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PhD Summary 
Fisher behaviour remains a key source of uncertainty in fisheries management. Failing to account for 

the behavioural response of fishers can lead to unexpected or unintended consequences of 

management; our understanding of fisher behaviour, as well as our ability to translate this 

understanding into predictive management models, is underdeveloped. This thesis aimed to develop 

an individual-based model (IBM) that could be used by fishers and managers to evaluate the impacts 

of management scenarios in the Isle of Man scallop fishery.  

Questionnaire interview data and a conjoint analysis were used to understand fishing behaviour and 

to generate realistic parameters to input to an IBM of fishing activity. Vessel monitoring system 

(VMS) and logbook data were also analysed to inform the model development, and to provide the 

data against which the model could be validated. There is increasing interest in using automatic 

identification system (AIS) as an alternative to VMS when investigating fishing activity, so a 

comparison of AIS and VMS data was presented, highlighting substantial gaps in the coverage of AIS 

data. 

By using simple foraging decision rules, parameterised by questionnaire data, it was possible to build 

an IBM that could reproduce patterns seen in the Isle of Man scallop fishery with reasonable 

similarity. Comparing multiple submodels of fishing behaviour provided insights into predicting 

fishing activity, and identified the most structurally realistic models. It illustrated the importance of 

incorporating random behaviour in a model design, potentially to account for social aspects of 

fishing decisions that are more difficult to quantify. It also demonstrated that predicting responses 

to management by modelling fishers as optimal foragers that act in an economically rational manner 

may overestimate the capacity of the fleet to compensate for restrictions such as closed areas, and 

underestimate the fishing footprint. Fishery systems may be too complex to distil to a single simple 

and ‘accurate’ model, but having a suite of models that together give a reasonable representation of 

the fishery could allow the range of likely impacts of management to be better considered. 

This thesis demonstrates the value of individual-based modelling for both understanding fisher 

behaviour and predicting the outcomes of management. It has also provided strong evidence to 

support the use of questionnaire interview data in modelling fishing activity. Comprehensively 

documenting the stages of model development provided a transparent model validation which 

would enable managers to make informed decisions about how to apply such a model. Using an IBM 

to predict the response of fishers to management could facilitate more informed compromises 

between management objectives, and reduce uncertainty in fisheries management.  
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1.1. Fisheries are important for global food security 

The world population is expected to reach nine billion by 2050. This represents a significant 

challenge in terms of food security, in the context of climate change, economic, financial, and 

political uncertainty, and growing competition for natural resources. In 2013, fish accounted for 

about 6.7% of all protein consumed, and provided more than 3.1 billion people with almost 20% of 

their average per capita intake of animal protein. However, 31% of global fish stocks have been 

estimated as fished at biologically unsustainable levels, and are therefore considered overfished, 

which poses a threat to food security (FAO, 2016). 

There are, however, two somewhat diverging views of the status and future of the world’s fisheries 

among the scientific community (Hilborn, 2007a). Some believe fisheries management is failing 

globally and predict dire consequences for the world’s oceans (Myers and Worm, 2003; Pauly et al., 

1998; Worm et al., 2006, 2009). Others have a less alarmist view, and argue that it is a lack of 

management that causes depleted stocks rather than a failure of management itself, believing that 

we can learn from fisheries that have been successfully managed to improve the status of other 

overfished stocks (Beddington et al., 2007; Hilborn, 2007a; Hilborn and Ovando, 2014). 

Nevertheless, it is agreed that overfishing can cause negative ecological, social, and economic 

consequences (FAO, 2016; Kaiser et al., 2006; Myers et al., 2000; Worm et al., 2009). There is a need 

to strengthen fisheries governance to deal with increasing pressures, in order to ensure sustainable 

marine fisheries that can provide food security for future generations, whilst meeting the common 

goals of environmental protection and ecosystem and biodiversity conservation. 

 

1.2. Managing Fisheries is Managing People 

Despite sharing a common interest in maintaining sustainable fisheries (Jennings et al., 2014), 

different groups of people (e.g. fishers, governments, NGOs, scientists) may be measuring 

sustainability against different objectives, measures, and definitions (Hilborn et al., 2015). There is 

more often a focus on ecological or environmental sustainability; but neither environmental nor 

socio-economic objectives can be successfully met by focussing only on the state of the resource 

(Fulton et al., 2011). Failing to account for social and economic impacts can lead to a lack of 

compliance which undermines management (Peterson and Stead, 2011), and incentives and 

feedbacks can lead to behavioural responses that result in unintended consequences (Hilborn et al., 

2004; Pascoe and Mardle, 2005). The sustainability of seafood production for future generations is 
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dependent on the success or failure of management institutions to effectively control and adjust the 

fishing pressure to appropriate levels (Hilborn et al., 2015). 

Hilborn (2007) stated “managing fisheries is managing people”, and stressed the importance of 

understanding fishermen’s motivations, and the interaction between their objectives and the 

incentives created by any management option. This notion has been expressed and reiterated by 

many fishery scientists over the decades (Bucaram et al., 2013; Fulton et al., 2011; Hallwass et al., 

2013; Hart, 2003; Wilen, 1979, 2006), yet a generation of ‘command and control’ fishing policies, 

where top down legislative measures prescribe where and when fishermen can fish, has somewhat 

failed to take account of the societal and economic dimensions of fisheries (Bacalso et al., 2013; 

Bucaram et al., 2013; Bucaram and Hearn, 2014; Fulton et al., 2011). Despite its acceptance in the 

academic world, it is not yet the norm for fisheries management to explicitly incorporate social and 

economic dimensions, including fisher behaviour. Failing to account for social and economic 

outcomes of management has potentially contributed to management failures (Hart, 2003; Hilborn, 

1985; Wilen, 2006).  

 

1.3. PhD Rationale 

This PhD aimed to address a significant source of uncertainty in fisheries management, namely, the 

behavioural response of fishermen to management (Branch et al., 2006; Fulton et al., 2011; Hart, 

2003; van Putten et al., 2012). Fishers do not always respond to management as expected, which 

can lead to unintended consequences of management (Dinmore et al., 2003). For example, 

management can unintentionally displace effort into areas that were previously unfished for several 

years (Piet et al., 2007), into areas of sensitive habitats (Nilsson and Ziegler, 2007), or lead to an 

increase in the economic cost of fishing (Hilborn et al., 2004; Smith et al., 2010). Understanding 

more about how fishers might respond to management, in terms of adaptive and compensatory 

behaviour, would reduce some of the uncertainty surrounding fisheries management, and could 

reduce unintended consequences of management. Despite being recognised as important in 

determining the outcome of management, both our understanding of fisher behaviour, and the 

translation of this understanding into predictive management models is underdeveloped (van Putten 

et al., 2012).There is a growing need for comprehensive fisheries models that incorporate a range of 

social, economic, and ecosystem interactions, and are capable of forecasting future scenarios, and 

predicting potential impacts of, and responses to, management strategies (Fulton et al., 2011; 

Reeves et al., 2009; Wilen et al., 2002). The development of simulation tools, in which the potential 

environmental and economic consequences of different management scenarios could be explored, 
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could allow a more holistic approach to fisheries management. For example, when considering a 

potential new closed area, it could answer questions such as: Where would the fishing activity be 

displaced to? What would the environmental impact of this shift be, in terms of the change in fishing 

footprint? And what would the economic impact be for the fishermen? Whilst managers do not 

always understand fishers’ motivations and responses to management, fishers also do not always 

understand how or why managers make certain decisions, which can lead to conflict. Developing a 

simulation tool that could address the above types of questions could allow scientists, managers, 

and fishers to understand more about how management could affect the fishery, from both an 

environmental and an economic perspective. It could also provide fishers with access to a scientific 

tool to assess alternative management options that minimise economic losses, whilst achieving 

biological or environmental targets. This PhD was the first step in developing such a management 

simulation model for a data rich scallop fishery in the Isle of Man.  

 

1.4. The importance of incorporating fisher behaviour into management. 

Fisheries management aims to achieve a balance between resource exploitation and environmental 

protection; it should maintain productive and profitable fisheries for food and employment security, 

while ensuring any negative ecological and environmental impacts are minimised (Beddington et al., 

2007; Kaiser et al., 2016; Worm et al., 2009). Ecosystem based fisheries management (EBFM) is 

increasingly recognised as a more holistic integrated approach to fisheries management (Pikitch et 

al., 2004). EBFM emerged in response to the shortcomings of focussing on a single target species; by 

focussing on a single species, other ecosystem components, such as the species’ predators, prey, or 

habitats, are often overlooked. As well as considering ecosystem effects, EBFM also aims to take a 

broader view of fisheries management, to maintain long-term socio-economic benefits, in balance 

with environmental protection (Pikitch et al., 2004). 

In systems based fisheries management (SBFM) the social-ecological system is considered as a 

whole, with feedbacks between the ecological and social-economic systems explicitly considered. 

Single species management can be criticised as biased to one species, failing to account for the 

ecosystem impacts, whereas EBFM can be considered biased towards the ecosystem, failing to 

account for the complex coupling of social ecological systems (Fulton et al., 2011; van Putten et al., 

2012). SBFM recognises it is not simply fishing patterns that influence the fishery ecosystem, but a 

series of complex interactions between ecosystems and social, political and economic factors that 

drive fishery dynamics (Hilborn, 2007b; Plagányi et al., 2014). SBFM aims to take account of how 

governance structures, such as regulations, incentives, or stakeholder engagement processes, can 
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influence fishery dynamics and resulting environmental footprints and socioeconomic impacts 

(Burgess et al., 2017). 

Nevertheless, fishery systems are complex, and understanding all of the interacting environmental, 

social, and economic influences on fisheries dynamics, and thus management, is not simple. In 

particular, there are two types of uncertainty relevant to fisheries management; scientific 

uncertainty (Ralston et al., 2011) and management or implementation uncertainty (Fulton et al., 

2011). Scientific uncertainty assumes that fishers respond as expected, and the uncertainty is 

concerned more with the stock models, e.g. when the actual catch equals the total allowable catch, 

but there is uncertainty in the scientific stock models. Management uncertainty considers the 

uncertainty in the fishing pattern resulting from a management scenario, e.g. the behavioural 

response of fishermen. Management uncertainty is less understood, but understanding this could be 

critical to successful fisheries management, through reducing unintended consequences of the 

management actions that are implemented (Fulton et al., 2011). The adoption of SBFM is likely to 

require significant advances in our understanding of fisheries systems, including both the human and 

ecological elements of a fishery, and the complex interactions and feedbacks between the two, in 

particular to reduce management uncertainty (Burgess et al., 2017).  

There has been increasing recognition that it is important to understand fisher behaviour to achieve 

successful management outcomes (Bacalso et al., 2013; Charles, 1995; Girardin et al., 2016; Gordon, 

1953; Hallwass et al., 2013; Hilborn, 2007b; Hutton et al., 2004; Little et al., 2004; Marchal et al., 

2007; Murray et al., 2011; Salas and Gaertner, 2004; Wilen et al., 2002), with increasingly more 

studies investigating fishery behaviour, perhaps led by a move towards management measures that 

aim to modify the behaviour of fishers, and an increase in computing power (van Putten et al., 

2012). Failing to account for the behavioural response of fishers can lead to unintended 

consequences of management, and even produce negative environmental, economic, or social 

effects (Hilborn et al., 2004; Pascoe and Mardle, 2005). For example, in 2001 the ‘cod box’ excluded 

the North Sea beam trawl fleet to protect spawning aggregations of cod. However, to compensate 

for this exclusion, fishers moved to a previously unfished area, resulting in a long term negative 

impact (Dinmore et al., 2003). A failure or inability to account for the behavioural response of fishers 

in this case led to unintended negative consequences for the benthic ecosystem in a previously 

unfished area of the seabed. To implement effective fisheries management, we must be confident 

that fishers will respond to the management actions as intended (Dinmore et al., 2003), and that 

expected reductions in effort or mortality will be realised (Daw, 2008). 
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The incorporation of fisher behaviour into fisheries management can be considered from two 

related perspectives; the predicted level of compliance or acceptance associated with management 

actions, and the compensatory response of fishers and therefore efficacy of management actions, 

both of which would provide insights into the potential success of management strategies. Hallwass 

et al. (2013) suggested that compliance and acceptance could be estimated as inversely proportional 

to catch decline; the lower the impact on catches, the more likely the management option would be 

to be accepted. Nevertheless, we must first understand what the impacts on catches may be. 

Modelling a reduction in available biomass by simply removing a proportion of the total catch 

neglects the possibility of compensatory behaviour, and assumes proportional redistribution of 

effort to other fishing areas (Dowling et al., 2012). Some management measures may be more 

restrictive to fishermen, whereas others may allow a simple alternative fishing strategy to prevent 

financial loss. In fisheries with a higher diversity of gear, habitats, target species, and alternative 

income, fishers may be able to absorb a loss in fishing income by switching to another source of 

revenue (either non-fisheries or through changing fishing method/location), and therefore be more 

accepting of a greater variety of management options (Cambiè et al., 2017). Nevertheless, this 

displacement of effort could impact on another fishery or ecosystem. The response of fishers is an 

important determinant in management success. For example, what appears to be a simple method 

to reduce fishing pressure, such as reducing the number of active vessels, may not necessarily 

reduce the fishing mortality (Murray et al., 2011), and nearshore management actions have been 

demonstrated to drive the fishery further out to sea, resulting in no substantial reduction in net 

catches, but a potential increase in the cost of fishing (Daw, 2008). Unanticipated behavioural 

responses from fishers can therefore reduce the efficacy of management strategies. 

Environmental policies are generally developed centrally, based on the assumption that resource 

users will respond homogenously to management actions (Gelcich et al., 2005). However, as 

demonstrated in farmed systems, the adoption of top down environmental policy, such as agri-

environment schemes, varies considerably with age, education, attitude to risk, and personality 

(Greiner et al., 2009; Sheikh et al., 2003; Vanslembrouck et al., 2002). Both farmers and fishers 

derive their livelihood from the environment, and subsequently, studies have shown that fishers’ 

responses to policies can also depend on attitudes, personalities, and livelihoods (Gelcich et al., 

2005).  This suggests that responses may vary between groups and among individuals, meaning a 

thorough understanding of the individual behaviours in the system is required to make predictions 

about responses of individuals to management actions (Gelcich et al., 2005).  

 



Chapter 1: Introduction 
 

36 
 

1.5. Fisher behaviour within the framework of Optimal Foraging Theory 

Fishers and exploited fish/shellfish populations can be considered analogous to animal predator-

prey systems, in which fishers are predators competing for a particular prey resource. However, 

whilst substantial research has been conducted on the exploited ‘prey’ in fisheries, the behaviours 

and population dynamics of the ‘predators’ (fishers) have received less attention (van Putten et al., 

2012). This imbalance in fisheries systems leads us to understand only half of a coupled system. A 

number of authors have demonstrated Optimal Foraging Theory (OFT) (MacArthur and Pianka, 1966) 

to be a suitable framework for investigating fisher behaviour (Begossi, 1992; Begossi et al., 2009; de 

Oliveira and Begossi, 2011; Lee et al., 2014; Sosis, 2002). Optimal foraging theory states that 

individuals aim to maximise their net energy intake over time (analogous to catches or profit for a 

fisher); there are several models under the umbrella of OFT relevant to modelling fishers (Figure 

1.1).  

 

Figure 1.1 Optimal Foraging Models. Blue shaded boxes indicate those explored further during the 
PhD 

 

An extension to OFT incorporates the Ideal Free Distribution (IFD; Fretwell and Lucas, 1969), which 

predicts that foragers will distribute themselves proportionally to the amount of resources in an 

area, with each forager receiving equal benefits. Therefore, more foragers will be present in 

resource-rich patches, but the overall return rate will be equal between foragers. The IFD has been 

demonstrated to offer a good estimation of the distribution of fishers moving between distinct 
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foraging sites (Gillis, 2001, 2003; Voges et al., 2005) but significant deviations from this prediction 

also have been found (Abernethy et al., 2007). 

Other theoretical models relevant to fisheries fall under the framework of OFT: Patch Choice Models 

determine where to search for food items; Marginal Value Theorem determines how long to search 

for items; and Central Place Theorem predicts foraging levels given the distance travelled (Charnov, 

1976; MacArthur and Pianka, 1966; Orians and Pearson, 1979; Figure 1.1). Marginal Value Theorem 

(MVT; Charnov, 1976) has been used to predict how long fishers should stay in a fishing ground, with 

some success, although fishers have been shown to operate sub-optimally, staying longer than MVT 

predicts is economically optimal (Begossi, 1992). De Oliveira and Begossi (2011) have also 

demonstrated that the predictions of the Central Place Foraging Theorem (CPF) hold true; time 

searching inside a patch, and optimal load size (i.e. catch size) increases with distance, as the forager 

tries to compensate for the increased costs of travelling further. Prey Choice Models determine 

when a forager should change their target prey species. In single-species fisheries there may not be 

an alternative prey or target species; however, it could also be considered analogous to sourcing 

alternative income. The level of off sector pluriactivity has been shown to be a strong determinant in 

predicting responses to management (Gelcich et al., 2005) but the ability to change income source 

will vary between individuals within and between fisheries (Cambiè et al., 2017).  

Under the framework of OFT, according to the MVT, a forager can be expected to use a resource 

until the energetic cost exceeds the gain (MacArthur and Pianka, 1966); similarly, a fisher could be 

expected to operate in an area until the perceived benefits of moving to a different location out-

weigh the costs. This could be in relation to returning to a patch on subsequent trips, or in moving 

between patches during a fishing trip. Indeed de Oliveira and Begossi (2011) found that fishers 

returned more often to grounds where the return rate of the previous trip was higher than the 

average return for the environment. Griffen (2009) also showed that the use of simple patch leaving 

rules, based on decision rules according to current consumption rates (c.f. the theory of MVT which 

has an unrealistic assumption of ideal knowledge of alternate consumption rates), allowed crabs to 

distribute approximately according to ideal free expectations.  The return rate at which a forager 

decides to change location can be termed the ‘giving up threshold’ (GUT). In fisheries this could 

represent a resource density below which it is not economically viable to continue fishing. The GUT 

may vary between individuals, and may depend on a range of variables, such as economic strategy 

or spatial preferences, and average stock status across all grounds (i.e. how depleted the resources 

are).  
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With regards to predicting fishing behaviour, OFT and associated models are, however, subject to 

some unrealistic assumptions, namely: foragers have ideal knowledge of resource levels in each 

patch; foragers are able to move equally between all patches; and foragers have equal competitive 

abilities. In reality, this would not be the case; fishers may know estimates of resource densities, but 

cannot know exact values; larger vessels may have greater potential to travel further and more 

quickly between patches; and larger vessels may out-compete smaller vessels (Rijnsdorp et al., 

2008).  

Fishers are also often assumed to be perfectly informed rational profit-maximisers (profit 

maximisation can be considered analogous to optimal foraging), who value future profits less than 

current profits (Holland, 2008). Indeed an unwillingness or inability to accept short term costs in 

favour of long term benefits may have contributed to the difficulty in reducing overfishing 

(Beddington et al., 2007). Nonetheless, in reality, there are likely to be violations to the assumptions 

of profit maximisation behaviour, but these violations are not well understood in fisheries 

(Abernethy et al., 2007; Christensen and Raakjær, 2006; Holland, 2008). The economic drivers for 

each fisher may be influenced by additional social factors, such as safety, comfort and time (Bene 

and Tewfik, 2001; Cabrera and Defeo, 2001; Salas and Gaertner, 2004). The response of fishers to 

management actions may be influenced by these social factors (Abernethy et al., 2007). Christensen 

& Raakjær (2006) found that less than 10% of fishers had a strategy based strongly on profit 

maximisation. Leisure time is often not considered in fisheries economic models, but can be an 

important trade-off with fishing for longer and achieving higher profits (Abernethy et al., 2007). 

Yield- or income-targeting behaviour (Simon, 1955) and loss aversion (Kahneman and Tversky, 1979) 

could also lead to deviations from profit maximisation; fishers have been shown to exhibit satisficing 

behaviour, in which profit maximisation is no longer the objective function once a certain level of 

need or satisfaction has been met (Christensen and Raakjær, 2006; Jager et al., 2000; Salas and 

Gaertner, 2004). Béné (1996) defined a fisher’s strategy to be “the set of decision criteria that link a 

given fishing behaviour with the objective(s) and constraint(s) that have stimulated such behaviour”. 

To successfully predict the fleet-wide responses to management options we must understand the 

individual differences in competitive drive and ability of the fishers, as well as their differing 

economic expectations, incentives and drivers (Bene and Tewfik, 2001; Gelcich et al., 2005). A better 

understanding of the relative importance of driving factors and motivations per individual would 

allow insights into how economic strategies differ both within and between fisheries.  

Modelling fishermen with an assumption that they act with perfect economic rationality, i.e. always 

behaving in a way that maximises their income, also implies that they are able to consider all 

possible options and outcomes and weigh them up before making a decision (i.e. perfect rationality) 
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(Holland, 2008). In practice, fishers may use simple ‘rules of thumb’ to decide where to fish, because 

the time it would take to rationally decide between all possible fishing options would be 

uneconomical, and they may be better off using a simple rule or ‘hunch’ to maximise the available 

fishing time, rather than computing the perfect choice (Gatewood, 1983; Holland, 2008; Tversky and 

Kahneman, 1974). Fishers also tend to be risk averse and habitual, and are likely to choose the same 

location to fish out of habit and inertia to change (Eggert and Martinsson, 2004). 

 

1.6. Individual-based modelling of fishing behaviour 

Predicting how a system will respond to change (e.g. management in a fishery) is often difficult, due 

to both a lack of historical data, and the assumption that empirical relationships derived from 

current conditions will remain the same under future scenarios (Stillman, 2008). A review of 26 

papers by Girardin et al., (2016) demonstrated that expected revenue, tradition, and the presence of 

other vessels positively influenced effort allocation, but choices associated with large costs were 

avoided (i.e. fishers were risk averse, preferring to maintain a stable income). Nevertheless, the 

majority of studies investigating fishing behaviour were based on simple, linear, data-driven models 

(e.g. random utility models), which don’t capture complex decision processes, and thus have limited 

predictive capacity in novel scenarios (Girardin et al., 2016). Individual-based modelling provides a 

research paradigm that is more flexible and predictive than more statistical models which are only 

really valid for the environmental conditions under which they were created, and thus have limited 

predictive capabilities (Evans et al., 2013; Girardin et al., 2016; Grimm and Railsback, 2005). IBMs 

view systems as having properties that arise from the behavioural traits and interactions of its 

constituent individuals (DeAngelis and Mooij, 2005). In an IBM of foraging behaviour, individual 

behavioural rules can be constructed to maximise individual fitness, and then from these individual 

behaviours the population wide patterns emerge. Individual fitness-maximising behavioural 

decisions should theoretically stay the same under novel environmental conditions, which means 

that individuals in an IBM can be expected to respond in a similar way to individuals in real life 

(Grimm and Railsback, 2005). 

In a fishery, it is difficult to quantitatively characterise all of the variables that can influence 

individuals’ motivations and behaviours (e.g., such as gut feeling or intuition), which can be termed 

‘black box’ variables (van Putten et al., 2012). Nevertheless, it is more straightforward to account for 

a range of deviations from foraging or economic theory in IBMs, as individuals can operate according 

to more realistic representations of the decision making process, which can also vary between 

individuals or subsets of the system. IBMs could also give more accurate predictions of the costs of 
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fishing, because fishing activity is modelled more explicitly, so individual costs can be calculated 

according to individual effort and power, rather than statistically relating costs to effort (Bastardie et 

al., 2014). IBMs could help address some of the knowledge gaps in our understanding of fisher 

behaviour, and allow us to better predict the environmental and economic consequences of 

management by more realistically accounting for the behavioural response of, and impact on, fishers 

(Burgess et al., 2017). 

IBMs have been used widely in modelling animal populations and predicting their responses to 

management measures (Durell et al., 2006; Goss-custard et al., 2008; Stillman and Goss-Custard, 

2010; Toral et al., 2012; West et al., 2007), often offering realistic predictions that are verified with 

subsequent direct observational data (Toral et al., 2012). In fisheries, IBMs have been used to show 

how Individual Transferable Quotas (ITQs) can change spatial patterns of fishing and bycatch levels 

(Little et al., 2009; Poos et al., 2010; Toft et al., 2011), how fisheries management can affect other 

sectors such as shipping (McDonald et al., 2008), the importance of understanding compliance 

(Cabral et al., 2010), the potential consequences of marine reserve placement (Dowling et al., 2012; 

Moustakas et al., 2006), the energy efficiency of vessels (Bastardie et al., 2010a), and effects of 

effort displacement on both stock dynamics and economic performance (Bastardie et al., 2014). 

When considering spatial management measures such as area closures, one advantage over 

statistical models is that in an IBM effort does not have to be proportionally redistributed (Dowling 

et al., 2012). For example, vessels may concentrate along the edges of closed areas in response to an 

actual or perceived ‘spill-over’ effect (Goñi et al., 2008), known as ‘fishing the line’ (Kellner et al., 

2007). 

In current fishery IBMs, profit maximising behaviour is generally assumed, with individuals behaving 

largely according to optimal foraging theory, in that they forage in patches with the highest expected 

return. Alternative processes and mechanisms are generally not considered (i.e. one model structure 

is used, rather than multiple possible structures being tested) (Grimm et al., 2005); there may be 

different ways to represent processes in a model, some of which might perform better than others. 

For models to be applied directly to management planning, there must be confidence in the 

reliability of the model, which means there must be a thorough validation process. Validation of 

fisheries IBMs has previously been somewhat qualitative, or based on relatively few coarse scale 

data points (e.g. Dowling et al., 2012; Little et al., 2009), perhaps due to the paucity of appropriate 

data for validation. A more fine scale validation of the behaviours of vessels in fishery IBMs would 

lead to a greater confidence in applied model predictions. In addition, comparing different submodel 

structures of the same system (e.g. choosing where to fish at random compared to where the 
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highest catch rates are) would increase confidence that not only the outputs of the model are 

realistic, but that the underlying processes driving the patterns are realistic (Grimm et al., 2005). 

IBMs are often validated using pattern oriented modelling (POM; Grimm et al., 1996, 2005), in which 

the model outputs are compared against a series of characteristic patterns observed at different 

levels in the system. If a model can simultaneously recreate multiple emergent patterns in a system, 

one can assume that the behavioural mechanisms of individuals in the model should be somewhat 

realistic (Grimm et al., 2005). Nevertheless, POM can be considered somewhat qualitative. 

Approximate Bayesian Computation (ABC) has been demonstrated as an alternative, more 

quantitative method of model validation (van der Vaart et al., 2015, 2016). In ABC, models can be 

simultaneously evaluated against numerous values, to either facilitate parameter calibration, or for 

model selection (van der Vaart et al., 2015). A more detailed discussion of IBM validation and the 

ABC process is presented in Chapter 6. 

 

1.7. Individual-based modelling and fisher engagement / participation 

Models are an important tool for fisheries scientists, as in situ experiments to see how fisheries 

would respond to novel management scenarios are neither feasible nor ethical. Even so, models can 

be complex, so it is important to be able to effectively communicate them to stakeholders and end 

users, such as fishers, managers, and decision-makers, to facilitate acceptance and appropriate 

application of the outputs (Cartwright et al., 2016). Fishers have been shown to have a lack of trust 

in the scientific evidence that currently sets controls and policy (Rees et al., 2013; Röckmann et al., 

2012). They can feel that data collected by scientists does not sufficiently reflect their fishery, 

leading to inappropriate conclusions (Bergmann et al. 2004), and can be sceptical of complex 

models, being overly critical of model uncertainty, or conversely (but equally problematically) overly 

trusting of the ‘headline’ results of a model (Cartwright et al., 2016). This can be further confounded 

by a bias to either trust or reject a model depending on how well it aligns with pre-conceived ideas 

of the system (Cartwright et al., 2016). The integration of public participation in science has been 

demonstrated to address some of the concerns surrounding credibility and uncertainty in fisheries 

(Voinov and Bousquet, 2010; Yates, 2014). It is increasingly acknowledged that better management 

decisions can be implemented when stakeholders are engaged in the decision making process, e.g. 

through participatory modelling (Gelcich et al., 2005; Mackinson et al., 2011; Voinov and Bousquet, 

2010). Attitudes, behaviour, and motivations can be influenced by the level of participation in the 

decision making process (Gelcich et al., 2009; Pita et al., 2010), and direct participation can increase 

support, interest and legitimacy (Mackinson et al., 2011; Röckmann et al., 2012). 



Chapter 1: Introduction 
 

42 
 

When communicating with non-scientist end users, there are several advantages of IBMs over 

phenomenological or statistical models, in particular: individuals are simulated, following simple 

behavioural rules, which is often easier to understand than the behaviour of entire populations; 

models can appear more realistic, in that they have real-world relevance, often being mapped to 

real systems, with complexity and heterogeneity included rather than being in simplified averaged 

forms; and finally user-friendly software packages such as NetLogo allow end users to easily interact 

with the model, and view simple visualisations (see Cartwright et al., 2016 for review). In addition, 

standardised documentation of IBMs has helped facilitate communication and critical scientific 

evaluation (Cartwright et al., 2016; Grimm et al., 2010). For example, the ‘ODD’ (Overview, Design 

concepts, and Details) protocol for describing IBMs provides a standardised format with which IBMs 

can be documented (Grimm et al., 2006, 2010). 

Participatory modelling could engage fishers in evaluating management strategies, provide a 

platform for them to influence management decisions using a scientific backing, and potentially 

increase their support for the most appropriate management strategy. It could also facilitate 

discussion, and increase scientists’ understanding of fisher behaviours and driving motivations, their 

understanding of management, and their preferences concerning compromises. Engaging fishers in 

the modelling process can also provide useful information and data for the model development. 

When parameterising a bird foraging model such as MORPH (Stillman, 2008), extensive effort was 

required to document model parameters, such as energetic requirements, capabilities, feeding 

rates, etc. In a fishery, it is possible to simply ask the foragers about these requirements. Collecting 

data directly from fishermen, which can be termed fishers’ knowledge (FK) or local knowledge (LK), 

can provide useful and reliable information on a fishery system (Leite and Gasalla, 2013; O’Donnell 

et al., 2012; Shepperson et al., 2014; Teixeira et al., 2013). 

 

1.8. Trawl fisheries are economically important, but can be controversial. 

Trawl fisheries (here referring to all bottom towed gear, e.g. beam trawl, otter trawl, towed dredges, 

and hydraulic dredges) are important for global food production, producing around 16 million tons 

of food annually. But, like all forms of fishing (and indeed all food production), there is an 

environmental impact (Kaiser et al., 2016). In trawl fisheries heavy gear is in direct contact with the 

seabed and so it can physically disturb and cause substantial damage to its associated flora and 

fauna (Eigaard et al., 2015; Kaiser et al., 2006, 2016). This has led to a negative portrayal in the 

media in recent years, particularly with scallop dredging, including news articles and a high profile 
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television series by a celebrity chef (McKie, 2014; Monbiot, 2015; Renton, 2013; www.fishfight.net). 

Nevertheless, considering their importance both economically and for food security, it is important 

that we find appropriate management solutions that achieve a balance between fisheries production 

and environmental protection (Kaiser et al., 2016). 

In 2015, UK vessels landed 708,000 tonnes of sea fish, including shellfish, into the UK and abroad, 

with a value of £775 million; shellfish accounted for 36% of this value (Marine Management 

Organisation, 2015). In the UK, scallops are mainly fished using bottom towed gear such as dredges 

and trawls, which can be controversial gears, but the fishery is of considerable importance to the UK 

economy; scallops landed by UK vessels into the UK totalled £64 million in 2015, making it the 

second most valuable fishery to the UK fleet, behind the Nephrops fishery at £81 million (Marine 

Management Organisation, 2015). Management should therefore aim to reduce the environmental 

impacts and balance these against the economic impacts. A substantial portion of the catch came 

from the Irish Sea, around the Isle of Man (Figure 1.2).  

 

Figure 1.2. Quantity of Scallops landed by UK vessels from each ICES rectangle in 2015 (Marine 
Management Organisation, 2015) 

 

Scallop fisheries are subject to relatively little active management in the UK, although there are 

effort restriction (e.g. seasonal closures, curfews, limits to the number of dredges permitted, 

restrictive licencing), gear restrictions, and a minimum landings size, the details of which vary around 

the UK. Understanding the fishing footprint is a fundamental piece of information required to 

manage any fishery. It is especially important with potentially more damaging forms of fishing such 

as scallop dredging, particularly as the impact varies according to the habitat in which it occurs 

(Kaiser et al., 2006). Scallops are found in a range of habitats, from sheltered shallow inshore areas, 

to deeper seas, to areas of high natural disturbance from waves or tidal currents; areas of high 

natural disturbance are less likely to be significantly impacted by dredging than areas of low natural 
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disturbance (Kaiser et al., 2006). It is thus important to have a good understanding of what habitats 

and environments scallop dredging occurs in to fully understand the impacts (Kaiser et al., 2016). In 

addition, the environmental consequences of displacing a more damaging form of fishing from a 

more resilient to a more sensitive habitat may be higher, making it even more important to 

understand the potential displacement of scallop dredging effort following management. 

In Europe, vessels over 12m in length must carry a vessel monitoring system (VMS) which transmits 

location data that can be used to monitor and analysis fishing activity (EC, 2009). VMS data provides 

a spatial location, heading and speed of individually identified vessels at roughly 2 hourly temporal 

frequency. It does not provide information on the activity of a vessel when a poll is recorded (i.e. if it 

is fishing or not), but this can be inferred from the speed of the vessel (Lee et al., 2010). Vessels also 

submit logbook records of their catches, which can be linked to the VMS data using vessel ID and 

date, resulting in spatially resolved catch records. Using VMS and logbook data to investigate fishing 

activity has become a field of its own (Bastardie et al., 2010b; Hintzen et al., 2012; Lambert et al., 

2012; Lee et al., 2010; Murray et al., 2013). Nevertheless, VMS data is commercially sensitive, and as 

a result confidentiality issues have threatened the utility of such data for scientific research (Hinz et 

al., 2013). The data is available at relatively low temporal resolutions (2 hourly polls) which may fail 

to accurately represent fishing activity at the scale required for fisheries management, particularly 

with fisheries in which vessels make short tows and tight turns, such as with scallop dredging 

(Lambert et al., 2012). Automatic identification system (AIS) data could be a higher resolution 

alternative to VMS data, but there are concerns with data coverage (Mccauley et al., 2016; Natale et 

al., 2015; Russo et al., 2016). Despite the limitations of VMS data, it is increasingly commonly used to 

investigate fishing footprints and is becoming a vital tool in the fisheries scientists’ toolbox. A more 

in-depth discussion of the benefits and drawbacks of the two data sources is provided in Chapter 4. 

In the Isle of Man, all vessels targeting scallops must carry a VMS regardless of their size, and they 

are also required to submit a logbook record of their landings. This means that there is complete 

data coverage of fishing activity within the 12 nautical mile (nm) Isle of Man territorial Sea. In 

addition, it is a relatively small, simple fishery, with vessels targeting a stationary resource, and 

making mainly single day trips. This makes it an ideal candidate system to develop a simple, 

comprehensively validated model, to develop our understanding of predicting fishing behaviour, and 

to create a flexible modelling framework that could be extended to more complex fisheries. 
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1.9. PhD Aims and Objectives 

The overall aim of this PhD was to create an IBM of fishing activity in the Isle of Man scallop fishery, 

capable of predicting the displacement of effort following spatial closures. The aim was to 

parameterise the IBM using vessel monitoring system and logbook data, as well as questionnaire 

interview data collected from fishermen to ensure that realistic parameters were input to the 

model. Importantly, having complete VMS and logbook data coverage of the fishery meant that the 

model could be comprehensively validated to provide confidence in the model predictions. As VMS 

data is subject to some caveats, such as relatively low temporal resolution, a comparison was also 

made between lower resolution VMS and higher resolution AIS data. 

The specific objectives were: 

 To characterise scallop fishing activity in the Isle of Man scallop fishery, using vessel 

monitoring system and logbook data. 

 To further our understanding of scallop fishing behaviour in the Isle of Man through 

questionnaire interviews 

o How do fishers decide when to fish? 

o How do fishers decide where to fish? 

o Do all fishers make these decisions in the same way? 

 To compare fishing activity derived from both VMS and AIS data, exploring the idea that AIS 

could offer a higher resolution alternative to VMS data. 

 To develop an individual-based model of scallop fishing activity in the Isle of Man, 

parameterised with interview data collected from fishers. 

 To validate the IBM using VMS and logbook data to see if the IBM can predict patterns seen 

in various environmental and economic values (e.g. scallop landings, spatial distribution of 

effort, costs to fishermen). 

 To compare different submodels of fishing behavioural rules, to determine which gives the 

most realistic representation of fishing activity. 

 To create a simulation tool that can predict the response of fishermen to closed areas in the 

Isle of Man scallop fishery outlining the potential impacts on the fishing footprint and 

fisheries landings. 
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1.10. The Novel Contribution to Science 

The novel contribution to science constitutes:  

 Developing a novel management tool for a commercial scallop species in the Isle of Man, 

that focussed on multiple objectives (environmental and economic). 

 Developing an IBM in a relatively simple, effectively closed system, which has complete data 

coverage of fishing activity allowing comprehensive model validation at a relatively fine 

scale.  

 Demonstrating the use of a choice based questionnaire survey technique (conjoint analysis) 

to understand more about what influences fishers’ patch choice behaviour, and 

characterising fishers into different ‘strategies’ using this data (Shepperson et al., 2016). 

 Developing an IBM that allowed us to test out multiple different behavioural structures to 

determine the most realistic behavioural rules to use when predicting the spatial 

displacement of effort following management. 

 The first application of Approximate Bayesian Computation to validate a fisheries IBM. 

 Providing a comparison of two types of vessel tracking data, vessel monitoring system and 

automatic identification system data, to highlight the advantages and drawbacks of each 

type (Shepperson et al., in submission).  
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2.1. Abstract 

 

The predictability of fisher behaviour is an area of considerable uncertainty in fisheries management 

models. Fisher-derived data could underpin a better understanding, and more realistic predictions, 

of fishing behaviour. 

Face to face interviews and a choice-based survey were conducted with scallop fishers to collect 

foraging parameters that could inform a model of fishing activity, and to better understand patch 

choice behaviour. Importantly, survey data were validated against vessel monitoring system and 

logbook data where possible, demonstrating a good level of accuracy. Environmental parameters 

central to patch choice were determined (e.g. wave height, distance to port), and three strategies of 

patch choice behaviour were identified, termed quantity maximiser, quality maximiser, and efficient 

fisher. Individuals’ VMS and logbook data further confirmed and explained these behavioural 

patterns. 

This approach provided reliable, highly relevant data for the parameterisation of a fisheries 

behavioural model, which could lead to more robust and realistic predictive fisheries models. 
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2.2. Introduction 

2.2.1. We need trusted predictive models for effective fisheries 

management 

Hunter-gatherers, such as fishers, typically lack trust in the scientific evidence that underpins 

management controls and policy. This phenomenon is termed the ‘credibility crisis’ (Röckmann et 

al., 2012). Fishers often express the opinion that data collected by scientists do not sufficiently 

reflect the status of their fishery, leading to inappropriate management conclusions (Bergmann et 

al., 2004). The integration of public participation in science has been demonstrated to address some 

of the concerns surrounding credibility and uncertainty in fisheries (Voinov and Bousquet, 2010; 

Yates, 2014). In particular, participatory modelling can alleviate some of the tensions between 

scientists and fishers, through addressing questions surrounding the credibility and legitimacy of 

scientific advice based on ‘black box’ models (Röckmann et al., 2012; Thébaud et al., 2014). 

Quantitative and qualitative scientific models are the primary tool for generating advice for the 

purpose of natural resource management (Röckmann et al., 2012). Accordingly, there is a need to 

adopt approaches that assist in the development of more realistic, credible and trusted predictive 

management models, capable of predicting both ecological and economic impacts of novel future 

scenarios (Fulton et al., 2011; Reeves et al., 2009; Wilen et al., 2002).  

 

2.2.2. Predictive models require a better understanding of fishing 

behaviour 

Whilst the long term sustainability objectives of fishers and scientists are aligned (Kraak et al., 2010), 

in the short term fishers may be working to different priorities that operate under different spatial 

and time scales (Röckmann et al., 2012). Management measures that lead to short term reductions 

in fishing effort typically result in short term economic losses for some fishers. It is necessary to 

understand fishers’ tolerance and capacity to cope with change to be able to understand which 

measures would engender support compared to those that are unacceptable. We need to 

understand how fishers will respond to management in terms of the spatial and temporal 

displacement of effort. If we can understand and predict the scope for fishers’ compensatory activity 

following management restrictions, we can calculate realistic economic impacts of management, 

and reach more agreeable management solutions. 

Nevertheless, the predictability of fishing behaviour is an area of considerable uncertainty in 

fisheries management (Fulton et al., 2011). Human decision-making drives spatial patterns of fishing 
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effort (Hilborn, 2007; Plagányi et al., 2014). We must understand what underlies these fishing 

decisions, regarding where and when to fish, if we are to understand how fishing behaviour 

underpins the spatial and temporal patterns in fishing activity that arise from external factors. 

Hilborn (2007) stated that “managing fisheries is managing people” and so effective management 

requires an “understanding of the motivation of fishermen and designing a management regime that 

aligns societal objectives with the incentives provided to fishermen”. This notion has been expressed 

and reiterated by many fishery scientists over the decades (Bucaram et al., 2013; Hallwass et al., 

2013; Wilen, 2006, 1979), yet a generation of ‘command and control’ fishing policies, where top 

down legislative measures prescribe where and when fishermen can fish, has somewhat failed to 

take account of the societal and economic dimensions of fisheries (Bucaram and Hearn, 2014; 

Bucaram et al., 2013; Wilen, 2006). Environmental policies are generally developed centrally, based 

on the assumption that resource users will respond homogenously to management actions (Gelcich 

et al., 2005). Whilst fishers’ responses to management options may be deterministic, responses are 

likely to vary between groups and among individuals which necessitates a thorough understanding 

of the system to make realistic predictions about the effectiveness of management (Gelcich et al., 

2005).  

 

2.2.3. Individual-based models could work from a behavioural perspective, 

but are data intensive 

Individual-based models (IBMs) are considered better for predicting individual responses to novel 

conditions compared to numerical modelling, as individuals can respond to experienced conditions 

to maximise an objective function (such as fitness) (Grimm and Railsback, 2005; Railsback, 2001). In 

a fishery, the objective function could be to maximise the economic return (equivalent to fitness), 

but it could also be influenced by a range of social and environmental variables (Abernethy et al., 

2007).  Despite the demonstrated utility of theoretical individual-based models (Cabral et al., 2010; 

Ruiz-Pérez et al., 2011; Soulié and Thébaud, 2006), there are relatively few applications of IBMs to 

real life fisheries (see Bastardie et al., 2014, 2010; Dowling et al., 2012), perhaps due to the limited 

understanding of fisher behaviour. Vessel monitoring system (VMS) and logbook data (which when 

linked provide spatially resolved catch records) are increasingly used to investigate fishing behaviour 

(Lee et al., 2010; Murray et al., 2011).  While VMS data can offer valuable insights into where and 

when fishing occurs, it does not impart much insight into the decision making process that resulted 

in the observed patterns of fishing effort. Fishers’ data can provide insights into the decision making 

at a finer scale than can be inferred from VMS data alone. For example, by collecting data directly 
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from fishers through surveys, it could be possible to identify the objective function of fishers, and 

thereby determine to what extent profit maximisation is actually driving fishing behaviour in relation 

to other drivers (Abernethy et al., 2007; Christensen and Raakjær, 2006). This information could 

inform the behavioural parameters used to develop an IBM of fishing behaviour and thereby predict 

more realistic and adaptive behavioural patterns in the fishery. 

 

2.2.4. Participatory modelling can make models more transparent and 

realistic, increasing trust 

It is increasingly acknowledged that better management decisions can be implemented when 

stakeholders are engaged in the decision making process, e.g. through participatory modelling 

(Gelcich et al., 2008; Mackinson 2011; Voinov and Bousquet, 2010). Stakeholders can be involved in; 

1) framing the problem and purpose of the model, 2) using and evaluating the model (indirect 

participation), and 3) directly contributing to model construction (direct participation). Direct 

participation can increase support, interest and legitimacy (Mackinson and Wilson, 2014; Röckmann 

et al., 2012). The present study used questionnaires and a conjoint analysis technique to collect data 

directly from fishers to better understand fishing behaviour, in a first step towards a participatory 

modelling approach.  

Conjoint analysis and related choice modelling methods are used in market research, to evaluate 

respondent preferences for a number of products with varying features (Green and Srinivasan, 

1990). Conjoint analysis quantifies how an individual values a given product with a number of 

specific features or attributes, so determining which of the features of the product are preferred 

(Alriksson and Öberg, 2008). Rather than directly asking respondents what they prefer in a product 

or what influences their decision, a conjoint analysis simulates a more realistic choice context; i.e. 

respondents cannot simply state that all attributes are important, they are forced to rank them 

through making trade-offs between products (Orme, 2010). For example, a fisher is likely to state 

that the sea state, distance to port, and expected catch rate are all crucial in deciding where to fish. 

Nevertheless, this information would not be very meaningful when trying to understand the choices 

a fisherman makes when deciding where to fish (e.g. what is the trade-off between sea state [risk] 

and catch rate?).  Whilst conjoint analysis has been used widely in marketing, healthcare, quality 

management and transportation studies, it has been used less often in an environmental context, 

although it is increasing in use (see Alriksson and Öberg, 2008 for review). In fisheries, conjoint 

analyses have been used to investigate the importance of fisheries management objectives (Wattage 

et al., 2005), and perceived impacts of regulatory obligations (Hadjimichael et al., 2013). We propose 
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that a conjoint analysis may also be a useful technique to elicit behavioural data from fishers that 

could be used to determine response thresholds within a model context. 

 

2.2.5. Aims 

The present study sought to determine whether it was possible to elicit realistic and reliable 

behavioural data from scallop fishers, using a questionnaire survey and conjoint analysis. The 

specific objectives were to i) further our understanding of fishing behaviours, focussing on the 

limiting factors and relationships between fishing behavioural parameters and fisher/vessel 

characteristics; ii) demonstrate the value of conjoint analysis for understanding patch choice 

behaviour; iii) characterise the behavioural characteristics of fishers, highlighting heterogeneity, and 

iv) provide evidence for the validity of such survey data. 
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2.3. Methods 

2.3.1. Conjoint Analysis Design 

A conjoint analysis was applied by conceptualising a fishing patch as a commercial product for 

respondents to choose between, with variable attributes (Table 2.1).  Fishers were presented with a 

choice of fishing patches with different attribute levels and were asked to select the patch in which 

they would fish preferentially. Different levels of an attribute refer to the actual details of a product, 

e.g. if one of the patch attributes is sea state, the levels could be calm, moderate, or rough. The 

survey was designed to elicit a fisher’s preferences for particular patch conditions, in terms of where 

they would rather fish using their current vessel. Understanding fishers’ preferences would identify 

important attributes that influence fishers’ decisions on where to fish, and the variation among 

individual fishers. An adaptive choice based conjoint (ACBC) survey was constructed and fielded in 

Sawtooth Software SSI Web v.8.2.4. The ACBC survey design was selected as the most appropriate as 

it is capable of handling small sample sizes, and a larger number of attributes and levels. In addition, 

the survey is adaptive, in that the software automatically and continually tailors the choices 

presented to the respondent according to their previous answers, resulting in a shorter interview 

with a greater level of respondent engagement (Sawtooth Software Inc., 2014). 

Attributes and levels were chosen through informal discussion with relevant experts, including a 

researcher familiar with the conjoint analysis technique, scientists at the Centre for Environment, 

Fisheries, and Aquaculture Science (Cefas) and Bangor University, and a well-respected fisher within 

the scallop industry. A total of six attributes were used in this study, with a combined total of 26 

levels between them. The levels for each attribute were selected such that they were relevant to 

inshore scallop fisheries (Table 2.1). Patches were attributed with an expected tow quality, i.e. how 

many scallops the fisher could expect to catch. However, it was necessary to standardise this catch 

rate so that it was relevant to different sized vessels. Vessels fish with different numbers of dredges 

depending on their size, therefore catch rates can be standardised as scallop weight per dredge, per 

tow hour. However, providing a catch rate of scallop weight per dredge hour in the conjoint analysis 

would require a respondent to repeatedly upscale this up to the catch rate relevant to their vessel to 

evaluate the patch, which would add substantially to the complexity of the survey. It was therefore 

decided to class expected tow quality as good, average or poor tows in the patch attributes, and to 

ask fishers to define what they consider as a good, average or poor tow prior to the survey. 
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Table 2.1. Attributes and their levels used to differentiate between fishing patches in the conjoint 
analysis. 

Attribute Levels Explanation 

Sea State Calm, slight, moderate, 

rough, very rough, high 

This refers to the sea conditions of a patch, derived 

from a combination of the wave height and wind 

speed.  

Distance to Port 5, 10, 20, 30, 50, 80 The distance of a fishing patch from a vessel’s port 

location, in nautical miles. 

Tow Quality Low, average, high The catch per unit effort of a fishing patch, i.e. how 

many bags of scallops a fisher would expect to catch 

in a one hour tow. 

Meat Quality Low (12%), average 

(16%), high (20%) 

The yield of the meat inside of the scallop. 

Roe Status Roe empty, roe full The reproductive status of the scallop. Roe refers to 

the gonads of the scallop; a scallop with a full roe is 

more valuable than a scallop with empty roe. 

Cobble 1%, 10%, 20%, 30%, 

50%, 80% 

This refers to the ground type, and how much stone 

the dredges pick up. A higher proportion of rocks in 

the dredges would result in longer sorting times, 

and potentially more damage to the gear and the 

catch. 

 

In a conjoint analysis, each of the attribute levels has a particular value for the respondent, 

influencing how much they like the product; termed the utility. In this analysis, instead of products, 

there were fishing patches that were described by attributes such as sea state or distance to port. 

Within an attribute (e.g. sea state) there were different levels (e.g. rough, moderate, calm). 

Following the ACBC survey, the importance of each attribute, and the utility of each level was 

calculated using Sawtooth Software. The importance of an attribute relates to which attribute had 

the biggest influence on a respondent’s patch choice, and the utility of each level relates to how 

much positive or negative influence that level has on the respondent’s patch choice. 

 

2.3.2. The Survey 

The conjoint survey consisted of three different sections; demographic data collection, a screening 

section, and the choice task. Fishers were first presented with possible fishing patches in what is 

called the screening section; fishers simply indicated if it was possible or not possible that they 

would fish in each of the fishing patches, based on the varying attribute levels shown. This identified 

a set of possible fishing patches that fishers were later asked to choose between. During this 
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screening section, the software continually analysed respondent answers for non-compensatory 

screening rules, where a respondent systematically avoided an attribute level (e.g. high sea state). It 

then automatically asked the respondent if the level was completely unacceptable, and could 

remove it from subsequent questions. The software also screened for patch conditions that were an 

absolute requirement. For example, a respondent may only select patches that are less than 30 

miles away. When presented with possible unacceptable or must-have options, a ‘none of the 

above’ option was included to reduce the chance of marking simply undesirable levels as completely 

unacceptable. This adaptive nature of the ACBC means that the questions gradually become more 

relevant to each individual, allowing a broader scope to the survey as a greater range of attributes 

can be tested initially. This approach is also more engaging for participants, which results in higher 

quality data (Sawtooth Software Inc., 2014). 

In the choice task section patches that were highlighted as possible fishing patches during the 

previous screening section were then presented in groups of three. Respondents chose the fishing 

patch that they preferred the most out of the three presented. The preferred patch from each group 

of three was then presented in the next round, until through an iterative process of elimination, 

respondents finally eliminated all but their most preferred fishing patch. The aim of the survey was 

not specifically to reach this preferred patch concept, but to analyse the trade-off decisions made by 

the respondent (which become increasingly difficult) as the patches become more similar in their 

attributes. 

 

2.3.3. Semi-structured Questionnaire Survey Design 

A semi-structured questionnaire was conducted alongside the conjoint analysis, to elicit further 

behavioural parameters and vessel characteristics from the fishers. The questionnaire was also used 

to gain input on the model design in relation to management scenarios. The questionnaire consisted 

of five sections: (1) vessel characteristics such as ownership, size, catching power, and crew details; 

(2) limiting factors and extreme restrictions to fishing, such as weather conditions, maximum limiting 

distances, and limits to the time spent at sea; (3) behavioural parameters related to average fishing 

conditions, such as the normal time spent at sea; (4) economic requirements of the vessel, such as a 

minimum viable catch, and the costs of fishing; and (5) the ways in which management actions have 

affected fishing activity, and opinions in relation to management and the use of an IBM simulation 

tool.  
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2.3.4. Fielding the Survey 

Individual fishers on the Isle of Man were contacted by email and then followed up with a phone call 

to explain more about the project and to arrange a time to meet face to face to complete the 

interview. The majority of interviews took place on fishing vessels or at the office of the producer 

organisation. The whole survey could be completed in 45 minutes, of which the conjoint analysis 

took from 7 to 25 minutes. Nevertheless, many fishers digressed additional useful contextual 

information, resulting in longer survey times. Whilst survey time could have been minimised, the 

additional discussion was viewed as important for building relationships of trust. This data collection 

was subject to Bangor University’s ethics approval process. 

 

2.3.5. Data Analysis 

A conjoint utility indicates a fisher’s preference for each level within each attribute. The conjoint 

utilities were calculated with a built-in Sawtooth software Hierarchical Bayes (HB) tool, to determine 

the utility score for each level of each attribute for each individual respondent (Sawtooth Software 

Inc., 2014). The HB tool is used to overcome the problem of sparse information, as each respondent 

only provides a small amount of information on a proportion of the hundreds of possible patch 

combinations within the survey. Instead of estimating each respondent’s utilities individually, the HB 

algorithm estimates the difference between each respondent’s individual data and average utilities 

for the entire sample. It then adjusts each individual’s utilities, depending on the variability in the 

sample average; the more variance in the sample averages, the more the algorithm uses the 

individual’s data (Sawtooth Software Inc., 2009). The importance of each attribute is then calculated 

from the scale of difference in utilities. For a simple example of how the importance is calculated, 

consider the following respondent’s response to patch conditions: 

 

Sea State Utility Distance from Port Utility  

Rough 0 10 miles away 60  

Moderate 20 20 miles away 20  

Calm 70 30 miles away 10  

Range of utilities 70  50  
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The importance of each attribute (sea state and distance to port) as a percentage is calculated as: 

     Importance of attribute = range of utilities for that attribute / sum of ranges across all attributes 

Therefore in this example: 

Importance of sea state = (70-0) / (70+50) = 0.58 

Importance of distance to port = (60-10) / (70+50) = 0.42  

Sea state would be considered more important than distance from port for patch choice in this case. 

It is also possible to predict how fishers might choose between patches. This respondent should 

prefer a calm patch at a distance of 30 miles away from port (total utility 80) over a moderate patch 

at a distance of 20 miles away from port (total utility 40). The same respondent should be indifferent 

to a choice between a moderate patch 10 miles away, and a calm patch 30 miles away (both total 

utility of 80). 

A principal components analysis (PCA) was used to identify the similarity among the different 

strategies adopted by each individual fisher in relation to patch choice. The strategy of an individual 

fisher was described by the importance scores for each patch attribute in the conjoint analysis. As 

there were six attributes, each fisher’s strategy was described by their importance scores for each of 

the six attributes. The first three principal components accounted for 88% of the variance in the 

importance scores. The data were standardised and then a similarity matrix was calculated from the 

conjoint importance scores for all fishers, using Euclidean Distance. A cluster analysis was then used 

to identify whether fishers could be grouped by the similarity in their responses in the conjoint 

analysis, i.e. fishers who placed similar importance on each patch attribute. 

Having identified different groupings of fishers based on the cluster analysis of the conjoint 

importance scores, the analysis then explored whether the similarities in strategy within each 

grouping of fishers were supported by each individual’s corresponding questionnaire responses, and 

in the trips and catches recorded in those fishers’ VMS and logbook data. A Kruskal-Wallis test, with 

Dunn’s post hoc testing adjusted for ties, was used to compare the questionnaire survey responses 

among fishers, with the cluster set as the factor (Kruskal and Wallis, 1952). General or generalised 

linear models (GLMs, Nelder and Wedderburn, 1972) were used to explore differences in logbook 

variables recorded by vessels in each of the behavioural groupings, with the logbook variable as the 

response, and the cluster as the explanatory factor (see Table 2.4 for list of significant logbook 

variables). Akaike’s Information Criterion (AIC) was used to select the best model fit between a 

Gaussian or Gamma family for each variable tested (Akaike, 1973).  
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Relating trip characteristics to the clusters provided context within which to understand more about 

each of the different behavioural strategies adopted by fishers. E.g. If fishers that placed the highest 

importance on roe status (i.e. valuable product) were also the fishers who had the highest value per 

unit fuel, it could be concluded that these fishers were successfully targeting a high quality product. 

This comparison of the conjoint analysis and questionnaire data with the individuals’ VMS and 

logbook data allowed verification of the questionnaire responses, as well as the behavioural patterns 

identified in the conjoint analysis. It was possible to determine to what extent the behavioural 

strategies identified in the cluster analysis were reflected in the catch records of those fishers. In 

addition, the accuracy of the behavioural parameters provided during the questionnaire (e.g. 

minimum viable catch, distance travelled) was verified by comparing them to those derived from 

logbook data. The PCA and cluster analysis were performed in PRIMER (v.6) (Clarke and Gorley, 

2006), all other statistical analyses were performed in R Version 3.1.2 (R Core Team, 2016). 
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2.4. Results 

A total of 14 conjoint analysis responses were available for analysis. The sample size represented 

56% of the 25 active IOM scallop vessels. Vessels ranged from 9.9m to 16m in length. Despite a slight 

skew towards larger vessels, the vessels surveyed were representative of the IOM fleet by length 

(Figure 2.1, Welch’s F(3, 29.85) = 0.73, p= 0.17). The questionnaire is thus representative of the 

inshore IOM fishery, but may not be representative of the wider UK fleet as it fails to account for the 

larger vessels, despite displaying a borderline non-significant difference in lengths (Welch’s F(3, 

32.216) = 1.88, p = 0.07). The maximum number of dredges used by each vessel ranged from 4 to 8 

per side. Respondents had a range of fishing experience, from 3 to 62 years fishing. Six fishers owned 

their own vessels, and had been vessel owners from 8 months to 31 years.  

 

Figure 2.1 Lengths of vessels fishing in ICES square 36E5 and 37E5 between 2008 and 2014. “UK” 
refers to all UK scallop vessels recorded in the logbook data, “IOM” refers to all Isle of Man scallop 
vessels in the logbook data, and “Questionnaire” refers to the population of IOM scallop vessels 
included in the questionnaire survey. 

 

2.4.1. Questionnaire responses provided foraging parameters relevant to 

parameterising a fisheries behavioural model 

Questionnaire behavioural response values (i.e. questions concerning fishing activity) were 

compared with the demographic variables and vessel characteristics to identify heterogeneity in 

behavioural and energetics rules. Responses were compared with vessel length and vessel capacity 

units (VCU, VCU = (length * beam) + (engine power (kW) * 0.45), Pascoe and Gréboval, 2003), to 

construct size based rules that could account for the variability in ability and requirements of 

different sized vessels in a model. VCU had a stronger correlation with many variables than vessel 

length, suggesting that VCU may be a better metric when defining different behaviours for different 
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categories of vessels (Appendix 1). Average number of crew, maximum number of dredges used, fuel 

use, what might be considered as good takings, storage space, and fishing costs for a day of fishing 

were all significantly correlated with VCU with R2 values all > 0.6 (Figure 2.2, Appendix 1). However, 

if the single point for a large vessel is removed the correlation coefficients fall to 0.79 for average 

crew, 0.80 for max dredges, 0.74 for fuel use, 0.58 for good takings, 0.53 for max bags stored, and 

the costs per day are no longer significantly correlated. Further data collection for larger vessels 

would provide more insight into these patterns. 

 

 

Figure 2.2: Pearson correlation between vessel characteristics collected from the questionnaire and 
the size of the vessel (VCU). Values on the y axis are presented as a scaled response for 
confidentiality. 

 

2.4.2. Conjoint analysis increased our understanding of fishing decisions 

that drive patch choice behaviour 

The conjoint analysis demonstrated that sea state was the most important attribute that influenced 

the choice of fishing patch (Table 2.2). This was followed by distance to port, and then tow quality. 

Meat quality, roe status and cobble were relatively similar, but of lower importance.  
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Table 2.2. Importance of each patch attribute, and the utility score of each attribute level in the 
conjoint analysis. 

Attribute Attribute Importance Attribute Levels Utility Score 
 Mean Standard 

Deviation 
 Mean Standard 

Deviation 

Sea State 34.92 13.71 Calm 100.92 38.48 
Slight 92.47 40.83 
Moderate 75.66 37.50 
Rough -54.40 25.92 
Very rough -106.06 44.74 
High -108.60 44.08 

Distance to 
port 

24.43 8.09 5mn 59.58 15.43 
10nm 38.09 13.51 
20nm 24.58 13.67 
30nm 4.81 13.03 
50nm -34.03 24.57 
80nm -93.03 42.35 

Tow quality 17.00 6.82 Low -59.79 25.16 
Average 17.56 13.73 
High 42.22 17.26 

Cobble 8.14 2.36 1% 25.99 5.87 
10% 13.23 3.56 
20% 3.83 2.41 
30% -5.38 2.47 
50% -14.39 4.02 
80% -22.83 8.93 

Roe Status 7.44 6.14 Roe empty 22.32 18.42 
Roe full -22.32 18.42 

Meat quality 7.07 1.56 Low (12%) -14.27 6.21 
Average (16%) -13.86 3.09 
High (20%) 28.13 3.14 

 

The software calculated utility scores for each level of each attribute for each individual, depending 

on how they responded to the patches presented to them, e.g. rough sea state has a negative utility 

score therefore it was having a negative influence on a fisher’s likelihood of choosing a patch. 

Individual attribute level utility curves were derived from the results of the conjoint analysis (Figure 

2.3). Relatively consistent thresholds can be seen at the point on the graph where each attribute 

changes from a positive to a negative utility (Figure 2.3). For example, sea state changed from a 

positive to negative utility score between moderate and rough for all vessels. The percentage of 

cobble also had a relatively consistent threshold of around 25% cobble in the catch. A poor tow 

quality had a negative utility, while both a poor and an average meat quality had a negative utility. 

The threshold was less clear for the distance to port, which indicated that there was more 

heterogeneity among fishers for this attribute. Some fishers showed a negative utility score at 30nm 

away from port, whereas other fishers were tolerant of a distance up to 50nm. The response to roe 
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status was also heterogeneous, such that some fishers had a steep change in utility between empty 

roe and full roe, while other fishers had very little difference between the utility of empty and full 

roe. The latter may be driven by the specific market for which the scallops are destined.  

 

Figure 2.3. Individual fishers’ utility scores for each attribute in the patch choice conjoint analysis, 
completed during interviews with fishers from the Isle of Man scallop fishery. Note that the y-axes 
differ among the graphs. 

 

2.4.3. Heterogeneity in conjoint responses could be used to categorise 

fishers into different behavioural groups 

The PCA on the individual importance scores revealed that there were clearly demarcated individual 

strategies in relation to how patch choice is made (Figure 2.4). The first three principal components 

(PCs) accounted for 88% of the variance in the importance scores. PC1 was related to a higher 

importance of sea state and cobble, and a lower importance of distance to port, tow quality, meat 

yield, and roe status. PC2 was related to a higher importance of distance to port and roe status, and 

a lower importance of sea state, tow quality and meat yield. PC3 related to a higher importance of 

sea state, tow quality, meat yield and roe status, but a lower importance of distance to port and 



Chapter 2: Questionnaire and Conjoint Analysis 
 

77 
 

cobble. These multivariate patterns in importance scores provide insight into the different fishing 

strategies. 

 

Figure 2.4 Principal component biplot showing the multivariate differences in each individual’s 
perceived importance of each patch attribute in the conjoint analysis.  Dark blue triangles relate to 
fisherss later classified as cluster 1, green triangles relate to fishers in cluster 2, and light blue squares 
relate to fishers in cluster 3. 

 

The importance of sea state, cobble and distance to port distinguished cluster 1 (7 fishers) from the 

other two clusters, tow quality and meat yield distinguished cluster 2 (3 fishers), and roe status 

distinguished cluster 3 (4 fishers) from the other clusters  (Figure 2.5). The three clusters of fishers 

could be considered as having three different strategies for patch choice, such that each strategy 

was characterised by the discriminating attributes. 

 

Figure 2.5. Importance scores for each patch attribute in the conjoint analysis, grouped according to 
each strategy identified in the cluster analysis. The boxplots display the minimum, 1st quartile, 
median, 3rd quartile, and maximum values. 
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2.4.4. Questionnaire responses were used to link vessel characteristics to 

the behavioural clusters, to understand the types of vessels that 

formed each group 

Variables that showed a significant difference between the clusters are presented in Table 2.3. VCUs 

and vessel length differed significantly between clusters 2 and 3, with cluster 2 representing the 

largest vessels. There was no significant size difference between cluster 1 and 2, but all size based 

characteristics (VCU, length, tonnage) were lower in cluster 1, and VCU showed a trend towards 

significance (p=0.08). Size could therefore be considered as an indicator of different behavioural 

strategies. Fishers in cluster 2 were the largest vessels, travelled fastest, and used the most fuel. 

Fishers in cluster 1 were mid-sized vessels, although not significantly different to cluster 2. Fishers in 

cluster 3 were the smallest vessels, had the lowest VCU, and had the lowest economic requirements. 

 

Table 2.3. Kruskal-Wallis results to determine significant differences in vessel characteristics and 
behaviours recorded in the questionnaire interview, between behavioural strategy clusters identified 
in the conjoint analysis. Dunn’s post hoc testing reveals the differences between groups. Degrees of 
freedom vary where some fishers did not provide a response to a question. Dark green is statistically 
significant at p = 0.05, light green is significant at p=0.1. 

Questionnaire 

Variable 

   Median per cluster Dunn’s p value 

DF 

K-W Chi-

sq P 1 2 3 2-1 3-1 2-3 

VCU 2,11 6.44 0.04 147 215 129 0.08 0.247 0.011 

Vessel length 2,11 6.51 0.04 14.6 15 10.9 0.159 0.123 0.011 

Tonnage 2,7 6.79 0.03 27 40 14.8 0.083 0.311 0.01 

Average Crew 2,11 6.23 0.04 3 3 2 0.287 0.075 0.015 

Max Steaming1 2,11 6.05 0.048 8.5 9.5 8.1 0.018 0.863 0.045 

Fuel per fishing 

hour 

2,8 7.54 0.02 23 32 16 0.068 0.223 0.007 

Min Viable Gross2 2,11 7.31 0.026 900 1000 500 0.139 0.086 0.007 
1 Max steaming refers to the maximum speed that a vessel can steam at. 
2 Min Viable Gross refers to the minimum catch value per day that a fisher considers economically 
viable. 
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2.4.5. VMS and logbook data were linked to conjoint data to determine if 

modelled groupings related to differences in observed behaviours 

Cluster 2 fishers recorded trips that were characterised by significantly higher departure distances, 

landings, duration, fuel use, and profit compared to the fishers in the other clusters (Table 2.4). 

However these fishers also recorded the lowest landed value of scallops per unit of fuel used (Value 

per Unit Fuel - VPUF); they were thus catching the most, but most inefficiently. Cluster 1 fishers 

spent the least time at sea, travelled the least distance, but still achieved the highest catch per unit 

effort (CPUE), profit per unit effort (PPUE), and VPUF. Cluster 2 showed the highest profit, but 

cluster 1 showed the highest catch rates and value per unit effort, suggesting that cluster 1 fishers 

were operating in a more efficient way. Fishers in cluster 3 recorded similar (or higher) CPUE values 

than cluster 2, but they stayed at sea for significantly less time, and recorded lower profits, 

nevertheless at a significantly higher VPUF. Cluster 3 fishers display a low CPUE and landings, but at 

a high VPUF, suggesting they either obtained a better price for their landings or were run at lower 

costs. 

These patterns in logbook records matched some of the patterns identified in the conjoint analysis; 

for example cluster 2 fishers placed the highest importance on tow and meat quantity, and these 

were the fishers that caught the most. Cluster 3 fishers caught less and stayed at sea for less time, 

despite potentially having the ability to catch more (i.e. they achieved CPUE similar to cluster 2), but 

their VPUF was significantly higher, which could be consistent with their strategy identified in the 

conjoint analysis of targeting a higher quality product. Cluster 1 fishers recorded average catches, 

but at the highest CPUE, PPUE and VPUF. This is perhaps consistent with their conjoint analysis 

cluster, in which they placed a higher importance on the sea state and amount of cobble they would 

catch, i.e. they focussed more on attributes that influence the ease and efficiency of fishing rather 

than those directly affecting catches. 
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Table 2.4. GLM results to determine significant differences in logbook records between behavioural strategy clusters as identified in the conjoint analysis. 
Degrees of freedom vary where it was not possible to calculate a value in a logbook entry. PPUE = Profit per unit of effort. 

    

 

  

Mean value per 

cluster 2-1 3-1 3-2 

Logbook Variable DF F R-sq P 1 2 3 t p t p t p 

Departure Distance 2, 2167 1.47e5 0.99 <0.001 10.5 11.3 11.8 3.11 0.002 3.8 <0.001 1.0 0.30 

Scallop Value 2, 2157 8.76e13 1 <0.001 1187 1401 1118 7.24 <0.001 -2.0 0.041 -6.5 <0.001 

Hours at sea 2, 2170 295 0.21 <0.001 19.2 23.7 21.2 -23.9 <0.001 -9.0 <0.001 9.2 <0.001 

Fuel Used 2, 2170 3.8e12 1 <0.001 220 374 212 31.9 <0.001 -1.7 0.098 -19.8 <0.001 

CPUE (per tow1 hours) 2, 2170 5.5e8 1 <0.001 103.9 98.36 95.1 -2.19 0.029 -2.88 0.004 -0.99 0.32 

CPUE (per active2 hours) 2, 2158 6.6e8 1 <0.001 77.8 68.3 68.5 -5.76 <0.001 -4.61 <0.001 0.08 0.93 

Profit 2, 2157 13.04 0.01 <0.001 1046 1165 982 -4.25 <0.001 1.89 0.059 4.66 <0.001 

PPUE (per active hours) 2, 2157 27.47 0.02 <0.001 113.6 95.0 100.3 6.90 <0.001 4.08 <0.001 -1.38 0.168 

PPUE (per tow hours) 2, 2157 11.29 0.01 <0.001 150.4 133.4 138.3 4.43 <0.001 2.60 0.009 -0.91 0.37 

Wind speed 2, 2170 1.80e5 0.99 <0.001 18.5 19.2 18.8 1.68 0.093 0.503 0.62 -0.75 0.454 

VPUF 2, 2157 6.04e4 0.98 <0.001 5.63 3.76 5.34 -16.39 <0.001 -1.99 0.047 11.6 <0.001 

CPUE (per dredge hour) 2, 2170 2.16e6 0.99 <0.001 17.5 14.3 16.7 -8.31 <0.001 -1.58 0.114 4.93 <0.001 
1 tow hours = time spent towing 

2 active hours = time spent towing + time spent steaming 
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2.4.6. By comparing the differences in the data types, three behavioural 

strategies were identified 

By comparing the differences in the conjoint analysis, questionnaire responses, and logbook entries, 

three behavioural strategies could be identified; fishers with larger more powerful vessels that are 

most concerned with maximising the quantity and meat quality of catches (cluster 2 – quantity 

maximisers); efficient fishers with mid-sizes vessels who place a higher than average importance of 

sea state and amount of cobble when deciding where to fish (cluster 1 – efficient fishers); and 

smaller, less powerful, potentially less economically driven fishers, who place a higher than average 

importance of roe on scallops (cluster 3 – quality maximisers) (Table 2.5). 

Table 2.5. Description of behavioural strategies determined from the conjoint analysis, questionnaire 
responses, and VMS and logbook data. 

 Cluster 1 Cluster 2 Cluster 3 

Conjoint 
analysis 

Higher than average 
importance of sea state and 
cobble habitats  

Higher than average 
importance of tow quality 
and meat yield. 

Higher than average 
importance of roe on scallop  

Questionnaire 
data 

Smaller vessels than cluster 
2, but not statistically 
significantly smaller than 
cluster 3 vessels. Same gross 
requirements as cluster 2, 
but significantly lower 
steaming speed and lower 
fuel use. 

Largest vessels (by VCU), 
which travelled fastest, and 
used the most fuel. 

Smallest vessels, with lowest 
tonnage, and crew members. 
Lowest economic targets. 

VMS and 
logbook data 

Average catch values, but 
travel least distance and 
have highest CPUE, PPUE, 
VPUF, and CPUEperdredge 

High distances travelled, 
value landed, trip duration, 
fuel used, and profit, but 
with lowest VPUF and 
CPUEperdredge. 

Least time at sea, lowest 
value of scallops landed and 
lowest profit – but at a 
higher VPUF than cluster 2. 

Description of 
behavioural 
strategy 

Large vessels with mid-range 
power (VCU), who consider 
more external patch 
variables such as sea state, 
cobble and distance to port, 
rather than purely the catch 
rates. Attain the best catch 
rates, fishing most 
efficiently. 

Largest most powerful 
vessels, potentially most 
economically driven, 
targeting the quantity of 
scallops and the meat yield, 
i.e. aiming for a large volume 
catch, with high meat 
content. 

Smaller, less powerful 
vessels, who catch less 
scallops and stay at sea for 
less time, targeting a higher 
quality product, who are 
potentially less economically 
driven. 

Number of 
Vessels 

7 3 4 

Behavioural 
Strategy 

Efficient Fisher (EFF) Quantity Maximiser (QTM) Quality Maximiser (QLM) 
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2.4.7. Comparison of Questionnaire and Conjoint Responses 

The responses given in the questionnaire interview were compared to the results derived from the 

conjoint analysis, to see if similar responses emerged from these two independent data sources, 

providing some validation of the accuracy of responses. During the questionnaire fishers were asked 

what the maximum sea state was that would prevent them from fishing. The responses given are 

indicated as a red histogram on the plot of the utility scores (Figure 2.6a). There is a consistent 

agreement between where the sea state utility begins to fall and where it reaches its minimum 

utility with the range of values provided during the interviews. This provides confidence that the 

range of sea states which begin to hinder fishing activity were successfully identified. The response 

to distance to port is not quite as clear cut as the response to sea state. The questionnaire responses 

for maximum distance to port (red histogram) appear to be at the lower end of the values identified 

in the conjoint analysis (Figure 2.6b). Figure 2.6c shows the overlap between distances from port 

observed in the VMS data (histogram), and the range of distances identified in the questionnaire 

(red) and conjoint analysis (blue). The conjoint analysis appears to have better identified the 

distances at which the trip frequencies decline. The range of maximum distances from the 

questionnaire survey overlap a larger proportion of observed trip distances, which could suggest 

some fishers have underestimated the distances they travel, or could reflect individual 

heterogeneity in responses. 

  

 

Figure 2.6. Conjoint utility scores for sea state (A) and distance to port (B), with the number of 
questionnaire interview responses overlaid as red histograms corresponding to ‘the sea state above 
which you would no longer fish’ and the ‘maximum distance you would travel from port in a fishing 
trip’ respectively. Bars fall between sea states listed on the x axis when a fisher responded with a 
range, e.g. force 4-5, plotted as force 4.5. C) Histogram of distance to port values derived from 
logbook data, with a red line indicating the range between which conjoint utility scores first fall 
below zero and the upper limit where all conjoint utility scores are below zero. Blue line indicates the 
range of distances identified in the questionnaire as the ‘maximum distance to port’ fishers would 
travel in a single fishing trip. 
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2.4.8. Validation of Questionnaire and Conjoint Responses 

Both aggregated and individual responses to questions were verified against the independent VMS 

and logbook data. Fishers provided values for hours spent at sea, distance travelled, the catch rate at 

which they would move fishing ground, and the minimum viable catch value for a trip, which could 

all be compared to the observed values in VMS data. At an aggregated level, the questionnaire 

responses appear to give similar responses to the logbook data for departure distances, landings, 

and catch rates (Figure 2.7). The hours at sea responses appear to slightly underestimate the actual 

time spent at sea, however. The accuracy of each individual’s questionnaire responses was assessed 

by comparing them to their own VMS and logbook data (Figures 2.8). Boxplots display each logbook 

variable for each individual fisher, and their corresponding questionnaire responses were overlaid as 

points. If the questionnaire response (point) falls in an appropriate place in the boxplot (e.g. at the 

lower range of the catch value boxplot for minimum viable catch) it provides evidence of the 

reliability of the questionnaire responses. This validation is somewhat qualitative, as the questions 

were somewhat subjective and/or speculative. The individual comparison data showed that fishers 

fairly consistently provided a minimum viable catch value in the lower quartile of the observed value 

landed, and a good takings value in the upper quartile (Figure 2.8a). The catch rates that a fisher 

considered as good, average or poor appear relatively consistent with their recorded catch rates 

(Figure 2.8c). The catch rates given in the questionnaire can therefore be considered as relatively 

accurate. In general the values given for normal hours at sea fall within the observed trip lengths 

(Figure 2.8b); the maximum possible trip length values appear quite variable, but as this is a 

speculative answer perhaps more variation is expected. Similarly, the departure distances given in 

the survey appear reasonably accurate, although slightly higher, with the more speculative 

maximum departure distance exhibiting more variation (Figure 2.8d). 
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Figure 2.7. Grey histograms represent logbook data for all scallop logbook records from Isle of Man 
vessels. Blue overlaid histograms represent questionnaire data. A) Grey histogram of departure 
distances from VMS data, with blue histogram indicating individual answers to ‘What is the normal 
distance you would travel from your departure port to fish?’ B) Grey histogram of recorded catch 
rates, as bags per dredge, with blue histogram indicating answers to ‘At what catch rate would you 
change fishing location?’ C) Grey histogram of the value of scallops landed per trip, and blue 
histogram of answers to ‘What is the minimum viable catch for a trip? Values are scaled from zero to 
one for confidentiality. D) Grey histogram of trip length in hours at sea from VMS data, and blue 
histogram of answers to ‘How long would you normally fish for?’ 

 



Chapter 2: Questionnaire and Conjoint Analysis 
 

85 
 

 

 

Figure 2.8. Verification of individual questionnaire responses with vessel monitoring system (VMS) 
and logbook data. Boxplots represent VMS and logbook values for each individual fisher, and 
coloured dots represent their corresponding questionnaire responses. The number of points vary 
where a fisher did not provide a response to a question. Actual values of catch value and rates are 
concealed for confidentiality, with a scaled response presented. A). Boxplots of observed scallop 
landings (monetary value, from logbooks). Red points represent answer to the question “What is your 
minimum viable daily catch?”, and blue points represent answers to the question “What do you 
consider as “good takings” for a trip?” B) Boxplots of observed trip length (hours at sea, from 
logbook). Blue point represents “How long would you normally fish for?” and red point represents 
“What is the maximum time you would spend at sea during one trip”. C) Boxplots of observed catch 
rates (bags per dredge hour, from VMS), with corresponding value provided for question “What do 
you consider a good catch rate (blue) an average catch rate (orange) and a poor catch rate (red)?” D) 
Boxplots of observed departure distances (nautical miles, from VMS). Blue points represent “What 
distance would you normally travel from port to fish?”, red points represent “What is the maximum 
distance from port you would travel to fish?” 
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2.5. Discussion 

 

2.5.1. Fishers’ data can increase understanding of fishing behaviours and 

patch choice decisions 

This study demonstrated that data derived directly from fishers can improve the understanding of 

fishing behaviour, and provide relevant and reliable data that could be used to parameterise a 

fisheries behavioural model. Using a conjoint analysis approach it was possible to gain a 

comprehensive understanding of the fishing decisions that drive patch choice and explain the 

behaviours that lead to patterns in the spatial distribution of fishing effort. As Plagányi et al., (2014) 

pointed out, it is the human decisions of patch choice that drive the spatial distribution of effort, 

therefore to model a fishery realistically it is necessary to understand these decisions. For example, 

the study demonstrated that the sea state can have a large influence on patch choice behaviour, 

therefore it may be necessary to include this in a model predicting fisher behaviour. It is also 

interesting to note that the term ‘average’ had different connotations to the respondents; an 

average tow quality had a positive utility score but an average meat yield had a negative utility 

score. Understanding these trade-off decisions is not possible with VMS data; a conjoint analysis 

provided a rapid, cost-effective way to understand this patch choice behaviour. It was also possible 

to gain insights into the degree of individual heterogeneity, which may be needed for more realistic 

predictions of the impacts of management on fishers (Christensen and Raakjær, 2006; Gelcich et al., 

2005).  

The accompanying semi-structured questionnaire provided further behavioural parameters that 

would be relevant to modelling fishers in the context of optimal foraging theory (i.e. fishing costs, 

environmental limitations, vessel characteristics and requirements). These data again represented 

parameters that would be difficult or impossible to obtain from vessel monitoring system data. As 

well as collecting vessel characteristic data that were not recorded on vessel registry data, 

behavioural parameters such as the giving up rate (a catch rate that a fisher considers unviable and 

would prompt him to move to a different fishing patch), and the handling time (the time it takes to 

clear nets between successive tows) could be collected. Economic parameters (the equivalent of 

animal energetics in optimal foraging theory) could also be ascertained, including vessel costs, what 

a fisher considered their minimum viable catch and what they considered as good takings. These 

survey data significantly contribute to, and increase the scope for understanding fisher behaviour, 

complementing the use of VMS and logbook data.  
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2.5.2. Considerable behavioural heterogeneity between fishers could be 

used to identify different fishing strategies 

There was considerable behavioural heterogeneity between the fishers surveyed; vessel capacity 

units (a composite size metric) and vessel length were identified as predictors of this variability. As 

VCUs are calculated from length, and therefore correlate, only one or the other would be used for 

predictive modelling. Some economic variables demonstrated strong correlation with vessel size, 

such as fuel use, what they consider good takings, as well as vessel characteristics such as number of 

dredges used, and number of crew. Other variables showed no correlation with vessel size despite 

being linked to potential financial returns, e.g. the catch rate at which a fisher would ‘give up’ and 

move to a new location. These foraging parameters, and their heterogeneity, could be input to a 

model of their behaviour. 

Three behavioural strategies for patch choice could be identified within the fleet, by comparing the 

similarities and differences in conjoint analysis responses. As identified in Table 2.5, fishers could be 

categorised as either Efficient Fishers (EFF), Quantity Maximisers (QTM) or Quality Maximisers 

(QLM). EFF refers to fishers that are the most efficient, in that they achieve the highest CPUE (by 

time and per dredge), PPUE, and VPUF, by travelling least far but still receiving average catches. 

These fishers place a higher than average importance on the sea state and the amount of rock in the 

catch, and are thus maximising efficiency by avoiding unfavourable fishing patches. These EFF fishers 

are also perhaps minimising risks and costs associated with taking vessels into high seas or over 

damaging rockier habitats. QTM fishers are the largest and most powerful vessels, concerned with 

maximising the quantity and meat quality of catches, obtaining the highest profits, but they do so at 

the lowest VPUF and CPUEperdredge rates. QLM refers to fishers with the smallest vessels who target a 

higher quality product (i.e. roe on), who achieve a CPUEperdredge equal to EFF fishers, yet land lower 

catches and have the lowest profit. QLM fishers have the potential to catch as much as EFF fishers 

(i.e. similar vessel characteristics, and achieve similar CPUE rates per dredge hour). They also obtain 

similar CPUE rates to QTM fishers despite their larger size. Nevertheless, they do not stay at sea as 

long, record lower catches, and state a significantly lower minimum viable catch rate, which could 

suggest the QLM fishers are less economically driven. 

The identification of a group of fishers who are less economically driven, or just not as economically 

successful as the others, has consequences for a model based on optimal foraging theory, where 

individuals are modelled as rational agents (i.e. taking the course of action that will provide the 

highest fitness/monetary returns). Whilst optimal foraging theory may be an appropriate framework 

within which to investigate fishing behaviour, a model of fishing behaviour may need to include 
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fishers that do not follow the assumptions of optimal foraging theory to realistically predict the 

activity of a whole fleet. The general principles of optimal foraging theory may hold true in a fishery 

– that fishers are maximising their ‘fitness’ – but it may be necessary to allow the model to 

incorporate other non-monetary aspects of this fitness such as quality of life, through a reduced 

propensity to maximise purely the economic returns. Modelling all individuals as true optimal 

foragers may thus overestimate the stock biomass removal, as well as the ability of fishers to cope 

with management measures. For example, during a period of stock collapse and strict management 

controls in the Isle of Man in 2014, the fishers demonstrated considerable heterogeneity in their 

plasticity in response to tough conditions. Some fishers continued to fish on seemingly unprofitable 

grounds, with ground familiarity and port affinity apparently overriding the seemingly more rational 

choice of moving to a more distant port/ground (pers. comm., Karen McHarg, Department for 

Environment, Food, and Agriculture, Isle of Man). There may be several reasons a fisher does not 

move to a more profitable ground despite having the vessel capacity to do so: i) they are unfamiliar 

with the grounds, which represents an economic and safety consideration; ii) they are not aware 

that there are better catch rates at a different area nearby; iii) they are less economically driven and 

would simply prefer to remain at their usual port; iv) they are not profit maximisers and instead aim 

for a minimum expected yield (Oostenbrugge et al., 2001; Pet-Soede et al., 2001). For an accurate 

model of fishing behaviour it is necessary to capture these differences in competitiveness/success, 

and the influences of ground familiarity, as the fishers which are seen as less economically driven 

may not conform to a model that assumes solely profit driven rational activity. It is unclear from the 

data presented here, however, if the fishers are just less successful than others, if the fishers are 

intentionally not as economically competitive preferring to fish in familiar areas, or if they are 

maximising some other benefit, such as quality of life, more highly than monetary returns. 

Nonetheless, to reach agreeable management solutions that ensure the economic sustainability of a 

fishery, it may be necessary to understand these behaviours, so that they can at least be taken into 

consideration in management planning. 

 

2.5.3. Survey data were validated to give confidence in the accuracy of the 

data 

The data obtained during the questionnaire and conjoint analysis showed a good level of agreement 

with vessel monitoring system and logbook data, demonstrating that the fisher survey data can be 

considered reliable. The validation is somewhat qualitative however, as whilst quantitative 

responses were given, several questions were somewhat subjective (e.g. what do you consider as 
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good takings?). Nevertheless, responses to similar questions in the questionnaire and the conjoint 

analysis showed good correlation, giving confidence that the methods were eliciting realistic values. 

More compellingly, the questionnaire responses also showed good correlation with corresponding 

VMS and logbook data, on both an aggregated and individual vessel level. The values given for 

departure distance appeared to be reasonably accurate, concentrated over the highest proportion 

of observed travel distances in the VMS data; the minimum acceptable bags per dredge hour 

appeared to be a very consistent and reliable value; the values for minimum viable catch were 

slightly skewed towards the lower end of observed catches, as you would expect if the fishery is 

profitable, but it does suggest a proportion of trips may be considered unviable. The hours at sea 

values provided by fishermen were skewed towards more negative values than the VMS and 

logbook data however. On an individual scale, values provided during the questionnaire showed a 

good level of congruence with each individual’s corresponding VMS and logbook data. Overall, these 

data suggest that in the absence of VMS and logbook data, behavioural data of a reasonable 

accuracy could be obtained from fishers. 

The behavioural clusters identified in the conjoint analysis could also be somewhat verified through 

comparing them with questionnaire and logbook data. Behavioural differences identified in the 

conjoint analysis translated to real differences in observed behaviours in the VMS and logbook data. 

For example, fishers that placed the highest importance on expected return rates and meat yield in 

the conjoint analysis demonstrated higher catch rates and landings in logbook data accordingly. 

These patterns give confidence that the conjoint analysis has successfully identified real differences 

in the patch choice behavioural strategies of different fishers. 

There are, nevertheless, two potential types of inaccuracy relevant to this survey data: deliberate 

bias and unintentional inaccuracy. Economically and industry sensitive data, such as catch rates and 

values, are most likely known well by the fishers, but they could be wary of revealing them to 

scientists, and therefore deliberately bias responses. Economic parameters were shown to be of 

good accuracy, which could give confidence that less sensitive parameters were also accurate to the 

best of the fishers’ knowledge. If fishers were unhappy to give any response or value, they could 

leave it blank, as having missing values was considered preferable to inaccurate values. It would be 

difficult for respondents to deliberately bias answers in the conjoint analysis, as it is not easy to 

quickly compute how to skew the responses to an agenda. A final source of error is 

misrepresentation of the fleet. Even though a relatively high proportion of the fishery was surveyed 

(56%), it is likely some individual heterogeneity was missed. As over half of the active fishers were 

surveyed though, this gives some confidence that there was a fair representation of the fishery 

(Shepperson et al., 2014). 
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This survey approach to parameterising an IBM is the first step in a participatory modelling 

framework. Taking a more participatory approach can provide a form of mutual validation between 

fisher and scientist with regards to modelling fisher behaviour realistically. Scientists can be more 

confident they have captured the essential elements of the fishery, and have a realistic portrayal of 

fishing behaviour, and fishers can have more confidence that the scientists are basing their model on 

informed fisheries data. As described by Mackinson et al. (2011) and Röckmann et al. (2012), 

involving fishers in the modelling process can increase the transparency of the project and thus the 

trust of data and model outputs, leading to more successful management plans. Nevertheless, there 

does remain some scepticism among the scientific community as to whether fishers’ data can be of 

comparable accuracy to more conventional scientific data. It is thus important to provide an 

assessment of data accuracy from all steps of the participatory process where possible, to ensure 

appropriate use of the data, and to contribute to the growing body of evidence showing that fisher 

knowledge and participatory data can make a valuable contribution to conventional science (Bundy 

and Davis, 2013; Shepperson et al., 2014; Teixeira et al., 2013; Zukowski et al., 2011). 

 

2.5.4. This approach provided data relevant to parameterising a fisheries 

IBM 

The data obtained in this survey are highly relevant to parameterising a fisheries behavioural model, 

both in terms of model design and understanding of fishing behaviour. Grouping fishers into types 

could allow simplification of a model design, which accounts for some heterogeneity between 

fishers without leading to an overly complex model design. Three behavioural strategies for patch 

choice were identified in the conjoint analysis, which could be specified in an IBM of fishing activity. 

The impact of management on different types of fishers could then be explored, as fishers may be 

impacted to different degrees. VCU was the best predictor of foraging parameters, behavioural 

strategy and vessel economics, and therefore could be used to characterise a fishery for 

proportional input of fishers of each behavioural strategy into a model. Characterising the fishery in 

this way could simplify the model design, whilst ensuring heterogeneity in fishing behaviour is 

accounted for. 

The survey time could be considered as a limitation to the approach, but these surveys were 

undertaken in a relaxed informal format, with fishers free to lead the discussion onto topics they felt 

relevant. The survey time could therefore fairly easily be reduced. Depending on the computer 

literacy of the fishing fleet in question, the conjoint analysis could be fielded online, as could the 
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questionnaire, allowing fishers to complete the survey in their own time, and reducing the time costs 

to the researcher. 

 

2.6. Conclusions 

The use of a conjoint analysis has demonstrated in detail how fishers assess various patch attributes 

such as sea state, distance to port and expected catch rates, to decide which patch they would 

prefer to fish in. This could have direct application to a fisheries (or other hunter-gatherer) 

behavioural model. Further, the data also demonstrated behavioural heterogeneity, in that either 

some fishers are not as economically driven, or are less successful, as they do not appear to be 

reaching their full catching potential, compared to other similar fishers. Individual-based models 

(IBMs) are increasingly recognised as potentially useful management models in fisheries (Bastardie 

et al., 2014, 2010; Dowling et al., 2012), but they can be data intensive, as a thorough understanding 

of the behavioural decisions driving a system is required. Here this study has demonstrated an 

accurate and cost-effective method to collect the necessary data required to parameterise a 

fisheries IBM in the context of optimal foraging theory. Using this approach could make a model 

more relevant to a fishery through ensuring the behavioural decision processes are realistic (Fulton 

et al., 2011; Hilborn, 2007). Through developing models in collaboration with fishers, we can be 

more confident we have a realistic and thorough understanding of the system, and can thus better 

predict the outcomes of management. Better, more realistic predictions of the temporal and spatial 

displacement of effort following management would allow the economic and ecological impacts to 

be better understood, ultimately leading to more successful and sustainable management. 
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2.9. Appendix 1. Relationships between vessel size metrics and behavioural 

parameters 
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Engine Power 0.46 16 0.072 . 0.85 16 0.000 *** 

Tonnage 0.71 12 0.010 ** 0.91 12 0.000 *** 

Average number of crew 0.84 16 0.000 *** 0.86 16 0.000 *** 

Max number of dredges 0.7 16 0.003 ** 0.85 16 0.000 *** 

Fuel use per towing hour 0.71 13 0.007 ** 0.86 13 0.000 *** 

Normal departure distance from port 0.52 16 0.039 * 0.78 16 0.000 *** 

Max number of days at sea in relation to king scallop freshness 0.53 16 0.034 * 0.77 16 0.001 *** 

Minimum monthly gross required 0.68 5 0.204  0.98 5 0.004 ** 

Considered ‘good takings’ 0.69 16 0.003 ** 0.66 16 0.006 ** 

Fuel use per steaming hour 0.7 13 0.007 ** 0.7 13 0.008 ** 

Vessel fuel storage capacity 0.46 15 0.087 . 0.64 15 0.011 ** 

Max number of bags possible to store aboard 0.68 16 0.004 ** 0.6 16 0.014 ** 

Cost of a days fishing 0.49 14 0.078 . 0.6 14 0.023 * 

Average steaming speed (knots) 0.58 16 0.018 * 0.54 16 0.030 * 

Time taken to clear king dredges 0.45 16 0.082 . 0.52 16 0.037 * 

Bags per hour (queens) at which would move location the next 

day 

0.72 4 0.284  0.95 4 0.045 * 

Minimum viable daily gross 0.37 16 0.164  0.49 16 0.052 . 

Minimum daily gross worth fishing for 0.76 9 0.017 * 0.63 9 0.067 . 

Max steaming speed (knots) 0.49 16 0.055 . 0.41 16 0.118  
Daily gross at which would consider leaving fishery 0.68 7 0.091 . 0.61 7 0.145  
Cost of boat upgrades in 5 year period 0.51 11 0.113  0.46 11 0.152  
Number of days a year lost to bad weather -0.44 13 0.136  -0.39 13 0.185  
Absolute maximum sea state possible to fish in 0.34 16 0.205  0.34 16 0.194  
Max possible duration of a fishing trip 0.29 16 0.270  0.33 16 0.206  
Cost of boat maintenance per year 0.69 13 0.008 ** 0.38 13 0.206  
Percentage of takings as wages 0.55 8 0.161  0.48 8 0.227  
Percentage of catch below MLS -0.13 14 0.663  -0.34 14 0.236  
Max number of days possible at sea in relation to food supplies -0.14 13 0.637  -0.34 13 0.249  
Max sea state would normally prefer not to fish above 0.28 16 0.285  0.3 16 0.255  
Average hours at sea fishing for king scallops 0.5 16 0.051 * 0.27 16 0.310  
Maximum distance travelled from port 0.45 14 0.103  0.25 14 0.390  
King catch rate at which would move location 0.15 16 0.578  0.23 16 0.400  
Considered ‘too long’ to spend at sea -0.06 10 0.860  -0.3 10 0.407  
Maximum gape of trawl net 0.43 15 0.108  0.23 15 0.411  
Max number of days at sea in relation to queen catch freshness 0.18 16 0.503  0.21 16 0.435  
Max wave height possible to fish at 0.45 14 0.104  0.21 14 0.466  
Smallest distance willing to fish near another vessel (miles) 0.31 16 0.239  0.18 16 0.506  
Bag size (kg) 0.14 16 0.617  0.15 16 0.597  
How often information from other vessels is taken into account 

when deciding fishing location 

-0.2 14 0.483  -0.13 14 0.667  
How much of fishing is in same area as past year -0.39 16 0.131  -0.11 16 0.697  
Time taken to clear queen trawl nets 0.32 13 0.288  -0.11 13 0.720  
King dredge belly ring size -0.13 14 0.657  -0.1 14 0.721  
Number of days a year lost to planned maintenance 0.09 14 0.765  0.09 14 0.758  
Minimum market price at which would fish (kings) -0.55 8 0.160  -0.03 8 0.894  
Lowest monthly ‘wage’ below which would consider leaving 

fishery 

-0.02 4 0.984  -0.1 4 0.904  
Max number of days at sea in relation to fuel capacity -0.11 15 0.398  0.03 15 0.904  
How many vessels would tolerate within 1nm radius -0.15 13 0.621  0.03 13 0.920  
Minimum market price at which would fish (queenies) -0.38 10 0.278  -0.02 10 0.956  
Catch per dredge hour at which would move location 0 16 0.990  0.01 16 0.960  
Catch per gape length at which would move location -0.56 6 0.248  0.01 6 0.984  
Number of other vessels information shared with 0.21 16 0.442  -0.01 16 0.985  
Number of days lost to unplanned mechanical failure 0.34 13 0.249  0 13 0.992  
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3.1. Abstract 

 

The ability to predict the response of fishers to fisheries management would improve our ability to 

understand the consequences of management and to evaluate different management options. To 

model the behavioural response of fishermen to management we need to understand the 

behavioural decisions that drive the spatial and temporal distribution of fishing activity. An 

Individual-based Model (IBM) could be used to better understand fishermen’s behaviour, through 

testing out different behavioural rules and structures, and allowing more realism in fishing 

behaviours. To develop an IBM, a good understanding of the behaviours in a system is required, to 

inform the model development, and to provide the data that can be used to validate a model.  

VMS and logbook data were used to characterise spatial and temporal patterns in fishing activity in 

the Isle of Man scallop fishery. Fishing activity largely constituted single day trips within the 12nm 

territorial Sea, was concentrated over known grounds, and activity became more dispersed as the 

season progressed. A generalised linear mixed effects model was used to investigate the decision of 

whether or not to fish each day. The likelihood of fishing on a particular day was significantly 

influenced by the wave height, the days since the start of the season, previous catch rates, and 

predicted wave conditions. Whilst a rough sea state can prohibit fishing, vessels were not predicted 

to fish with 100% certainty on days with calm sea states. The analysis also highlighted heterogeneity 

between the abilities and requirements of individual fishing vessels. The patterns in VMS and 

logbook data were discussed in the context of qualitative information provided during questionnaire 

interviews with fishers.  

Developing an IBM of fishing activity can have relatively substantial data requirements. This analysis 

demonstrated that VMS and logbook data can be used to characterise activity in a fishing system, 

providing information required to inform model development, and the values and patterns against 

which a model could be validated. 
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3.2. Introduction 

It is increasingly recognised that in order to achieve successful fisheries management outcomes, it is 

beneficial to be able to predict how fishermen will respond to management (Dinmore et al., 2003; 

Fulton et al., 2011; Hilborn, 2007; Hilborn et al., 2004; Murray et al., 2011; Pascoe and Mardle, 

2005). To model the behavioural response of fishermen to management we need to understand the 

behavioural decisions that drive the spatial and temporal distribution of fishing activity. Individual-

based modelling could help address some of the knowledge gaps in our understanding of fisher 

behaviour, and allow us to better predict the environmental and economic consequences of 

management by more realistically accounting for the behavioural response of, and impact on, fishers 

(Burgess et al., 2017, in review). Nevertheless, to create an individual-based model (IBM) of fishing 

behaviour, it is necessary to have a good understanding of the system, to inform the model 

development, and also to provide trends and patterns in the real system against which such a model 

can be validated (Grimm et al., 2005). 

 

3.2.1. Fishers are analogous to animal foragers under Optimal Foraging 

Theory 

A number of authors have demonstrated that Optimal Foraging Theory (OFT) (MacArthur and 

Pianka, 1966) is a suitable framework for investigating fisher behaviour (Begossi, 1992; Begossi et al., 

2009; de Oliveira and Begossi, 2011; Lee et al., 2014; Sosis, 2002). Optimal foraging theory states 

that individuals aim to maximise their net energy intake over time (analogous to catches or profit for 

a fisher), and is therefore comparable to assuming fishers follow profit maximisation behaviour 

(Holland, 2008). As fisher-target species systems can be considered analogous to animal predator-

prey systems, operating in the same predictable context of optimal foraging, successful animal 

predator prey modelling techniques may be applicable to predicting fisheries dynamics. Successful 

individual-based models (IBMs) of bird behaviour constructed by Goss-custard et al. (2005) and 

Stillman (2008) were built around six main parameters; i) bird energetics; ii) prey energy content; iii) 

functional response; iv) interference functions; v) food supply, exposure time, weather; vi) human 

disturbance. Equivalent modelling parameters could also be derived for fisher systems. Bird fitness 

could be replaced by fisher economic status, prey energy content replaced by profit or CPUE, human 

activities replaced by management actions, and so on. Table 3.1 highlights the equivalence of 

variables in a bird foraging IBM compared with a fisheries IBM. To build a model of fishing behaviour 

in a similar foraging framework, it would therefore be necessary to understand the distribution of 
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foraging patches in the system, the costs associated with fishing and the rewards received, 

heterogeneity between individuals, and how they decide where to fish. 

Table 3.1. ABM parameters required for a bird foraging model, and their equivalent parameter in a 
fishery ABM. 

 Bird Foraging Model Fishery Model 

Foraging patches Patches containing food birds 
need to consume to survive 

Patches containing fish that 
vessels capture to increase 
financial income 

Resting patches Patches in which animals rest and 
do not / are not able to capture 
further prey 

Patches (e.g. ports) in which 
vessels stay between fishing 
voyages 

Natural 
variation/mortality 
in prey 

Mortality of prey not caused by 
foragers 

Mortality of fish not caused by 
fishers 

Individual foragers Individual animal Individual vessel 

Alternative resources Alternative prey Off sector pluriactivity / 
alternative target species 

Size range of prey 
captured 

Size range of prey that can be 
consumed 

Size range of fish that can be 
landed legally 

Value of resources Amount of energy Financial value 

Condition of forager Body mass determined by past 
values of energy assimilation 

Financial status determined by 
past income and expenditure 

Forager costs Energetic costs of survival and 
moving between patches 

Time and financial cost to move 
between fishing grounds and port 

Forager travel costs Time and energy taken to move 
between patches 

Time and financial cost to move 
between fishing grounds and port 

Forager rewards Energetic rewards of prey Financial rewards of fish 

Individual variation 
between foragers 

Animals vary in their ability at 
capturing prey and stealing prey 
from competitors 

Vessels vary in their capture rate 
(vessel size/catching power, 
experience of crew) 

Forager decision 
rules 

Animal occupies patch and 
consumes prey that leads to 
maximum rate of energy 
assimilation 

Fishing vessel occupies patch 
which yields the greatest rate of 
income accounting for capture 
rate, the financial cost of harvest, 
and financial cost of occupying 
fishing grounds. 
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3.2.2. Adding realism to an optimal foraging model of fishers 

Despite being demonstrated as an appropriate framework, modelling fishers under the framework 

of optimal foraging theory can be subject to some unrealistic assumptions, namely: foragers have 

ideal knowledge of resource levels in each patch; foragers are able to move equally between all 

patches; and foragers have equal competitive abilities. In reality, this may not be the case; fishers 

may know estimates of resource densities, but cannot know exact values; larger vessels may have 

greater potential to travel further and more quickly between patches; and larger vessels may out-

compete smaller vessels (Rijnsdorp et al., 2000). To realistically model fishing behaviour, it may be 

necessary to better understand these violations, such as heterogeneity between individuals and the 

differences in fishing capabilities (e.g. maximum distances they can travel, maximum sea states 

above which they wouldn’t fish) and requirements (e.g. minimum viable catch rates). Developing an 

IBM of fishing behaviour could allow us to better understand fishing behaviour, and what processes 

it is important to consider when predicting the response to management. 

 

3.2.3. Pattern Oriented Modelling to inform model development 

IBMs are often developed using pattern oriented modelling (POM), which is essentially a protocol to 

build and evaluate individual-based models (Grimm et al., 2005; Grimm and Railsback, 2012; Stillman 

et al., 2015). POM describes a framework in which multiple patterns observed in the real system are 

used to guide model development and evaluation; models are then accepted or rejected based on 

their ability to reproduce these patterns (e.g. Railsback and Johnson, 2011). At the simplest level, 

these patterns tell us what individuals, spatial scales, and environments should be represented in 

the model, and the variables and processes characterising them (Grimm and Railsback, 2012). For 

example, if we know that in the real system there are differences in capabilities of individual fishers, 

individual variability should be included in the model. These patterns also form the criteria for model 

development and selection. In complex systems, using a single pattern (or value) is often not 

sufficient to reduce uncertainty in a model structure; using multiple patterns at different scales can 

reduce uncertainty (Grimm et al., 2005). Ideally, patterns are selected that characterise the system 

at different levels and scales (e.g. daily catch rates, total catches over a season, spatial extent of 

fishing, individual variation); recreating multiple patterns at different scales suggests the behavioural 

mechanisms in the model are somewhat realistic (Grimm et al., 2005).   

 



Chapter 3: VMS and Logbook Analysis 
 

106 
 

3.2.4. Vessel monitoring system data can be used to investigate fishing 

activity 

Patterns for model development can be derived from the literature, experts, existing theory, or 

empirical data (Grimm and Railsback, 2012). In Europe, vessel monitoring systems (VMSs) were 

introduced as an enforcement tool, but are increasingly important for scientific research into fishing 

activity (Lambert et al., 2012; Murray et al., 2011, 2013). VMS has some limitations, including 

sometimes incomplete coverage, and a relatively long temporal duration between position records 

(~ 2 hours). In addition, VMS does not record the activity being performed by a vessel (i.e. whether it 

is fishing or steaming), but this can be inferred from the speed a vessel is travelling (Lee et al., 2010). 

VMS data and logbook data (detailing catches) can therefore be used to understand more about 

fishing behaviour, and to document patterns in fishing activity (Lee et al., 2010; Murray et al., 2011). 

 

3.2.5. Aims 

In this chapter, patterns in fishing activity in the Isle of Man scallop fishery were characterised using 

vessel monitoring system and logbook data, to inform the development of an individual-based 

model. Three questions were addressed: how much do fishermen catch, and when, and where do 

they catch it? This chapter aimed to: characterise the spatial and temporal distribution of effort in 

the IOM scallop fishery; analyse what influenced the decision of a vessel to fish or not each day; and 

outline individual heterogeneity in effort, behaviour, and catches. The analysis focussed on Manx 

fishing vessels within the 12nm territorial sea, but differences between Manx and non-Manx vessel 

activity (i.e. resident inshore vs more nomadic) were also outlined. 
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3.3. Methods 

3.3.1. The Isle of Man Scallop Fishery 

 

Figure 3.1. The Isle of Man, showing the 4 main fishing ports, with the 3nm and 12nm territorial Sea. 
The northerly part of the 12nm boundary is ‘compressed’ to the median line between the Isle of Man 
and Scotland which is less than 24nm in total. 

 

King scallops (Pecten maximus) and Queen scallops (Aequipecten opercularis) have been important 

fisheries for the Isle of Man since the 1950s, and form the most valuable fishery for Manx (Isle of 

Man) vessels (Hanley et al., 2013; Figure 3.1). Essentially the same vessels prosecute both fisheries, 

switching between the use of dredges for king scallops during the open season (November – May) 

and trawls for queen scallops at other times (June – October). The different fishing gears reflect the 

different life histories of the two species, with king scallops being more sedentary, burrowing into 

the sediment, whilst queen scallops are more active swimmers (Hanley et al., 2013). This research 

focusses on the behaviour of scallop dredgers when targeting the more valuable king scallop fishery. 
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King scallops (hereafter referred to as ‘scallops’) are fished using toothed Newhaven dredges, which 

are each approximately 75cm in width, with around eight 110mm metal teeth along the front edge 

of the dredge. The dredge teeth rake up scallops from the seabed, which are collected in a mesh bag 

behind the tooth bar. Groups of dredges are positioned along a wheeled tow bar, which keeps the 

dredges at a constant height from the seabed and reduces drag. In Manx territorial waters, scallop 

dredgers are restricted to using ten dredges within 3nm from shore, and 14 dredges within 12nm 

from shore. The minimum landing size for scallops is 110mm at the widest point; small scallops are 

returned to the sea, although likely subject to some indirect fishing mortality (Gruffydd, 1972; 

Jenkins and Brand, 2001). 

All vessels fishing for scallops in the Isle of Man territorial sea are required to carry a vessel 

monitoring system (VMS), which provides approximately two-hourly spatial position data on the 

vessel (GPS location) (note: this poll frequency was increased to 15 minutes in 2016/17). Vessels are 

also required to return daily logbook records of their catches per ICES sub-square. By joining the 

VMS position records with the logbook catch data, the resulting spatially resolved catch data can be 

used for scientific research into fishing activity (Lee et al., 2010). This analysis focusses on activity 

within the 12nm territorial sea, as there is full VMS coverage for this area, and the majority of 

scallop fishing by Manx vessels takes place within that area. 

 

3.3.2. Logbook and VMS Data Processing 

VMS records for all vessels fishing in the IOM territorial sea were obtained for the time period 2011– 

2013. The data was first cleaned, to remove inaccurate and incorrect data. The vmstools package in 

R (Hintzen et al., 2012) was used to remove VMS points that were on land, were duplicates, were 

too close together and classed as pseudo-replicates (i.e. < 5 minutes between two consecutive 

pings), or were travelling at an unfeasible speed (>20 knots). VMS data does not provide information 

on the activity of a vessel (i.e. if it is fishing or not) at the time a ping is recorded. However, using the 

speed of the vessel, the likely activity can be inferred given the known range of towing speeds 

associated with specific fishing gear (Lee et al., 2010). Creating a frequency histogram of the vessel 

speeds recorded allowed outlier values to be identified, and the speeds identifying towing and 

steaming activity to be checked. The vessel speeds showed a bimodal distribution, with the first peak 

(at slower speeds) indicating towing activity and the second peak (at higher speeds) indicating 

steaming activity. Points with a speed between 1 and 4 knots were defined as ‘towing’ and points 

with a speed over 4 knots were recorded as ‘steaming’. Points with a speed below 1 knot that were 

located over fishing grounds (delineated by being within 1km of another fishing point) were also 
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recorded as ‘towing’ as these were likely when vessels were relatively stationary and hauling or 

emptying dredges, but performing activities associated with towing. Points with a speed below 1 

knot that were not over fishing grounds were recorded as inactive (e.g. anchored, not fishing).  

VMS and logbook records were merged according to the vessel reference number and the date, such 

that VMS position records that fell within the date and time of a logbook record were attributed to 

that logbook record (Hintzen et al., 2012). VMS points are recorded approximately every 2 hours, 

although the frequency can change. To calculate the time spent towing and time spent steaming 

from the number of VMS points which indicate each activity, it was necessary to calculate the time 

period accounted for by one VMS point. For each logbook entry, the time between the first and last 

point was divided by the total number of VMS points recorded for that logbook entry. This gave a 

value for ‘time per point’. Therefore, if a vessel fished for 10 hours, with 10 points, each point was 

equivalent to 1 hour of activity. The number of points denoting towing activity and the number of 

points denoting steaming activity could then be multiplied by the ‘time per point’, to give the time 

spent towing and time spent steaming within that logbook entry.  

 

3.3.3. Calculating catch per unit effort 

The calculation of Catch per Unit Effort (CPUE) allowed a standardised value for catch that could be 

compared between fishing trips of different effort. Effort can be defined in many ways, such as 

distance, time or power; in this case, time was used for effort, as we were interested in how 

fishermen allocated their activity over time. CPUE was calculated as: 

CPUEfishing = landings / time spent fishing 

CPUE, as described above, provides a standardised catch rate over time. However, it does not 

account for the difference in catching power of each vessel. A value for CPUE per dredge hour 

provides a value that can be directly compared across trips and vessels. However, the number of 

dredges a vessel used is not recorded in VMS or logbook data, but we can estimate it from the size 

of the vessel, from an equation constructed using questionnaire data (Shepperson et al., 2016, 

Chapter 2). Data were obtained from the vessel registry on the length, breadth, engine capacity, and 

vessel capacity unit of vessels. The vessel capacity unit (VCU) provided a comparable unit of power 

based on the size and capacity of the vessel. The number of dredges per vessel showed a significant 

correlation with VCU (F(1, 14) = 35.53, Adj R-sq = 0.70, p<0.001), and thus the number of dredges per 

vessel could be estimated using the equation: 
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Number of dredges = 0.019 (VCU) + 2.984 

CPUEdredge could then be calculated as: 

CPUEdredge = CPUE fishing / number of dredges 

 

3.3.4. Removal of outlier values 

A frequency distribution of the calculated CPUE illustrated that there were some erroneous values. 

The maximum CPUE value was 1149kg per hour which suggested that vessels were catching around 

33 bags per dredge per hour, which is logistically unfeasible. These inaccurate values could be due 

to: human error when recording the logbook landings entry; an error in the VMS data treatment, e.g. 

points classed as steaming that should have been classed as fishing; or an error in VMS data itself 

(e.g. missing points), either through a technical fault in the VMS, or by a vessel travelling outside the 

area for which VMS was received. Nevertheless, these anomalous and/or incorrect values were 

removed from the analysis. To objectively remove outlier values, a lognormal or gamma distribution 

was fitted to variables using Akaike’s Information Criterion to select the best fit between 

distributions, and values in the top 0.1% of this distribution were removed as outliers (Table 3.2).  

 

Table 3.2 Outliers were removed from the catch data according to the following distributions, 
resulting in only a small overall proportion of points being removed 

Variable 0.999 quantile 
distribution 

Threshold 
Value  

Proportion 
removed 

Points 
Remaining 

CPUE per fish hour (kg) gamma 404.68 0.0024 19378 

CPUE per dredge per hour (bags) normal 0.74 0.0028 17354 
CPUE per dredge per hour (kg) gamma 30.88 0.0024 17433 
Scallops landed (kg) lognormal 8120.84 0.0005 23712 
Scallops Value (£) lognormal 12038.63 0.0001 23669 
Value per unit fuel (VPUF) gamma 20.76 0.0013 17593 

 

3.3.5. Trip Distance 

The trip distance and distance to port were calculated for each trip. A cost distance raster was 

created in R that calculated the travel distance from each Manx port (Peel, Douglas, Ramsey, and 

Port St Mary) to all locations in the 12nm Sea accounting for the land (i.e. not a linear distance). VMS 

points were then attributed with a value for the distance travelled from their departure port. To 
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calculate the trip distance, the furthest distance between the departure port and a VMS point for 

each logbook entry was taken.  

 

3.3.6. Environmental Data 

Hindcast wave height data was available to use which coincided with the 2011 VMS and logbook 

data (Neill et al., 2014). Wave height values at a 3km grid resolution were joined to the VMS position 

data such that each VMS position record was attributed with the day’s average wave height at that 

position. Wind data was obtained from the Ronaldsway Meteorological office in the Isle of Man 

containing wind speed and direction values at 1-hourly intervals. The overall average daily wave 

height and average daily wind speed were correlated, but nevertheless average wind speeds 

between 10 – 40km-1 could relate to an average wave height of 1m (Figure 3.2). Depending on the 

wind direction some areas of the island would be sheltered and others exposed. An average wind 

speed of 20kmph related to wave heights of 0 – 2m experienced by vessels fishing, and vessels 

fishing in conditions of 1m wave height were related to average wind speeds of around 10 – 

40kmph. A high wind speed does not necessarily translate as high wave heights in all areas, e.g. due 

to a shorter fetch in sheltered areas closer to the coastline. Using an average wind speed for the 

whole island may therefore not account for sufficient spatial variation in sea conditions around the 

island; it would be better to use the spatial wave height data where possible. Analysis relating to the 

decision of when to fish therefore used only 2011 VMS and logbook data with the 2011 wave data. 

 

 

Figure 3.2. The relationship between the A) average wind speed and average wave height recorded 
each day in the Isle of Man and B) the average wind speed and the wave heights experienced by 
vessels fishing in the Isle of Man. There is high variability in the wave heights recorded at fishing 
points, as vessels can normally find shelter somewhere around the island, so some vessels will 
experience lower than average wave conditions. 
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3.3.7. Basic Economic Data 

Fuel consumption per tow hour and per steaming hour were significantly correlated with VCU (per 

tow hour F(1,11) = 29.98, Adj R-sq = 0.71, p<0.001; per steam hour F(1,11) = 10.65, Adj R-sq = 0.45, 

p<0.01) (Shepperson et al., 2016; Chapter 2). Equations for fuel consumption per towing hour and 

fuel consumption per steaming hour were thus derived per vessel VCU: 

Fuel consumption per tow hour = 0.146 (VCU) - 0.808 

Fuel consumption per steam hour = 0.142 (VCU) + 4.358 

The amount of fuel used per trip could then be estimated, accounting for differences in fuel 

consumption by size. Total fuel consumption was calculated as: 

Total fuel consumption = (Fueltow * Towing hours) + (Fuelsteam * Steaming hours) 

where Fueltow is the fuel consumption per tow hour, and Fuelsteam is the fuel consumption per steam 

hour. Total fuel cost can then be calculated as: 

Total fuel cost = Total fuel consumption * Fuel price 

Fishermen consistently stated that a third of the takings go to the crew wages, therefore a third of 

the scallop landings value was subtracted before the profits were calculated. 

 

3.3.8. External Vessels 

The term “External” vessel is used hereon to refer to any vessel which is not registered to the Isle of 

Man. External vessels are permitted to fish for scallops in the IOM territorial sea, provided they hold 

a licence to do so. To understand the fleet and fishery dynamics, and to model the activity of the 

fishery, it is necessary to have some understanding of whether and how the activity of the External 

vessels differs to that of the Manx vessels. 

 

3.3.9. Data Analysis 

The likelihood of a vessel fishing or not on each day was estimated using a generalised linear mixed 

effects model (GLMM) implemented in the package lme4 in R (Bates et al., 2015; Zuur et al., 2009). 

The binary response variable was whether or not a vessel fished on a particular day. A binomial error 
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distribution was used. The number of days since the start of the season, the wave height, the last 

day’s catch for that vessel, the average wave height over the next week, and the total catch over the 

previous 2 weeks for that vessel were added as fixed effects, with by-vessel random slopes and 

intercepts for the effect of wave height. 

Variables were scaled to reduce the effects of different scales of variables (e.g. wave height values of 

0-4, catch values of 0 – 6000) (Table 3.3). The wind speed, the average wave height over the next 14 

days, the vessels average catch over the last week, and the next day’s average wave height were 

removed from the model using variance inflation factors (VIFs; selecting so that all VIFs < 2) to 

reduce collinearity. Individual vessels were included as a random effect, to control for non-

independence, as the responses of each individual are more likely to be correlated with each other, 

compared to responses from another individual. Models with and without a random component 

were compared to determine the influence of including a random effect. Akaike’s Information 

Criterion (AIC) was used to select the optimal model structure, estimated with a maximum likelihood 

fit. This showed that including individual vessels as a random effect improved the model fit, and that 

all fixed effects should be included in the final model. The final model was re-fit using restricted 

maximum likelihood (REML) criterion. 

 

Table 3.3 Treatment of Variables included in the model. Grey shaded rows indicate variables omitted 
due to collinearity. 

 Scaled Removed 

due to VIF 

Model Term 

Wave height Y  Fixed effect 

Number of days since start of season Y  Fixed effect 

Last day’s catch for that vessel Y  Fixed effect 

Average wave height over the following week Y  Fixed effect 

Total catch over previous 2 weeks Y  Fixed effect 

Individual vessel   Random slope and intercept 

Wind speed y Removed  

Average wave height over following 2 weeks Y Removed  

Vessel’s average catch over the last week Y Removed  

Next day’s average wave height y Removed  

 

In the context of pattern oriented modelling (POM), a pattern is a “defining characteristics of a 

system” or “anything beyond random variation” (Grimm et al., 1996, 2005). A pattern could refer to 

the spatial distribution of fishing activity, trends in catches over time, the variability in catches 

between vessels, or simply a qualitative description that vessels prefer one ground to another. 
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Throughout the results, the term ‘pattern’ is therefore used to refer to any characteristic of the 

system that a model could be compared to. 

 

3.3.10. Questionnaire Data 

Sixteen Manx fishermen were interviewed to understand fishing behaviour in the Isle of Man scallop 

fishery. Numerical results were presented in Chapter 2; results from the VMS and logbook analysis in 

this chapter are discussed in the context of more qualitative information provided by fishers during 

these interviews (Chapter 2; Shepperson et al., 2016). 
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3.4. Results 

A total of 4903 scallop dredging logbook entries were recorded by Manx vessels during the king 

scallop fishing seasons (1st November – 31st May) in years 2011, 2012, and 2013. Catches were 

recorded by 29 vessels during this period; the vessels ranged in size from 9.84m to 18.25m 

registered length. Over the three studied years, 3500 tons of scallops were recorded in landings, 

with a value equivalent to approximately £4.6 million. Manx vessels recorded a total of 133344 VMS 

position records over the study period, 119183 of which were classed as fishing activity, which could 

be linked to 4374 logbook records. Non-Manx vessels recorded 5969 logbook entries and 187089 

VMS position records, landing 6600 tonnes of scallops, valued at £9.5 million. The following analysis 

used only Manx vessel data, until section 4.8 where a comparison between Manx and External 

vessels is presented. 

 

3.4.1. Trends in Fishing Effort and Landings 

Manx scallop vessels operate primarily as day trips (trips are essentially restricted to one day in 

length with a curfew), with 97% of logbook records displaying single day trips, and 81% of trips 

landing catches in the same port they had departed from. There was spatial variation in activity and 

catches, with vessels travelling furthest but catching least at Ramsey, whilst Port St Mary had the 

highest ratio between average travel distance and average landings (Table 3.4). Consequently, Port 

St Mary had the highest value per unit fuel consumed, and Ramsey the lowest. During a 

questionnaire survey (Shepperson et al., 2016; Chapter 2), the average minimum viable catch per 

dredge hour was reported as 6.7kg per dredge per hour. This suggests that the fishers in the Isle of 

Man scallop fishery may be operating close to the limits of what the fishers consider as economically 

viable, as the mean experienced catch rate is below this rate at two of the grounds. This could also 

suggest some reluctance of vessels to move to a different port / ground where they may achieve 

better catch rates.  
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Table 3.4. Mean values per trip, with standard error, leaving from each port, and fishing over each 
ground.  Fishing grounds: CHI = Chickens, EDG = East Douglas, POA = Point of Ayre, TAR = Targets 

 Ports Fishing Grounds 

 Douglas Peel Port St 
Mary 

Ramsey CHI EDG POA TAR 

Scallops landed 
(kg) 

718.7 
± 9.9 

695.5 
± 8.8  

853.6 
± 10.9 

491.9 
± 9.5 

863.08 
± 9.2 

639.15 
± 8.0 

681.53 
± 87.1 

619.03 
± 10.3 

CPUE (kg per 
dredge hour) 

6.26 
± 0.09 

6.03 
± 0.07 

7.49 
± 0.09 

4.78 
± 0.08 

7.44 
± 0.08 

5.64 
± 0.07 

7.09 
± 0.66 

5.35 
± 0.07 

Departure 
Distance (km) 

23.64 
± 0.19 

23.14 
± 0.15 

16.06 
± 0.22 

35.13 
± 0.22 

19.21 
± 0.20 

27.42 
± 0.22 

32.01 
± 1.49 

23.69 
± 0.21 

Fuel Used 
277.67 
± 3.52 

269.02 
± 2.37 

251.54 
± 2.48 

244.83 
± 2.99 

263.31 
± 2.17 

263.81 
± 2.66 

248.40 
± 23.10 

262.84 
± 3.14 

Profit 
1035.7 
±16.4 

985.9 
± 13.1 

1209.1 
± 16.2 

744.6 
± 16.7 

1209.13 
± 13.71 

912.27 
± 13.02 

1218.13 
± 
192.39 

871.38 
± 15.58 

Value per unit 
fuel 

4.67 
± 0.07 

4.42 
± 0.05 

5.61 
± 0.07 

3.73 
± 0.07 

5.41 
± 0.06 

4.28 
± 0.05 

5.71 
± 0.78 

4.08 
±0.07 

Number of trips 1070 1780 1068 791 1558 1557 26 1101 

 

 

3.4.2. The temporal distribution of effort 

Vessels exhibited a preference towards fishing at locations or times with lower wave heights (Figure 

3.3a); the distribution of the wave heights experienced by fishing vessels (red) is more skewed 

towards smaller wave heights than the distribution of all wave heights modelled (blue). The 

response to wave height is heterogeneous, however; some vessels appeared to show more 

avoidance of higher wave heights than others (Figure 3.3b). Fishers stated during a questionnaire 

that they would not fish above an average wave height of 2.45m (Shepperson et al., 2016, Chapter 

2), which is reflected in Figure 3.3a and 3.3b.  The average wave height around the whole island was 

only above 2.45m on 9 days in the 2011 scallop fishing season (4%). The average wave height per 

ground was over 2.45m on 19 days at Chickens, 14 days at East Douglas, 6 days at Point of Ayre, and 

9 days at Targets, representing 9%, 7%, 3% and 4% of the 212 days available for fishing (i.e. in the 

open season) respectively. The maximum wave height per day recorded anywhere around the island 

was over 2.45m on 58 days, however. The maximum wave height per ground was over 2.45m on 55 

days at Chickens, 48 days at East Douglas, 39 days at Point of Ayre, and 47 days at Targets, 

representing 26%, 23%, 18% and 22% of the 212 possible scallop fishing days respectively.  
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Figure 3.3. A) Wave heights at all grid points throughout 2011 (blue), wave heights recorded at all 
VMS points (red), and overlap in the distributions displayed as purple.  B) The wave heights 
experienced by each vessels. 

 

Sea conditions may determine whether a vessel is or is not physically able to fish on a particular day, 

but there may be other internal state variables, such as previous catches, that further influence the 

decision to fish. A mixed effects binomial model was used to analyse the probability of fishing on a 

given day. The optimal structure included a random intercept and slopes, indicating that the 

response differed between individuals (Table 3.5). As expected, as the wave height increased, the 

likelihood of fishing decreased (Figure 3.4). A typical vessel had around a 40% probability of fishing 

on a day with no waves, but this probability fell as wave height increased, with a near zero 

probability of fishing once waves reached over 2m average height, which was reflected in the 

questionnaire responses (Shepperson et al., 2016, Chapter 2).  Wave height therefore plays an 

important role in determining whether a vessel will fish or not, but having a calm sea state does not 

mean all Manx vessels will fish in Manx waters all of the time. There was also considerable variability 

between individual vessels, with some vessels very likely to fish in good conditions, and others very 

unlikely to fish even if conditions were good (Figure 3.5). Similarly, as the season progressed, the 

likelihood of fishing decreased, but there was variation between individual fishers. When catches 

were high, a vessel was highly likely to fish again the next day, but if catches were low, they were 

much less likely to fish the following day (Figure 3.4). If catches fell below 4000kg the likelihood of 

fishing again the next day declined. There was also variability in this response, with some vessels 

likely to fish again at lower catch rates than others (Figure 3.5). More long term variables, the 

previous 2 weeks catch, and the predicted wave heights for the following week, had a much weaker 

influence on the likelihood of fishing (Figure 3.4). 
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Figure 3.4. The average probability of a vessel  fishing each day, predicted by the fixed coefficients, 
using a binomial mixed effects model with a random slope and intercept for each individual fisher. 

 

 

Figure 3.5. The predicted probability of fishing explained by wave height (A), days since the start of 
the season (B), and previous day’s catch (C), for each individual vessel (random effect). 

A B C 
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Table 3.5. Comparison of model 1 (no wave height data, random slope and intercept), model 2 (wave 
data, random intercept only), and model 3 (wave data, random slope and intercept) 

 Model 1 

(No wave height fixed 
effect, random slope and 

intercept) 

Model 2 

(Random intercept) 
Model 3 

(Random slope 
and intercept) 

 B se p B se p B se p 

Fixed Parts          
Intercept 0.04 0.010 <0.001 0.25 0.03 <0.001 0.25 0.03 <0.001 
Wave height - - - -0.13 0.005 <0.001 -0.13 0.02 <0.001 
Day in Season -0.08 0.005 <0.001 -0.08 0.005 <0.001 -0.08 0.005 <0.001 
Previous day catch 0.10 0.005 <0.001 0.11 0.005 <0.001 0.10 0.005 <0.001 
Previous 2 weeks catch 0.02 0.006 <0.001 0.02 0.006 0.003 0.02 0.006 <0.001 
Next week wave height -0.02 0.005 <0.001 -0.02 0.005 0.001 -0.02 0.005 0.001 

Random Parts          
Nvessel 29 29 29 
ICCvessel 0.349 0.134 0.144 

Observations 6159 6159 6159 
AIC 4298.291 4575.454 4269.990 

 

3.4.3. The Spatial Distribution of Effort 

Manx vessels operating from the Isle of Man fish primarily within the 12nm territorial sea; 79% of 

trips took place completely inside the 12nm territorial sea (i.e. all VMS points for a trip were inside 

the 12nm boundary), 21% of trips were mainly within the 12nm Sea (i.e. over half of VMS points for 

a trip were inside the 12nm boundary), and <1% of trips recorded more than half or all VMS points 

outside of the 12nm sea. Vessels preferred to fish at the ground closest to the port they departed 

from (Table 3.6). 93% of all trips departing from Port St Mary fished over the ground called Chickens, 

92% of all trips from Douglas fished at East Douglas, and 86% of trips from Ramsey fished at East 

Douglas. From Peel there was more variation with 63% of trips at Targets, and 35% at Chickens; the 

port of Peel is located within similar distance from the two grounds. There is therefore a preference 

to fish at the grounds closest to the departure port. 

The footprint of fishing (i.e. total extent of fishing activity) was relatively constant per year, with 

Manx vessels fishing in 48% of the area of the territorial sea in 2011, 54% in 2012, and 56% in 2013. 

At the start of the fishing season activity was concentrated over smaller spatial extents.  In 

November 2011 32% of the area of the territorial sea was fished, 21% in December, 40% in Jan, 34% 

in Feb, 44% in March, 40% in April, and 24% in May. The concentration of activity at the start of the 

season may be due to vessels targeting the areas with the highest scallop densities, or due to the 
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harsher environmental conditions over the winter months restricting available patches. In November 

the wind direction was mainly from the south and east, and fishing activity was concentrated on the 

west of the island (Figure 3.7). In comparison, in December the prevailing winds were from the west, 

with wave conditions reaching over 2m at the south of the island. Consequently, fishing activity was 

clustered to the more sheltered eastern side of the island (Figure 3.7). Fishers also demonstrated 

‘fishing the line’ behaviour (Goñi et al., 2008), concentrating activity around the edge of closed areas 

(Figure 3.6), due to a real or perceived spill-over effect; depending on the spatial scale of a model, it 

may be necessary to account for this effect. 

 

Table 3.6.  Proportion of trips made from each port to each fishing ground. Fishing grounds: CHI = 
Chickens, EDG = East Douglas, POA = Point of Ayre, TAR = Targets 

 CHI  EDG  POA  TAR  

 Number % Number % Number % Number % 

Peel 564 35.0 26 1.6 3 0.2 1017 63.2 

Ramsey 13 2.0 556 86.2 21 3.3 55 8.5 

Douglas 58 5.8 921 92.3 2 0.2 17 1.7 

Port St Mary 923 93.3 54 5.5 0 0 12 1.2 

 

 

Figure 3.6. Vessels concentrate activity around the borders of closed areas, known as ‘fishing the 
line’, due to a real or perceived spill-over effect. No geographic coordinates or land references are 
displayed, to maintain fisher confidentiality. 
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Figure 3.7. Wave heights, wind conditions, and fishing intensity around the Isle of Man, for each month in the scallop fishing season (Jan Feb Mar Apr May 
Nov Dec) in 2011. Row 1: Average monthly wave height in each 3km grid cell of the 12nm territorial Sea around the Isle of Man. Row 2: Concentration of 
fishing activity (VMS points) around the Isle of Man; no fishing took place in white areas. Row 3: Wind roses for average daily wind conditions, indicating the 
direction, strength, and frequency of wind conditions.  



Chapter 3: VMS and Logbook Analysis 
 

122 
 

3.4.4. Individual heterogeneity in behaviour and catches 

The total extent of fishing activity by each vessel varied, from under 1000km2 (10% of the study 

area) to over 6000km2 (68% of the study area), suggesting that some vessels have a stronger ground 

preference than others (Figure 3.8a). Generally vessels did not fish over a large extent during one 

fishing trip, remaining in a relatively small area (Figure 3.8b). The average extent of fishing points 

during one trip spread across 36km2, which equates to 4 grid cells in a 3km grid. Nevertheless, some 

trips were more spread out, suggesting that vessels sometimes substantially changed location during 

a fishing trip. Two vessels displayed larger spread about their fishing points per trip, suggesting they 

were more likely to move location substantially (Figure 3.8c). Nevertheless, during 60% of all trips 

the towing took place in only 19km2 (equivalent to 2 cells), in 70% of trips, 31km2 (3 cells), in 80% of 

trips, 49km2 (5 cells), and in 90% of trips in less than 88km2 (10 cells), indicating that a day’s fishing 

activity normally took place within a relatively small area (Figure 3.8d). Vessels also favoured certain 

fishing locations and fished these preferentially; 10 – 30% of each vessel’s tows took place in only 1% 

of the studied area. The level of ground preference varied between vessels, with one vessel 

recording over 25% of all tows in only 10 grid cells (an area of 90km2).  
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Figure 3.8. Individual variation in fishing extent and location. A) The total extent of all fishing points 
by each vessel. B) The extent of fishing points per trip. C) Individual variation in the extent of all 
fishing points per trip. C) The spatial distribution of individuals’ fishing effort, indicating the 
proportion of fishing activity recorded in few cells. 

 

There was individual heterogeneity in catch rates and catch efficiencies (Figure 3.9). The total catch 

(F(1,67) = 38.59, R=0.36, p=<0.001), total fuel used (F(1,67) = 86.98, R=0.56, p=<0.001), and average catch 

rate (F(1,65) = 60.09, R=0.47, p=<0.001) increased with VCU, but the VPUF did not show a correlation 

with vessel size (F(1,65) = 0.72, R=0.00, p=0.40). One large vessel made very few trips, and so was 

removed from the correlation analysis of catches as an outlier. 
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Figure 3.9. Individual variation in landings and catch rates (top row), and the relationship between 
catches and vessel size (bottom row). CPUE = catch per unit effort. VPUF = catch value per unit of fuel 
consumed 

 

3.4.5. How do patterns in activity differ between Manx and external 

vessels? 

Between 2011 – 2013 fishing trips were made by 29 individual Manx vessels, and 106 individual 

External vessels. External vessels (i.e. non-Manx vessels) were comprised of English, Scottish, Welsh, 

Northern Irish, Irish and Belgian vessels, who accounted for over half of the recorded trips over the 

study season (5969 logbook records, cf. 4903 by Manx vessels). Of these, 59% of the logbook records 

were from Scottish, 25% from Northern Irish, 15% from English, and <1% each from Welsh, Belgian 

and Irish vessels. External vessels accounted for the largest proportion of recorded landings over the 

study season (6600 tonnes of king scallops cf. 3500 tonnes by Manx vessels).   

External vessels fished in 56% of the territorial sea in 2011, 2012, and in 2013, similar to the 48%, 

54% and 56% of the territorial Sea fished by Manx vessels in 2011, 2012, and 2013 respectively 

(Figure 3.10). External vessels made 42% of their trips to CHI, 41% to EDG, 6 % to POA and 11% to 

TAR. Manx vessels made 36% of their trips to CHI, 36% to EDG, < 1% to POA and 27% to TAR. Manx 

vessels therefore showed more of a preference towards TAR than external vessels, and external 

vessels showed more of a preference towards POA more than Manx vessels. POA is located to the 

north of the island, therefore the ground of closest proximity to Scottish ports. 
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Figure 3.10. Fishing footprint by Manx vessels (top row) and external vessels (bottom row) in 2011 – 
2013 (left – right). 

 

The number of trips made by external vessels was correlated with the number of trips made by 

Manx vessels (Figure 3.11, Pearson correlation, r = 0.58, n = 19, p = 0.01). The correlation was 

stronger in the first five months of the fishing season (Pearson correlation, r = 0.77, n = 13, p < 

0.001); in the last two months of the fishing season, external vessels made fewer trips than Manx 

vessels. The wave heights experienced by vessels from each nationality were similar, suggesting that 

vessels fished under similar daily conditions, although the Belgian vessels appeared to make their 

trips mainly during rougher months, which could relate to the start of the fishing season when 

catches were perhaps higher (Figure 3.11). 

 

2011 Manx 2012 Manx 2013 Manx 

2011 External 2012 External 2013 External 



Chapter 3: VMS and Logbook Analysis 
 

126 
 

 

 

Figure 3.11. A) The number of trips made by Manx and by External vessels per month (2011-2013 
therefore multiple points per month), and B) the wave heights experienced during fishing trips 
according to the nationality of the vessel. The numbers under the boxplots indicate the number of 
data points. 

 

External vessels landed slightly higher quantities of scallops per trip, but achieved a similar CPUE 

(Figure 3.12). External vessels were larger than Manx vessels, and made more trips that were longer 

in duration.  Some trips by external vessels showed a lower CPUE and VPUF than Manx vessels, with 

Manx trips slightly more skewed to higher VPUF. Nonetheless, there were not substantial 

differences between the catches of Manx and External vessels (Table 3.7; Figure 3.12).  

 

A B 
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Figure 3.12. Boxplots of average landings characteristics per vessel over a scallop fishing season, 
comparing Manx and External vessels. 

 

Table 3.7: Characteristics of the logbook trips recorded during the study period. 

  Manx  External 

 Mean Min Max Mean Min Max 

Registered Length (m) 14.17 9.84 18.25 17.37 9.45 40.11 

Engine Power 164.8 60.0 372.0 270.4 66.0 1095.0 

Gross tonnage 33.48 1.22 85.00 68.58 4.70 396.00 

Fuel use per trip 260.80 18.77 921.5 538.40 21.41 2163.0 

CPUE (kg per dredge hour) 6.38 0.017 30.42 6.31 0.06 30.67 

VPUF (Value per unit fuel) 4.77 0.00 25.76 4.51 0.03 25.49 
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3.5. Discussion 

When attempting to build an individual-based model that can predict the behavioural response of 

fishermen to management, a detailed understanding is required of the characteristics of, and 

behaviours in, the system to be modelled.  This Chapter provided a characterisation of fishing 

activity in the Isle of Man scallop fishery, which informed the development of an IBM. In addition, it 

documented values and patterns in the system (e.g. catches, costs, spatial distribution of effort) that 

could be used for model validation. 

 

3.5.1. Informing Model Structure 

VMS and logbook data highlighted characteristics of the Isle of Man scallop fishery relevant to 

developing an individual-based model of fishing behaviour. At its simplest level, identifying 

characteristic patterns in a system informs the structure of the model in terms of what entities and 

processes are required. For example, the Isle of Man scallop fishery is a simple system with a small 

number of vessels (26) operating mainly day trips, largely steaming from and returning to the same 

port, and completing the majority of fishing within the 12nm Sea. Fishing activity was concentrated 

over known grounds, more so at the start of the season, then the distribution widened as the season 

progressed. This could indicate targeting behaviour, with vessels prosecuting the areas with most 

scallops at the start of the season, and as these grounds become depleted, moving to less profitable 

areas as the season progressed (Charnov, 1976; Murray et al., 2011). With vessels leaving from and 

returning to the same ‘home port’ this could suggest that a foraging model based on central place 

foraging (CPF) would be an appropriate representation of the system. CPF theory predicts foraging 

activity in systems where foragers must return to a ‘home’ location at the end of a foraging trip, 

taking account of the travel cost when deciding where to forage (Orians and Pearson, 1979). Such a 

model would therefore require processes to calculate the travel cost associated with fishing 

grounds, in relation to the expected catch rates. 

The analysis highlighted considerable heterogeneity between individuals even in a small fishery. 

There was variability in individual fishers’ abilities and requirements; some vessels caught more than 

others, and some were able to fish in higher sea states than others. When developing a model it 

would be necessary to decide what level of detail is required in the model, relating to the questions 

being asked; if a model was designed to predict how impacts of management may vary between 

fishers within in a fishery, it would be necessary to incorporate all of the variability in ability and 

requirements between individuals. 
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External vessels contributed a considerable proportion of the catch from the Isle of Man, therefore it 

would be necessary to include this extraction in any model of the fishery. The spatial distribution of 

effort by external vessels was slightly different to the distribution of Manx vessel effort, and the 

amount of effort in the later part of the season was less correlated to the Manx effort. External 

vessels may decide when and where to fish in a different way to the Manx vessels; in a model the 

behavioural mechanisms with which individuals decide when and where to fish may therefore need 

to be different. In particular, External vessels may be more likely, or more able, to fish in alternative 

locations (i.e. more fishing opportunities available to them, such as permissions in their home 

country or being larger and able to travel further afield), which in a model could translate as less 

effort by these externals vessels in Manx waters when catches are lower. In contrast, Manx vessels 

are perhaps less likely to leave the Manx fishery. Only six out of 16 fishers stated they had travelled 

further than 50 miles away from the Isle of Man for fishing; most of these fishers stated they had not 

done this often, identifying only a single year or extreme circumstance under which they left the 

Manx fishery. Seven out of 16 interviewed fishers stated they may sometimes fish for another 

species (mostly Nephrops norvegicus), but six of these stated they had only done this in one year. 

Therefore, the decision process of whether or not to fish each day may need to be a different for 

Manx and External vessels. External vessels (such as Scottish or Irish vessels) may be able to select 

between fishing in Manx waters, and their own waters, on a more day-to-day basis. The data 

presented in this Chapter were only recorded in and around the Isle of Man scallop fishery, 

therefore it was not possible to understand how often the External vessels fished in Manx waters 

compared to elsewhere. 

 

3.5.2. Informing Behavioural Rules in a Model 

There are some unrealistic assumptions associated with optimal foraging theory, these include: 

foragers have ideal knowledge of resource levels in each patch; foragers are able to move equally 

between all patches; and foragers have equal competitive abilities. There was spatial variation in 

catch rates between grounds and ports, which suggests some possible violations of these 

assumptions. There could be two reasons why fishers did not move to a ground with higher catch 

rates: fishers may not have ideal knowledge of all resource levels in patches, and therefore did not 

know that there were better catch rates to be achieved on a different ground (this is unlikely as 

there is considerable sharing of information among fishers in the Isle of Man as it is a small fishery); 

and/or fishers may be aware of the better catch rates but are unable or unwilling to change grounds. 
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Some vessels demonstrated strong location affinity, with a large proportion of their fishing activity 

occurring in a small area. Whilst this activity may have been focussed over highly profitable scallop 

grounds, it is also possible that this activity could have been due to ground preference. A reluctance 

to change grounds could be related to risk averse behaviour, with vessels demonstrating habitual 

preference for a particular ground, being averse to try new fishing locations due to safety 

considerations. Indeed, following area closures in the Isle of Man, some vessels remained fishing in 

seemingly low yield areas, stating that they were not able to fish areas on the other side of the 

island (Karen McHarg, Director of Fisheries, DEFA, pers. comms.). This suggests that modelling 

fishers with truly optimal behaviour may overestimate catches. This is in congruence with literature 

that suggests that fishers are not always profit maximisers (Holland, 2008), and that they are risk 

averse and often show strong patch affinity and inertia to change (Eggert, 2007). 

Interference competition can influence the distribution of foragers (Hassell and Varley, 1969), and 

has also been demonstrated in fisheries (Poos and Rijnsdorp, 2007; Rijnsdorp, 2000). Nevertheless, 

in the Isle of Man fishers stated that proximity to other vessels was unimportant, with 11 out of 16 

vessels stating the closest they would fish to another vessel was 0nm, and the others stating values 

less than 0.5nm. Some fishers explained that as all vessels tow the gear around the grounds in the 

same direction, it is possible to be very close to other vessels.  Therefore, in a model of scallop fisher 

foraging behaviour, displacement competition may not be relevant. 

Wind direction and sea state appeared to influence the spatial distribution of activity, with vessel 

activity clustered on the opposite side of the island to the strong prevailing winds in November and 

December. Nevertheless, as trips from each port tended to be to the grounds closest to that port, 

the weather conditions may have had more of an influence on the decision of whether to fish or not 

per day, rather than directly influencing where they fish on a particular day. Fishers stated that an 

average of 111 days per year are lost to bad weather (median of 90, range from 35 – 210) (Chapter 

2). This value related to both the queen scallop and king scallop fishing season, but as the king 

scallop fishing season takes place over winter months (Nov – May), it is more likely that a higher 

proportion of these days related to the king season. Using a mean wave height per ground suggested 

that 6 – 19 days per king scallop season could be lost to bad weather (wave height  > 2.45m 

threshold identified in the surveys), whereas using a maximum wave height per ground suggested 39 

– 55 days could be lost to bad weather. Fishers may therefore have overestimated the frequency 

with which sea state is a limiting factor, or, using a modelled average or maximum wave height at a 

broad ground area may underestimate the number of days a vessel is unable to fish. However, 

external environmental variables may not be the only influencing factor on whether vessels fish; as 

demonstrated here, even with 0m wave height there is on average a 40% chance of fishing. The 
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previous day’s catch also influenced the likelihood of fishing; as catches fell, the chance of fishing 

again the following day also fell. As the season progressed, the likelihood of fishing also reduced. 

There was considerable variation between individuals in their likelihood of fishing under different 

conditions. 

 

3.5.3. Predicting the outcome of management 

Vessels demonstrated behaviour that has been termed ‘fishing the line’, in which activity was 

concentrated around the edge of closed areas (Goñi et al., 2008). A model may need to account for 

this response if predicting the effect of closed areas; nevertheless, the requirement to include this 

response would depend on the scale of the model, and the level at which the model was validated. 

In addition, if the spill-over effect is merely perceived (i.e. there is not a real increase in catches, but 

fishers perceive there is and thus increase effort), or if the stock dynamics and thus spill-over are not 

modelled, the ‘fishing the line’ response would have to be achieved through model calibration by 

imposing a rule of thumb. 

In EBFM or SBFM, the wider ecosystem impacts of a management action should be considered 

(Pikitch et al., 2004). If management simply displaces effort to another less fished, more sensitive 

habitat, there may not be a positive environmental impact (Dinmore et al., 2003). If effort is 

displaced to another fishery with less stringent management, the problem of overfishing may just be 

relocated. In this context, it is necessary to consider the exit decisions of fishers. There can be a 

range of variables influencing the decision of a vessel to leave a fishery, and they may vary between 

individuals (Bucaram and Hearn, 2014). Whilst Manx vessels may be unlikely to leave the Isle of Man 

to fish elsewhere, non-Manx vessels may be more likely to do this. The number of trips made per 

month by Manx and external vessels was correlated, but less so in the last two months of the 

season. This may have been related to catches, i.e. External vessels may withdraw from the fishery 

when catches get low, but Manx vessels remain in the fishery. When asked how easy it would be to 

find an alternative source of income if they were not fishing for scallops, eight said it would be 

difficult, two said impossible, only three said easy, and the remaining were unsure. This indicates 

that it is possible that Manx fishers may turn to other fisheries or other sources of income, but it is 

more associated with extreme conditions.  

If management causes a decline in catches or profitability, External vessels may be less likely to fish 

in the Isle of Man, displacing their effort to another fishery. Conversely, when scallop catches are 

high, more external vessels may join the fishery (BBC, 2016). Whilst outside the scope of this project, 
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predicting the wider response of vessels (particularly non-Manx vessels) may be an important 

component of an EBAFM on a larger scale (i.e. with displacement between fisheries). Manx fishers 

have suggested, both in the questionnaire survey (6 out of 16) and in subsequent media interviews 

(BBC, 2016), that excluding External larger vessels could benefit the fishery. Catches by External 

vessels constituted a substantial proportion of the landings, therefore it would likely be beneficial to 

the Manx fleet to exclude this effort; but this effort would be displaced to another area or another 

fishery. This highlights how there can be multiple drivers, and different groups can have different 

scales for the definition of sustainably managed (Hilborn et al., 2015); the Manx fishery itself may be 

more sustainable if External vessels were excluded, but the displaced effort may cause 

environmental damage or overfishing elsewhere.  

 

3.5.4. Informing model validation 

This analysis identified characteristic patterns (e.g. in catches, in the spatial distribution of effort) in 

the Isle of Man scallop fishery, which could be used to validate an IBM of fishing activity. Both strong 

and weak patterns should be considered (Grimm and Railsback, 2012); strong patterns are often 

described by data or equations, whereas weak patterns are often more qualitative. A strong pattern 

is something pronounced, for example in a fishery this might be spatial patterns in effort; recreating 

this could be a good indicator that you have captured the system well. Nevertheless, weak patterns 

(e.g. vessels preferring one ground over another) are less pronounced, and may be reproducible by 

different mechanisms in a model. If a model can reproduce multiple weak patterns it can be a strong 

indicator that structural realism has been achieved (Grimm and Railsback, 2012). The spatial pattern 

of effort is a strong pattern that characterises the Isle of Man system; activity is clustered over 

known fishing grounds, and the extent increases as the season progresses. In addition, there were 

multiple other weaker patterns that could be used to validate a model. For example, there were 

different proportions to trips to each fishing ground, and the proportion of the catch from each 

ground was not the same as the proportion of effort at each ground (i.e. the ground with the most 

effort was not the ground with the highest landings). There was individual variation in catches, and 

catches and costs varied with vessel size. Different processes in the model will influence these 

patterns, so recreating multiple patterns gives more confidence that the underlying mechanisms of 

behaviour have been realistically captured (Grimm and Railsback, 2012). 
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3.6. Conclusion 

This analysis demonstrated that VMS and logbook data can be used to characterise activity in a 

fishing system, providing the information required to inform model development, and the values 

and patterns required to validate such a model. In addition, questionnaire interview data provided 

useful contextual information to consider alongside these trends. Developing an IBM of fishing 

activity can have relatively substantial data requirements, but this analysis has demonstrated that in 

systems with vessel monitoring system and logbook recording in place, existing data could provide 

much of the information required to develop such a model. 
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4.1. Abstract 

Understanding the distribution of fishing activity is fundamental to quantifying its impact on the 

seabed. Vessel monitoring system (VMS) data provides a means to understand the footprint of 

scallop dredging and other fisheries. Automatic Information System (AIS) data could offer a higher 

resolution alternative to VMS data, but before AIS data can be used as a data source for 

management, differences in coverage and interpretation must be understood and addressed. 

 

Concurrent, individually identifiable, VMS and AIS data for vessels in the English Channel scallop 

fishery were compared. There were substantial gaps in the AIS data coverage, the magnitude of 

which varied between individual vessels; 45 – 99% of each individual vessel’s VMS data had no 

directly matching AIS data. Using only directly matching AIS data, VMS data overestimated the 

fishing effort by 129 hours compared to the directly matching AIS data. The method of analysis also 

influenced the interpretation of the footprint and extent, for example, analysing VMS data with a 

1km grid underestimated fishing extent, but a 5km grid overestimated extent. Interpolating the VMS 

data improved the footprint estimate. 

 

The present gaps in coverage of AIS data may make it inappropriate for absolute estimates of fishing 

footprints and intensity. VMS already provides a means of collecting more complete fishing position 

data, shielded from public view. Hence, there is a clear incentive to increase poll frequency to 

provide the basis for more accurate calculation of fishing footprints, which would ultimately benefit 

both fishers and scientists. 
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4.2. Introduction 

 

4.2.1. We need to understand fishing footprints to understand fishing 

impacts 

Physical disturbance by towed bottom-fishing gears is the largest cause of human disturbance to 

continental shelves in all areas of the world. In order to understand the extent and consequences of 

these disturbances it is necessary to have an accurate understanding of the distribution in space and 

time of that disturbance. For these reasons, the use of vessel tracking data to analyse patterns of 

fishing effort and the impact of fishing pressure on marine environments is a key area of fisheries 

science (Campbell et al., 2014; Hintzen et al., 2012; Joo et al., 2015; Lee et al., 2010; Mccauley et al., 

2016; Russo et al., 2016).  

 

4.2.2. VMS data is increasingly used to analyse fishing activity, but has 

limitations 

Vessel Monitoring Systems (VMS) were introduced as an enforcement tool, but the resulting data 

are increasingly important for scientific research and management (Lambert et al., 2012; Murray et 

al., 2011, 2013). Despite the importance of these data, the temporal resolution of VMS is relatively 

low in Europe, usually with a 2 hourly poll rate. The poll rate can be varied by a fisheries 

management authority in accordance with the intensity of a fisheries management regime and the 

resources available to respond to VMS observations (FAO, 1998). The 2 hourly poll rate in Europe is 

designed as a compromise between adequate resolution and costs to fishers. Interpolation of VMS 

data is typically used to fill in the gaps between successive VMS points to produce a continuous 

track. VMS data can be joined to grids to analyse the extent of, and patterns in fishing intensity, 

either as raw point data, or as interpolated tracks. However, the methodology used to analyse VMS 

data can influence the estimation of fishing intensity (Piet and Hintzen, 2012), and the relationship 

between fishing intensity and epifaunal biomass (Lambert et al., 2012). In particular, the grid cell size 

used for analysis influences the intensity estimates (Dinmore et al., 2003; Hinz et al., 2013; Lambert 

et al., 2012; Piet and Quirijns, 2009). 
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4.2.3. AIS data has a higher temporal resolution, and could be used to 

investigate fishing activity. 

There has been a recent increase in interest in the potential for using publicly available Automatic 

Identification System (AIS) vessel tracking data to investigate fishing activity (Mccauley et al., 2016; 

Natale et al., 2015; Russo et al., 2016). AIS data is openly available to the public, at high resolution, 

whilst VMS data is subject to strict confidentiality regulations, which mean often only highly 

aggregated data is available to scientists (Hinz et al., 2013). Whilst VMS is mandatory on fishing 

vessels >12m in length in the European Union for enforcement purposes (EC, 2009), AIS is required 

on vessels >15m for safety purposes. Nevertheless, aspects of the AIS technology and legislation, 

mean fishing activity may not be completely recorded by AIS (McCauley et al., 2016). Thus, whilst 

access to VMS data is subject to confidentiality issues that degrades its utility for research purposes 

(Hinz et al., 2013), AIS data has different disadvantages, as it can lack consistent coverage.  AIS 

signals are recorded in a different way to VMS data, in that they are broadcast omni-directionally 

and can be picked up by receivers on land, or by other vessels, as the system was designed to reduce 

collisions and offer safety mainly when near other traffic or near ports (Russo et al., 2016). If a vessel 

is out of reach of a land based station, the signal must be transmitted from vessel to vessel until it 

reaches a land station. In areas with relatively low vessel densities, this could cause gaps in coverage. 

Signals can also be ‘lost’ in areas of very high density traffic. In addition, skippers can turn down the 

power on the AIS, which reduces the range of the signal, further increasing the likelihood of gaps in 

coverage.  McCauley et al., (2016) argue that having an AIS system on board a vessel, but failing to 

use it properly, should no longer be viewed as legal compliance. It is also possible for skippers to 

falsify AIS data, and provide incorrect vessel IDs (McCauley et al., 2016), with the vessel identity of 

AIS signals not subjected to the same validation process by inspection agencies as VMS data. Despite 

the positional accuracy of AIS data being comparable to VMS data, there can be considerable 

variation in spatial coverage between different fleets of vessels (Russo et al., 2016). 

 

4.2.4. High resolution AIS data might improve footprint estimates of scallop 

dredging 

Besides the lower overall fleet coverage of AIS data (i.e. number of vessels with AIS), it would be 

useful to understand more about the differences in inferred fishing activity between VMS and AIS 

data, where the coverage is concurrent. There can be considerable gaps in AIS data coverage in 
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space and time within fleets (Natale et al., 2015; Russo et al., 2016), but there has not yet been a 

comparison of the recorded activity by the two data sources specifically on trips where both VMS 

and AIS were actively transmitting data. In situations where AIS is the primary data source available 

to scientists, e.g. in areas where only highly aggregated VMS data is available, it is important to know 

how the conclusions drawn from AIS would correlate with those drawn from VMS data. In addition, 

an analysis of concurrent VMS and AIS data would enable us to understand better the complexity in 

patterns of fishing that may be missed by VMS data due to the issue of temporal position frequency. 

The structure of the VMS and AIS data itself is essentially the same, a file with coordinates, speed, 

heading, and vessel ID, which means the same data processing techniques can simply be applied. 

Nevertheless, despite using the same processing techniques, there could be differences in the 

resulting conclusions due to differences in the way the data were generated. Primarily, AIS data is 

available at a much higher poll frequency than VMS data. Finer scale patterns in activity may 

therefore be seen with AIS data, for example, using a longer 2 hourly poll frequency in VMS could 

miss shorter steaming sections between tows, giving the impression of long continuous fishing 

activity, potentially over estimating fishing activity. Alternatively, due to the difficulty in accurately 

interpolating the tracks between 2 hourly position records, the VMS could also lead to an under-

estimate of the footprint of fishing.  

Understanding this error becomes particularly important when attempting to understand the 

environmental footprint of different fishing activities. In this paper, the focus is on scallop fishing, 

which is considered one of the least environmentally compatible forms of towed bottom fishing 

(Kaiser et al. 2006). European Union Directives such as the Marine Strategy Framework Directive 

(MFSD) and Good Ecological Status (GES) use the fishing footprint (spatial distribution of fishing 

activity) as an indicator of ecosystem health. Understanding the distribution of fishing activity is 

fundamental to understanding and quantifying the impact that fishing has on the seabed (Kaiser et 

al., 2016). VMS data provides a means to understand the footprint of scallop dredging and other 

fisheries and this has become a research field of its own (Lambert et al., 2012; Hinz et al., 2013; 

Eigaard et al., 2016). However, there is a conflict between the requirement for high temporal and 

spatial resolution data needed for scientific research, and the publicly available lower temporal and 

spatial resolution data to uphold confidentiality of commercially sensitive data (Hinz et al., 2012, 

Lambert et al., 2012). Vessels such as trawlers often tow fishing gear for in excess of four hours and 

often in a single direction with few deviations. In contrast, scallop dredgers can make short tows 

(~20 minutes), make tight turns and often tow parallel to their previous tracks, which can make the 

prediction of trajectories using interpolation methods difficult when the resolution of data is low 

(Lambert et al., 2012). With scallop dredging activity, higher resolution AIS data may therefore be 
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better able to capture (1) the true fishing footprint by better capturing the sharp turns made by 

vessels; and (2) the true fishing effort level, by better capturing the time spent in each activity state 

(i.e. fishing cf. steaming). This could provide insights into the appropriate treatment of lower 

resolution VMS data. 

Nevertheless, this benefit of higher poll frequency in AIS data may be counteracted by gaps in 

coverage. Before AIS data can be used as a data source for management, these differences in 

coverage and interpretation must be understood and addressed. This paper seeks to address this 

gap in understanding, by comparing the fishing activity of scallop vessels in the English Channel 

Scallop fishery, on days for which it was possible to obtain both VMS and AIS position records.  

 

4.2.5. Aims 

The main aims of this paper were to: (1) determine the relative coverage of AIS data in relation to 

VMS data at both the fleet and an individual vessel level; and (2) for comparable data (from the 

same vessels in the same time period), determine whether the fishing extent and intensity predicted 

by three common methods of VMS data analysis (point density, straight line interpolation 

(Stelzenmuller et al. 2008), and cubic Hermite spline interpolation (Hintzen et al. 2010)) showed a 

comparable accuracy to the higher poll frequency AIS data. Finally, conclusions were drawn about 

the influence of data accuracy on estimates of fishing footprints using these two different data 

sources, particularly relating to the level of aggregation at which data is analysed. 
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4.3. Methods 

4.3.1. Data Coverage 

 

 

Figure 4.1. The spatial window in which the VMS and AIS records were recorded. The actual positions 
of data points are concealed for confidentiality. 

 

VMS and AIS data were obtained for vessels in the English Channel scallop fishery, in the calendar 

year 2012, in the spatial window shown in Figure 4.1. Eight scallop dredgers (all >15 m L.O.A.) in the 

English Channel gave permission for their raw VMS data to be used in this analysis. The VMS data 

included vessel identification data, position, time and speed. AIS position, time, speed, and vessel 

identification data for the same eight vessels over the same time period were obtained from the 

company AstraPaging Ltd (http://www.astrapaging.com/), a private AIS data provider. The Maritime 

Mobile Service Identity (MMSI) field, a nine digit number uniquely identifying a ship radio station 

http://www.astrapaging.com/
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installed on each vessel, was used to link the VMS and AIS between vessels. VMS data was provided 

at a poll frequency of approximately 2 hours, and the AIS data was provided at a poll frequency of 

approximately 5 minutes.  

AIS coverage can vary between fleets (Natale et al., 2015), and has also been shown to capture a 

smaller amount of fishing activity than VMS data (Russo et al., 2016). The main aim of the present 

study was to analyse fishing activity between directly comparable VMS and AIS data records from 

individual vessels, to compare the extent and intensity of fishing that was not confounded by varying 

data coverage (i.e. using data for the same vessels over the same time period). Therefore, following 

the initial assessment of data coverage, data that could not be matched were excluded from further 

analysis. For each date, a vessel’s VMS data were removed from the analysis if that same vessel had 

not also recorded AIS data on that date, and vice versa; therefore the term ‘comparable date’ is used 

to signify a date on which a particular vessel had recorded both VMS and AIS, which generated 

‘comparable data’. Nevertheless, even if there were some VMS and AIS data for a vessel on a 

particular day/trip, either data set may not be complete within the trip. Thus a further category of 

matching data was identified, by extracting trips where the ratio of the duration of VMS:AIS points 

was between 0.8 and 1.2, i.e. there was less than 20% mismatch in the duration of VMS compared to 

AIS, so substantial sections of either data were not missing within a trip. There were therefore 2 

categories of data: comparable data, which refers to trips for which there is some VMS and AIS for 

that vessel, but within trip completeness has not been quantified; and matching data, which refers 

to trips for which the ratio of VMS:AIS is between 0.8 – 1.2, meaning that there is more complete 

data within the trip. Only comparable or matching data were used in the comparisons of fishing 

activity, extent, intensity and track interpolation. 

 

4.3.2. Data Processing 

Both VMS and AIS datasets were subjected to the same data cleaning and processing strategy, using 

the VMStools packages in R (Hintzen et al., 2012). Duplicate VMS records and records close to 

(within 1km of) port were removed, along with erroneous position records allocated to land (Lee et 

al., 2010). Following examination of the frequency distribution of the recorded speeds, position 

records between 1 – 5knots were classed as fishing activity (Figure 4.2). The level of data retention 

of VMS and AIS data was recorded at each stage of data cleaning and processing, to identify 

differences and similarities in the data, and identify any substantial loss of data. 
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Figure 4.2. Speed frequency distribution, recorded by AIS and VMS data points 

 

4.3.3. Interpolation of tracks 

VMS and AIS data can be analysed in the raw point data format, or vessel tracks can be 

reconstructed using a straight line (SL) interpolation, or a cubic Hermite spline (cHs) interpolation 

(Hintzen et al., 2012). Succinctly, the cHs method uses information on vessel position, heading and 

speed at times t and t+1 to define a trajectory. The combination of speed and heading are 

represented by vectors, and vector length is multiplied by a parameter fm that influences the 

curvature of the interpolations (Lambert et al., 2012). The VMStools package in R provides a function 

for fm parameter optimisation; the high resolution AIS data was used to determine the optimal fm 

parameter for cHs interpolation of the VMS data. CHs interpolation of the AIS data was not possible, 

as there was no higher resolution data for the optimisation process, nevertheless the AIS points 

were at a high 5 minute poll frequency, so a SL interpolation would give a sufficient level of spatial 

detail in the tracks. The SL interpolation of the AIS data can be assumed as the most robust estimate 

of the path taken by the vessels due to its high poll frequency. 

 

4.3.4. Data Analysis 

The number and proportion of points classed as fishing activity were compared between data types 

and vessels, to identify differences between the data types, and whether these differences varied 

between individual vessels. To investigate the spatial extent of fishing activity, points that were 

classed as fishing activity were joined to spatial grids of 1km, 3km, 5km, and 10km in cell size. These 

grids were used to calculate the fishing extent and intensity. The interpolated tracks were turned 

into a series of points approximately every 30 seconds along the track, to analyse in the same way as 

the raw point data. 
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The extent of fishing was calculated by summing grid cells which had at least 1 fishing point in them, 

using each data type and interpolation method. This provides a simplified calculation of fishing 

extent, counting a grid cell as ‘fished’ completely if there are any fishing points present. The intensity 

of fishing was also calculated, as the swept area ratio, derived from the actual area swept within a 

grid cell (i.e. accounting for the fact that having a fishing point within a cell does not necessarily 

mean the whole grid cell is fished over). The area swept in each grid cell was calculated by summing 

the area swept per point in the cell, using each data type and interpolation method. Area swept per 

point was calculated as: 

Area swept (km2) = speed (km/h) * time fishing (h) * total dredge width (km) 

where the total dredge width is assumed to be 0.018km for all vessels, corresponding to the width of 

24 individual dredges each measuring 0.75m across. A fixed dredge width was assumed as the 

analysis is purely indicative, and the actual dredge width was unknown.  

The swept area ratio (SAR) was calculated for each grid cell. The SAR indicates what proportion of 

the cell has been dredged at least one time, calculated as: 

 Swept area ratio = Area swept (km2) / area of cell (km2) 

A SAR of 1 indicates that on average each part of a grid cell has been dredged one time, a SAR of 2 

indicates the whole cell has been swept twice, a SAR of 0.5 indicates that on average half of the cell 

has been dredged one time (or that the whole cell would be swept once every 2 years, if using one 

year of data to calculate the SAR). 

Each VMS interpolation method (point data, SL interpolation, and cHs interpolation) was compared 

to the SL AIS interpolations (assumed as the truest fishing tracks) and AIS point data. 

 

4.3.5. Data Confidentiality 

VMS and AIS data are commercially sensitive, and therefore confidentiality is an important issue. 

Vessels that contributed to this study are anonymous throughout the analysis. VMS data were 

provided by fishermen under the condition that the location of fishing activity would not be 

displayed, therefore the spatial reference has been removed from any maps. The same level of 

confidentiality has been afforded to the AIS data.  
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4.4. Results 

4.4.1. How do the basic VMS and AIS datasets compare? 

The eight studied vessels recorded 129894 AIS points, and 23524 VMS points during the calendar 

year 2012. After cleaning, there were 89204 AIS and 15929 VMS points remaining (Figure 4.3) 

representing a 69% and 66% retention respectively. Of these cleaned data, 75% of the AIS data and 

81% of the VMS data represented fishing points, comprising 66741 and 12581 points respectively. 

Only records which had corresponding AIS or VMS data for that vessel on that day were used in the 

comparison analysis of fishing activity. For the comparable trip data this left 66306 AIS points and 

3988 VMS points from seven vessels (thus one vessel was excluded from further analysis). This 

retained 99% of the cleaned AIS data and 32% of the cleaned VMS data that represented fishing 

points. For the matching data (i.e. only trips with a ratio of VMS:AIS within the threshold 0.8 – 1.2, to 

reduce missing data within trips), this was reduced to 57970 AIS points and 2587 VMS points. A 

substantial amount of AIS data were therefore missing, i.e. there were a lot of days for which there 

were VMS data but no corresponding AIS data, but there were comparable VMS records for almost 

all AIS records. When the data were reduced further to only trips with a high VMS:AIS ratio, 13% of 

the comparable AIS data and 35% of the comparable VMS data were removed. This indicates that 

whilst there were more missing AIS data within trips, there were also missing VMS data within trips. 

Both comparable and matching data were used in the analysis of fishing activity. The average time 

interval between all VMS points was 130 minutes, and between AIS was 13 minutes, but when only 

fishing points were used, the average time interval between VMS points was 114 minutes, and 

between AIS points was 5 minutes. 
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1 Points classed as being on land are often just in harbour, but the GIS map used to define the land/harbour 

area may not be high enough resolution to accurately distinguish the harbour boundaries. 

 

Figure 4.3. Preparation and cleaning of AIS and VMS data. Dashed boxes indicate data that is 
removed, solid boxes indicate retained data. 

 

4.4.2. How does the assignment of fishing activity compare between VMS 

and AIS data? 

The raw VMS data indicated 29701 hours of fishing, but the raw AIS data only estimated 7647 hours 

of fishing, which constitutes a substantial gap in the coverage of AIS data. Despite using data from 

vessels which have both VMS and AIS on-board, the AIS data only captured 26% of the time spent 

fishing compared to VMS data. The proportion of time each vessel spent fishing, steaming, and 

effectively stationary was then compared between the comparable AIS and VMS data for each vessel 

on each day. Whilst there was generally good correlation between AIS and VMS data, the VMS data 

sometimes substantially overestimated the proportion of time spent fishing, and underestimated 

the time spent steaming (Figure 4.4). Overall, using comparable trip data, the AIS data indicated a 

total of 5661 hours fishing by all vessels across the study period, and the VMS data a total of 7751 

hours, suggesting 2090 extra fishing hours with the VMS than the AIS data. Overall, the AIS data 
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indicated a total area swept (calculated as area swept per fishing point: area swept = speed * dredge 

width * time) of 469km2, and the VMS data indicated a total area swept of 651km2. 

For the matching data, the AIS data indicated a total of 4924 hours fishing across the study period, 

the VMS a total of 5053 hours, suggesting 129 extra hours fishing by the VMS data. The AIS data 

indicated an area swept of 405km2, and the VMS an area swept of 406km2. If using comparable data 

(i.e. trips for which there is some VMS and some AIS data) the overall extent of fishing footprint is 

under-estimated by 39% when using AIS data. However, if using only data that directly matches in 

time, the extent of area affected by fishing was very similar. 

 

 

Figure 4.4. Proportion of time spent in each activity state per trip, in comparable data. 

 

4.4.3. How does the data coverage and activity assignment differ between 

individuals? 

A substantial amount of AIS data were missing, however the amount of missing data differed 

between individual vessels (Table 4.1). In all cases, more AIS data were missing than VMS data. Thus 

when retaining only comparable trip data, for some vessels the removal of VMS data was large, e.g. 

a reduction from 2176 points to 151 points (93% loss); the smallest loss was 34%. In contrast, the 

greatest loss of AIS data due to having no corresponding VMS data was 2%, and the smallest loss 

was nil. However, when using only trips with matching data (a high ratio of VMS:AIS), considerably 

more data were removed; 45-99% of VMS data, and 7-51% of AIS data. This suggests that overall 

there were substantially more AIS data missing, but there were some trips with considerable 

amounts of VMS data missing as well. 

The comparable trip VMS data gave a higher estimate of time spent fishing and area swept than the 

AIS data for all individuals (Table 2). The magnitude of this difference varied between 18-92% 
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between individual vessels. When using the more closely matched data, the time spent fishing for 

each individual varied from +2% to -26%, and the area swept from +3% to -17%, but the values of 

the absolute difference were relatively low. 

 

Table 4.1.  Number of VMS and AIS points per vessel when using all available data, and only 
comparable data. Total time spent fishing and area swept by each vessel using comparable VMS and 
AIS data. The % dif column indicates how much smaller the AIS value was than the VMS value. 

Comparable days   

ID Number of 

fishing points 

Number of 

Comparable 

Fishing points 

VMS 

lost 

AIS 

lost 

Time fishing % dif Area swept % dif 

 VMS AIS VMS AIS   VMS AIS  VMS AIS  

1 1539 7249 616 7227 60% 0.3% 1171 646 -45% 115 64 -44% 

2 1963 942 251 942 87% 0.0% 514 91 -82% 57 10 -82% 

3 2176 1038 151 1036 93% 0.2% 267 96 -64% 25 9 -64% 

4 1581 18086 1023 18075 35% 0.1% 1957 1521 -22% 149 117 -21% 

5 1798 12291 701 12241 61% 0.4% 1328 1043 -21% 100 82 -18% 

6 946 13369 620 13322 34% 0.4% 1263 1120 -11% 105 94 -10% 

7 1921 13766 626 13463 67% 2.0% 1251 1145 -8% 98 93 -5% 

Matching Data   

ID Number of 

fishing points 

Number of 

Matching 

Fishing points 

VMS 

lost 

AIS 

lost 

Time fishing % dif Area swept % dif 

 VMS AIS VMS AIS   VMS AIS  VMS AIS  

1 1539 7249 259 5448 83% 25% 497 477 -4% 49 47 -4% 

2 1963 942 29 460 99% 51% 58 43 -26% 6 5 -17% 

3 2176 1038 40 753 98% 27% 77 69 -10% 7 7  

4 1581 18086 735 16202 54% 10% 1410 1362 -3% 107 105 -2% 

5 1798 12291 463 10209 74% 17% 889 869 -2% 67 69 +3% 

6 946 13369 521 12464 45% 7% 1042 1048 +1% 87 88 +1% 

7 1921 13766 540 12434 72% 10% 1079 1055 +2% 84 85 +1% 

 

 

The correlation between the number of VMS and number of AIS points per day varied between 

vessels, and depended on the data treatment (Figure 4.5), but there was a considerable amount of 

missing fishing data for all vessels. Using comparable trip data only, the correlation between the 

duration of VMS and AIS fishing records per vessel per day improved significantly. Nevertheless, the 

duration of AIS data is slightly lower than the VMS data for all vessels. For some vessels there is 

considerably less AIS data than expected on comparable days, suggesting some gaps in coverage 

within a trip. The dashed line indicates the 1:1 ratio between VMS and AIS data; matching data were 
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identified as trips that had a ratio of 0.8 – 1.2, therefore matching data showed a strong correlation 

between the duration of VMS and AIS points by definition (Figure 4.5c). 

 

 

 

Figure 4.5. The correlation between the duration of VMS and AIS fishing points per vessel per day (A), 
the correlation between the duration of VMS and AIS fishing points using only data on comparable 
days (B), and the correlation between the duration of VMS and AIS fishing points using only data that 
were classed as matching (i.e. high ratio AIS:VMS) (C). Blue solid line indicates the correlation 
between the numbers of points per day, black dashed line indicates the 1:1 correlation. Points are 
translucent such that darker areas indicate a concentration of points. 
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4.4.4. How does the spatial footprint of fishing compare between VMS and 

AIS data? 

 

4.4.4.1. Interpolation of VMS and AIS fishing tracks 

Using only comparable and matching data, a straight line interpolation of the AIS data was used to 

create the best estimate of the vessels’ tracks. The VMS data was interpolated using both the 

straight line (SL) and cubic Hermite spline (cHs) approach. Parameter optimisation in VMStools gave 

an fm parameter of 0.19, which suggested that a non-linear interpolation gave a more appropriate 

interpolation of the VMS tracks than a SL interpolation, based on the distance between the 

interpolated VMS positions and the higher frequency AIS positions.  

Three days of comparable data were selected at random to display the individual interpolated tracks 

(Figure 4.6). From visual observation of the three different types of track interpolations (Figure 4.6), 

the AIS fishing tracks display shorter sections of fishing activity than with the VMS fishing tracks. The 

low temporal resolution of the VMS data (2 hours) may have forced the interpolations to be 

continuous such that they potentially missed sections of time in which fishing did not occur. In 

contrast, as the AIS data has a higher temporal resolution (5 minutes) it can account for shorter 

periods of fishing and steaming within this 2 hour window. 
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Figure 4.6.  Each row = one trip by one vessel. The time span of each data set is displayed for each 
row. Black = VMS, grey = AIS. The first column displays the point data, the second column displays 
straight line (SL) interpolated data, and the third column displays the cubic Hermite spline (cHs) 
interpolated data for the VMS data and straight line interpolated for the AIS data. For the first trip 
(row 1), the VMS data appears to have underestimated the extent of fishing activity. In the second 
trip (row 2), the VMS data estimated a greater extent than the AIS data. In the third trip (row 3), the 
AIS and VMS data appear to show a similar extent, albeit with a lower resolution in the VMS tracks.  

 

4.4.4.2. How does the extent and intensity of fishing compare? 

To investigate the impact of data aggregation on the spatial extent of fishing activity, points that 

were classed as fishing (cf. steaming or stationary) were joined to spatial grids of varying size. 

Increasing the grid size for analysis increased the estimated extent of fishing activity (Figure 4.7, 

Table 4.2). The total extent estimates were most similar between directly matching VMS and AIS 

data when using the cubic Hermite spline interpolation method. 
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In this analysis an assumption was made that the straight line interpolation of the AIS data at a 1km 

grid provided the most accurate extent of fishing, as it was the highest resolution data treatment. In 

this case, using a 10km grid substantially overestimated the extent of fishing. Assuming the SL AIS at 

1km gives the values closest to reality, the cHs interpolation of the VMS data at 1km resolution gave 

a very similar value for the extent of fishing, but the point VMS data at 1km greatly underestimated 

the extent of fishing activity. Increasing the grid size decreased the accuracy of the extent derived 

from AIS data, by overestimating the extent, but increasing the grid size increased the accuracy of 

the VMS data point data compared to the best estimate of the extent from AIS data. This suggests 

that the VMS data is too low poll frequency to give an accurate fishing footprint unless either points 

are either aggregated to a low resolution grid, or if using a high resolution (e.g. 1km) grid the points 

should be interpolated using a cHs interpolation. With the comparable data, using a low resolution 

grid buffered some of the inaccuracies associated with missing data, in terms of providing a more 

similar estimate between AIS and VMS data, but the total extent was substantially inflated. The 

method of data treatment had a substantial impact on the recorded extent of fishing (Figure 4.7). At 

a coarse resolution (10km grid) the method of VMS data treatment had less impact on the estimate 

of extent, but the overall extent estimate was significantly higher than when using a 1km grid. 

The amount of the study area that was perceived as totally un-trawled (i.e. swept area ratio (SAR) = 

0) decreased as the grid size increased (Figure 4.8). The SAR values were considerably more similar 

between data treatments using the matching data than the comparable data. Using matching data 

with a 1km grid, the area trawled 0.1 times (i.e. grid cells that would on average have been trawled 

completely every 10 years) varied by about 500km2 between the data treatments (all fishing activity 

recorded by the matching AIS data at a 1km grid covered a total extent of 6500km2). Only directly 

matching data from 7 vessels over 12 months was used, therefore although the value is relatively 

low, if scaled up to a fleet and using more complete data, these differences would be multiplied. 

However, a 3km grid showed little variation in the pattern of fishing intensity between each data 

treatment. A larger grid therefore buffered some of the inconsistencies in fishing intensities 

between the data treatments, but reduced the area of the seabed that was perceived as unfished. 

There is a trade-off between using a grid of higher resolution to improve the extent estimate and 

using a grid of lower resolution to improve the accuracy of the intensity estimates.  
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Figure 4.7. Comparison of the extent of fishing activity across the whole study area using each 
interpolation method, and the extent of fishing activity across fishing grounds (i.e. only areas which 
had recorded fishing activity by any of the data). 
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Figure 4.8. The area of seabed swept 0 – 1 times during the study period, by grid size (1, 3, 5, and 
10km), by data type (comparable or matching), and using each method of data interpolation (point, 
SL and cHs). 
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Table 4.2. Comparison of VMS and AIS data using different interpolation methods at different spatial scales. Difference column indicates how much larger or 
smaller the extent was using AIS data, in km2, and the percentage difference indicates the difference as a percentage of the study area. 

 Grid 

Size 

Comparable VMS Comparable AIS Dif. 

(km2) 

% dif % dif 

grounds 

Direct match VMS Direct Match AIS Dif. 

(km2) 

% dif 

(study 

area) 

% dif 

(grounds) 

  Extent 

(km2) 

% of 

study 

area 

% of 

grounds 

Extent 

(km2) 

% of 

study 

area 

% of 

grounds 

   Extent 

(km2) 

% of 

study 

area 

% of 

grounds 

Extent 

(km2) 

% of 

study 

area 

% of 

grounds 

   

P 1km 1831 2 27 3553 4 52 1722 2 25 1127 1 16 3123 4 46 1996 2 29 

3km 6273 8 55 7587 9 67 1314 2 12 3654 5 32 6516 8 57 2862 4 25 

5km 10050 12 69 10825 13 74 775 1 5 6075 8 41 9600 12 66 3525 4 24 

10km 16500 20 77 17400 21 81 900 1 4 11200 14 52 16300 20 76 5100 6 24 

SL 1km 4702 6 69 3917 5 57 -785 1 11 2432 3 35 3407 4 50 975 1 14 

3km 8892 11 78 7776 10 68 -1116 1 10 4833 6 42 6714 8 59 1881 2 17 

5km 11850 15 81 11075 14 76 -775 1 5 6950 9 47 9900 12 68 2950 4 20 

10km 17600 22 82 17700 22 82 100 0.1 0.5 11700 14 54 16700 21 78 5000 6 23 

cHs  1km 5953 7 87       3111 4 45    296 0.4 4 

3km 10053 12 88       5526 7 49    1188 1 10 

5km 12825 16 88       7625 9 52    2275 3 16 

10km 18800 23 87       12700 16 59    4000 5 19 
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4.5. Discussion 

Neither VMS nor AIS were designed as tools to aid our understanding of fisheries science, but whilst 

both data sources offer valuable data for understanding fishing activity, their use must be based on 

an informed understanding of the most appropriate way to process and interpret the data.  Of 

greatest importance, AIS data can have a substantially lower coverage than VMS data and thereby 

provides a potential underestimate of overall activity (Russo et al., 2016, Natale et al., 2015). This 

study has contributed to this understanding by demonstrating how even when only looking at VMS 

and AIS from the same individual vessels (i.e. accounting for the lower fleet coverage of AIS), and 

even reducing it to concurrent data within those individuals’ fishing activity, there remain 

differences in the perceived fishing activity with each data source.  

 

4.5.1. Can AIS data be an appropriate fisheries monitoring tool? 

Whilst AIS data is attracting attention as a promising tool for analysing fishing activity, because it 

provides publicly available high resolution vessel tracking data, the gaps in its coverage present a 

substantial hurdle. In this study considerable gaps in the coverage of AIS data compared to the VMS 

data were found, which concurs with similar studies (Russo et al., 2016, Natale et al., 2015). A similar 

proportion of VMS and AIS data were retained following data cleaning (i.e. removing incorrect 

coordinates, points on land, points in harbour etc.), but after only comparable days were retained 

(i.e. days for which there were both VMS and AIS for a vessel) only 32% of VMS fishing points were 

retained for analysis. This was further reduced to 11% when only highly matching data were 

retained. This retention also varied substantially between individual vessels, with 7 – 60% retention 

of VMS data when using only comparable days, and 1 – 55% when using only matching data; for one 

vessel, on 93% of days for which there were VMS fishing points, there were zero AIS fishing points, 

and no directly matching AIS data for 99% of the VMS. For the whole of the studied fleet, this 

translated as AIS data capturing only 26% of the duration of fishing activity captured by VMS data in 

2012.Clearly, this is a substantial gap in the AIS data coverage, and would be a cause for concern if 

using AIS data to analyse fishing activity without VMS data. It is likely inappropriate to use AIS data 

for absolute estimates of fishing footprints or intensity, because the gaps in coverage are too 

substantial, but more comparative studies may be possible. However, caution could be required 

when using historical AIS data compared to more recent or future AIS data, where compliance or 

technological advances may potentially lead to higher coverage. 
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Aside from addressing the more technical limitations to spatial coverage (Natale et al., 2015, Russo 

et al., 2016), these results support the suggestions from McCauley et al., (2016) that to gain the full 

benefits of AIS data for fisheries science, policy interventions would also be required, for example, to 

reduce the gaps in AIS coverage from fishers turning down the AIS transmitter.  There are, however, 

two principle reasons why fishers may wish to conceal their activity from an AIS system; 1) detection 

avoidance whilst undertaking illegal fishing activity, and 2) preventing other fishers from using AIS 

data to identify prime fishing grounds. Real time AIS data is openly available to view, including to 

other fishermen, so it is understandable that fishermen may be reluctant for such high resolution 

tracking data to be openly and instantaneously available, due to the commercial sensitivity of such 

data. It is difficult to envisage how this issue would be overcome. If it became a legal requirement 

that the AIS unit was functioning at full strength and an openly available high resolution high 

coverage dataset of fishing activity was achieved, it could lead to conflict or negative economic 

consequences for fishers.  

 

4.5.2. Fishing activity differed between VMS and AIS data when using 

directly comparable data. 

When only using data from comparable days, there were differences in the fishing activity derived 

from VMS and AIS data. The VMS data overestimated the time spent fishing and area swept 

compared to the AIS data. However, once data were reduced to the matching data, these values 

were more similar with only 129 extra fishing hours according to the VMS data. On comparable days 

(i.e. days when there was some VMS and AIS for a particular vessel), the differences were therefore 

largely due to missing AIS data, but when using only more closely matching data, the smaller 

difference in recorded fishing duration could be related to the bias from a 2 hourly ping rate of VMS 

data. Nonetheless, even with directly matching data this constituted 10 extra days of fishing with 

VMS data (assuming 12 hours continuous fishing per day), or 3% of the total fishing hours recorded. 

At a small scale of 7 vessels over 1 year of fishing, this is a small value, but scaled up to a whole fleet 

across multiple years, this could represent substantial fishing effort. The temporal resolution of the 

VMS data may have missed the shorter hauling/moving sections in between scallop dredge tows, 

which would be less than two hours in duration, and could therefore overestimate the fishing effort. 

Identifying fishing activity is much more sensitive under VMS than AIS data, as you could incorrectly 

classify a 2 hour time frame as fishing or non-fishing, whilst with AIS you would only misclassify 

seconds or minutes. Technology that would provide information on when the gear is in the water 
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would improve estimates of scallop fishing activity and would address one of the issues of poll 

frequency for VMS. 

The methodology used to analyse the data altered the patterns seen in fishing intensity. As the grid 

size for analysis increased, the perceived extent of fishing activity increased (Dinmore et al., 2003; 

Hinz et al., 2013; Piet and Quirijns, 2009; Piet and Hintzen, 2012); this impact of grid size was greater 

when the data was at a lower poll frequency. If the SL AIS data is assumed to provide the best 

estimate of extent, the point VMS data underestimated the extent by two thirds, the SL VMS 

underestimated the extent by one third, but the cHs VMS suggested an extent similar to the AIS. 

Using the high resolution AIS data there was little difference between the extent of the point data 

and SL data, regardless of grid cell size. However, when using a 1km grid the extent indicated by VMS 

point data was half that of the SL VMS data, and a third of the cHs VMS data. As the grid size 

increased, this disparity decreased. If using point VMS data, it therefore may not be appropriate to 

use a grid smaller than 3-5km when estimating extent, unless points are interpolated. 

When providing VMS data in an aggregated format, it is likely not appropriate to provide it at a grid 

resolution less than 3km by 3km, unless the data has been interpolated, because the extent would 

be underestimated. Nevertheless, providing data aggregated at a low resolution can overestimate 

the extent of fishing activity. When considering the influence of these factors on fishery 

management options, there is the need for a balance between data cost (i.e. resolution) and 

accuracy of the results.  Over-estimation of the impacted area may result in more draconian action 

than is necessary whereas underestimation of the impacted area, whilst of short term benefit to the 

industry may have longer term repercussions for sustainability. VMS is often only available in an 

aggregated format due to confidentiality issues, which can overestimate the extent (Hinz et al., 

2013). The poll frequency also intuitively influences the need to interpolate the data. When using 

high poll frequency data, such as AIS data, interpolation is perhaps not necessary, especially when 

using a lower resolution grid for analysis. However, when using lower poll frequency VMS data, the 

grid size and the method of interpolation can have a substantial impact on the perceived fishing 

footprint. Highly aggregated VMS data at coarse resolutions is highly limiting in the ability of science 

to draw reasonable conclusions about fishing footprints and impacts (Hinz et al., 2013). 

 

4.5.3. Predicting unpredictable scallop dredging activity 

The issues associated with interpolating low poll frequency VMS data are particularly relevant to 

scallop dredging, due to the idiosyncratic movements of the vessels, such as sharp turns and re-
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towing over the same areas, which may be missed by the lower resolution VMS data (Lambert et al., 

2012). The optimal fm parameter (a parameter that determines how much the tracks should curve in 

a cHs interpolation) was markedly different in this study compared to that undertaken by Lambert et 

al., (2012) with scallop dredgers in the Isle of Man. They concluded that the optimal fm parameter 

was close to zero, i.e. a straight line. Here an optimal fm parameter of 0.19 was reported, which is 

considerably different from a straight line. For scallop dredgers, and in other fisheries with shorter 

haul durations, the availability of a higher resolution dataset is perhaps even more important (c.f. 

trawlers) due to the unpredictable movement patterns associated with these fisheries.  

This study has provided a strong argument for the creation of comprehensive positional information 

at higher temporal resolution than is currently available in order to make robust estimates of fishery 

activities in space and time.  This could be achieved through either increased polling frequency on 

VMS units, the more rigorous implementation of AIS units, or through partnership agreements 

between the scallop industry and scientists. The fishing extent according to the VMS data was 

variable compared to the AIS data. At a finer scale grid, the VMS data underestimated extent 

compared to AIS data, indicating that it is not appropriate to use a fine scale 1km grid when 

analysing VMS point data. The grid size used for analysis and the method of interpolation had a 

more substantial impact on the perceived fishing activity when using the lower poll frequency VMS 

data than the higher poll frequency AIS data. Increasing the poll frequency of VMS data would 

therefore buffer the impacts associated with these methodological considerations.  

Often VMS is only available to scientists in aggregated 3nm cells, which is roughly 5km cells; in this 

case there could be a significant benefit to having AIS data, because the fishing extent may be half of 

that suggested from the aggregated VMS data. Nevertheless, the gaps in coverage prevent AIS data 

from being a viable alternative. It is not appropriate to simply provide VMS point data aggregated to 

a higher resolution of 1km grid cells, because this underestimated the extent of fishing activity, due 

to the low temporal resolution of data points. One solution to reducing temporal gaps in the VMS 

data could be to interpolate the VMS data which could then allow aggregation to 1km cells.  

Interpolation of 2 hourly VMS pings would, however, be unable to resolve the more complex fishing 

tracks that some scallop vessels follow.  The solution which offers the optimal increase in data 

accuracy, and therefore accuracy of footprint estimation would be to increase the rate at which VMS 

data are collected (i.e. higher polling rates). 
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4.6. Conclusions 

The present study demonstrated the utility of having access to more frequently polled vessel 

position data. McCauley et al., (2016) described AIS as currently a ‘service that best observes vessels 

that don’t mind being seen’. This likely arises from a lack of desire to be seen by competing vessels 

and in some cases may be linked to legal infringements. Nonetheless, VMS already provides a means 

of collecting such data in a manner shielded from public view and hence represents an appropriate 

pathway for the more accurate calculation of fishing footprints through increased polling rates. At 

present, given the current frequency of VMS polling there remains the potential for over-reporting 

of fishing effort leading to a worse assessment of the state of the marine environment in relation to 

this metric. As AIS was developed for the purpose of safety and collision avoidance, unless additional 

regulations are introduced, designed specifically to increase the coverage of fishing activity, it seems 

unlikely that AIS data could be considered as an equal alternative to VMS data. If the gaps in 

coverage were addressed, the increased poll frequency of AIS data would allow more accurate 

analysis of fishing activity, but increasing the poll frequency of VMS data may be a more viable 

option. The use of reliable high resolution AIS or VMS data would ultimately benefit fishers and 

scientists, through generating more accurate fishing footprints and a better understanding of the 

ecosystem impacts of fishing, and thus more sustainable management.  
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Human behaviour is an area of considerable uncertainty in fisheries management (Fulton et al., 

2011). Failing to account for the behavioural response of fishermen to management can lead to 

unintended consequences of management, and even produce negative environmental, economic, or 

social effects (Hilborn et al., 2004; Pascoe and Mardle, 2005; Dinmore et al., 2003). Individual-based 

models (IBMs) could help to address some of the knowledge gaps in our understanding of fisher 

behaviour, and allow us to create simulation tools that could help both managers and fishers better 

predict and understand the potential consequences of different management scenarios (Evans, 

2012; Grimm and Railsback, 2005).  

Optimal Foraging Theory (OFT) (MacArthur and Pianka, 1966) has been demonstrated as a suitable 

framework for investigating fisher behaviour (Begossi, 1992; Begossi et al., 2009; de Oliveira and 

Begossi, 2011; Lee et al., 2014; Sosis, 2002). Nevertheless, there may be violations to some of the 

assumptions of OFT; namely that all fishers do not have equal abilities, fishers may not have 

complete knowledge of catch rates in the system, and importantly, not all fishers may be true profit 

maximisers (Chapter 2, Chapter 3). An IBM provides a more flexible framework within which to 

account for deviations from such theory (Grimm and Railsback, 2005). Understanding more about 

how to realistically predict fisher foraging behaviour could allow the development of simulation 

tools that are better able to predict the outcome of management, reducing unexpected, or 

unintended, outcomes of management. 

An individual-based model (IBM) of fishing activity in the Isle of Man scallop fishery was therefore  

developed, based on simple foraging theory, and an understanding of the system gained from 

analysis of questionnaire interview data (Chapter 2) and vessel monitoring system and logbook data 

(Chapter 3). The ultimate aim of the model was to predict the outcome of different closed area 

management scenarios. Initially, however, the model was designed to understand the extent to 

which we can predict fishing activity, deviations from optimal foraging models, and what model 

structures provide the most realistic simulations of fishing activity. This model description follows 

the standardised Overview, Design concepts, Details (ODD) protocol for describing individual-based 

models (Grimm et al., 2006, 2010). Further details of the model development and validation are 

presented in Chapters 6 and 7. 
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5.1. Purpose 

The purpose of this model is ultimately to explore the potential impact of different management 

measures on the Isle of Man scallop fishery from an environmental and economic perspective, in 

terms of the footprint of fishing and the economic impacts on fishing vessels. In particular, it is 

designed to understand how the spatial extent and arrangement of closed areas affects the fishers’ 

profits and the amount/proportion of the scallop biomass removed in a season. For example, if we 

close an area to scallop dredging, where would fishers go instead (displacement of effort) to 

compensate for this lost area, what would the environmental impacts of this shift be, and would the 

fishers still be able to make enough money to remain as a viable business? 

Initially, however, the model was used to understand the extent to which we can predict fishing 

activity. There are four main decisions that fishers make in the model: 1) If they should fish that day; 

2) the location to which they should steam to begin fishing at the start of the day; 3) after 

completing a tow, whether they remain on that patch or move to a new location; and 4) when they 

should return to port. These decisions can be made in different ways; the first stage of model 

development is to determine what behavioural rules best recreate the fishery. For example, if, in the 

model, fishers select a patch in which to fish based purely on the highest expected catch rate, is this 

more or less realistic than if they take account for the travel cost when deciding where to fish? 

 

5.2. Entities, State Variables and Scales 

The model has three entities: the global fishery entity, fishing patches, and fishing vessels. The 

fishery is attributed with management variables including total allowable catch (total catch limit in 

one season), individual daily catch limits, the curfew hours, the market price of scallops, the fuel 

prices, number of dredges permitted, and the number of vessels (Table 5.1). 
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Table 5.1. State Variables of the Fishery. These state variables are defined, in part, by the fishery 
regulations that currently apply in the Isle of Man. 

Category Variable Description 

Monitors Date Current date in the model simulation 

Time Current time in the model simulation 

CatchSoFar Total catch so far in the simulation 

FishingExtent The number of cells that have been fished, within the 

12nm limit of the territorial sea 

Regulations Total Allowable 

Catch 

Total catch weight allowed by all vessels within the 

simulation year 

Individual Daily 

Catch Limit 

Total amount each individual vessel is allowed to catch 

per day 

CurfewHours The total number of hours a vessel is allowed to fish per 

day 

MarketPrice The price a vessel receives per kg of scallops 

FuelPrice The cost of a litre of fuel 

DredgeLimit The maximum number of dredges any vessel can be 

initialised with 

DredgeLimit3nm A regulation for the maximum number of dredges 

permitted within 3nm of shore 

DredgeLimit12nm A regulation for the maximum number of dredges 

permitted within the 12nm Sea 

 

 

The patches make up a square grid landscape of 28 by 33 patches, each of which are 3km by 3km. 

The total extent of the model is 84km by 99km, which corresponds with the area in which vessel 

monitoring system (VMS) data was available to compare the model output to. Grid cells of 3km were 

used as a compromise between maximising the accuracy of the calculation of the extent and 

intensity of fishing activity (Lambert et al., 2012). Grid cells are characterised by a scallop biomass 

and corresponding expected catch rate, and a distance to port. The cell biomass is depleted as 

vessels fish in the cell. For all patch attributes, and their description, see Table 5.2. 
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Table 5.2. State variables which define the characteristics of each grid cell in the model environment. 

Category Variable Description 

Cell Location gridID The ID number of the grid cell 

Easting Easting of cell midpoint 

Northing Northing of cell midpoint 

IsLand? Whether the cell is land 

IsPort? Whether the cell is a port 

In12nm? Whether the cell is within the 12nm territorial sea 

IsClosed? Whether the cell is ‘closed’ to fishing 

DougDist Distance of the cell to the port of Douglas1 

PeelDist Distance of the cell to the port of Peel1 

RamseyDist Distance of the cell to the port of Ramsey1 

PtStMaryDist Distance of the cell to the port of Port St Mary1 

Ground Whether the cell is part of Targets, Chickens, East 

Douglas, or Point of Ayre fishing grounds. 

Scallop Catches BiomassPerM2 Scallop biomass per m2 as calculated in the scientific 

survey (Bloor et al., 2012). Dynamic variable that is 

updated according to fishing depletion. 

CellBiomass Total cell scallop biomass derived from scientific survey 

data 

EffortTrend Long term trend in fishing effort seen in this cell, as an 

indicator of the suitability of the cell for fishing (i.e. 

habitat, depth, long term scallop abundance) 

TowCount Record of fishing effort in the cell throughout the 

simulation 

ExperiencedCpues A list of the CPUE each vessel has experienced in this cell 

CatchFromPatch The scallop weight caught from this patch 

Vms_12_13_catch Landings recorded from VMS and logbook data in each 

cell in the 2012-2013 scallop fishing season, against 

which the model output can be compared. These are 

changed to data from the 2013 – 2014 or 2014 – 2015 

fishing season as required. 

Vms_12_13_effort Fishing effort recorded from VMS data in the 2012-2013 

scallop fishing season, against which the model output 

can be compared. These are changed to data from the 

2013 – 2014 or 2014 – 2015 fishing season as required. 

Patch choice 

decision 

UtilityScore 

(12 scores, for 

each strategy (3) 

from each port (4) 

A utility score is calculated for each cell, relevant to each 

fisherman’s strategy, derived from the distance to port 

and cell biomass. Used in the conjoint analysis patch 

choice decision. 

 

 

                                                           
1 Straight line distances would allow vessels to travel across the land, therefore these distances reflect actual 
travel routes, from a cost distance raster that accounts for the travel distance around the land.  
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There are 3 types of fishing vessels (EFF, QTM and QLM, which correspond to behavioural strategies 

identified during questionnaire surveys (Chapter 2; Shepperson et al., 2016). Vessels are 

characterised by state variables of home port and vessel size (vessel capacity unit (VCU)). Home port 

determines the spatial location at which each vessel is based, and therefore largely determines the 

fishing ground prosecuted by the vessel. The number of vessels of each type in each port were 

determined from logbook records, to represent the ratios of the number of trips observed from each 

port in the fishery. The vessel size determines the amount of fuel used, and the absolute catch rates 

of each vessel, because larger vessels tend to utilise more dredges. For all vessel attributes see Table 

5.3. 
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Table 5.3. State variables which define the characteristics of the individual fishing vessels in the 
model. 

Category Variable Description 

Physical 

Characteristics 

VCU Vessel capacity unit, a measure of vessel size that 

accounts for the length, breadth and engine power of 

the vessel. 

NumberOfDredges Number of dredges towed by the vessel, calculated from 

the VCU. 

DistancePerTick The distance the vessel can travel in 1 time step during 

the model 

HoldingCapacity Maximum hold capacity for scallop catch 

Breed Individuals in the model can be ‘vessels’ i.e. a fishing 

vessel from the Isle of Man, who is fully simulated, or 

‘externals’ i.e. vessels from outside of the IOM who are 

not fully simulated. 

Financial 

Variables 

FuelPerSteam Fuel used per steaming tick, calculated from VCU 

FuelPerTow Fuel used per towing tick, calculated from VCU 

GrossTarget Minimum threshold catch target to inform the vessel’s 

decision to return to port 

GoodGross Gross revenue that was considered as a good day of 

fishing. 

Behavioural 

Variables 

Strategy The behavioural strategy of each vessel as determined 

from the conjoint analysis. 

SteamSpeed The speed at which the vessel steams, in kmph. 

TowSpeed The speed at which the vessel tows, in kmph. 

MaxFishHours Maximum possible time the vessel will fish for. 

MaxTripDuration Maximum possible time the vessel will stay at sea. 

HandlingTime Minimum possible time between two consecutive tows 

(time spent emptying the nets) 

MaxDistance The maximum distance from port the vessel can/will 

operate. 

GivingUpRate The minimum catch rate that the vessel considers 

economically viable. 

SeaStateTolerance The maximum possible sea state the vessel can fish in 

MyPort The port the vessel primarily uses. 

ChanceOfFishing The chance that each vessel will head to sea each day, to 

reflect the number of trips observed in previous logbook 

records. 

Patch-choice-

decision 

The decision rules the vessel follows depending on the 

model settings 

Between-patch-

decision 

The decision rules the vessel follows depending on the 

model settings 

Return-decision The decision rules the vessel follows depending on the 

model settings 

Activity during 

simulation 

CurrentActivity The ‘activity’ the vessel is currently performing: InPort, 

Steaming, Towing, Moving, or Returning 
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TripNumber A counter for the number of trips taken in each 

simulation 

HoldStatus How many scallops are stored aboard at the current 

time. 

DistanceToPort The distance of the vessel to its port. 

ChosenGround The patch that the vessel is currently steaming towards. 

ReceivedCpue The CPUE that a vessel receives during towing activity 

TimeSteaming The time spent steaming during this trip 

TimeTowing The time spent towing during this trip 

TimeHandling A monitor of the current amount of time spent handling 

TimeHandlingTrip The total time spent handling per trip 

Visited-patches A list of the patches visited. 

Catch-rates A list of the catch rates received 

TripDuration Duration the vessel has been at sea 

FishHours Duration since towing activity began 

TimeOnPatch The time a vessel has spent on its current patch 

NextGround Once at sea fishing, the patch a vessel decides to move 

to 

PatchDist The straight line distance from port to the chosen patch 

RealDist The travel distance from port to the chosen patch, i.e. 

accounting for travel around land. 

Adj-

distancepertick 

The distance a vessel can travel per tick, adjusted so that 

it travels in a straight line at a speed that would allow it 

to arrive at the chosen cell at the same time had it been 

travelling along the real route, i.e. avoiding land. 

Xx The x coordinate of the vessel’s port 

yy The y coordinate of the vessel’s port 

Patches-seen The patches a vessel can choose between when selecting 

where to fish. 

 Expected catch The catch a vessel expects to catch based on the scallop 

biomass and the area swept 

 Received catch The catch a vessel receives, which is drawn from a 

normal distribution with mean of the expected catch and 

a standard deviation of 10% of the expected catch. 

Vessel Monitors TotalCatch The vessel’s total catch 

TotalTowing The total time a vessel has spent towing  

TotalSteaming The total time a vessel has spent steaming 

TotalHandling The total time a vessel has spent handling 

TotalTime The total time a vessel has spent at sea 

TotalFuelCost The vessel’s total fuel cost 

TotalValue The vessel’s total catch value 

TotalProfit The vessel’s total profit 

TotalDist The total distance travelled by a vessel 
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There are ‘External’ (i.e. non-Manx vessels) in the model, which are essentially simplified versions of 

the Manx vessels. These vessels appear at the start of a day, deplete cells, and disappear at the end 

of the day. The catches by External vessels are recorded as a total sum; individual External vessels 

are not tracked or recorded. For all External vessel attributes see Table 5.4. 

 

Table 5.4. State Variables that characterise the  External fishing vessels in the model 

Category Variable Description 

Physical 

Characteristics 

Ex-vcu The size of the vessel, drawn from a random 

distribution based on the distribution of VCUs in 

logbook records made by external vessels 

Ex-NumberOfDredges Number of dredges derived from the VCU 

Activity during 

simulation 

External-state The current behavioural state the vessel is in 

(towing or moving) 

External-catch The amount caught 

Ex-timetowing The time spent towing 

Ex-timeactive The time spent active (i.e. towing and moving) 

 

The model uses 4 minute time steps, as it takes a vessel approximately 4 minutes to steam 1km 

(when not fishing, which happens at a slower speed). The model runs for 7 months (1 fishing 

season), where a day consists of 360 ticks (24 hours), and months take a simplified form of 30 days 

each. 

 

5.3. Process Overview and Scheduling 

This section outlines the processes in the model and the order in which they are executed. It is 

designed to provide an overview of the model function, explain the order of processes, and how 

individuals operate. Full details of processes are provided in the submodels section. 

Vessels operate in daily fishing trips, returning to port at the end of each simulation day. At any one 

time fishing vessels can have one of five ‘activity states’: tied up in port, steaming from port to an 

initial patch, towing dredges (i.e. fishing), moving between patches, or returning to port.  During 

each model tick fishing vessels are instructed to perform their current activity. At the beginning of a 

simulation day all vessels are in port, and must decide whether they will go to sea on that day 

(Figure 5.1). If a vessel does not go to sea, it remains in port for the rest of that simulation day. If a 

vessel decides to go to sea it will select a target fishing patch, and change to the steaming activity 

state. Vessels in the steaming activity state are travelling from port to their chosen fishing patch. 



Chapter 5: ODD Model Description 
 

179 
 

Once a vessel reaches its chosen fishing patch it will change its activity status to towing and begin to 

catch scallops. When a vessel completes a tow on a patch, the scallop biomass is depleted 

accordingly, and the cell colour is updated to reflect how many fishing events have occurred in it. At 

the end of each tow, the vessel will decide if it is to remain on this patch towing, to move to a new 

patch to tow, or to return home. The vessel either remains in the towing activity state and 

completes another tow on its current patch, sets its heading to a new patch and changes to the 

moving between patches activity state, or it changes to the returning to port activity state. The rules 

by which a vessel makes each of these decisions depends on which behavioural settings have been 

chosen (see details in submodel section). 

 

Figure 5.1.  Flowchart for decision process made by vessels in the model 

 

Regardless of the ‘return to port’ behavioural rules they are following, vessels evaluate whether 

their trip duration has exceeded the maximum possible time they can/will stay at sea, as stated in a 
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questionnaire survey. If so, they change their activity to returning to port. Once a vessel reaches 

port, it records the trip data (see Table 5.5 in Design Concepts Section), and changes its activity state 

to tied up in port, where it remains until the start of the next simulation day, when it begins the 

cycle again. 

At the beginning of each day External vessels are created on fishing grounds. External vessels do not 

decide where to fish initially, they are distributed across grounds according to a probability value 

based on previous patterns in effort from the VMS data. External vessels fish for 2 hours and 

evaluate where to fish next, 50% of the time moving to the neighbouring cell with the highest catch 

rate, and 50% of the time moving at random. The External vessels extract scallop biomass, and the 

cell biomass is depleted accordingly, but the activity and catches of individuals are not recorded. The 

external vessel processes are more deterministic, so as to simulate the scallop biomass removed by 

external vessels, but not to predict the behaviour and responses of these vessels as such. External 

vessels recorded 5969 logbook records in the reference period 2011-2013, giving an average of 1989 

trips per season (Chapter 3). External vessels are therefore programmed to fish in cells with a 

probability according to this previous effort so that approximately 1989 trips are taken in a season, 

spatially distributed according to the previous distribution of effort. 

At the start of each simulation day, the model evaluates if the total scallop catch so far has exceeded 

the total allowable catch model regulation. If it has, the model stops, and no more fishing takes 

place.  

 

5.4. Design Concepts 

Basic Principles 

The model is based on human decision-making theory and the behavioural ecology theory of optimal 

foraging (Begossi, 1992; Lee et al., 2014; MacArthur and Pianka, 1966); individuals generally operate 

in a way that either directly, or indirectly, maximises their net money intake over time. The marginal 

value and central place foraging theories provide the basis for behaviours, such that vessels fish in 

areas that will indirectly maximise their profits (Charnov, 1976; MacArthur and Pianka, 1966; Orians 

and Pearson, 1979). These decisions are however bound by conditions that ensure their behaviour is 

realistic (such as a maximum distance they can travel from port), with values derived from 

questionnaire surveys (Chapter 2). 
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Emergence 

Vessel catches and profit, and the spatial distribution of fishing effort emerge from the model. The 

patterns emerge from the vessels’ behavioural rules used to indirectly maximise their profits. 

Adaptation 

Vessels select patches via behavioural rules that, to varying degrees, indirectly maximise their return 

rate. Vessels are not able to adapt to their experiences by changing the rules that they follow to 

make decisions; i.e. if the model is set so that vessels select a patch at random, they will follow this 

behaviour throughout the model simulation. Vessels can, however, adapt to the catch rate they have 

received in a patch, by deciding to remain on that patch, or moving to another patch. The number of 

trips a vessel makes is imposed to reproduce observed patterns of possible or available fishing days, 

and are not modelled as adaptive decisions. 

Objectives 

Vessels only have a true objective when using the patch choice rules that require them to select the 

cell with the greatest difference between expected catch and expected cost. Here, the objective of 

vessels is to maximise their money intake over time by catching as many scallops as possible using as 

little fuel/money/time in doing so, through minimising the ratio between expected catch rates and 

travel costs. In the majority of behavioural settings, vessels are indirectly trying to maximise their 

money intake, by selecting patches that are above a certain threshold, such as the minimum viable 

catch rate, or have the highest catch rate, but it is the model user who has defined this. 

Learning 

Vessels do not demonstrate learning in this model, rather they continue to use the same decision 

rules throughout. 

Prediction 

Vessels will predict the catch rate that they are going to receive in a cell, which assumes that vessels 

know the scallop biomass in each cell. Vessels do not necessarily receive the catch rate that they 

expect to receive from a cell (to simulate small scale variation in catch rates). As it is a small fishery 

with a relatively stationary resource, it is appropriate to allow vessels to sense catch rates over the 

whole model world. However, they only select a patch to fish in that is within a realistic distance 

threshold as identified in the questionnaire surveys (Chapter 2). 
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Sensing 

Once fishing, vessels can sense the catch rates in the current and neighbouring patches to decide 

whether to move to another patch. They can also sense the catch rates across the whole model 

world when calculating if a patch has an above average catch rate. 

Interaction 

Vessels are indirectly competing for scallops in the model; whilst they do not directly compete, if 

one vessel removes scallops from a patch, these scallops are no longer available for the other 

vessels. There is no direct interaction between vessels, as during questionnaires fishermen stated 

they would tow very close to another vessel, so there is no interference competition. They also said 

they would discuss where there are good catch rates with other fishers, but rarely took this 

information into account when deciding where to fish, therefore there are no interactions related to 

social communication in the model. 

Stochasticity 

In patch selection behaviour, if multiple cells offer equally good catch rates, or ‘qualify’ as potential 

patches, then one is chosen at random, introducing some spatial stochasticity. In addition, a vessel 

will not necessarily receive the expected catch rate; the received catch rate will be drawn from a 

random distribution with a mean of the expected catch rate, and a standard deviation of 10% of the 

expected catch rate. This is to simulate small scale variation in catch rates within a patch. 

Nevertheless, this model has relatively little stochasticity. 

Collectives 

There are no collectives (e.g. a social group) in the model currently. 

Observation 

Each time a vessel completes a fishing trip, model logbook data are recorded (Table 5.5). Spatial 

information is also provided by the models animation, and in values recorded by the fishing patches 

(grid cells) themselves. 
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Table 5.5. Variables written to an output file at the end of a fishing trip, to mimic logbook records. 

Variable Description 

Date The day the trip took place on 

Month The month in which the trip took place 

Who Which agent is recording the trip 

VCU The size of the vessel 

Strategy The strategy category of the vessel 

MyPort The port the vessel operates from 

TripNumber The trip number (i.e. trip ID per vessel) 

TimeSteaming The time the vessel spent steaming 

TimeTowing The time the vessel spent towing 

SteamSpeed The vessels steaming speed, to calculate fuel costs 

TowSpeed The vessels towing speed, to calculate fuel costs 

FuelUsed The total amount of fuel used 

TripDuration The total trip duration (i.e. time spent at sea) 

FishHours The total time spent towing 

HoldStatus The hold status (i.e. kg of scallops on the vessel) at the end of the trip 

PatchDist The distance the vessel travelled from port 

Patch-choice-decision The set of patch choice behavioural rules being followed 

Between-patch-decision The set of between patch decision behavioural rules being followed 

Return-decision The set of return to port behavioural rules being followed 

Visited-patches A list of the visited-patches 

 

5.5. Initialisation 

At the beginning of the simulation 26 fishing vessels are created. There are 3 different types of Manx 

vessel: quality maximisers (QLM), quantity maximisers (QTM), and efficient fishers (EFF) as 

determined from a questionnaire survey (Shepperson et al., 2016).  

The number of vessels of each type, in each port, was determined from logbook data. From the 

logbook records, the proportion of trips that took place from Douglas, Peel, Port St Mary, and 

Ramsey were 23%, 38%, 23%, and 17% respectively; the proportion of vessels in each strategy QLM, 

QTM, and EFF was 29%, 21% and 50% respectively, but the proportion of trips made by vessels in 

each strategy was 21%, 20%, and 60% respectively. 

An average of 1634 trips were made by Manx vessels per season, equating to an average of 343 trips 

by QLM vessels, 327 vessels by QTM vessels, and 980 trips by EFF vessels per season. The model was 

initialised with 26 vessels, 8 QLM, 5 QTM, and 13 EFF. The model season is 210 days in length, so to 

make 343 trips the QLM vessels were attributed with a 20% probability of fishing each day, QTM a 

31% probability of fishing, and EFF a 36% probability of fishing each day. The vessels in each strategy 
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were distributed between the ports according to the proportion of trips made at each port by each 

strategy in the logbook records (Table 5.6). 

The model structure is also set at initialisation, determining the behavioural rules that vessels will 

use to select fishing patches and decide when to return to port throughout the simulation (see 

Submodels section). Each vessel is attributed with its state variables accordingly (Table 5.7). 

 

Table 5.6. The proportion of trips made from each port by each strategy. 

 QLM QTM EFF 

 % No. in model % No. in model % No. in model 

Douglas 0.16 1 0.33 2 0.10 1 

Peel 0.67 5 0.35 2 0.52 7 

Port St Mary 0.04 0 0.14 1 0.29 4 

Ramsey 0.13 1 0.18 1 0.09 1 
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Table 5.7. Initialisation values for each type of vessel in the model 

Category Variable Strategies Unit 

QTM QLM EFF 

Physical 

Variables 

VCU M = 215 

SD = 21.5 

M = 129 

SD = 12.9 

M = 147 

SD = 14.7 

 

NumberOfDredges = 0.019 (vcu) + 2.984 Number of dredges towed 

DistancePerTick (18kmph / 60) * 4) = km per tick 

= 1.2 

 

1 unit of distance in model = 3km 

 

Distancepertick = 0.4 units 

((14kmph / 60) * 4) = km per tick = 

0.93 

 

1 unit of distance in model = 3km 

 

Distancepertick = 0.31 units 

((14kmph / 60) * 4) = km per tick = 

0.93 

 

1 unit of distance in model = 3km 

 

Distancepertick = 0.31 units 

 

HoldingCapacity 9006 4085 8512 tons 

Financial 

Variables 

FuelPerSteamHour = 0.142 (vcu) + 4.358 = 0.142 (vcu) + 4.358 = 0.142 (vcu) + 4.358 Litres per hour 

FuelPerTowHour = 0.146 (vcu) – 0.808 = 0.146 (vcu) – 0.808 = 0.146 (vcu) – 0.808 Litres per hour 

GrossTarget 1167 567 846 £ 

GoodGross 2083 1083 1393 £ 

SeaStateTolerance 6 6 6 Beaufort 

Behavioural 

Variables 

TowSpeed 4.4 4.4 4.4 kmph 

MaxDuration 51 46 40 hours 

MaxFishHours 13.7 14 15.7 Hours 

HandlingTime 25.8 13.6 15.1 Minutes 

MaxDistance 88.0 32.4 79.1 Km 

NormalDeptDist 29.1 12.6 13.3 Km 

GivingUpRate 7.44 9.71 5.78 Kg per dredge per hour 

PoorTolerance 2 3 2 Tows 

LikelihoodOfFishing 0.31 0.20 0.36 percent 

Activity during 

simulation 

CurrentActivity 0 0 0  

TripNumber 0 0 0  

HoldStatus 0 0 0  

DistanceToPort 0 0 0  

ChosenGround NA NA NA  

ReceivedCpue NA NA NA  

TimeSteaming 0 0 0  

TimeTowing 0 0 0  

Visited-patches NA NA NA  

TripDuration 0 0 0  

FishHours 0 0 0  
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5.6. Input Data 

Each April a scallop survey and stock assessment quantifies the scallop biomass recorded at survey 

points around the Isle of Man (Figure 5.2). This biomass was interpolated to give a raster layer of 

scallop biomass distribution according to the survey. Three starting biomass values were used: 5000, 

6000, and 7000 tons; 6000 tons was decided to be a reasonable estimate based on expert opinion, 

and using a value either side of this accounts for the uncertainty in this estimate. This biomass was 

then distributed across the model environment proportionally, according to the survey data for 

scallop densities. The survey has relatively low replication, therefore the values were scaled 

according to the previous trends in effort, to attribute cells with an expected catch rate based on 

both previous catches and on the survey data. To prevent scallops being attributed to areas where 

they would unlikely be found (e.g. due to substrate type), cells in which no fishing had taken place in 

the 2011-2013 reference period were attributed with an expected catch rate of zero. 

 

Figure 5.2. A) Interpolated scallop survey biomass data, and the survey locations. Survey locations 
are selected based on habitat parameters and track records of fishing activity from vessel monitoring 
system data. B) The extent of fishing activity, which makes up the possible fishing patches in which 
fishing activity is permitted in the model. 
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5.7. Submodels 

5.7.1. Activity State: In Port 

At the beginning of each day (i.e. Time = 0), a vessel determines if it will go fishing that day. It does 

this by evaluating a random number (0-1) against the likelihood that it will head to sea on a given 

day, according to the proportion of days fished by its vessel type in logbook data. If the vessel does 

not head to sea, it remains in the ‘In Port’ activity state until the following day. 

If the vessel heads to sea, it increments its trip number by 1, and resets its trip variables to zero 

(time spent steaming, time spent towing, trip duration, time on a patch, and hold status). The vessel 

then chooses the patch that it will first target, according to one of eight submodels for patch choice 

which can be selected using a selector button on the model interface (Table 5.8). The patch choice 

model is a global setting, i.e. in any simulation all fishers will use the same behavioural rule 

throughout. A fishers uses the selected behavioural rule to select its target patch from a limited set 

of possible patches. A vessel can only choose between patches that have had some fishing within the 

past 3 year reference period, are within the 12nm Sea, are not a closed area, and are within the 

maximum possible distance that they can travel. The patch must not be port, and must be more than 

0 distance from port. Once a vessel has chosen its target patch, it sets its heading towards the patch, 

and calculates the distance from its home port to the patch according to a cost distance raster that 

accounts for the increased travel time of navigating around land. 
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Table 5.8. Possible patch choice decision settings that can be used in the model 

Patch Choice Model Description 

Model Type (how it 

relates to foraging 

theory) 

1. Random Patch Choice 

(null model) 

Vessels select a patch at random. 

 

Null model 

2. Highest Expected 

Catch Rate 

Vessels select the patch which has the 

highest expected catch rate. 

Optimal Patch 

3. Threshold catch rate 

(average catch rate of 

all patches) 

Vessels select a random patch that has a 

scallop biomass above the average biomass 

of all patches. 

Marginal Value 

Theorem (Charnov, 

1976) 

4. Threshold catch rate 

(the giving up rate) 

Vessels select a random patch that has an 

expected catch rate above their own ‘giving 

up’ threshold catch rate, below which they 

consider it is no longer viable to fish. 

Marginal Value 

Theorem (Charnov, 

1976) 

5. Catch Cost Ratio Vessels select the patch that has the 

greatest ratio between expected catch, and 

the cost of steaming to the patch and back. 

Central Place Foraging 

Theorem (Orians and 

Pearson, 1979) 

6. Conjoint Analysis Vessels select the patch which has the 

highest utility score, according to a conjoint 

analysis of patch choice decisions (only 

distance and catch currently) 

Utility Model 

(Shepperson et al., 

2016) 

7. Previous Effort Vessels select a patch which has shown 

above average trend in effort in the 

observed data (2008-2013) 

 

8. Above a threshold 

conjoint utility 

Vessels select a patch that has an above 

average conjoint utility 

Utility Model 

(Shepperson et al., 

2016) 

 

5.7.2. Activity State: Steaming to a Patch 

A vessel evaluates if the straight line distance from its port to the chosen patch is less than the ‘real’ 

distance to the patch determined from the cost distance raster. If the straight line distance is less 

than the ‘real’ distance, it means taking a straight line route would take the vessel over land. 

Therefore, the vessel calculates an adjusted ‘distance per tick’ so that it still steams in a straight line 

in the model, but it steams more slowly to account for the time it would have taken to travel around 

the land. 

During each tick, the vessel increments its variable ‘time steaming’ by 1, and evaluates if it has 

reached the chosen patch. If it has reached the chosen patch, it sets the ‘time on patch’ and ‘time 

towing’ variables to zero, and changes its current activity status to ‘towing’. 
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5.7.3. Activity State: Towing 

A vessel remains on the patch in the towing activity state until the ‘tow duration’ and ‘handling time’ 

periods have passed. During each tick, the vessel increments its ‘time towing’ and ‘time on patch’ 

variables by 1. Once the tow is complete (i.e. time on patch > tow duration + handling time), the 

vessel increments the patch tow count by 1, resets their ‘time on patch’ variable to zero, and 

performs the ‘catch-deplete’ procedure to determine how much they have caught, and to update 

the scallop biomass in the cell accordingly. They then either decide which should be the next patch 

they target, or whether they should return to port.  

To perform the ‘catch-deplete’ procedure, vessels calculate the catch they have received, add it to 

their hold, and subtract it from the scallop biomass within that cell. To calculate how much they 

have caught they use the following equations: 

(1) Tow distance = ((tow speed x 1000) / 60) x tow duration 

where tow speed is in kmph, and therefore requires converting to metres per minute, and 

tow duration is in minutes. 

(2) Area swept = 0.75 x tow distance x number of dredges 

where the width of a single dredge is 0.75m 

(3) Expected catch = area swept x biomass per m2 x 0.33 

where the gear efficiency was estimated as 33% (Beukers-Stewart, 2001) 

(4) Received catch = drawn from random normal distribution, with a mean of the expected 

catch, and standard deviation of 10% of the expected catch. 

To ensure no vessel receives a negative catch, if the received catch returns a value below zero, it is 

set as zero. The received catch biomass is then subtracted from the cell biomass, and the biomass 

per m2 is updated accordingly. 

Once a fishing event is complete the vessel decides if it should return to port. If their hold status is 

either above their individual daily limit or above their hold capacity, they reduce their hold status to 

the limit value, and change their activity status to returning to port. Aside from these restrictions, 

there are 4 possible return to port decision (Table 5.9) 
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Table 5.9.  Possible return to port decision settings 

Return to Port Model Explanation 

1. At curfew A vessel will fish for as long as it is allowed. 

2. Maximum fishing 

time 

A vessel will return to port before the curfew if it reaches its own limit for 

fishing time first. 

3. Minimum viable 

gross 

If a vessel’s hold status exceeds what it considers as a minimum viable 

gross, it will return to port. It will return at curfew if not before. 

4. ‘Good’ takings A vessel will return to port before the curfew if its hold status exceeds 

what it considers as good takings. 

 

After completing a fishing event, if a vessel is to remain at sea, it will decide whether to remain 

towing on the same patch, or to move to a new patch, using one of six rules (Table 5.10). 

Table 5.10. Possible between patch decision settings 

Next Patch Model Explanation 

1. Random Vessel selects next patch at random from the current patch and its 

8 neighbours. 

2. Highest Rate Vessel selects the patch with the highest expected catch rate, 

from its current patch and its 8 neighbours. 

3. 50:50 random:highest 50% of the time the vessel selects a patch at random, and 50% of 

the time it selects the patch with the highest catch rate. 

4. MVT (average) If the current patch has a catch rate above the average of the 8 

neighbouring patches, it remains on that patch. If not, it selects a 

neighbouring patch with an above average catch rate.  

5. MVT (givingup) If the current patch has a catch rate above its giving up rate, it 

remains on that patch. If not, it selects a neighbouring patch with 

a catch rate above its giving up rate. If there are no patches above 

its giving up rate, the vessel returns to port. 

6. Optimisation A vessel will select the patch which has the greatest ratio between 

catch rate and travel cost to return to port. 

 

5.7.4. Activity State: Moving Between Patches 

If a vessel is in the ‘moving between patches’ activity state, during each tick it will increment its time 

steaming variable by 1. It will evaluate if the patch it is on is the patch it is aiming for: if so, it will 

change its activity state to towing, and set its time on the patch to zero; if not, it will move forward 

one unit, and remain in the moving between patches activity state.  
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5.7.5. Activity State: Returning to Port 

Vessels in the ‘returning’ activity state are travelling back to port. During each tick, a vessel faces 

port, and travels forward 1 unit, and increments its time steaming variable by 1. After travelling 

forward 1 unit, the vessel evaluates if the current patch is port: if so, it performs the ‘arrive at port’ 

set of commands; if not, it remains in the ‘returning’ activity state. 

When a vessel arrives at port, it submits a logbook record, and updates the relevant variables. The 

hold status (scallop biomass) is added to the total catch variable. The time spent towing and 

steaming during this trip are added to the variables for total time towing and total time steaming. 

The total time at sea is calculated by adding the total steaming and total towing times. The total fuel 

cost is calculated from each vessels fuel use rates per towing and steaming, with a fuel price of 0.65 

per litre of fuel. The total catch value is calculated with an average market price of £1.42 per kg of 

scallops. The total profit is calculated by subtracting a third of the catch value as crew wages, and 

then subtracting the fuel cost from the remaining. The time in port, trip duration, and fishing hours 

are reset to zero, and the activity state is set to ‘in port’. 
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6.1. Abstract 

Human behaviour is an area of considerable uncertainty in fisheries management; failing to account 

for the behavioural response of fishermen can lead to unintended consequences of management. 

Individual-based models (IBMs) could help to address some of the knowledge gaps in our 

understanding of fisher behaviour, and help both managers and fishers better predict and 

understand the potential consequences of different management scenarios. Nevertheless, a lack of 

comprehensively validated fishery IBMs may have hindered their application in fisheries 

management. In particular, models are often built with little consideration given to alternative 

possible submodels of fishing behaviour. By contrasting alternative decision models, or ‘theories’ of 

behaviour, more robust models could be developed. 

The primary objectives were to design an IBM of the Isle of Man scallop fishery, and then use it to 

develop and test different submodels, or theories, for patch choice behaviour by fishing vessels. 

Approximate Bayesian Computation was used to select for models that generated outputs closest to 

real fishery values in vessel monitoring system and logbook data. 

Using simple foraging decision rules, parameterised using data collected directly from fishermen, it 

was possible to build an IBM that could reproduce patterns seen in the Isle of Man scallop fishery 

with reasonable similarity. The model was able to reproduce realistic values for the extent of fishing, 

average trip CPUE, average fishing hours per trip, average steaming hours per trip, average fuel 

used, average landings, and total landings across the fishing season. The development process 

increased our understanding of fishing behaviour in the Isle of Man scallop fishery, and provided 

insights into how to predict fishing behaviour in a model environment. In particular, it highlighted 

the importance of including a random component of fishing behaviour (e.g. to account for gut 

feeling), rather than using only fully informed behaviour.  

Predicting responses to management by modelling fishers under the assumption that they act in an 

economically rational manner, or as optimal foragers, may overestimate the capacity of the fleet to 

compensate for restrictions such as closed areas, and may underestimate the economic impact that 

a management measure may have on the fishery.  
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6.2. Introduction 

 

Human behaviour is an area of considerable uncertainty in fisheries management (Fulton et al., 

2011). Failing to account for the behavioural response of fishermen to management can lead to 

unintended consequences of management, and even produce negative environmental, economic, or 

social effects (Hilborn et al., 2004; Pascoe and Mardle, 2005). An inability to foresee (or failure to 

consider) the displacement of effort following management can lead to unintended consequences 

(Dinmore et al., 2003). To implement effective fisheries management we should be confident that 

fishers will respond to management actions as intended, but to do this we need a good 

understanding of fisher behaviour and how to predict it (Bacalso et al., 2013; Charles, 1995; Gordon, 

1953; Hallwass et al., 2013; Hilborn, 2007; Marchal et al., 2007; Murray et al., 2011; Salas and 

Gaertner, 2004; Wilen et al., 2002). 

 

6.2.1. Individual-based modelling could be a good platform to better 

understand fishing activity 

Individual-based models (IBMs) could help to address some of the knowledge gaps in our 

understanding of fisher behaviour, and allow us to create simulation tools that could help both 

managers and fishers better predict and understand the potential consequences of different 

management scenarios (Evans, 2012; Grimm and Railsback, 2005). IBMs view systems as having 

properties that arise from the behaviours and interactions of the individuals that make up the 

system (Grimm and Railsback, 2005). This makes it relevant for modelling fishing behaviour, as it is 

the decisions made by, and behaviours of, individual fishermen that drive the spatial patterns seen 

in the system (Plaganyi et al., 2014; Hilborn, 2007). 

With advances in computing power, IBMs present an opportunity to model complex systems with 

more realism than previously possible (van der Vaart et al., 2015). Increasingly complex models can, 

however, be criticised as being ‘black boxes’, that are too complex to really understand and 

communicate (Topping et al., 2010). The structure of a model is a compromise between realism, 

complexity, and efficiency (Evans, 2012; Evans et al., 2013); an IBM must capture all of the processes 

and heterogeneity required to understand the system, but must also not be overly computationally 

demanding, or so complex that parameter uncertainty renders it too complex for application. 
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6.2.2. Open, simple, realistic model development 

Optimal Foraging Theory (OFT) (MacArthur and Pianka, 1966) has been demonstrated as a suitable 

framework for investigating fisher behaviour (Begossi, 1992; Begossi et al., 2009; de Oliveira and 

Begossi, 2011; Lee et al., 2014; Sosis, 2002). OFT states that individuals aim to maximise their net 

energy intake over time (analogous to catches or profit for a fisher), and is therefore comparable to 

assuming fishers follow profit maximisation behaviour (Holland, 2008). Modelling fishers under the 

framework of OFT provides a relatively simple, established model of patch selection behaviours on 

which to base a model. Nevertheless, the questionnaire surveys (Chapter 2) and analysis of VMS and 

logbook data (Chapter 3) suggested that there may be violations to some of the assumptions of OFT; 

namely that all fishers do not have equal abilities, fishers may not have complete knowledge of catch 

rates in the system, and importantly, not all fishers may be true profit maximisers (Chapter 2, 

Chapter 3). An IBM provides a more flexible framework within which to account for deviations from 

such theory (Grimm and Railsback, 2005). 

To parameterise an IBM, a detailed understanding of the behaviours in the system is required. 

Collecting data directly from fishers can be termed fishers knowledge (FK), and can provide useful 

and reliable information on a fishery system (O’Donnell et al., 2012; Shepperson et al., 2014, 2016; 

Teixeira et al., 2013). Using data collected directly from fishers may help to make a model more 

realistic, for example providing boundary conditions such as a maximum distance a vessel is able or 

willing to travel. In addition, it may help to keep the model simpler, allowing redundant processes to 

be excluded, for example, fishers consistently stated they were able to fish very close to one 

another, therefore no displacement competition between vessels needed to be modelled (Chapter 

3), whereas this has been shown to be important in other fishery systems (Rijnsdorp, 2000). 

Understanding more about fishing strategies through interviewing fishers also highlighted a 

potential need to include individual variability in capabilities and objectives / requirements, and 

suggested some fishers may not be true profit maximisers (Chapter 2).  

 

6.2.3. Pattern Oriented Modelling In IBMs 

IBMs are often developed using pattern oriented modelling (POM), which is essentially a protocol to 

build and evaluate IBMs (Grimm et al., 2005; Grimm and Railsback, 2012). The first stage of POM 

uses patterns in the real system to determine the entities and processes needed in the model; the 

second stage of POM considers how to find realistic representations of these processes, using 

alternative submodels of different complexity or structure to represent each process (Grimm and 
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Railsback, 2012). Multiple patterns observed in the real system are used to guide model 

development and evaluation; models are then accepted or rejected based on their ability to 

reproduce these patterns (e.g. Railsback and Johnson, 2011). If a model can reproduce multiple 

patterns seen in the real system then it can be assumed that it is realistically recreating some of the 

internal processes in the system (Grimm et al., 2005). Both strong and weak patterns should be 

considered (Grimm and Railsback, 2012). Strong patterns often need describing by data or 

equations, whereas weak patterns are often more qualitative. A strong pattern is something 

pronounced, for example in a fishery this might be spatial patterns in effort; recreating these could 

be a good indicator that you have captured the system well. Nevertheless, weak patterns (e.g. 

fishers preferring one ground over another) are less pronounced, and may be reproducible by 

multiple mechanisms in a model, but if a model can reproduce multiple weak patterns it can be a 

strong indicator that structural realism has been achieved (Grimm and Railsback, 2012). 

 

6.2.4. Approximate Bayesian Computation provides an objective structured 

way to assess model performance. 

POM can be criticised as being relatively qualitative, and some argue that for individual-based 

modelling to become more mainstream in statistical modelling and prediction, a more quantitative 

statistically rigorous validation process is needed (van der Vaart et al., 2015). Approximate Bayesian 

Computation (ABC) is a Bayesian technique that can be used to evaluate IBM performance, and to 

perform parameter estimation and model selection (van der Vaart et al., 2015). In ABC, the data 

generated from model simulations are reduced to summary statistics, and then simulations that 

generate values closest to the real observations are retained as the best models (Csillery et al., 

2010). The subsample of accepted models can then be used to explore parameter uncertainty, for 

parameter calibration, to identify parameters of lower importance, and to select between different 

model structures (e.g. a complex model vs a simpler model with fewer parameters) (Csillery et al., 

2010; van der Vaart et al., 2015). This complements POM, as it provides a more objective and 

systematic method of assessing the performance of different model structures and parameters.  

 

6.2.5. Using IBM and ABC could allow us to better understand how to 

predict fishing activity. 

Validation of fisheries IBMs has previously been somewhat qualitative, or based on relatively few 

coarse scale data points (e.g. Dowling et al., 2012; Little et al., 2009), perhaps due to the paucity of 
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appropriate data for validation. In addition, IBMs are often constructed using only one model of 

decision making, with little consideration presented of alternative processes or mechanisms (Grimm 

et al., 2005). The lack of comprehensively validated IBMs may hinder their application in fisheries 

management, through a lack of evidence that models can accurately predicting fishing activity and 

responses to novel management scenarios. By contrasting alternative decision models, or ‘theories’ 

of behaviour (Grimm and Railsback, 2005), a more rigorous approach to model development could 

be achieved. ABC could help to build and evaluate an IBM of fishing behaviour through providing an 

objective assessment of which fishing behaviours provide the most realistic model. Comparing 

different submodels of the same system (e.g. different behavioural rules for how to decide where to 

fish) could increase confidence that not only the outputs of the model are realistic, but that the 

underlying processes driving the patterns are realistic (Grimm and Railsback, 2012). Alternative 

behavioural models should be systematically tested to build more robust models (van Putten et al., 

2012). 

Nevertheless, there can be multiple potential explanatory models of a system (Csillery et al., 2010); 

model selection does not necessarily imply selecting a single ‘best’ model (Ripley, 2004), as different 

mechanisms in a model could lead to the same emergent patterns (Csillery et al., 2010). There could, 

therefore, be several equally good candidate models to describe patterns seen in a fishery system. 

An IBM provides a virtual laboratory to compare different behavioural submodels (e.g. patch choice 

decision rules), evaluating fisher foraging theory in a more complex and realistic environment than 

most mathematical models, whilst still being fully controllable with measureable outputs. Model 

validation often has two steps; a model output verification process in which model outputs are 

compared to the data used to create them, and a model corroboration process, in which model 

outputs are compared against an independent dataset not used at all during the model development 

and verification stages (Grimm et al., 2014; Augusiak et al., 2014). In this Chapter a model output 

verification is presented, during which the model is ‘tweaked’ to improve its performance in relation 

to the real fishery data. Documenting this development and validation process has the benefit of 

increasing transparency, documenting what mechanisms were included and/or rejected, and 

indicating the importance of different processes (Grimm et al., 2005; Grimm et al., 2014). 

 

6.2.6. Aims and Objectives 

The primary objectives were to design an IBM of the Isle of Man scallop fishery, and then use it to 

develop and test different submodels or theories for patch choice behaviour by fishing vessels. The 

model design and development followed the ‘pattern-oriented modelling’ strategy (Grimm et al., 
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2005; Grimm and Railsback, 2012), in which characteristic patterns observed in the real fishery, 

relevant to the model’s purpose, were used as the basis for designing and testing the model. ABC 

was employed to provide an objective analysis of which submodels best recreated the values and 

patterns seen in the real fishery. The specific aims were to: 1) develop an IBM of scallop fishing 

activity in the Isle of Man, with the functionality to test out multiple behavioural submodels (i.e. 

different ways that fishers can make decisions regarding where to fish); 2) determine which 

behavioural submodels best recreated the Isle of Man scallop fishery; and finally 3) to draw 

conclusions relevant to predicting fishermen’s foraging behaviour in a behavioural model.   
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6.3. Methods 

6.3.1. The Isle of Man Scallop Fishery 

The Isle of Man provides an ideal candidate system to develop a model of fishing behaviour as it is a 

simple and data-rich system. Vessels mainly complete single day trips in a relatively confined area, 

indirectly competing for, and depleting, a stationary, patchy resource (Chapter 3). In addition, all 

vessels fishing for scallops in the Isle of Man territorial sea are required to carry a mandatory 

satellite tracking device, called a vessel monitoring system (VMS), which provides approximately 

two-hourly spatial position data on the vessel. Vessels are also required to return daily logbook 

records of their catches. By joining the VMS position records with the logbook catch data, the 

resulting spatially resolved catch data can be used for scientific research into fishing activity 

(Lambert et al., 2012; Lee et al., 2010), and as a dataset against which an IBM can be 

comprehensively validated.  A stock survey is also completed yearly, with scallop biomass recorded 

at around 30 locations in the 12nm Sea (Bloor and Kaiser, 2016). This data-rich simplicity makes it an 

ideal system to develop and validate an IBM, and to test different submodels or theories for 

modelling fishing behaviour, to inform future model development in more complex fisheries. 

King scallops (Pecten maximus) and Queen scallops (Aequipecten opercularis) have been important 

fisheries for the Isle of Man since the 1950s, and form the most valuable fishery for Manx (Isle of 

Man) vessels (Hanley et al., 2013). This model focussed on the behaviour of scallop dredgers when 

targeting the more valuable king scallop fishery. King scallops (hereafter referred to as ‘scallops’) are 

fished using toothed Newhaven dredges, which are each approximately 75cm in width, with eight 

110mm metal teeth along the front edge of the dredge. The dredge teeth rake up scallops from the 

seabed, which are collected in a mesh bag behind the tooth bar. Groups of dredges are positioned 

along a tow bar which has wheels to hold the bar at a fixed altitude relative to the seabed and to 

reduce drag. In Manx territorial waters, scallop dredgers are restricted to using ten dredges within 

3nm from shore, and 14 dredges in a zone from 3 to 12nm from shore. There is as curfew such that 

fishing is only permitted between 06:00 and 20:00, and a minimum landing size of 110mm. Vessels 

must hold a licence to fishing in the Manx territorial Sea, and the fishery is sometimes managed 

using area closures.  
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6.3.2. Characteristic patterns of the Isle of Man scallop fishery for model 

development 

The first phase in pattern-oriented modelling is to identify a set of observed patterns that 

characterise the system’s behaviour in relation to the problem to be modelled (Grimm et al., 2005; 

Grimm and Railsback, 2012; Railsback and Johnson, 2011). These characteristic patterns observed in 

the real system tell us about the structure needed for a model of the system (e.g. the scale of the 

model, and what entities and processes are needed in the model). The patterns used should be 

general and robust, but are not always quantitative. Both strong quantitative and weaker qualitative 

patterns can be used in POM; recreating multiple weak patterns can provide strong support for a 

model (Grimm and Railsback, 2012). For the Isle of Man scallop fishery, the following patterns 

characterise fishing effort and catches, at the spatial and temporal resolution of interest (Chapter 3). 

Pattern 1: Vessels operated predominantly daily fishing trips, steaming out to a patch at the start of 

a day and then fishing within a relatively small area throughout that day. 

Pattern 2: The majority of fishing effort took place within the 12nm Sea, over known fishing grounds, 

(because scallops are relatively sedentary animals which form ‘beds’ or aggregations over suitable 

habitats). Vessels did not all fish in all available patches equally; they tended to fish at the grounds 

closest to their port. 

Pattern 3: The fishing footprint increased as the season progressed, i.e. at the start of the fishing 

season, activity was more spatially clustered in smaller areas. 

Pattern 4: The highest number of trips took place over the ground called ‘East Douglas’, but the 

highest total landings came from the ground called ‘Chickens’. Non-Manx vessels showed less 

preference to the fishing ground called ‘Targets’ than Manx vessels. 

Pattern 5: Vessels may follow different fishing strategies, and not all may be true profit maximisers 

(Shepperson et al., 2016, Chapter 2) 

Pattern 6: Catch rates and landings declined throughout the season. 

Pattern 7: There was individual variation in catch rates, landings, and spatial distribution of effort. 

These patterns informed the model development. For example, vessels completed daily fishing trips, 

so a daily timestep was the lowest resolution at which the model could be run, and model processes 

were needed that led vessels to return to port at the end of the day. There is a curfew that prohibits 

vessels from fishing for more than 14 hours per day (08:00 – 20:00), so vessels in the model must be 

prohibited from fishing for longer than this. Nevertheless, there may be other processes that 
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contribute to the duration of trips within the curfew, such as gross targeting behaviour (Salas and 

Gaertner, 2004; Simon, 1955), which could also be tested. The spatial extent of the model focussed 

on the 12nm territorial sea, because this was where the majority of trips took place, and also the 

area for which complete data was available for model validation. Within the 12nm Sea, the most 

prosecuted ground was not the ground with the highest landings, which suggested that vessels 

needed to be able to choose where to fish not only based on expected catch rates. There needed to 

be different sized vessels, and processes that allowed individual variation in characteristics and 

catches that also allowed vessels to not necessarily act as true profit maximisers. Once fishing, 

vessels did not move far during a trip, so vessels in the model only evaluated nearby patches when 

deciding if/when to move patches, and were prevented from switching to a patch on the other side 

of the island mid-trip.  

 

6.3.3. A Brief Model Description (See Chapter 5 for full description) 

The purpose of the model is ultimately to explore the potential impact of different management 

measures on the Isle of Man scallop fishery from an environmental and economic perspective, in 

terms of the footprint of fishing and the reduction in catches for fishing vessels. In particular, it is 

designed to understand how the spatial extent and arrangement of closed areas affects the fishers’ 

landings and costs and the amount/proportion of the scallop biomass removed in a season. For 

example, if we close an area to scallop dredging, where would fishers go instead (displacement of 

effort) to compensate for this lost area, what would the environmental impacts of this shift be, and 

would the fishers still be able to make enough money? 

Initially, however, the model is used to understand more about predicting fishing activity, evaluating 

different submodels of fishing behaviours. There are four main decisions that fishers make in the 

model: 1) If they should fish that day; 2) where they should steam to at the start of a day to begin 

fishing; 3) after completing a tow, should they remain on that patch or move to a new location; and 

4) when should they return to port. These decisions can be made in different ways; the first stage of 

model development is to determine what behavioural rules best recreate the fishery. For example, if 

fishers select a patch to fish based purely on the highest expected catch rate, is this more or less 

realistic than if they take account for the travel cost when deciding where to fish? 

Briefly, the model consists of a fishery system divided into fishing ‘patches’ of 3km by 3km, which 

are each attributed with a scallop biomass and expected catch rate. At the start of each day in a 

model simulation, a fisher decides if it will fish that day, and if so, which fishing patch it should steam 
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out to. Once the vessel arrives on that patch it begins fishing. After completing a fishing event, the 

fisher evaluates whether it should remain fishing on that patch, or move to a different patch. At the 

end of the fishing trip the vessel returns to port and submits catch information that mimics logbook 

data from the real fishery. To validate the model, this catch information could be compared to VMS 

and logbook data from the real fishery, to see if values and trends observed in the real fishery were 

recreated in the model. Here we refer to a ‘fisher’ making a decision, which generally would refer to 

a skipper on a vessel with one or more other crew member(s), who form a single unit in the model. A 

full, standardised, model description was presented in Chapter 5. 

 

6.3.4. Developing Hypotheses for Fisher Foraging Behaviour with an IBM 

There are three behavioural decisions in this model that could influence the spatial distribution of 

fishing effort: the decision of which patch to steam out to at the beginning of a fishing trip, the 

decision of if, when, and where to move to after towing on a patch, and the decision of when to stop 

fishing and return to port. These form three independent decision processes in the model. There are 

also several different submodels, or behavioural settings, for each of these decision processes (i.e. 

different behavioural rules that vessels could follow) (Table 6.1). These different behavioural 

submodels were tested to determine the most realistic combination of behaviours for the 3 

decisions. The models were run at three different starting biomass values (5000, 6000, 7000 tons), to 

account for uncertainty in this value, as it was derived from expert opinion. 

Which behavioural rule, or submodel, a fisher uses is a ‘global’ model setting, which means that all 

fishers would follow the same behavioural rules during a simulation. There are 192 different 

combinations of behavioural rules, therefore 192 unique model structures that could be tested. 

Thus, a ‘submodel’ refers to a behavioural setting, e.g. choose a patch at random, return to port at 

curfew, and a ‘model structure’ refers to the overall combination of submodels used. Future model 

development could allow multiple behavioural rules within one simulation (i.e. some choosing 

where to fish at random, some choosing based on the highest expected catch rate), but in the initial 

model development, for simplicity, the different behavioural rules formed discrete submodels to 

select between.  The behavioural rules tested in the model were related to optimal foraging theory 

and related models as described below in Table 6.2, and described graphically in Figure 6.1 and 6.2.  
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Table 6.1. Possible behavioural settings or submodels for the 3 decisions made in the model. There 
are 192 different combinations, therefore 192 unique model structures. See Table 2 for further 
description 

 Patch Choice Decision Between Patch Decision Return to Port Decision 

1 Random Random At curfew 

2 Highest expected catch rate Highest expected catch rate After maximum possible fishing 

time 

3 Above average expected catch 

rate 

50% random, 50% highest 

expected catch rate 

After a minimum threshold 

catch has been reached 

4 Above a threshold expected 

catch rate 

Above average expected catch 

rate 

After a catch the fisher considers 

‘good’ has been reached 

5 The best ratio between expected 

catch and travel cost 

Above a threshold expected 

catch rate 

 

6 Highest utility score The best ratio between expected 

catch and travel cost 

 

7 Previous level of effort   

8 Above average utility score   

 

 

Table 6.2. Description of how the different behavioural submodels relate to foraging theory or a 
choice based conjoint analysis completed by the fishermen. 

Category Foraging Behaviour Fisheries IBM 

Random 

Behaviour 

 

Foraging behaviour that is 

not guided by expected 

catch rates in any way. A 

forager moves randomly 

between foraging patches. 

 

 

 

 

Pattern oriented theory development should include a ‘null’ 

theory as a baseline against which other alternative theories can 

be compared (Grimm and Railsback, 2012). The null model 

provides insights into the patterns that cannot be reproduced 

without some form of ‘intelligent’ or ‘informed’ patch choice 

behaviour. For example, in a null model, fishers would select 

which patch to fish in randomly, regardless of the expected 

catch rate in any patches. After towing in a patch, they would 

decide the next patch at random. 

Optimal 

foraging 

theory 

Foragers act in a way that 

maximises their net intake 

over time. 

In some submodels fishers choose a patch with the highest 

expected catch rate; fishers have perfect knowledge of the 

model system, and always select the patch with the highest 

expected catch rates. A fisher would decide to leave a patch 

when an adjacent patch offers a higher expected catch rate. 
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Marginal 

Value 

Theorem 

Foragers remain on a 

patch until the benefit of 

moving to a new patch 

exceeds the travel cost. 

Some submodels resemble the marginal value theory of 

(Charnov, 1976). Fishers move to a new patch when they have 

depleted the resources at their current patch down to the 

average available throughout the whole system. A variant on 

this is that instead of assuming that fishers are aware of the 

average catch rates across the whole system, they select a patch 

and move between patches based on a ‘giving up threshold’ 

catch rate, below which the fisher considers it unviable to fish. 

In this submodel fishers move between patches when the 

current patch falls below the threshold value.  

 

Central 

Place 

Foraging 

Theory: 

The travel cost associated 

with a patch is weighed 

against the resource 

density. 

 

Some submodels are related to central place foraging theory 

(Orians and Pearson, 1979). Fishers must travel from and return 

to a certain location at the end of each foraging trip, and 

therefore the ‘expense’ of the travel can be accounted for. For 

example, a fisher selects a patch which has the highest expected 

catch:travel cost ratio. After each tow, the fisher evaluates if any 

adjacent patches offer a better ratio between expected catch 

rates and cost of travel back to port. 

Conjoint 

analysis: 

This is not a foraging 

model, but because it 

currently only includes 

distance to port and 

expected catch rates, it 

somewhat resembles 

central place foraging 

theory, with the catch:cost 

ratio evaluated in a non-

linear manner. 

Two patch choice submodels are based on a questionnaire 

survey of fishermen in which they completed a choice 

experiment called a conjoint analysis (Shepperson et al., 2016; 

Chapter 2). In this survey, fishers chose between virtual fishing 

patches attributed with variables such as sea state, distance to 

port, expected catch rates, meat yield, roe/gonad status, and 

rock content. Three fisher strategies, QTM, QLM and EFF were 

derived from differences in the way that fishers chose between 

these patches (Shepperson et al., 2016). The full conjoint model 

could not be incorporated in the IBM due to data availability, 

but fishers can weigh up the distance travelled and the expected 

catch rates according to the conjoint utility score for each patch 

(which varies between the 3 strategies). This essentially assumes 

a constant meat yield (size of the white adductor muscle that we 

most commonly eat), roe/gonad status (reproductive status of 

the scallop, full gonads makes the scallop more valuable), and 

rock content (how much rock the dredges pick up, which is 

inconvenient and can damage dredges) across the model 

environment. 
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Figure 6.1. The different submodels for how a vessel decides where to fish, and how they relate to 
foraging theory. Previous effort is included in the ‘uninformed’ behaviour category as it relates to 
previous effort rather than directly assessing catch rates, although previous effort would likely have 
been influenced by catch rates. Green shading indicates a submodel / behavioural rule. 

 

 

Figure 6.2. The different submodels for how a vessel decides when to change fishing patch, and how 
they relate to foraging theory. Green shading indicates a submodel / behavioural setting. 
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In all models, fishers could only choose from a set of ‘possible patches’ which met certain criteria 

specific to that individual. The patch had to be: within the maximum possible travel distance from 

port for that fisher; open to fishing; being within the 12nm territorial sea; and previously had 

experienced some fishing activity (i.e. it was a fishing ground). 

The return to port decision submodels either demonstrated profit maximising or satisficing 

behaviour, with fishers choosing to return to port based on time restrictions or on catches: 

1) Vessels return to port at curfew, fishing for the maximum time permitted. 

2) Vessels return to port after the maximum time they are willing / able to fish for, based on 

questionnaire responses. 

3) Vessels return to port once they have achieved catches they consider to reach a ‘minimum 

viable gross’. 

4) Vessels return to port once they have achieved catches they consider to be ‘good takings’. 

 

In all models fishers must return to port at curfew, regardless of which return to port decision rule 

they are using. Therefore the alternate decision rules can only shorten the fishing trip; e.g. a fisher 

may reach ‘good takings’ before the curfew, and so may return to port early, but may not remain 

fishing longer than curfew if ‘good takings’ has not been reached. 

 

6.3.5. Comparing the model output to real-life patterns using ABC 

Simulation experiments let us draw conclusions about which behavioural rules best represented the 

fishers’ foraging behaviour, and best recreated the values and patterns seen in the real fishery. In 

ABC the data generated by the model are reduced to summary statistics, and then simulations that 

provide values closest to the real observations are retained as the best (Csillery et al., 2010). This 

analysis uses the simplest version of ABC, rejection- ABC (Pritchard et al., 1999). For model selection, 

a certain percentage of models with the smallest difference between the model output values and 

the real data values are retained; the ratio in which models are retained gives the relative probability 

that each model is correct (Csillery et al., 2010). These best models can then be used to inform 

model development, to explore parameter uncertainty, for parameter calibration, and to identify 

parameters of lower importance (Csillery et al., 2010; van der Vaart et al., 2015). The ABC model 

selection used R code developed by van der Vaart et al., (2015), which was based on the ‘abc’ R 

package by Csillery et al., (2010). The model selection followed the protocol described in Box 6.1, 

adapted from van der Vaart et al., (2015). Parameters provided by fishermen during questionnaire 
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surveys were assumed to be realistic values (Chapter 2), so the models were not calibrated to 

provide more accurate values compared to the real fishery data.  

 

ABC MODEL SELECTION 

Step 1: Run each unique model 5 times at each of the three possible starting biomass values, 

resulting in 15 runs per model structure. 

Step 2: Scale each data point in both the model outputs and the empirical data by dividing by the 

standard deviation of that data point in all model outputs. These data points relate to all of the 

monthly values presented in Figure 6.6, meaning the IBM is being fitted to all of the values and 

trends in the fishery simultaneously. 

Step 3: Compute the distance ‘𝜌’ between the scaled model outputs (m) and the scaled empirical 

data (D) according to Eq. 1: 

𝜌(𝑚𝑖, 𝐷) =  √∑ (
𝑚𝑖,𝑗− 𝐷𝑗

𝑠𝑑(𝑚𝑗)
)

2

𝑗                                                                                 (Eq. 1) 

where mi,j is run i's output for data point j, Dj is the empirical data for data point j, sd(mj) is the 

standard deviation of the model outputs for data point j in all model runs. 

A scaling factor was used to normalise the scales of the data points, because, for example, total 

scallop catches were recorded in millions, whilst the extent was in hundreds. If these differences 

in scales of units were not appropriately scaled, the total catches would have an undue influence 

on the distance calculations simply because of the units used to measure them. 

Step 4: Accept the top 1% of models, with the lowest distance between model output data and 

real fishery data. 

 

 

Box 6.1. Model selection protocol, following methodology and code developed by van der Vaart et 
al., (2015), which was based on the ‘abc’ R package by Csillery et al., (2010). 

 

6.3.6. The Stages of ABC and Model Validation 

There were three stages to the model validation (Box 6.2). The results section is structured such that 

the reader is walked through these stages of model validation, guided by the lessons learnt at each 

stage. At each stage, the model output is compared to the real fishery values, and new hypotheses 

formed to test in the model; e.g. following output from Stage 1, a hypothesis arose whether 

increasing the randomness in patch choice behaviour may improve the model fit. There were two 



Chapter 6: Model Output Verification 
 

213 
 

aspects to comparing the model outputs: trends and magnitudes. For a variable, if the trend was 

captured well, but the magnitude was wrong, this could be corrected by calibration of parameters. If 

the trend was poorly captured, this may suggest that the structure of the model could be improved.  

 

THE MODEL SELECTION PROCESS 

Stage 1: Run the initial model using all possible behavioural structures (192 unique model 

structures, at 3 starting biomass values) 

Stage 2: Run the model where vessels used an informed ‘patch choice decision’ 50% of the time, 

and a random ‘patch choice decision’ 50% of the time (192 unique model structures, at 3 starting 

biomass values). Vessels used 12.5% random behaviour in month 1, 25% in month 2, 37.5%, 50%, 

62.5%, 75%, and 87.5% in month 3, 4, 5, 6, and 7, respectively. This averaged as 50% random 

behaviour over the season, with more informed behaviour at the start of the season and more 

random behaviour at the end of the season. 

Stage 3: A comparison of the 2 previous sets of models (all informed, and 50:50 

informed:random) (360 unique model structures, at 3 starting biomass values; 100% random 

behaviour was present in step 1 and step 2, therefore the second set were removed from the 

comparison to retain equal numbers of each unique model) 

 

Box 6.2. The three stages of model selection. 

 

A Kendall tau rank correlation coefficient (Kendall, 1938) was used to assess the correlation between 

the average model values and the real fishery values for the total catch, time spent steaming, time 

spent fishing, extent, average CPUE, average daily catch, average fuel used, and number of trips. 

Kendall’s tau was also used to assess the correlation between monthly values of these variables in 

the model and the real fishery data. 

The model was developed in Netlogo modelling software version 5.1.0 (Wilensky, 1999). Model 

simulations were controlled through R (R Development Core Team, 2016), using the RNetLogo 

package (Thiele, 2014), and run on a high performance supercomputer HPCWales 

(http://www.hpcwales.co.uk).  The packages tidyr (Wickham, 2016) and dplyr (Wickham and 

Francois, 2016) were used for data processing. The ABC model selection used R code developed by 

van der Vaart et al., (2015), which was based on the ‘abc’ R package by Csillery et al., (2010). The 
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packages ggplot2 (Wickham, 2009), gridExtra (Auguie, 2016), and splitstackshape (Mahto, 2014) 

were used to visualise the outputs. 
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6.4. Results 

6.4.1. Stage 1: How did the initial model runs perform? 

In Stage 1, each combination of behavioural submodels were run, totalling 192 unique model 

structures, run at 3 starting biomasses, resulting in 2880 simulations. The mean values from the top 

1% of models accepted in the ABC analysis were strongly correlated with the real values (Figure 6.3; 

Kendall tau: r2 = 0.93, n=8, p<0.001). Nevertheless, these models slightly underestimated the fishing 

extent, and overestimated the fuel used. In these accepted models, the most common initial patch 

choice rule was to choose a patch at random (from patches that met the common criteria such as 

within maximum travel distance) (93% of accepted runs). The most common ‘between patch 

decision’ rule was to select a patch with an above average catch rate (55% of accepted runs). The 

most common return to port decision rule was to return at curfew (55% of accepted runs) (Table 

6.3).  

 

Figure 6.3. Boxplots show the output values from the accepted model runs. Red points indicate the 
real value from fishery data.  
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Table 6.3. Model settings from the accepted runs from initial uncalibrated simulations 

Initial Patch Choice Between patch Choice Return Decision Accepted runs 

Random Highest At curfew 3 

Random Highest Max fishing time 1 

Random Above average At curfew 9 

Random Above average Max fishing time 6 

Random Above average After good takings 1 

Random Catch:cost ratio At curfew 4 

Random Catch:cost ratio Max fishing time 1 

Random Catch:cost ratio Min viable gross 1 

Random Catch:cost ratio After good takings 1 

Conjoint GUT Catch:cost ratio After good takings 2 

 

The average values from the accepted model runs recreated the magnitude and trend of cumulative 

landings over the season well (Figure 6.4). The trend in average daily scallop catch and average daily 

CPUE was captured fairly well, but the magnitude was a little low for the CPUE. Vessels appeared to 

steam and fish for slightly too long in the model, consequently using too much fuel. 

The trend in extent was not very well recreated by the model. In the real system, the extent of 

fishing was relatively concentrated in the first month of the season, increasing as the season 

progressed, but in the model, the extent was not concentrated enough at the start of the season, 

nor dispersed enough at the end of the season. The model did show a slight increase in extent as the 

season progressed, but the magnitude of this increase was substantially lower than reality. 

The best performing model structures therefore performed reasonably well, but the spatial patterns 

in effort could be better reproduced, and in addition, vessels spent too long at sea and consequently 

used too much fuel. Nevertheless, the accepted runs were only the models that performed best 

overall. It may be that other model structures recreated some of the spatial patterns better, and 

may indicate behaviours that need to be better accounted for in the model. 
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Figure 6.4. Comparison of the average values from the accepted models against the real fishery 
values, across the season. 
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6.4.2. Stage 1: How did all model structures perform? 

When looking at all model runs (i.e. not just the best performing 1% of runs, but all possible 

combinations of behavioural rules / submodels) we can see that sometimes different submodels 

were better able to recreate each of the main values in the real data (Figure 6.5). The boxplots were 

coloured according to the initial ‘patch choice decision’ (Figure 6.5a), the ‘between patch decision’ 

(Figure 6.5b), the ‘return to port’ decision (Figure 6.5c) and the ‘starting biomass’ (Figure 6.5d) to 

see which submodels influenced how well each variable was recreated. 

The average hours spent fishing and the fuel used were similar between all initial ‘patch choice 

decision’ rules, which suggests that this behavioural rule has little impact on these variables (Figure 

6.5a). The initial ‘patch choice decision’ did influence the accuracy of the total scallops caught, the 

average catch, the average CPUE, the time spent steaming, and the extent of fishing, with some 

rules giving more accurate values than others. In particular, for the time spent steaming, rules based 

on a catch cost ratio and the conjoint analysis were able to accurately recreate the time spent 

steaming (which could be considered a proxy for distance travelled from port), whereas all other 

patch choice rules overestimated this. The initial ‘patch choice decision’ can also impact the number 

of trips taken, but only when using a GUT to decide where to fish, as it is the only behavioural setting 

for which a vessel will not fish if they cannot find a patch that satisfies that certain criteria (i.e. 

possible patch above a threshold giving up rate); in all other models vessels fish according to a 

probability based on previous patterns in effort. All models underestimated the total extent of 

fishing, but a random patch choice decision gave the most accurate representation of the total 

fishing extent. 

The ‘between patch decision’ did not appear to be a strong driving influence on any of the variables 

(Figure 6.5b). However, similar to the initial patch choice, when using a GUT to decide where to fish, 

vessels moved patches if a neighbouring patch satisfied the criteria of a catch rate above the giving 

up threshold, and if none did, it returned to port. 

The return to port decision rules strongly influenced the time spent fishing and the fuel used, and 

also influenced the amount of scallops caught and the catch rates (Figure 6.5c). Models in which 

vessels returned to port after achieving their minimum viable catch, or what they considered ‘good 

takings’, performed better in terms of the time spent fishing and the fuel used than models in which 

vessels remained fishing until they hit curfew, or the maximum time they would be willing/able to 

fish for. 
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The starting biomass did not influence the time spent fishing, time spent steaming, fuel use, number 

of trips, or extent, but an increased starting biomass did intuitively lead to an increase in the catch 

rates and total scallops caught (Figure 6.5d). 
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Figure 6.5. Boxplots to display all model output values. The black line indicates the real fishery value. 
The boxplots are coloured by a) the initial ‘patch choice decision’, b) the ‘between patch decision’, c) 
the ‘return to port’ decision, and d) the starting biomass. The sum of scallops landed is displayed in 
000s. 
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6.4.3. Stage 1: How did all model structures perform each month? 

As the fishing season progressed, the average CPUE decreased slightly in the real fishery data. The 

CPUE decreased across the season in all models, but the magnitude of catches were too high for 

some models and too low for others (Figure 6.6a). Using a ‘perfectly’ informed initial ‘patch choice 

decision’ such as catch cost ratio, highest conjoint score, above a GUT, or the highest expected 

CPUE, catch rates were over-estimated at the start of the season. All models recreated the trend of 

decreasing CPUE as the season progressed; however, some consistently underestimated the 

magnitude of CPUE (e.g. conjoint GUT, random); some overestimated the scale of the decrease, i.e. 

depleted the stock too quickly (e.g. highest conjoint, catch:cost ratio, highest expected catch); and 

some captured the trend and magnitude relatively well (e.g. above average, based on previous 

effort). 

The time spent steaming was consistent across the season, a pattern which all models recreated, 

apart from the GUT patch decision model, where vessels did not fish later in the season if there was 

no patch with an expected catch rate above the giving up threshold (Figure 6.6b). Nevertheless, the 

actual time spent steaming was only accurate with models based on a catch cost ratio or the 

conjoint utility scores. 

The extent of fishing increased as the season progressed in the real fishery data. Whilst the fishing 

extent also tended to increase as the season progressed in the model, the magnitude of the extent 

was too low. Using a random patch choice achieved the most realistic final extent of fishing (Figure 

6.6c), but at the start of the season it overestimated the extent. At the start of the season an initial 

patch choice based on an above average conjoint score best recreated the fishing extent, with 

models based on above average expected catch rates, and based on previous effort, performing 

similarly well to the random patch choice (although these underestimated the extent whereas 

random patch choice overestimated the extent). However, as the season progressed, it was the 

models based on random patch choice that best predicted the extent. A combination of informed 

and random behaviour may better recreate spatial patterns of fishing in a model. 
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Figure 6.6. Output values from all initial patch choice submodels, for each month in the fishing 
season. M1 refers to month 1, M2 refers to month 2, etc. 

 

The number of hours spent fishing were consistently most accurate across the season when deciding 

to return to port either after a minimum viable gross or a value considered ‘good takings’ had been 

achieved (Figure 6.7a). The amount of fuel used was also best described by deciding to return to port 

either after a minimum viable gross, or a value considered ‘good takings’, had been achieved (Figure 

6.7b). The initial ‘patch choice decision’ had the greatest impact on the steaming time (Figure 6.6b), 

but the return to port decision had the biggest influence on fishing hours (Figure 6.7a); as they spent 

more time fishing than steaming, the return to port decision had the biggest influence on the fuel 

usage. The higher spread in the hours spent fishing and fuel used towards the end of the season, and 

particularly when returning to port at curfew or after a maximum possible fishing time, was due to 

some instances of zero fishing hours, when fishers were following the ‘patch choice decision’ of only 

fishing if a patch satisfied the criteria of being above a giving up threshold catch rate. 

 

A 

B 

C 
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Figure 6.7. Output values from all return to port submodels, for each month in the fishing season. M1 
refers to month 1, M2 refers to month 2, etc. 

 

6.4.4. Stage 2: How does the model perform if fishers make ‘informed’ 

decisions for half the time, and act at random half of the time? 

The output values from the accepted, best performing model runs using 50:50 informed:random 

behaviour were closely matched to the real fishery data (Kendall tau = 0.93, n=8, p<0.001) (Figure 

6.8). These model runs better recreated the fuel use compared to only using informed behaviour. 

Nevertheless the average daily landings and the total landings over the season were lower in the 

50:50 random:informed patch choice models. 

In these accepted models, the most common initial patch choice rule (in combination with 50% 

random) was to base the decision on an above average conjoint utility score (55% of accepted runs). 

The most common ‘between patch decision’ rule was to select a patch with above average expected 

catch rates (45% of accepted runs). The four return to port decision rules were all present in roughly 

equal proportions (20-30% each) (Table 6.4). 

A 

B 
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Figure 6.8. Boxplots show the output values from the accepted model runs. Red points indicate the 
real value from fishery data.  

 

Table 6.4.  Accepted runs from 50% informed 50% random initial patch choice 

Initial Patch Choice Between patch Choice Return Decision Accepted runs 
Catch cost ratio Random Min viable gross 2 

Catch cost ratio Random After good takings 1 

Catch cost ratio 50:50 random:highest At curfew 1 

Catch cost ratio 50:50 random:highest Min viable gross 1 

Catch cost ratio 50:50 random:highest After good takings 4 

Catch cost ratio Above average At curfew 1 

Catch cost ratio Above average Max fishing time 2 

Highest conjoint 50:50 random:highest Min viable gross 1 

Above average conjoint Random Min viable gross 1 

Above average conjoint Highest At curfew 1 

Above average conjoint 50:50 random:highest Min viable gross 1 

Above average conjoint 50:50 random:highest After good takings 2 

Above average conjoint Above average At curfew 6 

Above average conjoint Above average Max fishing time 4 

Above average conjoint Catch cost ratio Min viable gross 1 
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Compared to the models which did not use 50% random behaviour, the trend in fishing extent over 

the season was improved (Figure 6.9). Nevertheless, the model still reached a maximum extent 

lower than the real system. The proportion of trips made to each ground were also improved, as 

were the trends in time spent steaming, fishing, and fuel used (Figure 6.9). 
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Figure 6.9. Comparison of the average values from the accepted models against the real fishery 
values, across the season. 
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The trend in fishing extent throughout the season was substantially improved by requiring vessels to 

use 50% informed behaviour and 50% random behaviour (Figure 6.10c). However, through 

introducing more random, less informed behaviour, the catch rates reduced (Figure 6.10a), and the 

time spent steaming increased (Figure 6.10b), making both values slightly less accurate. Therefore, 

whilst the extent estimate was improved by increasing the proportion of random behaviour, this led 

to a worsening of the predicted time steaming (a proxy for distance travelled from port). 

 

 

Figure 6.10. Output values from all return to port submodels, for each month in the fishing season. 
M1 refers to month 1, M2 refers to month 2, etc. 

 

6.4.5. Stage 3: Did the 50:50 random:informed models perform better than 

the 100% informed models? 

Using ABC model selection on all models (i.e. all models run so far, that use 100% informed 

behaviour, and 50:50 informed:random patch choice), the overall best performing models (accepted 

runs) were those that had 50% random behaviour (65% of accepted models used 50% random 
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behaviour) and 24% of accepted models used a completely random patch choice. In other words, 

only 11% of all accepted models had 0% random patch choice behaviour (Table 6.5).  

In the accepted models, the most common initial patch choice rule was to base the decision on an 

above average conjoint score (56% of accepted runs). The most common ‘between patch decision’ 

rule was to select a patch with above average expected catch rates (56% of accepted runs). The most 

common return to port decision rule was to return to port at curfew (44%) with returning after good 

takings was achieved as the second most common (28%) (Table 6.5). The summary model outputs 

were close to the real fishery values (Figure 6.11). The trends over the season were also predicted 

reasonably well, although the steaming time remained slightly high (Figure 6.12). 

 

 

Figure 6.11. Boxplots show the output values from the accepted model runs. Red points indicate the 
real value from fishery data. 
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Table 6.5. Accepted runs from all models (100% informed and 50:50 informed:random) 

Initial Patch Choice Between patch Choice Return Decision 
% random Accepted 

runs 

Random Highest At curfew 0 1 

Random Above average At curfew 0 8 

Random Above average Max fishing time 0 4 

Above average Highest After good takings 0.5 1 

Above average Above average After good takings 0.5 1 

Catch cost ratio Highest After good takings 0.5 1 

Catch cost ratio Above average At curfew 0.5 3 

Catch cost ratio Above average Max fishing time 0.5 2 

Previous effort Highest After good takings 0.5 1 

Previous effort Above average At curfew 0.5 1 

Previous effort Catch cost ratio Min viable gross 0.5 1 

Above average conjoint Highest At curfew 0.5 2 

Above average conjoint Highest After good takings 0 2 

Above average conjoint Highest After good takings 0.5 3 

Above average conjoint 50:50 random:highest After good takings 0 1 

Above average conjoint Above average At curfew 0.5 6 

Above average conjoint Above average Max fishing time 0.5 4 

Above average conjoint Above average Min viable gross 0.5 1 

Above average conjoint Catch cost ratio At curfew 0.5 3 

Above average conjoint Catch cost ratio Max fishing time 0.5 1 

Above average conjoint Catch cost ratio Min viable gross 0.5 2 

Above average conjoint Catch cost ratio After good takings 0 3 

Above average conjoint Catch cost ratio After good takings 0.5 2 
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Figure 6.12. Comparison of the average values from the accepted models against the real fishery 
values, across the season. 
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6.5. Discussion 

An IBM was developed for the Isle of Man scallop fishery, which recreated fishing activity with 

reasonable accuracy. The development process increased our understanding of fishing behaviour in 

the Isle of Man scallop fishery, and provided lessons and insights for how to predict fishing 

behaviour in a model setting. In particular, it highlighted the importance of including a random 

component of fishing behaviour, rather than only using fully informed behaviour. This random 

component does not suggest that fishers are choosing where to fish ‘randomly’ as such, but that 

there may be processes not explicitly accounted for in a model (such as habit, personal preference, 

or hunches), that can be somewhat accounted for with a random component in the model structure. 

 

6.5.1. Is the model any good? 

Using simple foraging decision rules, parameterised using data collected directly from fishermen, it 

was possible to build an IBM that could reproduce patterns seen in the Isle of Man scallop fishery 

with reasonable accuracy. The model was able to reproduce realistic values for the fishing extent, 

average trip CPUE, average fishing hours per trip, average steaming hours per trip, average fuel 

used, average landings, and total landings across the fishing season without any calibration of the 

parameters provided by fishermen. The questionnaire data used to parameterise the model was 

demonstrated to be accurate and reliable when compared with similar parameters derived directly 

from VMS and logbook data (Chapter 2), and the lack of calibration of these parameters required to 

recreate patterns seen in the fishery provides further evidence to support the utility of data 

collected directly from fishermen (O’Donnell et al., 2012; Shepperson et al., 2014, 2016; Teixeira et 

al., 2013). 

There is not necessarily one model that best describes a system; there may be multiple model 

structures capable of recreating the same patterns in a system, using different processes and 

mechanisms (Csillery et al., 2010). In this analysis multiple model structures were retained in the 

final stage of model selection, which could be run together as a suite of models that together 

simulate the likely range of possible impacts of management. Nevertheless, if the management 

objective is more focussed, it may be possible to optimise the model selection to focus on more 

reliably predicting one aspect of the fishery. Different model structures were better able to 

reproduce different patterns in the fishery. For example, the trend in fishing extent could be best 

captured when using 50% informed behaviour and 50% random behaviour. Different patterns in the 

fishery were more or less sensitive to different submodels, for example, the return to port decision 
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strongly influenced the time spent fishing and consequently the fuel usage, and the initial patch 

choice decision had a strong influence on the extent of fishing activity. The model was less sensitive 

to the different behavioural processes for deciding when and how to change fishing location. 

Determining the most appropriate model structure to predict the outcome of management may also 

depend on the management objectives. For example, from a conservation perspective it may be 

more important to reliably predict changes in the extent of fishing, whereas from a fishery 

perspective it may be more important to reliably predict changes to catches and costs. Different 

stakeholders can have different definitions of ‘sustainable’ and may measure the success of 

management against different metrics (Hilborn et al., 2015; Jennings et al., 2014). When deciding 

which patterns to use to validate a model, consideration should therefore be given to the end goal 

of the model to ensure a comprehensive objective evaluation, and a model that is fit for purpose. 

 

6.5.2. Lessons for Modelling Fisher Behaviour 

The best performing model structures (i.e. accepted during the ABC model selection) were most 

commonly based on a selecting an initial patch with an above average conjoint utility score. In this 

submodel, vessels weighed up the expected catch rate and the distance from port in a non-linear 

manner (Chapter 2). The risk associated with travelling further than normal (i.e. higher cost) may be 

more heavily weighted than the potential gain from higher catches (Holland, 2008). In Prospect 

Theory, a theory of decision making under conditions of risk and uncertainty, risk preferences are 

influenced by nonlinear probability weighting and loss aversion (Kahneman and Tversky, 1979). In 

Prospect theory, firstly the decision is ‘framed’, by identifying a reference point (e.g. a ‘normal’ catch 

rate at a ‘normal’ distance from port), then outcomes are evaluated as deviations from this point, 

which may explain why the non-linear evaluation of catch:cost ratio in the conjoint utility model 

outperformed the linear evaluation of the catch:cost ratio. 

When vessels fished for the entire duration of the curfew, or for the maximum time they would be 

willing to fish for, the time spent fishing, and consequently the fuel use, was too high compared to 

the real fishery data. When vessels returned to port after they had achieved a minimum viable gross, 

or a catch they considered ‘good’, the fishing duration was more realistic. This suggests that vessels 

could be exhibiting satisficing behaviour (Salas and Gaertner, 2004; Simon, 1955), aiming for a 

certain level of catch, rather than always aiming for the maximum possible catch. Thaler  (1985) 

suggested that people consider the economic effects of decisions over a short timescale, rather than 

taking a more long term view of how decisions could impact their overall wealth; for example, taxi 

drivers have been shown to work for longer hours on days when they are receiving a low hourly rate, 
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and work shorter hours on days when they are achieving a higher hourly rate (Camerer et al., 1997). 

In the best performing models, when fishers used a random patch choice, and consequently 

achieved lower average catch rates, they remained at sea until curfew or the maximum possible 

fishing time, but when they were using a more informed patch choice, they more often returned to 

port after achieving a threshold catch.  

The importance of incorporating randomness into patch choice behaviour has been demonstrated; 

only 11% of the best performing models did not have any random patch choice behaviour in them. 

This does not imply that fishers choose where to fish at random, rather, that in a model context, it is 

important to include randomness. This randomness could be a proxy for more social influences on 

the decision of where to fish, such as gut feeling or intuition, heuristics, crew shortages, 

commitments on land, weather, risk aversion, inertia, or simply mis-judging where the best catch 

rates are (van Putten et al., 2012). The accepted models with a fully random initial patch choice did, 

however, use an informed between patch choice; demonstrating that both random and informed 

model components are required. 

Fishers are often assumed to be perfectly informed rational economic agents, but in reality, even if 

fishers could weigh up all possible combinations of behaviours to choose the course that would lead 

to the most profit (i.e. perfectly rational), there is evidence showing that not all fishers are driven 

solely by profits (Holland, 2008). In particular, inertia to change appears to have a significant impact 

on fishing patch choices, with tradition, familiarity, risk aversion, or pure inertia leading fishers to 

favour their known patches (Holland, 2008). The patch choice model based purely on previous effort 

constituted 6% of the best performing models. Modelling scallop fishers in the Isle of Man as 

perfectly informed and rational optimal foragers may likely overestimate catch rates, and 

underestimate the extent of fishing. In other words, fishers are not able (or choose not) to perfectly 

target their fishing activity to patches with the highest catch rates at all times, and to model them in 

this way could overestimate the capacity of economic incentives to alter behaviour (Holland, 2008; 

Smith and Wilen, 2005).  Predicting responses to management by modelling fishers as optimal 

foragers may overestimate the capacity of the fleet to compensate for restrictions such as closed 

areas, and may underestimate the economic impact that a management measure may have on the 

fishery. It may also underestimate the extent of fishing, underestimating the environmental 

footprint of the fishery.  

In an IBM it is also possible for individuals to ‘learn’ behaviour (Grimm and Railsback, 2005), such as 

learning what behaviours provide the best catch rates, and remembering where the best profits 

were achieved. Including learning behaviours in a model may allow it to predict over longer 



Chapter 6: Model Output Verification 
 

234 
 

timescales, as fishers would be able to better respond and adapt to changing conditions over time. 

However, caution would be required to prevent model vessels fishing unrealistically successfully.  

 

6.5.3. Limitations of the Model 

In POM, the patterns chosen for model validation should be relevant to the question being asked 

with the model (Railsback and Johnson, 2011). For the initial model validation, individual 

heterogeneity, such as variation in catches was not explicitly tested as part of the validation, 

although individuals in the model would have achieved different catch rates, contributing to the 

overall rates. More fine scale validation could provide further insights into fishing behaviour, and 

how management may affect fishers differently. The current model also allowed only one type of 

behavioural submodel to be followed by all vessels in the simulation. It could be that parameterising 

vessels in the model in a similar ratio as the accepted behavioural rules may provide a model that 

better captures the variation and individual heterogeneity within the fishery. The next stage of 

model development and validation could consider heterogeneity between fishing vessels, to try to 

predict how management may affect different individuals within the fishery. 

In the model, fishers ‘decide’ where to fish based on a probability value, based on previous patterns 

in effort in the fishery. The model can therefore only be applied on a short time-scale, under the 

assumption that overall effort levels will remain constant. In other words, the model can only be 

used to predict the way that effort is distributed throughout a season, rather than predicting the 

overall amount of effort. The sea state, days since the start of the season, previous catches, and 

predicted wave conditions were shown to influence the likelihood of fishing or not on a particular 

day (Chapter 3), and the response also varied between individuals. It would be possible to model the 

decision whether to fish or not on each day; however, it is not possible to realistically predict the 

wave conditions over a whole season which is an important determinant (Chapter 3). Wave 

conditions could be simulated based on previous patterns, with models run using ‘likely’ 

probabilities of sea states. Further model development could also then include a ‘climate change’ 

mode, with increased likelihoods of prohibitive sea states. The return to port decision is also a 

simple binary decision currently (i.e. is it curfew? Have I caught X amount?), which could also be 

modelled as a decision based on multiple variables such as the duration at sea, catch, time of day, 

target catch, etc. 

Nevertheless, including more complex submodels for the likelihood of fishing and likelihood of 

returning to port would make the model considerably more complex. One model simulation 
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currently takes an average of about 3 minutes to run on a high performance supercomputer 

(HPCWales); the more simple models such as random patch choice run faster than more complex 

models such as the conjoint analysis models in which multiple variables must be weighed up to make 

a decision. Increasing the complexity of the model would increase the time and resource constraints 

on the model. There may be a trade-off between increasing the realism of predicting the way fishers 

decide when to fish, with increasing model complexity, leading to more difficulty interpreting the 

model, and increased computer power requirements (Evans et al., 2013; van der Vaart et al., 2015).  

 

6.5.4. The Model as a Tool for Fisher Participation 

This model was developed using data collected directly from fishermen, without any further 

calibration of parameters. Using values provided by fishers should ensure realistic behaviours in the 

system, and the lack of calibration could help engender trust in the outputs. The next stages of 

model development could include stakeholder workshops in which fishers and managers are invited 

to offer their evaluation of the model, and suggest scenarios to be tested. The success of 

management can be influenced by the level of participation by fishers; better management decisions 

can be made when stakeholders are engaged and involved, provided the model can be effectively 

communicated to stakeholders and end users (Cartwright et al., 2016; Mackinson et al., 2011; 

Voinov and Bousquet, 2010). There are different levels of participation, from a more basic 

contribution of data, to direct participation and input to the actual model development, and 

participation in running model simulations (Mackinson et al., 2011; Röckmann et al., 2012). The use 

of NetLogo, an open source, user friendly modelling software, facilitates fisher participation through 

providing an intuitive user interface with model visualisations, and simple sliders and drop-down 

selectors to modify model settings and parameters (Figure 6.13). 
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Figure 6.13. The user interface of the model in NetLogo. Sliders can be used to change parameters, 
and drop down-menus used to change the behavioural settings in submodels. The model runs are 
visualised in the centre of the interface, and simple model outputs can be observed to the top right. 

 

6.5.5. Extending the Model to Other Fisheries 

This analysis has demonstrated the importance of contrasting different submodels of behavioural 

decisions in an IBM. The most realistic behaviours may differ between fisheries, however, depending 

on how much the fishers deviate from an optimal foraging model, and the level of profit maximising 

behaviour, risk aversion, and inertia (Holland, 2008). The model could be relatively easily 

parameterised for another fishery, and the same validation process followed to determine the most 

appropriate behavioural submodels for that fishery. Nevertheless, this model was developed in a 

small inshore fishery, without the possibility of fishers exiting the fishery, and can thus only be 

applied to questions surrounding how current levels of effort will be distributed, rather than 

predicting displacement between fisheries (eg. larger more industrial fleets might have a higher 

capacity to exit a fishery). Documenting the model development and validation in this way (i.e. open, 

using a standardised ODD format (Grimm et al., 2006), explaining each step of model validation 

(Grimm et al., 2014)), facilitates transferability as the model can be applied appropriately with a full 
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understanding of the assumptions, decisions, and careful testing that has gone into model 

development. 

 

6.6. Conclusions 

Using data collected directly from fishermen, it was possible to develop a realistic IBM of the Isle of 

Man scallop fishery. The development process provided valuable insights into fishing behaviour in 

the Isle of Man scallop fishery. The ABC model validation process was informative, and 

demonstrated the importance of contrasting different submodels of behaviour, and exploring all 

model outputs. In particular, it has highlighted the importance of incorporating random, or less-

informed behaviour into a model of fishing activity, and also allowing vessels to fish sub-optimally, 

for example not necessarily fishing for the whole time permitted. Modelling fishers as truly rational 

profit maximisers who conform to optimal foraging theory may overestimate fishers’ capacity to 

compensate for management restrictions, underestimating the impact of management on them. 

This process could be an important step in developing an IBM of any fishery, to ensure that realistic 

behaviours are input to the model. A realistic model of fishing activity could then allow more 

realistic predictions of the responses to management. 
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7.1. Abstract 

An individual-based model (IBM) could provide the basis of a management simulation tool for 

predicting the likely outcome of management, reducing unexpected or unintended consequences. 

However, managers need to know that a model is a sufficiently good representation of a system 

before they can apply it in the decision-making process. Model validation typically constitutes 

comparing model output data with empirical data to ensure that the discrepancies are not large 

enough that the model should be considered too unrealistic for use.  

This chapter presented a model output corroboration of fishing activity predicted by an IBM of the 

Isle of Man scallop fishery, comparing model output to independent fishery data, following the 

implementation of new area closures. It also demonstrated the potential use of the model for 

exploring the likely impact of management, using a series of hypothetical area closures to explore 

the range of impacts on fishing footprint, catches, and fuel costs. 

The IBM was able to reproduce some patterns in the independent data, but not others, leading to 

further hypotheses for model development and validation. For example, the model structures that 

best reproduced the absolute values of catches were not the model structures that best reproduced 

the trend or change in catches. Simulating the response to hypothetical closed areas demonstrated 

the potential of the model for informing management decisions, and how closing different 

arrangements of the 12nm Sea to fishing could have quite varying impacts on the fishery. The model 

predicted that large areas of low density scallop biomass could be closed to fishing, possibly even 

having a positive impact on the fishery, through directing fishing activity to high density scallop 

areas. 

Fishery systems may be too complex to distil to a single ‘accurate’ model, but having a suite of 

models that together give a reasonable representation of the fishery could allow the range of likely 

impacts to be considered. Documenting the model development and validation ensures that the 

model can be applied based on a thorough understanding of its performance, the justification for 

the final model structure, and the uncertainty in model outputs. 
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7.2. Introduction 

 

Despite ultimately working towards a common goal, sustainability can mean different things to 

different people (Hilborn et al., 2015; Jennings et al., 2014). For example, whilst both 

conservationists and fishermen desire a sustainable stock, the objectives and drivers of fisheries 

management may differ between them. A conservationist may be more concerned with protecting 

the seabed and all its flora and fauna, whereas a fisherman may be more concerned with 

maintaining a stock level that supports their livelihood. Of course, these are not mutually exclusive, 

but they perhaps lead different stakeholders to view systems from a different perspective. 

Regardless of your perspective, to be sure that management will work as intended, it is important to 

consider the behavioural response of fishermen (Daw, 2008; Dinmore et al., 2003). For example, in 

2001 the ‘cod box’ excluded the North Sea beam trawl fleet to protect spawning aggregations of 

cod. However, to compensate for this exclusion, fishers moved to a previously unfished area, 

resulting in a long term negative impact (Dinmore et al., 2003). The success of management is 

dependent on its ability to modify the behaviour of the fishermen sufficiently, to bring about the 

intended change, whether it is reduced catches or reduced footprint (Hilborn, 2007). Fisher 

behaviour is, however, an area of considerable uncertainty in fisheries management and the 

behavioural response of fishers is often not fully considered in management planning (Fulton et al., 

2011). 

The ability to predict the impacts of management on fishermen could allow better communication 

and discussion between fishers and managers about the most appropriate management solutions, 

reaching better compromises between objectives, and reducing unintended or unexpected 

consequences (Hilborn et al., 2004; Pascoe and Mardle, 2005). Some management measures may be 

more restrictive to fishermen, whereas others may allow a simple alternative fishing strategy to 

prevent financial loss. For example, following an area closure, fishers may be able to easily 

compensate for the lost area, and maintain their catches elsewhere at little extra cost. However, if 

the closed area is near to port, this might mean vessels have to travel much further for catches 

(Daw, 2008), increasing their costs and decreasing profits. Spatial arrangements of closed areas that 

protect the same proportion of the stock, may therefore have different impacts on fishermen. 

Similarly, if the aim of the management was to reduce the total stock removal, a closed area might 

not do this if fishers can simply catch the same amount elsewhere. Whether a management action is 

considered ‘successful’ would therefore depend on the objective. 
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7.2.1. Individual-based Models could help predict outcomes of 

management 

The behavioural response of fishermen to management is not often formally accounted for in 

management planning, either through oversight, or a lack of data and models that enable its 

consideration (Fulton et al., 2011). Individual-based models (IBMs) could help to address some of the 

knowledge gaps in our understanding of fisher behaviour, and allow us to create simulation tools 

that could help both managers and fishers better predict and understand the potential 

consequences of different management scenarios (Evans, 2012; Grimm and Railsback, 2005). IBMs 

view systems as having properties that arise from the behaviours and interactions of the individuals 

that make up the system (Grimm and Railsback, 2005), which lends itself well to modelling fishing 

behaviour, as it is the behaviours of individual fishermen that drive the spatial patterns seen in the 

system (Burgess et al., 2017; Plaganyi et al., 2014; Hilborn, 2007). IBMs present an opportunity to 

model complex systems with more realism than previously possible (van der Vaart et al., 2015). The 

structure of a model is, however, a compromise between realism, complexity, and efficiency (Evans, 

2012; Evans et al., 2013); an IBM must capture all of the processes and heterogeneity required to 

understand the system, but must also not be overly computationally demanding, or so complex that 

parameter uncertainty renders it too complex for application. 

 

7.2.2. Comprehensive validation of fishery IBMs is needed 

Managers need to know that a model is a sufficiently good representation of a system before they 

can apply it in the decision-making process (Augusiak et al., 2014). In particular, we must ensure that 

an IBM is mechanistically, or structurally, realistic, and doesn’t reproduce patterns seen in a fishery 

for the wrong reasons, or just because it has been calibrated to do so (Augusiak et al., 2014). 

Mechanistic modelling, such as individual-based modelling, simplifies real world processes, such as 

deciding where to fish, so that the system can feasibly be modelled. Clearly, this simplification 

means that details in model processes will be omitted, leading to inherent uncertainty, but including 

all relevant factors is not always feasible, due to time or monetary constraints (Augusiak et al., 

2014). Due to this simplification, decision-makers understandably require some form of model 

validation, to provide confidence that they are not going to make flawed decisions. Nevertheless, 

communicating the model validation process can be a challenge (Augusiak et al., 2014). As models 

are simplified representations of real systems, it can be difficult to demonstrate that models are still 

realistic enough for their intended purpose, particularly as there are no universal standards or single 

test statistics, such as an R2 value (Rykiel, 1996). Model validation typically constitutes comparing 
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model output data with empirical data to ensure that the discrepancies are not large enough that 

the model should be considered too unrealistic for use (Augusiak et al., 2014; Grimm et al., 2014). 

There is perhaps more value in understanding where the model matches the data and where it 

deviates, rather than condensing such complexity down to a single value. Nevertheless, decision-

makers are more familiar with an R2 value, or similar statistic, therefore communicating a more 

qualitative pattern oriented validation of a complex IBM can be a challenge (Railsback and Johnson, 

2011). Comprehensively documenting the model validation stages can aid decision makers in 

evaluating the performance, uncertainty and appropriate application of a model (Grimm et al., 

2014). 

 

7.2.3. Model Output Corroboration 

Validation of IBMs often has two steps; a model output verification process in which model outputs 

are compared to the data used to create them (e.g. Chapter 6), and a model corroboration process, 

in which model outputs are compared against an independent dataset not used at all during the 

model development and verification stages (Augusiak et al., 2014; Grimm et al., 2014). During model 

output verification, the model is ‘tweaked’ to improve its ability to reproduce the patterns seen in 

the real fishery data, through model selection, parameter calibration, or submodel modification 

(Chapter 6, Grimm et al., 2014). It is therefore simpler, and more likely, for a model to reproduce 

patterns in known data used during model development, but if a model can reproduce patterns in 

independent data, it can provide more confidence that the model is mechanistically correct (i.e. it is 

not “doing the right thing for the wrong reason”) (Augusiak et al., 2014; Grimm et al., 2014). 

Comparing models against previously unknown independent data is often not possible though, as 

such data is often not available. For example, if a model is developed to predict the impacts of 

climate change, independent data for output corroboration are often not available (Grimm et al., 

2014). This does not prevent models from being useful (Augusiak et al., 2014), but output 

corroboration can be considered a ‘gold standard’ of model validation (Grimm et al., 2014). 

Documenting the model output corroboration process can provide further evidence of a models 

reliability, alongside model output verification (Chapter 6). How closely the model output needs to 

match the independent data depends on the model’s purpose. 
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7.2.4. Aims and Objectives 

There were two aims of this Chapter: to present a model output corroboration of an IBM of the Isle 

of Man scallop fishery; and to demonstrate the potential use of the model for exploring the likely 

impact of management using hypothetical area closures. The specific objectives were to: 1) Compare 

model output with real fishery data from the 2013/14 fishing season, which was independent data 

was not used in the model development; 2) Compare model output with real fishery data from the 

2014/15 fishing season, during which a series of new area closures were implemented, providing 

fully independent data from a novel scenario unknown at the time of model development; and 3) 

present model output from a series of hypothetical area closures demonstrating the range of 

impacts on the fishing footprint, scallop catches, and fuel costs. 

 

7.3. Methods 

7.3.1. The Isle of Man Scallop Fishery 

The Isle of Man (IOM) government has jurisdiction of the management of its 12nm territorial Sea, 

and there is full Vessel Monitoring System (VMS) coverage of vessels fishing for scallops in this area. 

Management of the scallop fisheries are updated regularly according to the yearly scallop surveys, 

and the responses to, and impacts of, these management actions have also consequently been 

documented by the VMS and logbook data. It therefore represents a data rich system in which to 

develop and comprehensively validate an IBM.  

Since 2014 there have been a series of area closures established in the Isle of Man to protect the 

Aequipecten opercularis (queen scallop) stock from fishing (Figure 7.1). Some of these areas also 

remained closed to the Pecten maximus (king scallop) fishery. Area closures can be a controversial 

management measure, as it can be difficult to reach a compromise between protecting enough of 

the higher density areas of stocks and leaving enough profitable fishing grounds open to fishers. In 

addition, just before the king scallop fishing season started in November 2014, high levels of domoic 

acid, which exceeded the safe limit of 20 milligrams per kg (EC, 2004), were detected in samples 

from the Isle of Man. Domoic acid is a toxin that causes amnesiac shellfish poisoning (ASP), which 

poses a serious risk to human health (Quilliam and Wright, 1989; Wright and Quilliam, 1995). In 

November and December 2014, areas of the Irish Sea were therefore closed to king scallop fishing 

until domoic acid levels reduced to safe levels (Figure 7.1).  
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Figure 7.1. A) Areas closed during the queen scallop fishing season in 2014. B) Areas closed due to 
high levels of domoic acid in 2014. Area IS9 was closed in both November and December 2014, area 
IS14 was closed during December only. 

 

7.3.2. Model Output Corroboration 

An individual-based model was developed in NetLogo, to predict fishing activity in the Isle of Man 

king scallop fishery (Chapter 5 & 6). The model only predicted activity during the more valuable king 

scallop fishing season, therefore king scallops are hereon referred to as ‘scallops’. Questionnaire 

data collected in 2013 (Chapter 2), and vessel monitoring system and logbook data from the fishing 

seasons in 2011- 2013 (Nov – May) were used to develop the model, including providing the data 

against which model output verification was completed (Chapter 3). In the first stage of model 

validation, model output verification, the final model generated reasonably accurate output 

compared to the 2012/13 real fishery data (Chapter 6). In the second stage of model validation, 

model output corroboration, model output is compared against independent data unknown at the 

time of model development, which can provide stronger evidence that a model is structurally 

realistic, and that it is not predicting the patterns correctly but through incorrect mechanisms 

(Grimm et al., 2014). 

The model was used to simulate fishing activity in the 2013/14 (Nov 2013 – May 2014) season, to 

compare the outputs against an open fishery with no new closures, but with data not used during 

the development stage. Recreating the fishing activity seen in 2013/14 would add to the weight of 

evidence suggesting that the model is realistic. 

The model was also then used to simulate fishing activity in the 2014/2015 (Nov 2014 – May 2015) 

fishing season. In this season there were a series of new area closures; this data therefore 
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represents independent data with novel scenarios that were not part of the model development. If 

the model re-created the response of fishers to these closed areas, it would provide strong evidence 

that the model structure is mechanistically realistic (Grimm et al., 2014). 

The real closed areas could not be exactly spatially matched to the grid used in the IBM, due to 

varying projections and the spatial scale of the grid, but a close approximation was achieved with 

simplified representations (Figure 7.2). In the IBM, vessels chose where to fish at the start of a 

fishing trip from a set of ‘possible patches’ that met certain criteria such as being within a maximum 

distance to shore, being within the 12nm Sea, and being over a fishing ground (Chapter 5). In 

addition, in the 2014/15 model, additional criteria were added that specified a ‘possible patch’ must 

not be closed to fishing for management reasons, or temporarily closed due to domoic acid. The 

areas closed due to toxins re-opened in January 2015, after which fishers were permitted to fish in 

these areas.

 

Figure 7.2. Area closures translated to the model grid. A) Areas closed during the queen scallop 
fishing season (grey polygon outlines), which remained closed during the king scallop season (grey 
fill). B) Areas closed due to domoic acid toxins (grey outline), closed during November and December 
2014 (dark grey fill) and closed during only December 2014 (light grey fill). 
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7.3.3. Hypothetical Closed Areas 

 

Seven hypothetical closed area model scenarios, intended as illustrations rather than proposals, 

were then compared to an ‘open’ fishery model simulation (Figure 7.3). All scenarios protected 

between 10-30% of stocks (Table 7.1) but in different ways, for example, scenario A, C, and E, all 

protected about 20% of the scallop stocks, but A closed a high density main ground area, C closed 

the 3nm area, and E closed lower scallop density less fished areas. These arrangements of closed 

areas were selected to demonstrate the potential of using different approaches to achieve similar 

objectives (i.e. closing small high density areas, or large low density areas). Using the model in this 

way it was possible to explore at how different arrangements of closures could protect different 

amounts of stock whilst having a different impact on fishers and different realised reductions in 

catches. These hypothetical closed area scenarios demonstrated what could be done with the 

model, but the next steps would be to ask fishers and managers from the Isle of Man to propose 

closed areas which can then be simulated with the model. 

 

Table 7.1. Characteristics of the closed area scenarios 

 % of 12nm closed % scallop biomass in 

12nm  protected 

% study area closed % scallop biomass 

protected  

A 3.8 21.7 2.1 17.0 

B 1.3 10.2 0.7 8.0 

C 20.0 21.1 11.3 16.5 

D 3.1 14.8 1.7 11.6 

E 49.1 19.4 27.8 15.2 

F 52.1 29.6 29.4 23.2 

G 16.4 11.0 9.2 8.6 
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Figure 7.3. Hypothetical closed area scenarios simulated in the model. All scenarios protected 
between 10-30% of stocks but in different ways, for example, scenario A, C, and E, all protected 
about 20% of the scallop stocks, but A closed a high density main ground area, C closed the 3nm 
area, and E closed lower scallop density less fished areas. 

 

7.3.4. Model Settings 

There was no single ‘best’ model identified during model selection (Chapter 6), therefore all 54 

accepted models (the top performing 1% of models, which constituted 23 unique model structures, 

Table 7.2), were taken forward to the model output corroboration, and to explore the potential 

impact of a series of hypothetical area closures. At the start of the 2013/14 and 2014/15 fishing 

seasons the starting biomass was updated to represent the same percentage decrease in biomass 

from the scallop surveys from 2012 to 2013, and from 2013 to 2014 respectively. 
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Table 7.2. Model settings used to simulate fishing activity in the 2013/14 and 2014/15 fishing 
seasons, and to simulate the responses to a series of hypothetical area closures. 

Initial Patch Choice 
Between patch 
Choice 

Return Decision 
% random Accepted 

runs 
Random Highest At curfew 0 1 

Random Above average At curfew 0 8 

Random Above average Max fishing time 0 4 

Above average Highest After good takings 0.5 1 

Above average Above average After good takings 0.5 1 

Catch cost ratio Highest After good takings 0.5 1 

Catch cost ratio Above average At curfew 0.5 3 

Catch cost ratio Above average Max fishing time 0.5 2 

Previous effort Highest After good takings 0.5 1 

Previous effort Above average At curfew 0.5 1 

Previous effort Catch cost ratio Min viable gross 0.5 1 

Above average conjoint Highest At curfew 0.5 2 

Above average conjoint Highest After good takings 0 2 

Above average conjoint Highest After good takings 0.5 3 

Above average conjoint 50:50 random:highest After good takings 0 1 

Above average conjoint Above average At curfew 0.5 6 

Above average conjoint Above average Max fishing time 0.5 4 

Above average conjoint Above average Min viable gross 0.5 1 

Above average conjoint Catch cost ratio At curfew 0.5 3 

Above average conjoint Catch cost ratio Max fishing time 0.5 1 

Above average conjoint Catch cost ratio Min viable gross 0.5 2 

Above average conjoint Catch cost ratio After good takings 0 3 

Above average conjoint Catch cost ratio After good takings 0.5 2 

 

 

7.3.5. Data Analysis 

The analysis is split into two parts. In Part 1, a model output corroboration is presented. Model 

output data from the three simulated years were compared against the real fishery logbook records 

from the 2012/13, 2013/14, and 2014/15 fishing seasons. There were three levels to output 

corroboration; whether the model could predict realistic values for the two new seasons; whether it 

could predict the correct magnitude of change from year to year, but not necessarily the correct 

values; and at the simplest form, whether it could predict the right direction of change (i.e. simple 

increase or decrease). Model outputs from 2012/13 were used as a baseline for comparison with the 

2013/14 model outputs, to determine the magnitude of change captured with the model, to account 

for discrepancies between the 2012/13 model output and real values. Initially all model structures 

were considered together, and then the performance of different model structures was also 

explored to provide insights into submodel performance. For simplicity, in the text, ‘2012’ refers to 

the fishing season starting in 2012 (Nov 2012 – May 2013), ‘2013’ refers to the fishing season 
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starting in 2013 (Nov 2013 – May 2014), and ‘2014’ refers to the fishing season starting in 2014 (Nov 

2014 – May 2015).  

In part 2 model outputs from a series of hypothetical closed areas were analysed. In these scenarios, 

outputs of all of the model structures were averaged to obtain a likely outcome. An analysis of 

variance (ANOVA) test was performed in R (R Development Core Team, 2016) to determine if the 

closed area scenarios simulated significantly different values to the open fishery simulations. The 

outcome of each individual model structure was also explored, to provide insights into model 

performance and whether particular submodels predicted different outcomes. Outputs were 

visualised in figures that clearly indicated if there was a positive or negative impact on fishers and 

the environment (measured by changes to the fishing extent/footprint, catches, and fuel use). 

 

7.4. Results 

7.4.1. Part 1: Comparing overall model outputs from 2013 and 2014 

The model recreated realistic values for the fishing extent in both 2013 and 2014 (Figure 7.4). Whilst 

the extent value in 2013 was realistic, the increase in extent from 2012 to 2013 was too high, 

because the model under predicted the extent slightly in 2012. The model captured both the value 

and the magnitude of decrease in extent from 2013 to 2014 following the establishment of the 

closed areas. 

In the real fishery the average CPUE over the years remained relatively constant, with a slightly 

lower value in 2013. The model predicted a slight decrease in CPUE from 2012 to 2013, but the 

magnitude of the prediction was larger than in reality. The model predicted a further decrease in 

CPUE from 2013 to 2014, which was not the case in the real fishery. The fuel use was relatively 

constant across each season in both reality and the models, although the model slightly 

overestimated the values. 

The average landings remained constant between 2012 and 2013 in the real fishery, with a decrease 

in 2014. The model incorrectly predicted a decrease in average landings from 2012 to 2013, but 

correctly captured a decrease in landings from 2013 to 2014, although the magnitude of decrease 

was larger than reality. The model predicted average landings lower than reality in both 2013 and 

2014, although the values in the highest range of predictions in 2013 were realistic.  

The total landings decreased year on year in the fishery, which was a trend captured by the model. 

However, the predicted magnitude of decrease each year was too large. From 2012 to 2013 the 
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catches reduced by about 60% in the model, approximately the same proportion by which the 

starting biomass was reduced. 

 

 

Figure 7.4. Average (or sum) values from each model output from 2012/13, 2013/14, and 2014/15, 
compared against the average (or sum) values in the real fishery data values (red lines) 
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7.4.2. Part 1: Comparing the monthly trend in model outputs from 2013 

and 2014 

The total catch was reproduced well at the start of 2013, but towards the end of the season the 

landings per month were too low (Figure 7.5). In 2014 the trend in total catches was reasonably 

realistic, but the magnitude was consistently too low. The trend in average catch per month, and 

average CPUE per month was captured relatively well by the model in 2014, but the values were too 

low. The monthly average catches and CPUE were variable in the real fishery, with no clear 

increasing or decreasing trend. The model predicted a decrease in these values throughout the 

season. 

The average hours fishing, the average time steaming, and the average fuel use were all 

overestimated by the model, but the variation between months and between the model and real 

values were relatively low. The number of tows completed per ground was relatively accurate in 

each year, but the landings per ground was less accurate in 2013 (Figure 7.5).  
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Figure 7.5 Monthly fishery values versus the model outputs, from 2013 (blue) and 2014 (red). Points 
increase in size as the season progresses. 
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7.4.3. Part 1: Comparing the magnitude of change in model outputs from 

2013 and 2014, for different behavioural submodels 

How close the model outputs were to the real fishery values depended on which model structure 

was used (Figure 7.6). In 2013, realistic values for the average landings and total landings were 

generated when using a patch choice decision in which fishers evaluated the catch:cost ratio of a 

patch (i.e. chose a patch with the highest ratio between the expected catch rate and the travel cost). 

The values generated for the average landings and the total landings were also more realistic when 

fishers returned to port at curfew or after the maximum time they would be willing to fish for. The 

fuel use was more accurate when vessels returned to port at a catch that they considered had 

achieved a threshold value such as a minimum viable catch or what they considered ‘good takings’. 
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Figure 7.6 Model outputs from 2013 and 2014 coloured according to the patch choice decision rule 
and return to port decision rule 
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The magnitude of change in mean hours fishing, mean hours steaming, fishing extent, and mean fuel 

used were fairly realistic. Nevertheless, the model predicted a slightly smaller reduction in extent 

than in reality. Models in which fishers chose where to fish by evaluating the catch:cost ratio of a 

patch (i.e. chose a patch with the highest ratio between the expected catch rate and the travel cost) 

most substantially overestimated the reduction in landings from 2013 to 2014. The overall 

magnitude of change from before and after the closures was best captured using models in which 

fishers returned to port after a minimum viable catch had been achieved, and when fishers chose a 

patch with above average expected catch rates or above average utility. Therefore, the absolute 

values were best reproduced when using a return to port decision based on fishing for as long as 

permitted or as long as fishers were willing (Figure 7.6), but the magnitude of change was best 

reproduced when returning to port once a threshold value had been achieved (a minimum viable 

catch or a ‘good’ catch) (Figure 7.7).  

 

 

Figure 7.7. The magnitude of change between model output values in 2013 and 2014 in response to 
area closures. 
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7.4.4. Part 2: Simulating hypothetical closed area scenarios 

Model output from the hypothetical closed area scenarios were compared against model output 

from simulations with no closed areas. Scenario A, C, and E, all protected about 20% of the scallop 

biomass inside the 12nm Sea, but their predicted impacts were different (Table 7.3; Figure 7.8). In 

scenario A, one high density area of scallops was closed to fishing; the model predicted that there 

would be no significant impact on the fishers’ landings, and a relatively small reduction in extent. In 

scenario C, the 3nm Sea was closed to fishing, leading to a large reduction in extent, but the model 

predicted it would lead to a significant reduction in landings and CPUE, and a significant increase in 

fuel use, which would therefore have an impact on fishers economically. In scenario E, the lowest 

scallop density areas were closed to fishing, therefore a much larger area of the seabed was closed 

to fishing to protect 20% of the biomass, however the model predicted a significant increase in 

landings and CPUE and a decrease in fuel use. This demonstrates how the spatial arrangement of 

closed areas could substantially alter the impacts of management. 

 

Table 7.3. Closed Area Scenarios 

 % of 12nm 

closed 

% scallop biomass 

in 12nm  protected 

% study area 

closed 

% scallop biomass 

protected  

% reduction in 

scallop catch 

% red in 

extent 

A 3.8 21.7 2.1 17.0 10.0 6.6 

B 1.3 10.2 0.7 8.0 4.1 2.2 

C 20.0 21.1 11.3 16.5 1.1 21.0 

D 3.1 14.8 1.7 11.6 7.3 5.4 

E 49.1 19.4 27.8 15.2 6.1 35.0 

F 52.1 29.6 29.4 23.2 0.1 39.7 

G 16.4 11.0 9.2 8.6 3.8 15.3 
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Figure 7.8. Comparison of closed area model simulations with open (i.e. no closed area) model 
simulations. Asterix indicate the significant significant of an ANOVA test between each closed area 
scenario and the open simulations. *** indicates significance at the 0.001 level, ** indicates 
significance at the 0.01 level, and * indicates significance at the 0.05 level. 
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Figure 7.9. A) Comparison of % of 12nm Sea closed vs reduction in fishing footprint. B) Comparison of 
% scallop biomass contained in closed areas and % reduction in scallop biomass caught. 

 

The area of seabed closed to fishing correlated relatively well with the % reduction in extent, but 

there was some deviation (Figure 7.9a). There is possibly a non-linear relationship between the % of 

the seabed closed and the reduction in extent, i.e. closing more than a certain amount of area may 

cease to be useful for reducing the fishing footprint. The % of scallops that were contained in closed 

areas was not well correlated with the % reduction in scallops caught (Figure 7.9b). The scenarios in 

which the low density areas of scallops were closed to fishing, or the areas close to shore were 

closed to fishing, did not correlate at all with the % of scallop biomass in closed areas. This could be 

considered positive or negative depending on the desired outcome; a certain % of scallops and 

habitat has been protected, without reducing the catches available to fishers, but, the overall 

pressure on the total population has not been reduced. This outcome is to be as expected, as the 

high density areas of scallops remained open to fishing, so unless effort had also been limited in 

some other manner, the overall catches would likely be maintained. 

 

 

 

 

 

 

A B 
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Figure 7.10. Comparing the reduction in scallop catch, fishing footprint, and fuel use, to determine 
which closed areas have a positive or negative impact on the environment and/or fishermen. Green 
areas = most positive impact on fishermen. Yellow areas = most positive impact on 
environment/stocks. 

 

The reduction in fishing footprint was not well correlated with the reduction in scallops caught; i.e. 

large closed areas did not necessarily mean large reductions in catches. In fact, the model suggested 

a possible increase in scallop catches with two closed scenarios (E and F, blue and purple), because it 

restricted activity to only the highest density areas therefore preventing fishing over less productive 

grounds. There was also little correlation between the reduction in fuel used and the reduction in 

fishing footprint, and between the reduction in the scallop catch and the reduction in fuel. 

Green areas indicated model simulations that could have a positive impact on fishermen (i.e. there 

was an increase in catches, or a decrease in fuel usage). Yellow areas indicate model simulations that 

could have a positive impact on the environment (i.e. reduce catches, footprint, or fuel use), but 

A B 

C 
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fishermen might not consider as positive (i.e. reduction in catches). Scenario E appears to be the 

most agreeable solution for fishermen because it could lead to an increase in catches through 

restricting activity, and only previously lightly fished areas were closed. Scenario F could also be 

agreeable to fishermen, and may be a more preferable solution for managers, as it protected more 

scallop biomass, and included a small area of high density scallops. Nevertheless, closing such a large 

area to fishing could be controversial, even if it consisted of low density scallop areas. 

 

7.4.5. Uncertainty in Simulated Closed Area Outcomes 

Whilst the reduction in fishing footprint was relatively consistent within each hypothetical closed 

area scenario, the changes in catches and fuel use were considerably more variable, including for the 

open model simulations (Figure 7.11). For example, although the average outcome of scenario E 

(blue) was in the green positive impacts area (Figure 7.11), the individual model outputs were 

variable, with some in the yellow area suggesting a reduction in catches, and some in the top right 

quadrant suggesting an increase in fuel use. Nevertheless for scenario C and G the model did more 

consistently predict a reduction in catches, therefore could be considrered more likely to have a 

negative impact on fishers. Using a range of models may simulate the range of likely impacts, 

accounting for the high variation and uncertainty in the system. 

The model outputs appear to be consistently clustered into two groups according to their return to 

port decision (Figure 7.11). When returning to port at curfew or at the maximum fishing time the 

closed areas were less likely to lead to a reduction in catches. It may therefore be possible for 

vessels to compensate for reductions in catches by fishing for longer. 
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Figure 7.11. Comparing the reduction in scallop catch and fuel use for each closed area scenario, and 
highlighting the variability in model predictions when different return to port decision rules were 
used. Green areas = most positive impact on fishermen. Yellow areas = most positive impact on 
environment/stocks. 
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7.5. Discussion 

Model output corroboration, that is testing model simulations against independent data not used 

during model development, is an important part of model validation that provides additional weight 

to a model validation (Grimm et al., 2014). This IBM of the Isle of Man scallop fishery was able to 

reproduce some patterns in the independent data, but not others, leading to further hypotheses for 

model development and validation. Comparing model output from hypothetical closed area 

scenarios demonstrated the potential application of the model. 

  

7.5.1.  Model Output Corroboration – How did the model perform? 

There are two aspects of comparing model output data to the real fishery data; whether the 

absolute values are realistic, and whether the trends are realistic. If a model can reproduce trends 

and patterns well, but the magnitude of values is not accurate, model calibration may help to 

improve the model fit. However, if the trends are wrong, this can suggest that the model structure 

requires further development, as the mechanisms have not been adequately captured. The model 

reproduced realistic values for all variables in 2013 and 2014, aside from the average daily landings 

and total landings over the season which were too low. In 2013 the scallop landings values at the 

highest end of model predictions were realistic, but in 2014 all model outputs were too low. The 

decrease in landings from 2012 to 2013 and from 2013 to 2014 correlated with the amount the 

starting biomass in the model was reduced by, suggesting that catches in the model were quite 

sensitive to the starting biomass (Chapter 6). Each year the starting biomass in the model was 

reduced by a relatively crude scaling factor derived from the stock surveys, from the % change in 

mean scallop biomass density calculated from the survey points. The survey had relatively low 

replication, thus estimating a stock decrease in this manner is relatively uncertain. It is, however, a 

data limitation to the model, as there is no current stock assessment and scientifically estimated 

total biomass value. A stock assessment methodology is under development for the king scallop 

fishery; once this is available, further model validation could improve the model fit. 

The spatial resolution of the scallop survey was another data limitation, as these values were then 

interpolated, and average values attributed to each 3km grid cell, which may average out higher 

densities of scallops within the 3km cells. Fishers may be able to successfully target the higher 

density scallop areas within a 3km by 3km area, and achieve a higher catch rate than is predicted 

from the mean scallop biomass values. It may be possible to improve the model fit by 

increasing/calibrating the gear efficiency parameter, effectively considering it more as a ‘catch 
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efficiency’ parameter, accounting more for the spatial distribution of scallops within a grid cell. A 

final potential source of error is that the model assumes 100% compliance with the regulations; it is 

feasible that this is not the case and is contributing to an underestimation of catches, although 

unlikely that it could account for such a magnitude of difference. It is difficult to distinguish the 

source of inaccuracy in landings, whether there is a structural inaccuracy in the model itself, or an 

inaccuracy in the scallop biomass and density values (due to either low replication in the survey data 

or inappropriate treatment of the data). Nevertheless, when a full stock assessment is available, the 

uncertainty surrounding the stock biomass could be reduced.  

 

7.5.2. How did different model structures perform? 

Models in which fishers chose where to fish based on the expected catch to travel cost ratio 

predicted realistic landings for 2013, and the most realistic (although too low) landings in 2014. 

Returning to port at curfew or at the maximum time they would be willing to fish for also produced 

some realistic values for the landings in 2013, and the most realistic values in 2014 following the 

area closures. However, returning to port after what fishers considered a minimum viable catch 

produced the most realistic change in catches from 2013 to 2014. Choosing an initial patch with an 

above average expected catch rate, or an above average utility score produced the most realistic 

changes in catches, whilst using a catch:cost ratio produced the least accurate change in catches. 

Therefore, the model structures that best reproduced the absolute values were not the model 

structures that best reproduced the trend or change in catches. Models that better reproduced the 

change in catches, and thus response to closed areas, could be considered more structurally and 

mechanistically realistic. 

Further model development could include a model selection process comparing the ability of 

different model structures to predict the change in catches year on year. As a management tool, 

continual development would be needed, but the model could be updated each year and used to 

predict the following season. The spatial arrangement of closed areas was slightly altered for the 

2015 season, and there were no ASP closures. In the next cycle of model development (Grimm et al., 

2014; Grimm and Railsback, 2005), the data for 2013 and 2014 could be used to refine the model 

through model output verification, and model output corroboration could be performed using the 

2015 data. 
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7.5.3. Simulations of hypothetical closed area scenarios  

Simulating the response to hypothetical closed areas demonstrated the potential of the model for 

informing management decisions. For example, it demonstrated how closing different arrangements 

of the 12nm Sea to fishing could have quite varying impacts on the fishery. The model predicted that 

if large areas of low density scallop biomass were closed to fishing it could actually have a positive 

impact on the fishery, through increasing catches and protecting a large amount of the seabed. 

These low density scallop areas were subject to very low, or no fishing pressure, which could be for 

several reasons. There may be no scallops in these areas, or there may be obstructions or 

environmental features that make fishing in these areas dangerous or difficult, but the seabed may 

still be of environmental value and it could potentially be protected with little impact to the fishers. 

The increase in catches associated with these scenarios agreed with what has been seen in a closed 

area in Ramsey Bay (Northeast tip of Isle of Man). When fishers were directed to this high scallop 

density, closed area, the catch rates were substantially higher than in the open fishery, allowing 

fishers to be much more efficient (Isobel Bloor, pers. comms.). In the first year that fishing was 

permitted in Ramsey Bay a single vessel did the fishing and takings were shared amongst all vessels; 

the catch rates were high enough, and the catch limit strict enough, that this provided the most 

economical way to fish the area. Nevertheless, in subsequent years, the fishers requested that more 

vessels be allowed to fish in this area, and subsequently the overall efficiency was lower. Fishing is a 

lifestyle, the competitive nature of fishers, and the ‘thrill of the chase’ should not be underestimated 

(Pollnac and Poggie, 2008); fishers may thus be opposed to closing such large areas of the seabed, 

effectively directing vessels to the more economical grounds.  

There may be conflicting interests when designing area closures, depending on whether they are 

created as a stock management or a conservation tool. To conserve biodiversity, closing areas that 

have not already been heavily fished may be preferable, however for stock management and to 

reduce the amount of scallops caught it may be necessary to close higher density areas, which could 

have the unintended impact of displacing effort to previously unfished areas (Nilsson and Ziegler, 

2007). To gain the most benefit from the model simulations, clearly defined objectives would be 

needed. For example, is the aim to reduce the fishing footprint, to minimise the total scallops 

removed from the sea, or to protect a certain amount of the seabed / stock whilst minimising the 

impact on fishers? Using a simulation tool it might also be possible to consider other objectives such 

as improving the fuel efficiency (Bastardie et al., 2013). In addition, the uncertainty surrounding 

simulations could be considered, for example, fishers may prefer a management option that has 

lower uncertainty, over one that might bring more substantial benefits, but also has a chance of 

more substantial losses (Eggert and Martinsson, 2004). The next steps would be for fishers and 
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managers in the Isle of Man to propose closed area scenarios that they would like simulating with 

the model, and to determine the objectives of the management. 

 

7.5.4.  Lessons Learnt During Model Validation 

Model validation is not a binary criterion, which a model either passes or fails at the end of its 

development (Augusiak et al., 2014). A model is always a simplification of reality, and is therefore 

never a perfect representation of a system; the usefulness and credibility of a model can only be 

built on over time (Augusiak et al., 2014; Grimm et al., 2014). In a fishery with VMS and logbook 

data, new data on fishing activity will be continually generated, with which an IBM could be 

continually refined. Just as stock assessment methodologies have progressed and evolved to 

become more complex and realistic, fishery IBMs will need to be continually developed and 

measured against real fishery data to refine the behavioural models underpinning them. It is 

important that these stages of model development are reported (Augusiak et al., 2014; Grimm et al., 

2014), to inform future model development, and so that the model can be applied based on a 

thorough understanding of its performance, the justification for the final model structure, and the 

uncertainty in model outputs. 

This analysis has demonstrated how different model structures can predict quite different outcomes 

of management. Fishery systems may be too complex to distil to a single ‘accurate’ model, but 

having a suite of models that together give a reasonable representation of the fishery could allow 

the range of likely impacts to be considered. Used alongside more conventional biological stock 

models, an IBM such as this may assist decision-makers when considering the range of likely impacts 

on the fishery. It would, however, be important to effectively communicate the uncertainty to all 

stakeholders (Cartwright et al., 2016). 

In part 1, the results suggested that models in which fishers return to port after a threshold catch 

may be more mechanistically realistic, as they captured the magnitude of change (i.e. the response) 

of fishers better. However, in part 2, the reduction in catches following the area closures were less 

severe when fishers returned to port after the curfew or a maximum possible fishing time. This could 

be interpreted in 2 ways; modelling fishers as too ‘optimal’ may underestimate the impacts of 

management on fishers, or; fishers may be able to change their behaviour to compensate for 

management restrictions. Modelling fishers as true profit maximisers who will fish for the maximum 

time permitted may underestimate the impacts of management, by overestimating the likelihood of 

vessels fishing for longer to compensate. Nevertheless, it also suggests managers should be mindful 
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of adaptive behaviour. If, under open fishery conditions, the most realistic model structures include 

behavioural rules in which vessels return to port after a threshold catch, the potential of vessels to 

simply compensate by fishing for longer should be considered, otherwise the effectiveness of the 

management may be overestimated. Continual validation and development cycles would be 

required throughout the models life. There is perhaps a strength to using a range of model 

structures to simulate the outcome of management, through being able to explore and consider a 

range of likely outcomes accounting for the range of possible behaviours. 

 

7.6. Conclusions 

A full model validation, including a model output verification (Chapter 6) and a model output 

corroboration, does not guarantee that a model is sufficiently good (Augusiak et al., 2014). It does, 

however, provide comprehensive information that can be used by decision-makers when evaluating 

if and how to use a simulation model to aid decision making (Grimm et al., 2014). The degree to 

which a models output is required to match the real fishery data will depend on the management 

context and the questions being asked, and appropriate weight and consideration can be given to 

the model output depending on the level of uncertainty. A fishery management simulation model 

can only provide guidance to decision-makers, to help explore the potential risks and outcomes of 

different courses of action. A variety of model structures may help to account for uncertainty in 

predictions, highlighting the range of possible outcomes, rather than trying to distil such a complex 

system as a fishery into a single output value. 
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Fisher behaviour is an area of considerable uncertainty in fisheries management, and both our 

understanding of it, and the translation of this understanding into predictive management tools, is 

underdeveloped (Fulton et al., 2011; Hilborn, 2007; van Putten et al., 2012). Throughout this thesis I 

have presented a range of research into fisher behaviour, relating to the title “Developing a spatially 

dynamic model to evaluate management scenarios in the Isle of Man scallop fishery”. Each chapter 

built on the previous, towards the development of an individual-based model (IBM) of the Isle of 

Man scallop fishery. The IBM presented was spatially explicit, dynamic, and provided the capacity to 

evaluate the likely impact of different management strategies in terms of the change in fishing 

footprint, scallop catches, and fuel costs. The research presented in each chapter has significance for 

one or more of three main themes; understanding fisher behaviour, modelling fishing activity; and 

predicting outcomes of management (Figure 8.1). These three themes are not mutually exclusive, 

but represent a feedback system through which continual advancement in our understanding may 

improve our ability to predict the outcome of management. Increasing our knowledge and 

understanding in all three of these areas could help inform fisheries management and help reduce 

unexpected or unintended consequences of management. 

 

 

 

Figure 8.1. Flowchart demonstrating how each research chapter (2-7) relates to the three main 
themes of the thesis. 
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8.1. Synthesis of Research Chapters 

The overall aim of the thesis was to develop a model capable of predicting fishing activity in the Isle 

of Man scallop fishery, to demonstrate the potential impacts of different management scenarios. 

The research demonstrated the utility of individual-based modelling for understanding and 

predicting fishing activity, and for simulating the likely impacts of management, and presented 

insights into fishing behaviour that could be relevant to modelling fishing activity in a wide range of 

fisheries. Here, a synthesis is presented, discussing how throughout the model development, each 

chapter has contributed to scientific research in each of the three main themes: understanding 

fisher behaviour, modelling fishing activity, and predicting the outcome of management. 

 

8.2.  Understanding Fisher Behaviour 

8.2.1. Economic Rationality 

A theme carried through several chapters was that fishers may not always aim to maximise their 

profits, and may not always behave in an economically rational way that would conform to optimal 

foraging theory (Abernethy et al., 2007; Christensen and Raakjær, 2006; Holland, 2008; Salas and 

Gaertner, 2004). The questionnaire data and conjoint analysis suggested that some fishers had the 

potential to achieve higher catches (Chapter 2); the fishing grounds that were most prosecuted were 

not necessarily the grounds at which fishers achieved the highest catches (Chapter 3); and modelling 

fishers as optimal foragers, selecting patches with the highest expected catch, overestimated 

catches (Chapter 6). The presence of satisficing behaviour (Christensen and Raakjær, 2006; Jager et 

al., 2000; Salas and Gaertner, 2004) was also demonstrated, where fishers aim for a certain level of 

catch or income, rather than fishing for the maximum time or effort permitted to maximise their 

catch. During the questionnaires, fishers provided threshold values for catches they considered 

‘good’ or a ‘minimum viable’ catch, which were demonstrated as realistic when compared to 

logbook records (Chapter 2). Modelling fishers as returning to port after they had achieved one of 

these threshold catches better reproduced the changes in fishing activity following area closures, 

than modelling them as fishing until curfew or until they had reached the maximum time they would 

be willing to fish for (Chapter 7). Informal discussions during interviews suggested that for some 

fishers this could be related to reasons as simple as wanting to make a living doing something they 

enjoy rather than being in it for the money; aiming to maintain a better balance between fishing and 

family life; or being closer to retirement and therefore perhaps more risk averse. In short, fishers 

may strive for a healthy work-life balance and value aspects of job satisfaction differently, just as in 
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other professions (Pollnac and Poggie, 2008; Seara et al., 2017). Modelling all fishers as economically 

rational individuals who successfully strive for the maximum possible catch may therefore 

overestimate both catches and the ability of economic incentives to alter the behaviour of fishers to 

achieve a policy goal (Holland, 2008; Smith and Wilen, 2005). 

Pollnac and Poggie (2008) suggested that fishing attracts a certain personality, and that the active 

and adventurous aspects of fishing are also highly attractive alongside financial returns; fishing 

makes fishermen happy. Whilst running a fishing vessel is a business, not all fishers may be as 

economically driven or ambitious as others, and may make decisions in different ways (Chapter 2 & 

3). Following some relatively strict management controls in the queen scallop fishery in 2014, 

including bag limits and area closures, some fishers stated that catches were severely reduced, and 

were unhappy, but others suggested that they could still make a living, were happy to work a short 

day (because the daily bag limits could be met sooner than the curfew), and they received a better 

price for the catch as the lower availability drove higher market values. In addition, instead of 

moving to the opposite side of the island, where higher catch rates could be achieved, some vessels 

were either unwilling or unable to change location, and remained fishing over seemingly 

unprofitable grounds (Karen McHarg, DEFA, pers. comms.). To understand the response of fishers to 

management, and to provide appropriate incentives to change behaviour, it would likely be 

beneficial to give more consideration to the driving motivations and different perspectives of fishers 

(Gelcich et al., 2005).  

 

8.2.2. Behavioural complexity 

Fisheries are complex systems; it may be difficult to distil fishing behaviour down into simple, 

generalised rules. Whilst fishers, of course, try to fish where they are likely to achieve good catches, 

there are numerous other factors and variables that can influence the decision of where to fish 

(Abernethy et al., 2007; Christensen and Raakjær, 2006; Holland, 2008). The sea state and distance 

to port were demonstrated as important to fishers in deciding where to fish, as were the meat yield, 

roe status, and rock content (i.e. habitat complexity) (Chapter 2). However, habit and personal 

preference also appeared to play an important role too, which are more difficult to quantify 

(Chapter 3). During the questionnaire interviews, some fishers provided a high level of detail about 

how they decide where to fish, including slight differences in their substrate preference when the 

dredge teeth are worn to different extents, the direction in which they would tow in different tides, 

and referring to specific physical structures on the seabed. Whilst these may all contribute to a 

fisher’s decision of where to fish, attempting to include everything that influences the decision 
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process would likely yield an overly complex model. There is a need to identify the most important, 

and most quantifiable variables, which can be included in a model design. 

Throughout the model development and validation it became apparent that incorporating a random 

element of fisher behaviour was important to reproducing realistic patterns of fishing activity 

(Chapter 6). This does not mean that fishers decide where to fish at random, but rather suggests that 

a random component to the model design may account for additional variables not explicitly 

accounted for in the processes in the model. The importance of this random element may increase 

as the season progresses, as the distribution of scallops becomes less clustered, and it is more 

difficult for fishers to accurately target the areas of higher densities (Murray et al., 2011). In 

addition, in a model setting it could be difficult to quantify the influence of gut feeling, habit, and 

heuristics when deciding where to fish (van Putten et al., 2012); a random component may have 

accounted for some of this behaviour.  

 

8.2.3. Heterogeneity 

There was considerable spatial, temporal, and individual heterogeneity in fishing activity (Chapter 2 

& 3). The power and capacity of vessels differed (Chapter 3), their tolerance to environmental 

conditions differed (Chapter 2), and their catches differed (Chapter 3). In addition, there was spatial 

variation in catches, for example, the most prosecuted grounds were not the grounds which yielded 

the highest catches, and fishers showed individual preferences for small areas of the available 

grounds (Chapter 3). The likelihood of fishing each day also varied between fishers. As the sea state 

increased, the likelihood of fishing decreased, and fishers were less likely to fish as the season 

progressed and catches reduced. However, there was variation in the response of each fisher 

(Chapter 3). Fishers responses to management can depend on attitudes, personalities and 

livelihoods, and so can vary between individuals (Gelcich et al., 2005). To more fully understand the 

response of, and impact on, individual fishers in a fishery, it may be necessary to include individual 

variation in the model design. 

Individuals in an IBM can have varying characteristics, requirements, and behaviours, which can 

influence their interaction with the model environment (Grimm and Railsback, 2005, Chapter 5). 

Nevertheless, the level of heterogeneity that should be accounted for and validated within a model 

depends on the problem to be modelled. Increased model complexity can make validation, 

communication, and application more difficult (Cartwright et al., 2016), therefore unnecessary 

complexity should be omitted from a model design. Iterative model development cycles should 
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begin as deliberately oversimplified, and evolve according to discrepancies between model outputs 

and real data to ensure that only necessary complexity is included (Grimm et al., 2014; Grimm and 

Railsback, 2005). This thesis aimed to develop a simple model, using simple behavioural rules 

derived from theory, and bound by realistic limits ascertained from questionnaires, to ensure that 

behaviours were realistic (Chapter 2 & 5). Using these simple rules, the model was able to recreate 

patterns in fishing activity with reasonable accuracy (Chapter 6).  

 

8.3.  Modelling Fishing Activity 

8.3.1. Model Validation 

This thesis has demonstrated the use of Pattern Oriented Modelling (POM) and Approximate 

Bayesian Computation (ABC) in determining the most realistic model structure to predict fishing 

activity in the Isle of Man scallop fishery (Grimm et al., 2005; Grimm and Railsback, 2012; van der 

Vaart et al., 2015). There were two stages to model validation: model output verification (Chapter 6) 

and model output corroboration (Chapter 7). In model output verification the model was ‘tweaked’ 

to increase its ability to reproduce patterns seen in data used to develop the model, through model 

selection and through adding a random component to behaviour (Chapter 6). It is more 

straightforward for a model to recreate patterns seen in the fishery during model output verification 

because the data was used during model development, and the model is altered to specifically 

improve its ability to reproduce this data (Augusiak et al., 2014; Grimm et al., 2014). In Chapter 6, 

models that did not have an element of random behaviour were selected against, as were models in 

which fishers selected fishing patches with the highest expected catch rates. The most accepted 

patch choice decision model was to decide where to fish based on the utility of a patch, derived from 

the conjoint analysis (Chapter 2 & 6). Incorporating a random element of fishing behaviour appeared 

to be important to capture the processes not explicitly accounted for in the model structure (e.g. gut 

feeling, habit, heuristics, or just an inability to target the areas with highest catches).  

In the model output corroboration, the model output was compared to independent data not used 

during model development (Augusiak et al., 2014; Grimm et al., 2014). Recreating these patterns can 

provide more weight to the body of evidence supporting a models credibility, because the model has 

not been calibrated to recreate these patterns. In particular, if there are new patterns against which 

a model can be tested, that were un-used or unknown during model development, this can provide 

strong evidence that a model is structurally realistic (Grimm et al., 2014). In Chapter 7, the model 

was used to simulate fishing activity following new area closures; these closures did not form part of 



 

286 
 

the dataset used during model output verification. The model was able to recreate some realistic 

values and trends, but average trip landings, and the overall total landings, were underestimated. 

The behaviours which best recreated the absolute values in the fishery data were not the behaviours 

which best reproduced the trends in values. Further model development may improve the model fit, 

so that both the correct trend, and magnitude, are reproduced. 

ABC provided a quantitative and objective method of model validation (van der Vaart et al., 2015). In 

this thesis, parameters provided by fishers were assumed to be realistic (Chapter 2), therefore 

model selection was performed without calibration. ABC provided an objective way to determine 

which model structures best reproduced the patterns and values seen in the real fishery. Fishery 

IBMs are often presented with little consideration given to alternative behavioural submodels 

(Bastardie et al., 2014; Little et al., 2009); here ABC has been demonstrated as a relatively 

straightforward method to contrast different model structures during the model selection process, 

increasing model transparency (Chapter 6). 

 

8.3.2. Model Uncertainty 

Contrasting alternative behavioural submodels provided insights into fisher behaviour, and 

identified which behaviours produced the most realistic model (Chapter 6). Throughout the model 

validation process it was not possible to identify a single ‘best’ overall model structure; there were a 

range of ‘patch choice decision’, ‘between patch decision’, and ‘return to port decision’ submodels 

present in the best performing models. Model selection does not imply that there is one correct 

model (Ripley, 2004), as different mechanisms in a model could lead to the same emergent patterns 

(Csillery et al., 2010), but it identifies a range of plausible model structures. Retaining a range of 

model structures to use in simulation experiments may allow uncertainty in model predictions to be 

better understood, and the range of likely outcomes of management to be explored (Chapter 7). The 

model predicted different impacts from a range of hypothetical area closures; some were likely to 

cause a decrease in catches, some had little impact on catches, and some may lead to an increase in 

catches. There was, however, considerable variation in the model predictions within a closed area 

scenario; depending on what model structure was used to make the prediction, the impacts of the 

management varied (Chapter 7). 

Models are an important tool for fisheries scientists, as in situ experiments to see how fisheries 

would respond to novel management scenarios are neither feasible nor ethical, but their use must 

be guided by an understanding of the assumptions, limitations, and uncertainty associated with 
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them (Cartwright et al., 2016). The model presented here could aid decision-makers in exploring the 

potential outcomes of management, but the uncertainty surrounding predictions was relatively high 

(Chapter 7). It is important that this uncertainty can be successfully communicated to managers and 

stakeholders, to prevent inappropriate application of the model, or over-confidence in model 

predictions (Cartwright et al., 2016). Using a standardised protocol to describe the model and 

documenting model output verification and model output corroboration increases model 

transparency (Chapter 5, 6 & 7; Grimm et al., 2006, 2010, 2014; Augusiak et al., 2014). In addition, 

reporting the stages of model development, documenting the assumptions made, submodels tested, 

and model selection process, can provide the evidence needed by decision-makers to make an 

informed decision of how to use a model (Augusiak et al., 2014; Grimm et al., 2014). 

 

8.4. Predicting the Outcome of Management 

The aim of this thesis was to develop a simulation tool that could potentially be used by both fishers 

and managers to explore the outcome of different management scenarios. To demonstrate the use 

of the tool, the likely outcomes of a series of hypothetical closed area scenarios were simulated. 

They demonstrated that the spatial arrangement of closed areas could substantially influence the 

outcome of management, in terms of the change in fishing footprint, catches, and fuel costs 

(Chapter 7). Protecting the same amount of scallop stock biomass could be achieved in several 

different ways, which had different impacts on the resulting fishing footprint, catches, and fuel costs. 

Protecting larger areas of low density scallops could be the most favourable course of action, as it 

caused the greatest reduction in fishing footprint, whilst predicting a possible increase in catches 

through fishers being directed to the higher density fishing grounds (Chapter 7). Nevertheless, 

fishers have been demonstrated to view the stated benefits of area closures with scepticism, just as 

advocates of area closures have been demonstrated to view fishers’ assertions about economic costs 

with scepticism (Smith et al., 2010). The capacity for both fishers and decision-makers to test out 

different management options in this way before implementation could allow more informed 

decisions, and better compromises between management objectives.  

During the questionnaire interview completed in Chapter 2, fishers were asked what was the most 

unpredictable part of the fishery. Whilst 69% responded ‘the weather’, 31% responded ‘the 

government’; a third of fishers felt that the management decisions made by the government were as 

unpredictable as the weather. The model developed during this PhD could be a first step towards a 

simulation tool that could facilitate discussion between fishers and managers about the different 

management options and the likely outcomes. Model outputs were displayed in simple, intuitive 
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plots, colour coded according to the potential impacts to fishers and the environment, in terms of 

the projected change in fishing footprint, scallop catches, and fuel costs (Figure 8.2a). In addition, 

through displaying the range of outcomes from individual model simulations, the uncertainty 

surrounding a scenario could be visualised. Figure 8.2b displays example output from three 

illustrative scenarios. The predicted outcome of the turquoise scenario was more certain, visualised 

by a tighter clustering of model outputs. Whilst the overall uncertainty of the blue and pink 

scenarios is similar, a higher proportion of the pink model outputs lie in the green quadrant of the 

figure, suggesting it is more likely to have a positive impact on the fishery than the blue scenario. It 

does, however, also illustrate how one pink model output predicted a negative impact on the fishery 

both in terms of the fishing footprint and catches (Figure 8.2b). It is important to be able to 

effectively communicate the uncertainty in model predictions to both decision makers and 

stakeholders (Cartwright et al., 2016); using intuitive figures such as these could help facilitate 

understanding of the likely outcomes predicted by the model, and the uncertainty surrounding these 

predictions. 

 

 

Figure 8.2. Example outputs from management simulations, coloured coded to display whether the 
model predicted a positive or negative impact to the fishery. The clustering of points illustrates the 
level of uncertainty in the predictions made for a particular scenario, and the position of the points 
indicates the likely impacts. The variables on each axis could be varied according to the management 
objectives. 
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8.5. Evaluation of the Approach 

8.5.1. Individual-based Modelling 

This thesis has demonstrated the utility of IBMs for both understanding fisher behaviour, and for 

predicting likely outcomes of management. There is a perception that IBMs are data heavy, but this 

thesis has shown that minimal data collection is required in a fishery with existing vessel tracking 

data. Two fundamental pieces of information required to predict the environmental impacts of a 

fishery are information on the distribution of stocks, and information on the distribution of activity 

(Kaiser et al., 2016). Hence, these pieces of information are often already available to fisheries 

scientists. Beyond these, this work has demonstrated that the only additional data required to 

develop an IBM of a fishery can be collected through interviews and questionnaire surveys. There is 

increasing interest in applying individual-based modelling to fisheries (Burgess et al., 2017), and an 

increasing call to include fishermen in the modelling and evaluation of management strategies 

(Mackinson and Wilson, 2014; Voinov and Bousquet, 2010; www.gap2.eu); Cartwright et al., (2016) 

have also demonstrated how individual-based modelling can be a good tool for participatory 

modelling and co-management. Advances in computing power and technology have also made it 

more cost and time effective to build simulation models and run comprehensive validation analyses 

(van der Vaart et al., 2015). In particular, using Approximate Bayesian Computation it was possible to 

relatively easily compare and contrast multiple behavioural submodels and model structures, which 

constituted an important step in working towards a robust, structurally realistic model (Chapter 6). 

This PhD has demonstrated how a fishery IBM can be built using often already available data, 

supplemented by questionnaire data, to provide realistic predictions of fishing activity, and provide 

valuable insights into fishing behaviour. Further development of this model could improve our ability 

to predict how fishermen would respond to management, reducing unexpected outcomes. 

The individual-based modelling software, NetLogo, provided a good platform on which to develop 

the model, with a simple but powerful programming language, a built in graphical user interface, and 

comprehensive documentation (Railsback et al., 2006). The simple user interface was useful for 

troubleshooting during model development, and provided an intuitive front end to the model when 

discussing it with collaborators and stakeholders (Cartwright et al., 2016). In addition, a simple 

interactive feature allows users to draw closed area scenarios in the model user interface, and 

instantly run a model simulation with them, but also export them to a .csv file for formal analysis. 

Nevertheless, NetLogo was originally developed as a teaching tool, and thus the ability to run 

simulation experiments and statistically analyse the outputs within it is limited (Thiele et al., 2012). 

The development of an R package, RNetLogo, means that NetLogo models can be controlled and run 
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from R, and model results easily transferred back to R to statistically analyse the results (Thiele et al., 

2012). Using RNetLogo it is possible to automate a series of simulation experiments, leading to more 

rigorous model analyses and validation, and allowing the better use of IBMs to answer theoretical 

and applied questions (Thiele et al., 2012). In this thesis, the use of RNetLogo substantially increased 

the scope for running model simulations, allowing a more comprehensive model development and 

validation phase than if running simulations through the built-in NetLogo simulation experiment 

feature. In addition, programming the model simulations through R meant the model could easily be 

run on the supercomputer at HPCWales, which would not have been feasible through NetLogo itself. 

 

8.5.2. Data Sources 

There can be scepticism amongst some scientists about the value of fisher knowledge, and whether 

this type of data are accurate; throughout this thesis we have provided further evidence that data 

collected directly from fishers can be reliable, accurate, and valuable (Bundy and Davis, 2013; 

O’Donnell et al., 2012; Shepperson et al., 2014, 2016; Teixeira et al., 2013). During the questionnaire 

interviews fishers provided information on vessel characteristics, environmental and physical 

limitations to their activity, and basic economic information. Where possible, these data were 

verified against VMS and logbook data, which showed a good level of accuracy (Chapter 2). An 

obvious concern is that fishers may bias the data they provide, to minimise restrictions to them. 

However, it would be difficult to quickly compute how to skew the answers to an agenda considering 

that the parameters were to be put into a model of behaviour. It would be even more difficult to 

bias the answers in the conjoint analysis, as respondents simply selected between virtual fishing 

patches of varying environmental conditions (Chapter 2). Further, no calibration of the parameters 

derived from the questionnaire interviews was required to reasonably well reproduce patterns in 

fishing activity (Chapter 6), which provides further confidence that the data was reliable and 

accurate. This thesis has therefore contributed to the growing body of evidence that fishers can 

provide valuable information, increasingly demonstrated to be a reliable source (Bundy and Davis, 

2013; O’Donnell et al., 2012; Shepperson et al., 2014; Teixeira et al., 2013).  

Questionnaire interviews provided both quantitative parameters and contextual information to help 

understand fishing activity, whilst VMS and logbook data provided further information for model 

development, and the patterns in activity against which the model could be validated. In areas 

where no VMS and logbook data are available it may be possible to rely more on interview data and 

parameters collected directly from fishers. Automatic identification system (AIS) data is also 

increasingly recognised as a potential alternative to VMS as a source of spatial data on fishing 
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activity (Mccauley et al., 2016; Natale et al., 2015; Russo et al., 2016). AIS data could provide an 

alternative to VMS data, to develop and validate a model, in areas for which VMS data is unavailable. 

However, a comparison of VMS and AIS data in this thesis demonstrated substantial missing AIS data 

(Chapter 4). For each individual fisher, 45 – 99% of their VMS data did not have any corresponding 

AIS data. There may be some gaps in satellite coverage, but the variation between individuals also 

suggests some vessels may turn down their AIS transmitter to reduce the chance of a signal being 

received (Mccauley et al., 2016). In addition, AIS is generally used on larger boats, greater than 24m 

in length, whereas as VMS is generally on vessels over 12m in length (in the EU) (EC, 2009). AIS data 

may therefore be more applicable if extending the model to a larger fishery, but caution would be 

required, considering the substantial gaps in coverage demonstrated here. 

 

8.6. Limitations and Future Work 

A common pitfall of IBM design is setting the scope too large or complex (Grimm and Railsback, 

2005). The final model presented here represents a substantial simplification of the fishery, in terms 

of the behaviours included, and the level at which the model has been validated. In general a simpler 

model is preferable (Grimm et al., 2005; Plagányi et al., 2014), therefore the model was designed to 

be simple, and in future modelling cycles additional complexity could be incorporated as required. 

There are several areas in which the model may benefit from the consideration of further 

complexity. The model validation suggested that the return to port decision could be quite 

important in predicting fishing activity, specifically the total catches. This thesis focussed more on 

the initial patch choice decision, regarding the spatial distribution of activity; the model was better 

able to reproduce the extent of fishing than the total catches (Chapter 6 & 7). In the current model 

design, the return to port decision constituted a simple binary ‘if a condition is met, return to port’ 

rule, where the condition could be a threshold catch or time limit. Future model development could 

include refining this decision process so that the probability of returning to port increases as both 

the catch and time spent at sea increases. External vessels were not modelled as a mechanistic part 

of the model, due to a lack of data detailing their behaviour, rather the depletion by external vessels 

was simulated according to patterns in previous exploitation (Chapter 5). Future work could include 

extending the behaviour of the external vessels, to predict, with more detail, when and where they 

would likely fish. In Chapter 2 and 3 the wave height was demonstrated to be an important variable 

in influencing the decision of when and where to fish. In the model, sea state was accounted for in 

the likelihood that a vessel fished or not each day, which differed between ports, but the influence 

of sea state was not included when vessels decided where to fish within a trip. The predicted spatial 
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distribution of activity may be improved by accounting for varying sea states with a day, as on some 

days areas further out to sea may be prohibitively rough, whilst it may still be possible to fish in 

more sheltered inshore areas. The spatial distribution of fishing activity was validated at two 

relatively coarse scales; the total extent, and the proportion of effort over the four main grounds. 

The grounds were identified by splitting the 12nm Sea into four areas that encompassed each of the 

main grounds. However, it would be possible to validate the spatial distribution of effort at a finer 

scale, by identifying a finer scale set of approximate fishing grounds (Figure 8.3) (Kaiser et al., 2008). 

Finally, all fishers followed the same behavioural rules throughout a simulation (i.e. either all vessels 

selected a fishing patch with above average catch rate, or all vessels selected a patch with the 

highest expected catch rate, etc.); a more structurally realistic model may be achieved if individual 

heterogeneity in behaviour was accounted for, in addition to parameterising vessels with different 

characteristics.  

 

Figure 8.3. Approximate boundary lines of scallop fishing grounds in the Isle of Man, as defined in 
Kaiser et al, (2008). Blue patches indicate the approximate boundaries of the fishing grounds, dashed 
lines indicate areas where scallops occur, but are only occasionally fished. Figure digitised from 
Kaiser et al. (2008). 

 

Stillman et al. (2015) described three stages of individual-based modelling: conceptualisation, which 

identifies the questions to be modelled; implementation, which includes the development and 

validation of a model for a typically simple initial system; and diversification, in which the model is 

applied to a wider range of systems or research questions, which likely involves further development 

and validation. The Isle of Man scallop fishery presented a data rich, simple fishery system with 

which to develop and validate an IBM. The stationary resource, relatively simple behavioural 
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structure of the system (e.g. single day trips), and comprehensive data coverage made it an ideal 

system to develop a simple model, to understand more about predicting fisher behaviour and how 

such a model could be designed, validated, and applied in management (Stillman et al., 2015). The 

model was designed in a generalised way, and so could be parameterised for other similar fisheries 

relatively easily during a diversification phase (e.g. Isle of Man queen scallop fishery and the English 

Channel inshore scallop fishery, as well as other relatively immobile species such as crab and 

lobsters). The model focused on the short term decisions made by fishers, i.e. decisions about how 

current fishing capacity was used, such as temporal and spatial effort allocation, area restrictions, 

and seasonal regulations (Hatcher et al., 2000; van Putten et al., 2012). It did not simulate long term 

decisions that affected the level of fishing capacity, such as entry exit decisions (van Putten et al., 

2012), which limits the models longer term predictive capability. As the model was designed to only 

run over one fishing season, and the total stock biomass was estimated, it was reasonable to have a 

simplified stock status with no recruitment. Extending the model to other fisheries, and for longer 

term predictions, may require a more complex stock model, and explicitly predicted levels of effort. 

Interactions with other fisheries (e.g. conflict between towed and static gear) and with other sectors 

(e.g. renewable energy development) could also be explored. 

Despite the simplifying assumptions, the model was able to reproduce patterns in the Isle of Man 

scallop fishery with reasonable accuracy. The outputs from this IBM could be linked with a tool 

currently in development for the Marine Stewardship Council, which predicts the impact on, and 

recovery of, habitats following a defined fishing impact. Combining two tools to predict the 

redistribution of fishing effort following an area closure, including the impacts on the stock, the 

fishers’ income, and the wider environmental impacts of a changing footprint, could provide a 

comprehensive evaluation of management scenarios, leading to more informed management. 

 

8.7. Final Conclusions 

This thesis has demonstrated the potential for using individual-based modelling to better 

understand fishing behaviour and to predict the likely outcomes of management. In particular, it has 

highlighted the importance of contrasting different submodels of fishing behaviour, to determine 

the most realistic model structure. It illustrated the importance of incorporating random behaviour 

in a model design, potentially to account for more difficult to quantify, social aspects of fishing 

decisions, not related to expected catches. This thesis has also provided strong evidence to support 

the use of questionnaire interview data in modelling fishing activity. Questionnaire responses were 

demonstrated to be accurate when directly compared with VMS and logbook data, and when used 
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to parameterise the model they required no calibration to recreate fishing activity with reasonable 

accuracy. The work presented here represents a first step towards a simulation tool that could be 

used by both fishers and managers to evaluate the potential impacts of management scenarios, 

reducing the likelihood of unexpected or unintended consequences of management.  
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