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SUMMARY 

This study investigates the factors affecting larval and postlarval survival and growth of some de 
capod crustaceans with special emphasis on diets. Investigations were concentrated on the influence o 
live and artificial diets on larval growth, survival, development and trypsM activity of a cominerciall, 
important marine penaeid shrimp Penaeus indicus and a freshwater prawn Macrobrachium rosenber 
gij. In addition, feeding behaviour, gastroevacuation time, trypsM activity of other decapod species wen 
also studied. 

Live mixed microalgae Tetraselmis chuii and Skeletonema costatum at 60-70 cells PI-1 promote( 
highest larval survival, fastest growth and development in P. indicus in comparison to single algal spe 
cies. Rhinomonas reticulata neither alone nor in combination with other algal species was suitable a! 
food for the shrimp larvae, A water salinity (S) of 25 ppt was optimal for larval and postlarval cultun 
of this penaeid species. Postlarvae (PL) of P. indicus reared at lower salinities between PL7 and PL& 
(20-30 ppt) had a significantly (P<0.05) higher survival and a better growth than those at higher wate 
salinities. Early PL resisted sudden salinity change of 10 ppt, but required an adaptation period fo 

greater salinity changes, 10 ppt S was lethal to animals at around PL40-45. 
A free-living nematode Panagrellus redivivus was found to be a suitable alternative for live algai 

and Artemia in the culture of P. indicus. The nematodes gave good survival, but lower growth than al 
gaelArtemia from PZI to PLI. Larval growth and survival were significantly improved when the larvai 
were fed on either nematodes plus algal co-feeds or liPid-enriched nematodes. Pigmented- (astaxanthin 
nematodes also improved survival and colour of P. indicus larvae in comparison to non-pigmented ones 

Conventional live diets were also completely replaced using microencapsulated diets (MED) fo 
the culture of P. indicus, Like the nematodes, MED as a sole feed resulted In lower survival, slowe 
growth and development in comparison to algaelArtemia. Addition of 15 cells gl-1 frozen algae signifi 
cantly improved growth and survival during larval development. The larvae fed MED plus algal co 
feeds had significantly (P<0.05) higher trypsm activity than those fed MED as a sole feed. Similarly 

provision of 15 cells gl-' algae with nematodes for only 24h or 48h resulted in significant increase H 
trypsin activity and improved survival and growth to levels comparable to those obtained from al 
gaelArtemia. It appears that the presence of an algal diet is necessary to induce larval trypsin activity Mi 
P. indicus at early protozoeal stages, but algae do not influence trypsin at mysts stages. Results sugges 
that both nematodes and formulated diets lack gut enzyme stimulants and are less digestible than al 
gaelArtemia diets. When freeze-dried algal materials were incorporated into MED, it was found tha 
algal substances which trigger larval digestive enzymes were retained within the capsules. Whether thi 

will improve growth and survival of penaeid larvae remains to be examined. 
In contrast to penaeid larvae, a complete replacement of live Artemia with nematodes or artificia 

diets was not possible for the culture of caridean M rosenbergii and PaIdemon elegans larvae. Fo 
both species, only a partial replacement was achieved from Z4/5 to metamorphosis by using formulateA 
diets. It was found that these larvae have very low trypsin activity levels between ZI and Z4/5, but th, 
levels increase sharply afterwards, coinciding with a vast increase in the hepatopancreas. This sharl 
increase in digestive enzyme activities and longer food retention time enable these larvae to survive oj 
less digestible formulated diets. 

A comparison of specific trypsin activity in several larval decapod crustaceans shows a pattein 
with high levels in herbivores, low levels in carnivores and intermediate levels M omnivores. Herbivor 

penaeid larvae (P. indicus) and copepods (Temora longicornis and Centropages typicus) rely on hig 
digestive enzyme activities to extract nutrients from less digestible algae, whereas carnivorous larvaE 

the lobsters (Homarus gammarus and Nephrops norvegicus) and carideans (M. rosenbergii and .1 
elegans) have limited enzymatic capacity and hence require large and easily digestible prey, but rests 
long starvation periods. Omnivorous mysis penaeid larvae and Carcinus maenas have intermediat 
levels of digestive enzymes and are able to transfer from herbivorous to omnivorous feeding. To datE 

only decapod larvae which show high trypsm activity can be successfidly reared to metamorphosis o: 
formulated feeds. Inclusion of algal material, as a gut enzyme stimulant, for penaeid protozoeal stage 

and pre-digested ingredients for later stages into feeds are proposed. 
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GENERAL INTRODUCTION 

While global shrimp landings from fisheries reached a plateau at approxi- 

mately 1,9 million tons in 1985, farmed-shrimp production, particularly in 

Asia and South America, is still growing remarkably. The overall shrimp 

production increased from 0.7 million tons in 1965 to 2.5 million tons in 

1990 and may exceed 3,2 million tons by year 2000 (Csawas, 1994). The 

Food and Agricultural Organization of the United Nations (FAO) reported 

that the volume of worldwide farmed-shrimp reached to 884,075 tons in 

1992 (cited in Fish Farming, 1994) making up more than 30% of the global 

shrimp supply in 1992 (Csawas, 1994, Landesman, 1994). Nearly 80% of 

the total crustacean aquaculture production was in the form of marine 

shrimps in 1989 (New, 1991). 

The practice of culturing shrimp was first developed in Japan with a native 

prawn, Penaeus japonicus, and then spread to other Asian countries e. g. 

Taiwan, Thailand, China, Indonesia and recently to South American coun- 

tries such as Ecuador, Mexico, Colombia, etc. The eastern hemisphere pro- 
duces 80 % of the farm-cultured shrimp and the western hemisphere 20 % 

(Weidner and Rosenberry, 1992). Shrimp industry provides one of the ma- 

jor sources of income in developing countries e. g. Ecuador, Bangladesh, 

Philippines (Landesman, 1994). Major cultured shrimp species are P. 

monodon (49.8 %), P. chinensis (13.8 %) and P. vannamei (15.5 %) 

(Csawas, 1994). P. indicus, which is cultured in extensive shrimp farms 

throughout South-East Asia, mainly in the Philippines, constitutes 5.4 % of 

the total farm-raised shrimp production in 1992 (Weidner and Rosenberry, 

1992). Freshwater prawn aquaculture is in the interest of Asian countries 

mainly Thailand, Vietnam and Taiwan. 

For many years, shrimp farms supplied their seed requirement from wild- 

caught postlarvae. However, wild seed stocks are limited and cannot meet 
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the demand of a fast growing industry that needs a continuous supply of 
postlarvae (PL) throughout the year. Hence, a vast number of hatcheries 
have been established to meet the demand for seed by the shrimp industry 

over the last few decades. It was estimated that there were 4,756 hatcheries 
in tropical countries in 1991 to supply seed for 36,840 shrimp farms 
(Weidner and Rosenberry, 1992). These hatcheries rely on wild collected 

gravid females for the production of shrimp nauplii. Hatchery management 

requires a proper water quality control and appropriate feeding regimes. In 
large and well-equipped hatcheries, sea water used in larval culture is gen- 

erally filtered and UV-treated to prevent disease breakouts. 

Live feeds 

Penaeid larvae hatch as a non-feeding stage called a nauplius (ranges from 

5-6 stages), and pass through three protozoeal (PZI-3) stages and three 

mysis (M) stages before reaching the postlarval stage (PL). Penaeid hatch- 

eries conventionally rear penaeid shrimp larvae on microalgae (diatoms, 

flagellates, etc. ) during zoeal, and zooplankton (Artemia, rotifers) during 

later stages (Hudinaga, 1942, Aquacop, 1983; Liao et al., 1983). Produc- 

tion of live diets at a commercial scale is complicated, expensive, and unre- 
liable in supply and nutritional value (Sorgeloos et al., 1983; Langdon et 

al., 1985; Jones et al.,, 1993). Although Artemia is the most practical ani- 

mal prey, limited resources, high cost of cysts, and nutritional variability 

are disadvantages of this live feed source (Sorgeloos, 1980; Watanabe et 

al.,, 1983; Leger et al., 1985,1986). Use of mixed al al diets for penaeid )o 9 

shrimp larvae always gives superior survival, growth and development to 

single algal species (Kuban et al.,, 1985; Amjad, 1990) due to their more 

balanced nutrient content. While provision of live feeds is a general routine 

in most shrimp hatcheries, larval production on these feeding regimes may 

be inconsistent throughout the season (Cook and Murphy, 1969; Mock et 

al., 1980). Table I summarizes the success of using live feed to rear com- 

mercially important penaeid species during larval development. 
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Search for cheaper, nutritionally adequate and practical larval feed sources 
has been directed towards other live zooplankton and artificial diets. For- 

mally live zooplankton, rotifers (Brachionus plicatilis) were extensively 

used to feed penaeid larvae (Liao et al., 1983, Yufera et al., 1984), but 

their use has been limited in hatcheries because of difficulties in mass cul- 
ture and poor nutritional quality (i. e, highly unsaturated fatty acids = 
HUFA) (Watanabe et al., 1983). Attempts to replace Artemia with the roti- 
fers in culture of a fresh water prawn species M rosenbergh were unsuc- 

cessful (Lovett and Felder, 1988). Live free-living nematodes, Panagrellus 

redivivus, were suggested as a potential alternative live feed source to re- 

place Artemia in the culture of several penaeid species (Wilkenfeld et al., 
1984; Biedenbach et al., 1989). The nematodes can be cultured easily on 

cheap growth media in mass quantities and their nutritional value can be 

modified by loading their alimentary canal with growth factors such as 
HUFA (Kahan et al., 1980; Rouse et al. 7 1992). 
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Artificial diets 

Different processing techniques have been employed to produce artificial 
particles in dehydrated forms as food for aquatic animals. All these process- 
ing methods were extensively reviewed by Langdon et al., (1985). Since 

then, spray drying techniques, which involve spraying a homogenized mix- 
ture of ingredients into hot air to form heat sealed and water-stable cap- 

sules, have increasingly been used to produce diets for penaeid larvae. 

Whichever processing method is used, the artificial diet must satisfy the 

same parameters: acceptability, digestibility, stability, adequate nutritional 

content, cost-effectiveness, and storage (Jones et al., 1993). After finding 

that artificial food particles are accepted by some filter feeding crustaceans 
(Jones et al., 1972), several kinds of artificial diets have been manufactured 

to replace the live feed, partially or totally. The most commonly used arti- 
ficial diets to culture shrimp larvae are microbound (microparticulated) and 

micro encapsulated diets (MED). Microbound diets are inexpensive, easy to 

produce and are reported to be used successfully in laboratory and hatcher- 

ies (Kanazawa et al., 1982; Galgani and Aquacop, 1988; Liao et al., 1988, 

Kanazawa, 1990). These diets are produced by mixing the nutritional in- 

gredients thoroughly with binders (carboxymethyl cellulose, calcium algi- 

nate, carrageenan, agar or gelatine). The mixture is then oven- or freeze- 

dried, ground and finally sieved through appropriate sizes. They exhibit 

poor stability in water causing not only water pollution and bacterial built- 

up, but also they may become deficient due to nutrient leach loss (Amjad et 

al., 1992). 

The micro encapsulation technique was first modified from Chang et al., 

(1966) to deliver nutrients in a protein and nylon cross-linked membrane 

to prevent nutrient loss through leaching and used to identify specific nu- 

tritional requirements of aquatic organisms (Jones et al., 1979a, b). Further 

development of the technique resulted in the production of only cross- 

linked protein walled capsules, capable to withstand drying, which have 
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been used extensively in the laboratory and commercial hatcheries (Jones et 
al., 1987, Kurmaly et al., 1989a; Jones et al., 1993). Among a wide range 
of artificial diets manufactured in an attempt to completely or partially re- 
place live diets in culture of penaeid larvae MED have proved to be the 

most successful (Jones et al., 1979a; 1984; 1987; Kurmaly et al., 1988; 
1989a; 1989b; Amjad, 1990; Amjad and Jones, 1992; Jones et aL, 1993). 
Although complete replacement of live diets with MED has been limited in 

success, partial replacement is already routinely used in many hatcheries 

(Jones et al., 1987; Fegan, 1992). These encapsulated diets promote good 

survival,, but slower growth rate and development in penaeid shrimp and 

prawn larvae in comparison to live diets. Growth and survival equivalent to 
live diet has been reported for P. monodon (Anijad et al., 1992; Ka- 

marudin, 1992; Jones et al., 1993) when a small amount of live or frozen 

algae (10 cells pl-1) was used as a supplemental co-feed with microencapsu- 
lated diets. Recently, Ottogali (1991,1993) reports successful results in 

complete replacement of algae in commercial hatcheries in culture of pe- 

naeid larvae. However, penaeid larval growth and development on live 

feeds are generally still superior to those solely on formulated diets 

(Galgani and Aquacop, 1988; Jones et al., 1993). 

Complete replacement of live diets by artificial diets to rear caridean 

shrimp and homarid larvae is not currently possible. Live Artemia was re- 

placed completely in M. rosenbergii culture, but only from stage Z6 to ZII 

with a microencapsulated diet designed for penaeid larvae (Deru, 1990). 

Despite considerable efforts to develop an adequate artificial diet as a 

substitute and/or supplement (Brewster, 1987; Deru, 1990), hatchery pro- 

duction of M rosenbergii still relies heavily on live Artemia at least during 

its early stages (Jones et al., 1993). The inability of the early larvae of 

these species to survive on artificial diets may be due to their feeding be- 

havior and low digestive enzyme activities (Jones et al., 1993). Table 2 
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summarizes the success in larval rearing of crustaceans on formulated diets 
during larval development, 

Table 2. Artificial diets used to replace live diets in culture of decapod, crustacean larvae. 

Species Type of diets 

PENAEID 

P. indicus Microbound diet 

P japonicus Microencapsulated diets 

P. japonicus Microbound diet 

P. japonicus Microencapsulated diets 

P. japonicus Microbound diet 

P. japonicus Microencapsulated diets 
alga 

P. japonicus Microencapsulated diets 

P. monodon Microencapsulated diets 

P. monodon Microencapsulated diets 

/algae no Artemia 

P. monodon Microencapsulated diets 

P. monodon Microencapsulated diets 
/algae (10 cells pl-) 

P. monodon 

P, monodon 

P. styArostfis 

P. stylirostfis 

P. vannamei 

P. vannamei 

Microencapsulated diets 

Microbound diet 

Microencapsulated diets 
lArtemia 

Microenc-apsulated diets 
/algae 

Microencapsulated diets 
/algae / Artemia 

Microencapsulated diets 
/algae without Artemia 

P. vannamei Microbound diets 

CARIDEAN 

M. rosenbergff Freeze dried catfish 
(from Z4 stage) 

Results 

62 % survival to M1, growth 
inferior to algae 

50% survival to postlarval stage 

90 % survival to PL1, growth less 
than live feeds 

90% survival to PI-4, growth 
same as live feeds 

75 % survival to PL1 

79.5 % survival to PL1 

43.8 % survival to PL1 

3-29% survival to PI-7 

9-47 % survival to PI-7 

80 % to PL1 growth inferior 

to live feed 

74 % to PL1 growth same as 
live feed 

51-64% survival to PL 

85 % survival to MI 

Growth and survival equal to 
live feeds 

65% survival to PI-5-7 

90% survival to PI-5 -7 

80% survival to PI-5 -7 

47% survival to M1 

11 % survival to metamorphosis 

References 

Galgani and Aquacop (1988) 

Jones, et al., (1 979a) 

Kanazawa et al., (1982) 

Kanazawa (1985) 

Kanazawa (1990) 

Le Vay et al., (1 9M) 

Le Vay et al., (1993) 

Jones et al., (1987) 

Jones et al., (1987) 

Amjad et al., (1992) 

Amjad et al., (1992) 

Kurmaly et al., (1 989a) 

Galgani and Aquacop (1%8) 

Oftogali (1991) 

Jones et al., (1987) 

Jones et al., (1987) 

Jones et al., (1987) 

Galgani and Aquacop (1988) 

Sick and Beaty (1975) 

M. rosenbergii Nylon protein Microcap- Larvae survived to Ih stage Jones et al., (1975) 
sules 
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Continuedfi-om Table 2 

Species Type of diets Results References 

M. rosenbergii Microencapsulated diets 84 % sur\(ival to PL1, slower Deru (1990) 
(from Z4 to PL stage) growth than Artemia 

Crangon nigri- Artemia - microcapsules 
cauda 

LOBSTER 

H. gammarus Microencapsulated and 
microbound diets 

CRAB 

Eurypanopeus Microcapsules plus rotifers 
depressus 

Portunus tritu- Microcapsules plus rotifers 
berculatus 

No survival beyond Z2 stage Villarnar and Brusca (1987) 

No survival beyond stage III Kurmaly et al., (1990) 

83-93 % survival to megalopa Levine and Sulkin (1984) 

16.1 % survival to juvenile stage Kanazawa et al., (1983) 

Larval nutritional requirements 
Various dietary requirements for different penaeid species have been stud- 
ied. New (1976,1980) provides an extensive bibliography on nutritional 

research for penaeids. Despite recent advances in understanding of nutri- 

tion of adult and juvenile decapod crustaceans (Kanazawa, 1984; 1990, 

Langdon et al., 1985; Liao and Liu, 1990; Guillaume, 1990; Chen, 1993), 

only limited information on specific dietary requirements for crustacean 
larvae is currently available (Jones et al., 1979a, b; Kurmaly et al., 1989b; 

Jones et al., 1993). Absolute nutritional requirement of penaeids can only 
be identified when a water stable formulated diet is accepted, ingested, di- 

gested and assimilated at comparable levels to live diets (Jones et al., 

1993). Current larval artificial diets are manufactured using natural ingredi- 

ents such as fish or shellfish meals,, cod roe and other types and have simi- 

lar nutritional value to that of live or zooplankton feeds. However, the per- 

centage of the nutritional composition of microparticulated diets which 

reaches the larva varies as a result of species specific acceptability and 

stability of the diets. 
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From the nutritional value of live algae successfully used in penaeid cul- 
ture, it may be concluded that penaeid larvae require a protein level of be- 
tween 23-55 % of dry weight of diets (Liao and Liu, 1990; Akiyama et al., 
1992; Rodriguez et al., 1994). It is generally accepted that penaeid larvae 

and postlarvae require higher dietary protein requirement than juvenile and 
adults (Kanazawa, 1984; 1990; Akiyama, 1992). However, Le Vay et al., 
(1993) recently demonstrated that P. japonicus larvae can be successfully 
reared to metamorphosis on the alga, Chaetoceros gracihs, which contain 
only 7% protein (dry weight). Jones et al., (1979b) showed the importance 

of HUFA particularly 20: 5(o-3 and 22: 6co-3 in P. japonicus larvae using 
nutritionally defined microcapsules. Lipid and carbohydrate levels used in 
formulated diets are in the range found in live algae and zooplankton. Cur- 

rent microencapsulated diets, which have been successfully used in penaeid 

culture, contain 52 % protein, 13-14 % carbohydrate, 12 % lipid and 2% 

HUFA (Le Vay, 1994). Essential vitamins are generally included in artificial 
diets at levels higher than recommended (Kanazawa, 1990). 

Feeding and Digestion 

Larval development is associated with drastic change in digestive morphol- 

ogy and physiology particularly between zoeal (caridean, lobster and crab 
larvae), mysis (penaeids) and metamorphosis. An appropriate artificial diet 

for larval rearing can only be developed when the digestive morphology, 

physiology and feeding behavior of an organism are fully understood. Pe- 

naeid shrimp larvae obtain their food by filtering microalgae from the water 

at protozoeal stages, and capturing zooplankton at mysis and postlarval 

stages. Caridean larvae, however, consume zooplankton directly 24-36 h 

after hatching. Cell size of microalgae used to feed early shrimp larvae are 

generally between 5-20 gm in diameter, whereas the size range of animal 

prey ranges from 70 to 500 pm. Artemia sahna nauplii are the only realistic 

live prey for both penaeid and caridean larvae such as M. rosenbergii until 

their early postlarval stages. Although there is much research on the nutri- 



10 

tional requirements of adults and juveniles (Yonge, 1924; Young, 1959, 
Dall,. 1967; Andrews and Sick, 1972; Shewbart et al., 1973; Barker and 
Gibson,, 1977; Kanazawa et al., 1981,1982, Kanazawa, 1985), little is 

known about the feeding mechanism, digestion, digestive enzymes, assimi- 
lation, gut structure, and nutritional requirement of the larvae of decapods. 

Increasing demand for postlarvae by shrimp industry and the decreasing 

availability of postlarvae from the wild has encouraged investigators to 

concentrate on larval digestive physiology (Factor, 1981; Kanazawa et al., 
1982; 1983; Sasaki et al., 1986; Jones et al., 1979a, b; 1984; 1989; Kur- 

maly, 1989; Abubakr, 1991; Lovett and Felder,, 1990a, b; Abubakr and 
Jones, 1992, Le Vay et al., 1993). 

Recent studies on the digestive system of penaeid and caridean shrimp lar- 

vae have contributed towards the understanding of the digestive physiology 

of these larvae. Mandibles of shrimp larvae are able to crush and masticate 
food particles before the ingestion. During planktonic stages, decapod 

crustacean larvae are chance encounter feeders and need a high density of 
food particles in suspension at all times. Once contact is made the chemical 

and mechanical cues become important, and the larvae either consume or 

reject the particles (Moller et al., 1979; Kurmaly et al., 1990). Penaeid 

shrimp larvae are less selective than caridean and homarid larvae, accepting 
inert particles even at mysis stages unless they contain noxious and toxic 

substances (Kurmaly et al., 1990). 

The digestive system of penaeid shrimp larvae is very simple and lacks a 

gastric mill, and filter apparatus during herbivorous stages. Existence of the 

anterior midgut diverticulae (AMD) along with the small hepatopancreas 

(HP) has been described by Lovett and Felder (1989; 1990c) for P. setif- 

erus and by Abubakr (1991), Abubakr and Jones (1992) for P. japonicus, 

P. monodon, P. kerathurus and P. vannamei. Digestion is conducted by en- 

zymes, released mainly from the AMD rather than the HP during early lar- 
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val development (Abubakr and Jones,, 1992). At mysis stages, the teeth of 
the gastric mill are fully developed and, thus, the larvae become increas- 
ingly carnivorous, retaining food longer and assimilating a higher percent- 
age of energy from their prey (Jones et al., 1993). Although penaeid larvae 

exhibit low assimilation efficiency during herbivoral stages (Kurmaly et al., 
1989a), their survival on microalgae and artificial diets is thought to be due 

to their short gastroevacuation time (GET) and a sufficient amount of di- 

gestive enzymes produced by the AMD (Abubakr, 1991; Abubakr and 
Jones, 1992, Jones et al.,, 1993). 

Caridean shrimp larvae, such as Palaemon elegans and M. rosenbergh, 
however, lack the AMD and hence may have limited digestive capabilities 
during early stages due to an underdeveloped HP between ZI and Z4-5 

(Deru, 1990; Abubakr, 1991). A drastic increase in the HP volume ob- 

served in P. elegans (Abubakr, 1991) and M rosenbergii (Deru, 1990) at 
Z4-5 stages and longer food retention time may increase their digestive ca- 

pability. These carnivorous larvae appear to rely on prey autolysis for di- 

gestion especially during their early stages (Kamarudin et al., 1994). Lob- 

ster larvae (Homarus gammarus) display a high assimilation efficiency on 
live diets, but cannot reach metamorphosis (Kurmaly et al., 1990) on en- 

capsulated diets due to their possibly low level of digestive enzyme secre- 

tion and long GET (Kurmaly et al., 1990; Abubakr, 1991; Jones et al., 

1993). 

Several authors suggest that exogenous enzymes from the prey may con- 

tribute to digestion process of fish or crustacean larvae with poorly devel- 

oped guts (Lauff and Hofer, 1984; Munilla-Moran et al., 1990; Jones et al., 

1993). Studies on digestive enzymes during larval development have con- 

tributed to a better understanding of digestive capability of the organism 

(Biesiot and Capuzzo, 1990; Harms et al., 1991; Kamarudin et al., 1994). 

This knowledge allows the design of formulated diets according to the re- 
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quirement of a particular species (Kamarudin, 1992). Although there are 
numerous investigations on digestive enzymes in adult decapod crustaceans 
(Gates and Travis, 1969; Van Weel, 1970; Hoyle, 1973; Gibson and 
Barker, 1979; Lee et a].,. 1984; Maugle et a]., 1982; Glass et a]., 1989), lar- 

val digestive enzymes have only recently been studied. Trypsin is the domi- 

nant proteolytic enzyme in decapod crustaceans and may be responsible 
from 40-60 % (Galgani et al., 1984; Tsai et al., 1986) of total protein di- 

gestion in penaeid larvae. These larvae show a high trypsin activity during 

protozoeal stages with a maximum level at MI-M2 stages, but the level 

declines through metamorphosis (MacDonald et al., 1989; Kamarudin, 

1992; Kurnlu et al., 1992; Jones et al., 1993; Le Vay et al., 1993). Table 3 

shows larval digestive enzymes of decapod crustaceans studied to date. 

It is generally thought that herbivorous decapods have high levels of carbo- 
hydrases but weak proteases whereas the reverse is true for carnivorous, - 
while omnivorous ones are intermediate, Yonge (1937) found that carnivo- 

rous crustaceans have more active proteases and weak carbohydrases com- 

pared to herbivores, In contrast, Sather (1969) reported that omnivorous 

and herbivorous animals show higher proteolytic enzymes compared to 

carnivorous ones. Degkwitz (1957: cited in Sather, 1969), however, found 

no relation between digestive enzymes and feeding mode of crustaceans. 

Although there are several studies available in the literature for penaeid 

larvae (Galgani and Benyarnin, 1985; MacDonald et al., 1989, Lovett and 

Felder, 1990a, b, Kamarudin, 1992; Kumlu et al., 1992; Le Vay et al., 

1993; Rodriguez et al., 1994), caridean larvae (Van Wormhoudt, 1973,, 

Kamarudin et al., 1994), lobster larvae (Biesiot and Capuzzo, 1990) and 

crab larvae (Harms et al., 1991; Harms et al., 1994), it is not possible to 

compare digestive capabilities of these species as these authors used differ- 

ent culture conditions, different assay methods, and expressed the enzyme 

activity in different units. In this study, International Unit (IU) is used to 
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express trypsin activity of larval decapods per larva or per gg dry weight 
(DW). 

Table 3. Larval digestive enzymes in decapod crustaceans (+ refers present, - absent). 
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Reference 

MacDonald et al., (1989); Kamarudin (1992); Kumlu et al., 
(1992)", Fang and lee (1992) 
Laubier-Bonichon et al., (1977), Galgani and Benyamin (1985); 
Kamarudin (1992); LeVay et al., (1993); Rodriguez et al., (1994) 
Love# and Felder (I 990a, b) 
Mouliac et al., (1992) 
Kamarudin et al., (1994) 
Van Wormhoud (1973) 
Biesiot and Capuzzo (1990) 
Hirche and Anger (1987), Harms et al., (1991) 
Harms et al-, (1994) 

Aims of the present studies 

* Chapter I investigates optimal culture conditions for P. indicus larvae 

fed locally available various algal species in order to establish a control 

treatment prior to further nutritional studies with artificial diets. Three al- 

gal species are compared at different cell densities and combinations on 

larval survival, growth and development of P. indicus. Optimal salinity 

during larval culture is also established. 

e Chapter 2 investigates postlarval salinity tolerance of P. indicus originat- 

ing from India to determine whether this population shows different salinity 

preferences to P. indicus cultured in the Red Sea (Bukhari et al., 1994). 

Optimal culture salinity between (postlarvae 7) PL7 and PL60 is estab- 

lished. 

9 Chapter 3 investigates the use of free-living nematodes as an alternative 

live feed source in the culture of two caridean species, a native prawn P. 

elegans and a freshwater prawn M rosenbergii, and a penaeid species, P. 

indicus, during larval development. Complete replacement of live algae and 

CD 
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Artemia in the culture of P. indicus is demonstrated from PZI to PL 
stages, 

9 Chapter 4 aims to improve nutritional value of the nematode P. redivivus 
in an attempt to obtain larval (P. indicus) growth and development on the 
nematodes comparable to that on live algae and Artemia. The effects of 
astaxanthin and lipid-enriched nematodes are investigated on larval sur- 
vival, growth, development and pigmentation. The effects of different algal 
co-feeds in addition to nematodes are examined on larval performance and 
trypsin activity. 

* Chapter 5 examines the influence of live and artificial diets (MED) on 
growth, survival, development and trypsin activity of P. indicus larvae. 

Total replacement of live algaelArtemia, and the effect of algae included 

MED on larval trypsin activity are also investigated 

* Chapter 6 investigates feeding behavior and digestive capability of two 

caridean species,, P. elegans and M rosenbergii, during larval development. 

The effects of live and artificial diets on growth, survival, gastroevacuation 
time and trypsin activity are also examined. 

* Chapter 7 compares the specific trypsin activity of several decapod 

crustacean species and discusses the possibility of using specific trypsin ac- 

tivity (IU Pg- I larval dry weight) as a tool to describe feeding strategy of 
decapod larvae. ý Larval trypsin activity of H. gammarus, N. norvegicus and 
C. maenas are also examined. 
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GENERAL MATERIALS AND METHODS 

Maturation facilities 

Penaeus indicus broodstock originating from India and reared in Tahiti and 
France, IFREMER for several generations was kept in a black circular 
plastic tank (capacity 6 m'; diameter 2.80; height 1.10 m) situated in a 
tropical conditioned room. The bottom area of the tank was 6.12 M2 , The 

temperature of the room with insulated walls was maintained at 35 'C by 

fan heaters. A controlled photoperiod (IOL: 14D) with artificial fluores- 

cent illumination was applied and water temperature was maintained at 28 

± 0.5 'C by thermo statistically controlled heaters. The water level of the 

tank was kept low (0.60 m) to observe maturation stages of females easily. 
The water of the tank was recirculated through two bio-filters connected 

to the tank by a pump (max. flow: 50 1 min-'). Each bio-filter consisted of 
2 circular transparent plastic columns (diameter 47 cm, height 2 m) filled 

with plastic artificial media to act as a substrate for nitro-bacteria. The sea 

water pumped on top of these bio-filters fell by gravity over these artificial 

media. Air supplied by a blower diffused through a large air stone. Fresh 

sea water was dripped continuously into the tank to change 1/3 of the wa- 

ter of the tank daily. Every morning, wastes, moults and dirt were si- 

phoned out from the bottom of the tank. The pH, nitrate, nitrite, ammonia 

contents of the water were checked by using Tetra Test kits. Initially 12 

males and 6 fernales, of which some features are summarised in Table 1, 

were stocked in the tank. Following any mortality, the dead animals were 

replaced. 

Table 1, Mean weight (g), carapace length (mm), and total length (mm) 

of Penaeus indicus broodstock. 

Males Females 

Mean weight (g) 10.48 ± 1.15 15.15 ± 3.01 

Carapace length (mm) 3.97 ± 0.23 4.60 ± 0,30 

Total length (mm) 10.19 ± 0.41 11.25 ± 0.49 
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Treatment of the animals 
Different ablation techniques, such as making an incision across the eyeball 
and squeezing the contents outwards, pinching the eyestalk, cutting the 
eyestalk, were tested. After a few trials, it was concluded that cutting the 

eyestalk, after it had been tied with a piece of string, results in much better 

success in lowering mortality of females, Therefore, this ablation technique 

was applied commonly for P. indicus females. Males did not need any 
ablation. No application of antibiotics was necessary after the ablation. The 
broodstock animals were fed predominantly on fresh mussel, AlIytilus edulis, 
lugworm (Arenicola marina), and chopped squid in excess. Mussels were 

opened, cleaned and given with their shells everyday. The remaining of the 
food was siphoned out everyday or sometimes twice a day. 

Description of the hatchery procedures 

P. indicus females were normally staged on a daily basis. Ovaries were 

checked during late afternoon by a flash light to outline their stage of matu- 

ration. Females ready to spawn was removed to a black 100-1 spawning tank 

supplied with a heater and gentle aeration (28 'C and 33.5 ppt). The tank 

was left undisturbed until the next morning. The female (spawned or not) 

was returned to the maturation -mating tank. 

Spawning Treatments 

Viability of the eggs was evaluated under a light microscope and their num- 

ber was estimated. After hatching, 50% of the water was renewed with fil- 

tered (0.2 [im) and UV-irradiated sea water. Once the larvae developed 

through the sixth nauplius (N6) stages to protozoea I (PZI), a 80 gm mesh 

was used to lower the water of the spawning tank to 10 cm water depth. 

Remaining water was siphoned through 350 gm mesh to eliminate large fae- 

cal matter and other wastes. The larvae were rinsed in the filtered and UV- 

treated sea water and generally treated with an antibiotic (furazolidone) at 

0.2 ppm before being used in feeding experiments. 
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Trypsin Analysis 

Whole homogenates were used in the enzyme assays; the larvae were ho- 

mogenised in a glass tissue grinder with tris buffer (46 mM: pH = 8.1; 11.5 

mM CaC12), which was prepared according to the method of Rick (1974). 

The homogenised samples were centrifuged for 5 min at 12000 rpm at room 
temperature. Two replicates for each treatment and triplicate assays for 

each sample were conducted and used for calculations. Trypsin-like enzyme 

activity was assayed by using 10 mM Ncc-p- Toluenosulfonyl- L-Arginine 

Methyl Ester (TAME) at pH 8.1, and 25 'C (Rick, 1974). Different 

amounts of substrate and buffer solutions, depending on the stage of the 

larvae, were equilibrated at 25 'C in 1.5 ml micro test tubes. Following the 

addition of the sample, the mixture was transferred to aI cm path length 

quartz cuvette, placed in a thermostatically controlled holder at 25 'C. 

Changes in absorbance at 247 nm were measured every 6s for 180 s by a 

Hewlett Packard 8452A Diode Array sp ectro photometer. Trypsin activity 

in the sample was calculated as follow: 

Sample vol. x Assay vol. 
Total trypsin =x 8Abs/8t 

activity Sample vol. x c: xd 
in assay 

c= = Extinction coefficient (0,54 gmole-1 for TAME) 
Abs = Absorbance, 
t time (min) 
d Path length (cm) 

Total enzyme level is divided by the number of the larvae to give total 

trypsin activity in International Unit (IU) larva-'. Specific trypsin activity 

(IU pg-' dry weight) is found by dividing the enzyme level to individual lar- 

val body dry weight (DW). One IU is equivalent to one gmole of substrate 

hydrolysed in one minute. 
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Determination of larval body dry weight 

Larval samples were washed in distilled water and dried on pre-weighed 

fine meshes in an oven at 60 'C for 24-36 h. After cooling in a desiccator 

for 1-1.5 h, the samples (two replicates for each stage) were weighed on a 

microbalance (CAITN-3 1). 
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INTRODUCTION 

It has been possible to close the life cycle in captivity for Penaeus indicus 

with stock originating from India now bred through several generations in 

partial recirculation systems in the School of Ocean Sciences, Gwynedd 
Menai Bridge, UK. This disease free stock presents an ideal opportunity for 
larval nutritional research and genetic studies as it is possible to produce 
disease free larvae at regular intervals throughout the year. Present work 
describes the optimisation of larval culture for this disease free stock using 
live feeds. 

Penaeid larvae are generally cultured on live unicellular algae during proto- 

zoeal stages and animal prey are added along with the algal feeds during 

mysis and early postlarval stages (Hudinaga, 1942; Cook and Murphy, 

1969). Several species of algae such as the phytoflagellates Tetraselmis sp. 
(Hudinaga, 1942; Samocha and Lewinsohn, 1977; Kurmaly et al., 1989a) 

and Isochrysis sp. (Aquacop, 1984), diatoms Skeletonema sp. (YUfera et 

al., 1984; Preston, 1985b), Thalassiosira sp. (Emmerson, 1984; Kuban et 

al.,, 1985) and Chaetoceros sp. (Tobias-Quinitio and Villegas, 1982, Aqua- 

cop, 1984; Kuban et al., 1985) have been reported to be adequate as food 

for penaeid larvae. Some authors such as Griffith et al., (1973) state that 

phytoflagellates sustain better larval growth and survival than the diatoms, 

while others such as Tobias-Quinitio and Villegas, (1982); Aujero et al., 

(1983) report that diatoms are better live feeds for rearing penaeid larvae. 

These contradictory results were attributed to cell size and different nutri- 

tional contents of microalgal species (Aujero et al., 1983). Hence, pe- 

naeid larvae are generally cultured on mixed algal feeds to eliminate poor 

survival and growth rates resulting from possible nutritional deficiencies in 

single algal species. While some penaeid species such as P. vannamei were 

grown on mixed diatom algal species of Skeletoneina / Chaetoceros suc- 

cessfully (Kuban et al., 1985), others such as P. monodon larvae were cul- 
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tured on mixed flagellate species of Tetraselmis chuhl Rhinomonas reticu- 
lata (Kurmaly et al., 1989a). Of the live animal prey used as food during 

mysis and PL stages in penaeid larviculture, freshly hatched Artemia nauplii 
are the most widely used species. In some cases other live zooplankters 
such as the rotifer Brachionus plicatilis (Emmerson, 1984; YUfera et al., 
1984) and the nematode Panagrellus redivivus (Samocha and Lewinsohn, 
1977; Wilkenfeld et al.,, 1984) are used as live feeds to culture penaeid lar- 

vae during mysis stages. A number of investigations have concentrated on 
finding the best algal food sources and the larval stage at which animal prey 

should be offered to penaeid larvae (Gopalakrishnan, 1976; Kuban et al., 
1985). 

Larval cultures of Penaeus indicus have received considerably less atten- 

tion compared to other commercially important penaeid species. Larvae of 

this species have been cultured successfully on various single algal species, 

such as Thalassiosira weissflogii (Emmerson, 1980), and on mixed algal 
diets, such as Chaetoceros gracilis, Platymonas sp., and Isochrysis aff. 

galbana, and Artemia sahna nauplii after PZ3 stage (Galgani and Aquacop, 

1988). Aquacop (1983) suggests the use of mixed algae Isochr sis and Y 

Chaetoceros in rearing P. indicus larvae. The optimal cell concentration for 

growth and survival of penaeid larvae varies with larval developmental 

stages and cell size of algal species used. Emmerson (1980) obtained 96 % 

survival to PLI when he maintained algal cell density of T weissflogii at 7 

cells [tl-' between PZI and PZ3 stages. Aquacop (1983) recommends 100 

cells pl-1 of the mixed algae of Chaetoceros (20 %) and Isochrysis (80 %) 

between PZI and PZ3 stages. Galgani and Aquacop (1988) report that algal 

cell density of 30-40 cells pl-' of C. gracilis, Platymonas sp., and Isochry- 

sis aff. gaIbana was adequate to rear P. indicus larvae during protozoeal 

stages. Emmerson and Andrews (1981) studied the effect of stocking den- 

sity on the growth, survival and development of P. indicus and concluded 

that levels decrease with increasing larval stocking density. 
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Preliminary experiments with P. indicus larvae obtained at the School of 
Ocean Sciences, Menai Bridge, UK, have shown that mixed algae (T chwil 
R. reticulata) which has been used successfully to rear P. monodon 
(Kurmaly et al., 1989a, Amjad, 1990, Kumlu et al.,, 1992) at cell density of 
45-50 cells [tl-' is not suitable for culturing P. indicus. Hence, in the pres- 
ent work, evaluation of live diets was conducted to determine the best diet 

to promote high survival and rapid growth for this larval species so that it 

can be used as a control diet for further nutritional studies with this pe- 
naeid. In the first experiment, Tetraselmis chuii, Rhinomonas reficulata 
and Skeletonema costatum were tested singly and in combinations from 10 

to 50 cells gl-, from PZ1 to PLI stage. In the second experiment, the best 

algal feeds were selected and algal cell concentration was increased from 

50 to 80 cells gl_1 as the first experiment showed that optimal algal cell 

concentration was in the higher range. The third experiment investigated 

the possibility of eliminating algae totally during the culture of mysis 

stages. A fourth experiment was conducted to assess the effect of four sa- 
linities (from 20 to 35 ppt) on larval survival and growth of P. indicus. In 

all experiments larvae were fed on algal feeds (protozoeal stages) plus five 

Artemia nauplii ml-' after stage PZ3/M1 (mysis and postlarval stages). The 

fifth experiment investigated possible reasons as to why R. reticulata is not 

a suitable live feed alone or in combination with other algae as food for P. 

indicus larvae. The primary aim of this study was simply to ascertain the 

best of the available algal species and cell concentrations together with op- 

timum environmental conditions that promote maximum larval growth and 

survival in P. indicus. 

MATERIAL AND METHODS 

Experiment I 

P. indicus larvae were obtained from broodstock, originating from India, 

kept in the School of Ocean Sciences (see General Material and Methods). 
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Gravid females were spawned in 100-1 tanks in filtered (0.2 gm) and U/V 
irradiated sea water, Following the non-feeding nauplius stages, PZI 
(protozoea 1) larvae were stocked in filtered and U/V treated sea water at 
33.5 ppt salinity in 2-litre round bottom glass flasks in a water bath at 28 
'C. Live monospecific algal cultures of three species5 T chuii (Butcher), S. 

costatum (Greville) and R. reficulata (Lucas), grown in a semi-continuous 
culture as described by Walne (1966), were fed to P. indicus larvae singly 
and in combinations (50 % from each algal species) at cell densities of be- 

tween 10,, 20ýp 30,40 and 50 cells pl-' day-'. Algal diets used in the experi- 

ment were; 

(1) 
(2) 

(3) 

(4) 

(5) 

(6) 

T chuii, 
S. costatum, 

R. reticulata, 

T chuii S. costatum (1: 1), 

T chuii R. reticulata (1: 1), 

R. reticulata / S. costatum (1: 1). 

A portable laboratory Quantum Scalar Irradiance Meter (Model QSL-100) 

was used to measure the light intensity of the culture room where all the 

following experiments in this thesis were conducted. Algal cultures were 

maintained in the exponential growth phase and Conway Medium was used 

as a source of nutrients (Walne, 1966). Everyday algal cell densities were 

estimated using a haemocytometer and a Coulter Counter (Model ZB: 

Coulter Electronics) both in the algal culture medium and larval culture 

flasks to maintain desired experimental algal cell densities. Tables I and 2 

give description and nutritional contents of the algal species used in the 

present experiments. Complete water changes were carried out every other 

day when 10-15 larvae were measured under a binocular microscope from 

tip of the rostrum to the end of the tail (total length = TL), counted using 

glass pipettes and staged according to Silas et al., (1978). Five newly 

hatched (at 28 'C and 34 ppt for 24 h) Artemia nauplii (INVE AQUACUL- 
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TURE, Belgium) ml-' were fed to the larvae along with the algal feeds from 
PZ3/MI onwards. Larval growth and survival were assessed from two rep- 
licates from PZI to PL stages. 

Table 1. Microalgal species and their nutritional contents (obtained from Kurmaly 
et al., 1989a) used in the present experiments. 

Species Cell size Description Protein Carbohydrate Lipid Ash 

(RM) (%) (%) (%) (%) 
Tetraselmis 
chuii 10-15 Flagellate 48.80 24.70 4.3 22.2 

Skeletonema 
costatum 8-10 Diatom 33.30 22.60 8.1 36.0 

Rhinomonas 
reticulata 8-10 Flagellate 52.00 33.70 4.3 4.3 

Experiment 2 

The first experiment showed that optimal cell density for P. indicus was 
higher than the range (10-50 cells [d) tested. Hence, higher cell densities 

of 50,. 601.70 and 80 gl-I day-' of mixed algae T chuii / S. costatum and S. 

costatum singly were tested on growth and survival in this experiment. Cell 

density of T chuii was kept constant at 25 cells gl-' in the mixed diets 

whilst cell density of S. costatum was changed between 25 to 55 cells gl- 

All other experimental procedures were identical to the first experiment. 

Experiment 3 

The effect of algae, along with live Artemia, on growth and survival of 

mysis stages of P. indicus was investigated in this experiment. For this 

purpose the PZ3/MI larvae, previously reared on live mixed algae (25 cells 
1 -1 C-1 

pl T. chuii and 35 cells pl S. Costatum), were stocked in 2-1 experimental 

round bottom glass flasks at a density of 75 larvae 1-1. Larvae were fed on 

three feeding regimes of mixed algae, mixed algae plus five Artemia ml-1, 

and five Artemia ml-I only from PZ3/MI to PL stages. Algal cell density 
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was increased from 60 cells pl-I (Z3/Ml) to 70 (M2/M3) and finally 80 cells 
gl- 

I (PLI) by increasing the cell density of S. costatum to ensure that there 
was sufficient amount of food in the culture medium at all time without 
causing larval fouling. Complete water changes of the flasks were per- 
formed everyday when staging, growth and survival measurements were 
performed from two replicates for each feeding regime. Rearing water was 
maintained at 25 ppt salinity (S), which was found to be optimal during lar- 

val culture of P. indicus (see Experiment 4), by mixing the filtered and UV- 

treated sea water with distilled water. 

Experiment 4 

The effect of salinity (20,25,30 and 35 ppt) on growth and survival of P. 

indicus was investigated from PZI to PL stages in this experiment. Dis- 

tilled water was used to reduce salinity of local sea water (filtered to 0.2 

gm and U/V irradiated) to test salinities of 20,25 and 30 ppt. Aquarium 

salt "Instant Ocean" (Aquarium systems) was added into the local sea wa- 

ter (33.5 ppt) to obtain 35 ppt saline water. Survival and growth were as- 

sessed from two replicates every other day. Larvae were stocked at a den- 

sity of 100 individuals 1-' and fed on mixed algae (25 cells gl-' of T chuii 

and 35 cells pl-, of S. costatum) and five Arlemia ml-, from PZ3/M1 on- 

wards. 

Experiment 5 

This experiment was conducted to test again the suitability of the red algae 

R. reticulata as food for P. indicus larvae. Growth and survival of the lar- 

vae were assessed from two replicates in 2-1 flasks on R. reticulata at 50 

cells gl-1 and mixed algae T chuii IS. costatum as control at 60 cells gl_1 

from PZ1 to PZ3/Ml stages. PZI stage larvae were also starved in two 

flasks to determine how long they could survive without food. Two 2-1 

flasks were also set up without larvae to determine settlement rate of the 

cells of R. reticulata (50 cells pl-1) over a 24 h period. Algal cell concen- 
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tration was determined using a Coulter Counter (Model ZB) and a haemo- 

cytometer respectively. Larval rearing sea water was maintained at 28 'C 

and 25 ppt by mixing filtered and UV-irradiated sea water with distilled 

water, Culture water was exchanged completely every day when the larvae 

were measured for total length and counted. Larvae were observed con- 
tinuously to ascertain whether they were ingesting and digesting the algae 
by examining the gut and faeces under a microscope at each protozoeal 
stages. 

Statistical analysis 
In the first and second preliminary experiments, since survival and growth 
data did not fit in the general linear model (GLM in Minitab), larval sur- 

vival and growth by algal feeds at various algal cell concentrations (10-50 

cells [tl-' and 50-80 cells gl_') were analysed by two-way analysis of vari- 

ance (two-way ANOVA) together with one-way ANOVA separately for 

algal species and cell concentrations at PZ3/M1 and PLI stages. Appropri- 

ate multiple pairwise comparison tests (Tukey's for equal sample sizes and 

SchefWs method for unequal sample sizes) were performed to determine 

any significant effects (P :! ý 0.05) of the treatments on larval growth and 

survival. Before the statistical analysis, data was checked for normality and 

homogeneity of variances using Bartlett's Box test (Sokal and Rholf, 1981) 

using Minitab. Linear regression lines of the data from third, fourth and 

fifth experiments were compared by the method of two-way ANOVA with 

days as a covariate, after linearity of the data was examined by residual 

plots from regression analysis, to determine any significant effect of treat- 

ments on larval growth rates and survival rates between PZ1 and PLI 

stages. Increase in total length (growth rate mm day-) and decrease in 

survival (slope of each treatment), which was expressed as mortality rates 

(% day-'), were derived from the output of the analysis and given in each 

ANOVA table. All statistical analyses were conducted using the facilities in 

Minitab statistical software. 
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Table 2. Percentage fatty acid composition of microalgae used in the 
present experiments to feed P. indicus larvae. (Data obtained from 
Kurmaly et al., 1989a). 

Flagellates 

Saturates 
12: 0 
14: 0 
15: 0 
16: 0 
17: 0 
18: 0 
20: 0 
22: 0 

T chuh R. reticulata 

4.0 

26.0 

4.9 

11.0 

24: 0 

0.5 
1.3 

.......... ............... ...... ........ - .......... ....... ............................ --- .......... ......... ........ 
sum % 30,0 15.9 30.9 

............................................ ....................................... ....................................... ................................ Monounsaturates I 
16: 1 (o)-10) 
16: 1 ((o-9) 0.7 
16: 1 7) 0.6 
16: 1 5) 
16: 1 (a)-13) t 
18: 1 (e)-10) 
18: 1 (o)-9) 11.5 
18: 1 ((o-7) 4.3 

Diatom 

: costatum 

19.7 
0.5 

10.7 

32.6 

3.9 1.7 
3.2 1.2 

................. ....................................... .................. .................... 
................ 

sum % 17.1 8.9 35. 
............................................ ...................................................................................................................... Polyunsaturates 
16: 2 (o)-7) 
16: 2 (o) - 6) 
16: 2 (w-4) 
16: 3 (co - 6) 
16- 3 ((o-4) 
16,3 (m-3) 
16: 4 (o)-3) 
16: 4 ((L)-1) 

? 
14.2 11.5 

2.6 1911.7 18: 3 (co - 6) 
23.1 16.5 18: 3 (w-3) 

17.3 18: 4 (o)-3) 9.5 
0.4 2 0: 1 (o) - 9) 0.7 

0.4 3.0 2 0: 4 (o) - 6) 
20: 4 ((o-3) 

3.4 11.6 20: 5 
0.2 

1.1 
0.2 
0.9 
4.4 

0.2 

22.9 

I "J II 
'I N U. I 

11. c (t. _c; 
-- 

2.9 7.6 22: 6 (ü)-3) ........... . ................................................. ........... . ......................... ................. ......................... 51.2 73.6 32.6 
1.0 1.7 1.6 Others 100 Total 100 100 
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RESULTS 

Experiment I 

(a) Larval growth and survival (PZI-PZ3/Ml) 
Survival and growth of P. indicus larvae fed various algal feeds at different 

cell densities (10-50 cells [&') are given in Tables 3a and 3b. Since cell 
densities of 10 and 20 cells gl-' did not support survival and growth to 
PZ3/Ml stages, only the algal feeds at cell densities of between 30 and 50 

cells gl-1 were compared statistically by two-way ANOVA. Figures la, b 

and Tables 5a and 9a show that there were significant effects of algal feeds 

and cell densities (30-50 cells ýtl_') on larval survival and growth at PZ3/ 

MI stages (P<0.001). Highest survival (63 %) and best growth (3.72 mm 
TL) were achieved with the mixed algae (T chiM / S. costatum, 1'. 1) at 
P<0,05 (Table 5b and 9b). Larval growth obtained from the flagellate, T. 

chuii (2.71 mm TL), was significantly inferior to that obtained from the 

diatorn, Y. costatum (3,26 mm TL) (Table 9b). 

Multiple pairwise comparison tests (Tables 5b, c and Tables 9b, c) show 

that higher growth and survival were supported as algal cell concentrations 

increased from 30 to 50 cells [tl-'. Highest growth and survival were ob- 

tained when the larvae were fed at 50 cells ý&' whereas the lowest growth 

and survival were supported by 30 cells [&'. Since there were significant 

interactions between algal feeds and cell concentrations on larval growth 

and survival (Tables 5a and 9a), further one-way analysis of variances were 

performed to determine the effects of algal diet and cell concentrations in- 

dependently on larval survival (Tables 6-8) and growth (Tables 10- 12). 

10 cells jul-' 
Regardless of the species of algae tested, 10 cells pI of single or even 

mixed algal diet did not promote survival further than stage PZI. In all 
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cases larval mortality was total by the third day of the experiment (see Ta- 
bles 3 a. b). 

20 cells af 

Larvae fed either T. chuii or S. costatum survived until the 4th day of the 

experiment developing into PZ2 stage whereas R. reticulata fed larvae died 

on day 2 without moulting into PZ2 stage. Among the mixed algal feeds 

only T chuii / S. costatum supported larval growth (2.58 mm TL) and sur- 

vival (28 %) until PZ3/MI stage. Other mixed algal diets did not support 

growth and survival further than PZI stage at this algal cell concentration 
(Tables 3a, b). 

30 cells Wl 

Among single algal feeds, T chuii and S. costatum supported larval growth 

and survival until PZ3/Ml,. whereas R. reticulata fed larvae died on day 2. 

This alga in combination with T. chuji and/or S. costatum did not promote 

survival and growth beyond day 2. As shown in Figures la, b significant 

differences (P<0.001) were found between algal feeds at 30 cells PI-I using 

one-way ANOVA on larval survival and growth at PZ3/Ml stages (Tables 

6a, 10a). Multiple pairwise comparison tests (Tables 6b, 10b) show that 

mixed algae (T chuii / S. costatum) gave significantly better survival (50.5 

%) and growth (3.14 mm TL) than S. costatum (14%, 2.59 mm TL) and T. 

chuii singly (15%, 2.54 mm TL) at this cell density. There was no signifi- 

cant difference between growth and survival of larvae fed on the single al- 

gal feeds (P>0.05). 

40 cells Id' 

Among algal species, only R. reticulata did not support larval survival and 

growth of P. indicus at 40 cells gl-'beyond PZI stage. Combination of this 

alga with S. costatum (1: 1) promoted 19.73% survival until day 4, but only 

one larva developed into PZ3 stage at this cell density. One-way analysis of 

variance shows significant differences in larval growth (P<0.001) and sur- 
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vival at this cell density (P<0.05) (see Figures la, b and Tables 7a and 
II a). Highest larval growth and survival at PZ3/M I stages were attained on 
the mixed algae (3.69 mm TL, 59%) whereas the lowest were obtained 
from those fed on T. chuji singly (2.71 mm TL, 39%). There was no sig- 
nificant difference (P>0.05) between larval survival promoted by S. costa- 
tum (40 %) and T. chuii (39 %) at PZ3/MI stages (Table 7b). However, 
larval lengths were significantly (P<0.05) greater on the diatom (3.34 mm) 
than the flagellate (2.71 mm TL) (Table I 1b). 

50 cellsgl-, 
Highest larval survival (80 %) (see Figure Ia and Tables 8a, b) and growth 
(4.08 mm TL) (Figure Ib and Tables 12a, b) were again supported by the 

mixed algal feed (T chuii / S. costatum) at this highest cell concentration 

tested in the present experiment. Although larval survival was higher on S. 

costatum,, no significant difference was found between larval survivals sup- 

ported by the two single algal species (P>0.05). Total length of larvae fed 

S. costatum,, however, was significantly greater (3.92 mm) than those fed 

T chuii (3.59 mm). When P. indicus larvae were fed R. reficulata at a cell 

density of 50 cells gl-1,23 % of the larvae developed into PZ2/PZ3 stages, 

but never reached MI stage. This algal species in combination with S. co- 

statum supported 10.5 % survival until PZ3/MI stages (Tables 3a, b). T 

chuij / R. reticulata mixed algae fed larvae died on day 4 (PZ2 stage). 
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stages, they are not included in the figure. Each bar represents a mean ± s. d. 
(n=2). Each replicate contains measurements of 10-13 larvae for growth. 
Treatments marked with different superscripts are significantly different 
(P<0.05). 
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(b) Larval growth and survival (MI-PLI) 

Regardless of the algal cell concentrations tested,, R. reticulata either in 

combination with other algal species (except with S. costatum) or alone did 

not support larval survival beyond PZ3/MI stage (Tables 3-4). Hence, sta- 
tistical analyses were only conducted on larval survival and growth ob- 
tained by using the algal feeds which promoted survival until PLI at cell 
densities between 30 and 50 cells gl-'. P. indicus larvae were fed five newly 
hatched Artemia ml-' together with test algal feeds between MI to PLI 

stages. Two-way ANOVA results on larval survival (Table 13a) indicate 

that there was no significant interaction between algal feeds and cell con- 

centrations on larval survival from MI to PLI. Hence, no further statistical 

analysis was carried out for the effect of cell densities and/ or algal feeds 

independently on larval survival at these stages. However, it was necessary 

to perform one-way analysis of variances separately for algal feeds and cell 

concentrations following two-way ANOVA (Table 14a) as there was sig- 

nificant interaction between algal feeds and cell concentrations on larval 

growth at PLI stage (P<0.001). 

Figures 2a and 2b show that highest mean larval survival (59 %) and larval 

growth (5.34 mm TL) at cell densities from 30-50 cells ýtl_' was promoted 

by the mixed algae (T. chuii / S. costatum) plus five Artemia ml -1 (P<0.05) 

between MI and PLI stage (Tables 13b and 14b). There was no significant 

difference (P>0.05) between mean larval survival and larval growth sup- 

ported by T chuii and S. costalum as single diets (Tables 13b, 14b). In- 

crease in algal cell densities from 30 to 40 and 50 cells gl-' increased larval 

survival and larval growth from 20 %, 4.81 mm TL to 37 %, 5.04 min TL, 

and 48 %, 5.32 mm TL respectively (P<0.05) (see Tables 13c and 14 c). 

30 cells p -1 

Any significant difference in larval survival and growth on this algal cell 

concentration is summarised in Figures 2a, b. Following two-way ANOVA, 
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further analysis of variance (one-way ANOVA) on larval growth at 30 cells 
pl- I indicates that highest larval growth at PLI (5.05 mm TL) was sup- 
ported by the mixed algae (T. chuii / S. costatum) and Artemia (Tables 15a, 
b). There was no significant (P<0.05) difference between larval growth or 
survival promoted by different single algal diets plus Artemia (see Figures 
2a, b). As shown in Figure 2a, the highest larval survival (45 %) at PLI 

was obtained from the mixed algal diet plus five Artemia ml-1 (P<0.05). 

40 cells Id-, 
Figure 2b shows that the mixed algae (T chuji / S. costatum) gave better 

larval growth (5.33 mm TL) than T. chuii (4.82 mm TL) or S. costatum 
(4.96 mm TL) alone at 40 cells [tl-' at PLI stage (Tables l6a, b). Mean 

growth attained by larvae fed T. chuii was significantly smaller (P>0.05) 

than those fed S. costatum until PLI stage. Figure 2a demonstrates that 

larvae fed the mixed algae showed significantly higher survival (55 %) than 

those fed either of the single algal species (see also Table 4a). There was 

no significant difference between survival of the larvae fed either of the 

single algal species (Figure 2a). 

50 cells 4al", - 

-1 (5.65 mm TL) was again attained Highest larval growth at 50 cells [tl on 

the mixed algae (T. chuii / S. costatum) (see Figure 2b and Tables 17a, b). 

Figure 2a shows that larvae fed the mixed algae had significantly higher 

survival (77 %) than those fed S. costatum (42 %) and T chuii (27 %) 

alone. Scheff6's multiple pairwise comparison test (Table l7b) shows that 

the effect of single algal species on larval growth did not differ significantly 

from each other (P>0.05). Survival of larvae fed S. costatum between MI 

and PLI along with Artemia was also not significantly higher than that of 

T chuii. Table 13c shows that larval survival at this cell concentration was 

significantly better than the larvae fed on either 30 or 40 cells gl-' 

(P<0.05). 
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a) Survival and growth (PZ1-PZ3/Ml) 

Denotes pairs of groups significantly different (P:! ý 0.001). 
Denotes pairs of groups significantly different (P:! ý 0.01). 
Denotes pairs of groups significantly different (P:! ý 0.05). 

(Ns) Indicates a non-significant difference (P>0.05). 

Table 5a. Two-way ANOVA on survival from PZI to PZ3IMI stages by algal feeds and cell 
concentrations. 

Source DF SS ms Fp Signifl- 
cant 

Algae 2 38.72.86 1936.43 199.18 0.000 

Cells 2 2708.11 1354.06 139.27 0.000 

Algae*Cells 4 254.97 63,74 6.56 0.009 

Error 9 87.50 9.72 

Total 17 6923.44 

** 

Table 5b. Tukey's pairwise comparison test on larval survival from PZI to PZ3/MI on three 
different live algal diets. 

Algal feeds Code Means Test diffinean low ci up_ ci Signifi- 
(%) cant 

T chuii Tc 29.75 Tc-Sc 4.833 -9.861 0.195 Ns 

S. costatum Sc 34.58 Tc/Sc-Tc -33.250 -38.278 -28.223 

T. chuii IS. Tc/Sc 63.00 Tc/Sc-Sc -28.417 -33.445 -23.390 
costatum 

Table 5c. Tukey's pairwise comparison test on larval survival from PZI to PZ3/MI on three cell 
concentrations (30-50 cells gl-1 ). 

Code Cells Means Test diffinean low ci up ci 

A 30 cells 26.50 A-B -18.000 -23.028 -12.973 

B 40 cells 44.50 A-C -29.833 -34.861 -24.806 

C 50 cells 56.33 B-C -11.833 -16.861 -6.806 

Table 6a. One-way ANOVA on larval survival (PZI-PZ3/Ml) by algal 
feeds at cell concentration of 30 cells W-1. 

Source DF SS ms Fp Sigmficant 

Cells 2 1729.00 864.50 178.86 0.001 

Effor 3 14.50 4.83 

Total 5 1743.50 

Signifi- 
cant 

* 

* 

Bartlett's test for homogeneity of variances 
F=0.312, P=0-14 
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Table 6b. Tukey's pairwise comparison test on larval survival (PZI-PZ3/ 
MI) bY algal feeds at cell concentration of 30 cells pl-1. 

Mean Algal feeds Code Tc Sc Tc/Sc 

15.00 T. chuii TC 
14.00 S. costatum Sc 
50.50 T chuii / Tc/Sc 

S. costatum 

NS 
* 

Table 7a. One-way ANOVA on larval survival (PZ I -PZ3/M I) by algal feeds 
at cell concentration of 40 cells gl-'. 

Source DF SS ms Fp Significant 

Cells 2 508.0 254.0 18.36 0.021 

Effor 3 41.5 13.8 

Total 5 549.5 

Bartlett's test for homogeneity of variances 
F=0.452, P=0.45 

* 

Table 7b. Tukey's pairwise comparison test on larval survival (PZI- 
PZ3/Ml) by algal feeds at cell concentration of 40 cells gl-1. 

Mean Algae Code Tc Sc Tc/Sc 

38.50 T. chuii Te 
39.50 S. costatum Sc : NS 
58.50 T. chuii Tc/Sc 

S. costatum 

Table 8a. One-way ANOVA on larval survival (PZ I -PZ3/M I) by algal feeds 
at cell concentration of 50 cells g1-1. 

Source DF SS ms Fp Significant 

Cells 2 1771.6 885.8 57.46 0.004 

Error 3 46.2 15.4 

Total 5 1817.8 

Bartlett's test for homogeneity of variances 
F=0,329, P=0.15 

** 

Table 8b. Tukey's pairwise comparison test on larval survival (PZ I -PZ3 
/Ml) by algal feeds at cell concentration of 50 cells Rl-'. 

Mean Algae Code Tc SC TO& 

39.00 T chuii TC 
50.25 S. costatum Sc : NS 
79.75 T. chuii Tc/Sc 

S. costatum 
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Table 9a. Two-way ANOVA on growth of P. indicus larvae reared on T chuii (Tc) /S costatum (Sc), Tc and Sc singly (30,40 and 50 cells gl-1) from PZI to PZ3/MI stages. 

Source DF Seq SS Adj SS Adj MS Fp Signifi- 
cant 

Algae 2 30.9455 30.2768 15.1384 618.56 0.000 
Cells 2 24.7998 24.7501 12.3751 505.65 0.000 
Algae*Cells 4 5.5059 5.5059 1.3765 56.24 0.000 
Error 170 4.1605 4.1605 0.0245 
Total 178 65.4117 

Table 9b. ScheM's pairwise comparison test on larval growth by algal species (PZI-PZ3/Ml). 

Algal feeds Code Means Test diffinean SE low-ci up-ci Signifi- 
(mm) cant 

T chuii Tc 2.706 Tc-Sc -0.555 0.0287 -0.626 -0.484 

S. costatum Sc 3.261 Tc-Tc/Sc -1.013 0.0288 -1.084 -0.942 

T. chuii /S. Tc/Sc 3.719 Tc/Sc-Sc -0.458 0.0284 -0.528 -0.388 
costatum 

* 

* 

* 

Table 9c. Scheffd's pairwise comparison test on larval growth (PZI-PZ3/Ml) by cell concentra- 
tions (30-50 cells gl 

Code Cells Means Test difrrnean SE low-ci up__pi Signifi- 
(pi-I ) (mm) cant 

A 30 cells 2.771 A-B -0.463 0.029 -0.534 -0.392 
B 40 cells 3.234 A-C -0.909 0.029 -0.979 -0.838 
C 50 cells 3.680 B-C -0.446 0.029 -0.517 -0.375 

Table 10a. One-way ANOVA on larval growth (PZI-PZ3/1\41) by algal feeds at cell 
density of 30 cells gl-'. 

SOURCE DF ss ms Fp Signifi- 
cant 

Algae 2 4.0785 2.0393 156.91 0.000 
Error 57 0.7408 0.0130 
Total 59 4.8193 

Bartlett's test for homogeneity of variance 
F=4.832, P-- 0.92 

Table 10b. Scheffd's pairwise comparison test on larval growth (PZI-PZ3/Ml) by 

algal feeds at 30 cells PI 

Mean Algal feeds Code Tc Sc Tc/Sc 

2.542 T chuii Tc 
2.591 S. costatum Sc : NS 

3.138 T. chuii Tc/Sc 
S. costatum 

* 
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Table Ila. One-way ANOVA on larval growth (PZI-PZ3/Ml) by algal feeds at cell 
concentration of 40 cells pl-1. 

SOURCE DF SS ms Fp Sipifi- 
cant 

Algae 2 9.7071 4.8536 263.15 0.000 
Error 57 1.0513 0.0184 

Total 59 10.7584 

Bartlett's test for homogeneity of variance 
F=3.532, P=0.83 

Table I lb. Scheffd's pairwise comparison test on larval growth (PZI-PZ3/Ml) 
by algal feeds at cell density of 40 cells gl-1. 

Mean Algal feeds Code Tc Sc Tc/Sc 
(mm) 
2.712 T chuii Tc 

3.334 S. costatum Sc 

3.694 T chuii / Tc/Sc 
S. costatum 

* 

** 

Table 12a. One-way ANOVA on larval growth (PZI-PZ3/Ml) by algal feeds at cell 
concentration of 50 cells gl-'. 

SOURCE DF SS ms Fp Significant 

Algae 2 2.4251 1.2126 82.42 0.000 

Error 57 0.8386 0.0147 

Total 59 3.2638 

Bartlett's test for homogeneity of variances 
F=2.499, P=0.71 

Table l2b. Scheffd's pairwise comparison test on larval growth (PZI-PZ3/Ml) by 
algal feeds at cell concentration of 50 cells gl-1. 

Mean Algal feeds Code Tc Sc Tc/Sc 

(mm) 
3.591 T chuii Tc 

3.924 S. costatum Sc 

4.081 T. chuii / Tc/Sc 
S. costatum 

* 

** 
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Survival and growth (Ml-PLI) 

Denotes pairs of groups significantly different (P:! ý 0.001). 
Denotes pairs of groups significantly different (P :! ý 0.0 1). 
Denotes pairs of groups significantly different (P:! ý 0.05). 

(Ns) Indicates a non-significant difference (P>0.05). 

Table 13a. Two-way ANOVA on larval survival at PL I stage by algal species and cell 
concentrations plus five A rtemia n-d-1. 

Source DF ss ms Fp Signifi- 
cant 

Algae 2 5081.19 2540.60 111.74 0.000 

Cells 2 2.375.36 1187.68 52.24 0.000 

Algae*Cells 4 311.72 77.93 3.43 0.058 Ns 

Error 9 204.63 22.74 

Total 17 7972.90 

Table 13b. Tukey's pairwise, comparison test on larval survival (PL I) by three live algal 
feeds with five Artemia ml-1. 

Algal feeds Code Means Test diffinean low-ci up-cl Signifi- 
(%) cant 

T chuii Tc 20.50 Tc-Sc -5.75 -13.440 1.940 Ns 

S. costatum Sc 26.25 Tc-Tc/Sc -38.167 45.856 -30.478 
T chuii / Tc/Sc 58.67 Sc-Tc/Sc -32.417 40.107 -24.727 
S. costatum 

Table 13c. Tukey's pairwise comparison test on larval survival (PLI by algal cell 
concentrations with five Artemia ml-1. 

Code Cells Means Test diffinean low-ci 
(pl-, ) (0/0) 

A 30 cells 20.33 A-B -16.417 -24.407 
B 40 cells 36.78 A-C -28.000 -35.690 
C 50 cells 48.33 B-C -11.583 -19.273 

up-ýCi Signifi- 
cant 

-8.727 

-20.310 

-3.893 

Table 14a. Two-way ANOVA on growth (mm) of P. indicus larvae (PLI) by algal feeds 

and cell concentrations plus five Artemia ml-1 . 

Source DF Seq SS Adj SS Adj MS Fp Signifi- 
cant 

Diets 

Cells 

Diets*Cells 

Error 

Total 

2 7.4221 7.8000 3.9000 251.27 0.000 

2 8.5213 8.5559 4.2779 275.63 0.000 

4 0.3654 0.3654 0.0913 5.89 0.000 

181 2.8093 2.8093 0.0155 

189 19.1181 
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Table 14b. Scheff6's pairwise comparison test on larval growth (PLI) by algal feeds plus five 
Artemia nauplii ml-1 . 

Algal feeds Code Means 
(mm) 

Test diffmean SE low ci, up Signifi- 
cant 

T chuii Tc 4.893 Tc-Sc -0.035 0.0219 -0.089 0.019 NS 

S. costatum Sc 4.928 Tc/Sc-Tc -0.451 0.0223 -0.506 -0.396 

T. chuh IS. Tc/Sc 5.344 Tc/Sc-Sc -0.416 0.0222 -0.471 -0.361 
costatum 

Table 14c. Scheffd's test on larval growth (PLI) by three cell concentrations plus five Artemia 
nauplii ml-1 . 

Code Cells Means Test diffinean SE low-ci 

(PI-1) (mm) A 30 cells 4.805 A-13 -0.231 0.0219 -0.285 
B 40 cells 5.036 A-C -0.519 0.0221 -0.574 
C 50 cells 5.324 B-C -0.288 0.0224 -0.343 

Table 15a. One-way ANOVA on larval growth at Pl, I by algal feeds at cell 
concentration of 30 cells gl-1. 

Source DF SS ms Fp Significant 

Algae 2 2.1331 1.0665 69.09 0.000 
Error 63 0.9726 0.0154 
Total 65 3.1056 

Bartlett's test for homogeneity of variances 
F=3.836, P=0.93 

up-ýCi Signifi- 
cant 

-0.177 

-0.464 

-0.233 

Table l5b. Sche5d's pairwise, comparison test on larval growth (PL I) by algal 
feeds at cell concentration of 30 cells gl-1. 

Mean Algae Code 
(mm) 

Tc Sc Tc/Sc 

4.723 T chuii Tc 
4.636 S. costatum Sc : NS 
5.054 T. chuii Tc/Se 

S. costatum 

Table 16a. One-way ANOVA on larval growth at Pl, I by algal feeds at cell 
concentration of 40 cells gl-1. 

Source DF SS ms Fp Significant 

Algae 2 2.8177 1.4088 84.08 0.000 

Effor 60 1.0054 0.0168 

Total 62 3.8231 

Bartlett's test for homogeneity of variances 
F=0.099, P=0.52 
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Table l6b. Scheffd's pairwise comparison test on larval growth 
(at Pl, I) by algal feeds at cell concentration of 40 cells gl-1. 

Mean Algae Code Tc Sc Tc/Sc 
ýM-M) 
4.823 T. chuii Te 

4.956 S. costatum Sc 

5.330 T. chuii / Tc/Sc 
S. costatum 

* 

** 

Table 17a. One-way ANOVA on larval growth at Pl, I by 
algal feeds at cell concentration of 50 cells W-1. 

Source DF ss ms Fp Sigruficant 

Algae 2 3.1373 1.5687 109.45 0.000 

Effor 58 0.8313 0.0143 

Total 60 3.9686 

Bartlett's test for homogeneity of variances 
F=0.364, P=0.58 

Table l7b. Scheffd's pairwise comparison test on larval growth 
(at PLI) by algal feeds at cell concentration of 50 cells W-1. 

Mean Algae Code Tc Sc Tc/Sc 
(mm) 
5.132 T. chuh Tc 

5.192 S. costatum Sc Ns 

5.649 T. chuii Tc/Sc 
S. costatum 
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Experiment 2 

(a) Growth and survival (PZI-PZ3/Ml) 

From Experiment I it appears that the algal feeds giving best larval growth 
and survival of P. indicus were those supplied at the highest cell densities. 
Thus,, in the present experiment higher cell concentrations (50,60,70 and 
80 cells pl-') of the diatom S. costalum and the flagellate T chuii singly 
and in combination were fed to the larvae from PZI to PL stages. Growth 

and survival results were analysed by two-way ANOVA followed by one- 
way ANOVA independently for algal feeds and cell concentrations when 
there were significant interactions between algal feeds and cell concentra- 
tions on larval growth and survival. Significant differences were determined 

using SchefWs and Tukey's multiple pairwise comparison tests. 

Figures 3 a, b plot survival and growth of P. indicus larvae fed on two algal 
feeding regimes at cell densities of between 50 and 80 cells pl-1 at PZ3/Ml 

stages. Tables 18a and 23a show that there were significant differences 

between the effects of feeds on larval growth and survival at different cell 

concentrations at PZI-PZ3/Ml (P<0.001). Greater total length (P<0.001) 

and higher survival (P<0.001) were obtained on mixed algae (T chuii / S. 

costatum) than with the diatom (S. costatum) singly. Higher cell densities 

(70-80 cells pl-') sustained better larval survival and growth compared to 

lower cell densities (50-60 cells pl- I) between PZI and PZ3/MI stages 

(Tables l8b, 23b). However there were significant interactions between 

larval feeds and cell densities on both survival and growth P. indicus larvae 

(see Tables 18a, 23a). Therefore, growth and survival data was further 

analysed by one-way ANOVA specifically for each cell concentrations. 

Growth and survival data at PZ3/Ml and PL stages are summarised in Ta- 

bles 38 and 39. 
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50 cells 
Figures 3a, b and one-way ANOVA tables (Tables 19 and 24) show that 
the mixed algae (T chuii / S. costatum) gave higher larval survival (67 %) 

and growth (3.54 mm TL) at 50 cells gl-' than those obtained from larvae 

fed on S. costatum singly (50 % and 3.37 mm TL) from PZI to PZ3/MI 

stages (P<0.01). 

60 cells Ul-, - 

Tables 20 and 25 show that larvae fed mixed algae (T chuii / S. costatum) 

supported almost twice as high survival (87.50 %) and significantly better 

growth (3.84 mm TL) (P<0.001) than the single algal diet (S. costatum) 

which gave only 45.5 % survival and 3.51 mm TL at PZ3/MI stages (see 

also Figures 3 a, b). 

70 cells pI 

Figures 3a, b demonstrate that larval growth (3.98 mm TL) promoted by 

the mixed algae (T. chuii / S. costatum) was significantly better than that 

(3.79 mm TL) of S. costatum alone at 70 cells pl-I (P<0.001) (Table 26). 

However,. survivals of larvae fed on either of the algal feeds were not sig- 

nificantly (P>0.05) different at PZ3/MI stages (Table 21). 

80 cells #1 

Larvae fed on the mixed algae (T chuii / S. costatum) showed better 

growth (P<0.05) than S. costatum alone at this cell concentration (Table 

27). Larval survivals, however, did not differ on either of the algal diets at 

PZ3/MI stages at 0.05 significance level (Table 22). S. costatum at cell 

densities of both 70 and 80 cells ýtl_' tended to aggregate in the larval cul- 

ture water causing larval fouling. A number of larvae were observed to 

stick together with their faecal strings. 
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(b) Growth and survival (Ml-PLI) 

Figures 4a, b and two-way ANOVA results show that (Tables 28a and 33a) 
there were significant differences in the effects of algal feeds, cell densities 

and the interaction of both on larval survival and growth of P. indicus 
between MI and PLI stages (P<0.001). Mixed algae (T chuii / S. costa- 
lum) plus Artemia fed larvae attained higher survival and greater size at 
PLI than those fed on S. costatum plus Artemia alone (Figures 4a, b). Re- 

gardless of algal species, 80 cells ý&' cell concentrations supported better 

growth but significantly inferior survival than lower cell densities (see 

Figures 4a, b and Tables 28b, 33b). Highest survival was promoted by 70 

cells gl_1 at PLI stage. Since there were interactions between the effect of 

algal feeds and cell concentrations on larval growth and survival, one-way 
ANOVA was carried out for each cell concentration of the algal diets. 

50 cells RI_, _ 

Figures 4a, b and one-way ANOVA tables (Tables 29 and 34) show that 

larvae fed on the mixed algae (T chuii / S. costatum) exhibited significantly 

(P<0.001) better growth (6.07 mm TL) and higher survival (52%) (P<0.05) 

than S. costatum (5.65 mm TL, 39 %) at 50 cells gl-1 concentration. 

60 cells #1-1- 

Tables 30,35 and Figures 4a, b show that larval survival (69 %) and 

growth (6.1 mm TL) attained on the mixed algae at 60 cells gl-' were sig- 

nificantly better than those (41 %, 5.87 mm TL) fed S. costatum alone at 

PLI stage (P<0.001). 

70 cells ltl-, - 

Table 31 shows that survival of larvae fed on the mixed algae and single 

algal diet was not significantly different at this cell concentration (P>0.05). 

However, Table 36 and Figure 4b show that larval growth attained on the 
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mixed algae (T chuh / S. costatum) was significantly better (6.33 mm TL) 
than that (5.82 mm TL) on the diatom S. costatum (P<0.001). 

80 cells Ul 

Larval survival (58.5%) and growth (6.28 mm TL) on the mixed algae at 
this cell density were significantly better than those (28 %, 6.16 mm TL) 

obtained from the single algal diet (P<0.05) (see Tables 32,37 and Figures 

4a, b). As in protozoeal stages, when S. costatum was fed to the larvae at 

this cell density and at 70 cells gI -1 fouling on the appendages of the larvae 

caused mortality, 
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a) Survival and growth (PZ1-PZ3/Mi) 

Denotes pairs of groups significantly different (P 0.00 1). 
Denotes pairs of groups significantly different (P 0.01). 
Denotes pairs of groups significantly different (P:! ý 0.05). 

(Ns) Indicates a non-significant difference (P>0.05). 

Table 18a. Two-way ANOVA on larval survival at PZ3/MI by algal feeds at different 
cell concentrations. 

Source DF Seq SS Adj SS Adj MS Fp Signifi-- 
cant 

Algae 1 564.06 564.06 564.06 60.57 0.000 
Cells 3 2288.81 2288.81 762.94 81.93 0.000 
Algae*Cells 3 1586.06 1586.06 528.69 56.77 0.000 
Error 8 74.50 74.50 9.31 
Total 15 4513.44 

Table l8b. Tukey's pairwise comparison test on larval survival by algal cell concentrations. 

Means Cell concent. Code Test diffmean low-ci UP-Ci Signifi- 
(%) (PI-1) cant 

85.25 80 cells 1 1-2 - 6.13 -13.041 0.781 Ns 
91.38 70 cells 2 1-2 18.75 11.839 25.661 
66.50 60 cells 3 1-4 26.62 19.709 33.531 
58.63 50 cells 4 2-3 24.88 17.969 31.791 

2-4 32.75 25.839 39.661 
3-4 7.87 0.959 14.781 

Table 19. One-way ANOVA on larval survival at PZ3/Ml by algal 
feeds at cell concentration of 50 cells pl-1. 

Source DF SS ms Fp Significant 

Algae 1 297.56 297.56 128.68 0,008 

Error 2 4.62 2.31 

Total 3 302.19 

Bartlett's test for homogeneity of variances 
F=1.005, P=0.24 

** 

Table 20. One-way ANOVA on larval survival at PZ3/MI by algal 
feeds at cell concentration of 60 cells gl-1. 

Source DF SS ms Fp Significant 

Algae 1 1764.0 1764.0 96.66 0.010 

Error 2 36.5 18.3 

Total 3 1800.5 

** 

Bartlett's test for homogeneity of variances 
F=0,560, p=0.40 
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Table 21. One-way ANOVA on larval survival at PZ3/MI 
by algal feeds at cell concentration of 70 cells g1-1. 

Source DF SS ms Fp Significant 

Algae 1 7.56 7.56 0.88 0.447 Ns 
Error 2 17.13 8.56 

Total 3 24.69 

Bartlett's test for homogeneity of variances 
F=0,594, P=0.38 

Table 22. One-way ANOVA on larval survival at PZ3/MI 
by algal feeds at cell concentration of 80 cells gl-1. 

DF SS ms FP Significant 

1 81.00 81.00 9.97 0.087 Ns 

2 16.25 8.12 

3 97.25 

Bartlett's test for homogeneity of variances 
F=0.218, F=0.77 

Table 23a. Two-way ANOVA on larval growth at PZ3/MI by algal feeds at different 
cell concentrations. 

Source DF Seq SS Adj SS Adj MS FP Signifi- 
cant 

Algae 1 1.46998 1.43641 1.43641 83.59 0.000 

Cells 3 4.70593 4.71358 1.57119 91.44 0.000 

Algae*Cells 3 0.34465 0.34465 0.11488 6.69 0.000 

Error 171 2.93830 2,93830 0.01718 

Total 178 9.45886 

*** 

Table 23b. Scheffd's pairwise comparison test on larval growth at different algal cell 
concentrations. 

Cell Conc. Means Code Test diffinean SE low-ci up-ci Signifi- 
(PI-1) (mm) cant 

80 cells 3.78 

70 cells 3.60 

60 cells 3.66 

50 cells 3.45 

1 1-2 -0.108 0.0282 -0.1878 -0.0281 
2 1-3 0.117 0.0279 0.0388 0.1951 

3 1-4 0.331 0.0281 0.2515 0.4104 

4 2-3 0.225 0,0273 0.1477 0.3022 

2-4 0.439 0.0277 0.3605 0,5174 

3-4 0.214 0.0271 0.1372 0.2907 

* 

* 

* 

* 

* 

* 
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Table 24, One-way ANOVA on larval growth at PZ3/MI by algal feeds 
at cell concentration of 50 cells gl-1. 

Source DF SS ms Fp Signifi- 
cant 

Cells 1 0.3153 0.3153 18.95 
Error 43 0.7154 0.0166 

Total 44 1.0307 

0.000 

Bartlett's test for homogeneity of variances 
F=0.729, P=0.32 

Table 25. One-way ANOVA on larval growth at PZ3/MI by algal feeds 
at cell concentration of 60 cells gl-1. 

Source DF SS ms Fp Signifl- 
cant 

Algae 1 1.2156 1.2156 40.28 0.000 

Error 42 1.2675 0.0302 

Total 43 2.4831 

Bartlett's test for homogeneity of variances 
F=0.420, P=0.50 

Table 26. One-way ANOVA on larval growth at PZ3/Ml by algal feeds at cell 
concentration of 70 cells pl-1. 

Source DF SS ms F Signifi- 
cant 

Algae 1 0.3856 0.3856 34.56 0.000 

Error 42 0.4668 0.0111 

Total 43 0.8524 

Bartlett's test for homogeneity of variances 
F= 1.593, P=0.15 

Table 27. One-way ANOVA on larval growth at PZ3/Ml by algal feeds at cell 
concentration of 80 cells pl 

1. 

Source DF SS ms Fp Signifi- 
cant 

Algae 1 0.03544 0.03544 4.11 0.049 

Error 42 0.34472 0.00862 

Total 41 0.38016 

Bartlett's test for homogeneity of variances 
F=0.964, P=0.75 

* 
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b) Survival and growth (Ml-PL1) 

Table 28a. Two-way ANOVA on larval survival (at PLI) by algal feeds at various 
cell densities (50-80 cells pl-1) plus five Artemia ml-1 after PZ3/Ml stage. 

Source DF SS ms Fp Significant 

Algae 1 992.25 992.25 88.20 0.000 
Cells 3 2039.56 679.85 60.43 0.000 
Algae*Cells 3 1039.13 346.37 30.79 0.000 
Error 8 90.00 11.25 
Total 15 4160.94 

Table 28b. Tukey's pairwise comparison test on larval survival (PLI) by algal 
cell concentrations. 

Code Cell concent. Means Test diffinean low-ci UP-Ci Signifi- 
(vi-1) (%) cant 

1 80 cells 43.13 1-2 -28.625 -36.222 -21.028 
2 70 cells 71.75 1-3 -11.500 -19.097 -3.903 
3 60 cells 54.63 1-4 -2.125 -9.722 5.472 Ns 
4 50 cells 42.25 2-3 17.125 9.528 24.722 

2-4 26.500 18.903 34.097 
3-4 9.375 1.778 16.972 

Table 29. One-way ANOVA on larval survival at Pl, I by algal 
feeds at cell concentration of 50 cells gl-'. 

Source DF SS ms Fp Significant 

Algae 1 169.00 

Error 2 6.25 

Total 3 175.25 

169.00 54.08 0.018 

3.12 

Bartlett's test for homogeneity of variances 
P=1.696, P=0.13 

* 

Table 30. One-way ANOVA on larval survival at Pl, I by algal 
feeds at cell concentration of 60 cells gl-1. 

Source DF Ss ms p Significant 

Algae I 

Error 2 

Total 3 

826.56 826.56 136.34 0.007 

12.12 6.06 

838.69 

** 

Bartlett Is test for homogeneity of variances 
F=0.398, P=0.48 
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Table 3 1. One-way ANOVA on larval survival at PL I by algal 
feeds at cell concentration of 70 cells gl-1. 

Source DF SS ms Fp Significant 

Algae 1 90.2 90.2 3.41 0.206 Ns 

Error 2 53.0 26.5 

Total 3 143.2 

Bartlett's test for homogeneity of variances 
F=0.218, P=0.77 

Table 32. One-way ANOVA on larval survival at PL I by algal 
feeds at cell concentration of 80 cells gl-1, 

Source DF SS ms Fp Significant 

Algae 1 945.6 945.6 68.46 0.014 

Error 2 27.6 13.8 

Total 3 973.2 

Bartlett's test for homogeneity of variances 
F=0.609, P=0.38 

* 

Table 33 a. Two-way ANOVA on total length of P. indicus (at Pl, I stage) reared on algal feed 
regimes plus Artemia from PZ3/Ml to PLI. 

Source DF Seq SS Adj SS Adj MS Fp Significant 

Algae 1 5.2048 4.7219 4.7219 210.02 0.000 

Cells 3 3.2260 3.1980 1.0660 47.41 0.000 

Algae*Cells 3 1.0559 1.0559 0.3520 15.65 0.000 

Error 178 4.0020 4.002 0.0225 

Total 185 13.4889 

Table 33b. Scheff6s pairwise comparison test on larval growth by cell concentrations. 

Means Cell concent. Code Test diffinean SE low-ci up-ci Signifi- 
(MM) (PI-1) cant 

6.219 80 cells 1 1-2 0.145 0.0316 0.0557 0.2343 

6.074 70 cells 2 1-3 0.233 0.0321 0.1422 0.3238 

5.986 60 cells 3 1-4 0.358 0.0309 0.2707 0.4453 

5.861 50 cells 4 2-3 0.088 0.0314 -0.0008 0.1768 Ns 

2-4 0.213 0.0301 0.1278 0.2982 

3-4 0.125 0.0307 0.0383 0.2117 
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Table 34. One-way ANOVA on larval growth at Pl, I by algal 
feeds at cell concentration of 50 cells gl-1. 

Source DF ss ms Fp Significant 

Algae 1 2.3242 2.3242 122.53 0.000 

Error 50 0.9484 0.0190 

Total 51 3.2726 

Bartlett's test for homogeneity of variances 
F=2.784, P=0.06 

Table 35. One-way ANOVA on larval growth at PL I by algal 
feeds at cell concentration of 60 cells gl-1. 

Source DF SS ms Fp Significant 

Algae 1 0.5871 0.5871 33.89 0.000 

Error 42 0.7276 0,0173 

Total 43 1.3147 

Bartlett's test for homogeneity of variances 
F=0.501, P=0.44 

Table 36. One-way ANOVA on larval gpwth at PLI by algal 
feeds at cell concentration of 70 cells gl . 

Source DF Ss ms Fp Significant 

Algae 1 2.9901 2.9901 108.24 0,000 

Error 45 1.2432 0.0276 

Total 46 4.2333 

Bartlett's test for homogeneity of variances 
F=2.828, P=0.06 

Table 37. One-way ANOVA on larval growth at PLI by algal 
feeds at cell concentration of 80 cells gl-1. 

Source DF Ss ms Fp Significant 

Algae 1 0.1535 0.1535 5.81 0.020 

Error 41 1.0827 0.0264 

Total 42 1.2362 

Bartlett's test for homogeneity of variances 
F=0.912, P=0.26 

* 
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Table 38a. Larval survival (%) at PZ3/Ml stages of P. indicus fed two algal feeds. 
Each value represents a mean ± s. d. (n=2). (Data for Figure 3a). 

Larval survival (%) ± s. d. (PZ3/Ml) 

Algae/Cell concent. 50 cells pl-1 60 cells pl-1 70 cells pl-1 80 cells pl-I 

T. chuii IS. costatum 67-26±0.53 87.50±2.12 85.00±1.41 81.25±1.77 
................................................................................ .............................. ; ............................... costatum 50.00±2.12 45.50±5.66 : 87.75±3.89 

Table 38b. Larval growth (mm TL) at PZ3/Ml stages of P. indicus fed two algal 
feeds. Each value represents a mean ± s. d. (n=2). (Data for Figure 3b). 

Larval growth (mm) ± s. d. (PZ3/Ml) 

Algae/Cell concent. 50 cells pl-1 60 cells pl-1 70 cells pl-1 80 cells ýtl-' 

T. chuii IS. costatum 3.54±0.14 3.84±0.15 3.98±0.09 3.81±0.08 
................................................... ................................................................................................................................. S. costatum 3.37±0.12 3.51±0.13 3.79±0.11 3.75±0.10 

Table 39a. Larval survival (%) at PLI stages of P. indicus fed two algal feeds plus 
five Artemia ml-1 between PZ3/Ml and PL stages. Each value represents a mean 
s. d. (n=2), (Data for Figure 4a). 

Larval survival (%) ± s. d. (PLI) 

Algae/Cell concent. 50 cells pl-1 60 cells pl-1 80 cells PI-1 1 70 cells pl 

T. chuii IS. costatum ý 51.75±2.48 ': 69.00±1.41 :: 67.00±6.36 :: 58.50±4.95 
.................................................. . .............................. I .................................................................................................... I 
S. costatum :; 38.75-±0.35 i 41.25±3.18 i 76.50±3.54 : 27.75±1.79 

Table 39b. Larval growth (mm TL) at PLI stages of P. indicus fed two algal feeds 

plus five Artemia ml-1 between PZ3/Ml and PL stages. Each value represents a mean 
± s. d. (n=2). (Data for Figure 4b). 

Larval growth (mm) ± s. d. (PL I) 

Algae/Cell concent. 50 cells pl-1 60 cells pl-1 70 cells pl-1 80 cells pl 

T. chuii IS. costatum 6.07±0.16 i 6.10±0.13 6.33±0.19 6.28±0.18 

............................................. . ................................ .............................. . ............................... .................................. 
costatum 5.6 5±0.11 5.87±0.15 5.82±0.14 6.16±0.14 
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Experiment 3 

This experiment was performed to determine whether there is any advan- 
tage in feeding P. indicus larvae on algae together with an animal prey 
during mysis and early PL stages. Figures 5a, b show larval survival and 
growth of P. indicus fed three different feeding regimes from PZ3/Ml to 
PL stages, Two-way analyses of variance on growth and survivals (Tables 
40a and 41a) show that slope of at least one treatment was significantly 
different to the average slope (P<0.001) (See Figures 5a, b). Comparison 

of growth and mortality rates (slope of the treatments for survival) indicate 

that larvae fed algae from PZ3/M1 to PLI stages without Artemia display 

the lowest daily growth rate (0.32 mm day-) and highest mortality rate (6.4 

% day-1) (Tables 40b, 41b). The growth rate (0.70 mm day-) of algae/ Ar- 

temia fed larvae was not significantly different to that (0.71 mm day-) of 
larvae fed Artemia alone. In addition, larvae reared on an algaelArtemia 

combination exhibited a higher mortality rate (2.07 % day-) than larvae fed 

solely on Artemia (0.67 % day-1). Final survivals of algae, algaelArtemia 

and Artemia fed larvae were 74 %, 92 % and 98 % respectively (Table 42). 

Final larval total lengths were 5.37 mm (algae), 6.64 mm (algaelArtemia) 

and 6.72 mm (Artemia) at PLI/2 stages. Larvae fed on Artemia and algae/ 
Artemia started to metamorphose into PLI stage on day 8 whereas larvae 

fed on algae alone only reached this stage 2 days later on day 10. 
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Figure 5. (a) Larval survival (%) and (b) growth (mm TL) of P. indicus reared on three 
feeding regimes, Arlemia only, mixed algae (T. chuii / S. costatum) plus Artemia, and 
the mixed algae only from PZ3/MI to PLI/2 stages. Each point represents a mean 
s. d. (n=2). Each replicate contains measurements of 10-13 larvae for growth. 
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Denotes pairs of groups significantly different (P :! ý 0.001). 
Denotes pairs of groups significantly different (P:! ý 0.01). 
Denotes pairs of groups significantly different (P:! ý 0.05). 

(Ns) Indicates a non-significant difference (P>0.05). 

Table 40a. Two-way ANOVA with days as covariate on larval survival by three 
different feeding regimes from PZ3/MI to Pl, stages. 

Source DF Seq SS Adj SS Adj 
ms 

Diets 

Days 

2 
I 

repl(Diets) 3 

Diets*Days 2 

repl*Days(Diets) 3 

Error 18 

Total 29 

Fp Signifi- 
cant 

587.52 45.78 22.89 6.45 0.008 

556.14 556.14 556.14 156.68 0,000 

4.45 22.99 7.66 2.16 0.128 

357.37 357.37 178.68 50.34 0.000 

32.44 32.44 10.81 3.05 0.055 

63.89 63.89 3.55 

1601.81 

Table 40b. Comparison of larval mortality rates by three different feeding regimes from 
PZ3/MI to PL. 

Term Mortality rate Coeff. Stdev. t-value p Signifi- 
(% day cant 

Constant 103.634 0.807 128.47 0.000 
Days -3.0445 0.2432 -12.52 0.000 
PýýY. ý*Diets 

............................................................................................................................................ Algae 6.400 -3.3555 0.3440 -9.76 0.000 

AlgaelArtemia 2.067 0.9780 0.3440 2.84 0.011 

Artemia 0.667 2.3775 0.3440 6.91 0.000 

* 

Table 4 Ia. Two-way ANOVA with days as covariate on larval growth by three different 
feeding regimes from PZ3/MI to Pl, stages. 

Source 

Diets 

Days 

Repl(Diets) 

Diets*Days 

Repl *Days (Diets) 

Error 

Total 

DF Seq SS Adj SS Adi MS FP Signifi- 
cant 

2 44.342 2.514 1.257 5.76 0.003 

1 224.474 225.169 225.169 1031.19 0.000 

3 1.401 0.028 0.009 0.04 0.988 

2 22.690 22.655 11.328 51.88 0.000 

3 0.196 0.196 0.065 0.30 0.826 

326 71.185 71,185 0.218 

337 364.287 
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Table 41b. Comparison of larval growth rates by three feeding regimes. 

Term Growth rate 
mm day 

1-onstant 345401 0.05984 57.72 0.000 
Days 0.57745 0.01798 32.11 0.000 
Days*Diets 

......... ................................. .................................... .................................................................................................................................. Algae 0.319 -0.25852 0.02538 -10.19 0.000 
AlgaelArtemia 0.704 0.12610 0.02535 4.97 0.000 
Artemia 0.710 0.13242 0.02556 5.18 0.000 

Table 42. Larval survival and growth of P. indicus by three feeding regimes from 
PZ3/M1 to Pl, stages. (Data for Figure 5a, b). 

Larval survival (%) ± s. d. Larval growth (mm TL) ± s. d. 

Days Algae Algae/ Artemia Algae 
Artemia 

5 100.00 100.00 100.00 3.575±0.059 

6 98.34±2.35 100.00 100.00 3-916±0.098 

7 96.00±2.83 99.34±0.95 100.00 4.489±0.047 

8 89.00±0.47 95.34±0.95 98.67±1.89 4.693±0.178 

9 83.00±1.41 94.00±0.95 98.00±0.95 4.8914: 0.058 

10 73.84±4.01 92.34±2.35 97.67±2.35 5.366±0.222 

Coeff. Stdev. t-value p Signifi- 
cant 

AlgaelArtemia Artemia 

3.575±0.059 

4.042±0.006 

4.569±0.098 

5.296±0.193 

6.295±0.108 

6.639±0.090 

3.575±0.059 

4.070±0.123 

4.549±0.070 

5.668±0.236 

6.368±0.167 

6.721±0.002 
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Experiment 4 

Following determination of the best algal feeding regime in the previous 
experiments, the effect of salinity on growth and survival during larval de- 

velopment of P. indicus was also investigated between PZI and PL stages 
in this experiment. Figures 6a, b show that although highest larval growth 

rate occurred at 25 ppt (0.68 mm TL day-1), two-way analysis of variance 
on larval growth with days as a covariate (Table 44a) indicated that there 

was no significant difference between growth rates of larvae reared at sa- 
linities from 20 to 35 ppt (P>0.05). However, a significant difference in the 

salinity effect on larval mortality rate (Table 43a) was found between PZI 

and PLI stages (P<0,001). Lowest mortality rates (1.65-1.80 % day-1) were 
achieved at lower salinities (20 and 25 ppt) whereas the highest mortality 

rate (5 % day-) was found for larvae reared at 35 ppt S. Larvae reared at 
30 ppt displayed an intermediate mortality rate (2.49 % day-'). 

Larvae cultured at 20 and 25 ppt had higher survivals (92-96.5 %), greater 

total lengths (4.01-4.03 mm at PZ3/MI) and faster development (29-32 % 

MI) than larvae at 30-35 ppt which sustained 87,5-93 % survival, 3.8-3.81 

mm TL and slower development (4.5-18 % MI) during protozoeal stages 

(Figures 6a, b and Table 45). At the termination of the experiment larvae at 

25 ppt exhibited 91 % survival, 6.48 mm TL compared to 69 % survival 

and 6.05 mm TL obtained from larvae at 35 ppt. At 25 ppt, on day 8,32 % 

of the larvae were at PL2 stage whereas at 35 ppt only 5% of the larvae 

were at PL2 stage (Table 45). Growth and survival data are summarised in 

Tables 46a, b. 
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Figure 6. (a) Larval survival (%) and (b) growth (mm TL) of P. indicus cultured on 
live mixed algae from PZI to PZ3/Ml and plus Artemia during mysis and postlarval 
stages at four different salinities (20-35 ppt S). Each point represents a mean ± s. d. 
(n=2). Each replicate contains measurements of 10-13 larvae for growth. 
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Denotes pairs of groups significantly different (P 0.001). 
Denotes pairs of groups significantly different (P 0.01). 
Denotes pairs of groups significantly different (P 0.05). 

(Ns) Indicates a non-significant difference (P>0.05). 

Table 43a. Two-way ANOVA with days as covariate on larval survival of P. indicus 
reared in four different salinities from PZ I to PL stages (day 2- day 8). 

Source DF Seq SS Adj SS Adj MS FP Signifi- 
cant 

Salinity 3 666.81 30.56 10.19 1.93 0.165 
Days 1 1204.51 1204.51 1204.5 228.75 0.000 
Repl(Salinity) 4 1.94 0.44 0.11 0.02 0.999 
Salinity*Days 3 296.56 296.56 98.85 18.77 0.000 

Repl*Days(Salinity) 4 0.81 0.81 0.20 0.04 0.997 

Error 16 84.25 84.25 5.27 

Total 31 2254.87 

Table 43b. Comparison of larval mortality rates of P. indicus cultured in four 
different salinities from PZI to PL stages. 

Term Mortality rate Coeff. Stdev. t-value p Signifi- 
Mday cant 

Constant 103.906 0.994 104.57 0.000 
Days -5.4875 0.3628 -15.12 0.000 

. 
ý*Pi. ets 

..................................... 
Dm 

............................................................................................................................... ..... . ...... 20 ppt 0.6284 3.00 0.008 1.80 1.8875 

25 ppt 1.65 2.1875 0.6284 3.48 0.003 

30 ppt 2.49 0.5125 0.6284 0.82 0.427 Ns 

0.6284 -7.30 0.000 5.04 -4.5875 35 ppt 

Table 44a. Two-way ANOVA with days as covariate on larval growth of P. indicus 
reared in four different salinities from PZ I to PL stages (day 2- day 8). 

Source 

Salinity 

Days 

Repl(Salinity) 

Salinity*Days 

Repl*Days(Salinity) 

Error 

Total 

DF Seq SS Adj SS Adj MS FP Signifi- 
cant 

3 2.498 0.611 0.204 0.91 0.437 

1 706.837 706.939 706.94 3156.41 0.000 

4 0.615 0.354 0.089 0.40 0.812 

3 0.775 0.772 0.257 1.15 0.329 Ns 

4 0.378 0.378 0.094 0.42 0.793 

332 74.358 74.358 0.224 

347 785.461 
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Table 44b. Comparison of larval growth rate (mm day-) of P. indicus reared 
at four different salinities. 

Term 

Constant 
Days 
Days*Salinity 

1.25317 0.06330 19.80 0.000 
1.28964 0.02295 56.18 0.000 

................................. . ..... ................................... .................................................................................................................................... 20 ppt 0.627 -0.03555 0.03947 -0.90 0.368 Ns 

25 ppt 0.682 0.07294 0.03990 1.83 0.068 Ns 
30 ppt 0.637 0.01571 0.03970 -0.40 0.693 Ns 
35 ppt 0.634 -0.02169 0.03997 -0.54 0.588 Ns 

Table 45. Composition of larval stages of P, indicus cultured at various salinities. 

Larval composition (%) 

Days/ Salinity 20 ppt 25 ppt 30 ppt 35 ppt 

Day 4 (PZ3/Ml) 29 % MI, 71 32 % MI, 18 % MI, 82 4.5 % MI, 
% PZ3 68 % PZ3 % PZ3 95.5 % PZ3 

Day 8 (PLI/2) 68 % PLI, 68 % PLI, 91 % PLIý 95 % PLI, 5 
32 % PL2 32 % PL2 9% PL2 % PL2 

Table 46a. Larval survival (%) of P. indicus cultured at four different 
salinities from PZ I to PL stages. Each value is a mean ± s. d. (n=2). (Data 
for Figure 6a). 

Larval survival (%) ± s. d. 

Days 20 ppt 25 ppt 30 ppt 40 ppt 

0 100.00 100.00 100.00 100.00 
2 99.25±0.35 100.00 100.00 98.50±2.12 
4 92.25±1.06 96.50±0.71 93.00±0.00 87.50±2.12 
6 89.25±0.35 91.25±1.06 86.75±1.77 75.25±1.74 
8 88.25±1.06 - 90.75±1.77 85.50±0.71 69.00±1.41 

Table 46b. Total length (mm) of P. indicus cultured at four different 
salinities from PZ I to PL stages. Each value is a mean ± s. d. (n=2). 
(Data for Figure 6b). 

Larval total length (mm) ± s. d. 

Days 20 ppt 25 ppt 30 ppt 40 ppt 

0 1.16=LO. 05 1.16±0.05 1.16±0.05 1.16±0.05 
2 2.45±0.04 2.47±0.09 2.37±0.02 2.34±0.04 
4 4.01±0.21 4.03±0.04 3.81+0.08 3.80±0.02 
6 5.41±0.06 5.51±0-01 5.17±0.01 4.98±0.05 
8 6.23±0.04 6.48±0.01 6.02±0.07 6.05±0.20 

Growth rate Coeff. Stdev. t-value p Signifi- 
(mm day-') cant 
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Experiment 5 

Figures 7a and 7b show growth and survival of P. indicus larvae fed R. re- 
ficulata at 50 cells gl-l compared with those fed control mixed algal feed 
(T chuij IS. costatum) at 60 cells pl-' from PZ1 to PZ3/M1 stages. From 
the first day, larvae fed R. reticulata exhibited lower survival and growth 
compared to the mixed algae fed ones. Comparison of larval survival be- 
tween day 2 and day 6 (Tables 48a, b) demonstrated that there was a sig- 
nificant (P<0.001) difference between survival of the larvae fed the two al- 
gal feeding regimes during protozoeal stages. Larvae fed R. reticulata 
showed significantly higher mortality rate (20.4 % day-) than those fed the 

mixed algae (7.43 % day-). Hence, larval survival on the mixed algae and 
R. reticulata on day 6 were 73% and 15% respectively (see Table 47). Fig- 

ure 7b and Tables 49a,, b show that larval growth rate on the two algal feed 

regimes were also significantly (P<0.001) different. Larvae fed the mixed 

algae grew 0.75 mm TL day-' whereas those fed the single alga had a total 
length increment of only 0.38 mm day-'. At the termination of the experi- 

ment (on day 6) final lengths of the larvae fed the mixed algae and R. re- 
ticulata were 4.26 mm and 2.87 mm respectively. On day 6, larval stages 

on the single alga were 95 % PZ3 and 5% PZ2. All the larvae on the mixed 

algae were, however, at MI stage. Starved larvae (PZI) completely per- 
ished 24 h after they were stocked into the experimental flasks. 

Observations of larval guts and faeces of the larvae showed that the larvae 

ingested and digested the cells of R. reticulata. When PZI, PZ2 or PZ3 

larvae on R. reticulata were sampled, the guts full of the red algae were 

clearly visible. No undigested cells were observed in larval faeces at any 

stage during protozoeal stages. The cells of R. reticulata, in control flasks 

without larvae, were slightly increased from 50 cells pl-1 to 57 cells pl-' 

over 24 h. 
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Figure 7. (a) Larval survival (%) and (b) growth (mm TL) of P. indicus cultured on 
live mixed algae (T. chiiii / S. costatum=TOSc) and R. reticulata (Rh) from PZI to 
PZ3/ Mi. Each point represents a mean ± s. d. (n=2). Each replicate contains measure- 

ments of 10-13 larvae for growth. 
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Denotes pairs of groups significantly different (P :! ý 0.00 1). 
Denotes pairs of groups significantly different (P_:! ý 0.01). 
Denotes pairs of groups significantly different (P:! ý 0.05). 

(Ns) Indicates a non-significant difference (P>0.05). 

Table 47. Survival and growth of P. indicus larvae fed two feeding regimes from 
PZI to PZ3/MI stages. (Tc/Sc= T. chuiil S. costatum and Rh= R. reticulata). 

Survival (%) ± s. d. 

Day Tc/Sc 

100.00 

2 100.00 

3 98.00 A: 2.83 

4 88.34 ± 8.01 

5 78.33 ± 12.73 

6 72.67 ± 10.37 

Total length (mm) ± s. d. 

Tc/Sc Rh Rh 

100.00 0.97 ± 0.01 0.97 ± 0.01 

90.67 ± 9.43 1.30 ± 0.02 1.28 ± 0.02 

80.67 ± 11.31 2.16 ± 0.07 1.92 ± 0.10 

57.00 ± 6.12 3.24 ± 0.19 2.06 ± 0.02 

28.67 ± 16.97 3.72 ± 0.12 2.54 ± 0.09 

14.67 ± 8.49 
. 

4.26 ± 0.08 2.87 ± 0.02 

Table 48a. Two-way ANOVA with days as a covariate on larval survival from PZI to 
PZ3/MI stages on two feeding regimes. 

Source DF Seq SS Adj SS Adj MS Fp Signifi- 

cant 
Diets 1 5488.3 30.2 30.2 0.31 0.586 
Days 1 7746.8 7746.8 7746.8 80.34 0.000 
Days(Diets) 2 1.6 11.6 5.8 0.06 0,942 
Diets*Days 1 1680.9 1680.9 1680.9 17.43 0.001 
Repl*Days(Diets) 2 17.4 17.4 8.7 0.09 0.914 
Error 12 1157.1 1157.1 96.4 
Total 19 16092.2 

Table 48b. Comparison of mortality rates of the larvae fed two feeding regimes 
from PZI to PZ3/MI stages. 

Mortality rate Term 

(% day-) 

Coeff. Stdev. t-value p Signifi- 

cant 

Constant i 112.650 5.149 21.88 0.000 
Days -13.917 1.553 -8.96 0.000 
Days*ýR4 

..................................................................................... ............................. Tc/Sc 7.43 6.483 1.553 4.18 0.001 

-4.18 0.001 Rh 20.4 -6.483 1.553 
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Table 49a Two-way ANOVA with days as a covariate on larval growth from PZI to 
PZ3/Mlstages on two feeding regimes (Tc/Sc= T. chuWS. costatum and Rh= R. 
reticulata). 

Source DF Seq SS Adj SS Adj MS Fp Signifi- 

cant 
Diets 1 30.801 0.958 0.958 12.18 0.001 
Days 1 135.078 132.717 132.717 1687.19 0.000 
Repl(Diets) 2 0.003 0.037 0,019 0.24 0.789 
Diets*Days 1 14.316 14.328 14.328 182.14 0,000 
Repl*Days(Diets) 2 0.051 0.051 0.026 0.33 0.723 
Error 205 16.126 16.126 0.079 
Total 212 196.375 

Table 49b. Comparison of growth rates of the larvae on two feeding regimes 
from PZI to PZ3/MI stages. 

Term Growth rate Coeff. Stdev. t-value P Signifi- 

(mm day-) cant 
Constant 0.84104 0.045 18.64 0.000 
Days 0.56467 0.014 41.08 0.000 

....... ..... ................................... ........................................................................................................................ Tc/Sc 0.750 0.18553 0.014 13.50 0,000 

Rh -0.18553 0.014 0.000 0.379 -13.50 
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DISCUSSION 

The present data indicate that low cell concentrations of either single algal 
feeds or mixed algal diets do not give satisfactory larval growth and sur- 

vival in P. indicus. 10-20 cells pl-1 of flagellate T chuii and diatoni S. 

costatum fed individually did not support survival further than the PZI/ 

PZ2 stages suggesting that this penaeid species cannot be reared success- 
fully with low cell densities using the present rearing methods. However, 

when the mixed algal (T chuii IS. costarum) diet was fed at 20 cells pl-', 
28 % survival was obtained (Table 3a) at PZI-PZ3/Ml stages. Emmerson 

(1980) reports very good survival (96 %) and normal larval development 

using a cell density of T weissflogii (10.7 [im in diameter) at 7 cells Pl-' 
for the culture of P. indicus at a density of 35 larvae I-' in large (70-1) cul- 

ture vessels at 26 'C. This author darkened the larval culture room to pre- 

vent cell increase as a result of high light intensity. In the present study, 

however, experiments were all conducted under continuous light conditions 

(2.56 X1014 quanta /sec I CM 2) provided by fluorescent light bulbs. It ap- 

pears that the present higher larval stocking density (100 larvae 1-1) pro- 

duces a grazing demand which cannot be met at low cell densities. Amjad 

(1990) reports total mortality of P. monodon larvae at a cell density of 10 

cells pl-' and low survival at 20 cells gl-1 (T chuii I R. reticulata) under 

similar culture conditions to the present experiments. Aquacop (1983) sug- 

gests that a cell density of 100 cells [LI-1 of mixed algae is required at high 

larval stocking densities (100-120 larvae 1-1), whereas Galgani and Aquacop 

(1988) recommend 30-40 cells pl-1 algae at 100 1-1 larval stocking density 

during protozoeal culture of P. indicus. 

As cell density was increased from 30 to 40 and 50 cells [tl-1, larval survival 

and growth progressively increased (Figures la, b). This indicates that low 

algal cell density cannot provide sufficient nutrient/ energy at 100 larvae 1-1 

for P. indicus. Kurmaly et al., (1989b) suggest that P. monodon PZ I larvae 
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at this stocking density require 45 cells gl-' day-' for optimal survival and 
growth. In present experiments this level is reached at 60-70 cells gl-' 
day-',. hence levels below these are inadequate for larval growth, survival 
and development. Figures la, b and Tables 3a, b exhibit progressively in- 

creased growth from 2.58 mm TL up to 4.08 mm TL and survivals from 28 
% to 80 % when P. indicus larvae were fed on increased algal cell densities 

from 20 cells gl-' to 50 cells gl-1 (T chuii / S. costatum) at PZI-PZ3/Ml 

stages. This pattern was found to be the same for the larvae reared on 

single algal feeds. For example, when larvae were fed 30 cells gl-' of S. 

costatum, 14 % survival and 2.59 mm TL was obtained at PZ3/Ml stages, 

whereas larvae fed 50 cells gl-' gave 50 % survival and 3.92 mm TL. Low 

survival and growth obtained during protozoeal stages affected the subse- 

quent results at metamorphosis despite the fact that the larvae were fed on 
Artemia nauplii from PZ3/M1 onwards (Figures 2a, b). 

Jones and Kurmaly (1987) report that P. monodon larvae refill their guts 5- 

7 times h-1 when feeding on dense algal cell concentrations. Assimilation 

efficiency of this species was found to be low at a high cell density (60 

cells gl-'), but optimal energy gains may be obtained when the food is 

shunted rapidly through the gut and only partially digested but replenished 

quickly (Kurmaly et al., 1989b). The best larval growth and survivals in the 

present investigation were obtained at a cell density of 60-70 cells gl-' on 

the mixed algal feed T chuii / S. costatum (Figures 3-4). The diatom S. 

costatum supported higher survival and growth at 70-80 cells gl-' during 

protozoeal stages. With the addition of Artemia during mysis stages, how- 

ever, at a cell density of 80 cells pl-', this alga aggregated on the cephalic 

appendages of the larvae and caused high mortality. 

Different growth and survival responses of penaeid larvae to the algal feeds 

may be due to variations in the nutritive value, cell size, digestibility or 

chemical composition of algal species used (Tobias- Quiniti o and Villegas, 
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1982; Volkman et al.,. 1989). In the present study, it is unlikely that cell 

size of the algal feeds is inappropriate for the larvae (Table 1). Penaeid 

species are generally fed on food particles ranging from 10-28 Rm (Jones et 

al., 1979a) to 75 ýtrn (Hirata et al., 1975). Moreover, P. indicus larvae are 

capable of employing both filter and raptorial feeding strategies as early as 
PZI/PZ2 (Emmerson, 1980; see Chapter 3) as are other penaeid species 

such as P. kerathurus (Yufera et al., 1984), P. marginatus (Gopalakrish- 

nan, 1976), P. vannamei and P. setiferus (Wilkenfeld et al, 1984). Galgani 

and Aquacop (1988) report that PZ1 and PZ2 stages of P. indicus are ca- 

pable of taking food particles of up to 35-50 [tm, 

Evaluation of algae as live feeds for penaeid larvae is generally based on 

selection of species that sustain the maximum growth, survival and devel- 

opment. The present study suggests that for the three unicellular algal spe- 

cies tested,, the diatom S. costatum promotes better larval growth, survival 

and development throughout all larval stages than the flagellate T chuij 

(Tobias-Quinitio and Villegas, 1982). It is known that S. costatum is one 

of the most suitable live diets for penaeid larvae during protozoeal stages 

(Preston, 1985a) and therefore is commonly used in hatcheries (Jones et al.,, 

1987), In the second experiment, larvae reared solely on this algal species 

from PZ1 to PZ3/M1 (Figures 3a, b) displayed high survivals (88-90%) and 

good growth (3.75-3.79 mm TL) at 70-80 cells ý&'. Kuban et al., (1985) 

also state that diatoms (S. costatum and C. gracilis) were better food 

sources than phytoflagellates for P. vannamei and P. stylirostris. However 

it has been observed that S. costatum at high cell concentrations causes 

mechanical fouling that may hamper feeding and respiration of penaeid lar- 

vae (Jones et al., 1987, Kurmaly et al., 1989a). Liao et al., (1983) report 

that exclusive use of S. costatum may be harmful to penaeid larvae if the 

alga is harvested in or after the stationary growth phase, In contrast, other 

investigations find flagellates such as T chuii and R. reticulata sustain 

better growth and survival than S. costatum during protozoeal stages of P. 
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monodon (Amjad, 1990). The present results show that R. reticulata, as a 
single diet even at 50 cells g1_1, did not promote good survival and 
growth further than PZ3/M1 stages (see Experiments I and 5). However, 
Kurmaly et al., (1989a) and Amjad (1990) report that R. reticulata gave 
higher survival and better growth for P. monodon than T chuii and/or S. 

costatum when fed as a single alga. Based on the present results and those 

of Kurmaly et al., (1989a) and Amjad (1990), it is difficult to see why R. 

reticulata is a very suitable food for P. monodon,. but is inadequate for P. 
indicus. Observations of the gut of the larva fed R. reticulata and their fae- 

ces under a microscope revealed that this alga was ingested and digested. 

In addition, this alga either alone, or with T chufi, induces high larval 

trypsin activities when fed to P. indicus larvae (see Chapter 5). Results of 
the fifth experiment also showed that cell numbers of this algal species re- 

main approximately constant for a period of 24 h in 2-1 flasks without lar- 

vae. Moreover, when high larval mortalities were observed at PZ2/Z3 stage 

on R. reficulata at 50 cells gl-', the larval guts were always full of algae, 

and larval faeces were also clearly visible (Experiment 5). In preliminary 

trials,, R. reticulata as a single diet (see also Experiment 1), and in combi- 

nation with T chuii (50-70 cells pl-1,1: 1) promoted survivals of only 5.5 % 

and 5.5-6.5 % until PLI stage (Kumlu,, unpublished data). Heavy larval 

mortalities obtained using R. reticulata both as a single feed and in combi- 

nations with other algae in the present experiments suggest that this alga 

may be nutritionally inadequate for P. indicus larvae. 

Some algal species such as Chlorella sp. and Pavlova sp. are known to be 

nutritionally poor for most aquatic species (Gopalakrishnan, 1976; Aujero 

et al., 1983; Amjad, 1990). Nutritive value of microalgae may greatly vary 

even within the same species depending on culture conditions and time of 

harvest (Leger et al., 1986). The macronutrient content and fatty acid 

profile of the algal species used in the present study are summarised in Ta- 

bles I and 2. Quantities of these macronutrients in all the algal species are 
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within the range required by penaeid larvae (Kurmaly et al., 1989a; Ka- 
nazawa, 1990; Chen.,, 1993). The importance of co3 highly unsaturated fatty 

acids (HUFA), especially eicosapentaenoic acid (20: 5(o3) and docosahex- 

aenoic acid (22: 6co3) have been demonstrated for marine and brackish wa- 
ter prawns (Jones et al., 1979a; Kanazawa et al.,. 1979; Guillaume,, 1990). 
Marine prawns cannot synthesise these cO HUFA rapidly enough to meet 
their physiological requirements (Jones et al., 1979a), therefore, these are 
required in diets (Leger and Sorgeloos, 1992). T chuii has a high protein 
content but a low lipid level with a low level of 20: 5co-3 and no 22.6(o-3. 
S. costatum, in contrast, contains low protein, high lipid and high levels of 
the essential fatty acids (see Tables 1,2). This may explain why the diatom 

S. costatum gave better larval growth and survival than the flagellate T. 

chuii. When Rodriguez et al., (1994) fed P. japonicus mysis larvae on 
Chaetoceros gracilis containing only 7% protein and separately on Artemia 

with a much higher protein content, they obtained no significant difference 

in growth, survival, protein or lipid content in postlarvae. In the present 

study, the combination of T chuii / S. costatum consistently gave signifi- 

cantly superior larval growth and survival than single algal feeds (P<0.05) 

both in the first and second experiments. This confirms that P. indicus lar- 

vae reared on more than one algal species with a wide diversity of macro- 

nutrients and micronutrients such as vitamins, have a better chance of 

meeting nutritional requirements (Amjad, 1990). The present results dem- 

onstrate that penaeid larvae show species specific differences between algae 

and this confirms the advantage of using mixed algal species to ensure good 

results (Galgani and Aquacop, 1988, Kurmaly et al., 1989a; Amjad, 1990). 

Data from the third experiment suggests that there may not be any benefit 

to P. indicus larvae by feeding algal diets during mysis stages as Artemia 

only fed larvae from PZ3/MI to PL stages displayed equal growth rates and 

better survival rates to those fed on algae and Artemia (Figures 5a, b). 

Larvae fed mixed algae without the animal prey showed significantly higher 
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mortality (6.4 % day-) and slower growth rate (0.32 mm TL day-') in 
comparison to algaelArtemia (2.07% day-, 0.70 mm TL day-) and Artemia 

only fed larvae (0.67 % day", 0.71 mm TL) throughout mysis stages to 
metamorphosis (Tables 40b, 41b). Studies with other penaeid larvae such 
as P. marginatus (Gopalakrishnan, 1976), P. aztecus, P. setiferus and P. 

vannamei (Kuban et al., 1985) have also shown that exclusive use of algae 
throughout all larval stages results in lower growth and delayed metamor- 
phosis although comparable survival rates can be achieved. Rodriguez et 
al., (1994) obtained significantly higher growth and survival when they fed 
P. japonicus larvae on alga (C. gracilis) throughout larval stages together 

with Artemia during mysis stages as opposed to alga only fed larvae. In 

their study, survival and growth of larvae receiving either alga or Artemia 

as sole diets during mysis stages did not differ significantly. In the present 

study, when PZ3/M1 stages of P. indicus were fed on Artemia as a sole 
diet 98 % of them metamorphosed into PLI/2 stages with a final total 
length of 6.72 mm compared to 92 % survival and 6.64 mm TL when fed 

on algae Mrtemia. Algae as a sole diet promoted 74 % survival and 5.37 

mm TL when the experiment was terminated (Table 42). Again it would 

appear that variation in nutritional content of live feeds may explain differ- 

ences in results. 

Whilst growth rates of larvae over the range of test salinities did not differ 

significantly (P>0.05), survival rate and larval development (see Table 45) 

both during protozoeal stages and mysis stages were significantly affected 

by the salinity (P<0.01) indicating that P. indicus prefers lower salinities 

for larval development. Preston (1985a) suggests that optimal salinity for 

larval growth and survival depends on salinity conditions operating where 

spawning takes place and that salinity has more pronounced effects on 

protozoeal rather than mysis stages of Metapenaeus bennettae. In the pres- 

ent study although 35 ppt salinity was closest to the spawning salinity (33.5 

ppt S), highest larval mortality and a lower growth rate were obtained at 
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this salinity. At optimum salinity, which appears to be between 20 ppt and 
25 ppt, with the mixed algae (T chuii / S. costatum) and Artemia from 
PZ3/MI stage onwards, over 91% larvae metamorphosed into PLI/2 stages 
with a final total length of 6.48 mm within 8 days (Figures 6a, b). Bukhari 
et al., (1993) report that 30 ppt salinity was the best salinity for P. indicus 
larvae obtained from the spawners kept in sea water at 43 ppt S (Red Sea). 
Data from Chapter 2 also shows that optimal salinity, which sustains the 
maximum survival and growth during nursery stages of P. indicus postlar- 
vae, is also 25 ppt. 

Gopalakrishnan (1976) states that none of newly hatched larvae of P. 

marginatus were able to survive further than a few hours at 20 ppt S and 
that the lowest salinity tolerated by the larvae (PZ1 to PL stages) lies be- 

tween 24 and 26 ppt S. This author found the highest survival of P. margi- 

natus at 33 ppt S. The complete mortality obtained by Gopalakrishnan 

(1976) at 20-26 ppt S for nauplius and protozoeal stages could be due to 

abrupt salinity change to these low experimental salinities. In the present 

study PZ1 larvae were acclimatised to experimental salinities for 2h 

(Preston 1985b). Since, heavy larval mortalities of M bennettae, P. plebe- 

jus and M macleayi at 10 and 50 ppt S were reported (Preston, 1985b), a 

narrower salinity range of between 20 and 35 ppt was tested on growth 

and survival on P. indicus in the current study. 

The present study demonstrates that optimal larval culture conditions for 

Penaeus indicus from India at which they can be reared from PZI to PLI 

within 6 days with over 90% survival are in water at 25 ppt salinity and at 

27-28 OC using a mixed algal diet of Tetraselmis chuii (25 cells Vl-') and 

Skeletonema costatum (35-45 cells pl-') plus five Artemia ml-' after PZ3/ 

MI stage. 
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INTRODUCTION 

The life cycle of shrimps included in the family Penaeidae is well known with 
most species spending their nursery stages in shallow inshore,, brackish wa- 
ters and moving offshore for maturation and spawning at oceanic salinities. 
Among ecological factors, salinity is one of the most important environ- 
mental factors affecting the growth and survival of penaeids, particularly in 

nursery areas where the animals may be exposed to rapid salinity fluctua- 
tions and extreme environmental conditions (Raj and Raj, 1982). Food con- 
sumption, conversion efficiency and, hence, growth, and survival of cultured 
penaeid shrimps are influenced by salinity and/or temperature (Venkatara- 

maiah et al., 1972; Staples and Heales, 1991). Thus, it is important to de- 

termine optimum salinity levels for each commercial shrimp species when the 

postlarvae are reared in closed systems during the nursery stages. In such 

systems, the salinity can be altered according to optimum requirements of 
the species and even for individual postlarval stages. 

Several studies have been conducted to determine salinity tolerances alone 

or in conjunction with other abiotic factors and to measure osmoregulatory 

ability for commercially important penaeid species such as P. monodon, 
(Cawthorne et al., 1983); P. semisulcatus (Harpaz and Karplus, 1991); P. 

aztecus (Venkataramaiah et al., 1972); P. setiferus (Zein-Eldin and Griffith, 

1969); P. vannamei, P. stylirostris, P. californiensis, P. brevirostris (Mair, 

1980); P. merguiensis, P. esculentus, Metapenaeus bennettae (Dall, 1981); 

P. japonicus and P. chinensis (Charmantier-Daures et al., 1988). In contrast 

to adults, the postlarvae and juveniles of most of these species adapt and 

osmoregulate well at low salinities. Studies, with juvenile Indian white 

shrimp, Penaeus indicus, revealed that this species is capable of osmoregu- 

lating at salinities of between 3 and 40 ppt (Parado-Estepa et al., 1987; Di- 

wan and Laximinarayana, 1989). Consequently, this species may be a good 

candidate for culture in brackish water ponds, which may display extreme 
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fluctuations in salinities during high rainfall seasons. Raj and Raj (1982) 
studied the effect of salinity on the growth and survival of wild P. indicus 
postlarvae and juveniles and reported superior growth and survival for this 
species at low salinities (5-25 ppt S) following a7 days acclimation to ex- 
perimental salinities. In contrast,, Bukhari et al., (1994), and Bukhari (1994) 

report that hatchery reared P. indicus postlarvae (PLI-PL60) from the Red 
Sea acclimatised for 10 days demonstrated the best survival, growth and 
biomass at high saline conditions (50 ppt S) in comparison to salinities of 
10-40 ppt. 

The primary aim of the present work was to culture P. indicus originating 
from India under similar experimental conditions to those used by Bukhari et 
al., (1994) for the culture of the same species from the Red Sea. The 

process and the length of acclimation period to different salinities may affect 

subsequent results (Cawthorne et al., 1983, Harpaz and Karplus, 1991). 

Therefore,, these parameters were kept the same with those used by Bukhari 

et al., (1993; 1994). 

MATERIALS AND METHODS 

All postlarvae used in the experiments were obtained from Indian brood- 

stock, held in a recirculation system in the School of Ocean Sciences, Menai 

Bridge, UK. PLs (postlarvae) were reared from PLI to PL7 on live Artemia 

sahna nauplii and on a PL Frippak diet (INVE Aquaculture, Belgium) until 

PL20. 

In the first experiment, PL7 postlarvae, previously reared at 30 ppt S, were 

stocked directly in experimental salinities at a density of 6 animals C in 6-1 

plastic basins (25 x 30 x 15 cm) supplied with gentle aeration, fed Frippak 

PL diet and fresh mussel meal to excess. Seven different salinities (5,10,20, 

251.30,357 40 ppt S) were used to test the salinity resistance of the postlar- 
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vae from stage PL7 to PL22. After mass mortalities occurred at 10 and 5 
ppt S, the animals were gradually acclimated for 48 h by reducing the sa- 
linity by 5 ppt S 2-3 times a day from 30 ppt to 5 ppt S. Since the postlar- 
vae subjected to 10 ppt S showed high mortality in 24 h, they were excluded 
in the calculations. The results obtained from the PLs acclimated to 5 ppt 
over 48 h were also not considered in statistical analysis as acclimation was 
not used for animals transferred to other salinity regimes. 

In the second experiment, postlarvae were stocked at a density of 4 indi- 

viduals C in 6-1 plastic basins and acclimatised from 30 ppt S to different 

salinities (10,20,30,35,40,50 ppt S) gradually (5 ppt each day) for up to 
4 days, All the animals were kept in the final test salinities for 6 days before 

the first sampling was carried out on the 10th day. Desired salinities were 
obtained by mixing aquarium salt "Instant Ocean" (Aquarium Systems) and 
dechlorinated tap water, and salinity measurement was performed with a 
direct reading salinometer. PLs were fed on a Frippak formulated pelleted 

artificial diet from PL20 to PL60. At the end of the experiment postlarvae 
(PL60) were weighed on a scale (± 0.01 g) to determine individual wet- 

weight and total biomass. 

Experiments were conducted under a controlled photoperiod (I OL: 14D) 

with artificial fluorescent illumination and the water temperature was main- 

tained at 29-31 'C. Uneaten food was removed daily when 50 % of the 

rearing water was renewed. A complete water exchange was performed 

every 5 days, and simultaneously the postlarvae were counted and 10-12 of 

them were measured from the tip of the rostrum to the end of the tail using 

callipers (± 0.01 mm). All salinity treatments in both experiments were trip- 

licated. These experimental conditions replicated those conducted in Saudi 

Arabia with Red Sea P. indicus which were also supervised by D. A. Jones. 



71 

Statistical Analysis 

In the first experiment, growth and survival data were analysed by one-way 
ANOVA between treatments for each stage and between larval stages for 

each treatment. Tukey's test was used to compare the means. Slopes of 
growth and survival of postlarvae were calculated from 3 replicates and 
compared using the General Linear Model (GLM) in Minitab. Biomass and 
wet-weight of the animals reared at different salinities were also compared 
(3 replicates) by one-way ANOVA and Scheffe's test. 

RESULTS 

Experiment I 

When PL7 stage animals were transferred from 30 ppt S to 5 and 10 ppt S, 

mass mortalities (between 80 and 100 %) occurred within 24 h. However, 
- 

following a gradual acclimatisation over a period of 48 h, the postlarvae 

were able to adapt successfully to 5 ppt S. Thereafter, this low salinity ap- 

peared to be one of the most favourable salinities during the early nursery 

stages of P. indicus (see Figures la, b). Exposure of the specimens to a sa- 
linity increase from 30 to 40 ppt S or decrease to 20 ppt S had no detrimen- 

tal effect on growth and survival. 

Figure I shows that although survival of PLs reared under different salinities 
for a period of one week did not differ from each other (P>0.05), growth at 
low salinities (20-30 ppt) were significantly better than high salinities (35-40 

ppt) (see Tables 1-6). Animals directly transferred from 30 ppt S, reared at 

25 ppt S had the highest survival (92.22 %) and the fastest growth (18.2 

mm total length = TL), whereas animals at 40 ppt S showed the lowest 

survival (73 %) and growth (12.33 mm TL) to PL22 stage (P<0.05) (see 

Tables 3 and 6). Although the PLs had no salinity stress at 30 ppt, their 

survival and total length did not differ significantly from animals reared at 

20 ppt S (P>0.05). 
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Figures la, b. Survival (Z) and total length (mm) of P. indicus postlarvae 

reared at salinities of between 5 and 40 ppt from PI-7 to PI-22. Each bar 

represents a mean * s. d. (n=3). Treatments with the same superscripts are 

not significantly different (P>0.05). 
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(Ns) Indicates a non-significant result. 
Indicates a significant result at P:! ý, 0.00 1. 
Indicates a significant result at P!! ý0.01. 
Denotes pairs of groups are significantly different at p-<0.05. 

Experiment I 

Table 1. One-way ANOVA on smival of postlarvae at Pl, 12. 

SOURCE DF SS ms Fp Significant 
Salinity 4 84.4 21.1 2.03 0.165 Ns 
Error 10 103.8 10.4 
Total 14 188.2 

Bartlett's test for homogeneity of variances 
F= 3.067, P-- 0.15 

Table 2a. One-way ANOVA on survival at PL17 stage. 

SOURCE DF SS ms Fp Significant 

Salinity 4 447.33 111.08 13.64 0.000 
Error 10 81.45 8.15 
Total 14 525.78 

Bartlett's test for homogeneity of variances 
F= 1.462, P-- 0.11 

Table 2b. Tukey's pairwise comparison test on survival at PLIT 

Mean Sahnity Code Test diffinean low-ci up-ci Signifi- 
cant 

77.78 40 ppt 1 1-2 -3.00 -10.6643 4.6643 
86.67 35 ppt 2 1-3 -0.78 -8.4443 6.8843 
91.11 30 ppt 3 14 3.66 4.0043 11.3243 
93.33 25 ppt 4 1-5 12.55 4.8857 20.2143 
90.33 20 ppt 5 2-3 2.22 -5.4443 9.8843 

2-4 6.66 -1.0043 14.3243 
2-5 15.55 7.8857 23.2143 
34 4.44 -3.2243 12.1043 
3-5 13.33 5.6657 20.9943 
3-6 8.89 1.2257 16.5543 

Table 3 a. One-way ANOVA on survival at PL22 stage. 

SOURCE DF ss 

Salinity 4 

Error 10 

Total 14 

ms Fp Significant 

618.28 154.57 34.78 0.000 

44.45 4.44 

662.73 

Bartlett's test for homogeneity of variances 
F= 3.143, P-- 0.15 

Ns 
Ns 
Ns 

Ns 
Ns 

Ns 
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Table 3b, Tukey's pairwise comparison test on survival at PL22 stage. 

Mean Salinity Code Test diffinean low-ci up-ci Signifi- 

73.33 40 ppt 1 1-2 -3.33 -8.987 2.327 
84.44 35 ppt 2 1-3 2.22 -3.437 7.877 
86.67 30 ppt 3 14 4.45 -1.207 10.107 
92-22 25 ppt 4 1-5 15.56 9.903 21.217 
88.89 20 ppt 5 2-3 5.55 -0.107 11.207 

24 7.78 2.123 13.437 
2-5 18.89 13.233 24.547 
34 2.23 -3.427 7.887 
3-5 13.34 7.683 18.997 
4-5 11.11 5.453 16.767 

Table 4a. One-way ANOVA on total length at PL 12, 

cant 
Ns 
Ns 
Ns 

Ns 

Ns 

SOURCE DF SS ms Fp Significant 

Stage 4 67.20 16.80 12.59 0.000 
Error 142 189.40 1.33 

Total 146 256.89 

Bartlett's test for homogeneity of variances 
F= 5.297, P-- 0.12 

Table 4b. Scheffd's pairwise comparison test for total length at PL12. 

Mean Salinity Code Test diffinean SE low-ci up-ci Signifi- 
cant 

10.44 40 ppt 1 1-2 -0.530 0.300326 -1.46736 0.40736 Ns 
10.79 35 ppt 2 1-3 0.520 0.302860 -0.42527 1.46527 Ns 
11.50 30 ppt 3 1-4 1.230 0.302860 0.28473 2.17527 
12.55 25 ppt 4 1-5 1.580 0.300326 0.64264 2.51736 
12.02 20 ppt 5 2-3 1.050 0.300326 0.11264 1.98736 

2-4 1.760 0.300326 0.82264 2.69736 
2-5 2.110 0.297770 1.18062 3.03939 
3-4 0.710 0.302860 -0.23527 1.65527 Ns 
3-5 1.060 0.300326 0.12264 1.99736 
3-6 0.350 0.300326 -0.58736 1.28736 Ns 

Table 5a. One-way ANOVA on total length at PLIT 

SOURCE DF SS ms Fp Sloficant 

Salinity 4 80.98 20.25 12.03 0.000 

Error 99 166.62 1.68 

Total 103 247.60 

Bartlett's test for homogeneity of variances 
F= 5.23 1, P-- 0.12 
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Table 5b. Scheffd's pairwise comparison test for total length at PL 17. 

Mean Salinity Code Test diffinean SE low-ci up-ci Signifi- 
cant 11.45 40 ppt 1 1-2 -0.80 0.376737 -L98264 0.38264 Ns 12.04 35 ppt 2 1-3 0.47 0.376737 -0.71264 1.65264 Ns 12.61 30 ppt 3 14 1.04 0.395922 -0.20286 2.28286 Ns 13.88 25 ppt 4 1-5 1.63 0.388927 0.40910 2.85090 

13.08 20 ppt 5 2-3 1.27 0.409878 -0.01667 2.55667 Ns 
2-4 1.84 0.427579 0.49777 3.18223 
2-5 2.43 0.421110 1.10807 3.75193 
34 0.57 0.427579 -0.77223 1.91223 Ns 
3-5 1.16 0.421110 -0.16193 2.48193 Ns 
4-5 0.59 0.438357 -0.78607 1.96607 

Table 6a. One-way ANOVA on total length at PL22. 

SOURCE DF ss ms Fp Significant 
Salinity 4 374.33 93.58 25.86 0.000 
Error 122 441.48 3.62 
Total 126 815.81 

Bartlett's test for homogeneity of variances 
F= 2.808, P-- 0.15 

Table 6b. Scheff6's pairWise comparison test for total length at PL22. 

Mean Salinity Code Test diffinean SE low-cl up-ci Slgmfl- 
cant 

12.26 40 ppt 1 1-2 -1.37 0.495474 -2.91981 0.17981 
13.63 35 ppt 2 1-3 -3.28 0.491530 4.81747 -1.74253 
15.54 30 ppt 3 14 -5.94 0.504097 -7.51678 4.36322 
18.20 25 ppt 4 1-5 -4.10 0.504097 -5.67678 -2.52322 
16; 36 20 ppt 5 2-3 -1.91 0.487279 -3.43417 -0.38583 

24 4.57 0.499952 -6.13381 -3.00619 
2-5 -2.73 0.499952 4.29381 -1.16619 
34 -2.66 0.496044 4.21159 -1.10841 
3-5 -0.82 0.496044 -2.37159 0.73159 
4-5 1.84 0.508499 0.24945 3.43055 

Ns 

Ns 

Table 7. Survival (0/6) and total length (mm) (data for Figures I a, b) of P. indicus postlarvae 
reared at different salinities from PL7 to PL22. Each value is a mean ± s. d. (n--3). 

Survival (/o) 
Stages 5 ppt 20 ppt 25 ppt 30 ppt 35 ppt 40 ppt 

PL7 100.00 1 100.00 100.00 100.00 100.00 i 100.00 
PL12 98.33±1.12 96.67±3.34 96.67±1.92 95.56 ±3.85 95.55±1.92 93.33±3.33 
PL17 89.99±1.92 90.33±3.34 93.33±3.34 91.11±1.92 86.67+-3.33 77.78±1.92 
PL22 87.77±3.34 88.89±1,92 92.22±1.62 86-67±1.00 84.44±1.93 73.33±3.33 

Total length (mm) 
PL7 9.15±0.07 9.15±0.07 9.15±0.07 9.15±0.07 9.15±0.07 9.15±0.07 
PL12 11.60±0.14 12.02±0.54 12.55±0.56 11.50±0.14 10.79±0.36 10.44±0.54 
PL17 13.2i±0.33 13.08±0.88 13.88±0.19 12.61±0.50 12.04±0.26 11.45±0.33 
PL22 16.19±1.04 16.36±0.76 18.20±0.67 15.54±0.73 13.63±0.27 12.26±0.49 
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Experiment 2 

Figures 2a and 2b show that P. indicus postlarvae sustain higher survival 
and better growth (TL) at lower salinities than at higher salinities between 
PL20 to PL60 stages. Although 10 ppt salinity sustained a very high survival 
and growth rate from PL20 to PL45,, survival rate of the animals started to 
decline sharply after stage PL45 indicating that this low salinity becomes 
stressful to late postlarvae (Figure 2a). Final survival of animals subjected to 
this salinity was only 13 % at PL60 stage (Tables 8 and 11). Survival ob- 
tained from this treatment did not show a linear relation and hence it was 
excluded in the statistical calculations. 

Table 8 summarises growth rate (mm day-' TL), mortality rate (% day-) 
between PL20 and PL60,. total length (mm)) survival (%), body wet-weight 
(g) and total biomass (g) and increase in body weight per mm increase in TL 

at PL60. Survival and growth rate at 20 ppt salinity were significantly 
(P<0.01) better than at other salinities tested in this trial (Tables 9 and 10). 
Growth and survival rates at higher salinities, particularly 50 ppt S, were 
significantly inferior to those recorded at lower salinities (P<0.01). Optimum 

culture salinity for the postlarvae (PL20-PL60) appears to be between 20 

and 30 ppt at 29-31 'C. While postlarvae cultured at 20 ppt S reached 37 

mm in total length with 72 % survival within 40 days of culture, animals at 
50 ppt salinity were only 27 mm with a 52 % survival (Table 8). PLs cul- 

tured at 40 ppt also exhibited slow growth and a high mortality rate by 

PL60. Tables 9-10 show no significant differences (P>0.05) between the 

growth and survival rate of postlarvae cultured at 30,35 ppt S. 

Results of individual wet-weight, total biomass and increase in body weight 

per mm total length (TL) also confirm the above findings. Figure 3 shows 

that,, at stage PL60, both total biomass and individual weight of the speci- 

mens cultured at lower salinities were significantly greater (P<0.01) than 

those at higher salinities. Table 8 displays that 20 ppt salinity gave the high- 
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est biomass (3.70 g), mean individual wet-weight (0.28 g) and weight per 
mm total length (7.54 mg-' mm-') than at all other salinities, whereas 50 ppt 
resulted in the lowest performance (1.39 g and 0.13 g and 4.84 mg-' mm-' 
respectively). 

Figure 4 plots survival and body wet weight per mm TL obtained by Bukhari 

et al., (1994), who used identical experimental procedures, together with the 

present trial for postlarvae reared at different salinities from PL20 to PL60. 

From this figure, it is clear that the Red Sea P. indicus postlarvae survive 

and grow better in high saline conditions (50 ppt S), whereas Indian P. in- 

dicus prefer lower salinities. The best survival, growth and yield (biomass) 

for Red Sea P. indicus were reported to be from animals previously accli- 

matised for 10 days and reared at 50 ppt by these authors. Our Indian P. 

indicus strain showed highest body weight per mm TL at low salinities (20 

ppt) and lowest at high salinities (50 ppt). However, with the Red Sea P. 

indicus, Bukhari et al., (1994) found the highest body weight per mm TL at 

50 ppt (4.6 mg-1 mm-') and lowest (0.72 and 2.15 mg-1 mm-) at 15 ppt and 

25 ppt salinities respectively (see Figure 4). In the present study, optimal 

salinity appears to fall between 20 and 30 ppt S for the Indian strain of P. 

indicus. 
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(Ns) Indicates a non-significant result. 
Indicates a significant result at Rý 0.001. 
Indicates a significant result at RAW. 
Denotes pairs of groups are significantly different at p-<0.05. 

Experiment 2 

Table 9a. Two-way ANOVA with days as a covariate on survival of P. indicus postlarvae from 
PL20 to PL60. 

Source DF Seq SS Adj SS Adj MS Fp Signifl- 
cant Salinity 5 860.88 11.46 2.29 0.19 0.962 

Days 1 1002.39 1002.39 1002.19 83.59 0.000 
Repl(Sahnity) 12 88.72 78.69 6.56 0.55 0.856 
Salinity*days 5 206.14 206.14 41.23 3.44 0.024 
Repl*Days(salinity) 12 85.38 85.38 7.12 0.59 0.820 
Effor 18 215.85 215.85 0.59 
Total 53 2459.36 

* 

Table 9b. Comparison of the mortality rates of P. indicus postlarvac reared at different salinities 
(20-50 ppt S) from PL20 to PL60. 

Mortality rate Slopes Coeff. Stdev. t-value P Significant 
(% day 

Constant 100.762 0.9700 103.87 0.000 
Weeks -5.4048 0.2169 -24.92 0.000 
Weeks*S 

50 ppt 
40 ppt 
35 ppt 
30 ppt 
20 ppt 

1.262 
1.168 
1.024 
1.083 
0.857 

-6.310 -0.9048 0.4338 -2.09 0.040 

-5.839 -0.4881 0.4338 -3.13 0.264 

-5.119 0.2857 0.4338 0.66 0.512 

-5.417 -0.0119 0.4338 -0.03 0.978 

-4.286 1.1190 0.4338 2.58 0.012 

Ns 
Ns 
Ns 

Table 10a. Two-way ANOVA with days as a covariate on growth of P. indicus postlarvae from 
PL20 to PL60. 

Source 

Salinity 
Days 
Repl(Salinity) 
Salinity*days 
Repl*Days(salinity) 
Error 
Total 

DF Seq SS Adj SS Adj MS Fp signifi- 
cant 

5 484.609 2.201 0.440 0.19 0.967 
1 1070.739 1023.319 1023.319 437.18 0.000 
12 29.913 20.638 1.720 0.73 0.717 
5 96.921 93.380 18.676 7.98 0.000 
12 18.695 18.695 1.558 0.67 0.785 

399 933.952 933.952 2.341 
434 2634.831 
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Table 10b. Comparison of the growth rate of P. indicus postlarvae reared at different salinities (20- 50 ppt S) from PL20 to PL60. 

i Growth rate slopes Coeff. Stdev. t-value 
(mm day-' 

Constant 
Weeks 
Weeks*Salinity 

50 ppt 0.183 
40 ppt 0.299 
35 ppt 0.434 
30 ppt 0.424 
20 ppt 0.442 
10 ppt 0.476 

p Significant 

19.6206 0.1821 107.77 0.000 
1.8813 0.0418 44.94 0.000 

0.917 -0.9639 
1.496 -0.3856 
2.171 0.2899 

2.122 0.2402 

2.209 0.3276 

2.379 0.4919 

** 

0.0905 -10.65 0.000 
0.0906 -4.25 0.000 
0.0911 3.18 0.002 
0.0925 2.60 0.010 
0.0918 3.57 0.000 
0.1044 4.71 0.000 

Table 1 Ia. Survival (%) data of P. indicus (in Figure 2a) postlarvae reared at different 
salinities from PL20 to PL60. Each value is a mean ± s. d. (n=3). 

Survival (%) 

Stages 10 ppt 

PL20 100.00 
PL30 95.00±5.00 
PL35 91.67±5.77 
PL40 85.00±5.00 
PlA5 81.67±2.89 
PL50 68.33+-2.89 
PL55 35.00±10.00 
PL60 13.33: L5.78 

20 ppt 30 ppt 35 ppt 40 ppt 50 ppt 

100.00 100.00 100.00 100.00 100.00 
96.67±2.89 96.67±5.77 96.67±2.89 95.00±5.00 86.67± 2.89 
90.00±5.77 93.33: L2.89 93.33±2.89 93.33±2.89 83.33± 2.89 
88.33±5.00 86.67±2.89 88.33±2.89 85.00±0.00 78.33± 2.89 
80.00±2.89 81.67±2.89 86.67: L2.89 80. OOA: 2.89 68.33± 2.89 
76.67±2.89 80.00±5.77 78.33±5.77 73.33±2.89 60.00±13.23 
73.33A: 2.89 68.33±2.89 71.67: L7.64 66.67A: 7.64 56.67±10.41 
71.68±5.78 65.00±5.00 66.67±2.89 61.67±2.36 51.67± 5.77 

Table I lb. Total length (mm) data of P. indicus (in Figure 2b) postlarvae reared at different 
salinities from PL20 to PL60. Each value is a mean ± s. d. (n=3). 

Total length (nun) 

Stages 10 ppt 20 ppt 30 ppt 35 ppt 40 ppt 50 ppt 

PL20 19.71±0.33 
PL30 22.1710.75 
PL35 25.27±0.31 
PL40 27.91±0.54 
PL45 29.33±0.71 
PL50 31.54: L2.46 
PL55 34.46±1.32 
PL60 37.13±1.16 

19.71±0.33 19.71±0.33 19.71±0.33 19.71±0.33 19.71±0.33 
22.61±0.48 21.87±0.42 21.06±0.36 20.69±0.29 21.06±1.14 
25.59±0.20 24.68±0.52 23.17±0.29 23.11±0.86 21.92±0.23 
27.19±0.42 26,22±0.45 24.74±0.43 24.31±0.53 21.96±0.37 
27.24±0.80 26.84±1.18 25.93±0.53 25.40±0.35 22.76±0.28 
31.20±1.06 29.48±1.03 29.10±0.89 27.12: LI. 26 23.83±0.76 
32.82±0.97 32.11±0.94 30.51±0.63 28.71±1.26 24.64±1.17 
37.13-+1.82 35.65±0.56 34.86±0.89 29.93±1.95 26.85±0.94 
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DISCUSSION 

Present results indicate that P. indicus is a very successful hypo and hyper 
osmoregulator during early postlarval stages. It can withstand an abrupt 
salinity change from 30 ppt S to 20 ppt and 40 ppt S without adverse sur- 
vival. However, in the first experiment, 100 % mortality was recorded in 24 
h when the animals were transferred without acclimation from a salinity 30 
ppt to 5 ppt S water. Sudden transfer to 10 ppt salinity also caused 80 % 
mortality, indicating that early postlarvae of this species cannot tolerate 
salinity changes of greater than 10 ppt S day'. Bukhari (1994) also obtained 
only 0.04% survival when he transferred P. indicus postlarvae (PLIO) origi- 
nating from the Red Sea directly from 30 ppt to 10 ppt S and cultured them 

until PL20 stage. As postlarvae were successfully acclimatised to 5 ppt S 

over 48 h5, it is recommended that an acclimation period of this length is 

necessary if postlarvae are to be stocked into brackish nursery ponds of 5 

to 10 ppt salinity. This confirms findings of Parado-Estepa et al., (1987) 

who report that P. indicus at 5-10 g are also able to osmoregulate in salini- 
ties of between 8 and 40 ppt, but need an acclimation time of 0.5-2.0 days. 

Results obtained from the current study at 5 ppt are similar to those of Raj 

and Raj (1982) who report 5 ppt S as one of the best salinity levels during 

their experiments with P. indicus wild postlarvae, previously acclimatised 
for 8 days. 

Like many other penaeids, P. indicus is a euryhaline species growing in a 

wide range of salinities. Present results indicate that, although the PLs of 

this species can tolerate high saline conditions, they clearly grow and sur- 

vive better in low salinities (Figures 1-2). Between PL7 and PL22, animals 

show consistently better survival and growth at 20 and 25 ppt S than at high 

salinities (40 ppt S) indicating that their optimal salinity is in the lower 

range (Table 7). This agrees with Raj and Raj (1982) who studied P. indicus 

postlarvae and juveniles captured from the wild (no PL stage indicated) and 
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demonstrated that postlarvae prefer lower salinities. Based on present re- 
sults and those of Raj and Raj (1982), 25 ppt salinity is the best recom- 
mended salinity for Indian P. indicus strains during nursery postlarval rear- 
ing at 29-31 'C. In Chapter 1, it was found that 25 ppt S is optimal for the 
larval culture of P. indicus from PZ I to PL 1. Staples and Heales (199 1) also 
obtained the greatest biomass increase in P. merguiensis at 25 ppt S and 28 
1C. Dall (1981) interprets this low salinity preference shown by the postlar- 
vae of penaeids as a useful adaptation to their natural nursery habitats. 

Present postlarvae cultured at 10 ppt S showed poor survival in this medium 
after PL40 stage suggesting that animals at PL35-40 become more steno- 
haline preferring higher salinities. Postlarvae and juveniles are more capable 
of withstanding lower salinities than adults (Charmantier, 1987) and toler- 

ance to euryhalinity may be lost gradually with development under stable 

conditions (Dall, 1981). Similarly, Staples (1980) also notes that 10 ppt S is 

a critical salinity level for large P. merguiensis. It appears from present re- 

sults that P. indicus is not a suitable candidate for culture at salinities lower 

than 10 ppt, particularly from PL45 onwards. This is confirmed by Primav- 

era (1984; cited in Parado-Estepa et al., 1987), who observed mass mor- 

tality of this species during culture in grow-out ponds at salinities lower 

than 10 ppt, and Parado-Estepa et al., (1987) who report that this species is 

incapable of osmoregulating efficiently below 8 ppt S. Therefore, in agree- 

ment with Bukhari et al., (1994), it is suggested that PL35-40 stage is 

probably the ideal time to transfer P. indicus postlarvae to on-growing 

ponds. 

Food consumption and conversion ratio are correlated with temperature and 

salinity of culture water. In the present study, it was observed that food 

consumption of animals reared at high salinities was much lower in compa- 

rison to those cultured at low salinities. Since the temperature was constant 

during the experiments, variation in food consumption was mainly related to 
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salinity. As a result of high food consumption, low salinitles consistently 
gave superior growth and survival as occurs in the natural estuarine nursery 
habitat of the postlarvae (Venkataramaiah et al-, 1972). Hence, after larval 
rearing, animals can be placed directly without acclimatisation in nursery 
water at 20-25 ppt S where salinity fluctuations do not exceed 10-15 ppt S 
per day. 

Whilst optimal salinity for larval culture (20-25 ppt S) did not differ signifi- 
cantly between the present Indian race and Red Sea race of P. indicus, 

- 
Fig- 

ure 4 demonstrates that postlarval salinity preferences are very different. 
Significant differences in the growth rate at 50 ppt S become apparent at 
PL40 with Indian stock showing slower growth than at other salinities 
(Figure 2), whereas Red Sea stock shows the fastest growth at this salinity 
level (Bukhari et al., 1994). By PL60, Indian stock shows significantly 

slower growth at 40 and 50 ppt S, whilst Red Sea stock shows significantly 
faster growth at 43 and 50 ppt S. The Red Sea strain attained the highest 

yield at 50 ppt S whereas our Indian strain gave the maximum yield at 20 

ppt S, Final body wet weight (at PL60) per mm TL between the two shrimp 

populations also differed at extreme salinities. While the Red Sea P. indicus 

showed an increase in body weight (0.72 to 4.8 mg-1 mm-1 TL) with increas- 

ing salinity from 15 to 50 ppt, the present Indian race exhibits a decline in 

body weight (7.54 to 4.85 mg-1 mm-) TL with an increase in salinity from 

20 to 50 ppt (Figure 4). 

The salinity preferences of Indian P. indicus postlarvae cultured in the pre- 

sent study follow a similar pattern to wild Indian postlarvae (Raj and Raj, 

1982), with slower growth and higher mortality at higher salinities, despite 

culture through several generations in Tahiti and Europe at 35 ppt S. In 

contrast, Red Sea P. indicus appear to be a distinct physiological strain 

adapted to high saline conditions. This has important repercussions for the 

aquaculture industry as it becomes possible to select broodstock physiolo- 
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gically suited to particular nursery and grow-out salinity regimes. Harpaz 

and Karplus (1991) suggest that the difference in salinity tolerance between 
P. semisulcatus populations in the Philippines (Valencia, 1977) and in the 
Mediterranean (Samocha, 1980; cited in Harpaz and Karplus, 1991) may be 
due to inherent differences between the two populations. The difference in 

salinity tolerance between two separate populations of Australian penaeids 

was ascribed to localised inherited abilities which are dependent on salinity- 

temperature history of the parent stock (Preston, 1985a). In the present 

study, whilst optimal salinity for larval culture (20-25 ppt S) did not differ 

significantly between the two populations, postlarval salinity preferences are 

very different (Figure 4). Therefore, in agreement with Harpaz and Karplus 

(1991), the present results suggest that inherent differences may exist 

between the Red Sea and our Indian P. indicus populations. It remains to be 

seen whether Red Sea P. indicus, now about to be cultured through a 

second generation in Europe in sea water of 35 ppt S, will retain tolerance 

to a high saline environment. 



CHAPTER 3 

NEMATODES AS AN ALTERNATIVE LIVE FEED FOR CARIDEAN AND 
PENAEID LARVAE. 

In this chapter P. indicus = Penaeus indicus, P. elegans = Palaemon ele- 
gans, P. redivivus = Panagrellus redivivus. 

Parts of this chapter were presented in 'WORLD AQUACULTURE' 94' 
New Orleans, USA, January 14-18,1994. 

Title: Growth and survival of Penaeus indicus larvae fed on the nematode 
Panagrellus redivivus. 

Authors: Fletcher, D. J., Fisher, C. M., Kumlu,, M, and Rodgers, P. B. 

Published: World Aquaculture Society, Book of Abstracts, p, 109, 
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INTRODUCTION 

The major objective in penaeid aquaculture is to establish adequate feeding 
regimes that promote reasonably good growth and survival while being eco- 
nomical and practical. Under hatchery conditions current penaeid larval cul- 
ture is still primarily dependent on live microalgal diets during protozoeal 
stages and Artemia nauplii during mysis and early postlarval stages 
(Hudinaga, 1942; Cook and Murphy, 1969; Emmerson, 1980; Liao, 1984). 
Problems encountered using algal cultures to rear penaeid larvae in large 

quantities have been well documented (Liao et al., 1983; Watanabe et al.,, 
1983; Jones, 1988; Leger and Sorgeloos, 1992; Jones et al.,, 1993). Although 
Artemia is a very suitable feed source for the culture of Macrobrachium 

rosenbergii (Ling, 1969a, b; Deru, 1990), Palaemon elegans (Brewster, 
1987), and mysis and early postlarval stages of penaeids (Sorgeloos 1980), 
its high price (Langdon et al., 1985), availability, nutritional quality and 

variations in hatching efficiency between different strains (Watanabe et al., 
1983; Leger et al., 1986) are also well known drawbacks. In addition, - 

Ar- 

temia consume algal feeds and grow too quickly becoming unavailable as 
food for the penaeid larvae (Biedenbach et al., 1989). As a result, different 

alternative diets such as artificial microparticulated diets (Jones et al., 
1979a; Jones et al., 1987; Galgani and Aquacop, 1988; Ottogali, 1991) and 

other live diets such as rotifers (Emmerson, 1984; Lovett and Felder, 1988) 

have been investigated as potential feeds to replace the conventional live 

diets used to rear commercially important shrimp larvae. 

Free-living nematodes with their suitable size range, easy cultivation and 

high nutritional value were suggested as an important potential live food for 

rearing fish fry (Kahan et al., 1980). Samocha and Lewinsohn (1977) first 

reported successful use of the nematode, Panagrellus sp., along with algae 

and Artemia nauplii, in rearing Penaeus semisulcatus and Metapenaeus 

stebbingi. Wilkenfeld et al., (1984) replaced live Artemia nauplii in culture 

of mysis stages of three penaeid species, P. aztecus, P. vannamei and P. 



85 

setiferus using Panagrellus redivivus. They observed that these penaeid 
larvae were able to consume and survive on the single nematode diets from 
as early as PZI stage. However, these authors suggested the use of P. redi- 
vivus as a partial or complete Artemia replacement only during mysis stages 
to avoid reducing growth, survival and delaying metamorphosis. Biedenbach 
et al., (1989) investigated the feeding level of P. redivivus stages in con- 
junction with algae from PZ2 to PL stages in P. vannamei. These authors 
obtained equal growth, survival and metamorphosis in comparison to Ar- 
temialalgae when they fed the larvae of this penaeid species on the nema- 
tode/algae feeding regime. 

The objectives of this chapter are, therefore, to investigate the possibility of 
complete replacement of both microalgae and Artemia nauplii with live 

nematodes (Panagrellus redivivus, Caenorhabditis elegans, Steinernema 
feltiae) for the culture of two commercially important shrimp species; a ma- 
rine penaeid, Penaeus indicus and a freshwater prawn, Macrobrachium ro- 

senbergii. In order to obtain some preliminary experience in the use of 

nematodes as larval feeds, initial trials were performed with the larvae of a 

native prawn, PaIdemon elegans. After a few experiments with caridean 
larvae, most of the research was concentrated on the penaeid larvae of P. 

indicus since P. elegans and M rosenbergii larvae were unable to survive on 

the nematodes. Following preliminary trials, an adequate feeding level of the 

nematode, P. redivivus,, was investigated for protozoeal and mysis stages of 

P. indicus. Nematodes with different size ranges were fed to P. indicus lar- 

vae to determine the size effects of the nematodes on growth, survival and 

metamorphosis rate of larvae from PZ1 to PL stages. Also, survival and 

growth of the larvae fed one meal and two meals of nematodes per day were 

compared separately during protozoeal and mysis stages. 
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MATERIALS AND METHODS 

Different species of live nematodes were fed to larvae of two caridean spe- 
cies, P. elegans and M rosenbergii as substitutes for live Artemia in their 
culture. Conventional live feeds for P. indicus larvae (algae during proto- 
zoeal stages and Artemia salina nauplii during mysis and postlarval stages) 
were also replaced using the nematode P. redivivus. 

Rearing procedures 
Basic experimental procedures were identical for all species except where 
otherwise stated. The larval trials were performed in 2-1 round bottom glass 
flasks incubated in a water bath at the appropriate temperature for each spe- 
cies (as described later). Sea water was filtered (0.2 gm) and irradiated with 
ultra-violet light (UV) to prevent extraneous food sources and to reduce 
bacterial contamination. Aeration sufficient to maintain continuous prey/ 

predator interaction without damaging the prawn larvae was obtained via 

silicone rubber tubing and a single glass pipette at the tip supplied with com- 

pressed air. Complete water exchanges were performed every day or every 

other day when the larvae were also counted and a sample of 10-14 larvae 

were staged and measured from the tip of the rostrum to the end of telson 

(Total length = TL) for each replicate. Except where otherwise stated, 50% 

of the culture water of each individual flask was changed every day when 

algal and prey counts were estimated and an appropriate amount of fresh 

food was added to maintain specific feeding regimes for each species. Ar- 

temia cysts (INVE AQUACULTURE, Belgium) were continuously hatched 

in 2-1 glass flasks at 26-28 'C at 32 ppt S during the experiment. Newly 

hatched nauplii were separated from the shells of the cysts and counted five 

times to estimate their density. 

Nematode cultures 

Live nematodes were obtained from Agricultural Genetics Company (AGC),, 

West Sussex, UK soaked in small cubic sponges (10 million in 3g sponge in 
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10 ml of water) and kept at 4 'C in an ordinary refrigerator. They were re- 
leased in distilled water, concentrated and counted (three times) in a rafter 
cell counting chamber before they were fed to the larvae. Size range of the 
nematodes were generally between 150 g and 900 [t. Nematodes were pro- 
duced in liquid medium axenically or monoxenically with attempts to manipu- 
late their nutritional profile to supply a more adequate food for penaeid lar- 

vae. Culture conditions of the nematodes were; 
Bacteria : Escherichia coli 
Medium (w/w): 10% kidney, 1% yeast extract and 3.5 % corn oil 
Flasks : 250 ml baffled flasks with 50 ml of medium. 
Culture temperature: 22 'C. 

Shaking incubator : 170 rpm 
An inoculum of 2000 nematodes ml-1 was added to the flasks which had been 

previously (24 h) inoculated with Escherichia coli. The flasks were incu- 
bated at 22 'C for 10-22 days in an orbital incubator. Nematodes were har- 

vested when maximum populations occurred, at approximately 150,000 

nematodes ml-1. The nematodes were extracted from the media by centrifu- 

gation and cleaned to remove any residual medium by a repetitive suspen- 

sion,, sedimentation and decantation in fresh water. They were packed in 

15xl8 cm. high density polyethylene bags containing 2g of foam blocks and 
10-20 ml of water. When large numbers of nematodes were required, they 

were produced in mass quantities in fermenters (10-1 or larger). These ves- 

sels were inoculated with 2000 nematodes ml-' and harvested when the 

population reached a maximum of 174,000 nematodes ml-1 in 18-25 days 

(Fisher, pers. comm. ). Generally, nematodes were regularly obtained from 

AGC and used in 1-3 days of receipt from the company during the experi- 

ments. 

Caridean larvae 

A feeding experiment was performed to test whether the nematode, 

Caenorhabditis elegans can be used as food for P. elegans larvae. Two dif- 
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ferent trials were conducted in an attempt to replace Artemia with four dif- 
ferent nematode species, C. elegans, Steinernema carpocapsae, Steinernema 
feltiae and P. redivivus during the culture of M rosenbergii larvae from ZI 
stage onwards. 

Palaemon elegans 

Ovigerous females were obtained from the Menai Strait and kept in 50-1 

glass aquaria at 25 'C until the larvae were released according to the lunar 

cycle. Newly hatched larvae (ZI) were stocked at a density of 50 1-' in fil- 

tered (0.2 gm) and UV-treated sea water in 2-1 flasks and temperature dur- 
ing experiment was maintained at 25 'C in a thermostatically controlled wa- 
ter bath. The nematode, C. elegans, (450-500 pm in length) was fed to the 
larvae at a concentration 30 ml-'. The control larvae were either fed newly 
hatched Artemia nauplii at 10 ml-' or starved. 50 % of the rearing water in 

2-1 flasks was replaced every day. Survival and growth of the larvae were 

assessed every other day from two replicates. The experiment was termi- 

nated when all the larvae on the nematode diet had died on day 9. 

Macrobrachium rosenbergh 

Two experiments were conducted with M rosenbergii larvae to assess 

whether they could be fed on different species of nematodes. Larvae were 

obtained from individual female broodstock held in a 100-1 tank at 29 'C in 

freshwater. Newly hatched ZI stage larvae were stocked at a density of 50 

larvae I-' in water at 29 'C and 12 ppt S in 2-1 experimental flasks. Tempera- 

ture of the rearing water was maintained at 29 'C ± 0.5 by keeping the flasks 

in a thermostatically controlled water bath. The brackish water was obtained 

by mixing distilled water with filtered and UV-treated sea water. 

Experiment I 

In the present experiment, two species of nematode, C. elegans and S. car- 

pocapsae were initially fed at two different densities as described in Table I- 
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On day 4, since none of the larvae had full guts with the nematodes, it was 
decided to feed the larvae on the larger nematode species S. felliae. Nema- 
tode concentrations were also increased as in Table I to ensure that suffi- 
cient prey was available to the larvae at all times. All these nematode species 
were cultured on a medium enriched with 25 % capelin oil to improve their 
fatty acid profile for the prawn larvae, 50 % of the culture water was ex- 
changed every day when new nematode feeds were added to the culture. 
Growth and survival was assessed every other day from two replicates. 

Table 1. Feeding levels of Artemia and three different species of nematodes (ml-') used 
in the present experiment to feed M. rosenbergii larvae from ZI stage. 

Days Artemia C. elegans S. carpocapsae Starved 
(MI-1) (MI-1) (nil-, ) 

0 10 75 150 75 150 - 
2 10 75 150 75 150 - 

S. feltiae (ml-1 
4 15 150 225 125 175 - 
6 15 150 225 125 175 - 

Experiment 2 

Experimental procedures were identical to those used in Experiment 1. Lar- 

vae (Z I stage) of M rosenbergii were stocked in 2-1 flasks and fed with the 

nematode P. redivivus at a concentration of 10,20 and 30 nematodes ml-1 

on days 0,2 and 4 respectively. Control larvae were fed newly hatched Ar- 

temia at a density of 10 nauplii ml-'. In another treatment larvae were 

starved as another control, Also, larvae were observed in petri dishes under 

a binocular microscope to determine whether they could ingest and digest 

the nematodes. 

Penaeid larvae 

For each experiment, P. indicus larvae were obtained from individual fe- 

males held in 50-1 spawning tank at 28 'C and 33 ppt salinity. After the 

spawning, 50 % of the sea water of the tank was changed with filtered (0.2 

pm) and UV-treated sea water. Protozoea I (PZI) stage larvae were treated 
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with an antibiotic (furazolidone) at 0.2 ppm before the larvae were stocked 
into experimental flasks at a density of 100 larvae 1-1 and fed the experimen- 
tal diets. Experiments were carried out in a thermostatically controlled water 
bath at 28 ± 0.5 'C. Continuous aeration was supplied via silicone rubber 
tubing with glass tubes at the tip to ensure sufficient amount of oxygen and 

prey/predator movement in the rearing water. Except in the first experiment, 

salinity was maintained at 25 ppt (optimal to rear P. indicus larvae - See 

Chapter 1), throughout all experiments by mixing filtered (0.2 Pm) and UV- 

irradiated sea water with distilled water. 

Experiment I 

P. indicus larvae (PZI stage) fed 50 cells [il-1 Telraselmis chuii and Rhino- 

monas reficulata (1: 1) plus Frippak micro encapsulated diets (INVE AQ- 

UACULTURE., Belgium) until the experiment started at PZ2/3 stages, The 

larvae were stocked at a density of 30 larvae 1-1 in 2-1 experimental flasks to 

assess survival and growth of mysis larvae on the nematode P. redivivus or 

Artemia nauplii, 

Table 2. Feeding regimes used to rear P. indicus larvae from 

stage PZ2/3 to postlarval stage (PL). 

Diet A Diet B 

Days Algae Artemia Algae Nematode 
(cells RI-1) (MI-1) (cells gl-') (MI-1) 

0 50 cells 1.5 50 cells 10.0 
1 50 cells 1.5 50 cells 10.0 

2 50 cells 1.5 50 cells 10.0 

3 25 cells 3.0 25 cells 15.0 

4 5.0 15.0 

5 5.0 15.0 

Larval feeding regimes are shown in Table 2. Algal feeds were fed to the 

larvae along with P. redivivus and Artemia until day 3 when the algal cell 

concentration was halved. On day 4, the algal feed totally ceased and P. 

indicus larvae were fed on either Artemia or the nematode diet until the end 
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of the experiment. Growth and survival data was analysed using one-way 
ANOVA in Minitab following Bartlett's test for homogeneity of variances. 

Experiment 2 

Two nematode species, P. redivivus and C. elegans were fed to PZI stage of 
P. indicus larvae at a density of 25 nematodes ml-1 in an attempt to see 
whether the larvae would survive on these two nematode species from the 
first feeding stage (PZI). Larval growth and survival measurements were 
performed every other day from three replicates for each treatment. These 

nematode species were obtained from the AGC continuously during the ex- 
periment. Control larvae were reared on mixed live algae of T. chuii (25 

cells gl") and S. costatum (35 cells pl-1) until PZ3/MI stage when the ex- 

periment had to be terminated due to heavy mortalities observed with the 
larvae fed the nematodes. 

Experiment 3 

It was thought that the previous experiment collapsed because possibly the 
larvae were not fed at appropriate feeding level of nematodes, Thus, in this 

experiment the nematode P. redivivus was fed to the larvae at four different 

concentrations (30,40,50 and 60 ml-1) from stage PZ1 to assess adequate 

nematode feeding density in the absence of microalgae. Larvae were stocked 
in 2-1 flasks at a density of 100 larvae 1-1 at PZ1 stage. The control larvae 

were fed live mixed algae T. chuii (25 cells gl-1) IS. costatum (35 cells pl-1). 

Experiments were conducted in triplicates for each treatment. Larval count 

and total length measurement were performed every other day when com- 

plete water exchange was carried out. 50 % of the rearing water was also 

changed everyday. 

Experiment 4 

Following the failure to determine optimum feeding density of P. redivivus in 

the previous experiment, P. indicus larvae were reared to PZ2/PZ3 stage on 
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the live mixed algae (T chuiil S. costatum) before the experiment was com- 
menced. Stage PZ2/3 larvae (85 % PZ2) were stocked in 2-1 flasks at a 
density of 75 1-1. Control larvae were fed 25 cells ý&' T chuii and 35 cells 
gl-I S. costatum until mysis I (MI) when newly hatched five Artemia ml-I 
were introduced to the culture along with algae until PL stages. Algae 

ceased totally at M2 stage in this treatment. P. redivivus (with no algal co- 
feed) was offered to the larvae at 15,30,451,60 nematodes ml-1. These 

nematodes were enriched by replacing 50 % of the corn oil with capelin fish 

oil to improve fatty acid profile of the nematodes. 50 % of the rearing water 
was exchanged everyday when larval lengths (10-13 larvae) were measured. 
The larvae were, however, counted every other day when complete water 
exchange was performed. Growth rates (between day I and day 5) and sur- 

vival rates (between day 2 and day 5) of the larvae were compared using 
two-way ANOVA with days as a covariate (General Linear Model) in 

Minitab statistical package. Growth and survival at metamorphosis were also 

compared using one-way ANOVA with appropriate pairwise comparison 

tests (Tukey's and SchefWs pairwise comparison tests) following Bartlett's 

test for homogeneity of variances. 

Experiment 5 

The size effect of the nematodes,, P. redivivus, on growth and survival of P. 

indicus during larval development was investigated in this experiment, Small 

(529 ± 226 gm mean length) and large size nematodes (1016 ± 222 gm mean 

length) were obtained from the AGC. These nematodes were lipid-enriched 

(with cod liver oil) and pigmented as explained in Chapter 4. The following 

feeding regimes were used; 

(1) Large nematodes throughout larval stages to PL stage (Large), 

(2) Small nematodes throughout larval stages to PL stage (Small), 

(3) Small nematodes until PZ3/MI stage and large nematodes thereafter 

until PL stage (S/L), 

(4) Mixed size nematodes all through larval stages (Mixed). 
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Nematode concentration (ml-' day-') was increased from 30 (PZI and PZ3 
stages) to 45 (MI-M2 stages) and finally to 60 (M3-PL stages) during larval 
culture of P. indicus. Nematodes were used within 2-3 days of receipt from 
the AGC. Growth and survival of larvae were assessed from three replicates 
for each treatment. Larvae were counted and measured everyday when com- 
plete water exchanges were performed. Larval growth and survival data were 
compared using two-way ANOVA with days as a covariate during proto- 
zoeal stages (PZI-PZ3/Ml or day 2- day 6) and mysis stages (MI-PL or day 
6- day 9). Larval growth rates and mortality rates were derived from the 

statistical outputs. Larval growth, as increase in total length, and survival 
(%) at MI and PLI stages were also compared using one-way ANOVA fol- 
lowed by SchefWs and Tukey's tests after the data was checked for homo- 

geneity of variances using Bartlett's test. 

Experiment 6 

This experiment was conducted in an attempt to determine optimum feeding 

density of nematodes by feeding the larvae once or twice a day with the same 

amount of prey. For this purpose, P. indicus larvae (PZI) were stocked in 

2-1 experimental flasks at a density of 100 larvae 1-1. The nematode P. redivi- 

vus (enriched with cod liver oil and pigmented as in the previous experi- 

ments) was fed to the larvae at 30 and 50 nematodes ml-' between PZI and 

PZ3/Ml stages. These concentrations of nematodes were introduced into the 

culture as either one meal or two meals a day (half the ration each time). 

Generally larvae were fed once in the morning (9.00-11.00 h) and once at 

night (22.00-24.00 h). Growth and survival were assessed in three replicates 

everyday when complete water exchanges were performed during protozoeal 

stages (PZI-PZ3/Ml). 

At PZ3/MI stage, the experiment was terminated and the larvae were 

stocked into 2-1 experimental flasks at 75 larvae I-' in two replicates to as- 

sess optimum feeding density of nematodes during mysis and early PL 
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stages. Hence, three concentrations of nematodes (60,80 and 100 ml-' ) 
were fed to the larvae in two meals a day (half ration each time) one in the 
morning and one at night (as during protozoeal stages). Nematode cultures 
were regularly supplied by the AGC and were used to feed the larvae in 1-2 
days of receipt from the company. Survival data during protozoeal and mysis 
stages did not fit in GLM,, hence were excluded in statistical calculations. 
Growth data was analysed by two-way ANOVA with days as a covariate 
(GLM) between day 2 and day 6 (PZI-PZ3/Ml), and between day 6 and day 
9 (MI-PLI). 

RESULTS 

Caridean larvae 

Paldemon elegans 
This experiment was conducted to see if carnivorous larvae of P. elegans 

could be reared on nematodes. Table 3 shows that from the beginning of the 

experiment the nematode fed larvae demonstrated inferior survival and 

growth compared to the Artemia fed controls. The nematode fed larvae sur- 

vived only one day longer than the starved control. 

Larval growth on the nematodes was also similar to that of the starved lar- 

vae. By day 8, both these latter treatments had 100% mortality as opposed 

to the Artemia fed larvae which sustained over 90% survival at this period. 

The similar trends in growth and survival of the nematode fed and starved 

larvae together with the observations of larval guts suggest that P. elegans 

larvae were unable to capture the nematodes. This may be due to the physi- 

cal size and mobility of C. elegans. Prior to total mortality, the larvae on 

the nematodes developed only to Z3 by day 8, while the Artemia fed con- 

trols were at stage Z5. The latter larvae continued normal development to 

postlarvae (PL) on day 12 with 88.5 % survival. 
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Table 3. Survival (%) of P. elegans larvae fed either C. elegans, Ar- 
lemia or starved from ZI stage. Each value represents a mean ± s. d. 
(n=2). 

Survival (%) 
Days C. elegans 

0 100.00 0.00 
2 96.00 2.83 
4 47.50 3.54 
6 3.50 10.61 
8 1.50 

0 3.12 ± 0.03 
2 3.18 ± 0.06 
4 3.19 ± 0.01 
6 3.20 ± 0.06 
8 3.25 

Macrobrachium rosenbergii 

Artemia Starved 
100.00 0.00 100.00± 0.00 
98.50 2.12 94.50 ± 4.95 
94.50 0.71 21.50 ± 0.71 
92.50 0.71 1.50 ± 0.71 
91.50 2.12 0.00 

Total length (mm) 

3.12 ± 0.03 3.12 ± 0.03 
3.72 ± 0.05 3.15 ± 0.04 
4.37 ± 0.05 3.15 ± 0.01 
4.75 ± 0.37 3.17 ± 0.10 
5.76 ± 0.03 - 

Experiment I 

The purpose of this experiment was to investigate whether a commercial 
fresh water prawn species M rosenbergii could be fed on nematodes during 

larval development. Growth and survival results of M rosenbergh larvae 

starved and fed on either Artemia or three species of nematodes are summa- 

rised in Tables 4a and 4b. 

Table 4a. Survival (%) of M. rosenbergii larvae starved or fed Artemia, and three differ- 
ent species of nematodes at varying concentrations. Each value represents a mean ± s. d. 
(n=2). 

Day Starved Artemia C. elegans S. carpocapsae 
(75 ml-1) (150 MI-1) (75 ml-1) (150 ml-1) 

0 100.00 100.00 100.00 100.00 100.00 100.00 
2 99.00±1.73 100.00 100.00 100.00 100.00 100.00 

S. feltiae 

(150 ml-1) (225 ml-1) (125 ml-1) (175 MI-1) 
4 97.67±3.21 97.34±2.31 90.67±8.08 90.33±8.62 95.00±3.46 98.67±1.16 
6 83.5±3.54 91.00±7.94 14.14±0.00 2.12±0.00 40.00±0.00 44.50±4.95 

8 0.00 87.76±6.43 0.00 0.00 0.00 0.00 

By day 4-6, it was clear that the prawn larvae were unable to grow and de- 

velop on any of the nematode species irrespective of the feeding level. On 

day 6, all starved and nematode fed larvae remained at stage Z2 while 90 % 
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of the controls had progressed to Z4 stage. A supply of the larger, lipid en- 
riched S. feltiae on day 4 did not reverse the gradual decline in larval sur- 
vival. By day 8, all starved and nematode fed cultures collapsed. The Ar- 
temia fed controls continued normal development and started to develop into 
the PL I stage with a 67 % final survival on day 24. 

Table 4b. Larval total length (mm) of M. rosenbergii starved or fed Artemia, and three 
different species of nematodes at varying concentrations. Each value represents a mean 
s. d. (n=2). 

Day Starved Artemia C. elegans S. carpocapsae 
(75 ml-1) (150 ml-1) (75 ml-1) (150 ml-1) 

0 2.210±0.03 2.2 1 0±0.0 3 2.354±0.02 2.360±0.03 2.310±0.01 2.348±0.01 
2 2.296±0.02 2.338±0.02 2.363±0.02 2.380±0.01 2.360±0.01 2.349±0.01_ 

S. feltiae 

(150 ml-1) (225 ml-1) (125 ml-1) (175 ml-1) 
4 2.299±0.02 2.939±0.01 2.368±0.01 2.384±0.02 2.367±0.01 2.352±0.01 
6 2.308±0.01 3.503±0.16 
8 4.453±0.06 

Experiment 2 

A similar trend to that observed in the first experiment was established with 

poor larval development and total mortality by day 8 on the nematode (see 

Table 5). On day 6,80 % of the Artemia fed controls were at stage Z5 while 

95% of the nematode fed larvae remained at stage Z2. Observations of the 

larvae (Zl) under the microscope revealed that they were unable to capture 

enough prey. In case the larvae were not fed on a sufficient quantity of 

nematodes, another batch of larvae were fed on pigmented P. redivivus at 

densities of 200 and 300 ml-'. These larvae died on the 6th day of culture. 

Some larvae were observed under a binocular microscope in petri dishes. It 

was found that the larvae were creating a current towards their mouth result- 

ing in congregation of nematodes around the larvae under static conditions 

in petri dishes. However, the prawn larvae were generally not able to grasp 

and hold the nematodes in the manner that Artemia nauplii were captured. 

Although use of pigmented nematodes did show that some larvae had in- 

gested nematodes into the gut, the majority remained empty. 
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Figure 1 a. b. Survival M and growth (mm) of P. indicus larvae 

fed on Diet A (algae/nematode) and Diet B (algaelArtemia) from 

PZ2/PZ3 to PL stages. Each value is a mean (n=2). 
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Table 5. Survival (%) and total length (mm) of M. rosenbergii larvae 
starved, fed P. redivivus, and Artemia from ZI stage. Each value is a mean ± s. d. (n=2). 

Survival 
Days Starved 

0 100 
2 100.00 
4 100.00 
6 18.00 ± 2.00 
8 0.00 

0 2.83 ± 0.02 
2 2.91 ± 0.09 
4 2.85 ± 0.04 
6 2.85 ± 0.06 
8 

Penaeid larvae 

Artemia P. redivivus 
100 100 
100.00 100.00 
97.50 ± 1.50 99.00 ± 1.00 
95.00 ± 3.00 69.00 ± 3.00 
93.50 ± 3.50 0.00 

Total length (mm) 
2.83 ± 0.02 2.83 ± 0.02 
2.97 ± 0.01 2.92 ± 0.03 
3.28 ± 0.05 2.91 ± 0.04 
3.70 ± 0.10 2.77 ± 0.05 
4.16 ± 0.02 

Experiment I 

This experiment was conducted in an attempt to replace Artemia with the 

nematode P. redivivus during mysis and early PL stages of P. indicus. The 

larvae reared on the nematode P. redivivus demonstrated normal growth, 
development and survival through PZ2/3 and mysis stages to postlarvae (see 

Figures la, b and Table 6). Although nematodes promoted higher larval sur- 

vival (56 %) and growth (5.7 mm TL) than those (38 %, 5.5 mm TL) fed 

Artemia, differences were not significant at 0.05 probability level (Tables 7a, 

b). By day 6,75% of the larvae (PZ2/3 at stocking) had attained the PLI 

stage on the nematode (Diet A) while only 60 % of those reared on Artemia 

reached PLI stage (Diet B). The PL's fed nematodes were considerably paler 

in coloration than Artemia fed larvae but appeared equally healthy and ac- 

tive. During the trial the larval faecal strings produced by feeding on the 

nematodes were clearly observed. 
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Table 6. Growth and survival data for Figures I a, b. Each value is a mean + s. d. (n=2). Diet A 
(algae/nematode) and Diet B (algaelArtemia). 

Diet A 

Days Total length 
(mm) 

0 2.49±0.40 
2 3.46±0-34 
4 4.47±0.36 
6 5.69±0.02 

Survival Stage 

100.00 
80.00±18.86 
61.65±14.19 
55.83± 9.17 25% M3, 

75% PLI 

Diet B 

Total length Survival Stage 
(mm) (%) (%) 

2.49±0.40 100.00 
3.21±0.02 53.33±7.07 
4.31±0.14 45.82±1.20 
5,54±0.14 38.33±6.67 40% M3, 

60% Pl, I 

Table 7a. One-way ANOVA on larval survival (%) of P. indiciis reared on 
the nematodes and a control diet from PZ2/3 to Pl, stages. 

Source DF ss ms 

Diets 1306.33 35 06.3 
Error 2 146.4 73.2 
Total 3 452.7 

Bartlett's test for homogeneity of variances 
F=0.119, P=0.91 

Fp Significant 

4.18 0.177 Ns 

Table 7b. One-way ANOVA on larval growth (mm. TL) of P. indicus reared on 
the nematodes and a control diet from PZ2/3 to PL staaes. 0 

Source DF SS ms Fp Significant 

Diets 1 0.044 0.044 0.10 0.754 Ns 
Error 37 16.250 0.439 
Total 38 16.294 

Bartlett's test for homogeneity of variances 
F =2.514, P= 0-08 

Experiment 2 

In contrast to P. redivivus,, C. elegans did not support survival and growth 

beyond day 3. This species of nematode caused high mortality as early as day 

2 of the experiment resulting in only 66% survival. Due to technical prob- 

lems during the size grading of P. redivivus cultures, it was not feasible to 

clean fresh supplies of this nematode species for the remainder of the trial. 

Consequently, an inappropriate amount of the nematode culture medium 

entered the larval culture flasks during subsequent feeds following day 2 of 

the trial when survival of the larvae on this diet was still 87%. This resulted 

in immediate fouling of the shrimp larvae, which hindered their ability to 

feed and moult. High mortality resulted and only 10% of the larvae achieved 
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the PZ3 stage with some larvae moulting to MI before the cultures collapsed 
completely. At this time mean survival and total length (mm) of control lar- 
vae was 80.5 % and 3.98 mm (all at MI stage). 

Experiment 3 

in this experiment adequate feeding levels of nematodes from 30 to 60 ml-' 
were investigated for PZI-PZ3/MI stages of P. indicus larvae. Similar to 
the previous trial, the larvae consumed the nematode and displayed very high 

survival and growth during early days of the culture (Table 8). However, at 
PZ3 stage, the larvae became weaker and only a small quantity of them 

passed into stage MI. Some larvae at this stage were observed to be fouled 
hence the experiment was terminated at PZ3/Ml stages. Due to low concen- 
trations of the nematodes it was not possible to clean the nematode cultures 

properly during the experiment. 

Table 8. Larval survival (%) and growth (mm) of P. indicus fed on nematodes at densities from 
30 to 60 ml-1 from PZI to PZ3/MI stages. Each value is a mean ± s. d. (n=3). 

Survival (%) ± s. d. (n=3) 
Days 30 nematodes 40 nematodes 50 nematodes 60 nematodes Control 

(MI-1) (MI-1) (MI-1) (MI-1) 

0 100.00 
2 75.55±2.78 
4 38.17±4.31 

100.00 100.00 100.00 100.00 
77.50±6.00 82.50±2.65 78.50±4.27 89.67±7.29 
31.00±2.46 28.67±5.06 23.33±3.88 51.17±4.31 

Growth (mm) ± s. d. (n=3) 
0 1.19±0.03 1.19±0.03 1.1 9±0.0 3 1.19±0.03 1.19±0.03 
2 2.31±0.02 2.22±0.21 2.23±0.03 2.19±0.02 2.20±0.03 
4 3.25±0.07 3.27±0.03 3.16+0.04 3.32±0.05 3.54±0.01 

Experiment 4 

Following the failure to determine adequate feeding density of the nematode 

P. redivivus, as food for P. indicus larvae in the previous experiment, four 

different nematode densities (15,30,45 and 60 nematodes ml-1) and a con- 

trol diet were fed to the larvae from stage PZ2/PZ3 to PLI. These nema- 

todes were enriched with 50% fish oil (capelin oil) to ensure sufficient 
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quantity of essential fatty acids (EFA). Figures 2a and 2b show that the 
nematode P. redivivus was a suitable substitute for Artemia nauplii as food 
for P. indicus larvae from stage PZ2/3 to PLI. Nematode fed larvae demon- 
strated normal growth and survival from PZ2/PZ3 and mysis stages to post- 
larvae in this preliminary trial. These postlarvae were, however,, considerably 
paler in coloration in comparison to those fed Artemia. Survival rate of the 
larvae fed on the nematode concentrations (15-60 ml-') were not signifi- 
cantly (P>O. 05) different from each other (Tables IIa, b). Comparison of the 
final survivals at metamorphosis showed that the control diet (algae/ Ar- 
temia) gave a significantly lower survival (66 %) compared to those obtained 
from the nematodes which ranged from 83 % to 89 % (see Table 9). Irre- 

spective of the feeding levels, the nematode diets also gave significantly 
lower mortality rates than the control diet (2.74 % day-'). Highest larval 

growth rate (0.526 mm day-') was achieved at a density of 60 nematodes 
ml-1 (Tables 12a, b). However, there was no significant difference in larval 

growth rates between 30,45 and 60 nematodes ml-' (P>0.05). The lowest 

nematode concentration (15 ml-1) gave significantly inferior growth rate 
(0.463 mm day-'), than higher levels (see Table 9). Control diet (mixed al- 

gae/ Artemia) displayed significantly better growth rate (0.534 mm day-) but 

higher mortality rate (2.74 % day-) compared to the nematode diets (see 

Table 9). 

Larvae fed on 15 nematodes ml-1 attained the lowest total length (4.44 mm) 

whereas those fed 60 nematodes ml-' had a final length of 5.15 mm at meta- 

morphosis. When the experiment was terminated, only 37 % of the larvae 

reared on 15 nematodes ml-I were at PLI stage, whereas at 60 nematode ml-I 

the larvae were at 78 % PLI and 10 % PL2 stages (Table 9). These results 

suggest that faster larval development is occurring with an increase in the 

food concentration from 15 to 60 nematodes ml-1. Larvae fed higher nema- 

tode concentrations (45-60 ml-1) attained PL stage one day earlier than lower 

nematode concentrations (15-30 ml-1). The best feeding levels appeared to 
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Figure 2a, b. Survival (Z) and growth (mm) of P. indicus 
larvae fed various nematode concentrations (per ml) from 
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be between 45 and 60 nematodes ml-I throughout the experiment. Growth 
and survival data obtained in the present experiment are summarised in Table 
10. 

Table 9. Growth rate (mm day-'), mortality rate (% day-'), final survival (%), total length (mm) and composition of larval stages of P. indicus reared on various density of 
nematodes (ml-1) and a control diet from PZ2/3 to PL stages. Treatments with the same 
superscripts are not significantly different (P>0.05). Values for survival and growth are 
means ± s. d. (n=3). 

Diets Survival at Mortality rate Growth at Growth rate Larval stages at 
PL I (%) (% day-) Pl, I (mm) (mm day-') Pl, (%) 

15 nem 

30 nem 

45 nem 

60 nem 

Control 

88.22 a 0.850 a 4.44 c 

±4.69 ±O. 02 
82.67 a 1.443 a 4.72 b 

±5.29 ±O. 03 
89.34 a 0.517 a 4,91 ab 

: k1.34 ±O. 05 
88.67 a 1.023 a 5.15 a 

: t2.91 ±O. 03 
65.78 b 2.739 b 5.03 ab 

±4.91 ±O. 04 

30 nem ml-1 45 nem ml-' 60 nem ml-1 Control 

0.463 54% M2,20% 
M3,26% PL 

0.486 D 6% M2,57% M3, 
37% PLI 

b 13% M3,87% 0.500 
PLI 

b 12% M3,78% PL I, 0.526 

0.534 

Table 10. Data for Figures 2a, b. Each value represents a mean ± s. d. (n=3). 

Larval survival (%) ± s. d. 
Days 15 nem ml-1 

0 100.00 
2 93.33±4.00 
4 90.00±2.406 
5 88.22±4.69 

0 2.28±0.02 
1 2.52±0.08 
2 2.86±0.07 
3 3.34±0.04 
4 3.64±0.14 
5 4.44±0.08 

100.00 100.00 100.00 
91.33-+3.34 92.45±2.34 93.56±6.05 
85.78±5.98 90.89±0.77 88.67±3.34 
82.67±5.29 89.34±1.34 88.67±2.91 

Larval growth (mm) ± s. d. 

10% PL2 

36% M3,61 % PLI, 
3% PL2 

100.00 
82.22±3.67 
68.44±6.19 
65,78±4.91 

2.28-+0.02 2.28±0.02 2.28±0.02 2.28±0.02 
2.62±0.10 2.81±0.06 2.94±0.13 2.69±0.05 
3.21±0.09 3.41±0.11 3.46±0.01 3.19±0.08 
3.65±0.03 3.73±0.11 3.78±0.02 3.56±0.07 
3.86±0.04 4.20+0.18 4.30±0.12 3.97±0.05 
4.72±0.06 4.91±0.10 5.15±0.08 5.03±0.06 

Table I Ia. Two-way ANOVA with days as a covariate on larval survival of P. indicus fed on 
various density of nematodes from PZ2/3 to PLI. 

Source 
Diets 
Days 
Repl(Diets) 
Diets*Days 
Repl*Days(Dicts) 
Error 
Total 

DF Seq SS Adj SS Adj MS F 
4 2264.18 48.25 12.06 0.85 
1 467.65 467.65 467.65 32.83 

10 249.40 137.56 13.76 0.97 
4 161.05 161.05 40.26 2.83 

10 116.21 116.21 11.62 0.82 
15 213.64 213.64 14.24 
44 3472.12 

p Significant 
0.517 
0.000 
0.508 
0.062 Ns 
0.619 
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Table I 1b. Comparison of the mortality rate (% day-') of P. indicus larvae fed on various densi- ties of nematodes (ml-1) from PZ2/PZ3 to Pl, stages. 

Term Mortality rate 

Constant 
Days 
Days*Diets 

15 nem 
30 nem 
45 nem 
60 nem 
Control 

1.699 
2.885 
1.034 
2.046 
5,478 

Coeff. Stdev. t-value p 

93.901 1.488 63.09 0.00-0 
-3.943 0.689 -5.73 0.000 

Signifi- 
cant 

1.394 1.378 1.01 0.328 Ns 
-0.385 1.378 -0.28 0.784 Ns 
2.392 1.378 1.74 0.103 Ns 
0.874 1.378 0.63 0.536 Ns 

-4.274 1.378 -3.10 0.007 

Table 12a. Two-way ANOVA, with days as a covariate, on larval growth of P. indicus fed on 
various density of nematodes from PZ2/3 to PLI. 

Source DF Seq SS Adj SS Adj MS Fp Signifi- 
cant 

Days 1 376.940 377.596 377.596 3999.20 0.000 
Diets 4 27.898 2.807 0.702 7.43 0.000 
Repl(diets) 10 0.810 0.779 0.078 0.83 0.604 
Diets*Days 4 1.000 1.006 0.252 2.66 0.032 
Repl*Days(Diets) 10 1.166 1.166 0.117 1.23 0.265 
Error 720 67.981 67.981 0.094 
Total 749 475.796 

Table 12b. Comparison of larval growth rates (mm day-') of P. indicus fed on various concentra- 
tions of nematodes (ml-1) from PZ2/Z3 to PL stages. 

Term Growth rate Coeff. Stdev. t-value p Signifi- 
(mm day-') cant 

Constant 2.16935 0.02632 82.44 0.000 
Days 0.501808 0.00793 63.24 0.000 
Days*diets 

15 nem 0.463 -0.03873 
30 nem 0.486 -0.01563 
45 nem 0.500 -0.00175 
60 nem 0.526 0.02439 
Control 0.534 0.03172 

Experiment 5 

0.01579 -2.45 0.014 
0.01587 -0.99 0.325 Ns 
0.01587 -0.11 0.912 Ns 
0.01587 1.54 0.125 Ns 
0.01595 1.99 0.047 

Survival 

(a) PZI-PZ3/Ml 

Figure 3a shows survival of P. indicus larvae reared on various feeding re- 

gimes during protozoeal stages. Comparison of the larval survival indicated 

that there were significant (P<0.05) differences in mortality rates for larvae 

fed different nematode diets (Tables 15a, b). Larvae fed mixed size nema- 

todes showed significantly lower mortality rate (4.12 % day-) in comparison 

(% day-') 
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to other treatments. There was no significant difference in the mortality rate 
of larvae fed on either large or small nematodes (see Table 13). Comparison 
of larval survivals at MI stage (Table 14) indicated that only the S/L nema- 
tode diet had a significantly lower survival (38.33 %) in comparison to the 
other nematode feeding regimes (P<0.05). No significant difference in sur- 
vival at MI stage was found between the larvae fed either small, large or 
mixed size nematode feeds. 

Table 13. Comparisons of mortality rate (% day-') and growth rate (mm day-') 
of P. indicus larvae fed various nematode feeding regimes. Values with the 
same superscripts are not significantly different (P>0.05). 

Diets Mortality rate (% day-1) Growth rate (mm day-') 

PZI-PZ3/Ml MI-PLI PZI-PZ3/Ml MI-PLI 
Mixed 4.117 a 2.084 0.680 0.439 
Large 6.983 b 1.534 0.669 0.411 
Small 8.467 b 0.567 0.659 0.390 

S/L 8.500 b 2.784 0.672 0.376 

(b) MI-PLI 

Figure 3b displays survival of the larvae during mysis and early PL stages. 
Comparison of survival using two-way ANOVA demonstrated that (Table 

16a, b) mortality rate of larvae fed the nematode diets did not significantly 
(P>0.05) differ from each other during mysis and early PL stages (Table 13). 

Percentage survival of postlarvae fed mixed (53%), large (44.33%) and small 

nematodes were significantly (P>0.05) different from each other. S/L nema- 

todes gave significantly lower survival (29.67%) than all other treatments 

(P<0.001) (Table 14). Survival data for Figures 3a, b is summarised in Table 

19a. 

Growth 

(a) PZI-PZ3/Ml 

Growth rates of larvae fed on the nematode diets (Figure 4a) were not sig- 

nificantly (P>0.05) different during protozoeal stages (Tables 17a, b). Larval 
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growth rates between PZI and PZ3/Ml stages ranged from 0.659 to 0.680 
mm day-' (see Table 13). Comparison of larval total lengths at MI indi- 
cated that mixed size and large nematodes promoted significantly (P<0.05) 
better larval total lengths than the other nematode feeds at this stage (Table 
14). Small nematodes promoted significantly smaller larval size (4.12-4.14 

mm) at MI stage (P<0.05) than large nematodes. 

Table 14. Survival, total length and duration of larval development of P. indicus larvae 
at MI and PLI stages on various diets. Values with different superscripts are signifi- 
cantly different (P<0.05). Values are means ± s. d. (n=3). 

Diets 
Survival (%) Total length (mm) Duration 

mi 

Mixed 
59.50 a±3.50 

Large 
49.33 ab ± 5.62 

Small 
50.17 ab ± 3.04 

S/L 
38.33 

b±8.28 

PLI 

53.00 a±6.38 

44.33 ab ± 3.62 

47.83 a±6.64 

29.67 
b±7.00 

(days) 
mi PLI to MI to PLI 

4.25 a±0.12 

4.20 a±0.16 

4.14 
b±0.13 

4.12 
b±0.13 

5.51 a±0.21 6 8-9 

5.41 ab ± 0.24 
6 8-9 

5.27 
b±0.27 6 8-9 

5.35 ab 
:L0.23 

6 8-9 

(b) Ml-PLI 

Figure 4b displays growth of the larvae during mysis and early PL stages. 
Larval growth rates ranged from 0.376 to 0.439 mm day-' between MI and 
PL stages (see Table 13). Comparison of larval growth rates (Tables 18a, b) 

show that that there is no significant difference between larval growth rates, 

which ranged between 0.376 and 0.439 mm day-', on different nematode 
feeds during these stages. Larvae fed small nematodes through all larval 

stages showed the smallest size at metamorphosis (P<0.05). There was no 

significant difference in the total length of PL's fed on mixed or large size 

nematodes (Table 14). Growth data for Figures 4a, b is shown in Table 19b. 

Irrespective of the experimental feeding regimes, all the larvae developed 

into MI stage on day 6 and started to metamorphose into PLI stage on day 

8-9. 



Figures 3a, b. Survival (%) of P. indicus larvae fed various nematode feeding 
regimes from PZI to PLI stages. Large, small and mixed size nematodes were fed to 
the larvae throughout larval stages. For the S/L treatment, the larvae were fed on 
small nematodes between PZI and PZ3/MI stages and then large size nematodes 
between MI and PL I stages. Each value is a mean from three replicates. 

Figures 4a, b. Total length (mm) of P. indicus larvae fed various nematode feeding 

regimes from PZI to PLI stages. Large, small and mixed size nematodes were fed to 

the larvae throughout larval stages. For the S/L treatment, the larvae were fed on 

small nematodes between PZI and PZ3/MI stages and then large size nematodes 

between MI and PLI stages. Each value is a mean from three replicates. Each 

replicate contains measurements of at least 10-14 larvae. 
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Table 15a. Two-way ANOVA with days as covariate on survival (%) of P. indicus on various feeding regimes from PZI (day 2) to PZ3/MI (day 6) stages. 

Source DF Seq SS Adj SS Adj MS Fp Signifl- 

Diets 3 1705.37 247.93 82.64 1.83 0.158 
Days 1 5908.17 5908.17 5908.17 131.15 0.000 
Repl(Diets) 8 283.52 329.29 41.16 0.91 0.516 

-7.0167 0.6127 -11,45 0.000 

Diets*Days 3 381.45 381.45 127.15 2.82 0.052 Ns 
Repl*Days(Diets) 8 209.87 209.87 26.23 0.58 0.786 
Error 36 1621.81 1621.81 45.05 
Total 59 10110.19 

Table 15b. Comparison of mortality rates (% day-') from PZI to PZ3/Ml. 

Term Mortality rate Coeff. Stdev. t-value p Signifi- 
(% day-') cant 

Constant 82.250 2.032 40.47 0.000 
Days 
Days*Diets 

Mixed 
Large 
Small 
S/L 

4.117 2.900 1.061 2.73 0.010 
6.983 0.033 1.061 0.03 0.975 Ns 
8.467 1.450 1.061 -1.37 0.180 Ns 
8.500 -1.483 1.061 -1.40 0.171 Ns 

Table 16a. Two-way ANOVA with days as covariate on survival (%) of P. indicus on 
various feeding regimes from PZ3/MI (day 6) to Pl, (day 9) stages. 

Source DF Seq SS Adj SS Adj MS FP Signifi- 
cant 

Diets 3 3124.27 68.35 22.78 0.64 0.596 
Days 1 182.00 182.00 182.00 5.12 0.033 
Repl(Diets) 8 136.92 108.63 13.58 0.38 0.920 
Diets*Days 3 39.39 39.39 13.13 0.37 0.776 Ns 
Repl*Days(Diets) 8 134.78 134.78 16.85 0.47 0.862 
Error 24 852.45 852.45 35.52 
Total 47 4469.81 

Table l6b 

Term 

Comparison of mortality rate (% day-') from PZ3/MI to Pl, stages. 

Constant 
Days 
Days*Diets 

Mixed 
Large 
Small 
S/L 

(% day 
Mortality rate Coeff. Stdev. t-value p Signifi- 

cant 

cant 
57.008 5.075 11.23 0.000 

-1.7417 0.7694 -2.26 0.033 

2.084 -0.342 1.333 -0.26 0.800 Ns 
1.534 0.208 1.333 0.16 0.877 Ns 
0.567 1.175 1.333 0.88 0.387 Ns 
2.784 -1.042 1.333 -0.78 0.442 Ns 
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Table 17a. Two-way ANOVA with days as covariate on total length (mm) of P. indicus 
on various feeding regimes from PZI (day 2) to PZ3/MI (day 6) stages. 

Source DF Seq SS Adj SS Adj MS F Signifi- 

Diets 3 
Days I 
Repl(Diets) 8 
Diets*Days 3 
Repl*Days(Diets) 8 
Error 637 
Total 660 

cant 0.696 0.073 0.024 0.46 0.709 
594.687 593.676 593.676 1.1 E+04 0.000 

0.628 0.051 0.006 0.12 0.998 
0.075 0.073 0.024 0.47 0.705 Ns 
0.159 0.159 0.020 0.38 0.932 

33.293 33.293 0.052 
629.538 

Table l7b. Comparison of the growth rates (mm day-) from PZI to PZ3/Ml. 

Term Growth rate 
i (mm day-') 

Constant 
Days 
Davs*Diets 

Mixed 
Large 
S/L 
Small 

0.680 
0.669 
0.659 
0.672 

Coeff. Stdev. t-value 

0.81604 
0.669915 

0.00968 

-0.00057 
-0.01122 
0.00211 

38.57 
106.58 

0.88 

-0.05 
-1.03 
0.19 

Signifi- 
cant 

0.000 
0.000 

0.377 
0.958 
0.305 
0.846 

Ns 
Ns 
Ns 
Ns 

Table 18a. Two-way ANOVA with days as covariate for total length (mm) of P. indicus 
on various feeding regimes from PZ3/MI (day 6) to PL (day 9) stages. 

Source DF Seq SS 

Diets 3 
Days I 
Repl(Diets) 8 
Dicts*Days 3 
Repl*Days(Diet) 8 
Error 578 
Total 601 

Adj SS Adj MS Fp Signifi- 
cant 

1.8593 0.1857 0.0619 0.64 0.588 
122.578 121.853 121.853 1265.62 0.000 

1.5205 0.3600 0.0450 0.47 0.879 
0.4108 0.4321 0.1440 1.50 0.215 Ns 
0.4176 0.4176 0.0522 0.54 0.825 

55.6492 55.6492 0.0963 
182.436 

Table l8b. Comparison of growth rates (mm day-1) from PZ3/MI to PL stages. 

Term Growth rate 
ýmrn day- 

Constant 
Days 
Days*Diets 

Mixed 
Large 
S/L 
Small 

0.439 
0.411 
0.390 
0.376 

Coeff. 

2.21780 
0.40448 

0.02116 
0.006286 

0.01096 
0.01081 
0.01092 
0.01087 

Stdev. t-value p Signifi- 
cant 

0.07551 29.37 0.000 
0.01137 35.58 0.000 

0.03468 0.01936 1.79 0.074 Ns 
0.00713 0.01990 0.36 0.720 Ns 

-0.01392 0.02018 -0.69 0.490 Ns 

-0.02789 0.01932 -1.44 0.149 Ns 
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Table 19a. Survival (%) data for Figures 3a, b. Each value is a mean ± s. d. (n=3). 

Days Mixed 

1 100.00 
2 76.50 ± 4.82 
3 69.00 ± 3.50 
4 64.67 ± 5.01 
5 61.83 ± 4.37 
6 59.50 ± 3.50 
7 54.83 ± 7.29 
8 53.50 ± 6.25 
9 53.00 ± 6.38 

Large 

100.00 
79.33 6.25 
63.33 8.33 
61.83 7.78 
53.50 ± 6.08 
49.33 ± 5.62 
45.67 ± 5.11 
45.33 ± 4.65 
44.33 ± 3.62 

Small 

100.00 
89.00 ± 2.74 
64.34 ± 1.05 
62.00 ± 6.24 
57.33 ± 3.06 
50.17 ± 3.04 
48.50 ± 6.50 
47.17 ± 3.25 
47.83 ± 6.64 

S/L 

100.00 
69.67 ± 5.88 
64.17 ± 7.51 
48.33 ± 8.75 
41.83 ± 8.52 
38.33 ± 8.28 
32.83 ± 6.71 
31.00 ± 6.38 
29.67 ± 7.00 

Table 19b. Growth data (mm) for Figures 4a, b. Each value is a mean± s. d, (n=3). 

Days Mixed 

1 1.18 ± 0.06 
2 1.35 ± 0.01 
3 2.27 ± 0.02 
4 2.91 ± 0.09 
5 3.33 ± 0.03 
6 4.18 ± 0.08 
7 4.69 ± 0.09 
8 5.27 ± 0.07 
9 5.51 ± 0.04 

Large 

1.18 ± 0.06 
1.37 ± 0.01 
2.26 ± 0.03 
2.88 ± 0.10 
3.38 ± 0.07 
4.17 ± 0.09 
4.80 ± 0.14 
5.09 ± 0.17 
5.41 ± 0.01 

Small 

1.18 ± 0.06 
1.35 ± 0.01 
2.29 ± 0.01 
3.09 ± 0.10 
3.41 ± 0.05 
4.14 ± 0.08 
4.58 ± 0.11 
5.10 ± 0.05 
5.27 ± 0.11 

S/L 

Experiment 6 

1.18 ± 0.06 
1.36 ± 0.01 
2.23 ± 0.01 
3.01 ± 0.14 
3.35 ± 0.03 
4.10 ± 0.01 
4.69 ± 0.12 
5.11 ± 0.05 
5.35 ± 0.03 

(a) PZI-PZ3/Ml 
Survival 

This experiment was conducted to see whether there would be any advantage 

of feeding P. indicus larvae (during protozoeal stages) with higher nematode 

concentrations and/or more than one meal a day. Survival of larvae fed vari- 

ous nematode feeding regimes between PZ I and PZ3/MI stages are shown in 

Figure 5a and Table 21a. Since survival data did not fit in the GLM, no sta- 

tistical analyses were performed. The nematodes supported high survivals' 

(99-100 %) during the first three days of culture. On the 4th day, however,, 

larvae fed once a day on 30 and 50 nematodes ml-' started to show higher 

mortalities compared to larvae fed twice a day with the same rations. Larvae 

fed once a day appeared to be dirty and fouled between day 4 and day 6. 

When the experiment was terminated on day 6, larvae fed 30 nematodes ml-' 

twice a day showed the highest survival (71 %) compared to the other feed- 

ing regimes. Lowest survivals were found in the larvae fed once a day at 30 
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(21.17 %) and 50 nematodes ml-' day-' (52.67 %). Feeding the larvae at 
higher nematode concentrations (50 ml-') even at two distribution times a 
day was not successful. 

Growth 

Growth of larvae on the nematode feeding regimes are shown in Figure 5b. 
Tables 20a, b show that larval growth rates were significantly (P<0.001) 

affected by the nematode feeds during protozoeal stages. Highest larval 

growth rates were obtained from the larvae reared on 30 nematodes ml-' in 

two meals (0.667 mm day-) and 50 nematodes ml-' once a day (0.671 mm 
day-'). Larvae fed 30 nematodes ml-' once a day showed significantly a lower 

growth rate (0.566 mm day-) (see Table 20b). Total lengths (mm) of larvae 

fed on 30 nematodes in one meal and two meals a day at MI stage (day 6) 

were 3.64 mm and 4.12 mm respectively (Table 21b). Larval total lengths on 
50 nematodes in one meal and two meals at MI stage were, however, 4.16 

mm and 3.94 mm. 

(b) MI-PL1 

Survival 

This experiment was performed to test any benefit of increasing the nema- 

tode density from 60 to 100 ml-1 with two distribution times a day for P. 

indicus mysis and early PL stages. Figure 6a shows that survival of the lar- 

vae fed various densities of nematodes at MI showed a gradual decline dur- 

ing the first two days of the culture. During this period, larvae fed 60 

nematodes (in two meals a day) consistently displayed higher survival com- 

pared to those fed higher nematode concentrations (80-100 nematodes ml-1). 

On day 9, however, all larval cultures had high mortalities irrespective of 

nematode concentrations. The larvae appeared to be fouled, inactive and 

weak at metamorphosis. The reason for this is thought to be a possible con- 

tamination of the nematode culture used on day 8. These nematode cultures 



Figures 5a, b. Survival (%) and growth (mm TL) of P. indicus larvae fed on 30 or 50 

nematodes ml-1 in one (xl) or two distribution times (x2) a day from PZI to PZ3/MI 

stages. Each value is a mean from two replicates. 

Figures 6a, b. Survival (%) and total length (mm) of P. indicus larvae fed on three 

densities of nematodes (ml-') in two distribution times a day from PZ3/MI to PL 

stages. Each value is a mean from two replicates. 
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had stayed at room temperature for two days until they were received from 
the supplier company (AGC). 

Growth 

Figure 6b exhibits growth of the larvae fed on 60,. 80 and 100 nematodes 
ml-' in two meals a day from MI to PLI stages. Comparison of the slopes of 
growth lines indicated that there was no significant (P>0.05) effects of the 
nematode feeding regimes on larval growth rates of P. indicus between MI 

and PLI stages (see Figure 6b and Tables 22a, b). Larval growth rates on 
60,80 and 100 nematodes ml-1 were 0.405,0.418 and 0.446 mm day-' 

respectively. Total lengths at metamorphosis on 60,80 and 100 nematodes 

were 5.29,, 5.26 and 5.09 mm respectively (Table 23). 

Table 20a. Two-way ANOVA with days as a covariate on growth of P. indicus larvae 
from PZI to PZ3/MI (day 2 to day 6) on various feeding regimes, 

Source DF Seq SS Adj SS Adj MS FP Signifi- 
cant 

Diets 3 5.375 0.485 0.162 2.11 0.097 
Days 1 521.453 520.449 520.449 6803.36 0.000 
Repl(Diets) 8 0.796 0.548 0.069 0.90 0.520 
Diets*Days 3 2.319 2.335 0.778 10.17 0.000 
Repl*Days(Diets) 8 0.678 0.678 0.085 1.11 0.356 
Error 634 48.500 48.500 0.076 
Total 657 579.121 

Table 20b. Comparisons of larval growth rates (mm day-) from PZI-PZ3/Ml stages. 

Term Growth rate 
i (mm. day-') 

Constant 
Days 
Days*Diets 
30 nem xl 0.566 
30 nem x2 0.667 
50 nem xl 0.671 

0.623 50 nem x2 

Coeff. Stdev. t-value p Signifi- 
cant 

0.89218 
0.631897 

-0.06597 
0.03498 
0.03954 

-0.00855 

0.02558 34.88 
0.00766 82.48 

0.01331 -4.96 
0.01325 2.64 
0.01331 2.97 
0.01321 -0.65 

0.000 
0.000 

0.000 
0.008 
0.003 

** 

** 

0.518 Ns 

Table 2 Ia. Survival data (%) for Figure 5a. Each value is mean ± s. d. (n=3). 

Days 30 nem xl 
1 100.00 
2 100.00 
3 100.00 
4 79.00 ± 13.94 
5 30.67 ± 9.65 
6 21.17 ± 5.20 

30 nem x2 
100.00 
99.83 ± 0.29 
98.67 ± 2.31 
97.00 ± 3.28 
79.00 ± 16.71 
71.17 ± 15.33 

50 nem xl 
100.00 
100.00 
100.00 
84.83 ± 6.03 
48.67 ± 29.75 
38.00 ± 25.64 

50 nem x2 
100.00 
100.00 
100.00 
96.00 ± 4.33 
68.33 ± 22.99 
52.67 ± 29.61 
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Table 21b. Growth (mm) data for Figure 5b. Each value is a mean ± s. d. (n=3). 

Days 30 nem xi 30 nem x2 50 nem xi 50 nem x2 
1 1.12 ± 0.02 1.12 ± 0.02 Lla ± 0.02 1.12 ± 0.02 2 1.34 ± 0.02 1.37 ± 0.01 1.34 ± 0.08 1.37 ± 0.01 3 2.28 ± 0.04 2.28 ± 0.04 2.29 ± 0.04 2.30 ± 0.04 4 2.61 ± 0.15 3.01 ± 0.07 2.96 ± 0.17 3.13 ± 0.13 5 3.36 ± 0.08 3.45 ± 0.12 3.36 ± 0.02 3.40 ± 0.03 6 3.64 ± 0.15 4.12 ± 0.10 4.16 ± 0.10 3.94 ± 0.18 

Table 22a. Two-way ANOVA with day as a covariate on growth of P. indicus larvae from 
MI-PLI (day 6 to day 9) on various feeding regimes. 

Source DF Seq SS Adj SS Adj MS FP Signifi- 
cant 

Diets 2 1.7571 0.4950 0.2475 2.46 0.088 
Days 1 25.3691 25.3067 25.3067 251.12 0.000 
Repl(Diets) 3 0.3675 0.1827 0.0609 0.60 0.613 
Diets*Days 2 0.0398 0.0414 0.0207 0.21 0.814 Ns 
Repl*Days(Diets) 3 0.4830 0.4830 0.1610 1.60 0.191 
Error 201 20.2559 20.2559 0.1008 
Total 212 48.2725 

Table 22b Comparisons of larval growth rates (mm day-) from MI to PLI stages. 

Term Growth rate coeff. Stdev. t-value p Signifi- 
(mm day-) cant 

3.89558 Constant 0.05717 68.14 0.000 
Days 0.42311 0.02670 15.85 0.000 
Days*Diets 

60 nem x2 0.405 -0.01825 0.03761 -0.49 0.628 Ns 
80 nem x2 0.418 i -0.00503 0.03743 -0.13 0.893 Ns 

100 nem x2 0.446 i 0.02328 0.03824 0.61 0.543 Ns 

Table 23. Survival (%) and growth data (mm TL) for Figures 6a, b. Each value is a mean 
± s. d. (n=2). 

Survival (%) ± s. d. 
Days 60 nem x2 80 nem x2 100 nem x2 

Total length (mmý ± s. d. 
60 nem x2 80 nem x2 100 nem x2 

6 100.00 100.00 100.00 3.85±0.03 3.85±0.03 3.85±0.03 
7 94.33±8.01 90.33±8.01 89.00±6.12 4.48±0.05 4.43±0.02 4.19: 0.05 
8 82.67±1.89 64.00-+5.66 71.3419.43 4.80±0.13 4.52±0.01 4.60±0.00 
9 21.34±7.54 17.33±0.94 17.33±5.66 5.29±0.18 5.26±0.16 5.09±0.04 
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DISCUSSION 

Caridean larvae 

Caridean larvae hatch as zoea (Z) and directly feed on live zooplankton, 
mainly Artemia nauplii until metamorphosis. Continuous attempts to replace 
Artemia, which may constitute up to 60 % of hatchery costs (Menasveta et 
al., 1984), with live rotifers (Lovett and Felder, 1988) and artificial diets 
(Jones et al., 1975; Deru, 1990) have failed. For the first time, - 

live nema- 
todes were used as a total Artemia replacement to rear the carnivorous 

caridean larvae, P. elegans and M rosenbergii. Growth and survival results 

revealed that the larvae of these two caridean shrimp species are unable to 

grow and survive on the nematodes. Normal larval survival and development 

in the control treatment (Artemia fed larvae) indicated that experimental 

procedures were appropriate for the culture of the larvae. A preliminary 

experiment with the native prawn P. elegans showed that larvae of this spe- 

cies were not capable of catching and ingesting nematodes. It was not pos- 

sible to see any ingested prey in the gut of the larvae of this species. As a 

result, the larvae either starved or when fed on the nematodes survived only 

until day 7-8 (Z3 stage) using their internal energy sources. At this time the 

larvae fed Artemia were already at Z5 stage with over 90 % survival (see 

Table 3). 

Similarly, the present experiments with the freshwater prawn M rosenbergii 

demonstrated that the nematodes were not suitable as food for these larvae. 

Despite high nematode concentrations (75-150 nematodes ml-1) used in the 

first experiment, larval guts remained empty. A larger nematode species S. 

feltiae fed at even higher concentrations (150-225 ml-1) did not improve 

survival and also caused a deterioration in water quality. Therefore, com- 

plete mortality in both starved and nematode fed larvae occurred on day 7-8 

while larvae fed Artemia had an 88 % survival at this time (see Table 4a). 

Even at lower feeding rates (10-30 ml-') with P. redivivus (Experiment 2),, 
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which were not associated with deterioration in water quality, the M rosen- 
bergii larvae once again displayed poor survival and growth similar to those 
starved control (see Table 5). Complete larval mortality in starved larvae and 
those fed the nematodes occurred on day 7-8 of the culture. In the case that 
the larvae might have been fed at insufficient prey levels, some larvae were 
fed on 200-300 nematodes (P. redivivus) ml-'. Again, these larvae died on 
day 6 indicating failure of the cultures was not due to inadequate feeding 

rates. Microscopic observations showed that M. rosenbergii larvae, like P. 

elegans, were incapable of capturing and ingesting enough nematodes to 

survive and develop. Using pigmented nematodes (with astaxanthin) in petri 
dishes, it was possible to see some larvae with ingested pink nematodes in 

the guts. Yet, most of the larval guts remained empty, During larval sam- 

pling from 2-1 flasks, larval guts with the ingested nematodes had never been 

witnessed. 

The present results suggest that failure of carnivorous caridean larvae to 

capture sufficient nematodes may be due to the cylindiroconical body shape 
(without appendages) and movement or size of the nematodes. The nema- 

todes did not contain any toxic or noxious substances as the larvae were not 
killed earlier than the starved ones and also some larvae with ingested 

nematodes were observed. Inappropriate nutritional content of the nema- 

todes seems unlikely since nematodes have been proved to be perfectly ade- 

quate as food for various penaeid species such as P. aztecus, P. setiferus, P. 

vannamei (Wilkenfeld et al., 1984; Biedenbach, 1989) and P. indicus (the 

present study). Studies with caridean larvae in Chapter 6 revealed that these 

larvae do not readily feed on artificial diets particularly during their early 

stages (ZI-Z4) when they require easily available and digestible feed such as 

Artemia. 

Unlike penaeid larvae, these caridean larvae do not use filter feeding strate- 

gies and rely on chance- encounter to capture food particles or prey. Once 
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the contact has been made with food items both chemical and textural stimuli 
become important (Moller et al., 1979). Carnivorous H. gammarus larvae 
have been reported to capture food non-selectively but ingestion depends on 
chemical cues and they ingest only nutritious particles (Kurmaly et al., 
1990). Similar observations were made when M. rosenbergii and P. elegans 
were fed on artificial diets particularly during early larval stages (See Chap- 
ter 6). The late larvae (Z5/6 onwards) of both P. elegans and M rosenbergii 
were able to survive on artificial particles which ranged in size from 100-400 

gm (Chapter 6). Although size range (length) of the nematode species used 
in the present study ranged from 400-950 gm in length and 37-65 gm in 
diameter, no larvae were observed to capture the nematodes in the 2-1 ex- 
perimental glass flasks. 

Since carnivorous larvae are unable to locate their food items and are 

chance - encounter feeders, their ability to discriminate and avoid low nutri- 
tious value food may enable them to ingest not only nutritious items but also 
those that are easily digestible (Kurmaly et al., 1990). As caridean larvae 

have limited digestive capabilities as demonstrated in Chapter 6, the chemical 

and textural stimulus and relatively hard and thick cuticle of the nematodes 
(Hofsten et al., 1983) might have affected the larval food ingestion and pos- 

sibly digestion. As discussed in the later sections, unlike carnivorous larvae 

the omnivorous P. indicus larvae were, however, able to successfully ingest 

and digest the nematodes. 

Penaeid larvae 

Nematodes as microal-gae and, 4rtemia replacement 

As with other penaeids, P. indicus larvae require microalgae during proto- 

zoeal stages and an animal food source during later stages (Emmerson, 

1980). The purpose of the present study was to completely eliminate the use 

of microalgae and Artemia during larval culture of P. indicus. Results of 

Chapter I revealed that this penaeid species can be successfully reared on 



114 

mixed algae (T. chujilS. costatum) during herbivoral stages and plus five 
Arlemia nauplii ml-' during mysis and early PL stages with or without the 
presence of microalgae. The potential of the nematode P. redivivus as an 
alternative food for P. indicus was first tested on mysis stages before an 
adequate feeding density and the possibility of a total replacement from the 
first feeding stage were attempted. The experimental data suggested that 
Artemia nauplii can be successfully replaced totally with the nematode P. 

redivivus in rearing P. indicus larvae during mysis and early PL stages. 
When PZ2/PZ3 stage of P. indicus larvae were fed on the algae/ nematodes 
until M2/M3 and on nematodes solely during subsequent stages (until PLI), 

the larvae displayed equal growth, development and survival compared to 
the algaelArtemia control treatment (see Figures la, b). Larvae fed the 

nematodes at PLI appeared to be active and healthy but considerably paler 
than those fed on Artemia. 

Following determination of the suitability of the nematode P. redivivus as 
food for mysis stages, several experiments were conducted to feed P. indicus 

larvae as early as the first feeding stage (PZI). High mortalities were ob- 

served when the larvae (PZI) were fed solely on the nematode regimes (P. 

redivivus and C. elegans) in the preliminary trials. This was attributed to an 

addition of inappropriate amount of nematode culture medium into the larval 

cultures as cleaning of the nematodes was not feasible during the experiment 
(see Experiments 3 and 4). This resulted in a deterioration of culture water 

and an immediate larval fouling which hindered the feeding and moulting 

processes. For similar reasons, early trials to determine adequate feeding 

density of the nematodes also collapsed (Experiment 4). These results dem- 

onstrate that nematode cultures for successful use in penaeid larval culture 

must be free of the growth media. 

A successful complete replacement of the conventional live diets in larval 

culture of P. indicus was demonstrated through all larval stages to metamor- 
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phosis (Experiment 5). When PZ1 stage larvae were fed on the non-enriched 
(lipid) nematodes in the absence of microalgae, survival up to 53 % was 
obtained until PLI stage with 5.51 mm TL (Figures 3a, b). Microscopic ob- 
servations and long faecal strings produced by the larvae have indicated that 
the PZ1 larvae were capable of capturing, ingesting and digesting the nema- 
todes. Wilkenfeld et al., (1984) also report that it was possible to success- 
fully culture P. aztecus, P. vannamei and P. setiferus on the nematode P. 

redivivus from PZ1 to PLI stage without algae. In their study, the three 
penaeid species responded to the live nematode feeds differently. 

The present data shows that despite the nematodes supporting slower larval 

growth rate and development in P. indicus, they generally promote superior 
larval survivals in comparison to the algae/ Artemia feeding regimes (see 

Figures la, 2a). For example, larvae fed P. redivivus displayed significantly 
higher survivals (83-89 %) than those fed algaelArtemia (66 %) from PZ2/ 

PZ3 to PL stages (Figure 2a), Wilkenfeld et al., (1984) also found inferior 

growth and larval development in P. aztecus, P. setiferus and P. vannamei 

on the sole nematode regimes compared to live algaelArtemia or algae/ 

nematodes. However, larval growth rate may be improved depending on 

which stage an animal food is added into the culture. For example when P. 

indicus larvae were fed on mixed algae (T chuiil S. costatum) until PZ2/PZ3 

stages and then the nematodes were added into the culture, larvae fed the 

nematodes displayed equal growth, survival and development compared to 

those fed Artemia nauplii (Figure 2b). Wilkenfeld et al., (1984) suggested 

that nematodes should be added to the culture medium already containing 

algae when the penaeid larvae were at PZI stage in order to get metamor- 

phosis and dry-weight growth equal to those fed algae with Artemia added at 

MI stage. Biedenbach et al., (1989) showed that it was possible to get 

equivalent growth, survival and larval development in P. vannamei when the 

larvae fed on an algae/nematode diet (starting from PZI stage) an algal feed 

or a standard algaelArtemia regime until metamorphosis. 
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The present results obtained in the laboratory experiments showed that the 
nematode, P. redivivus, is a suitable alternative diet for P. indicus larvae 
both as an algae and Artemia replacement in small culture vessels and should 
be seriously considered for use in penaeid hatcheries after their potential is 
tested also in large tanks. Live nematodes offer several practical advantages 
over algae and Artemia; for example, unlike Artemia, they do not consume 
algae, never grow too large to be consumed by the larvae, and can survive in 

sea water up to 72 h (Fontaine et al, 1992 cited in Biedenbach et al, 1989). 
They can be cultured easily on various types of media. Culture in liquid me- 
dium allows them to be produced in mass quantities in large vessels suitable 
for commercial purposes (Fisher, pers. comm. ). They have very high repro- 
ductive rates. Their nutritive value is high and comparable to Artemia 
(Kahan et al., 1980; Leger and Sorgeloos, 1992). Their biochemical com- 

position can be manipulated by loading the alimentary canal with growth 
factors (Kahan et al., 1980) such as lipids, HUFA, and pigments as demon- 

strated by Rouse et al., (1992) and in the present study (Chapter 4). 

It is well known that microalgae and Artemia used predominantly in penaeid 

cultures are inconsistent in their nutritional quality (Watanabe et al., 1983; 

Leger et al., 1986) and may cause a considerable risk of disastrous effects on 

productivity in commercial penaeid larviculture (Wilkenfeld et al., 1984). 

The nutritional value of the nematodes may be kept relatively consistent in 

comparison to microalgae and Artemia. They may be produced inexpensively 

by using cheap ingredients in their culture media. One negative aspect using 

nematodes,, however, may be their high settlement rate which may occur in 

large vessels. Therefore, it is proposed that when free of contaminating cul- 

ture medium, the nematodes may provide a more reliable source of nutrients 

to penaeid larvae in comparison to microalgae and Artemia. 
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Feeding ensity of nematodes 

Wilkenfeld et al., (1984) used 70 nematodes (P. redivivus) ml-1 to rear P. 

aztecus, P. setiferus and P. vannamei during larval development. These 

authors determined the feeding level of nematodes which would give protein 
equal to that of three Artemia ml-1. Biedenbach et al., (1989) studied feeding 
level of nematodes of P. vannamei at different larval stages but with algae 
present together with the nematodes in the culture system. Results of Ex- 

periment 4 (Table 9) showed that among the nematode concentrations tested 
(15,30,45 and 60 nematodes ml-' day-) on P. indicus larvae between PZ2/3 

to PLI stages, the lowest nematode concentrations promoted the lowest 

growth rate (0.463 mm day-) compared to those fed higher nematode con- 

centrations. No significant difference was found between the growth rates of 
the larvae fed on 30,45 and 60 nematodes ml-' (0.500-0.534 mm day-'). 

Mortality rate of the larvae fed on these nematode concentrations were also 

not significantly different from each other (P>0.05). All the nematode con- 

centrations supported between 83 % and 89 % larval survival until metamor- 

phosis (P>0.05) in comparison to the inferior performance of the control 
(algaelArtemia) feeding regime (66 %). Biedenbach et al., (1989) also found 

non-significant differences between dry weight of P. vannamei when they fed 

the larvae on various nematode concentrations ml-' and larval stages such as 

5 to 25 (PZ3), 10 to 50 (MI) or 15 to 100 (M2) nematodes ml-1. 

Comparison of large or small nematodes (Figures 3,4) demonstrated that P. 

indicus larvae do not show any preference for small (529 ± 226 gm) or large 

size (1016 ± 222 gm) nematodes as the larvae displayed similar growth and 

survival irrespective of the prey size offered. It seems that mixed size 

nematodes (natural cultured population) provide a more adequate size range 

to fast developing penaeid larvae. Observations in petri dishes showed that 

P. indicus larvae (PZ1 stage) were successful in handling individual nema- 

todes until they were consumed completely. A high rate of settlement of 

nematodes was observed during the present experiments, hence higher 
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nematode concentrations were investigated in Experiment 6. The results 
indicated that 30 nematodes ml-',, when given twice a day (15 nematodes ml-' 
at 09.00-11.00 h and 15 nematodes ml-1 at 22.00-23.00 h), promoted a 
higher survival (71 %) than that 50 nematodes ml-' (53 %) which were also 
fed in two meals to the larvae between PZI and PZ3/MI stages. Higher 

nematode concentrations in either one or two meals a day polluted the cul- 
ture water and caused aggregations of the nematodes in the culture water 
and on the larvae. Data obtained during mysis stages suggest that nematode 
concentrations higher than 60 ml-' do not improve growth or survival of P. 

indicus larvae at least between MI and M3 stages. Therefore, high nematode 
concentrations are not suggested for the culture of P. indicus in the present 

experimental conditions and concentrations above 60 ml-' in large scale lar- 

val rearing may cause considerable losses. On the last day of the trial 
(Experiment 6), all the nematode feeding regimes caused unexpected high 

mortalities possibly due to a fungal or bacterial contamination of the nema- 
tode cultures. This type of contamination is sometimes observed during the 

culture of the nematodes (Fisher, pers. comm. ). Nevertheless the larvae fed 

60 nematodes ml-' in two meals per day promoted consistently better larval 

survival before the larval cultures were affected by the contamination. Re- 

sults of Biedenbach et al., (1989) also support the present findings in that 

concentrations of nematodes from 40 to 200,25 to 100 or 300 nematodes 

ml-' produced similar dry weights at PL stage of P. vannamei. Therefore, it 

is proposed that 30 nematodes ml-' during protozoeal stages (PZI-PZ3), 45 

nematodes ml-1 during MI-M2 and 60-70 nematodes ml-' between M3-PLI 

stages, in two meals a day, are suitable to rear P. indicus larvae with supe- 

rior survival,, although growth and development may be still inferior to the 

standard algaelArtemia diet. 
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INTRODUCTION 

The nutritional profile of the nematode, Panagrellus redivivus is comparable 
to that of Artemia, containing 40-62 % protein, 15-20 % lipid and 31% car- 
bohydrate (Biedenbach et al., 1989; Leger and Sorgeloos, 1992). The amino 
acid composition of Panagrellus sp., is also reported to be similar to that of 
Artemia (Kahan et al., 1980). Studies have revealed that among highly un- 
saturated fatty acids (HUFA) 20: 5co-3 and 22: 6co-3 are essential for penaeid 
larvae and may be required in the larval diets (Jones et al., 1979a). It was 
demonstrated that although P. redivivus lacks 20.5o)-3 in comparison to 
Artemia, neither the nematode nor Artemia contain high levels of 22.60)-3 
(Biedenbach et al., 1989). The lipid content of P. redivivus has been 

improved when grown on a medium containing wheat flour enhanced with 
fish oil (Rouse et al., 1992). No studies, however, have been conducted to 

show the effects of the lipid profile enriched nematodes on larval growth, 

survival and development of penaeid larvae. 

The pigmentation level of an aquatic animal may be an important factor af- 

fecting its market value and it may also directly indicate the healthiness 

and quality of an organism (Bird and Savage, 1990; Latscha, 1990; Chien and 

Jeng, 1992). In the case of intensive shrimp and fish farming, the natural pond 

pigment sources become insufficient and hence the integument of the animals 

fades. As a result,, carotenoids are conventionally included in the diets of 

various fish and crustaceans. Carotenoids are the compounds responsible for 

crustacean pigmentation. Although they can be produced de novo by algae, 

fungi and higher plants, all animals have to rely on the supply of carotenoids 

from their diet (D'Abramo et aL, 1983; Torrissen, 1989; Latscha 1990; Es- 

terman, 1994). Although the most commonly used carotenoids in commercial 

diets are cantaxanthin and astaxanthin (Bird and Savage, 1990; Johnson and 

Ann, 1991), studies with fish and crustaceans have shown that astaxanthin is 

the most effective pigment (Torrissen, 1989, Yamada et al., 1990; Chien and 
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Jeng, 1992). It is known that astaxanthin is the major carotenoid,, represent- 
ing 68-98 % of the total carotenoids associated with pigmentation in shrimps 
(Latscha, 1990; Negre-Sadargues et al., 1993). Aquatic animals are capable 
of altering dietary carotenoids by oxidation and depositing them in their 
tissues. Crustaceans can convert various algal carotenoids such as lutein and 

zeaxanthin and P-carotene to the major pigment, astaxanthin (Latscha, 1990), 

Yamada et al., (1990) report that carotenoids (cantaxanthin, P-carotene and 

astaxanthin) are deposited in the tissue of P. japonicus mainly as astaxanthin 

esters. 

Apart from their function in pigmentation and as vitamin A precursors, other 
biological functions of carotenoids are less well known. It has been suggested 

that carotenoids may influence many physiological functions of aquatic ani- 

mals. Of particular relevance is the provitamin A activity of carotenoids. 
Animals are unable to synthesise vitamin A which is essential for a variety of 
functions including vision, growth, reproduction and resistance to a variety of 
diseases (Torrissen, 1989). Carotenoids are also involved in gonadal devel- 

opment, maturation, fertilisation and hatching in fish and crustaceans 

(Meyers, 1977). They are also known to associate with proteins to form 

carotenoproteins (Cheesman et at., 1967) that influence the stability of pro- 

teins and enzyme activities (Britton et a]., 1981). Carotenoids are also known 

to enhance growth, reproduction and fecundity in crustaceans and fishes 

(Tacon, 198 1). Torrissen (1984) reported improved growth rates in alevin of 

Salmo salar when fed diets containing carotenoids. A recent study on the 

pigmentation of P. japonicus juveniles showed that dietary carotenoids may 

improve survival and growth (Chien and Jeng, 1992). Negre-Sadargues et al., 

(1993) also showed that astaxanthin and cantaxanthin are stored in the in- 

tegument and hepatopancreas of P. japonicus juveniles improving survival 

rate. In contrast to these findings, Yamada et al., (1990) showed no notable 

increase in growth, feed efficiency and daily feed intake of P. Japoni . cl/'ý 

reared on diets with and without carotenoids, D'Abramo et al,, (1983) also 

reported that there was no significant effects of the pigments on the 
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wet-weights of juvenile lobster Homarus americanus reared on artificial diets 
containing various carotenoids. Chien and Jeng (1992) suggested the inclu- 

sion of 100 mg astaxanthin per 100 g diet one month before the harvest of P. 
japonicus to get the best pigmentation level. With the exception of one study 
(Petit et al., 1991), there is almost no information about carotenoid metabo- 
lism in penaeid larvae. 

Results of Chapter 3 showed that although nematodes promote higher larval 

survival in P. indicus, they give relatively inferior growth and development 

compared to an algaelArtemia feeding regime, The primary objective of this 

chapter was, therefore, to further improve suitability of the nematode P. 

redivivus by using different methods to enhance their nutritional value for 

larval culture of P. indicus. Several live algal co-feeds with nematodes were 
fed to the larvae in an attempt to elevate larval digestive enzymes (Jones et 

al., 1993; Le Vay et al., 1993; see Chapter 5) to improve digestibility of the 

prey (Hofsten et al., 1983). The nematodes which had been enriched with 

several lipid sources (capelin oil, cod liver oil and marilla oil) to improve 

their essential fatty acid (EFA) profile, particularly eicosapentaenoic acid 
(20: 5(o-3) and docosahexaenoic acid (22: 6o3-3) were tested to examine effects 

on growth, survival and development of the larvae. The nematodes pigmented 

with astaxanthin were fed to P. indicus larvae to improve the pigmentation of 

postlarvae equivalent to those fed on algae and Artemia. The effects of the 

pigment on larval survival and growth during larval development (PZI-PLI) 

of P. indicus were also investigated. 

MATERIALS AND METHODS 

Experiment I 

This experiment was conducted to determine the effect of the nematode P. 

redivivus, which had been lipid-enriched and pigmented, either alone or to- 
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gether with an algal co-feed on larval growth, survival and colour of P. indi- 
cus from PZ1 to PL stages. For this purpose the following diets were used-, 

(a) Lipid-enriched nematodes (EN), 

(b) Non-enriched (NEN), 

(c) Lipid-enriched and pigmented nematodes (PEN), 
(d) Pigmented and non-enriched nematodes (PNE), 
(e) Enriched-nematodes plus 30 cells gl-1 mixed algae (T chuii IS. 

costatum, 1: 1) for only 24 h at PZ I stage (EN/algae), 

(f) Control treatment (25 cells gl-1 T chuii, 45 cells ý&' S. costatum 
and plus five Artemia ml-' during mysis and postlarval stages. 

Since P. redivivus is a terrestrial nematode species, it was thought that it 

might lack some of essential fatty acids particularly 20: 5(0-3 and 22: 6co-3 
(HUFA) that marine penaeid larvae require in their diets (Jones et al., 1979a). 

Hence,, in some nematode cultures 50 % of the corn oil was replaced with 

capelin fish oil to enrich the fatty acid profile of the nematodes. Carophyll 

Pink (Hoffmann La Roche Ltd., Switzerland), which contains 8% astaxan- 
thin, was added to the nematode cultures in an attempt to improve the pale 

colour of the larvae normally obtained with non-pigmented nematodes. Any 

physiological effects of the astaxanthin was also investigated on larval growth 

and survival of P. indicus. Pigment in the form of gelatine/starch microcap- 

sules was dissolved in the corn oil fraction of the medium and autoclaved 
before adding to the general culture medium (Fisher, pers. com. ). The same 

author suggests that 1.5 % (w/w) Carophyll Pink, which provides 1.43 gg-' 

astaxanthin g-1 dry weight of the nematodes, was the maximum level that can 

be used in the medium to pigment the nematodes. Densities of 30 nematodes 

ml-1 during protozoeal stages, and 60 nematodes ml-1 during mysis stages 

were used in this experiment. 

Studies in Chapter 5 revealed that addition of a low amount of algae into the 

larval rearing water as a co-feed together with artificial diets improved larval 

growth and survival of P. indicus particularly during protozoeal stages. Thus, 
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some larvae were fed on 30 cells ý&' of the mixed algae T chuii IS. costatum 
(1: 1) for a period of only 24 h in addition to the normal nematode ration 
(EN/algae). A complete water exchange was carried out everyday when the 
larvae were staged and survival-growth data was collected. Growth and sur- 
vival results were derived from three replicates for each diet. During the 

experiment it was not always possible to obtain fresh nematodes from AGC. 

Since survival data did not fit in the GLM,, logarithmic transformation was 
carried out before the data was analysed by two-way ANOVA with days as a 
covariate from PZI to PL stages. Larval growth was also analysed by the 

same method but separately between PZI and PZ3/MI, and between MI and 
PL stages in order to compare the performance of larvae on the nematode 
diets against the larvae fed algae during protozoeal stages and those cultured 

on Artemia nauplii during later stages. Final larval survival (at PL) and 

growth (total lengths) were also compared using one-way ANOVA and ap- 

propriate pairwise comparison tests (SchefWs test and Tukey's test) follow- 

ing Bartlett's homogeneity test for variances. 

Experiment 2 

Although enhancement of larval colour was demonstrated, it was not possible 

to obtain clear and reliable data to suggest any positive effect of the lipid 

and/or pigment enrichment on larval growth and survival due to irregular 

supply and dirty cultures of the nematodes in Experiment 2. Therefore, this 

experiment was repeated to determine the effects of lipid enrichment (with 

capelin fish oil) and pigmentation on survival and growth of P. indicus lar- 

vae. All the nematode cultures were used within 1-2 days of receipt from the 

AGC in this experiment. Three different algal co-feeds along with the nema- 

todes were also tested on larval growth, survival and trypsin activity to de- 

termine the best algal density and algal co-feeding duration required to ob- 

tain comparable growth, development and survival to those obtained from the 
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control diet. The following feeding regimes were used to rear PZ I larvae until 
PL stages; 

(a) Non-enriched nematodes (NEN) 

(b) Lipid-enriched nematodes (EN) 

(c) Pigmented and lipid-enriched nematodes (PEN) 
(d) Pigmented and non-lipid-enriched nematodes (PNE) 
(e) Lipid-enriched nematodes plus 30 cells pl-1 mixed algae (T. chuii IS. 

costatum, 1: 1) for 24 h (EN/Alg 1) 
M Lipid-enriched nematodes plus 30 cells pl-1 mixed algae (T chuii 

IS. costatum, 1: 1) for 48 h (EN/Alg2) 

(g) Lipid-enriched nematodes plus 15 cells gl-1 mixed algae (T chuii 
IS. costatum, 1: 2) for 48 h (EN/Alg3) 

(h) Control treatment (25 cells gl-1 T chuii, 45 cells pl-1 S. costatum 

and plus five Artemia ml-' during mysis and postlarval stages. 
Nematode concentrations offered to the larvae during larval development 

were 30 nematodes ml-1 (PZI-PZ3/Ml), 45 nematodes ml-1 (MI-M2), 60 

nematodes ml-' (M3-PL). PZ1 stage larvae were fed on the EN nematodes, 
EN/Alg3, and mixed algae (60 cells pl-) for 48 h when 75 PZ2 stage larvae 

were sampled for trypsin analysis and dry weight determinations (30 PZ2 for 

each replicate) in two replicates for each treatment. Each sample was assayed 
for trypsin activity in at least three replicates as described in General Material 

and Methods (GMM). Larval body dry weight was also determined using the 

method described in GMM. Protein, lipid and fatty acid profiles of the nema- 

todes used in the present study were supplied by AGC (Table 13). 

Slopes of survival data were compared using two-way ANOVA with days as a 

covariate between day 2 (PZI/PZ2) and day 10 (PLI-P4) using GLM. Growth 

data, however, were compared separately from PZI-PZ3/Ml (day I to day 4) 

and from MI to PL stages (day 5 to day 10) using the same method above. 

Furthermore, final larval survival and growth (at PL stages) were also com- 

pared using one-way ANOVA followed by appropriate pairwise comparison 
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tests (Scheff6's and Tukey's tests). Larval trypsin activities at PZ2 stage were 
compared using one-way ANOVA and Tukey's test after the data was 
checked for homogeneity of variances with Bartlett's test. 

Experiment 3 

The effects of nematodes (P. redivivus) enriched with different lipid sources 
on larval growth and survival of P. indicus were compared in this experiment. 
All nematode cultures were used within 1-2 days of receipt from the AGC. 
Five different diets were tested from PZI to PLI stages as follows; 

(a) Marilla lipid-enriched nematodes (MAR) 

(b) Cod liver lipid-enriched nematodes (CLO), 

(c) Capelin lipid-enriched nematodes (EN), 

(d) Non-enriched nematodes (NEN), 

(e) Control diet: 25 cells gl-I T. chuii and 35 cells gl-I S. costatum 

and five Artemia nauplii ml-1 from MI to PLI. The algal diet was 

completely ceased at MI/2 stage. 
The nematodes were fed to the larvae at a concentration of 30 ml-I at PZI- 

PZ2/3.1 45 ml-I PZ3/Ml-M2,, and 60 ml-1 M3-PLI. Complete water changes 

were carried out everyday when 10-13 larvae were sampled randomly to 

determine growth of the larvae as increase in total length (mm) and larval 

development. Larval count was also performed daily to determine survival 
(%) during larval development. Every other day, a new nematode culture was 
introduced to the larvae after they were rinsed in filtered and UV-treated sea 

water and counted in a rafter cell counter. Protein, lipid and fatty acid profile 

of the nematodes used as food to rear P. indicus larvae in the present ex- 

periment were obtained from AGC. Capelin oil, cod liver oil and marilla oil 

were used to replace 50% of the corn oil in culturing the nematodes to ele- 

vate HUFA level to that required by penaeid larvae. 

Growth and survival data was analysed using two-way ANOVA with days as 

a covariate (GLM) to compare growth rate and survival rate of larvae be- 
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tween PZI-PZ3/Ml stages (day 2-day 6), and MI-PL stages (day 6-day 10). 
Comparison of larval growth and survival at MI and PLI stages were per- 
formed using one-way ANOVA followed by SchefWs and Tukey's pairwise 
comparison tests after the data was checked for homogeneity of variances 
using Bartlett's test. 

Experiment 4 

In Experiment 3, the potential impact of the pigment astaxanthin, in relation 
to growth and survival, was inconclusive. Consequently, the experiment was 
repeated using nematodes enriched either with the pigment or the placebo 
pigment capsules. In this manner, the effect of the pigment plus gelatine 
capsule or gelatine capsule alone could be demonstrated. Three diets were 
tested; 

(a) Pigmented and lipid-enriched (PEN), 

(b) Placebo pigmented and lipid-enriched (PLC), and 
(c) Lipid-enriched (CLO). 

Control larvae were cultured on the live mixed algae (25 cells pl- IT chuiil 

45 cells pl-' S. costatum) and five Artemia ml-' during mysis and PL stages. 
All other experimental procedures were identical to those in Experiment 3. 

Growth and survival data was collected from three replicates for each treat- 

ment. Protein, lipid and fatty acid profile of the nematodes fed to the larvae 

were supplied by AGC. 

Survival rates and growth rates were compared using two-way ANOVA with 

days as a covariate (GLM) from PZI to PZ3/MI and from MI to PL stages 

separately. To fit in the model (GLM) survival rates during protozoeal stages 

were compared between day 3 and day 6. Following Bartlett's homogeneity 

test, growth and survival data at MI and PLI stages were analysed with one- 

way ANOVA in Minitab. Further pairwise comparison tests were conducted 

using SchefWs test for growth and Tukey's test for survival. 
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RESULTS 

Experiment I 

Survival 

Figures 1,2a and 2b show survival and growth of larvae of P. indicus reared 
on various nematode diets and a control diet from PZI and PL stages. This 

experiment demonstrated that complete replacement of live algae and Artemia 
in the culture of P. indicus throughout all larval stages to the metamorphosis 
can be achieved successfully using the nematode P. redivivus alone. Since 

survival data did not fit in the GLM model, logarithmic transformation was 
carried out before survival rate of larvae reared on different feeding regimes 

were compared between day 2 and day 10. Table 2a shows that there were 
significant effects of the treatments on larval survival (P<0.001). Lowest log 

mortality rate (P<0.001) was achieved with lipid enriched nematodes plus 30 

cells gl-I algal co-feed (EN/algae) from PZI to PLI stage with a final survival 

of 72 % at PLI stages (see Tables 2a and 2b), EN and PEN nematodes gave 

significantly higher mortality rate than non-enriched nematodes. 

There was no significant difference between the mortality rate of the larvae 

fed on the control diet and those reared on PNE nematodes (see Table 1). 

The pigmented nematode (PEN and PNE) cultures were not as clean in com- 

parison to non-enriched (NEN) and lipid-enriched non-pigmented (EN) 

nematode cultures. This resulted in fouling of the larvae during culture caus- 

ing higher mortalities. Comparisons of final survivals at PL stages (day 10) 

demonstrated that EN/algae supported significantly (P<0.05) higher larval 

survival (72 %) compared to all other feeding regimes (Table 1). There was 

no significant difference (P>0.05) in larval survival on NEN (57 %), PNE (50 

%), control (49 %) and EN (42 %) nematodes at PL stages. PEN nematodes, 

however, displayed the lowest survival (26 %) at metamorphosis (see Figure 

1). 
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Table 1. Growth rate (mm day-'), log mortality rate (% day'), final survival (%) and total 
length (mm) of P. indictis larvae reared on various nematode feeding regimes and a 
control diet from PZI to PL stages. Treatments with the same superscripts are not signifi- 
cantly different (P>0.05). Values for survival and growth are means ± s. d. (n=3). 

Diets log mortality Final survival 
rate (% day-') at PL (%) 

NEN 

EN 

PNE 

PEN 

EN/algae 

Control 

0.023 d 56.67 b±2.52 

0.047 a 42.17 b±2.25 

0.026 c 49.67 b±1.26 

0.043 b 26.00 c±2.65 

0.018 e 71.50 a±3.54 

0.031 c 49.33 b±2.25 

PZI-PZ3/Ml MI-PL 

Growth rate Final growth 
(mm day-1) at Pl, (mm) 

0.484 

0.505 d 
0.328 c 

0.331 c 

0.441 d 0.349 b 

0.560 c 0.328 c 

0.623 b 0.304 d 

0.716 a 0.548 a 

5.10 c±0.14 

5.18 c±0.14 

5.01 c±0.05 

5.29 c±0.09 

5.68 b±0.09 

6.90 a±0.13 

Growth 

(a) PZI-PZ3/Ml 

Daily larval sampling allowed comparison of the effects of the nematode feeds 

with algae during protozoeal stages (day I to day 4) and with Artemia during 

mysis stages (day 4 to day 10). Table 3a shows that there are significant 

(P<0.001) differences in the growth rate of the larvae on various feeding 

regimes between PZI-PZ3/Ml stages. Figure 2a and Table 3b demonstrate 

that highest larval growth rate (0.72 mm day-') was achieved with the mixed 

algae (P<0.001) with a 3.98 mm TL at PZ3/MI stage (see also Table 1). 

Growth rate of larvae fed 30 cells [tl-I of algae (T chuWS. costatum, 1: 1) for 

only 24 h together with lipid-enriched nematodes was significantly better 

(0.62 mm day-) than the larval growth rate obtained from EN nematodes 

(0.51 mm day-'). Pigmentation of the nematodes clearly improved the pale 

colour of the larvae, but did not improve larval growth rate (0.44-0.56 mm 

day-) compared to non-pigmented nematode fed larvae (0.48-0.50 mm day-'). 

Difference in the colouration between the larvae fed pigmented nematodes 

and non-pigmented nematodes was clearly visible under a microscope as early 

as at PZI stage (24 h fed). The poor performance of the larvae fed PEN 

nematodes may again have been due to the extremely dirty nematode culture, 

which may have resulted in serious larval fouling particularly during early 
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larval stages. Enrichment of the nematodes with capelin oil neither improved 

survival nor growth rate of the larvae compared to NEN nematodes during 

protozoeal stages. Larvae fed EN nematodes had relatively high survivals and 
appeared to be healthy and active at PZ1 and PZ2 stages. At PZ3 stage, how- 

ever, they started to display an abnormal U shaped body. This might indicate 

a nutrient imbalance of this nematode diet rather than any environmental 
problem encountered during larval culture. Improper larval development from 
PZ3 stage onwards affected the subsequent survival and growth of the larvae 
fed on the EN nematodes. 

Growth 

(b) MI -PL 
Figure 2b and Tables 4a, b show that larval growth rate (0.55 mm day-) and 
final total length (6.90 mm) promoted by Artemia were significantly better 

than all other nematode diets (P<0.001) between MI and PL stages. Growth 

rate of the larvae which were previously fed algal co-feed for a period of only 
24 h at PZI stage was significantly lower (0.30 mm day-) than those on other 

nematode feeds during mysis stages, although their final TL at PL stages was 

still significantly greater (5.68 mm). No significant improvements of lipid- 

enrichment and/or pigmentation of the nematodes on larval growth were 
found between MI and PL stages (see Table 1). Growth and survival data 

obtained in this experiment are shown in Tables 6a and 6b. 

Larval development 

Table 5 shows that the fastest larval development was achieved with the 

control feed followed by the EN/algae both during protozoeal and later 

stages. On day 4, all the larvae fed on algae were at MI stage whereas only 

73 % of those fed EN/algae were at MI and the remaining 37 % at PZ3 stage. 

On day 4,62 % of the larvae reared on PEN were at MI stage compared to 

13 % of those reared on NEN nematodes. At termination of the experiment, 

almost 35 % of the control larvae were at PL3/4 stages. Among the nematode 



Figure 1. Survival (%) of P. indicus larvae reared on various feeding regimes 
from PZI to PL stages. Each value is a mean (n=3). (EN= Lipid-enriched, NEN= 
Non-enriched, PEN= Pigmented and lipid-enriched, PNE= Pigmented and non- 
enriched nematodes all through larval stages, EN/algae= EN nematodes and 30 

cells ýtl-l algae as a co-feed for 24 h during PZI stages', Control= Mixed algae 
during protozoeal stages and plus Artemia during later stages). 

Figures 2a, b. Growth (mm) of P. indicus larvae reared on various feeding re- 

gimes (a) from PZI to PZ3/MI and (b) from MI to PL stages. Each value is a 

mean (n=3). (EN= Lipid-enriched, NEN= Non-enriched, PEN= Pigmented and 

lipid-enriched, PNE= Pigmented and non-enriched nematodes all through larval 

stages, EN/algae= EN nematodes and 30 cells gl-1 algae as a co-feed for 24 h 

during PZI stages, Control= Mixed algae during protozoeal stages and plus Ar- 

temia during later stages). 
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feeds, EN/algae and PEN diet supported faster development (PLI/PL2) com- 
pared to others (M3/PLI) on day 10. 

Table 2a. Two-way ANOVA with days as a covariate on log larval survival of P. indicus from PZI 
to Pl, stages. 

Source DF Seq SS Adj SS Adj MS FP Signifi- 
cant Diets 5 

Days I 
Repl(Diet) 12 
Dict*Days 5 
Repl*Days(Diet) 12 
Error 54 
Total 89 

1.101554 0.113816 0.022763 12.45 0.000 
0.712966 0.712966 0.712966 390.09 0.000 
0.009512 0.010791 0.000899 0.49 0.911 
0.076817 0.076817 0.015363 8.41 0.000 
0.013464 0.013464 0.001122 0.61 0.821 
0.098697 0.098697 0.001828 
2.013010 

Table 2b. Comparison of log larval mortality rates (% day-') of P. indicus fed on various feeding 
regimes from PZI to Pl, stages. 

Term log mortality Coeff. Stdev. t-value p Signifi- 
rate (% day cant 

Constant 1.95958 0.01057 185.42 0.000 
Days -0.06294 0.003187 -19.75 0.000 
DaYs*Diet 

NEN 
EN 
PNE 
PEN 
EN/algae. 
Control 

0.023 
0.047 
0.026 
0.043 
0.018 
0.031 

0.016623 0.007125 2.33 0.023 

-0.031423 0.007125 -4.41 0.000 
0.010830 0.007125 1.52 0.134 Ns 

-0.022344 0.007125 -3.14 0.003 
0.026081 0.007125 3.66 0.001 
0.000232 0.007125 0.03 0.974 Ns 

Table 3a. Two-way ANOVA with days as a covariate on larval growth of P. indicus from PZI to 
PZ3/Ml stages. 

Source DF Seq SS Adj SS Adj MS Fp Signifi- 
cant 

Diets 
Days 
Repl(Diets) 12 
Diets*Days 5 

Repl*Days(Dicts) 12 

Error 893 

Total 928 

66.935 0.550 0.110 1.68 

569.820 568.990 568.990 8679.88 

1.348 0.119 0.010 0.15 

15.758 15.777 3.155 48.13 

0.454 0.454 0.038 0.58 

58.539 58.539 0.066 

712.854 

0.138 
0.000 
1.000 
0.000 
0.862 
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Table 3b. Comparison of larval growth rates ( mm day-') of P. indicus fed various diets from PZI to PZ3/Ml. 

Term Growth rate Coeff. 
(mm day-') 

Constant 1.02143 
Days 0.55467 
Days*Diets 
NEN 
EN 
PNE 
PEN 
Control 
EN/algae 

0.484 -0.07098 
0.505 -0.05016 
0.441 -0.11401 
0.560 0.00558 
0.716 0.16129 
0.623 0.06828 

Stdev. t-value p Signifi- 
cant 

0.01985 51.45 0.000 
0.00595 93.17 0.000 

0.01317 -5.39 0.000 
0.01331 -3.77 0.000 
0.01339 -8.51 0.000 
0.01355 0.41 0.681 
0.01336 12.07 0.000 
0.01309 5.22 0.000 

NS 

Table 4a. Two-way ANOVA with days as a covariate on larval growth of P. indicus between MI 
and PL stages. 

Source DF Seq SS 
Diet 5 270.933 
Day 1 441.792 
Repl(Diet) 12 5.738 
Diet*Day 5 23.108 
Repl*Day(Diet) 12 2.009 
Error 1114 165.967 
Total 1149 909.548 

Adi SS Adi MS FP Significant 
8.073 1.615 10.84 0.000 

440.302 440.302 2955.37 0.000 
1.132 0.094 0.63 0.815 

22.794 4.559 30.60 0.000 
2.009 0.167 1.12 0.336 

165.967 0.149 

Table 4b. Comparison of larval growth rates (mm day-') of P. indicus fed on various diets (Ml- 
PL stages). 

Term Growth rate Coeff. 
(mm day 

Constant 1.89T68 
Day 0.36485 
Day*Diet 
NEN 
EN 
PNE 
PEN 
Control 
EN/Algae 

0.328 -0.03608 
0.331 -0.03374 
0.349 -0.01574 

0.03691 0.328 
0.548 0.18355 
0.304 -0.06108 

Stdev. t-value p Signifi- 
cant 

0.05145 36.87 0.000 
0.006711 54.36 0.000 

0.01484 -2.43 0.015 
0.01499 -2.25 0.025 
0.01489 -1.06 0.291 
0.01528 -2.42 0.016 
0.01503 12.22 0.000 
0.01501 -4.07 0.000 

* 

* 

Ns 

Table 5. Percentage larval stages at PZ3/Ml and Pl, stages of P. indicus reared on various 
feeding regimes from PZI to PL stages. 

Diets Larval stages (%) 
at PZ3/MI (day 4) 

NEN 87.5% PZ3,12.5% MI 

EN 75% PZ3,25% Ml 

PNE 97% PZ3,3% MI 

PEN 38% PZ3,62% MI 

Control 100% mi 

EN/algae 37% PZ3,73% MI 

Larval stages (%) 
at Pl, (Day 10) 

47% M3,53% PLI 

40% M3,60% PL I 

63% M3,37% PLI 

18% M3,72% PL 1,10% PL2 

28% PLI, 37.5% PL2,19% PL3,15.5% PL4 

81% PLI, 19% PL2 
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Table 6a. Survival data (%) for Figure 1. Each value is a mean ± s. d. (n=3). 

Days NEN EN PNE PEN Control Nem/algae 

0 100.00 100.00 

2 86.50±3.28 97.17±0.58 

4 69.67±1.61 73.67±4.80 

6 62.16±5.13 58.00±4.09 

8 57.88±3.75 44.67±3.79 

10 56.67±2.52 42.17±2.25 

100.00 100.00 

83.50±4.27 60.50±3.78 

63.88±2.02 38.33±4.16 

56.67±2.03 30.00±3.04 

54.33±3.33 27.50±3.78 

49.67±1.26 26.00±2.65 

100.00 

88.83±5.69 

66.33±5.69 

61.00±1.32 

50.67±2.26 

49.33±2.25 

100.00 

100.00 

87.17±6.81 

77.00±4.77 

73.00±5.00 

71.50±3.54 

Table 6b. Growth data (mm) for Figures 2a, b. Each value is a mean: ± s. d. (n=3). 

Days NEN EN PNE PEN Control Nem/algae 

0 1.02±0.07 1.02±0.07 1.02±0.07 1.02±0.07 1.02±0.07 1.02±0.07 
1 1.38±0.01 1.44±0.01 1.38±0.01 1.41±0.01 1.49±0.02 1.48±0.03 
2 2.16±0.02 2.21±0.02 2.17±0.01 2.20±0.03 2.48±0.08 2.39±0.06 
3 2.38±0.04 2.43±0.03 2.33±0.06 2.43±0.06 3.35±0.11 3.22±0.14 
4 3.13±0.02 3.19±0.07 3.12±0.02 3.25±0.07 3.98±0.08 3.66±0.08 
5 3.36±0.04 3.45±0.01 3.35±0.04 3.67±0.09 4.25±0.14 4.11±0.07 
6 3.93±0.07 3.880.03 3.65±0.09 4.04±0.10 4.68±0.04 4.49±0.12 
7 4.18±0.16 4.06±0.12 3.85±0.07 4.18±0.14 5.45±0.13 4.644: 0.07 
8 4.42±0.10 4.45±0.06 4.46±0.11 4.68±0.04 6.04±0.10 5.00±0.17 
9 4.93±0.09 4.80±0.10 4.65±0.17 5.09±0.04 6.56±0.04 5.41±0.18 
10 5.10±0.14 5.18±0.14 5.01±0.05 5.29±0.09 6.90±0.13 5.68±0.09 

Experiment 2 

Survival 

In this experiment, the effect of pigmented and/or lipid-enriched nematodes 

and three different algal co-feed regimes together with the nematodes were 

investigated on larval growth, survival and larval development of P. indicus. 

Larval survivals on various feeds from PZ I to PL stages are shown in Figures 

3 and 5. Table 7 summarises mortality rates, final larval survivals and statisti- 

cal comparisons of these data expressed in different superscripts. The feeding 

regimes used in the present experiment significantly (P<0.001) affected larval 

survival from PZ1 to PL stages (Tables 8a, b). When larvae were fed nema- 
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todes with an algal co-feed (EN/AlgI and EN/Alg2) for a short period of 
time, they showed significantly lower mortality rates (3.43-4.99 % day-) 

compared to the control (6.78 % day-) and EN nematode fed treatments. 
PEN nematodes gave the lowest mortality rate (2.37 % day-) resulting in 68 
% survival at metamorphosis. The EN nematodes which caused significantly 
the highest larval mortality rate (11.09 % day-) gave also the lowest final 

survival (10.33 %) at PL stages (P<0.05). NEN nematodes resulted in lower 
larval mortality rate (4.14 % day-) with a final survival of 51 % to PL stage. 
Figures 3,5 and Table 7 demonstrate that all the nematode regimes, except 
EN nematodes, promoted significantly better larval survival rate and final 

survival than those of the control treatment. 

Growth 

(a) PZI-PZ3/Ml 

Growth of larvae during protozoeal stages (day I- day 4) are presented in 

Figures 4a and 6a. Tables 9a and 9b show that there was significant effect of 

various nematode regimes on larval growth rate of P. indicus from PZI to 

PZ3/M1 stage. Introduction of algae (15-30 cells gl-1) into the culture along 

with EN nematodes promoted similar larval growth rates to those of the live 

algal control treatment during protozoeal stages (see Figure 4a). 

Comparison of larval growth rates between day I and day 4 revealed that 

(Table 7) EN/AlgI diet supported the highest larval growth rate (0.93 mm 

day-) compared to those obtained on all other diets. Nematode only fed 

larvae displayed significantly lower growth rates (0.54-0.57 mm day-) com- 

pared to those cultured on either algae alone (0.85 mm day-) or where algal 

co-feed were offered in conjunction with the nematodes (0.83-0.93 mm 

day-'). PEN nematode fed larvae showed significantly better growth rate 

(0.57 mm day-) than those fed on either EN (0.54 mm day-) or NEN nema- 

todes (0.54 mm day-'). 
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Table 7. Growth rate (mm day-'), mortality rate (% day'), final survival (%) and total length (mm) of P. indicus larvae reared on various nematodes feeding regimes and a control diet from PZI to PL stages. Treatments with the same superscripts are not 
significantly different (P>0.05). Values for survival and growth are means ± s. d. (n=3). 

Diets Mortality rate 
(% day-') 

PZI-PZ3/Ml MI-PL 

Final Survival Growth rate Final growth 
at PL (mm day-) at Pl, (mm) 

NEN 4.142 d 51 . 00 b±5.07' 0.535 ' 0.35i-u 
EN 11.092' 10.33 e±2.25 0.540 e 

EN/Algl 3.434 d 62.50 a±3.28 0.927 a 

EN/Alg2 4.992 c 47. Oobc ± 4.91 0.827 c 

EN/Alg3 7.392 b 37.67c ± 4.81 0.831 c 

PEN 2.3670 68.17 a±2.02 0.570 d 

Control 6.784 b 32 
. 
00d ± 2.60 0.85 1b 

5.48 ý' ± 0.17 

0.276 d 4.89 '± 0.13 

0.2 99 d 5.95 b±0.14 

0.317 ' 5.87 b±0.15 

0.2 99 d 5.63 b±0.13 

0.386 b 5.64 b±0.10 

0.599 ' 7.4 9a± (). Ig 

Growth 

(b) MI -PL 
Figures 4b and 6b show that growth rate of the larvae fed various nematode 
feeds during mysis and PL stages were significantly lower (P<0.001) than 
larvae fed live mixed algae with five Artemia nauplii ml-' (see Tables 10a, b). 

Table 7 shows that although the larvae fed nematodes and algal co-feeds had 

significantly higher growth rates during the herbivoral stages, these larvae 

displayed significantly lower growth rates (0.30-0.32 mm day-) compared to 

either the control diet (0.60 mm. day-) or nematode diets alone (NEN and 

PEN nematode fed larvae) between MI and PL stages. EN nematode fed 

larvae exhibited slower growth rate (0.28 mm day-) than that of (0.36 mm 

day-) NEN nematode fed larvae. Pigmented nematodes (PEN) gave signifi- 

cantly better growth rate (0.39 mm day-) than EN nematode fed ones 

between MI and PL stages. Comparisons of final larval growths at PL stages 

(day 10) indicated that larvae reared on live mixed algae plus Artemia during 

mysis stages showed significantly (P<0.001) the greatest larval total length 

(7.49 mrn TL). Apart from larvae fed EN nematodes, which had significantly 

the lowest growth (4.89 mm TL), all other diets promoted similar final total 

lengths (P>0.05) at PL stages (Table 7). Growth and survival during larval 

development of P. indicus larvae are shown in Tables 12a and 12b. 



Figure 3. Survival (%) of P. indicus larvae reared on various feeding regimes 
from PZI to PL stages. Each value is a mean (n=3). (EN/Algl= Lipid-enriched 

nematodes plus 30 cells pl-1 algae for 24 h at PZI stage, EN/Alg2= Lipid- 

enriched nematodes plus 30 cells pl-' algae for 48 h at PZI stage, EN/Alg3 = 
Lipid-enriched nematodes plus 15 cells gl-' algae for 48 h at PZI stage, Control= 

Mixed algae during protozoeal stages and plus Artemia during later stages). 

Figures 4a, b. Growth (mm) of P. indicus larvae reared on various feeding re- 

gimes (a) from PZI to PZ3/MI and (b) from MI to PL stages. Each value is a 

mean (n=3). (EN/Algl= Lipid-enriched nematodes plus 30 cells gl-' algae for 24 h 

at PZI stage, EN/Alg2= Lipid-enriched nematodes plus 30 cells PI-1 algae for 48 

h at PZI stage, EN/Alg3= Lipid-enriched nematodes plus 15 cells Ptl-' algae for 

48 h at PZI stage, Control= Mixed algae during protozoeal stages and plus Ar- 

temia during later stages). 
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Figure 5. Survival (%) of P. indicus larvae reared on various feeding regimes 
from PZI to PL stages. Each value is a mean (n=3). (EN= Lipid-enriched, NEN= 
Non-enriched, PEN= Pigmented and lipid-enriched, Control= Mixed algae during 

protozoeal stages and plus Artemia during later stages). 

Figures 6a, b. Growth (mm) of P. indicus larvae reared on various feeding re- 

gimes (a) from PZI to PZ3/MI and (b) from MI to PL stages. Each value is a 

mean (n=3). (EN= Lipid-enriched, NEN= Non-enriched, PEN= Pigmented and 

lipid-enriched, Control= Mixed algae during protozoeal stages and plus Artemia 

during later stages). 
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Larval development 

On day 4, larvae reared on all single nematode feeds (NEN, EN and PEN) 
were at PZ3 stage whereas more than 50 % of the larvae fed either nema- 
todes/algal co-feeds or algae alone (control) were at MI stage (see Table 
11). Control diet fed larvae were at stage PL4 (73 %) on day 10 while EN 

nematodes fed larvae were still between M2 and PLI stages. Development 

of larvae fed PEN nematodes or nematodes/algal co-feeds were slightly 
faster than EN and NEN nematode fed larvae (at PLI/PL2). Larvae fed the 

control diet, EN/Algl-3 and PEN started to metamorphose into PLI stage 
on day 7,8 and 9 respectively. EN nematode fed larvae started to reach 
this stage on day 10. 

Trypsin activity 

Trypsin activities (per larva and per pg) of the larvae reared on the nematode, 

mixed live algae, and the nematode plus 15 cells gl-' algal co-feed for 48 h 

were determined in this trial. Figure 7 shows that the algal co-feed along with 

EN nematodes induced significantly (P>0.001) higher total and specific tryp- 

sin activities (33.36 X10-4 IU larva-' and 4.81 X 10-4 IU [tg-' dry weight = 

DW) than that of larvae fed nematodes only (18.44 X10-4 IU larva-' and 2.85 

X 10-4 IU pg-1 DW). Mixed algae fed larvae, however, displayed the highest 

trypsin activities (47.53 X10-4 IU larva-' and 6.64 x 10-4 IU pg-1 DW). 

Nutritional composition of the nematode feeds 

Composition (% dry weight) of protein, lipid and fatty acid profile of the 

nematodes used in the present experiment are shown in Table 13. NEN 

nematodes showed high level of protein (66 %) compared to EN (52.3 %) 

and PEN (44.2 %) nematodes. Lipid- enrichment remarkably increased lipid 

content of the PEN nematodes (32.90 %) in comparison to NEN nematodes. 

Yet,, lipid content of the EN nematodes was even lower (9.6 %) than that of 

the NEN nematodes (14.1 %). Lipid-enriched nematodes (EN and PEN) 

contained substantially higher (o-3 PUFA (3-5 times) particularly 20: 5(o-3 



EN EN/Algae 

Diets 

n 

Algae 

Total trypsin activity [: ] Specific trypsin activity 

Figure 7. Total and specific trypsin activity of larvae reared on 

lipid-enriched nematodes (EN), EN with algae as a co-feed (15 

cells/pl) and algae from PZ1 to PZ2 stages. Each bar is a mean 

± s. d. (n=2). 
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(eicosapentaenoic acid) (5.85-10.99 %) compared to NEN nematodes (1.97 
%). In spite of the lack of docosahexaenoic acid (22: 6(o-3) in NEN nema- 
todes, lipid enriched nematodes had 1.65 % (EN) and 4.48 % (PEN) of this 
fatty acid. In general, the NEN nematodes were richer in co-6 fatty acids 
whereas EN and PEN nematodes were richer in o-3 fatty acids. Ratio of 
o)6/o)3 of the EN nematodes were 2.20-2.61 % whereas this ratio was 20.05 
% in the NEN nematodes (see Table 13). 

Table 8a. Two-way ANOVA with days as a covariate on larval survival of P. indicus from PZI to 
Pl, stages. 

Source DF Seq SS Adj SS Adj MS FP Significant 

Diet 6 8190.5 1903.8 317.3 10.68 0.000 
Day 1 27497.2 27497.2 27497.2 925.48 0.000 
Repl(Diet) 14 238.0 217.1 15.5 0.52 0.911 
Diet*Day 6 6215.5 6215.5 1035.9 34.87 0.000 
Repl*Day(Diet) 14 295.8 295.8 21.1 0.71 0.755 
Error 63 1871.8 1871.8 29.7 
Total 104 44308.8 

Table 8b. Comparison of larval mortality rates (% day-') of P. indicus fed on various diets 
from PZI to Pl, stages. 

Term Mortality rate Coeff. Stdev. t-value p Signifi- 
(% day-') cant 

Constant 
Day 
Day*Diet 
NEN 
EN 
EN/AlgI 
EN/Alg2 
EN/Alg3 
PEN 
Control 

4.142 
11.092 

3.434 
4.992 
7.392 
2.367 
6.784 

98.448 1.248 78.91 0.000 

-11.4429 0.3761 -30.42 0.000 

3.1595 0.9214 3.43 0.001 

-10.7405 0.9214 -11.66 0.000 
4.5762 0.9214 4.97 0.000 
1.4595 0.9214 1.58 0.118 

-3.0405 0.9214 -3.30 0.002 
6.7095 0.9214 7.28 0.000 

-2.1238 0.9214 -2.31 0.024 

Ns 

Table 9a. Two-way ANOVA with days as a covariate on larval growth of P. indicus from PZI to 
PZ3/Ml stages. 

Source 

Diet 
Day 
Repl(Diet) 
Diet*Day 
Repl*Day(Diet) 
Error 
Total 

DF Seq SS Adj SS Adj MS FP Signifi- 
cant 

6 
1 

14 
6 
14 

858 
899 

88.214 1.086 0.181 4.33 0.000 
581.776 578.248 578.248 1.4E+04 0.000 

0.639 0.286 0.020 0.49 0.940 
26.953 27.052 4.509 107.82 0.000 

0.668 0.668 0.048 1.14 0.317 
35.880 35.880 0.042 

734.130 
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Table 9b. Comparison of larval growth rates (min day-') of P. indicus fed various diets from PZI 
to PZ3/Ml stages. 

Term Growth rate 
(mm day-) 

Constant 
Day 
Day*Dlet 
PEN 
NEN 
EN 
EN/Algl 
EN/Alg2 
EN/Alg3 
Control 

0.570 
0.535 
0.540 
0.927 
0.827 
0.831 
0.851 

Table 10a. Two-way ANOVA with days as a covariate on larval growth of P. indicus (MI-PL 
stages). 

Source DF 

Diets 6 
Days I 
Repli(Days) 14 
Diets*Days 6 
Repli*Days(Diets) 14 
Error 1329 
Total 1370 

Table 10b. Comparison of larval growth rates (mm day-') of P. indicus fed various diets (MI- 
PLI stages). 

Coeff. 

0.81729 
0.726102 

-0.15604 
-0.19089 
-0.18581 
0.20144 
0,10100 
0.10473 
0.12558 

Seq SS 

256.039 
503.425 

4.755 
37.232 
2.464 

223.552 
1027.466 

Stdev. t-value p Signifi- 
cant 

0.016920 48.31 0.000 
0.006175 117.59 0.000 

0.01505 -10.37 0.000 
0.01537 -12.42 0.000 
0.01512 -12.29 0.000 
0.01501 13.42 0.000 
0.01498 6.74 0.000 
0.01525 6.87 0.000 
0.01510 8.32 0.000 

Adj SS Adj MS Fp Signifi- 
cant 

22.705 3.784 22.50 0.000 
516.268 516.268 3069.17 0.000 

1.810 0.129 0.77 0.704 
37.602 6.267 37.26 0.000 
2.464 0.176 1.05 0.404 

223.552 0.168 

Coeff. Growth rate Term 
(mm day-') 

Constant 3.74380 
Day 0.362321 
Day*Diets 
NEN 
EN 
EN/Algl 
EN/Alg2 
EN/Alg3 
PEN 
Control 

0.358 
0.276 
0.299 
0.317 
0.299 
0.386 
0.599 

-0.00425 
-0.08656 
-0.06307 
-0.04435 
-0.06253 
0.02373 
0.23704 

Stdev. t-value p Signifi- 
cant 

0.02518 148.68 0.000 
0.00654 55.40 0.000 

0.01568 -0.27 0.786 
0.01587 -5.45 0.000 
0.01569 -4.02 0.000 
0.01590 -2.79 0.005 
0.01609 -3.89 0.000 
0.01587 1.50 0.135 
0.01700 13.94 0.000 

Ns 

** 

Ns 

Table 11. Percentage larval stages of P. indicus reared on various feeding regimes from PZI to 
Pl, stages. 

Diets Larval stages at PZ3/Ml 
(%)_ (Day 4) 

NEN 100% PZ3 
EN 100% PZ3 
EN/AlgI 100% ml 
EN/Alg2 50% PZ3,50 % MI 

EN/Alg3 23% PZ3,77% MI 

PEN 100% PZ3 
Control 37.5% PZ3,62.5% MI 

Larval stages at Pl, (%) 
(Day 10) 

40% M3,45% PLI, 15% PL2 
ll%M2,60%M3,23%PLI 
8% M3,72% PLI, 10% PL2,10% PL3 
7% M3,73% PLI, 13% PL2,7% PL3 
94% PLI, 6% PL2 
18% M3 75% PLI, 5% PL2,2% PL3 
8% PL2,19% PL3,73% PL4 
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Table 12a. Survival data (%) for Figures 3 and 5. Each value is a mean ± s. d. (n=3). 

Days NEN EN EN/AlgI EN/Alg2 EN/Alg3 PEN Control 

0 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

2 85.00± 9 3.00: h 88.50± 88.00± 91.50± 88.00± 85.83± 
2.18 5.63 2.65 2.18 2.98 2.20 4.54 

4 70.00± 78.00± 82.00± 74.00± 82.67± 80.00± 64.00± 
3.12 1.61 4.27 3.50 1.52 2.18 2.65 

6 59.33± 57.17± 72.00± 64.50± 58.83± 76.00± 47.00± 
7.42 5.48 0.87 2.78 4.01 1.73 3.06 

8 55.17± 21.00± 65.33± 56.17± 45.50± 72.33± 36.00± 
2.75 2.84 2.02 1.04 2.65 2.75 2.78 

10 51.00± 10.33± 62.50± 47.00± 37.67± 68.17± 32.00± 
5.07 2.25 3.28 4.81 4.81 2.02 2.60 

Table 12b. Growth data (mm) for Figures 4 and 6. Each value is a mean ± s. d. (n=3), 

Days NEN EN EN/AlgI EN/Alg2 EN/Alg3 PEN Control 

0 0.93+0.06 0.93±0.06 0.93±0.06 0.93±0.06 0.93±0.0,6 0.93±0.06 0.93±0.06 
1 1.39±0.01 1.37±0.01 1.53±0.01 1.42±0.01 1.52±0.01 1.37±0.02 1.53±0.02 
2 2.13±0.01 2.14±0.01 2.58±0.05 2.45±0.06 2.54±0.03 2.22±0.01 2.63±0.05 
3 2.46±0.01 2.35+0.04 3.52±0.05 3.47±0.01 3.46±0.03 2.48±0.03 3.47±0.02 
4 3.08±0.13 3.12±0.01 4.30±0.04 3.88±0.14 3.99±0.08 3.20±0.08 4.09±0.10 

5 3.71±0.14 3.52±0.06 4.54±0.03 4.25±0.07 4.11±0.02 3.72±0.07 4.34±0.18 

6 4.27±0.05 3.92±0.06 4.85±0.10 4.79±0.03 4.61±0.10 4.41±0.02 5.09±0.07 

7 4.53±0.07 4.23±0.16 5.15±0.16 5.02±0.05 4.79±0.04 4.57±0.14 5.54±0.06 

8 5.07±0.13 4.58±0.15 5.43±0.07 5.33±0.16 5.00±0.10 5.13±0.05 6.06±0.16 

9 5.34±0.15 4.78±0.05 5.61±0.12 5.69±0.14 5.54±0.04 5.53±0.10 6.88±0.14 

10 5.48±0.17 4.89±0.13 5.95±0.14 5.87±0.15 5.63±0.13 5.64±0.10 7.49±0.18 
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Table 13. Percentage nutritional and fatty acid composition of the nema- tode diets used in the present experiment to feed P. indicus larvae from 
PZI to PL stages. NEW non-enriched, EN= lipid-enriched, PEN= pig- 
mented and lipid-enriched nematodes. 

: NEN : EN : PEN 

Protein 66.00 52.30 44.20 
Lipid 14.10 9.60 32.90 

Fatty acids 

14: 0 0.2 0.52 2.27 
16: 0 5.18 3.52 8.37 
16: Ico-9 0.17 0.38 0.33 
16: la)-7 0.65 1.76 2.97 

18: 0 7.2 6.58 2.85 
18: 10)-9 19.61 10.2 16.04 
18: Ico-7 2.78 4.39 2.53 
18: 2(o-6 34.88 26.11 26.52 
18: 3o)-3 0.43 0.4 0.8 
18: 4a)-3 0.17 0.25 1.33 

20: 0 0.5 0.27 0.22 
20: lo)-9 0.66 4.06 6.27 
20: 2(j)-6 1.61 1.89 0.65 
20: 3(o-6 5.69 3.79 0.97 
20: 4co-6 9.34 6.41 1.79 
20: 4o)-3 1.23 0.71 
20: 5o)-3 1.97 10.99 5.85 

22: Ico-11 3.09 7.62 
22: 5o)-3 0.14 0.45 
22: 6w-3 

.. .. ......... ...................... 
1.65 

....... .......... 
4.48 

....................................................... . Saturates (%) . 13.08 10.89 13.71 

Monounsaturates (%) 23.87 23.88 35.76 

Polyunsaturates 54.09 52.86 43.55 

Sum % 91.04 87.63 93.02 

w-3 2.57 14.66 13.62 

o)-6 51.52 38.20 29.93 

Ratio o)-6/a)-3 20.05 2.61 2. 
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Experiment 3 

Survival 

(a) PZI-PZ3/Mi 

Figure 8a shows survival of P. indicus larvae on various feeding regimes 
between PZI and PZ3/MI stages. Statistical analyses for protozoeal stages 
showed significant differences between the effect of diets on larval survival 
during these stages (P<0.001) (see Tables 16a,, b). Highest mortality rates 
were found in the larvae fed NEN nematodes (7.55 % day-) and the control 
diet (6.56 % day-'). CLO lipid-enriched nematodes gave significantly lower 

mortality rate (2.3 % day-) compared to EN (3.97 % day-) and MAR (5.40 
% day-) (Table 14). Comparisons of larval survival of MI larvae showed that 
all the lipid enriched nematodes had significantly (P<0.01) higher survival (73 

-88 %) than either larvae fed on NEN nematodes (61 %) or those fed live 

algae (68 %) (see Figure 8a and Table 15). Although CLO nematodes pro- 
moted the highest survival until MI stage (88 %), there was no significant 
difference (P>0.05) between the various lipid-enriched treatments between 
PZI and MI stage. 

Table 14. Comparisons of mortality rate (% day-') and growth rate (mm day-) of P. 
indicus larvae fed various feeding regimes. Values with the same superscripts are not 
significantly different (P>0.05). 

Diets Mortality rate (% day-') Growth rate (mm day- ) 

MAR 
NEN 

CLO 
EN 

Control 

PZI-PZ3/Ml MI-PLI PZI-PZ3/Ml MI-PLI 

5.402 b 

7.552 a 

2.300 d 

3.967 c 

6.560 a 

1.067 0,516 c 0.425 a 
2.717 0.523 c 0.236 d 

1.800 0.536 b 0.273 c 

2.450 0.574 a 0,234 d 

3.100 0.576 a 0.360 b 

(b) MI-PLI 

Figure 8b displays survival of the larvae fed various diets between MI and PL 

stages. Comparison of the larval growth rates (Tables 17a, b) demonstrated 

no significant effects of various feeding regimes on larval growth during 



Figures 8a, b. Survival (%) of P. indicus larvae reared on various feeding regimes 
from PZI to PZ3/MI and from MI to PL stages. Each value is a mean (n=3). 
(MAR= Marella lipid-enriched, NEN= Non-enriched, CLO= Cod liver lipid- 

enriched, EN= Capelin lipid-enriched, and Control= Mixed algae during proto- 
zoeal stages and plus Artemia during later stages). 

Figures 9a, b. Growth (mm) of P. indicus larvae reared on various feeding re- 

gimes from PZ1 to PZ3/MI and from MI to PL stages. Each value is a mean 
(n=3). (MAR= Marella lipid-enriched, NEN= Non-enriched, CLO= Cod liver 

lipid-enriched, EN= Capelin lipid-enriched, and Control= Mixed algae during 

protozoeal stages and plus Artemia during later stages). 
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mysis stages until PLI (P>0.05). In comparison to protozoeal stages, Figure 
10b clearly shows that larval mortality declined during mysis stages. Com- 
parison of survivals at PLI stage also showed that NEN nematodes and con- 
trol diet resulted in significantly lower survivals compared to other nematode 
feeding regimes (P<0.05). Survivals at metamorphosis on CLO, MAR, and 
EN nematodes were 77 %) 69 %3,72 % respectively, Table 15 shows that 
there was no significant difference between survivals of larvae fed various 
lipid-enriched nematodes (P>0.05). All the survival data for Figures 8a and 
8b are shown in Table 20a. 

Table 15. Survival, total length and duration of larval development of P. indicus larvae 
at MI and PLI stages on various diets. Values with different superscripts are signifi- 
cantly different (P<0.05). Values are means ± s. d. (n=3). 

Diets Total length (mm) 

mi PLI 

MAR 
4.18 

b 
±0.06 5.66 ab ±0.09 

NEN 
4.19 

b 
±0.02 5.28 c ±0.08 

CLO 
. --b c 

EN 
4.23 ±0.03 5.37- ±0.05 

4.38 a ±0.03 5.53 
b 

±0.03 
Control 

4.37 a 
=LO. 02 5.71 a ±0.05 

mi 

Survival Duration 
(days) 

PLI to MI to PLI 

73.33 ab 
: 1: 4.15 

60.83 c ±4.31 

87.83 a ±2.36 

78.33 a ±4.31 

67.75 
b 

±3.25 

69.00a ±5.29 
59 

53.50 
b 

±5.50 
5 10 

77.00 a ±5.57 
4-5 9-10 

71.50 a ±3.91 
4-5 9-10 

54.83 
b 

±4.25 
4-5 8-9 

Growth 

(a) PZI-PZ3/Ml 

Growth rates of larvae fed various feeds during protozoeal stages (Figure 9a) 

were significantly (P<0.05) different (Tables 18a, b). Highest growth rates 

were achieved with the EN nematodes (0,574 mm day-) and the control diet 

(0.576 mm day-) (Table 14). Larvae fed CLO nematodes showed superior 

growth (0.536 mm day-) to larvae reared on either MAR (0-516 mm day-) or 

NEN nematodes (0.523 mrn day-'). Growth rates of larvae fed MAR and NEN 

nematodes were not significantly different. Comparison of larval growth rates 

at MI stage using one-way ANOVA demonstrated that EN nematodes and 

the mixed live algae promoted greatest (P<0.05) total lengths (4.37 and 4.38 
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mm TL) compared with the other nematode feeds (see Table 15). Total 
lengths of larvae fed NEN, MAR, and CLO nematodes ranged from 4.18 mm 
to 4.23 mm (P>0.05). 

(b) MI-PLI 

Figure 9b shows growth of larvae during mysis and early postlarval stages. 
Comparison of larval growth rates between MI and PL stages (Tables 19a, b) 

showed that MAR nematodes gave the highest growth rate (0.425 mm day-) 

compared to all other lipid-enriched nematodes and even the control diet 
(0.360 mm day-'). Larvae fed CLO nematodes displayed a higher larval 

growth rate (0.273 mm day-) than EN nematode fed larvae (0.234 mm day-'). 

Table 15 shows that there was a significant difference in total length of PLI 
larvae fed on different diets (P<0.001). Control treatment (algae until M2 and 
Artemia from MI to PLI) and MAR nematode fed larvae supported the high- 

est mean total lengths (5.71 mm and 5.66 mm respectively). Although CLO 

nematodes showed greater TL (5.37 mm) at PLI stage than those fed NEN 

nematodes (5.28 mm), the difference was not significant (P<0.05). Growth 

data for Figures 9a and 9b are surnmarised in Table 20b. 

Larval development 

Larval development (days) from PZI to MI and PLI stages were determined 

when the larvae started to developed into these particular stages. Table 15 

shows that CLO, 
- and EN nematode fed larvae, as well as the control devel- 

oped into MI stage one day earlier than larvae fed MAR and NEN nema- 

todes. Larvae fed the lipid-enriched nematodes metamorphosed into PLI 

stage one day earlier than those fed NIEN nematodes. Yet, larval duration 

until metamorphosis was shortest (8 days) in larvae fed the control treatment. 

Nutritional composition of the nematode feeds 

Tables 21a and 21b show the nutritional composition and fatty acid profile of 

the nematodes used during the first and second week of the present study. 
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Protein content of NEN nematodes (74.4-77 %) was higher than EN (52.9- 
64.6 %), MAR (55.4-59,1 %) and CLO (51.9-56.7 %) enriched nematodes. 
All lipid-enriched nematodes had slightly higher lipid content in comparison 
to NEN nematodes (see Tables 21a, b). The lipid-enriched nematodes con- 
tained substantially higher levels of (o-3 PUFA (10,62-14.9 %) than NEN 

nematodes (2.21-2.94 %). Among the (o-3 series, - 
lipid-enriched nematodes 

were also richer in 20: 5(o-3 fatty acids (5.17-6.83 %) than NEN (1.29-1.42 
%). Similarly, percentage level of 22: 6co-3 was also higher in the nematodes 
enriched with lipids (EN = 3.91-4.0 %ý. MAR = 3.74-4.39 %,, and CLO = 
2,79-2.86 %) compared to NEN nematodes (0-0.8 %). The HUFA level of (0- 
6 series in lipid-enriched nematodes were comparable to that in NEN nema- 
todes. In general, fatty acid profiles of the lipid-enriched nematodes, irre- 

spective of the lipid source, were similar. The ratios of o)-6/o)-3 HUFA of 
lipid enriched nematodes ranged from 1.87 to 3.16 % compared to NEN 

nematodes (13.49-17.07 %). Tables 21a and 21b show that the nutritional 

content and fatty acid profile of the nematodes (enriched or non-enriched) 

used to feed P. indicus during larval development did not differ greatly. 

Table 16a. Two-way ANOVA with days as a covariate on larval survival (%) of P. indicus 
from PZI to PZ3/MI stages. 

Source DF Seq SS Adj SS A4j MS Fp Significant 
Diets 4 2369.68 147.55 36.89 3.55 0.012 
Days 1 6804.30 6644.12 6644.12 639.35 0.000 
Repl(Diets) 10 280.35 132.47 13.25 1.27 0.266 
Days*Diets 4 918.59 911.35 227.84 21.92 0.000 
Repl*Days(Diets) 10 147.90 147.90 14.79 1.42 0.193 
Error 59 613.13 613.13 10.39 
Total 88 11133.94 

Table 16b. Comparison of larval mortality rates (% day-) of P. indicus fed various diets 
from PZI to PZ3/Ml stages. 

Term Mortality rate 
day 

Constant 
Days 
Davs*Diets 

MAR 
NEN 
CLO 
EN 
Algae 

Coeff. Stdev. t-value p Signifi- 
cant 

104.117 0.802 129.79 0.000 
-5.1552 0.2039 -25.29 0.000 

5.402 -0.2471 
7.552 -2.3971 
2.300 2.8600 
3.967 1.1886 
6.560 -1.4043 

0.4359 -0.57 0.573 
0.4004 -5.99 0.000 
0.4004 7.14 0.000 
0.4004 2.97 0.004 
0.4004 -3.51 0.001 

Ns 
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Table 17a. Two-way ANOVA with days as a covariate on larval survival (%) of P. indicus between MI and Pl, stages. 

Source DF Seq SS Adj SS Adj MS F 

Diets 4 
Days I 
Replic(Diets) 10 
Diets*Days 4 
Replic*Days(Diets) 10 
Error 44 
Total 73 

signifl- 
cant 

6397.36 193.63 48.41 2.74 0.040 
685.91 697.22 697.22 39.53 0.000 
361.43 289.51 28.95 1.64 0.126 
125.88 66.79 16.70 0.95 0.446 Ns 
290.43 290.43 29.04 1.65 0.125 
775.97 775.97 17.64 
8636.98 

Table l7b. Comparison of larval mortality rates (% day-) of P. indicus fed various 
feeding regimes between MI and PL stages. 

Term Mortality rate Coeff. Stdev. t-value p Signifi- 
(% day cant 

Constant 86.767 2.897 29.95 0.000 
Days -2.2267 0.3541 -6.29 0,000 
Days*Diets 

NLAR 1.067 1.1600 0.7718 1.50 0.140 Ns 
NEN 2.717 -0.4900 0.6915 -0.71 0.482 Ns 
CLO 1.800 0.4267 0.6915 0.62 0.540 Ns 
EN 2.450 :: -0.2233 0.6915 -0.32 0.748 Ns 
Control 3.100 0.8733 0.6915 -1.26 0.213 Ns 

Table 18a. Two-way ANOVA with days as a covariate on larval growth (mm TL) of P. 
indicus from PZI to PZ3/MI stages. 

Source DF Seq SS Adj SS Adj MS Fp Signifi- 
cant 

Diets 4 
Days I 
Replic(Diets) 10 
Diets*Days 4 
Replic*Days(Diets) 10 
Error 948 
Total 977 

3.121 0.576 0.144 3.38 0.009 
847.713 847.347 847.347 2. OE+04 0.000 

0.203 0.057 OM6 0.13 0.999 
1.851 1.846 0.462 10.85 0.000 
0.081 0.081 0.008 0.19 0.997 

40.320 40.320 0.043 
893.289 

Table 18b. Comparison of larval growth rates (mm day-) of P. indicus fed on various 
feeding regimes from PZI to PZ3/MI stages. 

Term Growth rate Coeff. 
(m day 

Constant 
Days 
Days*Diets 

MAR 0.516 
NEN 0.523 
CLO 0.536 
EN 0.574 
Algae 0.576 

Stdev. t-value 

0.88626 0.01533 
0.545019 0.003861 

57.80 0.000 
141.15 0.000 

-0.029436 0.007710 -3.82 
-0.021858 0.007629 -2.87 
-0.008760 0.007793 -1.12 
0.028737 0.007762 3.70 
0.031317 0.007718 4.06 

0.000 
0.004 
0.261 
0.000 
0.000 

Signifi- 
cant 

** 

Ns 
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Table 19a. Two-way ANOVA with days as a covariate on larval growth of P. indicus (MI-Pl, stages). 

Source DF Seq SS Adj SS Adj MS FP Signifi- 

Diets 
Days 
Replic(Diets) 
Diets*days 
Replic*Days(Diets) 
Error 
Total 

4 31.2475 5.3624 1.3406 15.32 0.000 1 170.9386 168.9534 168.9534 1930.75 0.000 
10 2.2207 1.3715 0.1371 1.57 0.111 
4 10.2721 10.2672 2.5668 29.33 0.000 
10 2.8645 2.8645 0.2865 3.27 0.000 

889 77.7934 77.7934 0.0875 
918 295.3368 

cant 

Table 19b. Comparison of larval growth rates (mm day-') of P. indicus reared on vari- 
ous feeding regimes (MI-PL stages). 

Term Growth rate Coeff. Stdev. t-value p Signifl- 
(mm day-') cant 

Constant 3.95289 0.02326 169.93 0.000 
Days 0.305616 0.00696 43.94 0.000 
Days*Diets 

MAR 0.425 
NEN 0.236 
CLO 0.273 
EN 0.234 
Control 0.360 

0.11915 0.01382 8.62 0.000 
-0.06915 0.01350 -5.12 0.000 
-0.03276 0.01386 -2.36 0.018 
-0.07190 0.01443 -4.98 0.000 
0.05465 0.01393 3.92 0.000 

* 

Table 20a. Data for Figures 8a and 8b. Each value represents a mean ± s. d. (n=3). 

Days MAR NEN CLO EN Control 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

100.00 100.00 100.00 100.00 100.00 
98.67±2.31 97.50±2.29 100±0.00 96.83±1.04 100.00 
94.33±0.29 91.67±5.39 97.50±1.80 94.17±1.04 97.17±2.75 
90.17±2.25 77.17±3.69 93.83±3.69 87.67±2.75 91.67±4.75 
82.50±2.00 72.83±6.25 93.33±4.31 83.33±1.61 83.83±3.01 
75.17±6.75 63,33±2.56 91.17±4.31 80.17±2.89 77.00±4.50 
73.33±4.15 60.83±4.31 87.83±2.36 78.33±4.31 67.75±3.25 
72.17±6.79 59.67±7.29 84.83±6.25 76.83±4.16 61.67±7.09 
71.17±5.79 56.67±6.29 80.17±3.75 75.17±2.47 57.25±5.25 
70.17±5.62 53.83±7.64 79.33±6.43 72.50±4.36 56.50±3.50 
69.00±5.29 53.50±5.50 77.00±5.57 71.50±3.91 54.83±4.25 

Table 20b. Data for Figures 9a and 9b. Each value is a mean ± s. d. (n=3). 

Days MAR 

0 1.02±0.03 
1 1.33±0.01 
2 2.21±0.01 
3 2.47±0.03 
4 3.23±0.05 
5 3.28±0.03 
6 4.13±0.03 
7 4,53±0.25 
8 4.76±0.08 
9 5.23±0.13 

10 5.97±0.21 

NEN CLO EN Control 

1.02±0.03 1.02±0.03 1.02±0.03 1.02±0.03 
1.31±0.01 1.33±0.02 1.31±0.01 1ý 32±0.01 
2.14±0.02 2.17±0.01 2.16±0.04 2.22±0.01 
2.38±0.04 2.40±0.02 2.35±0.07 2.53±0.06 
3.11±0.06 3.14±0.07 3.23±0.01 3.41±0.02 
3.19±0.07 3.34±0.07 3.40±0.08 3.54±0.06 
4.16±0.01 4.22±0.05 4.34±0.05 4.38±0.03 
4.79±0.25 4.39±0.03 4.37±0.09 4.92±0.08 
4.83±0.04 4.62±0.03 4.66±0.08 5.06±0-13 
5.22±0.10 4.99±0.09 4.98±0.02 5.56±0.18 
5.33±0.03 5.06±0.06 5.28±0.07 5.86±0.24 
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Table 2 Ia. Percentage nutritional and fatty acid composition of the nematode diets used 
in the first week of the present experiment to feed P. indicus larvae from PZI to PL 
stages. NEN= non-enriched, EN= capelin lipid-enriched, MAR= marilla lipid-enriched 
and CLO= cod liver lipid-enriched nematodes. 

NEN EN MAR CLO 

Protein 74.4 64.6 55.4 56,7 

Lipid 18.5 22.0 20.1 23.0 

Fatty acids 

14: 0 
S 

0.21 1.76 1.01 1.14 
16: 0 8.21 8.46 4.62 7.33 
16: lo)-9 0.27 0.36 0.32 0.32 
16: le)-7 0.82 2.51 3.54 2.67 

18: 0 5.66 3.02 2.98 3.18 
18: lo)-9 22,37 15.74 17.59 17.19 
18: lo)-7 3.59 3.35 4.25 3.87 
18: 2co-6 29.44 27.51 29.4 29.81 
18: 3w-3 0.66 0.98 1.1 0,89 
18: 4o)-3 0.19 1.04 1.04 0.71 

20: 0 0.77 0.32 0.23 0.35 
20: Ico-9 0.84 4.61 5.26 4.79 
20: 2co-6 1.28 0.63 0.99 0.8 
20: 3(o-6 2.96 0.69 1.21 1.03 
20: 4(o-6 5.97 1.62 2.31 1.93 
20: 4(j)-3 0.61 0.61 0.43 

20: 5a)-3 1.29 5.24 6.0 5.33 

22: lo)-I I 0.19 2.19 2.79 

22: 5co-3 0.39 1.32 0.47 

22: 6(t)-3 0.8 4.0 4.39 2.79 
. .......................... ................................................. aturates .... ..... ............................. 14.85 ...... ............. ...... 13.59 ....... C ........... 8.84 ....... . 12.0 

Monounsaturates 27.89 26.76 33.15 31.15 

Polyunsaturates 42,59 42.71 48.37 44.19 

Sum % 85.33 83.06 90.36 87.82 

a)-3 2.94 12.26 14.46 10.62 

w-6 39.65 30.45 33.91 33.57 

Ratio co-6/co-3 13.49 2.48 2.35 3.16 
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Table 21b. Percentage nutritional and fatty acid composition of the nematode diets used 
in the second week of the present experiment to feed P. indicus larvae from PZI to PL 
stages. NEW non-enriched, EN= capelin lipid-enriched, MAR= marilla lipid-enriched 
and CLO= cod liver lipid-enriched nematodes. 

NEN EN MAR CLO 

Protein 77.0 52.9 59.1 51.9 

Lipid (%) 14.8 16.9 19.9 18.8 

Fatty acids 

14: 0 0,27 1.96 0.81 1.17 
16: 0 6.77 8.22 3.68 7.61 
16: l(o-9 0.46 0.8 0.33 0.28 
16: lo)-7 0.88 2.7 2.92 2.84 

18: 0 5.11 2.78 2.51 3.4 
18: l(o-9 18.61 18.14 5.62 17.57 
18: lo)-7 3.9 8.54 4.42 
18: 2co-6 24.65 25.17 22,29 26.87 
18: 3o)-3 0.56 0.99 0.75 0.92 
18: 4o)-3 0.23 1.15 0.85 0.65 

20: 0 0.2 0.25 0.19 
20: Ico-9 0.91 4.7 4.69 4.81 
20: 2(o-6 1.2 0.63 1.1 0.68 
20: 3co-6 3.29 0.68 1.82 0.85 
20: 4(o-6 8.59 1.54 2,58 1.87 
20: 4o)-3 0.24 1.82 0.5 
20: 5w-3 1.42 5.17 6.83 5.73 

22: Ico-11 7.25 1.09 0.51 

22: 5o)-3 0.41 1.41 0.62 

22: 6o)-3 3.91 3.74 2.86 
...................... ................................................... ...... ..... Saturates (%) ..................... ..... 12.15 ...... .................................. 13.16 7.25 ....... ............. 12.37 

Monounsaturates 24.76 33.59 23.19 30.43 

Polyunsaturates 39.94 39.89 42.69 41.55 

Sum % 76.85 86.64 73.13 84.35 

w-3 2.21 11.87 14.9 11.28 

co-6 37.73 28.02 27.79 30.27 

Ratio o)-6/o)-3 17.07 2.36 1.87 2.68 
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Experiment 4 

Survival 

(a) PZI-PZ3/Ml 

Figure I Oa shows survival of P. indicus larvae fed various feeding regimes 
during protozoeal stages. Larval mortality rates were compared between day 
3 and day 6 (Tables 24a, b) and results are summarised in Table 22, Lowest 

mortality rate (2.83 % day-) was achieved with larvae fed PEN nematodes 
whereas the highest mortality rate (17.68 % day-) was found in the larvae fed 
live mixed algae during protozoeal stages (see Figure 10a and Table 22). PLC 

and CLO nematodes fed larvae showed significantly higher mortality rates 
(4.22-6.30 % day-) than PEN nematode fed ones (P<0.01). Comparison of 
larval total lengths at MI stage (Table 23) revealed that survival (91 %) of 
larvae at MI stage on PEN nematodes was not significantly (P>0.05) differ- 

ent than those fed either CLO (88 %) or PLC nematodes (80 %). Control 

treatment resulted in only 33 % survival from PZI to MI stage. 

Table 22. Comparisons of mortality rate (% day-') and growth rate (mm 
day-) of P. indicus larvae fed various feeding regimes. Values with the 
same superscripts are not significantly different (P>0.05). 

Diets Mortality rate (% day-') Growth rate (mm day-') 

PLC 

PEN 

CLO 

Control 

PZI-PZ3/Ml MI-PLI PZ1-PZ3/Ml MI-PLI 

6.300 

2.833 d 

4.217 c 

17.675 a 

0.717 

1.033 

3.267 

0.415 d 0.518 b 

0.455 b 0.527 b 

0.440 c 0.559 a 

0.589 a 0.465 

(b) MI-PLI 

Since survival data of the control larvae did not show a linear relationship, it 

was excluded in the calculations (Figure 10b), Comparisons of mortality rates 

between MI and PL stages (Tables 25a, b) showed that neither of the diets 

had significantly different effects from each other on larval survival (P>0.05). 
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All the nematode feeds resulted in low mortality rates of between 0.72 and 
3,27 % day-' (see Table 23). There was also no significant difference in the 
final survival of larvae fed the three types of nematodes from PZI to PLI 

stage (Table 23). Larvae (PZI) fed PEN,, CLO and PLC nematodes metamor- 
phosed into PLI stage with 88%, 79% and 78% survivals respectively. Only 
11% of the larvae fed the control feed developed into PLI stage. Survival 
data for Figures 10a, b is shown in Table 28a. 

Table 23. Survival, total length and duration of larval development of P. indicus lar- 
vae at MI and PLI stages on various diets. Values with different superscripts are sig- 
nificantly different (P<0.05). Values are means ± s. d. (n=3). 

Survival (%) Total length (mm) Duration 
Diets 

PLC 

PEN 

CLO 

mi 

79.83 a±3.18 

90.67 a±2.75 

87.63 a±5.89 

Control 
33.17 

b±4.04 

PLI 

77.83 a±3.55 

87.67 a±2.32 

79.17 a±7.01 

10.50 
b±4.71 

(days) 
mi PLI to MI to PLI 

3.77 c 0.03 

3.88 
b 

0.03 

3.79 c 0.02 

3.92 a 0.02 

5.03 
b 

0.04 7 10 

5.18 a 0.08 6-7 9-10 

5.13 ab 
:10.08 

6-7 9-10 

5.23 a 
:E0.05 

5-6 8-9 

Growth 

(a) PZI-PZ3/Ml 

Figure IIa shows growth of the larvae fed various feeding regimes from PZ I 

to PZ3/MI stages. Growth rates of larvae fed the nematode feeds and the 

control diet (Tables 26a, b) were significantly (P<0.001) different between 

PZI and PZ3/MI (day I-day 6). The control diet supported the highest larval 

growth rate (0.589 mm day-) during this period (see Table 22). PEN nema- 

todes gave higher growth rate (0.455 mm day-) than PLC (0.415 mm day-) 

and CLO (0.440 min day-) nematodes fed larvae. Comparisons of larval total 

lengths at MI stage (Table 23) also indicated the same results in that PEN 

nematode fed larvae had significantly (P<0.05) greater lengths (3.88 mm TL) 

compared to those fed either PLC (3.77 mm TL) or CLO (3.79 min TL) 
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nematodes. Live mixed algae, however, promoted significantly the greatest 
total length (3.92 mm TL) at MI stage. 

(b) MI-PLI 

Figure I Ib shows growth of the larvae between MI and PL stages. Growth 
rates of larvae were significantly (P<0.01) affected by feeds during mysis and 
early PL stages (Tables 27a, b). Highest larval growth rate was obtained from 
those fed CLO nematodes (0.559 mm. day-) between MI and PL stages (see 
Table 22). Larval growth rates on PEN and PLC did not differ significantly 
during this period (P>0.05). Larvae fed the control diet showed the lowest 

growth rate (0.465 mm day-'). Table 23 shows that final larval total length 
(on day 10) on PEN nematodes (5.18 mm) was significantly (P<0.05) greater 
than the larvae fed PLC diet (5.03 mm). Length of larvae fed the control diet 

was 5.23 mm. at PL I stage (Figure I 1b). Growth data for Figures IIa, b are 

shown in Table 28b. 

Larval development 

Table 23 shows duration (days) of larval development to MI and PLI stages. 
PEN and CLO nematode fed larvae started to develop into MI stage one day 

earlier (day 6) than those fed PLC nematodes (day 7). Larvae fed live mixed 

algae reached MI stage on day 5, but more than 50 % of MI larvae were 

observed on day 6. Larvae fed PEN and CLO again metamorphosed into PLI 

stage on day 9 while PLC nematode fed larvae reached this stage on day 10. 

Metamorphosis occurred 1-2 days earlier in the control diet fed larvae. 

Nutritional composition of the nematode feeds 

Tables 29a, b show protein, lipid content and fatty acid profile of the nema- 

todes used to feed P. indicus larvae in the first and second week of the cul- 

ture. Protein levels of PLC, PEN and CLO were 55.6-59.6,51.8-54.9 and 

53.9-54 % respectively. Lipid contents of the PLC, PEN and CLO enriched 

nematodes were 34.6-35.2 %, 22.8-32 % and 31.9-38.5 % respectively. With 



Figures 10a, b. Survival (%) of P. indicus larvae reared on various feeding re- 
gimes from PZI to PZ3/MI and from MI to PL stages. Each value is a mean 
(n=3). (PEN= Pigmented and lipid-enriched, PLC= Placebo lipid-enriched, CLO= 
Cod liver lipid-enriched, Control= Mixed algae during protozoeal stages and plus 
Artemia during later stages). 

Figures IIa, b. Growth (mm) of P. indicus larvae reared on various feeding re- 

gimes from PZI to PZ3/MI and from MI to PL. Each value is a mean (n=3), 

(PEN= Pigmented and lipid-enriched, PLC= Placebo lipid-enriched, CLO= Cod 

liver lipid-enriched., Control= Mixed algae during protozoeal stages and plus Ar- 

temia during later stages). 
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regard to PUFA, (o-3 types of fatty acid contents of the PLC nematodes were 
slightly lower (10.37-12.44 %) in comparison to PEN (14.7-15.28 %) and 
CLO nematodes (13.29-17.39 %). Yet, co-6 series of the PUFA of the PLC 

nematodes (31-85-34.16 %) was similar to that of PEN (24.5-29.97 %) and 
CLO (27,58-28.19 %). Eicosapentaenoic acid (20: 5co-3) content of the PLC 
(4,49-7.96 %), PEN (7.59-9.01) and CLO (6.04-9.22 %) were all compara- 
ble. Docosahexaenoic acid (22: 6(o-3) content of all the nematode feeds (PLC 

= 2.57-3,22, PEN = 4.02-4.1 and CLO = 4.24-5.24) were also similar. 

Table 24a. Two-way ANOVA with day as a covariate on survival of P. indicus larvae 
from PZ2 to PZ3/MI (day 3 to day 6) on various feeding regimes. 

Source DF Seq SS Adj SS Adj MS Fp Signifi- 
cant 

Diets 3 5819.27 553.67 184.56 16.29 0.000 
Days 1 4686.08 4686.08 4686.08 413.67 0.000 
Repl(Diets) 8 253.13 12.33 1.54 0.14 0.997 
Diets*Days 3 3556.39 3556.39 1185.46 104.65 0.000 
Repl*Days(Diets) 8 71.34 71.34 8.92 0.79 0.619 
Error 24 271.87 271.87 11.33 
Total 47 14658.08 

Coeff. Stdev. t-value p 

Table 24b. Comparison of larval survival rates (% day-') from PZ2-PZ3/Ml stages. 

Term i Mortality rate 
(% dav-1) 

Constant 
Days 
Days*Diets 

PLC 
PEN 
CLO 

6.300 
2.833 
4.217 

Control 17.675 

Signifi- 
cant 

109.250 1.190 91.81 0.000 

-8.8375 0.4345 -20.34 0.000 

2.5375 
6.0042 
4.6208 

-13.1625 

0.7526 3.37 0.003 
0.7526 7.98 0.000 

0.7526 6.14 0.000 

0.7526 -17.49 0.000 

** 

Table 25a. Two-way ANOVA with day as a covariate on survival of P. indicus from MI 

to Pl, stages on various feeding regimes. Control treatment was excluded in the calcu- 
lations as it did not fit in the model (General linear model). 

Source DF Seq SS Adj SS Adj MS Fp Signifi- 
cant 

Diets 
Days 
Repl(Diets) 
Diets*Days 
Repl*Days(Diets) 
Error 
Total 

2 770.311 79.326 39.663 4.37 0.023 

1 158.669 158.669 158.669 17.46 0.000 

6 367.200 166.931 27.822 3.06 0.020 

2 38.406 38.406 19.203 2.11 0.140 Ns 

6 105.000 105.000 17.500 1.93 0.113 

27 245.325 245.325 9.086 
44 1684.91 
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Table 25b. Comparison of larval survival rate (% day-' ) of P. indicus between 
MI and PL stages. 

Term Mortality rate 
(%day 

Coeff. Stdev. t-value p Signifi- 
cant Constant 93.750 2.269 41.32 0.000 

Days 1.3278 0.3177 -4.18 0.000 
Days*Diets 

PLC 0.717 0.6111 0.4493 1.36 0.185 Ns 
PEN 1.033 0.2944 0.4493 0.66 0.518 Ns 
CLO 3.267 -0.9056 0.4493 -2.02 0.054 Ns 

Table 26a. Two-way ANOVA with days as a covariate on growth of P. indicus larvae 
from PZI to PZ3/MI stages. 

Source, DF Seq SS Adj SS Adj MS Fp Signifi- 
cant 

Diets 3 21.719 
Days 1 308.786 
Repl(Diets) 8 0.790 
Diets*Days 3 6.094 
Repl*Days(Diets) 8 0.790 
Error 668 31.483 
Total 691 369.662 

0.130 0.043 0.92 0.430 
308.893 308.893 6554.06 0.000 

0.305 0.038 0.81 0.595 
6.122 2.041 43.30 0.000 
0.790 0.099 2.10 0.034 

31.483 0.047 

Table 26b. Comparison of growth rate (mm day-) of P. indicus from PZI to PZ3/Ml 
stages. 

Term Growth rate Coeff. Stdev. t-value p Signifi- 
cant (mm day-') 

Constant 1.16632 0.01952 59.74 0.000 
Days 0.474959 0.005867 80.96 0.000 
Days*Diets 
PLC 0.415 -0.06005 0.01022 -5.87 0.000 

0.455 -0.01947 0.01005 -1.94 0.053 PEN 
CLO 0.440 -0.03479 0.01012 -3.44 0.001 
Algae 0.589 0.11431 0.01025 11.15 0.000 

Ns 

Table 27a. Two-way ANOVA with days as covariate on growth of larvae on various 
diets from MI to Pl, stages. 

Source DF Seq SS 

Diet 3 14.017 
Days 1 382.259 
Repl(Diet) 8 1.001 
Diet*Days 3 1.376 
Repl*Days(Diet) 8 1.076 
Error 707 73.350 
Total 730 473.079 

Adj SS Adj MS F 

3.376 1.125 10.85 0.000 
367.237 367.237 3539.72 0.000 

1.228 0.154 1.48 0.161 
1.444 0.481 4.64 0.003 
1.076 0.134 1.30 0.242 

73.350 0.104 

Signifi- 
cant 

** 
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Table 27b. Comparison of larval growth rates (mm day-') of P. indicus between MI 
and Pl, stages. 

Term Growth rate Coeff. 
(mm day-') 

Constant 
Days 
Days*Diet 

0.80952 
0.517013 

PLC 0.518 0.00058 
PEN 0.527 0.00999 

CLO 0.559 0.04171 

Control 0.465 -0.05228 

Stdev. t-value 

0.06228 13.00 
0.008690 59.50 

0.01487 0.04 

0.01455 0.69 

0.01462 2.85 

0.01611 -3.25 

Signifi- 
cant 

0.000 
0.000 

0.969 Ns 

0.493 Ns 

0.004 

0.001 

** 

Table 28a. Survival data (%) for Figures 10a, b. Each value is a mean ± s. d. (n=3). 

Days PLC 

1 100.00 
2 100.00 
3 99.50 ± 0.87 
4 92.17 ± 4.19 
5 84.67 ± 2.52 
6 81.00 ± 2.65 
7 79.83 ± 3.18 
8 79.67 ± 1.26 
9 78.83 ± 1.61 
10 77.83 ± 3.55 

PEN 

100.00 
100.00 
100.00 
97.83 ± 2.93 
94.50 ± 2.78 
91.67 ± 1.76 
90.67 ± 2.75 
89.17 ± 1.89 
89.00 ± 3.04 
87.67 ± 2.32 

CLO 

100.00 
100.00 
100.00 
98.17 ± 2.36 
93.00 ± 5.41 
87.67 ± 6.51 
87.63 ± 5.89 
85.33 ± 9.75 
82.17 ± 8.31 
79.17 ± 7.01 

Control 

100.00 
100.00 
99.00 ± 1.73 
82.33 ± 5.03 
59.83 ± 5.69 
33.17 ± 4.04 
16.50 ± 6.54 
11.50 ± 2.59 
10.50 ± 4.71 

9.33 : 12.93 

Table 28b. Growth data (mm TL) for Figures Ila, b. Each value is a mean ± s. d. (n=3). 

Days PLC 

2 1.12 ± 0.03 
3 1.42 ± 0.01 
4 2.25 ± 0.02 
5 2.53 ± 0.05 
6 2.98 ± 0.01 
7 3.11 ± 0.05 
8 3.71 ± 0.06 
9 4.19 ± 0.08 
10 4.83 ± 0.05 

PEN 

1.12 ± 0.03 
1.43 ± 0.01 
2.28 ± 0.02 
2.57 ± 0.04 
3.07 ± 0.06 
3.32 ± 0.07 
3.82 ± 0.03 
4.36 ± 0.02 
5.07 ± 0.07 

CLO 

1.12 ± 0.03 
1.44 ± 0.01 
2.22 ± 0.01 
2.50 ± 0.06 
2.92 ± 0.03 
3.28 ± 0.12 
3.77 ± 0.03 
4.57 ± 0.07 
5.11 ± 0.11 

Control 

1.12 ± 0.03 
1.49 ± 0.02 
2.44 ± 0.08 
3.18 ± 0.04 
3.46 ± 0.08 
3.92 ± 0.02 
4.10 ± 0.04 
4.56 ± 0.13 
5.26 ± 0.16 
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Table 29a. Percentage nutritional and fatty acid composition of the nematode diets used in first week of the present experiment to feed P. indicus larvae from 
PZI to PL stages. PLC= placebo lipid-enriched, PEN= pigmented lipid-enriched, 
CLO= lipid-enriched nematodes, 

PLC PEN CLO 

Protein 55.6 51.8 53.9 
Lipid 35.2 22.8 38.5 
Fatty acids 

14: 0 1.01 0.47 1.57 
16: 0 9.45 4.89 11.56 
16: l(o-9 0.54 0.37 0.41 
16: lo)-7 1.55 1.78 3.31 

18: 0 7.83 3.87 6.44 
18: ho-9 10.37 10.43 15.75 
18: lo)-7 4.01 3.16 3.65 
18: 2(j)-6 21.47 19.62 23.35 
18: 3o)-3 0.59 0.56 1.1 
18: 4o)-3 0.29 0.64 0.76 

20: 0 0.45 0.2 0.36 
20: lo)-9 3.67 3.58 4.41 
20: 2o)-6 4.57 0.98 2.23 
20: 3o)-6 2.47 1.24 1.28 
20: 4co-6 5.65 2.66 0.72 
20: 4(o-3 0.63 0.63 0,59 
20: 5o)-3 7.96 9.01 9.22 

22: Ico-11 2.47 1.53 0.29 
22: 5o)-3 0.4 0.42 0.49 
22: 6co-3 

. . 
2.57 
................... ...... 

4.02 
........................... ................ 

5.24 
.......................................... ............ ......................................... Saturates (%) .... ... . ...... 18.74 9.43 19.93 

Monounsaturates 22.61 20.85 27.83 

Polyunsaturates 1 46.6 39.78 44.96 

Sum % 87.95 70.06 92.72 

w-3 12.44 15.28 17.39 

o)-6 34.16 24.50 27.58 

Ratio o)-6/co-3 2,75 1.6 1.59 
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Table 29b. Percentage nutritional and fatty acid composition of the nematode diets used in second week of the present experiment to feed P. indicus larvae 
from PZI to PL stages. PLC= placebo lipid-enriched, PEN= pigmented lipid- 
enriched, CLO= lipid-enriched nematodes. 

PLC PEN CLO 

Protein 59.6 54.9 54.0 
Lipid (%) 34.6 32.0 31.9 

Fatty acids 

14: 0 1.5 1.13 1.75 
16: 0 9.56 6.92 9.47 
16: lw-9 0.24 03 0.21 
16: lo)-7 3.15 2.97 3.55 

18: 0 3.32 3.38 3.18 
18: lo)-9 19.48 16.1 18.65 
18: lw-7 2.93 3.39 3.55 
18: 2(o-6 28.81 26.32 25.5 
18: 3o)-3 0.99 0.85 0.97 
18: 4co-3 0.82 0.98 0.99 

20: 0 0.36 0.29 0.28 
20: lo)-9 3.85 4.21 4.68 
20: 2co-6 0.49 0.7 0.45 
20: 3co-6 0.64 1.88 0.6 
20: 4w-6 1.91 2.07 1.64 
20: 4(j)-3 0.34 0.59 0.46 
20: 5o)-3 4.49 7.59 6.04 

22: la)-Il 2.4 2.4 2.86 
22: 5co-3 0.51 0.59 0.59 
22: 6(o-3 3.22 

........... ..... 
4.1 

............................ ................ 
4.24 

................................. ............................................................. ..... Saturates .............................. 14.74 11.72 14.68 

Monounsaturates 32.05 29.37 33.5 

Polyunsaturates 42.22 44.67 41.48 

Sum % 89.01 85.76 89.66 

w-3 1 . 37 0 14.7 i 13.29 

(o-6 31.85 29.97 28.19 

Ratio o)-6/o)-3 3.07 2.04 2.12 
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DISCUSSION 

Nematodes with al al co-feeds - &4Lqp teeds 
It is known that once internal food resources have been depleted, PZI lar- 

vae require adequate external food. During this critical first feeding stage 
(Preston, 1985b), providing algae together with nematodes may support 
better larval growth, survival and development. In the current study, slower 
larval development and growth on the live nematode-only diets were sig- 
nificantly improved when a small amount of live algae was fed to P. indicus 
larvae for short periods together with the nematodes. When 30 cells pl-' of 
live algae (for only 24 h) in addition to lipid-enriched nematodes (EN) were 
fed to PZ I larvae, larval survival was improved from 42 % to 72 % and 
larval total length was also increased from 5.16 to 5.68 mm at PLI/2 stages 
(Table 1). The algal co-feed appeared to influence the growth during pro- 
tozoeal stages with significantly (P<0.001) better growth rate (0.623 mm 
day-) than larvae fed only on the live nematodes (0.505 mm day-'). Simi- 

larly, when three different algal co-feeds in addition to EN nematodes were 
fed to PZ1 larvae in Experiment 2, it was found that the algal co-feeds not 

only gave higher survival rate, but also better larval growth rates (0.831- 

0.927 mm day-) than mixed algal control treatment during protozoeal 

stages (see Figures 4a and 6a). Wilkenfeld et al., (1984) also obtained bet- 

ter survival, growth and larval development when they fed penaeid larvae 

on nematodes/algae compared to live nematodes alone. 

The nematodes with algal co-feeds promoted better larval survivals (38-63 

%) but smaller total lengths (5.63-5.95 mm TL) at PL stages compared to 

algaelArtemia control treatment (32 % and 7.49 mm TL). Growth rates of 

the larvae fed on the nematodes either with or without algae (except 

EN/Alg2) did not, however, differ significantly during mysis stages suggest- 

ing that once administration of algae as a co-feed is stopped, its positive 

effect on larval growth progressively decreases. Although it is difficult to 
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eliminate the idea that the algae might have contributed to the larvae nutri- 
tionally as discussed in Chapter 5, improvements in larval growth and sur- 
vival are likely to be due to an enhanced digestion as a result of higher 
levels of digestive enzymes induced by the algae (Kumlu et al., 1992, Jones 

et al.,, 1993, Le Vay et al., - 1993). Figure 9 demonstrates that PZ1 stage 
larvae fed nematodes together with 15 cells gl-' for 48 h had significantly 
(P<0.05) higher trypsin activity (larva-' and gg-' dry weight) than those fed 
live nematodes only. Highest trypsin activity was induced by the mixed al- 

gae (P<0.05). Data in Chapter 5 also suggest that algae at only 15 cells gl-' 

along with micro encapsulated artificial diets play a role in stimulating tryp- 

sin activity in P. indicus larvae thus improving larval survival and growth 

comparable to a control diet of mixed algae and Artemia. As with artificial 
diets, the nematodes may be relatively indigestible (Hofsten et al., 1983) in 

comparison to Artemia, and may lack substances to trigger digestive en- 

zymes at levels stimulated by algae, Hence based on the present results and 

those obtained by Wilkenfeld et al., (1984) and Biedenbach et al., (1989) it 

may, under commercial conditions, be useful to feed penaeid larvae on a 

combination of algae and nematodes to produce larval growth and survival 

equal, if not better, to an algaelArtemia feeding regime. It should be noted 

that in addition to the role as a gut enzyme stimulant, an algal co-feed may 

also correct a possible nutritional deficiency or imbalance of the nematodes 

(Biedenbach et al,, 1989). For example, when the algae (30 cells PI-) was 

provided with EN nematodes in Experiment 1, the abnormal T' shaped 

specimens observed in the larvae fed on the EN nematodes alone were not 

seen. 

Effect of fivid-enrichment on larval growth, survival and development 

Biochemical composition of the nematode P. redivivus (Tables 13,21 and 

29) and Artemia (Biedenbach et al., 1989, Le Vay et al., 1993) reveals that 

both animal feeds contain similar levels of protein and lipids. Little is 

known about absolute nutritional requirements of penaeid larvae 
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unexpected mortalities may be attributed to an over high HUFA content or 
to incorrect balance of the fatty acid contents of the nematodes (Rees et 
al., 1994). For example, when two nematode feeds (EN and PEN) enriched 
with the same fish oil (capelin) were fed to P. indicus larvae, the EN nema- 
tode caused a very high larval mortality rate (12 % day-) resulting in only 
10% survival at metamorphosis, whereas the other enriched-nematodes 
with the same lipid source (pigmented lipid-enriched = PEN) or EN/ Alglýl 
2) 3 (lipid-enriched nematodes with algal co-feeds) gave low mortality 
rates. The main differences between the nutritional content of the two 

nematode feeds were their lipid and HUFA contents (EPA and DHA). The 
PEN nematodes had significantly higher lipid (33 %) and DHA whereas the 
EN nematodes had double the level of EPA. Millamena et al., (1988) found 

poor growth in P. monodon postlarvae reared on rice bran-fed Artemia 

which contained abnormal amounts of 18: 2(o-6 fatty acid. The abnormal 
larval development on EN nematodes observed in Experiment I was not 

seen with EN nematodes plus 30 cells gl_1 of live algae for only 24 h. It ap- 

pears that the imbalanced nutritional content of the EN nematodes was 

compensated by the algal co-feed. Due to inferior growth and survivals 

obtained from the larvae fed capelin lipid-enriched nematodes, it became 

necessary to compare other lipid sources that are known to contain high 

levels of HUFA. 

The biochemical composition of the nematodes, which were enriched with 

three different lipid sources and used to feed P. indicus larvae throughout 

all larval stages (Experiment 3), is given in Tables 21a, b. In agreement 

with Rouse et al., (1992), the present results suggest that lipid and more 

specifically the fatty acid content of the nematodes can be manipulated by 

using different culture media. Lipid -enrichment caused considerable de- 

crease in protein content of the nematodes from 74.4-77.0 (NEN) to 52.9- 

64.6 % (EN), 55.4-59.1 % (MAR) and to 51.9-56.7 (CLO) and slight in- 

crease in the lipid levels (see Tables 21a, b). Within the fatty acid fraction 
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(Kanazawa, 1985; 1990). This depends on species, age and feeding habit, 

water temperature, energy content and dietary protein sources of a diet. 

Optimal protein, carbohydrate and lipid requirement for penaeids may be 

23-57 %, 15-25 % and 6-10 % of the diet respectively (Kanazawa, 1990; 

Chen, 1993). Colvin (1976) reports that 43 % protein was optimal for P. 

indicus. Non-lipid- enriched (NEN) nematodes used in the present study 

contained 66-77 % protein and 14.1-14.8 % lipid. Amino-acid composition 

of Panagrellus sp., is reported to be similar to that of Artemia (Kahan et 

al., 1980). Protein and lipid levels of P. redivivus used to feed P. vannamei 

were 48.3 % and 17.3 % respectively (Biedenbach et al., 1989). Macronu- 

trients of the nematodes used in the present study were well within the 

range required by penaeid larvae. However, the fatty acid fraction of the 

lipid of the nematodes showed that particularly the (o-3 series of the HUFA 

may not be sufficient to promote good growth and survival in P. indicus. 

Recent studies have shown that these HUFA play an important role in pe- 

naeid nutrition (Leger and Sorgeloos, 1992; Rees et al., 1994) and may be 

essential in the diets since marine shrimps have poor ability to synthesise 

these fatty acids (Jones et al., 1979a; Kanazawa et al., 1979). Xu et al., 

(1993) compared 18: 2(o-63,18: 3 cD-3,20: 4o)-6 and 22: 6co-3 fatty acids 

and concluded that a diet containing 1% of 22: 6o)-3 promoted the highest 

survival, moulting frequency and wet-weight gain in P. chinensis juveniles. 

These authors suggest that highest essential fatty acid (EFA) values de- 

crease in the order of 22: 6(o-3>20: 4o)-6>18: 3(o-3>18: 2w-6. In the pres- 

ent study, o)-3 series of the HUFA especially 20: 5c)-3 (eicosapentaenoic 

acid: EPA) and 22: 6o)-3 (docosahexaenoic acid: DHA) content of the MEN 

nematodes were only 1.29-1.97% and 0-0.8% respectively (Tables 25,33). 

Results of Experiments I and 2 show that despite lipid- enrichment (with 

capelin oil) of the nematodes, which increased the HUFA, particularly 20: 

5m-3 and 22: 6m-3 (see Table 13), heavy larval mortalities and abnormal 

development were obtained with the lipid-enriched (EN) nematodes. These 
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(Kanazawa, 1985; 1990). This depends on species, age and feeding habit, 

water temperature, energy content and dietary protein sources of a diet. 
Optimal protein, carbohydrate and lipid requirement for penaeids may be 

23-57 15-25 % and 6-10 % of the diet respectively (Kanazawa, 1990; 

Chen, 1993). Colvin (1976) reports that 43 % protein was optimal for P. 

indicus. Non-lipid- enriched (NEN) nematodes used in the present study 

contained 66-77 % protein and 14.1-14.8 % lipid. Amino-acid composition 

of Panagrellus sp., is reported to be similar to that of Artemia (Kahan et 

al., 1980). Protein and lipid levels of P. redivivus used to feed P. vannamei 

were 48.3 % and 17.3 % respectively (Diedenbach et al., 1989). Macronu- 

trients of the nematodes used in the present study were well within the 

range required by penaeid larvae. However, the fatty acid fraction of the 

lipid of the nematodes showed that particularly the (o-3 series of the HUFA 

may not be sufficient to promote good growth and survival in P. indicus. 

Recent studies have shown that these HUFA play an important role in pe- 

naeid nutrition (Leger and Sorgeloos, 1992; Rees et al., 1994) and may be 

essential in the diets since marine shrimps have poor ability to synthesise 

these fatty acids (Jones et al., 1979a; Kanazawa et al., 1979). Xu et al., 

(1993) compared 18: 2w-6,18: 3 o)-3,20: 4c)-6 and 22: 6(o-3 fatty acids 

and concluded that a diet containing 1% of 22: 6cD-3 promoted the highest 

survival, moulting frequency and wet-weight gain in P. chinensis juveniles. 

These authors suggest that highest essential fatty acid (EFA) values de- 

crease in the order of 22: 6(o-3>20: ko-6>18: 3e)-3>18: 2(o-6. In the pres- 

ent study, (o-3 series of the HUFA especially 20: 5o)-3 (eicosapentaenoic 

acid: EPA) and 22: ko-3 (docosahexaenoic acid: DHA) content of the NEN 

nematodes were only 1.29-1.97% and 0-0.8% respectively (Tables 25,33). 

Results of Experiments I and 2 show that despite lipid-enrichment (with 

capelin oil) of the nematodes, which increased the HUFA, particularly 20: 

5cD-3 and 22: &D-3 (see Table 13), heavy larval mortalities and abnormal 

development were obtained with the lipid-enriched (EN) nematodes. These 
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of the lipids, the lipid-enrichment increased the co-3 series of the fatty acids 
from 2.21-2.94 % (NEN) to 11.87-12.26 % (EN), 14.46-14.9 % (MAR) 

and to 10.62-11,28 % (CLO), Among w-3 fatty acids, EPA were also in- 

creased from 1.29-1.42 % (NEN) to 5.17-5.24 % (EN), 6.0-6.83 (MAR) 

and to 5.33-5.73 % (CLO). Ratio of (o-6/cD-3 fatty acids in NIEN nematodes 
was 6-7 times higher than the lipid-enriched nematodes. For the (0-6 series,, 
the DHA of the lipid enriched nematodes was significantly improved from 
0-0.8 % (NEN) to 3.91-4.0 % (EN), 3.74-4.39 % (MAR) and to 2.79-2.86 
%. From the results of Tables 21a,, b it appears that biochemical content of 
the nematodes during larval culture of P. indicus did not differ greatly. The 

nutritional value of lipids in nutrition of crustaceans has been shown to be 
based on the type and content of the long chain unsaturated fatty acids (Xu 

et al., 1993). Work by Millamena et al., (1988) has shown that feeding Ar- 

temia nauplii with increased HUFA levels results in better growth and sur- 

vivals in P. monodon larvae. 

In the current investigation, when the nematodes enriched with different 

lipid sources were fed to P. indicus larvae, the lowest mortality rate was 
found in the larvae fed the CLO nematodes (2.3 % day-) during protozoeal 

stages (Figure 8a). Larvae fed MAR and EN nematodes also displayed 

significantly lower mortality rates (3.97-5.40 % day-) compared to those 

fed NEN nematodes (7.55 % day-) and control live mixed algae (6.56% 

day-'). Larvae receiving the lipid-enriched nematodes had significantly 

higher survivals (69-77 %) than both NEN nematodes (53.5 %) and the 

control diet (54.83 %) until PL stages. Larvae fed on EN nematodes exhib- 

ited equal growth rate (0.574 mm day-) to those fed live mixed algae 

(0.576 mm day-) between PZ1 and PZ3/M1 stages. As a result, it appears 

that CLO is a suitable lipid source to improve survival whereas capelin oil 

and marilla oil favours growth of P. indicus larvae. Larvae fed lipid- 

enriched nematodes developed into MI and PLI stages one day earlier than 

those fed non-lipid enriched nematodes. Studies with P. japonicus (Ka- 
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nazawa et al., 1977,1979), P. indicu, v (Read, 198 1) and P. chinensj. ý (Xu 

et al.,, 1993) showed that 18: Ro-3 had greater essential fatty acid (EFA) 

value than 18: 2co-6. But,. these authors also found that 20: 5CO-3 and 22: 

6(o-3 had the greatest EFA value for marine crustaceans. Xu et al., (1993) 

report that arachidonic acid (20: 4(o-6) has an EFA value of between 18: 

3(o-3 and 22: 6(o3 and concluded that this HUFA may play an important 

nutritional role for penaeids. Since there was not considerable difference in 

other fatty acids, and a decrease existed in the level of arachidonic acid,, in 

lipid-enriched nematodes, the better larval performance obtained with lipid- 

enriched nematodes may be attributable to the presence of high levels of 
C20: 5cD-3 and C22: 6(o-3 of the HUFA (see Experiment 3). Levine and 
Sulkin (1984) also report enhanced larval survival and development on di- 

ets rich in DHA and suggest that this HUFA and EPA are important in 

promoting successful development to megalopa in a brachyuran crab, Eury- 

panopeus depressus. Discrepancies in present results may not only be due 

to different levels of some important fatty acids, but also to their incorrect 

balance in the nematodes during larval culture (Rees et al., 1994). When 

Read (1981) included linoleic and linolenic acids using anchovy oil into a 

purified diet, he found an improvement in both growth and survival in P. 

indicus juveniles. This author concluded that P. indicus has limited capac- 

ity to elongate and desaturate linoleic and linolenic acids to C20 and C22 

fatty acids and shows a similar qualitative fatty acid requirement to other 

penaeid species. 

Effect of astaxanthin on larval pigmentation, growth and survival 

Pigmentation 

If nematodes are to be used to totally replace the conventional live diets in 

commercial penaeid hatcheries, the pale colour of the postlarvae (PL) nor- 

mally obtained with nematode feeds must be rectified, In commercial hatch- 

eries, where the PL's are produced for on-growing farms, the market value 

of PL's may be related directly to the intensity of the body colour. PL's 
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pigmented at similar levels to those fed a standard algaelArtemia may show 

more resistance to strong light and low oxygen levels which may occur 
during or after the release of the PL's into on-growing ponds. Photopro- 

tective and respiratory functions of the carotenoids during egg and larval 

development in fish and crustaceans have been suggested in the literature 

(Tacon, 1981; Torrissen, 1989, Bird and Savage, 1990; Funk and Hobson, 

1991; Estermann, 1994). Chien and Jeng (1992) suggest that colour is one 

of the major factors influencing the price of live Kuruma prawn, P. japoni- 

cus, ., 
in the Japanese market. It is known that astaxanthin is the main pig- 

ment associated with colour in prawns and it is the pigment most easily 

utilised for this purpose (Katayama et al., 1971; D'Abramo et al., 1983). 

Since crustaceans are incapable of syntbesising carotenoids, these pigments 

have to be supplied as dietary ingredients (Latscha, 1990, Estermann, 

1994), The nematode, P. redivivus, can be used as a carrier to supply as- 

taxanthin (in the gut) to penaeid larvae. A dietary level of 1.5 % (w/w) 

Carophyll pink (containing 8% astaxantbin) was found to be optimum to 

pigment cultured nematodes without lowering the nematode population or 

wasting the pigment (Fisher, pers, comm, ), When grown on a medium con- 

taining capelin fish oil, this level of Carophyll pink gave 1.43 Pg astaxan- 

thin g-1 dry weight of nematodes. 

P. indicus has to pass six nauplii, three zoeal and three mysis stages until 

they reach final metamorphosis. Several carotenoids in large quantities have 

been reported to exist in the eggs of crustaceans (Kour and Subramoniam, 

1992). Penaeid larvae provide the pigments during the non-feeding nauplius 

stages from the vitellin reserves, At first feeding, the zoea larvae acquire 

the carotenoids directly from the pigments of the microalgae used to feed 

the larvae. Involvement of the carotenoids during larval stages may be im- 

portant as significant concentrations of these pigments are present in the 

live food organisms such as microalgae, Artemia, rotifers etc., used as 

feed in commercial aquaculture hatcheries (Tacon, 1981). Petit et al., 
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(1991) report that zoea stages of P. japonicus larvae store the carotenoids 
in the same form as they are acquired from the algae without transforma- 
tion. These authors found canthaxanthin in high quantities in the mysis lar- 

vae as this pigment was also the major carotenoid of Artemia nauplii. In the 
present study, astaxanthin was used to pigment P. indicus during larval de- 

velopment (PZI to PL stages) as this pigment can be stored directly and 
utilised more efficiently in the body (Yamada et al., 1990; Petit et al., 1991; 
Negre-Sadargues et al., 1993). In a preliminary trial (Experiment 1), when 
pigmented nematodes were fed to P. indicus larvae at PZ I stage, the effect 
of pigments on the tail and appendages of the larvae was clearly visible un- 
der a microscope after just 24 h of feeding. The pigmented-nematodes ob- 
tained from AGC and used in Experiment I were extremely dirty with com- 

ponents of the Carophyll Pink product. This caused immediate larval foul- 

ing leading to high mortalities during larval culture. Nevertheless, larvae 

fed the pigmented-nematodes at metamorphosis were distinctly pigmented 

compared to larvae fed non-pigmented (EN or NEN) nematodes, 

Alternative methods of improving colouration in penaeid larvae may be the 

use of algae as a co-feed in addition to nematode feeding regimes. Present 

results showed that when algae (T. chujilS. costatum) in low cell concen- 

trations (15-30 cells pl-' day-) were fed to P. indicus larvae for short peri- 

ods such as 24 or 48 h along with the nematodes, the larvae were better 

pigmented than larvae fed the nematode feeds alone. In Experiment I and 

2., when algae ceased to be fed after 24-48 h, the colour of the larvae 

gradually faded until metamorphosis. Therefore, if well pigmented PL's are 

to be produced, algae as a co-feed in addition to nematodes should be pro- 

vided to the larvae during all larval stages. Several authors have shown that 

addition of ýpirulina, oleofesin paprika, crayfish waste extract, corn gluten 

into diets improves pigmentation in crustaceans (Tanaka et al., 1976; 

D'Abramo et al., 1983). Petit et al., (1991), who are the only authors to 

study pigments in a penaeid species during larval development, stated that 
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pigment composition of the larvae is dependent on the algal species they 
feed upon. Beside pigmentation, algal co-feeds will compensate for any 
possible nutritional deficiency such as vitamins and fatty acids (Rouse et 
M., 1992), and any imbalance in the nutritional content of the nematodes 
which may happen as a result of pigment or lipid enrichment (Experiment 
1), They will also stimulate larval digestive enzyme activities. 

Survival 

When clean nematode cultures were supplied in Experiment 2, the pig- 
mented and lipid-enriched nematodes (PEN) not only gave good larval 

pigmentation but also significantly (P<0.05) better larval survival (68 %) 

over that obtained ftom the control diet (32 %), NEN nematodes (51 %) 

and EN nematodes (10.33 %) at metamorphosis (see Table 7). Results from 

Experiment 4 (Table 34) show that PEN nematodes promoted the lowest 

mortality (2,83 % day-1) in comparison to PLC (6.30 % day-1), CLO 

nematodes (4,22 % day-]) and the control diet (17.68 % day-]) during 

protozoeal stages. The PEN nematodes supported 88 % survival whereas 
PLC nematodes gave 78 % survival at metamorphosis. These results are in 

agreement with Yamada et al., (1990) who demonstrated a significantly 
better survival (91.3 %) on an astaxantbin supplemented diet (100 mg kg- 1) 

than on a basal diet (57.1 %) for P. japonicus juveniles (8.5 g). The same 

authors did not find any notable change in daily feed intake, percent weight 

gain or feed efficiency in animals fed on either of the diets. Negre- 

Sadargues et al., (1993) also found the highest survival rate in P. japonicus 

juveniles (12 g) fed an astaxanthin/canthaxanthin (50: 50 mg kg-1) contain- 

ing diet. These authors reported a positive correlation between survival 

rates and pigment concentration in the prawn tissue and suggested that 

pigments may play an important role in improving survival of penaeid 

prawns. The influence of carotenoids on survival of prawns is still obscure 

(N. egre-Sadargues et al., 1993). The functions of pigments on the metabo- 

lism of animals, especially fish and crustaceans, remain hypothetical 
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(Tacon, 1981, Katsuyama and Matsuno, 1988; Torrissen, 1989; Bird and 
Savage, 1990; Latscha, 1990; Estermann, 1994). 

Pigmentation in penaeids is known to depend on animal-related factors 
(e. g. species, age/stage, sex/maturation, genetics, culture method,, water 
quality and light intensity), pigment-related factors (e. g. type, form, 

amount and stability of the carotenoids in the feed), and feed-related fac- 
tors (manufacturing, feed composition, food intake and conversion ratio, 
bioavailability and administration period) (Latscha, 1990). Results of the 
present study suggest that although optimum astaxanthin level and the ef- 
fects of other factors on pigmentation for penaeid larvae are not known, 

the level used to deliver the pigment to P. indicus larvae appears to be ef- 
fective in improving the colour and survival of the larvae at metamorphosis. 
The nematode, P. redivivus, was observed to retain the pigment in the gut 
for over six days at 15 'C (Fisher, pers. comm. ). D'Abramo et al., (1983) 

suggest that live Artemia fed lobster juveniles (Homarus americanus) had 

the highest pigment level and that this live diet is much more effective in 

producing pigmentation than a purified diet containing the same carotenoid. 
Pigments as well as specific factors such as proteolytic enzymes, PUFAs 

and steroids are susceptible to heating, freezing, freeze-drying, boiling, and 

air drying, thus use of nematodes to deliver the pigment should be consid- 

ered seriously for penaeid larvae. 

Growth 

Despite several experiments conducted to determine any positive effect of 

the pigment (astaxanthin) on the growth of P. indicus larvae in the current 

study, the results remain unclear. The data in Experiment I showed that the 

larvae fed PEN nematodes displayed better larval growth rate than EN 

nematodes between PZI and PZ3/MI stages. The larvae fed PNE nema- 

todes, however, had significantly inferior larval growth rate than NEN 

nematodes during these stages (Table 1). Pigmented-nematode cultures 
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obtained from AGC were not always clean and this was possibly one of the 
reasons for contradictory results in this preliminary trial. In Experiment 2, 

although PEN nematodes promoted better larval growth rate between PZI 

and PZ3/MI (0.570 mm day-) than EN or NEN nematodes (0,535-0.540 

mm day-'), total lengths at metamorphosis of the larvae on these three diets 

were not significantly (P>0.05) different from each other (Table 7). 

Similarly, results of Experiment 4 also showed that PEN nematodes pro- 
moted significantly higher larval growth rate (0.455 mm day-) than either 
PLC nematodes or CLO (lipid- enriched) nematodes (0.415-0.440 mm day-) 

during protozoeal stages. Yet, no significant difference was found between 

the growth rate of larvae fed PEN and PLC nematodes during mysis stages. 
Interestingly, the larvae fed on CLO nematodes, in fact, displayed signifi- 

cantly better larval growth rate than those fed the PEN nematodes during 

these stages (see Table 22). All these results indicate that the pigment has a 
less pronounced effect on larval growth in comparison to larval survival of 
P. indicus under the experimental conditions used during the present 

studies. Yamada et al., (1990) also found no significant effect of various 

pigments (astaxanthin, O-carotene and canthaxanthin) on weight gain in P. 

japonicus juveniles. Similar conclusions were made by Chien and Jeng 

(1992) who studied the effect of different pigment sources and their various 

levels on the pigmentation, survival and growth of P. japonicus. In another 

investigation, Negre-Sadargues et al., (1993) could not find any experimen- 

tal evidence to support any possible influence of astaxanthin, canthaxanthin 

or the combination of both pigments on the growth of P. japonicus juve- 

niles. Hence, the present results suggest that the pigment delivered via 

nematodes to P. indicus may not have any benefit on growth during larval 

development of this penaeid species 

Larval development 

Larvae fed algae during herbivorous stages and Artemia during mysis and 

early PL stages always developed faster than those fed nematodes. For ex- 
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ample, in Experiment 1, when P. indicus PZ I larvae were fed the mixed al- 
gae, all the larvae moulted into MI stage on day 4 while 87.5 % of the lar- 

vae fed NEN nematodes were still at PZ3 stage. Again, when these MI lar- 

vae fed on Artemia nauplii they metamorphosed into PL4 (15.5 %), while 
almost half of the larvae on NEN nematodes were still at M3 stages (see 
Table 5). When the nematodes were fed with algal co-feeds for a short du- 

ration,. a faster larval development was observed both until MI and PL 

stages. Table II shows that while NEN and EN nematodes were still at 
PZ3 stage on the 4th day of the culture, 50-100 % of the larvae fed EN/ 

Algl, 2,3 feeding regimes were at MI stage. It appears that addition of a 
low amount of algae into the culture together with the nematodes was suf- 
ficient to accelerate larval development, possibly as a result of better di- 

gestion via stimulated larval digestive enzyme activities by the algae rather 

than its nutritional contribution (Kumlu et al., 1992, Jones et al., 1993; Le 

Vay et al., 1993). 

The present study suggests that pigmentation of the nematodes does not 

appear to accelerate larval development of P. indicus compared to non- 

pigmented or placebo pigmented nematodes. Slijzhtly faster larval develop- 

ment observed in Experiment I (see Table 5) and Experiment 2 (Table 11) 

may have resulted from different nutritional content of the nematodes. As a 

result, addition of low amount of algae throughout of larval stages of P. 

indicus is suggested to obtain larval growth and development comparable 

to those obtained from live algaelArtemia feed regimes. Delivery of astax- 

anthin via nematodes to pigment P. indicus larvae appears to be a success- 

ful method. This pigment significantly improves larval survival of this pe- 

naeid species compared to non-pigmented nematodes. However, there is no 

strong evidence to show benefit of pigment additives on larval growth of P. 

indicus. 



CHAPTER5 

THE EFFECT OF LIVE AND ARTIFICIAL DIETS ON SURVIVAL, GROWTH, 

AND TRYPSIN ACTIVITY IN LARVAE OF Penaeus indicus. 
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development of micro encapsulated diets for shrimp larval culture. In: Kas, 
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2. Kumlu,, M. and Jones, D. A. 1995. Role of microalgae as a gut enzyme 

stimulant in rearing Penaeus indicus larvae on microencapsulated diets. 

Book of Abstracts of the World Aquaculture '95' San Diego, February 1-4, 
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INTRODUCTION 

Penaeus indicus is an important commercial penaeid shrimp species cul- 
tured mainly on extensive farms in the Southeast Asia and is estimated to 
account for 5.4-6 % of the total world shrimp production (Rosenberry, 
1989; Weidner and Rosenberry, 1992; Csawas, 1994). Despite a slower 
growth rate in culture conditions compared to other penaeid species such 
as P. monodon, P. vannamei (Aquacop, 1984), it is a species of great po- 
tential to the shrimp industry as it is tolerant of recirculation systems and 
readily matures in captivity (Aquacop, 1983; 1984). It is possible to close 
the life cycle in captivity and to produce disease free seed throughout the 

year. 

Hatchery techniques for P. indicus are not yet well established, and only 
few biological aspects such as ingestion, growth, development, stocking 
density and energetics have been studied for the larvae of this species on 
live diets (Emmerson, 1980; 1984; Emmerson and Andrews,, 1981). Al- 

though there have been numerous attempts to partially and/or completely 

replace live conventional diets (live microalgae and Artemia) with various 

artificial diets (microbound and micro encapsulated diets) for the larval 

culture of P. monodon (Kurmaly et al., 1989a), P. japonicus (Kanazawa et 

al., 1981), P. vannamei, and P. stylirostris (Jones et al., 1987; Ottogali, 

1991), there has only been one previous attempt to rear P. indicus on an 

artificial microbound diet (Galgani and Aquacop, 1988). In their study, the 

optimal feeding level of this microbound diet was established and live uni- 

cellular algae were replaced during the larval zoeal stages only. 

Numerous authors have shown that artificial diets fed alone generally pro- 

mote inferior survival and slower growth in comparison to larvae fed on 

live diets (Galgani and Aquacop, 1988; Kurmaly et al., 1989a; Kamarudin, 

1992). To further improve these diets, recent investigations have focused 
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on larval digestive morphology, physiology and digestive enzymes of com- 
mercially important penaeid shrimp species. Although it is known that the 
hepatopancreas (HP) is the main production site of digestive enzymes, 
studies of Lovett and Felder, (1989; 1990a, b) on P. setiferus larvae and 
Abubakr and Jones (1992) with P. monodon, have revealed that penaeid 
larvae possess anterior midgut diverticulae (AMD) which are the centre of 
enzyme release during protozoeal stages until the HP is fully developed. 
Survival of penaeid larvae on artificial diets is attributed to the relatively 
high digestive enzyme activity present during early larval stages (Jones and 
Kurmaly, 1987). However, growth on artificial diets is generally less than 
optimum and it is thought to be necessary to use highly digestible dietary 
ingredients and/or diets that stimulate digestive enzyme secretion (Le Vay 

et al., 1993). Ten cells [il-I of live or even frozen algae significantly en- 
hances trypsin activity during herbivorous larval stages (Amjad et al.,, 1992; 
Kumlu et al., 1992) and accelerates the growth of P. monodon larvae to 
that comparable to larvae fed live diets (Kamarudin, 1992). Algae appear to 

contain substances that trigger larval digestive enzyme activity, or enhance 
digestion and thus improve survival and growth on artificial diets (Ainjad et 

al., 1992; Jones et al., 1993; Rodriguez et al., 1994). 

The present study contributes towards a further understanding of the di- 

gestive physiology of P. indicus larvae. Complete replacement of live mi- 

croalgae at protozoeal, and live Artemia nauplii at mysis stages with MED 

are attempted in larval culture of this penaeid species. For the first time, 

the optimum feeding level of MED, trypsin activity during larval develop- 

ment, influence of MED and a low level of algal co-feed on the digestive 

enzyme activity, as well as growth and survival of the larvae are investi- 

gated. As a gut enzyme stimulant, a microalgae species (Rhinomonas re- 

ficulata) was incorporated into microcapsules and larval trypsin activities 

in response to this diet are measured to determine whether the algal sub- 

stances which stimulate digestive enzymes, are successfully preserved by 
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the process of micro encap sulati on. The effect of feeding a low number of 
Artemia in combination with MED was investigated for effects on growth, 
survival and trypsin activity of mysis larvae to determine whether the prey 
influences larval enzyme levels by providing a more digestible diet. 

MATERIAL AND METHODS 

Rearing Procedure 

All the Penaeus indicus larvae used in present experiments were obtained 
from broodstock originating from India held in two circular 4 tonne black 

tanks, at the School of Ocean Sciences, Menai Bridge, UK. After spawning, 
concentrated eggs were rinsed and stocked in a 50-1 tank filled with fil- 

tered (0.2 gm) and UV-irradiated sea water. At stage PZ I, the larvae were 
rinsed again with filtered and UV-irradiated sea water and treated with an 

antibiotic (0.2 ppm furazolidone). The larvae were stocked at a density of 
100 1-1 in 2-1 round bottom glass flasks to assess survival and growth per- 
formance on different live and artificial diets (from two replicates). 

The water temperature was maintained at 28 'C by keeping the flasks in a 

thermo statistically controlled water bath. Culture sea water used in all ex- 

periments was adjusted to 25 ppt salinity by adding distilled water (see 

Chapter 1), and a gentle aeration was maintained through a silicone rubber 

tube with a glass rod at the tip. Every other day the flasks were emptied 

and the larvae counted and staged according to Silas et al., (1978). Total 

length JL) of 10- 13 larvae from each replicate were measured from the tip 

of their rostrum to the end of telson under a binocular microscope, All ar- 

tificial diets were hydrated daily and introduced to the larval culture at 

08.0051 12.005 20.005 24.00 h. Algal species at the School of Ocean Sci- 

ences are grown in semi-continuous culture (Walne, 1966). The algal cell 

density was estimated using a haemocytometer and a Coulter Counter 
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(Model ZB: Coulter Electronics). Newly hatched (24 h at 28 "C) Artemia 

nauplii (INVE AQUACULTURE, Belgium) were introduced as prey to the 
larvae fed on the live algae and some artificial diet treatments. 

Experiment I 

Different levels (from 4 to 10 mg 1-1 day-') of an experimental FRIIPPAK 
MED was tested to determine the optimum feeding level for P. indicus lar- 

vae particularly during PTOtozoeal stages. The control treatment consisted 
of 35 cells g1-1 Skeletonema costatum and 25 cells pl-I Tetraselmis chuii 
and five Artemia nauplii ml-I after stage PZ3 (Chapter 1). From results of 
preliminary trials and microscopic observation, it was decided to use an 
antibiotic to prevent bacteria] infections, Hence, after the eggs were rinsed 

with filtered and UN-irradiated sea water, they were treated with an anti- 
biotic (furazolidone 0.2 ppm), Furthermore, a preventative concentration of 
this antibiotic was used through all zoeal (0.2 ppm. ) and mysis stages (0.4 

ppm) in the culture (Galgani and Aquacop, 1988). To evaluate the effect of 
the antibiotic, ,, some larvae were fed on the MED without the antibiotic 
treatment. Survival and growth of the larvae were assessed from two repli- 

cates. 

Experiment 2 

Total trypsin activity and dry weight of P. indicus, reared on the live con- 

trol diet in three 5-1 round bottom glass flasks, were determined throughout 

larval stages (from PZI to PLI stage) as described in General Material and 

Methods. Specific trypsin activity of the larvae was obtained by dividing 

total trypsin activity by the dry weight (Table 6) of the larvae. 

Experiment 3 

The following feeding regimes were used to rear the larvae at this experi- 

ment; 
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Diet A (Control): 35 cells pl-I S. costatum and 25 cells pl-I T. chuii 
throughout the larval stages with the addition of five newly hatched Ar- 
temia ml-I during mysis stages, 
Diet B: FRIPPAK experimental MED throughout all larval stages; 8 mg 1-1 
CAR PZI to PZ3/Ml,, 12 mg 1-1 CD2 from MI to M3,16 mg 1-1 CD3 from 
M3 to PLI/2, 

Diet C: The experimental FRIPPAK diets as above plus 15 cells PI-I (2: 1, S. 

costatum + T. chuii) frozen algal co-feed from PZI to PLI stages, 
Diet D: The experimental FRIPPAK diets plus frozen algal co-feed as Diet 
C and five Artemia ml-1 between MI and PL I, 

Diet E: The experimental FRIPPAK diets as Diet B and Artemia (five ml-') 
from MI onwards. 

Samples for trypsin activity and larval dry weight (only during zoeal 
stages), were reared in four 5-1, one 10-1 and sufficient quantities of 2-1 
flasks for each diet. The larvae fed MED, MED plus 15 cells frozen mixed 

algae pl-' and the control live diet were sampled throughout all larval 

stages. All the larvae reared on Diet A, D and E received five Artemia 

nauplii ml-1 from MI stage onwards. Larvae fed Diet B and C did not re- 

ceive Artemia between MI and PL stages. Trypsin samples were taken in 

two replicates for each stage. 

Experiment 4 

Effect of Artemia nauplii ml-I as co-feed with MED was investigated on 

growth, survival and trypsin activity during mysis stages. For this purpose, 

the larvae, previously reared on the mixed live algae (control), were fed on: 

Diet A: 12 mg 1-1 MED between stage Z3/MI and M2 and 16 mg 1-1 M3 to 

PL I ýO 
Diet B: the same as Diet A plus one Artemia ml-1, 

Diet C: the same as Diet A plus five Artemia ml-1, 
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Trypsin activity (JU larva-'), survival and total length were assessed from 
two replicates. 

Experiment 5 

In this trial, trypsin activity of P. indicus larvae fed a control live algae (50 
cells gl-1 R. reticulata), MED and algae incorporated in MED (23 % R. re- 
ticulata, v/v ) was investigated. The diet incorporating algae was produced 
by inclusion of 23 % of freeze-dried R. reticulata into FRIPPAK diet slurry 
before encapsulation. The artificial diets were fed to the larvae at a level of 
8 mg 1-1 day-' from PZ I to PZ2 stage. Two replicates for each treatment and 
three replicates from each sample were used to assess larval trypsin activ- 
ity. 

Statistical Calculations 

In the first experiment, one-way ANOVA (Minitab) and appropriate pair- 

wise comparison tests (Tukey's test for equal, and ScheM's test for unequal 

observations) were used to compare survival and total length of the larvae 

at PZ3 and PLI stages. Survival and growth results in the second experi- 

ment were analysed by GLM (General Linear Model) and slopes were cal- 

culated for PZl-PZ3/M1 and PZ3/Ml-PL1 to compare the diets with Ar- 

temia and diets without Artemia at mysis stages, All the enzyme results, 

survival and growth data were compared using one-way or two-way 

ANOVA and an appropriate multiple pairwise comparison test in Experi- 

ments 3,4 and 5. Prior to any statistical analysis, the data was checked for 

homogeneity of variances using Bartlett's test. All the statistical calcula- 

tions were performed in Minitab statistical package. 
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RESULTS 

Experiment I 

In an attempt to totally replace live algae and to determine the best feeding 
level in the culture of P. indicus, four different levels (4-10 mg 1-1) of an 
experimental MED were tested and the results are summarised in Table 1. 
At 28 'C and 25 ppt salinity, P. indicus larvae fed the control diet started 
to metamorphose into PLI stage on the 8th day of the culture, whereas 
MED only fed larvae reached this stage on the 11-12th day of the culture. 
Statistical results on larval growth and survival at PZ3 and PLI stages are 

shown in Tables 2-5. The control diet clearly gave significantly higher sur- 

vival, maximum growth and faster development from PZ1 to PZ3 (78.50 %, 

3.44 mm TL) with a final survival of 68.5 % (at PLI) in 8-9 days (P<0.05). 

Among the four levels of MED tested, 6-8 mg 1-1 gave significantly better 

survival (P<0.05) than other levels (Table 1). 10 mg 1-1 MED fouled the 

larvae and resulted in the lowest survival at the end of the experiment (40 

%). Survivals of larvae fed exclusively 8 mg 1-1 MED during protozoeal 

stages (PZI-PZ3/Ml) and in conjunction with five Artemia nauplii ml-I 
during subsequent stages (PZ3/Ml-PLI) were 67 % and 58 % respectively. 

The larvae reared on 8 mg 1-1 MED without the antibiotic died on the 5th 

day of the culture indicating that application of an antibiotic was neces- 

sary. 

Experiment 2 

Results from this experiment (Figure I and Table 7) demonstrate significant 

differences in trypsin activity during larval development of P. indicus fed 

the live diets, The larvae exhibited a low level of total trypsin (larva-') and 

specific trypsin (pg-' larval dry weight) activity during early protozoeal 

stages, but the levels sharply increased and reached a peak at MI (129.00 x 

10 -4 IU organism-' and 73.904 x 10-' IU gg-' dry weight), From this stage 

onwards., larval trypsin levels decreased until PLI stage (see Figure 1). 
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Specific trypsin activity results suggest that P. indicus larvae show a low 
level of this digestive enzyme at PZI (9.25 x 10-' IU Vg-I dry weight) and 
PLI (6.66 x 10-5 IU gg-I dry weight) stages. Body dry weight of P. indicus 
during larval development is given in Table 6. 

Experiment 3 

This experiment investigates the possibility of enhancing the digestive ca- 
pability of P. indicus larvae using a low level of frozen algae as a gut en- 
zyme stimulant and hence improving growth and survival. Complete re- 
placement of both algae and Artemia nauplii were also attempted. In the 

results, the slopes of the treatments were separately compared from PZ1 to 
PZ3/M1 (protozoeal stages) and from PZ3/M1 to PLI (mysis stages) in or- 
der to compare changes in growth rate, survival rate and trypsin activities 

as a response to diet composition. 

Statistical results on larval growth and survival are presented in Tables 8- 

11. Figure 2a clearly demonstrates that when only 15 cells pl-1 mixed fro- 

zen algae was used as a supplemental co-feed with MED, survivals of the 
larvae were improved to levels (85-91 % final survival at PZ3/MI) equal to 

that of live algae (91.5%) during protozoeal stages. Larval mortality rates 

on MED+algal co-feeds (1.63-1.81 % day-) and the control (1.06 % day-' ) 

were significantly lower than that on MED (7.63-8.75 % day-) during 

protozoeal stages (see Tables 8a, b). Survivals of MED only fed larvae 

(between 46 and 55 %) were significantly inferior to those obtained from 

MED plus algae fed larvae during this period. However, growth rates of 

frozen algal additive fed larvae (0.55-0.56 min day-' TL) were still slower 

than the mixed algal control (0.79 mm day-') but were again significantly 

(P<0.001) higher than those (0.42-0.46 mm day-) obtained from MED only 

fed larvae (Tables 10a, b). 
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From PZ3/Mj onwards, some larval treatments received Artemia nauplii in 
addition to the diets (8 mg 1-1) whereas others were exclusively fed only 
MED and MED plus 15 cells gl-I algae until PLI stage. Figures 2a, b show 
that addition of Artemia to the culture significantly (P<0.01) promoted a 
higher survival rate and growth rate (see Table I I). MED with frozen algal 
co-feed plus Artemia after PZ3 stage gave equal survival (81 %), but 

slower larval development and an inferior mean total length (7.4 mm) com- 
pared to live fed controls (9.65 mm) at the end of the experiment. Final 

survival of MED only fed larvae and MED plus algae without Artemia at 
PLI were 36.5% and 65.5 % respectively. These results demonstrate that 
P. indicus larvae can be reared on the MED,. as an algal replacement, with 
a 49 % survival, but that the addition of 15 cells pl-1 of frozen algae pro- 
motes a 91 % survival. 

Figure 3 and two-way ANOVA (Tables 12a, b) demonstrate that the live 

algae always gave the highest total trypsin activity (P<0.05) during proto- 

zoeal stages whereas MED as sole diet gave the lowest activity. Live algae 
induced the highest trypsin activity per larva during herbivoral stages 
(P<0.05). Since there were significant interactions between diets and stages 
(P<0.05), the effects of diets on total and specific trypsin activity were 
further analysed using one-way ANOVA and Tukey's test for each individ- 

ual protozoeal larval stage. Any significant effect is summarised as super- 

scripts in Tables 13 and 15. During protozoeal stages (PZI-PZ3), the lar- 

vae fed MED+algae (Diet Q displayed intermediate total trypsin activity 

between the larvae fed live algae (Diet A) and MED (Diet B) as a sole diet 

(Table 13). At MI stage, although MED+algae fed larvae produced higher 

trypsin activity (84.97 x 10-4 IU larva-) than MED fed ones (75.87 x 10-4 

IU larva-'), the levels were not significantly different from each other (P> 

0.05). Tables 14a, b show that specific trypsin activity of larvae fed either 

live algae or MED plus algal co-feed did not significantly differ from each 

other between PZI and MI stages (P>0.05). Larvae fed MED as a sole diet 
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displayed the lowest trypsin activity jjg-I DW during these stages. Further 
one-way analyses of variance performed for each individual larval stage in- 
dicate that specific trypsin activities of P. indicus larvae fed live algae and 
MED plus frozen algae at PZI or PZ2 were not significantly different (see 
Table 15). At PZ3 stage, however, the larvae fed MED+algae showed 
higher trypsin activity than those fed algae, whereas this was reversed at 
MI stage (P<0.05). The frozen algal co-feed (15 cells [il-1) with MED in- 
duced significantly more specific trypsin activity at PZI, PZ2 and PZ3 

stages in comparison to those fed MED as a single diet (P<0.05). At MI 

stage, however, trypsin activities of the larvae fed either diets were not 
significantly different from each other (P>0.05). Dry weight of the larvae 
between PZ I and MI stages is given in Table 16. 

Figure 3 shows that the larvae fed solely on MED (Diet B) and/or MED 

plus frozen algae without Artemia (Diet Q maintained higher tryptic ac- 
tivities in comparison to those that received the diets plus five Artemia ml-I 
during mysis stages (Tables 17a, b). The algal additive did not induce sig- 

nificantly higher trypsin activity than MED alone during these stages 
(P>0.05). Table 18 shows any significance in total trypsin activity of P. 

indicus larvae at each larval stage between M2 and PLI. Larvae fed on live 

algae plus five Artemia ml-' showed significantly higher trypsin activity 

(P<0.05) at IPLI stage than those fed the diets plus Artemia (Diet D and 

Diet E). 

Experiment 4 

The effect of MED (Diet A), MED plus one (Diet B) and MED plus five 

Artemia (Diet Q nauplii ml-I on larval trypsin activity, growth and survival 

were investigated in this experiment. Although the mysis larvae fed on the 

MED displayed the highest trypsin activity between MI and PLI stages 

(Figure 5), Tables 19-20 show that this diet resulted in the lowest survival 

(30 %) and shortest total length (5.34 mm) at PLI stage (see Figure 4a). 
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When only one Artemia ml-I was offered to the larvae in addition to the 
MED, larval trypsin activity dropped significantly (P<0.05) compared to 
that of MED only fed larvae (Figure 5) and intermediate growth (5.74 mm) 

and survival (54 %) resulted (Figures 4a, b and Tables 19-20). A higher 

concentration of Artemia nauplii (5 ml-1) fed together with the MED in- 

duced the lowest level of enzyme (Figure 5), but gave the highest survival 
(73.5 %) and significantly greater (P<0.05) total length (5.94 mm) at PLI 

stage (Figures 4a, b). 

Experiment 5 

Figure 6 shows that trypsin activity levels of the larvae fed from PZI to 

PZ2 on live algae (Diet A) and encapsulated diets containing algae (Diet C) 

were not significantly different (P>0.05). The MED (Diet B) alone gave a 

significantly (P<0.05) lower level of trypsin activity than algae included 

MED. 
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Figure 1. Total and specific trypsin activity in P. indicus larvae 

reared on live control diet ( S. costatum / T. chuii plus Artemia 

PZ3/M1 onwards) from PZ1 to PL1 stage. Each value is a mean 
± s. d., n=2. 
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Figure 2. (a) Survival and (b) total length of larvae fed on different 
feeding regimes from PZI to PLI. Each value refers to a mean ± s. d.. 
n=2. Diet A (live mixed alga throughout all larval stages plus five 
Artemia ml-' after PZ3/Ml), Diet B (microencapsulated diet= MED 
throughout all larval stages), Diet C (MED plus 15 cells gl-' frozen 
algae throughout all stages), Diet D (as diet C plus five Artemia ml-' 
PZ3/MI onwards), Diet E (as Diet B plus five Artemia ml-1 during mysis 
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Figure 3. Total trypsin activity of P. indicus larvae reared on different feeding 

regimes throughout all larval stages. Values are means ± s. d., n= 2 for each 
treatment and n=3 for each assay. Diet A (live mixed algae throughout larval 

stages plus five Artemia ml-1 between MI and PLI), Diet B (microencapsu- 
lated diet = MED as a sole diet throughout stages), Diet C (MED plus 15 

cells pl-1 frozen algae through all larval stages), Diet D (as diet C plus five 
Artemia ml-1 between MI and PLI), Diet E (as Diet B plus Artemia between 

mysis and postlarval stages). 
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stages. Each value is a mean ± s. d. (n=2). Treatments marked 
with different superscripts are significantly different (P<0.05). 
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(Ns) Indicates a non-significant result. 
Indicates a significant result at P< 0.001. 
Indicates a significant result at P! ý0.01. 
Denotes pairs of groups are significantly different at p: 0.05. 

Experiment 1 

Table 2a. One-way ANOVA on larval survival of P. indicus on various diets from 
PZI to PZ3 stage. 

SOURCE DF SS ms Fp Significant 

Diets 4 658.65 164.66 23.95 0.002 
Error 5 34.37 6.87 
Total 9 693.03 

Bartlett's test for homogeneity of variances 
F= 3.42, P= 0.16 

Table 2b. Tukey's pairwise comparison test on survival at PZ3 stage. 

** 

Survival Diets Code 112345 

78.50 Control 1 
66.75 MED-8 2 
71.25 MED-6 3 
59.25 MED-4 4 
56.00 MED-10 5 

* 

Ns Ns 
Ns 

Ns 

Table 3a. One-way ANOVA on survival of P. indicus fed on various diets until PLI 
stage. 

SOURCE DF SS ms Fp Significant 

Diets 4 1062.2 265.5 25.66 0.002 
Error 5 51.7 10.4 
Total 9 1113.9 

Bartlett's test for homogeneity of variances 
F= 3.9 3, P= 0.14 

Table 3b. Tukey's pairwise comparison test on survival at PL I stage. 

** 

Survival Diets Code 2345 

68.50 Control 1 
58.25 MED-8 2 
53.00 MED-6 3 
43.25 MED-4 4 
40.00 MED-10 5 

Ns 
Ns 

Ns 
Ns 

Table 4a. One-way ANOVA on larval growth of P. indicus fed various diets 
from PZI to PZ3 stage. 

SOURCE DF SS ms F 

Diet 4 2.6526 0.6632 39.62 0.000 

Significant 

Error 95 1.5899 0.0167 
Total 99 4.2426 
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Bartlett's test for homogeneity of variances 
F= 4.02, P= 0.13 

Table 4b. Scheff6s pairwise comparison test on larval growth at PZ3 stage. 

Growth Diets Code 1 

3.438 Control 1 
3.094 MED-8 2 
3.030 MED-6 3 
2.992 MED-4 4 
3.047 MED-10 5 

Table 5a. One-way ANOVA on growth of larvae at PLI stage. 

SOURCE DF ss 
Diet 4 35-012 
Error 100 10.612 
Total 104 45.624 

Bartlett's test for homogeneity of variances 
P=0.98, P=0.15 

Table 5b. Scheff6's pairwise comparison test on larval growth at PLI stage. 

Growth Diets Code 2345 

6.846 Control 1 
5.522 MED-8 2 
5.334 MED-6 3 
5.206 MED-4 4 
5.721 MED-10 5 

Experiment 2 

* 

Table 6. Body dry weight (pg) of P. indicus larvae fed live algae and Artemia (MI onwards) 
from PZ I to PL I stage. 

Ns 
Ns Ns 
Ns Ns Ns 

ms P Si nificant 
___ 

gi 
8.753 82.48 0.000 
0.106 

Ns 

Ns 
Ns 

Larval body dry weight (pg) 

PZI PZ2 PZ3 mi M2 M3 PLI 

4.167 8.017 11.830 
0.034 1.337 0.806 

17.455± 37.500± 71.668± 80.935± 
0.898 3.068 3.773 5.890 

Table 7. Trypsin data for Figure 1. Each value is a mean ± s. d. n=2 for 
each stage and n=3 for each assay. 

Stages Total trypsin activity 
(X 10-4 IU/Iarva) 

Specific trypsin activity 
(X 10-5 IU/ gg DW) 

9.253 
22,967 
51.408 
73.904 
32.335 
8.716 
6.656 

PZI 4.596 ± 0.540 
PZ2 18.412 ± 0.765 

60.813 ± 3.969 PZ3 
mi 129.000 ± 2,674 
M2 121.256 ± 4.925 
M3 62.466 ± 2.478 
PLI 53.801 ± 1.717 
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Experiment 3 

Table 8a. Two-way ANOVA with days as a covariate on survival of P. indicus larvae fed varlOus diets ftom PZI to PZ3/MI stages. 

DF Seq SS Adj SS Adj MS Fp Significant 
Diets 4 5310.13 16.37 4.09 0.30 0-874- 
Days 1 1394.45 1394.45 1394.45 100.93 0.000 
Repl(Diets) 5 27.17 32.63 6.53 0.47 0.789 
Diets*Days 4 873.67 873.67 218.42 15.81 0.000 
Repl*Days(Diets) 5 61.38 61.38 12.27 0.89 0.524 
Error 10 138.17 138.17 13.82 
Total 29 7804.97 

Table 8b. Comparison of mortality rates of P. indicus larvae fed on diets (described in Figure 2) 
during herbivoral stages (PZI to PZ3/MI). 

Constant 
Average Slope 

Diet A 
Diet B 
Diet C 
Diet D 
Diet E 

Mortality rates I Coeff. Stdev. t-value p Significant 
(% day-' 

98.167 1.796 54.67 0.000 
-8.35 0.8312 -10.05 0.000 

1.063 6.225 1.662 3.74 0.004 
8.750 -9.150 1.662 -5.50 0.000 
1.813 4.725 1.662 2.84 0.017 
1.625 5.1 1.662 1.14 0.280 
7.625 -6.900 1.662 -4.15 0.002 

** 

Ns 

Table 9a. Two-way ANOVA with days as a covariate on survival of P. indicus larvae fed on 
various diets between MI and Pl, stages. 

Source DF Seq SS Adj SS Adj MS Fp Significant 
Diets 4 12812.31 1056.83 264.21 57.96 0.000 
Days 1 686.35 686.35 686.35 150.56 0.000 
Repl(Diets) 5 73.59 116.69 23.34 5.12 0.003 
Diets*Days 4 126.27 126.27 31.57 6.92 0.001 
Repl*Days(Diets) 5 105.89 105.89 21.18 4.65 0.006 
Error 20 91.18 91.18 4.56 
Total 39 13895.59 

Table 9b. Comparison of mortality rates of P. indicus larvae fed on various diets (described in 
Figure 2) between MI and Pl, stages. 

Stdev. t-value p Significant Mortality rate Coeff. 
(% day-' 

Constant 
Average slope 

Diet A 
Diet B 
Diet C 
Diet D 
Diet E 

1.625 
1.663 
3.313 
1.778 
0.888 

84.235 1.4 60.16 0.000 

-3.7050 0.3020 -12.27 0.000 
0.4550 0.6039 0.75 0.460 Ns 
0.3800 0.6039 0.63 0.536 Ns 

-2.9200 0.6039 -4.84 0.000 
0.1550 0.6039 0.26 0.800 Ns 

1.9300 0.6039 3.2 0.003 
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Table 10a. Two-way ANOVA with days as a covariate on total length of P. indicus larvae fed on 
various diets during herbivoral stages (PZI to PZ3/Ml). 

Source DF Seq SS Adj SS Adj MS Fp Significant 
Diets 4 76.706 0.078 0.020 0.28 0.890 
Days 1 249.846 249.261 249.261 3564.16 0.000 
Repl(Days) 5 0.062 0.127 0.025 0.36 0.874 
Diets*Days 4 12.797 12.782 3.196 45.69 0.000 
Repl*Days(Diets) 5 0.140 0.140 0.028 0.40 0.849 
Error 281 19.652 19.652 0.070 
Total 300 359.232 

Table 10b. Comparison of growth rates of P. indicus larvae fed on various diets (described in 
Figure 2) during herbivoral stages (PZI to PZ3/Ml). 

Growth rate Coeff. Stdev. t-value p Significant 
(mm day-') . 

Constant 1.03187 0.03997 25.82 0.000 
Average Slope 1.11359 0.01865 59.70 0.000 
Diet A 0.787 0.46041 0.03738 12.32 0.000 
Diet B 0.424 1 -0.26607 0.03710 -7.17 0.000 
Diet C 0.552 -0.00977 0.03705 -0.26 0.792 Ns 
Diet D 0.561 0.00690 0.03705 0.19 0.852 Ns 
Diet E 0.462 0.19146 0.03795 -5.05 0.000 

Table I Ia. Two-way ANOVA with days as a covariate on total length of P. indicus larvae fed 
on various diets between MI and Pl, stages. 

DF Seq SS Adj SS Adj MS Fp Significant 
Diet 4 461.909 12.508 3.127 26.69 0.000 
Days 1 389.116 385.024 385.024 3286.11 0.000 
Repl(Diets) 5 0.519 0.430 0.086 0.73 0.593 
Diets*Days 4 49.061 48.894 12.223 104.33 0.000 
Repl*Days(Diets) 5 0.636 0.636 0.127 1.09 0.368 
Error 376 44.055 44.055 0.117 
Total 395 945.296 

Table I lb. Comparison of growth rates of P. indicus larvae fed on various (described in Figure 
2) diets during mysis stages (MI-PLI). 

Constant 
Average Slope 

Diet A 
Diet B 
Diet C 
Diet D 
Diet E 

i Growth rate Coeff. Stdev. t-value p Significant 
(mm day- 

0.61160 0.07223 22.31 0.000 
0.89876 0.01568 57.32 0.000 

0.666 0.43360 0.03108 13.95 0.000 
0.293 -0.31365 0.03081 -10.18 0.000 
0.237 -0.42464 0.03200 -13.27 0.000 
0.518 0.13620 0.03108 4.38 0.000 
0.534 0.16848 0.03180 5.30 0.000 

Table 12a. Two-way ANOVA on total trypsin activity of P. indicus larvae fed on various diets 
from PZ I to MI stage. 

Source 
Diets 
Stages 
Diets*Stages 
Error 
Total 

DF ss ms F 
2 1392.7 696.3 101.70 0.000 
3 20464.2 6821.4 996.25 0.000 
6 346.6 57.8 8.44 0.001 
13 82.2 6.8 
17 22285.6 

p Significant 
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Table 12b. Tukey's test on trypsin activity of larvae fed on diets 
(described in Figure 3) between PZI and MI stage. 

Diets trypsin Codes 

Diet A 54.757 1 
Diet B 36.120 2 
Diet C 44.659 3 

Diet A Diet B 

Table 13. Total trypsin activity of P. indicus fed on diets (described in Figure 3). Each value is 
a mean ± s. d. (n=2). Treatments with same superscripts are not significantly different from each 
other (P>0.05). 

Total trypsin Activity (XIO-4 lU larva-') 

Stages 
PZ I (at Hatch) 
PZ I (24h fed) 
PZ2 
PZ3 
mi 

6.907 0.839 
a 16.279 1.462 

ga 33.883 0.56 
a 62.532 ± 4.118 
a 106.335 ± 4.223 

6.907±0.839 
7.396=LI. 667 

21-025±1.713 b 

40.190±4.092 
75.868±2.663 

3 

Table 14a. Two-way ANOVA on specific trypsin activity of P. indicus fed on various diets 
from PZI to MI stage. 

Source DF 
Diets 2 
Stages 3 
Diets*Stages 6 
Error 12 
Total 23 

ss ms 

482.23 241.11 
3381.33 1127.11 
196.99 32.83 
98.07 8.17 

4158.61 

1 

* 

* 

FP 
29.50 0.000 
137.92 0.000 
4.02 0.019 

Table l4b. Tukey's pairwise comparison test on specific trypsin activity 
of larvae fed on three feeding regimes (described in Figure 3). 

Diets trypsin Codes 

Diet A 47.659 1 
Diet B 37.131 2 
Diet C 45.096 3 

1 

Ns * 

Significant 

* 

Table 15. Specific trypsin activity of P. indicus larvae fed on diets as described in 
Figure 3 from PZI to MI. Values are means ± s. d., n=2 for each treatments and n=3 for 

each assay. Diets with same superscripts are not significantly different (P>0.05). 

Larval 
Stages 

PZI (24 h fed) 

PZ2 

PZ3 

mi 

Specific trypsin activity 
(x 10' IU pg-' DW) 

Diet A Diet B 

Diet C 
6.907-+0.839 

1 1.974J: 0.596 
26.767±2.664 ab 

54.924±1.940 ab 

84.972±2.073 

Diet C 

32.72 1.873 a 16.26 ± 2.248 b 25.95 ± 1.294 a 

45.44 0.076 a 34.94 ± 0.721 b 43.27 ± 1.427 a 

49.89 1.859 b 44.79 ± 1.739 b 57.44 ± 2.02 ga 

62.59 0.248 a 52.53 ± 0.189 b 53.73 ± 0.131 b 
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Table 16. Dry weight (pg) of P. indicus fed various diets (as in Figure 3) 
from PZ I to MI stage. 

Stages Diet A 

PZI (24h fed) 4.976 ± 0.412 
PZ2 7.456 ± 1.220 
PZ3 12.532 ± 0.925 
mi 16.987 ± 2.231 

4 

Diet B 

54 8 ± 0.561 
6.017 ± 1.050 
8.972 ± 2.176 

14.430 ± 3.185 

Diet C 

4.613 :h0.125 
6.187 0.478 
9.562 0.723 

15.813 1.140 

Table 17a. Two-way ANOVA on total trypsin activity during mysis stages of P. indicus 
fed on various diets until PLI. 

Source DF SS ms Fp Significant 

Diets 4 12835.7 3208.9 219.74 0.000 
Stages 2 3882.3 1941.2 132.93 0.000 
Diets*Stages 8 1689.6 211.2 14.46 0.000 
Error 15 219.1 14.6 
Total 29 18626.7 

Table l7b. Tukey's test for trypsin activity of P. indicus larvae (described in 
Figure 3) from M2 to PL I. 

Diets Trypsin code 25 

Diet A 64.387 1 
Diet B 89.859 2 
Diet C 94.525 3 
Diet D 52.725 4 
Diet E 41.884 5 

Ns 

Table 18. Total trypsin activity of P. indicus fed on diets described in Figure 3 between MI and 
PLI stages. Each value is a mean ± s. d. (n=2). Values with same superscripts are not 
significantly different from each other (P>0.05). 

Total trypsin activity (XIO-4 IU larva-') 

Stages Diet A Diet B Diet C Diet D Diet E 

abc a: M2 83.349±5.049 91.990±5.642a 87.293±2.38 65.620±2.137 52.778±1.704 

ba bc c M3 60.612±3.574 116.455±3.112 106.703=L3.61 1a 58.746±2.217 43.233±4.290 

aac b 33.809±-1.853c 29.641±1.897 PLI 49.199±1.356 I 75.130±0.169 75.580±2.976 

Experiment 4 

Table 19a. One-way ANOVA on larval survival (%) of P. indicus on 
various diets at PLI stage. 

SOURCE DF SS ms Fp Significant 
Diets 2 1702.50 851.25 95.42 0.002 
Error 3 26.76 8.92 
Total 5 1729.27 

Bartlett's test for homogeneity of variances 
F= 0.356, P= 0.42 
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Table 19b. Tukey's test on larval survival (%) of P. indicus on 
various diets (described in Figure 4) at PL I stage. 

Diets TrXpsin code 
Diet A 30.355 1 
Diet B 54.285 2 
Diet C 71.430 3 

1 

* 

** 

Table 20a. One-way ANOVA on larval growth (mm TL) of P. indicus 
on various diets at PLI stage. 

SOURCE DF SS ms FP Signifi- 
cant 

Diets 2 3.9638 1.9819 23.36 0.000 
Error 58 4.9212 0.0848 
Total 60 8.8850 

Bartlett's test for homogeneity of variances 
F= 4.558, P= 0.40 

Table 20b. SchefWs pairwise comparison test on larval growth (mm 
TL) of P. indicus on various diets (described in Figure 4) at PLI 
stage. 

Diets Trypsin code 

Diet A 5.338 1 
Diet B 5.735 2 
Diet C 5.941 3 
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DISCUSSION 

Conventional feeding regimes of penaeid larvae are based on a combination 
of live feeds, with microalgae at protozoeal stages and Artemia at mysis 
and early postlarval stages. Galgani and Aquacop (1988) report that an al- 
gal concentration of 30-40 cells ý&' is adequate for rearing P. indicus lar- 

vae during protozoeal stages. However, in Chapter 1, the larvae of this 
species were cultured from PZ1 to PLI within only 6-7 days with over 90 
% survival in water at 25 ppt salinity (S) on 60-70 cells pl-1 of live algae. In 
Chapter I superior growth and survival was obtained from mixed algae 
during herbivorous stages (S. costatum and T chuii) rather than a single 
algaý species. Therefore, in present work, control larvae were fed on a 
mixed algal diet throughout all stages and plus five Artemia ml-1 at mysis 
stages to ensure sufficient quality and quantity of food during the culture. 
P. indicus larvae were found to survive and grow better at lower salinities 
(Chapter 1), hence the salinity level of present culture water was main- 
tained at 25 ppt. 

Present results indicate that feeding level of MED for P. indicus is similar 
to that previously reported for other penaeid species such as P. monodon 
(Kurmaly et al., 1989a), and P. japonicus (Le Vay et al., 1993). The best 

feeding level appears to be 6-8 mg 1-1 with four distribution times a day for 

the culture of this species during protozoeal stages. Even this level of 
MED as a sole diet retarded development of the larvae by 1.5-2 days in 

comparison to live control diet from PZI to PZ3/MI stages. Higher feeding 

rates (10 mg 1-1) fouled the larvae and caused high mortalities (Jones et al., 

1979a). Attempts to rear P. indicus larvae on artificial diets without anti- 
biotic failed, confirming the findings of Galgani and Aquacop (1988). Com- 

plete replacement of live diets (both algae and Artemia) with MED resulted 

in 37 % survival and 5.42 mm final total length at PLI compared to 88 % 

and 6.75 mm total length of the live control (Figures 2a, b). However, pre- 
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sent results also indicate that P. indicim larvae can be reared in the absence 
of an animal prey from PZI to PLI/2 with a 66 % survival and a total 
length of 5.83 mm. on the MED plus 15 cells gl-' of frozen mixed algae 
(Figures 2a, b), 

Specific trypsin (per gg dry weight) and total trypsin activity (per organ- 
ism) of P. indicus larvae fed live diets during larval development were 
found to be similar to those of P. monodon (Kamarudin, 1992; Kumlu et 

al., 1992; Jones et al.,, 1993), P ýwhferu. y (Lovett and Felder, 1990b) and P. 

japonicus (Galgani and Benyamin, 1985; Le Vay et al., 1993). Specific 

trypsin activity on the live diets is low during PZ I stage (9.25 x 10-' IU 

gg-1 DW) rising sharply during herbivorous stages (PZI-PZ3) reaching a 

peak at MI (74 x 10-5 IU gg-1 DW) and falling during subsequent stages 

until PLI stage (6.66 x 10-5 gg-1 DW) (see Figure 1). Peak activities of all 
digestive enzymes found in penaeid larvae examined to date occur at late 

protozoeal and/or early mysis stages with low activities during early post- 
larval stages. When stage PZI larvae are fed on microencapsulated diets, 

their trypsin-like enzyme response is significantly lower than when fed ei- 

ther MED with algal co-feed or live diets (see Figure 3) and (Le Vay et al., 

1993), Slower response of digestive enzymes at this stage may be the rea- 

son why high mortalities occur when penaeid larvae are reared exclusively 

on artificial diets during early days of culture (Figure 2a). Once the larvae 

pass this critical stage, their digestive capability appears to be better able to 

respond to MED. 

Present results suggest the role of algae as a gut enzyme stimulant for P. 

indicus larvae and agree with the results obtained from other penaeid spe- 

cies (Kamarudin, 1992; Kumlu et M., 1992; Le Vay et M., 1993). It seems 

that the level of larval trypsin activity responds positively to the presence 

of an algal co-feed particularly during herbivorous stages. Since the larvae 

appear incapable of responding in the same way to artificial diets, addition 
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of algae is especially important during the first days of culture. This is con- 
firmed by the findings in Chapter 4 where the provision of live algae for 
only 24 h as a co-feed (15 cells pl-1) with live nematodes (Panagrellus 
redivivus) significantly elevated larval trypsin activity and accelerated the 
growth and survival of P. indicus larvae from PZI to PZ3 stage in compari- 
son to the nematode only fed larvae. 

Present results confirm that enhanced tryptic activity during protozoeal 
stages correlates with improved survival and growth (Kamarudin, 1992; 
Jones et al., 1993). Addition of 15 cells gl-I of frozen algae increased sur- 
vival from 47-58 (MED only) to 85-91 % (MED plus alga), with a total 
length increase from 3.66 mm to 4.31 mm at stage PZ3 (Figures 2a, b). 
Larval development was, however, retarded 1-2 days with final growth still 
inferior to that on mixed live algae at M I. 

It may be argued that the addition of 10-15 cells pl-1 to the MED might 
cause higher larval trypsin activity as a result of a higher food concentra- 
tion or contribute extra nutrients resulting in improved growth and survival 

of the penaeid larva. However, present experiments (Figure 5) show that an 
increase in food concentration, at least in the mysis stages, produces a drop 

in digestive enzyme activity. In addition, when the algae were incorporated 

into microcapsules and fed at the same concentration as controls (Figure 

6) elevation of enzyme levels still occurred. Although it is difficult to 

eliminate the possibility of micronutrients contributing to increased survival 

and growth, Rhinomonas reticulata used in the present experiments (Figure 

6) has been demonstrated to be unsuitable for the culture of P. indicus (see 

Chapter 1). When this alga is fed either alone or in mixed culture with 

other algae, it produces Poor growth and survival. In present work when it 

is incorporated into capsules, fed live or frozen at low densities with MED, 

it enhances trypsin level. Similarly, Rodriguez et al., (1994) found that 
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Chaetoceros gracilis, containing only 7% protein, produces high enzyme 

activity in early larval P. japonicus. 

Table 21 shows that biomass (number of larvae x larval body dry weight = 
DW) of larvae reared on MED, and MED plus 15 cells gl-' frozen algae, at 
PZ3/MI stages (Experiment 3), are 1007 gg and 2878 [ig DW respectively, 

When the contribution of the 15 cells [tl-l algal co-feed (803 gg DW), (1/4 

of the live algal control treatment), is added to the biomass produced by 

the MED 1007+803 =1810 [tg DW), there is an excess larval biomass 

(1068 ýig DW) produced by MED plus 15 cells [il-I frozen algae. The extra 

larval biomass obtained by the addition of 15 cells ýil-' of frozen algae can- 

not be accounted simply by dry weight input of this algae alone. Hence it is 

suggested that the excess biomass (1068 gg DW) must come from en- 

hanced digestion of the artificial diet due to enzymatic activity generated by 

the algal compounds (see also Rodriguez et al., 1994). 

In contrast to the situation in protozoeal stages, algae do not appear to 

provide the same enhancement of digestive enzyme activity in P. indicus 

mysis larval stages. Trypsin activity in mysis stage larvae declines after the 

larvae commence feeding upon Artemia nauplii (Figures 3,5). This decline 

has been attributed to the easily digestible nature of live prey (Jones et al., 

1993; Le Vay et al., 1993) rather than degeneration of the AMD (Abubakr 

and Jones, 1992), Although exogenous enzymes from live prey are impor- 

tant for first feeding fish larvae (Lauff and Hofer, 1984; Munilla-Moran et 

al., 1990), their contribution is insignificant in penaeid mysis and late Mac- 

robrachium larval digestion (Kamarudin, 1992, Jones et al., 1993). When 

P. indicus mysis larvae are reared on MED without Artemia nauplii, tryp- 

sin activity remains significantly elevated above treatments receiving these 

diets together with Artemia (Figures 3,5). These results confirm the view 

that the larvae secrete high levels of digestive enzymes when substrate nu- 
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trients such as protein are scarce or less digestible (Jones et al.,, 1993; Le 
Vay et al., 1993). 

The present study is encouraging in that algae incorporated into microen- 
capsulated diets, which promoted better survival and growth rates in pe- 
naeid larvae, have been successfully retained in the diet with this microen- 
capsulation technique (Figure 6). These R. reticulata containing microcap- 
sules induce equal trypsin activity to that of live algae and a significantly 
higher level of trypsin than capsules without algal inclusion. Incorporation 

of microalgae into microcapsules should improve survival and growth of 
herbivorous stage penaeid larvae, whereas incorporation of pre-digested 
dietary ingredients may overcome the poor digestibility of diets for the 

mysis larvae. 



CHAPTER6 

FEEDING AND DIGESTION IN THE CARIDEAN SHRIMP LARVAE Palaemon 

elegans AND Macrobrachium rosenbergii ON LIVE AND ARTIFICIAL DIETS. 

This chapter has contributed to the following publication: 

Title: Feeding and digestion in the caridean shrimp larvae Palaemon ele- 
gans Ratlike and Macrobrachium rosenbergii De Man (Crustacea: Pa- 
laemonidae) on live and artificial diets. 

Authors: Kumlu,, M. and Jones, D. A. 

Published : Aquaculture Nutrition, in press, (1995). 
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INTRODUCTION 

Complete replacement of natural diets in larval fish and prawn culture has 
long been the main goal of nutritionists in aquaculture. To achieve this aim) 
an artificial diet must satisfy some physical (appropriate size, shape, tex- 
ture, stability, specific gravity) and chemical features (taste, balanced nu- 
tritional contents) and also must be designed according to morphological 
and physiological structure of the digestive system of an organism. 

Several authors have reported very good growth and survival results for 

partial or complete replacements of live diets with microencapsulated diets 
(MED) (Jones et al., 1987; Kurmaly et al., 1989a; Amjad et al., 1992) and 
with microp articulated diets (Kanazawa et al., 1982; Galgani and Aquacop, 

1988; Ottogali, 1991) for rearing penaeid larvae, both in the laboratory and 
in hatcheries. The capability of penaeid larvae to feed solely on artificial 
diets has been attributed to their short gastro evacuation time and high di- 

gestive enzyme activity during their early stages (Jones and Kurmaly, 1987; 

Abubakr and Jones, 1992). 

In contrast'. there has been no report of any successful complete replace- 

ment of live diets for caridean larvae (Jones et al., 1975; Deru, 1990). 

These larvae hatch as zoea and usually are fed exclusively on live Artemia 

during early stages with artificial supplements during later stages (Ling, 

1969a, b, Rochanaburanon and Williamson, 1976), Villamar and Brusca 

(1987) reported that Crangon nigricauda larvae were reared successfully 

until megalopa stages on Chaetoceros gracilis, whereas larvae fed Artemia 

failed to reach that stage. Ling (1969a, b) was the first to achieve culture 

of Macrobrachium rosenbergii larvae on live zooPlankton (i. e, rotifers, co- 

pepods, and insect larvae) and on a combination of live and artificial diets 

(i. e. chopped fish, shellfish, steamed egg custard, and fish eggs). Several 

authors have tried to completely replace live Artemia nauplii, which may 
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constitute 60% of the cost of hatchery operations (Menasveta et al.,, 1984), 
with other live zooplankton (Lovett and Felder, 1988) or artificial diets 
(Jones et al., 1975; Sick and Beaty, 1975; Murai and Andrews, 

- 1978). 
Promising results were reported by Deru (1990), who achieved complete 
replacement of live Artemia in culturing M rosenbergii from stage Z6 to 
Z11 with over 80 % survival using a Frippak CD3 microencapsulated diet 
designed for penaeid larvae. This diet, however, could not sustain devel- 

opment of the early larvae further than stage Z4. 

These studies with caridean larvae suggest that failures to substitute for 
live diets are not due to major deficiencies in nutritional content of the di- 

ets, but are more likely to be due to the undeveloped digestive system of 
these species during early larval stages. Extensive studies on the gut struc- 
ture of M rosenbergii (Deru, 1990) and Palaemon elegans (Abubakr, 

1991) reveal that the early larvae lack the anterior midgut diverticulae 

which form the main site for digestive enzyme production during early 

stages in penaeids. The hepatopancreas is also relatively small during early 

zoeal stages, but the volume of this organ increases drastically after stage 
Z5-6. Therefore, it might be expected that a considerable increase in diges- 

tive enzyme activity levels may coincide with the expansion of hepatopan- 

creas after stage Z5, when they are able to survive on artificial diets (Deru, 

1990). 

if an appropriate artificial diet is to be developed for these caridean car- 

nivorous larvae, their digestive physiology, morphology and feeding behav- 

iour must be fully understood. To date, no information is available on gas- 

troevacuation time, feeding behaviour and digestive enzyme response of P. 

elegans in relation to diets. Kamarudin et al., (1994) studied larval diges- 

tive enzymes in M. rosenbergii and concluded that the larvae should have 

enough digestive enzymes to digest artificial diets even during early larval 

stages. However, present studies indicate that carnivorous decapod larvae 
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appear to show low proteolytic enzyme production in comparison to her- 
bivorous penaeid larvae during protozoeal stages. The objective of this 
study was, therefore, to further investigate aspects of digestive physiology, 
such as trypsin activity, gastroevacuation time and feeding behaviour, of 
caridean larvae P. elegans and M rosenbergii, which have similarities in 
larval gut morphology, feeding behaviour and larval development using live 

and artificial diets. 

MATERIALS AND METHODS 

Survival and Growth 

PaIdemon elegans 
Gravid female (50-55 individuals) PaIdemon elegans were collected by 

hand net from shallow intertidal pools on Church Island, Menai Bridge. 

They were placed in an aquarium (I x 0.7 x 0.7 m) supplied by water re- 

circulated through a gravel filter. The prawns were fed fresh mussel, Myti- 

lus edulis, daily and occasionally squid. Water temperature of the aquaria 

was kept at 25 'C by a thermostatically controlled heater. The newly 
hatched larvae were rinsed with UV-irradiated and filtered (0.2 ýIm) sea 

water and stocked at a density of 50 larvae 1-1 into 2-litre round-bottom 

glass flasks, These flasks were previously washed thoroughly with hot wa- 

ter and sodium hypochlorite solution. After stocking the larvae, the flasks 

were placed in a thermostatically controlled water bath at 25 'C and each 

flask was aerated via a silicon rubber tube and a glass rod at the tip. Ar- 

temia cysts and all artificial diets used during the present experiments were 

obtained from INVE AQUACULTURE, Belgium, These diets which con- 

tain 49-57 % protein, 7.5-27 % carbohydrate, 13-23.5 % lipid together 

with mineral and vitamin mixes (Kurmaly et al., 1989a, Amjad et al., 1992) 

and have same energy levels as live feeds (Kurmaly et al., 1989b) have been 

used successfully as a complete replacement for live feeds for penaeid lar- 
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val culture (Jones et al., 1987; Le Vay et al., 1993). Control larvae were 
fed newly hatched Artemia sahna nauplii at 15 ml-1 through all larval 

stages. A Frippak microgranulated diet (PL+150 brand) at 10 mg 1-1 
(100-200 gm) was fed to ZI stage larvae to determine whether it would 
sustain larval survival. Some ZI stage larvae were starved as a control 
treatment. 

In a separate experiment, Z4-5 stage larvae previously fed Artemia in two 
5-1 round-bottom glass flasks were again stocked in 2-1 experimental flasks 

and were starved, fed Artemia (15 ml-1) or a Frippak microgranulated diet 
(PL+300 brand) at 14 mg 1-1 (200-400 gm) until PLI stage. 

The artificial diets were hydrated daily and distributed into the flasks four 

times a day (8.00,14.00,18,00,24.00 h). Larval survival and growth were 

assessed from two replicates for each treatment. Every other day, the water 
in the flasks was renewed and all the larvae were counted. A sample of 10- 

13 larvae were measured from the tip of the rostrum to the end of telson 

under a binocular microscope and staged according to Fincham (1977). 

Growth and survival rates of the larvae were compared using General Lin- 

ear Model (GLM) in Minitab statistical software. 

Macrobrachium rosenbergh 
A gravid female M rosenbergii was placed in a 100-litre freshwater tank 

at 28-29 'C. Newly hatched larvae were siphoned out, rinsed with clean 

water and 50 larvae 1-1 were stocked in 2-litre round-bottom glass flasks 

with water at 12 ppt salinity (S) to assess their survival and growth. Rear- 

ing water was obtained by mixing filtered (0.2 gm) and UV-treated sea 

water with distilled water. Larval culture was conducted at 29-30 'C by 

keeping the flasks in a thermostatically controlled water bath. As early lar- 

vae cannot survive on artificial diets (Deru, 1990), this experiment was 

performed with later stage (Z5-6) M. rosenbergii larvae and continued until 
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metamorphosis. Control larvae were fed Artemia salina nauplii at 15 ml-1. 
A Frippak micro encap sulat ed diet (CD3 type) designed for penaeid mysis 
stages was sieved through 140-gm mesh, and 12 mg 1-1 of the remaining 
larger particles were used to feed the larvae from Z5-6 (12 day-old) to 
ZIO. After this stage, since micro encapsulated diet with larger particles is 

not currently available, 14 mg 1-1 of Frippak microgranulated diet (200-400 

g) was used until the PLI stage. Complete water change of the flasks was 
carried out every other day when larval survival was assessed and total 
length of 10-12 larvae was measured from the tip of the rostrum to the end 
of telson and staged according to Ling (1969a), and New and Singholka 
(1985). Larval growth rates between day 20 and day 28 were compared 
using GLM. 

Trypsin response of M rosenbergii larvae starved, fed artificial diets and 
Artemia was also investigated. For this purpose, stock larvae were reared 
in a 50-1 tank and fed 10-15 newly hatched Artemia nauplii ml-'. At early 
(Z2 and Z4) and late stages (Z6 and Z9), these larvae were transferred into 

2-1 experimental flasks and were starved, fed artificial diets (INVE AQ- 

UACULTURE, Belgium) or Artemia (15 ml-1) for a period of 24 h before 

they were sampled for trypsin analysis. The following artificial diets were 

used; 

(A) 10 mg 1-1 of Frippak CD3 diet (100 pm) for Z2 and Z4 stages, 

(B) 12 mg 1-1 of Frippak PL+150 diet (100-200 p) for Z6 stage, 

(C) 16 mg 1-1 of Frippak PL+300 (200-400 p) diet for Z9 stage. 

At the end of each trial, 30-50 larvae starved, fed on formulated diets,, or 

Artemia were sampled in two replicates for the enzyme assays. Results 

were compared using one-way ANOVA and Tukey's pairwise comparison 

test. 
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Feeding Behaviour and Gastroevacuation time 
The larvae of both species were observed under a binocular microscope in 

petri dishes to assess the gastroevacuation time and feeding behaviour 
during early and late stages. For gastro evacuation time (GET), Artemia 

nauplii with guts full of 30 gm charcoal particles were fed to the larvae 

which were already feeding normally on Artemia. The GET was estimated 
as the difference in time between the appearance of the labelled food in the 
fore-gut and the complete clearance of the hind-gut. Artemia predation 
rate by M rosenbergh larvae was also determined by counting the remain- 
ing Artemia after 24 h in three replicate flasks (500 ml) containing larvae, 

and comparing with control flasks without larvae. In addition, predation by 
larvae on Artemia and formulated diets was also continuously observed for 

3-4 h under the microscope. 

Samples for trypsin assays of P. elegans were obtained from the larvae that 

were reared in three 5-1 round bottom flasks and fed on 15 Artemia nauplii 

ml-1. The same amount of Artemia was used for M rosenbergii larvae 

reared in a 10-litre round bottom glass flask. 50 % of the water of these 

large flasks was renewed daily. Various numbers of larvae (50 for early and 
25 for late stages), starved, fed Artemia or artificial diets, were transferred 

$1 
into I -ml microtest tubes and stored at -70 OC in a ultracold freezer before 

the enzyme assays were conducted. Whole homogenates were used in the 

enzyme assays as explained in General Material and Methods (GMM). 

Trypsin activity was expressed as total trypsin activity in International Unit 

(IU) larva-1 and specific trypsin activity in IU [tg-1 dry weight. For this 

purpose, the dry weight (DW) of M rosenbergii larvae was used from 

Deru (1990). Samples of P. elegans (15 animals for each replicate and 

stage) larvae were washed in distilled water and oven dried on pre-weighed 

fine meshes at 60 'C for 24-36 h until constant weight was obtained. Meas- 

urement of the larval dry weight (in two replicates) was carried out as de- 

scribed in GMM, and the results are summarised in Table 1. 
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RESULTS 

Survival and Growth 

Palaemon elegans 
Most of the larvae of P. elegans hatched at night during the full-moon. The 
larvae fed Artemia passed through 9 larval stages and developed into post- 
larvae within 12 days at a temperature of 25 'C and at 32.5 ppt S. The 

mean final survival and total length of the larvae were 88.5 % and 6.72 mm 
respectively. The PL+150 diet did not promote survival of the early larvae 
further than stage Z4. (Figures la, b). Although some larvae consumed the 
formulated diet and grew slightly better than starved controls (Figures la, 
b), complete mortality occurred on the 12th day of culture. Starved larvae 

perished within 6 days reaching only stage Z2. 

When larvae previously fed Artemia were transferred at Z4-5 stages to ar- 
tificial diet, they passed into stage postlarvae I (PLI) with a final mean 

survival of 49 % and 5.64 mm total length (Figures 2a, b). Mortality rate of 
larvae fed the artificial diet (4.73 % day-) was significantly (P<0.001) 

higher than that (0.74 % day-) of larvae fed live Artemia. Larvae fed Ar- 

temia displayed significantly (P<0.001) higher growth rate (0.304 min 

day-) than those fed the artificial diets (0,103 min day-'). The development 

of the larvae fed formulated diets was retarded by 2-3 days, Larvae starved 

after stage Z4-5 survived only until stage Z7. Table I gives the dry weight 

of P. elegans and a comparison of its total length by different authors. 

Macrobrachium rosenbergii 
Since Brewster (1987) and Deru (1990) reported that M rosenbergii 

cannot be reared on artificial diets during early stages, a Frippak CD3 mi- 

croencapsulated diet (MED) was offered to the larvae only after Z5-6. 

These larvae developed from stage Z5-6 to PLI within 16-17 days, but 

three days later than those in the Artemia control treatment. Figure 3a 
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shows that the mortality of MED-fed larvae was very high and larval 
growth was very slow between day 12 and day 20 possibly as a result of 
poor digestion during this period. Hence, their survival and growth were 
very similar to starved controls. After this adaptation period, their survival 
and growth curves followed those of larvae fed live Artemia nauplii (Figure 
3b). Comparison of growth rates of larvae between day 20 and day 28 indi- 
cate that larvae fed artificial diet had an equal growth rate (0.352 mm 
day-) to those fed live Artemia (0.324 mm day-) during this period (P> 
0.05). Finally, 28 % of the of larvae fed the artificial diets metamorphosed 
into PLI with an average total length of 9.98 mm compared to 88.5 % 

mean survival of Artemia-fed larvae with an average length of 11.2 mm. 
The starved larvae moulted through only one further stage before dying on 
day 10. A high degree of cannibalism was observed among starved larvae 

and those fed capsules, particularly during the first week of the trial. 

Feeding Behaviour and Gastroevacuation Time 

The feeding behaviour of both species of larvae was observed during early 

and late stages. These caridean larvae generate a water current that brings 

the food particles and prey towards the mouth. Each time a live Artemia 

nauplius was captured by abdominal appendages, it was ingested com- 

pletely before another one was caught. After ingestion, digestion, and ex- 

cretion,, which took approximately 20 min in early stage (Z2) M rosen- 

bergii, the larvae captured another Artemia nauplius. Larvae appeared to 

catch the prey by chance and capturing attempts were not always success- 

ful. When artificial particles were offered, M. rosenbergii larvae were ob- 

served to grasp and ingest the particles. However, unlike live Artemia 

nauplii, they did not consume the particles completely and some rejections 

occurred. The larvae (Z2) eagerly grasped particles when Artemia juice, 

prepared by crushing and filtering (20 gm) newly hatched nauplii, was 

added into the water with the artificial diet. Palaemon elegans early larvae 

appeared to be less selective in comparison to Macrobrachium larvae, 
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readily accepting artificial diet particles. Otherwise, the feeding behaviour 

of both species of caridean larvae was similar. When stage Z2 Macrobra- 

chium larvae were stocked in three flasks (500 ml) and fed 10 Artemia ml-1. 
3.6 ± 0.69 ml-I nauplii were left after 24 h. However, in control flasks 

stocked with only Artemia, 7.8 ± 1.22 ml-I nauplii were found after 24 h. 
From these results, it may be concluded that the predation rate of M ro- 
senbergii larvae is circa 3,5 Artemia h-I at stage Z2. 

Continuous observation of some of the larvae for four h under the micro- 
scope also revealed that M rosenbergii Z2 larva captured one Artemia 

naupli about every 20 min, equivalent to 2.7 nauplii h-1. Following inges- 

tion, charcoal labelled Artemia were visible in the gut and intestine of the 
larvae facilitating assessment of GET. It appears from Tables 2-3 that the 
GET of both species was quite similar. Early M rosenbergii larvae (Z2-Z6) 

retained the food for about 10-20 min in their gut. However, the GET of 
late larvae was found to be 2-3 times longer (50 min at stage PLI) than for 

early stages. Similarly, P. elegans larvae also displayed a short GET (15- 

16 min) between Z2-Z6, and a longer GET during Z9-PLI stages (30-50 

min). 

Trypsin Activity 

PaIdemon elegans 
The larvae of P. elegans displayed low total (per organism) and specific 

(per pg-1 dry weight) trypsin activity between stage ZI and Z4 (Table 2). 

The level of specific trypsin activity (about five fold) and total trypsin ac- 

tivity (7 fold) increased sharply at stage Z5 in comparison to that of stage 

ZI. After this peak, specific trypsin level declined steadily until Z9 stage. 

The relationship of trypsin activity to GET, and volume of hepatopancreas 

(HP) / organism dry weight (DW) are plotted together in Figure 4. This 

shows that during the first four zoeal stages, total trypsin activity, specific 

trypsin activity and HP / DW ratios of the larvae displayed the same trend. 
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A low HP / DW ratio corresponded to a low level of trypsin activity. At 
stage Z5, the 4-5 fold increase in trypsin activity coincided with a doubling 
in HP / DW ratio and the shortest GET. After the peak at stage Z5, specific 
trypsin activity declined sharply, although the HP / DW ratio continued to 
rise,, but the larvae retained the food for longer periods in their gut. 

Macrobrachium rosenbergii 
As for P. elegans larvae, M rosenbergh larvae also showed similar low 

total and specific trypsin activities during early stages (ZI-Z5) with a sharp 
increase (3-3.5 fold) at stage Z6 (Table 3). Specific trypsin activity for Z6 
larvae was 6.3 5x 10-5 IU gg-1 DW in comparison to 1.26 x 10-5 IU gg-I 
DW for stage ZI. At Z6, this sharp increase in trypsin level occurred during 

a period when there was a large increase in HP / DW ratio (Figure 5) with 
the shortest GET. Although the pattern for total trypsin activity levels and 
HP / DW was similar for all larval stages, specific trypsin activity in the 

late larvae was very low (Figure 5) as a result of a large increase in body 

dry weight after stage Z5-6. During late larval stages, the filter apparatus is 

formed (Deru, 1990) and GET becomes much longer. 

Figure 6 shows that trypsin activity during early stages of M rosenbergii 

larvae (Z2 and Z4) starved, fed the Frippak diet and Artemia for 24 h was 

not significantly different (P>0.05). However, the late larvae (Z6 and Z9) 

fed artificial diet produced significantly (P<0.05) higher trypsin activities 

compared to those of starved and fed Artemia. In all cases, starvation for 

24 h depressed larval trypsin activity. 



Figures I a, b. Survival (%) and total length (mm) of P. elegans larvae starved, and 
reared on two feeding regimes from ZI to PLI stage. Each symbol represents a 
mean ± s. d. 

, n--2. 

Figures 2a, b. Survival (%) and total length (mm) of P. elegans larvae starved and 

reared on two feeding regimes from Z4-5 to PLI stage. Each symbol is a mean 

s. d. 
, n=2. 
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Figures 3a, b. Survival (%) and total length (mm) of M rosenbergii larvae 

starved fed Artemia, and artificial diet from Z4-5 to Pl, stage. Each symbol is 

a mean ± s. d.,, n=2. 
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weight = DW), volume of the hepatopancreas (BP) / DW ratio and gastroevacua- 

tion time (GET) for M. rosenbergii larvae fed live Artemia nauplii throughout all 

larval stages. HP volume and DW were taken from Deru (1990). Each value for 

total and specific trypsin activity is a mean ± s. d. (n=2 for each treatment and n=3 

for each assay). 
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Table 1. Body dry weight (gg) and total length (mm) of Palaemon elegans larvae fed Artemia 
nauplii from ZI to PLI, Each dry weight value represents a mean ± s. d., n--2 (15 animals for 
each stage and replicate). 

Larval Dry weight 
Stage (pg) 

zi 60.45 0.64 
Z2 72.65 0.92 
Z3 113.48 0.73 
Z4 116.95 1.34 
Z5 122.71 0.12 
Z6-7 174.63 ± 0.95 
Z8 205.61 ± 2.23 
Z9 223.40 ± 0.09 
PLI 

Total length (mm) 

Present Fincham Tsurnamal Ghamrawy 
Experiment (1977) (1 963)__ 

_(1976) 3.0-3,2 2.8-3.2 2.2-2.80 2.6-2.8 
3.5-3.9 3.0-3.4 2.9-3.20 2.9-3.1 
4.14.5 3.3-3.8 3.6-3.75 3.5-3.7 
4.4-4.9 3.4-4.1 4.14.60 4.14.5 
4.8-5.3 4.2-4.8 4.3-5.40 4.7-5.3 
5.6-6.0 4.8-6.6 6.0-6.71 5.8-6.4 
6.0-6.5 6.0-6.6 6.5-6.75 6.3-6.9 
6.7-6.9 7.0-8.0 
7.0-7.9 7.5-8.4 6.7-7.00 

Table 2. Total (x 10-41U larva-') and specific trypsin activity (x 10-5 IU gg-I dry weight= DW) 
of P. elegans larvae reared on Artemia from ZI to PLI. Each value is a mean ± s. d. 

, n=2 for 
each stage and n=3 for each assay. 

Stages Total trypsin activity Specific trypsin activity GET (min) 
(X 10-4 ][Ij larva -1) (x 10-5 IU gg-1 DW) 

zi 10.347 ± 2.886 
Z2 14.023 ± 1.369 
D 14.640 ± 0.929 
Z4 16.426 ± 1.264 
Z5 76.733 ± 7.867 
Z6-7 60.507 ± 4.192 
Z8 50.534 ± 5.351 
Z9 38.199 ± 2.305 

1.712 ± 0.065 16.28 ± 2.138 (n = 7) 
1.930 ± 0.023 
1.290 + 0.009 
1.405 ± 0.052 
6.253 ± 0.166 15.57 ± 2.149 (n = 8) 
3.465 ± 0.093 
2.458 0.062 
1.710 0.079 31.17 ± 4.915 (n = 6) 

50.60 ± 6.473 ýn = 5) 

Table 3. Total (x 10-4 IU larva-') and specific trypsin activity (x 10-5 IU Rg-1 dry weight = 
DW) of M. rosenbergii larvae fed live Artemia nauplii from ZI to PLI. Each value represents a 
mean ± s. d., n=2 for each stage, and n=3 for each assay. 

Stages Total trypsin activity Specific trypsin activity GET (min) 

(X 10-4 IU larva) (X 10-1 lu Ag-I ) 

zi 8.927 ± 0.578 
Z2 19.878 ± 2.518 
D 25.729 ± 2.377 
Z4 22.789 ± 2.685 
Z5 74.425 ± 5.665 
Z6 82.122 ± 5,451 
Z7 45.317 ± 3.788 
Z8 38.037 ± 1.498 
Z9 44.102 ± 3.434 
zio 42.689 ± 2.096 
Zil 52.613 ± 1.460 

1.257 ± 0.052 
2.338 ± 0.362 20.00 ± 1.224 (n = 10) 
2.680 0.429 
2.213 0.175 
6.346 0.738 
5.438 0.812 10.30 ± 1.259 (n = 8) 
1.630 0.279 
0.738 0.019 
0.856 ± 0.066 
0.674 ± 0.062 50.50 ± 7.593 (n = 9) 
0.661 ± 0.018 
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DISCUSSION 

P. elegans larvae fed 15 Artemia nauplii ml-I started to metamorphose into 
the PLI stage within only 12 days at a temperature of 25 'C with over 88 
% survival. Lower densities of live diet with lower temperatures are known 
to lengthen the duration of metamorphosis. For example, when Brewster 
(1987) fed Palaemon larvae on 10 Artemia nauplii ml-1 at 20 'C, the larvae 

metamorphosed into PLI within 19-21 days. YUfera and Rodriguez (1985) 

reported that Palaemon serratus larvae ingested more Artemia nauplii at 
25 'C than at 20 'C. In the present study, high temperature did not seem 
to affect inversely the growth and survival of P. elegans larvae (see Table 

1). M rosenbergii larvae started to metamorphose into PLI on day 24 

when they were fed live Artemia (15 ml-1) nauplii at 29 'C and 12 ppt 
(New, 1990). Moulting frequencies of both species of larvae were observed 
to be non-synchronised particularly after stage Z5-6. 

P. elegans ZI larvae fed artificial diet survived 12 days but never reached 

stage Z4, This is in agreement with Brewster (1987) who also failed to rear 

the early larvae on artificial diets. The latter author reported that the larvae 

were unable to survive on microencapsulated diets beyond day 9 and stage 

Z2-3. In the present study, although the larvae consumed the artificial diet 

and tended to retain it in their guts longer than Artemia, they were only 

able to survive 10 days, which was 2-3 days longer than starved larvae 

(Figure I a). Similarly, M rosenbergii larvae have not been reared success- 

fully on artificial diets alone (Sick and Beaty, 1975; Murai and Andrews, 

1978; El-Gamal, 1987) particularly during early larval stages (Deru, 1990). 

In current studies,, an attempt to rear these larvae from Z5-6 on a MED re- 

sulted in 28 % survival until PLI stage with 2-3 days retardation in larval 

development compared to Artemia fed control (Figure 3a). P. elegans late 

larvae (Z4-5), previously fed live diet, were also successfully reared until 

PLI stage on a microgranulated diet (49 % survival) with a similar 2-3 days 
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retardation and slower growth (Figures 2a, b). Like penaeids, caridean lar- 
vae do not actively capture their prey, but rely on chance encounter and the 
abundance of food in the culture media (Jones et al,,. 1975; Moller, 1978). 
It is necessary to use large food particles when rearing these caridean lar- 

vae and this results in a high settlement rate of the food particles causing 
larval fouling and possibly bacterial growth (Jones et al., 1975). The ab- 
sence of sufficient food particles may also reduce the ability of the larvae to 
catch sufficient food (New, 1990). Once a larva captures an Artemia nau- 
pli, it is consumed completely before prey foraging is recommenced. In 

contrast, artificial particles were often only partially consumed and kept 
longer in the gut. When Artemia nauplii juice was added into the water, 
diet particle capture was more frequent suggesting that the artificial diet 

lacks attractants (Jones et al., 1975, Moller, 1978). 

Trypsin is the dominant proteolytic enzyme in crustacean larval digestion 

(MacDonald et al.,,, 1989; Lovett and Felder, 1990a) and is thought to be 

responsible for 40-60 % of total proteolysis in the hepatopancreas (HP) of 

P. kerathurus and P. japonicus (Galgani et al., 1984). Present results show 

that both M. rosenbergii and P. elegans larvae have low levels of trypsin 

activity between stages ZI and Z4-5, but that these levels rise sharply (3-6 

fold) at Z5-6 stages (Figures 4,5). Similarly, Van Wormhoudt (1973) re- 

ported a sharp increase in protease activity at Z5 stage larvae of Palaemon 

serratus. It is known that diets influence digestive enzyme activity but since 

the same prey organism (Artemia) was given throughout all larval stages, 

the sharp increase in trypsin level at Z5-6 is related to development of the 

gut. Figures 4 and 5 demonstrate that this rapid increase in enzyme activity 

coincides with the rapid expansion of the hepatopancreas at Z5 in P. ele- 

gans, and at Z6 in M rosenbergii larvae. It appears that the present results 

are in disagreement with Kamarudin et al., (1994) who reported high spe- 

cific trypsin activities in M. rosenbergii larvae ranging from 13.2-30.84 x 

10-5 JUpg-' DW during early stages (ZI-Z5) to 7.7-9.13 x 10-5 JUpg-1 DW 
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during late larval stages (Z6-PLI). The present study demonstrates that av- 
erage specific trypsin activity for early stages of P. elegans (1.58 x 10-5 JU 

gg-' DW) and M rosenbergii (2.09 x 10-5 IU gg-1 DW) is very low in 

comparison with specific trypsin activity of penaeid larvae such as P. 

monodon (Kumlu et al., 1992) and P. japonicus (Kamarudin, 1992; Le Vay 

et al., 1993), which ranges from 29-38 x 10-5 to 42.68 x 10-5 JU Pg_1 DW) 

respectively, during protozoeal stages (PZI-PZ3). This high digestive ac- 
tivity and short GET in penaeid larvae may be an adaptation to the lower 

energy natural food source of microalgae and to poorly digestible artificial 
diets (Jones et al., 1993). 

Caridean larvae, particularly P. elegans, with guts full of artificial diets 

show poor growth and survival, suggesting that these larvae cannot digest 

or possibly assimilate enough artificial diet to supply growth requirements 
due to low levels of digestive enzymes during early stages. Lack of a gas- 
tric mill and filter apparatus until stage Z3 in M rosenbergii (Deru, 1990) 

and Z4 in P. elegans (Abubakr,, 1991) together with low trypsin activity 
dictates a requirement for an easily digestible food with a high energy con- 

tent during early zoeal stages. Although trypsin levels of the larvae of both 

species were very low during early zoeal stages, Artemia fed larvae man- 

aged to survive without high mortality or depressed growth suggesting that 

this live diet fulfils all necessary physical and nutritional requirements and 

is easily digestible. Recently, Lovett and Felder (1990a, b) proposed that 

the decrease in endogenous enzyme production after stage MI in Penaeus 

setiferus may be due to replacement by exogenous enzymes supplied from 

Artemia nauplii. Several authors also state that exogenous enzymes from 

live Artemia nauplii contribute to the autolysis of the prey and help diges- 

tion in fish larvae (Dabrowski, 1979; Munilla-Moran et al., 1990). How- 

ever, contribution of exogenous enzymes from the prey (Artemia) to the 

digestion process of M rosenbergii larvae and penaeid larvae has been 

measured and found to be insignificant (Jones et al., 1993; Kamarudin et 
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al., 1994). Although during late larval stages the HP / DW ratio continued 
to increase, trypsin production in both caridean prawns declined until PLI 

when they were fed Artemia. The low levels of trypsin during late larval 

stages may be compensated for by retention of the food for longer periods 
in the more fully developed gut (Figures 4,5). Mayzaud (1986) suggested 
that there may be a feed-back mechanism between the activity of digestive 

system and the energy demand of an organism, and that any change in en- 
ergy requirement will induce an activation or repression of digestive en- 
zymes. In the present study, although increase in volume of the HP coin- 
cides with a sharp increase in trypsin activity at stage Z5-6 (Figures 4,5), 
dramatic increase in GET (3-5 times) during late larval stages may compen- 

sate for the need to increase digestive enzyme secretion during these stages 

when the larvae are feeding on easily digestible live Artemia (Le Vay et al., 
1993). 

In contrast to the situation in early stages, trypsin activity is enhanced in 

response to artificial diets during late larval stages. As Z6 and Z9 stages 

of M rosenbergii fed artificial diet produced higher levels of trypsin activ- 
ity than when fed live Artemia (Figure 6), and both feeds contain similar 

protein and energy levels (Amjad et al., 1992), it is likely that protein in 

artificial diets is less digestible. Similarly Jones et al., (1993), and Ka- 

marudin et al., (1994) also reported higher trypsin activities for P. mono- 

don, P. japonicus and P. indicus (see Chapter 5) when fed artificial diet 

rather than live diets during mysis stages. It appears that caridean late lar- 

vae exhibit a similar digestive strategy to penaeid mysis stages by elevating 

trypsin secretion when dietary protein is scarce or poorly digestible 

(artificial diets) and reducing secretion when protein is digestible and read- 

ily available (Artemia). Since proteolytic enzyme activity in early caridean 

larvae is low and stimulation of production levels does not appear to be 

possible, it is suggested that pre-digested and/or digestive enzymes should 

be incorporated into artificial diets for rearing these species. 



CHAPTER 7 

TRYPSIN ACTIVITY AS A TOOL TO DESCRIBE FEEDING STRATEGIES OF 

DECAPOD CRUSTACEAN LARVAE. 
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INTRODUCTION 

Crustacean larvae employ different feeding strategies in the plankton to 
utilise food sources most efficiently until they metamorphose and become 
benthic. Newly hatched larvae first rely on their internal food sources for a 
few days, depending on the species, but once these sources have been de- 

pleted they require external feeds to meet their energy demands. With the 

exception of the early stages of penaeids (Wilkenfeld et al.,, 1984, Jones et 
al, 1993) most larvae of decapod crustaceans are predominantly considered 

as carnivorous (McConaugha, 1985). 

Studies conducted in the laboratory have shown that the primary food 

varies according to the feeding mechanism of the species, carideans such as 
Macrobrachium rosenbergii (Ling, 1969a, b; Deru, 1990; Kamarudin et al.,, 
1994) and Palaemon elegans (Rochanaburanon and Williamson, 1976; 

Brewster, 1987), lobsters such as Homarus americanus (Anger et al., 
1985), H. gammarus (Kurmaly et al., 1990; Abubakr, 1991) and Nephrops 

norvegicus (Figueiredo and Vilela, 1972; Anger and Puschel, 1986) hatch 

as zoea and can directly feed upon zooplankton throughout larval stages. In 

one investigation, however, Crangon nigricauda has been shown to suc- 

cessfully develop ifito the metamorphosis solely on a live algal diet 

(Villamar and Brusca, 1987). Some decapod species are also known to 

change their feeding strategies during their larval development. For exam- 

ple, early planktotrophic stages of C. maenas feed initially on phytoplank- 

ton and shift to zooplankton during later stages (Williams,, 1968; Rice and 

Williams, 1970). Similarly, studies with penaeids have shown that although 

these larvae are able to survive on zooplankton such as Artemia nauplii and 

nematodes throughout larval development (Wilkenfeld et al., 1984; Chap- 

ters 3,4), they are best cultured on microalgae during zoeal and then on an 

animal prey (mainly Artemia) during mysis stages until the metamorphosis 

(Hudinaga, 1942; Emmerson, 1980, Yufera et al., 1984). 
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Studies on larval digestive physiology help to understand the nutritional 
requirements and feeding ecology of an organism, It is known that digestive 

enzymes in larval decapod crustaceans are associated with development of 
the gut morphology (Jones and Kurmaly, 1987, Deru, 1990; Lovett and 
Felder, 1990a; Abubakr and Jones, 1992; Jones et al., 1993) and may be 

modified by diets (Kamarudin, 1992; Kumlu et al., 1992, Harms et al., 
1994). Although there is a large body of literature related to gut morphol- 
ogy and digestive physiology of juvenile and adult decapod crustaceans 
(Yonge, 1924; Young, 1959; Dall, 1967; Van Weel, 1970; Barker and Gib- 

son, 1977), research on larval gut morphology and digestive physiology is 

relatively recent. Lovett and Felder, (1989; 1990a, b) and Abubakr and 
Jones (1992) have extensively studied the larval gut morphology and di- 

gestive physiology of several penaeid species. The gut morphology of the 

caridean (P. elegans and M rosenbergh), lobster (H. gammarus) and crab 
larvae (C. maenas) were investigated in detail by Deru (1990) and Abubakr 

(1991). The results revealed that decapod larvae have simple digestive 

systems, thus digestion is reliant upon their endogenous digestive enzymes 

with fast gastric emptying time for relatively less digestible feeds (e. g. al- 

gae or artificial diets, or for easily digestible prey e. g. zooplankton) and 

longer food retention time (Jones et al., 1993). 

The studies with penaeid larvae (Kamarudin, 1992; Kumlu et al., 1992; Le 

Vay et al., 1993) have demonstrated that proteolytic digestive enzymes, in 

particular trypsin, which plays an important role in digestion of proteins in 

decapod crustaceans (Gibson and Barker, 1979; Galgani et al., 1984), has a 

high activity level and may be responsible with fast GET to enable the pe- 

naeids to survive solely on algae or artificial diets during larval develop- 

ment (Jones and Kurmaly, 1987). Digestive enzymes show considerable 

variation during ontogeny regardless of the type of diets. Investigations 

with caridean larvae P. elegans and M rosenbergii in Chapter 6 suggest 

that, in contrast to penaeid larvae, these carnivorous larvae have limited 
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enzymatic capabilities during early larval development, and that increase in 
digestive enzymes at Z4-5 stages with longer food retention time may ex- 
plain the ability of the late larvae to survive on relatively less digestible 
feeds (artificial diets) compared to zooplankton. Of the commercial species, 

only larvae with a high digestive enzyme activity have been successfully 

cultured on formulated diets to metamorphosis. To date, attempts to cul- 
ture larvae that display low trypsin activity have always failed (Deru, 1990, 

Kurmaly et al., 1990). 

Yonge (1937) stated that carnivorous crustaceans have more active prote- 

ases and weak carbohydrases compared to herbivorous ones. However, 

Degkwitz (1957: cited in Sather, 1969) found no relation between digestive 

enzymes and feeding mode of crustaceans. When Sather (1969) compared 
digestive enzyme activities in midgut of some crustaceans, he found that 

omnivorous and herbivorous animals show higher proteolytic enzymes 

compared to carnivorous ones. From the trypsin results obtained from the 

species studied in Chapter 5 (P. indicus), Chapter 6 (P. elegans and M. ro- 

senbergii) and the literature (Kamarudin, 1992; Kumlu et al., 1992; Le Vay 

et al.,. 1993), it is proposed that determination of trypsin activity (IU gg-1 

dry weight) may be a good indicator of the feeding strategy and the ability 

of crustacean larvae to survive on artificial diets. In addition to data avail- 

able in the literature and previous chapters of this work, larval trypsin ac- 

tivity of two carnivorous species from the Family Nephropidae (Homarus 

gammarus and Nephrops norvegicus) and one brachyuran crab species 

(Carcinus maenas) were investigated at each stage of larval development 

through metamorphosis. Two calanoid copepod species (phytoplankton 

grazers) Centropages typicus and Temora longicornis, which do not belong 

to Order Decapoda, collected from the Menai Strait (UK) were also studied 

for this enzyme as they represent herbivorous or omnivorous grazers. Fi- 

nally, specific trypsin activities of II different species larval crustaceans 

representing herbivorous, carnivorous and omnivorous are compared. 
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MATERIALS AND METHODS 

Lf - humarus gammarus 

European lobster, H. gammarus, larvae were obtained from the Sea Zoo, 

Anglesey, UK. The larvae, which were feeding on frozen mysids in 100-1 

conical tank at 15-17 'C and 34 ppt S (as described in Beard and Wickins, 

1992) were immediately (20 min) transferred to the School of Ocean Sci- 

ences, Menai Bridge, UK in 5-1 sea water in a polythene bag in a styrofoam 

container. Larval stages were identified as described by Nichols and Law- 

ton (1978) and sorted under a binocular microscope for the stages. 10 lar- 

vae for stage 1,11, and III and 5 larvae at megalopa stage were taken into 

1.5 ml microtest tubes for trypsin assays in duplicates. These samples were 

stored in a ultracold freezer (-74 'Q until the enzyme analysis. At least 

triplicate enzyme assays were performed for each larval stage and replicate. 

Trypsin assays were conducted with the method described in General Ma- 

terials and Methods (GMM). Specific trypsin activity was obtained by di- 

viding total trypsin activity by larval body dry weight obtained from Kur- 

maly (1989). 

Carcinus maenas 
Ovigerous C. maenas females were collected from the Menai Strait using a 

hand net. Ripe eggs were carefully removed from females using forceps and 

placed in shallow trays in sea water at room temperature of 18-19 'C for a 

few days. Newly hatched ZI larvae were stocked in two 5-1 round bottom 

glass flasks in filtered (0.2 ýLm) and UV treated sea water at room tempera- 

ture and fed on 10 Artemia nauplii ml-1. Everyday, 50% of the culture wa- 

ter was exchanged and larval stages were identified (Rice and Ingle, 1975). 

The numbers of larvae sampled for trypsin activity for each replicate were 

100 for ZI., Z2ý1 70 for Z3,, Z4 and 50 for megalopa stages. Samples were 

kept in a ultra-cold freezer (-74 'C) until the enzyme assays were con- 
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ducted. Two replicates for each stage and at least three replicates for each 
assays were performed for larval trypsin activity as described in GMM. 

ATephrops norvegicus 

Larvae of N. norvegicus! were obtained from ovigerous females kept in a 
thermostatically controlled recirculation system at 14-15 'C and 34 ppt S at 

the School of Ocean Sciences, Menai Bridge, UK. Newly hatched larvae 

were fed on Arlemia nauplii (5-10 ml-') in 2-1 round bottom glass flasks 

until the samplings were performed, Two replicates of larval samples (10- 

15 larvae for each replicate) for stage 1,11, and III were stocked in 1.5 ml 

microtest tubes for trypsin analysis and for body dry weight. Larval stages 

were identified according to Jorgensen (1925) and Figueiredo and Vilela 

(1972). The larval samples were kept in a ultra-cold freezer (-74 'Q until 

the assays were conducted for trypsin activity. Larval body dry weight and 

trypsin assays were determined by the method explained in GMM. 

Centropages typicus and Temora longicornis 

Two calanoid copepod species, C. typicus and T longicornis were col- 

lected from the Menai Strait using a fine plankton net, which was towed 

slowly behind a boat for 10 min. The plankton samples were immediately 

brought to the laboratory (in 20-1 bucket) where the zooplankton was con- 

centrated on one side of the container and siphoned out into a 0.5-1 glass 

beaker, The beaker was then kept on crushed ice to reduce the activity of 

the animals, A binocular microscope was used to select the most abundant 

calanoid copepod species placed on a counting tray. Among three species 

C. typicus, T. longicornis and Paracalanus parvus, the first two species 

were sampled for trypsin assays and body dry weight. 100 animals were 

sampled for each replicate (in duplicate) for the enzyme assays and body 

dry weight determination (GMM). 

Larval trypsin results were compared using one-way ANOVA and Tukey's 

pairwise comparison test in Minitab. 
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RESULTS 

L1_ 

humarus gammarus 

Figure I and Table I show total and specific trypsin activities of H. gam- 
marus larva fed on frozen mysids during larval development. The larval 

total trypsin activity showed a gradual increase from stage 1 (67.19 x 10-3 
IU larva-') to stage IV (92.84 x 10-3 IU larva-'). Stage III and IV larvae had 

significantly higher trypsin activity than larvae at stage I and 11 (P<0.05). 
Specific trypsin activity of the larvae displayed a continuous decline from 

the first stage (3.07 x 10-5 IU gg-) to stage IV (L 12 x 10-' IU gg-1). Stage 

I larvae had the highest specific trypsin activity whereas stage IV larvae 

had the lowest (P<0.05). During stage 11 and 111, specific trypsin activity of 
the larvae did not change significantly (P>0.05). 

Table 1. Total, specific trypsin activity and larval body dry weight of H. gammarus lar- 
vae fed frozen mysids from stage I to stage IV. 

Stages Total trypsin activity Specific trypsin activity (*)Body dry 
(10-3 IU/Iarva) (XIO-5 IU/gg DW) weight (gg) 

Stage 1 67.185 ± 3.089 3.068 ± 0,741 2190 

Stage Il 75.586 ± 0.844 2.221 ± 0.368 3380 

Stage 111 87.398 ± 2.265 2,101 ± 0.373 4370 

Stage IV 92.838 ± 4.793 1.129 ± 0.211 8270 

(*) Values for larval dry weight were taken from Kurmaly (1989). 

Nephrops norvegicus 
Larval total and specific trypsin activities of N. norvegicus are presented in 

Figure 2 and Table 2. The data shows that trypsin activity per organism in- 

creased drastically from stage I to stage 111. Increase in total trypsin activ- 

ity between stage I and stage II was more than three fold, whereas the in- 

crease between stage 11 and stage III was 1.5 fold (P<0.05). Lowest spe- 

cific trypsin activity was exhibited by stage I larvae. Specific trypsin activ- 
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ity of stage 11 larvae was almost 2.5 times more than larvae at stage 11 and 
1.3 times more than larvae at stage 111. 

Table 2. Total, specific trypsin activities and body dry weight of N. norvegicus at stage 1,11 and III fed on Artemia nauplii. 

Stages Total trypsin activity Specific trypsin activity Body dry weight 
( XIO-4 IU/larva) (xlO-5 IU/gg DW) (Ag) 

Stage 1 50.634 :L6.097 0.850 ± 0.067 595.350±67.387 

Stage 11 165.927 ± 5.255 2.114 ± 0.059 785.000±15.633 

Stage 111 245.003 ± 16.613 1.638 ± 0,113 1495.553±62.930 

Carcinus maenas 
Figure 3 and Table 3 show total and specific trypsin activities of C. maenas 
during larval development through megalopa stage. Newly hatched non- 
feeding stage ZI larvae displayed the lowest trypsin activity (P<0.05). 

When the larvae fed Artemia nauplii for a period of 48 h, trypsin activity 

per larvae significantly increased from 33.23 x 10-4 IU larva-' to 38.53 x 
10-4 IU larva-. The larvae showed a very sharp increase in total trypsin ac- 

tivity between Z2 and Z4 stages. This increase was 61 % between Z2 and 

Z3 and 41 % between Z3 and Z4 stages. 

Once the larvae metamorphosed into megalopa stage, however, trypsin ac- 

tivity dramatically dropped from 199.45 x 10-4 larva-' (Z4) to 36.38 x 10-4 

IU larva-'. Specific trypsin activity of the crab larvae did not show a great 

variation during larval development, except the megalopa stage. ZI and Z4 

stage larvae had showed significantly lower specific trypsin activity than 

that Z2 and Z4 stage larvae (P<0.05). The enzyme level did not signifi- 

cantly change between Z2 and Z4 stage. Megalopa larvae had 10-11 times 

less trypsin activity (gg-1 DW) in comparison to the previous larval stages. 
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Table 3. Total, specific trypsin activity and larval body dry weight of C. maenas dur- 
ing larval development. 

Stages Total trypsin activity Specific trypsin activity Body dry weight (*) 
(X 10-4 IU/Iarva) (X 10-5 IU/gg DW) (Ag) 

zi 33.230 ± 0.039 17,235 0.023 19.28 

ZI(48 fed) 38.528 ± 3.209 - 
Z2 87,954 ± 1.742 26.669 0.052 32.98 

Z3 141.550 ± 3.107 26.015 0.075 54.41 

Z4 199.450 ± 1.657 20.397 0.034 97.78 

Megalopa 36.281 ± 0.799 2.224 0.047 163.13 

(*) Dry weight values of the larvae were taken from Dawirs et al., (1986). 

Centropages typicus and Temora longicornis 

Total and specific trypsin activities of C. typicus and T longicornis are 

presented in Table 4. Total trypsin activity (per organism) of C. typicus 

was relatively lower than that of T. longicornis (see Table 4). Similarly, the 

former displayed also lower trypsin activity per gg dry weight compared to 

the latter one. Dry weight of T longicornis and C. typicus were 7.85 [Ig 

and 6.22 pg respectively (see Table 4). 

Table 4. Total, specific trypsin activities and dry weight of C. typicus and T. longicor- 

nis collected from the Menai Strait, UK. 

Species Total trypsin activity Specific trypsin activity Dry weight 

(XIO-4 IU organism-') (xlo-5 JU gg-1 DW) 
- 

([-tgL- 

Centropages 
typicus 25.058 ± 0.761 40.286 ± 1.235 6.22±0.282 

Temora longi- 41.730 ± 0.483 53.159 ± 1.015 7,85 ± 0.88 

cornis 



Figure 1. Total (x 10-3 IU larva-) and specific (x 10-5 IU gg-1) trypsin activi- 
ties in H. gammarus larvae fed on frozen mysids between stage I and stage IV. 
Each bar is a mean ± s. d. (n=3). 

Figure 2. Total (x 10-4 IU larva- 1) and specific (x 10-5 JU [jg-1) trypsin activities 
in N. norvegicus larvae fed on Artemia nauplii between stage I and stage 111. 

Each bar is a mean ± s. d. (n=3). 
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Figure 3. Total and specific trypsin activity of C. maenas 

larvae fed Artemia nauplii from Z1 to megalopa stages. 

Each bar represents a mean ± s. d. (n=2). 

Ct) 



E 
03 

cz 

cz 
0 

as 

0 

0 

.0 

J. " 

lý 
rA 

-H 

cu 

4cl> 

(1) 

-0 rA rA 0 ID 
5-0 
0' c2. (V rA to 

W 

I.. 

rA 

(0) 

I 

(Oh 

0I 

U) 0 (4) (D 
(1) a) 4) 

CL - (N - CL-- 
r4 0) (N (N N (» >, >ý 
0) 0) CF) 0) 0) a)-a 13 

0)0) 

Zr Z] '- r cu :3 r_ .-cc: (U ---- 
.-ý in. - 

r_ r_ - -- LD -- -- , (D (0 0) a) W 

EEEE '2- cL 
m mmm0Zmm 

CL 2 CLO ýe ýe aýZ C) ýe he ýe 00 

22 -Zi Q: li 2 -_j Ii n- imP 
(D (14 NN C4 

EL 2 a- 0-2 

N 

:: Z CO CO 
M z3 

Co :3 :Z0 (1) (4 t, 

.U 
Z0 CL e00 (U c: L; s z9 cL 0 (4 q) cu 

1-. 
0 (0 

k-: cý (i Qý Q, (1- Q ti. Q. nc cý 11: zý (ý :ý ;ý 

N 

:: 
E, NEEEN2w; ýE-wmr- 

0 a- 0- 0- 0 EE < 0- 0- ý 0- xz 

- 
M, CL -- -T 

4) w 



I. - 0 

C 

E 
0 

16- 
0 

4 

I-- 
a 

A 

1 

r- Co Lin 

I- I I- II 
000 
It Cf) W 

I 

'F 
I-m- 

I 

00 
1 

C» 
Z: 

V 
CL 

I- 

m 
C*j 
E 
CL 

N 
CM 
E 
CL 
2 

E 
fl- 

N 
CL 



216 

DISCUSSION 

Lobster larvae live in the plankton during their first three larval stages and 
then become benthic during the fourth or fifth stage. During their plank- 
tonic larval stages they rely on chance collision to capture prey and do not 

appear to orient towards suspended food (Hinton and Corey, 1979; Kur- 

maly et al., 1990). Until the gastric mill is developed at stage IV, the larvae 

tear and grind the food using their sharp mandibles (Abubakr, 1991). This 

author suggests that the main site for digestive enzyme production during 

larval development (, ff. gammarus) is the hepatopancreas (HP) as the ante- 

rior midgut diverticula are very small and do not appear to have any secre- 

tory cells. In the present study, specific trypsin activity of the nephropid 
larvae ranged from 0.85-3.07 x 10-5 IU gg-1 DW similar to the caridean lar- 

vae for which specific trypsin activity ranged from 1.26 to 2.21 x 10-1 IU 

jig-' DW (M. rosenbergii) and 1,41-1.71 x 10-5 IU gg-1 DW (P. elegans) 

during early stages. 

Although the HP of H. gammarus was shown to increase considera y in 

volume during larval development (Abubakr, 1991), trypsin activity (IU 

[ig-1 DW) continuously decreased as the larvae developed from stage I to 

stage IV (see Figure 1). H. gammarus larvae at metamorphosis had signifi- 

cantly lower trypsin activity than either at stage 11 and III or even non- 

feeding stage I larvae. Similarly, N. norvegicus larvae exhibited signifi- 

cantly higher specific trypsin activity at stage 11 than stage 1, but the level 

again decreased at stage III larvae (see Figure 2). Biesiot and Capuzzo 

(1990) found no significant increase in specific protease activity (mg-1 

protein) between larval stages in H. americanus during larval development 

from stage .1 to stage IV. In the present study, a gradual decrease in spe- 

cific trypsin activity was detected during larval development of both H. 

gammarus and N. norvegicus, This is attributed to a relatively faster in- 

crease in larval body dry weight than enzyme activity level during larval 
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zymes may also contribute to digestion in larval lobsters. Changes in the 

morphology of the mouth parts and the gut enables metamorphosed lob- 

sters to deal successfully with more substantial food they encounter in the 
benthic habitat (Factor, 1981). 

The crab, C. maenas, hatch as a non-feeding pre-zoeal larvae and develop 

through four zoeal stages and a megalopa stage until they reach the juvenile 

stage (Rice and Ingle, 1975). Earlier studies indicated that the larvae first 

feed on phytoplankton before they switch to zooplankton (Williams, 1968). 

Yet,, as it was demonstrated in the present study, the newly hatched larvae 

can be successfully cultured on Artemia in the absence of algae throughout 

larval development, The larvae masticate the food by using their mouth 

parts during early stages until the gastric mill is formed at metamorphosis. 

Since the AMD and posterior midgut diverticula (PMD) constitute a very 

small proportion of the gut and do not show any secretory role as in pe- 

naeid larvae, digestive enzymes are produced by the HP, which continu- 

ously increases in its volume throughout larval stages (Abubakr, 1991). 

Trypsin results obtained in the present study show that digestive capability 

of C. maenas larvae is between that of herbivorous penaeid larvae and car- 

nivorous lobster and caridean larvae. The larvae display significantly higher 

total trypsin activities with each successive moult to the next stage except 

for the megalopa (P<0.05). 

In a recent study, Harms et at, (1994) also found a continuous increase in 

trypsin activity between ZI and Z4 stages using the method of Samain et 

at, (1977), In the present study, the larvae fed on Artemia for 48 h had 

significantly higher trypsin activity compared to non-feeding larvae (ZI). 

Highest total trypsin activity was found in the larvae at Z4 stage, Specific 

trypsin activity of Z2 and Z4 larvae was higher than both ZI and Z4 larvae. 

Either total or specific trypsin activity drastically dropped at the megalopa 

stage when the larvae switch from being planktotrophic to become benthic. 
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Since the same diet was given throughout larval development and the HP 

continues to increase in size (Abubakr, 1991), this drastic change in trypsin 

activity must be due to a change in feeding behaviour or feeding mode at 
the metamorphosis. Biesiot and Capuzzo (1990) also found a significantly 
lower protease activity at stage V in H. americanusý and proposed that the 

reason for this might be related to changes in feeding behaviour or to 

physiological or biochemical factors or simply to the habitat change. Hirche 

and Anger (1987) state that the larvae prior to development into the 

megalopa stage do not necessarily need high digestive enzyme levels and 

may use the energy stored during previous stages as preparation for meta- 

morphosis. 

Even non-feeding ZI larvae of C. maenas possess 9-10 times more trypsin 

activity (IU ýtg-' DW) in comparison to carnivorous lobster larvae and this 

may enable them to utilise algae or even artificial diets during their early 

larval stages. In recent laboratory and field studies, several species of 

brachyuran and anomuran crab larvae have been shown to utilise algae and 

survive a few larval stages (Harms and Seeger, 1.989), These authors report 

that although Hyas coarctatus were able to reach first juvenile crab stage 

on the algae, Thalassiosira rotuld, C. maenas larvae moulted only to Z34 

stages on the algal diets. However, large carnivorous larvae are unlikely to 

feed on small zooplankton or algae as effectively as smaller decapod larvae 

such as penaeids (Hudinaga, 1942, Emmerson, 1980). When penaeid larvae 

(see Chapter 5) shift from algae or artificial diets to relatively easily di- 

gestible feed (Artemia), they tend to reduce digestive enzyme secretion 

(Jones et aL, 1993). Hence, although during ZI and Z2 stages specific 

trypsin activity of C. maenas showed an increase, a gradual decrease be- 

tween stage Z3 and Z4 may be explained by the easily digestible prey 

offered to them throughout larval stages. For the first time, Jones et al., 

(1975) reported that crab larvae accept and ingest microencapsulated 

diets. Kanazawa et al., (1983) reared the crab, Portunus trituberculatus, 
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larvae successfully from ZI to juvenile stages. Levine and Sulkin (1983) 

also demonstrated that a brachyuran larva (Eurypanopeus depressus) is ca- 

pable of capturing, ingesting and assimilating nutrients from calcium algi- 

nate microcapsules. 

When the specific trypsin activity (xlO-' IU gg-1 DW) of different larval 

crustaceans is plotted, a relation appears between the feeding strategy and 

the larval trypsin level (Figure 4). Trypsin values for each species were 

obtained by taking the mean of specific trypsin activity of all larval stages. 
Figure 4 indicates that there is a decline in trypsin activity from predomi- 

nantly herbivorous larvae towards omnivorous and carnivorous larvae. Pe- 

naeid larvae are considered as herbivorous between PZI and MI as they 

feed on microalgae, and omnivorous between MI and PL stages as they 

feed on algae and zooplankton (Hudinaga, 1942; Langdon et aL, 1985). A 

change in feeding strategy from being filter feeder to raptorial feeder is as- 

sociated with morphological and physiological changes in the gut of the 

larvae during ontogeny. As the guts of herbivorous penaeid larvae lack 

masticatory filter apparatus, they maximise energy uptake by secreting high 

level of digestive enzymes with a fast gastroevacuation time (Jones and 

Kurmaly, 1.987). 

Unlike other decapods, these larvae possess anterior midgut diverticula 

(AMD) which are responsible for much of the digestive enzyme secretion 

during protozoeal stages although this organ gradually loses its function as 

the HP takes over at mysis stages (Abubakr and Jones, 1992). Figure 4 

shows that penaeid larvae e. g. P. monodon (Kamarudin, 1992; Kumlu et 

al., 1992), P. indicus (Chapter 5), P. japonicus (Kamarudin, 1992) all dis- 

play high trypsin activity during herbivorous stages, but enzyme levels 

decline once the larval feeding mode changes during mysis stages. Figure 4 

demonstrates that specific trypsin activity of penaeid larvae range from 

17.75 to 47.45 x 10-5 IU gg-1 DW during protozoeal stages. 
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Although penaeid larvae are known to be capable of consuming zooplank- 
ton such as Artemia, nematodes (Wilkenfeld et al., 1984; Chapters 3 and 
4), rotifers (Emmerson and Andrews, 1981) as early as during first proto- 
zoeal stages, these feeds give a significantly lower survival and slower 
growth rate than microalgae, Several studies conducted with penaeids have 
indicated that the larvae can also be reared successfully on artificial diets 

without any live natural diets (Jones et al., 1987; Galgani and Aquacop,, 

1988; Ottogali, 1991). Figure 4 shows that the copepods, T. longicornis, 

C. typicus, which are known to be herbivorous or omnivorous (Marshal, 

1973; Dagg, 1983), have high trypsin activities. Their main feeding mecha- 

nism may be filter feeding (Harris and Paffenh6fer, 1976). Specific trypsin 

activity of these copepod species were 53.16 (T longicornis) and 40.29 x 
10-5 IU gg-1 DW (C. typicus). The present results suggest that penaeids and 

copepods are adapted in their digestive enzymes in order to utilise a wide 

range of food sources in the plankton with a rapid gut turnover, 

C. maenas larvae, which are considered as omnivorous at least during early 

stages, show an intermediate trypsin activity (18.97 x 10-5 IU gg-1 DW) 

between herbivorous and carnivorous larvae (see Figure 4). It appears that 

although the larvae were fed on Artemia nauplii solely, specific trypsin ac- 

tivity remained high during early stages and must be cued internally as sug- 

gested by Biesiot and Capuzzo (1990). Harms et al., (1994) suggest that 

phytoplankton is a major component of C. maenas larval diet and that their 

grazing activity may be similar to that in herbivorous larvae (Bautista and 

Harris, 1992). Although penaeid mysis larvae feed on zooplankton, they 

can be reared through metamorphosis on live microalgae but with slower 

growth and development. Omnivorous penaeid mysis and early PL's show 

relatively higher trypsin activity (between 14.37 and 32.11 X 10-5 IU P g-1 

DW) than carnivorous but lower than herbivorous larvae. To ensure the 

optimum growth and survival these decapod larvae are best cultured on the 

mixed algae and zooplankton during mysis and early PL stages. The ability 
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to switch between phytoplankton and zooplankton during larval develop- 

ment gives a better chance of survival to these opportunistic larvae in the 

marine planktonic communities. 

Figure 4 shows that carnivorous decapod crustaceans (e. g, M rosenbergii, 
P. elegans, H. gammarus and N. norvegicus) have distinctly lower specific 

trypsin activities during larval development compared to herbivorous or 

omnivorous decapod larvae. This is in agreement with Yonge (1937), 

Sather (1969), and Brun and Wojtowicz (1976) who suggested that high 

protease and low carbohydrase activities are characteristic of carnivorous 

adult decapods. whereas the inverse is true for herbivorous decapods, Om- 

nivores are considered to be in between the two extremes. The specific 

trypsin activity of carnivorous larvae ranges from 1.53 to 4.46 x 10-5 JU 

ýtg-' DW. Although some large diatom species may provide a additional 

source of nutrients for some carnivorous larvae (Harms and Seeger, 1989; 

Paul et al., 1989; Meyer-Harms and Harms, 1993), the larvae are large and 

require highly nutritional and easily digestible food to meet their energy 

demands. 

Kurmaly et al., (1990) suggest that carnivorous lobster larvae (H. gam- 

marus) cannot locate their prey at distance but are able to discriminate nu- 

tritious items from non-nutritious ones, and that this enables them to avoid 

continuously handling low-benefit food items. These authors also state that 

conditioning must play an important role in the feeding strategy of carnivo- 

rous larvae,. not only to select nutritious items, but also those that are 

readily digestible. In contrast to penaeid larvae which secrete high amount 

of digestive enzymes and employ a very fast GET (5-7 times h: Kurmaly et 

al., 1989a), carnivorous decapod larvae have limited enzymatic capabilities 

but retain their food in their gut for longer periods to maximise assimilation 

efficiency and satisfy their energy needs (10-47 h for H. gammarus larvae: 

Kurmaly et al., 1990). 
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It appears that caridean larvae, however,. have adopted a somewhat differ- 

ent strategy from that of the lobster larvae. Results of Chapter 6 revealed 
that since the early larvae have underdeveloped guts (Deru, 1990, Abubakr,, 

1991) and show low digestive enzyme activities and short GET., they may 
be entirely dependent on easily digestible feeds such as zooplankton. Yet, a 

sharp increase in trypsin activity, which coincides with a drastic increase in 

the volume of the HP,. and longer gut retention time from Z4-5 onwards 

enable these larvae to cope with more substantial feeds such as micropar- 

ticulated diets (Deru, 1990). Although the carnivorous larvae do not seem 

to have versatile and well-developed digestive systems, unlike herbivorous 

or omnivorous larvae, they can resist starvation for long periods when the 

prey is scarce, Anger and Dawirs (1981) suggest that crab larvae during 

larval development can accumulate enough energy to continue their devel- 

opment for a relatively long period of time independent of further food 

availability (Sasaki et al., 1986). 

Recent studies have revealed that phytoplankton plays an important eco- 

logical role in nutrition of crab larvae in that it provides an additional food 

supply when zooplankton is scarce and may ensure a more balanced bio- 

chemical diversity of nutrients for the larvae (Harms and Seeger, 1989; 

Harms et al., 1991). The grazing activity of C. maenas has been compared 

to that of herbivorous copepods (Bautista and Harris, 1992) in that phyto- 

plankton may constitute a major component of the natural diets of this 

species (Harms et al., 1994). However, the present results show that C. 

maenas larvae (24.15 ± 4.62 IU x 10-5 [tg-1 DW) show lower trypsin activi- 

ties than herbivorous copepods and are more similar to those omnivorous 

stages of penaeids (Kamarudin, 1992; Kumlu et al., 1992). Figure 4 shows 

the mean trypsin level (18.97 x 10-5 IU gg-1 DW) of C. maenas between ZI 

and the megalopa stages. It appears that these larvae are capable of produc- 

ing a trypsin level similar to other h erbivorous- omnivorous decapod larvae 

such as P. japonicus, P. indicus, P. monodon and A. salina (see Figure 4) 
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even when Artemia nauplii are given exclusively. Hirche and Anger (1987) 

also state that amylase and trypsin activities of Hyas araneus are in the 

same range to those found in herbivorous copepods (Hirche, 1981). 

Determination of trypsin appears to be a good indication to assess the 
feeding strategy and the ability of crustacean larvae to survive on artificial 
diets. However, trypsin activity of more decapod larval species represent- 
ing different trophic levels should be investigated to see whether a majority 

of this taxa will fit the model proposed by the present study. 
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GENERAL CONCLUSIONS 

In agreement with Aquacop (1983,1984), present study shows that P. in- 
dicus can easily mature and spawn in captivity in recirculation systems. 
This provides an opportunity to close the life cycle of the species to obtain 
disease free nauplii throughout the year. It has been possible to culture P. 

indicus for 2-3 generations and to supply larvae regularly from the brood- 

stock originating from both India and the Red Sea (recently imported) in 

the School of Ocean Sciences, Menai Bridge, UK. Hence, it is suggested 
that using this species may enable the hatcheries to become independent of 

wild-caught gravid females and help preserve the wild stocks. Closing the 
life cycle of a species provides regular material for nutritional studies and 

also helps to improve the performance of cultured stocks (Csawas, 1994). 

Chapter I demonstrates that P. indicus larvae show better growth, sur- 

vival and development on the mixed algal feed, a flagellate species, T. 

chuh plus a diatom species, S. costatum, than either of the single algal 

species. This is expected to be due to a better nutritional composition of 

the mixed algal feeding regime than the single ones (Kurmaly et al., 1989a, 

Amjad, 1990). The optimal cell density appears to fall in between 60 and 

70 cells gl-' (25 cells gl-' T. chuii and 35-45 cells gl-1 S. costatum). Cell 

densities lower than 70 cells gl-' result in lower survival, slower growth 

and retardation in larval development, whereas higher cell densities pollute 

larval culture conditions. The diatom, S. costatum, as a single live feed 

supports high survival, growth and larval development in P. indicus at cell 

densities between 70 and 80 cells gl-1. However, aggregation of the cells 

at these high cell concentrations may hamper active swimming and feeding 

of the larvae. Therefore, use of S. costatum as a single diet in the culture 

of P. indicus is not recommended as it may risk the entire hatchery opera- 

tions (Liao et al., 1983; Jones et al., 1987). In contrast to results achieved 

with P. monodon (Kurmaly et al., 1989a, Amjad, 1990; Kamarudin, 1992) 
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with similar experimental conditions to those used in the present experi- 
ments, R. reticulata neither as a sole diet nor with other algal species is 

suitable for the culture of P. indicus larvae, The results show that this alga 
is ingested and digested by the shrimp larvae. As discussed in Chapter 1,, 

the reason for the inability of the larvae to survive on this alga may lie in 
its nutritional composition. The results of Chapter I also demonstrate that 
P. indicus show preference to low salinities (20-25 ppt) during larval de- 

velopment. Optimal larval salinity requirement for P. indicus originating 
from India appears to fall in between 20 and 25 ppt S (PZ1 to PLI stages). 
In conclusion, Chapter I demonstrates that at 25 ppt salinity, P. indicus 

larvae can be reared on T. chuiiIS. costatum (60-70 cells pl-') plus five 

Artemia ml-' with over 90 % survival and fast development (only 6-7 days) 

from PZ I to PL I stage. 

Chapter 2 shows that P. indicus early postlarvae (PL7) reared at 34 ppt S 

require an adaptation period of approximately 48 h before stocking into 

waters of 10 or 5 ppt S. These PL's can successfully tolerate a 10 ppt S 

change without acclimation. Similar to larval stages, optimal culture salin- 

ity for Indian postlarvae, between PL7 and PL60, seems to be between 20- 

25 ppt S. High salinities (40 and 50 ppt) reduced survival, growth and give 

inferior increase in biomass per mm TL in comparison to lower salinities. 

The present results also demonstrate that although the early PL's grow 

and survive well at low salinities (5-10 ppt), these saline conditions are 

lethal to the postlarvae after PL40-45 stage. Comparison of results of the 

present study to those of Bukhari et al., (1994) suggests that despite 

similar optimal larval salinity requirements, postlarvae of P. indicus origi- 

nating from India show different salinity preference to those from the Red 

Sea (Bukhari et al., 1994), These authors report that the Red Sea P. indi- 

cus postlarvae show better growth, survival and biomass in high salinity 

waters (43-50 ppt S). 
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Chapter,. 3 and 4 show that while the free-living nematode, P. redivivus, - 
is 

not suitable as a food source to rear caridean larvae, they can be successfully 
used for the total replacement of live algae and Artemia in culture of P. indi- 

cus. Both M rosenbergh and P. elegans employ a different feeding strategy 
compared to P. indicus. These caridean larvae are incapable of capturing and 
ingesting enough nematodes to satisfy their energy requirements due, possi- 
bly, to the shape and size of the prey. P. indicus larvae, even at PZ I stage, 

are capable of ingesting and digesting the nematodes. The results indicate 

that a nematode concentration of 30 individuals ml-1 between PZ1 and PZ3,, 

45 nematodes ml-' between MI-M2, and 60-70 nematodes ml-' between M3 

and PLI are adequate to promote satisfactory larval survival, growth and 
development in P. indicus. Higher nematode densities than those above do 

not provide any advantage and may pollute culture conditions. In order to 

keep the nematodes (particularly large ones) in suspension for longer period 

of time, it is suggested that the nematode rations should be distributed at 
least twice a day. Also, higher aeration rate will help to reduce nematode 

settling rate. Introduction of small or large size P. redivivus do not markedly 

affect performance of P. indicus larvae during protozoeal or later stages. 

As shown with other penaeid species e. g. P. vannamei, P. setiferus and P. 

aztecus (Wilkenfeld et al... 1984; Biedenbach et al., 1989), the nematode P. 

redivivus can be successfully used as an Artemia replacement during mysis 

and early PL stages of P. indicus. When P. indicus larvae, at the first feeding 

stage, are fed directly on the nematode, they show better survival, but gen- 

erally slower growth and development compared to those fed on al- 

gaelArtemia. This may be due to relatively indigestible cuticle and possibly 

inferior HUFA content of the nematodes. Results of Chapter 4 demonstrate 

that provision of live algae (only 15 cells gl-1 for 24 or 48 h) as a co-feed 

with the nematodes stimulates significantly higher larval trypsin activity (at 

PZI stage) in comparison to the nematodes fed as a sole diet. Results indi- 

cate that larval growth and development on the single nematode feeding 
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regimes can equal those fed control live algae by the addition of 15 cells Pl' 
during zoeal stages. Therefore, it is suggested that if it is available, provid- 
ing a small amount of algae with the nematodes will ensure equal, if not 
better, larval survival, growth and development to those fed algaelArtemia 
for the culture of P. indicus. 

As the main purpose of larval nutritional studies in this thesis is to totally 

eliminate the use of microalgae in penaeid culture, other alternative methods 

are investigated in Chapter 4. In agreement with Kahan et al., (1980) and 
Rouse et al., (1992), results of Chapter 4 show that biochemical composition 

of the nematodes can be manipulated by loading the alimentary canal with 

growth factors such as lipids, HUFA, and pigments. Although the nematode, 
P. redivivus, contains high levels of protein, it may lack important HUFA 

(e. g, 20: 5(o-3 and 22: 6(o-3) that are required in the diet for marine shrimps 
(Biedenbach et al., 1989). Present study shows that lipid- enrichment signifi- 

cantly increases the levels of long chain fatty acids, particularly 20- 5(0-3 and 

22: 6o)-3 of the HUFA, contents of the nematodes in comparison to non- 

enriched nematodes. The lipid-enriched nematodes result in better larval 

survival in P. indicus larvae compared to those non-lipid enriched nema- 

todes. However, the lipid-enrichment has a less pronounced effect on larval 

growth and development. 

If nematodes are to be used for totally replacing the conventional live diets 

in commercial penaeid hatcheries, the pale colour of the postlarvae (PL) 

normally obtained with nematode feeds must be improved. This problem may 

be overcome by feeding penaeid larvae on nematodes plus a low amount of 

live algae or on nematodes which are filled with a pigment source (astax- 

anthin). In the present study, both methods are demonstrated to be effective 

on pigmentation of P. indicus larvae. Despite several experiments conducted 

to determine any positive effect of the pigment (astaxanthin) on the growth 

of P. indicus larvae in the current study, the results are inconclusive. Yet,. 
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pigmented nematodes consistently give significantly better larval survival 
over non-pigmented ones. It is proposed that use of either algae or pigment 
with the nematodes will depend on how much extra cost and labour they will 
add to overall expenses in PL production. As discussed in Wilkenfeld et al.,, 
(1984) and Chapter 3, live nematodes offer several practical advantages over 
algae and Artemia. Recently, it has been suggested that they can be cultured 
easily on various types of cheap liquid medium which allows them to be pro- 
duced in mass quantities in large vessels suitable for commercial purposes 
(Fisher, pers. comm. ). In the view of the present laboratory studies, the use 
of live nematodes in commercial hatcheries will obviously depend on their 

cost, availability and that how practical they may be to the farmers. Prior to 

any economic analysis, it is recommended that the nematodes have to be 

tested in feeding trials in commercial hatchery levels. 

The ultimate aim of the larval nutritionists is to replace live algae and Ar- 

temia in culture of penaeids with an artificial diet which will be stable in 

culture water for long periods, cost-effective, storable for long period of 

time, acceptable and digestible to an organism with an appropriate nutri- 

tional content (Jones et al., 1993). Results of Chapter 5 reveal that microen- 

capsulated diets are still far from being ideal to promote comparable larval 

survival and growth in penaeid culture. Several studies have shown that the 

diets are at correct particle size for ingestion, available in suspension at all 

times, and of a similar nutritional content to natural diets (Kurmaly et al., 

1989a; Amjad et al.,, 1992; Jones et al., 1993; Le Vay et al., 1993). How- 

ever, in agreement with Jones et al., (1993) and Le Vay et al., (1993), the 

present results suggest that the current micro encap sulat ed diets (MEED) may 

relatively be indigestible, lack gut enzyme stimulants and some nutritional 

components which may leach into the water. Current microcapsules retard 

larval development of P. indicus by 1-2 days until metamorphosis resulting 

in lower survival and growth rate compared to algae/ Artemia feeding re- 

gimes. Similar to the results obtained in Chapter 4, when 15 cells [tl-' frozen 
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algae is fed to P. indicus larvae with these microcapsules, a significant in- 

crease in larval trypsin activity occurs throughout all protozoeal stages com- 
pared to when microcapsules are fed as a sole diet. Increase in trypsin activ- 
ity is accompanied by improvements in larval survival and growth and devel- 

opment. Poor digestibility of the diets causes high larval mortalities at very 
early larval stages (PZI) when the internal energy sources have just been 
depleted and digestive capability of the larvae is still limited, It is thought 

that provision of algae at this stage may be critical in stimulating digestive 

enzymes which enable penaeid larvae to adapt to less digestible protein 

sources. At mysis stages, the effect of microalgae as a gut enzyme stimulant 
is less pronounced as the larvae already have high digestive enzymatic ca- 

pabilities when volume of the AMD is maximum (Abubakr, 1991; Abubakr 

and Jones, 1992). 

Once the larvae shift to feed on Artemia during mysis stages, larval trypsin 

production decreases as the prey provides an easily digestible and assimi- 
latable protein (Lan and Pan, 1993). In contrast ý7 

larvae which are fed on 

MED as a sole diet at mysis stages maintain higher trypsin activity until the 

metamorphosis. This suggests that penaeid mysis larvae are capable of 

physiologically adapting their digestive enzymes according to the availabil- 

ity of dietary protein in the feed they are reared on. Similar to penaeids, 

results of Chapter 6 also demonstrate that the inability of caridean larvae, 

P. elegans and M rosenbergii, to survive on formulated diets is due to 

poor digestibility of these diets. Caridean larvae, unlike penaeids, show 

limited enzymatic capabilities, particularly during early larval stages, when 

they cannot be cultured on artificial diets. However, present studies show 

that the larvae of both these caridean species are capable of utilising artifi- 

cial diets from Z5-6 stages onwards when their trypsin activity shows a 

sharp increase (3-7 times more), coinciding with a vast increase in the vol- 

ume of the hepatopancreas. The late larvae also retain food in their guts for 

longer periods of time (2-3 times longer than early larvae) providing more 
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chance to digest and assimilate more energy and nutrients from the diets. 
These larvae can survive on formulated diets from Z5-6 until the metamor- 
phosis, but with a significantly slower growth, lower survival and 1-3 days 
delay in larval development. it appears that the caridean larvae cannot eas- 
ily obtain available protein from the artificial diets used in the present 
study. 

Although several authors argue that exogenous enzymes from the live prey 

may contribute to digestion process of fish and crustacean larvae (Munilla- 

Moran et al., 1990; Jones et al.,, 1993), this contribution is insignificant in 

M rosenbergh larvae fed Artemia throughout larval stages (Kamarudin et 

al., 1994). It is suggested that improvement of current microencapsulated 
diets for decapod crustacean larvae will depend on the use of partially di- 

gested ingredients, inclusion of gut enzyme stimulants or digestive en- 

zymes, while stability of the particles must also be maintained. Although 

inclusion of digestive enzymes may provide benefits, it is unlikely that this 

will be feasible as the food particles with enzymes will be highly unstable 

and uneconomical (Le Vay, 1994). Promising results have been shown in 

the present study in that the inclusion of alga as a gut enzyme stimulant 

into the current microcapsules enhances trypsin activity of P. indicus at 

PZI stage. Further studies are, however, urgently needed to conclude if 

alga included diets will also improve growth and survival of penaeid larvae 

at protozoeal stages. It may be argued that addition of cultured algae into 

formulated diets will be costly. Yet, several authors have claimed that use 

of frozen or dried algae as sole diets may be economical in replacing live 

algae for the culture of a range of marine organisms including penaeids 

(Aujero and Millamena, 1981; Laing and Gil Verdugo, 1991). The latter 

report that it is possible to obtain very high algal cell concentrations by 

using sugars as energy sources instead of light to produce dried marine mi- 

croalgae by spray-drying technique at commercial levels. it is known that 

there are commercially available dried algal ingredients, such as Tet- 
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raselmis sp., and Spirulina sp., These ingredients should be tested on 
growth, survival and trypsin activity of penaeid larvae (Le Vay, 1994). 
Since proteolytic enzyme activity in early caridean larvae is low and stimu- 
lation of production levels does not appear to be possible, it is suggested 
that pre-digested ingredients and/or digestive enzymes should be consid- 

ered for inclusion into artificial diets for rearing carnivorous larval species 

such as P. elegans and M rosenbergii and possibly Homarus sp. 

For the first time, Chapter 7 and results of previous chapters provide an 

opportunity to compare feeding and digestive enzyme strategies of various 
decapod crustacean larvae. Results indicate that herbivorous decapod lar- 

vae, such as penacids, employ different feeding mechanisms to maximise 

their chance to obtain enough food when they live in the plankton in com- 

parison to carnivorous decapod larvae. Their digestive system has evolved 

to enable them to graze on phytoplankton during protozoeal stages. As the 

guts of herbivorous penaeid larvae lack masticatory capability or a filter 

apparatus, they maximise energy uptake from less digestible microalgae by 

secreting high level of digestive enzymes from the AMD (until the HP takes 

over at mysis stages) and short food retention time (Jones and Kurmaly, 

1987; Abubakr and Jones, 1992). Present results with P. indicus confirm 

results with other penaeid species such as P. monodon (Kumlu et al., 1992) 

and P. japonicus (Kamarudin, 1992; Le Vay et al., 1993) and demonstrate 

that penaeid larvae produce higher levels of trypsin activity at herbivoral 

stages than mysis and early PL stages when they are omnivorous or car- 

nivorous. 

Unlike herbivorous larvae, carnivorous decapods such as caridean (P. ele- 

gans and M rosenbergii), and nephropid (N. norvegicus and H. gammarus) 

larvae are large but have limited enzymatic capabilities, due to a lack of se- 

cretory AMD and underdeveloped HP. Hence, they require easily digestible 

and assimilatable prey and retain the food in the gut for longer periods of 
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time to satisfy the energy need for their large bodies. In contrast to her- 
bivorous penaeids, these larvae are capable of storing lipids as energy re- 
serves to withstand long starvation periods when the prey is scarce or un- 
available (Anger and Dawirs, 1981; Sasaki et al., 1986). Results of the pre- 
sent study have shown that specific larval trypsin activities of several spe- 
cies of carnivorous decapods (i. e. P. elegans, M rosenbergij, H. gam- 
marus and N. norvegicus) are similar and approximately 12-17 times lower 

than herbivorous penaeid larvae and copepods (T longicornis and C. 

typicus). Omnivorous decapod larvae, such as mysis penaeid larvae or crab 
larvae (C. maenas), show an intermediate level of trypsin activity between 

carnivorous and herbivorous larvae. Although these omnivorous larvae may 

prefer animal prey, they are able to switch between phytoplankton and 

zooplankton during larval development. This flexibility gives a great chance 

of survival to these opportunistic larvae in the marine planktonic communi- 

ties, The present results indicate that, to date, decapod crustacean larvae 

with only high trypsin activities are successfully cultured totally on artificial 
diets and that measurement of trypsin activity appears to be a useful tool to 

decide whether larvae of a decapod species can be reared on formulated 

diets. 
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REARED IN THE LABORATORY 

K Kumlu and D. A. Jones 

Marine Science Labomtories, Menai Bridge, LL59 5EY. U. K. 
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For penaeid larval nutritional research it is essential to obtain supplies of disease free larvae 
at regular intervals throughout the year. Penaeus indicus originating from the Far East have 
now been reared through several generations in mcirculaUon systems in Europe. Present 
work describes the optimum rearing condi6ons for larvae originating from this disease free 
stock. 

Five different concentration levels (from 10 cells to 50 cells pl-') of three algal species, 
Tetraselmis chuU, Rhinomonas reticulata, and Skeletonema costatum were tested singly and 
in combinations as food for the larvae. The best survival (77%) and growth (5.42mm) at 
PLI were obtained by feeding the larvae on a mixed 60 cells pl" algal diet (25 cells 
Tetraselmis+35 cells Skeletonema) plus 5 Arremia salina ml" after PZ3. None of the algal 
species fed singly gave satisfactory survival and growth rates within the range of algal 
concentrations tested. However, results clearly show that Rhinomonas either alone or in 
combinations is not a suitable algal species for P. indicus larvae. 

In a second nial, higber concentrations of Skeletonema and Terraselmis+Skelefonema (from 
50 to 80 cells 0-1) were tested. The resu. 1ts indicate that P. indicus larvae need between 50 
and 70 ceils pr, of these algal species throughout larval stages and 5 Arremia ml" after 
stage PZ3. 

The effect of 4 different salinities (from 20ppt to 35ppt) on the survival and growth of the 
larvae from PZI to PLI were also examined. Over 90% survival until PL2 was obtained 
when the larvae were subjected to 25ppt and 60 cells pl" Tetraselmis+Skeletonema- 
Momover, the larvae surprisingly passed through 3 zoeal and 3 mysis stages to reach 
postlarvae within only 6 days. Local seawater at 35ppt salinity gave a sfoificantly lower 
survival and growth rate. 

Thew trials demonstrate that P. indicus larvae can be reared from PZI to PLI within 6 
days with over 90% mirvival in water at 25ppt salinity and at 27-28"C by feeding a 
combination of T. chuii+S. costanon plus Artemid after PZ3. 
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RECENT ADVANCES IN THE DEVELOPMENT OF MICROENCAPSULATED 
DIETS FOR SHRIMP LARVAL CULTURE 

M. Kurnlu, L. Le Vay, D. A. Jones 

School of Ocean Sciences, University of Wales, Menai Bridge LL59 5EY, UK. 

ABSTRACT 

Among a wide range of artificial diets developed to replace live feeds, micro- 
encapsulated diets have proved to be the most successful for partial or 
complete replacement in rearing penaeid shrimp larvae. However, growth of 
larvae fed live diets is still generally superior to larvae fed solely on encapsu- 
lated diets. For caridean larval culture, no successful complete replacement of 
live diets is currently possible. Digestive capability of these larvae appears to 
be limited due to their poorly developed gut. While inclusion of a small amount 
of algae into microencapsulated diets induces digestive enzymes and 
improves growth rates of penaeid larvae, incorporation of exogenous enzymes 
may be necessary to rear carnivorous caridean larvae at least during their 
early stages. 

1. INTRODUCTION 

A vast number of hatcheries have been established to meet the demand for 
seed by the shrimp industry over the last few decades. These hatcheries con- 
ventionally rear penaeid shrimp larvae on microalgae (diatoms, flagellates, 
etc. ) during zoeal, and zooplankton (Artemia, rotifers) during later stages. 
Production of live diets at a commercial scale is complicated, expensive, and 
unreliable in supply and nutritional value [1,2]. Although Artemia is the most 
practical animal prey, limited resources, high cost of its cysts, and nutritional 
variability are disadvantages of this live feed source. Therefore, a wide range 
of artificial diets have been manufactured in an attempt to completely or par- 
tially replace live diets in culture of these larvae. Although complete replace- 
ment of live diets has been limited in success, partial replacement is already 
routinely used in many hatcheries. In this paper, we review the latest devel- 

opments in microencapsulated diets as a result of studies into the digestive 

physiology of penaeid and caridean shrimp larvae. 

FEEDING AND DIGESTION 

Penaeid shrimp larvae obtain their food by filtering microalgae from the water 
at protozoeal stages, and capturing zooplankton at mysis and postlarval 
stages. Caridean larvae, however, consume zooplankton directly 24-36h after 
hatching. Use of mixed algal diets for penaeid shrimp larvae always gives 
superior survival, growth and development to single algal species [3] due to 
their more balanced nutrient content. Cell size of microalgae used to feed 

early shrimp larvae are generally between 5-20 pm in diameter, whereas the 
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size range of animal prey ranges from 70 to 500 pm. Artemia salina nauplii are the only realistic live prey for both penaeid and caridean larvae such as M. 
rosenbergii until their early postlarval stages. 

An appropriate artificial diet can only be developed when the digestive physi- 
ology and feeding behaviour of an organism are fully understood. Recent 
studies on the digestive system of penaeid and caridean shrimp larvae [4] has 
contributed towards the understanding of the digestive physiology of these 
larvae. Mandibles of shrimp larvae are able to crush and masticate food 
particles before the ingestion. The larvae are chance encounter feeders and 
need a high density of food particles in suspension at all times. Once contact 
is made the chemical and mechanical cues become important, and the larvae 
either consume or reject the particles. Penaeid shrimp larvae are less selective 
than caridean and homarid larvae, accepting inert particles even at mysis 
stages unless they contain toxic substances [5]. The digestive system of pe- 
naeid shrimp larvae is very simple and lacks a gastric mill, and filter apparatus 
during herbivorous stages. Hence, digestion is mainly conducted by enzymes, 
released mainly from the AMD (anterior midgut diverticulae) and the hepato- 
pancreas. At mysis stages, the teeth of the gastric mill are fully developed and, 
thus, the larvae become increasingly carnivorous, retaining food longer and 
assimilating a higher percentage of energy from their prey. Although penaeid 
larvae exhibit low assimilation efficiency during herbivoral stages [61, their 
survival on microalgae and artificial diets is thought to be due to their short 
gastroevacuation time (GET) and a sufficient amount of digestive enzymes 
produced by the AMD [4]. Caridean shrimp larvae, such as Palaemon elegans 
and M. rosenbergii, however, have very limited digestive capabilities during 
early stages due to an underdeveloped hepatopancreas, but enzyme activities 
increase sharply at stage Z5-6 when they are able to survive on artificial diets 
alone. These larvae appear to rely on prey autolysis for digestion especially 
during their early stages. Lobster larvae (Homarus gammarus) display a high 
assimilation efficiency on live diets, but cannot reach metamorphosis [5] on 
encapsulated diets due to their low level of enzyme secretion (Kumlu, unpub- 
lished) and long GET. Tissue trypsin activities (lU pg-1 larvae body dry weight) 
for caridean and lobster larvae are very similar and much lower in comparison 
to that of penaeid larvae. 

3. ARTIFICIAL DIETS 

Different processing techniques have been employed to produce artificial par- 
ticles in dehydrated forms as food for aquatic animals. All these processing 
methods were extensively reviewed by Langdon et al., (1985). Since then, 

spray drying techniques, which involve spraying a homogenised mixture of 
ingredients into hot air to form heat sealed and water-stable capsules, have 

increasingly been used to produce diets for penaeid larvae. Whichever 

processing method is used, the artificial diet must satisfy the same parame- 
ters: acceptability, digestibility, stability, adequate nutritional content, cost- 
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effectiveness, and storage. The most commonly used artificial diets to culture 
shrimp larvae are microbound and microencapsulated diets [4]. 

3.1. Microbound Diets 

Microparticulated (microbound) diets are inexpensive, easy to produce and 
are reported to be used successfully in laboratory and hatcheries [2]. These 
diets are produced by mixing the nutritional ingredients thoroughly with binders 
(carboxymethyl cellulose, calcium alginate, carrageenan, agar or gelatine). 
The mixture is then oven- or freeze-dried, ground and finally sieved through 
appropriate sizes. They exhibit poor stability in water causing not only water 
pollution and bacterial built-up, but also they may become deficient due to 
nutrient leach loss. 

3.2. Microencapsulated Diets 

The microencapsulation technique was first modified from Chang et al., 
(1966) to deliver nutrients in a protein and nylon cross-linked membrane to 
prevent nutrient loss through leaching and used to identify specific nutritional 
requirements of aquatic organisms. Further development of the technique 
resulted in the production of only cross-linked protein walled capsules, capable 
to withstand drying, which have been used extensively in commercial 
hatcheries [4]. These encapsulated diets promote good survival, but slower 
growth rate and development in penaeid and prawn larvae in comparison to 
live diets. Growth and survival equivalent to live diet has been reported for P. 
monodon [8] and for P. indicus (KumIu, unpublished) when a small amount 
of live or frozen algae (10-15 cells pl-1) was used as a supplemental co-feed 
with microencapsulated diets. Recent trials show that this supplement of 
algae significantly induces trypsin activity and hence improves growth and 
survival in Penaeus indicus larvae. Furthermore, preliminary trials indicate that 
algae incorporated into microencapsulated diets also produces the same 
effect. It is hoped that these developments will lead to complete replacement 
of live foods in penaeid culture. 

Complete replacement of live diets by artificial diets to rear candean s rimp 
and homarid larvae is not currently possible. Despite considerable efforts to 
develop an adequate artificial diet as a substitute and/or supplement, hatchery 

production of M. rosenbergii still relies heavily on live Artemia at least during 
its early stages. Live Artemia was replaced completely in M. rosenbergii cul- 
ture from stage Z6 to Z1 1 with a microencapsulated diet designed for penaeid 
larvae [9], and recently P. elegans larvae have been reared from stage Z5-6 to 
PL1 solely on a microencapsulated diet. The inability of the early larvae of 
these species to survive on artificial diets is attributed to their low digestive 

enzyme activities. Exogenous enzymes originating from animal food sources 

and prey are thought to contribute to the digestion processes of both shrimp 
larvae. For these larvae, it will be necessary to incorporate enzymes within the 

encapsulated diet to assist in digestion or utilise pre-digested ingredients. 
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6. CONCLUSIONS 

Current microencapsulated diets for penaeid shrimp larvae can be improved 
by adding gut enzyme stimulants such as microalgae into the diets. Inclusion 
of exogenous digestive enzymes and the use of partially digested ingredients 
may overcome the digestibility problem of artificial diets for caridean and other 
carnivorous larvae. 
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Growth and Survival of Penaeus indicus Larvae Fed on the Nematode 
Panagrellus redivivus. 

D. J. Fletcher', C. M. Fisher 2 

!pM. Kumlu' and P. B. Rodgers 3. 

School of Ocean Sciences, University of Wales, Bangor, 
Menai Bridge, Gwynedd, LL59 5EY, UK. 

Agricultural Genetics Ltd., Worthing Road, Littlehampton, 
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Agricultural Genetics Company Ltd., 154 Science Park, Milton Road, 
Cambridge CB4 4GG, UK. 

Panagrellus redivivus is a free living nematode species found in soil and fer- 
menting substrates. It has shown potential as an Artemia replacement feed dur- 
ing the later larval culture stages in some penaeid species. 

The purpose of this study was to demonstrate the potential of P. redivivus as a 
total algallArtemia replacement feed during the larval culture of P. indicus. 

Nematodes were grown in 250 ml baffled flasks containing 50 ml of liquid me- 
dium comprised of kidney, vegetable oil and yeast extract. Cultures were inocu- 
lated with Escherichia coli 24 h previously. All cultures were monoxenic and 
grown at 22 'C. Nematodes were harvested when maximum populations 
occurred at approximately 150,000 nematodes per ml. The nematodes were 
extracted from the media and packed in 15xl8 cm high density polyethylene 
bags containing 2g of foam blocks and 20 ml of water. 

Initially, the P. indicus larvae were fed on algae until the zoea 2/zoea 3 (ZI/Z3) 

stage. At Z2/Z3 the larvae were stocked in 2-1 round bottom flasks at a density 

of 75/1. Control larvae were fed 25 cells/gl/day of both Tetraselmis chuii and 
Skeletonema costatum until mysis I (Ml) when Artemia were fed at 5/ml in 

conjunction with the algae. Algal feeds ceased at M2. Nematodes (with no algal 

co-feed) were offered at 15,30,45 and 60/ml. Fifty percent water exchanges 

were performed every two days when the larvae were measured and staged. 
Total water exchanges were performed on alternate days when larval survival 

was also measured. 

To the first postlarval (PLI) stage, the nematode fed larvae demonstrated 

equivalent growth rates to the controls irrespective of feeding level. Survival 

was superior to the algaelArtemia fed larvae. Water quality in the nematode fed 

flasks was high, and there was no larval fouling. Preliminary trials have also 
indicated that P. redivivus may be used as a total algal replacement feed from 

Z I. Trials are continuing to determine optimum nematode size range and feeding 

rates, lipid and pigment enrichment levels for P. indicus larvae from ZI to PL I- 
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Growth and Survival of Penaeus indicus Larvae Fed on the Nema- 
tode Panagrellus redivivus Enriched with Astaxanthin and Various 
Marine Lipids. 

David J. Fletcher', Metin Kumlu' and Christina Fisher 2. 

School of Ocean Sciences, University of Wales, Bangor, 
Menai Bridge, Gwynedd, LL59 5EY, UK. 

Axis Genetics Ltd., Babraham, Cambridge, 
CB2 4AZ,, UK. 

The nematode Panagrellus redivivus promoted good growth and survival of 
Penaeus indicus larvae through to the postlarval stage with no algallArtemia 
co-feeds. Nematodes may be used as a total algal and Artemia replacement feed 
for the successful culture of P. indicus giving growth and survival at least 
equivalent to that obtained on standard live feeds. In the present study the per- 
formance of P. indicus larvae fed on nematodes enriched with a variety of ma- 
rine lipids and astaxanthin (F. Hoffmann-La Roche Ltd. ) was monitored. 
Optimum nematode size and feeding rates were also determined. During zoeal 
growth, the control larvae receiving only algae and the larvae receiving capelin 
oil (CAP) enriched nematodes showed superior growth compared to those 
treatments receiving nematodes enriched with cod liver (COD) or 'Marilla' 
(MAR) oils. The latter treatments showed equivalent growth. From mysis I the 

controls and larvae receiving the MAR enriched nematodes grew at similar rates 
and were both significantly faster than all other treatments. Overall the non- 

enriched (NEN) nematodes resulted in the slowest growth. There was no sig- 

nificant difference in survival between any of the enriched nematode treatments, 
but all gave superior survival compared to NEN and the control treatments. 

Nematodes enriched with astaxanthin and code liver oil resulted in significantly 
faster growth during zoeal stages only. However, this live feed did result 'in the 

best overall performance compared to those larvae receiving placebo as- 

taxanthin and/or lipid enriched nematodes. Astaxanthin enriched nematodes did 

not influence larval survival but pigmentation of the postlarvae was greatly 

enhanced. Growth and survival of P. indicus larvae were not influenced by the 

size range of nematodes offered. 



Role of Microalgae as a Gut Enzyme Stimulant in Rearing Penaeus indicus Larvae 
on Nticroencapsulated Diets. Metin Kumlu*, and David A. Jones. School of Ocean 
Sciences, University of Wales Bangor, Gwynedd, Menai Bridge, LL59 5EY, UK. 

Recent investigations have shown that when formulated diets are fed to penaeid larvae 
in conjunction with algae, an improvement in survival and growth may be achieved. In 
this study, the effects of frozen mixed algae (15 cells gl-1 of Tetraselmis chuh and 
Skeletonenta costatum, 1: 2), as a supplement to experimental mi croen -capsulated 
(MED) diets (8 mg 1-1 day-'), on growth, survival and trypsin-like activity in P. indicus 
larvae were examined. Trypsin responses in larvae fed MED's containing microalgal 
material were also investigated. PZI larvae were stocked at a density of 200 individuals 
in 2-1 round bottom glass flasks in filtered (0.2 gm) and UV-treated sea water at 28 *C 

and 25 ppt salinity. Survival to PZ3/M I was highest in larvae fed either live mixed algae 
(91%) or MED plus frozen algae (85-92 %), and lowest when MED was fed alone (46- 

55 %). The mixture of WD with the algal co-feed supported significantly better growth 

rates (0.55-0.56 mm day-') than MED alone (0.42-0.46 mm day'). Larvae fed MED 

with the algal co-feed demonstrated a significantly higher tissue trypsin activity 
throughout the herbivorous larval stages in comparison to MED fed alone (P<0.05). 

These significant improvements in larval growth and survival are likely to be due to 

higher larval digestive enzyme activities and possibly more efficient digestion by the 

larvae. When a MED containing freeze dried algal material (23% v/v, Rhinomonas 

reticulata) was fed to P. indicus larvae, trypsin activity in PZ2 larvae was equal to that 

larvae fed live algae. Larvae reared on the MED alone exhibited significantly lower 

trypsin activity compared to the other diets (P<0.01). Hence, algal substances triggering 

digestive enzyme production are retained within the microcapsules. Present results 

suggest that inclusion of microalga in formulated diets can act as a gut enzyme stimulant 

in penacid larvae with the potential to improve survival and growth particularly during 

protozoeal stages. 
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