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Summary 

The main aim of this study is the construction of new efficient and accu- 

rate numerical algorithms based on the B-spline finite element method, for 

solution of the Korteweg-de Vries (KdV) and Modified Korteweg-de Vries 
(MKdV) equations. 

In the following chapters; the theoretical background to the KdV and 
MKdV equations is discussed, and existing numerical methods are described. 

Numerical solutions to the KdV and MKdV equations are obtained using 
the Galerkin and modified Petrov-Galerkin method with quadratic B-spline 

finite elements over which the non-linear term is locally linearised. The 

numerical algorithms have been validated by studying the motion, interaction 

and development of solitons. We have demonstrated that these algorithms 

can faithfully represent the amplitude of a single soliton over many time steps 

and the interaction of two solitons. A new numerical solution for the MKdV - 

equation is obtained using a "lumped" Galerkin method with quadratic 13- 

spline finite elements. The motion, interaction and generation of solitary 

waves are studied using the method. 
An unconditionally stable numerical algorithm is implemented for the 

solution of the MKdV equation using a collocation method with quartic 13- 

spline finite elements. The algorithm is validated through a single soliton 
simulation. In further numerical experiments forced boundary conditions 
u= Uo are applied at the end x=0 and the generated states of solitary 
waves are studied. The solitary wave states generated by applying a positive 
impulse followed immediately by an equal negative impulse is dependent on 
the period of forcing. The solitary waves generated by these various forcing 
functions possess many of the attributes of free solitons. 
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Chapter 1 

Introduction 

Many scientists have used differential equations to model many physical prob- 
lems. Scott Russell [62] studied the KdV solitary wave in 1844. The words 
'solitary wave' were coined by Scott Russell himself, mainly because this type 

of wave motion stands apart from the other type of oscillatory wave motion. 
After him, the solitary wave of translation was briefly mentioned by various 

mathematicians including Stokes [73] and Boussinesq [10]. Korteweg and de 

Vries [44] derived their now famous equation for the propagation of waves in 

one direction on the surface of a shallow canal. A generalisation of the KdV 

equation has the form [20,51,53]: 

Ut + Eul u. + %l Uxxx = 

where p, e and p are given parameters. When p=1 we have the Korteweg- 

de Vries (KdV) equation. The most simple generalisation comes with p=2, 

which is the Modified Korteweg-de Vries (h1KdV) equation. This equation 
has been used to model accoustic waves in certain anharmonic lattices [85] 

and Alfen waves in a collisionless plasma [66,43]. Gardner and Morikawa 

derived the KdV equation to describe long wave propagation perpendicular 
to a uniform magnetic field in cold lossless (collisionless) plasmas [86]. Many 

other researchers have also derived the KdV equation. Zabusky [85,87] 
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and Kruskal [45] showed that the KdV equation governs longitudinal waves 

propagating in a one dimensional lattice of equal masses coupled by non- 

linear springs the Fermi Pasta Ulam problem. Some physicists applied the 

KdV equation in the plasma physics. e. g. Berezin and Karpman [9] and by 

Washimi and Taniuti [83] in their study of ion acoustic waves in a cold plasma. 

Wijngaaden [79] found that it described pressure waves in a liquid gas bubble 

mixture. The theoretical aspects of the solution of the KdV equation have 

attracted attention. In particular, the problem of existence and uniqueness 

of solution for certain classes of initial conditions have been studied many 

authers including Lax [48], Sjoberg [70] and Gardner [21]. These authors 

have examined the existence of solitary wave or soliton solutions. 

The Ii dV equation was solved numerically first by Zabusky and Rruskal 

[88] using a finite difference method. They discovered the properties of the 

interaction of two solitary waves, and they defined the concept of a soliton as 

a localised (solitary) wave that propagates at a uniform speed and preserves 
its shape and speed when it interacts with a second solitary wave but does 

suffer a phase shift. Also Greig and Morris [39] proposed a Hopscotch finite 

difference method and compared it with the original Zabusky and Kruskal 

[88] leap frog scheme and found that it gave better results [39]. 

The other methods; the application of spectral, pseudospectral and Fourier 

transform or series expansion methods to the KdV equation have been stud- 
ied by Schamel [65], Abe and Inoue [1], Ga. zdag [37] 

, Canosa and Gazdag 

[12]. Fornberg and Whitham [20] have discussed the numerical solution of 

the KdV equation, using a pseudospectral method. Also, they have studied 

the higher order generalised KdV equation. Wahlhin [82] has used the finite 

element method, and suggested a dissipative Galerkin method in which the 

same trial and test functions are used. The basis functions are smoothed 

splines constructed from piecewise polynomials of order three or higher, and 
the elements are of equal. length h. Alexander and Morris [4] used cubic 
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splines and a range of dissipation coefficients from zero to one. Sanz-Serna 

and Christie [64] proposed a modified Petrov-Galerkin method with piece- 

wise linear trial and cubic spline test functions. Schoombie [72] has used 
Petrov-Galerkin methods, which were either dissipative or nondissipative in 

form and contain the Sanz-Serna and Christie method as a special case. 
The Korteweg-de Vries and modified Korteweg-de Vries equations are 

important nonlinear partial differential equations, which arise in the study 

of many different physical systems for which analytic solutions have only 
been found for a very restricted set of initial conditions. 

Thus numerical methods are necessary to effect solutions for a wide range 

of initial conditions. In this thesis attempts are made to produce numerical 

methods based on the B-spline finite element method which are superior to 

those already being used. 
In chapter 2, a short review of the KdV and AM V equation is given. 

The origin of the analytical solution is discussed. Soliton solutions of the 

KdV and A[ dV equations, which are nondispersive propagation solutions 

are mentioned together with the conservation laws. In chapter 3, we give 

a short review of the numerical solution method for the KdV and MKdV 

equations, and also we give a short review of spline functions and B-spline 

finite elements. 
In chapter 4, we show a new B-spline finite element algorithm using the 

Galerkin method with trial and test functions quadratic B-spline. Also, a 

modified Petrov-Galerkin algorithm set up for the KdV equation. The ele- 

ment matrices are determined algebraically using REDUCE [40]. Assembling 

the element matrices together and using a Crank-Nicolson difference scheme 
for the time derivative leads to a 5-banded system of nonlinear algebraic 

equations which is solved by a penta-diagonal algorithm. The method is 

tested by calculating how.. the L2 error norm varies during the motion of a 

single and double soliton and comparing this with the error obtained by ear- 
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Tier authors for similar experiments. The first three conservation laws are 

also computed for the simulations. 
In chapter 5, we set up a new numerical solution to the modified Korteweg- 

de Vries equation obtained using a 'lumped' Galerkin method with quadratic 

B-spline finite elements. The element matrices are determined algebraically 

using REDUCE [40]. Assembling the element matrices together and using a 

Crank-Nicolson difference scheme for the time derivative leads to a. 5-banded 

system of nonlinear algebraic equations which is solved by a penta-diagonal 

algorithm. The method is tested by calculating how the L2 - and L,,. error 

norms vary during the motion of a single and double soliton and compar- 

ing this with the error obtained by earlier authors for similar experiments. 

The first three conservation laws are computed for simulations using a single 

soliton, a double soliton, Gaussian initial condition and also a tanh initial 

condition. 

In chapter 6, we set up a new numerical solution for the Modified Korteweg- 

de Vries minus equation using a 'lumped' Galerkin method with quadratic 

B-spline finite elements. The element matrices are determined algebraically 

using REDUCE [40]. Assembling the element matrices together and using a 
Crank-Nicolson difference scheme for the time derivative leads to a 5-banded 

system of nonlinear algebraic equations which is solved by a penta-diagonal 

algiruthm. The method is tested by calculating how the L2 - and L.. - er- 

ror norms varies during the motion of a single soliton and a double soliton 

simulation. The first three conservation laws are computed for simulations 

using a single soliton, a double soliton, a kink pair, interaction of a soliton 

with a kink, interaction of a soliton with a kink pair, the generation of kink 

and solitons from a tanh initial conditions and non symmetric tanh initial 

conditions. 

.. In chapter 7, we set up an unconditionally stable numerical algorithm for 

the MKdV equation based on collocation with quartic spline interpolation 
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polynomials over finite elements. Using a Crank-Nicolson difference scheme 
for the time derivative leads to a 5-banded system of nonlinear algebraic 

equations which is solved by a penta-diagonal algorithm. The algorithm is 

validated through a single soliton simulation. The first four conservation 
laws are computed for simulations using a single soliton. In further numerial 

experiments forced boundary conditions u= Uo are applied at the end x=0 

and the generated states of solitary waves are studied. The solitary waves 

generated by these various forcing functions posses many of the attributes of 
free solitons. 
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Chapter 2 

A short review of solutions of 

the Korteweg-de Vries and 

Modified Korteweg-de Vries 

equations 

2.1 Physical Review 

In this present chapter, we will study the KdV and Af KdV equations. 

At the present time many scientists are interested in nonlinear wave motion, 

which can be observed in many branches of applied mathematics, physics, 

and engineering. 

At present one of the most important nonlinear wave equations is the 

Korteweg-de Vries equation (KdV) and also the modified Korteweg-de Vries 

equation (Al dV ). The KdV equation was originally derived in 1895 by 

Korteweg and de Vries [44] to describe the behaviour of one dimensional 

shallow water waves with small but finite amplitude. In many problems, 
investigations have shown that the effect of nonlinear terms in the partial 
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differential equations can act such as to counterbalance the effect of disper- 

sion, and the balance of dispersion and nonlinearity in the equation resuls in 

a stable solitary wave solution called a soliton. A soliton has the following 

remarkable properties. 
i-) In a collision with another soliton it preserves its original shape and 

speed, although a phase shift may exist after the collision. 

ii-) A general initial profile after a long time breaks up into a train of 

solitons together with a disturbance which disperses with time. 

Comments about the solitary wave were first made by John Scott Russell 

[62], who it is reported, saw a heap of water, caused from the prow of a 

stopped barge, continue upon its course along the channel without a change 

in its shape and diminution in its speed. Further investigations to verify 

this phenomenon were made by Airy [7], Stokes [73], Boussinesq [10] and 

Rayleigh [59] in the following 60 years after Russell. All those notions of 

solitary waves raised by authors were confirmed by Korteweg and de-Vries's 

study [44]. 

Recently the KdV equation has been derived by Vliegenthart [80] for 

shallow water waves. The KdV equation for long waves in shallow water 

may be written as 

1 f- 2 alt + gho[l +3 2 (7l/ho)17lx +6 gltohoýIxxx =0 (2.1) 

where x denotes the coordinate along the horizontal bottom, t the time, 

77(x, t) the local wave-height above the undisturbed depth ho, and g the 

acceleration of gravity and the subcripts x and t denote differentiation. 

The non-dimensional parameters e and p are defined by 

ýz ho, 
6 (°o 

where a and . Xo denote the dominant amplitude and wavelength. We intro- 
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duce the dimensionless variables 

3 

Subsititution of these new variables into equation(2.1) and omitting the bars 

gives the equation 

ii + iz + Eýii + Et? fit = 0. (2.2) 

Let us define 77 =u and the new independent variable x, as x=ý-t, then 

equation (2.2) is transformed into the Korteweg-de Vries (KdV) equation 

Ut + EUU. + pUUý. =0 (2.3) 

A generalized Korteweg-de Vries equation is given by, [51,53,20] 

Ut +eT UX + /eLT = 0, p=1,2,... (2.4) 

The most important case after p=1, is p=2, when the resulting equation has 

the form 

UJ + EU2UU + EiUxxx = 0, (2.5) 

and is known as the modified Korteweg-de Vries (Al dV) equation. More- 

over, the sign of the nonlinear term may be changed to obtain the non-trivial 

alternative equation: 

Ut - eU2Uu + liu.. = 0, (2.6) 

The soliton solutions of the MIS dV- equation are distinct from those of the 

MKdV+ equation and cannot be derived from them, also MIi dV- equa- 
tion's solitons moves to the left on the axes, but MKdV+ equation's solitons 

moves to the right. 
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Note that changing the sign of the nonlinear term in the KdV equation 

itself yields nothing new since the resulting equation is reduced to (2.3) by 

changing the sign of U [51]. 

A most interesting feature is that KdV equation can be solved analytically 
in some circumstances. The travelling wave solution of the KdV equation is 

found, by using the following transformations. 

U(x, t)=v(X), X=x-ct (2.7) 

where c represents the constant velocity of wave travelling in the positive 
direction of the x-axis. Substitution of (2.7) into (2.4) leads to the ordinary 
differential equation 

0' -CU' + EUpU' + PUli = (2.8) 

where a prime denotes differentiation with respect to x. It can be solved by 

known solution techniques as 

tip (x, t) = 
c(p + 1)(p + 2) 

sech2[2 (x - ct - x0)] (2.9) 
E 

For p=1 we have the solution 

U(x, t) = 
3c 

sech2[ý (x - ct - x0)] (2.10) 

Equation (2.10) describes a soliton with amplitude which is proportional 

to its velocity. A larger soliton moves faster than a smaller one. The soliton's 

width is proportional to FL,! and the constant xo plays the role of a phase 

shift. If the coefficient of the nonlinear term in equation (2.4) has a negative 

sign and p is odd then the solution is negative, that is: 

UP(x, t)=-c(P+1)(P+2)sech2[p ! (x-ct-x0)] (2.11) 
2e 2 /z 

if p is even, the solution is a not a solitary wave. When p=2, in equation 
(2.4), the equation is known as the modified KdV equation. When p=3, in 

13 



equation (2.4), the equation is a strongly nonlinear K dl,, ' equation; 

Ut+EU3Ux+IIU.. =0, (2.12) 

Chen [14] has used Galerkin's method to obtain its analytic solution. 

Another way of getting a single soliton solution of the KdV equation is 

to use the linear Bargman method [47], based on the assumption that there 

exists a potential for the Schrodinger equation 

(k2 - u)y + y" = 0, (2.13) 

where k2 is an eigenvalue parameter which remains constant as t varies and 

u satisfies the KdV equation. An interesting property of the KdV- equation 
is the interaction of solitons. It has been shown that taller waves have faster 

speeds than smaller ones. 

2.1.1 Interaction of two solitons 

Consider two solitons initially placed on the real line with the taller one 

to the left of the shorter one. When time increases the greater speed of 

the taller soliton means that it eventually catches up with the shorter one 

and they undergo a nonlinear interaction according to the KdV equation. 
They emerge from the interaction completely preserved in shape and speed, 

as if no interaction has taken place. This was first observed experimentally 
by Russel [62] and numerically by Zabusky and Kruskal [SS]. Zabusky [85] 

showed the exact interaction of two solitons numerically and Lax [48] gave the 

analytic proof of the soliton properties. Lamb [47], Dodd [18], Wadati [81] 

and Whitham [84] have drived an analytic solution for the KdV equation, 
they used c=6.0, p=1.0, when the initial condition for the two soliton 

solution is given by 

U(x, t) = 2(1n (F))�x (2.14) 
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where 

F=1 +exp(Ili) +exp(772) +ßexp(ni +? 2) 

ß= [L2 ]2 (2.15) 

rt; = a; x - a3t + d;, i=1,2 

Similarly the exact solution of the AI dV equation with e=6.0, p=1.0 for 

the two soliton case has been found by Taha and Ablowitz [75] as 

U(x, t) = i(ln (f'/ f ))., x (2.16) 

where * denotes a complex conjugate, and 

f=1 -{-iexp(ij)+iexp(7J2) -ßexp(ii+772) 
ß= [al 212 (2.17) 

77i = cjx - c$t + di, i=1,2. 

For the case of N-solitons, an analytic proof that they are unchanged after 

interaction has been given by using the inverse scattering method [51]. This 

method generates the well known N-soliton solutions possessing the property 

that amplitudes and velocities, as well as the shapes, are preserved. 

More generally, arbitrary initial conditions used with the KdV equation 

will evolve into a number of solitons moving off to the right and an oscillatory 

dispersing state moving off to the left. Because of the dependence of the soli- 

ton speed on its amplitude, the solitons will sort themselves out, eventually 

ending up as a parade of solitons moving to the right with monotonically 

increasing amplitudes from left to the right. Those solutions involving only 

solitons, and showing no oscilatory behaviour, are called pure soliton solu- 

tions or N-soliton solutions [52]. A new applications of the KdV-equation, 

given by Gardner and Morikawa [34], was discovered in the study of collision- 

free hydromagnetic waves. The existence and uniqueness of solitary wave so- 
lutions for certain types of initial condition have been dealt with by Sjoberg 

[70], Lax [48] and Gardner [21]. 
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2.2 Conservation laws for the KdV and MKdV 

equations 

Partial differential equations possess an infinite number of conservation 
laws. An important state in the development of the general method of so- 

lution for the KdV equation is that solutions obey an infinite number of 

independent conservation laws. Definition[?, pages 21-22]: For the partial 

differential equation 

u(2, t, 11 (X, t)) = 0, (2.18) 
where xER, tER (real numbers) are temporal and spatial variables and 

u(x, t) ER the dependent variable, a conservation law is an equation of the 

form 

T Ti + --X =0 (2.19) 

which is satisfied for all solutions of the equations. Where T; (x, t) the con- 

served density, and Xi(x, t), the associated flux, which are, in general, func- 

tions of x, t, u and the partial derivatives of u; ýt denotes the partial derivative 

with respect to t; and aý the partial derivative with respect to x. 
If additionally, u tends to zero as jxj -+ oo sufficiently rapidly, 

a J. Ti x, y) = 0. (2.20) 

Therefore 
j°°Ts(x, 

y) = b, (2.21) 

where b, a constant, is the conserved density. 
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For the KdV equation, the first three conservation laws are: 

uZ 

tit + (e 2+ µuyx)x =0 
Ti 

X; 
U2 

)t 
2 

( )t + [e 3+ Ec(uuxX -U x)]x =0 (2.22) 
Ti x; 

2l3 /c a u4 Z22 (3 -- uX )t -}- [e 4+ Fc(u tcxý +E 2cttcx) +E uxx]x = 0. 

Ti X, 

The first of these is just the KdV-equation itself and corresponds to con- 

servation of momentum. Multiplying equation (2.3) by u and integrating 

leads to the second conservation law, which is known as the conservation of 

energy. The third was discovered by Whitliam [84]. The fourth and fifth con- 

servation laws were found by Kruskal and Zabuska [89]. Finally Miura and 

his collaborators[52] developed an ingenious method of generating a whole 

sequence of conservation laws. The first four conserved quantities can be 

written as: 

Il=f, udx 

12 =fL u2dx (2.23) 
13 = f_Z[u3 

- 
E/lllxjdx 

14 = f-oo [114 
- 

2ILtLtLx + 36 id226xx]dx. 

For the modified Korteweg-de Vries equation (2,5) there are also many poly- 

nomial conservation laws. Miura [52], Miura, Gardner and Kruskal [541 have 

found the first four conservative quantities, which can be written as: 

Il=f. udx 

I2 = ff. uadx (2.24) 
Ig =f [214 

- 
6F1212 ]dx 

xx]dx. 
14=f 

00 
[us 

- 
0iluz11 + 18 112u2 

For p>2 there are only three conservation laws. Zabusky [85]-[86], Miura 
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[52] and Fornberg-Whitham [20] have found the first three conservative quan- 

tities, which can be written as: 

Ii=f. udx 

12 =f 0O 2a2dx (2.25) 

13 = f-oo(2lp+2 
- 

p+l)(p+2 j121x)d: 2. 
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Chapter 3 

A short review of Numerical 

Methods for solving the KdV 

and Modified KdV equations 

3.1 Numerical Methods for solving the KdV 

and MKdV Equations 

In this chapter we shall study numerical methods for the solution of par- 

tial differential equations. Improvements in numerical techniques, together 

with the rapid advance in computer technology allow many of the partial 

differential equations arising from Engineering and Scientific applications to 

be solved. We shall focus our attention on making a survey of the numerical 

methods used for solving the Korteweg-de Vries equation 

Ut+cUUU+pu.. X=O (3.1) 

and the modified Korteweg-de Vries equation 

Ut + ¬U2Uu + ELU. x =0 (3.2) 
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where; e and it are positive parameters, Ut first derivative of U with respect 
to time, Ux and Ux.,,, are the first and third derivatives of U with respect to 

space. The focus will be given to make a brief survey of numerical methods. 
Numerical solutions will be examined under 4 headings, 

i-) Finite difference methods, 
ii-) Finite Fourier transform or pseudospectral methods, 
iii-) Fourier expansion methods, and 
iv-) Finite element methods. 
In the finite difference approximation of a differential equation, the deriva- 

tives in the equations are replaced by difference quotients which involve the 

values of the solution at discrete mesh points of the domain. First, Zabusky 

and Kruskal [SS] have used an explicit difference element method to solve the 

KdV equation. Their study is interesting due to the discovery of properties 

of the solitary waves, such as, interaction of two solitary waves and also they 

saw that a bigger soliton travels faster than smaller one, after time evolves, 

the large soliton overtakes the smaller soliton. In their method, both time 

and space steps are kept small to provide a reasonable and accurate result. 

Goda [3S] and the Hopscotch method [39] solve the KdV equation using im- 

plicit finite difference schemes, which were suggested to provide consistent 

and accurate solutions. Chu, [15] used a finite difference method to study the 

generation of solitary wave solutions of the KdV. equation, by the boundary 

forcing; and they applied a trapezoidal boundary forcing. Also Camassa and 

Wu [11] re-studied the different forms of the boundary forcing for solving 

KdV equation. Taha and Ablowitz [74] studied a local difference scheme, 

which is based on the inverse scattering transform. A comprehensive discus- 

sion and comparison has been done to explain the benefits of using the Taha 

scheme [74]. 

The other methods are based upon the finite Fourier transform. In this 

method the unknown function U(x, t) is transformed into Fourier space with 
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respect to x. The resulting equation is combined with one of the finite differ- 

ence schemes to obtain the recurrence relationship at the knots. There are 

two important schemes, the split step Fourier method of Tappert [76] and 

the pseudospectral method of Fornberg and Whitham [20]. In the Fourier 

expansion method, the unknown function is expanded in terms of a Fourier 

series and the original partial differential equation is reduced to a set of ordi- 

nary differential equations with Fourier coefficients. Abe and Inoue [1] used 

the Runge-Kutta-Gill method for solving the set of differential equations. 
There are other Fourier expansion schemes due to Gazdag [37] and a Taylor 

Fourier expansion method proposed by Canosa. and Gazdag [12]. 

The last method, the finite element method; this method is the subdivi- 

sion of the given domain into a finite number of subregions. This process is 

called discretization of the domain, each subregion is called an element, and 

the collection of elements is called the finite element mesh. First labeling 

of the elements and the nodes, which is simple but it has a big influence 

on the computational efficiency of the algorithm. Next step is to decide on 

the nature of the interpolation polynomials to be use. Evaluate the element 

equations by constructing a suitable weighted residual formula of the given 

differential equation. Then assemble the element contributions to obtain 

the equation for the whole problem, impose the boundary conditions of the 

problem and solve the overall sysytem of equations. The first use of the fi- 

nite element method was due to \Vahlbin [82], who employed the same trial 

and test functions in this dissipative Galerkin method. Smoothed splines are 

used as basis functions. Alexander and Morris [4] implemented the numerical 

scheme for the above Galerkin method, in which trial and test functions were 

cubic splines. There are advantages with smaller errors for the same mesh if 

compared with some previous result. Sanz-Serna and Christie [63] presented 

the a modified Petrov-Galerkin method with piecewise linear trial and cubic 

spline test functions. 
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Also Schoombie [72] repeated the above method using linear functions 

as trial functions and B-splines of various order as test functions. F. D. and 

A. Van Niekerk [78] proposed a Hermite rational approximation for the KdV 

equation. Hermite rational basis functions are constructed as trial functions 

in a Petrov-Ga. lerkin method. Their scheme compares favourably with the 

methods considered earlier. It has been emphasised that this method gives 

a consistent numerical system that has better approximation abilities than 

most other existing numerical methods due to the influence of the rational 

function. Later, Gardner and his collaborators [5,22,24,6,17,31] have set 

up five finite elements methods to the Ii dV and Al dV equations using 

i-) cubic Hermite polynomials 
ii-) cubic spline, 
iii-) quadratic spline, 

iv) quintic spline, 

v) quartic spline 

The first three of them are based on the Galerkin method with the same 

test and shape functions which are cubic Hermite functions, cubic B-splines 

and quadratic B-splines, respectively. The last two are the spline colloca- 

tion method, which used quintic B-splines as shape functions and quartic 

B-splines as shape function. Except for the scheme of Niekerk, which came 

out at the same time as Gardner's scheme, comparison is made -with the 

best of earlier schemes, based on accuracy and efficency for a single soliton 

solution and the interaction of two solitons. One infers from their results 

that their schemes are easily applicable, faster and more accurate and ef- 
ficient, L2- error norms and L.,, -norms are smaller, conserved densities are 

satisfactorily constant. From their discussion, they further concluded that 

the collocation method with quintic splines as shape functions and quartic 

splines as shape functions produces the most efficent and accurate solution of 
the KdV and 11MKdV equations. All the classical problems including soliton 
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motion, interaction, dissipation for an arbitrary initial condition are used to 

validate the method. It has been shown that it is adequate to solve the KdV 

and A11i dV equations using the B-splines finite element method. 

3.2 A Short Review of the Spline functions 

Many scientists are using the approximation methods in many areas of 

Mathematics, as well as Physics, Chemistry, etc. These methods are dom- 

inant tools for modelling and analysing many physical and social events. 

They used two types of approximation problem. First, approximate un- 

known functions based on given data, which is called data fitting problems. 

The second type of approximation emerges from the mathematical model for 

various physical problems, which are represented by an operator equation. 

The solutions of the operator equation are sought numerically. Examples in- 

clude boundary value problems for ordinary and partial differential equations, 

eigenvalue-eigenvector problems, integro-differential equations and so on. In 

both models, two important processes arise to find the best approximation: 

i-) choose a reasonable class of functions satisfying the approximation 

conditions, 
ii-) a good selection of the scheme for the approximation method is 

required to make the approach effective. 

In numerical analysis, many scientists have concentrated on using poly- 

nomials as approximation functions, which possess attractive features. In 

order to get a good approximation to problems by polynomials, it may be 

necessary to use a large number of points (or functions). Unfortunately, high 

degree polynomials can have large oscillatory behaviour which do not rep- 

resent smooth and desirable approximation so that computational problems 

arise in approximation when the number of data (functions) is large. The 

difficulty of these problems can be overcome by using piecewise polynomials. 
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Piecewise polynomials are suitable for use as an approximation except for 

discontinuities within the domain. A special class of piecewise polynomials 

called "spline", can be mentioned. The terminology of spline-functions was 
first introduced by Schoenberg [71], in fact, there were a number of papers 
dealing with splines without using the name. Schoenberg used spline termi- 

nology due to the resemblance with a mechanical device called a "spline". 

A spline consists of a strip or a thin rod of some flexible materials designed 

to attach some weights so that it can be forced to pass through described 

points. The device is used by draftsmen to draw a smooth curve by adjusting 

weights at the requested points. Such a, graph of the spline is similar to a 

shape defined by spline functions. 

3.2.1 Definition of the Spline function 

Let xi be a strictly increasing sequence of real numbers, 

-00=Tp <x1 <... <Tn=xn+1 =00. 

A spline function f(x), degree m with knots xi, i=1,. .., n is a function 

described on the real line, having the following two properties [3]: 

i-) f(x) is some polynomial of degree m or less in every interval (x1, x; +, ), 

n where xo =- 00 1 xn+l = co, 
ii-) f(x) and its derivative of order 1,2, ... ,m-1 are continuous every- 

where. 
Thus, piecewise polynomials and their derivatives, which comply with 

some continuity conditions, are called spline functions. According to the 

above definitions, when m=0 the second condition is not invoked, so that a 

spline of degree 0 is a step function. A spline of degree 1 is a polygon. 
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3.2.2 The Usefulness of Spline Functions 

Generally, the useful features of splines are concisely gathered [69,3] as 

i-) they constitute the finite-dimensional linear space with convenient 
bases, 

ii-) they are smooth functions, 

iii-) the derivatives and anti derivatives of them are also spline functions, 

iv-) they are appropriate for computational calculations in terms of ma- 

nipulation, evaluation, storage on digital computers, 

v-) various matrices arising, with the use of spline functions, form the 

pattern of easy calculations in the approximation due to convenient sign and 

determinantal properties, 

vi-) low degree splines are remarkably flexible. That is, they do not 

exhibit sharp oscillations, 

vii-) the obtained structure at the end of the process of approximation is 

related to the structure of the polynomial, such as signs and coefficients, 

viii-)it is easy to study the convergence and stability of the approximation 

method when the splines are used, 

ix-) functions and their derivatives are simultaneously approximated. 

3.2.3 Special spline fuctions 

Let a= xo < xi < ... < x� =b be a partition of [a, b] and h= -n x; _ 

x; _1 + h, i=1,. .., n. The value of a function at these points are given 

as g(xo), g(xi),..., g(x�) and a set of m-times continuously differentiable 

functions are denoted as C- [a, b]. 

Quadratic splines 

f (x) is a quadratic spline function if the following three conditions are 

satisfied: 
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i-) f(x) E C'[a, b], 

ii-) f (xj) = 9(xj), 0<j<n, 

iii-) f (x) is a piecewise quadratic polynomial for every [x� x3+1]. 

Cubic splines 

f (x) is a cubic spline function if the following three conditions are satisfied 

i-) f (x) E C2[a, b], 

ii-) f (xj) = g(xj), 0<j< it, 

iii-) f (x) is a piecewise cubic polynomial for every [xj, xj+l]. 

3.3 The B-spline Finite Elements 

3.3.1 The Linear B-spline Element 

The linear B-spline Lm is given by the equations [57] 

(Xm+l 
- x) - 2(Xm - x), [xm-1 

- xm] 

Lm -h (Xm+l - x), lxm 
- Xm, +l] (3.3) 

0 otherwise. 

where li = (x�, +1 - x,,, ) for all m. The spline vanishes outside the interval 

[xm-1, xm+1]" Discussing only the interval elements, we see, from equation 

(3.3), that each spline L1z covers 2 intervals x,,, _1 
<x< xm+1 so that 2 

splines Lm, L, n+l cover each finite element [xm, xm+1], all other splines are 

zero in this region. 

Defining a local coordinate system for the finite element [xm, xm+l] by 

hý =x- xm, 0<ý<1, we obtain expressions for the splines that are 

independent of the element's position. 

Le = (Lm, Lm+I) = (1 - e, 6). (3.4) 
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The variation of a function U over the element [x., xm+l], is 

U=L'. de=(1-ý, ý)(b�i, bm+, )T 

The quantities de = (Sm, Sm+i)T act as element parameters with the element 

trial functions Le = (L,,,, Ln,, +l). The nodal value U; at the knot x=x, is 

given in terms of the parameters 8 by 

Um = sm 

thus for linear B-spline elements the nodal values of the function U(x, t) and 

the parameters b; are identical. The trial functions given by equation (3.4) 

are the familiar linear shape functions and lead to the familiar finite element 

description using linear elements [90]. 

We shall see that for the higher order B-spline finite elements the rela- 

tionship between the parameters b; and the nodal values [22,23,24,33,26], 

although simple, leads to a description different from that obtained when the 

more familiar Hermite and Lagrangian finite elements are used [35,90]. 

3.3.2 The Quadratic B-spline Element 

Each Quadratic B-spline Qm [57] covers 3 intervals xm_1 <x< xm+Z SO 

that 3 splines Qm_1, Qm, Qm+l cover each finite element [xm, xm+l], all other 

splines are zero in this region. 

(xi+3 
- x)Z - 3(x=+2 - x)2 + 3(xi+l - x)2 [xi_1, xi] 

Q; (x) = 

(xi+3 
- x)2 - 3(xi+2 - x)2 [xi, xi+11 

(xi+3 - x)s [xi+l, xi+21 
(3.5) 

0 otherwise. 

Using a local coordinate system for the finite element [xm, xm+l], hý = x-xm, 

0<<1, we obtain for the trial functions expressions that are independent 

of the elements position [24] 

Qe = (Qm-i, Qm, Qm+l) (1 
- 2S + ý2,1 +2- 2ý2, ý2) 
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Qm 

Figure 3.1: The trial functions Q,,, 
_1, 

Q,,,, Q�, +1 for the quadratic B-spline 

element [Sm, : r�t+l]. 

It is the representation of quadratic B-splines that is most appropriate for 

the finite element approach. These trial functions which are the same for 

every element are graphed in figure(3.1) [24]. 

The variation of a function U over the element [am, 2m+l]. is found 

from [24] 

U= Qm-lbm-1 + Qmbm + Cbm+lbm. +l = Qo. de 
(3.6) 

= (1 - 2e + e2.1 + 2e - 2ý2, ý2 ). de 

The quantities de = (bm_i, b, n, 
bm, 

+i)T act as element parameters with 

the element trial functions Qe = (Q,,, -,, Q,,,, m-li ý 

The nodal values U;, U;, at the knot x= Xm, are given in terms of the 

parameters öj by 

Llm bm + bm-1 
(3.7) 

U»m = h(bm - 
bm-1) 

Quadratic B-spline finite elements have the same nodal parameters U, Um, 

as arise with cubic hermite elements and so have similar continuity properties. 
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These elements therefore have superior continuity properties to quadratic 

polynomial elements 
The region [a, b] is partitioned into uniformly sized intervals by knots 

x; such that a= xo < xl < ... < xN =b so that from (3.6) the splines 
(Q_l, Qo, Q1, 

... , 
QN) from a basis for functions defined over [a, b]. The 

global approximation UN(x, t), to the function U(x, t), which uses these 

splines as trial functions, is [57] 

N 
UN(x, t) _ZQ; (x)bj(t), (3.8) 

where the Ej are time dependent parameters. 

To express a function U(x)in the form (3.8) the appropriate vector d 

representing that function is determined by requiring UN(x) to satisfy the 

conditions: 
(a) it should agree with the function U(x) at the knots xo,... , xN; 

leading to N+1 conditions. 
(b) the first derivatives should agree at xo UN(xo) = U'(xo): a further 

condition. This leads to the matrix equation 

Md =b 

where M is a matrix 

d= (b-,, bo, ... , ON)T 

and 

b= (hU'(xo), U(xo), U(xi),... , U(xN))T. 

(3.9) 

These equations are easily solved recursively and if we write U1 = U(x1) then 

2Uo+hUU 

2Uo-hUU ý0 =4 

_ý 
W 

29 



1 

x 

Figure 3.2: The trial functions Q�t_1, Q�Z, Qm+l, Qn%+2 for the cubic B-spline 

element [xm. x�1+1]. 

and bj=Uj-bj_lfor j=1....... V. 

The vector d is thus determined and we have expressed UU(x) in the form 

(3.8). 

3.3.3 The Cubic B-spline Element 

Each cubic B-spline [77] is non-zero over 4 adjacent elements so that 4 

cubic B-splines Q,,, 
-I, 

Q, n,, Q,,, +l, Qm+2 cover each finite elements . 

(Xm+4 
- x)3 - 4(Xm+3 - x)3 + 6(Xm+2 - . T)3 - 4(xm+1 - x)3 [Xm-2, Xm-1] 

(Xm+4 
- x)3 - 4(Xm+3 - x)3 + 6(xn1+2 - x)3 [Xm-1, Xm, ] 

x-1 Qni() 
- '3 (Xm+4 

- X) z- 4(Xm+3 _ X)z 1XMI XM+11 

Xm-I-4 -x 
)2 [xm+l 

) xm+2] 

0 otherwise. 

In terms of a local coordinate system ý given by hý =x- x�,, where 
0<C<1, expressions for variation of the cubic B-splines Qm-1I Qm, Qm+1, Qm+2 

covering the element [xm, xm+l] and graphed in figure (3.2) [33] can be ex- 
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pressed independently of the actual element coordinates as [33,36] 

Qe = (1 - 3ý + 3ý2 - ý3,4 - 6ý2 +33,1 + 3ý + 3ý2 - R3, ý3)T 

over the element [xm, xm+1] the expression for a function U is 

m+2 
Ue =E Qj bj = Qe Ae 

j=m-1 

where the ö5 are element free parameters and only the cubic B-splines Qe = 
(Q 

_l, 
Q,,,, Q,, +1, Qm+2)T are non-zero over this finite element. The splines 

act as basis functions for the element. 

The values of Um, Um, U; n, at the knot x= x�,, are given in terms of the 

5,,, by [22] 

Um = sm+l `I"4b+bm-ls 

hU = 3ýbm+1 - 6m-1ý, (3.10) 
ýt2Vm 

= 6ýbm+1 - 
? sin örn-1ý. 

The region a= xo < xl < ... < xN =b has been partitioned by equally 

spaced knots x; and Q; (x) are those cubic B-splines with knots at the points 

x;. Then the set of functions Q_1, Qo, ... , QN, QN+1 forms a basis for func- 

tions defined over [a, b]. The global approximation UN(x, t) to the function 

U(x, t) which uses these splines as trial functions is [57] 

N+1 
UN(x, t) _Z Qm(x)6m(t)1 (3.11) 

m=-1 

where the 6m are time dependent quantities to be determined from the bound- 

ary and interpolation conditions. 

The vector d representing the function U(s) can be found from (3.11) by 

requiring the approximation UN(x) to satisfy the following constraints; 
(a) it shall agree with the function U(x) at the knots xo, ... , xN; leading 

to N+1 conditions. 
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(b) derivative boundary conditions are applied at each end. This leads 

to the matrix equation of the form 

Md=b 

where M is a matrix 

d= (6-lAi6i,..., tN+iý 

and 

b= (hU'(xo), U(xo), U(xi),... 
1 

U(XN), hU'(XN) )T 

This matrix equation can be solved efficently by the Thomas algorithm to 

give the vector d. When using the method of Collocation, with the colloca- 

tion points identified with the element nodes, the cubic B-spline interpolation 

functions can be used with partial differential equations containing deriva- 

tives up to order 2 and the values at the collocation points are given by 

Equation (3.10)-(3.11). 

3.3.4 The Quartic B-spline Element 

Each quartic B-spline covers 5 elements thus each element [x,,,, x�, +1] is 

covered by 5 splines. Using a local coordinate system ý given by hý =x- x9,, 

where 0<ý<1, enables the expressions for the element splines to be 

expressed independently of the actual element coordinates as and graphed in 

figure (3.3). Over the element [xm, xm+1] the variation of the function U(x, t) 

is given by 

Qm-2 =1- 4ý + 6ý2 - 4ý3 + ý4 

Qm-1 = 11 - 12ý - 6ý2 + 12 3- ý4 

Qm=11+12 -Q2-12ý3+e4 (3.12) 

Qm+l =1+ 4ý + 6ý2 + 4ý3 - ý4 

Qm+2 = S4 
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Figure 3.3: The trial functions Q�ß_21 Q�ß_1, Q�t, Qm+i, Q�t+2 for the quartic 
B-spline element [Xm, Xni+l]" 

U(Xe t) = Qe"de 
= ('m-2 " 

Qm-1 
" 

Qin" Qm+1, Qm+2)"(6m-2, Sm-l. 6, 
n" tm+l, 

bm+2)T 

At the knot x; the numerical solution UAx, 0 is given by [26,31] 

LIT = bm+l + llbm + llb, 
n-1 + bra-2, 

hUm = 4(6m+i + 35, n, - 3b, n-i - bm-2), 
(3.13) 

h2 Um = 12(6, ß+, - Sm, - 6m-1 + Sm-2) 

h3U "= 24(6,,, +, - 36,,, + 38m, 
-1- 

6m-2)" 

When using the method of collocation, with the collocation points identified 

with the element nodes, the quartic B-spline interpolation functions can be 

used with partial differential equations containing derivatives up to order 3 

and the values at the collocation points are given above. 

3.3.5 The Quintic B-spline Element 

Each quintic B-spline Qm covers 6 intervals : c, ß_3 <X< Xm+3 so that 6 

splines Qm-2, Qm-1, Qm, Qm+l, Qm+s, Qm+3 cover each finite element [xm, Xm+i], 

33 



all other splines are zero in this region. 
Using a local coordinate system ý given by hý =x- x71, where 0<e<1 

enables the expressions for the element splines to be expressed independently 

of the actual element coordinates as [23] 

Qm-2 =1- 5ý + 10 2- 10 3+ 5ý4 - ý5 

Qm. 
-l = 26 - 50ý + 20 2+ 20 3- 20 4+ %5 

Qm, =66-60 2+30 4-10 5 
(3.14) 

Qm. +l = 26 + 50ý + 20 2- 90'3 - 20 4+ 10 5 

Qn+2=1-I-5ý-}-10 2-1-10 3, i., 5ý4-5 5 

Qm. 
+3= 

5 

Over the element [xm, xm+l] the variation of the function U(x, t) is given by 

U(x, t) = QQ"de 
= (Qm-2, Qm-1i Qm7 Qm+li Qm+2i Qm+3). (bm-2e sm-le bmi bm+1)bm+2i bm+3)2 

At the knot x; the numerical solution UN (x, t) is given by [23] 

U; = si+2 + 266; +1 + 66b; + 265; -i + 6i-z, 

h' = 5(ö, +2 + 106i+1 - 105=_1 - 6=_2), 

h2U, ' = 20(6; +2 + 2b; +1 - 65j + 2btri + öi-2), (3.15) 

hsU;,, = 60(51+2 - 2ö; +i + 25; 
-1 - 

bt-2), 

h4U; V= 120(5=+2 - 4ö; +i + 68; - 46i-i + E; 
-2). 

The function and its first 4 -derivatives are continuous across element 
boundaries. Quintic B-spline finite elements thus have trial functions with 

continuity of type C4. 

When using the method of collocation, with the collocation points iden- 

tified with the element nodes, the quintic B-spline interpolation functions 

can be used with partial differential equations containing derivatives up 

to order 4. The values at the collocation points are given by Equation 

(3.15). The use quintic B-splines to approximate the function U(x, t) and 

a= xo < xl < ... < xN =b be a partition of [a, b] by the points x;, and 

34 



let Q; (x) be those quintic B-splines with knots at the points xi. The splines 
{Q-z, Q-i, Qo, """7 

QN, QN+i, QN+z} form a basis for functions defined over 
[a, b]. A global approximation UN(x, t) to the solution U(. r, t) is given by 

N+2 
UN(x, t) _Z Qi(x)si(t), (3.16) 

where the St are unknown time dependent parameters. 

The vector d describing the function U(x) can be determined in the fol- 

lowing way. The approximation Lw(x) [57] must satisfy the following condi- 
tions. 

(a) it shall agree with the function U(x) at the knots xoo ... , xN; leading 

to N+1 conditions 
(b) the first and second derivatives of the approximation shall agree with 

those of the exact function at both ends of the range: 4 further conditions. 

This leads to the matrix equation of the form 

Md=b 

where M is a matrix 

d- (6-2, b-1, bOi... 
I6N+2)Tv 

and 

b= (hU'(x o), h2U, "(xo), U(xo), U(xi),... 7 U(xN), h. U'(XN), h2Ul, (xN))T . 

The vector d is determined as the solution of this matrix equation. 

3.3.6 The Sextic B-spline Element 

Each sextic B-spline covers 7 elements thus each element [xm, xm+l] is 

covered by 7 splines. Using a local coordinate system ý defined by 
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hý = x. - xm, where 0<ý<1, enables the expressions for the element splines 

" to be expressed independently of the actual element coordinates as 

Qum-3=1-6+15 2-20e3+15'4-6ý5+ý6 

Qm-2 = 57 - 150 + 1352 - 20 3- 45 4+ 30 5- 6ý6 

Qm-1 = 302 - 240' - 1502 + 160 3+ 30 4- 60 5+ 15 6 

Qm = 302 + 240 - 150 2- 160 3+ 30 4+ 60 5- 20 6 (3.17) 

Qm+l = 57 + 150 + 135 2+ 20 3- 45 4- 30 5+ 15 6 

2m+2 =1+ 6ý + 15 2+ 20 3+ 15'4 + 6ý5 
- 

6ý6 

Qm+3=ýs 

Over the element [x71,, xm+l] the variation of the function U(x, t) is given by 

U(x, t) = Qe"de 
= (Qm-2) Qm-i, 

`Lm, 
Qm+l, Qm+2, Qm+3)"(6m-2, Sm-1,5mi bm+1, bm+2,5m+3)1 

At the knot x; the numerical solution UN(x, t) is given by 

LT= = 6i+z + 575; +1 + 3028; + 3025; 
_1 + 575; _2 + 6+_31 

hU; = 6(bi+2 + 258; +i + 408; - 40S; _1 - 25Si_2 - bi-s), 

h2U; ' = 30(61+2 + 95; +1 - 105; - 105; _1 + 961_2 + bº-3), 
(3.18) 

h3t1; " = 120(81+a + bt+i - Sbj + Sb; 
-1 - 

51-2 - bt-s), 

h4Ui'v = 360(6i+2- 3b; +1 + 2S; + 26t_1 - 361_2 + 6; 
-3), 

h5UI = 720(51+2 - 55; +1 + 106; - 105; _1 + 581_2 - 51_3). 

The function and its first 5 derivatives are continuous across element 
boundaries. Sextic B-spline finite elements thus have trial functions with 

continuity of type C5. 
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'Chapter 4 

A New B-spline Finite 

Element Solution for the KdV 

Equation 

4.1 Introduction 

In this present chapter we will study two problems on the KdV equation. 
A new numerical solution to the Korteweb de Vries equation is obtained using 

the Galerkin method with quadratic B-spline finite elements over which the 

non-linear term is locally linearised. 

A-) Section 4.1: In this section we will study a new quadratic B-spline 

finite element algorithm, in which the non-linear term UUU is linearised by 

replacing the function U by its mean value over each element, formulated 

for the Korteweg-de Vries (KdV) equation. Values of the L2 error norm 

and KdV invariants for soliton simulations using this method are compared 

with those obtained using the (consistent) fully non-linear algorithm [24], a 

product approximation approach and other published work [85]-[74]. 
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B-) Section 4.3: In this section we studied again the Kortweg-de Vries 

equation. 

There are many investigations into the numerical solution of the Korteweg- 

de Vries (Ii dV) equation [85]-[26], including a Petrov-Galerkin approach 
in which the weight functions are cubic splines and shape functions linear 

[72,64]. 

We have set up several numerical solutions for the KdV equation using 
Bubnov-Galerkin methods in which the same B-splines are used for both 

weight and shape functions [22,24]. However, there are distinct advantages to 

be obtained if Petrov-Galerkin methods are considered since the bandwidth 

of the resulting matrix equation may be lowered if the weight functions are 

of lower order than the shape functions. 

In this present study we develop a numerical solution algorithm based 

on a Petrov-Galerkin approach in which the element shape functions are 

quadratic B-splines and the weight functions linear polynomials and compare 
its performance with earlier work. 

4.1.1 The governing equation 

The Ii d[' equation has the form 

Ut+EUUU+EtUz. xx=0, a<x<b, (4.1) 

where e, Ec are positive parameters and the subscripts x and t denote differ- 

entiation. The boundary conditions will be chosen from 

U(a, t) = 0, U(b, 0=0 
(4.2) 

Uy(a, t) = 0, Ux(b, t) =0 

Let us apply the Galerkin method to equation (4.1) with weight function V (x) 

and integrating by parts, and using equation (4.2), leads to the equation 
bjb f V(U+ UU)dx - 'iV Udx = -ýpVUý(4.3) 

a 
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and using the boundary conditions (4.2), equation (4.3) reduces to: 

fbb V (Ut + EUU3) -f EtVU. �dx = 0. (4.4) 
aa 

The presence of the second spatial derivative within the integrand means 

that the interpolation functions and their first derivatives must be contin- 

uous throughout the region. Quadratic B-spline finite elements satisfy this 

requirement. 

4.1.2 The Finite Element Solution 

In this section we approximate the solution U(x, t) using quadratic B- 

spline interpolation functions. 

Set up a uniform linear array of quadratic B-spline finite elements. Parti- 

tion the region [a, b] into N finite elements of equal length h by knots x; such 

that a= xo <x, ... < XN =b and let Q; (x) he those quadratic B-splines 

with knots at the x;. Then the splines (Q_1, Qo, Q1, ... , Q, v) form a basis for 

functions defined over [a, b]. We look for the approximation solution UN(x, t) 

to the solution U(x, t) which uses these splines as trial functions. \Ve look for 

the approximation UN(x, t) to the solution U(x, t) which uses these splines 

as trial functions 

UN(xe t) = 6-1(t)Q-1(x) + bo(t)QO(x) + 
... 

+ 6N(t)QN(X) 

UN(Tit) =E -1 
bi(t)Q3(x) 

Where the bj are time dependent parameters which are determined from 

conditions based on equation (4.4) and the boundary conditions (4.2). 

An element contributes to equation (4.4) through the integral 

xm}1 

[V{Ut + aUx} - liVxUxT]dx, (4.5) xm 

where A= eU. Identifying the weight function V with a spline Q; and using 
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(3,5) and (3.6) we obtain the element contributions 

m+1 he m+l hie 

.,, =m-i 
{fo QtQidx}bý +AE. i=m-i {fo Q1Q dx}bje 

(4.6) 
-µ FT ml-, {fo QýQ" dx}bJ, 

where 

de = {sm-ý s�º b�i+, }T, (4.7) 

are the relevant element parameters. In matrix notation this expression 
becomes 

A°de + AB`de - EtC`de, (4.8) 

where 

A= fö Q=Q, idx, 

AB, ̀- = A fö Q1Q dx, (4.9) 

CF. = fo Q Q" dx, 

and where the element average value for A is found from 
z(Um + U, n+i) 

as 

A= 
rý 

(bm-1 + 26m + bni+l). (4.10) 

The sufficies i, j take only the values 771 - 1, mn, m+1 for the element 
[xm, xm+l]. The matrices A', B` and C` have the form [24] 

G 13 1 

Ae 
30 13 54 13 J, 

(4.11) 

1 13 6 

-3 21 

AX =A -S 0S (4.12) 

-1 -2 3 
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and 

-1 2 -1 
C` _ý 

2000 
(4.13) 

1 -2 1 

where A given by (4.10) depends on the element considered. 
Combining together the N trial functions for each element produces the 

global trial function for the region [x0, xN] 
N 

UN (X, t) _ S; Q; = Qd, (4.14) 
i=-1 

where 

d= {S_11 So,..., S, v}T, (4.15) 

contains all the element parameters. 
Assembling contributions from all elements leads to the matrix equation 

for the time evolution of d, 

Ad + B(a)d - jiCd = 0. (4.16) 

The matrices A, B, C are pentadiagonal and row in of each has the following 

form: 

A: 
ä(1,26,66,26,1) 

C: 7(1, -2,0,2, -1) (4.17) 

B(A) :6 ! (-A,, 
-2) - 8\2,3A, 

- 3A3,8A2 + 2A3) . X3) 

where 
A, = (5m-2 + 25m-1 + bm), 

A2 =2 (sm-1 + 25m + sm+1), 

A3 = 2(bm m 
_am+1 'F 

Sm+2). 

m=1,2,3,..., N 

The basic difference between the present algorithm and that used in ref [24] 
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lies in the form of matrix B. The consistent B used in [85] has row m of the 

form 

[-(0.4,2.8,0.8,0,0)dm 
, -(0,12.4,24.8,2.8,0)dm T 

(0.4,12.4,0, -12.4, -0.4)d., , 
(0,2.8,24.8,12.4,0)dm 

(0,0,0.8,2.8,0.4)dm], 

where in the present element average approximation row m of B is 

is[-(1,2,1,0,0)dm , -(2,12,18,8,0)dm 
(3,6,0, -6, -3)dm , 

(0,8,18,12,2)dm 
, (0,0,1,2,1)dn, ], 

where 

dm = (bm-2, am-1ism, sm+l, 6m+2)T" 

Thus in [S5] the central (non-zero) ö value has more influence whereas in the 

proposed element average method there is less emphasis on the central value 

and more on the neighbourhood values. The averaged algorithm is easily 

generalised to cope with higher order non-linearities so that, in particular, 

numerical simulations for the Modified KdV equation can be set up using 

this approach. 

A popular alternative approximation for the non-linear term is through 

a product approximation. The analogous form appropriate to the present 

prescription has U2 given by 

aana /ý a U Qm-1Sm_1 
"'ý. ' `-Gmbn2 -+- `gym+lsm}1. 

In this case B` is of the form 

-38 262 183 

aBe =6 -S8 0 8&3 

-181 -282 383 

which leads to a matrix B with row 7n 
E 

1`ý 
[-6m-2, 

-105m-1,0i lOS, +l, 
6m+21" 
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Hence using a Crank-Nicolson approach in time, in which d is linearly inter- 

polated between two levels n and n -I-1. 

d= (1 - 0)dn + Odn+i, 

where t= (n + 0) At and 0<0<1. Then the time derivative of d is: 

d oi(dn+1 - dn), 

using the definitions d and d, equation (4.16) becomes: 

[A +0A t(B(d) - tiC)]d'+1 = [A - (1 - 0) A t(B(d) + 1zC)]d' (4.19) 

giving the parameters 0 the values 0,2 and 1 produces forward, Crank- 

Nicolson and backward difference schemes respectively. If we let 0=2 so 

that d and its time derivative d become: 

d= 12(d" -I- d"+1), 
(4.20) 

d_I (dn+l - do), 

we obtain from equation(4.19) 

[A + o` B(d) - kzýtC]dn+l = [A - 
°! B(d) + µ- t C]dn (4.21) 

2222 

a recurrence relationship for d", where Lt is the time step. 

Applying the boundary conditions which are chosen to be 

U(a, t) = 0, U(b, t) =0 

U (a, t) = 0, UT(b, t) =0 
and these conditions become: 

ö-i+bo =0 

s_i - fro =0 
8N-1 '+' bN =0 

aN-1 - aN =0 
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by eliminating b-1, So, Sir-1i SN from equation (4.21) we obtain a recurrence 

relationship for d" _ (S. l) So, Sl, ... , SN_l )T . 
A Fourier stability analysis of the growth of errors shows that the differ- 

ence scheme is unconditionally stable. 
This matrix equation is pentadiagonal and so is easily and efficiently 

solved with a variant of the Thomas Algorithm, with an inner iteration also 

needed at each time step to cope with the non-linear term. The time evolution 

of d" and hence UN(x, t) can be started once the initial vector of parameters 
d° is obtained. 

4.1.3 Stability Analysis 

The growth factor g for the error in a typical Fourier mode of amplitude 
Sn 

Sn = 
Sneijkh 

Jý 

where k is the mode number and h the element size, is determined for a 
linearisation of the numerical scheme. 

In the linea. risation it is assumed that the quantity U in the non-linear 

term is locally constant. Under these conditions we find that a typical mem- 
ber of equation (4.19) has the form 

aib, +ä +a25$+1 +a3bý+1+a4bý+i +Ce, b+i 
(4.22) 

= a55 2+ a45 1+ a35 + n'26 1+ albi+2 I- I 

where 
a1 = a-0-'y, 

a2 = 26a-lOß+27, 

a3 = 66a, (4.23) 

a4 = 26a + lOß - 2y, 

as = a-I-ß-i-y 
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and 

h 
30 

a= a°t (4.24) s+ 

7=" h 

substituting the above Fourier mode gives 

(a + ib)bn+' = (a - ib)bn (4.25) 

where 

a= a(33 + cos 2kh + 26 cos kh) (4.26) 

and 

b= (p + y) sin 2kh. + (10,3 - 2y) sin kh. (4.27) 

Writing bn+l = gb", it is observed that g= a+'b and so has unit modulus. 
The linearised recurrence relationship based on the present numerical method 

is therefore unconditionally stable. 

4.1.4 The Initial state 

Combine together the local trial functions over each element to give the 

global trial function 

N 
UN(X, 0) 

_ 
6jQj(X) 

j=-1 

and require UN(x, t) to satisfy two conditions. 

a-) It should agree with the initial condition U(x, 0) at the knots x0, ... , xN; 

leading to N+1 conditions. 
b-) Its first derivative should agree with that of the exact condition at 

xo i. e. U(xo) = 0: a further condition. 
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This leads to the matrix equation [24] 

Ad°=b, 

where 

1 -1 
11 

11 
A= s 

1 1 

1 1 

000T 
= lb -1, 

b0i 
... , 

5N) 
, 

and 

b= ý0, U(x0)1 U(. T1), ... 1 
LU(xN))T. 

(4.28) 

These equations are easily solved recursively and if we write UU = U(xj) 

60 _ UO 
_1 2, 

So = 
tro 

oZ 

69 = U; - 69 
_1 

forj=1,..., N. 

Thus the initial vector d° is determined [S51. 

4.2 Test problems 

(4.29) 

The KdV equation has stable soliton solutions which obey an infinity of 

conservation laws. A numerical scheme for calculating the solitons of the 

KdV equation should determine accurately the position and shape of a wave 
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Table 4.1: Single soliton: h=0.01, At = 0.005 averaged algorithm 

time Ii Iz 13 L2 x 103 

0.0 0.144598 0.086759 0.046733 0.000 

0.5 0.144633 0.056759 0.046734 0.630 

1.0 0.144574 0.0S6759 0.046734 1.165 

1.5 0.144535 0.0S6758 0.046733 1.744 

2.0 0.144541 0.056757 0.046733 2.345 

2.5 0.144529 0.086757 0.046732 2.972 

3.0 0.144553 0.056756 0.046732 3.557 

and should exhibit, at least, the lower order conservation properties of the 

analytic solutions [85]. The L2 error norm 
N 

Il ueract _ Un 112 = [h EI Ujract 
- UN I2] 2 (4.30) 

1 

is used to measure the difference between the numerical and analytical solu- 

tions and hence to show how well the scheme predicts the position and ampli- 

tude of the solution as the simulation proceeds. The conservation properties 

of the solution are examined by calculating the invariants [20], 

I1 = fa Udx 

Ia = fä UZdx (4.31) 

((1)2]Clx 13 = fa [U 
- 

311 

Numerical solutions to the Ii dTV equation for the following two problems 

are obtained and discussed. 

a-) The KdV equation has an analytic solution of a form given in [4]. 

The motion of a single soliton with initial condition given by 

U(x, 0) = 3csecli2(Ax + D), 
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can be derived from the analytic solution of the KdV equation which has 

the form: 

U(x, t) = 3csech2(Ax - Bt + D) (4.32) 

where 

1 cc I A=2 [-J;, and B= ecA, (4.33) 
I 

representing a single soliton moving to the right with velocity ¬c. We take 

as initial condition (4.32) at t=0 and use as boundary conditions: 

U(o, t) = U(2, t) =0 for all time. (4.34) 
U., (0, t) = Ux(2, t) =0 

To allow comparison with earlier work [64] set e=1, It = 4.84 x 10-4, c= 

0.3, D= -6, h=0.01, Zýt = 0.005. Figure (4.1) shows the behaviour of the 

computed solution for times from t=0.0 to t=3.0. The exact solution is 

plotted on the same figure all curves are indistinguishable. 

The soliton is observed to move to the right at constant speed with un- 

changed amplitude. The agreement between numerical and analytic solutions 

is excellent. To make this observation quantitative the L2 error norm and 

invariants Cl, C2 and C3 have been determined and given in Table (4.1) for 

times up to t=3.0. It is found that Cl changes by about - 0.07%, C2 by 

about - 0.003% and C3 changes by about - 0.004%, so all are reasonably 

constant. The L2 error norm reaches a maximum of 3.554 x 10-3 at the 

end of the run, and has a value of 1.1G5 x 10-3 at t=1.0 which compares 

favourably with many other algorithms: see Table (4.2) [64]. If the space step 

is reduced to h=0.005, while retaining the same timestep, the magnitude 

of the L2 error norm at t=3.0 is reduced to 1.29 x 10-3 and the percentage 

changes in C1, C2 and Cs are also reduced in proportion. In Table (4.3) 

the invariants and h error norm for the fully consistent algorithm [24] are 
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Figure 4.1: The motion of a single soliton with h=0.01, Ot. = 0.005. Time 

0.0-3.0 
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Table 4.2: Single soliton simulations 

Time Zabusky- Hopscotch Petrov- Modified 

Kruskal [4] Ga. lerkin P-G 

[85] [64] [64] 

L2 - error x 103 h=0.01 

Ox = 0.01, At = 0.0005 At = 0.005 

0.25 5.94 3.79 4.46 0.21 

0.50 13.17 9.28 7.01 0.38 

0.75 21.08 14.14 10.08 0.57 

1.00 28.66 18.72 13.26 0.74 

Table 4.3: Single soliton: h=0.01, At = 0.005 consistent algorithm [24] 

time Il 12 13 L2 x 103 

0.0 0.144598 0.086759 0.046850 0.000 

0.5 0.144598 0.086761 0.046735 0.037 

1.0 0.144602 0.086763 0.046736 0.060 

1.5 0.144604 0.056765 0.046739 0.077 

2.0 0.144606 0.0S6767 0.046740 0.0S6 

2.5 0.144607 0.0S6769 0.046742 0.101 

3.0 0.144610 0.086771 0.0,16744 0.107 
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Table 4.4: Single soliton: h=0.01, , Lt = 0.005 product approximation 

time Il IZ 13 L2 X 103 

0.0 0.144598 0.056759 0.046733 0.000 

0.5 0.144654 0.056761 0.046736 0.977 

1.0 0.144566 0.086761 0.046736 1.832 

1.5 0.144510 0.0S6761 0.046736 2.755 

2.0 0.144522 0.056761 0.046736 3.711 

2.5 0.144507 0.056762 0.046736 4.721 

3.0 0.144543 0.056762 0.046737 5.664 

Table 4.5: Single soliton: h=0.005, At = 0.0025 averaged algorithm 

time Il I2 13 L2 x 103 

0.0 0.14459S 0.086759 0.046821 0.000 

0.5 0.144594 0.086760 0.046822 0.105 

1.0 0.144608 0.086762 0.046823 0.162 

1.5 0.144604 0.086763 0.016824 0.231 

2.0 0.144597 0.0S6764 0.04GS25 0.312 

2.5 0.144592 0.086765 0.0,16826 0.390 

3.0 0.144591 0.086 7 66 0.046827 0.470 
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Table 4.6: Single soliton: h=0.005, At = 0.0025 product approximation 

time Ii I2 13 L2 x 103 

0.0 0.144598 0.086759 0.046821 0.000 

0.5 0.144593 0.086762 0.046824 0.159 

1.0 0.144615 0.086765 0.046826 0.251 

1.5 0.144609 0.086768 0.046829 0.365 

2.0 0.144601 0.086771 0.046831 0.500 

2.5 0.144594 0.0S6774 0.046834 0.630 

3.0 0.144592 0.086776 0.046S36 0.769 

given. All 3 invariants are satisfactorily constant changing by less than 0.02% 

during the simulation and the L2 norm is less then or equal to 10-4 and so 
is satisfactorily small. As expected the performance of the consistent algo- 

rithm is superior, even though the invariant C2 for the averaged algorithm 

undergoes the smaller change during the experiments. 

Wehen a product approximation is used we obtain the results given in 

Table (4.4). The L2 error norm is less satisfactory rising as it does to over 

5.6 x 10-3, by time t=3.0, a value even larger than for the averaged algo- 

rithm. However Ci changes by about , 0.1%, C2 by about - 0.0035% and 
C3 changes by about - 0.12% so all are reasonably constant. 

If the space and and time steps for both the averaged algorithm and the 

product approximation are reduced by half down to h=0.005 and 

At = 0.0025 we obtain the results given in Table (4.5) and (4.6). The values 

of the L2 error norm are reduced to less than 10-3 and so become much more 

acceptable. 
b-) A second problem concerns the interaction of two well separated 

solitons. As in case (a) we take e=1.0 and fe = 4.84 x 10-4. The initial 
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condition used is derived from the analytic solution [74]. 

U(x, t) = 12(E) (log F)xx, (4.35) 

where 
Fi 

=1+ e'1' + e'12 + ße(nl+n]), 

rt; = a; x - a3µt + bi, 
' 

(4.36) 

A_ [ai-a212 aI +u2 

with 
FO 

aµ 

0.1 
ýa= µ 

and 

(4.37) 

bi = -0.4Sa1 (4.38) 
b2 = -1.0702, 

by taking t=0. Together with the boundary conditions which are given by: 

U(o, t) = U(4, t) =0 for all time. (4.39) 
Uy(0, t) = UT(4, t) =0 

Figure(4.2) shows that two separated solitons, the large and small, two soli- 

tons of magnitudes 0.3 and 0.9 with the larger placed to the left of the smaller 

so that as time proceeds an interaction occurs. We use a space step h=0.01, 

a time step Lt = 0.005, and the region 0<x<4. 

From figure (4.2) we see that the larger soliton is placed behind and 

separated from the smaller one. As the time increases, the larger soliton 

catches up with the smaller when the time t=3.0. The overlapping process 

continues and the larger soliton overtakes the smaller one at time t=4. 

About time t=6 the interaction process is complete and the larger soliton 
has separated completely from the smaller one. Data for the present averaged 

algorithm are given in Table (4.7) and those for the consistent algorithm, 
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Figure 4.2: The motion of double solitons with h=0.01, At = 0.005. Time 

1.0-8.0. 
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Table 4.7: Double soliton: h=0.01, At = 0.005 averaged algorithm 

time 1, '2 13 L2 x 103 

1.00 0.228119 0.103458 0.049739 0.63 

2.00 0.228059 0.103460 0.049741 1.18 

3.00 0.228023 0.103465 0.049748 1.73 

4.00 0.228023 0.103483 0.049772 2.25 

5.00 0.228030 0.103533 0.049851 2.49 

6.00 0.228047 0.103602 0.049969 2.04 

7.00 0.228055 0.103577 0.049924 2.48 

8.00 0.228083 0.103508 0.049809 3.92 

in Table (4.8). For the averaged algorithm the L2 error norm, although 

somewhat larger than that obtained in reference[24], is still quite respectable, 

and all the invariants C1, C2 and C3 are conserved reasonably well, changing 
by less than 0.5% over the simulation. However, as can be seen from Table 

(4.8), these three invariants change by less than 0.05% when the consistent 

algorithm [24] is used. 
If the space step is reduced to h=0.005 and the time step to At = 0.0025 

we obtain the results given in Table (4.9). The maximum value taken by the 

LZ error norm for the averaged algorithm is reduced to 0.66 x 10-3 and the 

changes in the 3 invariants are less than 0.04% over the simulation. 
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Table 4.8: Double soliton: h=0.01, /t = 0.005 consistent algorithm [24] 

time Il 12 13 L2 x 103 

1.00 0.228088 0.103461 0.049741 0.063 

2.00 0.228093 0.103466 0.049757 0.084 

3.00 0.228099 0.103472 0.0 49755 0.075 

4.00 0.228107 0,103477 0.049780 0.078 

5.00 0.228112 0.103482 0.049758 0.075 

6.00 0.228119 0.103487 0.049760 0.116 

7.00 0.228123 0.103491 0.049764 0.209 

8.00 0.228129 0.103496 0.049768 0.338 

Table 4.9: Double soliton: h. = 0.005, At = 0.0025 averaged algorithm 

time Ii 12 13 L2 x 103 

1.00 0.228073 0.10345S 0.049827 0.11 

2.00 0.228085 0.103459 0.049829 0.16 

3.00 0.228076 0.103461 0.049830 0.24 

4.00 0.228061 0.103463 0.049832 0.32 

5.00 0.228048 0.103.165 0.049834 0.40 

6.00 0.228031 0.103465 0.049S36 0.49 

7.00 0.228015 0.103471 0.049839 0.57 

8.00 0.228987 0.103475 0.049844 0.66 
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4.3 A Modified Petrov-Galerkin Algorithm 

for the KdV Equation 

4.3.1 The governing equation 

Numerical solutions for the KdV equation 

Ut+eUU. +liu.. =0, a<x<b, (4.40) 

where e, It are positive parameters and the subscripts x and t denote differ- 

entiation, are obtained. The boundary conditions are chosen from 

U(a, t) = 0, U(b, t) =0 (4.41) 
UU(a, t) = 0, UU(b, t) =0 

to approximate the physical condition that U --> 0 as x --+ ±oo. 

Using the Galerkin's method with weight function V(x), and integrating 

by parts and using equation (4.41) leads to the equation we obtain the weak 
form of (4.40) 

b 
J. f V(Ut + fUUx)dx -J jt xU , dx = rr]a (4.42) 

aa 

and using the boundary conditions (4.41) equation (4.42) is reduced to: 
b b b 

V(Ut + EUUr)d. r -f Ei VUrrdx. = 0. (4.43) 
a 

The presence of the second spatial derivative within the integrand means 

that the interpolation functions and their first derivatives must be contin- 

uous throughout the region. Quadratic B-spline finite elements satisfy this 

requirement. 

4.3.2 The Finite Element Solution 

Now we approximate the solution U(x, t) using quadratic B-spline interpola- 

tion functions. 
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Set up a uniform linear array of quadratic B-spline finite elements. Par- 

tition the region [a 
, b] by knots x; such that a= xo < xl ... < xN =b and 

let Q; (x) he those quadratic B-splines with knots at the x;. Then the splines 
(Q_l, Qo, Q1) ... , QN) form a basis for functions defined over [a 

, b]. 

We look for the approximation UN(x, t) to the solution U(x, t) which uses 

these splines as trial functions 

UN(X, t) = 8-1(t)Q-1(x) + Öo(t)Qo(x) + 
... 

+ SN(t)QN(x) 

(4.44) 
UN(x, t) = E; '_-l bi(t)Qs(X) 

Where the bj are time dependent parameters which are determined from 

conditions based on equation (4.42) and the boundary conditions (4.41). 

An element contributes to Equation(4.43) through the integral 

fxXpn+l 

m 

where A=W. The weight function V is taken as a linear B-spline Li. Using 

(3.5) and (3.6) we obtain the element contributions in the form. 

-'m+1 [ fh L"Q jdx]b` +A f"`+1 [ýh L'Qý"dx]b J=m. -1 0tj J=na-1 0sJj (4.46) 
-/L +m-l [fö LýQýýj dzý]bj, 

i-1,2 

where 

de = {Sm-1 bm 
s 

sm+l}T, (4.47) 

are the relevant element parameters. Expressions for the linear splines for 

the finite element [xm, xm+l] in terms of the local coordinate system ý defined 

by e=x-x�ß, 0<e<h, are 

L=(Li, L2)_[1-ý, 
ý]. 

(4.48) 

In matrix notation equation (4.46) becomes 

A`de + AB`de - ItC`de1 (4.49 
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where 

= fog` L$Qjdx, A` 
13 

AB =A fö LuQdx, (4.50) 

Cý= f0h 
£I 

Q"dx, 

and where the element average value for A is found from 
2 

(U,,, + U,,, +, ) as 

+ 25m + bm+l). (4.51) 

In (4.50) the suffix i takes only the values 1 and 2 and sufficies j and k only 

the values m-1, m, m+1 for the element [xm, xm+l]" The matrices A`, Be 

and C` are rectangular 2x3, and given by 

Ae - 
ii 3S 
1ý , (4.52) 

183 

AB` =31I, (4.53) 
-1 -1 2 

and 

2 
t-1 2 -1 C` _Tj 2I1 

-2 1)I, 
(4.54) 

where A given by (4.51) depends on the element considered. 

Assembling contributions from all elements leads to the matrix equation 

Ad + B(a)d - jtCd = 0. (4.55) 

where 

Cý _ {S_!, so, 
... , 

SN}T IT, (4.56) 

contains all the element parameters. The matrices A, B, C are rectangular 
(N + 1) x (N + 2) and row m of each has the following form in which the 

centre value lies on the main diagonal. 
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The matrices A, B, C are pentadiagonal and row m of each has the fol- 

lowing form: 

A: (1,11,11,1,0) 12 

C: 2(1, -3,3, -1,0) (4.57) 

B(a) : 3(-A� -al - 2A2,2, \1 + A21 A2,0) 

where 
ý1 =Z (am-2 + 25m-1 + bm), 

A2 =2 (Sm-i + 2b,,, + sm+l ), (4.58) 

A3 =2 (am + 2b,, +, + bm+2)" 

m=1,2,3,..., N. 

Hence using a Crank-Nicolson approach in time the vector d is linearly in- 

terpolated between two levels n and n+1. 

d= (1 
- ©)dn + Od"+1, 

where t= (n + 0) Lt and 0<0<1. Then the time derivative of d is: 

- öt (dn+' - d7), 

using' the definitions cl and d, ecquation(4.55) becomes: 

[A +0A t(B(d) - liC)]d"+1 = [A - (1 - 0) A t(B(d) + ltC]dn (4.59) 

giving the parameters 0 the values 0, Z and 1 produces forward, Crank- 

Nicolson and backward difference schemes respectively. If we let 0=2 so 

that d and its time derivative d become: 

ýl =z (dn + do+l ), 
(4.60) 

- öt(dn+' - dn) 

where the superscript n is a time label. We obtain from equation (4.59 

[A + Z'B(d) -2 C]dn+' = [A - °tB(d) + F`2 tC]d" (4.61) 
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which is a recurrence relationship for dn, where Zýt is the time step. Now 

apply the boundary conditions. 

U(a, t) = 0, U(b, t) =0 (4.62) 
UU(a, t) = 0, Uy(b, t) =0 

so that these conditions become: 

ö-1+8o =0 
8_1 - bo =0 

sN-1 + ÖN =0 
6N_1-bN =0 

so that 

8-1 = 6p = 6N = 6N-1 = 0. (4.63) 

Using the boundary conditions Ave make the matrix equation square; the 

resulting matrices are asymmetrically ba. nded but may be considered depleted 

pentadiagonal and so are easily and efficiently solved with an appropriate 

variant of the Thomas Algorithm together with an inner iteration at each 

time step to cope with the non-linear term. The time evolution of d" and 

hence Uv(x, t) can be started once the initial vector of parameters d° is 

obtained. The nodal values of the function U(x, t) can be recovered from d" 

using equation (3.7) when required. 

4.4 Test problems 

The KdV equation has stable soliton solutions which obey an infinity 

of conservation laws. A numerical scheme for calculating the solitons of 

the KdV equation should determine accurately the position and shape of a 

wave and should exhibit, at least, the lower order conservation properties 

of the analytic solutions [4]. The L2 error norm is used to measure the 
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Table 4.10: Single soliton: h=0.01, At = 0.005 Present Petrov-Galerkin 

algorithm 

time Il Ia 13 L2 x 103 

0.0 0.144598 0.086759 0.0.16733 0.000 

0.5 0.144667 0.056761 0.04 6737 1.648 

1.0 0.144590 0.086761 0.046737 1.794 

1.5 0.144494 0.086761 0.046737 1.922 

2.0 0.144459 0.086761 0.046737 2.074 

2.5 0.144454 0.086761 0.046737 2.242 

3.0 0.144463 0.086761 0.046737 2.417 

difference between the numerical and analytical solutions and hence to show 
how well the scheme predicts the position and amplitude of the solution as 

the simulation proceeds. Numerical solutions to the KdV equation for the 

following two problems are obtained and discussed. 

a-) The KdV equation has an analytic solution of a form given in [4]. 

The motion of the single soliton with initial condition given by 
''i iý 

U(x, 0) = 3csech2(Ax + D), (4.64) 

can be derived from the analytic solution of the KdV equation which has 

the form: 

U(x, t) = 3csecli2(Ax - Bt + D), (4.65) 

where 
1 cc I [-]1, and B= ecA, (4.66) A=2 

Ei 
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representing a single soliton moving to the right with velocity cc. We take 

as initial condition (4.65) at t=0 and use as boundary conditions: 

U(O, t) = U(2, t) =0 for all time. (4.67) 
Ux(0, t) = Ux(2, t) =0 

To allow comparison with earlier work [85,4,64,24] set e=1, 

it = 4.84 x 10-4, c=0.3, D= -6, h=0.01, ZV = 0.005. Figure (4.3) shows 

the behaviour of the computed solution for times from t=0.0 to t=3.0. The 

soliton is observed to move to the right at constant speed with unchanged 

amplitude. 
When the exact solution (4.65) is plotted on the same figures, the curves 

are indistinguishable. To make this observation quantitative the numerical 

solution is compared with the analytic solution using the L2 error norm. The 

3 invariants C1, C2 and C3 together with the L2 error norm for problem (a) 

are given in Table (4.10) for times up to t=3.0. 

All 3 invariants are satisfactorily constant; Cl changes by less than 

0.02%, and C2 and C3 by less than - 0.003% during the simulation. The 

LZ error norm is less than or equal to 2.5 x 10-3 and so is reasonably small. 
W'i'e have also compared the present results with simulations reported and 

collected together by Sanz Serna and Christie [64]. These are reproduced 
in Table(4.11) for various space and time steps. It is seen that the present 

method compares favourably with the other methods listed. However Ta- 

ble(4.12) shows clearly that Galerkin method [24] with quadratic B-splines 

as both weight and shape functions produces much better results, particlarly 
for the L2 error norm which has a maximum of 0.107. Results for the present 
Petrov-Galerl: in method improve considerably if the time and space steps 

used are halved; see Table (4.13) 

b-) The second problem studied concerns the interaction of two well 

separated solitons. As in case (a) we take e=1.0 and Ei = 4.84 x 10-4. The 

63 



Figure 4.3: The motion of a single soliton with h=0.01, At = 0.005. Time 

0.0-3.0. 

64 



Table 4.11: Single soliton simulations 
time Zabusky- Hopscotch Present Petrov- Modified 

Kruskal [4] Petrov- Galerkin P-G 

[85] Ga. lerkin [64] [64] 

method 
L2 - error x 103 

Lx = 0.05, /t = 0.025 li = 0.05, it = 0.025 

0.25 34.64 61.21 81.39 52.15 

0.50 122.68 122.41 102.54 64.90 

0.75 210.44 181.35 125.84 89.01 

1.00 298.19 228.10 150.57 107.20 

L2 - error x 103 h=0.33, Lt = 0.01 

0.25 31.18 5.94 

0.50 43.35 7.56 

0.75 56.21 8.70 

1.00 74.08 9.49 

L2 - error x 103 

Ax = 0.01, Lt = 0.0005 h=0.01, At = 0.025 

0.25 5.94 3.79 4.46 0.21 

0.50 13.17 9.28 1.65 7.01 0.38 

0.75 21.05 14.14 10.05 0.57 

1.00 28.66 18.72 1.79 13.26 0.74 
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Table 4.12: Single soliton: h=0.01, At = 0.005 results from ref. [24] 

time Ii '2 13 L2 x 103 

0.0 0.144598 0.086759 0.046550 0.000 

0.5 0.144598 0.086761 0.046735 0.037 

1.0 0.144602 0.086763 0.046736 0.060 

1.5 0.144604 0.086765 0.046739 0.077 

2.0 0.144606 0.056767 0.046740 0.056 

2.5 0.144607 0.0S6769 0.046742 0.101 

3.0 0.144610 0.056771 0.046744 0.107 

Table 4.13: Single soliton: h=0.005, At = 0.0025 present Petrov-Galerkin 

algorithm 

time Il I2 13 L2 x 103 

0.0 0.14459S 0.0S6759 0.046S21 0.000 

0.5 0.144590 0.086760 0.046821 0.359 

1.0 0.144616 0.086761 0.046522 0.411 

1.5 0.144617 0.086761 '0.0.16523 0.434 

2.0 0.144601 0.056762 0.046523 0.441 

2.5 0.144588 0.086763 0.016524 0.454 

3.0 0.144579 0.086764 0.046525 0.469 
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initial condition used is derived from the analytic solution. 

U(x, t) = 12(L±)(1og F),. � (4.68) 

where 

F=1.. }., eng + eng + ße(nl+772), 

lii = a; x - a3µt + b;, (4.69) 

Q= [al-x212 at+a2 

with 

al (4.70) 
2 as =µ , , 

and 

bi = 0.4Sal, 
(4.71) 

b2 = -1.0702, 

by taking t=0. Together with the boundary conditions which are given by: 

U(O, t) = 11(4, t) =0 for all time. (4.72) 
Ur(0, t) = Ur(4, t)=O 

Figure (4.4) shows that after the initialisation gives rise to two separated 

solitons the large and small, two solitons of magnitudes 0.3 and 0.9 with the 

larger placed to the left of the smaller so that as time proceeds an interaction 

occurs. In the simulations a space step h=0.01, a time step At = 0.005, 

and the region 0<x<4 are used. 
From figure (4.4) we see that the larger soliton is placed on and seperated 

from the smaller one. As the time increases, the larger soliton catches up 

with the smaller when the time t=3.0. The overlapping process continues 

and the larger soliton overtakes the smaller one at time t=4.0. About 

time t=6.0 the interraction process is complete and the larger soliton has 

separated completely from the smaller one. 
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Figure 4.4: The motion of double solitons with h=0.01, At = 0.005. Time 

1.0-8.0. 
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Table 4.14: Double soliton: h=0.01, it = 0.005 present Petrov-Galerkin 

algorithm 

time Ii 12 13 L2 x 103 

1.00 0.228153 0.103458 0.049740 1.645 

2.00 0.228073 0.103460 0.049741 1.791 

3.00 0.228974 0.103464 0.049746 1.874 

4.00 0.228951 0.103481 0.049765 2.077 

5.00 0.228944 0.103531 0.049825 1.991 

6.00 0.228945 0.103600 0.049914 1.411 

7.00 0.228958 0.103577 0.049882 1.366 

8.00 0.225978 0.103509 0.049796 1.934 

The invariants Cl to C3 and L2 error norm are listed in Table (4.14). The 

L2 error norm is less than 2x 10'3 and so is reasonably small implying that 

the position and magnitude of the solitons are well represented during the 

interaction. The conservation of all 3 quantities is good; Cl and C2 change 
by about 0.01% while C3 changes by less than 0.5% during the run up to 

t=8.0. If the space and time steps are halved Table (4.15) the L2 error norm 
does not exceed 6x 10-4 during the simulation and the invariants change 
by less than 0.02%. This compares well with the results deduced in [24] and 
Table (4.16) for the Bubnov-Galerkin method where the L2 error norm does 

not exceed 4x 10'4 and the invariants change by less than 0.06% during a 

corresponding simulation. 
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Table 4.15: Double soliton: h=0.005, At = 0.0025 present Petrov-Galerkin 

algorithm 

time Il 12 13 L2 x 103 

1.00 0.228069 0.103457 0.049826 0.360 

2.00 0.228092 0.103458 0.049827 0.411 

3.00 0.228087 0.103459 0.049828 0.443 

4.00 0.228065 0.103460 0.049828 0.444 

5.00 0.228041 0.103461 0.049830 0.449 

6.00 0.225017 0.103463 0.049531 0.469 

7.00 0.227994 0.103465 0.049833 0.504 

8.00 0.227963 0.103469 0.049837 0.536 

Table 4.16: Double soliton: h=0.01, , Lt = 0.005 Quadratic B-spline 

Galerkin algorithm [24] 

time Il 12 13 L2 x 103 

1.00 0.228088 0.103461 0.049741 0.063 

2.00 0.225093 0.103466 0.049757 0.084 

3.00 0.225099 0.103472 0.049755 0.075 

4.00 0.225107 0.103477 0.049780 0.078 

5.00 0.225112 0.103482 0.049758 0.075 

6.00 0.228119 0.1031S7 0.049760 0.116 

7.00 0.227123 0.103491 0.049764 0.209 

8.00 0.227129 0.103496 0.049765 0.338 
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4.5 Discussion 

A-) Section 4.1: The simulations have shown that solving the KdV 

equation by the element averaged algorithm, leads to less accurate results 

than those found with the consistent scheme, using similar space and time 

steps, but better results than are obtained with a product approximation. 
The errors can be reduced substantially by using smaller space and time 

steps. Results of simulations presented in Section 3 indicate that to obtain 

very acceptable L2 error norms and invariants we should use space and time 

steps of about half the size of those required for the consistent algorithm. An 

important advantage of the averaged algoritm is that, unlike the consistent 

approach, it is easily generalised to cope with higher order non-linearities. 

Thus, in particular, the Modified KdV equation can be studied through 

numerical simulation using the averaged approach. 

B-) Section 4.3: The simulations have shown that a Petrov-Galerkin 

method involving linear weight functions and quadratic B-spline finite ele- 

ments can be used to produce reasonably accurate numerical solutions of the 

KdV equation. However, to obtain error norms of similar order to those 

obtained in [24] using quadratic B-splines as both weight and interpolation 

functions requires space and time steps of smaller size than those used here. 
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Chapter 5 

Simulations of solitons of the 

Modified KdV equation 

5.1 Introduction 

In this chapter we will study the Modified Korteweg-de Vries equation 

using a new numerical solution. The Modified Korteweg-de Vries equation is 

obtained using a "lumped " Galerkin method with quadratic B-spline finite 

elements. A linear stability analysis of the scheme shows the method to 

be unconditionally stable. Classical problems concerning the development, 

motion and interaction of solitons are used to validate the method. 
Theoretical and numerical studies of the Modified Kortewg-de Vries (MKdV) 

equation from various groups have appeared in the literature [85] - [75]. We 

have previously solved the Af dV equation using the method of collocation 

with quintic B-spline finite elements [23]. In the present study we set up a new 

numerical algorithm based on a "lumped" Galerkin method with quadratic 
B-spline finite elements [24]. The two methods are used to study the motion, 
interaction and generation of solitons and their performances compared. 
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5.1.1 The governing equation 

The MKdV equation has the form 

U= -I cu u, -I- ILUrxx = 0, a<x 

where e, p are positive parameters and the subscripts x and t denote 

differentiation. The boundary conditions will be taken from 

U(a, t)=0, U(b, t)=0 (5.2) 
U,,, (a, t) = 0, U. (b, t) =0 

Applying the Galerkin method to Equation(5.1) with weight function ju(x), 

integrating by parts and using Equation(5.2) leads to the equation 

fbV (Ut + eUZU, )dx -fb pl7, U, dx = -[EtV Uxr]a (5.3) 
aa 

and using the boundary conditions (5.2) equa. tion(5.3) reduced to: 

Ja 6V 
(U+ (UZU)dx -f6 Eci Urdx = 0. (5.4) 

a 

The presence of the second spatial derivative within the integrand means 

that the interpolation functions and their first derivatives must be contin- 

uous throughout the region. Quadratic B-spline finite elements satisfy this 

requirement. 

5.1.2 The Finite Element Solution 

In this section we approximate the solution U(x, t) using quadratic B- 

spline interpolation functions. 

An element contributes to Equation(5.4) through the integral 

- 71 JXm [V{u: +) Tx} - Iicxuxx]dx, (5.5) 
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where A= EU2. Identifying the weight function V with a spline Q; and using 
(3,5) and (3.6) we obtain the element contributions 

Ej +m-i [fö QiQ, idx]öje +A ET +1-1 [fö QtQýdx]öje 
(5.6) 

-µ +m-1 [fö Q; Rý dx]bý, 

where 

de = {am-1 
1 

bm 
1 

bm+l}T, (5.7) 

are the relevant element parameters. In matrix notation this equation be- 

comes 

Aede + ABede - i, Cede, 

where 

Aj= fö QiQjdx, 

AB F- a fö Q, Qýdx, 

h QiQ'Id1, CF = fo 

and a "lumped" value for A is found from 2(Um + U�l+l) as 

= lsm-1 + 28m + bm+l)2. 

For the element [x,,,, x, +, ] the sufficies i, j, 1 take only the values 

m-1, in., rn +1 so that the matrices A, B` and C` are 3x3, 

6 13 1 

A` 
30 13 54 13 

1 13 6 

-3 21 

AB` -S 0S 

-1 -2 3 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 
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and 

-1 2 -1 
C` _2 000 (5.13) 

1 -2 1 

where A given by (5.10) depends on the element considered. 
Combining together the N trial functions for each element (3.5) produces 

the global trial function for the region [Xe, xN] 
N 

UN(x, t) _ bt2= = Qd, (5.14) 

where 

d= {6_1, ao, 
... 16N}T , 

(5.15) 

contains all the element parameters. 
Assembling contributions from all elements leads to the matrix equation 

for the time evolution of d, 

Ad + B(a)d -j Cd = 0. (5.16) 

The matrices A, B, C are pentadiagonal and row m of each has the following 

form: 

(1,26,66,26,1) A- 
30 

C: (1, -2,0,2, -1) (5.17) 

B(i1) : s(- All 
-2A1 - 8A2,3A1 

- 3\3,8A2 + 2A3, \3) 

where 
Al =q (bin-2 + 28m-1 + Sm) 2, 

A2 = 4ý&n-1 + 26m, + Sm+1)2, (5.18) 

A3 = q(bm 
+ 25m+i + bm+2)2. 

Hence using a Crank-Nicolson approach in time, in which d is linearly inter- 

polated between two levels n and n+1. 
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d= (1 - O)dn + Odn+l' 

where t= (72 + 0) At and 0<0<1. Then the time derivative of d is: 

d= 
Qt(dn+l - 

dn)f 

using the definitions d and d, equation(5.16) becomes: 

[A + OA t(B(d) - pc)]dn+l = [A - OA t(B(d) + 1tC)]dn (5.19) 

giving the parameters 0 the values 0, Z and 1 produces forward, Crank- 

Nicolson and bacward difference Schemes respectively. If we let 0=2, so 

that d and its time derivative d become: 

d=Z (Cl" +d "+1) 

' 
d= öt(dn+l - da) 

(5.20) 

we obtain from equation(5.19) 

{A+ 
AtB(d) 

-E 'L tC, }dn+' = {A- 
AtB(d)+ "AtC}dn (5.21) 

22 

a recurrence relationship for d" 
, where At is the time step. 

Applying the boundary conditions which are chosen to be 

U(a, t) = 0, U(b, t) =0 
UU(b, t) =0 

and these conditions becomes: 

b-1+ao =0 
S-1-bo =0 

SN-1+6N' =0 

6N-1 - aN' =0 
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by eliinina. ting S_l, 50,8N_l, 5N from equation (5.21) produces a recurrence 

relationship for d" = (b_1 bo Si, ... ÖN_1)T . 
A Fourier stability analysis of the growth of errors shows that the difference 

scheme is unconditionally stable. 
The matrices are penta. dia. gonal and so are easily and efficiently solved 

with a variant of the Thomas Algorithm, but an inner iteration is also needed 

at each time step to cope with the non-linear term. The time evolution of d" 

and hence UN(x, t) can be started once the initial vector of parameters (10 is 

obtained. The function U(x, t) can be recovered from d" using Equations(3.6) 

and (3.7) if required. 

5.1.3 Stability Analysis 

The growth factor g of the error in a typical Fourier mode of amplitude 
bn 

bn _ 
äneijkh 

where k is the mode number and h the element size, is determined for a 
linearisation of the numerical scheme. 

In the linea. risation it is assumed that the quantity UZ in the non-linear 

term is locally constant. Under these conditions we find that a typical mem- 
ber of Equation(5.21) has the form 

Q, l62ý+2 
1 

, +alb, +i 
, +4.3b'+1+a45, +i +asbn+2 

(5.22) 
= a5ýý 2+ CY4bý 1+ O36 + Q'2bi+1 + alsi+2 

where 
ai = a-0--y' 

a2 = 26a-100+2-y, 

a3 = GGa, (5.23) 

a4 = 26a + 100 - 27, 

as = a+ß+7 
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and 

a_h 301 

/3 °t, (5.24) 

h T-' 

substituting the above Fourier mode leads to 

(a + ib)b +i = (a - ib)b' (5.25) 

where 

a= a(33 + cos 2kh + 26 cos kh) (5.26) 

and 

b= (Q + y) sin 2kh + (10 0- 2y) sin kh. (5.27) 

Writing b"+1 = gb", it is observed that g= Q+ýb and so has unit modulus. 
The linearised recurrence relationship based on the present numerical method 

is therefore unconditionally stable. 

5.2 Simulations 

Like the KdV equation the J%I dV equation has stable soliton solutions 

which obey an infinity of conservation laws. A numerical scheme for calcu- 
lating the solitons of the 111KdV equation should determine accurately the 

position and shape of a wave and should exhibit, at least, the lower order 

conservation properties of the analytic solutions [41]. The L2 error norm is 

used to measure the difference between the numerical and analytical solutions 

and hence to show how well the scheme predicts the position and amplitude 

of the solution as the simulation proceeds. The conservation properties of 

0 
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the solution are examined by calculating the invariants [41], 

I1 = f, Udx 

12 = fa U'dx (5.28) 
I3 = fa [U4 

- 
6c (Ux)2]dx 

These expressions are derived by assuming either that boundary conditions 

are periodic or that U --+ 0 as x -- ±oo. 

Numerical solutions to the A KdV equation for the following problems 

are obtained and discussed. 

a-) The AMKdV equation has an analytic solution of the form [41] 

U(x, t) = kpsech(kx - kxo - k3fit) (5.29) 

where 

G/c 
(5.30) 

which represents a single soliton originally sited at xo moving to the right with 

velocity Olt. Solitons may have positive or negative amplitudes depending 

on the sign of k but all have positive velocities. 

We take as initial condition (5.29) at t=0 and to allow comparison with 

earlier work [23] we use e=3.0, It = 1.0, kpp =c=1.3, xo = 15, h= 

0.2, At = 0.025 and 0<x< 200. We can see figure (5.1), time up to 10. 

The soliton is seen to move to the right at constant speed with unchanged 

amplitude. To make this observation quantitative we have compared our nu- 

merical solution with the analytic solution using the L2 and L.,, error norms. 
For problem (a) these are given in Table (5.1) where they are compared with 

a similar simulation using the method of collocation and quintic B-splines 

[23]. 

The corresponding 3 invariants Il, I2 and 13 for both simulations are 

given in Table (5.2). We see that in general, the error norms are smaller for 
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Figure 5.1: Single soliton solution: it = 1.0, e=3.0, At = 0.025 ,h=0.2, 
range 0<x< 200. Timet=0.0-10.0. 

80 



Table 5.1: Single soliton h=0.2, At = 0.025,0 <x< 200 

lumped 

quadratic B-spline quintic B-spline [23] 

time L2 x 103 L, o x 103 L2 x 103 L.. X 103 

1.0 3.38 2.03 0.25 0.10 

2.0 4.88 3.23 0.35 0.17 

3.0 6.32 4.15 0.39 0.25 

4.0 7. G5 5.00 0.51 0.36 

5.0 8.84 5.75 0.75 0.51 

6.0 9.83 6.3.4 1.02 0.67 

7.0 10.57 6.71 1.32 0.85 

8.0 11.21 7.20 1.66 1.07 

9.0 11.34 6.99 2.03 1.03 

10.0 11.61 7.33 2.45 1.55 
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Table 5.2: Invariants: single soliton simulation h=0.2, /t = 0.25 

lumped 

quadratic B-spline quintic B-spline [23] 

time Ii Ix Is Ii Iz Ia 

0.0 4.443 3.678 2.055 4.443 3.677 2.071 

10.5 4.444 3.677 2.055 4.442 3.676 2.070 

20.0 4.443 3.677 2.054 4.442 3.675 2.068 

30.0 4.444 3.676 2.054 4.442 3.674 2.067 

40.0 4.444 3.676 2.054 4.441 3.674 2.066 

50.0 4.443 3.676 2.054 4.441 3.673 2.064 

60.0 4.442 3.6-16 2.053 4.440 3.672 2.063 

70.0 4.441 3.676 2.053 4.440 3.671 2.061 

80.0 4.441 3.676 2.053 4.440 3.670 2.060 

90.0 4.440 3.675 2.052 4.439 3.669 2.058 

100.0 4.440 3.675 2.052 4.439 3.668 2.057 

the latter simulation while the invariants change least for the former case. 
For the long run up to t= 100, Table (5.2) shows that for the present case 
both Il and IZ change by less than 0.1% and 13 changes by less than 0.2%, 

while for the quintic spline algorithm the changes are somewhat larger but 

still Il changes by less than 0.1%, I2 by less than 0.25% and 13 by less than 

0.75%. 

b-) Our second test will involve soliton interaction, and we take as initial 

condition 

U(x, t) = kipsech(klx - klxl - kippt) + k2psech(k2x - k2x2 - k311t), (5.31) 
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where 

i 

evaluated at t=0. 

(5.32) 

This condition represents two solitary waves of magnitudes kip placed at 

x=- AL 
. The waves move to the right with velocities Op which depend 

upon their magnitude. To ensure interaction with increasing time we place 

the larger soliton to the left of the smaller. Thus we place the soliton with 

magnitude kip = 1.3 at xl = 15 and that with k2p = 0.9 at x2 = 35, the 

range is0<x <200, p=0.1, E=3.0sothat p=, h 0.2 and 
Zýt = 0.025. 

Figure (5.2) show the two solitons with large amplitude on the left. As 

the time increases, the larger soliton catches up with the smaller until, at 

time t= 40, the smaller soliton is being absorbed. The overlapping process 

continues until, by time t= 60, the larger soliton has overtaken the smaller 

one and is in the process of separating. At time t= 100, the interaction is 

complete and the larger soliton has separated completely from the smaller 

one. 

The solitons are observed to interact and emerge from the collision and 

resume their former shape and velocity. The values taken by the 3 invariants 

during this long simulation are given in Table (5.3) from which we see that 

each is satisfactorily conserved. The change in 13 is the largest and even 

that is less than 0.5%. For comparison the invariants for a corresponding 

simulation using quintic B-spline finite elements [23] are also given. We find 

that the changes in these invariants are of similar magnitudes. 

c-) As a final example we study the temporal development of a Maxwellian 

initial condition. 

U(x, 0) = exp(-x2). (5.33) 
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Figure 5.2: Double soliton solution: Ei = 1.0, e=3.0, Ot = 0.025 , li = 0.2, 

range 0<x< 200, at time t=0.0 - 120. 
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Table 5.3: Invariants for two solitons cl = 1.3, c2 = 0.9, h=0.2, At = 0.25 

lumped 

quadratic B-spline quintic B-spline [23] 

time Il- Ia 13 Il Ia 13 

0.0 8.8857 6.2226 2.7396 8.8858 6.2226 2.7588 

20.5 8.8865 6.2222 2.7389 8.8852 6.2212 2.7562 

40.0 8.8846 6.2220 2.7388 8.8854 6.2212 2.7559 

60.0 8.8845 6.2248 2.7486. 8.8851 6.2203 2.7540 

80.0 8.8851 6.2253 2.7495 8.8846 6.2188 2.7513 

100.0 8.8854 6.2219 2.7383 8.8840 6.2174 2.7487 

120.0 8.8846 6.2211 2.7362 8.8834 6.2161 2.7461 

We fix the values of e at 1 and examine the evolution of the solution for 

various values of Ec. Integrating (5.2S) analytically shows that 

Il = (7c) = 1.7725, 

I2= J(2=1.2533, 

I3 = 2(1 

so that for It = 0.04 13 = 0.5854, It = 0-0113 = 0.8110, µ=0.005 13 = 0.8486 

and /z'= 0.0025 13 = 0.8674. 

First, with µ=0.04 we use At = 0.01 and h=0.1 over a range 

-50 <x< 50, and confirm earlier work that the AMaxwellian evolves into a 

single AI di/ soliton and an oscillating tail as shown in figure (5.3). The 

values taken by the lowest invariants up to time of t= 12.5 are given in Table 

(5.4). 

second, with Ec = 0.01 we use At = 0.005 and h=0.05 over a range 

-50 <x< 50, two solitons and an oscillating tail as shown in figure (5.4). 

The values taken by the lowest invariants up to time of t= 12.5 are given in 
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Time t=7.5 

Figure 5.3: Maxwellian initial condition: it = 0.04, At = 0.01 ,h=0.1 range 

-50 <x< 50, at time t=0.0 - 12.5. 
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Table 5.4: Invariants for Maxwellian 

time it = 0.04, h=0.1, it = 0.01 

time Il 12 13 

0.0 1.7725 1.2533 0.5839 

2.5 1.7719 1.2511 0.5756 

5.0 1.7716 1.2504 0.5734 

7.5 1.7716 1.2501 0.5726 

10.0 1.7715 1.2501 0.5723 

12.5 1.7716 1.2500 0.5721 

Table (5.5). 

Third, With i=0.005 we use At = 0.005 and h=0.01 over a range 

-15 <x< 15, and show that the Ma. awellian evolves into three MKdV 

solitons, see Figure (5.5). The values taken by the lowest 3 invariants for 

simulations are given in Table (5.6). As h decreases the observed value of 13 

at time t=0 moves closer to the analytic value due probably to an improved 

estimate of U-.. 

And last, With It = 0.0025 we use Lt = 0.005 and li = 0.01 over a 

range -15 <x< 15, and show that the Maxwellian evolves into five AMKdV 

solitons, see Figure (5.6). The values taken by the lowest 3 invariants for 

simulations are given in Table (5.7). As h decreases the observed value of 13 

at time t=0 moves closer to the analytic value due probably to an improved 

estimate of U. 

d-) The final test problem we shall consider has the initial condition: 

U(x, 0) =2 [l - tanh[ 5 as]] (5.34) 
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Table 5.5: Invariants for Maxwellian 

time jt = 0.01, h=0.05, At = 0.005 

time Il 12 13 

0.0 1.7725 1.2533 0.8109 

2.5 1.7713 1.2485 0.7889 

5.0 1.770S 1.2463 0.7778 

7.5 1.7707 1.2460 0.7767 

10.0 1.7706 1.2459 0.7764 

12.5 1.7706 1.2458 0.7762 

Table 5.6: Invariants for Maxwellian 

time p=0.005, h=0.01, At = 0.005 

time 11 12 13 

0.0 1.7725 1.2533 0.8486 

2.5 1.7724 1.2529 0.8464 

5.0 1.7722 1.2522 0.8438 

7.5 1.7720 1.2516 0.8418 

10.0 1.7719 1.2510 0.8399 

12.5 1.7717 1.2504 0.8380 
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Time t=0 
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Time t=5 Time t=7.5 
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Figure 5.4: Maxwellian initial condition: it = 0.01, it = 0.005 ,h=0.05 

range -50 <- x< 50, at time t=0.0 - 12.5. 
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Time t=0 Time t=2.5 

Figure 5.5: Maxwellian initial condition: IL = 0.005, Zýt = 0.005 ,h=0.01 

range -15 <x< 15, at time t=0.0 - 12.5. 
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Time t=0 Time t=2.5 

1zs4D e/ ö -6 -5 -4 -3 -2 -1 012345678 

Time t=10 Time t=12.5 

Figure 5.6: Ma. xwellian initial condition: Ec = 0.0025, Zýt = 0.005 ,h=0.01 
range-15<x<15, at timet=0.0-12.5. 
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Table 5.7: Invariants for Maxwellian 

time it = 0.0025, h=0.01, At = 0.005 

time Ii 12 13 

0.0 1.7725 1.2533 0.8674 

2.5 1.7722 1.2520 0.8614 

5.0 1.7710 1.2488 0.8504 

7.5 1.7699 1.2458 0.8410 

10.0 1.7689 1.2431 0.8325 

12.5 1.7680 1.2406 0.8247 

and the boundary conditions are chosen to be: 

U(-150, t) = U(150, t) =0 forallt>0 
Ux(-150, t) _ 11, (150, t) =0 

(5.35) 

\Ve have taken e=0.2, p = 0.1 with Ot = 0.05 and h=0.4. The numerical 

solution has been determined for the finite range -150 <x< 150 with the 

boundary conditions, given above applied at x= X15O. 

The behaviour of this solution is given in Figure (5.7). Also we compute 

the first three conservative quantities up to a time t= 800. These are given 

in Table (5. S). 

We have found over the computer runs that the quantities I;, (i = 1, ... , 3) 

have changed from their original values by less than 0.009%, 0.057% and 

0.355% respectively. Therefore we may consider them as relatively constant. 

The analytic velocity of the soliton in the MKdV equation is defined by 

Ca = a2f/6 where a is the amplitude. In this case a=1.9884, e=0.2. Hence 

Ca 0.1318 while the numerical velocity is C,, = 0.132. Therefore we find 

that the analytic and numerical velocities are consistent. 

It is observed from Figure (5.7) that the initial perturbation has broken up 
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Table 5.8: Invariants for tanh initial condition. 

time e=0.2, Ea=0.1, h=0.4, At=0.05 

time Il I2 13 

0.0 50.000244 45.000481 40.433926 

100.0 49.983517 44.910309 39.909645 

200.0 49.935287 44.674023 38.445984 

300.0 49.913094 44.565525 37.815990 

400.0 49.905308 44.536327 37.681885 

500.0 49.903107 44.530098 37.638954 

600.0 49.902920 44.530876 37.612217 

700.0 49.908508 44.535611 37.582287 

800.0 49.920536 44.540688 37.587090 

into a train of solitons, which move steadily to the right with constant speeds 

whose magnitude depends upon their individual amplitude. It appears, that 

the amplitudes of the solitons vary approximately linearly. The agreement 
between the value of the analytic velocity Ca, 0.1318 for the leading soliton 

is very satisfactory; especially with these long time and large space steps, 

we observe that when the time reaches t= 800 the initial perturbation has 

broken up into a train of 9-solitons. 

5.3 Discussion 

A numerical algorithm for the solution of the 111 KdV equation based upon 

a lumped Galerkin method employing quadratic B-spline finite elements has 

been set up. The scheme is unconditionally stable. It has been used to study 

the motion, generation and interaction of solitons. 
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Table 5.9: Single soliton time with accuracy La, < 0.005 

method mesh 
h At 

time L2 x 103 L. x 103 vl x 104 v2 x 104 

quadratic 
B-spline 

0.2 0.025 1.00 3.38 2.03 1.36 2.43 

quintic 
B-spline 

0.5 0.025 1.00 6.26 3.30 0.94 4.47 

TA [75] 0.1 0.25 1.00 4.45 3.3 55.6 

PS [20], [75] 0.625 0.005 1.00 4.57 -14. -353 

In all simulations the 3 invariants I1,12 and 13 are conserved very well 
indeed. The error norms observed in simulating the motion of a single soliton 

are not as small as were obtained with a collocation algorithm and quintic 
B-spline finite elements using similar space and time steps. However by using 

smaller steps these errors can easily be reduced. 
The present single soliton trials are compared with published work in 

Table (5.9). The TA scheme due to Taha and Ablowitz [75] is based on 

the inverse scattering transform and the PS scheme is the pseudospectral 

method of Forberg and Whitharn [20], [75). The present method performs 

well. 
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Chapter 6 

Solitary wave solution of the 

MKdV minus equation 

6.1 Introduction 

A new numerical solution to the Modified Korteweg-de Vries minus equa- 

tion is obtained using a "lumped " Galerkin method with quadratic B-spline 

finite elements. A linear stability analysis of the scheme shows the method 

to be unconditionally stable. The motion, interaction and generation of soli- 

tary waves are studied using the method. The Korteweg-de Vries (Ii dV ) 

and the Modified Kortewg-de Vries (. ifKdj') equations have been applied to 

plasma and fluid mechanics problems where perturbations of a small but fi- 

nite amplitude are considered. In two component models, such as a stratified 

fluid with 2 layers or a plasma with a2 temperature electron component, the 

non-linear term of the Kdj' equation changes sign for critical values of the 

physical parameters and the solitons reverse polarity, at least in the case of 

some slow modes. In the vicinity of the critical parameters higher order non- 

linearities have to be retained and hence it is thought that the MKdV equa- 

tion describes the behaviour of the physical system in the transition between 
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a regime with positive KdV solitons to one with negative solitons [16]. 

Theoretical and numerical studies of both forms of the MKdV equation 
from various groups have appeared in the literature [85]-[77]. We have pre- 

viously solved the AfKdV+ equation using the method of collocation with 

quintic B-spline finite elements [23]. In the present studing we set up a new 

numerical algorithm for the MKdV - equation based on a "lumped" Galerkin 

method with quadratic B-spline finite element [24]. The method is used to 

study the motion, interaction and generation of solitary waves and it per- 
forms well. The simulations confirm existing theoretical and numerical work 

and produce new and interesting results concerning the decay of quasi-soliton 
initial conditions. 

6.1.1 The governing equation 

The ýIf Ii dV - equation has the form 

Ut - EUZUx + Urxr. = 0, a <x< M, 
ý6.1) 

where the subscripts x and t denote differentiation. The boundary conditions 

are taken from 

U(a, t) = a, U(ß, t) =b (6.2) 
U.. (a, t) = 0, Uxx(ß, t) =0 

to model the physical boundary conditions that U(x, t) --> a as x --ý -oo and 
U(x, t) -+ b as x --- -Foo. The boundary condition on the second derivative 

was prefered to one on the first derivative since it let to a very well behaved 

solution. 
The soliton solutions of the jll dT'- equation are distinct from those 

of the MKdV+ equation and cannot be derived from them. The 1-soliton 

solution, rising from a background level U= -a, is of the form [16] 

U(x, t) = -a[1 - 2v'{1+ 
(6.3) 

(1 - vz) cosh 2av[x - xo + (6 - 4v2)a2t]}-1], 
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where 0<v<1. This pulse has amplitude 2a[1 - (1 - v2)] and velocity 

-a2(6 - 4v2). The amplitude and velocity values are limited to the ranges 
0< amplitude < 2a and -6a2 < velocity < -2a2. In contrast to the KdV 

and AfKdV+ equations a smaller Af dV- soliton moves more rapidly than 

a larger. 

Unlike the AlKdV+ equation the AlKdV- equation has also kink travelling 

wave solutions of the form 

U(x, t) = ±a tänh(ax + 2a3t). (6.4) 

which connects levels ±a and has velocity -2a2. Only kinks connecting the 

same two levels can coexist. Similary solitons that coexist with kinks must 

arise from the same levels and together they form a general solution. 
Soliton solutions, for which U --+ -a as x --> ±oo, conserve the following 

integrals 

I1=f+'Udx 

I2 = f. t U2dx (6.5) 
I3 =f 

±ý [U4 
- 

611 (Ur)2]dr. 

6.2 The MKdV- simulations 

6.2.1 Problem 1. Single solitary wave 

Firstly, the motion of a single solitary wave is studied using as initial condi- 
tion (6.3) at t=0. 

U(x, 0) = -a[1 - 2v2{1 + (1 - v2) cosh 2av[x - xo]}-1], (6.6) 

In the simulation xo = 0, a=1, v=0.5, h = 0.1, At = 0.0005 and 

a range -40 <x< 20, superimposed and perspective view graphs of the 

solitons profile are given in Figures(6.1-6.2), which produces a single soliton 
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Figure 6.1: The interaction of single soliton, xo = 0. a=1.: ' = 0.5, h = 
0.1, At = 0.0005 and a range -40 <x< 20. Superimposed profiles for 

integer times t=0 to t=3.0. 

of amplitude 0.4019 originally sited at s=0 moving to the left with velocity 

5.0. The L2 and L,,. error norms are computed to estimate the accuracy of 

the algorithm and the invariants Il, IZ, 13 to test its conservation, these are 
listed in Table (6.1). The error norms are small showing that the position 

and shape of the soliton are well represented by the numerical solution. The 

lowest three invariants change by less than 0.05% during the run so that the 

numerical algorithm has good conservation properties too. 

6.2.2 Problem 2. Interaction of 2 solitary waves 

Soliton interaction is studied through the 2-soliton solution using as initial 

condition 
U(x, 0) = -a + 2av1 {l + (1 - vi) cosh 2avl[x - x, ]}-' 

(s. 7) (1 - vZ) cosli 2az2[x - x2]}-1 +2az4 {1 + 

with vl = 0.2, V2 = 0.6, xl = 10 and x2 = -10, which leads to a soliton 

of amplitude 0.0404 originally placed at x= 10 moving to the left with 

99 

-40 -30 -20 'ý' -10 0_r. 



Table 6.1: Error norms and Invariants for a single soliton a=1, v=0.5, 

h=0.1, At = 0.0005 

time L2 x 103 L,.. x 103 Il Iz 13 

0.25 0.1212 0.0402 -59.0021 58.1014 56.7696 

0.50 0.2261 0.0704 -59.0026 58.1027 56.7717 

0.75 0.3288 0.0924 -59.0033 58.1038 56.7737 

1.00 0.4260 0.1241 -59.0038 58.1048 56.7757 

1.25 0.5367 0.1611 -59.0044 58.1059 56.7778 

1.50 0.6537 0.2082 -59.0051 58.1071 56.7801 

1.75 0.7748 0.2762 -59.0056 58.1082 56.7821 

2.00 0.9071 0.3436 -59.0062 58.1092 56.7841 

2.25 1.0520 0.4094 -59.0069 58.1103 56.7863 

2.50 1.2001 0.4798 -59.0075 58.1115 56.7886 

3.00 1.5045 0.6392 -59.0088 58.1138 56.7930 

ýY 
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Figure 6.2: The interaction of single soliton. xo = 0. a=1, v=0.5, h= 

0.1, At = 0.0005 and a range -40 <x< 20. Perspective view of the 

simulation. 

velocity 5.84 to impact with a soliton of amplitude 0.4 originally at x= -10 

moving to the left with the lower velocity of 4.56; the interaction is shown 

in figures(6.3-6.4). In the simulation a=1. h=0.1, At = 0.0005 and 

a range -200 <x< 20; superimposed graphs of the solitons' profile are 

given in figures(6.3-6.4) from which it is seen that when the solitons coalesce 

the amplitude of the signal is reduced. The conservation properties of this 

simulation are also examined; the invariants are monitored and changes of 

less than 0.04% are recorded; see Table (6.2). Perelman et al [56] have shown 

that the faster vl soliton acquires a positive phase shift A while the slower 

v2 soliton acquires a negative shift -A given by 

A= In V2 + vl] (6.8) 
V2 - vl ' 

so that after the collision the function profile has equation 

U(x, t) = -a + 2av1 {1 + (1 - vl) cosh 2avi [x - xi +°+ (6 - 4v1)a2t]}'1 
(6.9) 

+2ai4 {1 + (1 - vz) cosh 2av2[x - x2 -°+ (6 -4 v2 )alt]}'1 
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Figure 6.3: The interaction of two solitons, v=0.2 and v=0.6. Superim- 

posed profiles for integer times t=0 to t= 12. 

The observed phase shift for soliton 1 is 0.69-1 and that for soliton 2 is -0.696. 
The above formula leads to A=0.693 so that the observation are consistent 

with theory. 

6.2.3 Problem 3. A kink pair 

To observe the behaviour of two well separated kinks we consider the 

initial condition 

U(x, f) = a{tanh(ax - axo + 2a3t) - tanh(ax - ax, + 2a3t) - 1}, (6.10) 

att=0. Take a=1, sothat U->-1asx-4±oo, xo=-10andx1=10 

and observe the development of the solution with h=0.1, At = 0.0005 and 

a range -60 <x< 20; superimposed graphs of the profile of the solution are 

given in Figures(6.5-6.6). 

It is seen that both kinks move to the left with equal velocities c=2 

so that the profile of the solution remains constant and is simply rigidly 
translated through a distance that depends linearly on time. the invariants 
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Table 6.2: Invariants for two solitons vl = 0.2, v2 = 0.6, h=0.1, At = 0.0005 

time Il 12 13 

0.0 -218. 415207 217 . 014328 215.024094 

2.5 -218 . 420197 217 . 023972 215.043015 

5.0 -218 . 424408 217 . 032440 215.060471 

7.5 -218 . 428391 217 . 0.10405 215.075607 

10.0 -215 . 431229 217 . 04 6021 215.056716 

12.5 -218 . 433426 217 . 050171 215.095261 

15.0 -218 . 434647 217 . 052902 215.100830 

17.5 -218 . 435822 217 . 054413 215.103104 

20.0 -218 . 435455 217 . 054001 215.101730 

22.5 -218 . 434967 217 . 052902 215.098953 

25.0 -218 . 433075 217 . 049362 215.091583 

27.5 -218 . 430588 217 . 043945 215.080414 

30.0 -218.427811 217 . 038452 215.069611 
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Figure 6.4: The interaction of two solitons, v=0.2 and v=O. G. Perspective 

view of the simulation. 

for this simulation are given in Table (6.3); they change by less than O. OS%% 

and so are well conserved. Summing the tann functions together leads to 

U(x, t)=-1+2z, 2{1+ (1-vz)cosh 2[x+2t]}'1 (6.11) 

where v= tanh(20) -1- 10'17 which shows that the kink pair corresponds 

to an extended soliton [16] with v differing from 1 by about 10-17 so that it 

has amplitude 2 and speed equal to 2. 

6.2.4 Problem 4. Interaction of a soliton with a kink 

The interaction of a kink and a soliton is studied via the initial condition 

U(x, 0) =a tanh(ax) - 2av2{1 + (1 - v2) cosh 2av[x - xo]}-1. (6.12) 

In the simulations a=1, h=0.1, At = 0.0005 and a range -50 <x< 30; 

superimposed graphs of the solution profile are given in figures(6.7-6.15), 

from which we observe the soliton (v = 0.03) initially on the right catch up 

with the kink, pass through it and emerge on the lefthand side inverted but 
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Figure 6.5: Kink pair. a=1. Superimposed profiles. 

Figure 6.6: Kink pair. a=1. Perspective views of the experiment. 
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Table 6.3: Invariants for a kink pair a=1 

time Il I2 13 

0.00 -40.1000 76.1000 77.4370 

0.25 -40.1002 76.1019 77.4410 

0.50 -40.100.1 76.1040 77.4448 

0.75 -40.1008 76.1063 77.4494 

1.00 -40.1013 76.1090 77.4548 

1.25 -40.1019 76.1118 77.4606 

1.50 -40.1027 76.1148 77.4666 

1.75 -40.1034 76.1180 77.4730 

2.00 -40.1040 76.1208 77.4786 

2.50 -40.1051 76.1262 77.4894 

3.00 -40.1058 76.1310 77.4987 
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Figure 6.7: The interaction of a soliton, v=0.2, with a. kink. a=1. Suiper- 

imposed profiles for integer times. 

with unchanged amplitude and velocity and having undergone a phase shift. 

This interaction has been described theoretically by Perelman et al [56] who 

show that after the interaction the kink has undergone a negative phase shift 

1, 
1n[ +v 

1-r]' 
(6.13) 

while the soliton has suffered a positive phase shift of 0.5. , so that after 

the interaction the function profile is given bye 

U(x, t) =a tanh(ax -0+ 2a3t) 
(6.14) 

-2av2{1 + (1 - v2) cosh2au[x - xo +2+ (6 - 4v2)a2t]}'1. 

The shifts observed in the simulations for values of v in the range 0.2 <v< 

0.9 are compared with theoretical values in Table (6.5) and for v=0.2 three 

invariants shown in Table(6.4). Agreement is excellent. 
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Figure 6.8: The interaction of a soliton. v=0.3, with a kink. 
a=1. Super- 

imposed profilesfor integer times. 

Figure 6.9: The interaction of a soliton, v=0.4, with a kink, a=1. 
Superimposed profilesfor integer times. 
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Figure 6.10: The interaction of a soliton, v=0.4, with a. kink. a=1. 

perspective view. 
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Figure 6.11: The interaction of a soliton, v=0.5, with a kink, a=1. 
Superimposed profilesfor integer times. 
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Figure 6.12: The interaction of a soliton, v=0.6, with a kink. a=1. 
Superimposed profilesfor integer times. 
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Figure 6.13: The interaction of a soliton, v=0.7, with a kink, a=1. 
Superimposed profilesfor integer times. 
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Figure 6.11: The interaction of a soliton, v=0.8, with a kink, a=1. 
Superimposed profilesfor integer times. 
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Figure 6.15: The interaction of a soliton, v=0.9, with a kink, a=1. 
Superimposed profilesfor integer times. 
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Table 6.4: Invariants for soliton-kink interactions: v=0.2, la = 0.1, At = 

0.0005 

time Il Iz 13 

0.0 77.613525 76.100136 75.435410 

1.0 77.618637 76.110428 75.455292 

2.0 77.625763 76.123917 75.481735 

3.0 77.632744 76.137192 75.507950 

4.0 77.639206 76.150940 75.534805 

5.0 77.632248 76.164955 75.562202 

6.0 77.440979 -16.179817 75.590378 

7.0 77.581169 76.192924 75.617104 

8.0 77.663132 76.205719 75.642456 

9.0 77.674553 76.219383 75.669380 

10.0 77.6S1747 76.233078 75.696083 

Table 6.5: Observed and theoretical phase shifts for soliton-kink interactions 

v 0k- obs As obs zk- theor Os theor 

0.2 -0.4 0.2 -0.4 0.2 

0.3 -0.62 0.309 -0.619 0.309 

0.4 -0.85 0.444 -0.847 0.424 

0.5 -1.1 0.55 -1.09 0.545 

0.6 -1.4 0.690 -1.39 0.695 

0.7 -1.74 0.868 -1.735 0.868 

0.8 -2.20 1.10 -2.197 1.10 

0.9 -2.88 1.58 -2.94 1.47 
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Figure 6.16: The interaction of a soliton, v=0.3. with a kink pair, a=1. 

Superimposed profiles for integer times. 

6.2.5 Problem 5. Interaction of a soliton with kink 

pair 

The initial conditions has the form 

U(x, 0) = a[tanh(ax - axo) - tanh(ax - axl) - 1] 
(6.15) 

-2av2{1 + (1 - v2) cosh 2av[x - x2]}-1. 

In the simulation we use a=1, v=0.3, x0 = -10, xl = 10, x2 = 2.5 and 

li = 0.2, At = 0.005 and a range -100 <x< 40. 

The solit. on passes through each of the kinks as shown in figures(6.16- 

6.11) and emerges at the left with unchanged size, shape and velocity but 

having undergone a phase shift of ,, = -2.01, while each of the kinks has 

suffered equal phase shifts of Ak = 1.25. As has been seen (Problem 3), 

a kink pair behaves like a soliton with v=1 so one would expect a phase 

shift-of 0k, = 1.238 which accords with observation. The invariants for this 

simulation, showing of less than 0.02%, are well conserved; see Table (6.6). 
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Figure 6.17: The interaction of a soliton, v=0.3, with a kink pair, a=1. 

Perspective view. 

Table 6.6: Invariants for a kink pair a=1 and a, soliton v=0.3 

time Il 12 13 

0.0 -99.5510 13-5.001 135.293 

1.0 -99.5820 135.003 135.29S 

2.0 -99.5829 135.006 135.303 

4.0 -99.5923 135.012 135.314 

6.0 -99.5993 135.012 135.316 

8.0 -99.5984 135.015 135.321 

10.0 -99.5868 135.017 135.324 

12.0 -99.5847 135.016 135.323 

14.0 -99.5533 135.015 135.320 

15.0 -99.5793 135.007 135.306 
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6.2.6 Problem 6. The generation of kink and solitons 

from a tanll initial condition 

To study the clean generation of solitons consider initial condition 

U(x, 0) = tanh(Cx). (6.16) 

where C= 1/N, where N is an integer. When N=1 so that C=1 which is 

also the amplitude of the tanh function an analytic kink solution is obtained. 

In what follows the values N=2 to S are considered. The case C=0.3 is 

also studied to determine how it differs from integer cases. 

It has been shown that the equilibrium state which develops from this 

initial condition is completely determined by the governing eigenvalues of 

the M dV- equation. These may he determined analytically from the as- 

sociated Schrödinger equations [16] 

0 -- [A - (Uo f LTox)] tf'=0, (6.17) 

where Uo is the initial condition, which have the same discrete spectrum of 

eigenvalues including the null value. With the given initial condition the 

Schrödinger potentials are 

Uo ± Uox =1- (1 ± C)sech2(Cx). (6.18) 

Since C(= 1/N) is the reciprocal of an integer there is a discrete set of 
I' 

eigenvalues whivh are determined analytically to be given by [16,241 

A-1 
}=1- 

[1 + (±1 -1- 2r)/2N]2, 
(6.19) 

for r=0,1, ... ,N+ (±1 - 3)/2. 

The two sets of eigenvalues obtained by taking either the plus or minus sign 

are identical apart from the null value. Proceed with the positive set dropping 

the sign label to obtain 

),. =1- [1 - r/N]2, for r=0,1, ... ,N-1. 
(6.20) 
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Figure 6.18: U(a" = +oo) = +1, U(x = -oo) = -I, c=0.2-5, h = 0.2, 

At = 0.0005. range -100 <x< 100. The simulation results in the formation 

of a, double layer and three solitary waves. Superimposed profiles. 

The eigenvalues are related to the parameters v appearing in the solitary 

wave solution (6.3) through [16] 

yr = (1 - AT/C12), (6.21) 

so that the pulse amplitude Ar above the U= -a base level is 

Ar = 2(x[1 - (1 - vT)], (6.22) 

and the pulse velocity to the left is 

cr=(6-4v,? )a2=2a2+(2a-A, )2. (6.23) 

Figures(6.19-6.26) show snapshots of the function profile, taken at integer 

time intervals throughout a simulation with N=4, superimposed upon each 

other. It is clear that the tanh front steepens so that by the end of the 

simulation the kink solution has been formed. In so doing it throws off three 

pulses which have the essential charateristics of J%I KdV- solitary waves. 
These pulses are formed one in front of the other in decreasing order of 

magnitude; and since the smaller pulses have the higher velocities they do 
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Table 6.7: Solitary Wave amplitudes and velocities k=kink, sw=solitary 

wave, wtf=wave train front 

eigenvalue amplitude velocity 

N computed computed measured computed measured remarks 

2 0.0000 2.0000 1.992 -2.000 -2.08 k 

0.7500 -" 0.2680 0.267 -5.000 -5.00 swl 

3 0.0000 2.0000 2.000 -2.000 -1.98 k 

0.5556 0.5093 0.510 -4.222 -4.24 sw1 

0. SS89 0.1144 0.113 -5.945 -5.60 sw2 

4 0.0000 2.0000 1.992 -2.000 -2.08 k 

0.4375 0.6771 0.677 -3.750 -3.80 swl 
0.7500 0.2686 0.267 -4.998 -4.50 sw2 
0.9375 0.0636 0.065 -5.750 -5.76 sw3 

5 0.0000 2.0000 2.003 -2.000 -1.98 k 

0.3600 0.8 0.795 -3.440 -3.46 swl 

0.0400 0.4 0.397 -4.560 -4.57 sw2 

0.8400 0.1670 0.165 -5.360 -5.37 sw3 
0.9600 0.0404 0.039 -5.840 -5.55 sw4 

6 0.0000 2.0000 2.000 -2.000 -2.00 k 

0.3056 0.8945 0.894 -3.222 -3.22 swl 

0.5556 0.5093 0.509 -4.222 -4.22 sw2 
0.7500 0.2679 0.265 -5.000 -5.02 sw3 
0.8889 0.1144 0.105 -5.555 -5.57 sw4 

0.9722 0.0140 0.023 -5.889 -5.82 sw5 
12 0.0000 2.0000 2.000 -2.000 -1.97 k 

0.51 0.5717 0.570 -4.04 -4.03 swi 
0.84 0.1670 0.167 -5.36 -5.35 sw2 
0.99 0.0100 0.016 -5.96 ? 
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_ý= ýý' 

Figure 6.19: U(x = +oo) = +1, U(x = -oo) = -1, c = 0.2.5. h = 0.2. At = 
0.0005, range -100 < ;r< 100. The simulation results in the formation of a 

double layer and three solitary waves. Perspective view of the development 

of the profile. 
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U(x = +oo) = +1, U(x = -oo) = -1, c = 0.5, h = 0.2, 

At = 0.0005, range -100 <x< 100. The simulation results in the formation 

of a double layer and one solitary wave. Superimposed profiles. 
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Figure 6.21: U(x = +oo) = +1, U(x = -co) = -1, n = 3, h = 0.2, At _ 

0.0005, range -100 x 50. The simulation results in the formation of a 

double layer and two solitary waves. Superimposed profiles. 
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Figure 6.22: U(x = +oo) = +1, U(x = -oo) = -I, n= 0-3, h = 0.2, 

At = 0.0005, range -100 <x< 50. The simulation results in the formation 

of a double layer and two solitary waves. Superimposed profiles. 
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Figure 6.23: U(x = +oo) = +1, T(x = -oo) = -1,7n. = 5. h = 0.2, At = 

0.0005, range -200 <x< 50. The simulation results in the formation of a 

double layer and four solitary waves. Superimposed profiles. 
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= Figure 6.24: U(x = +oo) = -I-1, U(x = -oo) _ -1, n = 6, h = 0.2, At 

0.0005, range -200 <x< 50. The simulation results in the formation of a 

double layer and five solitary waves. Superimposed profiles. 
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Table 6.8: U(x = +oo) = +1, U(x = -oo) = -1, n = 5, h = 0.2, At = 

0.0005, range -200 <x< 50. 

time Il 12 13 

0.0 243.267426 240.200150 237.133453 

1.0 243.485840 240.237885 237.209427 

2.0 2-13.911301 240.268524 237.279175 

3.0 244.018143 240.317352 237.378224 

4.0 244.052887 240.353424 237.446533 

5.0 244.071732 240.387161 237.513153 

6.0 244.087891 240.413864 237.564774 

7.0 244.095184 240.429962 237.597824 

8.0 244.112259 240.460205 237.656769 

9.0 244.132721 240.500946 237.735992 

10.0 244.157227 240.548981 237.831345 

11.0 244.180817 240.594604 237.922531 

12.0 244.203903 240.641357 238.014191 

13.0 244.229370 240.692261 238.114960 

14.0 244.250732 240.735352 238.199799 

15.0 244.268402 240.768387 238.264526 
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Table 6.9: U(x = +oo) = +1, U(x = -oo) = -1, n=S, h=0.2, At = 
0.0005, range -250 <r< 50. 

time Il I2 13 

0.0 239.009811 234.100372 228.933182 

1.0 239.043503 234.114624 228.966431 

2.0 239.414703 234.134613 228.999664 

3.0 239.838715 234.155716 229.040039 

4.0 239.955902 234.178131 229.083344 

5.0 239.994965 234.204712 229.137054 

6.0 240.030807 231.245453 229.214310 

7.0 240.059402 234.285553 229.293488 

8.0 240.081375 234.326736 229.372437 

9.0 240.102203 234.366913 229.449951 

10.0 240.125946 234.406586 229.527634 

11.0 240.142532 234.447311 229.605148 

12.0 240.164627 234.487228 229.682129 

13.0 240.186722 234.529541 229.764572 

14.0 240.208054 234.572586 229.848877 

15.0 240.232300 2: 34.615265 229.930908 

16.0 240.251190 234.657913 230.013840 

17.0 240.276825 234.700394 230.096878 

18.0 240.295456 234.743240 230.180145 

19.0 240.320114 234.785721 230.262207 

20.0 240.341339 234.829315 230.347610 
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Figure 6.25: U(x = +oo) = +1, U(x = -oo) = -1,77. = S, h=0.2. fit. = 

0.0005, range -250 <x< 50. The simulation results in the formation of a 

double layer and six solitary waves. Superimposed profiles. 

not subsequently interact. A perspective view of the solution is also given 
in figure(6.18-6.25) and also we can see for (n=5, S) three invariants results 
Table(6. S-6.9). In Table (6.7) the solitary wave amplitudes and velocities 

predicted from the above theory for various values of N are compared with 

experimental obsevations; the agreement is good. \Ve have also used the in- 

teger theory to predict the eigenvalues and hence the associated amplitudes 

and velocities of solitary waves for the non integer case C=0.3 
. The ob- 

served values agree well with these predictions. 

6.2.7 Problem 7. Non symmetric tanh initial condi- 

tions 

A study of some initial conditions of the form 

U(x, 0) = Z(U+ - 
U_)ta. nh(Cx) + 2(U+ + t1_) (6.24) 
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which have the asymptotic values 

U--+U+ as x --ºoo and U --ºU- as x -+ -oo, (6.25) 

is also made. The analytic kink solution is obtained if we take 

C=U+=-U_. (6.26) 

Simulations with the following parameter values, which do not correspond to 

analytic solutions, are set up and the development of the function profile is 

monitored: 

a-) U+= 1.2, U_ = -0.8, C=0.25 

b-) t/+ = 0.8, U_ = -1.2, C=0.25 

c-) Uk. = 1, U_ = 0, C=0.25 

d-) U+ = 0, U_ = -1, C=0.25 

Examples (a) and (b) are such that U+ - L1_ = 2. In all runs take h=0.2 

over a range -100 <x< 100 and site the initial condition at x=0, use 
At = 0.001 and run up to a time t= 24. 

The results of the simulations are compared with theoretical predictions 

and the experimental work of Chanteur and Raadu [16]; see Table (6.10). 

6.2.8 Problem 7(a): U+ = 1.2, U_ = -0.8, C=0.25 

Snapshots of the function are shown superimposed on each other together 

with a perspective view in figures(6.26-6.28). For this problem we start with 

an initial condition which is not antisymmetric in its asymptotic values. As it 

transforms itself into a kink solution between levels U= ±1.2 it gives off two 

solitary waves and then sets up a wave train to return to the prescribed level 

of U --s -0.8 as x --* oo. The end result of this process is shown clearly in 

figures(6.29-6.30) for time t=5.5. An analtic expression for the eigenvalues 
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Figure 6.26: U(x = +oo) = +1.2, U(x = -oo) = -O. S. c=0.2. '), h = 0.2, 

At = 0.001, range -100 <x< 100. The simulation results in the formation 

of a double layer and two solitary waves and a wave train. 

Figure 6.27: U(x = +oo) = +1.2, U(x = -oo) = -O. 8, c=0.25, h= 

0.2, At = 0.001, range -100 <x< 100. The simulation results in the 
formation of a double layer and two solitary waves and a wave train. 
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Figure 6.28: U(x. = +oo) = +1.2.1f(a" = -oo) _ -0.5, c = 0.2.5, li = 
0.2, At = 0.001, range -100 <x< 100. The simulation results in the 

formation of a double layer and two solitary waves and a. Nva. ve train. 

Table 6.10: Solitary Wave amplitudes and velocities k=kink. sw=solitary 

wave, wtf=wave train front 

eigenvalue amplitudes velocities 

run computed computed measure measure computed measure measure mar 
[16] [16] [16] [16] 

a 0.000 2.4000 2.390 2.395 -2.880 -2.92 -2.86 k 

0.4064 1.1250 1.121 1.118 -4.506 -4.50 -4.49 swl 

0.6300 0.8125 0.807 0.803 -5.400 -5.45 -5.41 sw2 

0.64 0.8 0.755 0.751 -5.44 -5.62 -5.53 wtf 

h 0.0000 1.6000 1.599 1.596 -1.280 -1.30 -1.32 k 

0.4064 0.3250 0.325 0.326 -2.906 -2.91 -2.90 swl 

0.6300 0.0125 0.026 0.020 -3.800 -3.83 -3.88 sw2 
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Figure 6.29: LT(x = +oo) = +O. 8. t'(x = -oo) = -1.2, c = 0.2.3, h= 

0.21'A t=0.001, range -100 <x< 100. The simulation results in the 

formation of a double layer and two solitary waves and a wave and a ramp. 

Superimposed profiles. 

of this problem is not available, but values have been obtained by solving the 

associated Schrödinger equation numerically [16] to give , \o = 0.0000, A, = 

0.4064, )2 = 0.6300; these leads to the computed soliton values given in Table 

(6.10). The limit for eigenvalues is 0.64 = 1/1.22, which implies amplitude 

and velocity limits of Ali,,, = 0.8 and II=�L = -5.44 that should correspond to 

the amplitude and velocity of the leading wave in the wave train. We observe 
the values A front = 0.751, and T, 'front = -5.53 which compare reasonably with 

those found earlier [16] A front = 0.755, and ['front= -5.62. 

6.2.9 Problem 7(b): U+ = 0.8, U_ = -1.2, C=0.25 

Again for this problem superimposed snapshots and perspective views of 
the progress of the experiment are given; see (6.29-6.30). As in problem 7(a) 

the asymptotic values are not equal and opposite, but this time the negative 

value is larger and consequently the subsequent development is different. As 
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Figure 6.30: U(x = +oo) == -oo) = -1.2, c = 0.25, h= 

0.2, At = 0.001, range -100 <x< 100. The simulation results in the 

formation of a double layer and two solitary waves and a wave and a ramp. 

Perspective view. 

1.0 
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-0.5 
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Figure 6.31: U(x = +oo) = +1.0, U(x = -oo) = 0, c=0.25, h=0.2, At = 
0.001, range -100 <x< 100. We see that a. wave train has formed but no 
double layer or solitary waves. Superimposed profiles. 
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Figure 6.32: U(x = +oo) = +1.0, Cl (x = -oo) = 0, c=0.25, h=0.2. 
-At = 

0.001, range -100 < 1" < 100. We see that a wave train has formed but no 

double layer or solitary waves. Perspective view. 

the wave front steepens and forms a kink solution between levels U= ±O. S. it 

gives off 2 solitary waves and forms a ramp to return to the asymptotic value 

U --> -1.2 as x --> -oo. Eigenvalues determined by solving the associated 

= Schrödinger equation numerically [16] are Ao = 0.0000, A = 0.4064. A2 

0.6300; these lead to the computed soliton amplitudes and velocities given in 

Table (6.10). 

6.2.10 Problem 7(c): U+ = 1, U_ = 0, C=0.25 7(d) : 
U+=O, U_=-1, C=0.25 

Snapshots and a perspective view of the simulation are given in Figures 

(6.31-6.32). For this problems 7(c) and 1(d) one of the asymptotic values 
is zero so that kink solutions are not expected to form. The results of our 

simulations confirm this. For 7(c) the initial profile evolves into a wave train 

travelling to the left along the U=0 level, no solitary waves form. For 7(d) 

only a smooth ramp connecting the two levels is formed confirming earlier 
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observations [16]. 

6.2.11 Problem 8 

The generation of kink and solitons from a quasisoliton initial condition 

of the form. 

U(x, 0) = -1 + tanh(2A){tanh[C(x - xo + 0)]- 
(6.27) 

tanh[C(x - xo - 0)]1. 

where C= 1/N, N an integer. Using the'appropriate formulae and identify- 

ing v= tanh(2CA) it is easy to show that this initial condition can also be 

written as 

U(x, 0) = -1 + 2v ta. nh(2A)/{1 + (1 - v2) cosh 2C(x - xo)}. (6.28) 

which is similar in form the equation for a single soliton (6.3). 

When A is large, the ta. nh functions well separated and each tanh behaves 

independently and since C(= 1/N) is the reciprocal of an integer there is a 
discrete set of eigenvalues which may be determined analytically [16], and 

corresponding to each a daughter soliton is born; this process has already 
been described for problem 6. 

As 0 takes smaller values the tanh functions become closer together as 
do the corresponding solitons in each of the wave trains, and when the tanh 

profiles are sufficiently close the wave trains coincide. When 0 is reduced 

still further the soliton solution is replaced by a stable pulse preceeded by a 

wave train. 

Simulations are set up with A= 10,1,0.2 (which have v=1 -10-17, 
0.9640,0.37998) and C= 1/N where N=2,4. The case 0= 10 corresponds 

to the well separated situation and two trains of solitons are generated, one 

arising from each tanh function. When A=1,2CA , 1, a single train of 

solitons is observed, while with A=0.2 a stable pulse preceeded by a wave 
train forms . 
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Figure 6.33: Double tanli initial condition (6.27). N=2., = 10. Superim- 

posed profiles. 

6.2.12 Numerical experiment series 1. 
-"V =2 

a-) When 0= 10 we take a region -150 <x< 50. h=0.2. At = 0.00.3 

and run the simulation up to time t= 15. The invariants are listed in Table 

(6.11). The progress of the run is shown in figures (6.33-6.34). The initial 

state is an obvious double tanh of equal and opposite slope. The slopes of 

the tanh functions do not combine with their amplitudes to produce an exact 

kink configuration. In the simulation the tanh functions retain their original 

amplitude but steepen into a double kink configuration and in so doing each 

tanh emits a soliton moving to left as is shown clearly in figures(6.33-6.34). 

The daughter of the right hand kink has first to climb over the double kink to 

join the daughter of the other kink. As seen in later stages of the simulation 
both solitons have identical amplitudes (0.267) and travel across the mesh 

with identical speeds (5.0). 

b-) When 0=1 we take a region -200 <x< 50 and h=0.2, At = 
0.005 and run the simulation to time t=1.5. The invariants are listed in 
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Table 6.11: Invariants for two tann with 0= 10. 

time Ii 12 13 

0.0 -160.200119 192.2000,13 190. SGS4S4 

1.0 -160.200714 192.192276 190. S66180 

2.0 -160.201431 192.192047 190.864838 

3.0 -160.202866 192.193594 190.865286 

4.0 -160.2044 07 192.197235 190.8743.14 

5.0 -160.203934 192.201385 190.882828 

6.0 -160.194275 192.209534 190.893097 

7.0 -160.186432 192.206436 190.592395 

8.0 -160.186218 192.207291 190.593921 

9.0 -160.187149 192.209213 190.897598 

10.0 -160.187897 192.211090 190.901062 

11.0 -160.188126 192.212708 190.904388 

12.0 -160.1885GS 192.214035 190.907257 

13.0 -160.188950 192.215256 190.909592 

14.0 -160.189056 192.216354 190.911606 

15.0 -160.189080 192.216365 190.911598 

132 



Figure 6.34: Double tann initial condition (6.27). 1\' = 2,0 = 10. Perspec- 

tive view. 

Table (6.12). As shown in figures (6.35-6.36) the initial pulse, which is very 

similar in appearance to a. soliton, grows in amplitude and its slope steepens 

until a soliton configuration of amplitude 1.10 and velocity -2.81 is achieved. 
In so doing a single smaller soliton of amplitude 0.216 is ejected with velocity 

-5.18. 
c-) When A=0.2 we take a region -250 <x< 50 and h=0.2, 

At = 0.005 and run the simulation to time t= 15 . We see in figures 

(6.37-6.35) the amplitude of the initial pulse decreases until a stable height 

is reached, at the same time a wave train is created in front of the pulse. 

' The invariants are listed in Table (6.13). Since in this experiment 0 was of 

the same size as the grid spacing h there was some feeling that this might 
have influenced the outcome. It was decided to reduced the grid spacing to 

h=Q. 05 and rerun the experiment. No significant changes in the results or 

outcome were observed. 
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Figure 6.35: Double tanh initial condition (6.27). N=2, v=1. Superim- 

posed profiles. 

Figure 6.36: Double tanh initial condition (6.27). N=2,0 = 1. Perspective 

view. 
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Table 6.12: Invariants for two tanh N=2 with 0=1. 

time Ii IZ 13 

0.0 -246.343964 244.815216 243.736420 

1.0 -246.343826 244.515094 243.742630 

2.0 -246.344879 244.816040 243.746338 

3.0 -246.346512 244.818604 243.751953 

4.0 -246.348511 244.824097 243.759354 

5.0 -246.351074 244.827927 243.767258 

6.0 -246.353226 244.831619 243.774948 

7.0 -246.354828 244.834869 243.781494 

8.0 -246.356598 244.838303 243.788574 

9.0 -246.358444 244.841385 243.794357 

10.0 -246.359589 244.843948 243.799515 

11.0 -246.361237 244.847610 -243.806122 

12.0 -246.362762 244.850098 243.811859 

13.0 -246.363312 244.851105 243.813889 

14.0 -246.364426 244.853592 243.819092 

15.0 -246.364914 244.853851 243.819611 
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Figure 6.37: Double tank initial condition (6.27). A' = 2.., = 0.2. Superim- 

posed profiles. 

Figure 6.3S: Double tanh initial condition (6.27). N=2,0 = 0.2. Perspec- 

tive view. 
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Table 6.13: Invariants for two tank N=2 with 0=0.2. 

time Il 12 13 

0.0 -299.896149 299.607544 299.075623 

1.0 -299.897156 299.610870 299.087372 

2.0 -299.898499 299.614807 299.093689 

3.0 -299.900757 299.618103 299.100830 

4.0 -299.903717 299.624939 299.110413 

5.0 -299.905670 299.631653 299.119415 

6.0 -299.907806 299.635681 299.130463 

7.0 -299.911316 299.639465 299.139069 

8.0 -299.915558 299.642700 299.146545 

9.0 -299.917480 299.646423 299.155365 

10.0 -299.919189 299.651123 299.163391 

11.0 -299.920776 299.655151 299.171112 

12.0 -299.922150 299.658539 299.177551 

13.0 -299.923157 299.661377 299.183624 

14.0 -299.924744 299.664886 299.189484 

15.0 -299.926331 299.667664 299.195740 
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Figure 6.39: Double tank initial condition (6.27). N=4, A= 10. Superim- 

posed profiles. 

6.2.13 Numerical experiments series 2. JV =4 

In this series of experiments Nv' take a region -200 <x 50. 

h=0.2. At = 0.005 and run the simulation up to time t= 15. 

a-) For 0= 10, the invariants are listed in Table (6.14). The progress of 

the run is shown in figures(6.39-6.40). Like the corresponding experiment in 

series 1, the slopes of the tanh functions do not combine with their amplitudes 

to give an exact kink configuration. Once more the tann functions keep their 

original amplitude but steepen into a double kink configuration with velocity 

-2.03 and in so doing each tanh emits 3 solitons as is shown clearly in Figures 

(6.39-6.40). 

The paired daughter solitons have identical amplitudes (0.675,0.269,0.063) 

and travel across the mesh with identical speeds (-3. SS, -5.06, -5.71), which 

compare well with free soliton speeds of -3.16, -5.00 and -5-75. 
b-) For A=1 the invariants are listed Table (6.15). As shown in figures 

(6.41-6.42) the initial pulse grows in amplitude and its slope steepens until 
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Table 6.14: Invariants for two tanh N=4 with 0= 10. 

time Il 12 13 

0.0 -210 . 200195 234 . 207596 229.564163 

1.0 -210 . 200882 234 . 204422 229.568604 

2.0 -210 . 2011712 234 . 193726 229.558792 

3.0 -210 . 199677 234 . 193848 229.555130 

4.0 -210 . 196121 234 . 198532 229.563019 

5.0 -210 . 188309 234 . 203781 229.571381 

6.0 -210 . 177826 234 . 204681 229.574799 

7.0 -210 . 176971 234 . 205276 229.577789 

8.0 -210 . 175873 234 . 209183 229.586426 

9.0 -210 . 167450 234 . 218552 229.597198 

10.0 -210 . 159225 234 . 216599 229.599167 

11.0 -210 . 158249 234 . 216629 229.598557 

12.0 -210.158539 234 . 217804 229.600998 

13.0 -210 . 159698 234 . 219086 229.603851 

14.0 -210.160599 234 . 220703 229.606476 

15.0 -210 . 160934 234 . 221878 229.609131 
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Figure 6.40: Double tanh initial condition (6.27). N= -1.. = 10. Perspec- 

tive view. 

a soliton configuration of amplitude 0.6975 and velocity -3.693 is observed; 

a free soliton with similar amplitude has velocity -3.6965. In so doing three 

smaller solitons of amplitudes 0.3052,0.0921 and 0.007 are ejected. the larger 

pair having velocities -4.5723, -5.61; free solitons of equal amplitudes have 

velocities. We were unable to determine the velocity of the smallest soliton. 

c-) For A=0.2 we see in figtires(6.43-6.44) the amplitude of the initial 

pulse decreases in height. By time t= 15 the amplitude is 0.1178 and the 

velocity -5.54, at the same time a wave train has been created in front of 

the pulse; a soliton of equal height would have velocity -5.844. The invari- 

ants for this simulation, which are listed in Table (6.16), show satisfactory 

conservation. 
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Figure 6.41: Double ta. nh initial condition (6.27). !V=4, A=1. Stiperim- 

posed profiles. 

Figure 6.42: Double tanh initial condition (6.27). N=4,0 = 1. Perspective 

view. 
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Table 6.15: Invariants for two tanh N=4 with -A = 1. 

time 11 12 13 

0.0 -246.344070 243.70-1123 240.489777 

1.0 -246.3.14971 243.710114 240.498505 

2.0 -246.345749 243.711639 240.502167 

3.0 -246.346802 243.713699 240.504105 

4.0 -246.318907 243.718140 240.510986 

5.0 -246.351883 243.720413 240.515961 

6.0 -246.353-160 243.724411 240.523285 

7.0 -246.355927 243.727493 240.530365 

8.0 -246.35664.1 243.729535 240.535309 

9.0 -246.357880 243.732758 240.540359 

10.0 -246.359497 243.735474 240.545609 

11.0 -246.361053 243.737793 240.550217 

12.0 -246.362396 243.740387 240.554657 

13.0 -246.363327 243.743195 240.559418 

24.0 -246.364136 243.744797 240.562958 

15.0 -246.365076 243.746429 240.566940 
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Figure 6.43: Double tanh initial condition (6.27). N=4, -A = 0.2. Superim- 

posed profiles. 

Figure 6.44: Double tanh initial condition (6.27). N=4,0 = 0.2. Perspec- 

tive view. 
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Table 6.16: Invariants for two tanh N=4 with A=0.2. 

time 11 12 13 

0.0 -249.896164 249.599930 249.029938 

1.0 -249.89709.5 249.603073 249.039397 

2.0 -249.897995 249.605621 249.044510 

3.0 -249.899200 249.608S56 249.049438 

4.0 -249.901947 249.614258 249.057526 

5.0 -249.904572 249.617218 249.063599 

6.0 -249.905256 249.621536 249.072220 

7.0 -249.90SS59 249.624634 249.079437 

8.0 -249.909744 249.627243 249.084885 

9.0 -249.910675 249.630295 249.090530 

10.0 -249.912140 249.633392 249.095993 

11.0 -249.913940 249.635406 249.101395 

12.0 -249.91569.5 249.638229 249.106247 

13.0 -249.917603 249.642776 249.111206 

14.0 -249.917603 249.642776 249.115997 

15.0 -249.918411 249.644455 249.119583 
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6.2.14 Problem 9 

If we get the generation of kink and solitons from a quasisoliton initial 

condition of the form. 

U(x, 0) = -1 +a tanh(2C0)[tanh(C(ax + a0))- (6.29) 
tanh(C(ax - a0))]. 

where C= 1IN, N an integer. 

When 0 is large, the tanh functions well separated and each tanh behaves 

independently and since C(= 1/N) is the reciprocal of an integer there is a 

discrete set of eigenvalues which may be determined analytically [16], and 

corresponding to each a daughter soliton is born; this process has already 

been described for problem 6. 

As A takes smaller values the tanh functions become closer together as 
do the corresponding solitons in each of the wave trains, and when the tanh 

profiles are sufficiently close the wave trains coincide. When 0 is reduced 

still further the soliton solution is replaced by a stable pulse preceed by a 

wave train. 

Simulations are set up with A=2,1,0.2 and C= 1/N where N=2,4. 

The case -A =2 corresponds to the well separated situation and two trains of 

solitons are generated, one arising from each tanh functions. When 0=1, 

2C0 - 1, a single train of solitons is observed, while with 0=0.2 a stable 

pulse preceded by a wave train forms . 

6.2.15 Numerical experiment series 1. N=2 

a-) When 0=2 we take a region -300 <x< 20, h = 0.2, At = 0.005 

and run the simulation up to time t= 15. The invariants are listed in Table 

(6.17). The progress of the run is shown in figures (6.45-6.46). The initial 

pulse, which is very similar in appearance to a soliton, grows in amplitude 

and its slope steepens until a soliton configuration of amplitude 1.7746 and 
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Figure 6.45: Double tanh initial condition (6.29). N=2, 
-A = 2. Superim- 

posed profiles. 

a 

velocity -2.0 is achieved. In so doing a single smaller soliton of amplitude 

(0.4247.0.1066) is ejected with velocities (-4.40, -6.40). 
b-) When A=1 we take a region -300 <x< 20 and li = 0.2, : fit = 

0.00.5 and run the simulation to time t=1.5. The invariants are listed 

in Table (6.18). As shown in figures (6. -17-6.4S) the initial pulse, which is 

very similar in appearance to a solit. on, grows in amplitude and its slope 

steepens until a, soliton configuration of amplitude 0.8599 and velocity -3.20 
is achieved. In so doing a single smaller soliton of amplitude 0.1507 is ejected 

with velocity -6.50. 

c-) When 0=0.2 we take a region -300 <x< 20 and h=0.2, At = 
0.005 and run the simulation to time t= 15. \Ve see in figures (6.49-6.50) 

the amplitude of the initial pulse decreases until a stable height is reached, 

at the same time a wave train is created in front of the pulse. The invariants 

are listed in Table (6.19). Since in this experiment 0 was of the same size 

as the grid spacing h there was some feeling that this might have influenced 

the outcome. It was decided to reduced the grid spacing to h=0.05 and 

146 



p 

Figure 6.46: Double tann initial condition (6.29).: ß' = 2, !ý=2. Perspective 

view. 
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Figure 6.47: Double tanh initial cQndition (6.29). N=2, A=1. Superim- 

posed profiles. 
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Table 6.17: Invariants for two tanh n=2 with 0=2. 

time Il 12 13 

0.0 -312.487823 312.765320 312.003357 

1.0 -312.482635 312.7 61047 312.009125 

2.0 -312.478882 312.756653 312.007385 

3.0 -312.480103 312.760681 312.009521 

4.0 -312.483459 312.767365 312.021301 

5.0 -312.488312 312.770355 312.028595 

6.0 -312.491028 312.776550 312.039520 

7.0 -312.493195 312.781281 312.048645 

8.0 -312.494751 312.7854 61 312.058225 

9.0 -312.496429 312.789886 312.065491 

10.0 -312.498718 312.794098 312.074036 

11.0 -312.500641 312.798279 312.082275 

12.0 -312.502380 312.802338 312.089447 

13.0 -312.504639 312.805420 312.097015 

14.0 -312.506378 312.808685 312.103607 

15.0 -312.508514 312.811584 312.109924 
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Table 6.18: Invariants for two tanh N=2 with 0=1. 

time Ii I2 13 

0.0 -317.153778 315.559S14 314.183434 

1.0 -317.154266 315.561432 314.192353 

2.0 -317.155029 315.564117 314.195181 

3.0 -317.157318 315.56SS48 314.201965 

4.0 -317.161163 135.574219 314.212311 

5.0 -317.163910 315.579254 314.222107 

6.0 -317.166382 315.584593 314.232452 

7.0 -317.169461 315.593811 314.243225 

8.0 -317.171906 315.598206 314.252041 

9.0 -317.174225 315.602753 314.261169 

10.0 -317.175995 315.607361 314.269562 

11.0 -317.177979 315.610962 314.278168 

12.0 -317.180237 315.610962 314.285825 

13.0 -317.152190 315.614441 314.293274 

14.0 -317.183929 315.618347 314.300537 

15.0 -317.185547 315.621033 314.306396 
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Figure 6.48: Double tanh initial condition (6.29).: x' = 2, A=1. Perspective 

View. 

rerun the experiment. No significant changes in the results or outcome were 

observed. 

6.2.16 Numerical experiments series 2. N=4 

In this series of experiments we take a region -300 <x< 20, li = 0.2, 

At = 0.005 and run the simulation up to time t= 15. 

a-) For 0=1 the invariants are listed Table (6.20). As shown in figures 

(6.51-6.52) the initial pulse grows in amplitude and its slopes steepen until 

a soliton configuration of -amplitude 0.2849 and velocity -5.0 is observed. 
In so doing three smaller solitons of amplitudes 0.2849,0.0853 and 0.0003 

are ejekted the larger pair having velocities -5.0, -6.0. We were unable to 

determine the velocity of the smallest soliton. 
b-) For 0=0.2 we see in figures (6.53-6.54) the amplitude of the ini- 

tial pulse decrease in height. By time t= 15 the amplitude is 0.99 and the 

velocity -6.133, at the same time a wave train has been created in front of 

the pulse; a soliton of equal height would have velocity -6.1333. The invari- 
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Figure 6.49: Double tank initial condition (6.29). A" = 2. A=0.2. Superim- 

posed profiles. 

Figure 6.50: Double tanh initial condition (6.29). N=2, ' = 0.2. Perspec- 

tive view. 
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Table 6.19: Invariants for two tanh N=2 with A=0.2. 

time Il 12 13 

0.0 -320.042053 319.888397 319.593567 

1.0 -320.043030 319.891785 319.605316 

2.0 -320.044250 319.895416 319.613220 

3.0 -320.046387 319.901093 319.617859 

4.0 -320.053406 319.911438 319.638977 

5.0 -320.055725 319.917175 319.649902 

6.0 -320.058655 319.922272 319.660187 

7.0 -320.061523 319.926025 319.669373 

8.0 -320.063904 319.930817 319.678345 

9.0 -320.065643 319.935333 319.686768 

10.0 -320.067566 319.939667 319.694977 

11.0 -320.069763 319.943634 319.703186 

12.0 -320.069865 319.943735 319.704956 

13.0 -320.071838 319.947174 319.710602 

14.0 -320.073578 319.951111 319.717834 

15.0 -320.074657 319.951121 319.717956 

. >; ý. 
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Figure 6.51: Double tanh initial condition (6.29). N=4, A=1. Superim- 

posed profiles. 

Figure 6.52: Double tanh initial condition (6.29). N=4,0 = 1. Perspective 

view. 
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Table 6.20: Invariants for two tanh N=4 with 0=1. 

time Il I2 13 

0.0 -318.351746 316.783478 314.307190 

1.0 -318.352783 316.786804 314.318787 

2.0 -318.353638 316.789856 314.325775 

3.0 -318.354950 316.79-1922 314.332397 

4.0 -318.358459 316.802063 314.342560 

5.0 -318.363190 316.805481 314.350586 

6.0 -318.365997 316.811890 314.361237 

7.0 -318.368561 316.816589 314.371185 

8.0 -318.369141 316.818970 314.378601 

9.0 -318.370087 316.823425 314.387115 

10.0 -318.372681 316.828308 314.393463 

11.0 -318.376038 316.831482 314.401611 

12.0 -318.378784 316.834534 314.409607 

13.0 -318.381012 316.839111 314.417206 

14.0 -318.382477 316.842926 314.424347 

15.0 -318.353270 316.845764 314.430878 
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Figure 6.53: Double tanh initial condition (6.29). N=4, A=0.2. Superim- 

posed profiles. 

ants for this simulation, which are listed in Table (6.21), show satisfactory 

conservation. 

6.2.17 Problem 10 

When we get the quasisoliton initial condition of the form. 

U(x, 0) = -1 + [tanh(P(x + A)) - tanh(P(x - A))]. (6.30) 

where P= 1/2 and O=0.2. In this series of experiments we take a region 

-250 <x< 20, h=0.2, At = 0.005 and run the simulation up to time 

t= 15. 

For 0=0.2 we see in figure (6.55) the amplitude of the initial pulse 

decreases in height. By time t= 15 the amplitude is 0.199 and the velocity 

-5.555, at the same time a wave train has been created in front of the pulse; 

a soliton of equal height would have velocity -5.555. The invariants for this 

simulation, which are listed in Table (6.22), show satisfactory conservation. 
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Figure 6.5-t: Double taub initial condit ion (6.29). N=4, A=0.2. Perspec- 

tive view. 
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Figure 6.55: Double tanh initial condition (6.30). P= 1/2, A=0.2. 
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Table 6.21: Invariants for two tanh N=4 with A=0.2. 

time Il 12 13 

0.0 -320.120514 320.041168 319.884399 

1.0 -320.121429 320.044312 319.895691 

2.0 -320.122070 320.046814 319.901550 

3.0 -320.123077 320.050720 319.908020 

4.0 -320.124969 320.058533 319.919495 

5.0 -320.130371 320.063416 319.925232 

6.0 -320.133850 320.067902 319.938293 

7.0 -320.136658 320.073608 319.946538 

8.0 -320.138702 320.076263 319.956421 

9.0 -320.139221 320.079346 319.962735 

10.0 -320.141296 320.054045 319.971558 

11.0 -320.143250 320.088806 319.978577 

12.0 -320.146179 320.092010 319.986572 

13.0 -320.145565 320.095525 319.994202 

14.0 -320.150421 320.099518 320.001221 

15.0 -320.151425 320.102356 320.008240 
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Table 6.22: Invariants for two tanh P=1/2 with 0=0.2. 

time Il I2 13 

0.0 -249.400055 248.706451 247.594559 

1.0 -249.401031 248.709915 247.603546 

2.0 -249.402740 248.713303 247.610138 

3.0 -249.404739 248.716156 247.616669 

4.0 -249.406418 248.721680 247.624390 

5.0 -249.409210 248.725861 247.631744 

6.0 -249.411087 248.729401 247.639618 

7.0 -249.413284 248.733002 247.646805 

8.0 -249.414352 248.736130 247.653366 

9.0 -249.415894 248.739136 247.659378 

10.0 -249.417694 248.741623 247.664886 

11.0 -249.419464 248.744843 247.670746 

12.0 -249.420578 248.747070 247.675095 

13.0 -249.421878 248.749756 247.680740 

14.0 -249.421951 248.750214 247.681396 

15.0 -249.422044 248.750345 247.681403 
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6.2.18 Problem 11 

In this simulation we will study single soliton solution using the initial 

condition 

U(x, 0) = -1 + 2gv2{1 -} \l(-i-- v2) cosh 2v(x - xo)}-1. (6.31) 

In this series of experiments, when we get q=1 then it is giving a single 

soliton. We will study q=1.01,1.1,0.99,0.9 and we take a region 

-250 <x< 20, h=0.2, At = 0.005, v=0.3 and run the simulation up to 

time t= 15. we can see four different simulation in figures (6.56-6.59). 

First q=1.01 and run up to time t= 15. We can see in figure (6.56) 

the amplitude of the initial pulse increase in height. By time t= 15 the 

amplitude is 0.0925. 

Second q=1.1 and run up to time t= 15. We can see in figure (6.57) 

the amplitude of the initial pulse increase in height. By time t= 15 the 

amplitude is 0.105 and at the same time a wave train has been created in 

front of the pulse. 

Third q=0.99 and run up to time t= 15. We can see in figure (6.58) 

the amplitude of the initial pulse increase in height. By time t= 15 the 

amplitude is 0.0911. 

Last we get q=0.9 and run up to time t= 15. We can see in figure (6.59) 

the amplitude of the initial pulse decrease in height. By time t= 15 the 

amplitude is 0.0841 and at the same time a wave train has been created in 

front of the pulse. 

6.2.19 Problem 12 

In this simulation we will study single soliton solution. Using the initial 

condition 

U(x, 0) = -1 + 2v2{1 + (1 - v2) cosh P(x - x0)}'1. (6.32) 
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Figure 6.56: Single soliton initial condition (6.31). q=1.01. 
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Figure 6.57: Single soliton initial condition (6.31). q=1.1. 
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Figure 6.59: Single soliton initial condition (6.31). q=0.9. 
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Figure 6.60: Single soliton initial condition (6.32). P=0.4. 

In this series of experiments, when we set P=0.6 then gives single soliton. 

We will study P=0.4,0.8,0.58,0.62 and we take a region -250 <x 

20, h=0.2, At = 0.005, v=0.3 and run the simulation up to time t= 15. 

Four different simulations are shown in figures (6.60-6.63). 

First P=0.4 and run up to time t= 15. We can see in figure (6.60) 

the amplitude of the initial pulse increase in height. By time t= 15 the 

amplitude is 0.096. 

Second P=0.8 and run up to time t= 15. We can see in figure (6.61) 

the amplitude of the initial pulse increase in height. By time t= 15 the 

amplitude is 0.0922 and at the same time a wave train has been created in 

front of the pulse. 

Third P=0.58 and run up to time t= 15. We can see in figure (6.62) 

the amplitude of the initial pulse increases in height. By time t= 15 the 

amplitude is 0.1118. 

Last we use P=0.62 and run up to time t= 15. We can see in figure 

(6.63) the amplitude of the initial pulse decrease in height. By time t= 15 

the amplitude is 0.0911. 
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Figure 6.61: Single soliton initial condition (6.32). P=0. ý. 
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Figure 6.62: Single soliton initial condition (6.32). P=0.55. 
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Figure 6.63: Single soliton initial condition (6.32). P=0.62. 

6.3 Discussion 

In Section 6.2 it is first shown that the proposed numerical algorithm 

obtained using a. "lumped" Calerkin method with quadratic B-spline finite 

elements provides an adequate representation of a single : lIli d[" soliton 

(problem 1), of soliton interaction (problem 2) and of kink travelling waves 

and their interactions (problems 3-5). 

The decay of a symmetric tann initial condition into a kink travelling wave 

plus a number of solitons is then examined and results in good agreement 

with theory obtained, as shown in Table (6.7). 

The decay of a non-symmetric tann initial condition, with C=0.25, is also 

studied and observations compared with theory and other numerical experi- 

ment [16]; data is collected together in Tahle(6.23). In run (a) 

U+co = 1.2, U_. = -0.8, run (1i) U+,., = 0.8, U_. = -1.2 and, for complete- 

ness, run (c) U+. = 1.0, U_,,,, = -1.0. In all cases there is good agreement 
between theory and the experimental results. 

Finally, the decay of a quasi-soliton constructed from 2 tann initial con- 
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Table 6.23: Solitary Wave amplitudes and velocities k=kink, sw=solitary 

wave, wtf=wave train front 

eigenvalue amplitudes velocities 

run computed computed observd observd computed observd observd 

[16] [16] [16] [16] 

a 0.000 2.4000 2.390 2.395 -2.880 -2.92 -2.86 k 

0.4064 1.1250 1.121 1.118 -4.506 -4.50 -4.49 swl 
0.6300 0.8125 0.807 0.803 -5.400 -5.45 -5.41 sw2 
0.64 0.8 0.755 0.751 -5.44 -5.62 -5.53 wtf 

b 0.0000 1.6000 1.599 1.596 -1.280 -1.30 -1.32 k 

0.4064 0.3250 0.325 0.326 -2.906 -2.91 -2.90 swl 

0.6300 0.0125 0.026 0.020 -3.800 -3.83 -3.88 sw2 

c 0.0000 2.0000 1.999 1.992 -2.000 -2.01 -2.08 k 

0.4375 0.671-1 0.677 0.677 -3.750 -3.75 -3.80 swl 
0.7500 0.26S6 0.267 0.267 -4.998 -5.02 -4.50 sw2 

0.9375 0.0636 0.065 0.065 -5.750 -5.76 -5.76 sw3 

ditions is examined. It is found that when the tanh functions are initially 

well separated, A= 10, each tanh acts independently, spontaneously trans- 

forming into a pair of true kink travelling waves by emitting the appropriate 

number of pulse soliton pairs in the manner described under problem 6. 

When the tanh functions are placed closer together, 0=1, they form a 

quasi- soliton'pulse which on decay transforms itself into a true soliton as it 

emits a number of smaller solitons consistent with the process by which a 

tanh initial condition transforms itself into a true kink travelling wave; see 

problem 6. When placed even closer, 0=0.2, the initial pulse decays into 
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what appears a soliton plus a wave train, a. behaviour inconsistent with a 

symmetric tanh condition and reminiscent of that sometimes obtained with 

a non-symmetric tanh [16]. 
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Chapter 7 

The Boundary Forced MKdV 

Equation 

7.1 Introduction 

An unconditionally stable numerical algorithm for the modified Korteweg- 

de Vries equation based on the B-spline finite element method is described. 

The algorithm is validated through a single soliton simulation. In further 

numerical experiments forced boundary conditions U= Uo are applied at 

the end x=0 and the generated states of solitary waves are studied. By 

long impulse experiments these are shown to be generated periodically with 

period (LTB) proportional to U, ý3 and to have a limiting amplitude propor- 

tional to UO. This limit is achieved by all waves, after the first, provided 

the experiment proceeds long enough. The temporal development of the 

derivatives U'(0, t), U"(0, t) and U"'(0, t) is also periodic, with period A TB. 

This behaviour is similar to that observed for the KdV equation reported in 

earlier work [15,11]. The effect of negative forcing is to generate a train of 

negative waves. The solitary waves states generated by applying a positive 

impulse followed immediately by an equal negative impulse is dependent on 
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the period of forcing. The solitary functions possesses many of the attributes 

of free solitons. 
The modified Korteweg-de Vries (MKdV) equation plays a significant 

role in the study of non-linear dispersive waves. It has been found to describe 

a wide class of physical phenomena such as acoustic waves in unharmonic 
lattices [88] and Alfen waves in collisionless plasmas [41]. 

Analytical studies of the M dI7 equation have been given by several 

authors [88] - [20]. When the normalised Al dV equation 

Ut + EUZUý + /lux.. = 

where the subscripts t and x denote differentiation and e and fe are positive 

constants, is solved analytically in an unbounded region with the physical 
boundary conditions U -+ 0 as x -> ±oo it has a solution of the form [88] 

U(x, t) = kpsech(kx - kxo - k3Eat) (7.2) 

where 

r= (GEc/e), (7.3) 

which represents a single soliton originally sited at xo moving to the right 

with velocity kOp. Such solitons may have positive or negative amplitudes 
depending on the sign of k but all have positive velocities. It is expected 

that this analytic solution will also be valid for bounded regions which are 

sufficiently large. 

The exact two soliton solution, under the conditions given above, is [75] 

U(x, t) = ip(log[f'/ f])x, (7.4) 

where * denotes the complex conjugate and 

f=1 -ý- i exP(rji) + exp(712) 
- (3 exp(i]i + 772), 

n; = k; x - k, 3Ect +, q, °, (7.5) 
r12 
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This represents two solitons of amplitudes kip and velocities ka2it. When the 

soliton with the larger amplitude is originally sited on the left a collision 

eventually occurs during which each wave undergoes a phase shift of magni- 

tude 0/k:; where 0= log(1/ß); that of the larger being positive and that 

of the smaller negative. Solitons of the AI dV equation subjected to the 

above boundary conditions obey an infinity of conservation laws of which the 

lowest 4 invariants are [20] 

Il = ff. Udx, 

I2=f. U2dx, 
(7. G) 

I3=f . (U'-GýtJý)dx, 

14 =f fL (U' - 30E`U2UT + 18 (12 )dx. 

Studies of boundary forcing applied to the KdV and Regularized Long- 

Wave (RLIV) equations have been given [15] - [13]. Here the effects of 

boundary forcing on solutions of the 111KdV equation are studied through 

computer simulation. Numerical solutions using pseudospectral methods, 

split-step Fourier methods and B-spline finite element methods have been 

given [20] - [23]. We have previously used the B-spline finite element method 

in the study of solitons and solitary waves of the KdV and other non-linear 

wave equation [23] - [26]. In this work we set up a collocation method using 

B-splines [26], [57] over finite elements which is both fast and accurate in 

performance. In validation runs we use the homogeneous boundary condi- 

tions described above, and forced boundary conditions are applied in section 

4 [15], [11] at one end of a finite region and the resulting states examined. 

7.1.1 The finite element solution 

A numerical solution for the Af dV equation in the normalised form 

(7.1) over the region 0<x<L, is developed. 
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Set up 0= xo < xl... < xN =L as a partition of [0, L] by the points xj 

into finite elements of equal size h= (x�, +1 - x�, ), and let qj(x) be those 

quartic B-splines with knots at the points x= xj. Then the set of splines 
{0_2,0_1, 

..., 
ON7 ON+1} forms a basis for functions defined over [0, L] 

. We 

seek the approximation UN(x, t) to the solution U(x, t) which uses these 

splines as trial functions [57], i. e. 

UN(ti, t) - 0-2(x)8_2(t) + 
... 

+ ON+1(x)SN+1(1) 
(7.7) 

N UN(XI') = E+ 
24 2(x)S 

(t)" 

where the 5 are unknown time dependent parameters to be determined. Each 

quartic B-spline covers 5 elements thus each element [xm, xm+l] is covered by 

5 splines. Using a local coordinate system ý given by hý =x- x�, , where 
0<ý<1, expression for the element splines are [57] 

0m-2 =1- 44 + 642 - 443 + 44 

0n-1 = 11 - 124 - 642 + 1243 - 44 

Om = 11 + 124 - 642 - 1243 + 6e4 (7.8) 

0m+, =1 +4e+6ez +4e3 -424 
Om+2 

-V 

The quartic B-spline ¢i(x) and its three principle derivatives vanish outside 
the interval [x; 

_3, x; +2]. In Table 7.1 the values of O; (x) and its principle 
derivatives at the relevant knots are listed for convenience: 

Over the element [xm., x, n+l] the variation of the function U(x, t) is given 
by 

U(x, t) = O'. de = (Om-2 
i 

Om-1i cm, cm+lv q5m+2). 
(7.9\ 

(sm-2) 5m-1I 5mI bm+l, bm+2)T 
1 

At the knot xi the numerical solution UN(x, t) is given by 
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Table 7.1: 

x xi-3 xi-2 xi-1 xi xi+1 xi+2 

cii(x) 0 1 11 11 1 ý0 
Ol(x) 

il 
0 -4 

h 
-12 

h 
12 
h 

4 
h 

0 

ýll(x) 0 12 -12 -12 12 
-hl 

0 

Ill ¢; (x) 0 -24 
hk s- 

72 

Ty 
-72 
-h 

24 

T 0 

Ui = bi+l + llbi + 118i-i + bi-2 

hU'; = 4(b; +l + 3S; - 36i-1 - bi-2) 
(7.10) 

h2U"; = 12(bß+l - b; - b; 
-1 + bi-z) 

h3Uº�t = 24(S=+i - 3bß + 3b; -l- bs-2) 

\\There the dashes denote differentation with respect to x. We identify 

the collocation points with the knots, use Equations (7.10) to evaluate U, 

and its space derivatives and substitute into (7.1) to obtain a set of coupled 

ordinary differential equations, one for each knot. The collocation conditions 

are given by 

UNt(xj, t) + CUN(xj, t)2UJvx(xj, t) + ItUNxxx(xj, t) = 0, j=0,1,2, 
... ,N 

and on substituting from (7.10) we obtain. 

S; 
-2 + 11S; -i + llb; + 5; +1- 

h 4(Ss-z -+ -11S; -i + llb; + b; +i)2"(Si-2 + 38; -i - 3S; - 5; +1) (7.11) 

--2-ý4`r`(S; -2 - 
35; 

-1 + 3S; - öi+1) =0 

Suppose that S is linearly interpolated between two time levels n and n+1 
by: 

öi-(1-o)sý +os; }1 (7.12) 
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where 0<0<1 and b; are the parameters at the time n0t. The time 

derivative is discretised using the standard finite difference formula 

dSt 
_1 (7.13) 

dt Et 

Giving the parameter 0 the values 0, z, 1 produces explicit, Crank-Nicolson 

and backward difference scheme respectively. Now assume 0=2 in which 

case equation (7.11) becomes 

I(bi-2 -S 2) + 11(8= 11 - Ss i) + 11(S= +1 - bý) + (b, +i - Si+ 

4 of (S, 
-s -I- 11S; -1 -}-115: + St+1)2[(8 2+S: 

2) + 3(S 1+ bn+l)- 
3 lSn + (t bn+l bn + bn+1)i 

- 
241p/t [(bn + 

i 
)- 

s+l i+l 2h3 l i-2 
sn+l) 

- 
3/bn + 

i-2 l: -1 
bn+l) (7.14) 

s-1 

+3(bn + b; 
+1) - (bn 1-}- bb+ 1)j =0 

i=0,1,..., N 

Hence with a Crank-Nicolson approximation in time, we have for each 
knot an equation relating parameters at adjacent time levels, b; +' to b; 

y bn+l ,1i + ai sn+l 
2i -I 

+ bn+l 
:s: 

+ a, bn+1 
sa j+1 (7.15) 

= ai4S 2+ Ci3b 1+ «i2bi + a161.1 

where 

a; 1=1-Z; -Al 

ai2=11-3Z; +DI 

ai3=11+3Z; -3? II 

ai4=1-E. Z; +Af (7.16) 

Z; =h At (b; 
_2 + 11b; _1 + 11b; + b=+1)2, 

R1= 1-h2-s-Ot. 

i=0,1,2,..., N-1, N 

The system (7.15) consists of N+1 linear equation in N+4 unknowns 
d= (6_21S_l, So, ..., 6N, bN+l)T . To obtain- a unique solution to this system 
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the 3 additional constraints needed are obtained from the boundary condi- 
tions: 

Uo ö_2+116_1+11öo+SI=Uo, 

UN =0 SN_2 + 11SN-1 + 116N + SN+1 = 0, (7.17) 

UN =0 8N-2 + 38N-1 - 38N - 8N+1 = U, 

These conditions enahle us to eliminate b_Z, bN, 6N+1 from equation (7.15) 

which then consists of N+1 linear equations in N+1 unknowns d= 
(b-1, s0, 

..., 
aN-2, bN-1)T 

By solving the first one equation of (7.17) simultaneously for 6-2, We 

obtain 

b_2=Uo-116_2-1160 -bl. (7.18) 

Similarly, solve the last two equations of (7.17) simultaneously for b; v, b, ̀+1 

, to get 

aN = -qbN-2 - 45N-1 (1.19) 
ÖN+1 = q5N-2 

+ 6N-1" 

Eliminating S_2 from the first equation of the system (7.15) using equation 

(7.18) to obtain 

S1bn11 + SZb +1 + S3si+1 = S48 
1+ S55 + S6S1 + ßi, (7.20) 
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where 

Sl=-2Z0+14111 

S2 = 14Zo + SAi 

S3=2Z0+2M 

S4=-SZo-14M 

S5 = -14Zo - SM 

S6=-2Zo-2At 

ßi = Uo[2Zo + 2M] 
ZO =h At (6-2 + 1h5_1 + llbo +b1)2, 

, Al -r 

(7.21) 

Similarly, eliminating 5N and 6jr+l from the last two equations of (7.15) and 

using equations (7.19) to obtain 

O(N-1)16N 3+ 16N 2+ 12°N 1 (7.22) 
= a(N-1)4ör-3 + 13 5N-2 +Y 46 V-1+ 

where 

a(N_1)1 =1- ZN-1 - Al 

a(N-1)4 =1+ ZN-1 +M 

Y1 = 
43- äZN-1'ý 4AI 

Y2 4 +IZN-1 4111 
(7.23) 

Y3= 43 + qZN-1- 
4M 

Y4 74 
49 

ZN-1 
'i' 

9111 

ZN-1 = 
hLt (bN-3 + 11SN-2 + 11SN-1 + SN)2 

V Otý 

and 

Y5ö 12+ ý68N 
1= 

Y76 
_2 

+ 8bN-1i (7.24) 

174 



v 

where 

Y5 = 
64 M 

Y6 = 46M 

Y7=-611 
4 (7.25) 

Ys = 46 ZN 

ZN =hL t(6N-2 + 115N-1 + 118N + SN+1)2 

111= Ot. hy' 

The time evolution of the approximate solution UN(x, t) is determined by 

the time evolution of the vector d". This is found by repeatedly solving the 

recurrence relationship (7.15) once the initial vector d° has been computed 
from the initial conditions. The recurrence relationship is defective pentadi- 

agonal so a direct algorithm for its solution exists; an inner iteration is also 

needed at each time step to cope with the non-linear term. 

7.1.2 Stability Analysis 

A Neumann stability analysis is set up in which the growth factor of the 

error in a typical Fourier mode 

bn _ 
bneijkh (7.26) 

where k is the mode number and li the element size , is determined for the 

linearised scheme. The linearisation is effected by supposing that Uz in the 

non-linear term is locally constant which is equivalent to assuming that in 

(7.15) all the 5 are equal to a local constant d, so that ZZ =Z= 2`°t (24d)2 
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for all j. Equation (7.15) can now be written 

(1-Z-11f)b; 21+(11-3Z+3M)5 11 

+(11 + 3Z - 3M)6 +z + (1 +Z+ M1)b + 

_ (1 +Z+ M)b 2+ (11 + 3Z - 3A1)b 1 
(7.27) 

+(11 - 3Z + 3M)b; + (1 -Z -1t1)SS+1 
i=0,1, ..., N 

Substituting the Fourier mode (7.26) into (7.27) leads to 

(6-ib 

a+ 2b 

where 

(7.28) 

a= 2cos 
Zkh + 22cos 

Zkh (7.29) 
b= 2(Z +? 11) sin 2kh + 6(Z - ill) sin 2kh 

The modulus of g is therefore 1 and the linearised scheme is uncondition- 

ally stable. 

7.1.3 Validation Experiment 

To test the behaviour of the proposed algorithm a single soliton simulation 

is used. Take as initial condition equation (7.2) with e=3, Ec =1 and 

kp = 1.3, x0 = 15, t = 0. At time t=0 the global trial function (7.7) 

becomes 
N+1 

Sj°oj(. r. ). (7.30) 
j=-2 

To determine the N+4 unknowns öj° for the validation experiment we 

require Uz. (x, 0) to satisfy the following conditions; 

a-) it shall agree with the initial condition U(x, 0) at the knots x0, ..., XN; 
leading to N+1 conditions. 

b-) its first two derivatives shall agree with those of the exact condition 

at xo, i. e. U'(xo) =0 and U"(Xiv) =0 giving a further two conditions, 
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c-) its first derivative shall agree with that of the exact condition at XN 
i. e. U'(XN) =0a further condition. 

These conditions (a-), (b-) and (c-) can be expresed as: 

UN(xo, 0) =0 

Uý (xo, 0) =0 (7.31) 
UN(x;, 0) = U(x;, 0), i=0,1,... ,N 
UN(XN, O) =0 

from Table 7.1 the system (7.31) can be reduced to: 

-6-2-35-1+3bo+b1 =0 
S_2 - S-1 - So + 61 0 

(7.32) 
bi-2 + 11b; -1 + 115; + bi+1 = U(x;, 0), i=0,1,..., N 

-SN-a - 3SN-1 + 3SN + SN+1 =0 

This leads to the matrix equation 

Aid°=b 

where 

-1 -3 3 1 

1 -1 -1 1 

1 11 11 1 

1 11 11 1 

. 
Al = 

1 11 11 1 

1 11 11 1 

-1 -3 3 1 

and 

(7.33) 

do = (6-2, b-1, b0, 
..., 

6N, SN+1)T 
e 

(7.34) 
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and if we write UU = U(x1) 

v= (0,0, U0, U1, 
..., 

UN-1, UN, 0)T. (7.35) 

We convert this system to penta-diagonal form by the following steps: 

1-) Solve the first two equations of the system (7.33) simultaneously for 

5-2 and 6_1 to obtain: 

s-z = 25o - 2Si (7.36) 
s-1=Zso--261 

2-) Similarly by solving the last equation of the system (7.33) simulta- 

neously we get: 

bN+l = 6N-2 + 36N-1 - 36N (7.37) 

eliminating bN+l from the A"' equation of the system ( 7.41) gives: 

28N-2 + 148, ß, _1 
+ 86N = tl (XN, 0) (1.38 

hence the system (7.33) is penta-diagonal form. The system is now solved by 

the penta-diagonal algorithm to obtain the computed solution (60.5 
, ... , bN)T, 

and hence compute 8-2, S_1i 6N+1 from equations (7.36) and (7.37) so the ini- 

tial vector S° is determined. 

In this experiment step sizes of At = 0.001 and h=0.04 over a range 
0<x< 40 are used . The soliton is observed to move across the region with 

constant profile and velocity. The error norms obtained for this validatory 

simulation, given in Table 7.2, are satisfactorily small both rising to less than 

2x 10-'kp at time t= 10, where kp is the amplitude of the soliton. The 

soliton amplitude changes from its initial value of 1.3 to 1.29972 by the end 

of run at t= 10 ; that is by only 2x 10-'%. 

The invariants, listed in table 7.3, show good conservation; 12,13 and 14 

remain constant to 5 decimal places throughout the run at I2 = 3.67694,13 = 
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Table 7.2: Single Soliton h=0.04, Zýt = 0.001,0 <x< 40 

time L2 x 103 L,,. X103 

1.0 0.391967 0.279657 

2.0 0.620266 0.431269 

3.0 0.759408 0.516996 

4.0 0.893806 0.596393 

5.0 1.027565 0.676982 

6.0 1.162426 0.758735 

7.0 1.300361 0.841460 

8.0 1.440726 0.924846 

9.0 1.979842 1.245591 

10.0 2.526911 1.565440 

Table 7.3: Invariants for Single Soliton 

time Il Iz 13 14 

0.0 4.442856 3.676945 2.071337 1.050161 

1.0 4.442858 3.676946 2.071338 1.050162 

2.0 4.442866 3.676947 2.071337 1.050162 

3.0 4.442869 3.676946 2.071338 1.050163 

4.0 4.442782 3.676947 2.071336 1.050163 

5.0 4.442802 3.676944 2.071336 1.050162 

6.0 4.442868 3.676945 2.071338 1.050162 

7.0 4.442928 3.676947 2.071338 1.050162 

8.0 4.442964 3.676945 2.071338 1.050162 

9.0 4.442979 3.676945 2.071337 1.050162 

10.0 4.442978 3.676944 2.071337 1.050163 
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Table 7.4: Comparison of Single Soliton, amplitude = 1, simulations with 

results from [75] Table(7.1). 

Method h 

Lt 

time Lý (12 - 120)/120 (13 - 130)/130 

B-spline 0.1 0.25 0.0012 -0.00002 -0.00007 
0.025 0.5 0.0018 -0.00004 -0.00014 

1.0 0.0022 -0.00009 -. 000030 

A-L global 0.1 0.25 0.0019 0.00009 0.00486 

0.25 0.5 0.0028 0.00017 0.00505 

1.0 0.0045 0.00033 0.00556 

A-L local 0.06 0.25 0.0023 0.00002 0.00168 

0.12 0.5 0.0032 0.00003 0.00171 

1.0 0.0047 0.00006 0.00177 

Implicit(C-N) 0.08 0.25 0.0023 0.00002 0.00297 

0.1 0.5 0.0031 0.00003 0.00298 

1.0 0.0045 0.00005- 0.00303 

Pseudospectral 0.625 0.25 0.0026 -0.00120 -0.02976 
0.0055 0.5 0.0041 0.00218 0.07897 

1.0 0.0046 -0.00143 -0.03534 
Tappert 0.3125 0.25 0.0036 0.00000 -0.00010 

0.0041 0.5 0.00.11 0.00000 -0.00013 
1.0 0.0047 0.00000 0.00001 
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2.07133 and 14 = 1.05016 , changing only in the sixth decimal place, while 
Il changes from 4.4428 by only ±1 in the fourth decimal place. 

To make comparisons with published work [75] we use as initial condition 

equation (7.2) at t=0 with k=1.0, xo = 15 and e=6, it =1 so that 

p=1.0. Space and time steps are chosen so that L,. < 0.005 at t=1.0. 

The results are compared in Table (7.4) with others reported by Taha and 

Ablowitz [75] using a variety of explicit and implicit schemes, the local and 

global schemes proposed by Ablowitz and Ladik and pseudospectral scheme 

of Fornberg and \Vhitha. m. 

Relative changes in the values of 12 and 13 are compared at time t=1; 

the values of IZ and 13 at time t=0 are denoted by Ito and 130. The present 

method performs well. 

7.2 Simulations 1 

The generation of solitary waves by boundary forcing the J%! dV equa- 

tion at x=0 for the finite region 0<x< xmar is studied. initially the region 
is undisturbed so that at time t=0 all öj are zero. The forced boundary 

condition applied at x=0 is 

U0T 0 <t <T 

U(O, t) = Uo T<t< to -T (7.39) 

Uo to - Tt<to 

Further homogeneous boundary conditions are imposed at x= Xmax. The 

effect of the impulse is to generate solitary waves at x=0, which grow until 

they achieve a terminal amplitude determined by the magnitude of the forced 

boundary value. Solitary waves are continually generated while the forced 

conditions prevail, then all growth slows and eventually ceases. 
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7.2.1 Positive forcing Series A 

In these experiments e=6, y=1 so that p=1. 

Long Impulse 

i-) Boundary condition (7.39) is used with Xmax = 801 tmax = 1O, UO = 

1, T=0.01, to = 10 so that the forcing lasts throughout the experiment. The 

step lengths are h=0.04 and At = 0.001: In this numerical experiment', 

see Figure(7.1), five solitary waves are generated before the simulation is 

terminated at t= 10. Figures (7.2) and (7.3) show that four achieve their 

terminal heights and a constant velocity. The generating conditions for the 

first wave are rather more protracted than those for all subsequent waves, as 

can be seen from the graphs of the first three derivatives at x=0 given in 

Figures (7.4-7.6), so it achieves a slightly larger amplitude and velocity than 

do the following waves. The observations are collected in Table (7.5). The 

time interval between births of solitary waves is constant at ATB = 1.82, 

the measured terminal heights for solitary waves 2-4 vary between 2.147 and 

2.148 with measured velocities of 4.62. Free solitons of similar heights would 

have velocities 4.610 - 4.614, so that agreement is close. After an initial 

transient the graph of Ux(0, t), Figure (7.4), shows a rounded saw tooth 

periodic behaviour with maximum of about 0.4, minimum of about 0.33, 

mean zero and period 1.82. The graphs of U.,., (0, t) and Ux,., (0, t), Figures 

(7.5-7.6), also exhibit periodic behaviour with period 1.82. 

Rewrite equation (7.1) as an expression for U. yx and evaluate at x=0 
to give 

1 (O, t) = -1 {ut(o, t) + Eu2(o, t)ux(o, t)}. (7.40) 

With the forcing Uo =1 and it = 1, e=6 this reduces to 

(7.41) (0, t) = -6u, (0, t) 
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Figure 7.1: Long Impulse. Soliton produced by forced conditions (7.39) with 
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Figtire 7.2: Long Impulse. The evolution of the soliton amplitudes. Forced 

conditions (7.39) with Uo = 1,, r = 0.01, to = oo, h=0.04, At = 0.001. 
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Table 7.5: Observations of solitary waves, Uo = 1, e=6 

wave birth 

time 

generated 

waves 

free 

soliton 

amplitude velocity velocity 

1 1.040 2.155 4.64 4.644 

2 2.920 2.148 4.62 4.614 

3 4.740 2.147 4.62 4.610 

4 6.560 2.147 4.62 4.610 

5 8.380 2.05S 4.27 4.235 

Figure (7.4) and (7.6) show that the simulation produces derivatives 

which reflect this relationship. By comparing Figures (7.2), (7.4) and (7.5) 

we observe that the birth of a solitary wave occurs at times when Uß(0, t) = 0, 

and Uxx(0, t) is a minimum and negative, while a solitary wave reaches ma- 

turity about 12 periods later when again U (0, t) = 0, but Uýx(0, t) is a 

maximum and positive. 
ii-) An experiment with reduced forcing, Uo = 0.5; boundary condition 

(7.39) is used with xmax = 80, tmax = 80, T=0.01, to = 80 so that the forcing 

lasts throughout the experiment. The numerical step lengths are h=0.04 

and At = 0.001. 

In this numerical experiment, see Figure (7.7) five solitary waves are 

generated before the simulation is terminated at t= 80. Figures (7.8) and 

(7.9) show that four achieve their terminal heights and a constant velocity. 
The generating conditions for the first wave are rather more protracted 

than those for all subsequent waves, as can be seen from the graphs of the 

first three derivatives at x=0 given in Figures (7.10-7.12) so it achieves 
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Figure 7.3: Long Impulse. The space-time graphs of the soliton produced by 

forced conditions (7.39) with (To = 1. r=0.01, to = oo, h=0.04., Lt = 0.001. 
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0.001. 
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Figure 7.6: Long Impulse. Variation in the third derivative Uxxý(0, t) at the 

origin. Forced conditions (7.39) with Uo = 1, r=0.01, to = oo, h=0.04, 

At = 0.001. 
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Figure 7.8: Long Impulse. The evolution of the soliton amplitudes. Forced 

conditions (7.39) with Uo = 0.5,, r = 0.01, to = co, h. = 0.04, , Lt = 0.001. 
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Table 7.6: Observation of solitary waves, Uo = 0.5,, E =6 

wave birth 

time 

generated 

waves 

free 

soliton 

amplitude velocity velocity 

1 8.08 1.0783 1.164 1.163 

2 23.119 1.0749 1.155 1.155 

3 37.751 1.0743 1.152 1.154 

4 52.303 1.0-145 1.152 1.155 

5 66.815 0.5014 0.251 

Table 7.7: Bounded Forced conditions with to = oo, Iro = 0.5, e=6 

time Il I2 13 14 

0.0 0.000000 0.000000 0.000000 0.000000 

0.7 1.349207 0.429793 0.023549 3.624015 

14.0 2.456156 1.070081 0.213774 5.7: 33160 

21.0 4.421793 2.538052 0.847647 53.388555 

28.0 5.444862 3.102128 1.004915 69.229849 

35.0 7.493863 4.652092 1.666489 112.170195 

42.0 8.465063 5.167089 1.805539 132.777979 

49.0 10.560558 6.762980 2.482968 171.353730 

56.0 11.500553 7.247047 2.611615 196.384512 

63.0 13.617128 8.865705 3.296167 230.192266 

70.0 14.546917 9.337076 3.421494 259.999766 
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a. slightly larger amplitude and velocity than do the following waves. The 

observation on the solitary waves generated are collected in Table (7.6). The 

time interval between births of solitary waves is constant at OTB = 14.632, 

the measured terminal heights for solitary waves 2-4 vary between 1.0749 

and 1.0745 with measured velocities of 1.55. Free solitons of similar heights 

would have velocities 1.154-1.155, so that agreement is close. After an 

initial transient the graph of Ur(0, t), Figure(7.10), shows a rounded saw 

tooth periodic behaviour with maximum of about 0.1, minimum of about 

0.1 mean zero and period 14.632. The graphs of Uxr(0, t) and Ur, rS(0, t), 

Figures(7.11-7.12), also exhibit periodic behavior with period 14.632. All 

the above conclusions are illustrated by the measured values of the quantities 

given in Table (7.7). 

iii-) An experiment with increased forcing, Uo = 2.0; boundary condi- 

tion (7.39) is used with x�, Qr = 24, tmas = 1.217- = 0.01, to = oo so that the 

forcing again lasts throughout 'the experiment. The numerical step lengths 

I 
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Figure 7.11: Long Impulse. Variation in the second derivative U, 
,, 

(0, t) at the 

origin. Forced conditions (7.39) With Uo = 0.5, -r = 0.01, to = oo, h = 0.04, 

At = 0.001. 
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Figure 7.12: Long Impulse. Soliton produced by forced conditions (7.39) 

with Uo = 2. T = 0.01, to = oo, h=0.02. Ot = 0.0005 graphed at I=0.6 (- - 

- -) and t=1.2 ( -) 

are li = 0.02 and Zýt = 0.0005. In this numerical experiment, see Figure 

(i . 12), five solitary waves are generated before the simulation is terminated 

at t=1.2. Figures (7.13) and (7.14) show that four achieve their terminal 

heights and a constant velocity. 
The generating conditions for the first wave are rather more protracted 

than those for all subsequent waves, as can be seen from the graphs of the 

first three derivatives at x=0 given in Figures (7.15-7.17) so it achieves 

a slightly larger amplitude and -velocity than do the following waves. The 

observation on the solitary waves generated are collected in Table (7.8). The 

time interval between births of solitary waves is constant at LTB = 0.229, 

the measured terminal heights for solitary waves 2-4 vary between 4.2725 

and 4.2S43 with measured velocities of 18.125. Free solitons of similar heights 

would have velocities 15.2542 - 18.3552, so that agreement is close. After 

an initial transient the graph of UT(0, t), Figure(7.15), shows a rounded saw 

tooth periodic behaviour with maximum of about 1.6, minimum of about 
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Figure 7.13: Long Impulse. The evolution of the soliton amplitudes. Forced 

conditions (7.30) with Uo = 2,7 = 0.01. to = oo, h=0.02., Lt = 0.0005. 

Table 7.8: Observation of solitary waves, (ro = 2, e=6 

wave birth 

time 

generated 

waves 

free 

soliton 

amplitude velocity velocity 

1 0.133 4.2587 17.8125 18.1365 

2 0.419 4.2725 18.1250 18.2542 

3 0.648 4.2734 18.1250 18.2619 

4 0.876 4.2843 18.4375 18.3552 

5' 1.105 3.4817 12.1222 
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Table 7.9: Bounded forced conditions with to = oo, Uo = 2. c=6 

time Ii '2 13 14 

0.00 0.000000 0.000000 0.000000 0.000000 

0.12 1.395292 1.505501 1.860354 910.825078 

0.24 2.797519 5.330557 20.574360 1963.240625 

0.36 4.631759 10.531853 55.761072 15445.856250 

0.4S 6.211320 14.772141 79.77.1028 18530.415000 

0.60 7.862549 19.2-1779.5 105.466523 317 32.155000 

0.72 9.664879 2-1.370183 139.797295 35129.575000 

0.84 11.089539 27.930840 160.266982 47791.040000 

0.96 13.096483 33.8-1S005 198.129375 51968.055000 

1.08 14.315227 36.5S7783 211.312969 63539.5-10000 

1.20 16.45949: 3 43.007183 252.903759 69072.955000 
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Figure 7.14: Long Impulse. The space-time graphs of the soliton produced 

= by forced conditions (7.39) with Uo = 2,, r = 0.01, to = oo, h = 0.02, At 

0.0005. 
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Figure 7.15: Long Impulse. Variation in the First derivative U, ß. (0. t) at the ori- 

gin. Forced conditions (7.39) with (To = 2. r=0.01, to = oo. h. = 0.02.0I = 

0.0005. 

-2.1 mean zero and period 0.229. The graphs of UTx(0, t) and t rrr(0. t). 

Figures(7.16-7.17), also exhibit periodic behavior with period 0.229. All the 

above conclusions are illustrated by the measured values of the quantities 

given in Table (7.9). 

Short Impulse 

i-) In this simulation boundary condition (7.: 39) is used with U0 = 1, 

z=0.01, to = 4, h=0.004, At = 0.001. Two solitary waves are generated in 

the experiment, of which only the first, born at t=1.040, reaches its mature 

amplitude 2.154 and velocity 4.648, the second born at t=2.920, grows to 

an amplitude 1.788 and a velocity 3.196; Figures (7.18) and (7.19). 

The quantities I� equation (7.6), are only constant when the boundary 

conditions U --> 0 as x -º ±oo hold. With the forcing conditions (7.39) it is 
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found that they vary in the following ways: 
11(t) = I1(0) + f0{3EU3(o, t) +i Uxx(0, t)}dt, 

Ia(t) = 12(0) + JO{4EU4(o, t) + jzU(o, t)Uxx(0, t) - i4ux (o, t)}dt, 

I3(t) = 13(0) + f0{2EU6(0, t) + 411U3(0, t)Uxx(0, t) 

+Gº vxx(0, t) -12' UU(0, t)UU(0, t)}dt, 
I4(t) = 14(0) + f0{-4EU8(o, t) + ji{45U4(0, t)Ux(0, t) 

-6U5(o, t)Uxx(0, t)} +3 1L' {ýouýx(o, t)ux(o, t)vxxx(o, t) 
(0, t)Uxx(0, t)} -16 i12 (o, t)uýx(o, t) - ux (0,1) - 20U(0, t) U., 2 

+3G'{ Uxxx0, t) - Uxx(0, t)tlxß 2 xxx(o, t)dt. 

(7.42) 

Using (7.48) it can be shown that the variation of the II depends only on 

the behaviour of U(O, t), U, (0, t) and UTr(0, t). Hence over the time period 

0<t<4, with e=6, p=1 and U(0, t) = 1, the variation in quantities II is 

given by 

I, (t) = fö{2 + UTý, (0, t)}dt 

12(t) = fö{ä + Uxx(O, t) - zLT (O, t)}dt 

13(t) = fö{4 + 4U�(0, t) + [f2 (0, t)}dt (7.43) 

14 (t) = fö{- 
Z+ 3Ux (0, t) - 2U2 (0, t) - 6UUý(0, t) 

-1U4(O, t) - 4U2(O, t)Uxx(0, t) + UUý, (0, t)Uxt(0, t)}dt 

so that all change continuously although the rates will vary since all. three 

integrands vary periodically as can be seen from the graphs of U., (0, t) and 

U.,., (0, t), given in Figures (7.20) and (7.21). 

Figures (7.21) and (7.22) also show that when the forcing is turned off at 

t=4, for t>4, U(0, t) =0 but as the derivatives Ux(0, t) and U., 
-, 
(O, t) are 

not themselves forced to become zero the Ii do not immediately cease to vary. 
The switching operation causes a spike in the derivative graphs; subsequently 
U., (0, t) and UUx(0, t) tend to zero at about the same rate. Thus Il continues 

to change, increasing or decreasing according to the sign of U.,,, (0, t), through 

I, (t) = 1, (4) + f4{Uxx(0, t)}dt, (7.44) 
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Figure 7.19: Short Impulse. The evolution of the soliton amplitudes. Forced 
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Figure 7.20: Short Impulse. The space-time graphs of the soliton produced by 

Forced conditions (7.39) with Uo = 1, r=0.01, to = 4, h=0.0 I. Lt = 0.001. 

'2 start to decrease through 

12 (t) = 12(4) - f4{ZUx(0, t)}dt, (7.45) 

and 13 to increase through 

13(t) = 13(4) + fä{Uxr(6, t)}dt, (7.46) 

and 14 changes through 

I4(t) = 14(4) - f4{ZU;. (0, t) - Usx(O, t)UTt(0, t)}dt.. (7.47) 

These equations also imply that the development of the last formed solitary 

wave does not stop abruptly when the forcing is switched off, but continues 

until UT(0, t) and UUx(0, t) have decayed to zero. After a time of about t=7, 

when the influences of forcing have died away, the quantities II should remain 

constant. The above conclusions are illustrated by the measured values of 

the quantities given in Table' (7.10). To inhibit the development of the 

second solitary wave this experiment is repeated with the forcing cut off at 
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Table 7.10: Bounded forced conditions with to = 4, Uo =1 

time Il '2 13 14 

0.0 0.000000 0.000000 0.000000 0.000000 

1.0 1.466032 0.962159 0.292959 28.076592 

2.0 3.165254 3.280013 3.7411-12 84.165498 

3.0 4.783539 5.414S62 7.130536 507.551094 

4.0 6.649882 8.192728 9.191595 787.933125 

5.0 6.3960S0 7. SSS404 10.487765 792.267422 

6.0 6.365624 7.886580 10.487621 801.191719 

7.0 6.350016 7.885504 10.456644 802.13609-1 

8.0 6.3-10325 7.855294 10.455-190 802.151719 

9.0 6.333610 7.884893 10.481285 802.067500 

10.0 6.328617 7.88.1540 10. -183065 801.973750 
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Figure 7.21: Short Impulse. Variation in the first derivative U3. (0. t) at the 

origin. Forced conditions (7.39) with Uo = 1,, r = 0.01, to = 4, h=0.04, At = 
0.001. 
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Figure 7.22: Short Impulse. Variation in the second derivative !. s.. (0, t) at 
the origin. Forced conditions (7.39) with C'o = 1,7 = 0.01. lo = 4. h = 
0.04, Lt = 0.001. 

t=2.9 just as a second solitary wave is about to be generated see Figure 

(7.19) and when the initial solitary wave has grown to an amplitude of 2.1157. 

The single wave continues to develop, as expected from the above analysis, 

reaching an amplitude of 2.150 at t=3.4 and eventually achieving, at about 

t-6, an amplitude of 2.155 with velocity 4.64. These latter values are 

identical with those obtained for the initial solitary wave when forcing is 

continued throughout the experiment Table (7.4). 

ii-) An experiment with increased forcing, Uo = 2.0; boundary condition 
(7.39) is used with xma, s = 24, t, nax = 1-5, T = 0.1, to = 1.5 so that the 

forcing again lasts throughout the experiment. The numerical step lengths 

are h=0.02 and Lt = 0.0005. 

In this numerical experiment, see Figure (7.23) five solitary waves are 

generated before the simulation is terminated at t= 80. Figures (7.24) and 
(7.25) show that four achieve their terminal heights and a constant velocity. 

The generating conditions for the first wave are rather more protracted 
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Figure 7.24: Long Impulse. The evolution of the soliton amplitudes. Forced 

conditions (7.39) with Up = 2,7- = 0.1, to = 1.5, h=0.02, Lt = 0.0005. 
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Table 7.11: Observation of solitary waves, Uo = 2, e=6 

wave birth 

time 

generated 

waves 

free 

soliton 

amplitude velocity velocity 
1 0.186 4.2901 17.9591 18.4049 

2 0.419 4.2833 18.3673 18.3466 

3 0.648 4.2837 18.3673 18.3500 

4 0.876 4.2550. 15.3673 15.3612 

5 1.105 2.5035 6.2675 

Table 7.12: Bounded forced conditions with to = 0.1, Uo = 2, e=6 

time Il 12 13 14 

0.00 0.000000 0.000000 0.000000 0.000000 

0.12 1.0332S1 1.217271 -0.803679 1112.995.169 

0.24 1.97569.1 2.974705 6.746223 1016.074297 

0.36 4.219995 9.75.1190 52.380298 10195.346250 

0.48 5.259604 11. SS7S33 61.315830 170S1.016250 

0.60 7.468723 18.520735 105.596367 27605.300000 

0.72 8.557607 20.8.12419 115.209727 33107.910000 

0.84 10.6995S4 27.209331 157.655732 44739.350000 

0.96 11.877953 29.865403 169.068867 48956.595000 

1.08 13.919520 35.830264 205.728691 61352.255000 

1.20 15.228695 35.99-1795 223.457422 64666.175000 
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Figure 1.2"3: Long Impulse. The space-time graphs of the soliton produced by 

forced conditions (7.39) with Uo = 2. r=0.1, to = 1.5, h=0.02., Lt = 0.000.3. 

than those for all subsequent waves, as can be seen from the graphs of the 

first three derivatives at x=0 given in Figures (7.26-7.28) so it achieves 

a slightly larger amplitude and velocity than do the following wa. ves. ' The 

observation on the solitary waves generated are collected in Table (7.11). The 

time interval between births of solitary waves is constant at LTB = 0.228. 

the measured terminal heights for solitary waves 2-4 vary between 4.2833 and 
4.2S50 with measured velocities of 18.3673. Free solitons of similar heights 

would have velocities 18.3466 - 18.3612, so that agreement is close. After 

an initial transient the graph of U-. (0. t), Figure(7.26), shows a rounded saw 
tooth periodic behaviour with maximum of about 0.1, minimum of about 

-0.1 mean zero and period 0.228. The graphs of Uxx(0, t) and Urxt(0, I), 

Figures(7.27-7.2S), also exhibit periodic behavior with period 0.228. All the 

above conclusions are illustrated by measured values of the quantities given 
in Table (7.12) 
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7.2.2 Positive forcing Series B 

In a second series of experiments e=3, it =1 so that p=1.4142 

Long Impulse 

i-) Firstly boundary condition (7.39) is used with xm, ax = 80, 

tmax = 30, Uo = 1, r=0.01, to = 30 that the forcing lasts throughout the 

experiment. The step lengths are h. = 0.04 and Lt = 0.001. In this numerical 

experiment, see Figure (7.29), six solitary waves are generated before the 

simulation is terminated at t= 30. Figures (7.30) and (7.31) show that 

four achieve their terminal heights and a constant velocity. The generating 

conditions for the first wave are again slightly different so it attains a slightly 

larger amplitude and velocity than do subsequent waves. The observations 

are collected in Table (7.13). The time interval between births 
. of solitary 

waves is constant at LTB = 5.15. The measured terminal heights for solitary 
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Table 7.13: Observation of solitary waves, Uo = 1, e=3 

wave birth 

time 

generated 

waves 

free 

soliton 

amplitude velocity velocity 

1 2. S4 2.55 2.32 2.322 

2 8.14 2.147 2.31 2.305 

3 13.30 2.147 2.30 2.305 

4 15.49 2.147 2.30 2.305 

5 23.60 2.137 2.28 2.283 

waves 2-4 vary between 2.147 and 2.14S with measured velocities of 2.31. Free 

solitons of similar heights would also have velocities 2.31. 

After an initial transient the graph of U,. (0, t), Figure (7.32) 
, shows a 

rounded saw tooth periodic behaviour with maximum of about 0.5, mini- 

mum of about -0.5, mean zero and period 5.15. The graphs of II,, T(0, t) and 
U,.,. =(0, t), Figures (7.33-7.34) , also exhibit periodic behaviour with period 
5.15. By comparing Figures (7.30), (7.32) and (7.33) we observe that the 

birth of a solitary wave occurs at times when U-, (0, t) =0 and Uxx(0, t) is a 

minimum and negative while a solitary wave reaches maturity about 1ä pe- 

riods later when again Us(0, t) = 0, but U.,,, (0, t) is a maximum and positive 
in agreement with Series A simulations. 

ii-) In a second experiment with reduced forcing, U. = 0.5, boundary 

condition (7.39) is used with x, na,, = 80, t, ýax = 170,, r = 0.01, to = 170. The 

forcing lasts throughout the experiment. The numerical step lengths are h= 

0.01 and At = 0.001. In this numerical experiment, see Figure (7.35), four 

solitary waves are generated'bcfore the simulation is terminated at t= 110. 

Figures (7.36) and (7.37) show that three achieve their terminal heights and 
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Figure 7.34: Long Impulse. Variation in the third derivative llxxr(0, t) at 

the origin. Forced conditions (7.39) with Uo = 1,, r = 0.01, to = oo, h= 

0.04, Lt=0.001. e=3. 

209 



4.0 

3.5 

3.0 

2.5 

2.0 

P. 'S 

X 

t. 0 

0.5 

0.0. 

Figure 7.35: Long Impulse. Soliton produced by forced conditions (7.39) 

withU0=0.5, r=0.01, to =oo, h=0.0-1. AI=0.01. graphed at 1 =S5 (- - 

- -) and t=1 70 (--). E=3. 

a constant velocity. The generating conditions for the first wave are again 

slightly different so it attains a. slightly larger amplitude and velocity than 

do subsequent waves. The observations are collected in Table (7.14). The 

time interval between births of solitary waves is constant at LTB = 41.25. 

The measured terminal heights for solitary waves 1-3 vary between 1.0784 

and 1.0737 with measured velocities of 0.584. Free solitons of similar heights 

would also have velocities 0.5514-0.5764, so that agreement is close. 

After an initial transient the graph of f ;, (0, t), Figure (7.3S), shows a 

rounded saw tooth periodic behaviour with maximum of about 0.09, mini- 

mum of about -0.09, mean zero and period 41.2: 5. The graphs of U (0, t) and 

U.,,, (0, t), Figures (7.39-7.40), also exhibit periodic behaviour with period 

41.25. By comparing Figures (7.36), (7.38) and (7.39) also exhibit periodic 

behaviour with period 41.25. 

iii-) In a third experiment with increased forcing, Uo = 2, boundary 

condition (7.39) is used with xma, x = 80, t�, ax = 4.5,7- = 0.01, t,, = 4.5. The 
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Figure 7.36: Long Impulse. The evolution of the soliton amplitudes. Forced 

conditions (7.39) with Uo = 0.5, T=0.01, to = oo, h=0.04, At = 0.001. 

e=3. 

Table 7.14: Observation of solitary waves, U0 = 0.5, e=3 

wave birth 

time 

generated 

waves 

free 

soliton 

amplitude velocity velocity 

1 22.779 1.0511 0.554 0.5814 

2 65.256 1.0750 0.550 0.5778 

3 106.713 1.0737 0.576 0.5764 

4 147.952 0.7337 0.212 0.2691 
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--) andt=4.5( -). E=3. 

forcing lasts throughout the experiment. The numerical step lengths are 
h=0.04 and Ot = 0.001. In this numerical experiment, see Figure (7.41), 

seven solitary waves are generated before the simulation is terminated at 

t=4.5. Figures (7.42) and (7.43) show that six achieve their terminal heights 

and a constant velocity. The generating conditions for the first wave are again 

slightly different so it attains a slightly larger amplitude and velocity than 

do subsequent waves. The observations are collected in Table (7.15). The 

time interval between births of solitary waves is constant at OTB = 0.647. 

The measured terminal heights for solitary waves 1-6 vary between 4.2984 

and 4.2862 with measured velocities of (9.454-8.727). Free solitons of similar 

heights would also have velocities 9.23S-9.185. 

After an initial transient the graph of Ux(0, t), Figure (7.44), shows a 

rounded saw tooth periodic behaviour with maximum of about 1.653, min- 
imum of about -1.615, mean zero and period 0.647. The graph of Usx(0, t), 

Figure (7.45), also exhibits periodic behaviour with period 0.647. 
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Figure 7.42: Long Impulse. The evolution of the soliton amplitudes. Forced 

conditions (i 
. 39) with Uo = 2, T=0.01, to = oo, h=0.04, Ot = 0.001. c= : 3. 

Table 7.15: Observation of solitary waves, Uo=2, e=3 

Y 

wave birth 

time 

generated 

waves 

free 

soliton 

amplitude velocity velocity 

1 0.37.5 4.2954 9.454 9.238 

2 1.036 4.2862 9.454 9.185 

3 1.683 4.2552 9.451 9.181 

4 2.328 4.2856 9.454 9.183 

5 2.971 4.2559 8.727 9.154 

6 3.618 4.2862 8.727 9.185 

7 4.260 2.3850 2.151 2.844 
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Short, Impulse 

i-) In this simulation boundary condition (7.39) is used with [1-0 = 1, 

,r=0.01, to = 11, h=0.04, and Lt = 0.001. In this numerical experiment., 

see Figure(7.46), two solitary waves are generated in the experiment, of which 

only the first reaches its mature amplitude 2.14 and velocity 2.21, the second 

has amplitude 1.43 and a velocity 1.02: see Figures (7.39) and (7.48). 

Figures (7.49) and (7.50) also show that when the forcing is turned off at 

t= 11, fort > 11, U(0, t) =0 but as the derivatives U,, (0, t) and U2, r(0, t) are 

not themselves forced to become zero the IJ do not immediately cease to vary. 
The switching operation causes a spike in the derivative graphs; subsequently 
UU(0, t) and U.,,, (0, t) tend to zero at about the same rate. Thus, as is shown 

earlier, Il continues to change, increasing or decreasing according to the sign 

of U., =(0, t), through 

Ii(t) = I1(11) + fil{U.,. ý(0, t)}dt, (7.4S) 
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Figure 7. "46: Long Impulse. Soliton produced by forced conditions (7.39) 
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-) and t= 30 (--). e=3. 

12 start to decrease through 

12(t) -1211)- J11{ 
(i (O. t)}dt7 (7.49) 

and 13 to increase through 

ja(t) = 13(11) +f 1{U 
3. 
(O, t)}dt, (7.50) 

and 14 changes through 

14(t) = 14(11) - fil{z( (0. t) - LT 2. (0, t)Uxt(0, t)}dt. (7.51) 

These equations also imply that the development of the last formed solitary 

wave does not stop abruptly when the forcing is switched off, but-continues 

until U: (0, t) and [1,, (0, t) have decayed to zero. After a time of about t= 15 

when the influences of forcing have died away the quantities Il - 14 should 

remain constant. All the above conclusions are illustrated by the measured 

values of the quantities. given Table (7.16-7.17). 
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Table 7.16: Bounded forced conditions with to = 11, Uo =1 

time 12 12 13 14 

0.0 0.000000 0.000000 0.000000 0.000000 

1.0 1.254076 0.732673 -0.325532 113.967861 

2.0 1.708771 1.056245 0.095382 87.467773 

3.0 2.147801 1.427711 0.481942 79.109966 

4.0 2.683397 1.982236 1.058721 86.743525 

5.0 3.532885 3.112043 2.545068 134.346211 

6.0 5.056927 5.625942 7.250250 357.438047 

7.0 6.03S749 6.976983 9.3671068 993.822109 

S. 0 6.526666 7.427795 9.848575 1373.272969 

9.0 7.040863 7.948524 10.3 '1953.5 1498.814687 

10.0 7.800678 8.912701 11.560300 1566.390156 

11.0 8.986216 10.865128 9.435049 2393.563906 

12.0 8.748550 10.175 486 12.221875 1918.638591 

13.0 8.837001 10.158010 12.239825 1892.385938 

14.0 8.878764 10.156631 12.243621 1888.266719 

15.0 8.896052 10.156502 12.244248 1888.608750 

16.0 8.902739 10.156,176 12.244318 1889.728438 

17.0 8.905027 10.156466 12.244297 1890.770938 

18.0 8.905532 10.156455 12.244252 1891.576250 

19.0 8.905319 10.156 447 12.244268 1892.154531 

20.0 8.904831 10.156 442 12.244226 1892-555625 

21.0 8.904262 10.156424 12.244207 1892.829688 

22.0 8.903669 10.156423 12.244181 1893.012656 

23.0 8.903099 10.156414 12.244156 1893.135000 
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Table 7.17: Bounded forced conditions with to = 11, Uo =1 

time Il 12 13 14 

24.0 8.902562 10.156406 12.244117 1893.214687 

25.0 8.902054 10.156398 12.244099 1893.266250 

26.0 8.901586 10.156387 12.244081 1893.299531 

27.0 8.901149 10.156382 12.244054 1893.321406 

28.0 8.900743 10.156370 12.244025 1893.333281 

29.0 8.900355 10.156363 12.244005 1893.339844 

30.0 8.899996 10.156363 12.243967 1893.342969 

ii-) In this simulation boundary condition (7.39) is used with Uo = 1,7 = 
0.01, to = 12, h=0.04, and At = 0.001. In this numerical experiment, see 

Figure (7.50), two solitary waves are generated in the experiment, of which 

only the first reaches its mature amplitude 2.. 1563 and velocity 2.3344, the 

second has amplitude 2.1046 and a velocity 2.2232: see Figures (7.52) and 

(7.53). The observations are collected in Table(7.18). The time interval 

between births of solitary waves is constant at ATB = 5.31. Figures (7.54) 

and (7.55) also show that when the forcing is turned off at t= 12, for t> 

12, U(0, t) =0 but as the derivatives U., (0, t) and UUx(0, t) are not themselves 

forced to become zero the IJ do not immediately cease to vary. The switching 

operation causes a spike in the derivative graphs; subsequently (1, (0, t) and 

Uxy(0, t) tend to zero at about the same rate. Thus, as is shown earlier, 

Il continues to change, increasing or decreasing according to the sign of 

U.. (0, t), through 

Ii(t) = I1(12) + fi2 {Uxx(0, t)}dt. (7.52) 
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Table 7.18: Observation of solitary waves, Uo = 1, to = 12. e=3 

wave birth 

time 

generated 

waves 

free 

soliton 

amplitude velocity velocity 

1 2.880 2.1563 2.3344 2.3245 

2 8.190 2.1046 2.2232 2.2146 

3 12.000 0.5451 0.1485 
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'2 start to decrease through 

12(t) = 12(12) -f 2{ZUU(O) t)}dt, (7.53) 

and 13 to increase through 

13(t) = 13(12) +f 2{USZ(0, t)}dt, (7.54) 

and 14 changes through 

I4(t) = I4(12) - fia{20,4(0, t) - UT., (0, t)Uxt(0, t)}dt. (7.55) 

These equations also imply that the development of the last formed solitary 

wave does not stop abruptly when the forcing is switched off, but continues 

until U2(0, t) and U., 
-, 
(O, t) have decayed to zero. After a time of about t= 15 

when the influences of forcing have died away the quantities Il - 14 should 

remain constant. All the above conclusions are illustrated by the measured 

values of the quantities given Table (7.20-7.21). 

iii-) In a this experiment with increased forcing, Uo = 2, boundary condi- 
tion (7.39) is used with x�, o, x = 80, tmar = 4.5,7- = 0.1, to = 4.5. The forcing 

lasts throughout the experiment. The numerical step lengths are h=0.04 

and At = 0.001. In this numerical experiment, see Figure (7.56), two solitary 

waves are generated before the simulation is terminated at 

t=4.5. Figures (7.57) and (7.58) show that three achieve their terminal 

heights and a constant velocity. The generating conditions for the first wave 

are again slightly different so it attains a slightly larger amplitude and ve- 

locity than do subsequent waves. The observations are collected in Table 

(7.22). The time interval between births of solitary waves is constant at 

LTB = 0.666. The measured terminal heights for solitary waves 1-2 vary 

between 4.3009 and 3.1459 with measured velocities of (9.1674-4.9432). Free 

solitons of similar heights would also have velocities 9.2488-4.9432. After 

an initial transient the graph of Ux(0, t), Figure (7.59), shows a rounded saw 
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Figure 7.52: Short Impulse. Space-time graphs of the solitons produced by 

forced condition (7.39) with Uo = 1, r=0.01, to = 12, h=0.0.1. Lt = 0.001. 
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Figure 7.53: Short Impulse. The evolution of the soliton amplitudes. Forced 

conditions (7.39) with Uo = 1,, r = 0.01, to = 12, h=0.04, At = 0.001. e=3. 
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Table 7.19: Bounded forced conditions with to = 12, Uo =1 

time 11 '2 13 14 

0.00 0.000000 0.000000 0.000000 0.000000 

1.0 1.254076 0.732673 -0.325532 113.967861 

2.0 1.70S771 1.056245 0.095382 87.467773 

3.0 2.147801 1.427711 0.481942 79.109966 

4.0 2.6S3397 1.9S2236 1.058721 86.743525 

5.0 3.532SS5 3.112043 2.545068 134.346211 

6.0 5.056927 5.625942 7.250250 357.438047 

7.0 6.035749 6.976953 9.367068 993.822109 

S. 0 6.526666 7.427795 9. S4SS75 1373.272969 

9.0 7.04OS63 7.915524 10.379535 1495.814687 

10.0 7.800678 8.912701 11.560300 1566.390156 

11.0 9.204955 11.179001 15.60S090 1730.782500 

12.0 10.159774 12.64 6201 14.40852S 2725.620313 

13.0 9.451764 12.121727 18.210569 2677.211563 

14.0 9.321000 12.090457 1S. 24S320 2780.380625 

15.0 9.249912 12.078660 18.259066 2810.517187 

16.0 9.203353 12.072618 18.263571 2819.078438 

17.0 9.1698S5 12.069032 18.265853 2S21.401875 

18.0 9.144307 12.066683 18.267164 2521.965750 

19.0 9.123961 12.065046 18.267990 2522.055313 

20.0 9.107314 12.063864 15.268510 2822.02656: 3 

21.0 9.093373 12.062971 18.265865 2821.979375 

22.0 9.051483 12.062271 15.269100 2S21.933750 

23.0 9.071210 12.061714 18.269283 2821.898438 
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Table 7.20: Bounded forced conditions with to = 12, Uo =1 

time 11 '2 13 14 

24.0 9.062213 12.061257 18.269390 2821.866562 

25.0 9.054254 12.060884 18.269 452 2821.839688 

26.0 9.047165 12.060570 18.269539 2821. S17813 

27.0 9.040783 12.060311 18.269576 2821.796562 

28.0 9.035013 12.060085 18.269603 2521.752500 

29.0 9.029765 12.059889 18.269606 2821.763438 

30.0 9.024960 12.059711 18.269607 2821.7-512-50 
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Figure 7.56: Long Impulse. Soliton produced by forced conditions (7.39) 

with-Uo = 2,, r = 0.1, to = 1.5, li = 0.04, At = 0.01. graphed at t=2.25 (- -- 

-) and t=4.5 (--). e=3. 
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Figure 7.58: Long Impulse. The space-time graphs of the solitons produced 
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tooth periodic behaviour with maximum of about 1.653, minimum of about 

-1.615, mean zero and period 0.6-17. The graphs of U.,,, (0, t) and Clrrx(0, t), 

Figures (7.60-7.61), also exhibit periodic behaviour with period 5.15. 

Table 7.21: Observation of solitary waves, Uo = 2, e=3 

wave birth 

time 

generated 

waves 

free 

soliton 

amplitude velocity velocity 

1 0.420 4.3009 9.1674 9.2488 

2 1.056 3.1459 4.9432 4.9483 

I 
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7.2.3 Negative forcing 

A third series of experiments for which e=3, µ=1 so that p=1.4142. 
The first experiment involves a negative forcing function. Boundary condi- 

tion (7.39) is used with x,,,,, = 80, t,, a, x = 30, Uo = -1, r- = 0.01, to = 30 so 

that the forcing lasts throughout the experiment. The result of this experi- 

ment is a train of solitary waves with negative amplitudes. The final state is 

mirror image of the first experiment reported in Series B. 

In the two following experiments a short positive impulse is followed by an 

equal and opposite negative impulse. The forced boundary condition applied 

at x=0 is 

u() t r 
U(O, i) = [To 

Uo o; -7 

0<t<T 
T <t<to -T 

to - r<t<to 

(7.56) 

-UoL r 
U(O, t) Uo 

-U02 = 
r 

to <t<to +7 

to +-r<t<2to-r 

2to-r<t<2to 

i-) First we use Uo = 1,, r = 0.01, to = 11, h=0.04, and At = 0.001. 

The forcing has period 2t0 = 22. The progress of the simulation is shown 

in Figures (7.62). Initially between, 0<t< 11, the forcing is positive, two 

solitary waves are born one of which reaches maturity. In the second period, 

11 <t< 22, when forcing is negative the smaller of the generated waves is 

gradually eroded away. At time t= 30 the state includes a single solitary 

wave at about x= 5S and a small disturbance located near the origin. As 

the experiment is run on, the disturbance near the origin dies away and we 

are left with a single solitary wave of amplitude 2.15. 

ii-) The value of to is reduced to 9 so that forcing has the shorter period 
2to = 18. The progress of the simulation is now given in Figures (7.63). 
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Figure 7.62: Positive/Negative Impulse. Solitons produced by Forced condi- 

tions (7.64) with Uo = 1,, r = 0.01, to 11, h=0.04, At = 0.001 graphed at 

intervals of t=5. e=3. 
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During the positive forcing two solitary waves are generated, the first grows 

to maturity but the second has barely appeared when the negative forcing 

comes into operation. The very small positive wave is rapidly eroded away 

and a negative solitary wave then forms. The final state consists of a positive 

solitary wave of amplitude 2.15 and a negative solitary wave of amplitude 

2.0. The latter is slightly smaller as an incipient positive wave produced near 

the end of the positive forcing has first to be removed by the negative forcing 

before a negative wave can start to grow. With to reduced further to 8.1, a 

positive and a negative solitary wave of approximately equal amplitudes 2.15 

are obtained. 

7.2.4 Wave interaction 

i-) In this experiment two positive solitary waves are generated and 

allowed to collide. We set e=6, p=1 so that p=1, and use X�iax = 80, 

tmax = 10, Uo = 1,7- = 0.01, to = 10 and step lengths h=0.04 and At = 
0.001. An initial forcing of magnitude Uo = 0.5 is applied up to time t= 28, 

a wave with amplitude 1.078 is formed. Increased forcing Uo = 1.0 is then 

applied up to time t= 30 and a wave with amplitude 1.940 is generated. 

These waves are allowed to interact as shown in Figures (7.64). Details 

of the interaction are given in Table (7.23). From the observed amplitudes of 

the two solitary waves we may calculate the theoretically expected velocities 

of solitons of similar amplitudes as 1.162 and 3.764. Hence, as p=1, we may 

calculate the expected phase shifts from 0= {L2 }2 and 0= ln(ß) = 2.50 

as al -2.319 and A2 1.289. 

Initial measured velocities are found from (x32.5-x30)/2.5 as I'l = 1.164± 

0.02 and V2 = 3.764 f 0.02 and final measured velocities are found from 

(x40 - x37.5)/2.5 as Vl = 1.164 ± 0.02 and V2 = 3.764 ± 0.02. These velocities 

are consistent with those of solitons of like amplitude. Expected positions, 
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Figure 7.63: Positive/Negative Impulse. Solitons produced by Forced condi- 

tions (7.60) with Uo = 1, T = 0.01; tO = 9, h = 0.04, Ot = 0.001 graphed at 

intervals of t=5. e=3. 
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Table 7.22: Positions and amplitudes of the solitary waves throughout the 
interaction 

time xi Ui xa U2 

25.0 11.60 1.070 

27.5 14.4S 1.076 

30.0 17.37 1.078 5.42 1.829 

32.5 20.28 1.078 14.83 1.920 

35.0 20.88 1.080 25.56 1.892 

37.5 23.78 1.078 34.94 1.940 

'10.0 26.69 1.078 44.35 1.940 

x40, at T= 40 are now found and the corresponding phase shift measured. 

Using Vx 10 + x30 = x40 - x40 =A, leads to Al = -2.32 ± 0.02 and 
Aa = 1.29 ± 0.02 values consistent with those expected of solitons. The 

above measurements indicate clearly that the generated solitary waves are 

closely identified with free solitons. 

ii-) In a second experiment studying the interaction of two positive 

solitary waves, we interpose after the initial forcing Uo = 0.5 which lasts 

until t= 17.5, a period during which Uo =0 up to t= 28 after which 
increased forcing Uo = 1.0 is applied up to t= 30. These waves are allowed 

to interact as shown in Figure (7.65). From the growth curves for the wave 

amplitudes shown in Figure (7.66) we estimate the wave amplitudes both 

before and after the interaction to be'0.9374 and 1.410 and from the space- 
time graph in Figure (7.67) the corresponding velocities are 0.880 and 1.988. 

Initial measured velocities are found from x35-x32.5)/2.5 as T, = 1.988± 
0.02 and V2= O. SSO±0.02 and final measured velocities from x50-x47.5)/2.5 
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Figure 7.64: Double Impulse. The interaction of two solitons produced by 

forced conditions with Uo = 0.5 until t= 2S, and Uo = 1.0 until t= 30, h= 

0.04, At = 0.001 graphed at intervals of t=2.5. ¬ = 6. 
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Figure 7.65: Double Impulse. The interaction of two solitons produced by 

forced conditions with Uo = 0.5 until t= 17.5, and Uo = 1.0 until t= 28, 

and Uo = 1.0 until t= 30, h=0.01, Lt = 0.001 graphed at various times. 
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Table 7.23: Positions and amplitudes of the solitary waves throughout the 

interaction. 

time xl . Ui xz U2 

30.0 1.22 1.475 14.44 0.936 

32.5 6.49 1.404 16.61 0.937 

35.0 11.46 1.400 18.84 0.938 

42.5 25.70 1.392 22.02 0.939 

45.0 3: 3.62 1.409 24.22 . 0.937 

47.5 3S. 60 1.410 26.42 0.937 

50.0 43.57 1.411 2S. 62 0.9: 37 

Figure 7.66: Double Impulse. Amplitude growth curves for two solitons 

produced by forced conditions with Uo = 0.5 until t= 17.5, and Uo = 1.0 

until t= 2S, and Uo = 1.0 until t= 30, h=0.04, Zýt = 0.001 graphed at 
intervals of t=2.5. e=6. 
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Figure 7.67: Double Impulse. Space-time curves for two solitons produced 
by forced conditions with Uo = 0.5 until t= 17.5, and Uo = 1.0 lintil t= 28. 

and Uo = 1.0 until t= 30. h=0.01, Ll = 0.001 graphed at intervals of 
t=2.5.6. 

as VI = 1.988 ± 0.02 and V2 = 0.880 ± 0.02.. These velocities are consistent 

with those of solitons of like amplitude. 
'Expected 

positions, x E, at t= 43 are 45 

now found and the corresponding phase shift measured. Using I' x 10+x35 = 

Zq5 - x45 = 6;, leads to O1 = -2.28 ± 0.02 and 162 = 3.42 ± 0.02. From the 

observed amplitudes of the two solitary waves we may calculate the expected 

phase shifts as Al = -(°) _ -2.274 and AL2 = (°) = 3.420. Agreement is 

close. 

7.3 ' Simulations, 2 

We also examined the case of a Gaussian boundary function, 

U(0, t) = Uo exp[-, r (t - to)2] (7.57) 

where T and to are now chosen in'order tö have U(0,0) of the same order as 
the time step used in the numerical calculations. 
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Initially the region is undisturbed so that at time t=0 all öj are zero. 
The forced Gaussian boundary condition is applied at x=0 and further 

homogeneous boundary conditions are imposed at x= xmas. The effect of 
the impulse is to generate solitary waves at x=0, which grow until they 

achieve a terminal amplitude, determined by the magnitude Uo of the forced 

boundary value. Solitary waves are continually generated while the forcing 

conditions prevail, then all growth slows and eventually ceases. 

7.3.1 Positive forcing series 

In these experiments e=G, It =1 so that P=1. 

i-) Firstly boundary condition (7.65) is used with Uo = 2.5, x,,,,,, = 
20, t,,, a., = 0.8,, r = 60, to = 0.4 so that the forcing lasts throughout the 

experiment. The numerical step lengths are h=0.02 and At = 0.0005. 

In this numerical experiment, see Figure (7.68) two solitary waves are 

generated before the simulation is terminated at t=O. S. Figures (7.69) and 
(7.70) show that 2 achieve their terminal heights and a constant velocity. 

The generating conditions for the first wave are rather more protracted 

than those for all subsequent waves, as can be seen from the graphs of the 

first two derivatives at x=O -given in Figures (7.71-7.72) so it achieves 

a slightly larger amplitude and velocity than do the following waves. The 

observation on the solitary waves generated are collected in Table (7.24). The 

time interval between births of solitary waves is constant at OTB = 0.137, 

the measured terminal heights for solitary waves 1-2 vary between 4.690 

and 0.292S with measured velocities of 21.6. Free solitons'of similar heights 

would have velocities 21.9961 - 0.0557, so that agreement is close. After 

an initial transient the graph of U, (0, t), Figure(7.71), shows a rounded saw 

tooth periodic behaviour with maximum of about 2.69,, minimum of about 

-3.0 mean zero and period 0.137. The graphs of U.,,., (0, t), Figure(7.72), also 
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Figure 7.68: Long Impulse. Soliton produced by forced conditions (7.57) 

with U0 = 2.5, r= 60, to = 0.4, /i = 0.02, At = 0.0003 graphed at t=0.4 (- - 

--) ands=0.8(--) 

exhibit periodic behavior with period 0.137. 

ii-) An experiment with increased forcing, Uo = 4; boundary condition 
(7.57) is used with x,,,,,, r = 20, t�, a, S = 0.8, T= 60, to = 0.40 so that the 

forcing lasts throughout the experiment. The numerical step lengths are 
h=0.02 and At = 0.0005. In this numerical experiment, see Figure (7.73), 

four solitary waves arc generated before the simulation is terminated at t= 

Table 7.24: Observation of solitary waves, Uo = 2.5, c=6 

4 

wave birth 

time 

generated 
waves 

free 

soliton 

amplitude velocity velocity 

1 0.388 4.6900 21.60, 21.9961 

2 0.525 0.2928 0.0857--l 
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Figure 7.69: Long Impulse. The evolution of the soliton amplitudes. Forced 

conditions (7.57) with Igo = 2.; ), 7= 60, to = 0.4. h=0.02, At = 0.000-5. 
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Figure 7.70: Long Impulse. The space-time graphs of the soliton produced 
by forced conditions (7.57) with Uo = 2.5,, r = 60, to = 0.4, h=0.02, At = 
0.0005. 
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Figure 7.71: Long Impulse. Variation in the first derivative U, (0,1) at the ori- 

gin. Forced conditions (7.57) with Cro = 2.5, T= 60, to = 0.4, h=0.02. At = 

0.0005. 
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Figure 7.72: Long Impulse. Variation in the second derivative U.,., (0, t) at 
the origin. Forced conditions (7.57) with Uo = 2.5, T= 60, to = 0.4, h=0.02, 

At = 0.0005. 
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Figure 7.73: Long Impulse. Soliton produced by forced conditions (7.57) 

with Uo=4. T= 60, to = 0.4. h=0.02, Lt = 0.0003 graphed at !. =0.4 (- -- 

-) and t= 0. S(---) 

O. S. Figures (7.74) and (7.75) show that three achieve their terminal heights 

and a constant velocity. 
The generating conditions for the first wave are rather more protracted 

than those for all subsequent waves, as can be seen from the graphs of the 

first two derivatives at x=0 given in Figures (7.76-7.77) so it achieves 

a slightly larger amplitude and velocity than do the following waves. The 

observation on the solitary waves generated are collected in Table (7.25). 

The measured terminal heights for solitary waves 2-4 vary between 5.1579 

and 3.8013 with measured velocities of 26.6666 - 14.074. Free solitons of 

similar heights would have velocities 26.6039 - 14.4498, so that agreement is 

close. After an initial transient the graph of U., (0, t), Figure(7.76), shows a 

rounded saw tooth periodic behaviour with maximum of about 7.0, minimum 

of about -9.0 mean zero, and second derivative graph of U,,., (0, t), in Figure 

(7.77). 
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Figure 7.74: Long Impulse. The evolution of the soliton amplitudes. Forced 

conditions (7.5 7) with Uo = 4, T= 60, to = 0.4, h=0.02, At = 0.000-5. 

Table 7.25: Observation of solitary waves, Uo = 4, c=6. 

wave birth 

time 

generated 

waves 

free 

soliton 

amplitude velocity velocity 

1 0.331 5.3599 2S. 1481 28.7285 

2 0.373 5.1579 26.6666 26.6039 

3 0.405 4.9176 23.7037 24.1827 

4 0.451 3.8013 14.0740 14.4498 
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Figure 7.7 5: Long Impulse. The space-time graphs of t he soliton produced by 
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origin. Forced conditions (7.57) with Uo = 4,, r = 60, to = 0.4, h=0.02, At = 
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At = 0.000.3. 

7.4 Simulation 3 

As a final example we study the temporal development of a \laxwellian 

initial condition. 

U(x, 0) = exp(-x2). (i 
. 
5S) 

We fix the value of c at 1 and examine the evolution of the solution for 

various values of µ. Integrating (7.6) analytically shows that Il = (r) _ 

1.7725, '2 =( )) = 1.2533,13 = 2(1 - 6µ/) (7r) so that for fc = 

0.0.413=0.5554, p=0.0113=0.8110, p=0.00513=0.8486andpc= 

0.0025 13 = 0.8674. With p=0.04 we use At = 0.01 and h=0.1 over a 

range -50 <x< 50 , and confirm earlier work that the Maxwellian evolves 

into a single AIKdV soliton and an oscillating tail. The values taken by the 

lowest invariants up to time of t= 12.5 are given in Table (7.26). 

With it = 0.01 we use At = 0.005 and h=0.05 over a range -50 < 

x< 50, and confirm earlier work that the Maxwellian evolves into AIKdV 
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Table 7.26: Invariants for Maxwellian 

Ec=0.04, h=0.1, At=0.01 

time 1, 12 13 14 

0.0 1.772454 1.253314 0.585430 0.300143 

2.5 1.772452 1.253307 0.588138 0.301000 

5.0 1.772449 1.253304 0.588723 0.301623 

7.5 1.772441 1.2 53301 0.588909 0.301821 

10.0 1.772459 1.2 53298 0.588981 0.301S96 

12.5 1.772317 1.2 53295 0.589015 0.301908 

Table 7.27: Invariants for Maxwellian 

Ec=0.01, h=0.05, At=0.005 

time Ii 12 13 14 

0.0 1.772454 1.253314 0.811028 0.597435 

2.5 1.772447 1.253292 0.816537 0.604749 

5.0 1.772415 1.253212 0.819122 0.607861 

7.5 1.772376 1.253115 0.819110 0.607780 

10.0 1.772335 1.253017 0.818888 0.607455 

12.5 1.772295 1.252920 0.818643 0.607111 
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Table 7.28: Invariants for Maxwellian 

it = 0.005, h=0.01, it = 0.005 

time Il 12 13 14 

0.0 1.772454 1.253315 0.848628 0.658827 

2.5 1.772418 1.253229 0.8489S8 0.659489 

5.0 1.772177 1.252605 0.847364 0.657012 

7.5 1.771900 1.251896 0.845243 0.6537-13 

10.0 1.771642 1.251194 0.843128 0.650566 

12.5 1.771343 1.2 50503 0.543128 0.647414 

solitons and an oscillating tail. The values taken by the invariants are also 

given in Table (7.27). 

With fc = 0.005 we use At = 0.005 and li = 0.01 over a range -15 < 

x< 15, and show that the Maxwellian evolves into three ifKdT' solitons 

respectively. The values taken by the lowest four invariants for both simu- 
lations are given in Table (7.2S). As h decreases the observed value of 13 at 

time t=0 moves closer to the analytic value due probably to an improved 

estimate of Ux. 

With p=0.0025 we use At = 0.005 and h=0.01 over a range -15 < 

x< 15, and show that the Maxwellian evolves into five AI1i dV solitons 

respectively. The values taken by the lowest four invariants for both simu- 
lations are given in Table (7.29). As h decreases the observed value of I3 at 

time t=0 moves closer to the analytic value due probably to an improved 

estimate of Uz. 
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Table 7.29: Invariants for Maxwellian 

µ=0.0025, h=0.01, At = 0.005 

time 1, 12 13 14 

0.0 1.772454 1.253315 0.867428 0.690791 

2.5 1.772241 1.252774 0.867062 0.690409 

5.0 1.771081 1.249709 0.857655 0.674900 

7.5 1.769900 1.246613 0.847833 0.659092 

10.0 1.768795 1.243732 0.838794 0.644772 

12.5 1.76775.1 1.241014 0.830461 0.63174S 

7.5 Discussion 

The numerical solution alorithm, based on collocation of quartic B- 
3 

splines over finite elements, described in Section (7.1.1) is validated in Section 

(7.1.3), by a single soliton simulation, which shows good conservation prop- 

erties and accuracy. 
Constant positive boundary forcing produces a train of solitary waves of 

like amplitude and velocity generated at a constant rate. The initial wave 

has a slightly larger amplitude due to a switch-on effect. This behaviour 

corresponds to that of the KA" equation under similar conditions [15,11]. 

Characteristic results for the numerical experiments on positive boundary 

forcing are listed in Table (7.30). It is deduced that solitary waves are gen- 

erated with period OTB = 1.820,03) , amplitude 2.147 x Uo and velocity 

4.62 x Uo, where Uo is the magnitude of the forcing; the definition of p is 

given by equation (7.3). 

The birth times recorded in Table-(7.4), (7.5) and (7.6) and referred to 

in the text are those at which a solitary wave starts to traverse the region. 
Some small time before this the solitary wave is conceived at the origin as 
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Table 7.30: Mean observation of solitary waves: long impulse, various forcing 

p Uo LTB amplitude velocity 

6 1.0 0.5 14.552 1.0746 1.153 

6 1.0 1.0 1.82 2.147 4.62 

6 1.0 2.0 0.2271 4.295 18.25 

3 1.4142 0.5 41.25 1.073 0.572 

3 1.4142 1.0 5.15 2.147 2.31 

a localised disturbance which begins to develop. If the forcing is removed 
before separation from the origin (birth) occurs the solitary wave never forms 

and the small local disturbance which remains located near the origin dies 

away as the simulation proceeds. 

Negative forcing -U0 produces negative solitary waves of equal amplitude 

to those produced by positive forcing U0. 

A positive impulse followed by an equal negative impulse leads to results 

that depend on the periodicity of the forcing as well as its magnitude. Two 

examples are presented. In one a single positive solitary wave is generated, 

while in another, with a slightly shorter period, a positive and negative soli- 

tary wave are generated. 
The solitary waves generated by boundary forcing have amplitudes and 

velocities consistent with those of the free soliton solution of the AI dV 

equation and behave similarly when they interact. Although these observa- 

tions are subject to experimental error they tend to support the idea that 

these solitary waves are indeed identical with free solitons since it does not 

seem likely that the MKdV equation would support two different solutions 

with so similar properties. 
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Conclusion 

We have set up a new B-spline finite element algorithm, for the KdV and 

AIKdV equation, which the non-linear terms locally linearised, in the KdV 

and A1Kdj' equations, UUx and U'UU, are replaced the function U. First, 

method used is based on the Galerkin method with quadratic B-spline finite 

elements. A second method used is based on collocation over finite elements 

using quartic B-spline trial functions. 

It has been shown analytically [4,41] that solutions of the Ii dV and 
III dj' equations obey an infinity of conservation laws. It is therefore im- 

portant that any numerical solution shall satisfy at least the lower order 

conservation laws. We have shown in earlier chapters that in all the simula- 

tions presented here these conservation laws are all satisfactorily obeyed. 
Any numerical scheme must be capable of accurately representing the 

position and amplitude of a soliton as it moves throughout a simulation. 

The interaction of solitons must also be well described. To evaluate how well 

our algorithms perform we have used the L2 and L,,. error norms. We have 

shown that throughout the simulations these error norms are satisfactorily 

small. 
A quadratic B-spline finite element algorithm and a Modified Petrov- 

Galcrkin algorithm have been used to study the interaction of soliton solu- 
tions for the KdV equation in Chapter 4. Results of simulations presented in 

this chapter indicate that to obtain very acceptable, L2-error norms and ac- 
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curate conservation properties smaller time steps are required. The error can 

be reduced substantially by using smaller space and time steps. Reasonably 

accurate numerical solutions of the KdV equation are produced. 

We give a quadratic B-spline finite element solution for the Modified 

Korteweg-de Vries equation in Chapter 5. Results of simulations are very 

good, L2 and L.. error norms are satisfactorly small and the conservation 

laws very well indeed. We set up our algorithm for the Modified Korteweg-de 

Vries minus equation using a 'lumped' Galerkin method with quadratic 13- 

spline finite elements in Chapter 6. The error norms are small showing that 

the position and shape of a soliton are well represented by the numerical 

solution. The lowest three invariants change by less than 0.05% during the 

run so that the numerical algorithm has good conservation properties as 

well. The interaction of 2 solitary waves, the invariants change by less than 

0.04% during the run so that conservation is excellent. Also we applied 

many different initial conditions. Results are very accurate, invariants are 

satisfactorily good. 

In Chapter 7 an unconditionally stable numerical algorithm for the Mod- 

ified Korteweg-de Vries equation based on the quartic B-spline finite element 

method is described. The algorithm is validated through a single soliton 

simulation. In further numerical experiments forced boundary conditions 

u= Uo are applied at the end x=0 and the generated states of solitary 

waves are studied. The solitary wave states generated by applying a positive 
impulse followed immediately by an equal negative impulse is dependent on 

the period of forcing. The solitary waves generated by these various forcing 

functions posses many of the attributes of free solitons 
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