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Abstract 

This research project focused on moderately thermophilic acidophilic microorganisms 
and their role in the oxidation of pyrite. A major objective of the work was to assess the 
relative efficiencies of defined combinations of moderate thermophiles in oxidising 
pyrite under defined conditions. In addition, various aspects of the physiology and 
phylogeny of moderately thermophilic acidophiles were investigated. Moderately 
thermophilic acidophiles, including novel acidophiles (a thermotolerant Leptospirillum 
and a Ferroplasma sp. ), were isolated from a commercial stirred-tank pilot plant. Pyrite 
oxidation by mixed cultures of different combinations of moderate thermophiles, 
including the novel isolates, was assessed in preliminary shake flask experiments. Data 
from these experiments were used to select microbial consortia in later experiments in 
temperature- and pH-controlled bioreactors. These involved monitoring rates of mineral 
oxidation, and relative numbers of the different microorganisms included in the original 
inoculum, using a plating technique in conjunction with a molecular approach (FISH). 
The results from the pyrite oxidation studies indicated that mixed populations of 
acidophiles may accentuate or diminish the rates and extent of pyrite oxidation, relative 
to pure cultures. The thermotolerant Leptospirillum isolate was found to be unable to 
oxidise a pyrite concentrate when grown in pure culture, though this inhibition was 
overcome when the iron-oxidiser was grown in mixed cultures with various Gram- 
positive acidophiles. Investigation of the effects of fifteen individual and mixtures of 
flotation chemicals on moderately thermophilic acidophiles revealed different degrees 
of toxicities of the different reagents and sensitivities of the microorganisms, with the 
Leptospirillum isolate generally being the most sensitive of those tested. The 
phenomenon of pH-related ferric iron toxicity to moderately thermophilic and 
mesophilic Gram-positive bacteria was also investigated. ARDREA (Amplified 
Ribosomal DNA Restriction Enzyme Analysis) using the 16S rRNA gene sequences of 
known acidophilic bacteria, was refined and developed, and applied successfully to 
identify moderate thermophiles isolated from environmental samples. 
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GSM. 
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Figure 5.10: Total bacterial populations in mixed culture of Leptospirillum MT6+At. 

caldus+Am. ferrooxidans determined by plate counts and direct counts (DAPI- 
staining). 

Figure 5.11: Micrographs from: (A) Mixed culture of Leptospirillum MT6+Am. 
ferrooxidans+At. caldus stained with DAPI (1), hybridised with EUB388F1 (2) and 
hybridised with LF655Cy3 (3). (B) Mixed culture of Am. ferrooxidans+At. caldus 
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Chapter 1 

General Introduction 

1.1 Bioleaching, Biooxidation and Depyritization 

Bioleaching refers to the use of microorganisms to extract metals with economic value, 

such as copper, zinc, uranium, nickel and cobalt, from sulfide minerals. During the 

oxidation, the microorganisms release the metals of value into the solution phase, 

facilitating their recovery by, for example, solvent extraction and electrowinning 

(SX/EW; Brierley, 1997). 

Biooxidation refers to a pre-treatment process of sulfide ores or concentrates, usually 

pyrite or arsenopyrite, which host gold, silver, or both. This process uses similar 

microorganisms as bioleaching to degrade minerals. Degradation of ores or concentrates 

by microorganisms in the biooxidation process facilitates the release of precious metals 

either by chemical extraction or by bioleaching from the solid residue. Therefore, 

biooxidation leaves the metal values in the solid phase and the solution is discarded 

(Brierley, 1997). 

Depyritization refers to the removal of inorganic (pyritic) sulfur from coal, and is based 

on a complex combination of spontaneous (non-biological) and microbiologically- 

catalysed oxidation of inorganic sulfidic minerals present in coal. This combination of 

reactions leads to the dissolution of the sulfidic minerals present in the coal. By 

separating the coal from the process fluid, a fuel is obtained with a lower sulfur content 

(Bos et al., 1992). 
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1.2 Commercial Biomining Operations 

The use of microorganisms to solubilise sulfide minerals is a technology that has a long 

history. "Precipitation ponds" within which sulfide-rich rocks and boulders were 

subjected to leaching, were in place in the 18th and 19a` centuries at Rio Tinto (Spain) 

and Parys Mountain (Wales), both of which are copper mining sites which date back to 

pre-Roman times (Hallberg and Johnson, 2001a). In 1947, the occurrence of iron- 

oxidising bacteria in acid rock drainage was discovered and in 1951, the bacterium was 

named as Thiobacillus ferrooxidans (subsequently reclassified as Acidithiobacillus 

ferrooxidans by Kelly and Wood (2000)). This organism is able to oxidise elemental 

sulfur, and reduced inorganic sulfur compounds (RISCs) and ferrous ions at much 

higher rates than can be achieved abiotically under similar conditions. Since then, 

research on microorganisms involved in mineral oxidation has been ongoing, and 

mineral bioprocessing has developed as an expanding area of biotechnology. Between 

1986 and 1996,11 commercial biooxidation/bioleaching plants were commissioned 

(Brierley, 1997), and bioleaching/biooxidation has developed into one of the most 

successful and important areas of biotechnology. This success story is based upon many 

advantages to using biooxidation/bioleaching over conventional mineral processing 

methods (Brierley, 1997): 

1. Cost-effectiveness; capital costs are significantly lower (by as much as 50%) than 

those of the traditional smelting and refining processes. 

2. Operational simplicity; simple stepwise expandability by a single reactor or in 

modules of reactors. 

3. Environmental friendliness; the use of natural components, dust, SO2 free, the 

ability to handle and dispose of arsenic in a stable form. 

4. High performance (relative to smelting). 
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5. Qualities-robust nature. 

6. Health and safety benefits. 

Overall, therefore, biooxidation/bioleaching satisfies the mining industry requirements 

regarding ease of construction, use, expandability and maintenance, environmentally 

friendliness, as well as competitive economics. 

Current biooxidation/bioleaching processes can be categorised as dump bioleaching, 

bioheaps, in situ bioleaching, and stirred-tanks. 

1.2.1 Copper Dump Leaching 

Dump leaching, the earliest engineering technology used, is very basic in concept. 

Copper dump leaching is used as a scavenger technology by copper industries to extract 

copper from run-of-mine, sub marginal ores (which are otherwise waste materials). The 

submarginal ore is piled to depths of up to 350 meters. The ore piles are acidified and 

the leaching bacteria facilitate the extraction of copper, which may be recovered using 

SX/EW (Brierley, 1997). 

1.2.2 Bioheap Biooxidation/Bioleaching 

Later developments in engineering and hydrometallurgical aspects of biomining have 

involved the use of bioheap oxidation/leaching operations. Bioheap reactors are 

commonly used to pre-treat low-grade, refractory-sulfidic gold ores and to leach copper 

from chalcocite ores. Thin layer heaps of ores are acidified with sulfuric acid and 

stacked on lined pads with the height of the ore being varied from 2-10 meters 

depending on heat generation and dissipation, acid balance throughout the heap, and 

air/water permeability. Heaps are generally actively aerated during bioleaching 

(Brierley, 1997). 
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In chalcocite heap leaching, the solution percolates through the heap where bacteria 

catalyse the release of copper. Soluble copper is usually recovered by SX/EW. 

Approximately 20% of western copper production arises from the processing of 

leachable copper ores by heap leaching (Schnell, 1997). 

For refractory-sulfidic gold ores, the crushed ore is irrigated with acid and/or an acidic 

ferric sulfate solution containing mineral-oxidising bacteria. The biooxidised ore is 

water-washed and restacked on lined pads and leached with a dilute cyanide solution to 

extract the gold. 

Due to larger ore particle sizes used in bioheap leaching, overall metal recovery tends to 

be lower than is achieved by alternative process methods such as stirred tank bioreactors 

(Brierley, 1997). 

1.2.3 In Situ Bioleaching 

In situ bioleaching has been commercially used for nearly 30 years to scavenge uranium 

and copper from depleted underground mines. The underground mining site is first 

blasted to fragment the ore. The deep mine is aerated via shafts and acidified solutions 

are percolated through the fragmented ores. Indigenous leaching bacteria become 

established and facilitate metal extraction. Metal-bearing solutions are ultimately 

pumped to the surface for metal recovery (Brierley, 1997). 

1.2.4 Stirred-Tank Biooxidation 

Most recently, stiffed-tanks have been used in biomining. Aerated stirred-tanks require 

the preliminary fine grinding of ores to produce a flotation feed and concentrate. This 

biooxidation process involves three or more stages in series. The first stage has several 

tanks placed in parallel to allow longer retention of the feed, followed by single tanks in 
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series in subsequent stages. Due to the considerable heat generated by the process, tanks 

are typically equipped with cooling systems to maintain optimum temperatures for the 

bacteria of 35-45°C for mesophilic and thermotolerant Acidithiobacillus/Leptospirillum 

species, and of 45-55°C for moderately thermophilic bacteria. The microbes that oxidise 

the mineral release ferric iron and sulfate, and the leach solutions are typically 

maintained at pH 1.5-1.6. For refractory sulfidic gold concentrates, the solid residue is 

separated from liquid and then is water-washed, neutralised and leached in a cyanide 

circuit to recover gold. Most of the commissioned, commercial stirred-tank plants are 

technically biooxidation facilities as they operate with refractory sulfidic gold; however, 

a bioleaching operation for extraction of cobalt has been in place in Kasese, Uganda 

since 1999 (d'Hugues et al., 1999). 

1.3 Mechanisms of Biooxidation 

A variety of metals including those of economic value (copper, lead, zinc etc. ) occur as 

sulfides. Other metals, such as uranium and gold, may be found associated with sulfides 

in ore bodies. Of all sulfides, the most abundant in the lithosphere is pyrite (FeS2). 

Pyrite is formed under reducing conditions (e. g. in sediments) and is unstable in 

aerobic, moist environments. Current consensus is that, in acidic liquors, ferric iron is 

responsible for pyrite oxidation, whereas at neutral or alkaline pH, oxygen is the 

important oxidant because of low solubility of ferric iron (Lowson 1982; Luther 1987; 

Moses et al., 1987). 

At least three mechanisms have been described to account for the bacterial oxidation of 

sulfide minerals. (i) The direct mechanism, in which bacteria attach to the mineral 

surface directly and enhance the mineral dissolution via a simultaneous enzymatic 

oxidation of the minerals. Iron ions, either ferric or ferrous are not involved in the 
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reaction. The reduced iron and sulfur compounds are utilised as electron donors and 

energy sources for bacterial growth. Highly oxidising, acidic liquors are produced by 

these reactions, which may promote chemical or indirect leaching. (ii) The indirect 

mechanism, in which ferric iron generated by iron-oxidising acidophiles in the bulk 

solution chemically oxidises sulfide minerals; the ferrous ions produced by the indirect 

attack can be rapidly reoxidised aerobically by the bacteria to complete the leaching 

cycle. (iii) The indirect contact mechanism, in which attached bacteria oxidise ferrous 

ions to ferric ions within layers of bacteria and expolymeric material, and the ferric ions 

within this layer leach the mineral (Crundwell, 2001). At low pH (pH<3.5), indirect 

solubilisation of the mineral by ferric iron hexahydrate is the major mechanism of 

mineral attack producing ferrous iron and thiosulfate (Sand et al., 1995). It is generally 

agreed that bioprocessing of minerals is optimum under high redox potentials and well- 

aerated conditions, and high ratios of Fei+/Fe2+ in mine effluents and leach liquors 

generally indicate biological activity. Other natural mechanisms of iron oxidation in 

acid (pH 1-2) leach liquors are kinetically so slow that their contribution to the overall 

balance of Fei+/FeZ+ is insignificant when contrasted with bacterial oxidation. 

Though evidence in favour of direct leaching came from experiments with synthetic 

metal sulfides, with repeatedly-washed iron-free cells in an iron-free solution (Rickard 

and Vanselow, 1978), it still remains to be proven whether or not the direct attack 

mechanism really occurs with natural sulfide minerals. Sand et al. (1995) reported a 

complete loss of any measurable substrate degradation ability ofAt. ferrooxidans, which 

had been subcultured in an iron-free solution. Two variations of the "indirect 

mechanism", the thiosulfate mechanism (Figure 1.1) and the polysulfide mechanism 

(Figure 1.2), have been described by Schippers et al. (1996) and Schippers and Sand 

(1999). 
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1.3.1 The Thiosulfate Mechanism 

In this mechanism (Figure 1.1), acid-insoluble metal sulfides, such as pyrite (FeS2), 

molybdenite (MoS2), and tungstenite (WS2) are chemically attacked by ferric 

hexahydrate ions, generating thiosulfate. The mechanism is exclusively based on the 

oxidative attack of ferric ions (equation [1.1]). 

FeS2 +6 Fe 3+ +3 H2O --* S2032" +7 Fe2+ +6 H+ [1.11 

Thiosulfate is not stable at acidic pH, and is oxidised chemically or enzymatically to 

tetrathionate. A series of reactions follows, resulting in the formation of disulfane- 

monosulfonic acid, trithionate and sulfate (equation [1.2]): 

S2032- +8 Fe 3+ +5 H2O -)'Z S042' +8 Fe2+ + 10 H+ 11.2] 

Elemental sulfur also occurs as a by-product (Schippers and Sand, 1999). Schippers et 

al. (1996) reported that considerable amounts of elemental sulfur accumulated, and that 

tetrathionate and pentathionate were produced, during the oxidative dissolution of pyrite 

by the iron-oxidising acidophile Leptospirillum ferrooxidans. A similar result was 

obtained for chemical oxidation assays with sterile acidic ferric ion-containing 

solutions. On the other hand, in the case of At. ferrooxidans, only small amounts of 

elemental sulfur were detectable because of the organism's capacity to oxidise sulfur 

compounds. In this mechanism, the function of iron-oxidising bacteria is to regenerate 

ferric iron. The oxidation products in the case of FeS2 and MoS2 consisted of up to 90% 

sulfate and about 1 to 2% polythionates (Schippers and Sand, 1999). 

In the case of pyrite, the oxidation state of iron is +2 and that of sulfur is -1; therefore, 

for each mole of FeS2 to be fully oxidised, one mole electron is released from the iron 

moiety, and 14 moles electron are released from the sulfur moiety. As a result, it is 

likely that, despite the iron-oxidisers being often the key microbes in pyrite oxidation in 

that they supply the ferric iron that oxidises the mineral, sulfur-oxidisers are often 
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abundant and even numerically dominant due to their ability to oxidise the more energy- 

rich RISCs (Reduced Inorganic Sulfur Compounds) that are produced during mineral 

dissolution. For example, the moderately thermophilic sulfur-oxidiser Acidithiobacillus 

caldus has been reported to be the most numerous microorganism in some stirred tank 

ore-leaching bioreactors, despite its inability to oxidise acid-insoluble sulfide minerals 

in pure cultures (Norris et al., 2000; Rawlings et al., 1999). 
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Figure 1.1: The thiosulfate mechanism (Schippers and Sand, 1999; Schippers et al., 
1996). 
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1.3.2 The Polysulfide Mechanism 

In this mechanism (Figure 1.2), acid-soluble metal sulfides, such as sphalerite (ZnS), 

galena (PbS), hauerite (MnS2) orpiment (As2S3) and realgar (As4S4) are attacked by 

protons as well as by ferric iron, generating intermediary polysulfides, such as disulfide, 

trisulfide and tetrasulfide (equation [1.3]). 

MS + Fe3+ + it -* M2+ + 0.5 H2 S� + Fe2+ (n>2) [1.3] 

Polysulfides are oxidised chemically or biologically to sulfur (equation [1.4]). 

0.5 H2Sn + Fe 3+ 
-+ 0.125 S$ + Fe2+ + H+ [1.4] 

Due to its stability, degradation of sulfur occurs only in the presence of sulfur-oxidising 

bacteria, such as At thiooxidans, which results in the ongoing supply of protons needed 

for further dissolution of the minerals (equation [1.5]). 

0.125 S8+1.5 02+ H20- --* S042-+ 2 H+ [1.5] 

The bacterial function in this mechanism is to supply protons (by generating sulfuric 

acid) for hydrolytic attack, and/or to replenish ferric iron for an oxidative attack. 

Though ferric iron is not required in this mechanism, dissolution of the sulfide mineral 

proceeds more rapidly in the presence of ferric iron (Tributsch and Bennett, 1981a and 

b). Over 90% of the sulfur products formed via chemical attack (by ferric chloride) on 

acid-soluble sulfides were found by Schippers and Sand (1999) to be elemental sulfur. 

L 
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Figure 1.2: The polysulfide mechanism (* indicates radicals) (Schippers and Sand, 
1999). 
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1.4 Cell Attachment to Sulfide Minerals 

The attachment of bacteria to mineral surfaces, such as sulfides, is a common 

phenomenon. It was suggested that a thin film exists between the attached bacterial cell 

outer membrane and the sulfide mineral, and that the corrosion process occurs within 

this interfacial film (Rodriguezleiva and Tributsch, 1988). Leaching bacteria such, as At, 

ferrooxidans and L. ferrooxidans attach strongly to the surface of sulfidic ores by means 

of extracellular polymeric substances (EPS) (e. g., lipopolysaccharides), which provides 

a "reaction compartment" (Arredondo et al. 1994; Gehrke et ad., 1995). The exact 

nature of EPS and their interaction with the mineral sulfide surface is unknown. Sand et 

al. (1995) reported that extracellular polymers produced by At. ferrooxidans and L. fer- 

rooxidans were associated with considerable amounts of ferric iron (between 0.5% and 

5%), which were not removable by any washing procedure. It was indicated that strains 

ofAt. ferrooxidans that had a relatively large concentration of Fe 3+ associated with their 

extracellular polymers, possessed a higher mineral oxidation activity than those with 

lesser amount of iron (Kinzler et al., 2001; Gehrke et al., 2001). Natural sulfide ores are 

usually associated with iron compounds (only synthetic sulfides are free from iron com- 

pounds). Therefore, iron compounds in any given natural ore are not limiting the 

microbial oxidising activity due to their easy accessibility for iron-oxidisers. Blake et al. 

(1994) reported that metal cations in the exopolymers of the bacteria caused a shift of 

the net charge on the surface from negative to slightly positive, which overcame the 

repulsion between negatively charged sulfide minerals or sulfur, and microbial cells. 

The mechanism for site recognition for attachment is still unclear. It was demonstrated 

that a chemotactic mechanism is involved in site recognition, with Nie+, Fe2+ and Cu 2+ 

ions being positive attractants for L. ferrooxidans (Acuna et al. 1992). Also, the 
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constitutive nature of chemotaxis by At. ferrooxidans toward thiosulfate has been 

reported (Chakraborty and Roy, 1992). 

1.5 Microbial Consortia Involved in Mineral Processing 

-" Since the discovery from acid mine drainage in the late 1940's and isolation of the iron- 

oxidising acidophile At. ferrooxidans in 1951, this chemolithotroph was assumed, for 

many years, to be the sole or dominant bacterium in sulfide mineral dissolution. This 

was refuted, however, by reports indicating that L. ferrooxidans was actually more 

abundant than At. ferrooxidans in some environments (Schrenk et al., 1998; Rawlings, 

1995; Walton and Johnson, 1992). 

Microorganisms used in commercial mineral leaching operations are At. ferrooxidans, 

L. ferrooxidans and thermophilic species of Sulfobacillus, Acidianus and Sulfolobus; 

however, in the majority of cases, defined microbial inocula are not used in industrial 

mineral processing. The microorganisms involved in mineral processing in industrial 

operations are generally those that are associated with the original ore body. An 

exception is the moderately thermophilic culture used in the 'BacTech' process (Miller, 

1997). 

In both the natural and the industrial mineral oxidation environments, there are many 

physico-chemical changes that can provide selective pressures on microbial populations, 

such as pH, temperature, redox potential (Eh), conductivity, concentrations of soluble 

metals and organic matter, and oxygen concentration. Changes in one or more of these 

factors over time may lead to major shifts in the indigenous microflora in leaching sites. 

There is now a great amount of information on the biodiversity of acidophilic 

microorganisms (section 1.7), and by understanding the behaviour of these 

microorganisms, how they respond to physico-chemical changes, and how they interact 
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with each other, it is possible, in theory at least, to put together and manipulate 

bioleaching microflora to enhance both rates and efficiencies of mineral oxidation. 

1.5.1 Use of Mixed Cultures 

It has become increasingly apparent over recent years that a considerable diversity of 

microbial life exists in extremely acidic environments. The microorganisms that are 

involved in ore processing include various acidophilic bacteria and archaea. In recent 

years, researchers have become increasingly aware of the importance of mixed 

populations of acidophiles rather than pure cultures in promoting rapid and efficient 

mineral processing. 

In the absence of sulfur-oxidising prokaryotes, a part of the sulfur moiety may 

accumulate as elemental sulfur during pyrite oxidation, while in mixed cultures with 

Acidithiobacillus spp., pyrite oxidation by L. ferrooxidans proceeds to the level of 

sulfate (Merretting et al., 1989). Mineral dissolution of pyrite was shown to be more 

extensive by mixed cultures dominated by L. ferrooxidans (Norris and Kelly, 1982; 

Norris, 1983) compared to pure At. ferrooxidans cultures. Similarly, Lizama and Suzuki 

(1989) reported enhanced rates of chalcopyrite and sphalerite leaching by a mixed 

culture of At. ferrooxidans and At. thiooxidans, compared with the respective rates by 

pure cultures. 

In contrast to the extensive research undertaken on the activities of the acidophilic 

chemolithotrophs, the contribution of heterotrophic acidophiles to mineral dissolution is 

poorly understood. Acidophilic heterotrophic bacteria may affect mineral bioleaching 

indirectly by interacting with iron-oxidising chemolithotrophs. The indirect theory of 

sulfide mineral oxidation suggests that any biological system that is capable of 

regenerating ferric iron should promote mineral dissolution. In fact, several strains of 

14 



heterotrophic iron-oxidising acidophilic bacteria have been shown to oxidise pyrite in 

the presence of yeast extract and ferrous iron (Bacelar-Nicolau and Johnson, 1999). On 

the other hand, the reduction of ferric iron by some heterotrophic acidophiles (Johnson 

et al., 1993; Bridge and Johnson, 2000) could have negative effects on mineral 

dissolution. Contrasting results have been reported from laboratory studies on mixed 

cultures of acidophilic heterotrophs and chemolithotrophs. Negative effects may result 

from the production of extracellular polymeric materials on mineral surfaces by 

heterotrophic bacteria that may shield minerals from oxidative attack (Johnson, 1991b; 

Kishimoto et al., 1991). On the other hand, production of vitamins, cofactors, chelating 

agents and surfactants by acidophilic heterotrophs may enhance sulfide mineral leaching 

by chemolithotrophic acidophiles (Tuovinen, et al., 1991). No enhancement of 

depyritization of coal was found in mixed cultures of iron-oxidising moderate 

thermophiles and Alicyclobacillus-like heterotrophs compared with pure cultures of 

iron-oxidising moderate thermophiles (Johnson, 1991a). Similarly, pyrite leaching by 

At. ferrooxidans was found not to be influenced by A. acidophilum (Norris and Kelly, 

1982). In contrast,. metal leaching of sludge by Al. ferrooxidans was found to be 

stimulated by heterotrophic organisms, including Rhodotorula rubra and indigenous 

sludge microflora (Fournier et al., 1998). Increased solubilisation of cobalt sulfide ores 

by At. ferrooxidans in the presence of a number of acidophilic heterotrophic bacteria in 

cultures supplemented with ferrous iron or glucose was reported by Wichlacz and 

Thompson (1988). Pyrite leaching by a mixed culture of L. ferrooxidans and 

Acidiphilium SJH was found to be more rapid than that brought about either by pure 

cultures of L. ferrooxidans or by pure or mixed (with Acidiphilium SJH) cultures of At. 

ferrooxidans (Johnson et al., 1990). 

15 



Mixed cultures that include microorganisms with different physiological characteristics 

would expand the range of microbial adaptability to variations in physico-chemical 

parameters. Based on known acidophilic microbial interactions, it would be possible to 

design microbial consortia to be more robust and more efficient in processing minerals. ' 

1.5.2 Use of Thermophilic Microorganisms in Mineral Leaching 

Interest in using thermophilic bacteria in mineral processing lies in the potential for 

improving the leach rates of sulfide minerals, such as pyrite and arsenopyrite, and 

overcoming the problems encountered in bioleaching of refractory copper sulfides, such 

as chalcopyrite, that exist at lower temperatures. 

Sulfide mineral oxidation is an exothermic reaction and may involve a considerable 

amount of heat evolution during the active phase of the process. Moderately elevated 

temperatures within the range of 50-60°C have been recorded in waste rock dumps 

(Harries and Ritchie, 1981; Murr and Brierley, 1978). Though such temperatures are 

well in excess of the upper growth limits of mesophilic bacteria, moderate thermophiles 

have been readily isolated from a variety of environments such as copper leach dumps 

(Brierley, 1978), a large-scale experimental copper waste leaching facility (Murr and 

Brierley, 1978), and coal spoil heaps (Marsh and Norris, 1983a; 1983b). The potential 

advantages of operating at higher temperature with moderate thermophiles in 

continuous leaching of a refractory, gold-bearing pyrite/arsenopyrite concentrate has 

been demonstrated (Liu et al., 1993). A commercial bioreactor has been developed to 

utilise such organisms at 45-50°C for extraction of gold from a pyrite/arsenopyrite 

concentrate (Brierley and Brans, 1994). 

Temperatures in excess of 60°C have been reported in a variety of mining operations. 

The first extremely thermophilic acidophile isolated from a mine site (a coal spoil heap) 
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was a Sulfolobus sp. (Marsh and Norris, 1983b). Extreme thermophiles have also been 

found in drainage from a copper mine (Gomez et al., 1993). Metallosphaera prunae, 

which grows between 55°C and 80°C by oxidising pyrite, sphalerite, chalcopyrite or 

molecular hydrogen was isolated in a uranium mine (Fuchs et al., 1996b). 

Sulfolobus, spp. are effective in leaching sulfide minerals, including molybdenite and 

chalcopyrite-containing ore materials (Brierley and Brierley, 1986) as well as pyrite and 

arsenopyrite concentrates (Lawrence and Marchant, 1988; Lindstrom and Gunneriusson, 

1990). Mixed cultures of mesophiles, moderate thermophiles and Sulfolobus-like 

extreme thermophiles have been used for leaching a gold-bearing pyrite/arsenopyrite 

concentrate at 5% w/v solids, and displayed greater rates of metal extraction as the 

temperature increased (Hutching et al., 1987). Maximum rates of mineral leaching were 

found with chalcopyrite concentrates (-15%, w/v) in air-lift reactors containing 

Sulfolobus metallicus (Le Roux and Wakerley, 1988) and with pyrite (6-8%, w/v) in 

stirred reactors containing "Sulfolobus acidocaldarius"' (Lindstrom et al., 1993). 

It is known that the efficient extraction of copper from chalcopyrite concentrates cannot 

readily be achieved at low temperatures. Chalcopyrite is the major copper sulfide of 

commercial interest. However, chalcopyrite typically exhibits slow leach kinetics and 

low copper extractions at mesophilic temperatures and ambient pressure in acid ferric 

sulfate leach solutions, due to passivation of the mineral surface (Munoz et al., 1995). 

Thermophilic microorganisms, operating at a temperature of between 60 and 78°C, can 

solubilise chalcopyrite, which is perhaps the most important potential application of 

bioleaching at high temperatures. 

It was pointed out that progress in leaching at high mineral concentrations is required 

before the potential of these organisms can be commercially realised (Clark and Norris, 

1996b). To overcome the problem of high sensitivity of thermophiles to high solids 
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concentration, selection or isolation of more robust bacteria or the development of 

improved reactor designs may be required. Ultimately, the use of moderately and 

extremely thermophilic microorganisms could represent a major breakthrough in the 

bioleaching of sulfide minerals. 

1.6 Bioenergetics of Acidophilic Microorganisms 

1.6.1 Iron 

1.6.1.1 Ferrous Iron Oxidation 

Iron is the fourth most abundant element in the earth's crust, accounting for 

approximately 5% of its weight. Iron plays essential roles for living organisms not only 

as enzyme-associated iron, which is responsible for a large variety of biological redox 

reactions, but also as a substrates, for microbial energy metabolism. In neutral and 

alkaline environments, chemical oxidation rates of ferrous iron are so fast that both 

ferrous iron and ferric iron are unstable in solution. On the other hand, in acidic 

environments (<pH 2.3), chemical oxidation rates of ferrous iron are very low and both 

ferrous and ferric irons are soluble. 

Some acidophilic microorganisms gain energy for growth and cell maintenance by 

oxidation of ferrous irons and/or reduced sulfur compounds, using oxygen as the 

electron acceptor. The Fei+/Fe2+ redox couple has a very positive standard electrode 

potential (+770 mV) at pH 2.0 and, as a result, only oxygen is able to act as a natural 

electron acceptor for ferrous iron oxidation (equation [1.6]): 

4 Fee++ p2 + 4H+ -- 4 Fe3+ + 2H20 [1.6] 

Because of the comparatively small amount of energy ̀available from ferrous iron 

oxidation (-30 kJ/mol at pH 2.0), iron-oxidising bacteria require to oxidise large 

amounts of iron to grow. At. ferrooxidans has been the major focus of study in 
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understanding the microbial respiratory mechanism. Several models have been 

proposed for the iron respiratory chain, which differ with regard to the electron carriers 

and the side of the cytoplasmic membrane on which oxygen reduction takes place 

(Ingledew et al., 1977; Ehrlich et al., 1991; Yamanaka, et ad., 1991; Blake et ad., 1992) 

(Figure 1.3). 
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Figure 1.3: Various hypotheses suggested for the pathway for electron transfer from 
Fe + to molecular oxygen -in At. ferrooxidans. (A) Working model adapted- from 
Ingledew (Ingledew et al., 1997; Ehrlich et al., 1991). (B) Working model adapted from 
Yamanaka et al. (1991). (C) Working model adapted from Blake et al. (1992). 
Components: Fe-S, iron-sulfur protein; RCu, rusticyanin; cyt c, cytochrome c (shaded 
and unshaded symbols denote different polypeptide chains); cyt a, cytochrome a; and 
[... -Fe-... ], polynuclear iron complex. The arrows in A, B, and C indicate the direction 
of electron flow. 
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The bioenergetics of iron oxidation by At. ferrooxidans is of biochemical interest 

because of the much more positive reduction potential of the Fei+/Fe2+ couple (+770 

mV at pH 2.0) than that of the NAD(P)-NAD(P)H couple (305 mV at pH 6.5, the 

cytoplasmic pH of At. ferrooxidans) (Cox et al., 1979). Therefore, the reduction of 

NAD(P) using ferrous iron as sole energy source, is not thermodynamically feasible. To 

overcome this, an uphill electron transfer model in At. ferrooxidans was proposed 

(Elbehti et al., 1999; Elbehti et al., 2000) (Figure 1.4). Electrons arising from Fe2+ 

(coupled to oxygen reduction via cytochrome oxidase) establish a proton motive force 

which, when the ATP/ADP ratio is low, is used by ATP synthase to synthesise ATP. As 

long as ATP is used in protein synthesis, this ratio is low and the ATP synthase 

synthesises ATP. But when no carbon is available, ATP is no longer used and the 

ATP/ADP ratio increases. When ATP accumulates, the proton motive force established 

via cytochrome oxidase therefore decreases, and ATP synthase functions like an 

ATPase, generating a proton motive force; this proton electrochemical gradient will then 

be used for the reverse electron transfer through the bcl and NDH-1 complexes, leading 

to the formation of NAD(P)H required for CO2 fixation. The ATP/ADP ratio will then 

decrease, cytochrome oxidase will be activated, and ATP synthase again will synthesise 

ATP. The ATP/ADP ratio controls the balance of the reducing equivalents from Fe2+ in 

favour of either cytochrome oxidase or the uphill electron transfer (Elbehti et al., 2000) 

Acidic environments facilitate the passage of W into the cell via the reversible 

membrane bound ATPase, coupled with ATP synthesis (Figure 1.4). 
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Figure 1.4: Model for the balance of reducing equivalents from ferrocytochrome c 
between the exergonic cytochrome oxidase and the endergonic bcl and NDH-1 
pathways (Elbehti et al., 2000). 

Acidophilic bacteria take advantage of the pre-existing transmembrane proton gradients 

for energy genesis (Norris and Ingledew, 1992). Acidophilic bacteria are capable of 

maintaining a near-neutral cytoplasmic pH (Michels and Bakker 1985) by removal of 

H' from within the cytosol to ensure that the H+ concentration does not increase to 

levels where cytosolic acidification would eventually result in cell death. In the case of 

At. ferrooxidans, the H+ concentration is controlled by internal proton consumption in 

the reduction of oxygen at the inner surface of the cell membrane, linked to ferrous iron 

oxidation (Figure 1.5). 
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Figure 1.5: Energy gain from ferrous iron oxidation by acidophilic bacteria. 

On the other hand, relatively little is known about the enzymology of other ferrous iron 

oxidising acidophiles. In L. ferrooxidans, an acid stable cytochrome that is slowly 

oxidised by ferrous iron has been described (Barr et al., 1990). Phylogenetically distinct 

organisms express copious quantities of spectrally distinct redox-active biomolecules 

during autotrophic growth on soluble iron (Blake et al., 1993). At. ferrooxidans, L. 

ferrooxidans, Sb. the rmosulfidooxidans, and Metallosphaera sedula possess iron 

respiratory chains dominated by a blue copper protein, a novel red cytochrome, a novel 

yellow protein, and a novel yellow cytochrome, respectively (Blake et al., 1993). 

1.6.1.2 Ferric Iron Reduction 

Dissimilatory reduction of ferric iron has also been reported to occur in highly acidic, 

metal-rich environments (e. g., Johnson et al., 1996; Fortin et al., 1996). Ferric iron, 

generated from ferrous iron oxidation (coupled to CO2 reduction) by anoxygenic 

phototrophic bacteria (Widdel et al., 1993) may have been the principle electron 

acceptor during the early phases of the evolution of life, when the earth's atmosphere 

was anoxic (Walker, 1987). 
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As the redox potential of the Fei+/Fe2+ couple (+770 mV, pH 2.0) is almost as positive 

as that of 021H20, ferric iron is a thermodynamically highly attractive alternative 

electron acceptor to oxygen. In very acidic environments, ferric iron is stable in solution 

and if oxygen depletion occurs, ferric iron can serve as an alternate electron acceptor 

coupled to the oxidation of RISCs or organic electron donors (Johnson, 1998a). 

The reduction of ferric iron coupled to the oxidation of hydrogen or organic compounds 

may have been the first globally significant mechanism for the oxidation of organic 

matter to carbon dioxide (Walker, 1987). The process plays an important role in the 

oxidation of natural and contaminant organic compounds in a variety of environments 

and contributes to other phenomena of widespread significance such as the release of 

metals and nutrients to water supplies, the magnetisation of sediments, and the 

corrosion of metal (Lovley, 1991). Brock and Gustafson (1976) first demonstrated ferric 

iron reduction by acidophiles, showing that Thiobacillus and Sulfolobus were able to 

reduce ferric iron when growing on elemental sulfur as an energy source (equation 

[1.7]). 

S+ 6Fe3+ + 4H20 -+ SO42- + 6Fe2+ + 8H+ [1.7) 

Pronk et al. (1991) later demonstrated growth of At. ferrooxidans by the oxidation of 

sulfur coupled to the reduction of ferric iron. Ohmura et al. (1999) reported H2-coupled 

ferric iron reduction by At. ferrooxidans. At. ferrooxidans was also shown to be able to 

grow by reducing ferric iron with tetrathionate as substrate (Hallberg et al., 2001). In 

the same study, At. thiooxidans and At. caldus were found not to grow anaerobically 

using ferric iron as electron acceptor. 

The contribution of heterotrophic microorganisms to iron cycling in extremely acidic 

environments was prompted by the observation that ferric iron reduction can be coupled 

to the oxidation of a variety of organic compounds (Johnson and McGinness, 1991b). 
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Mesophilic and moderately thermophilic heterotrophs, Acidiphilium spp. and 

Alicyclobacillus-like isolates, have been shown to reduce ferric iron at low pH (Pronk 

and Johnson, 1992). Also, the iron-oxidising moderate thermophiles, ' Sb. 

thermosulfidooxidans, Sb. acidophilus, and Am. ferrooxidans, were shown to be capable 

of reducing ferric iron to ferrous iron when grown under oxygen limitation conditions; 

iron reduction was most readily observed when these bacteria were grown 

heterotrophically using glycerol as an electron donor (Bridge and Johnson, 1998). 

Cycling of ferrous and ferric iron by mixed populations of iron-oxidising and iron- 

reducing mesophilic bacteria, and by pure cultures of moderate thermophiles, has been 

demonstrated (Johnson et al., 1996). Recently, strains of Acidiphilium ctyptum were 

found to be able to grow anaerobically by coupling the oxidation of many organic 

compounds to the reduction of ferric iron (Kusel et al., 1999). 

A few components of the ferric iron-reducing system have been identified in acidophilic 

autotrophs. Sasaki et al. (2001) reported that Al. ferrooxidans synthesised a significant 

amount of a red coloured protein with a typical spectrum of c-type cytochrome when 

grown anaerobically. Sugio et al. (1992a; 1992b) have claimed that a hydrogen sulfide: 

ferric ion oxidoreductase that catalyses the oxidation of elemental sulfur with ferric ions 

as an electron acceptor to produce ferrous and sulfite ions occurs in iron-oxidising 

bacteria, such as At. ferrooxidans, L ferrooxidans, and some moderately thermophilic 

iron-oxidising bacteria including Sb. thermosulfidooxidans BC1, Sb. acidophilus ALV 

and Acidimicrobium ferrooxidans TH3. Pronk et al. (1992) demonstrated that a 

respiratory-chain poison inhibited the anaerobic sulfur-dependent ferric iron reduction 

and ferrous iron dependent oxygen reduction, which led to the conclusion that a single 

oxidoreductase was involved in the oxidation and reduction of iron. The single 

oxidoreductase theory is also supported by the observation that rusticyanin is present in 
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anaerobically grown At. ferrooxidans with hydrogen as electron donor (Ohmura et al., 

1999). 

Corbett and Ingledew (1987) suggested that bcl complex is involved in anaerobic ferric 

iron dependent sulfur oxidation in At. ferrooxidans, by demonstrating that the oxidation 

can be inhibited by HOQNO (n-heptyl-4-hydroxyquinoline N-oxide), a specific 

inhibitor of the bcl complex of the respiratory chain. 

This microbial reduction of ferric iron would have, in terms of its impact on redox 

potential, a negative impact on mineral oxidation, especially where the aeration is 

limited. On the other hand, there may be considerable potential in using microorganisms 

with an ability of ferric iron reduction. During the leaching of iron-containing sulfide 

minerals, ferric iron may precipitate in a variety of mineralogical forms to produce 

passivation layers of secondary sulfides including covellite or Fei+-complexes such as 

jarosite (Stott et at, 2000; Carlson et al., 1992; Tuovinen et al., 1994). Such secondary 

minerals may seriously reduce the efficiency of ore processing (Stott et al., 2001). 

Modifications to the nutrient medium (by limiting sulfate and monovalent cation 

concentrations) to limit jarosite deposition was found to have little effect on the copper 

leaching rate with Sulfolobus metallicus (Stott et al., 2001). The ability of heterotrophic 

acidophiles to reduce not only soluble but also solid-phase ferric iron compounds, such 

as amorphous and crystalline forms, could be advantageous to leaching processing of 

sulfide minerals. "Sulfobacillus yellowstonensis" YTF1 was shown to bring about the 

reductive dissolution of three ferric iron-containing minerals (ferric hydroxide, jarosite, 

and goethite) when grown under restricted aeration conditions with glycerol as a carbon 

and energy source (Bridge and Johnson, 1998). The acidophilic heterotroph 

Acidiphilium SJH was shown to catalyse the reductive dissolution of a wide range of 

ferric iron-containing minerals (akageneite, goethite, jarosite, natrojarosite, and 
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amorphous ferric hydroxide) and of the mixed ferrous/ferric mineral, magnetite; rates of 

dissolution varied with the structural stabilities of the minerals. Among those minerals 

tested, amorphous ferric hydroxide (Fe(OH)3) was the most readily solubilised, and 

jarosite and akageneite were the least (Bridge and Johnson, 2000). As indicated by the 

following equation (equation [1.8]): 

Fei+solid phase t-3 Fe3+soluble -4Fe2+ (biological reduction) [1.8], 

the reduction of soluble ferric iron should result in the equilibrium between solid-phase 

Fe" and soluble-phase Fe3+ being shifted somewhat, accelerating the dissolution of the 

mineral (Bridge and Johnson, 1998). 

Improved mineral oxidation rates may be achieved by control of microbial populations 

specifically to remove ferric iron precipitates (e. g. by promoting occasional anoxic 

conditions), which might result in more efficient commercial mineral processing. 

1.6.2 Reduced Inorganic Sulfur Compounds (RISCs) 

In environments where acidophilic microorganisms are found, sulfuric acid is generated 

by the oxidation of RISCs and mineral sulfides. RISCs play important roles as electron 

donors for acidophiles as they offer more electrons per mole of substrate than do ferrous 

iron. 

Attempts to, investigate sulfur oxidation pathways have proved difficult, due to the 

chemical reactivity and hence lack of stability of many sulfur intermediates. Also, 

disproportionation, where electrons removed from sulfur compounds are used to reduce 

other molecules of the same type, has been frequently observed, making the oxidation 

pathway difficult to elucidate. The oxidation pathway where tetrathionate and 

thiosulfate are intermediates during the oxidation of each was proposed for Al. 

ferrooxidans (Pronk et al., 1990), A. acidophilum (Meulenberg et al., 1992), At. 
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thiooxidans (Chan and Suzuki, 1994) and At. caldus (Hallberg et at, 1996). Also, the 

conversion of thiosulfate to tetrathionate, and the subsequent oxidation of tetrathionate 

via thiosulfate, was also found to occur in Sulfolobus strain LM (Nixon and Norris, 

1992). Although the actual mechanism of many of these reactions has been doubted, the 

ultimate oxidation product of RISCs is sulfate, which causes decrease in solution pH. 

1.7 Diversity of Acidophilic Microorganisms 

1.7.1 Mesophilic Acidophilic Bacteria 

Mesophilic bacteria have optimum temperatures for growth of 25-37°C and are 

generally incapable of growth above 45°C Bacteria most commonly isolated from 

inorganic mining environments are At. ferrooxidans, At. thiooxidans and L. 

ferrooxidans, and these are the most widely studied of acidophilic organisms. 

Heterotrophic acidophiles (e. g., Acidiphilium spp. ) are also readily isolated from low 

temperature acidic environments. Acidophilic chemolithotrophic bacteria generally 

derive their energy for growth by oxidising various inorganic compounds, particularly 

iron and reduced sulfur compounds, whereas acidophilic heterotrophs oxidise organic 

substrates. 

1.7.1.1 Autotrophic Acidophilic Bacteria 

1.7.1.1.1 Genus Acidithiobacillus 

The genus Acidithiobacillus was recently proposed for some species (T. thiooxidans, T. 

ferrooxidans, T. caldus and T. albertensis) previously classified as Thiobacillus spp. 

(Kelly and Wood, 2000). The genus Acidithiobacillus includes obligately acidophilic 

(optimum pH < 4.0) and aerobic, Gram-negative rods that can use reduced sulfur 

compounds to support autotrophic growth. Some species oxidise ferrous iron or use 
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natural and synthetic metal sulfides for energy generation; some species can also oxidise 

hydrogen (Kelly and Wood, 2000). 

Since the first isolation of At. ferrooxidans from acidic mine drainage (Temple and 

Colmer, 1951), it has been the most studied and well known acidophilic organism in 

biological leaching systems. At. ferrooxidans is a Gram-negative, autotrophic rod- 

shaped bacterium that can derive energy for growth by oxidising ferrous ion in addition 

to RISCs. Consequently it has the capacity to degrade sulfide minerals such as pyrite 

and chalcopyrite. In contrast to other Acidithiobacillus spp., At. ferrooxidans is a 

facultative anaerobe and is capable of growth by coupling the oxidation of elemental 

sulfur and RISCs to the reduction of ferric iron. Also, At. ferrooxidans can use hydrogen 

as electron donor coupled to the reduction of oxygen (under aerobic conditions) or ferric 

iron (anaerobic conditions). The bacterium was reported to capable of growth at a pH of 

1.5 after selection in continuous culture (Vian et al., 1986). 

Acidithiobacillus thiooxidans was the first acidophilic prokaryote to be isolated 

(Waksman and Joffe, 1921). It was recently reported that At. thiooxidans is more 

closely clustered with At. ferrooxidans than other species of the genus Acidithiobacillus 

(Kelly and Wood, 2000). At. lhiooxidans is phylogenetically closely related to At. 

ferrooxidans and it shares morphological characteristics with the iron-oxidiser. 

However, At. thiooxidans tends to be more motile than At. ferrooxidans, and is unable 

to oxidise ferrous iron to degrade pyrite or chalcopyrite. At. thiooxidans is an obligate 

aerobe and derives energy for growth by oxidation of S° and variety of RISCs to sulfate. 

Ferric iron may be reduced by At. thiooxidans, but this does not support its growth in 

the absence of oxygen (Brock and Gustafson, 1976). Although At. thiooxidans is not 

capable of iron or pyrite oxidation, it can grow on pyrite in co-culture with L. 

ferrooxidans, where it utilises RISCs produces as intermediate products (Sand et al., 
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1992). At. thiooxidans is considerably more resistant to low pH than At. ferrooxidans, 

and it is capable of growth at pH of less than 0.8. At. thiooxidans falls into a 

monophyletic group within the y-Proteobacteria together with other Acidithiobacilli, 

which is close to the cusp between the 0 and y subgroups (Hallberg and Johnson, 

2001 a). 

Acidithiobacillus albertensis (originally Thiobacillus albertis) was isolated from acidic 

soil adjacent to a sulfur stockpile in Alberta, Canada (Bryant et al., 1983). At. 

albertensis differs from the other three species by its relatively high G+C content of its 

DNA, together with its possession of a tuft of flagella and a glycocalyx (Kelly and 

Wood, 2000). 

1.7.1.1.2 Other "Thiobacillus" -like isolates 

Strain m-l, isolated from coal mine drainage water in Missouri, USA, was considered to 

be a strain of T. ferrooxidans. However, strain m-1 was shown to have little DNA 

homology with strains of At. ferrooxidans and also have significantly higher G+C 

content of its chromosomal DNA (Harrison, 1982). 

"Thiobacil us prosperus" is a halotolerant bacterium that can grow in 6% sodium 

chloride (Huber and Setter, 1989). This bacterium grows by oxidation of a variety of 

sulfide minerals, but somewhat poorly on elemental sulfur or ferrous iron. According to 

the 16S rRNA gene analysis, this bacterium is not related to other Thiobacillus (or 

Acidithiobacillus) species, and the name of this species requires revision. 
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1.7.1.1.3 Genus Leptospirillum 

Another ferrous iron-oxidiser, Leptospirillum ferrooxidans was first isolated from 

copper deposits in Armenia (Markosyan, 1972). Unlike At. ferrooxidans, L. 

ferrooxidans is not capable of direct oxidation of sulfur, however, it has been shown 

that this organism is able to degrade pyrite (Sand et al., 1992) and pyritic coal 

(Merretting et al., 1989) in pure culture. The genus Leptospirillum currently includes 

three species; L. ferrooxidans, L. thermoferrooxidans, and L. ferriphilum (Hippe, 2000; 

Coram and Rawlings, 2002). A putative group/species has been identified in clone 

libraries obtained from an abandoned pyrite mine at Iron Mountain, California (Bond et 

al., 2000a). L. ferrooxidans is readily distinguished from At. ferrooxidans by its cell 

shape, which varies from curved rods to spirals. The bacterium possess a polar 

flagellum and more motile than At. ferrooxidans. Leptospirillum is more resistant to low 

pH than At. ferrooxidans and will grow at pH as low as 1.2 (Norris, 1983). Many L. 

ferrooxidans strains form aggregates of cells, which appear as floe-like structures in 

liquid media and cause the flocculation of fine grain minerals, such as pyrite. Growth on 

iron usually proceeds with macroscopic aggregation of cells embedded in slime. 

Exopolymer production is most evident with growth at low temperatures (e. g., 15 to 

20°C; Norris, 1990). 

Due to its slower growth rate than At. ferrooxidans in enrichment cultures, the 

importance of L. ferrooxidans has been overlooked for a long time. However, there 

have been a number of reports supporting the wide distribution of L. ferrooxidans as an 

important leaching organism in leaching environments (Schrenk et al., 1998; Rawlings, 

1995). L. ferrooxidans was found to gradually dominate and to support more extensive 

leaching than At. ferrooxidans in mixed cultures with At. ferrooxidans growing on 
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pyrite (Norris and Kelly, 1982), particularly at low pH values (Norris et al., 1988) or at 

higher temperatures (Sand et al., 1992). 

L. thermoferrooxidans, a thermophilic Leptospirillum, is described elsewhere (section 

1.7.2.1.2. ). 

The name L. ferriphilum was proposed for a group of Leptospirillum isolates (group II) 

that have G+C moles percent ratios of 55 to 58% and have two copies of rrn genes, 

whereas the other major group of isolates (group I) had G+C mole percent ratios 

between 49 and 52% and had three copies of rrn genes. Based on 16S rRNA gene 

sequence data, group I isolates clustered together with the L. ferrooxidans type strain 

(DSM2705; Coram and Rawlings, 2002). The two groups could also be distinguished 

from the sizes of their 16S-23S rRNA gene spacer regions. Members of the two species 

can be rapidly distinguished from each other by amplification of their 16S rRNA genes 

and by carrying out restriction enzyme digests of the products. Several, but not all, 

isolates of the group II leptospirilla, but none from group I (L. ferrooxidans), were 

capable of growth at 45°C (Coram and Rawlings, 2002). 

1.7.1.1.4 Genus Thiomonas 

Thiomonas cuprina (originally classified as Thiobacillus cuprinus) was isolated from 

solfatara fields in Iceland and a uranium mine in Federal Republic Germany (Huber and 

Stetter, 1990). Tm. cuprina has its optimum pH of 3.0-4.0. Tm. cuprina occurs as Gram- 

negative motile rods, and is capable of heterotrophic growth on complex organic 

substrates and pyruvate, and autotrophic growth on elemental sulfur, RISCs and various 

sulfidic ores. Autotrophic growth is less efficient on elemental sulfur and single sulfidic 

ore than in ore mixtures and arsenopyrite, and Tm. cuprina does not grow on pyrite 

(Huber and Stetter, 1990). Recently, novel moderate acidophilic Thiomonas-like 
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isolates have been isolated from ferruginous water draining a coal mine in south Wales 

(Dennison et at., 2001). Like other Thiomonas spp., these isolates oxidise RISCs but, in 

addition, they appear to oxidise ferrous iron. 

1.7.1.2 Heterotrophic Acidophilic Bacteria 

Mesophilic acidophilic heterotrophs have been isolated directly from acid mine 

drainage, acidic coal refuse and supposedly pure cultures of At. ferrooxidans as 

contaminants (Harrison et al., 1980; Wichlacz and Unz, 1981; Johnson and Kelso, 

1983). 

1.7.1.2.1 Genus Acidiphilium 

The genus Acidiphilium was first proposed for aerobic, mesophilic rod-shaped bacteria 

that grow in "lean" organic media (Harrison, 1981) and currently comprises six bona 

fide species, A. cr)ptum (Harrison, 1981), A. organovorum (Lobos et al., 1986), A. 

rubrum, A. angustum (Wichlacz et al., 1986), A. multivorum (Wakao et al., 1994) and 

A. acidophilum (Guay and Silver, 1975; Hiraishi et al., 1998). Acidiphilium spp. appear 

to be the most widely distributed mesophilic, obligately heterotrophic bacteria found in 

acidic environments. 

A. acidophilum (originally classified as Thiobacillus acidophilus) was isolated from a 

supposedly pure culture of At. ferrooxidans (Guay and Silver, 1975). This organism has 

a highly versatile metabolism, as it can grow autotrophically on a variety of RISCs, 

mixotrophically using both inorganic and organic carbon, and heterotrophically on a 

variety of single organic compounds (Hiraishi et al., 1998). 

The type species, A. c? ptum, is an adept scavenger, capable of surviving multiple, 

serial subcultures in acidified basal salts to which organic substrates have not been 
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added. A. cryptum has been shown to live on the trace amounts of organic compounds 

leaked by At. ferrooxidans and L. ferrooxidans (Harrison, 1984). Although A. cryptum 

was thought to grow only in lean organic media, it can grow also in organic-rich media, 

which are supplemented with yeast extract (typically 0.02% w/v) to high cell densities 

(<109/ml). Acidiphilium SJH was shown to catalyse the reductive dissolution of a wide 

range of ferric iron-containing minerals (Bridge and Johnson, 2000). 

The 16S rRNA gene sequence analysis lead to transfer two previous Acidiphilium 

isolates including A. facilis (Wichlacz et al., 1986) and A. aminolytica (Kishimoto et al., 

1993) to the genus Acidocella (Kishimoto et al., 1995). 

1.7.1.2.2 Genus Acidocella 

Acidocella spp. tend to be less acidophilic and less tolerant of some metals than 

Acidiphilium spp., though some Acidocella strains have been shown to exhibit high 

metal resistance (Ghosh et al., 1997). "Ac. aromatics" (proposed name for strains WJB- 

3 and LGS-3) is unique in being able to catabolise a wide range of aromatic compounds, 

including benzoic acid, phenol, and naphthalene (Hallberg et at., 1999). Although this 

bacterium appears unable to utilise organic substrates that are used by all the other 

acidophilic heterotrophs (such as glucose and glycerol), it can use fructose as the sole 

carbon and energy source, as well as various aliphatic acids (Gemmell and Knowles, 

2000). 

1.7.1.2.3 Other Acidophilic Heterotrophs 

Acidomonas methanolica is a phylogenetically distinct, methylotrophic acidophilic 

bacterium (Urakami et al., 1989). 
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Acidisphaera rubrifaciens was recently isolated from hot springs and AMD in Japan 

(Hiraishi et al., 2000). This bacterium is an obligate aerobe, and cells are coccoid or 

rodococcus, and it grows between pH 3.5 and 6.0. 

Acidobacterium capsulatum is a saccharolytic capsulated bacterium originally isolated 

from acid mine drainage (AMID) in Japan (Kishimoto et al., 1991). This bacterium is 

relatively less acidophilic with a pH range of 3-6 to grow. Bacteria sharing 94% 16S 

rRNA gene sequence homology with the original Japanese isolate have recently been 

isolated from the site of the former Wheal Jane tin mine, Cornwall, UK (Hallberg and 

Johnson, 2001b). 

Bacelar-Nicolau and Johnson (1999) reported some novel strains, the `T-series' 

bacteria, including "Ferrimicrobiun: acidophilum ". "Fm. acidophilum" is able to 

conserve energy for growth from the oxidation and reduction of ferrous and ferric iron, 

respectively. Mixed cultures of "Fm. acidophilum" and At. thiooxidans or A. 

acidophilum were shown to accelerate the oxidative dissolution of pyrite, presumably 

due to the latter providing the former with organic carbon compounds to support its 

growth and the iron oxidation. 
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1.7.2 Moderately Thermophilic Acidophilic Prokaryotes 

Moderately thermophilic, acidophilic prokaryotes display optimum growth temperatures 

of about 45-55°C and have been isolated from various geothermal, self-heating coal 

spoils, leach dumps and soils. Moderately thermophilic prokaryotes include four main 

groups: (i) Gram-negative, sulfur-oxidising autotrophs; (ii) Gram-negative, iron- 

oxidising autotrophs; (iii) Gram-positive, Bacillus-like facultative chemolithotrophs and 

heterotrophs; and (iv) archaeal isolates. At elevated temperatures, the solubility of 

oxygen, carbon dioxide, and other gases is lowered. Many moderately thermophilic 

iron-oxidising bacteria, unlike their mesophilic and extremely thermophilic 

counterparts, are relatively inefficient in assimilating carbon dioxide. 

1.7.2.1 Moderately Thermophilic Bacteria 

1.7.2.1.1 Acidithiobacillus caldus 

At. caldus grows as Gram- negative, motile rods, having a pH optimum for growth of 2- 

2.5 and an optimum growth temperature of 45°C. At. caldus is capable of 

chemolithotrophic growth on reduced sulfur substrates and molecular hydrogen and can 

also grow mixotrophically with sulfur or tetrathionate and yeast extract or glucose 

(Hallberg and Lindström, 1994). Mixed culture studies have shown that At. caldus is 

able to out-compete other sulfur oxidising acidophiles (including At. thiooxidans) even 

at relatively low (30°C and above) temperatures (Hallberg et al., 2001). At. caldus has 

been reported to be the dominant prokaryote in stirred tank cultures leaching mineral 

ores (Norris et al., 2000). 
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1.7.2.1.2 L thermoferrooxidans 

Leptospirillum thermoferrooxidans was first described by Golovacheva et al. (1992) as 

an aerobic thermoacidophilic, chemolithoautotrophic, iron-oxidising bacterium with 

many phenotypic similarities to Leptospirillum ferrooxidans. It was isolated from acid 

iron-containing hydrothermal springs on Kuril Islands, Japan. L. thermoferrooxidans 

differs from other known L. ferrooxidwis by its optimal temperature for growth of 45- 

50°C (maximum temperature for growth of 55-60°C), its greater resistance to high Fe 2+ 

concentrations, and its greater G+C content in the chromosomal DNA (56.2 mol% G+ 

C; Golovacheva et al., 1992). This isolate, however, has unfortunately been lost. 

1.7.2.1.3 Genus Su fobacillus 

Moderately thermophilic Bacillus-like acidophiles have been isolated from hot springs, 

coal spoil heaps, and acidic water at mine sites from various parts of the world. 

Sulfobacilli are generally non-motile spore-forming iron-oxidising rods, and the genus 

currently contains five species, not all of which have been officially classified: Sb. 

thermosulfidooxidans (Golovacheva, 1979), Sb. acidophilus (Norris et at, 1996), "Sb. 

yellowstonensis" (Ghauri and Johnson, 1991), "Sb. montserratensis" (Yahya et al., 

1999) and Sb. disulfidooxidans (Dufresne et at, 1996). Sulfobacillus spp. display 

considerable metabolic versatility. Both Sb. thermosulfidooxidans and Sb. acidophilus 

were reported to grow autotrophically on ferrous iron and on pyrite, mixotrophically on 

ferrous iron, on elemental sulfur in the presence of yeast extract, and heterotrophically 

on yeast extract. Autotrophic growth on elemental sulfur was observed only with Sb. 

acidophilus, and Sb. thermosulfrdooxidans was capable of sulfur oxidation in the 

presence of yeast extract (Norris et al., 1996). Sulfobacil us spp. are facultative 

anaerobes, and may grow in the absence of oxygen by anaerobic respiration using ferric 
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iron as terminal electron acceptor and either an organic (e. g. glycerol) or inorganic (e. g. 

tetrathionate)_as electron donor (Bridge and Johnson, 1998). 

Sb. disulfidooxidaiis was described as a disulfide-oxidising bacterium that can grow 

autotrophically on elemental sulfur and pyrite as sole energy sources and can grow 

heterotrophically on organic substrates such as glutamate and glucose. (Dufresne et al., 

1996). Unlike other classified Sulfobacillus spp., Sb. disulfidooxidans does not oxidise 

ferrous iron, and it is phylogenetically more closely related to Alicyclobacillus spp.. The 

presence of the diagnostic a-alicyclic fatty acid in Sb. disulfrdooxidans, in addition to 

16S rRNA phylogeny, justifies the reclassification of this organism as "Alicyclobacillus 

disulfidooxidans" (Hallberg and Johnson, 2001 a). 

1.7.2.1.4 Genus Alicyclobacillus 

The genus Alicyclobacillus was proposed by Wisotzkey (Wisotzkey et al., 1992) and 

currently comprises four species: Alb. acidocaldarius (Darland and Brock, 1971), Alb. 

acidoterrestris (Deinhard et al., 1987a), Alb. cycloheptanicus (Deinhard et al., 1987b) 

and Alb. hesperidum (Albuquerque et al., 2000). Alicyclobacillus spp. are Gram- 

positive (or Gram variable), rod-shaped spore-formers, and are phylogenetically closely 

related to Sulfobacillus spp. with 'which they share a Bacillus-like morphology and 

capacity for endospore formation, though Alicyclobacillus spp. are differentiated from 

Sulfobacillus spp. by being obligately heterotrophic. Also, Alicyclobacillus spp. possess 

(o-alicyclic fatty acids as the major natural membranous lipid component, which is not 

found in any other Bacillus species (Wisotzkey et al., 1992). Alb. cycloheptanicus 

differs from other Alicyclobacillus spp. in possessing )-cycloheptane fatty acids in the 

cell membrane rather than o-cyclohexane fatty acids that are commonly found in other 

species (Deinhard et al., 1987b). 
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Several Alicyclobacillus-like isolates, including strains YTH1 and YTH2 isolated from 

hot springs in Yellowstone National Park, USA have also been described (Johnson et 

al., 2001b). 

1.7.2.1.5 Genus Acidimicrobium 

The genus Acidimicrobium currently comprises a single species, Am. ferrooxidans, 

which includes strain TH3 isolated from a copper leach dump in New Mexico (Brierley, 

1978: Norris and Barr, 1985) and strain ICP (the type strain) isolated from an Icelandic 

geothermal site (Clark and Norris, 1996a). These are iron-oxidising, Gram-positive, 

rod-shaped cells, occasionally forming elongated chains and filaments. 

Am ferrooxidans is distinguished from Sulfobacillus spp. by its lack of spore formation, 

its lower tolerance of ferric iron, and by its chromosomal DNA base composition. 

Anaerobic growth has been reported for strain TH3, using glycerol as electron donor 

and ferric iron as electron acceptor (Bridge and Johnson, 1998). 

1.7.2.1.6 Strain GSM 

Mine spoil materials from the Golden Sunlight mine, Montana, were analysed for 

indigenous acidophilic microflora by plating dispersed samples onto selective solid 

media (Johnson et al., 2001a). One of these, originally isolated on plates incubated at 

30°C, was later shown to be a moderate thermophile with a temperature optimum of 

about 46°C. This isolate (GSM) was capable of oxido-reduction of iron. GSM is far 

more "heterotrophically inclined" than Sulfobacillus spp. and grows readily on a range 

of organic substrates, producing high cell yields (>109/ml). It can also grow 

mixotrophically and autotrophically (in yeast extract-containing and yeast extract-free 
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media, respectively), and oxidises elemental sulfur. The iron-oxidising system in GSM 

appears to be inducible and can be suppressed by subculturing in heterotrophic media 

(Johnson et al., 2001a). Phylogenetically, this isolate is positioned more closely to 

Alicyclobacillus spp. (obligate heterotrophs) than to the iron-oxidising Sulfobacillus 

spp., though its low sequence similarity (88% to S. thermosulfidooxidans and 93% to 

Alicyclobacillus cycloheptwiicus) is again sufficient to warrant a novel genus label. 

1.7.2.2 Moderately Thermophilic Acidophilic Archaea 

There are currently three genera of moderately thermophilic acidophilic archaea 

recognised, Thermoplasma, Picrophilus and Ferroplasma, all of which are members of 

the order Thermoplasmales. 

1.7.2.2.1 Genus Thermoplasma 

Thermoplasma spp. have been found in solfatara fields and currently contains two 

species; Tp. acidophilum (Darland et al., 1970) and Tp. volcanium (Segerer et al., 

1988). They are irregular cocci, varying from spherical to filamentous structures, and 

are facultative anaerobic heterotrophs that can grow anaerobically by sulfur respiration, 

producing H2S (Segerer et al., 1988). 

1.7.2.2.2 Genus Picrophilus 

Two species (P. oshimae and P. torridus) belonging to the genus Picrophilus were 

isolated from solfataras fields in northern Japan (Schleper et al., 1995; Schleper et ad., 

1996). In contrast to other acidophilic Euryarchaeota, Picrophilus cells possess a wall- 

like outer structure, though the cells are irregular cocci, displaying duplex or triplex 

41 



forms. They are aerobic hyperacidophilic heterotrophs, which grow on yeast extract and 

poorly on tryptone under aerobic conditions at temperatures between 45-65°C with 

optimal temperature at 60°C, and at pH between 0.0-3.5 with optimal pH of 0.7 

(Schleper et al., 1995). 

1.7.2.2.3 Genus Ferroplasma 

Recently, the genus Ferroplasma, within the order `Thermoplasmales', was proposed 

by Golyshina (Golyshina et al., 2000). 

Ferroplasma acidiphilum was isolated from a bioleaching pilot plant, and described as a 

strictly aerobic, ferrous-iron-oxidising, cell-wall-lacking archaeon. Cells are irregular 

cocci, varying from spherical to filamentous, forming duplex and triplex forms. 

Addition of yeast extract is essential for growth of Fp. acidiphilum. Growth of strain Y- 

T was observed in the range of pH 1.3-2.2 with the optimal pH of 1.7, and at 

temperatures between 15 and 45°C with an optimal temperature of 35°C (Golyshina et 

al., 2000). 

A new species name, "Ferroplasma acidarmanus", was suggested for an iron- 

oxidising archaeon, isolate ferl, isolated from a sulfide ore body at Iron Mountain, 

California. The isolate is capable of heterotrophic growth using yeast extract as the sole 

energy source, and is able to grow between pH 0-2.5 with the optimal pH 1.2. This 

species was dominant in the environment studied (slimes and sediments) and constituted 

up to 85% of the microbial community when solute concentrations were high 

(conductivity of 100 to 160 mS cm 1; Edwards ei al., 2000b). 
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1.7.3 Extremely Thermophilic, Acidophilic Prokaryotes 

This group currently comprises mostly archaea and there has been only one bacterium 

reported so far that grows optimally above 60°C in extremely acidic liquors. These 

prokaryotes have often been isolated from hot springs and thermal acidic soils or 

sediments. 

1.7.3.1 Extremely Thermophilic, Acidophilic Bacteria 

1.7.3.1.1 Hydrogenobacter acidophihis 

Hydrogenobacter acidophilus was originally isolated from a solfatara in Japan and 

grows aerobically using hydrogen with elemental sulfur as electron donor (Shima and 

Suzuki, 1993). This organism is the most thermophilic of all known acidophilic bacteria 

(temperature optimum and maximum 65°C and -70°C, respectively). 

1.7.3.2 Extremely Thermophilic, Acidophilic Archaea 

1.7.3.2.1 Genus Sulfolobus 

The genus Sulfolobus, the most diverse of the acidophilic archaeon genera, was first 

described by Brock et al. (1972), and species are characterised by aerobic growth at 

high temperatures and low pH in the presence of elemental sulfur. Known species of 

Sulfolobus include S. acidocaldarius (Brock et al., 1972), S. solfataricus (Zillig et al., 

1980), S. shibitae (Grogan et al., 1990), S. metallicus (Huber and Stetter, 1991), S. 

hakonensis (Takayanagi et al., 1996) and S. yangmingensis (Jan et al., 1999). In contrast 

to earlier reports, neither S. acidocaldarius nor S. solfataricus are now considered to 

oxidise sulfur, and both are obligate heterotrophs (Norris and Johnson, 1998). S. 

metallicus is an obligate autotroph that grows by oxidising elemental sulfur, RISCs, 
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ferrous iron, and sulfide ores (Huber and Stetter, 1991). S. metallicus, together with 

Metallosphaera spp., are probably the most significant mineral-oxidising 

microorganisms at >60°C (Norris et al., 2000). In contrast, S. hakonensis and S. 

yangmingensis are facultative autotrophs. 

1.7.3.2.2 Genus Acidianus 

Acidianus spp. grow as facultative anaerobes by lithotrophic growth, aerobically by 

means of oxidation of elemental sulfur or anaerobically by means of reduction of 

elemental sulfur with molecular hydrogen as electron donor (Segerer et at, 1986). 

Acidianus currently comprises three species, two of which, Ac. it fernus and Ac. 

ambivalens (formerly Desulfurolobus ambivalens; Zillig et at, 1986) are obligate 

chemolithotrophs while Ac. brierleyi grows autotrophically on reduced sulfur (or 

ferrous iron) or heterotrophically in organic media. Ac. brierleyf was also reported to be 

able to oxidise and grow autotrophically on pyrite (Larsson et al., 1990). 

1.7.3.2.3 Genus Metallosphaera 

Metallosphaera spp. are aerobic facultative chemolithotrophs. Currently two species are 

recognised: Metallosphaera sedula (Huber et al., 1989) and Metallosphaera prunae 

(Fuchs et al., 1996b). Metallosphaera spp. are able to oxidise sulfur, sulfide minerals, 

and hydrogen, or grow on complex organic substrates, such as yeast extract. 

1.7.3.2.4 Genus Sulfurococcus 

The genus Su furococcus has been proposed for facultatively autotrophic sulfur- 

oxidising species, that are able to grow heterotrophically and mixotrophically on 
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organic compounds with pH range 1.0-5.6 (Golovacheva et al., 1987). The genus 

Sulfurococcus currently comprises two species, Sc. mirabilis (Golovacheva et al., 1987) 

and Sc. yellowstonii (Karavaiko et al., 1994). Sc. yellowstonii is able to oxidise ferrous 

iron and sulfide minerals, as well as reduced sulfur. 

1.7.3.2.5 Stygiolobus azoricus 

The first strictly anaerobic members of the order Sulfolobales, Stygiolobus azoricus, 

was described by Segerer et al. (1991). This archaeon grows at pH range 1.0-5.5 and 

grows obligately chemolithotrophically by reduction of elemental sulfur with hydrogen, 

forming hydrogen sulfide. 

1.7.3.2.6 Sulfurisphaera ohivakuensis 

Sulfurisphaera ohwakuensis is a facultatively anaerobic archaeon, capable of growth at 

up to 92°C with pH range 1.0-5.0. Elemental sulfur reduction-dependent anaerobic 

growth of this organism was reported by Kurosawa et al. (1998). 

1.7.3.2.7 Acidilobus aceticus 

Acidilobus aceticus is a second obligate anaerobic thermoacidophilic archaeon reported 

(Prokofeva et al., 2000). Al. aceticus grows at pH 2.0-6.0 by fermenting starch to 

acetate. Al acetic-us can use elemental sulfur as an electron sink. 
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1.8 Microbial Interactions in Extremely Acidic Environments 

Acidophilic microorganisms exist as mixed populations in natural environments, in 

industrial mineral leaching heaps, and in mineral processing bioreactors. In such 

environments, a variety of interactions occur between acidophilic organisms, including 

competition, predation, mutualism, synergism, and ammensalism (Johnson, 1998a; 

Hallberg and Johnson, 2001a). 

Competition occurs between acidophiles for substrates, such as inorganic electron 

donors, as well as organic electron donors. Competition between At. ferrooxidans and L. 

ferrooxidans has been well demonstrated. Because of its higher. affinity for ferrous iron, 

greater tolerance of ferric iron, and greater tolerance of very low pH, L. ferrooxidans 

tends to be dominant over At. ferrooxidans in ferrous iron-limited mixed cultures of the 

organisms, and when pyrite is the substrate and excess acid is produced (Norris et al, 

1988; Norris and Kelly, 1982; Rawlings et al., 1999). In contrast, the faster growth rate 

of At. ferrooxidans generally results in it emerging as the dominant iron-oxidiser where 

ferrous iron concentrations are relatively high. Slightly elevated (35-40°C) temperatures 

also favour L. ferrooxidans, because of its greater thermo-tolerance; At. ferrooxidans is 

more effective at lower temperatures (<25°C). Heterotrophic acidophiles compete with 

autotrophic organisms for inorganic nutrients and, most importantly, for dissolved 

oxygen. 

Predation of acidophilic bacteria by acidophilic protozoa has been observed. A 

biflagellated protozoan, isolated from an acidic drainage stream located inside a disused 

pyrite mine, was found to graze a range of acidophilic bacteria, -including the 

chemolithotrophs At. ferrooxidans, L. ferrooxidans, and the heterotroph A. crjptum. In 

mixed cultures of At. ferrooxidans and L. ferrooxidans, the protozoan isolate displayed 

preferential grazing of the former (McGinness and Johnson, 1992). Acidophilic 
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protozoa including flagellates, a ciliate and an amoeba, were isolated from acid mine 

water and a coal biotreatment plant, and grown in mixed cultures with acidophilic 

bacteria. In cultures of pyritic coal, protozoa grazed iron-oxidising and heterotrophic 

bacteria, but to varying extents. The presence of protozoa was noted to effect changes in 

acidophilic populations, in particular often causing L. ferrooxidans to become the 

dominant iron- oxidiser at an earlier stage than in corresponding protozoa- free controls 

(Johnson and Rang, 1993). 

Mutualistic interactions result in both microbial partners gaining benefit, e. g. 

interactions between chemolithotrophic and heterotrophic acidophiles. 

Chemolithotrophic acidophiles are generally very sensitive to organic acids and some 

other organic materials. In acidic environments, a large transmembrane pH gradient 

exists between the near-neutral internal pH and the external pH. Such a pH gradient 

may cause the accumulation of weak acids in the cell cytosol resulting in cytosolic 

acidification and inhibition of bacterial growth (Ingledew, 1982; Figure 1.6). 

PH internai 6.5 CH3000- + H+ 

pHexternaý 2.0 CH3COOH 

Acetic acid: CH3COOH ++ CH3COO- + H+; pKa 4.75 
pKa's of some other organic acids: 
Lactic acid - 3.86; Pyruvic acid - 2.50; Formic acid - 3.75; Citric acid - 3.68,4.74 and 5.39 

Figure 1.6: Acidification of acidophile cells resulting from exposure to small molecular 
weight organic acids. 
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This inhibition may be eliminated by acidophilic heterotrophs that maintain 

concentrations of organic compounds at non-inhibitory levels for the autotrophs 

(Johnson et ad., 1987). Growth of At. ferrooxidans has been found to be enhanced in the 

presence of Acidiphilium spp. (Harrison, 1984; Wichlacz and Thompson, 1988). The 

`overlaid' solid media, in which an acidophilic heterotrophic bacterium is incorporated 

into the underlayer of a two-layer gel in order to allow the growth of chemolithotrophs, 

was developed on the basis of this observation (Johnson and McGinness, 1991 a). 

Mutualism between acidophilic heterotrophs and autotrophs is observed also in the 

cycling of iron, involving ferrous iron-oxidising chemolithotrophs and ferric iron- 

reducing heterotrophs, in situations where dissolved oxygen concentrations vary 

spatially or temporally. Reduction of ferric iron to ferrous by Acidiphilirim spp. 

`regenerates' the substrate used by L. ferrooxidans and At. ferrooxidajns, and cycling 

between the two ionic forms has been observed in mixed cultures (Johnson, 1998b). 

Carbon flow from active, senescent and dead chemolithotrophs to acidophilic 

heterotrophs has also been demonstrated. The iron-oxidising heterotroph "Fm. 

acidophilum" T23, which is unable to oxidise pyrite in pure culture in the absence of 

added organic carbon, is able to do so in mixed cultures with either At. thiooxidans or A. 

acidophilum (Bacelar-Nicolau and Johnson, 1999). Organic carbon to sustain 

heterotrophic growth was considered to originate from the C02-fixing acidophiles, 

which oxidise reduced sulfur compounds produced via ferric iron attack on pyrite 

(Bacelar-Nicolau and Johnson, 1999; Figure 1.7). 
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Figure 1.7: Hypothetical scheme for the oxidation of pyrite by mixed cultures 
containing the sulfur-oxidising organism At. thiooxidans and heterotrophic iron- 
oxidising bacteria. 

Mixed cultures of Am. ferrooxidans with either Sb. thernzosulfidooxidans or Sb. 

acidophilus displayed more rapid oxidation of ferrous iron than pure cultures of these 

bacteria (Clark and Norris, 1996). The greater part of ferrous iron oxidation in mixed 

cultures probably resulted from activity of the Su fobacillus spp., which possess a 

greater tolerance of ferric iron, and which presumably grew mixotrophically utilising 

organic compounds from Am. ferrooxidans (Clark and Norris, 1996). It is also possible 

that the oxidation of organic compounds by heterotrophs may increase the level of CO2 

available for fixation by At. ferrooxidans (Wichlacz and Thompson, 1988). 

The presence of mixed populations is, in many ways, beneficial to the leaching process, 

as it may greatly extend the range of microbial metabolic capabilities required for 

effective oxidation of sulfide minerals. 

Ammensalism refers to the repression of one or more species by toxins produced by 

another. Heterotrophic acidophiles vary in their sensitivities to hydrogen ions and some 

heavy metals. Acidocella spp. are, in general, more sensitive to both than are 

Acidiphilium spp.. Therefore, end metabolic products of acidophilic iron- or sulfur- 
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oxidisers can suppress populations of more rapidly growing Acidocella spp. in favour of 

slower growing Acidiphilium spp. (Hallberg and Johnson, 2001 a). 

1.9 Enumeration and Identification of Acidophilic Prokaryotes 

A number of methods have been reported to investigate microbial diversity in 

environmental or industrial samples and microbial population dynamics during mineral 

processing operations. 

1.9.1 Enrichment Techniques and Solid Media 

Since the initial isolation of At ferrooxidans about 50 years ago, enrichment cultures 

have been widely used to isolate acidophilic microorganisms. However, enrichment 

cultures tend to select acidophiles that suit the imposed conditions of the growth 

medium, and often result in selecting a particular bacterium with faster growth, rather 

than the most important in situ. This is illustrated in the case of At. ferrooxidans, which 

tends to be selected for when ferrous sulfate enrichment cultures are used, even though 

L. ferrooxidans may be more numerous in original sample (Harrison, 1984). Solid 

media have been used to isolate and enumerate acidophilic microorganisms from 

environmental and industrial samples. (Johnson and McGinness, 1991a; Johnson, 

1995b; Lopez-Archilla and Amils, 1999) Until about a decade ago, most of the solid 

media developed were not effective and reproducible, and in general, it was difficult to 

grow obligatory autotrophs that tend to be sensitive to organic materials. Therefore, the 

use of solid media has been much criticised for underestimating the number and 

diversity of microbes on gelled media. In 1991, Johnson and McGinness (1991a) 

developed a selective solid medium in which an acidophilic heterotrophic bacterium is 
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incorporated into the underlay of a two-layer gel in order to degrade the organic 

materials present in the gelling agent (principally agar and agarose hydrolysis products), 

thereby allowing isolation of mesophilic and thermophilic microorganisms from 

environmental and industrial samples (Johnson, 1995b). Environmental samples can be 

plated directly on to solid media to evaluate microbial diversity in situ, whereas plating 

from enrichment cultures tends to lead to the isolation of specific organisms. 

1.9.2 Immunological Techniques 

Immunological assays using antibodies are among the other'classical' approaches which 

have been used to detect acidophilic microorganisms. These methods have "the 

advantage over culturing techniques in that they produce more rapid results. In an 

immunological assay, a primary antibody generated against whole cells of a given 

bacterial species is reacted specifically with the antigens of the microorganisms to be 

identified, followed by application of a secondary antibody specific to the primary 

antibody. A secondary antibody can be conjugated with an enzyme that reacts with a 

coloured substance to reveal the interaction. Specific antibodies that differentiate 

various species of acidophiles include those specific for At. ferrooxidans (Apel et al., 

1976; Arredondo and Jerez, 1989; Muyzer et al., 1987), L. ferrooxidans (Jerez and 

Arredondo, 1991), At. caldus and Sulfolobus (probably S. metallicus) strain BC65 

(Amaro et al., 1994). The immunological assays provide much more immediate results 

than either enrichment or plate cultures. However, these assays have disadvantages such 

as much lower sensitivity (minimum of - 103-104 bacteria/ml) (Jerez and Arredondo, 

1991) and the phenomenon of multiple serotypes displayed by different isolates of a 

single species (Hallberg and Lindström, 1996). 
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1.9.3 Molecular Techniques 

1.9.3.1 Determination of the 16S rRNA Genes 

The biodiversity of acidophilic microorganisms in a particular ecological niche can be 

assessed by ribosomal gene sequence analysis. Ribosomal RNA genes are essential for 

all organisms to survive and are highly conserved in the bacterial and other evolutionary 

domains. The characterisation of the 16S rRNA gene is now a reliable, standardised 

technique that enables a phylogenetic classification of the microorganisms in acidic as 

well as in other environments (Woese, 1987). 

Chromosomal DNA extracted from the environmental sample or enrichment culture is 

used as template DNA for Polymerase Chain Reaction (PCR) by using, for example, 

'universal' primers to amplify the 16S ribosomal RNA genes. The 16S ribosomal RNA 

gene sequences are determined either from the cloned gene or from the PCR product 

itself. By comparing the determined 16S rRNA gene sequence with other known 

sequences in database, it is possible to identify and classify the target organism. 

16S rRNA gene libraries were prepared from DNA samples obtained at an abandoned 

pyrite mine at the Iron Mountain site (Bond et al., 2000a) and at acidic geothermal sites 

on the volcanic island Montserrat (Burton and Norris, 2000). Probably due to the less 

acidity at the site, a greater diversity of microorganisms was found in the latter studies. 

1.9.3.2 PCR-Based Techniques 

De Wulf-Durand et al. (1997) developed designed PCR primers based on published 16S 

rRNA gene sequences to amplify 16S rRNA genes from the DNA of six bacterial 

phylotypes associated with acidic mining environments (Acidiphilium spp., Al. 

thiooxidims, Al. ferrooxidans, At. caldus, L. ferrooxidans, and Sb. 

thermosulfidooxidans). They found that L. ferrooxidans, At. caldus and a Sulfobacillus 
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spp. were detected in the leachate-liquor but At ferrooxidans and At. ihiooxidans were 

not. Moreira and Amils (1996) developed a PCR-mediated method for the detection of 

Tm. cuprina using specific oligonucleotide primers that target variable regions of the 

23S rRNA coding gene and of the 16S/23S intergenic spacer region. However, high 

mutuality in some parts of the 23S rRNA gene and in the ISR could preclude the 

detection of these microorganisms in environmental samples. The random amplification 

of polymorphic DNA (RAPD) is a PCR-based technique where a variety of 

oligonucleotides are synthesised and used for the amplification of short segments of 

DNA. Since the oligonucleotides are designed to bind to DNA randomly during the 

annealing step of PCR, no prior DNA sequence data are needed. Novo et al. (1996) 

used the RAPD method to assess genomic variability among eight At. ferrooxidans 

strains. RAPD fingerprints showed variation for the thirty primers used, giving a total of 

269 polymorphic bands. Most primers divided At. ferrooxidans strains into two distinct 

groups. Selenska-Pobell et at (1998) also used RAPD to discriminate thiobacilli 

accompanied by two other PCR-based techniques, ARDREA (amplified ribosomal 

DNA restriction enzyme analysis; section 1.9.3.3) and Rep-APD. In Rep-APD, primers 

specific to short, repetitive DNA segments, which are found in most microorganisms, 

are used to amplify the DNA between these repeats. The amplified DNAs vary from one 

strain to another and are thus a useful method for quick comparative genome analysis. 

In this study, it was found that both RAPD and Rep-APD were much more 

discriminatory than ARDREA, where limited genetic material is available for 

comparison. 

57 



1.9.3.3 Amplified Ribosomal DNA Restriction Enzyme Analysis (ARDREA) 

Rawlings (1995) amplified 16S rRNA genes from strains of At. ferrooxidans, At. 

ihiooxidans and L. ferrooxidans by PCR to obtain their restriction enzyme sites maps. 

Populations of these acidophilic bacteria in a biooxidation tank were estimated by 

comparing the restriction site patterns: Results showed that At. ferrooxidans were 

absent, whereas At. thiooxidans and L. ferrooxidan s were present. Kamimura et al. 

(2001) amplified the 16S rRNA gene from ten strains of At. ferrooxidans and the 

amplified products were compared by performing, restriction enzyme digestion. The 

results showed that iron-oxidising bacteria isolated from natural environments were 

rapidly identified as At. ferrooxidans by the method combining ARDREA with 

physiological analysis. 

1.9.3.4 Spacer Region Analysis 

To obtain preliminary data on microbial diversity in copper bioleaching system, Pizarro 

et al. (1996) investigated the composition of bacterial populations in copper bioleaching 

systems by amplifying the spacer regions between 16S and 23S rRNA genes from DNA 

obtained either directly from ores or leaching solutions, or from laboratory enrichment 

cultures. Products were compared using gel electrophoresis and compared with those of 

cultures of the known acidophiles. Identification of the bacteria was achieved by partial 

sequencing of the 16S rRNA genes adjacent to the spacer regions. It was shown that the 

relative abundance of At. ferrooxidans, L. ferrooxidans and At. thiooxidans was highly 

dependent on ferrous iron concentrations (At. ferrooxidans at high ferrous iron 

concentration and At. thiooxidans and L. ferrooxidans at low ferrous iron 

concentration). Bacterial populations developed in copper sulfide ores leached with 0.3 

M sulfuric acid were examined by characterisation of the spacer regions between 16S 
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and 23S rRNA genes obtained after PCR amplification of the DNA extracted from the 

leached ore. The spacers observed had sizes found in strains of L. ferrooxidans and At. 

thiooxidans (Vasquez and Espejo, 1997). 

1.9.3.5 Denaturing Gradient Gel Electrophoresis (DGGE) 

Separation of DNA fragments in DGGE is based on the decreased electrophoretic 

mobility of partially melted double-stranded DNA molecules in polyacrylamide gels 

containing a linear gradient of DNA denaturants (a mixture of urea and formamide). In 

denaturing gradient gel electrophoresis (DGGE), DNA fragments of the same length 

migrate through the gel until they reach a point at which the double strand opens and 

migration stops. DNA fragments stop at the different point depending on their melting 

behaviour, therefore on their G+C content. Stoner et al. (1996) demonstrated the 

efficacy of a direct 5S rRNA assay for the characterisation of mixed microbial 

populations by analysing the migration patterns of 5S rRNA extracted from some 

important bioleaching bacteria using DGGE. The migration patterns of different 

acidophilic bacteria were readily distinguishable from each other, and this allowed the 

species composition of a mixed microbial community to be readily assessed. DGGE is a 

very discriminating technique for the study of nucleic acids from microbial populations 

(Muyzer, 1999), though this approach has its disadvantage in requiring sufficient 

biomass to be able to detect the genetic material studied. 

1.9.3.6 Pulse Field Gel Electrophoresis (PFGE) 

Genomic DNA fragments digested by a certain restriction enzyme can be separated by 

pulse field gel electrophoresis (PFGE) and the restriction patterns analysed. The 

genomic DNA extracted from various thiobacilli give different restriction patterns, 
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which facilitates preliminary differentiation and possibly identification by comparison 

with reference patterns (Irazabal et al., 1995). 

1.9.3.7 Fluorescent In Situ Hybridisation (FISH) 

Fluorescent in situ hybridisation allows the detection of specific nucleic acid sequences- 

in cells by binding oligonucleotide probes labelled with a fluorescent dye to their 

complementary target sequences. The methodology using oligonucleotide probes has 

progressed rapidly from simple assessing of presence or absence measurements, to 

fluorescent in situ hybridisation (FISH) methods targeting specific sequences within the 

16S rRNA of individual cells. Relative numbers of particular microbes can be assessed 

by comparing the numbers that hybridise to a particular probe to the total number of 

cells, obtained by using a general fluorescent stain such as the DNA-binding stain 4', 6- 

diamidino-2-phenylindole (DAPI). This method has opened up many new areas of 

environmental microbiological research, as studies move towards analysing cells in situ 

and avoiding biases introduced by culturing techniques. Initial problems regarding cell 

wall permeability and access into the fixed cells by the oligonucleotide probe have been 

largely overcome for many types of bacteria, and the use of oligonucleotide probes with 

enzyme labels for signal amplification has also been demonstrated (Zarda et ad., 1991; 

MacNaughton et al., 1994). To attempt to boost signal intensities, multiple probes have 

been used (Lee et al., 1993), as have probes with multiple fluorochrome labels 

(Trebessius et al., 1994). The brightness of the signal obtained after FISH has been 

correlated to rRNA content and thus protein synthesis and cell activity (Ruimy et al., 

1994). 

Fluorescently-labelled oligonucleotide probes with various levels of specificity 

(domain-, genus- species- or strain-specific) may be used for enumeration of different 
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microorganisms, including those which have not actually been isolated and cultured 

(Amann et al., 1990). The diversity of microbes present in slimes and water in an 

abandoned mine at Iron Mountain, California, was assessed using rRNA probes 

designed on the basis of previously reported sequences (Bond and Banfield, 2001; Bond 

et al., 2000a; Edwards et al., 1999; Schrenk et al., 1998). Results confirmed that At. 

ferrooxidans accounted for low proportions of the microbial communities associated 

with the ore body. However, At. ferrooxidans was readily detectable in less acidic 

liquors (Edwards et al., 1999; Schrenk et al., 1998). Oligonucleotide probes can be used 

also to evaluate changes in microbial populations. At Iron Mountain, relative 

proportions and absolute numbers of microorganisms varied spatially and seasonally, 

and correlated with geothermical and physical conditions (pH, temperature, 

conductivity, and rainfall (Edwards et al., 1999). At. ferrooxidans was most abundant at 

moderate pHs and temperatures, L. ferrooxidans was more abundant at higher 

temperatures and lower pHs, and archaea dominated microbial populations over the 

summer months when ionic strength of the pools and streams was greatest (Edwards et 

al., 1999). Seven oligonucleotide probes for the detection of the Thermoplasmales 

group, a new group of Leplospirillum, the genus Sulfobacillus, the Acidiphilium genus, 

Acidimicrobium and relatives, and of organisms within the S-Proteobacteria were 

designed and used to examine the abundance and distribution of these organisms at Iron 

Mountain (Bond and Banfield, 2001). Thermoplasmales were abundant and "Fp. 

acidarmanus" was a stable and dominating member of these samples (Bond and 

Banfield, 2001). The FISH technique was also used by Peccia et al. (2000) to identify 

members of the genus Acidiphilium, At. thiooxidans and At. ferrooxidans in laboratory 

reactors and environmental samples. For rapid counting of numbers of microbes in a 

mixed population, fluorescent probes can be combined with flow cytometry (Porter and 
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Pickup, 2000), a technique that may be more suited to industrial processes such as 

biomining. 

1.10 Scope of The Current Project 

This project focused on mineral processing by moderately thermophilic acidophiles. A 

major objective was to investigate which combinations of moderate thermophiles were 

most effective at oxidising pyrite under defined conditions. In other parts of the work, 

various aspects of the physiology and phylogeny of moderately thermophilic 

acidophiles were investigated. 

The study is subdivided as follows: 

(i) Characterisation of novel moderate thermophiles. 

(ii) Pyrite oxidation experiments using various combinations of moderate 

thermophiles (preliminary experiments in flasks and further experiments in 

bioreactors). 

(iii) Investigating the effects of flotation chemicals on growth of acidophiles. 

(iv) Development of ARDREA (Amplified Ribosomal DNA Restriction Enzyme 

Analysis) method for "rapid" identification of acidophilic bacteria. 

(v) Investigation of ferric iron sensitivity in some moderately thermophilic, iron- 

oxidising bacteria 

The study started by characterising some moderately thermophilic acidophiles isolated 

from a commercial pilot plant. Following this, mixed cultures of different combinations 

of moderate thermophiles, including the novel isolates, were tested for pyrite oxidation 

as preliminary experiments in shake flasks. Data from preliminary experiments were 

used to `fine-tune' microbial communities in further experiments using bioreactors. 
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Bioreactor experiments included monitoring rates of mineral breakdown and fates of the 

different microorganisms included in the original inoculum, using a plating technique in 

conjunction with a molecular approach (FISH). 

The project also involved the application of ARDREA to identify acidophilic bacteria 

from environmental and industrial samples, and examination of the toxicity of ferric 

iron species and flotation chemicals to the bacteria used in leaching experiments. 
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Chapter 2 

Materials and Methods 

Materials and methods described in this chapter are those used routinely throughout the 

present study. Those used for specific experiments, and details of any modifications 

applied to the basic procedures, are described in their respective chapters. All chemicals 

used were supplied by either Merck-BDH Laboratory Supplies, or Sigma Chemicals 

Ltd., unless stated otherwise, and were, where possible, of AnalaR grade. 

2.1 Microorganisms 

The microorganisms used in this study are listed in Tables 2.1-2.3. 

Table 2.1: "Mintek" isolates (obtained from a commercial pilot plant in South Africa) 
used in this study (chanter 3). 

Isolate code Putative ID Reference 

MT1 At. caldus This study 
MT2 At. caldus This study 
MT6 Leptospirillum sp. This study 
MT16 Ferroplasma sp. This study 
MT17 Ferroplasma sp. This study 

NC Sulfobacillus sp. This study 

Table 2.2: Mesoohilic acidonhiles used in this stiidv_ 
Isolate code Source Reference 

At. ferrooxidans 
(ATCC 23270) 

Acid mine drainage, eastern 
U. S. A. Temple and Colmer, 1951 

"T. ferrooxidans" m-1 
Coal strip mine refuse, 
Missouri, U. S. A. Harrison, 1982 

L. ferrooaidansT (DSM 2705) Copper mine, Armenia Markosyan, 1972 

"Sb. montserratensis" L15 Thermal pool, Montserrat, W. I. Yahya et al., 1999 

Sulfobacillus Riv14 Thermal pool, Montserrat, W. I. Yahya et al., 1999 

Isolates 
SLC1, SLC2 and SLC66 

Weathering sulfidic regolith, 
Utah Johnson et al., 2001a 

"Fm. acidophilum" T23 
(DSM 11138) Acid mine drainage, Wales Johnson et al., 2001a 
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Table 2.3: Moderately thermonhilic acidonhiles used in this study. 
Isolate code Source Reference 

At. callus (strain KU) Kingsbury coal spoil enrichment Marsh and Norris, 1983b 
(DSM 8584) culture, England 
Sb. thermosulfidooxidans Sulfide mineral leach dumps Karavaiko et al., 1988 
(VKM 1269) 
Sb. thermosulfidooxidans THl Thermal spring, Ireland Brierley, 1978 

Sb. acidophilus ALV Self-heating coal spoil, England Norris and Barr, 1985 

"Sb. yellowstonensis" YTF1 Frying Pan hot spring, 
Yellowstone N. P. 

Ghauri and Johnson, 1991 

Sulfobacillus-like isolates Sylvan hot springs, Yellowstone Johnson et al., 200 lb 
YTF3, YTF5 and YTF17 National Park 
Sulfobacillus-like isolates Thermal spring, Gibbon This study Y002, Y006 area, Yellowstone N. P. 
Sulfobacillus-like isolates Frying Pan hot spring, This study Y0010, Y0015, Y0016, Y0017 Yellowstone N. P. 

Sulfobacillus-like isolates Galways, Montserrat This study G1, G2, Riv2 
Sulfobacillus-like isolates 
GG6/1, GG6/3,8/30 Lower Gages, Montserrat This study 

Novel moderately thermophilic Thermal spring, Gibbon river This study iron-oxidising isolate Y005 area, Yellowstone N. P. 
Novel moderately thermophilic Frying Pan hot spring, 'gis study heterotrophs Y008, Y0012 Yellowstone N. P. 
Novel moderately thermophilic Thermal spring, Gibbon This study heterotrophs Y0013, Y0014 area, Yellowstone N. P. 

Am. ferrooxidansT (strain ICP) Icelandic geothermal site Clark and Norris, 1996a 

Am. ferrooxidans TH3 Copper leach dump, New 
Mexico Norris and Barr, 1985 

Acidimicrobium-like isolate Frying Pan hot spring, This study 
Y0018 Yellowstone N. P. 

`Alb. acidophilus" YTH1 Frying Pan hot spring, 
Yellowstone N. P. 

Johnson et al., 2001a 

Alicyclobacillus-like isolate Thermal spring, Gibbon river This study Y004 area, Yellowstone N. P. 
Isolate GSM Golden Sunlight Mine, Montana Johnson et al., 2001a 

Organisms were revived, when needed, from the Acidophile Culture Collection, 

maintained at the University of Wales, Bangor. 
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2.2 Microbiological Techniques 

Acidophilic microorganisms were maintained in appropriate liquid media. Cultures 

were usually inoculated at 1-2% (v/v) in 100 ml Erlenmeyer flasks containing 50 ml 

medium, or in 250 ml Erlenmeyer flasks containing 100 ml medium. Autotrophic iron- 

- and sulfur-oxidising bacteria were grown in ferrous iron liquid media (section 2.2.1.1.1) 

and tetrathionate liquid media (section 2.2.1.1.2), respectively. Mixotrophic and 

heterotrophic acidophiles were maintained in ferrous iron/yeast extract liquid medium 

(section 2.2.1.1.3). Ferroplasma isolates were grown in "Ferroplasma" medium 

(section 2.2.1.1.5). Culture purity was routinely checked by streaking onto overlay solid 

media, (sections 2.2.1.2.1) or onto ferrous iron/yeast extract solid medium (section 

2.2.1.2.2) to check for any heterotrophic contaminants. Flask cultures were shaken at 

130 rpm unless otherwise stated. 

2.2.1 Media and Culture Conditions 

Liquid media were prepared using either autotrophic basal salts solution or 

heterotrophic basal salts solution (modified from autotrophic basal salts solution). The 

basal salts solutions were prepared as 50X concentrates: 

Autotrophic Basal Salts Solution (50X) Heterotronhic Basal Salts Solution (50X) 

(ý) (9/1) 
(NHa)2SO4 ; 7.5 (NH4)2SO4 ; 22.5 
KCI ; 2.5 KC1 ; 2.5 
MgSO4.7H2O ; 25 M9S04"7H20 25 
KH2PO4 ; 2.5 KH2PO4 ; 2.5 
Ca(N03)r4H20 0.7 -- Ca(N03)2.4H2O 0.7 

Na2S04"10H20 ; 16.1 

For liquid media, that did not contain either yeast extract or tryptone soya broth, a trace 

elements solution was routinely added at 1 mUl culture. 
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Trace Elements Stock Solution 

ZnSO4.7H20 
CuSO4.5H2O 
MnS04"4H20 
CoSOa"7H2O 
Cr2(S04)3.15H20 
H3B03 
Na2Mo04"2H20 
NaV03 
NiS04.6H2O 
Na2Se04"10H20 
Na2W04"2H20 

(9/1) 
10.0 
1.0 
1.0 
1.0 
0.5 
0.6 
0.5 
0.1 
1.0 
1.0 
0.1 

P 

The trace elements stock solution was acidified to pH 2.0 with H2SO4, filter sterilised 

through 0.22 pm nitrocellulose membranes (Millipore GVWP) and stored at 4°C. 

2.2.1.1 Liquid Media 

2.2.1.1.1 Ferrous Iron Medium 

The medium comprised: 

Autotrophic basal salts 
20 mM Ferrous sulfate 
Trace elements 
Distilled water 
(pH 2.0 with H2SO4) 

A stock solution of 1M ferrous sulfate (adjusted to pH 2.0 with H2SO4) was filter- 

sterilised through 0.22 gm nitrocellulose membranes. This was added to heat-sterilised 

(120°C, 20min) autotrophic basal salts/trace elements solution (also previously adjusted 

to pH 2.0 with H2S04) to produce a medium containing 20 mM ferrous iron. 
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2.2.1.1.2 Tetrathionate Medium 

The medium comprised: 

Autotrophic basal salts 
5 mM Potassium tetrathionate 
0.1-1 mM Ferrous sulfate 
Trace elements 
Distilled water 
(pH 2.5 with H2SO4) 

Stock solutions of 100 mM potassium tetrathionate and 1M ferrous sulfate (adjusted to 

pH 2.0 with H2SO4) were filter sterilised through 0.22 µm nitrocellulose membranes. 

These solutions were added to heat-sterilised (120°C, 20min) autotrophic basal 

salts/trace elements solution (also previously adjusted to pH 2.5 with H2SO4) to produce 

a medium containing 5 mM tetrathionate and 0.1-1 mM ferrous iron. 

2.2.1.1.3 Heterotrophic Medium 

The medium comprised: 

Heterotrophic basal salts 
0.02% (w/v) Yeast extract 
10 mM Ferrous sulfate 
Distilled water 
(pH 2.0 with H2SO4) 

A stock solution of 1M ferrous sulfate (adjusted to pH 2.0 with H2S04) was filter- 

sterilised through 0.22 gm nitrocellulose membranes. This was added to heat-sterilised 

(120°C, 20min) heterotrophic basal salts/yeast extract solution (also previously adjusted 

to pH 2.0 with H2S04) to produce a medium containing 10 mM ferrous iron. 
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2.2.1.1.4 Pyrite Medium 

The medium comprised: 

Autotrophic basal salts (heterotrophic basal salts for bioreactor cultures) 
Acid washed pyrite 
Trace elements 
Distilled water 
(pH 1.5-2.0 with H2S04) 

Two samples of pyrite were used in leaching experiments. One of these was obtained by 

mill grinding of rock obtained from the abandoned Cae Coch pyrite mine, north Wales 

(McGinness and Johnson, 1993), and contained -80% FeS2, other minerals being 

mostly quartz. The second sample was supplied by Mintek Ltd., and was a concentrate 

containing ca. 60% pyrite and 40% quartz. - 

Prior to use, the pyrite was acid-washed with 100 mM hydrochloric acid with 

continuous stirring for about 30 minutes, to remove any ferric iron precipitates on the 

pyrite surface. The pyrite was then recovered by centrifugation and was rinsed with 

distilled water 2 to 3 times, until the yellow colour of the solution phase was not 

evident. After the final rinse, the pyrite was collected and dried at 100°C. 

Acid-washed pyrite was added to the autotrophic basal salts/trace elements solution 

(adjusted to pH 1.5-2.0 with H2SO4), to the final concentration of 1-2% (w/v) for flask 

experiments and of 5% (w/v) for bioreactor experiments, and autoclaved (120°C, 

20min). 

For bioreactor experiments (chapter 5), heterotrophic basal salts (excluding 

Na2SO4 10H2O) were used instead of autotrophic basal salts to supply more nitrogen 

and also to avoid any precipitation (natrojarosite) from occurring due to the presence of 

sodium. The amount of water lost by evaporation during pyrite oxidising experiments 

was calculated by weighing the flasks before and after the each sampling and sterile 

water was added to supplement the evaporated water (except section 4.2). 
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2.2.1.1.5 "Ferroplasma" Medium 

The medium comprised: 

Heterotrophic basal salts 
0.02% (w/v) Yeast extract 
50 mM Ferrous sulfate 
50 mM K2S04 
Trace elements 
Distilled water 
(pH 1.5 with H2S04) 

A stock solution of 1M ferrous sulfate (adjusted to pH 1.5 with H2SO4) was filter- 

sterilised through 0.22 pm nitrocellulose membranes. This was added to heat-sterilised 

(120°C, 20min) heterotrophic basal salts/yeast extract/potassium sulfate/trace elements 

solution (also previously adjusted to pH 1.5 with H2SO4) to produce a medium 

containing 50 mM ferrous iron. 

2.2.1.2 Solid Media 

The media described here were developed by Johnson (1995b) and co-workers. This 

method used is based on the 'overlay' technique, in which an acidophilic heterotrophic 

bacterium (usually Acidiphilium SJH) is incorporated into the underlayer of a two-layer 

gel, in order to overcome the inhibitory effects of organic compounds (predominantly 

agarose hydrolysis products) on the growth of iron- and sulfur-oxidising acidophiles. 

The "ferrous iron overlay" medium described by Johnson and McGinness (1991a) was 

reported to have a high plating efficiency for more than 50 iron-oxidising acidophilic 

isolates, including strains of At. ferrooxidans, L. ferrooxidans and moderately 

thermophilic bacteria, whereas the "ferrous iron/tetrathionate overlay" medium supports 

the growth of At. thiooxidans, At. caldus and other moderate thermophiles as well as 

iron-oxidising mesophiles and some heterotrophic acidophiles. 
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2.2.1.2.1 Overlay Solid Media 

2.2.1.2.1.1 Ferrous Iron Overlay Medium (Feo) 

Preparation of 400 ml medium was sufficient for 10-12 plates. 

Solution A 
40 ml Basal salts solution (lOX concentrate (g/1) 
0.1 g TSB (Tryptone Soya Broth) 
400 pl Trace elements (section 2.2.1) 
250 ml Distilled water 
(pH 2.5 with H2SO4) 

(NH4)2SO4 (12.5); MgSO4"7H20 (5)) 

Solution B 
2g Agarose (e. g., Sigma Ltd. Type I) 
100 ml Distilled water 

Solution C 
1M ferrous sulfate (adjusted to pH 2.0 with H2SO4): filter sterilised through 0.22 µm 
nitrocellulose membranes. 

Procedure 

Solutions A and B were prepared separately and heat sterilised (120°C, 20min). After 

cooling to -50°C, the two solutions were mixed and 10 ml of solution C was added. The 

combined molten medium was split -50: 50 into two sterile containers. One solution was 

inoculated with 2 ml of an active culture of Acidiphilium SJH (pre-grown in a liquid 

medium containing basal salts solution, 10 mM galactose, 0.025% (w/v) TSB, and 25 

mM ferrous sulfate (adjusted to pH 2.0-2.5 with H2SO4)), and was poured immediately 

as a thin underlayer in standard petri plates. The gelled underlayer was then covered 

with the same quantity of sterile medium. 
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2.2.1.2.1.2 Ferrous Iron/Tetrathionate Overlay Medium (FeSo) 

The preparation of 400 ml medium was sufficient for 10-12 plates. 

Solution A 
40 ml Basal salts solution (lOX concentrate (g/l): (NH4)2SO4 (12.5); MgSO4.7H2O (5)) 
0.1 g TSB (Tryptone Soya Broth) 
400 µl Trace elements (section 2.2.1) 
250 ml Distilled water 
(pH 2.5 with H2SO4) 

Solution B 
2g Agarose (e. g., Sigma Ltd. Type I) 
100 ml Distilled water 

Solution C 
1M ferrous sulfate (adjusted to pH 2.0 with H2SO4), filter sterilised through 0.22µm 
nitrocellulose membranes. 

Solution D 
100 mM potassium tetrathionate, filter-sterilised through 0.22µm nitrocellulose 
membranes. 

Procedure 

Solutions A and B were prepared separately and heat sterilised (120°C, 20min). After 

cooling to -50 °C, the two solutions were mixed and 10 ml of solution C and solution D 

were added. The combined molten medium was split -50: 50 into two sterile containers. 

One solution was inoculated with 2 ml of an active culture of Acidiphilium SJH (pre- 

grown in a liquid medium containing basal salts solution, 10 mM galactose, 0.025% 

(w/v) TSB, and 25 mM ferrous sulfate (adjusted to pH 2.0-2.5 with H2S04)), and was 

poured immediately as a thin underlayer in standard petri plates. The gelled underlayer 

was then covered with the same quantity of sterile medium. 
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2.2.1.2.2 Ferrous Iron/Yeast Extract Solid Medium (Fe/YE) 

A non-overlay, ferrous iron/yeast extract medium, (Fe/YE) was used during the course 

of this study to culture heterotrophic acidophilic bacteria (e. g. to check for culture 

purity). The preparation of 400 ml medium was sufficient for 10-12 plates. 

Solution A 
8 ml Heterotrophic basal salts (section 2.2.1) 
0.08 g Yeast extract 
292 ml Distilled water 
(pH 2.5-3.0 with H2S04) 

Solution B 
2g Agarose (e. g., Sigma Ltd. Type I) 
100 ml Distilled water 

Solution C 
1M ferrous sulfate (adjusted to pH 2.0 with H2SO4), filter sterilised through 0.22µm 
nitrocellulose membranes. 

Procedure 

Solutions A and B were heat sterilised (120°C, 20 min) and held at approximately 50°C 

prior to mixing. The solutions were combined and 0.2 ml of solution C was added, 

before pouring into sterile petri plates. 

2.2.1.3 Bioreactor Cultures 

Bench-scale bioreactors (2 L) (Electrolab P350) were used for batch culture growth of 

some isolates, and also for pyrite leaching experiments using mixed populations. 

Typically, 1.5 L of appropriate medium was prepared in the reactor and autoclaved 

(120°C, 40 min) before inoculation. 
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2.2.2 Determination of Microbial Biomass 

2.2.2.1 Optical Densities 

Bacterial biomass was measured spectrophotometrically by determining culture optical 

densities (OD) at 600 nm against a blank of distilled water. When yellowish-orange 

colours were evident due to the presence of ferric iron, 100 µl of iM H2S04 was added 

to 900 µl of culture; the resulting lower pH resulted in a greatly diminished colour of 

the ferric ion. 

2.2.2.2 Total Cell Counts 

2.2.2.2.1 Thoma Bacteria Counting Chamber 

Operation 

Bacteria in liquid samples were dispersed as thoroughly as possible, and a small drop of 

sample was placed on a glass slide and covered with a cover slip. The sample was 

viewed using a phase-contrast microscope (section 2.3.2) with an x40 objective lens. At 

least 50-100 bacteria were counted. 

Calculation 

This chamber consists of a glass slide, a section of which is precisely ground to a depth 

of 20 µm below the surface and this is surrounded by a moat. The distance between 

each of the parallel lines on the chamber is 50 gm. The area of each square was 

therefore 50 x 50 = 2500 µm2, making the volume of each square to be 50,000 µm3 (5 x 

104 µm). The average number of bacteria per square was calculated and it was then 

multiplied by 2x 107 (i. e. 1 ml/5 x 104 µm) to calculate the number of bacteria/ml. 
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2.2.2.2.2 DAPI (4', 6-diamidino-2-phenylindole) Staining 

DAPI is a DNA stain that allows the visualisation of microbes in samples, using a 

fluorescent microscope (section 2.3.3), to obtain total counts of microbes present in the 

sample. Microbes are first captured on a black polycarbonate filter, which is then 

mounted on a microscope slide to facilitate counting. As this is a very sensitive 

technique, it is essential that all reagents were prepared by filtering through a 0.22 µm 

membranes to remove all microbes from the reagents followed by autoclaving. 

Reagents 

Distilled water (dH2O) 
Distilled water (adjusted to pH 1.8 with H2S04) 
Stock DAPI solution: 1 mg/ml dH2O, put into an Eppendorf tube wrapped with 

aluminium foil and stored at -20°C. 

Diluted DAPI solution: 1 µg/ ml dH2O 

3X PBS: 22.79 g NaCl, 7.52 g Na2HPO4"12H20 and 1.24 g 
NaH2PO4.1H2O in 1 litre dH2O (pH 7.2). 
(1X PBS contains 130 mM NaCl, 7 MM Na2HPOa"12H20 
and 3 mM NaH2PO4" 1H20 (pH 7.2)) 

4% Paraformaldehyde fix: 

33 ml dHZO was heated gently and was added with 2g paraformaldehyde. The 
solution was then added with one drop of 2M NaOH and was stirred for about 2 
minutes. When paraformaldehyde was dissolved, 16.5 ml of 3X PBS was added. 
The solution was adjust to pH 7.2 with NaOH or HCl and was filter sterilised 
through 0.2 µm membranes into a sterile container. The solution was stored at - 
20°C in small aliquots (750 µl). 

Procedure 

Microbes were fixed with paraformaldehyde, as described in section 2.5.12. A tower 

filtration apparatus (Millipore Inc. ) was fitted with a 25 mm black polycarbonate filter 

(0.2 µm pore-size) per sample and the filters were pre-wetted by drawing through some 

filtered dH2O. The filtration towers were filled with 10 ml of dH2O (acidified if using 

iron-rich samples) the fixed sample added, and the liquid drawn through by applying a 
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vacuum. The filters were then washed with 10 ml dHZO (acidified if using iron-rich 

samples followed by two further washings with 10 ml dH2O (not acidified). DAPI 

solution (2-10 ml) was added and held for 10 minutes before applying a vacuum. The 

filters were then washed twice with 10 ml dH2O. Excess water on the filters was 

removed on a piece of absorbent paper. A drop of immersion oil (non-fluorescing) was 

placed on a glass slide, the membrane put on top, followed by another drop of 

immersion oil. The number of microbes on the membrane was counted using a 

fluorescent microscope, ECLIPSE E600 (Nikon, Japan) (section 2.3.3). A minimum of 

10 fields of view was counted. 

Calculation 

Each area of view with the x100 objective was 0.038 mm2. The stained area of 

membrane using the Millipore tower was 185 mm2, and that using the Millipore 

Manifold apparatus was 269 mm2. The correction factor (per field of view) was, 

therefore, x4,868 for the tower set up and x7,079 for the Manifold apparatus. 

2.2.2.3 Plate Counts on Solid Media 

Samples of bacterial cells were diluted in acidified basal salts (pH 1.8) following a 

serial dilution procedure (10-fold), and 100 µl aliquots were spread onto selective solid 

media. 

In the pyrite oxidation experiments (chapters 4 and 5), the microbial cultures were well 

mixed by vortexing to disperse pyrite equally. 

Plates were incubated at 30°C (mesophiles) or 45°C (moderate thermophiles) for 1-2 

weeks, and colonies were counted using a stereo-scan microscope (section 2.3.1). 
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Microorganisms in mixed cultures were identified and enumerated using methods 

described elsewhere (Johnson and Roberto, 1997). 

2.3 Microscopy 

2.3.1 Stereo-Scan Microscopy 

A stereo-scan microscope (Leitz-Wild M32, Switzerland) was used to examine and 

characterise bacterial colonies grown on various types of solid media, using 

magnifications of x50 to x400. An Olympus OM-10 camera was fitted to the 

microscope to photograph colonies. 

2.3.2 Phase-Contrast Microscopy 

Phase contrast microscopy allows the visualisation of colourless, small specimens that 

do not absorb enough light to be seen by bright-field microscopy. A Leitz Labolux 

(Switzerland) phase contrast microscope, fitted with a Zenike condenser and objective 

(magnification x400), was used to record morphological and behavioural characteristics 

of bacterial cells. 

2.3.3 Fluorescence Microscopy 

Fluorescence microscopy required staining of the specimens with fluorescent dyes prior 

to viewing. A fluorescence microscope, ECLIPSE E600 (Nikon, Japan) attached to a 

super high pressure mercury lamp power supply, HB-10104AF (Nikon, Japan) and a 

digital camera, COOLPIX (Nikon, Japan) was used throughout these studies for 

bacterial counts using the DAPI method (section 2.2.2.2.2) and FISH method (section 

2.5.12), with a magnification x1000. HQ FITC-LP filter, HQCy3 filter and UV-1A filter 
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were used for the Fluorescein (MWG Biotech, Germany)-, Cy3 (MWG Biotech, 

Germany)- and DAPI -treated specimens. 

2.4 Analytical Techniques 

2.4.1 Determination of pH and Redox Potential (Eh) 

Culture pH and redox potentials (relative to a standard hydrogen electrode) were 

determined using an Accumeto 50 pH meter coupled to a pHase combination glass 

electrode (Merck) and a combination ORP electrode (Russell pH Ltd. UK). 

2.4.2 Determination of Ferrous Iron 

2.4.2.1 Titrimetric Method: Potassium Permanganate Assay 

Reagents 

1 mm Potassium permanganate (KMnO4) 
25% (v/v) Sulfuric acid (H2SO4) 

Procedure 

An aliquot of 1-5 ml sample was acidified with two or three drops of 25% (v/v) sulfuric 

acid prior to titration with permanganate and was titrated until the point where a faint 

pink colour appeared (indicating the end point). 

Calculation 

The correlation between permanganate and ferrous iron concentration is given by the 

reaction stoichiometry (equation [2.1]), 

Fe2+ -* Fe3+ +e 
MnO47 + 8H+ + 5e -4 Mn? + + 4H20 [2.1], 

showing that 1 mole of permanganate reacts with 5 moles of ferrous iron. From this, 

concentrations of ferrous iron in sample aliquots could be determined. This method was 

used to determine ferrous iron when present at > 2.5 mM. 
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2.4.2.2 Colorimetric Method: Ferrozine Assay 

This assay is based on the chelating of ferrous iron by the (-N=C-C-N) group of the 

ferrozine molecule (3-(2-pyridyl)5,6-bis(4-phenyl-sulfonic acid)-1,2,4-triazine; Sigma 

Ltd. ) to form a stable magenta-coloured ferrous iron-ferrozine complex, which exhibits 

a single sharp peak with a maximum absorbance at 562 nm (Stookey, 1970). The 

method used throughout these studies was a modification of the method described by 

Lovley and Phillips (1987) to determine concentrations of 0 to 1 mM ferrous iron. The 

complex formed was found to be stable for at least 1 hour in the dark. 

Ferrozine Reagent 

50 mm Hepes buffer 
1g Ferrozine 

(pH 7.0 with KOH; stored in the dark at 4 °C) 

Standards 

Standards were prepared with 10 mM ammonium ferrous sulfate 

((NH4 2S04FeSO4 6H20, p. 2.0) over the range of 0-1 mM Fe2+ to prepare a standard 

curve (Figure 2.1). 
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Figure 2.1: A typical standard curve for the assay of ferrous iron using ferrozine. The 
equation of the fitted line is y=1.188x + 0.004. Rval=0.9998. 

Procedure 

A 50 µl aliquot of sample was removed and added to 950 µl of ferrozine reagent. This 

was mixed thoroughly prior to measuring absorbance at 562 nm against a full reagent 
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blank. Samples were centrifuged prior to undertaking this assay, to remove any 

particulate matter (particularly ferric compounds). 

2.4.3 Atomic Absorption Spectrophotometry 

Reagents 

6M Hydrochloric acid (HCl) 
0.5 M Hydrochloric acid (HCl) 

Standards 

Calibration curves were made using iron standard solution (BDH SpectrosoL®) over 

the range of 0 to 50 ppm (Figure 2.2a) or using copper standard solution (BDH 

SpectrosoL®) over the range of 0 to 10 ppm (Figure 2.2b). 
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Figure 2.2: (a) A typical standard curve for the measurement of Fe ions using AAS. 
The equation of the fitted line is y=3.643x + 4.0478. Rval=0.9948. (b) A typical 
standard curve for the measurement of Cu ions using AAS. The equation of the fitted 
line is ß=44x + 1.6667. Rval=0.9992. 
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Procedure 

Determination of total iron/copper in solution phase: 

1 ml of sample was centrifuged (13,000 rpm, 1 min) to remove cells and minerals. A 0.5 

ml aliquot of the supernatant was combined with 0.5 ml of 6M hydrochloric acid, and 

stored at room temperature until needed. 

Determination of total soluble iron in solution and solid phase: 

The minerals in the sample were dispersed as thoroughly as possible before taking 0.1 

ml of sample. The sample was combined with 0.9 ml of 6M HCl and incubated at 65°C 

for 30 minutes, followed by centrifugation at 15,000 rpm for 1 minute. Supernatant (0.5 

ml) was removed and added to 0.5 ml of 0.5 M HCI, and stored at room temperature 

until needed. 

The concentration of total iron was determined using a Pye Unicam SP2900 double 

beam atomic absorption spectrophotometer (AAS) fitted with a Pye Unicam SP9-10 gas 

controller unit, at wavelength 248.3 nm (iron) or 324.8 nm (copper), using a fuel-lean 

air/acetylene flame. 

2.4.4 Determination of Tetrathionate 

Reagents 

Phosphate buffer: 50 ml 0.2 M NaH2PO4 plus 39 ml 0.2 M NaOH. 
Ferric nitrate solution: 1.5 M Fe(N03)3 in 4M HC104. 
Potassium cyanide solution: 0.1 M KCN in dH2O. 

Standards 

A standard curve was prepared using potassium tetrathionate over the range of 0-0.5 

mM (Figure 2.3). 
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Figure 2.3: A typical standard curve for the determination of tetrathionate. The 
equation of the fitted line is y=1.043x + 0.0032. Rval=0.9992. 

Procedure 

A sample aliquot (0.24 ml, diluted if needed) was added to 0.16 ml phosphate buffer, 

followed by 0.2 ml potassium cyanide solution, and the solution mixed rapidly. The 

sample was then added, together with 0.12 ml ferric nitrate solution, and the solution 

again mixed rapidly. The sample was made up to 1 ml with dH2O prior to reading 

absorbance at 460 nm against a thionate-free blank. 

2.4.5 Determination of Sulfate 

Reagents 

Conditioning reagent: 250 ml distilled water; 50 ml glycerol; 30 ml concentrated HCI; 
10 ml 95% ethanol; 75 g NaCl (made up to 500 ml). 

Crushed barium chloride 

Procedure 

Samples from pyrite leachate experiments were prepared and stored as for iron and 

copper (section 2.4.3) 

One millilitre of sample solution (diluted when necessary) was centrifuged for 10 

minutes and added to 1 ml of conditioning reagent. The sample and conditioning 

reagent was mixed thoroughly. Fine-grain barium chloride (ca. 60 mg) was added, and 
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the solution was mixed for 30 seconds. The absorbance was read at 420 nm against 

sulfate-free blank using the Hydrocheck (WPA Ltd., UK) system. 

2.4.6 Determination of Protein: the Bradford Assay 

Reasents 

100 mg Coomassie Brilliant Blue G-250/1 of 5% ethanol in 10% phosphoric acid 

Standards 

A standard curve was made using bovine serum albumin (BSA) over the range of 0-100 

µg BSA/ml of 0.5 M NaOH (Figure 2.4). 
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Figure 2.4: A typical standard curve for the Bradford assay. The equation of the fitted 
line is y=0.004x + 0.0064. Rval=0.9874. 

Procedure 

Cells were harvested by centrifugation (13,000 rpm, 3 min), resuspended in 0.5 ml of 

0.5 M NaOH, and held for 15 minutes at room temperature. One hundred microlitres of 

this extract (diluted in 0.5 M NaOH if necessary to get into the range of the standards) 

was mixed with 1 ml of the Bradford reagent and incubated for 2 minutes in the dark 

before measuring the absorbance at 595 nm. 
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2.4.7 Determination of Dissolved Organic Carbon (DOC) 

Standards 

Standard curves were made using KHP standard (anhydrous potassium hydrogen 

phthalate; CsH5O4K) (Pollution & Process Monitoring Ltd., UK) over the range of 0-10 

ppm (Figure 2.5). 
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Figure 2.5: A typical standard curve for the DOC assay. The equation of the fitted line 
is y=3.3787x + 6.288. Rval= 0.9959. 

Procedure 

Approximately 2 ml of sample was filter-sterilised through 0.2 µm cellulose nitrate 

membranes and kept at -20°C until needed. The samples were diluted with dH2O if 

necessary and DOC concentration determined using PROTOC DOC analyser (Pollution 

& Process Monitoring Ltd., UK). 
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2.5 Biomolecular Techniques 

2.5.1 Polymerase Chain Reaction (PCR) 

The 16S rRNA gene of eubacteria/archaea was amplified by PCR using "27f primer" 

(5'-AGAGTTTGATCMTGGCTCAG-3')/"20f primer" (5'-TCCGGTTGATCCYGCCR 

G-3') and "1492r primer" (5'-TACGGYTACCTTGTTACGACTT-3'), complimentary 

to positions 8 to 27/1 to 20 and 1510 to 1492 of Escherichfa coil 16S rRNA gene, 

respectively (Lane et al., 1992; Orphan et al., 2000). 

Reagents 
All reagents that were not supplied with the Taq enzyme were made with autoclaved 
deionised water (pH 7.0 with NaOH). 

Taq polymerase: usually supplied as a5 unit/pl stock. 
lOX reaction buffer: supplied with enzyme. 
25 mM MgC12: supplied with enzyme. 
dNTP solution: containing 2 mM each dATP, dCTP, dTTP and dGTP. 
"27f'/"20f' primer: 100 ng /µ1 deionised water. 
"1492? ' primer: 100 ng /µl deionised water. 

DNA Preparation 

Bacteria were grown in appropriate medium until late exponential phase to early 

stationary phase, and cells harvested by centrifuging. When using iron-oxidisers or iron- 

reducers, cells were washed first in 10 mM H2S04 first to remove ferric precipitates, 

and then in TE buffer (pH 8.0). The cell pellet was resuspended in 20 µl of the PCR 

lysis solution (0.05 M NaOH + 0.25% SDS) and was heated to 95°C for 10 minutes, and 

180 µl of deionised water added. 

PCR Amplification 

`Touchdown PCR' was first described by Don et al. (1991) to redress the imbalance 

between correct and spurious annealing. The 16S rRNA gene of most of the acidophilic 

organisms (e. g. Leptospirillum spp., Sulfobacillus spp., Acidithiobacillus spp., Am. 

ferrooxidans, and Ferroplasma spp. ) were successfully amplified by `Touchdown PCR' 

in the presence of 2% DMSO. 
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Fifty microlitres of 'reaction master mix was prepared for `°N' number of reactions by 

adding the following: 

5xN µl 
5xN µl 
5xN µl 
1xN µl 
1xN µl 
1xN µl 

0.5xN µl 
30.5xN µl 

I OX reaction buffer 
25mM MgC12 
dNTPs 
forward primer 
reverse primer 
DMSO (dimethylsulfoxide) 
Taq polymerase 
deionised water (pH 7.0 with NaOH) 

Master mix (49 µl aliquots) was placed in each reaction tube and 1 µl of cell lysate 

added. The PCR reaction was run as follows: an initial denaturation at 95°C for 5 

minutes, followed by 20 cycles (95°C for 30 s, 57°C (-0.5°C per cycle) for 30 s and 72°C 

for 1.5 min) and by 15 cycles (95°C for 30 s, 47°C for 30 s and 72°C for 1.5 min) and a 

final 10 minutes incubation at 72°C. The reaction was carried out in a thermocycler 

(Progene Techne, Cambridge). Following PCR, the amplified 16S rRNA gene was 

confirmed by analysing 5 µl of the PCR reaction on a 0.7% (w/v) agarose gel (section 

2.5.2). When used for sequencing, PCR products were purified using PCR purification 

kit (QIAGEN) according to the manufacture's instructions (section 2.5.7). 

2.5.2 Agarose Gel Analyses of DNA 

ReaLyents 

0.5 M EDTA: 46.53 g EDTA (sodium ethylenediaminetetra-acetic acid) 
adjusted to pH 8.0 with 10 M NaOH and made up to 250 
ml with dH2O, autoclaved before use 

5X TBE: 54 g Tris (tris(hydroxymethyl)methylamine) 
27.5 g boric acid 
20 ml 0.5 M EDTA stock 
made up to 1 litre with dH2O and autoclaved before use 

6X DNA loading buffer: 0.25% (w/v) bromophenol blue in 30% (v/v) glycerol. 
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Procedure 

To prepare a 0.7% agarose gel (typically for analysing the PCR products), 

electrophoresis grade agarose was added to 0.5X TBE. To prepare >2% agarose gel 

(typically for analysing the restriction DNA fragments), high-resolution blend agarose 

(type 3: 1; Amresco) was added to 1X TBE. The agarose solution was melted by heating 

in a microwave and cooled (to -50°C) before pouring it into the mould to polymerise. 

The DNA samples were mixed with the DNA loading buffer prior to loading into 

respective wells in the agarose gel. The gel was run until the blue dye had migrated to 

the desired position. The gel was stained in an ethidium bromide bath (-10 min) prior to 

analysing the DNA pattern under ultraviolet (UV) light. 

2.5.3 Cloning of the 16S rRNA Gene 

Ligation Reaction 

Ligation was carried out using the pGENO-T Easy Vectors Systems (Promega) 

according to the manufacture's instructions. 

Ligation reactions were set up by mixing 5 µl of 2X Rapid Ligation Buffer, 1 pl 

pGEN®-T Easy Vector, 3 µ1 PCR product and 1 µl of T4 DNA Ligase. The reactions 

were incubated for 1 to 2 hours at room temperature. 

Transformation 

Tubes of frozen DH5a competent cells were removed from -70°C storage and were 

placed in an ice bath until just thawed. Five microlitres of the ligation reaction were 

added into the tube containing 100 µl of DH5a and the tube was gently flicked to mix. 

The tube was placed on ice for 30 minutes. Cells were heat-shocked for 45-50 seconds 

in a water bath at 42°C. The tube was immediately returned to ice for 2 minutes. Nine 

hundred microlitres of (room temperature) 50C medium* was added to the tube before 
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incubating for 1 to 2 hours at 37°C, shaken at 130 rpm. Next, 100 µ1 of transformation 

culture was spread onto a LB/ampicillin/X-Gal plate and the plate was incubated 

overnight at 37°C. 

*SOC medium contained 20 g tryptone, 5g yeast extract and 0.5 g NaCl in 1L dH2O 

(pH adjusted to 7.0 with NaOH). Sterile stock glucose solution (1M) was added to the- 

final concentration of 20 mM. 

Screening of positive clones was then carried out by PCR (section 2.5.4) and finally 

confirmed by RFLP (section 2.5.5) analyses. 

2.5.4 PCR Screening of Cloned 16S rRNA Genes 

This PCR method was used to screen for positive clones of the 16S rRNA gene 

previously amplified by PCR. Following amplification using primers specific for the 

cloning vector, the resulting product was confirmed as positive by RFLP analysis 

alongside the original PCR product used in the cloning. 

Reagents 

Taq polymerase: usually supplied as a 5U Taq/µl stock. 
1OX reaction buffer: supplied with enzyme. 
25 mM MgCI2: supplied with enzyme. 
dNTP: stock solution containing 2 mM each dATP, dCTP, dTTP 

and dGTP made in deionised water (pH 7.0 with NaOH, 
autoclaved). 

"M13 forward" primer: 100 ng/µl deionised water (pH 7.0 with NaOH, 
autoclaved). This primer has the sequence of 
5'-GTA AAA CGA CGG CCA G-3'. 

"M13 reverse" primer: 100 ng/µl deionised water (pH 7.0 with NaOH, 
autoclaved). This primer has the sequence of 
5'-CAG GAA ACA GCT ATG AC-3'. 
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Procedure 

Twenty microlitres of reaction master mix was prepared for "N" number of reactions by 

adding the following: 

2xN µl 
2xN µl 
2xN µl 

0.5 xN µl 
0.5 xN µl 
0.5 xN µl 

12.5 xN µl 

IOX reaction buffer 
25mM MgC12 
dNTPs 
forward primer 
reverse primer 
Taq polymerase 
deionised water (pH 7.0 with NaOH) 

Aliquots of 20 µl of master mix were placed into each reaction tube. A small amount of 

a large, well-separated white colony was toothpicked directly into each individual PCR 

mix. PCR was run as follows: 95°C for 10 minutes, followed by 30 cycles of 95°C for 

30 sec, 55°C for 30 sec and 72°C for 2 minutes, followed by a 10 minutes incubation at 

72°C. Following PCR, to confirm that the correct 16S rRNA gene was cloned, 5 µl of 

this PCR reaction was analysed using RFLP (section 2.5.5). 

2.5.5 RFLP Analysis of Cloned 16S rRNA Genes 

The purpose of this RFLP analysis was to confirm that the cloned DNA was the 16S 

rRNA gene of interest. This was determined by comparing the RFLP patterns of the 

cloned inserts to that of the authentic 16S rRNA gene obtained from the original PCR 

reaction. 

For "N" number of reactions, the reaction mix was set up as follows: 

5x N pl l OX bufferB 
2.5x N µ1 EcoRI 
2.5x N µ1 MspI 
15x N µi deionised water (pH 7.0 with NaOH) 

Five-microlitres of the reaction mix was aliquot- out to individual tubes and added to 5 

µl of the newly made PCR reactions. Also, 5 µl of the original PCR reaction was added 
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to the last tube. The tubes were incubated at 37°C for 1-2 hours. The resulting products 

were analysed on a 3% agarose gel (section 2.5.2). The clone that yielded an identical 

RFLP to the product from the original PCR reaction was grown overnight in 3 ml LB 

(Luria-Bertani) medium containing 100 p. g ampicillin/ml, and the plasmid DNA was 

purified using the Miniprep method (section 2.5.6). LB medium contained 10 g 

tryptone, 5g yeast extract, and 10 g NaCI (in 1L dH2O, pH adjusted to 7.0 with NaOH). 

2.5.6 Miniprep of Plasmid DNA 

The purification of plasmid DNA was carried out using the CONCERTTM Rapid 

Plasmid Purification Systems (GIBCO BRL®) according to the manufacturer's 

instruction. The following reagents were used in the purification procedures: 

Reagent (all supplied with kit) 

Cell Suspension Buffer (G1): 
RNase A: 
Cell Lysis Solution (G2): 
Neutralisation Buffer (G3): 
Wash Buffer (G4): 
TE Buffer (TE): 

Method 

50 mM Tris-HC1(pH 8.0); 10 mM EDTA 
20 mg/ml in Cell Suspension Buffer 
200 mM NaOH; 1% SDS 
Contains acetate and guanidine hydrochloride 
Contains NaCl, EDTA and Tris-HCI (pH 8.0) 
10 mM Tris-HC1(pH 8.0), 0.1 mM EDTA 

The positive transformant was grown overnight in an LB liquid medium supplemented 

with ampicillin (100 pg/ml), at 37°C. One to 5 ml of the culture was centrifuged and all 

medium was thoroughly removed. Two hundred and fifty microlitres of cell suspension 

buffer (G1) (containing RNase A) was added to the pellet and the cells were suspended 

until homogeneous. Two hundred and fifty microlitres of cell lysis solution (G2) was 

added and mixed gently by inverting before incubating at room temperature for 5 

minutes. Three hundred and fifty microlitres of neutralization buffer (G3) was added 

and mixed immediately by inverting the tube, and then the mixture was centrifuged at 
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13,000 rpm (15,800 rcf) for 10 minutes. A cartridge was placed in a2 ml wash tube, the 

supernatant loaded into a spin cartridge, which was then centrifuged at 13,000 rpm for 1 

minute. The cartridge was placed back into the 2 ml wash tube and 700 µl of wash 

buffer (G4) was added, and centrifuged at 13,000 rpm for 1 minute. The flow-through 

was discarded before centrifuging the cartridge again at 13,000 rpm for 1 minute to 

remove the residual wash buffer. The cartridge was placed in a 1.5 ml recovery tube, 75 

µl of warm TE buffer (TE) added directly to the centre of the spin cartridge, followed 

by incubation at room temperature for 1 minute, and finally centrifugation at 13,000 

rpm for 2 minutes. 

2.5.7 Sequencing of Cloned 16S rRNA Gene or PCR-Amplified 16S rRNA Gene 

The plasmid DNA or PCR products were purified (sections 2.5.1 and 2.5.6) and sent to 

MWG-Biotech (Ebersberg, Germany) for sequencing. 

2.5.8 Sequence Analyses and Phylogenetic Tree Assembly 

The sequence data were compared with 16S rRNA gene sequences deposited in the 

Genbank database using the BLAST search program (Altschul et al., 1997). The 16S 

rRNA gene sequences of various bacteria (including those closely related to the 

unknown sequences, as indicated from the BLAST search) obtained from the GenBank 

database were aligned with those of the new sequence using ClustalW program 

(Thompson et al., 1994). These alignments were then used to construct a distance 

matrix (Jukes and Cantor, 1969), followed by phylogenetic tree construction by 

neighbour joining (Saitou and Nei, 1987). DNA parsimony analyses was also used for 

comparison. These algorithms were provided in PHYLIP version 3.5c (Felsenstein, 

1993). Phylogenetic trees were viewed using Treeview software (Page, 1996). 
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2.5.9 Chromosomal DNA Extraction and Purification 

The protocol used for the extraction of chromosomal DNA was that described by 

Wilson (1987). 

Reagents 

TE buffer: 
SDS: 
Proteinase K: 
RNAase: 

Sodium acetate: 

Phenol/Chloroform: 
Chloroform: 
Isopropanol: 
70% Ethanol: 

Procedure 

10 mM Tris-HC1 +1 mM EDTA, pH 8.0. 
10% sodium dodecyl sulfate in deionised water. 
20 mg proteinase K /ml deionised water. 
10 mg RNAase A/ ml 0.1 M sodium acetate (pH 5.2) 
heated to 100°C for 15 minutes to inactivate DNAases and 
allowed to cool slowly to room temperature before adding 
0.1 volume of 1M Tris-HC1(pH 7.4). 
3M sodium acetate in deionised water, adjusted to pH 5.2 

with glacial acetic acid 
25 phenol: 24 chloroform: 1 isoamyl alcohol 
24 chloroform: 1 isoamyl alcohol 

Cells in late exponential phase were harvested by centrifugation (15,000 rpm, 15 min, 

4°C). The pellet was washed firstly with 10 mM H2S04 to remove any ferric iron 

precipitates and then with TE buffer. The cell pellet was then resuspended in 567 gl TE 

buffer and added to 30 pl SDS solution and 3 gl proteinase K solution, followed by 

incubation for 1 hour (or until the solution was observed to clear) at 37°C without 

shaking. 

Five hundred microlitres of the phenol: chloroform solution was added to the mixture 

and mixed gently but thoroughly by inverting the tube, followed by centrifugation 

(10,000 rpm, 5 min) to separate the phases. The upper aqueous layer containing DNA 

was removed to a new tube avoiding taking any of the white precipitate at the interphase 

(using a wide-bore pipette tip to avoid shearing the DNA. ). Five hundred microlitres of 

the chloroform solution was added and mixed gently but thoroughly by inverting the 

tube, which was repeated until there was no white precipitate left at the interphase. The 
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DNA was precipitated with 70 µl sodium acetate and 500 p1 isopropanol, by gently 

flicking the mixture until a stringy precipitate formed. The DNA was placed into a test 

tube with 1 ml 70% chilled ethanol. The tube was inverted several times, making sure 

that the pellet floated free of the bottom of the tube. The tube was centrifuged (10,000 

rpm, 15 min) to recover the DNA as a pellet. The pellet was resuspended in 1 ml TE 

buffer and added to the RNAase solution (final concentration of 10 µg/ml) for several 

hours. The concentration of the DNA was measured spectrophotometrically at 260 nm, 

where an absorbance value of 1.0 is equivalent to 50 pg DNA/ ml dHZO. This DNA 

solution was adjusted to the desired concentration by addition of TE buffer before 

further use. 

2.5.10 DNA Purification by Caesium Chloride Gradient Centrifugation 

Reagents 

DNA Solution: A previously prepared DNA solution (section 2.5.9) at a 
concentration of 50 -100 pg/ml TE buffer. 

TE Buffer: 10 mM Tris-HCI +1 mM EDTA (pH 8.0) 

Sodium acetate: 3M sodium acetate in deionised water, adjusted to pH 5.2 with 
glacial acetic acid. 

Ethidium bromide: 10 mg/ ml dH2O. 

Saturated butanol: deionised water was added to butanol until it was seen as a 
separate phase after mixing well. 

Preparation of dialysis tubing 

A length of tubing was heat sterilised (120°C, 20 min) in a beaker containing 1 mM 

EDTA, and was rinsed and stored at 4°C in a sterile bottle containing autoclaved 

deionised water. 
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Procedure 

Caesium chloride (3.9 g) was added to 4 ml of the DNA solution in a plastic test tube 

and mixed gently until dissolved. Twenty microlitres of the ethidium bromide solution 

was added and mixed gently. The above solution was carefully put into a4 ml sealable 

centrifuge tube using a Pasteur pipette to avoid any bubbles, until the tube was 

completely filled. The tubes were balanced using a caesium chloride solution (1.05 g 

CsCl/ ml dH2O) and centrifuged in a Beckman VTi80 rotor overnight (55,000 rpm, 

15°C). The DNA band was visible in plain light as a reddish orange band (due to the 

bound ethidium bromide). The DNA was removed without shearing by making a hole in 

the top of the tube and covering it with a finger, and then making another hole in 'the 

bottom of the tube under which a beaker was placed. By releasing the hole at the top, 

the DNA was collected in an Eppendorf tube. The ethidium bromide was extracted with 

an equal volume of water-saturated butanol until the butanol was no longer pink. The 

DNA was put into dialysis tubes and placed into a beaker of 150 ml of 0.1X SSC for 

about 1 hour, or until no more caesium chloride was seen running down from the 

dialysis bag. The tubes were then put into 250 ml 0.1X SSC overnight with gentle 

stirring. The DNA solution was transferred to a test tube and its concentration was 

measured on a spectrophotometer at 260 nm. An absorbance value of 1.0 at 260 nm was 

equivalent to 50 pg DNA/ ml dH2O. 

This DNA solution was adjusted to the desired concentration by addition of 0.1X SSC, 

or precipitated and dissolved in 0.1X SSC before further use. To precipitate the DNA, 

1/10 volume sodium acetate solution and 1 volume isopropanol were added, and the 

solution gently mixed. The DNA was recovered by centrifuging. The DNA was then 

rinsed with 1 ml of 70% ethanol (chilled to 4°C) and recovered by centrifugation. 
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2.5.11 Determination of DNA Base Composition 

The determination of G+C (mol%) composition of chromosomal DNA was carried out 

using the melting profile method adapted by Dr. P. R. Norris (University of Warwick, 

U. K). 

Reagent 

O. 1X SSC: 15 mM NaCl, 1.5 mM trisodium citrate in dH2O, 
autoclaved before use 

Procedure 

Caesium chloride gradient-purified and dialysed chromosomal DNA (section 2.5.10) 

was diluted to 20-30 gg DNA/ml 0.1X SSC. Using 0.5 ml quartz cuvettes (stoppered to 

prevent evaporation), the melting temperature was determined on a Hewlett Packard 

(HP) 8453A UV-visible spectrophotometer connected to a HP 89090A Peltier 

temperature controller. The DNA melting temperature was the temperature at which a 

50% increase in A26o nm was obtained, and was calculated using a DNA melt software 

package (HP 845x). The base composition of the DNA was determined from its melting 

point, using the DNA melt software program of Marmur and Doty (1962): 

G+C (mol%) = 2.44 [(T. - 81.5) - (16.6 log M)] 

T. = melting temperature of the DNA 

M= molar concentration of the cations in 0.1X SSC (= 0.0 195 M) 

A standard curve for the measurement of G+C contents of microbial DNA samples was 

made using control DNA of other microorganisms (Micrococcus luteus, Acidocella 

facilisT, Acidocella aminolyticaT, Escherichia coli strain B and Calf Thymus DNA). All 

the DNA except that from Acidocella spp. were obtained from Sigma Chemicals Ltd.. 

Acidocella DNA was prepared within the laboratory. The determined standard curve 
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was: Y (measured G+C contents) = 1.248X(expected G+C contents) - 7.528, 

Rval=0.99594. 

2.5.12 Microbial Population Analysis by FISH (Fluorescent In Situ Hybridisation) 

As in situ hybridisation is a very sensitive technique, it was important that all reagents 

used for FISH were free from all microbes. To ensure this, all reagents were filtered 

through 0.2 µm membrane filters into clean bottles prior to autoclaving. 

Fixation of cells for FISH: 

Reagents and solutions: 

PBS (1X): 130 mM NaCI (7.6 g per litre) 
10 mM Na2HPO4" 12H20 (3.58 g per litre) 
3 mM NaH2PO4"H2O (0.46 g per litre) 
pH 7.2 (adjusted with NaOH or HCl as necessary) 
The solution was filtered through 0.22 gm membranes into a sterile 
container, autoclaved and stored at 4°C. 

4% paraformaldehyde ("PFA") in PBS: 

Thirty three millilitres of deionised water (filtered and autoclaved) was heated (to - 
60°C), and 2g of paraformaldehyde and one drop of 2M NaOH were added. After 
stirring for about 2 minutes (when the PFA went into solution), 16.5 ml of 3x PBS 
was added and the resulting solution cooled. The solution pH was adjusted to 7.2 
with NaOH or HC1. The solution was kept in small volumes (750 µl) at -20°C. 

Absolute Ethanol 

Oxalic acid: 500 mM (63.04 g per litre deionised water) solution, filtered through 
0.22 pm membranes). 

Fixation of samples containing bacteria and archaea with paraformaldehyde: 

When using pyrite cultures, 1.5 ml pyrite culture was removed from bioreactor after 

approximately 5 minutes of vigorous stirring (300 rpm) for equal distribution of pyrite, 

put into an Eppendorf tube and immediately vortexed for 1 minute to detach microbes 
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from the pyrite surface. (As shown in Table 2.4, detached cell number was the greatest 

when the sample was vortexed for 1 minute without addition of Triton-X). Next, pyrite 

was removed from the solution by centrifuging the tube very gently at 5000 rpm (2300 

rcf) for 10 seconds. One millilitre of the supernatant was transferred to another 

Eppendorf tube, and cells were harvested by centrifugation (13,000 rpm (15,800 rcf), 5 

min). Cells were resuspended in 250 p. 1 of ice-cold PBS and mixed with 750 gi PFA, 

and incubated at 4°C for 1-3 hours. In cases where iron phosphate precipitates formed 

after fixing the cells, a small amount of 500 mM oxalic acid solution was added until 

the solution once again cleared. Cells were harvested (twice) and washed in 1 ml PBS 

(ideally to a concentration of 108-109 cells/ml), and ones volume of ice-cold ethanol 

added. Fixed cells were stored at -20°C until needed. 

Table 2.4: Effect of vortex time and Triton-X concentration on number of detached 
microbes from pyrite surface using bioreactor culture containing Leptospirillum MT6 
and Sulfobacillus Y004 (chapter 5). 
The sample was taken from bioreactor after approximately 5 minutes of vigorous 
stirring (300 rpm) for equal distribution of pyrite. Aliquots (450 µl) of the pyrite 
cultures were put into Eppendorf tubes and 50 µl of Triton-X solutions (0,0.01 and 
0.05%) were added. The tubes were immediately vortexed (10 sec, 1 min or 2 min) and 
then centrifuged very gently (5000 rpm (2300 rcf) for 10 sec) prior to Thoma cell 
counting (N. Okibe, unpublished data). 

Third Party Material excluded from digitised copy. 
Please refer to original text to see this material. 
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Preparation of microscopic slides for FISH and application of cells to the slides: 

Reagents and solutions: 

Ethanolic KOH 95 ml ethanol 
5 ml deionised water that has been filtered (0.2 µm membranes) 
10gKOH 

Gelatine solution 0: 15 g gelatine 
0.02 g chromium potassium sulfate 12-hydrate 
200 ml deionised water 
Heated to 70°C prior to use. 

Ethanol series: 3 ethanol solutions of 50% (v/v), 80% (v/v) and 95% (v/v). 

Procedure: 

Slides were soaked in ethanolic KOH for 1 hour and rinsed well in filtered deionised 

water. Air-dried slides were placed in the gelatine solution at 70°C and held 

horizontally for about 10 seconds to evenly coat the slides. The slides were allowed to 

dry and stored in a sealed slide box at 4°C until needed. Five to ten microlitres of fixed 

sample (diluted with filtered deionised water if necessary) were spread on to the 

gelatine- coated slide and allowed to air dry. The slides were rinsed well by immersing 

into filtered deionised water twice. The sample smears were dehydrated by immersing 

slide into a series of solutions of 50%, then 80% and then 95% ethanol (3 min in each). 

When completely dry, the slides were ready for hybridisation. 

Fluorescent in situ hybridisation (FISH): 

Reagents and solutions: 

Hybridisation buffer (2m1): 40 µl 1M Tris/HC1(pH 7.4); 2 µl 10% SDS; 
360 µ15 M NaCl; deionised formamide; deionised water 

Washing buffer (50 ml): 39.5 ml deionised water; 50 µl 10% SDS; 1 ml 1M Tris- 
HC1(pH 7.4); 0.5 ml EDTA (pH 8.0 with NaOH); 5M NaCl; 
deionised water 

Stock DAPI solution: 1 mg DAPI/m1 deionised water that had been filtered and 
autoclaved (stored at -20°C). 
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Mounting medium: 8.75 g (7 ml) glycerol was put into a small beaker and added to 
0.38 g sodium tetraborate. When dissolved, the solution pH was 
adjusted to 9.2.30 mg N-propyl gallate was then added, making 
sure that pH was still above 9.0. Finally, 3 ml deionised water 
was added. Mounting medium was stored for no more than 2 
weeks in the dark at room temperature. 

Procedure: 

Two millilitres of hybridisation buffer was prepared according to the required 

stringency (Table 2.5) by adding the appropriate amount of deionised formamide. A 

tissue, soaked with about 1.8 ml of the hybridisation buffer was placed in a 50 ml 

conical test tube, which was allowed to equilibrate in a hybridisation oven (HIR4M, 

Grant Instruments, Cambridge) at 46°C for about 30 minutes. Each sample smear was 

added with 10 µ1 of hybridisation buffer containing 25 ng of each labelled probe and 

was covered with a coverslip. Slides were transferred, with smear side up, to the 

equilibrated tube in the hybridisation oven and incubated at 46°C for 2 hours. The cover 

slip was gently removed and the slide was immersed in pre-warmed (48°C) wash buffer 

of appropriate stringency (Table 2.5) at 48°C for 15 minutes. The slide was gently 

rinsed 

with filtered deionised water and was allowed to air-dry. Ten microlitres of DAPI 

solution (1 gg/ml filtered deionised water) were added to the smear, and incubated in 

the dark at room temperature for 10 minutes. The slide was then washed twice by 

dipping into deionised water and air-dried in the dark. Ten microlitres of mounting 

medium was added, and a coverslip was placed on top of the smear. 

The number of microbes on the slides was counted using a fluorescent microscope, 

ECLIPSE E600 (Nikon, Japan) (section 2.3.3). Photographs were taken using an 

attached digital camera, COOLPIX (MDC Lens 0.82-0.29x) (Nikon, Japan). 
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Chapter 3 

Characterisation of Novel Acidophilic Microorganisms 

Isolated from a Commercial Bioleaching Operation 

3.1 Introduction 

Moderately thermophilic microorganisms are attractive biological agents for mineral 

bioprocessing due to their often faster growth rates and oxidation of minerals, compared 

with mesophiles. In this study, several moderately thermophilic acidophiles isolated 

from a pilot plant aerated tank operation (Mintek, Randberg, South Africa; section 2.1) 

were characterised. Some of the Mintek isolates described in this chapter were also used 

in pure and mixed culture leaching experiments (chapters 4 and 5). 

3.2 Isolation of Mintek isolates 

To elucidate the microbial population in a commercial bioleaching operation, samples 

from a pilot plant aerated tank operation (Mintek, South Africa) using three in-line 

reactors were analysed by plating samples onto selective media (Johnson, unpublished 

data; Figure 3.1). The system consisted of a feed pulp tank and three reactors in series, 

with a container at the end for product collection. The concentrate was added at a pulp 

density of 7.5% at an overall 6-day residence time. The operation temperature was 45°C 

and the pH was controlled at levels below 1.8. The air supply to the reactors was 

enriched with CO2 and supplied to the reactors by means of a sparger situated below the 

impeller. The ore being leached was a polymetallic concentrate containing Cu (22%), Fe 

(23%), Zn (8%), Pb (6%), Ag (3100ppm) and S2 (30%) (Mariekie Gericke, Mintek; 

personal communication). 
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The designations of the six isolates studied, their characteristics, and routes of isolation 

are summarised in Table 3.1. 

lp 

Third Party Material excluded from digitised copy. 
Please refer to original text to see this material. 

e 
4 

Figure 3.1: Microbial populations in a pilot plant aerated tank operation using three in- 
line reactors (Mintek, South Africa). 
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Table 3.1: Description of Mintek isolates. 

Isolate Characteristics Route of Isolation 

MT1 Sulfur-oxidisers Sample from Tank 1 (Figure 3.1) was 
MT2 Moderately thermophilic rods serially diluted and directly spread on 

At. caldus-like ferrous iron/tetrathionate overlay plates 
(section 2.2.1.2.1.2). 
Colonies appeared after 7 days 
incubation at 45°C. 

MT6 Iron-oxidiser Sample from Tank 1 (Figure 3.1) was 
Moderately thermophilic, motile spirilla serially diluted and directly spread on 
Leptospirillum-like ferrous iron overlay plates (section 

2.2.1.2.1.1). 
Colonies appeared after 7 days 
incubation at 45°C. 

NC Iron-oxidiser Supposedly pure culture of 
Moderately thermophilic, spore-forming Leptospirillum MT6 in pyrite 
rods concentrate media (section 4.2) was 
Sulfobacillus-like directly spread on ferrous 

ironhetrathionate overlay plates 
(section 2.2.1.2.1.2). 
Colonies appeared after 3 days 
incubation at 45°C. 

MT161 Iron-oxidisers Samples from Tank 3 (MT16) and 
MT17J Mesophilic-moderate thermophilic, Tank 2 (MT17) (Figure 3.1) were 

irregular cocci serially diluted and directly spread on 
Ferroplasma-like ferrous iron/tetrathionate overlay plates 

(section 2.2.1.2.1.2). 
Colonies appeared after 14 days 
incubation at 45°C. 

3.3 Determination of 16S rRNA gene sequences of Mintek isolates, and their 

phylogenetic affiliations 

3.3.1 Methods 

The isolates were grown in appropriate media (section 2.2.1) and harvested at early 

stationary phase. Amplification, cloning and sequencing of their 16S rRNA genes were 

carried out using methods described in sections 2.5.1-2.5.7. A phylogenetic tree was 

constructed using the determined 16S rRNA gene sequences of Mintek isolates and 

other published 16S rRNA gene sequences of representative microorganisms (section 

2.5.8). 
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3.3.2 Results 

The length of the 16S rRNA gene sequences determined, the most homologous 

organisms (%), and the Gen Bank submission numbers are listed in Table 3.2. 

Table 3.2: 16S rRNA genes from the Mintek isolates. 

Isolate The length of the determined Accession Most homologous organism 

16S rRNA gene numbers (accession number: homology %) 

MT1 1462 bp AF513711 At caldusT 
(Z29975: 99.5%) 

MT2 496 bp, 559 bp, 99.6% with MTl (1't 496bp) 
468 bp (3 partial fragments) 

MT6 1484 bp AF513709 L. ferriphilumT 
(AF356829: 99.5%) 

NC 1438 bp AY121610 "Sb. yellowstonensis" strain YTF1 
(AY007665: 98.9%) 

[Sulfobacillus YTF3 (chapter 7) 
(AF507964: 99.6%)] 

MT16 1401 bp Fp. acidiphilumT 
(AJ224936: 99.6%) 

both isolates 
MT17 1400 bp AF513710 "Fp. acidarmanus" 

(849bp determined) 
(AF1454$1: 99.2%) 

Isolates MT1 and MT2 were most closely related to At. caldus, with the homology of 

the 16S rRNA gene sequence (1462bp) of isolate MT1 being 99.5% to that of the type 

strain of At. caldus (strain KU). The 16S rRNA gene of isolate MT6 (1484 bp) and 

isolate NC (1438 bp) showed the highest homology to that of the type strain of L. 

ferriphilum (99.5%) and "Sb. yellowstonensis" YTF1 (98.9%), respectively. The 16S 

rRNA gene from the archaeon-like isolates MT16 and MT17 both had the highest 

homology with that of Fp. acidiphilumT (99.6%). In addition, isolates MT16 and MT17 

had 99.6% homology to each other. 
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The phylogenetic relationship of the novel isolates was determined using 16S rRNA 

gene sequences of other known acidophiles (Figure 3.2). 

V. 1 

Thermoplasmales 

oxidansT 

IT6 Nitrospira 

tilumT 

i. thermosulfidooxidansT 

"Sb. yellowstonensis" YTFI 
Low G+C 
Gram-positive 

Sb. acldophilusT 

Isolate NC 

dusT 
ßly Proteobaderia 

Isolate MT1 

Figure 3.2: Phylogenetic relationships of the novel "Mintek" isolates (in bold) to 
known acidophilic prokaryotes. The phylogenetic tree was rooted with S. metallicus. 
The bar represents 0.1 nucleotides substitution per 100 for the horizontal branch lengths. 
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3.4 Determination of optimal pH and temperature of iron-oxidising isolates, 

Leptospirillum MT6 and Ferroplasma MT17 

3.4.1 Methods 

In order to determine the optimum pH and temperatures of Mintek isolates MT6 and 

MT17, bioreactors (section 2.2.1.3) containing either 1.5 L of ferrous iron medium (25 

mM ferrous sulfate, pH 1.8; section 2.2.1.1.1) or "Ferroplasma" medium (including 

0.0125% (w/v) TSB; section 2.2.1.1.5), were set up. Bioreactor cultures were 

maintained at an aeration rate of 0.5 Umin, and stirred at 100 rpm. To monitor growth of 

isolate MT6, the bioreactor culture was maintained at pH 1.8 for the optimum 

temperature analysis, and at 43°C for the optimum pH analysis. For isolate MT17, the 

bioreactor culture was maintained at pH 1.5 for the optimal temperature analysis, and at 

37.5°C for the optimal pH analysis. 

Samples were removed every 1-3 hours and ferrous iron concentrations in the cultures 

were determined using the ferrozine assay (section 2.4.2.2). Changes in the optical 

densities of culture were also monitored (section 2.2.2.1) in the case of isolate MT 17. 

Following completion of iron oxidation, cultures were drained, leaving -200 ml of spent 

medium, and fresh medium was added to make up the culture volume to -1.5 L, prior to 

starting new experimental run. For isolate MT6, growth rates at temperatures between 

35°C and 48°C were tested, and pH between 0.8 and 2.0. For isolate MT17, the 

temperature range was 30 to 50°C, and the pH range 0.55 to 1.85. In addition, the effect 

of dissolved solids on the growth of isolate MT17 was tested by changing the 

conductivity range of from 15.8 mS cm'1 to 61 mS cm 1 (at optimum pH and 

temperature). The conductivity of the medium was modified by addition of K2SO4 (0 

mM to 300 mM) to the standard medium. Culture doubling times were calculated for 
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each experiment from semi-logarithmic plots of ferrous iron oxidised (or optical 

density) against time. Experiments were carried out in duplicate. 

3.4.2 Results 

The culture doubling times of isolates-MT6 and MT17 at different pH and temperatures 

are shown in Figure 3.3 and Figure 3.4, respectively. The optimum temperature and pH 

of Leptospirillum MT6 were found to be 43°C and 1.5, respectively. Isolate MT6 was 

able to grow at pH 0.8 (pH <0.8 was not tested). The maximum temperature of the 

growth of isolate MT6 was 50°C. In the case of Ferroplasma MT17, the optimum 

temperature was 39°C and optimum pH was 1: 5. Growth of isolate MT17 was observed 

at temperatures up to 47°C, where ferrous iron oxidation and biomass (OD6oo) both 

increased exponentially (Figure 3.5). Although isolate MT17 did not grow at 50°C, 

ferrous iron oxidation was still observed, at the rate of 0.76 mM/h, but iron oxidation 

was no longer coupled to growth (Figure 3.5). Similarly, ferrous iron oxidation was 

found not to be coupled to growth of isolate MT17 at pH 0.55. In the medium 

conductivity range from 24 mS cm 1 to 46.2 mS cm-1, there were no observable effects 

of soluble potential on culture doubling times (Figure 3.6). However, at 15.8 mS cm'' 

(0 mM K2S04) and at 61 mS cm" (300 mM K2SO4), it appeared that the cell growth 

was not coupled to ferrous iron oxidation and the doubling times determined from 

optical densities were much slower than that measured by ferrous iron oxidation (Figure 

3.6). 
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Figure 3.3: Effect of pH on the culture doubling times (td's) of Lepiospirilhim MT6 (at 
43°C) and Ferroplasma MT 17 (at 37.5°C). Key: ", isolate MT 17 (based on ferrous iron 
oxidation); x, isolate MT17 (based on OD600 measurements); ", isolate MT6 (based on 
ferrous iron oxidation). 
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Figure 3.4: Effect of temperature on the culture doubling times (td's) of Leplospirilhum 
MT6 (at pH 1.8) and Ferrop/asma MT 17 (at pH 1.5). Key: ", isolate MT l7 (based on 
ferrous iron oxidation); isolate MT17 (based on OD600 measurements); ", isolate 
MT6 (based on ferrous iron oxidation). 
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Figure 3.5: Growth (A, A) and oxidation of ferrous iron (0, Q) by I erroplasma 
MT17 at 45°C (A,  ) and at 50°C (A, Q) (pH 1.5). 
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Figure 3.6: Effect of culture conductivity on the culture doubling times (td's) of 
Perroplasma MT17 (at 39°C, pH 1.5). Key: +, as determined by OD, 00 measurements; 
0, as determined by ferrous iron oxidation. 
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3.5 Analysis of chromosomal G+C contents of Leptospirillum MT6 and 

Ferroplasma MT17 

3.5.1 Methods 

Isolates MT6 and MT17 were grown in appropriate media (section 2.1.1) and cells were 

harvested. The chromosomal DNA was purified (section 2.5.9 and 2.5.10) and the G+C 

content of their chromosomal DNAs was determined (section 2.5.11). 

3.5.2 Results 

The G+C contents of the chromosomal DNA from Leptospirillum MT6 and 

Ferroplasma MT17 were determined as 55.2±0.3 mol% and 37.5±0.2 mol%, 

respectively. 

3.6 Evaluation of liquid media for growth of Ferroplasma isolates MT16 and 

MT17 

3.6.1 Introduction 

The liquid medium used originally for subculturing isolates MT16 and MT17, referred 

as "SLM' (Standard Liquid Medium), contained 1X heterotrophic basal salts, trace 

elements, 0.02% yeast extract, 0.0125% tryptone soya broth (TSB), 50 mM FeSO4 and 

50 mM K2S04 (final pH 1.5 adjusted with H2S04); this medium was used for optimum 

pH, temperature and conductivity experiments (section 3.4). In further experiments, a 

number of variations of the standard liquid medium were prepared and tested for growth 

of these archaea. 
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3.6.2 Methods 

One hundred millilitre flasks, each containing 50 ml of the following media (variations 

1 and 2) were prepared and inoculated with isolates MT16 and MT17, pre-grown in 

SLM. 

Variation 1-- 7 

a. SLM (control) 
b. SLM (FeSO4 replaced with 5mM tetrathionate) 
c. SLM (+ 10mM glucose) 
d. SLM (+ 10mM glycerol) 
e. SLM (FeSO4 replaced with Fe2(S04)3) 
f. SLM (-FeSO4) 

Variation 2 

a. SLM (control) 
b. SLM (-yeast extract, -TSB) 
c. SLM (-TSB) 
d. SLM (-yeast extract) 

Flasks were incubated, shaken, at 37°C. Samples were removed and tested for growth 

by measuring protein concentration of cultures (section 2.4.6). Experiments were 

carried out in duplicate. Statistical analysis (ANOVA and Student-Newman-Keuls 

method) was made using the InStat programme (GraphPad, USA) and SPSS programme 

(SPSS Science, USA), respectively. 

3.6.3 Results 

Growth of isolates MT16 and MT17 in different media are shown in Figures 3.7-3.10. 

In these figures, the protein concentration of each medium was translated to a relative 

percentage of protein concentration (compared to those in standard SLM medium which 

were denoted as 100%). Figures 3.7 and 3.8 show relative protein concentrations of 

MT16 and MT17 cultures at 87 hours and Figures 3.9 and 3.10 show relative protein 

concentrations at 70 hours, where, in each case, cells were in early-stationary phase. 
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Figure 3.7: Comparison of growth yields of Ferroplasma MT16 in different liquid 
media. * indicate two values that are significantly different (P<0.05) whereas - indicate 
those that are not significantly different (P>0.05: Student-Newman-Keuls method). 
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Figure 3.8: Comparison of growth yields of Ferroplasma MT17 in different liquid 
media. * indicate two values that are significantly different (P<0.05) whereas - indicate 
those that are not significantly different (P>0.05: Student-Newman-Keuls method). 
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Figure 3.9: Comparison of growth yields of Ferroplasma MT16 in different liquid 
media. * indicate two values that are significantly different (P<0.05) whereas - indicate 
those that are not significantly different (P>0.05: ANOVA). 
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Figure 3.10: Comparison of growth yields of Ferroplasma MT17 in different liquid 
media. * indicate two values that are significantly different (P<0.05: ANOVA). 

Growth of isolates MT16 and MT17 occurred in all of the media tested, expect those 

where organic materials were omitted (Figure 3.7-3.10). Both isolates were able to grow 

heterotrophically without ferrous iron; replacing ferrous iron with ferric iron had little 

effect on biomass yields. Addition of glucose and glycerol had negative impacts on 
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growth yields of isolate MT17 (P<0.05). Addition of tetrathionate to . 
SLM resulted in 

enhanced growth yields of isolate MT16, but not isolate MT17. Both isolates MT16 and 

MT17 showed significantly (P<0.05) greater growth yields in the absence of TSB and 

lesser growth yields in the absence of yeast extract. In the absence of organic materials, 

protein concentrations did not increase during culture incubation. 

3.7 Oxidation of tetrathionate by Ferroplasma MT16 and MT17 

3.7.1 Methods 

One hundred millilitre flasks (in duplicate), each containing 50 ml SLM (with 5 mM 

tetrathionate instead of FeSO4), were prepared. Flasks were inoculated with isolates 

MT16 or MT17 and incubated shaken at 37°C. Samples were removed and analysed for 

tetrathionate concentrations (section 2.4.4) and OD600 (section 2.2.2.1). 

3.7.2 Results 

It was found that, although ODs increased after -. 20 hours, there were lag periods of 120 

hours before both isolates started to oxidise tetrathionate (Figure 3.11 and 3.12). 

However, by 300 hours, almost all of the tetrathionate added had been oxidised by both 

isolates (though sulfate production was not measured and disappearance of tetrathionate 

may be due to production of thiosulfate); no decrease of tetrathionate concentration was 

observed in cell-free controls (data not shown). 

114 



10 

U 
r 
:C 
Ö_ 

t 

3 

r. + 
E"' 

0.1 

01 

0 
o. o1 

0,001 
300 

Figure 3.11: Growth (") and oxidation of tetrathionate (0) by »erroplasrna MT 16. 

10 - 

E 
r. 
:7 
:e c c r 
w =C 

v 

1 

o. 1 id 
0 60 120 180 240 

Time (hours) 

0.1 

0 
0.01 

- 0.001 
300 
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3.8 Effect of yeast extract on the growth of Ferroplasma MT16 and MT17 

3.8.1 Methods 

One hundred millilitre flasks, each containing 50 ml of "Ferroplasma" medium (section 

2.2.1.1.5) amended with different concentrations of yeast extract (0.005,0.01,0.02,0.05 

and 0.1% w/v) were prepared. Flasks were inoculated and incubated, shaken, at 37°C. 

Samples were removed periodically and analysed for protein (section 2.4.6) and ferrous 

iron concentrations (section 2.4.2.2). 

3.8.2 Results 

The effects of yeast extract on the growth and iron oxidation by isolates MT16 and 

MTI7 are shown in Table 3.3 and Figures 3.13 and 3.14. 
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Figure 3.13: Effect of yeast extract on iron oxidation by Perropkiwiti MT 16. Key: 
0.005%, X, 0.01%, J, 0.02%; J, 0.05%; X, 0.1 % yeast extract (w/v). 

116 

20 40 60 80 100 120 

Time (hours) 



60 

50 

8 
40 

V d 
30 

ý 20 
it 

10 

0 

Time (hours) 

Figure 3.14: Effect of yeast extract on iron oxidation by Ferroplasma MT17. Key: 0, 
0.005%; X, 0.01%, Cl, 0.02%; O, 0.05%; X, 0.1% yeast extract (w/v). 

Table 3.3: Effect of yeast extract on growth yields of isolates MT16 and MT17. 
[yeast extract] (%) 

(W/v) 
[protein] (µg/nil)* 

MT 16 MT 17 
0.005 4.0 f 2.0 6.6 f 0.4 
0.01 5.5 ±0.7 8.9 ±0.3 
0.02 12.6±0.2 12.2± 1.2 
0.05 10.8±0.2 9.6 ±0.6 
0.1 13.3±1.3 10.5±0.9 

* determined after 94 hours incubation. 

There was no noticeable effect of yeast extract concentrations between 0.005 and 0.05% 

on ferrous iron oxidation by isolate MT16 (Figure 3.13). Iron oxidation by isolate MT17 

was slower at the highest yeast extract concentration tested (0.1%; Figure 3.14). After 

94 hours of incubation (late-exponential phase), protein concentrations in cultures 

varied depending on the initial yeast extraction concentrations. Growth yields of isolates 

MT16 and MT17 increased with yeast extract concentrations up to 0.02%. However, 

growth yields did not increase further when yeast extract was provided at >0.05% (w/v). 
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3.9 Potential utilisation of glucose and glycerol by Ferroplasma MT16 and 

MT17 

3.9.1 Methods 

One hundred millilitre flasks, each containing 50 ml of "Ferroplasma" medium (section 

2.2.1.1.5) amended either with glucose, glycerol or unamended controls, were prepared. 

The final concentrations of glucose and glycerol were 5 mM and 10 mM, respectively. 

The flasks were inoculated with isolates MT 16 or MT 17, which had undergone several 

transfers through the same media. Flasks were incubated, shaken, at 37°C. Samples 

were removed at regular intervals and optical densities (OD600; section 2.2.2.1) and 

ferrous iron concentrations (section 2.4.2.1) were determined. 

3.9.2 Results 

The effects of glycerol and glucose on growth of Ferroplasma MT16 and MT17 are 

shown in Figures 3.15 and 3.16. Compared to control flasks, growth yields of both 

isolates were greater in the presence of glucose, especially in the case of isolate MT16. 

Isolates MT16 and MT17 showed different responses to the addition of glycerol; growth 

of isolate MT16 was inhibited to some extent (ferrous iron oxidation slowed down) 

while the presence of glycerol slightly enhanced the rate of iron oxidation and growth 

yields of isolate MT17. 
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Figure 3.15: Effect of glycerol and glucose on the growth of Perroplasma MT16 and 
MT 17 (analysed by OD600). Key: ", MT 16 +glucose; O, MT 17 +glucose, ", MT 16 
+glycerol; J, MT 17 +glycerol, ", MT 16 control; 0, MT 17 control. 
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Figure 3.16: Effect of glycerol and glucose on iron oxidation by herrop/usma MT 16 

and MT17 (analysed by Fe` oxidation). Key: ", MT16 +glucose, 0, MT17 +glucose; 
", MT16 +glycerol, j, MT17 +glycerol, ", MT16 control; v, MT17 control. 
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3.10 Anaerobic growth of Ferroplasma MT16 and MT17 in the presence of 

glucose and ferric iron 

3.10.1 Methods 

"Ferroplasma" medium (section 2.2.1.1.5) containing 50 mM Fe2(SO4)3 in place of 

FeSO4 and amended with 5 mM glucose, was deoxygenated with N2 gas and filtered 

through 0.2 µm cellulose nitrate membranes into sterile 20 ml anaerobic bottles (in 

triplicate). The bottles were then topped up with the inoculum until they were 

completely filled, and then sealed tightly with suba-seals. The inocula of isolate MT16 

and MT17 used were pre-grown in the same medium in universal bottles under 

microaerobic condition (37°C, unshaken). The bottles were incubated, unshaken, at 

37°C. Samples were withdrawn using a hypodermic syringe and tested for ferrous iron 

concentrations (section 2.4.2.2). After 75 hours, yeast extract (to 0.02% w/v) or glucose 

(to 5 mM) was added to two of the anaerobic cultures, whilst the third was unamended. 

3.10.2 Results 

Changes in ferrous iron concentrations during anaerobic incubation of these cultures are 

shown in Figure 3.17. Isolates MT16 and MT17 were both able to reduce ferric iron to 

ferrous iron, although at different rates. Isolate MT16 reduced ferric iron to a greater 

extent than isolate MT17. Addition of yeast extract or glucose (at 75 hours) did not 

affect ferric iron reduction by isolate MT17, whereas ferric iron reduction by isolate 

MT16 appeared to be stimulated by additional 0.02% (w/v) yeast extract. 
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Figure 3.17: Changes in ferrous iron concentrations during anaerobic incubation of 
I erroplasma MT 16 (blue) and MT 17 (red). Key: " ", 0.02 % yeast extract added at 75 
hours; ) ), 5 mM glucose added at 75 hours; 

, no additional organic carbon at 75 
hours; -, cell-free control. 

3.11 Pyrite oxidation by Ferroplasma MT17. 

3.11.1 Methods 

Isolate MT17 was pre-grown in "Ferroplasma" medium (section 2.2.1.1.5) at pH 1.5. 

Cells were harvested and resuspended in basal salts solution (pH 2.0) in order to remove 

residual organic materials. Six 100 ml flasks, each containing 50 ml of 2% pyrite 

medium (either Mintek pyrite concentrate or Cae Coch rock pyrite) adjusted to pH 2.0 

were prepared (section 2.2.1.1.4). Two of the 3 flasks with each type of the pyrite were 

amended with yeast extract (0.02% (w/v), final concentration). The flasks were 

inoculated with pre-grown cells and incubated at 37°C, shaken. Samples were removed 

at regular intervals and soluble total iron was analysed (section 2.4.3). 
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In addition, I erroplasma MT17 was tested for its ability to oxidise pyrite with an 

autotrophic sulfur-oxidising acidophile, At. ca/dus. Four 100 ml flasks, each containing 

50 ml of 2% pyrite medium (either Mintek pyrite concentrate or Cae Coch rock pyrite) 

adjusted to pH 2.0 were prepared (section 2.2.1.1.4) and inoculated with a pre-grown 

mixed culture of Eerroplasma MT 17 and Al. calchis (strain KU). Samples were removed 

at regular intervals and soluble iron analysed (section 2.4.3). 

3.11.2 Results 

During 45 days of the experiment, no biologically-enhanced pyrite oxidation was 

observed in the yeast-extract amended At. caldiis cultures (as expected), Mintek pyrite 
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Figure 3.18: Oxidation of pyrite (Cae Coch rock pyrite and Mintek pyrite concentrate) 
by Perropla. vma MT17. Key: ", Cae Coch rock pyrite (+0.02% yeast extract); , 

Cae 
Coch rock pyrite (-yeast extract); ", Mintek pyrite concentrate (+0.02% yeast extract); 

Mintek pyrite concentrate (-yeast extract); 0, Cae Coch rock pyrite (-yeast extract) 
"leached" by Al. caldris (control). The arrow indicates addition of 0.02% yeast extract at 
day 45. 
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concentrate cultures and the single (yeast extract-free) Cae Coch rock pyrite culture 

(Figure 3.18). Although there appeared to be some oxidation of the Mintek pyrite 

concentrate by isolate MT17 in the absence of yeast extract, this particular culture was 

not replicated. Since pyrite oxidation was not apparent in either of the two replicate 

cultures of isolate MT17 grown on Mintek pyrite concentrates amended with yeast 

extract, it was concluded that this archaeon was unable to oxidise the pyrite concentrate. 

With the Cae Coch rock pyrite cultures amended with yeast extract, oxidation started 

after about 15 days of lag period, but continued only for about 10 days (Figure 3.18). It 

was thought that this might have been due to limiting amounts of organic compounds. 

To examine whether additional yeast extract would re-stimulate pyrite oxidation, 

additional yeast extract (0.02% w/v) was added at day 45 to all of the Cae Coch rock 

pyrite cultures. This resulted in a stimulation of pyrite oxidation in the Cae Coch rock 

pyrite cultures that originally contained yeast extract, but not in those that, at the start 

of the experiment, did not contain yeast extract. 

Mixed cultures of Ferroplasma MT17 and At. caldus KU did not show apparent 

enhanced oxidation of either the rock pyrite or the pyrite concentrate, relative to sterile 

controls (data not shown). 

3.12 Discussion 

Four apparently diverse moderately thermophilic microorganisms were isolated from an 

aerated tank bioleaching pilot plant operated by Mintek, South Africa. Sequence 

analysis of 16S rRNA gene revealed that isolates MT1, MT6, NC, and MT16/MT17 

were most closely related to At. caldusr (99.5%), L. ferriphilumT (99.5%), "Sb. 

yellowstonensis" YTF1 (98.9%), and Fp. acidiphilumT (99.6%), respectively. Isolates 

MT16 and MT17 had 99.2% homology also to "Fp. acidarmanus" although only a 
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partial (849bp) sequence is available (at the time of writing) for the 16S rRNA gene of 

this archaeon. In addition, isolates MT 16 and MT 17 had 99.6% homology to each 

other. Isolates MT6, MT16 and MT17 were characterised in greater detail, because of 

their novelty (isolate MT6 being a moderately thermophilic Leptospirillum sp., while 

isolates MT16 and MT17 were strains of the recently discovered archaeon genus, 

Ferroplasma). 

Some characteristics of Leptospirillum MT6 and Ferroplasma MT17, in comparison to 

those of other known Leptospirillum spp. and Ferroplasma spp. are shown in Tables 3.4 

and 3.5. 

Table 3.4: Some characteristics of Leptospirillum spp. and isolate MT6 (Golovacheva 
et al.. 1992: Hinre. 2000, Coram and Rawlings, 2002). 

L1 

Third Party Material excluded from digitised copy. 
Please refer to original text to see this material. "' 
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Table 3.5: Some characteristics of Ferroplasma spp. and isolate MT17 (Golyshina et 
al., 2000; Edwards et al., 2000b). 
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There were apparent differences in some characteristics of isolate MT6 and other 

Leptospirillum spp.. From analysis of 16S rRNA gene sequence homology, G+C 

content and pH responses, isolate MT6 appears to be more closely related to L. 

ferriphilum than to L. ferrooxidans though the number of rrn gene copies of isolate 

MT6 (a useful means to distinguish between these species) was not determined. 

However, there were some distinct differences between isolate MT6 and L. ferriphilum 

in their temperature responses; isolate MT6 was more thermotolerant than L. 

ferriphilum with optimum and maximum temperatures of 43°C and 50°C, respectively. 
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Another interesting difference between isolate MT6 and both L. ferrooxidans and L. 

ferriphilum is its much faster growth: culture doubling time of isolate MT6 under 

optimal conditions (43°C, pH 1.5) was about 2 hours (and <4 hours at 37°C, pH 1.5). 

These values are significantly less than the culture doubling times of both L. 

ferrooxidans and L. ferriphilum of 12-15 hours at 37°C (Coram and Rawlings, 2002). At 

its optimum temperature (43°C), the culture doubling times of isolate MT6 did not vary 

greatly between pH 0.8 and pH 2.0, suggesting that this isolate has a wide pH range in 

which it grows well, and that it may well be able to grow at pH values <0.8 (the lowest 

value tested in the present work). 

From its temperature-response characteristics, isolate MT6 is similar to L. 

thermoferrooxidans. However, isolate MT6 is much more acidophilic than L. 

thermoferrooxidans (minimum pH of isolate MT6 <0.8, whereas that of L. 

thennoferrooxidans was found to be 1.3). It would be interesting, from a classification 

view point, to carry out further work on L. thermoferrooxidans, but this bacterium has 

unfortunately been lost (Johnson, 2001). 

Further work, for example examining DNA: DNA homologies, would be useful in 

elucidating the relatedness of isolate MT6 to other Leptospirillum spp.. 

Although the 16S rRNA gene sequence of isolate MT17 was 99.6% homologous to that 

of Fp. acidiphilumT, there were some differences in their characteristics (e. g., their 

capacities for tetrathionate oxidation and heterotrophic growth). Also, isolate MT17 was 

slightly more thermophilic (with optimum and maximum temperatures of 39°C and 

47°C, respectively) and much more acid-tolerant (with optimum and minimum pH of 

1.5 and <0.8, respectively) than Fp. acidiphilumT. The G+C content of the chromosomal 
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DNA from isolate MT17 was 37.5 mol%, which is similar to that (36.5 mol%) recorded 

for Fp. acidfphilumT (Golyshina et al., 2000). 

In addition, the 16S rRNA gene sequence of isolate MT17 was 99.2% homologous to 

"Fp. acidarmanus", though only 849bp 16S rRNA gene has apparently been determined 

for this acidophile. Isolate MT17 is similar to "Fp. acidarmanus" (but not to Fp. 

acidiphilum) in being capable to grow heterotrophically on yeast extract. "Fp. 

acidarmanus" is even more acid-tolerant than isolate MT17 and growth has been 

observed in media as low as pH 0 (Edwards et al., 2000b). Isolate MT17, Fp. 

acidiphilum and "Fp. acidarmanus" showed some differences in physiological traits, 

but they are phylogenetically very closely related and they may be strain variations of 

the same single species. 

It was indicated in some preliminary experiments that isolates MT16 and MT17 were 

not capable of utilising either glucose or glycerol as carbon sources. However, after a 

series of subculturing in glucose/glycerol-containing media, growth yields of both 

isolates were enhanced by the presence of glucose, especially isolate MT16. However, 

differences in OD600 values for cultures grown with and without glucose suggest that 

only a small proportion of the glucose provided (5 mM) was actually utilised by the 

isolates. Growth of isolate MT 16 was inhibited to some extent by glycerol. Although it 

was reported that Fp. acidiphilum does not utilise organic compounds, including 

glucose and glycerol (Golyshina et al., 2000), these results suggest that isolate MT16 

and isolate MT17 may be able to grow, after a series of subculturing, on defined organic 

compounds, such as glucose. 

Isolates MT16 and MT17 were able to reduce ferric iron to ferrous iron in anaerobic 

cultures. However, since no measurements were made of microbial biomass in this 

experiment, it cannot be concluded at this stage that these Ferroplasma isolates can 
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grow anaerobically by ferric iron respiration. Likewise, although it was found that both 

Mintek Ferroplasma isolates can oxidise tetrathionate (in apparent contrast to Fp. 

acidiphilum) it was not ascertained that these archaea can gain energy from oxidising 

reduced sulfur compounds. Given the obligate heterotrophic nature of these isolates, it 

would be necessary to limit the amount of organic carbon in cultures if energy gains (in 

terms of increased biomass) from tetrathionate oxidation were to be assessed. 

Ferroplasma MT17 displayed similar pyrite-oxidising characteristics to Leptospirillum 

MT6, in that it was able to oxidise the rock pyrite (from the Cae Coch mine) but not the 

pyrite concentrate obtained from Mintek. This may be due to the sensitivities of both 

isolates to residual flotation chemicals present in the mineral concentrate (chapter 6). 

Although Ferroplasma MT17 was able to oxidise pyrite in pure culture, this was only 

found in yeast extract-amended cultures, again confirming that (like Fni. acidophilum) 

Ferroplasma spp. are iron-oxidising heterotrophic acidophiles. Bacelar-Nicolau and 

Johnson (1999) found that mixed cultures of the sulfur oxidising mesophiles At. 

thiooxidans or A. acidophilum and Fm. acidophilum T-23 were able to oxidise pyrite, 

though pure cultures of these acidophiles did not. A hypothesis was presented whereby 

organic carbon originating from the sulfur-oxidisers (which utilised the reduced sulfur 

compounds formed as intermediate products of pyrite oxidation) was utilised by 

heterotrophic Fm. acidophilum, which then continued to generate ferric iron from 

ferrous iron, which in turn oxidised the pyrite. In theory, a similar mutualistic 

relationship might occur between Ferroplasma spp. and At. caldus; the fact that it did 

not might indicate that either insufficient or inappropriate organic materials (for 

Ferroplasma MT17) originated from the sulfur-oxidiser. Mixed cultures including 

Ferroplasma MT17, were also used in pyrite oxidising experiments in bioreactors 

(chapter 5). 
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Chapter 4 

Biooxidation of Pyrite by Defined Mixed Cultures of Moderately 

Thermophilic Acidophiles: Shake Flask Experiments 

4.1 Introduction 

In recent years, interest in biomining has focused more sharply on the use of 

thermophilic acidophiles, due to their abilities to enhance rates of mineral leaching and 

also to more effectively oxidise more recalcitrant minerals such as chalcopyrite 

(CuFeS2). For example, a moderately thermophilic culture is used commercially in the 

'BacTech' process (Miller, 1997). Commercial bioleaching operations have traditionally 

utilised non-defined microbial populations: Indeed, the microbiological composition of 

ore leaching systems is mostly unknown, although, more recently, this anomaly has 

began to be addressed by some research groups (Pizarro et at, 1996; Norris et at, 

2000). 

Moderately thermophilic acidophiles include various Gram-positive and Gram-negative 

bacteria, archaea and the rhodophyte Cyanidium caldarium (Doemel and Brock, 1971). 

Some of these microorganisms display synergistic interactions when oxidising minerals, 

such as Sb. thermosulfidooxidans and At. caldus (Dopson and Lindström, 1999) and 

Sulfobacillus spp. and Am. ferrooxidans (Clark and Norris, 1996a). Enhanced mineral 

leaching by mixed moderately thermophilic populations may result from oxidation of 

sulfur layers on mineral surfaces (e. g. by At. caldus) or by carbon transfers/interactions 

(Clark and Norris, 1996a; Dopson and Lindström, 1999). The possibility exists, 

therefore, that by control of microbial populations in bioreactor tanks, enhanced rates 

and efficiencies of mineral oxidation may be achieved. In this chapter, pure and mixed 
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cultures of moderately thermophilic bacteria were tested for pyrite oxidation in shake 

flasks. 

4.2 Biooxidation of pyrite by pure and mixed cultures of four moderately 

thermophilic acidophiles 

4.2.1 Methods 

The following bacteria were used in preliminary pyrite leaching experiments: (i) a 

thermotolerant Leptospirillurn (MT6); (ii) At. caldus KU; (iii) isolate GSM; (iv) 

Sulfobacillus NC. Replicate conical flasks (250 ml), each containing 100 ml of 2% 

pyrite medium (Cae Coch rock pyrite or Mintek pyrite concentrate, pH 2.0; section 

2.2.1.1.4) were autoclaved and inoculated (2%, v/v) with either cultures or various 

combinations of mixed populations of moderately thermophilic acidophiles, all of which 

had been pre-grown in 2% pyrite medium (Cae Coch rock pyrite, pH 2.0). Flasks were 

incubated at 45°C, shaken, at 130 rpm, and samples were removed at regular intervals 

for determination of total soluble iron (section 2.4.3), ferrous iron (section 2.4.2.2), 

dissolved organic carbon (DOC) (section 2.4.7), culture pH and redox potentials 

(section 2.4.1), and microbial populations by plate counts (sections 2.2.1.2.1.1 and 

section 2.2.1.2.1.2). For plating, serial dilutions were made using well-mixed cultures to 

ensure equal distribution of pyrite/pyrite concentrate. 

4.2.2 Results 

4.2.2.1 Oxidation of pyrite by pure cultures of moderate thermophiles 

Oxidation of the pyrite concentrate by pure cultures of the four moderate thermophiles 

and of rock pyrite by Leplospirillum MT6 is shown in Figure 4.1. No biologically- 

enhanced oxidation was observed in cultures of At. caldus or Leptospirillum MT6 (cell- 
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free control cultures with rock pyrite or pyrite concentrate showed similar trends in 

concentrations of soluble iron to pure cultures of At. caldus or Leptospirillum MT6; 

data not shown). In contrast, after a lag period of about 15 days, Leptospirillum MT6 

oxidised rock pyrite very effectively (Figure 4.1). The two Gram-positive bacteria, 

Sulfobacillus NC and isolate GSM displayed similar (though relatively slow) rates of 

oxidation of the pyrite concentrate. 

4.2.2.2 Oxidation of pyrite by mixed cultures of moderate thermophiles 

Oxidation of pyrite concentrate by various combinations of moderately thermophilic 

bacteria is shown in Figure 4.2. In this experiment, Sulfobacillus NC was inadvertently 

introduced into some mixed cultures as a contaminant. Szdlfobacillus NC appeared in 

supposedly pure cultures of Leptospirillum MT6 that have been grown on "autoclaved" 

pyrite concentrate. The iron-grown cultures ofLeptospirillum MT6 did not contain these 

Sulfobacillus, therefore the implication was that this Gram-positive acidophile had 

survived (presumably as endospores) the autoclaving process. 

With the exception of the mixed cultures of At. caldus and Leptospirillum MT6, all of 

the mixed cultures catalysed the oxidative dissolution of pyrite concentrate, though at 

different rates. In this experiment, the most effective oxidative dissolution of pyrite was 

seen with the mixed cultures ofLeptospirillum MT6 and Sulfobacillus NC. Where either 

At. caldus or isolate GSM (or both of these) were present with Leptospirillum MT6 and 

Sulfobacillus NC, slightly slower rates of pyrite dissolution were observed. In all mixed 

cultures that included isolate GSM (but excluded Sulfobacillcis NC) rates of oxidation 

were essentially the same as each other and very similar to those of pure cultures of 

isolate GSM (and much slower than in mixed cultures containing Sulfobacillus NC; 

Figure 4.2). 
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Figure 4.1: Oxidation of Mintek pyrite concentrate (solid lines) and Cae Coch rock 
pyrite (broken line) by pure cultures of moderate thermophiles. Key: ! and 
Leptospirillum MT6, f, At caldrus KU, f, isolate GSM; 0, Sulfohacillus NC. 
(Evaporation of water was not taken into account. ) 
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Figure 4.2: Oxidation of Mintek pyrite concentrate by mixed cultures of moderate 
thermophiles. Key: ", Lepioslpirilhum MT6-}Suitob icillus NC; A, Lepio. tilpirilhum 
MT6 Sulfobaci/lrrs NC+isolate GSM; A, Leptospfiri/him MT6' Sulfohacillu. s NC+A1. 

caldus KU; : ), Leplospirilhim MT6 ' Srz/fobacillus NC+isolate GSM+At. caldns KU; M, 
Lepiospirilhm7 MT6 -isolate GSM; L, isolate GSM+At. calchrs KU; ", Leplospirilluni 
MT6 - isolate GSM+A1. caldus KU; Q, Lepiosppiri/Irrm MT6+A1. calclr's KU. 
(Evaporation of water was not taken into account. ) 
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4.2.2.3 pH and redox potential trends in pyrite cultures of moderate thermophiles 

Data showing changes in pH and redox potentials in pure and mixed cultures of 

moderate thermophiles oxidising pyrite concentrate are shown in Figure 4.3. 
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Figure 4.3: Changes in pH (a) and redox potentials (b) in cultures of moderate 
thermophiles oxidising Mintek pyrite concentrate. Key: j, Lepp/o-VpiriI1wn MT6; f, 
isolate GSM, A, At. caldus KU;  , isolate GSM+A1. ca/c/rus KU, 

,, I. epploshiri/Inm 
MT6+isolate GSM; Q, Lcpio. spirillum MT6--At. caldus KU; ", Lcpploshirillnm 
MT6+Snlfohaci1fus NC; J, Lepiospiri1Iwn MT6, isolate GSM+A,. cir/c/us KU; `, 
Leptospirilhrm MT6- Sulfohacillrus NC+isolate GSM; ", Lfprospirillnm 
MT6-, Snlfohacil/us NC+Ai. caldus KU; X, Lej)lo. spirillnnt MT6 Su/fohacilht. s 
NC+isolate GSM I At. calchus KU. (Evaporation of water was not taken into account. ) 
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The pH declined in all cultures, though this was least in the pure cultures of At. caldus, 

Leptospirillum MT6, and in the mixed, cultures of these two (where there was no 

biologically-enhanced oxidation of pyrite) and greatest in those mixed cultures that 

contained Leptospirillum MT6, At. caldus KU and at least one of the Gram-positive 

bacteria. Redox potentials also differed markedly between cultures, with the highest 

values (> +900 mV) being found in cultures containing Leptospirillum MT6 and 

Sulfobacillus NC. For those cultures in which the primary oxidising bacterium was 

isolate GSM, redox potentials averaged some 150 mV lower than these. 

4.2.2.4 Microbial population changes in pyrite cultures 

Numbers of moderate thermophiles (estimated from plate counts) in the cultures that 

contained all four bacteria are shown in Figure 4.4, and numbers of moderate 

thermophiles in all cultures are shown in Figure 4.5. Because colonies of isolate GSM 

and Sulfobacillus NC were not distinguishable on plates, numbers of these two 

acidophiles are indicated as total numbers of the two. Numbers of Leptospirillum MT6 

in pure cultures, and also in the mixed cultures that excluded Sulfobacillus NC (and 

which did not oxidise) were < 102/ml (the limit of detection for the dilution range used). 

The dominant organism (by about an order of magnitude) in mixed cultures of the four 

acidophiles throughout incubation was At. caldus (Figure 4.4). This was also the case in 

all other mixed cultures that contained this sulfur-oxidiser (Figure 4.5b). In all mixed 

cultures that included both Leptospirillum MT6 and Sulfobacillus NC, the dominant 

iron-oxidiser was Leptospirillum MT6 (approx. 107/ml; Figures 4.4 and 4.5a), and the 

two Gram-positive bacteria (isolate GSM and Sulfobacillus NC) were present in smaller 

numbers (approx. 105/ml; Figures 4.4,4.5c and 4.5d). 
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Numbers of isolate GSM were as high as 107/ml, but only in those mixed cultures that 

did not also contain both Lepiospii-illnm MT6 and Snlfohacillus NC (i. e. where isolate 

GSM was the prime iron-oxidiser; Figure 4.5c). 
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Figure 4.4: Changes in bacterial populations during the oxidation of Mintek pyrite 
concentrate by a consortium of four moderate thermophiles. Key: ", Al. ca/du. ' KU, ", 
Lepiospiril/unt MT6,0, total numbers of isolate GSM and Sulfohaci/lu. v NC. 
(Evaporation of water was not taken into account. ) 

135 



F 

s 

ýi 
'f, 

J 

co (0 LC) (» co 
CD 

ö ö ö 0 0 

w w w w w w w w 
0 0 0 0 0 0 0 0 

Y 
J 

V 

'v 

Q 

(Iw/) P! aaP" I 

N 

U ; '3 0 

Lv= 

L N ü ^_ 
\ -U 

v ý z -1.14 
-ctg r 

r O f ý^ 

zz: 
cz 

4 I y 

+ 
ä o N r Yu c7 " 

vU 

Z, (A 

L `: " 
O 

rý ýp 

38 

+ 
2 

vl ä 
cn 

uä 'O 

Lt) 
o 

ý 'ý 0 c3 
OO O U 

öö 
ZZ n ö ö ' 2 . 

CC 

-c -C C 'O 

L++ 
+ 

ýý 



Measurements of DOC showed some interesting trends (Figures 4.6 and 4.7). 
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Figure 4.6: Changes in DOC concentrations during the oxidation of Mintek pyrite 
concentrate by pure cultures, and combinations of two moderate thermophiles. Key: S. 
Lepio. spfirillum MT6, ", isolate GSM, A, Al. ca/c. /rrs KU; IN, Le/ptospiriUtrm 
MT6 isolate GSM; Q, Leptospfirilliu n MT6+A1. caldrrs KU, isolate GSM+At. 

caldn. v KU. (Evaporation of water was not taken into account). 

100- 

90- 

80 

70 

60- 
_ v 50 -'O 

40 0 

30 - ý. 
f. 

20 

0 
05 10 15 20 25 

Time (da%s) 

Figure 4.7: Changes in DOC concentrations during the oxidation of Mintek pyrite 
concentrate by combinations of three or four moderate thermophiles. Key: ", 
Lepio. spirilltirn MT6 - isolate GSM+AI. caItIu. KU; Leplospirilhrrn 
MT6 - Sulfohacilhis NC; 

., 
Lepvospirilluin MT6 - Sulfbhacillus NC+isolate GSM; G, 

Leplo. v/pirillrm? MT6 - Sulfohcicilhcs NC+A1. calclris KU; Lcplo. spirillrn 
MT6-- Sulfohacillus NC+isolate GSM+At. ca/dus KU. (Evaporation of water was not 
taken into account. ) 
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Concentrations of DOC did not show any marked increase in those cultures where 

pyrite oxidation was not effective (i. e. pure cultures of At. caldius and Leptospirillum 

MT6, and mixed cultures of At. caldiss plus Leptospirillum MT6). DOC concentrations 

in pyrite-oxidising mixed cultures that excluded Leptospirillum MT6 and Sulfobaci/lus 

NC (total soluble iron <6,000 mg/1 at day25) increased up to -30 mgC/l. Pyrite- 

oxidising mixed cultures that included both Leplospirillum MT6 and Sulfobacillus NC 

(total soluble iron >10,000 mg/1) had higher DOC concentrations of 50-100 mgC/l. 

Among those mixed cultures that included both Leptospirilluni MT6 and Srilfobacil us 

NC, cultures with At. caldus accumulated more DOC (70-100 mg/1) than those 

excluding At. caldus (--50 mg /1), probably due to contribution from the autotroph, At. 

caldus. 

4.3 Oxidation of Mintek pyrite concentrate and Cae Coch rock pyrite by mixed 

cultures of Leptospirillum MT6 and other moderately thermophilic 

microorganisms. 

4.3.1 Introduction 

In earlier experiments (section 4.2), it was found that Leptospirillum MT6 was not able 

to oxidise the pyrite concentrate in pure cultures, but could do so in mixed cultures 

containing Gram-positive acidophiles. To test how widespread this phenomenon was, 

Leptospirillum MT6 was grown in mixed culture with a variety of other moderate 

thermophiles. 
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4.3.2 Methods 

Pure cultures of moderate thermophiles (Table 4.1), and mixed cultures of 

Leptospirillum W6 and one of these acidophiles, were prepared as inocula. One 

hundred millilitre flasks, each containing 50 ml of 2% pyrite medium (section 2.2.1.1.4) 

(2% Mlntek pyrite concentrate, pH 2.0) were prepared and inoculated with the pre- 

grown cultures. Also, to investigate whether oxidation of rock pyrite was enhanced in 

mixed cultures of acidophiles (relative to pure Leptospirillum MT6), a parallel 

experiment using this pyrite was carried out. Samples were taken at regular intervals 

and tested for total soluble iron (section 2.4.3). Duplicate flasks were used for each set 

of organisms. 

Table 4.1: List of moderate thermophiles used in shake flask pyrite oxidation 
experiments. 
Leptospirillum NTT6 

At. caldus KU (used only for rock pyrite oxidation) 

Sulfobacillus spp. Sb. thermosulfidooxidansT 
Sb. acidophilus ALV 

"Sb. }yellowstonenris " YTF I 
Suljobacillus NC 

Isolate GSM 

Am. ferrooxidans TH3 

Alicyclobacillus YTHI 

Ferroplasma MT 17 

4.3.3 Results 

Oxidation of pyrite concentrate and rock pyrite by pure cultures, and by mixed cultures 

of Leptospirillum MT6 and various other moderate thermophiles (at day 20) are shown 

in Figures 4.8 and 4.9. 
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Figure 4.8: Oxidation of Mintek pyrite concentrate by pure cultures of moderate 
thermophiles and mixed cultures of Leptospirilhrm MT6 and other moderate 
thermophiles (examined as total soluble iron values after 20 days incubation). Key:  , 

pure cultures of Lepto. spirillum MT6;  , pure cultures of the other named moderate 
thermophile;  , mixed cultures of the two acidophiles. 
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Figure 4.9: Oxidation of Cae Coch rock pyrite by pure cultures of moderate 
thermophiles and mixed cultures of Lepfos pri/luni MT6 and other moderate 
thermophiles (examined as total soluble iron values after 20 days incubation). Key:  , 
pure cultures of Lepiospirilluni MT6;  , pure cultures of the other named moderate 
thermophile;  , mixed culture of the two acidophiles. 
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In contrast to the earlier experiment using pyrite concentrate, there was some (limited) 

oxidation of this material by Leptospirillum MT6 in this experiment (as may be seen by 

comparison with pure cultures of Ferroplasma MT17, Alicyclobacillus YTH1 or Am. 

ferrooxidans TH3; Figure 4.8). For all of the mixed cultures tested (except 

Leptospirillum MT6 + Ferroplasma MT 17), oxidation of pyrite concentrate was greater 

than by the corresponding pure culture, though this was marginal in the case of 

Alicyclobacillus YTH1 due to the large standard errors (Figure 4.8). Also, with the 

mixed cultures of Leptospirillum MT6 and either isolate GSM or Sulfobacillus NC, the 

extents to which oxidation of pyrite concentrate was enhanced relative to pure cultures 

of the Gram-positive acidophiles were relatively small (Figure 4.8). 

In the case of rock pyrite, pure cultures of Ferroplasma MT17, Alicyclobacillus YTH1 

At. caldus KU and Am. ferrooxidans TH3 were, again, non-effective. Oxidation of 

pyrite by pure cultures of Leptospirillum MT6 was greater (by day 20) than by pure 

cultures of all the other acidophiles tested. Consequently, a degree to'which pyrite 

oxidation was enhanced by mixed cultures was less apparent with rock pyrite than with 

pyrite concentrate (Figure 4.9). Mixed cultures of Ferroplasma MT 17 and 

Leptospirillum MT6 displayed marginally less oxidation of both types of pyrite than 

pure cultures, at day 20 (Figures 4.8 and 4.9). Somewhat surprisingly, in view of the 

results with the pyrite concentrate (section 4.2), inclusion of Sulfobacillus NC appeared 

to retard the oxidation of rock pyrite by Leptospirillum MT6 (Figure 4.9). 
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4.4 Effect of At. caldus on oxidation of rock pyrite by Leptospirillum MT6. 

4.4.1 Introduction 

Previous reports (Norris, 1990; Dopson and Lindström, 1999) have suggested that 

mixed cultures of moderate thermophiles containing At. caldus are more efficient 

mineral oxidising systems than pure cultures of iron-oxidisers. However, some of the 

current data appeared to contradict this (section 4.2). In an attempt to clarify the 

situation, the oxidation of rock pyrite by pure cultures and mixed cultures of 

Leptospirillum MT6 and At. caldus were examined further. 

4.4.2 Methods 

Leptospirillum MT6 and At. caldus KU were pre-grown in 2% pyrite medium (Cae 

Coch rock pyrite, pH 2.0; section 2.2.1.1.4). One hundred millilitre flasks (in duplicate), 

each containing 50 ml of the same medium, were prepared and inoculated either with 

pure cultures or the mixed culture of the two acidophiles. The flasks were incubated at 

45°C, shaken, and samples were removed for determination of total soluble iron 

(section 2.4.3) and pH (section 2.4.1). In addition, cultures were tested (at day 77) for 

dissolved organic carbon (DOC) concentrations (section 2.4.7). 

4.4.3 Results 

The effect ofAt. caldus on the oxidation of rock pyrite by Leptospirillum MT6 is shown 

in Figure 4.10. As expected, no biological pyrite oxidation was observed in pure 

cultures of At. caldus. In contrast to the results obtained with pyrite concentrate (section 

4.2), mixed cultures of At. caldus and Leptospirillum MT6 appeared to be superior in 

oxidising rock pyrite than pure cultures of the iron-oxidiser, although this effect was 

marginal, and only apparent when cultures were incubated for protracted periods (>35 
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days). In contrast, the pH of mixed cultures of Leplo. spirilhim MT6 and Al. callus were 

much lower than those of pure cultures of Leptospirilluni MT6 throughout incubation. 

DOC concentrations of the cultures at day 77 are shown in Figure 4.11; these appeared 

to correlate with pyrite oxidation. 
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Figure 4.10: Oxidation of Cae Coch rock pyrite by pure and mixed cultures of 
Leplospirilhrm MT6 and Al. ca/dus KU (solid lines) and pH changes in these cultures 
(broken lines). Key: 00, Leptospirillum MT6 pure cultures; 0A, Al. caldlis KU pure 
cultures;  n, mixed cultures of the two acidophiles. 
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4.5 Oxidation of pyrite by pure cultures of Anz. ferrooxidans and mixed cultures 

of Am ferrooxidans, Leptospirillum MT6 and At callus. 

4.5.1 Introduction 

Results from earlier experiments (section 4.3) suggested that pyrite oxidation by mixed 

cultures of Leptospirillum MT6 and many Gram-positive acidophiles were superior to 

pure cultures of these acidophiles. In this study, one of the Gram-positive acidophiles, 

Ani. ferrooxidans, was examined further. 

4.5.2 Methods 

Shake flasks (100 ml), each containing 50 ml of 2% pyrite medium (Cae Coch or 

Mintek pyrite, pH 2.0; section 2.2.1.1.4) were autoclaved and inoculated (2%, v/v) with 

various combinations of pure and mixed populations of moderately thermophilic 

acidophiles, pre-grown in 1% Cae Coch pyrite media (pH 2.0). Duplicate flasks were 

incubated at 45°C, shaken (130 rpm), and samples removed aseptically at regular 

intervals for analysis of total soluble iron (section 2.4.3). 

4.5.3 Results 

Oxidation of rock pyrite and pyrite concentrate by pure and mixed cultures of these 

moderate thermophiles are shown in Figures 4.12 and 4.13. Am. ferrooxidans ICP and 

TH3 displayed different trends. In pure cultures, strain ICP oxidised pyrite concentrate 

more effectively than rock pyrite (Figure 4.12) whereas strain TH3 exhibited similar 

oxidation rates with both types of pyrite (Figure 4.13). Pyrite oxidation by mixed 

cultures of strain ICP and either (or both) of the two autotrophs (Leptospirillum MT6 

and At. caldus) was more effective than pure cultures of strain ICP. All of the mixed 
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cultures were again more effective than pure cultures of strain TH3, though pyrite 

oxidation by mixed cultures of strain TH3 and At. caldus were not as effective as those 

that also included Leptospirillum MT6. It was also noted that in this experiment the 

oxidation of rock pyrite and pyrite concentrate by pure cultures of Am. ferrooxidans 

TH3 was superior to that observed in the previous experiment (section 4.3). 
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DOC concentrations and redox potentials measured at day 34 (Am. ferrooxidans ICP) 

and day 35 (Am. ferrooxidans TH3) are shown in Figures 4.14 and 4.15, respectively. 

DOC concentrations in Am. ferrooxidans ICP cultures tended to be smaller than in Am. 

ferrooxidans TH3 cultures, and did not differ much between the different cultures. In 

contrast, DOC concentrations in Am. ferrooxidans TH3 cultures displayed wide 

variations, with those in pure cultures of An:. ferrooxidans TH3 (with pyrite 

concentrate) having the highest values (approx. 80 mg C/1). Redox potentials of mixed 

cultures (for both ICP and TH3) were slightly higher than those of pure cultures with 

rock pyrite (reflecting higher Fei+/Fe2+ ratios in the more effective mixed cultures). 

Significantly lower redox potentials of pure cultures of Am. ferrooxidans ICP were 

observed with pyrite concentrate than with rock pyrite though pyrite oxidation was 

greater with pyrite concentrate than with rock pyrite; the reason for this was not clear. 

4.6 Discussion 

The pure and mixed populations of moderately thermophiles used in these experiments 

oxidised rock pyrite and pyrite concentrate at different rates and to varying extents. 

It should be noted that in experiments in section 4.2, about 60 % of water appeared to be 

evaporated at day 25, and growth of acidophiles might have been affected (water 

evaporation was taken into account for all later experiments). 

With the initial experiments using pyrite concentrate and four species of moderate 

thermophiles (section 4.2), the most efficient bacterial systems contained both 

Leptospirillum MT6 and Sulfobacillus NC. Pure cultures were either non-effective 

(Leptospirillum MT6 or At caldus) or relatively poor (Sulfobacillus NC or isolate 

GSM) at oxidising the pyrite concentrate, though pure cultures of Leptospirillum MT6 

were able to oxidise the rock pyrite effectively. Although At. caldus was not able to 
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oxidise pyrite in pure culture, it was numerically the dominant bacterium in all mixed 

cultures, presumably because it oxidises the various reduced sulfur compounds formed 

from ferric iron attack on sulfidic minerals, which yield greater energy than ferrous iron 

oxidation (Sand et al., 1995). Results showing that pure cultures of Leptospirillum MT6 

were able to oxidise rock pyrite but not pyrite: concentrate suggested that some 

compound(s) in the latter inhibited the growth of this bacterium (this is examined 

further in chapter 6). When grown in mixed culture with Sulfobacillus NC, the apparent 

inhibition of Leptospirillum MT6 was removed, resulting in the most efficient pyrite 

concentrate oxidation observed. This was not the case with either isolate GSM or At. 

caldus, where rates of mineral dissolution by the mixed cultures of these and 

Leptospirillum MT6 were similar to those of pure cultures of these acidophiles. In 

cultures containing Sulfobacillus NC, Leptospirillum MT6 was the most numerically 

dominant iron-oxidiser, suggesting that where the inhibition was removed, this iron- 

oxidiser was the most significant pyrite-oxidising bacterium of those investigated. 

In theory, there could be three means by which At. caldus (and other sulfur-oxidising 

isolates Sulfobacillus NC and GSM) might affect pyrite oxidation; first, by decreasing 

culture pH due to their oxidation of sulfur and RISCs, forming sulfuric acid (thus 

preventing, at least in part, the formation of ferric precipitates); second, by removing 

sulfur deposits from the pyrite surface (thus facilitating ferric iron attack of the pyrite 

surface); third, by providing organic materials (lysates and exudates) for heterotrophic 

or mixotrophic iron-oxidisers (e. g. Am. ferrooxidans). However, in the current 

experiments, there was no evidence that At. caldus (and isolate GSM) had a positive 

effect on mineral oxidation by the first two means, since inclusion of either (or both) of 

these bacteria in cultures containing both Leptospirillum MT6 and Sulfobacillus NC 

resulted in a somewhat lower rates of mineral oxidation than in those containing only 
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Leptospirillum MT6 and Sulfobacillus NC. The lowest pH values (pH 0.9) were 

recorded in those mixed cultures that included At. caldus (higher values were found in 

mixed cultures containing isolate GSM) and such pH values were well below'the 

optimum pH (1.5) for Leptospirillum MT6. However, these low pH values, probably did 

not inhibit Leptospirillum MT6 significantly, since mixed cultures with isolate GSM 

(which did not cause lower pH) rather than At. caldus also displayed similar lower rates 

of pyrite concentrate oxidation. The reason why inclusion of either (or both) isolate 

GSM and At. caldus to cultures containing both Leptospirillum MT6 and Sulfobacillus 

NC resulted in a somewhat lower rate of mineral oxidation might be that exudates 

and/or lysates from these two bacteria resulted in a build up of soluble carbon materials 

(such as some organic acids which are toxic to some autotrophs) that had a negative 

impact on the primary iron-oxidiser in the system, Leptospirillum MT6. 

The hypothesis that At. caldus may not, in all situations, have a positive effect on pyrite 

oxidation by Leptospirillum MT6 was supported by data from another experiment using 

rock pyrite (section 4.4). Despite the fact that pH declined more rapidly from the start of 

the experiment in mixed cultures with At. caldus, there was no difference in pyrite 

oxidation by pure cultures of Leptospirillum MT6 and by mixed cultures containing the 

two bacteria, until day 35. Only after prolonged incubation was pyrite oxidation by 

mixed cultures found to be superior, quite possibly because, at this time, some ferric 

precipitates formed in pure cultures of Leptospirillum MT6 (due to the slightly higher 

pH) but not in the mixed cultures with At. caldus. 

In subsequent experiments (section 4.3), it was shown that mixed cultures of 

Leptospirillum MT6 and a range of Gram-positive bacteria could, apparently, enhance 

oxidation of the pyrite concentrate, relative to pure cultures. Either these Gram-positive 

bacteria werg also able to remove inhibitory compound(s) present in the pyrite 

150 



concentrate, thereby allowing Leptospirillum MT6 to emerge as the primary iron- 

oxidiser, or mineral oxidation by the (generally mixotrophic) Gram-positive moderate 

thermophiles was stimulated by addition of the autotroph as a source of organic carbon. 

In the case of mixed cultures of Leptospirillum MT6 and Alicyclobacillus YTH1, 

however, the second explanation is not tenable as Alicyclobacillus YTH1 is unable to 

oxidise ferrous iron or pyrite. The reason why mixed cultures with Leptospirillum MT6 

and Sulfobacillus NC were not as effective in later (section 4.3) as in earlier 

experiments (section 4.2) is not clear. The only difference was that, in the first 

experiment (section 4.2), Sulfobacillus NC was present as a contaminant of a 

supposedly pure culture of Leptospirillum MT6, and this mixed culture had been sub- 

cultured at least twice on pyrite concentrate prior to inoculation. In contrast, in the later 

experiment (section 4.3), the two bacteria were inoculated separately from pure cultures. 

It is possibly that, for the optimum synergy between these two moderate thermophiles 

that resulted in such a considerably strong enhancement of pyrite concentrate oxidation 

observed in the first experiment, the mixed culture community has to be reasonably well 

established. 

In the case of rock pyrite, enhanced pyrite oxidation was again observed by some mixed 

cultures ofLeptospirillum MT6 and Gram-positive acidophiles, relative to pure cultures. 

However, such effects were marginal, due to the ability of pure cultures of 

Leptospirillum MT6 to oxidise rock pyrite effectively. Inclusion of Sulfobacillus NC in 

mixed cultures resulted in no enhancement (or a slightly negative effect) of rock pyrite 

oxidation. Therefore, it was concluded that enhanced oxidation of pyrite by 

Leptospirillum MT6 may not always be achieved by co-culturing with Sulfobacillus 

NC. 
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Ferroplasma MT17 showed negative effects on the oxidation of both rock pyrite and 

pyrite concentrate by Leptospirillum MT6. This might be because of soluble carbon 

materials released from this archaeon that inhibit the growth of the bacterium, though 

the exact reason for this effect was not established. 

In the earlier experiment, the iron-oxidising moderate thermophile, Am. ferrooxidans 

(strain TH3) was found to be relatively ineffective at oxidising rock pyrite/pyrite 

concentrate in pure culture, but did enhance rock pyrite and pyrite concentrate oxidation 

when grown in mixed culture with Leptospirillum MT6. Subsequently, two strains of 

Am. ferrooxidans (strain TH3 and ICP) were examined further. In experiments 

described in section 4.5, strain TH3 was found to oxidise both rock pyrite and pyrite 

concentrate in pure culture (-3000 mg/I at day 20 and -6000 mg/1 at day 35), in contrast 

to earlier results (section 4.3). Strain ICP also oxidised both rock pyrite and pyrite 

concentrate, though the oxidation of pyrite concentrate was greater than that of rock 

pyrite. Although Am. ferrooxidans is capable of autotrophic growth on ferrous iron and 

heterotrophic growth on yeast extract (Clark and Norris, 1996a), it was reported in an 

earlier paper that autotrophic growth of strain TH3 was somewhat inconsistent (Norris 

and Barr, 1985). This may explain the variable autotrophic pyrite oxidation by strain 

TH3 found in the present study. Strain ICP was not studied in section 4.3; however, this 

strain appeared to grow more readily as an autotroph than strain TH3. 

Pyrite oxidation by mixed cultures of Am. ferrooxidans and either (or both) of the 

obligate autotrophs (Leptospirillum MT6 and At. caldits) was always greater than by 

pure cultures of Am. ferrooxidans. Very similar pyrite oxidation rates of all mixed 

cultures containing strain ICP suggest that this strain of Am. ferrooxidans may benefit 

from Leptospirillum MT6 and At. caldus primarily by obtaining carbon from the 
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autotrophs. Similarly, all mixed cultures including strain TH3 were superior at oxidising 

pyrite than were pure cultures of this acidophile. Mixed cultures of strain TH3 and At. 

caldus were displayed inferior pyrite oxidation than mixed cultures of strain TH3 and 

Leptospirillum MT6, suggesting that the primary mineral oxidiser in the latter was the 

Gram-negative acidophile. However, since no pure cultures of Leplospirillum MT6 

were used in this experiment, it is not possible to comment on how these compared with 

mixed cultures containing Am. ferrooxidans. Also, since bacterial populations were not 

determined, it was not known whether Leplospirillum MT6 or Am. ferrooxidans was the 

dominant iron-oxidiser in mixed cultures. This issue was, however, addressed later in 

bioreactor experiments (chapter 5). 

Culture DOC concentrations often appeared to correlate with pyrite oxidation. There 

were some exceptions: DOC concentrations (-100 mg/1) were greater in mixed cultures 

of Leptospirillum MT6 + Sulfobacillus NC + At. caldus than in mixed cultures of 

Leptospirillum MT6 + Sulfobacillus NC alone (-50 mg/1) though oxidation of pyrite 

was superior in the latter cultures (Figure 4.16). Greater DOC was probably due to the 

large numbers of autotrophic At. caldus in the former cultures, even though this sulfur- 

oxidiser did not appear to contribute to net pyrite oxidation. 
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Figure 4.16: Oxidation of pyrite concentrate (solid lines) and DOC concentrations 
(broken lines) in mixed cultures of Leptospirillun7 MT6 and Sulfohaci/hu. 1 NC (A") 
and in mixed cultures of Lepio. spirilhrni MT6, Sulfhbacilhrs NC and Al. caldns (As). 
(Evaporation of water was not taken into account. ) 

The DOC that accumulated in some of these cultures were surprisingly large for 

chemoautotrophic systems. Some idea of the scale of biomass required for the DOC 

concentrations recorded can be gained from the following. Since a typical bacterium 

weighs -10-12 g and -50% of bacterial dry weight (10% of the wet weight) is carbon, a 

typical bacterium contains 10-" g carbon. Therefore, a DOC concentration of 100 mg/l 

(=10-' ug/ml) is equivalent to 109 bacteria/ml. Soluble organic materials originate as 

exudates from active cells, as well as lysates from dead and dying cells (not all of which 

would be soluble), and about 10% of the carbon fixed by At.. ferrooxidaiis has been 

estimated to be present as small molecular weight exudates in iron-grown cultures 

(Schnaitman and Lundgren, 1965). 

There was some evidence of utilisation of soluble carbon materials by mixotrophic iron- 

oxidisers. Mixed cultures containing Leptnsynrilhnn MT6, Sulfbhacillrj. s NC, Al. cnlchu. c 
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and isolate GSM had lower DOC concentrations than mixed cultures that excluded 

isolate GSM. This might have resulted from isolate GSM consuming organic materials 

in mixed cultures. Similarly, although mixed cultures of Am. ferrooxidans ICP and an 

autotrophic At. caldus and/or Leptospirillum MT6 showed greater pyrite oxidation than 

pure cultures of Am. ferrooxidans, DOC concentrations were -almost the same in all 

cultures. This might have resulted from strain ICP consuming carbon materials 

originating from the autotroph(s), though this was not the case with strain TH3. 

Removal of organic carbon might also explain why mixed cultures containing Am. 

ferrooxidans ICP were superior at oxidising rock pyrite and pyrite concentrate than 

those containing strain TH3. The reason why DOC concentrations were markedly 

greater in pure cultures of Am. ferrooxidans TH3 when oxidising pyrite concentrate than 

when oxidising rock pyrite is not clear. 

Redox potentials (reflecting ratios of Fei+/Fe2+) also correlated often with pyrite 

oxidation, though this trend was not consistent when different types of pyrite were 

compared (redox potential ofAm. ferrooxidans ICP pure cultures were much lower with 

pyrite concentrate than with rock pyrite, despite pyrite oxidation being greater with the 

concentrate). Again, the reason for this is not clear. 

Clearly, with increasing awareness of the biodiversity of moderately thermophilic and 

thermotolerant prokaryotes, the use of defined mixed populations of these 

microorganisms to maximise the oxidation of sulfidic minerals merits further study. The 

results from the experiments described in this chapter indicate that defined mixed 

cultures of these prokaryotes may accentuate or diminish the rates and extent of sulfide 

mineral oxidation, relative to pure cultures. Pyrite oxidation by mixed cultures of 
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moderate thermophiles was investigated further using pH-controlled bioreactors in 

chapter 5. 
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Chapter 5 

Biooxidation of Pyrite by Defined Mixed Cultures of Moderately. 

Thermophilic Acidophiles: pH-Controlled Bioreactors 

5.1 Introduction 

In shake flask experiments (chapter 4), it was found that some mixed cultures of 

moderate thermophiles were superior to pure cultures in oxidising pyrite. In this 

chapter, using rock pyrite (from the Cae Coch mine) as the test sulfide mineral, selected 

combinations of moderate thermophiles were tested for mineral oxidation in pH- 

controlled bioreactors. The first biooxidation system tested used various combinations 

of Leptospirillum MT6, Am. ferrooxidans ICP, At. caldus KU and a non-iron/sulfur- 

oxidising heterotrophic isolate, Alicyclobacillus Y004. A later system assessed pyrite 

oxidation by mixed cultures of Leptospirillum MT6 and Ferroplasma MT 17, in the 

presence and absence of At. caldus KU. Ferroplasma-like acidophiles had been found 

to become gradually dominant in pilot plant aerated stirred tanks as mineral oxidation 

progressed (section 3.2). Therefore, Ferroplasma MT17 was chosen to be included in 

this system to examine the role of this novel isolate in longer-term mineral oxidation in 

bioreactors. 
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5.2 Methods 

The iron-oxidising acidophiles used were pre-grown in 2% pyrite medium (Cae Coch 

rock pyrite, pH 1.5; section 2.2.1.1.4). Yeast extract was added (0.02%, w/v) to the 

pyrite medium when growing Ferroplasma MT17. At. caldus and Alicyclobacillus 

Y004 were pre-grown in tetrathionate medium (section 2.2.1.1.2) and heterotrophic 

medium (section 2.2.1.1.3), respectively. Bacteria and archaea were enumerated using a 

Thoma counting chamber (section 2.2.2.2.1) and bioreactors (section 2.2.1.3) 

containing 1.5 L of 5% pyrite medium (Cae Coch rock pyrite, pH 1.5) were inoculated 

with 2.0 x 109 cells of each acidophile (resulting in 1.3 x 106/ml of each acidophile at the 

start of the experiments). 

Bioreactors were run as follows: 

System 1. 
Leptospirillum MT6 + Am ferrooxidans ± At. caldus 
(run in parallel for 46 days) 

System 2. 
Leptospirillum MT6 +At. caldus ± Am. ferrooxidans 
(run in parallel for 43 days) 

System 3. 
Leptospirillum MT6 ±Alicyclobacillus Y004 
(run for 44 days) 

System 4. 
Am. ferrooxidans ±At. caldus 
(run for 44 days) 

System 5. 
Leptospirillum MT6 + Ferroplasma MT 17 ± At. caldus 
(run in parallel for 44 days) 
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Culture pH was controlled automatically by addition of 2M H2S04 or 2M NaOH to the 

bioreactors. The initial pH was 1.50 (with lower/upper limits of 1.45/1.55) and, at day 

32 or 33, pH control was removed for about 3 days and pH changes were monitored. 

After that, the pH was set at 1.20 (with lower/upper limits of 1.15/1.25) and then to 1.0 

(with lower/upper limits of 0.95/1.05). Bioreactors were aerated at 0.2 L of atmospheric 

air/min, and stirred at 100 rpm. Acid and alkali inputs were monitored regularly. Prior 

to sampling, bioreactors were stirred vigorously (300 rpm) for approximately 5 minutes 

to distribute the pyrite equally in the cultures. Samples were removed for analysis of 

total soluble iron (section 2.4.3), ferrous iron (section 2.4.2.2), sulfate (section 2.4.5), 

dissolved organic carbon (DOC) (section 2.4.7) and microbial populations. The latter 

involved plating serially-diluted samples onto ferrous iron and ferrous iron/tetrathionate 

overlay plates (sections 2.2.1.2.1.1 and 2.2.1.2.1.2), and using FISH (section 2.5.12). 

Redox potentials were calculated from measured ferrous iron and ferric iron 

concentrations using the Nernst equation (equation 5.1): 

E= E° + RT/nF. 1og'F »/[F«uff] [5.11 

Where E is the redox potential, E° the standard redox potential (+770 mV for the 

ferrous/ferric couple at pH 2.0), R is the gas constant, T is temperature (°K), n is the 

number of electrons involved in the half-cell couple (1 for ferrous/ferric), and F is the 

Faraday constant. At 20°C, for the ferrous/ferric couple, this simplifies as: 

Redox potential (mV) = 770 + 59.2 log ([Fe2+]/[Fe3+]) [5.2] 

To analyse relative numbers of microbes using FISH, fixed cells were hybridised with a 

Cy3-labelled probe that targeted a specific acidophile, and simultaneously with a 

fluorescein-labelled eubacterial probe that targeted all eubacterial cells. Relative 

numbers of a specific acidophile were compared to total numbers of eubacterial cells 

targeted by a general eubacterial probe, and also to total numbers of microorganisms 

159 



stained with DAPI in the same field of view, to work out the abundance of a particular 

acidophile. To target Leptospirillum MT6, Am. ferrooxidans ICP, At. caldus KU and 

Ferroplasma MT17, LF655, ACM995, THC642 and FER656 probes (all Cy3-labelled) 

were used (section 2.5.12, Table 2.5). The abundance of Alicyclobacillus Y004 in the 

reactor containing Leplospirillum MT6 and Alicyclobacillus Y004 was calculated by 

subtracting numbers of Leptospirillum MT6 from those of total eubacterial cells. Since 

Ferroplasma MT17 was the only archaeon used in these experiments, when this 

acidophile was included in mixed cultures, total cell numbers were calculated by adding 

numbers of eubacterial cells (targeted by EUB338FI probe) to those of Ferroplasma 

MT17 cells (using the FER656 probe) in the same field of view. 
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5.3 Results 

5.3.1 Total soluble iron and sulfate concentrations and pyrite oxidation rates 

Total soluble iron and sulfate concentrations in bioreactors containing pure or mixed 

cultures of Leptospirillum MT6, At. caldus, Am. ferrooxidans and Alicyclobacillus 

Y004 are shown in Figure 5.1-I. Bioreactors containing mixed cultures of 

Leptospirillum MT6+Am. ferrooxidans+At. caldus were run twice (Figure 5.14a and b), 

and displayed slightly different extent of pyrite oxidation, possibly caused by different 

lag phases. Data from experiments using Ferroplasma MT17 are shown in Figure 5.1- 

II. 

A number of trends are apparent in Figures 5.1-I & -II. Firstly, there were more 

pronounced lag periods before pyrite oxidation commenced when Leptospirillum MT6 

than when Am. ferrooxidans was the iron-oxidiser present. In mixed cultures containing 

both these acidophiles, lag periods were again less than with Leptospirillum MT6 alone. 

Secondly, there was a marked "flattening off' of pyrite oxidation in some of these 

experiments. This was not due to the pyrite being limiting; even in cultures which 

displayed the greatest extents of pyrite oxidation, the iron solubilised represented only 

about 50% of that present in the pyrite (5%, w/v, of ground rock pyrite, which contains 

-80% FeS2, would give a theoretical maximum concentration of 18,567 mg soluble 

iron/1). Thirdly, there were clear differences, in many cases, between rates and extents 

of pyrite oxidation in bioreactor cultures run in parallel. The most dramatic of these 

were the far greater pyrite oxidation observed by mixed culture ofAm. ferrooxidans+At. 

caldus than by the pure culture of Am. ferrooxidans (Figure 5.1-Id), and by the mixed 

culture of Leptospirillum MT6+Ferroplasma MT17+At. caldus than by the 

Leptospirillum MT6+Ferroplasma MT17 mixed culture (Figure 5.1-II). The mixed 

culture containing Leptospirillum MT6+Am. ferrooxidans+AI. caldus was superior both 
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to the mixed culture containing Leptospirillum MT6+At. caldus (Figure 5.1-Ia) and to 

that containing Leptospirillum MT6+Am. ferrooxidans (Figure 5.1-Ib). Differences 

between the mixed culture containing Leptospirillum MT6+Alicyclobacillus Y004 and 

the pure culture ofLeptospirillum MT6 were marginal. The most notable difference was 

the smaller lag period with the mixed culture, though this have been due, at least in part, 

to these two cultures being slightly out of synchrony (the pure culture was 

commissioned later than the mixed culture, and the Leptospirillum inoculum was 

possibly less active in the former case). 

When comparing pyrite oxidation by pure and mixed cultures that were run at different 

times, factors such as that mentioned above, need to be borne in mind. However, there 

were interesting trends in both the rates at which pyrite was oxidised and the extents of 

pyrite oxidation (estimated as maximum concentrations of soluble iron and sulfate- 

sulfur: Table 5.1). The least effective pyrite oxidising system of those tested (in terms 

of rates and yields) was the pure culture of Am. ferrooxidans, while the mixed culture of 

this iron-oxidiser and the sulfur-oxidiser At. caldus was one of the most effective 

cultures used. Interestingly, although total pyrite solubilised was similar in the Am. 

ferrooxidans+At. caldus+Leptospirillum MT6 culture, the rates of pyrite oxidation in 

both culture runs were less than that in the Am. ferrooxidans+At. caldus system. One of 

the highest rates of pyrite oxidation occurred with the pure Leptospirillum MT6 culture, 

though maximum soluble iron in this culture was about 25% lower than in the Am. 

ferrooxidans mixed cultures. Data in Table 5.1 also indicate that, whilst At. caldus had a 

positive impact on pyrite oxidation by Am. ferrooxidans, it had a negative impact on 

Leptospirillum MT6. 

The "flattening off' of pyrite oxidation was most obvious in cultures where the only 

iron-oxidiser (and therefore primary mineral-oxidiser) was Am. ferrooxidans, and also 
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in the Leptospirillum MT6+Ferroplasma MT17+At. caldus mixed culture. In most 

mixed cultures that included Lepiospirillum MT6, pyrite oxidation continued even when 

the pH was lowered to pH 1.2 (Figure 5.1-I). This suggests that, given more prolonged 

incubation, final yields of iron solubilised would have been greater in cultures 

containing the Gram-negative iron-oxidiser. The exceptions to this were cultures which 

included both Ferroplasma MT17 and Leptospirillum MT6 (Figure 5.1-II). 

Interestingly, although Ferroplasnia MT17 appeared to retard pyrite oxidation by 

Leptospirillum MT6 (as observed in shake flask experiments; chapter 4) the mixed 

culture of these two iron-oxidisers plus At. caldus was the most effective of those tested, 

both in terms of rate and extent of pyrite oxidised (Table 5.1). 
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Table 5.1: Maximum total soluble iron and sulfate-S (corrected for sulfate present at 
day 0) concentrations, and pyrite oxidation rates in pure and mixed cultures of 
acidoDhilic microorzanisms. 

Maximum Maximum Maximum 
[Fe, i�ni, ] [sulfate-S] Pyrite 
(mg/1) (mg/1) * oxidation 

rates (mg 
Fe/day) 

Leptospirillurn MT64- 1t. caldus 8200 & 5100 & 
290 & 320 +, 1 m. ferrooxidans ** 9700 7400 

LeptospiriI/um MT6± tt. caldu. c 5200 2900 150 

Leptospirilluin MT6+, -lnt. errooxidans 5600 4500 150 

Leptospiri//um MT6+, 1 /icyclohacillus Y004 7400 5600 390 

Leptospirillum MT6 7100 5400 570 

: 1ni. ferrooxidans+. -1t. caldus 9200 8300 550 

-1 in. ferrooxidans 2500 1100 83 

Leptospiril1un, MT6+Ferroplasma MT l7 9700 8200 610 
+ 

. 
At. caldus 

Leptospirillum MTG+Ferroplnsma MT17 3000 2700 120 

* corrected for sulfate-S present in the medium, ** data from two separate experimental 
runs. 
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When pH control of the cultures was temporarily suspended (at about day 33, when 

culture pH was 1.45-1.50) the pH of all cultures fell somewhat, but to different extents 

(Table 5.2). The extent to which pH declined over these 3-day periods appeared to 

correlate with pyrite oxidation rates during the time that pH control was suspended, and 

was greatest in mixed cultures of Leptospirillum MT6+Am. ferrooxidans+At. caldus. 

Subsequently, when pH control of cultures was re-established (at lower pH values) there 

were increases in sulfate concentrations, due to the addition of sulfuric acid (Figure 5.1). 

Table 5.2: pH changes over 3-day periods, in pure and mixed cultures following 

Qiicnencion of nH control- 
pH change 

Leptospirillum MT6+At. caldus+Am. ferrooxidans 1.45 --> 1.32 (Figure 5.1-Ia) 
1.4541.31 (Figure 5.1-Ib) 

Leptospirillum MT6+At. caldus 1.464 1.44 

Leptospirillum MT6+Am. ferrooxidans 1.46- 1.40 

Leptospirillum MT6+Alicyclobacillus Y004 1.47-> 1.46 

Leptospirillum MT6 1.4541.39 

Am. ferrooxidans+At, caldus 1.5041.43 

Am. ferrooxidans 1.5041.47 

Leptospirillum MT6+Ferroplasma MT 17+At. caldus 1.5041.41 

Leptospirillum MT6+Ferroplasma MT 17 1.4841.43 
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5.3.2 Stoichiometry of pyrite oxidation 

When pyrite is fully oxidised, two moles of sulfate are generated for each mole of 

soluble iron released, assuming the mineralogical formula FeS2 for the mineral In 

Figure 5.2, sulfate concentrations in bioreactors (that resulting from pyrite oxidation, 

and excluding sulfate that was initially present in medium) were compared to 

"theoretical sulfate concentrations", calculated from multiplying soluble iron 

concentrations (mM) by two. Sulfate concentrations at the first sampling point were 

adjusted to 0 mM, except for the mixed culture of Leptospirillum MT6+At. caldus 

where sulfate concentrations at day 15 were adjusted to 0 mM, due to acid input to this 

culture up to day 15 (Figure 5.3). 

Data, shown in Figure 5.2, show that in some cultures there was a close fit between 

theoretical and actual sulfate concentrations, though in other cultures the two were 

significantly different, with actual sulfate concentrations being much lower than those 

predicted from concentrations of soluble iron. Greatest divergence was found in cultures 

which exhibited more extensive pyrite oxidation. 
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Figure 5.2-11: Theoretical sulfate-S concentrations achieved by complete oxidation of 
pyrite (" 0) and actual sulfate concentrations (A A) in bioreactors containing 
Leplospiri/Inrn MT6+1, errop/asma MTI7+A1. ca/c/ns (solid lines, " A) and 
Leplospiri/lum MT6+Ferrr p/a ma MT17 (broken lines, 0 A). 

5.3.3 pH control and acid and alkali input 

The amount of alkali (added as 2M NaOH) used to control pH in the bioreactor cultures 

is shown in Figure 5.3. Alkali addition was required in the most active cultures since 

pyrite oxidation is an acid-generating reaction. Apart from that which was required to 

drop culture pH to either 1.2 or 1.0, no acid was required to control pH in the 

bioreactors, with the single exception of the mixed culture of Leptopirillurn MT6+q1. 

caldus. With this culture, acid was pumped in to maintain pH 1.5 until day 15 (data not 

shown). Between days 0 and 15, there was no detectable increase of soluble iron 

concentrations in this culture and the initial ferrous iron was almost completely oxidised 

(Figure 5.4-Ia), resulting in proton consumption in the culture. 
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There was an apparent correlation between the extent of pyrite oxidation and the 

amount of alkali required to maintain the pH at 1.5 during the first phase of each of the 

bioreactor experiments. Also, in those experiments where cultures including At. caldus 

were compared with those not containing this sulfur-oxidiser, there was a very marked 

increase in alkali consumption in the -former (Figures 5.3-Ib and 5.3-II). At least some 

of this may be accounted for by the more extensive pyrite oxidation in the mixed 

cultures that included At. caldus; however, whilst Leptospirillum MT6+Am. 

ferrooxidans+At. caldus oxidised about twice as much pyrite from day 0-32 than the 

corresponding culture not containing At. caldus, alkali consumption was about 4-fold 

greater in the former culture. 

During the "free fall" periods (with a lower pre-set limit of pH 1.2), since culture pH 

did not go less than 1.2 in all bioreactors, there was no alkali input. At pH 1.2, there was 

still some alkali input in mixed cultures containing Leptospirillum MT6+At. caldus+Am. 

ferrooxidans (Figures 5.3-Ia and b). Although concentrations of total soluble iron still 

increased to some extent at pH 1.0 in these mixed cultures, this did not result in 

additional alkali input. 
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5.3.4 Ferrous iron concentrations and redox potentials 

Ferrous iron concentrations and calculated redox potentials in bioreactors are shown in 

Figure 5.4. Although not determined in all cases, there was -200-500 mg/l of ferrous 

iron present in the media at the start of the experiments, presumably resulting from the 

autoclaving of pyrite. In most cases, this ferrous iron was generally oxidised rapidly, 

particularly in mixed cultures that included Am. ferrooxidans. Thereafter, in most cases, 

concentrations of ferrous iron remained low (<250 mg/1) and redox potentials relatively 

high (+850-900 mV) throughout the experimental periods. The importance of continued 

aeration in maintaining high redox potentials is illustrated in Figure 5.4-Ia, where 

problems with the aeration supply at days 18,24 and 27 caused a rapid increase in 

ferrous iron concentrations and consequent decreases in redox potentials. In the pure 

culture of Am. ferrooxidans, after some of the ferrous iron was oxidised by this 

bacterium by day 5, concentrations of ferrous iron increased throughout the experiment, 

resulting in redox potentials of <+770 mV, due to ferrous iron concentrations being 

always equal to or greater than those of ferric iron. 

Contrasting redox potentials were also evident in cultures of Leptospirillum 

MT6+Ferroplasma MT17, with and without At. caldus (Figure 5.4-II). Higher redox 

potentials in the presence of the sulfur-oxidiser corresponded to the very different rates 

of pyrite oxidation observed with these cultures (Figure 5.1-II). 
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solid lines) and Lep>o. spirillum MT6+Ferroplasma MT17 (O /, broken lines). 
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5.3.5 Microbial population changes and DOC concentrations 

Microbial population changes in bioreactor cultures determined by plate counts and by 

FISH are shown in Figures 5.5-5.9. Total bacterial numbers determined by DAPI 

staining were inconsistent and did not appear to reflect actual bacterial numbers in 

bioreactors (Figure 5.10). Although cell preparation from pyrite media always followed 

the same procedure, DAPI counts showed wide variations. Therefore, FISH results 

shown here are relative numbers of bacteria, as percentages in pie graphs. With the 

FISH technique, all cells stained by DAPI were also detected with the EUBi38-flu 

probe (except the archaeon, Perroplasma MT17). Representative micrographs are 

shown in Figures 5.11 and 5.12. 
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(C) 

Figure 5.11: Micrographs from: (A) Mixed culture of Leptospirillum MT6+Am. 
ferrooxidans+At. caldus stained with DAPI (1), hybridised with EUB388FI (2) and 
hybridised with LF655Cy3 (3). (B) Mixed culture of Am. ferrooxidans+At. caldus 
stained with DAPI (1) and hybridised with ACM995Cy3 (2). (C) Mixed culture of 
Leptospirillum MT6+Am. ferrooxidans+At. caldus stained with DAPI (1) and 
hybridised with THC642Cy3 (2). 

182 



Figure 5.12: Micrographs from mixed culture of Leptospirillum MT6+Ferroplasma 
MT 17+At. caldus stained with DAPI (1), hybridised with EUB388FI (2) and hybridised 
with FER656Cy3 (3). 
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It was found that plate counts of some of the acidophiles tended to be spasmodic. This 

was most pronounced with At. caldus and Leptospirillum MT6, where sometimes no 

colonies were detected with the dilutions used whilst at other times colony forming 

units (CFUs) of these bacteria were readily obtained. The FISH analysis gave relative, 

rather than absolute, numbers of bacteria and archaea; these data were useful in 

assessing whether the fluctuating trends with plate counts truly reflected the microbial 

populations in the bioreactors. 

With the pure culture of Leptospirillum MT6, numbers of CFUs decreased to <102/ml 

after day 10, and did not increase again until after day 25 (Figure 5.5b). In the 

corresponding mixed culture with Alicyclobacillus Y004, numbers of Leptospirillum 

MT6 increased earlier, in line with the observed oxidation of pyrite (Figure 5.1-Ic). 

Interestingly, CFUs of Alicyclobacillus Y004 were detected throughout, albeit at 

relatively low numbers (-104/ml). Both organisms went into sharp decline when the 

culture pH fell. FISH data indicated that Leptospirillum MT6 was always the 

numerically dominant bacterium in the mixed culture, except at the last sampling (at pH 

1.0) where Alicyclobacillus Y004 accounted for 86% of stained cells (plate counts also 

showed slightly greater numbers of the Gram-positive acidophile at this time). DOC 

increased to greater concentrations in the mixed culture, particularly at the time that the 

culture pH declined. 

The pure culture of Am. ferrooxidans, which had been noted to be very ineffective in 

oxidising pyrite, gave CFUs of about 106/ml throughout the first (pH 1.5) phase, and 

these declined markedly when the culture fell to <1.2 (Figure 5.6b). In contrast, in the 

mixed culture with At. caldus, CFUs of Am. ferrooxidans increased to 6x 109/ml, 

before declining somewhat. Plate counts of At. caldus mirrored (but never exceeded) 

those of Am. ferrooxidans. Again, plate counts of both bacteria declined rapidly when 
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the culture pH was adjusted to pH 1.2. Interestingly, there appeared to be a good 

correlation between microbial populations in this mixed culture whether assessed by 

plate counts or by FISH. Again, DOC was observed to increase more rapidly and to a 

greater extent in the more effective (in terms of pyrite oxidation) mixed culture, 

particularly at pH 1.0. 

Comparative data from the mixed culture of Leptospirillum MT6+At. caldus±Am. 

ferrooxidans, are shown in Figure 5.7. In both cases, CFUs ofAt. caldus were absent on 

solid media for at least part of the experimental run. Colonies of Leplospirillum MT6 

were also only seen sporadically with inocula from the Leplospirillum MT6+At. caldus 

culture, but were obtained more consistently from the culture containing all three 

acidophiles. Colonies of Am. ferrooxidans were also recovered from the latter cultures 

throughout the experiment, in numbers similar to those of Leptospirillum MT6. FISH 

data from the Leptospirillum MT6+At. caldus culture indicated that both bacteria were 

present throughout the experiment, and that At. caldus was numerically dominant 

(accounting for 53-80% of cells). With the other system, FISH analysis detected all 

three bacteria, at similar abundance in the early stage, before becoming increasingly 

dominated by Am. ferrooxidans (until the pH was adjusted to 1.0, when At. caldus 

accounted for 64% of stained cells). 

The other permutation on this leaching consortium, in which the bacterium omitted was 

At. caldus rather than Am. ferrooxidans, showed some interesting trends (Figure 5.8). 

The mixed culture with the two iron-oxidisers contained similar numbers of 

Leptospirillum MT6 and Am. ferrooxidans (both plate counts and FISH) during the time 

that the culture was maintained at 1.5. When the culture pH fell, CFUs of both bacteria 

declined severely, and FISH data indicated that the impact of acidification was far 

greater for Am. ferrooxidans than for Leptospirillum MT6, which accounted for 90- 
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100% of stained cells at pH 1.2 and 1.0, respectively. In the corresponding mixed 

culture containing At. caldus, recovery of the latter bacterium on solid media was, 

again, very sporadic. Plate counts of both iron-oxidising bacteria were about an order of 

magnitude greater than those from the mixed culture that did not contain At. caldus. All 

three bacteria were detected using FISH, with At. caldus becoming increasingly 

abundant (relative to other bacteria) as leaching progressed. However, in contrast to the 

earlier mixed culture (Figure 5.7a), most cells detected by FISH when the culture pH 

was adjusted to 1.0 were Am. ferrooxidans, rather than At. caldus. DOC concentrations 

were also notably greater in the later mixed culture of the three bacteria than in the 

earlier culture (Figures 5.8a and 5.7a) and also greater than in the mixed culture of 

Leptospirillum MT6+Am. ferrooxidans (Figure 5.8b). 

Data from the last of the mixed leaching cultures to be examined, which included the 

archaeon Ferroplasma MT 17, showed some contrasting microbiological trends (Figure 

5.9). With the mixed culture of Leptospirillum MT6+Ferroplasma MT17, although 

CFUs of the archaeon were often similar or even greater than those of the bacterium, 

Ferroplasma MT17 was only detected by FISH when the culture pH was lowered to 1.2 

and 1.0, and even then it only accounted for 2-3% of stained cells. In the corresponding 

mixed culture containing At. caldus, CFU recovery of the sulfur-oxidiser of 108-109/ml 

were obtained for much of the period that the culture was held at pH I. S. FISH analysis 

confirmed that At. caldus was the dominant organism in the culture during this time, 

and that Leptospirillum MT6 was the more numerous iron oxidiser. A very different 

picture emerged when the culture was sampled at day 40, when the pH was 1.0. At that 

time, Ferroplasma MT17 accounted for 85% of cells in FISH analysis, with the 

remaining 15% being At. caldus. Again, DOC concentrations were found to increase to 
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much higher levels in the more efficient leaching culture (i. e. Leptospirillum MT6+ 

Ferroplasma MT 17+At. caldus). 

5.4 Discussion 

The objectives of this part of the research project were to compare the microbial 

oxidation of pyrite by defined pure cultures and consortia of moderately thermophilic 

acidophiles, and to examine changes in microbial populations in these cultures using a 

combination of cultivation and molecular techniques. Because of time constraints 

imposed by running parallel cultures in bioreactors for up to 44 days, the number of 

consortia permutations had necessarily to be -limited. One moderately thermophilic 

acidophile that was omitted from these experiments was the iron/sulfur-oxidiser, 

Sulfobacillus. Work with the Mintek stirred tank samples (section 3.2) had shown that, 

although a "Sb. yellowstonensis'=like bacterium was present in these cultures, these 

accounted for, at most, <6% of CFUs, and was therefore considered not be a very 

significant microorganism in that consortium. Similarly, shake flask leaching of Cae 

Coch rock pyrite (chapter 4) had indicated that Sulfobacillus-like bacteria had a slightly 

negative impact on pyrite oxidation by Leptospirillum MT6. In contrast, although no 

Am. ferrooxidans-like bacteria were detected in the Mintek cultures, data from shake 

flask experiments had indicated that inclusion of this acidophile in mixed cultures might 

enhance pyrite oxidation, relative to pure cultures. 

In the pyrite-oxidising experiments using pH-controlled bioreactors, cultures containing 

different microbial consortia displayed different trends. The least effective pyrite 

oxidising system of those tested (in terms of rates and yields) was the pure culture of 

Am. ferrooxidans, where redox potentials were <+770 mV throughout (whereas all the 
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other cultures developed redox potentials of +850-900 mV) and there were no marked 

increases in numbers of bacteria. However, the mixed culture of Am. ferrooxidans and 

the sulfur-oxidiser, At. caldus, was one of the most effective cultures used. It was 

suggested from shake flask experiments that Am. ferrooxidans might benefit from both 

Leptospirillum MT6 and At. caldus by utilising organic carbon compounds originating 

from these autotrophs (chapter 4). However, in pH-controlled bioreactors, the mixed 

culture of Am. ferrooxidans+Leptospirillum MT6 was far less effective than that of Am. 

ferrooxidans+At. caldus, though both mixed cultures were more effective than the pure 

culture of Am. ferrooxidans. This, at least in part, might have been due to the greater 

numbers of At. caldus (-102-fold) than Leptospirillum MT6 present in mixed cultures 

with Am. ferrooxidans, and, consequently, provision of more organic carbon for Am. 

ferrooxidans. This hypothesis was supported by higher DOC concentrations found in 

the mixed culture of Am. ferrooxidans+At. caldus (though presumably not all of the 

organic carbon originating from At. caldus would have been metabolised by Am. 

ferrooxidans). In addition, At. caldus might have contributed to more effective pyrite 

oxidation by Am. ferrooxidans by removing sulfur deposits from mineral surfaces. It 

would be interesting to test whether pyrite oxidation by Am. ferrooxidans in the 

presence of added organic materials (e. g. yeast extract) would be as effective as in the 

presence of At. caldus (thereby eliminating any possible enhancement due to sulfur 

oxidation). In this mixed culture (and also the mixed culture of Leptospirillum 

MT6+Ferroplasma MT17+At. caldus) there was a marked "flattening off' of pyrite 

oxidation. One possible reason for this might have been limiting concentrations of one 

or more inorganic nutrients, though the exact cause was not determined. 

Interestingly, although At. caldus had a positive impact on pyrite oxidation by Am. 

ferrooxidans, it had a negative impact on Leptospirillum MT6 (as noted also in shake 
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flask experiments; chapter 4). One reason for this might be that these two obligate 

autotrophs compete for inorganic carbon, though the numbers of Leptospirillum MT6 in 

mixed culture with At. caldus were quite similar to those in the pure culture. It was also 

found that both Am. ferrooxidans and Ferroplasma MT17 also had a negative impact on 

pyrite oxidation by Leptospirillum MT6. Leptospirillum MT6 and Am. ferrooxidans 

would be expected to compete for their common energy source (ferrous iron) but, again, 

plate counts indicated that numbers of Leptospirillum MT6 in the pure culture and the 

mixed culture with Am. ferrooxidans were quite similar. Pyrite oxidation was markedly 

less efficient in the mixed culture of Leptospirillum MT6 and Ferroplasma MT17 than 

in mixed cultures of Leptospirillum MT6 with either At. caldus or Am. ferrooxidans. 

This suggests the possibility that an antimicrobial agent, which is active against 

Leptospirillum spp., is produced by this archaeon, though this hypothesis was not tested. 

In contrast to the negative impact on pyrite oxidation by Leptospirillum MT6 caused 

either by Ferroplasma MT17 or (to a lesser extent) by At. caldus, the mixed culture of 

Leptospirillum MT6+Ferroplasma MT17+At caldus was particularly adept at oxidising 

pyrite, both in terms of rate and extent of mineral oxidation. Ferroplasma MT17 

appeared to be an obligately heterotrophic iron-oxidiser (chapter 3) and, earlier shake 

flask experiments indicated that Ferroplasma MT17 was not able to oxidise pyrite in 

mixed cultures with At. caldus (chapter 3), though it is possible that the efficient pyrite 

oxidation observed in the bioreactor containing Leplospirillum MT6+Ferroplasma 

MT17+At. caldus resulted from mutualistic interactions involving all three acidophiles, 

including utilisation of organic exudates and lysates from At. caldus (which were 

present in large numbers) by the heterotrophic Ferroplasma. A similar scenario has 

been described for pyrite oxidation by the mesophiles "Ferrimicrobium acidiphilum" (a 

189 



heterotrophic iron-oxidiser) and At. thiooxidans (an autotrophic sulfur-oxidiser; 

Bacelar-Nicolau and Johnson, 1999) 

Differences between the mixed culture of Leptospirillum MT6+Alicyclobacillus Y004 

and the pure culture of Leptospirillum MT6 were marginal. Pyrite oxidation by the pure 

culture of Leptospirillum MT6 was clearly more effective than by the pure culture of 

Am. ferrooxidans, but less effective than by Am. ferrooxidans mixed cultures. 

Alicyclobacillus Y004, as a non-iron/sulfur-oxidising heterotroph, did not show any 

noticeable impact on pyrite oxidation by Leptospirillum MT6, though it did persist in 

relatively low numbers (-. 104/ml) throughout incubation. 

The mixed culture containing Leplospirillum MT6+Am. ferrooxidans+At. caldus was 

superior both to the mixed culture containing Leptospirillum MT6+At. caldus and to 

that containing Leptospirillum MT6+Am. ferrooxidans. Since numbers of the two iron- 

oxidisers in this mixed culture were similar, it is not possible to conclude which one of 

them was the primary iron-oxidising bacterium in the system. The major differences 

observed with mixed cultures of Leptospirillum MT6+Am. ferrooxidans+At. caldus and 

Am. ferrooxidasns+At. caldus was that, in cultures that included Leptospirillum MT6, 

the pyrite oxidation rate was slower and pyrite oxidation continued even when the pH 

was lowered to pH 1.2 (no "flattening off' was observed during incubation), suggesting 

that, given more prolonged incubation, final yields of iron solubilised might have been 

greater with the mixed culture of Leptospirillum MT6+Am. ferrooxidans+At. caldus 

than with Am. ferrooxidans+At. caldus. Therefore, inclusion of Leptospirillum MT6 

might be a way to avoid the "flattening off' phenomenon observed in a number of 

mixed cultures, thereby potentially achieving greater yields of pyrite oxidised. 

However, this hypothesis needs to be verified by testing long-term pyrite oxidation by 

mixed cultures containing and not containing Leptospirillum MT6. 

190 



There was a close fit between theoretical sulfate concentrations (calculated from total 

iron solubilised and assuming the mineralogical formula for pyrite to be FeS2) and 

measured sulfate concentrations in some cultures, though the two were noticeably 

different in others. Although Schippers and Sand (1999) found different amounts of 

sulfate produced during pyrite oxidation by L. ferrooxidans and iron/sulfur-oxidising At. 

ferrooxidans, in the current experiments, inclusion of sulfur-oxidiser, At. caldus did not 

result in enhanced concentrations of soluble sulfate. 

The initial attack on pyrite is generally acknowledged to be mediated by ferric iron 

(equation [5.3]). 

FeS2 + 6Fe3+ + 3H20 4 7Fe2+ +S2032- + 6H+ [5.3] 

The oxidation of thiosulfate may be catalysed either biologically (equation [5.4]), or 

chemically (equation [5.5]). 

S2O32-+ 202 + H2O 4 2SO42" + 2H+ [5.4] 

52032"+ 8Fe3+ + 5H20 4 2S042" + 8Fe2++ IOW [5.5] 

The closest fit between the theoretical and actual sulfate concentrations was observed in 

mixed cultures of Leptospirillum MT6+Ferroplasma MT17, Leptospirillum MT6+At. 

caldus, and the pure culture of Am. ferrooxidans, and also at the initial stages of pyrite 

oxidation in some other cultures. This might indicate that thiosulfate oxidation (either 

biological or chemical) tends to be more complete when rates of pyrite oxidation are 

low. In cultures where pyrite oxidation was extensive, actual sulfate concentrations 

were much lower than those predicted theoretically, implying that thiosulfate oxidation 

(either biological [5.4] or chemical [5.5]) does not progress as fast as iron solubilisation 

[5.3]. Another reason why there were differences between theoretical and actual sulfate 

concentrations is that the true chemical composition of the pyrite used not being FeS2, 
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but being FeSx (x<2), which would mean that measured sulfate concentrations would be 

lower than those predicted from iron solubilisation. 

In contrast to the sulfate data, it was found that more alkali was required to maintain pH 

in cultures that included At. caldus than in those that did not contain this sulfur-oxidiser. 

Whilst Leptospirillum MT6+Am. ferrooxidans+At. caldus oxidised about twice as much 

pyrite (resulting in twice as much sulfate produced) from day 0-32 than the 

corresponding culture not containing At. caldus, alkali consumption was about 4-fold 

greater in the former, indicating that the system including At. caldus produced more 

protons (presumably as sulfuric acid). This was also the case in mixed cultures of Am. 

ferrooxidans+/-At. caldus and Leptospirillum MT6+Ferroplasma MT 17+1-A t. caldus. 

The FISH analysis was found to be a very useful tool to assess relative microbial 

abundance in mineral oxidation systems, especially in assessing whether the fluctuating 

trends with plate counts truly reflected the microbial populations in the bioreactors. The 

reason why plating periodically failed to detect some microbial populations may due to 

the physiological state of the acidophiles, in that cells might only have formed colonies 

on plates if they were metabolically active. Numbers of iron-oxidising bacteria in mixed 

cultures often appeared to correlate with pyrite oxidation. In the Leptospirillum MT6 

systems, numbers of this iron-oxidiser were greatest in the most effective mixed 

cultures of Leptospirillum MT6+Am. ferrooxidans+At. caldus and Leptospirillum 

MT6+Ferroplasma MT17+At. caldus. Also in the Am. ferrooxidans systems, the 

numbers of this iron-oxidiser were greatest in the most effective mixed culture (An:. 

ferrooxidans+At. caldus) and slightly lower in the mixed culture of Leptospirillum 

MT6+Am. ferrooxidans+At. caldus. The numbers of At. caldus in these highly effective 

mixed cultures were also greater than in any other cultures. Interestingly, despite its 
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inability to oxidise pyrite, At. caldus was often present in similar or greater numbers 

than the primary iron-oxidiser(s) in mixed cultures, presumably reflecting its ability to 

utilise RISCs (which are more energy rich than ferrous iron) produced during pyrite 

oxidation (Sand et al., 1995). Interesting microbial population trends were observed in 

mixed cultures ofLeptospirillum MT6+Ferroplasma MT17+At. caldus. Despite the fact 

that Ferroplasma MT17 was not detected either by plating or by FISH, inclusion of this 

archaeon appeared to have a positive impact on pyrite oxidation. Both rates of pyrite 

oxidation and the numbers of At. caldus were much greater in this culture than in the 

corresponding mixed culture of Leptospirillum MT6+At. caldus. Even at pH 1.2-1.0, 

Ferroplasma MT17 accounted only for 2-3% of the total population in the mixed 

culture without At. caldus, while in the culture containing At. caldus, this archaeon (at 

pH 1.0) accounted for 85% of cells in FISH analysis. Population changes in the mixed 

culture of Leptospirillum MT6+Ferroplasma MT 17+At. caldus analysed by FISH were 

similar to those observed in the Mintek pilot plant aerated tank operation described in 

section 3.2, where the numbers of Leptospirillum and (more latterly) of At. caldus 

decreased as mineral pyrite oxidation progressed, while those of the Ferroplasma 

isolates increased. 

In the majority of cases, Am. ferrooxidans was found to be most acid-sensitive of the 

microorganisms used in these leaching studies, and plate counts of this iron-oxidiser 

decreased significantly when the culture was lowered to 1.2 and then to 1.0, though 

numbers of all the other bacteria also decreased when cultures were acidified. However, 

it was found that Ferroplasma MT17 was far less acid-sensitive, and dominated the 

microbial population at pH 1.2 to 1.0 in the mixed culture with Leptospirillum MT6 and 

At. caldus. A further possible reason for the success of this archaeon at low pH is that 
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death of the bacteria present would have resulted in enhanced levels of DOC from lysed 

cells that would have been utilised by the heterotroph. 

In commercial mineral processing, it would be advantageous to achieve enhanced 

mineral oxidation rates and yields with minimum costs. In light of the data presented in 

the current work, it was found that these objectives may be achieved, at least in part, by 

selecting particular mixed populations of bioleaching microorganisms. The most 

effective mixed cultures included heterotrophic iron-oxidisers (Am. ferrooxidans and/or 

Ferroplasma MT17), and the requirement of these heterotrophic iron-oxidisers for 

organic carbon could be met by that originating from autotrophic acidophiles, which 

would minimise the cost of adding extraneous organic matter. Since some of the more 

highly effective mixed cultures (which showed shorter lag phases, and faster rates of 

pyrite oxidation) tended to display a "flattening off' of pyrite oxidation, further studies 

on circumventing incomplete mineral oxidation are necessary to optimise the 

bioleaching process. 
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Chapter 6 

Effect of Flotation Chemicals on Some Moderately Thermophilic 

Acidophilic Prokaryotes 

6.1 Introduction 

The results described in chapter 4 suggested that growth of the autotrophic iron- 

oxidiser, Leptospirillum MT6, might have been inhibited in cultures containing Mintek 

pyrite concentrate due to the presence of residual flotation chemicals. Depending on the 

operational conditions and choice of chemicals, residual flotation reagents may remain 

in the ore slurry and be carried over to the leaching reactors. Inhibition of At. 

ferrooxidans by flotation reagents has been reported (Loon and Madgwick, 1995; 

Valdivia and Chaves, 2001; Tuovinen, 1978). Although At. ferrooxidans had been 

considered to be the most important acidophile in bioleaching systems for many years, 

the greater importance of acidophiles such as Leptospirillum spp. and some 

thermotolerant acidophiles in bioleaching system is now increasingly recognised 

(chapter 1). 

In this chapter, the effect of flotation chemicals on some mesophilic and moderately 

thermophilic acidophiles is described. The flotation chemicals studied here were those 

used in commercial mineral processing processes, and were provided by BHP Billiton 

(Randberg, South Africa). The "sensitivity" of Leptospirillum MT6 to pyrite concentrate 

was compared to the type strains of mesophilic L. ferrooxidans and At. ferrooxidans. 

Five species of moderate thermophiles were tested for their sensitivity to a variety of 

floatation chemicals. Also, the potential use of Sulfobacillus NC for detoxification of 

pyrite concentrate, thereby facilitating growth of Leptospirillum MT6, was investigated. 
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Flotation reagents 

In a metal ore, the valuable minerals are present as part of a coherent mixture of 

intergrown mineral crystals, each having a definite chemical composition. To liberate 

the individual mineral particles, it is necessary to grind the ore to very fine pulps. To 

separate the desired mineral in a concentrate from the accompanying unwanted gangue 

minerals, the finely ground ores are treated with flotation reagents. 

Collectors 

In the flotation process, the physical separation of minerals is achieved by the use of 

chemical reagents known as collectors. The collectors impart a hydrophobic coating to 

the mineral particle to be floated and a hydrophilic character to unwanted gangue 

minerals, when the mineral-containing ore is conditioned with them. Once the mineral 

surface has obtained a hydrophobic coating due to the action of a collector, it can adhere 

to an air bubble and thus will "float" to the surface. A collector consists of two moieties: 

firstly, a part of the molecule that becomes attached to an air bubble, i. e. the non-polar 

part of the molecule, and secondly a part that reacts with the mineral surface. 

One of the most widely used groups is sulphydric collectors. All sulfidic minerals can 

be floated to varying degrees of success by any of the sulphydric collectors. This group 

includes the following, where R and R' are carbon chains of varying lengths. 
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S 
Xanthates 11 

RO-C-SM (M = Na or K) 

Dithiocarbamates R' S 
II 

/ 
N-C-SNa (R' =R or H) 

R 
Thionocarbamates s 

11 
RNH-C-OR 

Dithiophosphates R'O,,. 
ý p/s 

RO äM (M= H, NH4 or metal) 

Mercaptobenzothiazoles 

©>_SNa 

Frothers 

Frothers are surface-active, usually non-ionic, molecules whose function in the flotation 

system is to provide a large air-water interface of sufficient stability to ensure that 

floated particles will not fall back into the flotation pulp before they can be removed. 

This froth can be skimmed off to yield a concentrate in which the desired mineral is 

present in a much higher concentration than in the original ore. 
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6.2 Effect of different concentrations of Mintek pyrite concentrate on pyrite and 

iron oxidation by Leptospirillum spp. 

6.2.1 Introduction 

In earlier experiments (chapter 4), it was found that Leptospirillum MT6 was not able to 

oxidise Mintek pyrite concentrate in pure culture. This was considered to be possibly 

due to some inhibitory compound(s) present in the pyrite concentrate. In this study, to 

examine whether or not this iron-oxidiser was able to oxidise the pyrite concentrate 

when supplied at lower concentrations (and corresponding lower concentrations of the 

"inhibitory compound(s)") different concentrations of pyrite concentrate were tested for 

oxidation by Leptospirillum MT6. The type strains of L. ferrooxidans and At. 

ferrooxidans were also tested for oxidation of pyrite concentrate as reference bacteria. 

Also, to test whether "inhibitory compound(s)" are present either (or both) in liquid or 

solid phase of the pyrite media after autoclaving, the liquid and solid phases of 

autoclaved pyrite cultures (containing 1 or 2% pyrite concentrate) were separated prior 

to inoculation of Leptospirillum MT6. 

6.2.2 Methods 

For the pyrite concentrate oxidation experiment, replicate 100 ml flasks, each 

containing 50 ml of pyrite medium (Mintek pyrite concentrate, pH 2.0; section 

2.2.1.1.4) and different concentrations of pyrite concentrate (0.1,0.5,1.0,1.5 and 2.0%, 

w/v) were inoculated with Leptospirillum MT6, pre-grown in 1% Cae Coch rock pyrite 

medium. Also, flasks containing 1% or 2% Cae Coch rock pyrite medium were 

inoculated, as controls. The flasks were incubated for 25-30 days at 45°C, shaken, and 

samples removed every 5 days to determine total soluble iron concentrations (section 
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2.4.3). Cultures inoculated with the type strains of L. ferrooxidans and At. ferrooxidans 

were prepared similarly, and incubated at 30°C. 

In the second series of experiments, replicate 100 ml flasks, each containing 40 ml of 

1% or 2% pyrite medium (Mintek pyrite concentrate, pH 2.0; section 2.2.1.1.4) were 

autoclaved and the mineral-free liquors and the solid pyrites concentrate were separated 

by centrifugation. The mineral-free solutions were transferred into sterile 100 ml flasks; 

sterile ferrous sulfate solution (to 25 mM) was added to one of the replicate flasks in 

each case. The separated pyrite concentrates were also transferred to sterile 100 ml 

flasks, and 40 ml of fresh sterile basal salts solutions added. For positive controls, 

replicate 100 ml flasks, each containing 40 ml ferrous iron medium (25 mM ferrous 

sulfate, pH 2.0; section 2.2.1.1.1) or 2% Cae Coch rock pyrite medium (pH 2.0; -section 

2.2.1.1.4) were prepared. In addition, replicate 100 ml flasks, each containing 2% 

Mintek pyrite medium (pH 2.0; section 2.2.1.1.4) were prepared, as negative controls. 

The flasks were inoculated with Leptospirillum MT6 and incubated, shaken, at 45°C. 

Samples were removed to determine concentrations of ferrous iron (section 2.4.2.2) or 

total soluble iron (section 2.4.3). 

6.2.3 Results 

Oxidation of pyrite concentrate and rock pyrite by Leptospirillum MT6, L. ferrooxidans 

and At. ferrooxidans are shown in Figures 6.1-6.3. Leptospirillum MT6 and L. 

ferrooxidans were unable to oxidise the pyrite concentrate, irrespective of the initial 

concentrations of pyrite concentrate (even after prolonged incubation). In contrast, rock 

pyrite was oxidised by Leptospirillum MT6 after a 15-day lag-period (Figure 6.1). After 

20 days lag-period, L. ferrooxidans also started to oxidise the rock pyrite (Figure 6.2). 
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In contrast, At ferrooxidans was able to oxidise both the pyrite concentrate and the rock 

pyrite. 

In the second series of experiments, mineral-free pyrite concentrate liquor media 

separated from 1% and 2% pyrite media following autoclaving contained -4.0 mM and 

7.6 mM ferrous iron, respectively. Leptospirillum MT6 readily oxidised all of the 

available ferrous iron in mineral-free pyrite concentrate liquors (both supplemented and 

initially present ferrous iron). Although Leptospirillum MT6 began to oxidise the rock 

pyrite (positive controls) by day 20, no pyrite oxidation was observed in cultures 

containing Mintek pyrite concentrate (both 1% and 2%) and in the negative control 

cultures (2% Mintek pyrite cultures; data not shown). 
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Figure 6.1: Oxidation of pyrite concentrate (solid lines) and rock pyrite (broken lines) 
by Leptosprrilhim MT6. Key: ", 0.1% pyrite concentrate, X, 0.5% pyrite concentrate; 
X, 1.0% pyrite concentrate; 0.1.5% pyrite concentrate; 0,2.0% pyrite concentrate; 
", 1.0% rock pyrite; A, 2.0% rock pyrite. 
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Figure 6.2: Oxidation of pyrite concentrate (solid lines) and rock pyrite (broken lines) 
by L. ferrooxidans1. Key: ", 0.1 % pyrite concentrate; X, 0.5% pyrite concentrate; X, 
1.0% pyrite concentrate; ", 1.5% pyrite concentrate; 0,2.0% pyrite concentrate, ", 
1.0% rock pyrite; f, 2.0% rock pyrite. 
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Figure 6.3: Oxidation of pyrite concentrate (solid lines) and rock pyrite (broken lines) 
by Al. fie rooxidanti' . 

Key: ", 0.1% pyrite concentrate, X, 0.5% pyrite concentrate, X, 
1.0% pyrite concentrate, !, 1.5% pyrite concentrate, 0,2.0% pyrite concentrate, ", 
1.0% rock pyrite; f, 2.0% rock pyrite. 

6.3 Attempts to remove "inhibitory compound(s)" present in 1linIek Imite 

concentrate. 

6.3. I Methods 

An attempt was made to remove inhibitory compounds(s) from the pyrite concentiate by 

washing with acetone or with perchloric acid. Perchloric acid was reported to 

decompose xanthates absorbed on the mineral surfaces (I liroyoshi ei (1l , 
1997) 

In the first experiments, 10 grans of acid-washed pyrite concentrate (section 221 14) 

was stirred in a beaker containing 500 ml acetone (or distilled water as control) for 30 

minutes, harvested by centrifugation, and then washed thon)Ughly with distilled water to 

remove any acetone residue. The acetone-washed pyrite concentrate was then dried at 
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105°C, overnight. Replicate 100 ml flasks, each containing 50 ml of 2% pyrite medium 

(acetone- or water-washed pyrite concentrate, pH 2.0; section 2.2.1.1.4) were inoculated 

with Leptospirillum MT6 pre-grown in 2% Cae Coch rock pyrite medium, and 

incubated for 25 days shaken, at 45°C. Samples were removed every 5 days for 

determination of total soluble iron (section 2.4.3). 

In a second experiment, 10 grams of pyrite concentrate was stirred in a beaker 

containing 500 ml of 1M perchloric acid for 3 hours, harvested by centrifugation, and 

washed thoroughly with distilled water to remove any acid residue. The washed pyrite 

concentrate was then dried at 105°C, overnight. Replicate 100 ml flasks, each 

containing 50 ml of 2% pyrite medium (non-washed or perchloric acid-washed pyrite 

concentrate, pH 2.0; section 2.2.1.1.4) were inoculated with Leptospirillum MT6 pre- 

grown in 2% Cae Coch rock pyrite medium, and incubated for 20 days shaken, at 45°C. 

Samples were removed every 6-7 days for determination of total soluble iron (section 

2.4.3). 

Replicate 100 ml flasks, each containing 2% Cae Coch pyrite medium (pH 2.0; section 

2.2.1.1.4) were used as positive controls. 

6.3.2 Results 

Although Leptospirillum MT6 readily oxidised Cae Coch rock pyrite (positive controls) 

by day 20, this iron-oxidiser was unable to oxidise both the acetone-washed and the 

perchloric acid-washed pyrite concentrates as well as water-washed and unwashed 

pyrite concentrates (negative controls; data not shown). Acetone- and perchloric acid- 

washing of the pyrite concentrate, therefore, failed to eliminate the "inhibitory 

compound(s)" present in the pyrite concentrate. 
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6.4 Determination of MICs (minimum inhibitory concentrations) of flotation 

reagents 

6.4.1 Methods 

Universal bottles containing 4.8 ml of media were prepared. These were (i) ferrous iron 

medium (section 2.2.1.1.1) for Leptospirillum MT6; (ii) ferrous iron/yeast extract 

medium (section 2.2.1.1.3) for Am. ferrooxidans ICP and Sulfobacillus NC; (iii) 

tetrathionate medium (section 2.2.1.1.2) for At. caldus KU; (iv) "Ferroplasma" 

medium (section 2.2.1.1.5) for Ferroplasma MT17. Solutions of Senmin flotation 

reagents (listed in Table 6.1) were prepared, and added, at different concentrations 

(initially, 0,1.0,10 and 100 pg/ml) to the media. Based on the initial results, a second 

experiment was set up using an extended range of concentrations of the flotation 

reagents. The universal bottles were inoculated with 0.2 ml of active cultures and 

incubated at 45°C, shaken. Flotation reagent stock solutions were prepared either with 

distilled water or with ethanol (SK series, AP407, AF25,6005A); those prepared with 

distilled water were sterilised through 0.2 µm membrane filters (Whatman, England). In 

order to check that the bacteria used were not inhibited by the concentrations of ethanol 

used in these experiments, control experiments (using 1-5%, v/v ethanol) were set up. 
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Table 6.1: Flotation chemicals used in this study (Senmin reagents, supplied by BHP 
Billiton, South Africa). 
Chemical Class Commercial name Chemical name 

1. Xanthates SEX Sodium Ethyl Xanthate 
SNPX Sodium n-Propyl Xanthate 
SIBX Sodium Isobutyl Xanthate 
PNBX Potassium n-Butyl Xanthate 
PAX Potassium Amyl Xanthate 
X222 Mixture of Xanthates 

2. Dithiocarbamates SK100 Sodium (Alkyl) dithiocarbamate 
SK294 Sodium (Alkyl) dithiocarbamate 

3. Thionocarbamate SK700 Isopropylthionocarbamate 

4. Dithiophosphate AF25 Dithiophosphates (mixture) 

5. Mercaptobenzthiazole SK50 Sodium-2-Mercaptobenzthiazole 

6. Mixtures of different classes SK708 (Alkyl) thionocarbamate and 
Sodium Di-(Alkyl) Dithiophosphate 

SK756 Sodium (Alkyl) dithiocarbamate and 
Sodium Di-(Alkyl ) Dithiophosphate 

AP407 Sodium-2-Mercaptobenzthiazole and 
Sodium Di (Alkyl) Dithiophosphate 

7. Frother 6005A Aromatic acid, Diakyl ester 
1,1,3 Triethoxybutane 

Depending on rate of ferrous iron oxidation/growth of control cultures (incubated in the 

absence of flotation chemicals), cultures of Leptospirillum MT6, At. caldus, 

Sulfobacillus NC and Am. ferrooxidans were incubated for 4-7 days and Ferroplasma 

MT 17, due to its relatively slow ferrous iron oxidation rate, was incubated for 6-10 days 

until any effects of the flotation chemicals (compared with control cultures) were 

apparent. Growth of iron-oxidising organisms was monitored by measuring ferrous iron 

concentrations (section 2.4.2.2) and growth of At. caldus by cell counts, using a Thoma 

counting chamber (section 2.2.2.2.1). 
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6.4.2 Results 

Concentrations of ethanol that inhibited the growth of Leptospirillum MT6, 

Ferroplasma MT 17, At caldus KU, Sulfobacillus NC and Am. ferrooxidans ICP were 

l%, 1%, 2%, 1% and 5% (v/v), respectively (data not shown). Therefore, stock 

solutions of flotation reagents (dissolved in ethanol) were prepared to ensure that 

concentrations of ethanol were always below inhibitory levels. 

Ferrous iron oxidation by Leptospirillum MT6 in the presence of different 

concentrations of X222, and numbers of At. caldus in the presence of different 

concentrations of 6005A, are shown in Figures 6.4 and 6.5. No inhibition of ferrous iron 

oxidation by -Leptospirillum MT6. was observed in the presence of 0.5 µg/ml X222; 

however, at concentrations above 1.0 µg/ml, iron oxidation by this iron-oxidiser was 

increasingly inhibited (Figure 6.4). Growth of At. caldus was very similar in media 

containing 6005A at 0-100 p. g/ml, but was inhibited in the presence of 200 µg/ml 6005A 

(Figure 6.5). 
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Figure 6.4: Ferrous iron oxidation by Leptospirillum MT6 in the presence of different 
concentrations of X222. Key: 0,0 µg/ml- X, 0.5 µg/m1; A, 1.0 µg/ml-  , 2.0 pg/ml; 
", 5.0 µg/ml. 
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Figure 6.5: Growth of Al. caldzis KU in the presence of different concentrations of 
6005A. Key: 0,0 µg/ml; X, 1.0 p9/ml; A, 10 µg/ml;  , 100 µ9/m1; ", 200 pglml. 

As shown in Figures 6.4 and 6.5, the MICs of different flotation reagents were 

determined for each acidophile (Table 6.2), as concentrations at which ferrous iron 

oxidation or growth was totally or partially inhibited. Where the flotation reagents 

caused a very minor lag before ferrous iron oxidation or growth commenced (e. g., 

growth of Al. caldus with 100 µg/ml 6005A, Figure 6.5), this was not recorded as an 

inhibitory concentration. 
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Table 6.2: The MICs* of flotation reagents to some moderately thermophilic 
acidophiles. X/Y represents X; concentration (µg/ml) at which no inhibition was 
observed- Y_ concentration (u2/ml) at which inhibition was observed 

Flotation reagents Leptospirillum Ferroplasma At. caldus Sulfobacillus m. ferrooxidans 
MT6 MT17 KU NC ICP 

1. Xanthates 

SEX 50/75 100/200 100/200 500/1000 100/200 

SNPX 50/75 100/200 100/200 200/300 100/200 

SIBX 25/5(! 100/200 100/200 500/1000 100/200 

PNBX 0.5/1.0 0/25 200/500 100/200 100/200 

PAX 0/0.5 l x/25 100/200 100/200 200/500 

X222 0.5/1.0 100/200 75/100 100/200 

2. Dithiocarbamates 

SKIOO 0/0.5 100/200 1(1/25 25/50 

SK294 1.0/2.5 1.0/2.5 >200 1(1/25 50/75 

3. Thionocarbamates 

SK700 25 50 25 5L 50/75 250 75/100 

4. Dithiophosphates 

AF25 1.0/2.5 0.1/0.5 5(1/75 

5. Mercapto- 
benzthiazole 

SKSO 1.0/2.5 > 111/2 'hfl 

6. Mixture of 
different classes 

SK708 (3+4) 0.5/1.0 05/1.0 25 50 lý) _ý 0) 25 

SK756 (2+4) 0.5/1.0 1.0/2 5 >200 ý W2 i02 

AP407 (5+4) 0.110.5 1.012, 

7. Frother 

6005A 100/20(1 100/200 200/500 500/1 WO 

* The colour of numbers indicates the range of MICs, as below. 

208 



It was shown that the toxicity of flotation reagents to the moderately thermophilic 

acidophiles tested differed markedly. Leptospirillum MT6 was generally the most 

sensitive acidophile to the majority of the flotation reagents (except Senfroth), followed 

by Ferroplasma MT17. Among the flotation reagents tested, AF25 and AP407 appeared 

to be very toxic to wide range of acidophiles, with MICs for even the generally less 

sensitive organisms (At. caldus, Sulfobacillus NC and Am. ferrooxidans) being <10 

gg/ml (except AF25 with At. caldus). Overall, the most toxic collectors were AF25 (a 

mixture of different dithiophosphates) and AP 407 (a mixture of a dithiophosphate and 

sodium-2-mercaptobenzthiazole), followed by SK50 (sodium-2-mercaptobenzthiazole) 

and then the dithiocarbamates. As noted, Leptospirillum MT6 and Ferroplasma MT17 

were the most sensitive acidophiles with MICs of these reagents <2.5 jig/ml. The 

toxicity of SK700 (isopropylthionocarbamate) did not differ much between the different 

acidophiles. The toxicity of the xanthates to the acidophiles was quite variable. The 

potassium xanthates (PNBX and PAX) and X222 (which was a mixture of different 

xanthates) were highly toxic to Leplospirillum MT6 and Ferroplasma MT17, though 

less so to the other three moderate thermophiles. In contrast, the sodium xanthates 

(SEX, SNPX and SIBX) were generally less toxic to all the acidophiles. Senfroth, the 

only frother tested, was one of the least toxic flotation reagents tested, except to 

Ferroplasma MT17 (7.5<MIC<10). 

6.5 Potential elimination of "inhibitory compound(s)" of Mintek pyrite 

concentrate by pre-oxidation with Sulfobacillus NC. 

To confirm the hypothesis that the putative inhibitory compound(s) present in the pyrite 

concentrate could be eliminated by Sulfobacillus NC, pyrite concentrate was pre- 

oxidised with Sulfobacillus NC prior to inoculation with Leptospirillum MT6. 
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6.5.1 Methods 

Sulfobacillus NC was pre-grown in 2% pyrite medium (Mintek pyrite concentrate, pH 

2.0; section 2.2.1.1.4) with or without the addition of 0.02% (w/v) yeast extract. One 

hundred millilitre flasks, each containing 50 ml of 2% pyrite medium (Mintek pyrite 

concentrate, pH 2.0) were inoculated with the pre-grown Sulfobacillus NC and 

incubated for 1,3,5,10 days; flasks containing uninoculated medium were used as 

controls (triplicate flasks in each case). An additional three inoculated flasks containing 

pyrite medium plus 0.02% yeast extract were incubated for 5 days. After incubation, 

each flask was vortexed in order to remove attached cells from pyrite concentrate, and 

the pyrite concentrate recovered by very gentle centrifugation. The concentrate was then 

resuspended in 50 ml of autotrophic basal-salts (pH 2.0; section 2.2.1) and autoclaved. 

Leptospirillum MT6, pre-grown in 1% pyrite medium (Cae Coch rock pyrite, pH 2.0; 

section 2.2.1.1.4) was inoculated to 2 of the 3 flasks for each pre-incubation (1 of the 3 

flasks was used as an uninoculated control) and the flasks were incubated for 30 days at 

45°C, shaken at 130 rpm. Samples were removed every 10 days for determination of 

total soluble iron (section 2.4.3). In addition, cultures were analysed after 30 days for 

dissolved organic carbon (DOC; section 2.4.7). 

6.5.2 Results 

Oxidation of pyrite concentrate (following pre-treatment with Sulfobacillus NC or not) 

by Leptospirillum MT6 and in uninoculated controls, is shown in Figures 6.6 and 6.7. 
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Figure 6.6: Oxidation of pyrite concentrate (pre-oxidised by Slulfohacillns strain NC) in 
uninoculated control cultures. Key: 0, not pre-oxidised (no incubation after inoculation 
with Szilfobacillus NC); I. pre-oxidised for I day; A, pre-oxidised for 3 days. ", pre- 
oxidised for 5 days;  , pre-oxidised for 5 days with 0.02% yeast extract (broken line); 
f, pre-oxidised for 10 days. 
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Figure 6.7: Oxidation of pyrite concentrate (pre-oxidised by Sulfohacilhis strain NC) by 
Lepios pirilhnn MT6. Key: 0, not pre-oxidised (no incubation after inoculation with 
Sulfohacillus NC); ", pre-oxidised for 1 day; A, pre-oxidised for 3 days; ", pre- 
oxidised for 5 days;  , pre-oxidised for 5 days with 0.02% yeast extract (broken line); 
f, pre-oxidised for 10 days. 

In uninoculated control cultures, no significant oxidation of the pyrite concentrate was 

observed (Figure 6.6), confirming that Sulfohacilhis NC did not survive the autoclaving 

process. As expected, the pyrite concentrate that had not previously been exposed to 
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Sulfobaci/lus NC was not oxidised by Leptospirillum MT6. There was also no oxidation 

of pyrite concentrate, pre-oxidised by Sulfobacillus NC for 1 day, 5 days (with yeast 

extract), or 10 days. In contrast, pyrite oxidation by Leptospirillum MT6 did occur with 

pyrite concentrate, pre-oxidised for either 3 or 5 days by Sulfobaci//us NC. 

DOC concentrations in the cultures at day 30 are shown in Figure 6.8. 
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Figure 6.8: DOC concentrations in cultures at day 30. Key: M, inoculated with 
Leptospirillum MT6; 

, not inoculated with Leptospirillum MT6. 

DOC concentrations in cultures where pyrite concentrate oxidation by Leplo. s/piri/han 

MT6 did not occur were similar to each other (7-9 mg/1). DOC concentrations of the 

cultures in which Leptospirillum MT6 oxidised the pyrite concentrate were -15 mg/l. 

Exceptions to this were those cultures where the pre-treatment had included the addition 

of yeast extract, and also, for some unknown reason, where the pyrite concentrate had 

been pre-treated for 5 days without yeast extract and subsequently not inoculated with 

LeplospiriUlm MT6. 
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6.6 Effect of pre-treating rock pyrite with X222 on subsequent pyrite oxidation 

by Leptospirillum MT6 

The aim of this experiment was to examine whether or not Cae Coch rock pyrite, which 

was readily oxidised by Leptospirillum MT6, could be rendered non-leachable by 

treatment with the flotation reagent X222. 

6.6.1 Methods 

Suspensions of 1g of Cae Coch rock pyrite in 10 ml of sterile distilled water (adjusted 

to pH 2.0) containing different concentrations (0,1,10,50, and 100 gg/ml) of X222 

(sterilised through 0.2 µm membrane filters), were shaken in 100 ml flasks at 37°C for 4 

hours. The pyrite was then recovered by centrifugation and resuspended in 50 ml of 

sterile autotrophic basal salts (pH 2.0), inoculated with Leptospirillum MT6, and 

incubated for 25 days, shaken, at 45°C. Samples were removed every 5 days for 

determination of total soluble iron (section 2.4.3). 

6.6.2 Results 

All of the treated and control pyrites were oxidised at similar rates by Leptospirillum 

MT6 (data not shown). Pre-treatment of pyrite with X222, therefore, did not result in 

inhibition of oxidation by this bacterium. 

6.7 Discussion 

Shake flask experiments with Mintek pyrite concentrate (chapter 4) had shown that 

Leptospirillum MT6 was unable to oxidise this material in pure culture. However, in 

mixed cultures containing Sulfobacillus NC, Leptospirillum MT6 was always noted to 

be the dominant iron-oxidising bacterium present. It was hypothesised, therefore, that 
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the reason for this might that residual flotation chemicals were present in the 

concentrate in levels that inhibited Leptospirillum MT6, but that these were at least 

partially removed (possibly metabolised) by mixotrophic Sulfobacillus NC. The 

experiments described in this chapter sought to provide support for this hypothesis, and 

also to look more generally at the toxicity of flotation reagents used commercially in 

mineral recovery, to moderately thermophilic acidophilic prokaryotes. The suggestion 

that, by lowering the concentration of the pyrite concentrate, it would be possible to get 

to a point below the threshold concentration of the inhibitory substance(s) while still 

having sufficient pyrite concentrate present for oxidation to be observed was tested. 

However, even at mineral suspensions as low as 0.1%, no pyrite concentrate oxidation 

by Leptospirillum MT6 was observed. Interestingly, the mesophilic type strain of L. 

ferrooxidans was also unable to oxidise the pyrite concentrate at pulp densities of 0.1- 

2.0%, though the type strain of At. ferrooxidans had no problem in oxidising this 

material. Since Leptospirillum MT6 was able to oxidise ferrous iron present in mineral- 

free pyrite concentrate liquor media following autoclaving, whereas the pyrite 

concentrate itself was not oxidised; the "inhibitory compound(s)" appeared, therefore, to 

be associated with the mineral surfaces (as would be supposed) and affect attached cells. 

MICs of flotation reagents were determined using five species of moderately 

thermophilic acidophiles. The toxicity of flotation reagents to different acidophiles was 

found to differ significantly, Leptospirillum MT6 and Ferroplasma MT17 being more 

sensitive to these chemicals than Sulfobacillus NC, Am. ferrooxidans ICP and At. 

caldus. Relatively high MICs displayed by the mixotrophic acidophiles, Sulfobacillus 

NC and Am. ferrooxidans ICP, possibly resulted from an ability to metabolise the 

flotation chemicals though this hypothesis was not tested. On the other hand, relatively 
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high MICs ofAt. caldus may have been due to an inherent resistance to these chemicals. 

Among the flotation reagents tested, the dithiophospates were, overall, the most toxic, 

and the sodium xanthates the least (except for the single frothing reagent tested, 

Senfroth 6005A, which was highly toxic only to Ferroplasma MT 17). 

Inhibition of ferrous iron oxidation by At. ferrooxidans by different flotation chemicals 

was reported by Tuovinen (1978); sodium butyl xanthate and Dowfroth 250 were the 

least toxic (1% and 2% inhibition at 500 gg/ml, respectively) and potassium ethyl 

xanthate was the most (85% inhibition at 100 µg/ml ) to this mesophile. The effect of 

xanthate flotation chemicals on leaching of chalcopyrite by At. ferrooxidans was studied 

by Loon and Madgwich (1995). Among the xanthates tested (isopropyl-, isobutyl-, 

amyl-, ethyl-), isopropyl xanthate was the least toxic and amyl xanthate the most. 

Copper solubilisation was depressed by 30% by isopropyl-, 53% by isobutyl- and ethyl, 

and 77% by amyl xanthate at 10 mM (Loon and Madgwick, 1995). Contrasting results 

were found by Valdivia and Chaves (2001) who reported that the toxicity of amyl 

xanthate and isopropyl xanthate to At. ferrooxidans was less than ethyl xanthate. These 

sulfide collectors are not stable under the growth conditions of acidophilic bacteria, 

therefore, it is difficult to compare in detail the different toxic concentrations of the 

various chemicals in different conditions (Tuovinen, 1978). 

Different degrees of inhibition by flotation reagents of ferrous iron and thiosulfate 

oxidation have been reported, suggesting a growth-substrate specific mechanism of 

toxicity and possible pH-related effects on the chemical decomposition and formation of 

intermediates (Tuovinen, 1978). Valdivia and Chaves (2001) found that, in the presence - 

of xanthates, there was a reduction in the percentage of cell attachment, and that cell 

growth and oxidative activity decreased initially, although At. ferrooxidans gradually 

developed tolerance to the xanthates. 
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Although acetone- and perchloric acid-washing of the pyrite concentrate failed to 

remove the "inhibitory compound(s)", pre-treatment of pyrite concentrate with 

Sulfobacillus NC (3-5 days) did allow pure cultures of Leptospirillum MT6 to oxidise 

the concentrate. Leptospirillum MT6 did not oxidise pyrite concentrate pre-oxidised for 

5 days in the. presence of yeast extract, suggesting that Sulfobacillus NC utilised the 

yeast extract rather than the supposed residual flotation chemicals. Surprisingly, a 10- 

day pre-treatment with Sulfobacillus NC did not result in successful oxidation of the 

concentrate by Leptospirillum MT6. Although the amount of pyrite concentrate oxidised 

by Sulfobacillus NC was not determined, pyrite oxidation by pure cultures of 

Sulfobacillus NC was normally limited (in yeast extract-free medium) and this Gram- 

positive bacterium would not have been expected to solubilise all of the FeS2 present in 

10 days. Therefore, there should still have been a sufficient residual pyrite in pre-treated 

concentrate for Leptospirillum MT6. Also, the DOC concentrations in cultures 

following 10-day pre-treated pyrite concentrate were not higher than those in other 

cultures, threfore, there was no evidence that there was any inhibition of Leptospirillun: 

MT6 growth due to organic materials, and the reason for lack of oxidation by 

Leptospirillum MT6 of the pyrite concentrate, pre-treated with Sulfobacillus NC for 10 

days, is not known. Higher DOC concentrations, presumably resulting from the growth 

of Leptospirillum MT6, were observed in cultures with 3 or 5-day pre-oxidised pyrite 

concentrate. However, the highest DOC concentrations were observed with 5-day pre- 

oxidised (in the presence of yeast extract) pyrite concentrate; this possibly resulted from 

a greater amount of Sulfobacillus NC biomass (due to yeast extract) attached to the 

mineral surface that lysed during autoclaving process. The reason why the DOC 

concentration was also relatively large in the uninoculated 5-day pre-oxidised pyrite 

concentrate, was not clear. 
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Treatment of rock pyrite with X222 did not result in inhibition of pyrite oxidation by 

Leptospirillum MT6, probably because this flotation reagent is a mixture of xanthates 

used for selective coating of economically important sulfide minerals, therefore, did not 

coat the rock pyrite (-80% of which is FeS2 and the rest is mostly quartz). This was not 

too surprising, as flotation reagents are designed to separate the more valuable metal- 

containing minerals (such as chalcopyrite) from those of little economic value (such as 

pyrite). Further experimental work is required in this area. 

Together with the results from chapter 4, it is likely that, like Sulfobacillus NC, other 

Gram-positive acidophiles which caused enhanced pyrite concentrate oxidation in 

mixed cultures with Leptospirillum MT6, might also be used for pre-treatment of 

potentially recalcitrant sulfide concentrates, or else be included in leaching consortia 

with Leptospirillum spp.. Am. ferrooxidans ICP would appear to be a suitable acidophile 

in this context, since its MICs of the flotation reagents were also quite large. This 

finding would be useful especially when "flotation chemical sensitive" acidophiles, 

such as Leptospirillum MT6 and Ferroplasma MT17 are used as the primary sulfide 

oxidisers in mineral processing systems. 
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Chapter 7 

Ferric Iron Sensitivity in Sulfobacillus spp. and Related 

Gram-Positive, Iron-Oxidising Bacteria 

7.1 Introduction 

The diversity of microorganisms that catalyse ferrous iron oxidation is now known to be 

extensive. Among these microorganisms, Gram-positive iron-oxidising acidophiles that 

have been described fall into two main phylogenetic groups: the low G+C spore- 

forming Gram-positives, and those which (from 16S rRNA gene analysis) occur within 

the class Actinobacteria (Hallberg and Johnson, 2001a). Gram-positive iron-oxidising 

acidophiles that were first isolated were all found to be moderate thermophiles 

(temperature range --40-60°C); however, more recently mesophilic species from both 

groups have. been characterised (Johnson, et al., 2001a; Hallberg and Johnson, 2001a). 

While most characterised low G+C Gram-positives are Sulfobacillus spp., other isolates 

appear, from their 16S rRNA gene sequences, to be novel genera (Johnson et al., 

2001a). 

In a study of moderately thermophilic iron-oxidising acidophiles isolated from two sites 

in Yellowstone National Park, Wyoming, Johnson et al. (2001b) noted that oxidation of 

ferrous iron in shake flask cultures poised initially at pH 2.0 did not go to completion. 

Further experiments showed that this was not due to limiting concentrations of any 

nutrient or growth factor, and that the same cultures were able to oxidise all of the 

ferrous iron present if the initial culture pH was lowered to 1.8. The extent to which iron 

oxidation was retarded in the pH 2.0 cultures varied between isolates. 

This chapter describes a detailed study of the phenomenon of pH-related ferric iron 

inhibition ofSulfobacillus-like bacteria. 
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7.2 Ferrous iron oxidation in shake flask cultures 

7.2.1 Methods 

A total of fifteen moderately thermophilic and six mesophilic iron-oxidising acidophiles 

were used in these experiments; these are listed in Table 7.1. 

Table 7.1: Acidophilic, iron-oxidising bacteria used in ferric iron toxicity experiments. 

Moderate thermophiles Sourcelorigin Reference 

Leptospirillum MT6 Bioleaching plant: South Africa This study 

Sb. thermosu f dooxidansT Sulfide mineral leach dumps Karavaiko eta!., 1988 

Sb. thermosu f dooxidans THl Thermal spring, Iceland Brierley et al., 1978 

Sb. actdophilus ALV Self-heating coal spoil, England Norris and Barr, 1985 

"Sb. yellowstonensis" YTF1 Frying Pan hot spring, Yellowstone N. P. Ghauri and Johnson, 
1991 

Sulfobacillus YTF3 Sylvan hot springs, Yellowstone N. P. Johnson et al., 200 lb 

Sulfobacillus YTF5 Sylvan hot springs, Yellowstone N. P. Johnson et al., 200 lb 

Sulfobacillus YTF17 Sylvan hot springs, Yellowstone N. P. Johnson et a!., 200lb 

Sulfobacillus Y002 Thermal spring, Gibbon river area, 
Yellowstone N. P. This study 

Sulfobacillus Y006 Thermal spring, Gibbon river area, 
Yellowstone N. P. This study 

Sulfobacillus Y0015 Frying Pan hot spring, 
N. P. This study 

Su fobadllus Y0016 Frying Pan hot spring, Yellowstone 
N. P. This study 

Sulfobacillus Y0017 Frying Pan hot spring, 
N. P. This study 

Am. ferrooxidansT (ICP) Icelandic geothermal site Clark and Norris, 1996 

Am. ferrooxidans TH3 Copper leach dump, New Mexico Norris and Barr, 1985 

Isolate GSM Golden Sunlight Mine, Montana Johnson et al., 200la 

Mesophiles 

At. ferrooxidansT Acid mine drainage, eastern U. S. A. Temple and Colmer, 
1951 

L. ferrooxidansT Copper mine, Armenia Markosyan, 1972 

"Sb. montserratensis" L15 Thermal pool, Montserrat, W. I. Yahya et al., 1999 

Sulfobacillus Rivl4 Thermal pool, Montserrat, W. I. Yahya eta!., 1999 

Isolate SLC 66 Weathering sulfidic regolith, Utah Johnson et al., 2001a 

"Fm. acidophilum" T23 Acid mine drainage, Wales Johnson et al., 200 la 
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Liquid medium (pH 1.8 or 2.2) containing 25 mM ferrous sulfate and 0.02% (w/v) yeast 

extract (section 2.2.1.1.3) was used routinely in these experiments. Growth of most 

Gram-positive iron-oxidising acidophiles tends to be superior in yeast extract-amended 

than in "inorganic" media (where a form of reduced sulfur is usually required, together 

with ferrous iron). Although the Gram-negative bacteria, At. ferrooxidans and 

Leptospirillum spp., do not require either yeast extract or reduced sulfur, the same 

ferrous iron/yeast extract medium was used for uniformity of experiments, after firstly 

ascertaining that 0.02% yeast extract did not inhibit growth of these acidophiles. Each 

bacterium was pre-grown in ferrous iron/yeast extract medium at pH 1.8, and inoculated 

(-5%, v/v) into duplicate 100 ml flasks, each containing 50 ml of the same medium that 

had been adjusted to either pH 1.8 or 2.2. Cultures were incubated, shaken (150 rpm) at 

either 45°C (moderate thermophiles) or 30°C (mesophiles). Aliquots were removed 

periodically to determine ferrous iron, total soluble iron and pH. 

In a second series of shake flask experiments, three different growth media were 

prepared. The first contained 25 mM ferrous sulfate/0.02% yeast extract (as above), the 

second 20 mM ferrous sulfate/5 mM ferric sulfate/0.02% yeast extract, and the third 15 

mM ferrous sulfate/10 mM ferric sulfate/0.02% yeast extract. The pH of the media was 

adjusted to either 1.8 or 2.3, and then filter-sterilised (through 0.2 gm cellulose nitrate 

filters; Whatman, U. K. ). These were dispensed (25 ml of each) into duplicate 100 ml 

sterile flasks, inoculated (as above) with those acidophiles whose growth was found to 

be curtailed at pH 2.2 in the first experiments, shaken, at 45° or 30°C. Ferrous iron 

concentrations were determined immediately after inoculation, and again 3 and 5 days 

later. 

Ferrous iron was determined using the ferrozine colorimetric method (section 2.4.2.2). 

Total soluble iron was determined by centrifuging 1.5 ml sample aliquots (13,000 rpm, 
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1 min), adding excess ascorbic acid to the supernatant (to reduce ferric iron to ferrous) 

and repeating the ferrozine analysis. Concentrations of soluble ferric iron were 

determined from the difference between total soluble and ferrous iron. 

7.2.2 Results 

The concentrations of soluble ferric iron present in cultures (of initial pH 2.2) at the 

point at which iron oxidation was observed to halt completely, or show a marked 

retardation, are shown in Table 7.2. As the total initial ferrous iron concentrations in 

media were -27-28 mM, the range of ferric iron concentrations also includes values >25 

mM. 

Most of the moderately thermophilic and mesophilic iron-oxidising bacteria oxidised 

>99% of the ferrous iron provided in liquid cultures where the initial pH was 1.8. The 

only exceptions to this were "Fm. acidophilum" T23 and isolate SLC 66, though these 

could be successfully grown in media adjusted to an initial pH of 1.9-2.0. In contrast, 

for cultures with an initial pH of 2.2, only the Gram-negative bacteria and the 

Actinobacteria completely oxidised the available iron. Cultures of the Sulfobacillus spp. 

and other low G+C Gram positive bacteria all displayed incomplete iron oxidation, 

though the amounts of ferrous iron that were oxidised in these cultures varied widely 

between different bacteria. The most sensitive isolates were the mesophilic 

Sulfobacillus spp. and Sulfobacillus YTF3,5 and 17, while strains of both Sb. 

thermosulfidooxidans and Sb, acidophilus were less readily inhibited by soluble ferric 

iron. 
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Table 7.2: Concentrations of soluble ferric iron present in shake flask cultures (original 
pH 2.2) displaying partial or complete inhibition of ferrous iron oxidation. 

No inhibition 
<5 mM Fe3+ 6-10 mM Fe3+ 11-15 mM Fe3+ 16-20 mM Fe3+ 21-25 mM Fe3+ (>25 mM Fe3) 

Sb. montserrat- Sulfobacillus Sulfobacillus Isolate Sb. thermo- 
T At. ferrooxidansT 

ensis L15 Y0017 Y0015 Y002 sufdooxidans 

Sulfobacillus Isolate SLC66 
Sulfobacillus Isolate 

Sb. thermosul- 
idooxidans T L. ferrooxidans 

Riv14 Y0016 Y006 f TH1 

Sulfobacillus Isolate GSM Sb. acidophilus Leptospirillum 
YTF3 ALV MT6 

Sulfobacillus Sulfobacillus Am, ferrooxidansT 
YTF5 YTF1 

Sulfobacillus Am. ferrooxidans 
YTF17 TH3 

"Fm. acidophilum" 
T23 

Representative trends of ferrous iron oxidation that were observed in the various 

cultures are shown in Figure 7.1. 

In the case of Sb. thermosulfidooxidans THI (pH 2.2 cultures; Figure 7.1a) ferrous iron 

oxidation was accompanied by corresponding increases in soluble ferric iron for the first 

22 hours of incubation. The pH of the cultures increased during this time, due to proton 

consumption (equation [7.1]): 

Fe2+ + 0.2502 + H+ -+ Fe3+ + 0.5H20 [7.1]. 

However, after 22 hours hydrolysis of ferric iron resulted in the formation of solid phase 

ferric compounds, and a decrease in culture pH. Equation [7.2] illustrates this for the 

formation of ferric hydroxide, though a variety of amorphous and (semi-)crystalline 

ferric mineral are known to form under such conditions, including ferrihydrite, 

schwertmannite and jarosites. 
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Fe3+ + H2O -+ Fe(OH)3 + 3H+ [7.2]. 

There was a notable decrease in the rate of ferrous iron oxidation from 22 hours of 

incubation, though iron oxidation did not stop entirely. After about 64 hours, continued 

hydrolysis had resulted in the culture pH decreasing to <2.3, and further lowering of 

soluble ferric iron concentrations. The rate of ferrous iron oxidation increased again at 

this point, though it was still slower than that observed in the earlier (0-22 hour) growth 

phase. 

A similar scenario was observed with isolate GSM (Figure 7.1b), except that iron 

oxidation came to a virtual halt after 22 hours and did not restart. In the case of isolate 

YTF3, virtually no oxidation of iron was detected over a protracted (118 hour) 

incubation period, in contrast to the cultures at initial pH of 1.8, where complete 

oxidation of ferrous iron occurred (Figure 7.1c). In these cultures, the 2.5 mM soluble 

ferric iron present at time 0 was predominantly that contained in the inoculum. 

Figure 7.1d shows the contrasting situation with the type strain of At. ferrooxidans, 

where all of the available iron was oxidised, regardless of initial culture pH and pH 

fluctuations. No hydrolysis of the ferric iron produced was detected in these cultures 

over 65 hours, which was due to the lower (30°C) temperature incubation temperature 

used for this (and other) mesophile. 
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In the second series of experiments, all Gram-positive acidophiles tested were found to 

oxidise ferrous iron in pH 1.8 media containing 10 mM ferric sulfate (except that isolate 

SLC66 was able to do so only in media with initial pH 1.9). Concentrations of ferric 

iron which were found to completely inhibit ferrous iron oxidation in pH 2.3 media are 

shown in Figure 7.3. 

Table 7.3: Concentrations of ferric iron* causing complete inhibition of ferrous iron 

oxidation by low G+C Gram-positive bacteria in pH 2.3 media. 

0 mM Fe3+ 5 mM Fe + >10 mM Fei+ 

"Sb. montserratensis" L15 Y002 Sb. addophllus ALV 

SulfobacillusRivl4 Y006 Sb. thermosufidooxidansT 

Y0017 Sb. thermosufidooxidans TH1 

YTF3 Isolate GSM 

YTF5 Y0015 

YTF17 Y0016 

SLC66 

"Sb. yellowstonensis " YTF 1 

*The figures refer to amounts of ferric sulfate added to the growth media, and exclude 
that introduced in the inoculum. 

Again, "Sb. montserratensis" L15 and Sulfobacillus Rivl4 were shown to be the most 

sensitive acidophiles, and were unable to oxidise ferrous iron in media containing no 

added ferric iron. No oxidation of ferrous iron occurred in media containing 5 or 10 mM 

ferric iron by isolates Y002, Y006, Y0017, YTF3, YTFS and YTF17, but these bacteria 

oxidised iron in media to which no ferric sulfate had been added. All the other 
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acidophiles tested were able to oxidise ferrous iron in media to which 0-10 mM ferric 

iron had been added. There were differences between soluble ferric iron concentrations 

that appeared to inhibit ferrous iron oxidation by isolates Y002 and Y006, in the first 

(16-20 mM) and second (<5mM) experiments. This may have been due to the slightly 

higher culture pH in experiment 2, or possibly due to concentrations of the inhibitory 

agent (a putative ferric iron complex, as discussed below) only increasing gradually in 

the first experiment. 

Results from the second experiment confirmed that the inhibition of ferrous iron 

oxidation by these acidophiles was not due to the formation of solid phase ferric iron 

- compounds or culture pH fluctuations, but was caused by soluble ferric iron. 

7.3 Phylogenetic analysis of isolate YTF3 

In an earlier study (Johnson et al., 2001b) isolate YTF3 was tentatively identified as an 

Acidimicrobium-like Gram-positive acidophile, though DNA from this particular 

bacterium was not sequenced at that time. Since the pH-related ferric iron sensitivity 

exhibited by this acidophile in the current work was more similar to that of Sulfobacillus 

spp. than Acidimicrobium ferrooxidans, it was considered appropriate to ascertain its 

phylogeny using the 16S rRNA gene as a marker. 

7.3.1 Methods 

PCR-amplification and sequencing of the 16S rRNA gene, sequence analysis and 

phylogenetic tree assembly were carried out as described in sections 2.5.1,2.5.7 and 

2.5.8, respectively. 
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7.3.2 Results 

Phylogenetic analysis of isolate YTF3 confirmed that it is a Sulfobacillus sp. (99.2% 

homology with "Sb. yellowstonensis" YTF 1), in contrast to the earlier identification that 

was based solely on physiological criteria (Johnson et al., 2001b). The relationship of 

isolate YTF3 to other Gram-positive acidophiles, based on 16S rRNA gene sequence 

data, is shown in Figure 7.2. 

'oxidansT 

acidiphilum" 723 

solate GSM 

Sb. actdophilus ALV 

Sb. yellowstonensis YTF1 

Isolate YTF3 

'Sb. montserratensis" L 15 

Sulfobacillus Riv14 

Sb. thermosu f dooxidans= 

Figure 7.2: Phylogenetic relationships of isolate YTF3 (in bold) to known Gram- 
positive acidophiles. The phylogenetic tree was rooted with At. ferrooxidans. The bar 
represents 0.1 nucleotides substitution per 100 for the horizontal branch lengths. 
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7.4 Iron oxidation by isolate YTF3 in pH-controlled bioreactor cultures 

7.4.1 Methods 

Isolate YTF3 was found to be particularly sensitive to ferric iron inhibition in a previous 

study (Johnson et al, 2001b) and was confirmed to be so in the present work (Table 

7.2). This organism was selected for further experimental work, carried out in a 

bioreactor in which pH was controlled to within 0.05 of a pH unit (section 2.2.1.3). The 

vessel was part-filled with 1.5 L of 25 mM ferrous sulfate/0.02% yeast extract medium 

(section 2.2.1.1.3), and inoculated with an active culture of isolate YTF3. The culture 

was grown at 45°C, stirred (170 rpm) and aerated (0.2 L/min) at pH 1.8. Approximately 

85% of the culture liquor was removed and replaced with fresh medium following iron 

oxidation. Aliquots were withdrawn at regular intervals to determine ferrous iron and 

total iron concentrations (as described in section 7.2.1), and culture doubling times were 

evaluated from semi-logarithmic plots of iron oxidised against time. Following several 

repeated cycles at pH 1.8, a series of experiments was carried out whereby, shortly after 

the onset of exponential ferrous iron oxidation, the culture pH was raised and 

maintained (by addition of 1M NaOH) to pH 2.00,2.10,2.15,2.20 or 2.30 (+/- 0.05 pH 

unit) and iron concentrations monitored. To determine the effect of raising the pH on 

the viability of the bacteria, total counts using a Thoma counting chamber (section 

2.2.2.2.1) and viable counts by plating onto ferrous iron/tetrathionate overlay medium 

(section 2.2.1.2.1.2) were made of culture aliquots. 

7.4.2 Results 

Su f bacillus YTF3 grew readily in heterotrophic medium in the bioreactor, with the pH 

maintained at 1.8. Under such conditions, its culture doubling time was 2.1 hours. The 
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effects of increasing and maintaining culture pH to values between 2.00 and 2.30 

following the onset of exponential ferrous iron oxidation (at pH 1.8) are shown in 

Figure 7.3. 
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Figure 7.3: The effects of increasing and maintaining culture pH to values between 2.0 

and 2.3 following the onset of exponential ferrous iron oxidation (at pH 1.8) on ferrous 
iron oxidation by isolate YTF3. Key: ", pH 1.80 (continuous); ", pH 1.80 -3 pH 2.00, - 
*, pH 1.80 -> pH 2.10; .., pH 1.80 -> pH 2.15; X, pH 1.80 -> pH 2.20, Q, pH 1.80 

--* pH 2.30. 

In all cases (except the constant pH 1.80 control) iron oxidation was inhibited to some 

extent, though there appeared to be a correlation between the degree of inhibition and 

the pH to which the cultures were adjusted. Iron oxidation was either slowed down or 

partially inhibited by increasing culture pH to 2.00,2.10 or 2.15, but was completely 

inhibited when the pH was increased to either 2.20 or 2.30. In the culture that was 

adjusted to pH 2.20, there was a later phase during which iron oxidation re-commenced 

(from about 23 to 26 hours culture incubation). The effects of these changes in pl1 on 

concentrations of ferrous iron and soluble/insoluble ferric iron, in the culture where the 
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pH was adjusted to 2.20, are shown in Figure 7.4. Hydrolysis resulted in the 

concentration of soluble ferric iron decreasing from 5.8 mM to 3.0 mM, which then 

increased to 6.5 mM at 9 hours, at which it remained. This allowed ferrous iron 

oxidation to re-start (at 23.5 hours), causing the soluble ferric iron concentration to 

increase to 11.5 mM after 28 hours of incubation, and this, in turn, resulted in cessation 

of further iron oxidation. A similar scenario was observed in cultures when the culture 

pH was increased to >2.10 (data not shown). 
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Figure 7.4: Effect of pH changes (1.80 --* 2.20) on ferrous iron (") and soluble () 
/insoluble ( X) ferric iron concentrations. 

The mortality rates of Sulfobacillus YTF3 in bioreactor cultures in which the pH was 

either increased to either 2.15 or 2.30 after initiation of exponential ferrous iron 

oxidation (at pH 1.8) are shown in Figure 7.5. In both cases, direct (Thoma) cell counts 

were about an order of magnitude greater than those obtained from plate counts. 

Adjustment of culture pH occurred 2.5 hours after the culture was set up, and 7.5 hours 

later numbers of viable bacteria in the (then) pH 2.30 culture were similar to those 
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found on earlier sampling occasions. However, on the next sampling occasion (27 hours 

from the start of the experiment) numbers of viable Sulfohacillus YTF3 had decreased 

by about two orders of magnitude. In contrast, the culture at pH 2.15 contained similar 

numbers of viable bacteria throughout the 27 hour incubation period. 
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Figure 7.5: Total and viable counts of Sulfobacillu. s YTF3 in bioreactor cultures in 
which the pH was either increased to pH 2.15 (0, Thoma cell counts, ", plate counts) 
or to pH 2.30 (0, Thoma cell counts, S. plate counts) after initiation of exponential 
ferrous iron oxidation (at pH 1.80). 

7.5 Growth of isolate YTF3 on glucose 

7.5.1 Methods 

In order to determine whether the observed inhibition of ferrous iron oxidation by 

isolate YTF3 at pH 2.2-2.3 was due to proton acidity directly, the organism was adapted 

to grow in liquid medium containing 10 mM glucose/0.02% yeast extract/500 µM 

ferrous sulfate, at pH -2.0. This culture was used to inoculate the bioreactor, which 

contained the same liquid medium. Cultures were grown under pH-controlled 

conditions at pH 2.50,2.25,2.10,2.00 and 1.70 (at 45°C, aerated and stirred as above). 
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Culture aliquots were withdrawn at regular intervals, and optical densities measured at 

600 nm (section 2.2.2.1). From semi-logarithmic plots of these values against time, 

culture doubling times were evaluated. 

7.5.2 Results 

The apparent intensive pH-related ferric iron sensitivity displayed by Su fobacillus 

YTF3 meant that it was not possible to ascertain the pH optimum and range for this 

isolate using the ferrous iron/yeast extract medium. However, as with many other 

Sulfobacillus spp. (particularly its nearest relative "Sb. yellowstonen sis") Sulfobacillus 

YTF3 adapted readily to growth on glucose, in a medium in which the ferrous iron 

concentration was lowered to 500 µM (lowering the ferrous iron concentration beyond 

this resulted in much lower yields; data not shown). The effect of culture pH on the 

growth rates of Sulfobacillus YTF3 is shown in Figure 7.6. 
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Figure 7.6: Effect of pH on the culture doubling times (td's) of Sulfobacillus YTF3 (at 
45°C) grown in glucose/yeast extract medium. 
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The pH optimum of this acidophile was found to be pH 2.20, and growth occurred over 

the full pH range tested (1.7-2.5). Interestingly, fastest growth of Sulfobacillus YTF3 on 

glucose (corresponding to a culture doubling time of 2 hours) was similar to that found 

using ferrous iron/yeast extract medium, though at different pH values (pH 2.20 and 

1.80, respectively). 

7.6 Discussion 

In contrast to Gram-negative iron-oxidising bacteria and Actinobacteria, Sulfobacillus 

spp. and other low G+C Gram positive iron-oxidising bacteria all displayed limited 

ferrous iron oxidation in cultures initially poised at pH 2.2. This trait varied widely 

between the different bacteria; the most "sensitive" isolates being the mesophilic 

Sulfobacillus spp. and Sulfobacillus YTF3,5 and 17, while the "least sensitive" were Sb. 

thermosulfidooxidans and Sb. acidophilus. Strain variation might cause different 

degrees of sensitivity, since there was marked difference between Sulfobacillus YTF3 

and "Sb. yellowstonensis" YTF1, though these two organisms share 99.2% homology in 

their 16S rRNA gene sequences. It appeared that this inhibition of iron oxidation was 

due to ferric iron, but that this was modified by culture pH, since ferrous iron oxidation 

went to completion when cultures were poised initially at pH 1.8 (or 1.9) and all of the 

ferric iron (>25 mM) remained in solution. Also, the inhibition was not a direct effect of 

solid phase ferric iron compounds, since inhibition of ferrous iron oxidation was 

observed in pH 2.3 media containing soluble ferric sulfate, before any ferric iron 

precipitates had formed. 

Sulfobacillus YTF3 was selected for further experimental work, in view of its apparent 

marked sensitivity to ferric iron. The pH optimum of Sulfobacillus YTF3 was found to 

be pH 2.20, and growth occurred over the full pH range tested (1.70-2.50) in glucose 
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medium, suggesting that inhibition of ferrous iron oxidation by this organism in 

iron/yeast extract medium at pH 2.2-2.3 was not related directly to proton acidity (pH). 

Correlation between the degree of inhibition of iron oxidation and the pH to which the 

cultures were adjusted was found with the Sulfobacillus YTF3 culture in the pH- 

controlled bioreactor. Ferrous iron oxidation by Sulfobacillus YTF3 was completely 

inhibited when the pH was increased to either 2.20 or 2.30, and raising the culture pH to 

2.30 in the presence of 25 mM ferric iron was found to cause a severe decrease in the 

proportion of viable cells in this culture, compared to when the pH was increased to 

2.15. 

The fastest growth of Sulfobacillus YTF3 on glucose at pH 2.2 (corresponding to a td of 

2 hours) that was similar to that found using ferrous iron/yeast extract at pH 1.8 

implying that this organism could, in theory, have a culture doubling of <2 hours at pH 

2.2 in ferrous iron/yeast extract media in the absence of any inhibition of soluble ferric 

sulfate. 

It has been reported that the solution chemistry of ferric iron is much more complex 

than that of ferrous iron, and the trivalent cation is known to form stable complexes with 

ligands such as sulfate and hydroxide (Welham ei al., 2000). In aqueous, sulfate-free 

solutions, the dominant form of soluble ferric iron below pH 3 is Fei+, with the cationic 

complexes Fe(OH)2+ and Fe(OH)2+ becoming increasingly important at pH 3-5. In 

contrast, in sulfate-containing aqueous solutions, uncomplexed ferric iron is generally of 

minor significance, except at pH <1.0, and ferric sulfate complexes dominate over the 

pH range where mineral leaching generally occurs (pH 1-3; Figure 7.7). 
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Figure 7.7: Ferric speciation with pH for a unity ligand concentration (Welham et al., 
2000). 

The two soluble ferric sulfate complexes described by Welham et al. (2000) are FeSO4' 

and Fe(SO4)2-. Of these, the disulfate complex is of particular note in that it becomes the 

increasingly dominant species at pH>1.0 (Figure 7.7) and, unlike the other ferric iron 

complexes, it is anionic. In general terms, acidophilic microorganisms are tolerant of 

concentrations of metal cations (e. g. copper and zinc) that are inhibitory or lethal to 

neutrophilic microorganisms. In contrast, acidophiles tend to display far greater 

sensitivity to anions such as molybdate and nitrate (Alexander et al., 1987). The reason 
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for the pH-related ferric iron inhibition of Sulfobacillus spp. and related acidophiles 

found in this and previous work might be related to their sensitivity to the anionic ferric 

complex, Fe(SO4)2 . 
If this is the case, it is interesting that other iron-oxidising bacteria, 

including the Gram-positive Actinobacteria as well as the Gram-negative acidophiles 

At. ferrooxidans and L. ferrooxidans do not appear to be inhibited by ferric iron at pH 

2.2-2.3. It would also be interesting to investigate whether non iron-oxidising bacteria 

related to Sulfobacillus (Alicyclobacillus-like bacteria) are similarly hypersensitive to 

ferric iron at pH 2.2-2.3. 

Such sensitivity may have important implications where Gram-positive bacteria are 

involved for commercial mineral processing. If so, it would be more appropriate to 

operate mineral processing operations using these "sensitive" microorganisms at lower 

pH, or else as consortia of moderate thermophiles (including "non-sensitive" 

acidophiles) rather than as pure cultures. 
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Chapter 8 

"Rapid" Means of Identification of Acidophilic Bacteria by 

Amplified Ribosomal DNA Restriction Enzyme Analysis (ARDREA) 

8.1 Introduction 

A range of different autotrophic and heterotrophic microorganisms may be responsible 

for, or associated with, the solubilisation of metals from sulfide minerals in acidic 

environments. To study the ecological relationship of these microorganisms and the 

population dynamics during the biöleaching processes, specific methods for their quick 

identification and enumeration are useful. The aim of the present study was to develop 

and apply a simple and quick ARDREA method to differentiate these bacterial 

populations. 

8.2 Development of the ARDREA method, using the 16S rRNA gene sequences 

from known acidophilic bacteria 

8.2.1 Methods 

The 16S rRNA gene sequences of a variety of acidophilic bacteria were obtained from 

DNA database (GenBank) to develop the ARDREA method. The selected moderate 

thermophilic and mesophilic bacteria were divided into five "differentiation groups" 

(differentiation groups No. 1-5 in Tables 8.1-8.5), within which different bacterial 

species or strains could be differentiated using two different restriction enzymes. The 

GenBank accession numbers for the 16S rRNA gene sequences of each bacterium used 
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in this study are also shown in Tables 8.1-8.5. The restriction enzyme sites were 

searched using the programme, DNAstar. Since some of the 16S rRNA gene sequences 

used in this study were shorter than others, a 16S rRNA gene alignment was made to 

work out the actual length of the restriction fragments within the 1500bp sized 16S 

rRNA gene, to construct each of the diagrammatic restriction enzyme maps in Figures 

8.1-8.8. Alongside theoretical application of the ARDREA method, experiments were 

conducted in which amplified 16S rRNA genes obtained from Acidophile Culture 

Collection at the University of Wales, Bangor, were digested with restriction enzymes, 

and fragments sizes analysed. Each of these bacteria was purified from a single colony, 

either on ferrous iron overlay medium (section 2.2.1.2.1.1) or on ferrous 

iron/tetrathionate overlay medium (section 2.2.1.2.1.2), followed by cultivation in 

appropriate liquid media (sections 2.2.1.1.1 and 2.2.1.1.3). The 16S rRNA genes of 

bacteria were amplified (section 2.5.1) and concentrated if necessary using QlAquick 

PCR Purification Kits (QIAGEN), according to the manufacturer's instruction. The 

appropriate amount of DNA was digested with restriction enzymes, as instructed by the 

manufacturer. The restriction enzymes used in this study are listed in Table 8.6. DNA 

fragments were separated in a 2% agarose gel using high-resolution blend agarose (type 

3: 1; Amresco; section 2.5.2). 
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Table 8.1: Differentiation Group No. 1: Details of 4 groups of moderate thermophiles 
that may be differentiated using Eco721 and BsaAI. 
Moderate thermophiles Characteristics 16S rRNA gene Acc. No. 

Carbon 
metabolism Gram stain Cell shape Comment 

i) Leptospiri him MT6 Autotroph - Vibrioid cells Ferrous iron and FeS2 AF513709 
Spiral forms oxidiser 

ii) Sulfobacillus spp. Facultative + Straight rods Ferrous iron, sulfur, and 
Sb. thermosulfedooxidansT autotroph Spore formers FeS2 oxidiser X91080 
Sb. acidophilusT AF050169 
'Sb. yeiowstonensis"YTFI AY007665 

ill) Isolate GSM Facultative + Straight rods Ferrous iron, sulfur, and AY007662 
autotroph Spore formers FeS2 oxidiser 

iv) Aicrobium spp. Facultative + Rods, Ferrous iron 
Am. ferrooxidans TH3 autotroph Filaments and FeS2 oxidiser A11001580 
An. f da sT (ICP) U75647 

Table 8.2: Differentiation Group No. 2: Details of 4 groups of mesophiles that may be 
differentiated using BanII and XcmI. 
Mesophiles 

Carbon 
metabolism 

Characteristics 

Gram stain Cell shape 

16S rRNA 

Comment 

eene Act No, 

I) At ferrooxidans Autotroph - Straight rods Ferrous iron, sulfur 
DSM9465 and FeS2 oxidiser Y11595 
ATCC23276T AJ278718 

ii) Leptospirillum spp. Autotroph - Vibrioid cells Ferrous iron and 
L. jerrooaidans Spiral forms FeS2 oxidiser 

DSM2705 T X86776 
L ferriphilum 

ATCC49881T AF356829 
DSM9468 X72852 
DSM2391 AJ237903 
Strain La AJ237902 

Strain MT6 AF513709 

iii) "T. ferrooxidans" Autotroph - Straight rods Ferrous iron and 
Strain m-1 FeS2 oxidiser AF387301 

iv) "Fm acidiphilum" T23 Heterotroph + Rods Ferrous iron and AF251436 
FeS2 oxidiser 
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Table 8.3: Differentiation Group No. 3: Details of 3 groups of mesophiles that may be 
differentiated using AIwI and XcmI. 
Mesophiles Characteristics 16S rRNA gene Act No. 

Carbon 
metabolism Gram stain Cell shape Comment 

1) Isolate SLCs Heterotroph 
SLC1 
SLC2 
SLC66 

ii) Suljobaci hss spp. Facultative 
'Sb. montserratensis"L15 autotroph 
Suljobacillus Riv14 

iii) "Fm. acidiphilum" T23 Heterotroph 

+ Straight rods Ferrous iron oxidiser 
Spore formers - 

AY040739 

+ Straight rods Ferrous iron, 
Spore formers sulfur and AY007663 

FeS2 oxidiser AY007664 

+ Rods Ferrous iron and AF251436 
FeS2 oxidiser 

Table 8.4: Differentiation Group No. 4: Details of 2 groups of Gram-positive bacteria 
that may be differentiated using ApaI and Hsp92I. 
Gram-positive bacteria Characteristics 16S rRNA gene Acc. No. 

Carbon 
Metabolism Gram stain Cell shape Comment 

Q Mesophiles: 
Isolate SLCs Heterotroph + Straight rods Ferrous iron and 

SLC1 FeS2 oxidiser - 
SLC2 _ 
SLC66 AY040739 

H) Moderate Thermophiles: 
Isolate GSM Facultative 

autotroph 

Alicyclobacillus spp. Heterotroph 
Alb. acidophilus YTHI 
Alb. acidocaldarius 
Alb. acidoterrestris 
Alb. cycloheptanicus 

+ Straight rods Ferrous iron, AY007662 
Spore formers sulfur and FeS2 

oxidiscr 

+ Straight rods w-alicyclic membrane 
Spore formers fatty acid-producer AF031645 

X60742 
X60743 
X51928 

Table 8.5: Differentiation Group No. 5: Details of 2 groups of Sulfobacillus spp. that 
may be differentiated using SnaBI and BsmBI. 
Sulfobacilus sm). Characteristics 16S rRNA gene Acc. No 

Carbon 
Metabolism Gram stain Cell shape Comment 

I) Suljobacillus GroupL Facultative + Straight rods Ferrous iron, 
Sb. acidophilusT (NAL) autotroph Spore formers sulfur and AF050169 
"Sb. yellowstonensis " YTF I FeS2 oxidiser AY007665 

ii) Suljobacfllus Groupl: Facultative + Straight rods Ferrous iron, 
Sb. thermosuldooaidansT autotroph Spore formers sulfur and X91080 

`Sb. montserratensis" L15 FeS2 oxidiser AY007663 
Sulfobacillus Riv14 AY007664 
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Table 8.6: Details of restriction enzymes used in this study. 
Enzyme Recognition site (5'-i3') Site complexity Optimal Temp. Manufacturer 

Eco721 5'---CACVGTG---3' 6.0 37°C MBI Fermentas 
3'---GTGACAC---5' 

BsaAI 5'---YACVGTR---3' 5.0 37°C NEW ENGLAND 
3'---RTGACAY---5' 

BanII 5'---GRGCYVC---3' 5.0 37°C Promega 
3'---CAYCGRG---5' 

Xcml 5' ---CCA (N) 5V (N) 4TGG---3' 6.0 37°C NEW ENGLAND 
3'---GGT(N)4A(N)5ACC---5' 

AlwI 5'---GGATC(N)4V---3' 5.0 37°C NEW ENGLAND 
3'---CCTAG(N)5A---5' 

ApaI 5'---GGGCCVC---3' 6.0 37°C Promega 
3'---CACCGGG---5' 

Hsp92I 5'---GRVCGYC---3' 5.0 37°C Promega 
3'---CYGCARG---5' 

SnaBI 5'---TACVGTA---3' 6.0 37°C Promega 
3'---ATGACAT---5' 

BsmBI 5'---CGTCTC(N)1V---3' 6.0 55°C NEW ENGLAND 
3'---GCAGAG(N)5A---5' 

8.2.2 Results 

The diagrammatic restriction enzyme maps and the actual restriction patterns on agarose 

gels are shown in Figures 8.1-8.8. As predicted from virtual restriction sites analyses, it 

was shown that those bacteria can be differentiated from each other by their restriction 

patterns on 2% agarose gels. 
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Eco72I 
Leniosnirillum MT6 

Isolate GSM 

Sulfobacillus spp. 

Am. ferrooxidans TH3 

Am. ferrooxidansT (ICP) 

Number of restriction sites and approximate fragment size 
200 400 600 800 1000 120i 

1 1200 300 

4 100 550 450 Jl00 300 

2 100 1100 300 

0 1500 

1 loo 1400 

Figure 8.1: Theoretical diagrammatic restriction enzyme map and electrophoretic 
analysis of 16S rRNA gene of moderately thermophilic bacteria (Table 8.1) digested 
with Eco721. Lane M, lkb DNA ladder (Gibco BRL); lane 1, Leptospirillum MT6. lane 
2, isolate GSM; lane 3, Sb. thermosulfidooxidansT; lane 4, Am. ferrooxidans TH 3. 

BsaAI 
LewtosviriIIum MT6 1 

Isolate GSM 6 

Suljobacillus spp. 4 

Ant. ferroosidans 2 
TH3 and ICP 

Number of restriction sites and approximate fragment sine 
IAA AAA Lnn 4nn I Ann 1 7M ...,., 

1200 300 
100 400 150 450 100 300 

100 400 50 650 300 

100 400 1000 

Figure 8.2: Theoretical diagrammatic restriction enzyme map and electrophoretic 
analysis of 16S rRNA gene of moderately thermophilic bacteria (Table 8.1) digested 
with BsaAI. Lane M, lkb DNA ladder (Gibco BRL); lane 1, Leptospirillum MT6; lane 
2, isolate GSM; lane 3, Sb. thermosulfidooxidansT; lane 4, Am. ferrooxidans TH 3. 
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BanII I 
At. ferrooxidans 3 

Lepiospirillum spp. 
2 

"T. ferrooxidans"m-1 1 

"Fm. acidiphilun" T23 4 

Number of restriction sites and approximate fragment size 

200 400 600 800 1000 1200 1400 
11111111 

<200 >400 300 600 

200 700 600 
900 600 

200 350 350 100 500 

XcmI 
At. ferrooxidans 0 

Leptospirillum spp. 2 

"T. ferrooxidans" m-1 1 

"Fm. acidiphilum " T23 1 

200 400 600 800 1000 1200 1400 

1500 ' 
>200 900 <400 

1100 400 
600 900 

123M456M 

-1,636 

-1,018 

--517&506 
-396&344 

-298 
-220&201 
-I34&134 

Figure 8.3: Theoretical diagrammatic restriction enzyme maps and electrophoretic 
analysis of 16S rRNA gene of mesophilic bacteria (Table 8.2) digested with BanIl or 
Xcml. Lanes M, l kb DNA ladder (Gibco BRL); lane 1, At. ferrooxidans ' /Ban11; lane 2, 
L. ferrooxidansT/BanII; lane 3, strain m-1/Banll; lane 4, Al. ferrooxidansT/XcmI; lane 5, 
L. ferrooxidansT/XcmI; lane 6, strain m-l/Xcml ("Fm. acidiphilum " T23 may also be 
differentiated though the electrophoretic analysis was not performed for this bacterium). 
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A/wI 

Isolate SLC 1,2 and 66 "5 
Sulfobacillrs L15, Riv14 1 

"Fm. acidiphilum " T23 2 

Number of restrictiom sites and approximate fragment size 

200 400 600 800 1000 1200 1 

13U 11 850 11 <400 1 >100 

Figure 8.4: Theoretical diagrammatic restriction enzyme map and electrophoretic 
analysis of 16S rRNA gene of mesophilic bacteria (Table 8.3) digested with A/wl. Lane 
M, 1 kb DNA ladder (Gibco BRL); lane 1, SLC 1; lane 2, SLC2; lane 3, SLC66; lane 4, 
Sulfobacillus Riv14; lane 5, "Sb. montserratensis "L 15; lane 6, "Fm. acid phi/um " T23. 
*16S rRNA gene sequences of isolates SLC I and SLC2 were available in the laboratory 
though they are not deposited in GenBank. 

XcmI 
Isolates SLC 1,2 and 66 "0 
Stdfobacillus L 15, Riv 14 2 

"Fm. acidiphilu m" T23 1 

Number of restriction sites and approximate fragment sine 
200 400 600 800 1000 1200 

200 11 >I_x) 

506 

344 

201 

134 

Figure 8.5: Theoretical diagrammatic restriction enzyme map and electrophoretic 
analysis of 16S rRNA gene of mesophilic bacteria (Table 8.3) digested with Xcml. lane 
M, 1kb DNA ladder (Gibco BRL); lane 1, SLCI; lane 2, SLC2; lane 3, SLC66; lane 4, 
Sulfobacillus Rivl4; lane 5, "Sb. montserratensis" L15; lane 6, "Fm. acidiphilum " T23. 
*16S rRNA gene sequences of isolates SLC1 and SLC2 were available in the laboratory 
though they have not been deposited in GenBank. 
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fApal 
L_ 

Isolate SLC I, 2 and 664 2 200 

Isolate GSM &I 
Alicyclobacillus spp. 

Isp92h1 L_ 
Isolates SLC I, 2 and 660 3 <2C 

Isolate GSM &2 
Alicvclobacillus spp. 

Figure 8.6: Theoretical diagrammatic restriction enzyme maps and electrophoretic 
analysis of 16S rRNA gene of Gram-positive bacteria (Table 8.4) digested with Apal or 
Hsp921. Lanes M, l kb DNA ladder (Gibco BRL); lane 1, SLC I /Apal; lane 2, 
SLC2/Apal; lane 3, SLC66/Apal; lane 4, GSM/Apal; lane 5, SLC 1 /Hsp921; lane 6. 
SLC2/Hsp92I; lane 7, SLC66/Hsp92I; lane 8, GSM/Hsp92I. 
* 16S rRNA gene sequences of isolates SLCI and SLC2 were available in the laboratory 
though they have not been deposited in GenBank. 
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Number of restriction sites and approximate fragment six 

SnaBI 

Sulfobacillus Group I 
Sulfobacillus Group 11 

400 

o #jW 
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Figure 8.7: Theoretical diagrammatic restriction enzyme map and electrophoretic 
analysis of 16S rRNA gene of Sulfobacillus spp. (Table 8.5) digested with SnaBl. Lane 
M, 1kb DNA ladder (Gibco BRL); lane 1, Sb. acidophilusT NAL/SnaBl; lane 2, "Sb. 

yellowstonensis " YTF 1 /SnaBI; lane 3, Sb. thermosulfidooxidans ' /SnaBl ; lane 4, -Sb. 
montserratensis" L15/SnaBI: lane 5, Sulfobacillus Rivl4/SnaBt. 

Number of restriction sites and approximate fragment size 

BsmBI 
Sulfobacillus Group I 
Sulfobacillui Group 11 0 

200 400 600 800 1000 1200 1400 

Figure 8.8: Theoretical diagrammatic restriction enzyme map and electrophoretic 
analysis of 16S rRNA gene of Sulfobacillus spp. (Table 8.5) digested with B. smß31. Lane 
M, 1kb DNA ladder (Gibco BRL); lane 1, Sb. acidophilus1 NAL/BsmI31; lane 2, "Sb. 
yellowstonensis" YTF 1 /BsmBI; lane 3, Sb. thermosulfrdooxidansT /BsmB 1; lane 4, "Sb. 
montserratensis " L151BsmBI; lane 5, Sulfobacillus Riv141BsmBl. 
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8.3 Application of the ARDREA method to environmental isolates 

8.3.1 Methods 

The ARDREA method developed in section 8.2 was applied to some environmental 

isolates. These were moderately thermophilic iron-oxidising bacteria isolated from 

Yellowstone National Park (Y002, Y005, Y006, Y0010, Y0015, Y0016, Y0017 and 

Y0018) and from Montserrat (Gl, G2, GG6/1, GG6/3,8/30 and Riv2) (section 2.1). 

Preparation of cell lysates, amplification of 16S rRNA gene, and restriction enzyme 

digestion were carried out as described in section 8.2.1. As all of the isolates were 

moderately thermophilic iron-oxidisers, the restriction enzymes, BsaAI and Eco721, 

were tested on the isolates first for Differentiation Group No.! (Table 8.1) and then the 

enzymes SnaBI and BsmBI for Differentiation Group No. 5 (Table 8.5). The 16S rRNA 

gene (PCR products) of some of the isolates were amplified (section 2.5.1) and 

sequenced (Yellowstone isolates by Dr. Francisco Roberto; INEEL, Idaho Falls, USA 

and Montserrat isolates as described in section 2.5.8) to confirm the accuracy of the 

ARDREA results. 

Although other Yellowstone isolates (Y004, Y008, Y0012, Y0013 and Y0014) were not 

tested for ARDREA analysis since they were not iron-oxidisers, 16S rRNA gene 

sequences of these isolates were also determined (sequences determined by Dr. 

Francisco Roberto). A phylogenetic tree was constructed as described in section 2.5.8. 

8.3.2 Results 

8.3.2.1 Yellowstone isolates 

The electrophoretic analyses of the digested 16S rRNA gene from the iron-oxidising 

Yellowstone isolates are shown in Figures 8.9-8.12. 
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c17 

Figure 8.9: Electrophoretic analysis of 16S rRNA gene from Yellowstone isolates 
digested with Eco721. Lanes M, 100bp DNA ladder (New England Biolabs); lane 1, 
Y002; lane 2. Y005; lane 3, Y006; lane 4, Y0010; lane 5, Y0015; lane 6, Y0016; lane 7, 
Y0017; lane 8, Y0018. 

517 

Figure 8.10: Electrophoretic analysis of 16S rRNA gene from Yellowstone isolates 
digested with BsaAl. Lanes M, 100bp DNA ladder (New England Biolabs); lane 1, 
Y002; lane 2, Y005; lane 3, Y006; lane 4, Y0010; lane 5, Y0015; lane 6, Y0016; lane 7, 
Y0017; lane 8, Y0018. 
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-1,636 

-1,018 

-517,506 
-396,344 
-298 
-220,201 

154,134 

Figure 8.11: Electrophoretic analysis of 16S rRNA gene from Yellowstone isolates 
digested with SnaBI. Lanes M, lkb DNA ladder (Gibco BRL); lane 1, Y002; lane 2, 
Y005; lane 3, Y006; lane 4, Y0010; lane 5, Y0015; lane 6, Y0016; lane 7, Y0017; lane 
8, Y0018. 

-1,018 

17,506 
96,344 
98 
20,201 
54,134 

Figure 8.12: Electrophoretic analysis of 16S rRNA gene from Yellowstone isolates 
digested with BsmBI. Lanes M, l kb DNA ladder (Gibco BRL); lane 1, Y002; lane 2, 
Y005; lane 3, Y006; lane 4, Y0010; lane 5, Y0015; lane 6, Y0016; lane 7, Y0017; lane 
8, Y0018. 

The restriction patterns that the Yellowstone isolates exhibited with the four restriction 

enzymes (Eco721, BsaAL SnaBI and BsmBI), the lengths of the determined 16S rRNA 

gene sequences, and the names of most homologous organisms determined by 

comparison of 16S rRNA gene sequences, are summarised in Table 8.7. 
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Table 8.7: Restriction patterns and the putative identities of the Yellowstone 
isolates. 

Restriction patterns 
Isolate Differentiation No. 1 Differentiation No. 5 Length of 16S rRNA gene determined 

able 8.1) able 8.5) : Accession number 

Most homologous organism (%) Eco721 BsaAI SnaBI Bs7nBI cci number 

Y002 New pattern GSM pattern Sulfobacillus New pattern 1423bp 
(=Y006 & 10) Group II (=Y006 & 10) 

SLC66 (95.3%): AY040739 
[Y006&Y0010 (99.9%)] 

Y005 Leptospirillum Leptospir llum Sulfobacillus Sulfobacillus 1404bp: AY140237 
MT6 pattern 14176 pattern Group I Group I 

Methylobacterium fujfsawaense (96.3%): 
AJ250801 

Y006 New pattern GSM pattern Suljobacillus New pattern 1425bp 
(=Y002 & 10) Group II (=Y002 & 10) 

SLC66 (95.3%): AY040739 
0010 (99.90/0)1 

Y0010 New pattern GSM pattern Sulfobacillus New pattern 1333bp: AY140235 
(=Y002 & 6) Group II (=Y002 & 6) 

SLC66 (95.3%): AY040739 

Y0015 Sulfobaci lus Sulfobacillus Sulfobacillus Sulfobacillus 1397bp 
pattern pattern Group I Group I 

"Sb. yellowstonensis"YTF1(99.0%): 
AY007665 
[Y0016 (99.2%)] 
[Sulfobacillus NC (chapter 3) (99.6(yo)] 
[Sulfobacillus YTF3 (chapter 7) (99.7%)] 

Y0016 Sulfobacillus Sulfobacillus Sulfobacillus Sulfobacillus 1394bp 
pattern pattern Group I Group I 

"Sb. yellowstarzensis" YTF1(98.9%): 
AY007665 
[Sulfobacillus NC (chapter 3) (99.5%)] 
Sul obacillus YTF3 (chapter 99.6% 

Y0017 New pattern New pattern Sulfobacillus Sulfobacillus 1295bp: AY140239 
Group II Group II 

"Sb. montserratensis"L15 (98.0%): 
AY007663 

Y0018 cidimicrobium cidimicrobium Sulfobacillus Sulfobacillus 1262bp: AY140240 
T IB pattern I I-B pattern Group I Group II 

Am. ermoridans TH3 (97.6%): M79434 

Isolates Y002, Y006, and Y0010 showed the same restriction patterns with all of the 

four enzymes tested. Isolates Y002, Y006 and Y0010 showed the "GSM pattern" with 

BsaAI, but a new pattern with Eco721, suggesting that these three isolates belong to 
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none of the four groups of moderately thermophiles listed in Table 8.1. It was later 

confirmed, using 16S rRNA gene sequences, that these three isolates had the highest 

homology to isolate SLC66 (95.3%), which is a mesophilic iron-oxidising bacterium 

(Table 8.7). Isolates Y002, Y006 and Y0010 were closely related to each other, with 

99.9% homology. 

The restriction patterns of isolate Y005 with BsaAI and Eco721 were the same as those 

of Leptospirillum MT6; however, the cellular morphology of Y005 was very different 

from Leptospirillum spp. in that it grew as long filaments, forming 1-2 mm diameter 

flocs in liquid media. Therefore, it was speculated that this isolate might belong to none 

of the four groups of moderate thermophiles listed in Table 8.1. From 16S rRNA gene 

sequence analysis, the most homologous organism to YOOS was shown to be 

Methylobacterium fujisawaense, with 96.3% homology (Table 8.7). 

Isolates Y0015 and Y0016 exhibited Sulfobacillus restriction patterns with both BsaAI 

and Eco721. In addition, when digested with SnaBI and BsmBI, these two isolates had 

the same pattern as those ofSulfobacillus group I (defined in Table 8.5); therefore, these 

bacteria were suggested to belong to Sulfobacillus group I, which was shown to be 

correct from subsequent 16S rRNA gene sequence analysis (Table 8.7). Isolates Y0015 

and Y0016 had 99.2% homology to each other. 

Isolate Y0017 had new restriction patterns with both BsaAI and Eco721, suggesting that 

this isolate belongs to none of the four groups of moderate thermophiles listed in Table 

8.1. The 16S rRNA gene of Y0017 had 98.0% homology with the mesophile "Sb. 

montserratensis" L15. The ARDREA method therefore differentiated this isolate from 

known moderate thermophilic Sulfobacillus spp. (listed in Table 8.1). 

The restriction patterns of Y0018 with Eco721 and BsaAI were the same as those of 

Acidimicrobium TH3 (Table 8.7). From 16S rRNA gene sequence analysis, Y0017 was 
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confirmed to be an Acidimicrobium sp., with 97.6% homology with Am. ferrooxida ns 

TH3 (Table 8.7). 

In addition, the 16S rRNA gene sequences of heterotrophic (non iron-oxidising) 

moderately thermophilic Yellowstone isolates were determined (Table 8.8). Other than 

isolate Y004, which had the highest homology (97.6%) with bacterium KI (a putative 

Alicyclobacillus sp. ), all isolates were most closely related to Acidisphaera rubrifaciens 

with 93-94% homology. Also, Y008,12,13 and 14 were closely related to each other 

with 97.9-99.9% homology. 

Table 8.8: Results of the 16S rRNA gene determination of heterotrophic Yellowstone 
icnlates_ 

Heterotrophic Length of 16S rRNA gene determined: Most homologous organism (%): 
isolates Accession number Accession number 

Y004 1405bp: AY140236 Bacterium KI (97.6%): 221979 

Y008 1340bp: AY140238 Acidisplwera rubrifaciers (93.3%): 
D86512 

Y0012 1384bp Acidisphaem 6 cieu (93.4%): D 

Y0013 1290bp Acidisphaera rubrifacient (93.5%): 
D86512 

Y0014 1364bp Acidisphaera ºubr faciens (93.7%): 
D86512 
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8.3.2.2 Montserrat isolates 

Electrophoretic analysis of 16S rRNA gene from the iron-oxidising Montserrat isolates, 

digested with Eco721 and BsaAl, are shown in Figures 8.13 and 8.14. Those which had 

the Sulfobacillus patterns with these enzymes were then tested with Snal31 and B. s'mßl 

(Figure 8.15). 

47 

Figure 8.13: Electrophoretic analysis of 16S rRNA gene of Montserrat isolates digested 
with Eco721. Lanes M, 100bp DNA ladder (New England Biolabs); lane 1, G 1; lane 2, 
G2; lane 3, GG6/1; lane 4, GG6/3; lane 5,8/30; lane 6, Riv2. 

117 

Figure 8.14: Electrophoretic analysis of 16S rRNA gene of Montserrat isolates digested 
with BsaAI. Lanes M, 100bp DNA ladder (New England Biolabs); lane 1. G 1; lane 2. 
G2; lane 3, GG6/1; lane 4, GG6/3; lane 5,8/30; lane 6, Riv2. 
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Figure 8.15: Electrophoretic analysis of 16S rRNA gene of Montserrat isolates digested 
with SnaBI or BsmBI. Lanes M, 100bp DNA ladder (New England Biolabs); lane 1. 
G2/SnaBI; lane 2, GG6/1/SnaBI; lane 3, GG6/3/. SnaBI; lane 4,8/30/Snaßl; lane 5, 
Riv2/SnaBI; lane 6, G2/ BsmBI; lane 7, GG6/I/ BsmBI; lane 8, GG6/3/ RsmBl; lane 9, 
8/30/ BsmBI; lane 10, Riv2/ BsmBI. 

The restriction patterns that the Montserrat isolates exhibited with the four (or two) 

restriction enzymes are summarised in Table 8.9. 

From the ARDREA results, it was suggested that isolate G1 is an organism which does 

not belong to any of the four groups of moderate thermophiles listed in Table 8.1, and 

that isolate G2 and the other four isolates (GG6/1, GG6/3,8/30 and Riv2) belong to 

Sulfobacillus group II and Sulfobacillus group I (defined in Table 8.5), respectively. 

Determination of 16S rRNA gene sequences of isolates 61,62 and also of isolate 

GG6/1 (as a representative of the four isolates which had the Su/fohacil/us group I 

pattern; GG6/1, GG6/3,8/30 and Riv2) confirmed the accuracy of the ARI)Rl,: A results. 

Isolates G1, G2 and GG6/1 were found to be most closely related to S1. C'66 (95.4%), 

Sb. thermosulfidooxidansT (99.6%) and "Sb. yellowstonensis" Y"l l" I (98.7%), 

respectively. Isolate GI was also closely related to Y002 (99. (Y%), )'00( (99.9"/0 and 

Y0010 (100%) and isolate GG6/1 to Y0015 (98.9%) and Y0016 (98.9%). 
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Table 8.9: Restriction patterns and the putative identities of the Montserrat isolates. 
Restriction patterns Length of 16S rRNA gene 

Isolate Differentiation No. 1 Differentiation Nay 
deterndned 

: Accession number 
able 8.1) able 8.5) 

Most homologous organism (%) 
Eco72I BsaAI SnaBI BmnBI : Accession number 

G1 New pattern GSM pattern 1411 bp 
(=Y002,6&10) n. d n. d 

SLC66 (95.4%): AY040739 
[Y002&Y006 (99.9%) Y0010 (100%)] 

G2 Sulfobacillus Suljobacillus Suljobacillus Sulfobacillus 1411bp: AY140233 
pattern pattern Group U Group U 

Sb. thennosulfidoaridan3T (99.6%): 
X91080 

GG6/1 Sulfobacillus Sulfobacillus Suljobacillus Sulfobacillus 1433bp: AY140234 
pattern pattern Group I Group I 

"Sb. yellowstonensis" YTF1 (98.7%): 
AY007665 
[Y0015&Y0016 (98.9%)] 
[Suljobacillus NC (chapter 3) (100%)] 
[Suljobaclllus YTF3 (chapter 7) (99.6%)] 

GG6/3 Suljobacillus Sulfobacillus Sulfobacillus Suljobacillus n. d 
pattern pattern Group I Group I 

8/30 Sulfobacillus Sulfobacillus Sulfobacillus Sulfobacillus n. d 
pattern pattern Group I Group I 

Riv2 Sulfobacillus Suljobacillus Sulfobacillus Su fobacillus n. d 
pattern pattern Group I Group I 

n. d.: not determined 

255 



A phylogenetic tree was constructed using the 16S rRNA gene sequences of the isolates 

determined in this study (Figure 8.16). 

0.1 

Isolate Y005 

- Methylobacterium fujisawaense 

Isolate Y008 
Isolate Y0012 
Isolate Y0013 
Isolate Y0014 

- Acidisphaera rubrifaciens 
- Acidisphaera NO15 

Isolate Y0018 
--ýAm. ferrooxidans T13 

Am. ferrooxidansT ICP 

r "Sb. yellowstonensis" YTFI 

Isolate Y0015 
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Isolate GG611 
Sb. acidophilusT 

Isolate Y0017 
"Sb. montserratensis" L15 
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Sb. thermosulfidooxidansT 
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Gram-positive bacteria 

Figure 8.16: Phylogenetic relationships of the "Yellowstone" and "Montserrat" isolates 
(in bold) to known acidophilic prokaryotes. The phylogenetic tree was rooted with S. 

metallicus. The bar represents 0.1 nucleotides substitution per 100 for the horizontal 
branch lengths. 
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8.4 Discussion 

The ARDREA method was developed to identify a range of different acidophilic 

bacteria in environmental and other samples. There was good agreement between 

predictive models and actual experiments, and restriction fragments were readily 

separated and identified on 2% agarose gels. It was found necessary to use a 100 bp 

DNA ladder rather than 1 kb ladder as a marker on agarose gel, since some restriction 

fragments, especially small size (<-300 bp) fragments, corresponded to the 100 bp 

DNA ladder, but not to the 1 kb DNA ladder. 

General schemes for identification of moderately thermophilic and mesophilic iron- 

oxidising isolates using ARDREA are shown in Figures 8.17 and 8.18, respectively. 

Since the environmental isolates tested in this study displayed wide diversity as 

described above, and some of the isolates were not within the categories of the original 

"Differentiation Groups" (Table 8.1-8.5), the final schemes were constructed including 

additional theoretical routes to differentiate such isolates. In addition, an ARDREA 

method to differentiate L. ferriphilum and L. ferrooxidans described by Coram and 

Rawlings (2002) is incorporated in Figure 8.18. 

"Sb. montserratensis" L15 and Sulfobacillus Riv14-like isolates, together with 

isolateYO017 (Low G+C Gram-positive pattern C), can be separated from the other 

Sulfobacillus spp. (Low G+C Gram-positive pattern A) when tested first with Eco721 

and BsaAI (Figure 8.17). However, if isolates are identified as Sulfobacillus spp,, and 

their amplified 16S rRNA genes digested with SnaBI and Bsmßl, "Sb, 

montserratensis'=like bacteria are not differentiated from Sb. thermosulfidooxidanu (i. e. 

both belong to Group Hin the scheme presented in Figure 8.17. 
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SLC-like isolates, which include isolates Y002, Y006, Y0010 and G1, can be separated 

as a single group (Low G+C Gram-positive pattern D) and differentiated from most 

other low G+C Gram-positive acidophiles, in the scheme presented. However, since this 

group of iron-oxidising bacteria displays the same restriction pattern as isolate GSM 

with one BsaAI, it is important that both restriction enzymes are used. In general, it was 

found that greater accuracy of the ARDREA approach always resulted when two, rather 

than a single, restriction enzymes were used. 

The 'Differentiation Group No. 4" (Table 8.4) was developed initially to differentiate 

the "SLC group" from the "GSM + Alicyclobacillus group", which form two different 

branches in the phylogenetic tree (Figure 8.16). Since the "SLC" group of isolates were 

all mesophilic (Johnson et al., 2001a) and isolate GSM and Alicyclobacillus spp. are all 

moderate thermophiles, a simple temperature test (e. g. for growth at 45-50°C) would 

also serve to differentiate these bacteria. However, a cautionary note in interpreting 

results from such a test arose in the present study, as several moderately thermophilic 

isolates (Y002, Y006, Y0010 and G1) were found to be most closely related to the SLC 

isolates. In addition, the bacterium classified as "Suljobacillus disulfidooxida, rs" 

(Dufresne et al., 1996) is actually more closely related to Alicyclobacillus spp. than to 

Sulfobacillus spp. (the mis-classification was due to erroneous sequence data having 

been deposited in the databanks for Sb. thermosulfidooxidans; Hallberg and Johnson, 

2001a). "Sb. disulfidooxidans" is mesophilic, which suggests that the genus 

Alicyclobacillus (like Sulfobacillus) may include both moderate thermophiles and 

mesophiles. The situation regarding iron-oxidation in Alicyclobacillus spp. is also 

unclear, as isolate K1 (Karavaiko et al., 2000), which has 94.0% 16S rRNA gene 
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homology with Alicyclobacillus cycloheptanicus is, in contrast with all currently- 

classified Alicyclobacillus spp., an iron-oxidiser. 

Although the preliminary ARDREA test (using Eco721 and BsaAl) fails to differentiate 

Methylobacterium-like isolates (such as Y005) and thermotolerant Leptospirillum (e. g. 

isolate MT6) a second set of digests, using BsmBI and XcmI, may be used to identify 

these iron-oxidisers (Figure 8.17). Since Methylobacterium spp. and Leptospirillum spp. 

display very different cellular morphologies, these bacteria may be more readily 

differentiated by simple physiological tests. 

Coram and Rawlings (2001) found that L. ferriphilum and L. ferrooxidans may be 

differentiated using any one of the following restriction enzymes to digest amplified 

16S rRNA genes: Agel, Avrl, Bfrl, EcoRV, Mrol, NcoI, Smal, SspI and Stuf (Figure 

8.18). Of these enzymes, EcoRV was found to be able, in theory, to differentiate isolate 

MT6 from the two recognised Leptospirillum spp., though this was not tested with 

actual DNA samples. 

Overall, the ARDREA method developed in this study was shown to be effective in 

most cases, at least with those environmental isolates tested. As 16S rRNA gene 

sequence data from only a single organism was used sometimes to differentiate one 

group from another, the accuracy of the method might become relatively low in such 

cases. To compile a more accurate ARDREA method, 16S rRNA gene sequences from 

increased number of microorganisms should be utilised ideally, when they become 

available. The ARDREA methods reported so far can only be applied to a few 

mesophilic acidophilic species and At. caldus (Rawlings, 1995 and Kamimura et al., 

2001). Rawlings (1995) developed the ARDREA method to differentiate Al. 
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ferrooxidans, At. thiooxidans and L. ferrooxidans. Later, Kamimura et al. (2001) 

described rapid identification of At. ferrooxidans by combining ARDREA with 

physiological analysis. The ARDREA method described here can be applied to a much 

wider variety of acidophiles. In particular, the ARDREA method was developed for the 

first time for moderately thermophilic acidophiles in this study. By using this method, a 

large number of environmental isolates can be identified to a genus or even species 

level. 

Figure 8.17 (following page): General scheme for identification of moderately 
thermophilic iron-oxidising isolates using ARDREA. Descriptions of a :j are 
commented in Table 8.10. 
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Table 8.10: Restriction pattern name from Figure 8.17 and description of the pattern. 
a-i in this Table conesnond to a-i in Figure 8.17. 
Restriction pattern name Description of the pattern 

° Gram-negative pattern 
Eco72I: 1' line of enzyme map; lane 1 on agarosc gel in Figure 8.1 
BsaAI: 1 line of enzyme map; lane 1 on agarose gel in Figure 8.2 

b ferrooxidans pattern Am Eco721: 4t` or 5th line of enzyme map; lane 4 on agarose gel in Figure 8.1 
t . ' lint of enzyme map; lane 4 on agarose gel in Figure 8.2 BsaAI: 4 

`Low G+C Gram-positive Eco721: P line of enzyme map; lane 3 on agarose gel in Figure S. I 
pattern A BsaAI: 3`° line of enzyme map; lane 3 on agarosc gel in Figure 8.2 

d Low G+C Gram-positive Eco721: 2"d line of enzyme map; lane 2 on agarosc gel in Figure 8.1 
pattern B BsaAI: 2nd line of enzyme map; lane 2 on agarose gel in Figure 8.2 

'Low G+C Gram-positive Eco721: Lane 7 on agarosc gel in Figure 8.9 
pattern C BsaAI: Lane 7 on agarose gel in Figure 8.10 

f Low G+C Gram-positive Eco721: Lane 1&3&4 on agarosc gel in Figure 8.9 
pattern D BsaAI: 2"'i line of enzyme map; lane 2 on agarosc gel in Figure 8.2 

' Mlethylobacterium BsmBI: theoretical pattern include -1250bp and -250bp fragments 
pattern Xcml: theoretical pattern include -10S0bp and'-4SObp fragments 

h Leptosplrtllum pattern BsmBI: theoretical pattern include two -7S0bp fragments 
Xcml: theoretical pattern include -900bp, -3S0bp and -230bp fragments 

Sulfobaciilus Group I SnaBI: 1" lint of enzyme map; lane 1 and 2 on agarose gel in Figure 8.7 
pattern BsmBI: 1« line of enzyme map; lane 1 and 2 on agarose gel in Figure 8.8 

Sulfobacillus Group II SnaBI: 2nd line of enzyme map; lane 3&4&S on agarose gel in Figure 8.7 
pattern Bs nBI: 2`d line of enzyme map; lane 3&-4&5 on agarosc gel in Figure 8.8 
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As well as the ARDREA analysis, 16S rRNA genes from several of the more interesting 

and unusual iron-oxidising bacteria studied were sequenced. From these analyses, it was 

found that the environmental isolates tested comprised a diverse range of moderately 

thermophilic acidophiles, including a-Proteobacteria, Actinobacteria and low G+C 

Gram-positive bacteria (Figure 8.16). Isolates Y002, Y006, Y0010 and 01 were 

phylogenetically closely related to each other, and the 16S rRNA gene sequences of 

these isolates were most homologous (95.3-95.4%) to that of a previously sequenced 

isolate, SLC66. However, as noted earlier, the Yellowstone and Montserrat isolates 

were all moderately thermophilic, whereas the optimum temperature of isolate SLC66 

(and other similar isolates, SLCI and SLC2) was found to be 37°C, and no growth 

occurs at 45°C; Johnson et al., 2001 a). Other contrasting features are that isolates Y002, 

Y006 and Y0010 are all capable of oxidising elemental sulfur, whereas the "SLC 

isolates" do not, and the thermophiles are more acid-tolerant than the mesophiles (p1I 

minima of 1.3, compared with 1.7; Johnson et al., 2001 a). 

Isolate Y004 displayed the typical physiological characteristics of Alicyclobacillus spp.. 

Its nearest relative (97.6% 16S rRNA gene homology) in the databanks was the Gram- 

positive moderate thermophile, K1. However, Y004 does not oxidise ferrous iron while 

strain K1 has been reported to do so (Karavaiko et al., 2000). 

Although isolate Y0017 has been described as a moderate thermophile, the maximum 

temperature of this isolate is relatively low (50°C; Johnson, unpublished data). 

Interestingly, this iron-oxidiser is most closely related (98.0% 16S rRNA gene 

homology) to "Sb. montserratensis" L15. The latter acidophile is mesophilic, with a 

temperature optimum of 37°C and temperature maximum of 43°C (Johnson cl (1l., 

2001a). One other distinct feature of "Sb. montscrratc, lsis" L15 is its extreme acidophily 

(p11 minimum 0.7, making it the most acid-tolerant of all known iron-oxidising 
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bacteria). In contrast, the pH minimum of isolate Y0017 was found be much higher 

(1.3; D B. Johnson, unpublished data). 

Isolates Y0015 and Y10016 were both found to be most closely related to "Sb. 

yellowstonensis" YTF1, and all three of these bacteria were isolated from the same 

sampling site in Yellowstone National Park (Frying Pan Hot Spring). These bacteria 

shared a number of physiological traits, such as temperature maxima of about 60°C; D. 

B. Johnson, unpublished data). 

Isolate Y0018 was found to be most closely related to An:. ferrooxfdans T113 with 

97.6% 16S rRNA gene homology. Both the former and the latter were found to have the 

same temperature maximum of 55°C, and were able to reduce ferric iron and unable to 

oxidise sulfur (Clark and Norris, 1996a; Johnson et a!., 2001a; D. B. Johnson, 

unpublished data). The pH minimum of isolate Y0018 was found to be 1.0 (D. B. 

Johnson, unpublished data) though that of the latter was not determined. 

Phylogenetic analysis of the Yellowstone isolates did, however, reveal two seemingly 

novel groups of thermo-acidophiles. The first of these were isolates Y008, Y0012, 

Y0013 and Y0014, which were found to be obligately hctcrotrophie bacteria (D. B. 

Johnson, unpublished data). Data searches revealed that the closest known relative of 

these isolates is Acidisphaera rubrijacieiu (93-94% 16S rRNA gene homology). 

Currently, there is only one designated species of As rtubr(facicns (1 iiraishi et al. 2000) 

though a bacterium (NO-15) sharing 94.5% rRNA gene homology was isolated from 

acid mine drainage in Norway (Johnson et a!., 2001c). The Yellowstone isolates were 

even more distantly related to NO-15 (91.9% gene homology) than to the original strain. 

However, both the original strain and the Norwegian isolate are mesophilic (temperature 

optimum 30-35°C) whereas the Yellowstone isolates were found to grow at up to 65°C 
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(making them more thermotolerant than some Alicyclobacil us spp. ). Given this fact, 

and the relatively low 16S rRNA gene homology, it is clear that the Yellowstone 

isolates represent a novel species of acidophilic bacteria. 

The other interesting discovery was the isolation of a bacterium that appears to be the 

first methylotrophic iron-oxidising acidophile to be described. This bacterium was 

isolated directly from enrichment cultures of Yellowstone samples, where it formed 

small "fuzzy" colonies on ferrous iron-overlay plates incubated at 45°C (D. B. Johnson, 

unpublished data). Liquid cultures of Y005 routinely used ferrous sulfate/yeast extract 

medium, as the Sulfobacillus and Acidindcrobium isolates. In liquid medium, this 

isolate grew as 1-2 mm-diameter flocs, which were composed of filamentous bacteria. 

Phylogenetic analysis of Y005 confirmed that its nearest relative (96.3% 16S rRNA 

gene homology) is the a-Proteobacterium, Metlhylobacterium ft#isaxwaei se, though this 

has a very contrasting physiology to isolate Y005 in that it is a mesophilic non-iron- 

oxidising neutrophile (Green et al., 1988). There are no known acidophilic strains of 

Methylobacterium, though the mesophilic heterotroph Acidomouas meths olica is a 

methylotroph (Urakami et al., 1989) and several strains ofAcidiphilium can grow using 

methanol as sole carbon source (D. B. Johnson, unpublished data). Neither Acidomo, ras 

nor Acidiphilium can, however, oxidise ferrous iron. 
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Chapter 9 

General Discussion and Conclusions 

The current study has focused on moderately thermophilic (or thermotolerant) 

acidophilic microorganisms and, in particular, their role in the oxidation of the sulfide 

mineral, pyrite. Commercial mineral processing using microorganisms ("biomining") 

has developed into an important and expanding area of biotechnology. Whilst 

temperatures in heap leaching and in situ leaching operations are not controllable (and 

may vary widely), stirred tank leaching of mineral concentrates currently generally 

operate at 40-55°C (though there are projections to use higher temperature systems), and 

these temperatures would favour the growth of moderate thermophiles. 

The project began by characterising four apparently diverse moderately thermophilic, 

acidophilic microorganisms that had been isolated from an aerated stirred tank 

bioleaching pilot plant operated by Mintek, South Africa. The microbial inoculum used 

in that operation was essentially the "IIacTech" culture, which had previously been used 

in a biomining operation (the Youanmi mine) in Australia (Miller, 1997). These isolates 

(MT1, MT6, NC, and MT16/MT17) were found, from analysis of their 16S rRNA 

genes, to be most closely related to At. caldusr (99.5%), L ferripbihunT (99.5%), "Sb. 

yellowsionensis" YTF1 (98.9%), and Fp. acidiphihunT (99.6%), respectively. Despite 

these high 16S rRNA gene sequence homologies, there were significant differences in 

some physiological characteristics between the novel acidophiles, Leplarplrfllunt MT6 

and Ferroplasma MT17, and other Leptospirillum spp. and Fcrroplarnra spp., such as 

the much faster growth rate of isolate MT6 than all previously characterised 

Leptospirillum spp. Experimental data also showed that the Fcrroplcasma isolates 
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(MT16 and MT17) could metabolise tetrathionate, which is the first time this has been 

reported. 

Following their physiological and phylogenetic characterisation, these and other 

moderately thermophilic acidophiles, were tested for pyrite oxidation. The relative 

efficiencies of "logically designed" consortia of moderate thermophiles, compared to 

pure cultures were assessed. In all of these consortia, it was important to include an 

iron-oxidising acidophile, as it is known that the oxidation of some sulfide minerals 

(including pyrite) is primarily mediated by ferric iron, which is produced by ferrous 

iron-oxidisers. Ferric iron attack on pyrite results in the (ultimate) production of 

elemental sulfur and/or various reduced inorganic sulfur compounds (RISCs; Schippers 

et al., 1996; Schippers and Sand, 1999). These are not oxidised by bacteria such as 

Lepiospirillum or Am. ferrooxidairs (though they can be oxidised by the ferric iron 

which is produced by these microorganisms), but they are metabolised by other 

moderate thermophiles such as Sulfobacillus spp. and Al. caldus. Although Sulfobacillus 

spp. are potentially important organisms in leaching environments, due to their ability to 

oxidise both ferrous iron and RISCs, the actual importance of these acidophiles appears, 

at least in aerated stirred tanks, to be minor. Foucher et al. (2001) analysed microbial 

populations in a stirred tank bioreactor and an aerated column reactor processing 

cobaltiferous pyrite operating at 35°C. Among the three bacteria identified (L, 

ferrooxidans, At. caldus and "Sulfobacillus thermosulfidooxidans'), Sb. 

Ilhermosulfidooxidanrs, (later confirmed to be more closely 'related to "Sb. 

montserratenisis"; P. d'Hiughes, personal communication) initially accounted for -30% 

of the mixed culture but became less abundant (-5.10% of total bacteria) as mineral 

oxidation progressed. Similarly, At caldus appeared to out-compete Suu{fobaclilus spp. 
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in the Mintek stirred tanks and generally greatly outnumber the Gram-positive bacteria 

(chapter 3). Both Leptospirillum and At. callus are autotrophs, and fix carbon dioxide, 

some of which, due to cell lysis and exudation, ends up as soluble (dissolved) organic 

carbon. A third group of candidate acidophiles to be included in bioleaching consortia 

would therefore be heterotrophs (or mixotrophs). These acidophiles could, in theory, 

benefit the autotrophs by (i) metabolising organic compounds, thereby reducing or 

eliminating any potentially inhibitory effects and, (ii) their production of carbon dioxide 

(mineral processing bioreactors are often fed with C02-enriched air). In addition, 

inclusion of heterotrophs (or mixotrophs) that also catalyse the oxidation of iron (and/or 

sulfur) could, in theory, result in more accelerated sulfide mineral oxidation. 

The initial pyrite oxidation experiments were carried out in shake flasks. These had the 

advantage of allowing a large number of replicated microbial cultures to be screened, 

but suffered from the lack of control of some parameters, most notably p1!. The main 

iron-oxidiser used in mixed cultures was the Leptospirillum isolate (A1T6). Some 

interesting data were obtained with both ground rock pyrite and a pyrite concentrate. It 

was found, for example, that oxidation of the ground rock pyrite was suppressed in 

mixed cultures of Leptospirillum MT6+Ferroplarma MTI7 and (to a lesser extent) 

Leptospirillum MT6+Sulfobacillus NC, compared to pure cultures of Leptosplr/ttuººt 

MT6. 

One other notable result from the shake flask pyrite oxidation experiments was the 

finding that pure cultures of Leptospirill um MT6 were unable to oxidise the pyrite 

concentrate, though this acidophile could oxidise ground rock pyrite and also 

commercially-available pyrite, obtained from Strem Chemicals (data not shown). When 

mixed cultures of Leptospirillun NIT6 and the Gram-positive isolate Sul/obacilhis NC 
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were grown on the pyrite concentrate, the Leptospirillum isolate emerged as the 

dominant iron-oxidiser. This suggested that there was an inhibitory agent associated 

with the pyrite concentrate which was at least partially eliminated by Sulfohcicilluus NC 

(Figure 9.1). Since Leplospirillum MT6 was able to oxidise ferrous iron present in 

mineral-free pyrite concentrate liquor media following autoclaving, whereas the pyrite 

concentrate itself was not oxidised (chapter 6), the "inhibitory compound(s)" appeared 

to affect the cells attached to mineral surfaces, A similar phenomenon was also 

described by Valdivia and Chaves (2001). 

(Aý 
X Leptospirillum MT6 

Inhibitory compound ss1 

Pyrite Concentrate 

Orr 

(B) 

Leptospirillum MT6 
Sulfobacillus NC 

Fe3+ 
Pyrite Concentrate 

° ýj° 
Fe2+ 

Figure 9.1: Possible interaction between Leplaspiril/aim MT6 and Sii/fohcucilhc., " NC 
during oxidation of pyrite concentrate. (A) Pure culture of Leptosppirillnm MT6. (B) 
Mixed culture ofLeptospirillnm MT6 and SuIfohacilhcs NC. 

Pre-oxidation of pyrite concentrate by Snlfobacillus NC prior to inoculation with 

Leptospirillum MT6 was also found to be effective to remove the inhibitory agent, 

whereas attempts to remove the inhibition chemically by pre-washing with either 

acetone or perchloric acid were both unsuccessful. Interestingly, the autotroph Ar 
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caldus was also unable to remove this "inhibitory compound(s)", suggesting that the 

latter, present on the surface of the pyrite concentrate (which was usually pre-treated 

with xanthates; Mariekie Gericke, Mintek; personal communication) may be 

metabolised by heterotrophic acidophiles as a carbon source. 

This observation prompted an investigation into the effects of different- flotation 

reagents (fourteen collectors and one frother) on iron oxidation/growth of five 

moderately thermophilic, mineral-oxidising acidophiles. Different flotation reagents 

displayed different degrees of toxicities to the microorganisms tested, with 

Leptospirillum MT6 and Ferroplasma MT17 being, in general, more sensitive to these 

chemicals than Sulfobacillus NC, Am. ferrooxidans ICP and At. caldus. Enhanced 

oxidation of pyrite concentrate was observed in mixed cultures of Leptospirillum MT6 

and some Gram-positive acidophiles other than Sulfobacillus NC, suggesting that a 

number of Gram-positive acidophiles might also be able to eliminate "inhibitory 

compound(s)", thereby allowing Leptospirillum MT6 to oxidise the concentrate, though 

this was not investigated further. Am. ferrooxidans ICP might be a suitable acidophile in 

this context, since its sensitivity to a number of flotation reagents tended to be relatively 

low. 

Data from pyrite oxidation experiments in shake flasks were used to select microbial 

consortia in later experiments in temperature- and pH-controlled bioreactors using 

ground rock pyrite as the test sulfide mineral. These involved monitoring rates of 

mineral oxidation, and relative numbers of the different microorganisms using a plating 

technique in conjunction with a molecular approach (FISH). The results from the pyrite 

oxidation studies in bioreactors indicated that mixed populations of acidophiles could 

accentuate or diminish the rates and extent of pyrite oxidation, relative to pure cultures, 
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as a result of possible interactions between moderate thermophiles. as illustrated in 

Figure 9.2. 

Aeration 

0° 

S042- COZ 
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Figure 9.2: Possible interactions of moderate thermophiles in the oxidation of pyrite. 

Dopson and Lindström (1999) suggested two possible roles for Al. calc/us when 

leaching arsenopyrite in co- culture with Sb. thermosulfidooxidans. These were: (i) to 

remove sulfur that can accumulate on the surface of the oxidising mineral (only a 

portion of this elemental sulfur was removed by Sb. thermosul/rdooxidans, and sulfur 

accumulation was less in the mixed culture with At. cYaldu. s), and (ii) to aid mixotrophic 

growth of Sb. thermosulfidooxidans by releasing organic chemicals. In the current 

study, At. ca/c/ns was found to have variable effects on pyrite oxidation in different 
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mixed cultures. A mixed culture of Am. ferrooxidans+At. caldus was far more effective 

than a pure culture of Am. ferrooxidans. Since Am. ferrooxidans is a mixotrophic non 

sulfur-oxidiser, both the former and latter roles of At. caldus described above were 

likely to benefit Am. ferrooxidans. In contrast, in mixed culture with Leptospirillum, At. 

caldus appeared to have a negative impact on pyrite oxidation, possibly due to these two 

obligate autotrophs competing for CO2. 

Although Ferroplasma MT17 also had a negative effect on pyrite oxidation by 

Leplospirillum MT6 (possibly due to production of some active metabolite produced by 

the archaeon, though this was not investigated further), pyrite oxidation was particularly 

effective in the mixed culture of Leptospirillum MT6+Ferroplasma MT17+At. caldus. 

The roles of At. caldus described by Dopson and Lindström (1999) were probably also 

the case in this mixed culture (though Ferroplasma MT17 might have contributed to the 

oxidation of RISCs). Ferroplasma MT17 became dominant in the later phase of pyrite 

oxidation (and at lower pH) possibly due to the DOC, originating from dead bacterial 

cells, which would have become available for the heterotrophic archaeon. 

Possible competition for iron was observed in the mixed culture of Leptospirillum 

MT6+Am. ferrooxidans, where pyrite oxidation was slightly less than that by the pure 

culture of Leptospirillum MT6. At. caldus was present in equal or greater numbers than 

the iron-oxidisers in some mixed cultures, presumably due to its ability to utilise RISCs 

(which yield more energy than the oxidation of ferrous iron). 

Inhibition of moderately thermophilic and mesophilic Sulfobacillus spp. and related low 

G+C Gram-positive bacteria by ferric iron also formed part of the present study. 

Previously, Johnson et al. (2001b) had noted that ferrous iron oxidation by 

Sulfobacillus-like moderate thermophiles isolated from two sites in Yellowstone 
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National Park, Wyoming did not go to completion in shake flask cultures poised 

initially at pH 2.0, though it did so at lower pH (1.8). Experimental results suggested 

that this group of Gram-positive acidophiles are particularly sensitive to pH-related 

ferric iron inhibition, and it was hypothesised that the anionic ferric sulfate complex, 

Fe(SO)2', might be particularly important in this regard. Commercial stirred tanks are 

generally run at pH <2 and, therefore, this pH-related ferric iron sensitivity is probably 

not important in such cases. However, in sulfide ore processing operations where the pH 

is not controlled (mineral heaps, in situ operations etc. ) it is conceivable that mineral 

oxidation by these low G+C Gram-positive bacteria would be more likely to be 

inhibited by ferric iron. 

The other part of the current project included investigation and development of 

ARDREA (Amplified Ribosomal DNA Restriction Enzyme Analysis) using the 16S 

rRNA gene sequences of known acidophilic bacteria to identify moderately 

thermophilic (and mesophilic) acidophiles. The ARDREA methods described 

previously had been applied only to a few mesophilic species and At. caldus (Rawlings, 

1995; Kamimura et al., 2001), and were further developed, in the current study, to apply 

to wide variety of moderately thermophilic and mesophilic acidophilic isolates, 

facilitating identification at the genus or even species level. 

The ARDREA method was applied successfully to identify moderate thermophiles 

isolated from geothermal sites in Yellowstone National Park and Montserrat. It was 

found that these isolates comprised a diverse range of moderately thermophilic 

acidophiles, including a-Proteobacteria, Actinobacteria and low G+C Gram-positive 

bacteria, and two seemingly novel groups of thermo-acidophiles. One of the latter was 

most closely related to Acidisphaera rubrtfaciens, and the other appeared to be a 
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methylotrophic iron-oxidising acidophile (most closely related to Methylobacterium 

fujisawaense), making it the first mineral-oxidising bacterium of this type to be 

described. 

The results from the current research project indicate that the use of defined mixed 

populations of moderately thermophilic acidophiles in mineral processing may have 

benefit in terms of (i) maximising the oxidation of mineral sulfides (both rates and 

yields); (ii) minimising costs by utilising organic carbon flow from autotrophic to 

heterotrophic acidophiles; (iii) compensating disadvantageous characteristics of "ferric 

iron sensitive" Gram-positive bacteria by including "non-sensitive" acidophiles in 

mixed cultures; and (iv) minimising or eliminating problems relating to the presence of 

residual flotation reagents in mineral concentrates. 

Mixed cultures that include microorganisms with different physiological characteristics 

can expand the range of microbial adaptability to variations in physico-chemical 

parameters, such as pH, temperature, and concentrations of solutes and heavy metals. 

Based on known acidophilic microbial interactions, it is now possible to design 

microbial consortia for more robust and more efficient bio-oxidation of sulfidic 

minerals. 

275 



References 

Acuna, J., Rojas, J., Amaro, A. M., Toledo, H. and Jerez, C. A: (1992). "Chemotaxis of 
Leptospirillum ferrooxidans and other acidophilic chemolithotrophs - 
comparison with the Escherichia coli chemosensory system. " FEMS 
Microbiology Letters 96(1): 37-42. 

Albuquerque, L., Rainey, F. A., Chung, A. P., Sunna, A., Nobre, M. F., Grote, K, 
Antranikian, G. and da Costa, M. S. (2000). "Alicyclobacillus hesperidum sp. 
nov. and a related genomic species from solfataric soils of Sao Miguel in the 
Azores. " International Journal of Systematic and Evolutionary Microbiology 50: 
451-457. 

Alexander, B., Leach, S. and Ingledew, W. J. (1987). "The relationship between 
chemiosmotic parameters and sensitivity to anions and organic acids in the 
acidophile Thiobacillus, ferrooxidans. " Journal of General Microbiology 133: 
1171-1179. 

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and 
Lipman, D. J. (1997). "Gapped BLAST and PSI-BLAST: a new generation of 
protein database search programs. " Nucleic Acids Research 25: 33 89-3402. 

Amann, R. I., Krumholz, L. and Stahl, D. A. (1990). "Fluorescent-oligonucleotide 
probing of whole cells for determinative, phylogenetic, and environmental 
studies in microbiology. " Journal of Bacteriology 172(2): 762-770. 

Amaro, A. M., Hallberg, K. B., Lindström, E. B. and Jerez, C. A. (1994). "An 
immunological assay for detection and enumeration of thermophilic biomining 
microorganisms. " Applied and Environmental Microbiology 60: 3470-3473. 

Apel, W. A., Dugan, P. it, Filppi, J. A. and Rheins, M. S. (1976). "Detection of 
Thiobacillus ferrooxidans in acid mine environments by indirect fluorescent- 
antibody staining. " Applied and Environmental Microbiology 32: 159-165. 

Arredondo, R., Garcia, A. and Jerez, C. A. (1994). "Partial removal of 
lipopolysaccharide from Thiobacillus ferrooxidans affects its adhesion to 
solids. " Applied and Environmental Microbiology 60(8): 2846-285 1. 

Arredondo, R. and Jerez, C. A. (1989). "Specific dot-immunobinding assay for 
detection and enumeration of Thfobacillus ferrooxidans. " Applied and 
Environmental Microbiology 55: 2025-2029. 

Bacelar-Nicolau, P. and Johnson, D. B. (1999). "Leaching of pyrite by acidophilic 
heterotrophic iron-oxidizing bacteria in pure and mixed cultures. " Applied and 
Environmental Microbiology 65(2): 585-590. 

Barr, D. W., Ingledew, W. J. and Norris, P. R. (1990). "Respiratory chain components 
of iron-oxidizing, acidophilic bacteria. " FEMS Microbiology Letters 70: 85-90. 

276 



Blake, R C., Shute, E. A., Waskovsky, J. 
components in acidophilic bacteria 
Journal 10(3 -4): 173 -192. 

and Harrison, A. P. (1992). "Respiratory 
that respire on iron. " Geomicrobiology 

Blake, R. C., Shute, E. A., Greenwood, M. M., Spencer, G. H. and Ingledew, W. J. 
(1993). "Enzymes of aerobic respiration on iron. " FEMS Microbiology Reviews 
11(1-3): 9-18. 

Blake, R C., Shute, E. A. and Howard, G. T. (1994). "Solubilization of minerals by 
bacteria - electrophoretic mobility of Thiobacillus ferrooxidans in the presence 
of iron, pyrite, and sulfur. " Applied and Environmental Microbiology 60(9): 
3349-3357. 

Bond, P. L. and Banfield, J. F. (2001). "Design and performance of rRNA targeted 
oligonucleotide probes for in situ detection and phylogenetic identification of 
microorganisms inhabiting acid mine drainage environments. " Microbial 
Ecology 41(2): 149-161. 

Bond, P. L., Druschel, G. K. and Banfield, J. F. (2000a). "Comparison of acid mine 
drainage microbial communities in physically and geochemically distinct 
ecosystems. " Applied and Environmental Microbiology 66(11): 4962-4971. 

Bond, P. L., Smriga, S. P. and Banfield, J. F. (2000b). "Phylogeny of microorganisms 
populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme 
acid mine drainage site. " Applied and Environmental Microbiology 66(9): 3842- 
3849. 

Bos, P., Boogerd, F. C. and Kuenen, J. G. (1992). "Microbial desulfurization of coal. " in 
Environmental Microbiology. Mitchell, R. New York, Wiley-Liss: 375-403. 

Bridge, T. A. M. and Johnson, D. B. (1998). "Reduction of soluble iron and reductive 
dissolution of ferric iron-containing minerals by moderately thermophilic iron- 
oxidizing bacteria. " Applied and Environmental Microbiology 64(6): 2181-590. 

Bridge, T. A. M. and Johnson, D. B. (2000). "Reductive dissolution of ferric iron 
minerals byAcidiphilium SJH. " Geomicrobiology Journal 17(3): 193-206. 

Brierley, C. L. (1978). "Bacterial leaching. " Critical Reviews in Microbiology 6: 207- 
261. 

Brierley, C. L. (1997). "Mining Biotechnology: Research to commercial development 
and beyond. " in Biomining: theory. microbes and industrial processes. Rawlings, 
D. E. Georgetown, TX Springer-Verlag/Landes Bioscience: 3-17. 

Brierley, C. L. and Brans, R. (1994). "Selection of Bactech's thermophilic biooxidation 
process for Youanmi mine. " in Biomine '94. Glendale, Australian Mineral 
Foundation: 51-57. 

277 



Brierley, J. A. and Brierley, C. L. (1986). "Microbial mining using thermophilic 
microorganisms. " in Thermophiles: General, Molecular, and Applied 
Microbiology. Brock, T. D. New York, John Wiley: 279-305. 

Brock, T. D., Brock, K. M., Belly, R. T. and Weiss, R. L. (1972). "Sulfolobus: a new 
genus of sulfur-oxidizing bacteria living at low pH and high temperature. " 
Arkive Mikrobiologie 84(1): 54-68. 

Brock, T. D. and Gustafson, J. (1976). "Ferric iron reduction by sulfur- and iron- 
oxidizing bacteria. " Applied and Environmental Microbiology 32(4): 567-571. 

Bryant, R. D., McGroarty, K. M., Costerton, J. W. and Laishley, E. J. (1983). "Isolation 
and characterization of a new acidophilic Thiobacillus species (Thiobacillus 
albertis). " Canadian Journal of Microbiology 29(9): 1159-1170. 

Burton, N. P. and Norris, P. R. (2000). "Microbiology of acidic, geothermal springs of 
Montserrat: environmental rDNA analysis. " Extremophiles 4(5): 315-320. 

- Carlson, L., Lindström, E. B., Hallberg, K. B. and Tuovinen, -O. H. (1992). "Solid-phase 
products of bacterial oxidation of arsenical pyrite. " Applied and Environmental 
Microbiology 58(3): 1046-1049. 

Chakraborty, R. and Roy, P. (1992). "Chemotaxis of chemolithotrophic Thiobacillus 
ferrooxidans toward thiosulfate. " FEMS Microbiology Letters 98(1-3): 9-12. 

Chan, C. W. and Suzuki, I. (1994). "Thiosulfate oxidation by sulfur grown Thiobacillus 
thiooxidans cells, cell free extracts, and thiosulfate-oxidizing enzyme. " Canadian 
Journal of Microbiology 40: 816-822. 

Clark, D. A. and Norris, P. R. (1996a). "Acidimicrobium ferrooxidans gen. nov., sp. 
nov.: Mixed-culture ferrous iron oxidation with Sulfobacillus species. " 
Microbiology 142: 785-790. 

Clark, D. A. and Norris, P. R (1996b). "Oxidation of mineral sulphides by thermophilic 
microorganisms. " Minerals Engineering 9(11): 1119-1125. 

Coram, N. J. and Rawlings, D. E. (2002). "Molecular relationship between two groups 
of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. 
nov. dominates South African commercial biooxidation tanks that operate at 40 
°C. " Applied and Environmental Microbiology 68(2): 838-845. 

Corbett, C. M. and Ingledew, W. J. (1987). "Is Fei+/2+ cycling an intermediate in sulfur 
oxidation by Fe 2+-grown Thfobacillus ferrooxidans. " FEMS Microbiology 
Letters 41(1): 1-6. 

Cox, J. C., Nicholls, D. G. and Ingledew, W. J. (1979). "Transmembrane electrical 
potential and transmembrane pH gradient in the acidophile Thiobacillus 
ferrooxidans. " Biochemical Journal 178(1): 195-200. 

278 



Crundwell, F. K. (2001). How do bacteria interact with minerals? Biohydrometallurgy: 
Fundamentals. Technology and Sustainable Development. Ciminelli, V. S. T. 
and Garcia Jr., 0. Amsterdam, Elsevier. 11A: 149-157. 

Darland, G. and Brock, T. D. (1971). "Bacillus acidocaldarius sp. nov., an acidophilic 
thermophilic spore-forming bacterium. " Journal of General Microbiology 67: 9- 
15. 

Darland, G., Brock, T. D., Samsonoff, W. and Conti, S. F. (1970). "A thermophilic, 
acidophilic mycoplasma isolated from a coal refuse pile. " Science 170: 1416- 
1418. 

Deinhard, G., Blanz, P., Poralla, K. and Altan, E. (1987a). "Bacillus acidoterrestris sp. 
nov., a new thermotolerant acidophile isolated from different soils. " Systematic 
and Applied Microbiology 10(1): 47-53. 

Deinhard, G., Saar, J., Krischke, W. and Poralla, K. (1987b). "Bacillus cycloheptanicus 
sp. nov., a new thermoacidophile containing omega-cycloheptane fatty acids. " 
Systematic and Applied Microbiology 10(1): 68-73. 

Dennison, F., Sen, A. M., Hallberg, K. B. and Johnson, D. B. (2001). "Biological versus 
abiotic oxidation of iron in acid mine drainage waters: an important role for 
moderately acidophilic, iron-oxidising bacteria. " in Biohydrometallurgy: 
Fundamentals, Technology and Sustainable Development. Ciminelli, V. S. T. 
and Garcia Jr., 0. Amsterdam, Elsevier. 11B: 493-50 1. 

De Wulf-Durand, P., Bryant, L. J. and Sly, L. I. (1997). "PCR-mediated detection of 
acidophilic, bioleaching-associated bacteria. " Applied and Environmental 
Microbiology 63(7): 2944-2948. 

d'Hugues, P., Cezac, P., Battaglia, F. and Morin, D. (1999). "Bioleaching of a 
cobaltiferous pyrite at 20% solids: a continuous laboratory-scale study. " in 
Biohydrometallurgy and the Environment Toward the Mining of the 21 
Century. Amils, R. and Ballester, A. Amsterdam, Elsevier. 9A: 167-176. 

Doemel, W. N. and Brock, T. D. (1971). "The physiological ecology of Cyanidium 
caldarium. " Journal of General Microbiology 67: 17-2 1. 

Don, R. H., Cox, P. T., Wainwright, B. J., Baker, K. and Mattick, J. S. (1991). 
"Touchdown PCR to circumvent spurious priming during gene amplification. " 
Nucleic Acids Research 19(14): 4008-4008. 

Dopson, M. and Lindström, E. B. (1999). "Potential role of Thiobacillus caldus in 
arsenopyrite bioleaching. " Applied and Environmental Microbiology 65(1): 36- 
40. 

Dufresne, S., Bousquet, J., Boissinot, M. and Guay, R. (1996). "Sulfobacillus 
disulfidooxidans sp. nov., a new acidophilic, disulfide-oxidizing, gram-positive, 
spore-forming bacterium. " International Journal of Systematic Bacteriology 
46(4): 1056-1064. '^ 

279 



Edwards, K. J., Bond, P. L. and Banfield, J. F. (2000a). "Characteristics of attachment 
and growth of Thiobacillus caldus on sulphide minerals: a chemotactic response 
to sulphur minerals? " Environmental Microbiology 2: 324-332. 

Edwards, K. J., Bond, P. L., Gihring, T. M. and Banfield, J. F. (2000b). "An archaeal 
iron-oxidizing extreme acidophile important in acid mine drainage. " Science 
287(5459): 1796-1799. 

Edwards, K. J., Gihring, T. M. and Banfield, J. F. (1999). "Seasonal variations in 
microbial populations and environmental conditions in an extreme acid mine 
drainage environment. " Applied and Environmental Microbiology 65: 3627- 
3632. 

Ehrlich, H. L., Ingledew, W. J. and Salerno, J. C. (1991). "Iron- and manganese- 
oxidizing bacteria. " in Variation in Autotrophic Life. Shively, J. M. and Barton, 
L. L. London, Academic Press Ltd.: 147-170. 

Elbehti, A., Brasseur, G. and Lemesle-Meunier, D. (2000). "First evidence for existence 
of an uphill electron transfer through the bc(1) and NADH-Q oxidoreductase 
complexes of the acidophilic obligate chemolithotrophic ferrous ion-oxidizing 
bacterium Thiobacillus ferrooxidans. " Journal of Bacteriology 182(12): 3602- 
3606. 

Elbehti, A., Nitschke, W., Tron, P., Michel, C. and Lemesle-Meunier, D. (1999). 
"Redox components of cytochrome be-type enzymes in acidophilic prokaryotes 
I. Characterization of the cytochrome bc(1)-type complex of the acidophilic 
ferrous ion-oxidizing bacterium Thiobacillus ferrooxidans. " Journal of 
Biological Chemistry 274(24): 16760-16765. 

Felsenstein, J. (1993). "PHYLIP (Phylogeny Inference Package) version 3.5c. " 
Department of Genetics. University of Washington. U. S. A. 

Fortin, D., Davis, B. and Beveridge, T. J. (1996). "Role of Thiobacillus and sulfate- 
reducing bacteria in iron biocycling in oxic and acidic mine tailings. " FEMS 
Microbiology 

-Ecology 
21(1): 11-24. 

Foucher, S., Battaglia-Brunet, F., d'Hugues, P., Clarens, M., Godon, J. J. and Morin, D. 
(2001). "Evolution of the bacterial population during the batch bioleaching of a 
cobaltiferous pyrite in a suspended-solids bubble column, and comparison with a 
mechanically-agitated reactor. " in Biohvdrometallurgy: Fundamentals 
Technology and Sustainable Development. Ciminelli, V. S. T. and Garcia Jr., 0. 
Amsterdam, Elsevier. 11A: 3-11. 

Fournier, D., Lemieux, R. and Couillard, D. (1998). "Essential interactions between 
Thiobacillus ferrooxidans and heterotrophic microorganisms during a 
wastewater sludge bioleaching process. " Environmental Pollution 101(2): 303- 
309. 

280 



Fuchs, T., Huber, H., Burggraf, S. and Stetter, K. 0. (1996a). "16S rDNA-based 
phylogeny of the archaeal order Sulfolobales and reclassification of 
Desu furolobus ambivalens as Acidianrus ambivalens comb. nov. " Systematic 
and Applied Microbiology 19(1): 56-60. 

Fuchs, T., Huber, H., Teiner, K., Burggraf, S. and Stetter, K. 0. (1996b). 
"Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic 
archaeum, isolated from a uranium mine in Germany. " Systematic and Applied 
Microbiology 18(4): 560-566. 

Gehrke, T., Hallmann, R, Kinzler, K. and Sand, W. (2001). "The EPS of 
Acidithiobacillus ferrooxidans -a model for structure-function relationships of 
attached bacteria and their physiology. " Water Science and Technology 43(6): 
159-167. 

Gehrke, T., Hallmann, R and Sand, W. (1995). "Importance of exopolymers from 
Thiobacillus ferrooxidans and Leptospirillum ferrooxidans for bioleaching. " in 
Biohydrometallurgical Processing. Jerez, C. A., Vargas, T., Toledo, H. and 
Wiertz, J. V. Santiago, University of Chile Press. I: 1-11. 

Gemmell, R T. and Knowles, C. 1. (2000). "Utilisation of aliphatic compounds by 
acidophilic heterotrophic bacteria. The potential for bioremediation of acidic 
wastewaters contaminated with toxic organic compounds and heavy metals. " 
FEMS Microbiology Letters 192(2): 185-190. 

Ghauri, M. A. and Johnson, D. B. (1991). "Physiological diversity amongst some 
moderately thermophilic iron-oxidising bacteria. " FEMS Microbiology Ecology 
85: 327-334. 

Ghosh, S., Mahapatra, N. K and Banerjee, P. C. (1997). "Metal resistance in Acidocella 
strains and plasmid-mediated transfer of this characteristic to Acidiphilium 
multivorum and Escherichia coll. " Applied and Environmental Microbiology 
63(11): 4523-4527. 

Golovacheva, R. S. (1979). "Morphogenetic features of Sulfobacillus 
thermosulfidooxidans. " Mikrobiologiia 48: 863-867. 

Golovacheva, R. S., Golyshina, 0. V., Karavaiko, G. I., Dorofeev, A. G., Pivovarova, T. 
A. and Chernykh, N. A. (1992). "A new iron-oxidizing bacterium, 
Leptospirillum thermoferrooxidans sp. nov. " Microbiology 61(6): 744-750. 

Golovacheva, R. S. and Karavaiko, G. 1. (1978). "Sulfobacillus, a new genus of 
thermophilic sporulating bacteria. " Mikrobiologiia 47(5): 815-822. 

Golovacheva, R. S., Valekhoroman, K. M. and Troitskii, A. V. (1987). "Su furococcus 
mirabilis gen. nov., sp. nov., a new thermophilic archaebacterium with the 
ability to oxidize sulfur. " Microbiology 56(1): 84-91. 

281 



Golyshina, 0. V., Pivovarova, T. A., Karavaiko, G. I., Kondrat'eva, T. F., Moore, E. R. 
B., Abraham, W. R, Lunsdorf, H., Timmis, K. N., Yakimov, M. M. and 
Golyshin, P. N. (2000). "Ferroplasma acidiphilum gen. nov., sp. nov., an 
acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic 
member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the 
Archaea. " International Journal of Systematic and Evolutionary Microbiology 
50: 997-1006. 

Gomez, E., Lopez, A. I., Marin, I. and Amils, R. (1993). "Isolation and characterization 
of novel bioleaching microorganisms from Rio Tinto. " in Biohydrometallurgical 
Technologies. Torma, A. E., Apel, M. L. and Brierley, C. L. Warrendale, PA, 
The Minerals, Metals and Materials Society. 2: 479-486. 

Green, P. N., Bousfield, I. J. and Hood, D. (1988). "3 New Methylobacterium species - 
Methylobacterium rhodesianum sp. nov., Methylobacterium zatmanii sp. nov., 
and Methylobacterium fujisawaense sp. nov. " International Journal of 
Systematic Bacteriology 38(1): 124-127. 

Grogan, D., Palm, P. and Zillig, W. (1990). "Isolate-B12, which harbors a virus-like 
element, represents a new species of the archaebacterial genus Sulfolobus, 
Sulfolobus shibatae, sp. nov. " Archives of Microbiology 154(6): 594-599. 

Guay, R and Silver, M. (1975). "Thiobacillus acidophilus sp. nov.; isolation and some 
physiological characteristics. " Canadian Journal of Microbiology 21: 281-288. 

Hallberg, K. B., Dopson, M. and Lindström, E. B. (1996). "Reduced sulfur compound 
oxidation by Thiobacillus caldus. " Journal of Bacteriology 178(1): 6-11. 

Hallberg, K. B. and Johnson, D. B. (2001a). "Biodiversity of acidophilic prokaryotes. " 
Advances in Applied Microbiology. 49: 37-84. 

Hallberg, K. B. and Johnson, D. B. (2001b). "Novel acidophiles isolated from a 
constructed wetland receiving acid mine drainage. " in Biohydrometallurgy_ 
Fundamentals. Technology and Sustainable Development. Ciminelli, V. S. T. 
and Garcia Jr., 0. Amsterdam, Elsevier. 11A: 433-441. 

Hallberg, K. B., Johnson, D. B. and Williams, P. A. (1999). "A novel metabolic 
phenotype among acidophilic bacteria: aromatic degradation and the potential 
use of these microorganisms for the treatment of wastewater containing organic 
and inorganic pollutants. " in Biohydrometallurgy and the Environment Toward 
the Mining of the 21" Century. Amils, R. and Ballester, A. Amsterdam, Elsevier. 
9A: 719-728. 

Hallberg, K. B. and Lindström, E. B. (1994). "Characterization of Thiobacillus caldus 
sp. nov., a moderately thermophilic acidophile. " Microbiology-UK 140: 3451- 
3456. 

282 



Hallberg, K. B. and Lindström, E. B. (1996). "Multiple serotypes of the moderate 
thermophile Thiobacillus caldus, a limitation of immunological assays for 
biomining microorganisms. " Applied and Environmental Microbiology 62(11): 
4243-4246. 

Hallberg, K. B., Thomson, H. E. C., Boeselt, I. and Johnson, D. B. (2001). "Aerobic and 
anaerobic sulfur metabolism by acidophilic bacteria. " in Biohvdrometallurgy_ 
Fundamentals. Technology and Sustainable Development. Ciminelli, V. S. T. 
and Garcia Jr., 0. Amsterdam, Elsevier. I1A: 423-431. 

Harries, J. R. and Ritchie, A. I. M. (1981). "The use of temperature profiles to estimate 
the pyritic oxidation rate in a waste rock dump from an opencut Mine. " Water 
Air and Soil Pollution 15(4): 405-423. 

Harrison, A. P. (1981). "Acidiphilium cryptum gen. nov., sp. nov., heterotrophic 
bacterium from acidic mineral environments. " International Journal of 
Systematic Bacteriology 31(3): 327-332. 

Harrison, A P. (1984). "The acidophilic thiobacilli and other acidophilic bacteria that 
share their habitat. " Annual Review of Microbiology 38: 265-292. 

Harrison, A. P., Jr. (1982). "Genomic and physiological diversity amongst strains of 
Thiobacillus ferrooxidans, and genomic comparison with Thiobacillus 
thiooxidans. " Archives of Microbiology 131(1): 68-76. 

Harrison, A. P. J., Jarvis, B. W. and Johnson, J. L. (1980). "Heterotrophic bacteria from 
cultures of autotrophic Thiobacillus ferrooxidans: relationship as studied by 
means of deoxyribonucleic acid homology. " Journal of Bacteriology 143: 448- 
454. 

Hippe, H. (2000). "Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including 
Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and 
Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992). " 
International Journal of Systematic and Evolutionary Microbiology 50: 501-503. 

Hiraishi, A., Matsuzawa, Y., Kanbe, T. and Wakao, N. (2000). "Acidisphaera 
rubrtfaciens gen. nov., sp nov., an aerobic bacteriochlorophyll-containing 
bacterium isolated from acidic environments. " International Journal of 
Systematic and Evolutionary Microbiology 50: 1539-1546. 

Hiraishi, A., Nagashima, K. V. P., Matsuura, K., Shimada, K., Takaichi, S., Wakao, N. 
and Katayama, Y. (1998). "Phylogeny and photosynthetic features of 
Thiobacillus acidophilus and related acidophilic bacteria: its transfer to the 
genus Acidiphilium as Acidiphilium acidophilum comb. nov. " International 
Journal of Systematic Bacteriology 48: 1389-1398. 

Hiroyoshi, N., Hirota, M., Hirajima, T. and Tsunekawa, M. (1997). "A case of ferrous 
sulfate addition enhancing chalcopyrite leaching. " Hvdrometallurgy 47(1): 37- 
45. 

283 



Huber, G., Drobner, E., Huber, H. and Steher, K. 0. (1992). "Growth by aerobic 
oxidation of molecular hydrogen in archaea -a metabolic property so far 

unknown for this domain. " Systematic and Applied Microbiology 15(4): 502- 
504. 

Huber, G., Spinnler, C., Gambacorta, A. and Steher, K. 0. (1989). "Metallosphaera 

sedula gen. nov. and sp. nov. represents a new genus of aerobic, metal- 
mobilizing, thermoacidophilic archaebacteria. " Systematic and Applied 
Microbiology 12(1): 38-47. 

Huber, G. and Steher, K. 0. (1991). "Sulfolobus metallicus, sp. nov., a novel strictly 
chemolithoautotrophic thermophilic archaeal species of metal-mobilizers. " 
Systematic and Applied Microbiology 14: 372-378. 

Huber, H. and Stetter, K. 0. (1989). "Thiobacillus prosperus sp. nov., represents a new 
group of halotolerant metal-mobilizing bacteria isolated from a marine 
geothermal field. " Archives of Microbiology 151(6): 479-485. 

Huber, H. and Stetter, K. 0. (1990). Thiobacillus cuprinus sp. nov., a novel 
facultatively organotrophic metal-mobilizing bacterium. " Applied and 
Environmental Microbiology 56(2): 315-322. 

Hutching, S. R., Brierley, J. A. and Brierley, C. L. (1987). "Microbial pretreatment of 
refractory sulfide and carbonaceous gold ores. " in Process Mineralogy VII. 
Vassiliou, A. H., Hausen, D. M. and Carson, D. J. T. Warrendale, PA, The 
metallurgical Society: 53-66. 

Ingledew, W. J. (1982). 17hiobacillus ferrooxidans - the bioenergetics of an acidophilic 
cheniolithotroph. " Biochimica Et Biophysica Acta 683(2): 89-117. 

Ingledew, W. J., Cox, J. C. and Halling., P. J. (1977). "A proposed mechanism for 
energy conservation during Fe + oxidation by Thiobacillus ferrooxidans; 
chemiosmotic coupling to net H+ influx. " FEMS Microbiology Letters 2: 193- 
197. 

Irazabal, N., Moreira, D. and Amils, R. (1995). "Comparative genomic organization of 
thiobacilli using pulsed field gel electrophoresis. " in Biohydrometallurgical 
Processing. Jerez, C. A., Vargas, T., Toledo, H. and Wiertz, J. V. Santiago, 
University of Chile. II: 31-42. 

Jan, R. L., Wu, J., Chaw, S. M., Tsai, C. W. and Tsen, S. D. (1999). "A novel species of 
thermoacidophilic archaeon, Sulfolobus yangmingensis sp. nov. " International 
Journal of Systematic Bacteriology 49: 1809-1816. 

Jerez, C. A. and Arredondo, R. (1991). "A sensitive immunological method to 
enumerate Leptospirillum ferrooxidans in the presence of Thiobacillus 
ferrooxidans. " FEMS Microbiology Letters 78(1): 99-102. 

284 



Johnson, D. B. (1991a). "Biological desulfurization of coal using mixed populations of 
mesophilic and moderately thermophilic acidophilic bacteria. " in Processing and 
Utilization of High Sulfur Coals. Dugan, P. R., Quigley, D. R. and Attia, Y. A. 
Amsterdam, Elsevier. 567-577. 

Johnson, D. B. (1991b). "Diversity of microbial life in highly acidic, mesophilic 
environments. " in Diversity of Environmental Biogeochemistry. Berthelin, J. 
Amsterdam, Elsevier: 225-238. 

Johnson, D. B. (1995a). "Acidophilic microbial communities - candidates for 
bioremediation of acidic mine effluents. " International Biodeterioration & 
Biodegradation 35: 41-58. 

Johnson, D. B. (1995b). "Selective solid media for isolating and enumerating 
acidophilic bacteria. " Journal of Microbiological Methods 23(2): 205-218. 

Johnson, D. B. (1998a). "Biodiversity and ecology of acidophilic microorganisms. " 
FEMS Microbiology Ecology 27(4): 307-317. 

Johnson, D. B. (1998b). "Microorganisms and biogeochemical cycling of metals in 
aquatic environments. " in Metal metabolism in aquatic environments. Langston, 
W. J. and Bebianno, M. J. London, Chapman and Hall: 31-58. 

Johnson, D. B. (2001). "Genus II. Leptospirillum Hippe 2000,503vP (ex Markoshan 
1972,26). " in Bergey's Manual of Systematic Bacteriology 2nd edition: The 
archaea and the deeply branching and phototrophic bacteria. Boone, D. R. and 
Castenholz, R. W. New York, Springer. 1: 453-457. 

Johnson, D. B., Bacelar-Nicolau, P., Okibe, N., Yahya, A. and Hallberg, K. B. (2001a). 
"Role of pure and mixed cultures of Gram-positive eubacteria in mineral 
leaching. " in Biohydrometallurgy: Fundamentals, Technology and Sustainable 
Development. Ciminelli, V. S. T. and Garcia Jr., O. Amsterdam, Elsevier. 11A: 
461-470. 

Johnson, D. B., Body, D. A., Bridge, T. A. M., Bruhn, D. F. and Roberto, F. F. (2001b). 
"Biodiversity of acidophilic moderate thermophiles isolated from two sites in 
Yellowstone National Park, and their roles in the dissimilatory oxido-reduction 
of iron. " in Thermophiles: Biodiversity Ecology and Evolution. Reysenbach, A. 
L. and Voytek, A. New York, Kluwer Academic/Plenum Publishers: 23-39. 

Johnson, D. B., Ghauri, M. A. and McGinness, S. (1993). "Biogeochemical cycling of 
iron and sulfur in leaching environments. " FEMS Microbiology Reviews 11(1- 
3): 63-70. 

Johnson, D. B. and Kelso, W. I. (1983). "Detection of heterotrophic contaminants in 
cultures of Thiobacillus ferrooxidans and their elimination by subculturing in 
media containing copper sulfate. " Journal of General Microbiology 129(9): 
2969-2972. 

285 



Johnson, D. B., Macvicar, J. H. M. and Rolfe, S. (1987). "A new solid medium for the 
isolation and enumeration of Thiobacillus ferrooxidans and acidophilic 
heterotrophic bacteria. " Journal of Microbiological Methods 7(1): 9-18. 

Johnson, D. B. and McGinness, S. (1991a). "A highly efficient and universal solid 
medium for growing mesophilic and moderately thermophilic iron-oxidizing 
acidophilic bacteria. " Journal of Microbiological Methods 13: 113-122. 

Johnson, D. B. and McGinness, S. (1991b). "Ferric iron reduction by acidophilic 
heterotrophic bacteria. " Applied and Environmental Microbiology 57(1): 207- 
211. 

Johnson, D. B., McGinness, S. and Ghauri, M. A. (1996). "Biogeochemical cycling of 
iron and sulfur in leaching environments. " FEMS Microbiology Reviews 11: 63- 
70. 

Johnson, D. B. and Rang, L. (1993). "Effects of acidophilic protozoa on populations of 
metal-mobilizing bacteria during the leaching of pyritic coal. " Journal of 
General Microbiology 139: 1417-1423. 

Johnson, D. B. and Roberto, F. F. (1997). "Heterotrophic acidophiles and their roles in 
the bioleaching of sulfide minerals. " in Biomining: Theory. Microbes and 
Industrial Processes. Rawlings, D. E. Georgetown, TX, Springer-Verlag/Landes 
Bioscience: 259-280. 

Johnson, D. B., Rolfe, S., Hallberg, K. B. and Iversen, E. (2001c). "Isolation and 
phylogenetic characterization of acidophilic microorganisms indigenous to 
acidic drainage waters at an abandoned Norwegian copper mine. " 
Environmental Microbiology 3(10): 630-637. 

Johnson, D. B., Said, M. F., Ghauri, M. A. and McGinness, S. (1990). "Isolation of 
novel acidophiles and their potential use in bioleaching preparations. " in 
Biohydrometallurgy 1989. Salley, J., McCready, R. G. L. and Wichlacz, P. L. 
Ottawa, Canada: 403-414. 

Jukes, T. H. and Cantor, C. R. (1969). Evolution of protein molecules. New York, 
Academic Press. 

Kamimura, K., Wakai, S. and Sugio, T. (2001). "Identification of Thiobacillus 
ferrooxidans strains based on restriction fragment length polymorphism analysis 
of 16S rDNA. " Microbios 105(412): 141-152. 

Karavaiko, G. I., Golovacheva, R. S., Pivovarova, T. A., Tzaplina, I. A. and Vartanjan, 
N. S. (1988). "Thermophilic bacteria of the genus Sulfobacillus. " Science and 
Technology Letters: 29-41. 

Karavaiko, G. I., Golyshina, 0. V., Troitskii, A. V., Valiehoroman, K. M., 
Golovacheva, R. S. and Pivovarova, T. A. (1994). "Su furococcus yellowstontii 
sp. nov., a new species of iron-oxidizing and sulfur-oxidizing thermoacidophilic 
archaebacteria. " Microbiology 63(4): 379-387. 

286 



Karavaiko, G. I., Tourova, T. P., Tsaplina, I. A. and Bogdanova, T. I. (2000). 
"Investigation of the phylogenetic position of aerobic, moderately thermophilic 
bacteria oxidizing Fee+, S', and sulfide minerals and affiliated to the genus 
Sufobacillus. " Microbiology 69(6): 732-73 5. 

Kelly, D. P. (1989). "Physiology and biochemistry of unicellular sulfur bacteria. " in 
Autotrophic Bacteria. Schlegel, H. G. and Bowein, B. Madison, WI, Science 
Technology: 193-217. 

Kelly, D. P. and Wood, A. P. (2000). "Reclassification of some species of Thiobacillus 
to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus 
gen. nov. and Thermithiobacillus gen. nov. " International Journal of Systematic 
and Evolutionary Microbiology 50: 511-516. 

Kinzler, K., Gehrke, T., Telegdi, J. and Sand, W. (2001). "Bioleaching -a result of 
interfacial processes caused by extracellular polymeric substances (EPS). " in 
Biohydrometallurgy: Fundamentals. Technology and Sustainable Development. 
Ciminelli, V. S. T. and Garcia Jr., 0. Amsterdam, Elsevier. 11A: 191-197. 

Kishimoto, N., Kosako, Y. and Tano, T. (1991). "Acidobacterium capsulatum gen. nov., 
sp. nov. an acidophilic chemoorganotrophic bacterium containing menaquinone 
from acidic mineral environment. " Current Microbiology 22(1): 1-7. 

Kishimoto, N., Kosako, Y. and Tano, T. (1993). "Acidiphilium aminolytica sp. nov. an 
acidophilic chemoorganotrophic bacterium isolated from acidic mineral 
environment. " Current Microbiology 27(3): 131-136. 

Kishimoto, N., Kosako, Y., Wakao, N., Tano, T. and Hiraishi, A. (1995). "Transfer of 
Acidiphilium facilis and Acidiphilium aminolytica to the genus Acidocella gen. 
nov., and emendation of the genus Acidiphilium. " Systematic and Applied 
Microbiology 18(1): 85-91. 

Kurosawa, N., Itoh, Y. H., Iwai, T., Sugai, A., Uda, I., Kimura, N., Horiuchi, T. and 
Itoh, T. (1998). "Su furisphaera ohwakuensis gen. nov., sp. nov., a novel 
extremely thermophilic acidophile of the order Sulfolobales. " International 
Journal of Systematic Bacteriology 48: 451-456. 

Kusel, K., Dorsch, T., Acker, G. and Stackebrandt, E. (1999). "Microbial reduction of 
Fe(III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of 
coupling the reduction of Fe(III) to the oxidation of glucose. " Applied and 
Environmental Microbiology 65(8): 3633-3640. 

Lane, D. J., Harrison, A. P., Stahl, D., Pace, B., Giovannoni, S. J., Olsen, G. J. and Pace, 
N. R. (1992). "Evolutionary relationships among sulfur-oxidizing and iron- 
oxidizing eubacteria. " Journal of Bacteriology 174(1): 269-278. 

Larsson, L., Olsson, G., Holst, O. and Karlsson, H. T. (1990). "Pyrite oxidation by 
thermophilic archaebacteria. " Applied and Environmental Microbiology 56(3): 
697-701. 

287 



Lawrence, R W. and Marchant, P. B. (1988). "Comparison of mesophilic and 
thermophilic oxidation systems for the treatment of refractory gold ores and 
concentrates. " in Biohvdrometallurgy: Proceedings of the International 
Symposium. Norris, P. R. and Kelly., D. P. Kew, Science and Technology 
Letters: 359-374. 

Le Roux, N. W. and Wakerley, D. S. (1988). "Leaching of chalcopyrite (CuFeS2) at 
70°C using Sulfolobus. " in Biohvdrometallurgy: Proceedings of the International 
Symposium. Norris, P. R. and Kelly, D. P. Kew, Science and Technology 
Letters: 305-317. 

Lee, S. H., Malone, C. and Kemp, P. F. (1993). "Use of multiple 16S ribosomal RNA- 
targeted fluorescent-probes to increase signal strength and measure cellular 
RNA from natural planktonic bacteria. " Marine Ecology-Progress Series 101(1- 
2): 193-201. 

Lindström, E. B. and Gunneriusson, L. (1990). "Thermophilic bioleaching of 
arsenopyrite using Sulfolobus and a semicontinuous laboratory procedure. " 
Journal of Industrial Microbiology 5(6): 375-382. 

Lindström, E. B., Wold, S., Kettanehwold, N. and Saaf, S. (1993). "Optimization of 
pyrite bioleaching using Sulfolobus acidocaldarius. " Applied Microbiology and 
Biotechnology 38(5): 702-707. 

Liu, X., Pertersson, S. and Sandström, A. (1993). "Mesophilic versus moderate 
thermophilic bioleaching. " in Biohydrometallurgical Technologies, Torma, A- 
E., Wey, J. E. and Lakshmanan, V. I. Warrendale, PA, The Minerals, Metals & 
Materials Society. 1: 29-38. 

Lizama, H. M. and Suzuki, I. (1989). "Bacterial leaching of a sulfide ore by 
Thiobacillus ferrooxidans and Thiobacillus thiooxidans. 2. Column leaching 
studies. " Hvdrometallurgy 22(3): 301-310. 

Lobos, J. H., Chisolm, T. E., Bopp, L. H. and Holmes, D. S. (1986). "Acidiphilium 
organovorum sp. nov., an acidophilic heterotroph isolated from a Thiobacillus 
ferrooxidans Culture. " International Journal of Systematic Bacteriology 36(2): 
139-144. 

Loon, H. Y. and Madgwick, J. (1995). "The effect of xanthate flotation reagents on bacterial leaching of chalcopyrite by Thiobacillus ferrooxidans. " Biotechnology 
Letters 17(9): 997-1000. 

Lopez-Archilla, A. I. and Amils, R. (1999). "A comparative ecological study of two 
acidic rivers in Southwestern Spain. " Microbial Ecology 38(2): 146-156. 

Lovley, D. R. (1991). "Dissimilatory Fe(III) and Mn(IV) reduction. " Microbiological 
Reviews 55(2): 259-287. 

288 



Lovley, D. R. and Phillips, E. J. P. (1987). "Rapid assay for microbially reducible ferric 
iron in aquatic sediments. " Applied and Environmental Microbiology 53: 1536- 
1540. 

Lowson, R. T. (1982). "Aqueous oxidation of pyrite by molecular oxygen. " Chemical 
Reviews 82(5): 461-497. 

Luther, G. W. (1987). "Pyrite oxidation and reduction - molecular orbital theory 
considerations. " Geochimica Et Cosmochimica Acta 51(12): 3193-3199. 

MacNaughton, S. J., Odonnell, A. G. and Embley, T. M. (1994). "Permeabilization of 
mycolic-acid-containing Actinomycetes for in situ hybridization with 
fluorescently labeled oligonucleotide probes. " Microbiology-UK 140: 2859- 
2865. 

Markosyan, G. E. (1972). "A new acidophilic iron bacteria Leptospirillum 
ferrooxidans. " Biologicheskii Zhurnal Armenii 25: 26. 

Marmur, J. and Doty, P. (1962). "Determination of base composition of 
deoxyribonucleic acid from its thermal denaturation temperature. " Journal of 
Molecular Biology 5: 109-118. 

Marsh, R M. and Norris, P. R (1983a). "Mineral sulphide oxidation by moderately 
thermophilic acidophilic bacteria. " Biotechnology Letters 5: 585-590. 

Marsh, R M. and Norris, P. R. (1983b). "The Isolation of some thermophilic, 
autotrophic, iron-oxidizing and sulfur-oxidizing bacteria. " FEMS Microbiology 
Letters 17(1-3): 311-315. 

McGinness, S. and Johnson, D. B. (1992). "Grazing of acidophilic bacteria by a 
flagellated protozoan. " Microbial Ecology 23(1): 75-86. 

McGinness, S. and Johnson, D. B. (1993). "Seasonal variations in the microbiology and 
chemistry of an acid mine drainage stream. " Science of The Total Environment 
132(1): 27-41. 

Merretting, U., Wlotzka, P. and Onken, U. (1989). "The removal of pyritic sulphur from 
coal by Leptospirillum-like bacteria. " Applied Microbiology and Biotechnology 
31: 626-628. 

Meulenberg, R., Pronk, J. T., Hazeu, W., Bos, P. and Kuenen, J. G. (1992). "Oxidation 
of reduced sulfur-compounds by intact-cells of Thiobacillus acidophilus. " 
Archives of Microbiology 157(2): 161-168. 

Michels, M. and Bakker, E. P. (1985). "Generation of a large, protonophore-sensitive 
proton motive force and pH difference in the acidophilic bacteria Thermoplasma 
acidophilum and Bacillus acidocaldarius. " Journal of Bacteriology 161(1): 231- 
23 7. 

289 



Miller, P. C. (1997). "The design and operating practice. " in Biomining: Theory, 
Microbes and Industrial Processes. Rawlings, D. E. Georgetown, TX, Springer- 
Verlag/Landes Bioscience: 81-102. 

Moreira, D. and Amils, R. (1996). "PCR-mediated detection of the chemolithotrophic 
bacterium Thiobacillus cuprinus using 23S rDNA- and 16S/23 S intergenic 
spacer region-targeted oligonucleotide primers. " FEMS Microbiology Letters 
142(2-3): 289-293. 

Moreira, D. and Amils, R. (1997). "Phylogeny of Thiobacillus cuprinus and other 
mixotrophic thiobacilli: proposal for Thiomonas gen. nov. " International Journal 
of Systematic Bacteriology 47(2): 522-528. 

Moses, C. 0., Nordstrom, D. K., Herman, J. S. and Mills, A. L. (1987). "Aqueous pyrite 
oxidation by dissolved-oxygen and by ferric iron. " Geochimica Et 
Cosmochimica Acta 51(6): 1561-1571. 

Munoz, J. A, Ballester, A., Blazquez, M. L., Gonzales, F. and Gomez, C. (1995). 
"Studies on the anodic dissolution of chalcopyrite at constant potential: effect of 
a new thermophilic microorganism. " in Copper '95-Cobre '95 International 
Conference. Cooper, W. C., Dreisinger, D. B., Dutrizac, J. E., Hein, H. and 
Ugarte, G. Montreal, The metallurgical Society of CIM. 3: 409-420. 

Murr, L. E. and Brierley, J. A. (1978). "The use of large-scale testing facilities in studies 
of the role of microorganisms in commercial leaching operations. " in 
Metallurgical Applications of Bacterial Leaching and Related Microbiological 
Phenomena. Murr, L. E., Torma, A. E. and Brierley, J. A. New York, Academic 
Press: 491-520. 

Muyzer, G. (1999). "DGGE/TGGE a method for identifying genes from natural 
ecosystems. " Current Opinion in Microbiology 2(3): 317-322. 

Muyzer, G., de Bruyn, A. C., Schmedding, D. J. M., Bos, P., Westbroek, P. and 
Kuenen, G. J. (1987). "A combined immunofluorescence-DNA-fluorescence 
staining technique for enumeration of Thiobacillus ferrooxidans in a population 
of acidophilic bacteria. " Applied and Environmental Microbiology 53: 660-664. 

Nixon, A. and Norris, P. R, (1992). "Autotrophic growth and inorganic sulfur 
compound oxidation by Sulfolobus sp. in chemostat culture. " Archives of 
Microbiology 157(2): 155-160. 

Norris, P. R. (1983). "Iron and mineral oxidation with Leplospirillum-like bacteria. " in 
Recent Progress in Biohydrometallurgy. Rossi, G. and Torma, A. E. Iglesias, 
Associazione Mineraria Sarda: 83-96. 

Norris, P. R. (1990). "Acidophilic bacteria and their activity in mineral sulphide 
oxidation. " in Microbial Mineral Recovery. Ehrlich, H. L. and Brierley, C. L. 
New York, McGraw-Hill: 3-27. 

290 



Norris, P. R and Barr, D. W. (1985). "Growth and iron oxidation by acidophilic 
moderate thermophiles. " FEMS Microbiology Letters 28: 221-224. 

Norris, P. R, Barr, D. W. and Hinson, D. (1988). "Iron and mineral oxidation by 
acidophilic bacteria: affinities for iron and attachment to pyrite. " in 
Biohydrometallurgy: Proceedings of the International Symposium. Norris, P. R- 
and Kelly, D. P. Kew, Science and Technology Letters: 43-59. 

Norris, P. R, Burton, N. -P. and Foulis, N. A. M. (2000). "Acidophiles in bioreactor 
mineral processing. " Extremophiles 4: 71-76. 

Norris, P. R, Clark, D. A., Owen, J. P. and Waterhouse, S. (1996). "Characteristics of 
Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral- 
sulphide-oxidizing bacteria. " Microbiology-UK 142: 775-783. 

Norris, P. R. and Ingledew, W. J. (1992). "Acidophilic bacteria: adaptations and 
applications. " in Molecular Biology and Biotechnology of Extremeophiles. 
Herbert, R A. and Sharp, R J. Glasgow, Blackie: 115-142. 

Norris, P. R and Johnson, D. B. (1998). "Acidophilic microorganisms. " in 
Extremophiles: Microbial Life in Extreme Environments. Horikoshi, K. and 
Grant, W. D. New York, John Wiley: 133-154. 

Norris, P. R and Kelly, D. P. (1982). "The use of mixed microbial cultures in metal 
recovery. " in Microbial Interactions and Communities. Bull, A. T. and Slater, J. 
H. London, Academic Press: 443-474. 

Novo, M. T. M., DeSouza, A. P., Garcia, O. and Ottoboni, L. M. M. (1996). "RAPD 
genomic fingerprinting differentiates Thiobacillus ferrooxidans strains. " 
Systematic and Applied Microbiology 19(1): 91-95. 

Ohmura, N., Matsumoto, N., Sasaki, K., Nagaoka, T. and Saiki, H. (1999). "Growth of 
Thiobacillus ferrooxidans on hydrogen by the dissimilatory reduction of ferric 
iron under anaerobic conditions. " in Biohydrometallurgy and the Environment 
Toward the Mining of the 21" Century. Amils, R. and Ballester, A. Amsterdam, 
Elsevier. 9A: 767-775. 

Orphan, V. J., Taylor, L. T., Hafenbradl, D. and DeLong, E. F. (2000) Culture- 
dependent and culture-independent characterization of microbial assemblages 
associated with high-temperature petroleum reservoirs. Applied Environmental 
Microbiology 66: 700-711. 

Page, K D. M. (1996). "TREE VIEW: An application to display phylogenetic tree on 
- personal computers. " Computers Applications in the Biosciences 12: 357-358. 

Peccia, J., Marchand, E. A., Silverstein, J. and Hernandez, M. (2000). "Development 
and application of small-subunit rRNA probes for assessment of selected 
Thiobacillus species and members of the genus Acidiphilium. " Applied and 
Environmental Microbiology 66(7): 3 065-40. 

291 



Pizarro, J., Jedlicki, E., Orellana, 0., Romero, J. and Espejo, R. T. (1996). "Bacterial 
populations in samples of bioleached copper ore as revealed by analysis of DNA 
obtained before and after cultivation. " Applied and Environmental Microbiology 
62(4): 1323-8. 

Porter, J. and Pickup, R W. (2000). "Nucleic acid-based fluorescent probes in microbial 
ecology. application of flow cytometry. " Journal of Microbiological Methods 
42(1): 75-79. 

Prokofeva, M. I., Miroshnichenko, M. L., Kostrikina, N. A., Chernyh, N. A., 
Kuznetsov, B. B., Tourova, T. P. and Bonch-Osmolovskaya, E. A. (2000). 
"Acidilobus aceticus gen. nov., sp. nov., a novel anaerobic thermoacidophilic 
archaeon from continental hot vents in Kamchatka. " International Journal of 
Systematic and Evolutionary Microbiology 50: 2001-2008. 

Pronk, J. T., Debruijn, P., Vandijken, J. P., Bos, P. and Kuenen, J. G. (1990). 
"Energetics of mixotrophic and autotrophic Cl-metabolism by Thiobacillus 
acidophilus. " Archives of Microbiology 154(6): 576-583. 

Pronk, J. T., Debruyn, J. C., Bos, P. and Kuenen, J. G. (1992). "Anaerobic Growth of 
Thiobacillus ferrooxidans. " Applied and Environmental Microbiology 58(7): 
2227-2230. 

Pronk, J. T. and Johnson, D. B. (1992). "Oxidation and reduction of iron by acidophilic 
bacteria. " Geomicrobiology Journal 10(3-4): 153-171. 

Pronk, J. T., Liem, K., Bos, P. and Kuenen, J. G. (1991). "Energy transduction by 
anaerobic ferric iron respiration in Thiobacillus ferrooxidans. " Applied and 
Environmental Microbiology 57(7): 2063-2068. 

Rawlings, D. E. (1995). "Restriction enzyme analysis of 16S rDNA genes for the rapid 
identification of Thiobacillus ferrooxidans, Thiobacillus thiooxidans and. 
Leptospirillum ferrooxidans strains in leaching environments. " in 
Biohydrometallurgical Processing. Vargas, T., Jerez, C. A., Wiertz, J. V. and 
Toledo, H. Santiago, University of Chile. II: 9-18. 

Rawlings, D. E., Tributsch, H. and Hansford, G. S. (1999). "Reasons why 
'Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the 
dominant iron-oxidizing bacteria in many commercial processes for the 
biooxidation of pyrite and related ores. " Microbiology-UK 145: 5-13. 

Rickard, P. A. and Vanselow, D. G. (1978). "Investigations into the kinetics and 
stoichiometry of bacterial oxidation of covellite (CuS) using a polarographic 
oxygen probe. " Canadian Journal of Microbiology 24(8): 998-1003. 

Rodriguezleiva, M. and Tributsch, H. (1988). "Morphology of bacterial leaching 
patterns by Thiobacillus ferrooxidans on synthetic pyrite. " Archives of 
Microbiology 149(5): 401-405. 

292 



Ruimy, R., Breittmayer, V., Boivin, V. and Christen, R. (1994). "Assessment of the 
state of activity of individual bacterial- cells by hybridization with a ribosomal 
RNA-targeted fluorescently labeled oligonucleotidic probe. " FEMS 
Miicrobiology Ecology 15(1-2): 207-213. 

Saitou, N. and Nei, M. (1987). "The neighbor joining method: a new method for 
reconstructing phylogenetic trees. " Molecular Biology and Evolution 4: 406- 
425. 

Sand, W., Gerke, T., Hallmann, R and Schippers, A. (1995). "Sulfur chemistry, biofilm, 
and the (in)direct attack mechanism -a critical-evaluation of bacterial leaching. " 
Applied Microbiology and Biotechnology 43(6): 961-966. 

Sand, W., Rohde, K., Sobotke, B. and Zenneck, C. (1992). "Evaluation of 
Leptospirillun: ferrooxidans for leaching. " Applied and Environmental 
Microbiology 58(1): 85-92. 

Sasaki, K., Ohmura, N. and Saiki, H. (2001). "Anaerobic iron respiration of 
77dobacillus ferrooxidans and its electron transfer protein. " in 
Biohydrometallurgy: Fundamentals. Technology and Sustainable Develo ment. 
Ciminelli, V. S. T. and Garcia Jr., O. Amsterdam, Elsevier: 263-269. 

Schippers, A., Jozsa, P. G. and Sand, W. (1996). "Sulfur chemistry in bacterial leaching 
of pyrite. " Applied and Environmental Microbiology 62(9): 3424-3431. 

Schippers, A and Sand, W. (1999). "Bacterial leaching of metal sulfides proceeds by 
two indirect mechanisms via thiosulfate or via polysulfides and sulfur. " Applied 
and Environmental Microbiology 65(1): 319-321. 

Schleper, C., Puehler, G., Holz, I., Gambacorta, A., Janekovic, D., Santarius, U., Klenk, 
H. P. and Zillig, W. (1995). "Picrophilus gen. nov., fam. nov. -a novel aerobic, 
heterotrophic, thermoacidophilic genus and family comprising archaea capable 
of growth around pH 0. " Journal of Bacteriology 177(24): 7050-7059. 

Schleper, C., Puhler, G., Klenk, H. P. and Zillig, W. (1996). "Picrophilus oshimae and 
Picrophilus torridus fam. nov., gen. nov., sp. nov., two species of 
hyperacidophilic, thermophilic, heterotrophic, aerobic archaea. " International 
Journal of Systematic Bacteriology 46(3): 814-816. 

Schnaitman, C. and Lundgren, D. G. (1965). "Organic compounds in the spent medium 
of Ferrobacillus ferrooxidans. " Canadian Journal of Microbiology 11: 23-27. 

Schnell, H. A. (1997). "Bioleaching of copper. " in Biomining: theory, microbes and 
industrial processes. -Rawlings, D. E. Georgetown, TX, Springer-Verlag/Landes 
Bioscience: 21-43. 

Schrenk, M. 0., Edwards, K. J., Goodman, R. M., Hamers, R. J. and Banfield, J. F. 
(1998). "Distribution of Thiobacillus ferrooxidans and Leptospirillum 

ferrooxidans: Implications for generation of acid mine drainage. " Science 
279(5356): 1519-1522. 

293 



Segerer, A., Langworthy, T. A and Steher, K. 0. (1988). "Thermoplasma acidophilum 
and Thermoplasma volcanium sp. nov. from solfatara fields. " Systematic and 
Applied Microbiology 10(2): 161-171. 

Segerer, A., Neuner, A., Kristjansson, J. K. and Stetter, K. 0. (1986). "Acidianus 
in fernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov., facultatively 
aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. " 
International Journal of Systematic Bacteriology 36(4): 559-564. 

Segerer, A. H., Trincone, A, Gahrtz, M. and Stetter, K. 0. (1991). "Stygiolobus 
a-oricus gen. nov., sp. nov. represents a novel genus of anaerobic, extremely 
thermoacidophilic archaebacteria of the order Sulfolobales. " International 
Journal of Systematic Bacteriology 41(4): 495-501. 

Selenska-Pobell, S., Otto, A. and Kutschke, S. (1998). "Identification and 
discrimination of thiobacilli using ARDREA, RAPD and rep-APD. " Journal of 
Applied Microbiology 84(6): 1085-1091. 

Shima, S. and Suzuki, K. I. (1993). "Hydrogenobacter acidophilus sp. nov., a thermo- 
acidophilic, aerobic, hydrogen-oxidizing bacterium requiring elemental sulfur 
for growth. " International Journal of Systematic Bacteriology 43(4): 703-708. 

Stoner, D. L., Browning, C. K., Bulmer, D. K., Ward, T. E. and MacDonell, M. T. 
(1996). "Direct SS rRNA assay for monitoring mixed-culture bioprocesses. " 
Applied and Environmental Microbiology 62(6): 1969-1976. 

Stookey, L. L. (1970). "Ferrozine-a new spectrophotometric reagent for iron. " 
Analytical Chemistry 42: 779-78 1. 

Stott, M. B., Watling, H. R., Franzmann, P. D. and Sutton, D. (2000). "The role of iron- 
hydroxy precipitates in the passivation of chalcopyrite during bioleaching. " 
Minerals Engineering 13(10-11): 1117-1127. 

Stott, M. B., Watling, H. R., Franzmann, P. D. and Sutton, D. C. (2001). "The effect of 
solution chemistry on jarosite deposition during the leaching of chalcopyrite by 
the thermophilic archaeon, Sulfolobus metallicus. " in Biohydrometallurgy 
Fundamentals. Technology and Sustainable Development. Ciminelli, V. S. T. 
and Garcia Jr., 0. Amsterdam, Elsevier: 207-215. 

Sugio, T., Hirose, T., Ye, L. Z. and Tano, T. (1992a). "Purification and some properties 
of sulfite-ferric ion oxidoreductase from Thiobacillus ferrooxidans. " Journal of 
Bacteriology 174(12): 4189-4192. 

Sugio, T., White, K. J., Shute, E., Choate, -D. and Blake, R. C. (1992b). "Existence of a 
hydrogen sulfide -ferric ion oxidoreductase in iron-oxidizing bacteria. " A lie 
and Environmental Microbiology 58(1): 431-433. 

Takayanagi, S., Kawasaki, H., Sugimori, K., Yamada, T., Sugai, A., Ito, T., Yamasato, 
K. and Shioda, M. (1996). "Sulfolobus hakonensis sp. nov., a novel species of 

294 



acidothermophilic archaeon. " International Journal of Systematic Bacteriology 
46(2): 377-382. 

Temple, K. L. and Colmer, A. R. (1951). "The autotrophic oxidation of iron by a new 
bacterium, Thiobacillus ferrooxidans. " Journal of Bacteriology 62: 605-611. 

Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994). "CLUSTAL W: improving 
the sensitivity of progressive multiple sequence alignment through sequence 
weighting, positions-specific gap penalties and weight matrix choice. " Nucleic 
Acids Research 22: 4673-4680. 

Trebesius, K., Amann, R, Ludwig, W., Muhlegger, K. and Schleifer, K. H. (1994). 
"Identification of whole fixed bacterial cells with nonradioactive 23S ribosomal 
RNA-targeted polynucleotide probes. " Applied and Environmental 
Microbiology 60(9): 3228-323 5. 

Tributsch, H. and Bennett, J. C. (1981a). "Semiconductor-electrochemical aspects of 
bacterial leaching. 1. Oxidation of metal sulfides with large energy gaps. " Journal 
of Chemical Technology and Biotechnology 31(9): 565-577. 

Tributsch, H. and Bennett, J. C. (1981b). "Semiconductor-electrochemical aspects of 
bacterial leaching. 2. Survey of rate-controlling sulfide properties. " Journal o 
Chemical Technology and Biotechnology 31(10): 627-635. 

Tuovinen, 0. H. (1978). "Inhibition of Thiobacillus ferrooxidans by mineral flotation 
reagents. " European Journal of Applied Microbiology and Biotechnology 5: 
301-304. 

Tuovinen, O. H., Bhatti, T. M., Bigham, J. M., Hallberg, K. B., Garcia, O. and 
Lindström, E. B. (1994). "Oxidative dissolution of arsenopyrite by mesophilic 
and moderately thermophilic acidophiles. " Applied and Environmental 
Microbiology 60(9): 3268-3274. 

Tuovinen, 0. H., Kelley, B. C. and Groudev, S. N. (1991). "Mixed cultures in biological 
leaching processes and mineral biotechnology. " in Mixed Cultures in 
Biotechnology. Zeikus, J. G. and Johnson, E. A. New York, McGraw-Hill: 373- 
425 

Urakami, T., Tamaoka, J., Suzuki, K. and Komagata, K. (1989). "Acidomonas gen. 
nov., incorporating Acetobacter methanolicus as Acidomaras metllanolica 
comb. nov. " International Journal of Systematic Bacteriology 39(1): 50-55. 

Valdivia, D. N. U. and Chaves, A. P. (2001). "Influence of flotation compounds on the 
bio-leaching process using Thiobacil us ferrooxidans. " in 13iohvdrometallurgv: 
Fundamentals, Technology and Sustainable Development. Ciminelli, V. S. T. 
and Garcia Jr., 0. Amsterdam, Elsevier: 159-166. 

Vasquez, M. and Espejo, R. T. (1997). "Chemolithotrophic bacteria in copper ores 
leached at high sulfuric acid concentration. " Applied and Environmental 
Microbiology 63(1): 332-334. 

295 



Vian, M., Creo, C. and Dalmastri, C. (1986). "Thiobacillus ferrooxidans selection in 

continuous culture. " in Fundamental and Applied BiohydrometallurRy. 
Lawrence, R. W., Branion, R. M. R. and Ebner, H. G. Amsterdam, Elsevier: 
395-406. 

Wakao, N., Nagasawa, N., Matsuura, T., Matsukura, H., Matsumoto, T., Hiraishi, A., 
Sakurai, Y. and Shiota, H. (1994). "Acidiphilium multivorum sp. nov., an 
acidophilic chemoorganotrophic bacterium from pyritic acid-mine drainage. " 
Journal of General and Applied Microbiology 40(2): 143-159. 

Waksman, S. A. and Joffe, J. S. (1921). "Acid production by a new sulfur-oxidizing 
bacterium. " Science 53: 216. 

Walker, J. C. G. (1987). "Was the archean biosphere upside down. " Natur 329(6141): 
710-712. 

Walton, K. C. and Johnson, D. B. (1992). "Microbiological and chemical characteristics 
of an acidic stream draining a disused copper mine. " Environmental Pollution 
76(2): 169-175. 

Welham, N. J., Malatt, K. A. and Vukcevic, S. (2000). "The effect of solution speciation 
on iron-sulphur-arsenic- chloride systems at 298 K. " Hydrometallurr v 57(3): 
209-223. 

Wichlacz, P. L. and Unz, R. F. (1981). "Acidophilic, heterotrophic bacteria of acidic 
mine waters. " Applied and Environmental Microbiology 41(5): 1254-1261. 

Wichlacz, P. L., Unz, R. F. and Langworthy, T. A. (1986). "Acidiphilium anguslum sp. 
nov., Acidiphilium facilis sp. nov., and Acidiphilium rubrum sp. nov. acidophilic 
heterotrophic bacteria isolated from acidic coal-mine drainage. " International 
Journal of Systematic Bacteriology 36(2): 197-201. 

Wichlacz, P. P. and Thompson, D. L. (1988). "The effect of acidophilic heterotrophic 
bacteria on the leaching of cobalt by Thiobacillus ferrooxida ns. " in 
Biohydrometallurgy Proceedings of the International Symposium. Norris, P. R. 
and Kelly, D. P. Kew, Science and Technology Letters: 77-88. 

Widdel, F., Schnell, S., Heising, S., Ehrenreich, A., Assmus, B. and Schink, B. (1993). 
"Ferrous iron oxidation by anoxygenic phototrophic bacteria. " Nattire 
362(6423): 834-836. 

Wilson, K. (1987). "Preparation of genomic DNA from bacteria. " in Current Protocol in 
Molecular Biology. Ausubel, F. M., Brent, K, Kingston, R. E. el al. New York, 
Green and Wiley Interscience: 2.4.1-2.5.4. 

Wisotzkey, J. D., Jurtshuk, P., Fox, G. E., Deinhard, G. and Poralla, K. (1992). 
"Comparative sequence analyses on the 16S ribosomal RNA (rDNA) of Bacillus 
acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and 
proposal for creation of a new genus, Alicyclobacillus gen. nov. " International 
Journal of Systematic Bacteriology 42(2): 263-269. 

296 



Woese, C. R. (1987). "Bacterial Evolution. " Microbiological Reviews 51(2): 221-271. 

Yahya, A., Roberto, F. F. and Johnson, D. B. (1999). "Novel mineral-oxidising bacteria 
from Montserrat (W. I. ): physiological and phylogenetic characteristics. " in 
Biohydrometallurgy and the Environment Toward the Mining of the 21` 
Century. Amils, R. and Ballester, A. Amsterdam, Elsevier. 9A: 729-740. 

Yamanaka, T., Yano, T., Kai, M., Tamegai, H., Sato, A. and Fukumori, Y. (1991). "The 

electron transfer system in an acidophilic iron-oxidizing bacterium. " in New era 
of bioenergetics. Mukohata, Y. Tokyo, Academic Press: 223-246. 

Zarda, B., Amann, R., Wallner, G. and Schleifer, K. H. (1991). "Identification of single 
bacterial cells using digoxigenin- labeled, ribosomal RNA-targeted 
oligonucleotides. " Journal of General Microbiology 137: 2823-2830. 

Zillig, W., Stetter, K. 0., Wunderl, S., Schulz, W., Priess, H. and Scholz, I. (1980). "The 
Sulfolobus - "Caldariella" group: taxonomy on the basis of the structure of 
DNA-dependent RNA polymerises. " Archives in Microbiology 125: 259-269. 

Zillig, W., Yeats, S., Holz, I., Bock, A., Rettenberger, M., Gropp, F. and Simon, G. 
(1986). "Desu furolobus ambivalens, gen. nov., sp. nov., an autotrophic 
archaebacterium facultatively oxidizing or reducing sulfur. " Systematic and 
Applied Microbiology 8(3): 197-203. 

297 


