in the number

of runs reduces the error by about 5%. For the other datasets where P5 was the best

algorithm, Glass and Ionosphere, there tends to be a higher but still quite wide range in

the average number of runs. For wbc there is very little variation in the number of runs,
using between 46 and 50 classifiers in the ensemble, but there was still a quite dramatic

reduction in the error for P5 and a slight reduction for P10.
The results suggest that again the choice of algorithm is data-dependent but that using

the AdaBoost with P5 is preferable to AdaBoost with P10. The choice of whether to use
basic AdaBoost or AdaBoost with P5 will depend on several factors. The data set used

120

I- 0 1
()
C
(D
0)
C
co
U
4)
0)
Co
C

a) U

a) a

50

45

40
+-"

35

30

25

O
L 20
a)

15

10

5

CHAPTER 5. IMPROVING ADABOOST

8

P5 P10

6

German

4

P10

2-

P5

0

Ecoli P10

_2

-6

_8
P5 j

Glass

P10 P10 41 P5
P5

P10

40
P5

Vehicle
P10

P10 P5 wbc

Liver Pima Sonar

P10

Ionosphere
P5

Votes

P5

Plo

P5

wbc

Ecoli

Ionosphere

Sonar
Glass

Votes

-German
Pima - Liver V ehicle

U

Figure 5.9: COMPARING THE PERCENTAGE CHANGE IN ERROR FROM THE

STANDARD ADABOOST AND THE AVERAGE NUMBER OF RUNS WHEN USING

PARETO WITH 5 REPEATS (RED DOTS/LINES ON LEFT) AND PARETO WITH 10 RE-

PEATS (BLUE DOTS/LINES ON RIGHT)

5.4. IMPROVING ADABOOST CONCLUSIONS 121

will affect the choice. If there is time, a preliminary comparison between the two on the

specific data may be beneficial. The trade-off between accuracy and expvdiene is another

consideration, if the computation time is the most important factor then P5 would be the

preferable choice.

5.4 Improving AdaBoost Conclusions

In this chapter we considered several possible ways of improving AdaBoost. Firstly we

conducted an investigation into how modifying the parameters of AdaBoost using resain-

pling and neural networks affected the classifier ensemble's performance. We carried out

experiments using three datasets, Phoneme (5 attributes, 2 classes and 5404 instances),

Pima Indian diabetes (8 attributes, 2 classes and 768 instances) and Glass (9 attributes,
7 classes and 214 instances). Our results suggest that we may be able to improve the

performance of AdaBoost by using 10 or 12 neurons in the hidden layer of our neural

network rather than using 15 as we currently do. This would also have the added advan-

tage of taking less computation time. The size of bootstrap sample does not make much
difference to the error rate. Keeping the bootstrap sample the same size as the training

data should not make much difference with most data sets. The results also show that

the best value to use for bootstrap size or number of hidden neurons can be very data

specific. Some preliminary experiments to find the best value to use may be beneficial

with some datasets such as we found with the Pima data. Also it may be a good idea

to use a random modification of the sample size in some instances to avoid performance
degradation as the ensemble grows as we found with the Glass data (see Figure 5.4).

The second part of our investigation involved using Pareto optimality to add classifiers
built by AdaBoost to the ensemble only if they were in the Pareto optimal set. We

carried out experiments with ten datasets from the UCI machine learning repository. We

compared standard AdaBoost to AdaBoost with Pareto 5, and to AdaBoost with Pareto

10. Pareto 5 and 10 allow 5 or 10 cycles, respectively, without change in the Pareto set,
before exiting the algorithm. Our results showed that there is no significant difference

between the error rates for AdaBoost, Pareto 5 and Pareto 10. However the number of

classifiers in the ensemble can be reduced. In particular the Pareto 5 approach can reduce
the number of classifiers in the ensemble without necessarily increasing the error. Pareto

5 may therefore be better than standard AdaBoost but it depends upon the data set.
Overall, we have found that there are no hard and fast rules when it comes to algol-it 11 ills

since they tend to behave differently with different datasets. Thus there is really no Option
but to carry out preliminary experiments to guide further choices.

122 CHAPTER 5. IMPROVING ADABOOST

Chapter 6

Conclusions

6.1 Main Investigations and Findings of this Thesis

In our first investigation we studied the relationships between nine combination meth-
ods. Two data sets were used. We considered the overall accuracies of the combination

methods, their improvement over the single best classifier, and the correlation between the

ensemble outputs using the different combination methods. We found some interesting re-
lationships and correlations amongst the combination methods. In particular, maximum
is equivalent to minimum for the two-class case, average has a close relationship with
product, behaviour-knowledge space is correlated with Wernecke's method and majority
vote is correlated with naive Bayes.

Next we introduced ten diversity measures. Using the same two data sets, we studied
the relationships between the diversity measures. Then we looked at their relationship to
the combination methods previously studied. The ranges of the ten diversity measures
for three classifiers were derived. They were compared with the theoretical ranges and
their implications for the accuracy of the ensemble were studied. We found that for (0/1)

classifier outputs with an ensemble of three classifiers the disagreement measure, Kohavi-
Wolpert variance and entropy measure are identical up to a coefficient. We also found that
the correlation coefficient, measure of interrater agreement, generalised diversity and co-
incident failure diversity are fairly consistently correlated whilst the double-fault measure
was not strongly correlated with any of the other measures.

Considering the relationship between the diversity measures and the combination
methods we found that there was very little consistent correlation between the two groups.
The largest observed correlations were as shown below:

123

124 CHAPTER 6. CONCLUSIONS

Diversity Combination
disagreement

kw variance

maximum

-4 minimum

entropy

majority vote
difficulty -+ average

decision templates

double-fault -ý majority vote

It may be this unclear relationship between diversity measures and combination meth-
ods which makes the explicit use of diversity in multiple classifier systems such a thorny

subject. It is often easier to calculate the diversity of an ensemble of classifiers rather than

using a validation set to calculate the accuracy. The current consensus is that directly

calculating the accuracy for the chosen combination methods is much more accurate than
first calculating diversity and trying to predict the accuracy. Thus using the diversity to
identify an ensemble that is likely to be accurate is not necessarily a viable approach. The

ambiguous relationship between diversity and accuracy discourages optimising the diver-

sity. It is better to try to enforce diversity in the ensemble or to use diversity to select
classifiers for an ensemble when following an `overproduce and choose strategy'.

We then proceeded to investigate the diversity of classifier ensembles built using the
AdaBoost algorithm. We carried out experiments with two datasets using ten-fold cross
validation. We built 100 classifiers each time using linear classifiers, quadratic classifiers
or neural networks. We studied how diversity varied as the classifier ensemble grew and
how the different types of classifier compared. We confirmed that linear classifiers and
quadratic classifiers are not particularly suited for use with AdaBoost. We also found that

neural networks are better suited for use with AdaBoost, however their ability to reduce
testing error may depend on the data. For neural networks, it seems that AdaBoost is
increasing the diversity with each new classifier and that this is why the performance is
improving. We have found that it may be possible to determine a good time to stop the
AdaBoost algorithm by considering the minimum value of Q on the training data.

Next we considered ways of improving AdaBoost's performance. We conducted an
investigation into how modifying the size of the training sets and the complexity of the
individual classifiers alters the ensemble's performance. We carried out experiments using
three datasets. We found that the best values to use can be very data specific. Some

preliminary experiments to find these best values may be beneficial.

Lastly we considered using Pareto optimality to determine which classifiers built by
AdaBoost to add to the ensemble. We carried out experiments with ten datasets. We

6.2. LIMITATIONS OF THE THESIS 125

compared standard AdaBoost to AdaBoost with two versions of the Pareto optimality

method called Pareto 5 and Pareto 10, to see whether we could reduce the ensemble size

without harming the ensemble accuracy. We found that: AdaBoost was most accurate

on five datasets, Pareto 5 was most accurate on four datasets and Pareto 10 was most

accurate on just one dataset. We also found that the Pareto 5 approach can reduce the

number of classifiers in the ensemble without necessarily increasing the error. In some

cases it can reduce the error as well. Pareto 5 may therefore be better than standard

AdaBoost but it depends upon the data set.
Overall, we have found that there are no hard and fast rules when it comes to which

combination method, diversity measure or ensemble construction algorithm to use since

the best choice tends to be data-dependent. Thus there is really no other option but to

carry out preliminary experiments to guide further choices.

6.2 Limitations of the Thesis

The main limitations of this study were the small number of datasets and the limited num-
ber of experimental runs. In chapter 2 and 3, in the investigation into the relationships
between the combination methods and the diversity measures, we used two datasets with

random halves for one dataset and 10-fold cross-validation for the other dataset. In chap-

ter 4, in the investigation into how AdaBoost affects classifier diversity, we again used two

datasets with 10-fold cross-validation. In chapter 5, in the investigation into modifying

the training set size and the neural network size with AdaBoost, we used three datasets

and 10-fold cross validation. Also in chapter 5, in the investigation into using AdaBoost

with Pareto optimality, we used ten datasets and used 100 runs to obtain our averages.

If we had had the time and computation capacity it would have been better to use a

set-up similar to this last experiment with many datasets and lots of runs to get results

we could be more confident in.

6.3 Summary of My Contributions

Chapter 2- Combination Methods

" Comparing the accuracies of some of the more commonly used classifier combi-

nation methods: majority vote, naive Bayes, behaviour-knowledge space, Wer-

necke's method, maximum, minimum, average, product and decision templates,

to each other and to the single best classifier using an ensemble of three classi-
fiers. This gave the result that the best combination method to use will depend

on the dataset being used.

126 CHAPTER 6. CONCLUSIONS

" Examining the Pearson's product moment correlation between the outputs from

the classifier combination methods and running a clustering program on the

combination methods. This gave the relationships: average is closely related to

product, max and min are equivalent for the two class case, behavior-knowledge

space is correlated to Wernecke's method. majority vote and naive Bayes are
closely related and decision templates are not closely related to any of the other
combination methods.

Chapter 3- Diversity Methods

" The derivation of upper and lower limits for the ten diversity measures: Q-

statistic, the correlation coefficient, the disagreement measure, the double-fault

measure, the Kohavi-Wolpert variance, the measure of interrater agreement,
the entropy measure, the measure of difficulty the generalised diversity and the
coincident failure diversity, for the three-classifier case.

" Examining the Pearson's product moment correlation between the diversity

values obtained from these ten diversity measures and running a clustering
program on the diversity measures. This gave the result that double-fault is

not strongly correlated with any of the other diversity measures.

" The result that for three classifiers the entropy measure and the Kohavi-Wolpert

variance (and for 0/1 outputs the disagreement method) differ only by a coef-
ficient.

" Examining the Pearson's product moment correlation between the outputs from
the classifier combination methods and the values from the diversity measures.
This gave the result that there is no strong correlation between the combination
methods and the diversity measures.

Chapter 4- Ensemble Construction Methods

" Examining how the AdaBoost ensemble construction method affects the diver-

sity of the ensemble of classifiers it builds and whether this diversity is related
to the generalisation error of the ensemble on combination. This showed us that
as AdaBoost added neural network classifiers to the ensemble the value of Q
decreased indicating that the diversity of the ensemble was indeed increasing.

Chapter 5- Modifying AdaBoost

" Examining how modifying the sample size of training data, the number of
neurons used, or both, affects the generalisation error of AdaBoost. The results
show that this is data specific and preliminary experiments to identify the best

architecture to use is the preferable approach.

6.4. POSSIBLE FUTURE CONSIDERATIONS 127

" Investigating whether or not using Pareto optimal sets can produce considerably

smaller ensembles of classifiers without significantly increasing the generalisa-
tion error when used with AdaBoost. The results showed that It is indeed

possible to reduce the size of the ensemble without significantly altering the

testing error.

Throughout - All examples were created by myself.

6.4 Possible Future Considerations

It is possible that future work may consider using the minimum Q to determine a termi-

nation point for AdaBoost in order to increase generalisation performance.
As we found that a reasonably high accuracy can be obtained after very few iterations

of AdaBoost, it may also be of use to try to enhance the performance of a small ensemble.
This could be done by applying different combination methods on a reasonably accurate

and diverse ensemble.
It may also be interesting to investigate modifying the re-initialisation criterion for

AdaBoost from error> 2 to error> 1 for c classes. This would be equivalent to only
discarding a classifier which is worse than random guessing.

6.5 My References

The following references are papers relevant to this thesis which I have worked on during

the course of my studies. I have also carried out a brief citation search to identify roughly
how many times they have been cited in other works.

9 L. I. Kuncheva, C. J. Whitaker, C. A. Shipp and R. P. W. Duin.

Is independence good for combining classifiers?,
Proc. 15th International Conference on Pattern Recognition, volume 2, pages 169-

171, Barcelona, Spain, 2000. [63]

14 citations found.

" L. I. Kuncheva, C. J. Whitaker, C. A. Shipp, R. P. W. Duin.
Limits on the majority vote accuracy in classifier fusion,
Pattern Analysis and Applications, Vol. 6, pages 22-31 2003. [64]

9 citations found.

" C. A. Shipp and L. I. Kuncheva,

An Investigation into how ADA130OST Affects Classifier Diversity,

In International Conference on Information Processing and Management of Uncer-

tainty in Knowledge-Based Systems, pages 203-208, Annecy, France, IPMU2002. [98)

128 CHAPTER 6. CONCLUSIONS

" C. A. Shipp and L. I. Kuncheva,
relationships between combination methods and measures of diversity in combining

classifiers,
Information Fusion, Vol. 3, pages 135-148,2002. [99)

8 citations found.

I have also been involved in two studies into complexity of data during the course of
my research. These, whilst interesting, were not relevant to this thesis:

" C. A. Shipp and L. I. Kuncheva,
Four Measures of Data Complexity for Bootstrapping, Splitting and Feature Sam-

pling,
CIMA2001, Bangor, Wales, UK, 2001, pp429-435. [97]

" L. I. Kuncheva, F. Rolff, G. L. Marcialis and C. A. Shipp,
Complexity of Data Subsets Generated by the Random Subspace Method: An Exper-
imental Investigation,
In F. Rolff and J. Kittler, editors, 2nd International Conference on Multiple Classifier
Systems, Lecture Notes in Computer Science, pages 349-358 Cambridge, UK, 2001,
MCS2001, Springer-Verlag. [58]

Appendix A

Proof of Equivalence Relationships

A. 1 Proof that Max is equivalent to Min for two classes
Proposition 2 Let V= {D1i...

, DL}, St = {wi, w2}. Let al,... , aL be the outputs of
the classifiers for class wi, and 1- al, ... ,1- aL be the outputs for class w2, a; E (0,1].
Then the class label assigned to x by the MAX and MIN combination rules will be the
same.

Proof

Without loss of generality assume that al = mini a;, and aL = max; a;. Then the minimum

combination rule will pick al and 1- aL as the support for wl and w2 respectively, and the

maximum rule will pick aL and 1- ai. Consider the three possible relationships between

al and 1- aL.

If al >1- aL then aL >1- al, and we would select class wl with both methods,
If al < 1- aL then aL <1- al, and we would select class w2 with both methods.
If al =1- aL then aL = 1- al, and we will pick a class at random with both methods.

0

A. 2 Proof that KW, Ent and D are equivalent for 3 classi-
fiers

Proposition 3 Let L=3 so that V= {D1, D2, D3}. Then Ent and kw, calculated from
a data set Z= {z1,

... z�}, zj E R', are equivalent up to a coefficient, i. e., kw =y Ent:

Proof

NN
For 3 classifiers: kw = ýN L 1(zß) (3 -1(zß)) , Ent =NE min {1(zß), 3- 1(z j))

j=1 1=1

129

130 APPENDIX A. PROOF OF EQUIVALENCE RELATIONSHIPS

where 1(z f) is the number of classifiers that correctly classify object zj, therefore we need
to show that:

yNLI(zf)(3-I(Zf)) =s
NEmin{I(zj),

3-I(zf)}
J =l j=1

Consider the possible values of l(z f) with 3 classes, and the respective values for Ent and
kw in Table A. 1.

Table A. 1: POSSIBLE VALUES FOR Ent AND kw FROM THE DIFFERENT VALUES
OF l(zj)

Ent kw
1(z ") (3 - l(z)) min {1(z "), 3 -1(z ")} 1(z ")(3 -1(z "))

0 3 0 0
1 2 1 2
2 1 1 2
3 0 0 0

We can see that the sum of entries from column 4 of Table A. 1 will always be twice
the sum of the corresponding entries from column 3 of Table A. 1. Denote B=E1 bj

where bj = min {1(z1), 3 -1(z1)}.

Then Ent =NB and

kw = N2ß = Ent

U
Note that this only holds for the case when there are 3 classifiers. If there are four or

more classifiers there is no linear relationship between the values for kw and Ent as in the
table.

Appendix B

Data Sets Used in this Thesis

Many of the datasets used in this thesis come from the UCI repository of machine learning'

and the others come from the ELENA database2. This appendix gives a more detailed

look at each of the data sets used.
A summary of the basic statistics and an outline of the problem involved with each

dataset is shown in the table below.

Dataset Features Classes Examples Problem

Sonar 60 2 208 tell mines from rocks from sonar

signals
Glass 9 7 214 identify source of glass fragment

Haberman 3 2 306 survival likelihood after breast cancer

operation
Ecoli 7 8 336 localisation site of Ecoli bacteria

Liver 6 2 345 identify likely sufferers of liver

disorders

Ionosphere 34 2 351 tell good from bad radar images

votes 16 2 435 tell democrats from republicans
from voting records

Wisconsin

breast cancer

30 2 569 tell benign from malignant breast

masses
Pima Indian
diabetes

8 2 768 tell female Pima Indians with and

without diabetes
Vehicle 18 4 846 classify vehicle from its silhouette
German 23 2 1000 tell good frone bad credit ratings in

Germany
Phoneme 5 2 5404 distinguish nasal from oral vowels

'available from http: //www. ics. uci. edu/ihhlearn/. NILRepository. html
2available via anonymous ftp at ftp. dice. ucl. ac. be, directory pub/neural"nets/ELENA /databases

131

132 APPENDIX B. DATA SETS USED IN THIS THESIS

B. 1 The Sonar Identification dataset

Source: Terry Sejnowski, now at the Salk Institute and the University of California at
San Diego. The data set was developed in collaboration with R. Paul Gorman of Allied-

Signal Aerospace Technology Center.

Maintained by: Scott E. Fahlman
The Problem: The task is to train a network to discriminate between sonar signals
bounced off a metal cylinder and those bounced off a roughly cylindrical rock. The object
is to develop a system capable of distinguishing between a mine and a rock. The mine

patterns were obtained by bouncing sonar signals off a metal cylinder at various angles

and under various conditions. The rock patterns were obtained from rocks under similar

conditions. The transmitted sonar signal is a frequency-modulated chirp, rising in fre-

quency. The data set contains signals obtained from a variety of different aspect angles,

spanning 90 degrees for the cylinder and 180 degrees for the rock.
Statistics: 60 Features, 2 Classes, 208 Examples.

The features: Each pattern is a set of 60 features which are all numbers in the range 0.0

to 1.0. Each number represents the energy within a particular frequency band, integrated

over a certain period of time. The integration aperture for higher frequencies occur later

in time, since these frequencies are transmitted later during the chirp.
The classes: mines (111), rocks (97).

B. 2 The Glass Identification dataset

Created by: B. German, Central Research Establishment Home Office Forensic Science
Service Aldermaston, Reading, Berkshire RG7 4PN
Donated by: Vina Spiehler, Ph. D., DABFT Diagnostic Products Corporation (213) 776-

0180 (ext 3014)
Date: September, 1987
The Problem: To identify the source of a fragment of glass. The study of classification

of types of glass was motivated by criminological investigation. At the scene of the crime,
the glass left can be used as evidence... if it is correctly identified!

Statistics: 9 Features, 7 Classes, 214 Examples.

The features: 1. RI: refractive index, 2. Na: Sodium (unit measurement: weight percent
in corresponding oxide, as are attributes 4-10), 3. Mg: Magnesium, 4. Al: Aluminium, 5.
Si: Silicon, 6. K: Potassium, 7. Ca: Calcium, S. Ba: Barium, 9. Fe: Iron

The classes: 1. building windows float-processed (70), 2. building windows non-float.

processed (76), 3. vehicle windows float-processed (17), 4. vehicle windows non-float-

processed (none in this database) (0), 5. containers (13), 6. tableware (9), 7. headlamps

(29).

B. 3. THE HABERMAN DATASET

B. 3 The Haberman dataset

133

Donated by: Tjen-Sien Lim (limtQstat. wisc. cdu)
Date: March 4,1999

The Problem: The dataset contains cases from a study that was conducted between

1958 and 1970 at the University of Chicago's Billings Hospital on the survival of patients

who had undergone surgery for breast cancer.
Statistics: 3 Features, 2 Classes, 306 Examples.
The features: 1. Age of patient at time of operation, 2. Patient's year of operation, 3.

Number of positive axillary nodes detected.

The classes: Survival status (class attribute) 1= the patient survived 5 years or longer

(225) 2= the patient died within 5 years (81)

B. 4 The Ecoli dataset

Created and maintained by: Kenta Nakai Institue of Molecular and Cellular Biology Osaka,

University 1-3 Yamada-oka, Suita 565 Japan nakai@imcb. osaka-u. ac. jp http: //www. imcb. osaka-

u. ac. jp/nakai/psort. html

Donated by: Paul Horton (paulh@cs. berkeley. edu)
Date: September, 1996

The Problem: Identifying the localization site of the ecoli proteins.
Statistics: 7 Features, 8 Classes, 336 Examples.

The features: 1. mcg: McGeoch's method for signal sequence recognition. 2. gvh: von

Heijne's method for signal sequence recognition. 3. lip: von Heijne's Signal Peptidase II

consensus sequence score. 4. chg: Presence of charge on N-terminus of predicted lipopro-

teins. 5. aac: score of discriminant analysis of the amino acid content of outer membrane

and periplasmic proteins. 6. alml: score of the ALOM membrane spanning region predic-

tion program. 7. alm2: score of ALOM program after excluding putative cleavable signal

regions from the sequence.
The classes: 1. cp (cytoplasm) (143) 2. im (inner membrane without signal sequence)
(77) 3. pp (perisplasm) (52) 4. imU (inner membrane, uncleavable signal sequence) (35)

5. om (outer membrane) (20) 6. omL (outer membrane lipoprotein) (5) 7. imL (inner

membrane lipoprotein) (2) 8. imS (inner membrane, cleavable signal sequence) (2)

B. 5 The Liver dataset

Created by: BUPA Medical Research Ltd.

Donated by: Richard S. Forsyth 8 Grosvenor Avenue Mapperley Park Nottingham NG3

5DX 0602-621676

134 APPENDIX B. DATA SETS USED IN THIS THESIS

Date: 5/15/1990
The Problem: Seems to be the identification of liver disorders in male patients. The
first 5 variables are all blood tests which are thought to be sensitive to liver disorders that

might arise from excessive alcohol consumption. Each line in the bupa. data file constitutes
the record of a single male individual.

Statistics: 6 Features, 2 Classes, 345 Examples.
The features: 1. mcv mean corpuscular volume 2. alkphos alkaline phosphotase 3.

sgpt alamine aminotransferase 4. sgot aspartate aminotransferase 5. gammagt gamma-
glutamyl transpeptidase 6. drinks number of half-pint equivalents of alcoholic beverages
drunk per day

The classes: It appears that the two classes are those with a liver disorder and those

without a liver disorder, however it is not clear which group is which. Class 1 (145), class
2 (200).

B. 6 The Johns Hopkins University Ionosphere dataset

Source: Space Physics Group Applied Physics Laboratory Johns Hopkins University
Johns Hopkins Road Laurel, MD 20723 Donated by: Vince Sigillito (vgs(gaplcen. apl. jhu. edu)
Date: 1989

The Problem: To classify radar signals as either `Good' or `Bad'. This radar data was
collected by a system in Goose Bay, Labrador. This system consists of a phased array of
16 high-frequency antennas with a total transmitted power on the order of 6.4 kilowatts.
The targets were free electrons in the ionosphere. `Good' radar returns are those showing
evidence of some type of structure in the ionosphere. 'Bad' returns are those that do not;
their signals pass through the ionosphere.

Statistics: 34 Features, 2 Classes, 351 Examples.
The features: Received signals were processed using an autocorrelation function whose
arguments are the time of a pulse and the pulse number. There were 17 pulse numbers for
the Goose Bay system. Instances in this database are described by 2 attributes per pulse
number, corresponding to the complex values returned by the function resulting from the

complex electromagnetic signal. This results in 34 features, all of which are continuous
numbers.
The classes: Good (225), Bad (126).

B. 7 The 1984 United States Congressional Voting Records
dataset

Source: Congressional Quarterly Almanac, 98th Congress, 2nd session 1984, Volume XL:
Congressional Quarterly Inc. Washington, D. C., 1085.

B. 8. THE WISCONSIN BREAST CANCER DATASET 135

Donated by: Jeff Schlimmer (Jeffrey. Schlimmer(ga. gp. cs. cmu. edu)
Date: 27 April 1987

The Problem: To identify whether a person is a democrat or a republican based upon
their voting record on various key issues. This data set includes votes for each of the U. S.

House of Representatives Congressmen on the 16 key votes identified by the Congressional

Quarterly Almanac (CQA). The CQA lists nine different types of votes: voted for, paired
for, and announced for (these three simplified to yea), voted against, paired against, and

announced against (these three simplified to nay), voted present, voted present to avoid
conflict of interest, and did not vote or otherwise make a position known (these three

simplified to an unknown disposition).

Statistics: 16 Features, 2 Classes, 435 Examples.

The features: 1. handicapped-infants, 2. water-project-cost-sharing, 3. adoption-of-
the-budget-resolution, 4. physician-fee-freeze, 5. el-salvador-aid, 6. religious-groups-in-
schools, 7. anti-satellite-test-ban, 8. aid-to-nicaraguan-contras, 9. mx-missile, 10. immi-

gration, 11. synfuels-corporation-cutback, 12. education-spending, 13. superfund-right-
to-sue, 14. crime, 15. duty-free-exports, 16. export-administration-act-south-africa
The options for each vote were y or n or ? for an unknown position. We have converted
this to 1-no, 2-yes, 3-unknown position. The classes: Democrat (267), Republican (168).

B. 8 The Wisconsin Breast Cancer dataset

Created by: Dr. William H. Wolberg, General Surgery Dept., University of Wisconsin,

Clinical Sciences Center, Madison, WI 53792 wolberg©eagle. surgery. wisc. edu,
W. Nick Street, Computer Sciences Dept., University of Wisconsin, 1210 West Dayton
St., Madison, WI 53706 streetOcs. wisc. edu 608-262-6619,
Olvi L. Mangasarian, Computer Sciences Dept., University of Wisconsin, 1210 West Day-

ton St., Madison, WI 53706 olvi@cs. wisc. edu
Donated by: Nick Street

Date: November 1995

The Problem: o determine whether a mass within a breast is malignant or benign. Fea-

tures are computed from a digitised image of a fine needle aspirate (FNA) of a breast

mass. They describe characteristics of the cell nuclei present in the image.

Statistics: 30 Features, 2 Classes, 569 Examples.
The features: Ten real-valued features are computed for each cell nucleus: a) radius
(mean of distances from centre to points on the perimeter) b) texture (standard deviation

of gray-scale values) c) perimeter d) area e) smoothness (local variation in radius lengths)
f) compactness (perimeter') g) concavity (severity of concave portions of the contour) h)

concave points (number of concave portions of the contour) i) symmetry j) fractal dimen-

136 APPENDIX B. DATA SETS USED IN THIS THESIS

lion ('coastline approximation' - 1)
The mean, standard error, and `worst' or largest (mean of the three largest values) of these
features were computed for each image, resulting in 30 features. For instance, feature 1 is
Mean Radius, feature 11 is Radius SE, feature 21 is Worst Radius.
The classes: Benign (357), Malignant (212).

B. 9 The Pima Indian Diabetes dataset

Created by: National Institute of Diabetes and Digestive and Kidney Diseases
Donated by: Vincent Sigillito (vgs@aplcen. apl. jhu. edu) Research Center, RMI Group
Leader Applied Physics Laboratory The Johns Hopkins University Johns Hopkins Road
Laurel, MD 20707 (301) 953-6231
Date: 9 May 1990
The Problem: The problem is to identify whether a female of Pima Indian descent

exhibits signs of diabetes. The diagnostic, binary-valued variable investigated is whether
the patient shows signs of diabetes according to World Health Organisation criteria (i. e., if
the 2 hour post-load plasma glucose was at least 200 mg/dl at any survey examination or
if found during routine medical care). The population lives near Phoenix, Arizona, USA.
Statistics: 8 Features, 2 Classes, 768 Examples.
The features: 1. Number of times pregnant 2. Plasma glucose concentration a2 hours
in an oral glucose tolerance test 3. Diastolic blood pressure (mm Hg) 4. Triceps skin fold
thickness (mm) 5.2-Hour serum insulin (mu U/ml) 6. Body mass index (wei ht ink)
7. Diabetes pedigree function 8. Age (years)

(height in m)ý

The classes: no diabetes (500), tested positive for diabetes (268).

B. 10 The Vehicle Silhouette Identification dataset

Created by: Turing Institute, Glasgow, Scotland.
Donated by: Drs. Pete Mowforth and Barry Shepherd Turing Institute George House 36
North Hanover St. Glasgow G1 2AD
Contact: Alistair Sutherland Statistics Dept. Strathclyde University Livingstone Tower
26 Richmond St. GLASGOW G1 1XH Great Britain Tel: 041 552 4400 x3033 Fax: 041
552 4711 e-mail: alistair@uk. ac. strathclyde. stams
Date: 1986-1987
The Problem: To distinguish between four models of vehicle from their silhouettes. This
data was originally gathered at the TI in 1986-87 by JP Siebert. It was partially financed
by Barr and Stroud Ltd. The original purpose was to find a method of distinguishing 3D

objects within a 2D image by application of an ensemble of shape feature extractors to the
2D silhouettes of the objects. Four `Corgi' model vehicles were used for the experiment:

B. 10. THE VEHICLE SILHOUETTE IDENTIFICATION DATASET 137

a double decker bus, Chevrolet van, Saab 9000 and an Opel Manta 400. This particular

combination of vehicles was chosen with the expectation that the bus, van and either one

of the cars would be readily distinguishable, but it would be more difficult to distinguish

between the cars. The images were acquired by a camera looking downwards at the model

vehicle from a fixed angle of elevation (34.2 degrees to the horizontal). The vehicles were

placed on a diffuse back-lit surface (light-box). The vehicles were painted matt black

to minimise highlights. The vehicles were rotated and their angle of orientation was

measured using a radial graticule beneath the vehicle. 0 and 180 degrees corresponded

to `head on' and `rear' views respectively while 90 and 270 corresponded to profiles in

opposite directions. Two sets of 60 images, each set covering a full 360 degree rotation,

were captured for each vehicle. The vehicle was rotated by a fixed angle between images.

A further two sets of images were captured with the camera at elevations of 37.5 degrees

and 30.8 degrees.

Statistics: 18 Features, 4 Classes, 846 Examples.

The features:

1. Compactness (averaggeeper iM)2
e d

ius)? 2. Circularity (average ra
area

3. Distance Circularity area
av ista ce from border'

4. Radius ratio max. rad-min. rad
av. ra ius

5. Pr. Axis aspect ratio minor axis
maw,

6. Max. Length aspect ratio
length per p. max length

max length
7. Scatter Ratio inertia about minor axis

inertia about major axis
8. Elongatedness area

(shrink wii th)2'
9. Pr. Axis Rectangularity area

pr. axis lengthxpr. axis width'
10. Scaled variance along major axis 2nd order moment about minor axis

area '
11. Scaled variance along minor axis

2nd order moment about major axis
g area

12. Scaled radius of gyration ma, ýä +mivar
arc order moment about major axis 13. Skewness about major axis sigma3 min

14. Skewness about minor axis
3rd order moment about minor axis

sigma,

15. Kurtosis about minor axis
4th order moment about major axis

aigmamtn

16. Kurtosis about major axis 4th order moment about minor axis
izgmamo1 '

17. Hollows ratio area of hollows
I area of bounding po ygon

Where sigmamai is the variance along the major axis and sigmamin is the variance along

the minor axis, and area of hollows= area of bounding poly-area of object The area of

the bounding polygon is found as a side result of the computation to find the maximum
length.

138 APPENDIX B. DATA SETS USED IN THIS THESIS

The classes: Opel (212), Saab (217), bus (218), van (199).

B. 11 The German Credit dataset

Source: Professor Dr. Hans Hofmann Institut für Statistik und Ökonometrie Universität
Hamburg FB Wirtschaftswissenschaften Von-Melle-Park 5 2000 Hamburg 13

The Problem: To identify whether a prospective customer is a `good' or `bad' credit risk
for the purposes of obtaining a loan. The original dataset, in the form provided by Prof.

Hofmann, contained categorical/symbolic attributes. For algorithms that need numerical

attributes, Strathclyde University produced a second version of the dataset. This data has

been edited and several indicator variables added to make it suitable for algorithms which

cannot cope with categorical variables. Several attributes that are ordered categorically
(such as attribute 17) have been coded as integer. This is the version which we have used.
Statistics: 23 Features, 2 Classes, 1000 Examples.

The original features are: 1. Status of existing checking account, 2. Duration in months,
3. Credit history, 4. Purpose, 5. Credit amount, 6. Savings account / bonds, 7. Present

employment since?, 8. Installment rate in percentage of disposable income, 9. Personal

status and sex, 10. Other debtors / guarantors, 11. Present residence since, 12. Property?,

13. Age in years, 14. Other installment plans, 15. Housing, 16. Number of existing

credits at this bank, 17. Job, 18. Number of people liable to provide maintenance for, 19.

Telephone?, 20. Foreign worker?
The 23 features in the version of the dataset we have used have been derived from these
by converting to numerical features.
The classes: Good risk (700), Bad risk (300).

B. 12 The Phoneme dataset

Source: Dominique VAN CAPPEL (33) 92 96 45 44 THOMSON-SINTRA, 525 route des

Dolines, BP157, F-06903 Sophia Antipolis Cedex, France

The Problem: To identify whether spoken vowels are Nasal or Oral in nature. This
database contains vowels coming from 1809 isolated syllables (for example: pa, ta, pan,...).

Statistics: 5 Features, 2 Classes, 5404 Examples. The features: Five different attributes

were chosen to characterise each vowel: they are the amplitudes of the five first harmonics

AHi, normalised by the total energy Ene (integrated on all the frequencies): AHi/Ene.

Each harmonic is signed: positive when it corresponds to a local maximum of the spectrum
and negative otherwise. Three observation moments have been kept for each vowel to

obtain 5427 different instances: - the observation corresponding to the maximum total

energy Ene. - the observations taken 8 msec before and 8 msec after - the observation

corresponding to this maximum total energy.

B. 12. THE PHONEME DATASET 139

From these 5427 initial values, 23 instances for which the amplitude of the 5 first

harmonics was zero were removed, leading to the 5404 instances of the present database.

The classes: Nasal vowels, Oral vowels.

140 APPENDIX B. DATA SETS USED IN THIS THESIS

Bibliography

[1] E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to binary: a unifying

approach. Journal of Machine Learning Research, 1: 113-141,2000.

(2] S. G. Alsing, K. W. Bauer, and Jr. J. O. Miller. A multinomial selection procedure

for evaluating pattern recognition algorithms. Pattern Recognition, 35: 2397-2412,

2002.

[3] H. Altincay and M. Demirekler. An information theoretic framework for weight

estimation in the combination of probabilistic classifiers for speaker identification.

Speech Communication, 30: 255-272,2000.

[4] R. Battiti and A. M. Colla. Democracy in neural nets: voting schemes for classifica-

tion. Neural Networks, 7(4): 691-707,1994.

[5] E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms:

Bagging, boosting, and variants. Machine Learning, 36: 105-139,1999.

[6] G. Blanchard, G. Lugosi, and N. Vayatis. On the rate of convergence of regularised
boosting classifiers. Journal of Machine Learning Research (special issue on learning

theory), 4: 861-894, October 2003.

[7] L. Breiman. Bagging predictors. Machine Learning, 24: 123-140,1996.

[8] L. Breiman. Arcing classifiers. The Annals of Statistics, 26(3): 801-849,1998.

(9] L. Breiman. Combining predictors. In A. J. C. Sharkey, editor, Combining Artificial

Neural Nets, chapter 2, pages 31-50. Springer-Verlag, 1099.

[10] L. Breiman. Randomizing outputs to increase prediction accuracy. Afachine Learn-

ing, 40: 229-242,2000.

[11] L. Breiman. Random forests. Machine Learning, 45: 5-32,2001.

(12] L. Breiuran. Using iterated bagging, to debias regressions. Machine Learning, 45: 261-

277,2001.

141

142 BIBLIOGRAPHY

(13} L. Breiman, J. H. Friedman, R. A. 0lshen, and C. J. Stone. Classification and Regres-

lion Trees. Wadsworth International Group, 1984.

[14] N. V. Chawla, L. O. Hall, K. W. Bowyer, Jr. T. E. Moore, and W. P. Kegelmeyer. Dis-

tributed pasting of small votes. In F. Roll and J. Kittler, editors, Third International

Workshop, Multiple Classifier Systems, Lecture Notes in Computer Science, pages
52-61, Cagliari, Italy, 2002. MCS2002, Springer.

[15] C. C. Chibelushi, F. Deravi, and J. S. D. Moore. Adaptive classifier integration for

robust pattern recognition. IEEE Transactions on Systems, Man and Cybernetics-

Part B: Cybernetics, 29(6): 902-907, December 1999.

[16] C. Cortes and V. Vapnik. Support-Vector networks. machine learning, 20(3): 273-

297, September 1995.

[17) P. Cunningham. Overfitting and diversity in classification ensembles based on feature

selection. Technical Report TCD-CS-2000-07, Department of Computer Science,

Trinity College Dublin, 2000.

[18) P. Cunningham and J. Carney. Diversity versus quality in classification ensembles
based on feature selection. Technical Report TCD-CS-2000-02, Department of Com.

puter Science, Trinity College Dublin, 2000.

[19] D. T. Denison. Boosting with bayesian stumps. Statistics and Computing, 11: 171-

178,2001.

[20] T. G. Dietterich. An experimental comparison of three methods for constructing en-
sembles of decision trees: Bagging, boosting and randomization. Machine Learning,
40(2): 1-19,1999.

X21] T. G. Dietterich. Ensemble methods in machine learning. In F. Rolff and J. Kittler,

editors, First International Conference on Multiple Classifier Systems, Lecture Notes

in Computer Science, Cagliari, Italy, 2000. MCS2000, Springer.

(22] H. Drucker. Boosting neural networks. In A. J. C. Sharkey, editor, Combining

Artificial Neural Nets, chapter 3, pages 51-78. Springer-Verlag, 1999.

(23] H. Drucker, C. Cortes, L. D. Jackel, Y. LeCun, and V. Vapnik. Boosting and other

ensemble methods. Neural Computation, 6: 1289-1301,1994.

(241 R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification, chapter 9, pages
453-516. John Wiley & sons, New York, 2nd edition, 2001.

BIBLIOGRAPHY 143

(25] N. Duffy and D. Heimbold. A geometric approach to leveraging weak learners.

Theoretical Computer Science, 284: 67-108,2002.

[26] R. P. W. Duin. Prtools version 2: a matlab toolbox for pattern recognition. Pat-

tern Recognition Group, Delft University of Technology, June 1997. available at

http: //www. ph. tn. tudelft. nl/prtools.

[27] G. Eibl and K. P. Pfeiffer, How to make adaboost. ml work for weak base classifiers by

changing only one line of the code. Lecture Notes in Artificial Intelligence, 2430: 72-

83,2002.

(28] J. L. Fleiss. Statistical methods for Rates and Proportions. John Wiley & Sons, 1981.

[29] Y. Freund. Boosting a weak learning algorithm by majority. Information and Corn-

putation, 121(2): 256-285,1995.

[30] Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In Ma-

chine Learning: Proceedings of the Third International Conference. Machine Learn-

ing, 1996.

[311 Y. Freund and R. E. Schapire. A decision-theoretic generalisation of on-line learn-

ing and an application to boosting. Journal of Computer and System Sciences,

55(1): 119-139,1997.

(32] Y. Freund and R. E. Schapire. Discussion of the paper "arcing classifiers" by leo

breiman. The Annals of Statistics, 26(3): 824-832,1998.

(33] Y. Freund and R. E. Schapire. Discussion of the paper "additive logistic regression: A

statistical view of boosting by jerome friedman, trevor hastie and robert tibshirani.

The Annals of Statistics, 38(2): 391-393, April 2000.

(341 J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical

view of boosting. Annals of Statistics, 28(2): 337-374,2000.

[35] G. Fumera and F. Rolff. Performance analysis and comparison of linear combiners
for classifier fusion. In SSPR, pages 110-120, Windsor, Canada, 2002. SSPR.

[36] S. Gliahramani. Fundamantals of Probability. Prentice Hall, N. J., second edition,
2000.

[37] G. Giacinto and F. Rolff. An approach to the automatic design of multiple classifier

systems. Pattern Recognition Letters, 22: 25-33,2001.

[38) G. Giacinto and F. Roll. Design of effective neural network ensembles for image

classification processes. Image and Vision Computing Journal, 19: 697-705,2001.

144 BIBLIOGRAPHY

[39] L. K. Hansen and P. Salamon. Neural network ensembles. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 12(10): 993-1001,1990.

(40) S. Hashem. Treating harmful collinearity in neural network ensembles. In A. J. C.

Sharkey, editor, Combining Artificial Neural Nets, chapter 5, pages 101-125.

Springer-Verlag, 1999.

(41) T. 1< Ho. The random space method for constructing decision forests. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 20(8): 832-844,1998.

(42] S. Hoche and S. Wrobel. Scaling boosting by margin-based inclusion of features and

relations (extended abstract). In Machine Learning Workshop FGML, 2002.

[43] A. Hough. Physiotherapy in Respiratory Care: A problem-solving approach to res-

piratory and cardiac management. Stanley Hornes (Publishers) Ltd, second edition,
1997.

[44) Y. S. Huang and C. Y. Suen. A method of combining multiple experts for the recogni-
tion of unconstrained handwritten numerals. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 17: 90-93,1995.

(45] A. K. Jain, R. P. W. Duin, and J. Mao. Statistical pattern recognition: a review.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1): 4-37,2000.

[46] T. M. Jorgensen and C. Linneberg. Feature weighted ensemble classifiers -a modified
decision scheme. In F. Rolff and J. Kittler, editors, 2nd International Conference on
Multiple Classifier Systems, Lecture Notes in Computer Science, pages 218-227,
Cambridge, UK, 2001. MCS2001, Springer-Verlag.

[47] Y. Kim. Averaged boosting: A noise-robust ensemble method. Lecture Notes in
Artificial Intelligence, 2637: 388-393,2003.

[48] J. ICittler, M. Hatef, R. P. W. Duin, and J. Matas. On combining classifiers. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(3): 226-238,1998.

(491 E. M. Kleinberg. On the algorithmic implementation of stochastic discrimination.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(5): 473-490,

May 2000.

(50] R. Kohavi and D. H. Wolpert. Bias plus variance decomposition for zero-one loss
functions. In L. Saitta, editor, Machine Learning: Proc. 13th International Confer-

ence, pages 275-283. Morgan Kaufman, 1996.

BIBLIOGRAPHY 145

[51] A. Krogh and J. Vedelsby. Neural network ensembles, cross validation and active
learning. In G. Tesauro, D. S. Touretzky, and T. K. Leon, editors, Advances in Neural

Information Processing Systems 7, pages 231-238. MIT Press, Cambridge MA, 1995.

(52] L. I. Kuncheva. Two-level classification schemes in medical diagnostics. International
Journal of Biomedical Computing, 32: 197-210,1993.

(53) L. I. Kuncheva. Fuzzy Classifier Design. Number 49 in Studies in Fuzziness and Soft
Computing. Springer Verlag, Berlin, 2000.

(54] L. I. Kuncheva. Combining classifiers: Soft computing solutions. In S. K. Pal and
A. Pal, editors, Pattern Recognition: From Classical to Modern Approaches, chap-
ter 5, pages 427-452. World Scientific Publishing Co., Singapore, 2001.

(55] L. I. Kuncheva. 'fuzzy' vs 'non-fuzzy' in combining classifiers designed by boosting.
IEEE Transactions on Fuzzy Systems, 11(6): 729-741,2003.

[56] L. I. Kuncheva. That elusive diversity in classifier ensembles. In Proceedings of
IbPRIA 2003, Lecture Notes in Computer Science, pages 1126-1138, Mallorca,

Spain, 2003. Springer-Verlag.

[57] L. I. Kuncheva, J. C. Bezdek, and R. P. W. Duin. Decision templates for multiple clas-

sifier fusion: an experimental comparison. Pattern Recognition, 34: 299-314,2001.

[58] L. I. Kuncheva, F. Rolff, G. L. Marcialis, and C. A. Shipp. Complexity of data sub-

sets generated by the random subspace method: An experimental investigation. In

F. Rolff and J. Kittler, editors, 2nd International Conference on Multiple Classifier

Systems, Lecture Notes in Computer Science, pages 349-358, Cambridge, UK, 2001.

MCS2001, Springer-Verlag.

(59) L. I. Kuncheva and C. J. Whitaker. Feature subsets for classifier combination: an enu-

merative experiment. In F. Rolff and J. Kittler, editors, 2nd International Conference

on Multiple Classifier Systems, Lecture Notes in Computer Science, Cambridge, UK,

2001. MCS2001, Springer-Verlag.

[60] L. I. Kuncheva and C. J. Whitaker. Ten measures of diversity in classifier ensem-
bles: limits for two classifiers. In IEEE Workshop on Intelligent Sensor Processing,
Birmingham, UK, 10 2001. ISP2001.

[61] L. I. Kuncheva and C. J. Whitaker. Using diversity with three variants of boosting:

Aggressive, conservative, and inverse. In F. Rolff and J. Kittler, editors, Third Inter-

national Workshop, Multiple Classifier Systems, Lecture Notes in Computer Science,

pages 81-90, Cagliari, Italy, 2002. MCS2002, Springer.

146 BIBLIOGRAPHY

[62] L. I. Kuncheva and C. J. Whitaker. Measures of diversity in classifier ensembles.
Machine Learning, 51: 181-207,2003.

[63] L. I. Kuncheva, C. J. Whitaker, C. A. Shipp, and R. P. W. Duin. Is independence

good for combining classifiers? In Proc. 15th International Conference on Pattern

Recognition, volume 2, pages 169-171, Barcelona, Spain, 2000.

[64] L. L. Kuncheva, C. J. Whitaker, C. A. Shipp, and R. P. W. Duin. Limits on the majority

vote accuracy in classifier fusion. Pattern Analysis and Applications, 6: 22-31,2003.

(65] L. Lam. Classifier combinations: implementations and theoretical issues. In J. Kittler

and F. Roll, editors, Multiple Classifier Systems, volume 1857 of Lecture Notes in

Computer Science, pages 78-86, Cagliari, Italy, 2000. MCS2000, Springer.

[66} L. Lam and C. Y. Suen. Optimal combinations of pattern classifiers. Pattern Recog-

nition Letters, 16: 945-954,1995.

[67] L. Lam and C. Y. Suen. Application of majority voting to pattern recognition: An

analysis of its behavior and performance. IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, 27(5): 553-567,1997.

(68] Y. Liu and X. Yao. Negatively correlated neural networks for classification. In

3rd international Symposium on Artificial Life and Robotics, pages 736-739, Japan,

1998. AROBIII'98.

[69) Y. Liu and X. Yao. Simultaneous learning of negatively correlated neural networks.
In 9th Australian Conference on Neural Networks, pages 183-187, Brisbane, Aus-
tralia, 1998. ACNN'98.

[70] Y. Liu and X. Yao. Ensemble learning via negative correlation. Neural Networks,

12: 1399-1404,1999.

[71] Y. Liu, X. Yao, and T. Higuchi. Evolutionary ensembles with negative correlation
learning. IEEE Transactions on Evolutionary Computation, 4(4): 380-387,2000.

[72] S. W. Looney. A statistical technique for comparing the accuracies of several classi-
fiers. Pattern recognition Letters, 8: 5-9, July 1998.

[73) F. Lozano and V. Koltchinskii. Direct optimization of simple cost functions of the
margin. In NF2002,2002.

[74) D. D. Margineantu and T. G. Dietteridi. Pruning adaptive boosting. In 14th Inter-

national Conference on Machine Learning, pages 358-366,1997.

BIBLIOGRAPHY 147

[75] L. Mason, P. L. Bartlett, and J. Baxter. Improved generalization through explicit
optimization of margins. Machine Learning, 38: 243-255,2000.

(76J F. Masulli and G. Valentini. Effectivenes of error correcting output codes in multi-
class learning problems. In F. Rolff and J. Kittler, editors, First International Con-
ference on Multiple Classifier Systems, Lecture Notes in Computer Science 1857,

pages 107-116, Cagliari, Italy, 2000. MCS2000, Springer.

[77] F. Masulli and G. Valentini. Dependence among codeword bits errors in ecoc learn-
ing machines: An experimental analysis. In F. Rolff and J. Kittler, editors, 2nd In-
ternational Conference on Multiple Classifier Systems, Lecture Notes in Computer
Science 2096, pages 158-167, Cambridge, UK, 2001. MCS2001, Springer-Verlag.

[78] S. Merler, C. Furlanello, B. Larcher, and A. Sboner. Automatic model selection in

cost-sensitive boosting. Information Fusion, 4: 3-10,2003.

[79] J. Mingers. An empirical comparison of pruning methods for decision trees. Machine
Learning, 4(2): 227-243,1989.

[80] R. Nock and M. Sebban. A bayesian boosting theorem. Pattern Recognition Letters,
22: 413-419,2001.

[81] N. C. Oza. Boosting with averaged weighting vectors. In Fourth international work-
shop on multiple classifier systems, pages 15-24, Guildford, UK, 2003. Springer-
Verlag Heidlberg.

[82] D. Partridge and W. J. Krzanowski. Distinct failure diversity in multiversion soft-
ware. (personal communication to L. I. Kuncheva 1999).

(83] D. Partridge and W. J. Krzanowski. Software diversity: practical statistics for its

measurement and exploitation. Information V Software Technology, 39: 707-717,
1997.

[84] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, California,
1993.

[85] J. R. Quinlan. Bagging, boosting and c4.5. In 13th National Conference on Artificial
Intelligence, pages 725-730, Cambridge, MA, 1996.

(86] G. Rätsch, T. Onoda, and K. R. Müller. Soft margins for adaboost. Afachine
Learning, 42: 287-320,2001.

(87] G. Rätsch and M. K. Wlrmuth. Efficient margin maximizing with boosting. Journal

of Machine Learning Research, 2003. (submitted) available online.

148 BIBLIOGRAPHY

[88] G. Ridgeway. Looking for lumps: boosting and bagging for density estimation.
Computational Statistics 8 Data Analysis, 38: 379-392,2002.

[89] F. Roll, G. Giacinto, and G. Vernazza. Methods for designing multiple classifier

systems. In F. Roll and J. Kittler, editors, 2nd International Conference on Multiple

Classifier Systems, Lecture Notes in Computer Science, pages 78-87, Cambridge,

UK, 2001. MCS2001, Springer-Verlag.

(90] B. E. Rosen. Ensemble learning using decorrelated neural networks. Connection
Science, 8(3/4): 373-383,1996.

[91] D. Ruta and B. Gabrys. Application of the evolutionary algorithms for classifier

selection in multiple classifier systems with majority voting. In F. Rolff and J. Kittler,

editors, 2nd International Conference on Multiple Classifier Systems, Lecture Notes

in Computer Science, pages 399-408, Cambridge, UK, 2001. MCS2001, Springer-

Verlag.

[92] R. E. Schapire. The boosting approach to machine learning: An overview.
MSRI Workshop on Nonlinear Estimation and Classification, 2002. available at
http: //www. cs. princeton. edu/ichapire/whatsnew. html.

(93] R. E. Schapire. The strength of weak learnability. Machine Learning, 5(2): 197-227,

1990.

[94] R. E. Schapire. Theoretical views of boosting. In Computational Learning Theory:

Fourth European Conference, pages 1-10. EuroCOLT'99,1999.

(95] R. E. Schapire, Y. Freund, P. Bartlett P, and W. S. Lee. Boosting the margin: A

new explanation for the effectiveness of voting methods. The Annals of Statistics,
26(5): 1651-1686,10 1998.

[06ý R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated

predictions. Machine Learning, 37(3): 297-336,1999.

[97] C. A. Shipp and L. I. Kuncheva. Four measures of data complexity for bootstrap-

ping, splitting and feature sampling. In Computational Intelligence: Methods and
Applications, pages 429-435, Bangor, Wales, UK, 2001. CIMA2001, ICSC Academic

Press.

(98] C. A. Shipp and L. I. Kuncheva. An investigation into how adaboost affects classifier
diversity. In International Conference on Information Processing and Management

of Uncertainty in Knowledge-Lased Systems, pages 203-208, Annecy, France, 2002.

IPNIU2002.

BIBLIOGRAPHY 149

[99] C. A. Shipp and L. I. Kuncheva. Relationships between combination methods and
measures of diversity in combining classifiers. Information Fusion, 3: 135-148,2002.

[100) D. B. Skalak. The sources of increased accuracy for two proposed boosting algo-
rithms. In Proc. American Association for Artificial Intelligence, Integrating Mul-

tiple Learned Models Workshop. AAAI, 1996.

[101] M. Skurichina and R. P. W. Duin. Bagging and the random subspace method for

redundant feature spaces. In F. Rolff and J. Kittler, editors, 2nd International Con.

ference on Multiple Classifier Systems, Lecture Notes in Computer Science, pages
1-10, Cambridge, UK, 2001. MCS2001, Springer-Verlag.

(102] M. Skurichina and R. P. W. Duin. The role of combining rules in bagging and boost-

ing. Lecture Notes in Computer Science, 1876: 631-640,2001.

(103] M. Skurichina, L. I. Kuncheva, and R. P. W. Duin. Bagging and boosting for the

nearest mean classifier: Effects of sample size on diversity and accuracy. In F. Rolff

and J. Kittler, editors, Third International Workshop, Multiple Classifier Systems,
Lecture Notes in Computer Science, pages 62-71, Cagliari, Italy, 2002. MCS2002,

Springer.

[104] E. Takimoto and A. Maruoka. Top-down decision tree learning as information based

boosting. Theoretical Computer Science, 292: 447-464,2003.

[105] C. Tamon and J. Xiang. On the boosting pruning problem. Lecture Notes in Artificial
Intelligence, 1810: 404-412,2000.

[106] K. Turner and J. Ghosh. Analysis of decision boundaries in linearly combined neural

classifiers. Pattern Recognition, 29(2): 341-348,1996.

(1071 K. Turner and J. Ghosh. Error correlation and error reduction. ensemble classifiers,
Connection Science, 8(3/4): 385-404,1996.

[108] K. 'Rimer and J. Ghosh. Linear and order statistics combiners for pattern classifica-
tion. In A. J. C. Sharkey, editor, Combining Artificial Neural Nets, chapter 6, pages
127-161. Springer-Verlag, 1999.

(1091 N. Ueda. Optimal linear combination of neural networks for improving classifica-
tion performance. IEEE Transactionson Pattern analysis andAfachine Intelligence,
22(2): 207-215, February 2000.

[110] V. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

150 BIBLIOGRAPHY

(111] A. Verikas, A. Lipnickas, K. Malmqvist, M. Bacauskiene, and A. Geizinis. Soft

combination of neural classifiers: a comparative study. Pattern Recognition Letters,
20: 429-444,1999.

[112] K. D. Wernecke. A coupling procedure for discrimination of mixed data. Biometrics,

48: 497-506,1092.

[113 J. Wickramaratna, S. Holden, and B. Buxton. Performance degradation in boosting.

In J. Kittler and F. Roll, editors, Multiple Classifier Systems, volume 2096 of Lecture

Notes in Computer Science, pages 11-21. Springer, 2001.

[114] T. Windeatt and G. Ardeshir. Boosted tree ensembles for solving multiclass prob-
lems. In F. Roll and J. Kittler, editors, Third International Workshop, Multiple

Classifier Systems, Lecture Notes in Computer Science, pages 42-51, Cagliari, Italy,

2002. MCS2002, Springer.

[115 K. Woods, Jr. W. P. Kegelmeyer, and K. Bowyer. Combination of multiple classifiers

using local accuracy estimates. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 19(4): 405-410,1997.

[116) L. Xu, A. Kryzak, and C. Y. Suen. Methods for combining multiple classifiers and
their application to handwriting recognition. IEEE Transactions on Systems, Man,

and Cybernetics, 22: 418-435,1992.

(117] X. Yao and Y. Liu. Neural networks for breast cancer diagnosis. In 1999 Congress

on Evolutionary Computation, volume 3, pages 1760-1767, Piscataway, NJ, USA,

1999. IEEE Press.

[118) G. U. Yule. On the association of attributes in statistics. Phil. Trans. A, 194: 257-319,

1900.

[119] Z. Zhou, J. Wu, and W. Tang. Ensembling neural networks: Many could be better

than all. Artificial Intelligence, 137: 239-263,2002.

