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ABSTRACT 

Some trace elements and various PCB congeners were determined in superficial sediments 
from Liverpool Bay. Some sediment parameters were also determined for a better understanding 
of the distribution of these contaminants. 

Lower amounts of fine particles were found in sediments from the southern area of the 
sampling grid where the hydrodynamic conditions inhibit the deposition and favour the 
resuspension of particles with small diameter. The distribution of muddy deposits was patchy 
throughout the bay although the mud deposits near the Burbo Bight seem to be a permanent 
feature. 

The concentrations of trace elements and carbon were determined in two grain size fractions. 
Carbon in the fine fraction increased in sediment samples with lower proportions of fine 

sediments probably as a result of an increase in the available surface area since these samples 
apparently had higher proportions of clays. This relationship was scattered suggesting that the 
inputs of carbon from different sources, i. e., waste disposal, riverine inputs and autochthonous 
production, overshadow any clear trends between carbon and grain size in sediments. This 
observation is consistent with the distribution of S13C values. The concentration of organic matter 
in coarse sediments seemed to be determined by the amount of surrounding fine particles, 
particularly in samples with fine fraction concentrations higher than 5%. 

The concentrations of all of the trace elements, except arsenic, in the coarse fraction were 
correlated with the organic matter content suggesting that the organic phase is an important 

carrier of metals in the coarse particles. In the fine fraction, however, there was a large variability 
in the correlations, suggesting different geochemical behaviour between trace elements. For 
example a contrasting behaviour was observed between mercury and arsenic since the former 
seemed to be associated with land derived organic matter with no correlations with the content 
of iron and manganese, whereas arsenic showed a strong correlation with these two elements 
reflecting its preference for hydrous oxides of iron and manganese. The geochemical behaviour 
of each particular trace element seems to play an important role in the observed distributions of 
the elements in Liverpool Bay sediments. 

PCBs were determined in total sediments. A high correlation between PCB concentrations and 
the fine fraction content was observed as a result of the preferential association of these 
contaminants in fine particles. The distribution of normalized PCB concentrations indicated that 
inputs from the Mersey may be an important source of PCBs. Different patterns were observed 
in the PCB congener composition of the samples which reflected the different sources and degree 
of alteration of the "original" pattern found at the source. The changes in the composition were 
related to the degree of chlorination and substitution pattern since these factors control the 
physicochemical properties of PCB congeners. 

The sediments were classified based on their elemental content and on their PCB contents by 
means of multivariate statistical methods. The sediments were classified in similar groups from 
their organic and inorganic contents, which suggested that the sources of organic and inorganic 
contaminants in Liverpool Bay are similar. 
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Chapter 1. INTRODUCTION 

1.1. GENERAL INTRODUCTION 

Polychlorinated biphenyls (PCBs) and some of the trace elements such as arsenic and trace 

metals represent two groups of organic and inorganic contaminants in the environment which are 

a major cause of concern due to their potential toxicological effects on living' organisms including 

man. 
With increasing frequency, waste products containing organic and inorganic toxic substances 

generated by a wide range of industrial processes have not been disposed of according ' to 

scientific reasoning, but rather in response to economic pressures or merely by the most 

convenient method (Honeyman and Santschi, 1988). As a result, many waste products have been 

dispersed over wide areas and in some cases at elevated concentrations, through atmospheric and 

aquatic reservoirs. In order to better understand the impact of toxic substances in the biosphere, 

it is necessary to detect their sources and determine their fate, thus, one of the main objectives 

of environmental chemistry has been to describe the behaviour of contaminants in natural systems 
based on the knowledge of their fundamental physicochemical properties (Honeyman and 
Santschi, 1988). 

There are various sources of contaminants in the aquatic ecosystem. Atmospheric emissions 
from industry and households, and agricultural runoff both contribute to water pollution. 

However, the most important source into terrestrial and coastal aquatic systems is the direct input 

of wastes from industrial and domestic effluents (Forstner and Wittmann, 1979). Although these 

effluents contain various substances that are not considered dangerous, many of them add a 
disagreeable odour or taste to water and others (e. g. nutrients) may significantly upset the 

ecosystem without being directly harmful to humans. Other groups, however, have direct and 
indirect influences on humans and other living organisms and can cause grave damage. 

Substances in this category include inorganic contaminants such as radioactive elements, arsenic 

and trace metals (e. g. mercury, cadmium and lead), and also include organic compounds such as 

polycyclic aromatics, pesticides and PCBs. 

Regardless of the mechanism of transport from the source(s), once in the marine environment 

a few of the contaminants are relatively unreactive and consequently their transport patterns are 
conceptually straightforward and mediated by water' mass movements. A much greater number 
of these substances, however, are highly reactive and have a strong affinity for association with 
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fine grained particles. The movements of these reactive contaminants, their removal from water, 

and their accumulation in the sediments are thus governed to a great extent by sedimentary 

processes (Olsen et al., 1982). Therefore, in order to understand the transport pathways and 

determine the fate of contaminants in coastal marine environments, it is necessary to study the 

processes which control the inputs and transport of sedimentary particles. 

The dynamics of fine grained particles and their associated contaminants is complex in coastal 

marine environments, particularly in shallow areas, because: (a) intense short term flow events 

(such as those induced by storms) are often more important to sediment transport than the current 

flow which occurs during normal conditions, (b) fine particles often undergo numerous cycles 

of resuspension and deposition, and (c) numerous physical, chemical and biological processes 

affect the fate of particles and reactive pollutants, especially in estuarine zones where fresh water 

mixes with sea water (Olsen et al., 1982). Human activities including dredging, trawling and 

waste disposal might further affect the transport and composition of fine particles in the coastal 

areas, adding to the complexity in the understanding of the transport and fate of particle 

associated contaminants. I 
In spite of the potential problems in understanding the dynamics of sedimentary particles in 

coastal environments, it is common practice to assess contamination levels in aquatic systems 

through the determination of the concentration of the contaminants in sediments. The tracing of 

contamination sources by means of water analyses frequently gives rise to difficulties which 

might be particularly associated with analytical techniques. These problems are particularly 

obvious in the case of substances such as trace metals and PCBs which are not readily soluble 

but become rapidly fixed to particulate matter in the water column. The adsorption of these 

substances onto particles decreases substantially the levels in solution down to concentrations 

which are difficult to detect by routine methods. In the case of trace metals for example, the 

concentration levels in suspended particles might be three orders of magnitude higher than in 

solution, with typical concentrations reported in units of micrograms of metal per gram of 

particles (ppm) and micrograms of metal per litre of water (approximately ppb) respectively. In 

the case of organic compounds such as PCBs, the difference in concentrations between the 

dissolved (usually at the picogram per litre level) and particulate (from picogram to microgram 

per gram levels) phases might be even higher due to the hydrophobicity of these compounds, 
Q}ýl" 

with typical differences being of four orders of magnitude or higher (Duursma k1989). 
In the case of trace elements in water, the problems in the analysis have been largely 

overcome by, improvements in the sensitivity of analytical techniques which allow for 
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determinations in water at ultra-low levels. On the other hand, the analysis of PCBs in seawater 

is still very difficult because in spite of the high sensitivity of the detectors often employed in 

PCB determinations, the extremely low concentrations of these compounds in solution often 

require handling of very large volumes of sample which make routine analyses of PCBs in 

solution unpractical. In a recent study of the concentrations of PCBs and pesticides in open ocean 

waters off the U. S. coast and in the Gulf of Mexico, Sauer et al. (1989) extracted -900 1 of 

seawater at several stations and reported not detected concentrations in most of the samples even 

though these large volumes permitted detection limits below 1 pg 1'`. Another problem arising 

from the handling of large volumes of water samples containing very low PCB concentrations 

is the possibility of contamination of the sample. Schulz et al. (1988) reported that the main 

potential sources of contamination of seawater samples are the sampler, the ship's atmosphere 

and the organic solvents. 
In contrast to open ocean waters, the concentrations of dissolved and particulate inorganic and 

organic contaminants in near-shore coastal waters vary considerably in time and space, in 

response to variations in the composition and relative contribution of the sources, in biological 

productivity and in the sediment-water interactions (Kramer, 1986). Thus, even if the analytical 

problems associated with PCBs and trace element determinations in seawater are overcome, the 

short term variations (hours to days) in the concentrations of these substances in the water 

column may overshadow the long term variations (months to years), therefore, the study of 

contamination trends in time (and space) can be difficult from the study of contamination levels 

in the water column. In contrast to the open oceans, the highly variable coastal areas belong to 

territorial zones and are subject to more legislative regulations for which quality knowledge is 

most needed. The main goal of monitoring the coastal environments is to look at possible 
deviations from uncontaminated background levels and to relate changes in their composition 

with human influence and/or governmental policy (Kramer, 1986). 

Coastal sediments seldom reflect the most recent pollution as newly deposited particles may 
be diluted with particles already present in the sediment. Sediments, particularly those in surface 
layers, are constantly reworked and homogenized by currents, turbulence, bioturbation, dredging 

and trawling. However, the effects of the contaminants on benthic organisms depend on the 

actual composition of the sediments, regardless of the time of deposition (Kramer, 1986). In areas 
where the conditions are appropriate and net sedimentation can occur, a contamination history 

can be reconstructed based on the vertical profiles of the contaminants. In general the variations 
in sedimentary composition are of a much longer time scale compared to the variations in the 
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water column, and can be considered as integrators of events in time, they have been commonly 

used for the monitoring of contamination in coastal marine environments and other aquatic 

ecosystems. 
Most of the studies concerned with environmental monitoring of contaminants merely report 

concentration data on particles, with little attention devoted to the biogeochemical processes that 

affect the dynamics and composition of these particles in estuarine, coastal and open ocean 

environments. The main processes involved in the biogeochemical cycles of particles and which, 

therefore, affect the dynamics of particle-associated contaminants in coastal marine environments 

are shown in Figure 1.1 (after Olsen et al., 1982). The role which each of the processes indicated 

in Figure 1.1 plays in the transport and fate of a particular contaminant will depend on the 

source, chemical form and concentration of the contaminant, as well as on the chemical 

characteristics of the sorbing particle and the transporting medium. The particles involved in 

these cycles may be riverborne, airborne, resuspended from bottom sediments by currents and 

organisms, or generated within the water column by biological production, colloidal flocculation, 

or biodegradation (Olsen et al., 1982). Some of these particles may also be derived from direct 

inputs from human activities such as dredging and ocean dumping of wastes such as sewage 

sludges and dredging spoils. 
Most of the studies concerned with these processes have used geochemical signatures on 

particles to trace particle transport, differentiate particle sources, and quantify particle-pollutant 
fluxes (Olsen et al., 1982). In this study, the geochemical signature of two groups of 

contaminants, i. e., trace elements and PCBs was used to determine the possible source(s) of these 

contaminants in Liverpool Bay sediments. 

1.1.1. Trace elements 

The determination of trace metals in sediments from Liverpool Bay is part of the routine 

monitoring programs undertaken by the Ministry of Agriculture, Fisheries and Food (MAFF), and 
the North West Water Authority (NWWA), which are particularly aimed at the determination of 
the environmental quality of an area which receives direct inputs of wastes via dumping of 
domestic sewage sludges, industrial wastes and dredging materials at designated areas. As the 
determination of trace metals in Liverpool Bay sediments has been carried out routinely since 
the early 1970's, it was assumed at the beginning of this project that their behaviour, sources and 
fates were well understood. Therefore, the analysis of trace elements, and of trace metals in 

4 



3 

GEOCHEMICAL PROCESSES AFFECTING PARTICLE-POLLUTANT 
DYNAMICS IN COASTAL MARINE ENVIRONMENTS 

REMOVAL PROCESSES 

INPUT AND REGENERATION 
PROCESSES 

ATMOSPHERE 

SEA SPRAY 
VOLATILIZATION 

DRY AEROSOL DEPOSITION 
EOLIAN INPUT PRECIPITATION 

ESTUARY MARINE 
RIVER INPUT - 

OCEAN 
DUMPING 

CHEMICAL WEATHERING DESORPTION BIOAGGREGATION 
EROSIONAL SOURCES DEPOSITION PRECIPITATION 

BIOAGGREGATION 

I 

SORPTION 
FLOCCULATION 

WASTE INPUT PRECIPITATION O)ASTAL INPUT 
MUNICIPAL AND 

DECOMPOSITION 

INDUSTRIAL SOURCES 
AND 
REGENERATION 

"" 1 EN " 
SED 

ý: ACCU UL TO " NSI "'"R""U E SON ". "" COPRECI ITAT ON 
i": '' MINERALIZATION DECOMPOSITION H Mn WIT 

i SEDIMENT MIXING=: : i'. PORE WATER DIFFUSION -'i; y; ':;::. ý:: 
: ": s: ": i": ý' 7: DREDGING i: 

:: gis::; : 'iii:; : ii: " 

Fig. 1.1. Schematic illustration of the biogeochemical processes which 
affect pollutant-particle dynamics. (After Olsen et al., 1982). 



particular, in this study was aimed to provide a background for a better understanding of the 

sources and fates of PCBs in these sediments for which data have not been reported previously. 

The routine determination of trace elements in environmental quality assessment is mainly due 

to the potential impact of some of these elements in biological systems including man. Toxic 

metals such as mercury, cadmium, lead and copper, and other toxic elements such as arsenic, 

have been extensively studied in several aquatic ecosystems, as they are produced and released 

into the environment in substantial quantities from various human activities including industrial 

processes, transportation, agriculture, etc., and they are frequently transported or directly 

discharged into the aquatic environment. 
As some trace elements are essential for biological systems, studies of the toxicity of trace 

metals often follow the general trend that an undersupply leads to a deficiency, sufficient supply 

results in optimum conditions, but an oversupply results in toxic effects and finally death 

(Forstner and Wittmann, 1979). Several catastrophic episodes such as the well known case of 

mercury poisoning around Minamata Bay, Japan, have been reported in the literature and are 

often referred to in text books (e. g. see Forstner and Wittmann, 1979; Salomons and Forstner, 

1984). 

As the determination of metal levels in sediments can play a key role in detecting the sources 

of pollution in aquatic systems (Forstner and Wittmann, 1979), it is not surprising that a large 

number of published reports can be found in the literature regarding the levels, geochemistry, 

speciation and toxicity of trace elements in sediments of lakes, rivers, estuaries and coastal 

marine systems. It is interesting to mention that in spite of the advances in the understanding of 

the behaviour of metals in aquatic systems in general, and in marine sediments in particular, the 

monitoring programs in the Liverpool Bay area, have largely been concerned only in reporting 

the distribution of the concentrations of some toxic metals in the sediments. Although some 

efforts have been made to explain these distributions in relation to the hydrodynamical processes 

(see for example Norton et al., 1984a and 1984b) which largely control the distribution of trace 

elements in Liverpool Bay sediments, the geochemical aspects which may also play an important 

role in the behaviour of trace elements in the marine environment have not been studied or 

reported in the literature. ". I 

The sampling of sediments in Liverpool Bay for the present study resulted from one of the 

cruises of the 1988 monitoring program by MAFF and NWWA in this area. As described in the 

methods in Chapter 3, the trace elements were determined according to the procedures followed 
by MAFF. Therefore similar data to those found in previous reports by MAFF and NWWA were 
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obtained for the trace metals which are routinely determined by these bodies, i. e., mercury, 

cadmium, copper, chromium, nickel, lead and zinc. However, some variables which are not 

determined routinely by MAFF or NWWA, and that were thought to be useful for gaining an 

insight on the environmental behaviour of the metals mentioned above, were also determined. 

These variables included carbon stable isotopes, iron, manganese and aluminium. An element 

which is not routinely determined in Liverpool Bay sediments, and for which data were not 

available, i. e. arsenic, was also included in the elemental determinations in this study. 

1.1.2. Polychlorinated biphenyls (PCBs) 

In contrast to trace metals, there are no previous reports on PCBs in Liverpool Bay sediments. 

Also in contrast with trace metals, literature reporting these xenobiotics in marine sediments in 

general is very limited even though there has been a growing concern on the possible effects of 
PCBs in the environment, and the word PCB has become widespread in the public domain. To 

provide a better understanding of the complexity of the determination and the complexity of the 

environmental behaviour of PCBs, some basic information regarding the sources, applications, 

and physicochemical properties of PCBs is given in the following paragraphs. 
Polychlorinated biphenyls is a term used to refer to a family of organic chemical compounds 

with empirical formula C12H1a-. Clo where n= 1-10. PCBs are produced by chlorination of the 

biphenyl compound which has 10 positions (labelled 2-6 and 2'-6' in Figure 1.2) available for 

chlorine atoms. There are a total of 209 possible structural arrangements distributed among the 

ten levels of chlorination (see Table 1.1). The term "congener" is applied to any of the 209 

possible PCBs, as the term "isomer" can only be applied to those PCBs with the same number 

of chlorines in the biphenyl molecule which only differ in the substitution positions of the 

chlorine atoms. For example, there are a total of 209 PCB congeners, but there are only three 

possible monochlorobiphenyl isomers and 46 possible pentachlorobiphenyl isomers (see Table 

1.1). 

As the nomenclature of PCB congeners can be cumbersome, e. g. 2,2', 3,3', 4,4', 5,6'- 

octachlorobiphenyl, Ballschmiter and Zell (1980) developed a scheme of numbering the PCB 

congeners that follows the rules of the International Union of Pure and Applied Chemists 

(IUPAC) of substituent characterization in biphenyls. The number of position according to this 

arrangement is taken as an abbreviation for the PCB structure. The structures and their 

corresponding IUPAC numbers of all 209 PCB congeners are shown in Table 1.2. 
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Fig. 1.2. Structure of the biphenyl molecule. 

Table 1.1. Nomenclature, number of isomers, molecular weights and chlorine content 
of isomeric groups of PCBs. (After de Voogt and Brinkman, 1989). 

Structural 
formula 

Name 
(-chloro 

phenyl) 

Number 
isomers 

IUPAC 
system. 
number 

Mol. 
wt. 

%Cl 

C12H9C1 mono 3 1-3 188.65 18.79 
C12H8C12 di 12 4- 15 233.10 31.77 
C12H7C13 tri 24 16- 39 257.54 41.30 
C12H6C14 tetra 42 40- 81 291.99 48.56 
C12HSC15 penta 46 82-127 326.43 54.30 
C12H4C16 hexa 42 128-169 36 0 . 88 58.93 
C12H3C17 hepta 24 170-193 395.32 62.77 
C12H2C18 octa 12 194-205 429.77 65.98 
C12HC19 nona 3 206 -208 464.21 68.73 
C12C110 deca 1 209 498.66 71.10 
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Until the environmental health risks of PCBs were discovered, chlorinated biphenyls were 

thought to be one of the most successful chemical products. First synthesized in the nineteenth 

century, commercial production of PCBs began in 1929 (Hooper et al., 1990). The total amount 

of PCBs produced since 1929 is approximately 1.5 million metric tonnes (de Voogt and 

Brinkman, 1989). Production of PCBs has probably been confined to some ten countries in the 

world, with the U. S. A. being the largest producer, followed by Germany, France, the U. K and 

Japan (de Voogt and Brinkman, 1989). Commercially, PCBs found rapid -and widespread 

industrial use as electrical insulators, lubricants, hydraulic fluids, diffusion pump oils, cutting oils, 

plasticizers and liquid seals. PCBs found their way into the home as flame retardants in a number 

of plastics, as preservatives and protectants in rubber, in weatherproof coatings and stucco, in 

steel coatings, waxes, varnishes, inks, - duplicating fluids and a host of other everyday items (see 

Hooper et al., 1990, and references therein). The unique physical and chemical properties of PCB 

technical mixtures stimulated the extensive use of this family of mixtures in many industrial 

applications. Some of these properties are: a remarkable thermal stability, resistance to acids, 

bases and other chemical agents, stability to conditions of oxidation and hydrolysis often 

encountered in industrial use, low solubility in water, low flammability, high electrical resistivity, 

favourable dielectric constants, low vapour pressure at ambient temperature and suitable 

viscosity-temperature relationships (de Voogt and Brinkman, 1989). 

The commercial PCB formulations are prepared by the chlorination of biphenyl using a variety 

of catalysts and experimental conditions (e. g. heat, pressure and reaction time). Although the 

electrophilic substitution by the chlorine atoms is favoured at the ortho and para positions (Fig. 

1.2), the commercial products are complex mixtures of isomers and congeners with no apparent 

preference for chlorine substitution (Safe, 1984). Of the 209 theoretically possible congeners, a 

total of 132 have been reported as present in commercial mixtures at concentrations above 0.05% 

(Schulz et al., 1989). 

Commercial PCB mixtures have been said in many countries under a variety of trade names 
including, for example, Aroclor (U. S. A., U. K. ), Pyranol (U. S. A. ), Kanechlor (Japan), Clophen 

(Germany), Fenchlor (Italy), Phenochlor (France), Delor (Czechoslovakia) and Sovol (U. S. S. R. ). 

In the United States, PCBs were mainly produced by Monsanto Corporation under the trade name 
of Aroclor, which are, together with the German Clophen mixtures, the commercial formulations 

most often referred to in the literature of PCBs in environmental samples. The average chlorine 
content of Aroclor mixtures are 21,32,42,48,54,60 and 61% by weight. Aroclors are 
designated by a four digit number, of which the first two digits are 1 and 2, representing the 12 
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carbons of the biphenyl skeleton, and the second two digits are the percentage of chlorine in the 

mix (Hooper et al., 1990). Thus Aroclors 1254 and 1260 are PCB mixtures in which chlorine 

constitutes 54 and 60% of the total weight respectively. Within each commercial formulation only 
few PCB congeners tend to be the predominant components. For example, Aroclor 1254 is 

predominantly composed of tetra-, penta- and hexachlorobiphenyl congeners while the 

predominant isomeric groups in Aroclor 1260 are penta-, hexa- and heptachlorinated biphenyls 

(the description of the congener composition of these mixtures is given in Table 5.2, and their 

corresponding high-resolution gas chromatograms are shown in Fig. 5.2). A useful review with 
details regarding production statistics, composition, physicochemical properties and applications 

of PCB commercial formulations can be found in de Voogt and Brinkman (1989). 

PCBs are one of the groups of contaminants in the environment which cause most serious 

concern because of the characteristics that made them so commercially successful. The highly 

nonpolar nature of PCBs results in a low dielectric constant, making them an ideal choice as an 
insulating coolant in electrical equipment. Nonpolarity, however, also confers low water solubility 

and high lipophilicity resulting in potential for the accumulation in biological tissues, and 

particularly in those with high lipid content. The strong electronegativity of chlorine atoms 

suppresses the normally reactive electron-rich carbon backbone, stabilizing the biphenyl molecule. 
This results in a heat-resistant fluid with excellent long term stability. Although these are 
desirable characteristics in oils, hydraulic fluids and preservatives, they also result in molecules 

that are highly resistant to physical and biological degradation (Hooper et al., 1990). In general, 
PCB congeners with a higher number of chlorines in the molecule show lower volatility, lower 

aqueous solubility and higher chemical stability than the lower chlorinated congeners. As a 

consequence, the former persist in the environment for a longer period (see Hooper et al! Lanc1 
references therein). 

The occurrence of PCBs in environmental samples was first reported in the scientific literature 

by Jensen in 1966. In his study, Jensen analysed several environmental extracts for the pesticide 
DDT and found several "unknown" peaks which interfered with the chromatographic 
determination of DDT in the samples. Gas chromatographic and gas chromatographic-mass 
spectrometric analyses confirmed that the interfering peaks were a complex series of PCBs, a 
widely used industrial chemical. The full significance of PCBs on health came to public attention 
in. 1968 after the poisoning of several people by eating rice cooked in bran oil accidentally 
contaminated with PCBs in Yusho, Japan, and in the mid-1970s they surpassed the chlorinated 
insecticides as the most talked-about organochlorine pollutants (de Voogt and Brinkman, 1989). 
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Since the report by Jensen over 20 years ago, extensive reviews and reports on environmental 

PCB contamination levels have been written. However, only a small proportion of these studies 

discussed the distribution and occurrence of individual PCB congeners as part of the analysis of 

environmental samples (de Voogt et al., 1990). After recognising the potential adverse effects 

of PCBs in the environment, many industrial nations introduced restrictions in the production, 

use and disposal of PCBs, and by the end of the 1970s regulations and directives restricted PCBs 

and PCB-containing formulations in all uses except in closed systems such as electrical capacitors 

(de Voogt and Brinkman, 1989). 

In spite of the restrictions introduced more than a decade ago in the production and disposal 

of PCBs, due to the worldwide use of these ýxenobiotics in large quantities, they have been 

identified in a wide variety of environmental media and biota. Serious environmental 

contamination has been reported in several industrialized areas such as the Great Lakes, the 

Baltic Sea and Tokyo Bay (see Tanabe, 1988, and references therein). The widespread 

contamination with PCBs has also been evidenced by their presence in various environmental 

samples from polar regions such as air, water including snow and ice, fish, birds and mammals 

(Tanabe, 1988). PCBs have also been reported in open ocean compartments such as the 

atmosphere, surface and subsurface waters and biota. The widespread distribution of PCBs 

suggests the importance of the atmosphere as a medium of transport to remote areas (Tanabe, 

1988). 

Since environmental contamination with PCBs became apparent, many sample preparation 

procedures, gas chromatographic (GC) systems, detectors and methods for quantifying GC 

responses have been reported for determining the contamination extent of the environment. 
However, until recent advances in analytical instrumentation, most of the conventional 

methodology yielded only semi-quantitative data with virtually no qualitative or quantitative 
information on the PCB congener composition of the environmental samples (Pellizari et al., 
1985). The traditional method for PCB quantification was based on packed column' GC and the 

concentrations were usually reported in terms of a particular Aroclor mixture (e. g. as Aroclor 

1242,1254 or 1260). For this quantification the detector is first calibrated using commercial 
Aroclor mixtures, and then the approximate commercial Aroclor profile is matched to the sample 

profile. The final concentration of the sample is then reported in terms of the Aroclor mixture 

whose pattern most closely resemble the pattern in the sample (Pellizari et al., 1985). This 

method, as explained below, is subject to errors. 
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The main source of PCBs in the environment is the commercial formulations such as the 

Aroclor mixtures. However, as time passes after being released into the environment, the original 

Aroclor patterns undergo alterations, as selective weathering, degradation, biotransformation and 

bioaccumulation occur due to the wide range -of physicochemical properties among PCB 

congeners. As a result, PCB patterns in environmental samples such as sediments and biota 

seldom resemble any particular Aroclor pattern. Thus, the quantification in terms of any Aroclor 

mixture would be inaccurate. Furthermore, in the case in which two or more Aroclor mixtures 

are the sources of PCBs in a particular sample, the quantification in terms of a single Aroclor 

mixture would also be inaccurate. Although some statistical methods have been used in the past 

(e. g. Dunn et al., 1984) to match the PCB profile in samples against a single Aroclor, or 

combinations of different proportions of two or more Aroclors, matching the profiles still does 

not consider the possible alterations which occur in the environment which may lead to erroneous 

conclusions regarding the source of PCBs in those samples. This quantification method is further 

exacerbated by the production of PCB congeners in processes such as the incineration of 

municipal and industrial wastes, via chemical or pyrolysis reactions that are not the same as the 

chemical reactions used for the manufacture of commercial formulations (Pellizari et al., 1985). 

As incidental generation does not necessarily produce a fixed pattern of PCB congeners, the 

analyst cannot identify and quantify -these congeners based. on pattern recognition from the 

packed column gas chromatogram. Thus, the qualitative and quantitative PCB composition of 

biotic and abiotic environmental samples can only be accurately described by the accurate 

identification and quantification of individual chlorobiphenyl congeners. - 

It has only been during the past few years that the technical developments in high-resolution 

gas chromatography (HRGC), and the detection systems, that accurate identification and 

quantification of PCB congeners has been possible. The low resolution of packed columns did 

not allow a complete separation of most of the PCB congeners in the extracts, which, therefore, 

eluted from the column in groups (coeluted) showing a single peak in the detector. The detector 

most often used in PCB determinations is an electron capture detector (ECD) which is used for 

the determination, in general, of electrophilic substances containing elements such as chlorine in 

the molecule. Any electron capturing substance passing through the detector will give a signal, 

thus, if two or more PCB congeners have not been resolved before entering the detector, they 

will appear in the chromatogram as a single peak. The main limitation of the ECD is, therefore, 

that it does not give any information regarding molecular composition, thus, the identification 

of the compounds in a sample cannot be completely unambiguous. 
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Gas chromatography-mass spectrometry (GC-MS) can be used to be more positive in the 

identification of compounds in an extract. However, the sensitivity of a mass spectrometer is not 

as high as that of an ECD, and often cannot be used to quantify PCBs at the relatively low 

concentrations often found environmental samples (Duinker et al., 1988). A decrease in the 

possible misidentification and quantification of PCB congeners using an ECD can be achieved 

by improvements in the preparation of the sample extract (during the clean up of the extract to 

eliminate non-PCB compounds) and in the separation of the congeners in the chromatographic 

system. 

The problems of accuracy in the identification and quantification of PCB congeners in 

environmental samples have been largely resolved by improvements in the methods for the 

preparation of the samples prior to the chromatographic analysis, and by the development of high 

resolution capillary columns (e. g. see review by Pellizary et al., 1985) which allow for a 

separation of most of the 209 PCB congeners with a single column (e. g. see Mullin et al., 1984). 

Recently, the unambiguous identification and quantification of all PCB congeners present in the 

Aroclor and Clophen formulations has been reported after the complete separation of all of these 

congeners by multidimensional gas chromatography (Schulz et al., 1989). More details in the 

identification and quantification procedures of PCB congeners are given in Chapter 5. 

In spite of the large number of reports on PCBs appearing in the literature, the accurate 

determination of PCB congeners has not been possible until recently. Therefore, there is a lack 

of information in the literature on the levels of individual congeners in environmental samples 

including marine sediments. The persistent and bioaccumulative nature of PCBs has been 

recognised particularly in aquatic ecosystems, where the stepwise accumulation in higher-ranking 

predators of the food chain is common. The concern with PCB pollution in aquatic organisms 
has also been emphasized as the primary route of exposure to humans and domestic animals 

through the consumption of fish, shellfish, etc. from contaminated areas (Tanabe, 1988). 

There are various recent reports on the PCB congener composition in various aquatic 

organisms. However, little is known about how these hydrophobic chemicals are incorporated into 

organisms (van der Oost et al., 1988). Particles and contaminated sediments in aquatic systems 

can act as a source of PCBs into the food chain through ingestion by benthic organisms such as 
deposit feeders. It has been shown that even if direct uptake of PCBs from the water column, 
given its extremely low concentrations does not contribute significantly to the total concentrations 
in organisms, the ratio between the concentrations in the organisms and in sediments tends to be 

constant. This ratio may be dependent on the organic carbon content of the sediment. Thus, 
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organic carbon standardized ratios may represent the capacity of PCBs (and other hydrophobic 

chemicals) to accumulate in biota of natural aquatic ecosystems (van der Oost et al., 1988). 

Apart from the possible environmental implications of the PCB content in aquatic sediments, 

the study of PCBs in sediments as model compounds for the study of various geochemical 

processes has been suggested (Brownawell and Farrington, 1986). Sediments from estuaries and 

coastal marine areas act as long or short term reservoirs for many natural and anthropogenic 

hydrophobic organic compounds. Sorption reactions involving sediment particles and their 

associated pore waters control the rates and mechanisms of transport of organic compounds 

between the sediments and the overlaying water column, and may also affect the bioavailability 

of these compounds. Other diagenetic processes such as biological and chemical transformation 

reactions, and physical processes such as diffusion, advection and mixing and resuspension of 

the sediment bed, will also affect the distribution of hydrophobic organic compounds in 

sediments. The relative importance of each of these processes depends on the molecular structure, 

biological activity and physicochemical properties of the individual organic chemicals, as well 

as the properties of the sedimentary environment (Brownawell and Farrington, 1986). Therefore, 

due to the widespread distribution of PCBs in aquatic environments and to their wide range of 

physicochemical properties (e. g. solubility, volatility, octanol-water partition coefficients), PCB 

congeners may be considered as representative of many hydrophobic organic chemicals in the 

marine environment (Brownawell and Farrington, 1986). 
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1.2. AIMS OF THE STUDY 

The main aim of the present study was to determine the possible sources of various trace 

elements and polychlorinated biphenyl congeners in Liverpool Bay sediments. 

The trace elements determined in this study included mercury, cadmium, chromium, copper, 

nickel, lead and zinc which are analysed routinely for monitoring purposes by British 

governmental institutions, and also included arsenic which had not been previously studied in 

sediments from Liverpool Bay. 

The particular aims were: 
1) to determine the spatial distribution of trace elements in two different grain size fractions in 

the sediments and to explain the observed distributions in terms of the possible sources including 

the disposal of sewage sludge, industrial wastes and dredging spoil, and the inputs from the rivers 

Mersey and Dee. 

2) to determine the possibility of different geochemical behaviour amongst trace elements by 

studying their correlations with some sediment parameters including grain size, organic carbon 

content, organic carbon stable isotopic composition, and the content of aluminium, iron and 

manganese. 

3) to accurately determine various PCB congeners in marine sediments. 

4) to explain the observed PCB patterns in different samples in terms of the possible sources. 

5) to find the relationship (if any) between the sources of PCBs and the sources of trace 

elements in Liverpool Bay sediments. 

As this study was mainly focused on the geochemical aspects of trace elements and PCBs in 

an area where anthropogenic influences can be significant, an emphasis was made in explaining 

and discussing the possible geochemical behaviour of these contaminants, rather than discussing 

the possible environmental implications of the levels of these contaminants in Liverpool Bay 

sediments. 
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CHAPTER 2. BACKGROUND 
2t 

2.1. GENERAL DESCRIPTION OF THE STUDY AREA 

Liverpool Bay is an area within the Irish Sea whose precise limits have not been defined. At 

times the name has been used to refer to the whole of the eastern Irish Sea, but is more often 

used to describe that part of the Irish Sea limited to the south by the North Wales coast east of 

Great Ormes Head and to the east by the Lancashire coast as far north as the estuary of the 

Ribble River (Fig. 2.1) The seaward boundaries are not precise but are generally taken to be 

some 50 kilometres to the north and west of the two coasts (DOE, 1972a). 

The bay is used for multiple commercial and recreational activities. Those activities include 

navigation, fishing, gravel extraction, sailing and boating, swimming and the use of amenity 
beaches, and most important, from the present work point of view, the bay is used for the 

disposal of sewage sludge and dredged spoil. 
Fishing is one of the most important commercial activities in the region. The main commercial 

fish landed from this area are demersal species of which plaice is dominant, but sole, whiting, 

cod and rays are also important. Shellfisheries include shrimps and cockles along the landward 

margin of the bay and queens and scallops further offshore (Murray and Norton, 1982). The area 
is also an important spawning and nursery zone for several commercial species including those 

mentioned above. 

Navigation is another important activity, especially for ships entering the port of Liverpool. 

These ships must pass through the bay and in particular along the Queen's and Crosby Channels 

for about 17 kilometres to the mouth of the River Mersey (DOE, 1972a). These channels, docks, 

and other areas within the River Mersey, are continuously dredged and the dredged spoil is 

dumped in designated areas in Liverpool Bay. Approximately three million tonnes of dredged 

material are dumped each year (MAFF, 1990) at two sites, Sites Y and Z (Fig. 2.1), from which 
Site Z receives more than 95% of the total discharges (Rowlatt et al, 1986). 

Disposal activities of sewage sludge in Liverpool Bay started after the construction of the first 

sewage treatment plants near Manchester and Salford in the early 1890s (Head, 1980). Sludge 
disposal has continued until today, without interruption, at a designated area (Site SI) shown in 
Figure 2.1. Disposal of industrial wastes has taken place at the same site since the late 1960s 
(Norton et al., 1984a). The bay also receives direct discharges of domestic and industrial wastes 
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from coastal outfalls, and indirectly from the discharges of effluents into the rivers flowing into 

Liverpool Bay. The main riverine contributions are from the rivers Mersey, Dee, and Ribble. 

Several studies on the effects of dumping wastes into Liverpool Bay have been published. 

Most of these studies started in the early 1970s when a working party was commissioned by the 

Department of the Environment (DOE) to study the possible effects of the disposal at sea of 

sewage sludge by -- the Manchester and Salford Corporations after 'a proposal to increase the 

dumped amounts from 550,000 wet tonnes in 1971 to approximately 3,000,000 wet tonnes by 

1976. Therefore, the main aim of the Working Party on Sludge Disposal in Liverpool Bay was 

"to ascertain the present conditions and to predict the likely effects of tipping significantly more 

sludge on the existing spoil ground in Liverpool Bay... " (DOE, 1972a). 

As a result of the investigations founded by the DOE, a series of reports were published (DOE, 

1972a, 1972b, 1973,1976; DOE/NWC, 1979,1984). These reports provided a large amount of 
basic information on the physical oceanography of the area, quality and quantity of the inputs, 

quality of the receiving water and sediments, impacts on the biota including toxicity in some 

species, the behaviour of the sludge after disposal both in the water column and sediments, etc. 
Reports on the condition of Liverpool Bay relevant to the work presented here, have also been 

published by the Ministry of Agriculture, Fisheries and Food (MAFF). This Ministry is 

responsible for the control of dumping of wastes at sea, including the licensing of all dumping 

operations to exercise predischarge controls on wastes, enforcing the licensing conditions, and 
"carry out surveys of the areas licenced for the disposal of wastes to ensure that the marine 

environment and its resources are being protected. " (Norton and Rolfe, 1978). Monitoring 

activities by MAFF have been concentrated on the investigation of dumping-related effects not 
fully covered in the studies founded by the DOE rather than only monitoring dumping grounds 
(Norton, et al., 1984a). MAFF studies in Liverpool Bay and other coastal areas have been 

reported in the MAFF Fisheries Research Technical Report (i. e. Nos. 45,1978; 47,1978; 69, 

1982; 76,1984), and in the MAFF Aquatic Environment Monitoring Report series (i. e. Nos. 16, 

1987; 17,1987; 20,1989; 22,1990). 

The aim of the following sections in this chapter is to present a background on the physical, 
geological, and chemical characteristics of the Liverpool Bay area. This review is particularly 
concerned with presenting the main factors and processes controlling the transport and deposition 

of sediments, and of particles derived from sewage sludge and dredged spoil discharges in this 
area. An understanding of these factors and processes will be necessary in the attempt to explain 
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the distribution in the surface sediments of Liverpool Bay of the geochemical parameters, 

elements and PCBs determined in this study. 

2.2. HYDROGRAPHY OF LIVERPOOL BAY 

2.2.1. Bathimetry and freshwater inputs 

Liverpool Bay is a relatively shallow, semi-enclosed water body. Most of the area lies within 

the 40 m isobath (Fig. 2.1) and the depth over the sewage disposal area (Site SI) is between 25 

and 30 m. The depths increase almost linearly with distance from the coast with a roughly 

uniform slope of about 1/1000 (Halliwell, 1973). 

The eastern Irish Sea receives fluvial discharges from a considerable catchment area (Fig. 2.2). 

The main discharges into Liverpool Bay are from the rivers Mersey, Ribble, Dee and Clwyd. The 

relative importance of each of these rivers in relation to the total freshwater inputs into the bay 

can be shown with the values reported by Miller (1985) of their mean daily flow (m3s`). These 

flows, calculated from values of a period from November 1976 to December 1977 were 76.445, 

38.651,35.325, and 12.347 respectively. The influence of these freshwater discharges upon the 

waters of Liverpool Bay will vary seasonally, with considerable enhancement during the winter 

months with higher precipitation and fluvial discharges than during the summer. 

2.2.2. Water circulation 

In this section, a review is presented on information produced by several authors regarding the 

physical oceanographic processes that might be controlling, directly or indirectly, the distribution 

of natural sediments and the fate of the particles associated with the disposal of wastes in the 

Liverpool Bay area. A more detailed review of the physical oceanography of the Irish Sea in 

general, with description of some areas like Liverpool Bay in particular, is presented by Bowden 

(1980). Also a detailed review of the currents in the eastern Irish Sea is given by Howarth 

(1984). 

As the main factors controlling the movement of water in the Irish Sea are the tides, the 

weather (winds in particular), and the water density gradients (Bowden, 1980), this review will 
cover only these aspects of the physical oceanography in the area. 

2.2.2.1. Tidal currents. 

The most obvious water movements in the Irish Sea are the tidal streams associated with the 
tidal rise and fall of water level (Bowden, 1980). The tides propagate into the Irish Sea from the 
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Atlantic Ocean through the St. George's and North Channels (Robinson, 1979). As in the Atlantic 

Ocean, the semi-diurnal constituents in the Irish Sea are the most important tidal components -at 

Liverpool 97.5% of the variance in the surface elevation record is at semi-diurnal tidal 

frequencies (Howarth, 1984). 

Liverpool Bay is located in a macrotidal environment with spring tides of about 6 metres 

(DOE, 1972). In a study using one current meter near the surface and one near the seabed in the 

sewage disposal area, Ramster (1972a) reported maximum near surface tidal velocities of 0.91 

m s' while the registered near bottom velocity was 0.63 m s' during a spring tide. The maximum 

near bottom velocity was 0.71 m s'1 as the subsurface meter registered 0.74 m s4 also during a 

spring tide. The set of current velocities in the disposal area reported by Ramster (1972a) are in 

the same range as those reported by Talbot (1972) in a study with moored current meters 

throughout the bay. Currents exceeding 3m s4 can be found in places such as the Narrows of 

the River Mersey (DOE, 1972] 
A 

In the disposal area, the general direction of the flood and ebb currents is east-west but near 

the coast it is influenced by estuarine channels (Best et al., 1973). Tidal current ellipses in the 

sewage disposal area reported by Ramster (1972a) tend to be rectilinear near the surface during 

both spring and neap tides. On the other hand, near the bottom the ellipses are elongated during 

spring tides but tend to circular during neap tides. 

Many of the processes and distributions - (mixing, fronts, sediment transport, sediment 
distribution) within the Irish Sea are determined by the large spatial variation in the amplitude 

of the tidal current throughout this area (MAFF, 1987). Tidal movements of high frequency 

(periods of a few hours to one day) are the most energetic in the Irish Sea (MAFF, 1987). Tides 

at frequencies higher than semi-diurnal like the fourth diurnal (M4), are not only propagated as 
free waves into the Irish Sea through the North and St. George's Channels, but can also be 

generated within this area in shallow water, particularly in the eastern side where between 

Liverpool and Barrow-in-Furness the M4 amplitude exceeds 0.2 m (Howarth, 1984). M4 is the 
largest component of frequency higher than semi-diurnal and has mean spring current amplitudes 

up to 0.15 mst to the east of the Isle of Man, but locally these frequency currents can be 

enhanced near headlands, islands and estuaries (MAFF, 1987). 

One of the factors controlling bedload transport is the difference between the near bottom 

current velocity and a critical or threshold velocity for sediment movement. Since the semi- 
diurnal tidal current is oscillating it can not by itself produce net bedload transport (Howarth, 
1984). Tidal currents asymmetry; that is, differences in the strength between flood and ebb tidal 
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currents, are produced by the high frequency harmonics generated in shallow water. M4 in 

particular (Pingree and Griffiths, 1979) in association with the semi-diurnal component are 

responsible for the tidal transport of sand around the British Isles. In regions like Liverpool Bay, 

M2 and M4 combine to give a strong flood and a weaker ebb flow of longer duration (Pingree 

and Griffiths, 1979), resulting in significant transport eastward towards the Mersey Estuary 

(Howarth, 1984). 

Howarth (1984) estimated the importance of the fourth diurnals in the net transport of sediment 

and suggested that transport due to this tidal component is of the same order as that of the mean 

current. This author suggested that as the amplitude of the M4 component is proportional to the 

square of the amplitude of the M2 component, transport at spring tides will be at least an order 

of magnitude greater than at neap tides, therefore, tidally generated net sediment transport in the 

eastern Irish Sea during spring tides will be important, particularly at the equinoxes. 

2.2.2.2. Density currents and residual circulation 
The term "residual current" is normally used to refer to the mean water flow after the tidal 

currents have been eliminated. Residual currents are usually calculated by taking an average over 

24 h and 50 min of currents data taken at regular intervals (Dyer, 1986), in order to remove the 

principal semi-diurnal and diurnal tidal constituents. More sophisticated numerical filtering 

methods can be used to remove tidal oscillations, but little difference in the results may be 

observed in most cases (Dyer, 1986). 

It has been mentioned before that - due to the oscillatory nature of the semi-diurnal tidal 

component, its associated currents can not produce a net transport, therefore, the analysis of the 

residual currents is important to determine the direction and rates of sediment transport. It is 

important to mention that net sediment transport not only depends on the currents, but also on 
the nature (Howarth, 1984) of the sediment (whether it is cohesive like muds, or non-cohesive, 
like sands and gravels) and on the mode of particle transport (whether it is by bedload or by 

suspension). 
Numerical models have shown that the residual flows through the Irish Sea are mainly caused 

by non-linear tides, density gradients and mean wind-stress (see MAFF, 1987, and references 
therein) and that the relative importance of each of these factors will vary with the location 

within the Irish Sea, and with the meteorological conditions. 
Density currents is the term used to describe water movements associated with density 

gradients which are themselves due to the distribution of temperature and salinity. Although tidal 
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stirring is strong, vertical salinity gradients as reported by Ramster (1972b) can occur in 

Liverpool Bay. Czitrom-Baus (1982) studied stratification in Liverpool Bay and the associated 
formation of fronts. This author reported that the main factors causing stratification in this area 

are the east-west baroclinic advective transport related to river discharges, and the surface heat 

flux, while the effect of rain is small. 

According to Czitrom-Baus (1982), the relative effect of each factor on stratification in the bay 

has a seasonal variation. The advective transport has an estuarine-like residual circulation induced 

by the low-density freshwater inputs (mainly from the rivers Mersey and Dee) moving to the 

west at the surface, and by the transport of saline, denser water moving eastward near the bottom. 

During the winter, the increase in river discharges enhances the horizontal density gradients, 
therefore, this density driven, estuarine-like circulation in the bay is intensified. During the 

summer, surface heat flux contributes significantly to vertical stratification in association with 
low river discharges. Vertical stratification is broken by mixing processes, in particular by tidal 

stirring at times of low wind stress, and by wind stirring during stormy weather. 
Density currents in the Irish Sea have been evaluated by several authors. One of the most 

relevant studies is that by Heaps and Jones (1977). In this study the authors not only present an 

extensive literature review on the water circulation in the Irish Sea in general and Liverpool Bay 

in particular, but using a three dimensional numerical model, the authors resolve the problem of 

conflicting theories regarding the circulation pattern of Liverpool Bay surface waters. The 

controversy about the surface residual circulation in the Liverpool Bay area was centred on 

whether the water followed a clockwise or an anticlockwise direction. Indirect evidence strongly 

supporting a clockwise circulation was based on plankton and chemical distributions, and also 
from current meter observations. On the other hand, some direct observations of residual currents 

and indirect observations of trace metals suggested an anticlockwise circulation (see Heaps and 
Jones, 1977, for discussion). Heaps and Jones showed with their model that a weak but persistent 

clockwise circulation was induced by density forcing, but also showed that at times, an 
anticlockwise flow may exist as a function of wind action (Fig. 2.3). More recently, Miller (1985) 

analysed nutrient distributions in surface waters of the Liverpool Bay area during various weather 
conditions throughout the year. Changes in the surface distributions of these parameters were 
consistent with changes in surface circulation in the bay, therefore, confirming indirectly the 
results of Heaps and Jones (1977) model. 

Spencer (1984) studied the water quality in Liverpool Bay and observed the changes in the 
position of a density discontinuity (Fig. 2.4). This discontinuity, marked by a sharp lateral 
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Fig. 2.3. Surface (a), bottom (b) and depth-mean (c) density current flow! ines for the Irish 

Sea area. (After Heaps and Jones, 1977). 
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Fig. 2.4. Variations in the position of the salinity discontinuity in Liverpool Bay. (After 

Spencer, 1984). 



gradient of salinity and/or temperature, was considered to represent the boundary between the 

offshore water from the central Irish Sea, and the main body of Liverpool Bay water, which is 

identifiably influenced by the freshwater discharges. As these discontinuities may present a 

restriction to lateral mixing, they may have important implications on the dispersal of soluble 

material dumped at sea (Spencer, 1984), or on the dispersal of contaminants associated with 
freshwater discharges. Foster (1984) studied the inhibition to pollutant dissipation in this area, 

and concluded that lateral and/or vertical density discontinuities are important features of the 
hydrography of the north-east Irish Sea, and that under normal meteorological conditions, major 
inhibitions to the free horizontal and/or vertical mixing of waters occur throughout the year, 

except in autumn. The autumn observations were accompanied by low wind stress suggesting that 

mixing processes were associated with seasonal heat loss from the surface waters (Foster, 1984). 
Residual currents at the seabed are important in relation to sediment transport. In contrast to 

the changing near-surface circulation, near-bottom density driven residual circulation in Liverpool 

Bay is relatively constant regarding its direction. A persistent eastward or south-eastward 
direction of residual bottom currents due to the estuarine-like circulation has been reported by 

several authors (Heaps and Jones, 1977; 
. 

Halliwell, 1973; Ramster, 1972a). 

Particularly interesting is the study by Halliwell (1973) in which he made direct observations of 

residual drift near the sea bed in Liverpool Bay using Woodhead drifters. The results, after 

releasing sea bed drifters in several offshore stations in the bay, showed a strong landward 

movement near the bed throughout the whole area of Liverpool Bay (Fig. 2.5). This author 

concluded that this residual movement is caused primarily by the combination of tidal currents 

with their associated mixing processes, and the horizontal density gradient resulting from the 

mixing of coastal freshwater and offshore seawater. The magnitude of the bottom currents has 

a seasonal variation, increasing during the winter months in which the river discharges are more 
intense, and decreasing during the summer when the freshwater discharges are small. The effect 

of the wind in the residual circulation near bottom may become important particularly during 

storms (Halliwell, 1973) and is discussed in the following section. 

2.2.2.3. Wind driven currents 
The major residual currents in the Irish Sea, are produced by wind. Under stormy conditions, 

wind induced surface currents can be many times greater, than the density currents, however, 
during calm weather wind and density surface currents can be of comparable magnitude (Heaps 
and Jones, 1977). 

t. 
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Observations for the eastern Irish Sea from Heaps and Jones (1977) model showed that during 

meteorological quiet periods with typical wind velocities of around 5m s', wind currents tend 

to dominate or be similar to surface density currents with velocities in the range of 1 to 3 cm s'1. 

At these speeds the wind drift does not penetrate the water depth sufficiently to become superior 

to the bottom density currents. Characteristic near-bottom wind current velocities under these 

conditions are between 0 and 1 cm s-. At wind velocities higher than 5mst, wind-induced 

transport atsurface predominates over the density-induced transport, and conversely, for wind 

velocities below 5m s', the density-driven transport a 
. 

surface predominates over the wind- 

driven transport. A fivefold increase in wind currents will occur when wind speeds increase from 

5 to 10 m s-', and this transport will dominate density-driven transport at all depths. A further 
iwvtact 

fivefoldým wind currents intensity will occur if wind velocities increase from 10 to 20 mst, and a 

under these conditions density currents will become comparatively insignificant. These 

observations are in agreement with those of Halliwell (1973) for the bed drifter study. One of 

the main conclusions of this author was that near bottom residual circulation was going to be 

affected during storms if wind speeds exceeded 30 km If 1 (8.3 m s'1), and that if westerly wind 

was present at speeds higher than 50 km h'' (13.9 m s'), wind generated waves would control 

near bed residual movement, in particular at depths less than 15 m. According to Halliwell 

(1973), winds from other directions in the Liverpool Bay area would only accelerate or decrease 

the near bed residual movement but not the direction. Heaps and Jones (1977) concluded that at 

the sea bed a variable flow pattern due to wind is superimposed on a relatively persistent and 

well established flow pattern due to density gradient. 
! Lý 

2.3 SEDIMENT TRANSPORT IN LIVERPOOL BAY 

It has been mentioned earlier that net sediment transport in the marine environment mainly 

depends on the currents at the sea bed, on the nature of the sediment, and on the mode on which 

sediment particles are being transported. Figure 2.6 indicates the role of grain size and current 

velocities in the initiation of movement of. uncohesive, unconsolidated and well sorted sediments, 

and also shows the mode of transport in which these sediments would be transported given a 

particular combination of grain size and current velocity. 
From data, on currents in the disposal ground in Liverpool Bay given by Bowen et al. (1973), 

Norton et al. (1984a) calculated tidal velocities at 1m above the sea bed (U1oo), and from these 

values, calculated the corresponding friction velocities (U. ) for rough (sand and gravel) and 
smooth (mud) boundaries; the results are presented in Figure 2.7a. From this Figure, we can see 
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Table 2.1. Estimated shear velocities (cm"') at Site SI and inshore. (After Norton et al., 
1984a). 

Dumping ground Inshore 
Tidal flow Wave-induced Tidal flow Wave-induced 
(rough boundary) flow (30 m) (smooth boundary) now (10 m) 

Maximum 2.8" 3.2 2.2 - 6.3 

Value exceeded for t0% of time 2.05 0.6, 1.6 2.5 

Value exceeded for S0% of time 1.2 0.2 1.0 0.6 



that maximum U100 values are around 75 cm s'1; these maximum tidal velocities can move grains 

of up to 2000 pm in diameter (Fig. 2.6), therefore, during maximum tidal velocities most of the 

sediment of interest in this study will be eroded in the disposal area. For more than 15 percent 

of the time, values of U100 are higher than ca. 43 cm s' (Fig. 2.7a) the critical velocity for 

movement of 500 pm size particles, whereas approximately 30-35 percent of the time tidal 

currents will exceed 35 cm s'1, the critical velocity for grains with size around 200 pm (Fig. 2.6). 

Therefore, for approximately 60 percent of the time tidal currents will not be strong enough to 

initiate movement of sediment particles in the dumpsite area of Liverpool Bay. An interesting 

feature arising from Figure 2.7a is that, due to tidal asymmetry, tidally generated currents with 

velocities (U,. ) higher than 50 cm s"I will occur only in an eastward or southeastward direction 

during the flood tide, therefore, according to Figure 2.6, sediment particles with diameter higher 

than 700 µm will be eroded, and transported only in the eastward or southeastward direction. 

Figure 2.7 a and b, and Table 2.1 show the relative importance of tidal and wave induced 

currents in the possible transport of sediments in Liverpool Bay. Shear velocities in Table 2.1 

show that tidal flows at the dumping ground are more important than wave-induced flows for 

most of the time, except during the most severe storms when maximum wave shear velocities 

are achieved. On the other hand, sediment transport induced by waves is relatively more 

important inshore than at the dumpsite as indicated by an increase in shear velocities in shallower 

waters. Although the main mechanism of sediment transport in Liverpool Bay may be the tidal 

flow, it is important to consider that tides and waves are occurring simultaneously so it is likely 

that the most significant transport of sediment will occur when the tidal movement is enhanced 
by wave motion. Sediment transport under the combined effects of tides and waves is a complex 

subject beyond the scope of this thesis, and a good review can be found in Dyer (1986). 

The knowledge of the sediment transport paths after deposition is important to determine the 

sources and fates of chemicals in any study of pollutants in sediments, in particular, in an area 

such as Liverpool Bay where the possible sources are various, and the discharges differ in quality 

and quantity. 

Studies of sediment transport paths in Liverpool Bay are scarce. As the direction of net 

sediment movement depends in part on the mode in which particles are being moved, direct 

observations of transport are difficult and indirect determinations of the paths become necessary. 
An example of this complexity may be given if Figure 2.6 is analysed in a very simplistic 

manner. Considering first the case of sands with diameters of 200 and 300 µm, we can see that 
the threshold velocity U100 for both sizes is similar and around 35 cm s'`. At around 40 cm s'` 
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both grain sizes will be moving in bedload transport. If Ul® is increased to 50 cm 0, particles 

of 200 µm diameter will initiate transport in suspension, and if the current velocity is increased 

to 60 cm s' these particles will certainly be transported in suspension whereas the bigger ones 

will remain in the bedload transport mode. Under these circumstances both grain sizes will be 

separated and will travel at different velocities and perhaps in different directions as particles in 

suspension will be transported more rapidly and will follow the current direction. Current 

velocities higher than 70 cm s'' will be necessary to move particles with a 300 µm diameter in 

the suspended-load, therefore, it is likely that sand particles bigger than 300 µm will only be 

transported as bedload in Liverpool Bay even during the most severe storms. 

It can be seen from Figure 2.6 that if movement of particles in the range of the very fine sand 

and smaller (muds) is initiated, these particles will be transported in suspension all the time, 

therefore, their transport paths will strongly depend on the bottom water movement paths. In the 

case of muds, however, further complications arise with regards to the processes of erosion and 

deposition due to the cohesive nature of these particles. Even though mud particles are smaller 

than very fine sands, higher current velocities are needed to erode muddy deposits due to the 

cohesive forces among particles. The higher the clay content in the mud, the greater current 

velocities are required to erode it. 

Once in suspension, dispersed muddy particles are unlºke, ly to be deposited unless flocculation 

takes place. In order for flocculation to occur, particles need to be close, therefore, the 

concentration of particles in suspension will be an important factor for mud deposition. 

Deposition of uncohesive, unconsolidated particles such as sands, is mainly controlled by one 

factor which also affects mud deposition, that is, the currents need to reach a critical deposition 

velocity below which gravity forces will dominate. These critical deposition velocities are usually 

, smaller than critical velocities for erosion (Dyer, 1986). From the last observation it follows that 

once the sediments are moved, current velocities smaller than the critical erosion velocity are 

only required to maintain the sediments in motion. It is important to mention that natural 

sediments, such as those from Liverpool Bay, do not occur as single size populations but as 

mixtures of various grain sizes, therefore, processes of erosion and deposition will depend also 

on the grain size distribution within a particular area. 

Several authors have reported an eastward- southeastward transport of sediments in the eastern 
Irish Sea. The accretion of the Mersey Estuary is one of the strongest evidences of a landward 

transport of sediment from Liverpool Bay. It has been estimated that only ca. ten percent of 
sedimentary material is transported into the Mersey Estuary from riverine sources, therefore, the 
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remaining 90% is derived from the Liverpool Bay area (Taylor, 1986). In a study of siltation of 

the Mersey Estuary, Price and Kendrick (1963) suggested that Liverpool Bay has been an 

accretion area since at least 1861. 

Based on a set of the strongest tidal currents and a few scattered sandwaves, Belderson (1964) 

suggested that some of the material passing northwards from the central or eastern side of the 

St. George's Channel may be transported eastward towards Liverpool Bay (Fig. 2.8a). This 

observation was substantiated by a model of sand transport paths resulting from tidal interactions 

reported by Pingree and Griffiths (1979). 

More direct evidence on the possible sediment sources and transport paths within the bay have 

been provided by Sly (1966) and McLaren (1987). Sly (1966) presented a comprehensive report 

on sediment characteristics in Liverpool Bay including lithologies, detailed particle size 

descriptions, analysis of types of clays and fauna and flora assemblages, etc. The mean sand size 

values in this study decreased towards the coast and the general distribution indicated that the 

transport of sediment is mostly inshore. From mean sand size distributions Sly concluded that 

the tidal flow entering the bay is split into two main branches before reaching the sewage 

disposal site. South of Latitude 53°30' one stream follows a winding ESE course, while the other 

and more important tidal stream, North of 53°30', flows in a generally eastward direction with 

a strong flow towards the Mersey. These observations are in accord with the observations by 

Halliwell (1973) of bottom residual transport with bed drifters (Fig. 2.5). Observations of mean 

mud size by Sly (1966) showed no significant trends, but its size composition suggested that the 

present mud particles are derived from reworking of Boulder Clays deposits in the banks of the 

estuary and from sources in the Irish Sea. Regarding the source of muds Kirby (1987) concluded 

that the marginal estuaries in the Eastern Irish Sea are sinks rather than sources of sediments and 

pointed at the erosion of mud deposits within the Irish Sea (Fig. 2.8b) as the source of mud 

within this area. 

The only study specifically designed to determine sediment transport paths in Liverpool Bay 

found in this literature review is the one by McLaren (1987). This author determined sediment 
transport patterns in the bay using a model based on the relative changes in complete grain size 
distributions of the bottom sediments. The results from this model (Fig. 2.9) revealed a 
preferential eastward direction of sediment transport; as sediments became finer, better sorted, 

and more negatively skewed in this direction. A second southeastward transport direction was 
also determined, with no other transport direction being found. McLaren concluded that very fine 

sand (125µm mode) is the size most easily transported in the eastward direction whereas fine 
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sand (250µm mode) is preferentially moved towards the southeast. Both transport patterns are 

interrupted near the Burbo Bight area and northwest of the Queen's Channel suggesting possible 

contributions of sediment from different sources in these particular areas. In the case of the 

northwest of Queen's Channel the author points at the disposal of dredged material as the most 

likely source of extra sediment, and the possible extra source in the Burbo Bight as the River 

Mersey. Results from this study also correlated well with the results from Halliwell's (1973) 

drifter study, and agree with the pathways of sediment transport determined with sidescan sonar 

images of bedforms around Site SI reported by Rowlatt (1986). 

2.4. WASTE DISPOSAL IN LIVERPOOL BAY 

2.4.1. Sewage sludge and industrial wastes 

2.4.1.1. Characteristics of the discharges 

Site SI (Fig. 2.1) is the designated area within Liverpool Bay for the disposal of sewage sludge 

and industrial wastes, most of it, generated within the catchment area presented in Figure 2.10 

which includes the large conurbations and industrialized areas of the north west of England such 

as Merseyside and Manchester, and of North Wales. 

Sewage sludges from the sewers in the region are received at various works where some kind 

of treatment, ranging from primary treatment to sludge digestion, will be given before the sludge 

is loaded and shipped to the disposal area from Manchester, Warrington, Salford, Runcorn or 

Barrow (Fig. 2.10; Head, 1984). The largest amounts of sludge are shipped from Manchester 

where the largest sewage works (Davyhulme) operate. The total amount of sludge discharged 

in Liverpool Bay varies annually, but in the last few years it has been stabilized at around an 

annual rate of 50,000 dry tonnes (Table 2.2). 

According to Head (1984) there is little variation in the composition of the sludges from year 

to year. In general, sewage sludges consist of colloidal dispersions of organic and mineral solids 
in water with a gel-like nature. Solid concentrations (dry weight) of sludges produced at different 

works range from 3 to 8 percent, and their chemical organic, and mineral composition vary 

according to the type of treatment and to the particular industries discharging into the sewerage 

system of each particular sewage works. Details of the physical and chemical characteristics of 

the various works are given by Ainsworth (1972) and by Head (1984). Tables 2.2 and 2.3 show 
the annual average concentration and the total annual discharges of some metals in the sludges 
discharged in Liverpool Bay in recent years. 
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Table 2.2. Annual sewage sludge discharges at Site SI in Liverpool Bay and 
concentration of some trace metals in these sludges. (Unpublished 
data from North West Water, England). 

LIVERPOOL BAY SLUDGE TO SEA 

Sludge quantities are 
hletal concentrations 

- CONTAMINANT CONCENTRATIONS 

tonnes per calendar year 
are mg kg-i dry solids 

YEAR WET SLUDGE DRY SLUDGE Hg Cd Cu Zn Pb Cr Ni 

1975 62 816 37 24 3485 
1976 1 586 888 70 386 38 30 1565 3665 780 1320 170 
1977 1 688 805 69 983 ' 36 29 1660 3360 940 1840 230 
1978 1 664 605 65 244 14 30 1530 3525 890 1685 170 
1979 1 650 472 69 626 10 24 1165 2900 790 1265 230 
1980 1 805 969 71 350 11 20 950 3290 840 1090 140 
1981 1 685 711 71 459 14 16 755 1960 925 840 75 
1982 1 610 711 63 635 14 14 630 2075 960 740 95 
1983 1 381 268 52 370 7.8 12 535 2560 955 690 115 
1984 1 445 050 52 915 7.6 11 550 2155 815 755 125 
1985 1 500 235 54 650 7.7 13 695 1920 880 895 75 
1986 1 488 841 48 016 7.9 15 690 1830 875 980 110 
1987 1 621 517 49 901 5.8 12 641 1985 640 1060 120 
1988 1 625 321 45 309 4.2 11 640 1545 660 795 100 
1989 1 642 680 50 545 3.5 11 685 1580 570 845 120 

Table 2.3. Annual trace metal loads discharged at Site SI in Liverpool Bay. 
(Unpublished data from North West Water, England). 

LIVERPOOL BAY SLUDGE TO SEA 

All quantities are tonnes 

- CONTAMINANT 

per calendar 

LOADS 

year 

YEAR WET SLUDGE DRY SLUDGE Hg Cd Cu Zn Pb Cr Ni 

1975 62 816 2.3 1.5 219 
1976 1 586 888 70 386 2.7 2.1 110 258 55 93 12 
1977 1 688 805 69 983 2.5 2.05 116 235 66 129 16 
1978 1 664 605 65 244 0.9 1.95 

, 
100 230 58 110 11 

1979 1 650 472 69 626 0.7 1.7 81 202 55 88 16 
1980 1 805 969 71 350 0.8 1.4 68 235 60 78 10 
1981 1 685 711 71 459 0.52 1.14 54 140 66 60 5.4 
1982 1 610 711 63 

. 
635 0.60 O. B7 40 132 61 47 5.9 

1983 1 381 268 52 370 0.41 0.64 28 134 50 36 6.0 
1984 1 445 050 52 915 0.40 0.60 29 114 43 40 6.7 
1985 1 500 235 54 650 0.42 0.69 38 105 48 49 4.2 
1986 1 488 841 48 016 0.38 0.73 33 88 42 47 5.4 
1987 1 621 517 49 901 0.29 0.61 32 99 32 53 5.9 
1988 1 625 321 45 309 0.19 0.50 29 70 30 36 4.4 
1989 1 642 680 50 545 0.18 0.54 35 80 29 43 6.2 



Industrial wastes discharged at Site SI, either directly or indirectly (mixed with sewage 

sludges), originate from several industries in the region. As an example of the variety of sources 

of industrial waste, a list of the principal type of industries discharging wastes in the Manchester 

area sewerage system is presented: petrochemicals, dyestuffs, pharmaceutical, general chemicals, 

textiles, rubber, brewing, food, paper, detergents, etc. (Ainsworth, 1972). Industrial wastes 
dumped at Site SI constitute only a small proportion of the total solids annually discharged at 

this site (Table 2.4), and their contribution to the total metal input at this site is less than 0.5% 

(Norton et al., 1984b). 

2.4.1.2. Sewage sludge behaviour after disposal 

Approximately 7000-8000 wet tonnes of sewage sludge, equivalent to ca. 200 t of dry solids, 

is dumped each weekday at Site SI, usually at low tide (Rowlatt, 1986). Sewage disposal vessels 

with capacity ranging from 500 to 3000 t, discharge their cargoes while moving at velocities of 

2-3 m s'1; up to four vessels may discharge during any one tide (Norton et al., 1984a). 

Crickmore (1972a) studied the initial behaviour of sludge dumped at Site SI, and estimated a 

dilution of the sludge of 1 to 200 immediately after the discharge. Due to this high initial 

dilution, even big differences in density of the sludges did not reflect in different initial vertical 

spreading of the sludges. Based on experimental observations of settling velocities of sludge 

particles and on field observations, Crickmore (1972) concluded that the settling velocity of the 

sludge solids is low, and that the time for the sludge particles to reach the sea bed will be 

primarily a function of vertical diffusion, under non-stratified conditions of the water column in 

which his field observations took place. 

Crickmore (1972a) suggested that the assumption of neutral stability of the water column is 

applicable for most of the flood and over high water, but during the ebb vertical salinity gradients 
may be established. Transport of sludge particles towards the bottom, due to eddy diffusion, may 
be inhibited if vertical density gradients are established (Crickmore, 1972a; Barret et al., 1972; 
Talbot, 1972). Barret et al., (1972) and Talbot (1972), estimated that under non-stratified 

conditions sludge particles would be dispersed down to the sea bottom in 2-2.5 h, with eddy 
diffusion acting as the most important transport agent. 

Barret et al. (1972) studied the sludge dispersion in sea water by following the distribution of 
sewage sludge, labelled with silver- 11Om ' before being discharged at Site SI. The main 
observations of these authors were that: suspended sludge particles were rapidly dispersed in the 
horizontal along the prevailing tidal stream; vertical mixing of sludge was more intense during 
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the flood tide than on the ebb; and that the concentration of sludge particles in the water also 
decreased by deposition. 

During periods of stratification when sludge transport towards the bottom is inhibited, 

horizontal circulation becomes a dominant factor in sewage sludge dispersal in the bay. 

Conditions for stratification are met during calm periods with low wind stress, and high 

freshwater discharges during the winter or large heat fluxes during the summer (Czitrom-Baus, 

1982). According to Rowlatt (1986), during these periods sewage particles retained in surface 

waters will probably follow the clockwise circulation pattern, typical of density driven circulation 

and move south and west before settling into the south-eastward flow of bottom waters (see text 

above, Section 2.2.2). Sludge particles with smallest size will be transported longer distances in 

the horizontal due to their smallest settling velocities, whereas larger particles will settle through 

the water column and reach the bottom more quickly. However, chemical, physical and/or 
biological processes such as oxidation, flocculation, zooplankton ingestion and faecal pellets 

formation may play an important role on sedimentation rates by enhancing or reducing the 

particles size (Rowlatt, 1986). 

Rowlatt (1986) estimated that considering the period of initial settlement to be 2h (Talbot, 

1972), and a typical tidal velocity to be 80 cm s'1, the settlement of sludge particles at the sea 
bed would be pronounced about 6 km east of Site SL In this calculation it is also necessary to 

consider that most of the discharges take place at low water, therefore, initial sludge movement 

after the disposal will be in the direction of the flood when maximum vertical mixing occurs and, 

as a consequence, vertical stratification is not present to inhibit eddy diffusion. This calculation 

was substantiated by the distribution of faecal bacteria in sediments observed by the author (Fig. 

2.11), and by the distributions of metals reported by McLaren (1987) where maximum 

concentrations are reported approximately 5 km east of the dumping ground. 
Once deposited on the sea bed the sludge particles may flocculate or become associated with 

sediment particles (Rowlatt, 1986). Crickmore (1972b), following the radiolabelled sewage sludge 
study by Barret et al. (1972), studied the dispersion of the sludge on the sea bed and concluded 
that the two main factors controlling the near-bed sludge behaviour were the tangential shear 
from water currents and the type of bed on which particles fall. This author suggested that bed 

composition is more important than zonal differences in current velocity in relation to retention 
of sludge particles. Interstices in gravelly sediments providing shelter from shear forces exerted 
by flow, and cohesive forces associated with smooth muddy sediments inhibit further 

resuspension of sludge particles once deposited, whereas agitation of surface layers of sandbeds 
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Fig. 2.11. Distribution of faecal coliform bacteria in Liverpool Bay sediments, 1980. (After 

Rowlatt, 1986). 
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associated with ripple movement acts against retention of deposited sludge particles. Crickmore 

(1972b) found a correlation between the distribution of the radiotracer and muddy zones in the 

bay, and this correlation was weaker only near the release area, suggesting an initial association 

of sludge particles to the sediment irrespective of its composition. Sludge particles may initially 

move as bedload in association with sand deposits in the general south to southeastward direction 

previously mentioned in this chapter, but as the critical tidal shear stress values are exceeded for 

60% of the time over sand but never over mud near Site SI, sludge particles resuspension from 

sand deposits will occur more than half of the time and not at all over muddy deposits due to 

tidal currents (Rowlatt, 1986). Once resuspended the sludge particles will move in the direction 

of bottom residual currents towards the east-southeast most of the time, and will be deposited in 

zones where the conditions for mud deposition occur, therefore, becoming preferentially 

associated to muddy deposits. In ' contrast to sandy deposits, muddy deposits near the dumpsite 

will only be disturbed during stormy conditions (Crickmore, 1972b). 

In agreement with the general patterns of near-bottom water and sediment transport, Crickmore 

(1972b) detected the presence of radiolabelled sludge distributed along a line in the direction of 

the tidal currents, and in muddy deposits of the coastal area of North Wales, the Dee Estuary, 

and preferentially in the Mersey Estuary. As there are very few areas within the bay where 

permanent deposition of fine particles can take place, sludge particles are subjected to multiple 

cycles of deposition and resuspension, which lead to a wide dispersion of sewage sludge 

throughout the sediments of Liverpool Bay (Crickmore, 1972b). 

2.4.2. Dredged material 

Sites Y and Z (Fig. 2.1) are the designated areas within Liverpool Bay for the disposal of 

wastes originating from the maintenance dredging of the channel approaches to the River Mersey, 

the river itself, the docks and harbours along its length, and the Manchester Ship Canal (Norton 

et al., 1984a). The dredged spoils annually dumped in the bay amount to approximately three 

million tonnes, 95% of which is discharged at Site Z. The major part of this material is sand 
(-70%) and the remaining (-30%) are muds containing the bulk of the trace metal contaminants 
(Rowlatt et al., 1986). Table 2.4 shows the annual amount of metals and other chemicals 
discharged in Liverpool Bay in 1984, as compared to their loads into the bay via dumping of 
sewage and industrial wastes. 

Rowlatt et al. (1986) studied the effect of dredging spoil disposal on sediments in an area 
around the "new" Site Z (Fig. 2.1) and the "old" Site Z located approximately 3 km to the north- 
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east. These authors suggested that the mud fraction from the dredging material is rapidly moved 

away from the disposal site, as the possibility of it being covered by sand deposition was 

discarded after the analysis of cores taken at the old site. Fine particulate material including 

cohesive sediments in this shallow area (-10 m deep, Fig. 2.1) is more likely to be moved by 

tidal action and stirred by waves during storms than particles in deeper areas, therefore, 

dispersion of fine particles in this Site is favoured. Sands in this area are also mobile but the 

shoaling of the old Site Z during recent years suggests that the dispersive capacity of sands in 

this zone is limited (Rowlatt et al, 1986). 

Although the largest quantity of material dumped in Liverpool Bay is dredged spoil (Table 

2.4), it is important to consider that this is mainly a redistribution of sediment material, often of 

a transient nature, as most of this sediment is returned back into the Mersey system by currents 

(MAFF, 1987; Halliwell, 1973; Agar and McDowell, 1972). 

2.4.3. Other discharges 

Apart from dumping of sewage sludges, industrial wastes and dredged spoil at designated sites, 

Liverpool Bay receives direct or indirect discharges of wastes from coastal sources. These inputs 

can be categorized in: river inputs, sewage effluent discharges, discharges of untreated sewage, 

and industrial effluents. Considering that the general transport of sediment and bottom water 

residuals are predominantly towards the coastal areas in the bay, it is likely that coastal point 

sources such as sewage outfalls will have only a localized effect near the discharge point rather 

than an effect in the whole bay. However, dissolved materials may enter the general circulation 

system in Liverpool Bay and therefore even point sources may have a more generalized effect 

over the bay. 

The potential effects on water and sediment quality of the chemicals from all the different 

sources will depend on the exact nature of the material discharged as well as the location of the 
discharge, and is difficult to predict. Table 2.5 shows a summary of the relative contributions of 
the main sources of inorganic contaminants into Liverpool Bay, more detailed information about 
inputs from the various particular sources is given by Osbaldeston (1984). In general it can be 

said that dredged spoil dumping is the largest source of nickel, lead and mercury, and a large 

source of copper and zinc, while sewage sludge dumping is a major input of copper and is 

secondary with respect to the other metals particularly mercury. River discharge is the main 
source of cadmium with important contributions of copper and nickel whereas direct sewage and 
industrial discharges constitute the largest inputs of zinc and major sources of mercury (Norton 
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Table 2.5. Inputs of trace metals from various sources into Liverpool Bay in 1976 
(t yr''). (After Norton et al., 1984b). 

Source Hg Cd Cu Pb Zn Cr Ni 

River discharge 0.3 34 75 ND 155 80 98 
Direct sewage/ 

industrial 
discharges 2.8 16 53 47 1490 153 74 

Dumped sewage 
sludge 2.7 2.2 110 55 265 93 13 

Dumped 
industrial wastes 0 0 0.7 0.4 0.9 0.1 0.1 

Dumped 
dredged spoils 4.4 1.3 110 330 800 145 105 



et al., 1984b, c). No data have been found with regards to atmospheric inputs into Liverpool Bay, 

therefore, the importance of these inputs cannot be assessed. However, it is expected that O-- 

atmospheric pollutants will be evenly spread (before being redistributed once in the water and 

sediments) over a small area such as Liverpool Bay, therefore, it is unlikely to expect spatial 

variations in the distribution of pollutants within this area attributable to atmospheric inputs. 

2.5. EFFECTS OF WASTE DISPOSAL IN LIVERPOOL BAY 

2.5.1. Water quality studies 
Several reports on the effects of waste disposal on water quality in Liverpool Bay have been 

published most of them under the auspices of the DOE, MAFF, and/or the North West Water 

Authority (NWWA). Most of these studies are only concerned on the effects of the discharges 

on concentrations of nutrients and/or trace metals, leaving the effects on other pollutants, 

particularly of organics such as PCBs, virtually unknown. 

2.5.1.1. Nutrients 

Investigations on nutrient concentrations have shown that the main sources of these dissolved 

species into Liverpool Bay are from the river inputs particularly from the Mersey (Abdullah and 

Royle, 1973; Spencer, 1972,1984; Foster et al., 1985,1982,1977; Miller, 1985). Most of these 

nutrients originate from the discharges of treated and untreated sewage into the River Mersey and 
its estuary. The dispersion of freshwater into the bay controls the final distributions of nutrients, 

particularly during the winter months when primary productivity is minimal and, as a 

consecuence, biological nutrient consumption is negligible (Spencer, 1984). The dependence of 

nutrient concentrations on the dispersion of freshwater is reflected in high correlations between 

salinity and nutrients (Abdullah and Royle, 1973; Spencer, 1984; Foster et al., 1985), and in the 

consistency amongst water circulation patterns and nutrient distributions particularly studied in 

surface waters (Foster et al., 1985; Miller, 1985). During the summer these correlations are 

weakened by lower freshwater discharges and an increase in the biological consumption of 

nutrients by the phytoplankton (Spencer, 1984; Foster et al., 1985). 

The contribution of sewage sludge dumping to the overall nutrient enrichment in the bay is 

minimal as compared to freshwater inputs, and due to the rapid dispersion of the sludge after 
disposal, it is likely that a particular discharge will only have a very localised effect around Site 

SI for a short period. However, as freshwater discharges are reduced during the summer and the 

sludge discharges remain relatively constant throughout the year, sewage sludge effects on 
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nutrient concentrations will be more important during the summer than in winter (Spencer, ct- 

1984). More detailed information on the effects of waste discharges in the bay on nutrients can 

be found in the references quoted above. 

2.5.1.2. Trace metals 
Most of the studies on trace metals in the water column of Liverpool Bay, both in the 

dissolved and particulate phases, have been particularly designed to assess the effects of sewage 

sludge disposal at Site SI (Norton et al., 1984c; Rowlatt et al., 1984; Burrows and Sharples, 

1973; Spencer, 1984). However, other studies of dissolved metals in the bay with a more general 

scope have been also published (Nimmo et al., 1989; Abdullah and Royle, 1973). Although the 

density of sampling stations in most of these works does not permit the' evaluation of local effects 

such as sludge dumping at Site SI or dredged spoil disposal at Sites Z and Y, there is an obvious 

general pattern of decreasing concentrations of dissolved metals away from the freshwater 

discharges particularly from the Rivers Mersey and Dee, suggesting that river inputs are the main 

source of dissolved metals in the bay. 

Norton et al. (1984c) measured the concentrations of zinc, copper, cadmium and nickel in 

solution and suspension in an area within and around Site SI, and determined the short term 

effects (sampling at the end of a week when -40,000 wet tonnes were dumped) and long term 

effects (sampling three days after the last discharge) of sludge dumping in the water quality. High 

negative correlations between all dissolved metals and salinity were found for the whole area in 

both samplings, suggesting that the riverine and estuarine discharges are the most important 

sources of these dissolved species in the bay. However, when only the samples within Site SI 

where considered, these authors found that whereas zinc and copper concentrations remained 
highly correlated with salinity, no significant correlations between salinity and the concentrations 

of cadmium or nickel were found when the survey took place after dumping. These authors 

concluded that, immediately after a discharge, some of the cadmium and nickel present in the 

sludges may dissolve producing a very local and short lived effect on the concentrations in 

solution of these metals whereas copper and zinc remained strongly associated to the particulate 

phase and, therefore, no apparent local effects are observed for these metals in solution. These 

observations are consistent with laboratory experiments with sewage sludge in seawater showing 
that the loss of metals from the particulate phase during the first 48 h is small, with cadmium 
being the most labile followed by nickel (Norton et al., 1984c). In a study of the chemical 

speciation of dissolved metals including nickel, copper and iron in Liverpool Bay, Nimmo et al. 
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(1989) confirmed the local effect on dissolved nickel concentrations caused by sludge dumping. 

These authors suggested that this sewage-derived dissolved nickel is largely present in the 

colloidal fraction whereas dissolved nickel from other sources is largely in the labile fraction of 

the total dissolved metal. Nimmo et al. (1989) had dissolved copper results also in agreement 

with Norton et al. (1984c) findings, although the former noted elevated labile dissolved copper 

levels around the mid-North Wales coast and a similar increase in the seston concentrations 

around this area. Localised coastal quarry waste deposits were suggested as possible sources of 

this dissolved copper (Nimmo et al., 1989). 

Literature regarding concentrations of dissolved metals in Liverpool Bay, other than the 

mentioned previously, is scarce. Even mercury which is one of the metals that causes more 

environmental concern does not seem to have been studied in detail in the waters of the bay, 

however, several references can be found for the River Mersey and its estuary (see Campbell et 

al., 1986 and references therein). It is possible that, as suggested by Campbell et al. (1986), the 

strong adsorption of mercury onto particles may inhibit an enrichment of local waters after 
disposal at Site SI making sludge dumping an unlikely important source of dissolved mercury 

in the bay, however, these authors found a seawards increase in dissolved mercury and its 

. source was not positively identified. On the other hand, MAFF (1990) reported 

concentrations of total ý dissolved, reactive dissolved and total in unfiltered water mercury 

decreasing away from the River Mersey. The steep gradient in the concentrations of the total 

mercury in unfiltered water suggest that mercury from estuarine and point sources is quickly 

adsorbed by suspended sediments, leaving only a very small proportion of mercury in the 

dissolved phases as suggested by the fairly weak gradients in the surface water distributions of 

total dissolved and reactive dissolved mercury presented by MAFF (1990). 

Regarding the particulate phase, in the survey three days after dumping Norton et al. (1984c) 

observed that the mean concentration of metals on suspended particles at Site SI was not 

significantly higher than in the rest of the bay, suggesting that the dispersion and/or settlement 

of the sludge particles during the three days after disposal was fairly complete. On the other 
hand, immediately after dumping all metals showed significantly higher concentrations in 

particles within Site SI than in the surroundings. Given the contrast of results between the two 

surveys these authors concluded that sewage sludge disposal at Site SI has a marked local effect 
on the concentrations of metals on suspended particles, but this effect is short-lived. Rowlatt et 
al. (1984) suggested that this effect lasts around 1-2 days, although it is important to consider 
that the period of the effect after a particular discharge will depend on the meteorological and 
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hydrographic conditions (tides and stratification particularly) prevailing during and after the 

discharge. In a study of metals in bed sediments and in suspended particles near the bottom in 

the Eastern Irish Sea, Rowlatt et al. (1984) found concentrations in suspension of copper, zinc 

and nickel (26.5,301 and 31.9 µg g'' respectively) close to their "benchmark" values (-24, -240, 

and -32 µg g'1 respectively) for samples collected near Site SI two days after the last sewage 

sludge discharges. These authors suggested that these particles were probably transported into the 

Liverpool Bay area from relatively clean zones offshore, as could be expected from the known 

sediment transport and bottom residual circulation pathways. 

2.5.1.3. Polychlorinated biphenyls 

No background information could be found in relation to PCBs in solution and/or suspension 

in Liverpool Bay, therefore it is difficult to point out the main possible sources of these 

xenobiotics in the dissolved and particulate phases in this area. However, it is likely that as in 

the case of nutrients and heavy metals, freshwater inputs of dissolved PCBs into the bay may be 

important. The study by Nimmo et al. (1989) point at the river Mersey and the Dee as possible 

significant contributors of dissolved organic matter (fluorescent material) into the bay, this 

observation was substantiated by the highly significant correlation between fluorescent material 

and salinity. MAFF (1990) also reported an inverse linear relationship between salinity and the 

log of total hydrocarbons in solution which also suggests that the River Mersey is an important 

source of dissolved organic substances, however, samples were taken at only seven positions in 

the bay therefore the possible contributions from other sources can not be evaluated. This author 

reported considerable scatter in plots of total hydrocarbons vs suspended particulate material 

concentrations, therefore, no discernible relationships amongst these two variables could be 

established. 

2.5.2. Quality of biota 

In order to determine the quality of fish and shellfish for human consumption, and to assess 
the possible risk posed by the contaminant levels to fish and shellfish stocks, MAFF has carried 

out continuous surveys around the British coastal areas including Liverpool Bay. Although it is 

apparent from these surveys that, for the most parts, neither fish and shellfish nor man are at risk 
from the reported levels of contaminants, monitoring of biota has continued in order to use fish 

and shellfish as indicators of changes in marine environmental quality occurring as a result of 
changes in the quality and quantity of waste discharges into the coastal marine environment. 
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Analyses of biota have been mainly focused to assess the levels of toxic metals, particularly 

copper, zinc, cadmium, lead and mercury, and the levels of organic substances particularly 

chlorinated pesticides and PCBs. Most of the information that follows has been obtained from 

the reports by Franklin (1987), MAFF (1990), and Murray and Norton (1982) which present 

results on fish and shellfish from the 1977-1984 and 1984-1987 monitoring programmes by 

MAFF, and include references for more detailed information on this subject. 

Results from samples taken in Liverpool Bay showed that none of the species of fish and 

shellfish presented any significant spatial variations for any of the metals analysed, as would be 

expected in view of the relatively small area sampled and the mobility of the fish (Murray and 

Norton, 1982). Therefore, as it is has been difficult to relate the level of contaminants to a 

particular discharge such as sewage sludge inputs or coastal inputs, most of the results of quality 

in biota reported for Liverpool Bay are compared with other areas in England and Wales. 

Mercury in fish from Liverpool Bay and Morecambe Bay are the highest around the coastal 

zones of England and Wales. Only these two areas show concentrations near the upper level of 

the guidelines adopted by the Joint Monitoring Programme (JMP) of the Oslo and Paris 

Commissions (MAFF, 1990; Franklin, 1987). Even though mercury concentrations in fish from 

these two areas are the highest, mercury levels are below the limit of the Environmental Quality 

Standard (EQS) of 0.30 pg g'1 wet weight, furthermore, there seems to be a trend of reduction 

of mercury levels in fish in Liverpool Bay as shown by the annual average concentrations of 

0.29,0.26,0.27,0.23,0.20, and 0.20 µg g'1 for the period of 1982 to 1987. High levels of 

mercury in the bay are probably related to the presence of chlor-alkali plants in the industrial area 

surrounding the Mersey river and estuary. Mercury levels in shellfish from Liverpool Bay are not 

particularly elevated in comparison to other areas (Franklin, 1987; MAFF, 1990; Murray and 
Norton, 1982). 

With regard to other metals, there is no apparent indication of serious contamination of fish 

by copper, cadmium, lead and zinc as compared to other regions. The same observation can be 

applied to these metals in shellfish, with the exception of lead in mussels that present levels 

higher than several other areas but still about half the limit specified in the Food Regulations for 

shellfish of 10 pg g'1 wet weight (Franklin, 1987; MAFF, 1990). 

Some organochlorine compounds in fish liver tissue and shellfish from Liverpool Bay present 

elevated concentrations in relation to other coastal areas. Particularly elevated are the levels of 
dieldrin, DDE and TDE in whiting liver, and PCBs in liver tissue in whiting, plaice and dab. 
Total PCB concentrations in these species were -5.1, -1.2, and -2.2 pg g'1 respectively, and in 
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the upper category of the JMP guidelines (>5.0 µg g'1 for cod liver, that may represent roundfish 

in general, and >1.0 µg g4 for flounder liver representing flatfish) (Franklin, 1987). As the 

knowledge of the inputs of these substances is limited, it is difficult to assess the sources of 

organochlorine enrichment in the biota from the Liverpool Bay area. However, the estimated 

input of PCBs into the bay via dumping of around 0.8 kg d'', as compared with the estimated 

0.12 kg d'' entering the Thames Estuary in a larger amount of sludge, suggests that sewage 

sludge disposal at Site_SI may be a significant source of the high levels of PCBs in fish and 

shellfish in Liverpool Bay (Murray and Norton, 1982). 
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CHAPTER 3. METHODS 

3.1. SAMPLING 

Surface sediment samples were taken at each of the seventy stations shown in Figure 3.1, by 

means of a 0.1 m2 Day grab. This type of grab has been extensively used for sediment surveys 

by MAFF and UCNW because of its reliability and ease of operation. This grab permits seabed 

sampling down to a maximum depth of 15 cm with sediment structures and sediment surface 

generally remaining intact, and loose organic floccules present at the sediment/water interface 

appear to be retained (Eagle et al., 1978). 

After recovering the grab, the top 3 cm of sediment were subsampled with an acid washed 

plastic spoon for the trace element analysis and with a solvent cleaned metal spoon for the PCBs 

analysis. The sediments for trace element determinations were stored in heavy duty plastic bags 

and sediments for PCBs in glass jars with aluminium caps, precleaned as described below in 

Section 3.4. Both sets of samples were immediately frozen on board and transferred to freezers 

in the laboratory once on land. All samples were stored frozen until analysed. 

3.2. TRACE ELEMENT ANALYSIS 

3.2.1. Glassware and plasticware cleaning 
All the glassware and plasticware used in the trace element analyses was cleaned prior to its 

use to avoid sample contamination. The cleaning procedure consisted of thoroughly rinsing the 

material with tap water, soaking in a 10% nitric acid solution for at least 24 h, thoroughly rinsing 

with tap water, and finally rinsing three times with distilled water. 

3.2.2. Sample fractionation 

Sediment samples were defrosted overnight at room temperature. Once defrosted, the whole 

sample was transferred into a2 litre plastic beaker and homogenised by hand using a plastic 

spatula. Depending on the amount of fine material in the sediments, between 100 and 500 g of 
sample were taken from the plastic beaker and placed in a wet sieving system. A set of stainless 
steel sieves was used in the fractionation. The mesh of the sieves was 90,500 and 4000 µm. The 

resulting fractions (i. e. <90,90-500, and 500-4000 µm) were transferred to glass dishes and dried 
for 48 h in an oven at 65*C. the fraction >4000 µm was discarded. Once dry each 
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Fig. 3.1. Location of the seventy stations in Liverpool Bay in which superficial sediment samples 

were taken for the present study. The values in the coordinate axes are in minutes west 

of 3°W (X axis) and minutes north of 53°N (Y axis). The coordinates for each of the 

sampling positions are given in Appendix B1. 
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an analytical q--- sediment fraction was cooled in a desiccator to room temperature and weighed"" 

balance. The grain size distribution is reported as the contribution in dry weight of each of the 

three fractions to the bulk (<4000 µm) sediment dry weight. The dry fractions <90 µm and 

90-500 pm (referred throughout the text as "fine" and "coarse" fractions respectively) were 

transferred to acid washed glass vials and stored in a freezer until analysed for trace elements. 

The elemental content in the 500-4000 µm fraction was not determined. 

Sediment subsamples for the determination of aluminium were prepared separately. For this 

analysis, approximately 10 g of the bulk sediment were wet sieved only through a 500 µm sieve. 

The <500 pm fraction (referred throughout the text as the "total sediment") was dried, and 

pulverized for 5 minutes in a micro-mill (Pulverisette-7, Fritsch) with agate bowls. The resulting 

powder was kept in a glass vial with plastic top and stored in a freezer until analysed. 

3.23. Sample digestion 

3.2.3.1. Fine fraction 

Teflon bomb digestions 

Approximately 1g of sample was weighed in an analytical balance and transferred into a 20 

ml teflon, screw-top, reaction vessel. 5 ml of cool concentrated (AnalaR) nitric acid (BDH, 

England) were slowly added to the sample to avoid excessive frothing. Once frothing had ceased 

the teflon bombs were tightly closed and put in a boiling water bath for a2h period. 
After cooling the bombs to room temperature under a tap water stream, the contents of the 

bomb were transferred to a plastic centrifuge tube. The teflon bomb was rinsed twice with 1 ml 
diluted nitric acid (2%, v/v) and each time the contents were transferred to the plastic centrifuge 

tube. The extract was centrifuged at 2500 rpm for 25 minutes to precipitate the remaining 

sediment. The supernatant solution was transferred into a 20 ml volumetric flask and was made 

up to final volume with diluted nitric acid. The final extract was transferred to a 50 ml 

polyethylene bottle with screw-top and stored frozen until analysis. The trace elements analysed 
in this extract were: cadmium, chromium, copper, ̀nickel, lead and zinc. 

For analytical quality control, one procedure blank and one reference sediment sample with 
certified concentrations for various elements (BCSS-1, National Research Council Canada) was 
run with each batch of 15 samples. The results for the elemental determinations in certified 
sediments are shown in Table 3.1. 
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Table 3.1. Results for the determination of various elements in two certified 
reference sediments (BCSS-1 and MESS-1; National Research Council 
Canada). Conf. Int. represents the reported 95% confidence intervals 
r. s. d. represents the relative standaii deviation. 

, 
6- 

CERTIFIED VALUE THIS STUDY 

Reference Element Mean Conf. Int. mean s. d. r. s. d. 
material (µg g 1) (±Pg g) (µg g) (µg g 1) (%) 

Cd' 0.25 0.04 0.255 0.017 6.7 
Cr' 123 14 40.2 2.0 5.1 
Cu' 18.5 2.7 13.0 0.4 3.0 

BCSS-1 Ni' 55.3 3.6 52.5 2.5 4.8 
Pb' 22.7 3.4 21.7 1.0 4.5 
Zn' 119 12 115 22 18.9 

Hgb 0.171 0.014 0.197 0.011 5.6 
Asb 10.6 1.2 10.24 0.85 8.3 
Cdb 0.59 0.10 0.59 0.04 6.8 
Cr, 71 11 26.2 2.9 11.1 

MESS-1 Cub 25.1 3.8 19.1 1.0 5.2 
Nib 29.5 2.7 19.3 0.7 3.6 
Pbb 34.0 6.1 31.8 3.0 9.4 
Zn" 191 17 144 5.6 3.9 
Fe' 4.36 0.25 2.77 0.11 4.0 
Fe`s 4.36 0.25 3.98 0.16 4.0 
NO 513 25 272 18.7 6.9 
Mn° 513 25 501 12.5 2.5 
A cd 11.03 0.38 10.74 0.06 0.6 

Notes: `Teflon bomb extractions with }1N03 (see text). 4- 
bOpen beaker extractions with H202: HNO3. 
`Teflon bomb extractions with HC1: aqua regia. 
dConcentrations are given in percent. 



Open beaker digestions 

As the recovery of mercury with the teflon bomb digestions of the certified sediment BCSS-1 

was both low and imprecise, an open beaker digestion method (Eagle et al., 1978) was adopted 

for this analysis. In this case, 1g of sample was put in a 50 ml glass beaker, and 5 ml of a cool 

1: 1 mixture of concentrated (AnalaR) nitric acid and (AnalaR) hydrogen peroxide (30% w/v, 

BDH) were added slowly. Once frothing had decreased, the beakers were placed in a hot block 

digester at 70°C and a watch glass was put on top of each beaker. The samples were digested 

for a2h period and once digested the extracts were cooled to room temperature. The remaining 

part of the procedure was similar to the one described above for the teflon bomb digestions. 

The elements analysed in this extract were mercury and arsenic. Iron and manganese were also 

analysed in this extract after a1 to 10 dilution. One procedure blank and one reference sediment 

MESS-1 (NRC, Canada) were analysed with each batch of 15 samples. The reason for the change 
in reference material was only because the reference BCSS-1 was not available in our laboratory 

when these digestions were carried out. The results for the analysis of MESS-1 samples are 

shown in Table 3.1. 

3.23.2. Coarse fraction 

Digestions for the coarse fraction were similar to the open beaker method described above with 

few modifications. In this case a 10 g sample of the 90-500µm fraction was used. Once in the 

beaker, 7 ml of cool concentrated nitric acid were added first to avoid excessive frothing due to 

the calcareous nature of several samples. Once frothing had substantially decreased, 7 ml of cool 

hydrogen peroxide were added. The samples were digested 
, 

diluted and stored as described in 

the open beaker method for the fine fraction. All elements were analysed in this extract. 

3.2.3.3. Digestions for aluminium analysis 
The samples for aluminium determinations were prepared following the method recommended 

by Loring (1987, pages 129 and 130) for total metal determination. Depending on the amount 

of fine material in the sediments, between 100 and 450 mg of the powdered sample prepared for 

this analysis were transferred into a teflon bomb. 1 ml of aqua regia (hydrochloric acid and nitric 

acid, 3: 1) were added, followed by 6 ml of concentrated hydrofluoric acid (AnalaR, BDH). After 

closing the teflon bombs tightly, the samples were reacted in a boiling water bath for 1h and 

cooled to room temperature under a tap water stream. Once cool, the digested samples were 
transferred into plastic 50 ml volumetric flasks containing 5.6 g of boric acid (GPR grade, BDH), 
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approximately 20 ml distilled water, and 100 mg potassium chloride (AnalaR, BDH). The flasks 

were shaken until the dissolution of solutes was completed and the solutions were made up to 

volume. The final solutions were transferred into screw-top polyethylene bottles and stored in a 

freezer until analysis. 
Aluminium was the only metal analysed in this extract. One procedure blank and one MESS-1 

reference sediment was run with each batch of 15 samples. 

3.2.3.4. Sewage sludge digestions 

One sample of digested sewage sludge from Sandort Dock, Liverpool, of the type that is 

disposed in Liverpool Bay was kindly provided by North West Water Fazakerley laboratory. 

This sample, containing approximately 1.2% of solids, was dried at 70°C for 48 h, and 

manually homogenized with a mortar and pestle. Three subsamples of approximately 250 mg 

were digested following the open beaker method for the fine fraction. Unfortunately one of the 

samples was lost during the final stages of the procedure, thus, results were obtained only for a 

duplicate analysis. One procedure blank was also run together with the sewage sludge 

subsamples. All elements except aluminium were analysed in the final sludge extract. 

3.2.4. Spectrometric determinations 

All the elements were analysed by atomic absorption spectrometry using a Varian Spectra- 

1OABQ atomic absorption spectrometer equipped with a deuterium background correction facility. 

The analytical conditions for each analysis in the spectrometer are shown in Table 3.2. 

A VGA-96 atomization unit was used for the graphite furnace determinations. Graphite 

atomization tubes with L'vov platforms (Slavin et al., 1983) were used in these determinations. 

Details of the furnace parameters and the sampler conditions are provided in Appendix A. A 

Varian VGA-76 system was used in the determination of mercury by the cold vapour technique 

(Hatch and Ott, 1968). 

The precision for the determination of elements in the certified sediments was, in general, 
better than ±10% and in various cases was better than ±5% (see relative standard deviations, 

rs. d. in Table 3.1). Only in the case of zinc the precision was lower (r. s. d. =18.9 and 11.1 %), 
however, considering that the differences in the concentration of most elements among several 
sediment samples of Liverpool Bay are higher (see Chapter 4) than the analytical variations, the 

precision of the elemental determinations in this study can be considered as good. 
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Table. 3.2. Analytical conditions for the determination of elements by atomic 
absorption spectrometry. The wavelenght is expressed in nm. All the 
measurements were made in the peak height mode. 

Element Atomization Flame Wave Background Calibration 
method type lenght correction range (µg 1"1) 

Al FA' N/Ad 309.3 Off 5-150 
As GFAb --- 193.7 On 0.150-4.000 
Cd GFA --- 228.8 On 0.015-0.050 
Cr FA N/A 357.9 Off 2.0-10.0 
Cu FA A/A' 324.8 Off 2.0-10.0 
Fe FA A/A 386.0 Off 30-300 
Hg CV° --- 253.7 Off 0.005-0.050 
Mn FA N/A 279.5 Off 1.5-40 
Ni FA A/A 232.0 Off 1.00-5.00 
Pb FA A/A 217.0 On 5.0-30.0 
Zn FA A/A 213.9 Off 5.0-30.0 

Notes: 'Flame atomization 
'Graphite furnace atomization 
`Cold vapour (hydride generation) technique 
dNitrous oxide/acetylene flame 
`Air/acetylene flame 



3.3. ORGANIC CARBON AND 613C 

3.3.1. Fine fraction 

The total organic carbon concentrations in the fine sediments and their carbon stable isotope 

ratios (S13C) were analysed by Europa Scientific Ltd. (Crewe, England) using a Europa Scientific 

CHN interfaced to a Mass Spec analyser, after removal of carbonates with sulphurous acid (BDH 

sulphur dioxide solution 5% w/v) following the procedure described by Shaw (1959). 

The removal of carbonates consisted of adding 5 ml of sulphurous acid to a sample of 

approximately 100 mg dry fine sediment contained in a 10 ml glass vial. The samples were 

placed in a desiccator under a continuous vacuum until the excess acid was completely 

evaporated. The procedure was repeated with additions of only 1 ml of acid until the carbonate 

was completely removed. Prior to its introduction into the CHN-MS analyser, a subsample of 

approximately 20 mg was taken from the sediment remaining in the vial and transferred into a 

tin capsule and weighed in an analytical balance. 

The precision of the total organic carbon, nitrogen and carbon isotopic ratios were good. In 

the case of the total carbon and nitrogen determinations the precision was better than t10% (in 

terms of r. s. d. ), and the precision reported for the S13C determinations was better than ±0.2%o. 

3.3.2. Coarse fraction 

An estimate of the carbon content on the coarse fraction was determined by loss on ignition 

(Williams, 1985). For this estimation a 10 g dry sample of the 90-500µm fraction was put in a 

preweighed porcelain crucible. The crucible was put in a furnace programmed at 500°C for 

approximately 12 hours. The crucibles were transferred into a desiccator and cooled to room 

temperature. Once cool, the crucibles were weighed and the difference in weight before and after 
igniting the samples was calculated. 

3.4. POLYCHLORINATED BIPHENYL DETERMINATIONS 

The procedure adopted in this study for the preparation of the sediment sample prior to the 

chromatographic analysis was largely based in the method reported by Boon et al. (1985). 

Briefly, the main steps in the sample preparation consist of: (a) extraction of the organic fraction 

of the sediments with organic solvents (hexane and acetone), (b) clean up of the organic extract 

with an aluminium oxide adsorbent to separate the organochlorine components from polar 

molecules such as pigments and lipidic materials which may interfere with the PCB 
determinations during the chromatographic analysis, and (c) separation (fractionation) of the PCB 
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conegenrs from other organochlorine substances (mainly pesticides such as p, p'=DDT, dieldrin, 

(x- and y-HCH, etc.; Boon et al., 1985) which, may coelute and interfere with the determination 

of some PCB congeners. The clean up and fractionation steps with liquid solid chromatographic 

columns using alumina and silica columns for each step respectively, was originaly reported by 

Holden and Marsden (1969). 

Only minor modifications to the method reported by Boon et al. (1985) were made in this 

study, and were particularly related with the preparation of the reagents. The main difference with 

the procedure reported by Boon et al. (1985) was the use of copper instead of mercury for the 

precipitation of sulfur during the clean up step (elemental sulfur from sediments interferes with 

the gas chromatographic determination of organochlorines by saturating the electron capture 

detector for a long period if present at high levels, or by showing few characteristic peaks if 

present at low levels, Jensen et al., 1977). 

3.4.1. Glassware cleaning 
All glassware employed in this analysis was thoroughly cleaned prior to sample processing. 

The glassware was thoroughly rinsed with hot tap water and left overnight in a hot Decon 90 

(Decon Laboratories Ltd., England) solution in distilled water (approximately 5 %, v/v). Then the 

glassware was rinsed thoroughly with hot tap water followed by distilled water (the distilled 

water used in the analysis was kept in glass containers to avoid possible contamination with 

PCBs from plastic materials). Finally the glassware was transferred into an oven at 250-300°C 

for at least 4 h. The glassware that was not going to be used immediately was wrapped in 

aluminium foil. Before any piece of glassware was used, it was rinsed with acetone followed by 

hexane. No problems of sample contamination by glassware were encountered after this cleaning 

procedure. 

3.4.2. Pretreatment of reagents. 

3.4.2.1. Solvents 

All of the solvents employed in these analyses were obtained from Rathburn Chemicals 

(Walkerburn, Scotland). Hexane and dichloromethane were HPLC grade and acetone was glass 
distilled grade. The quality of the solvents was tested by concentrating 200 ml of the solvent 
down to 1 ml and analysed for PCB residues. In the case of acetone and dichloromethane, the 

volume was taken to near dryness and dissolved to 1 ml with hexane before analysing in the gas 
chromatograph with electron capture detector (see below). The quality of the solvents was very 
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good, thus, there was no need for redistillation before use. Only one interfering peak was found, 

with a retention time similar to that of PCB congener No. 170 (see Chapter 1 for details of the 

systematic numbering of PCB congeners). This peak is shown in the chromatogram corresponding 

to the procedure blank shown in Figure 3.2. 

3.4.2.2. Sodium sulphate activation 

Anhydrous sodium sulphate (Na2SO4, AnalaR, BDH) was Soxhlet extracted overnight with a 

1: 1 mixture of acetone and hexane. After air drying in a fumehood, the sodium sulphate was 

activated in an oven at 350°C for 4 h. After cooling to room temperature in a desiccator, the 

reagent was transferred into a stoppered glass flask and stored in a desiccator under vacuum until 

needed. 

3.4.2.3. Aluminium oxide (alumina) activation 
This reagent was prepared in batches of approximately 100 g. Aluminium oxide (70-230 mesh 

ASTM, Merk 1077) was baked for 4h at 650 °C. After cooling in a desiccator to nearly room 

temperature, the reagent was transferred to a stoppered beaker, weighed, and deactivated by 

addition of glass distilled water previously extracted three times with hexane. The amount of 

water added was equivalent to 4% of the weight of the aluminium oxide, and was added 

dropwise by means of a 500 pl syringe. After adding the water, the beaker was stoppered and 

shaken for approximately 20 minutes. This reagent was stored under vacuum in a desiccator until 

needed. 

3.4.2.4. Silica gel activation 

The silica gel 60 (70-230 mesh ASTM, Merk 7734) activation and storage was similar to that 

for the alumina procedure. The only difference was that for the silica deactivation, 5% of water 

was added. 

3.4.2.5. Copper activation 

Copper turnings (BDH) were activated following the procedure described by Fisher et 
al. (1983). 10% nitric acid was added to the turnings to remove surface oxides. Solvent extracted 
distilled water was used for rinsing the activated copper several times, followed by rinsing twice 
with acetone and finally rinsing twice with hexane. After decanting the hexane, the copper 
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Figure 3.2. Gas chromatogram for the procedure blank in PCB determinations. 
(see chromatographic conditions in the text). 
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turnings were dried under a stream of nitrogen and stored in a stoppered beaker in a desiccator 

under vacuum. 

3.43. Sample extraction 
Before the extraction; the bulk sediment was lyophilized. Some of the samples were 

lyophilized in our laboratory but most of the samples were freeze dried elsewhere (Dr G. Wolff, 

Liverpool University). The dry sediment was sieved through a 500 µm stainless steel sieve and 

the <500 µm fraction was kept for the analysis of PCBs. 

Depending on the proportion of fine material present in the sample, a subsample of between 

15 and 70 g was weighed in a 100 ml glass beaker. Some activated sodium sulphate was mixed 

with the sediment to improve the solvent penetration through the sediment during the extraction. 

The samples were transferred to "home made" glass fibre thimbles each one made with half 

of a 25.7 cm diameter Whatman GF/D filter (the thimbles were extracted for 4h with 

acetone: hexane 1: 1 before being used). Each thimble with sample was placed in a 60 ml Soxhlet 

extractor and spiked with 10 pl of a 5.1: pg/ml octachloro-naphthalene (OCN) solution used as 

an internal standard (the OCN was obtained as a powder from Greyhound Chromatography, 

Birkenhead, England, and dissolved in hexane). The receiving 250 ml round bottom flask 

contained 3 solvent-extracted boiling chips and approximately 5g of activated copper. 80 ml of 

acetone and 80 ml of hexane were added to the system and the sediment samples were extracted 

overnight for approximately 14 h. 

The extract was concentrated to approximately 5 ml using a macro Kuderna-Danish 

concentrator (Supelco), transferred to a graduated test tube and blown down to 1 ml under a 

gentle stream of nitrogen while heating in a block digester at ca. 45°C. A few extra copper 

turnings were added to the final concentrate to eliminate any remaining sulphur not precipitated 

during the Soxhlet extraction. 

3.4.4. Extract clean up 

3.4.4.1. Column preparation 
Borosilicate glass columns (250 x6 mm I. D. ) with a solvent reservoir at the top and a taper 

at the bottom end were employed in both clean up and fractionation steps. For the clean up step, 
a glass wool fibre ball previously extracted with acetone and hexane was inserted in the tapered 

end to support the packing agent. The column was dry packed with the activated alumina by 

pouring 2g of the powder measured by volume in a calibrated vial. The sides of the column 
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were gently tapped with a piece of soft plastic tubing to ensure a good packing of the column. 

A small amount of activated anhydrous sodium sulphate, equivalent to approximately 5 mm of 

column, were added to the top of the alumina to ensure dryness of the extract before contact with 

the alumina, thus, avoiding changes in the activity of the adsorbent due to possible traces of 

water being present in the extracts. 

3.4.4.2. Extract clean up 
To eliminate any possible traces of contaminants the packed column was eluted first with 7 

ml of dichloromethane followed by 7 ml of hexane. The solvents were carefully added through 

the walls of the column by means of pasteur pipettes (cleaned as above for the glassware). Once 

the hexane had passed through the column and the surface of the sodium sulphate started to dry, 

the 1 ml sediment extract was added to the top of the column with a pasteur pipette. A measuring 

cylinder was used to collect the eluting solvent. When the surface of the extract was level with 

the top of the column packing, an extra 1 ml used for rinsing the test tube containing the extract 

was added in a similar manner. This step was repeated once more and finally 12 ml of hexane 

were added to the reservoir to elute the PCBs. After discarding the first 2 ml (equivalent to the 

volume of hexane remaining within the packing in the column before adding the extract), the 

following 10 ml were recovered in a 10 ml graduated test tube. This eluate was concentrated to 

1 ml in a block digester at 50°C under a gentle stream of nitrogen and a few copper turnings 

were added. 
The volume of eluate to recover from the clean up step was determined by passing through 

a similar column a standard solution of PCBs (CLB1-D, described below in analytical techniques) 

which was also spiked with a mixture of p, p'-DDE and p, p'-DDT. After collecting an initial 

eluate of 5 ml, eluates of 1 ml were collected. Although most of the congeners eluted within the 
first 6 ml, congener No. 15 was completely recovered only after 8 ml, thus, to ensure total 

recovery of all PCBs, and to avoid different recoveries due to variations amongst different 

alumina batches, a 10 ml volume was fixed as the elution volume for the clean up step. 

3.4.5. Organochiorine fractionation 

The final step of the sample preparation consisted of separating the PCBs from other 
organochlorines that may coelute with some congeners during the chromatographic analysis. In 
this step, a liquid-solid chromatography was used with activated silica as adsorbent which was 
packed and precleaned following the procedure previously described for the clean up step. 
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The volume of the eluate to recover after discarding the first 2 ml, was determined for each 

new silica batch. In this case eluates of 0.5 ml were recovered after collecting the first 6 ml 

eluate. The final recovery volume varied between 8 and 9.5 ml for all the silica batches used in 

this work. This volume was initially determined as in Boon, et al. (1985), i. e., as the volume in 

which p, p'-DDE and pp'-DDT were separated (all PCBs are supposed to be present in the first 

eluate together with the DDE), however, it was later determined as the volume in which all the 

congeners in the PCB standard mixture CLB1-D were recovered. The latter change took place 

due to the fact that when testing the recovery of the CLB1-D PCB standard mixture, some 

significant traces of few congeners were present in the DDT fraction and a major proportion 

(approximately 50%) of congener number 15 was present in this fraction. 

After recovering the eluate in a graduated 10 ml test tube, the extract was concentrated in a 

block digester under a stream of nitrogen to a volume of approximately 1 ml. The extract was 

then transferred to a receiving vessel from a micro Kuderna-Danish concentrator with 0.01 ml 

divisions, and after rinsing the test tube three times with approximately 0.5 ml of hexane and 

transferring the rinsings to the receiving vessel, the extract was concentrated under a stream of 

nitrogen to a final volume of between 0.2 and 1.0 ml. The final extracts were transferred to clean 

2 ml glass vials with foil lined caps, and two or three copper turnings were added to each one 

to ensure no traces of sulphur were present in the extract during the chromatographic analysis. 
The extracts were stored in a freezer until analysed. 

3.4.6. Gas-chromatographic determination of PCB congeners 
The determination and quantification of the PCB congeners was performed by high resolution 

gas-liquid chromatography using a Carlo Erba HRGC 5160 equipped with a 63Ni electron capture 
detector (ECD), and connected to a Spectra Physics ChromJet SP4400 integrator. A DB-5 (J&W 

Scientific) 60 m capillary column (0.25 mm I. D., 0.25 µm film thickness) was used for the 

separation and quantification in all samples. 20 samples were re-analysed using a 30 in, 0.32 mm 
I. D., 0.25 pm film thickness DB-1701 column (J&W Scientific) for confirmation of the identity 

of various congeners. A1 pl sample was injected on-column, and the oven program for the DB-5 

column was as follows: isothermal at 60°C for 2 min, 60-180°C ballistic heating, isothermal at 
180°C for 20 min, 180-220°C at 1°C miri 1,220-300°C at 2°C miri 4 and finally isothermal at 
300°C for 35 min. The carrier and make up gas were hydrogen and nitrogen respectively. The 

carrier linear velocity was approximately 55 cm sec'', and the make up pressure was 110 kPa. 
The detector temperature was 320°C and the electrometer (Carlo Erba, ECD 400) was operated 
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in the constant current mode. The integrator was set at a chart speed of 0.25 cm mini 1 and 

attenuation 16x. Congeners were quantified based on peak heights. 

The chromatographic conditions for the DB-1701 column were as follows: isothermal at 60°C 

for 2 min, 60-170°C at 10°C min 1, isothermal at 170°C for 25 min, 170-210°C at 1°C mini', at 

210° for 0 min, 210-275°C at 3°C mini t, and isothermal at 275° for- 30 min. The ECD 

temperature was 300°C and the carrier gas linear velocity was approximately 42 cm sec''. All 

other parameters remained as in the DB-5 column analysis described above. 

Peak identification was based on relative retention times (RRT) using the internal standard 

(OCN) as reference peak (RRT=1); the retention time for OCN varied between 85.24 and 85.88 

min for the whole period of analysis of approximately seven weeks. Variations in the retention 

times from one day to another were due to small variations in the gas flows settings, particularly 

the carrier gas, that were switch down after each working day to save gas. The maximum 

variations in the retention positions in a particular day were of about 0.2 min. 
A set of standard solutions, CLB-1 (National Research Council, Canada), with pure, synthetic 

chlorinated biphenyl congeners was used for the calibration and identification in the 

chromatographic analysis. The set consists of four mixtures (CLB-1-A, -B, -C, and -D), each 

one containing a group of 14 or 15 individual congeners, and a total of 51 different chlorinated 

biphenyls of established identity. A description of the composition of the CLB-1 standard 

solutions with the relative retention time for each congener, from each of the two columns, can 

be found in Chapter 5 (Section 5.1). Two sets of calibration mixtures were prepared for the 

calibration of the gas chromatograph. The first set contained the standard solutions CLB-1-A and 

CLB-1-D spiked with the internal standard and with a mixture of 3 congeners (No. 126,158, and 

169) not present in the CLB-1 standards. The latter mixture was prepared from solutions of pure 

congeners obtained from Greyhound Chromatography (Birkenhead, England). The second set 

of calibration mixtures included standards CLB-1-B and CLB-1-C, spiked with OCN and 

congener No. 28 (Greyhound Chromatography) which w. . 'not present in the CLB-1 standard 

mixtures. 

Each of the two calibration sets contained eight calibration solutions covering an 80 fold range 
in concentration. For example, the concentration range for congener 138 was from 0.42 to 33.60 

ng ml'`, whereas that for congener No. 15 was from 7.75 to 620 ng ml''. Each standard was 
injected in duplicate and a calibration curve was drawn for each individual congener. In the few 

cases in which coelution of two or more congeners occurred, the calibration curve represented 
the summation of the concentration of both congeners. That was the case for congeners 159+187 

46 



and congeners 171+202. After mixing the calibration solutions of the different sets, that is, when 

the solution injected in the gas chromatograph contained all 55 individual congeners some more 

coeluting peaks were observed. The coeluting peaks in the DB-5 column were 40+ 103,77+154, 

159+187+182,171+202,196+203,195+208. The chromatograms showing the performance of 
both DB-5 and DB-1701 columns for the mixture containing all congeners are shown and 
discussed in detail in Chapter 5 (Section 5.1; see Table 5.1 and Fig. 5.1). 

The precision and accuracy of the chromatographic analysis were determined from the analysis 

of two technical PCB mixtures (Aroclor 1254 and Aroclor 1260) obtained as concentration 

solutions from Greyhound Chromatography (England). The precision and accuracy of the overall 

procedure were determined from the analysis of two reference sediment materials with certified 

values for some individual congeners (sediments HS-1 and HS-2, National Research Council 

Canada). Contrary to trace element determinations, there is no standardized analytical procedure 
for individual PCB congener determinations which has been adopted at an international level and, 

as in the present study, laboratories have been adapting and modifying methods for the 

determination of PCBs according to their specific needs and equipment availability. Therefore, 

as the method used in this study resulted from adaptations of different reported procedures, the 

results of the accuracy and precision determinations, together with a critical evaluation and a 
discussion of the method are presented in Chapter 5 (Section 5.1). 
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CHAPTER 4. SEDIMENT PARAMETERS AND TRACE ELEMENTS 

4.1. SEDIMENT PARAMETERS 

In order to determine the fate of anthropogenically derived chemical substances through the 

study of their distributions in sediments, it is necessary to consider the factors affecting the 

contaminant-particle associations and to take into account the processes controlling the sediment 

transport within the surveyed area. 

Heavy metals and PCBs (amongst other contaminants) become appreciably associated with 

particles when discharged into turbid aquatic environments (Olsen et al., 1982). This association 

may result from: (1) ion exchange, precipitation, or hydrophobic interactions with the particle 

surface, (2) co-precipitation with iron and manganese hydrous oxides, (3) complexation with 

organic substances bound or aggregated with particles, (4) incorporation into mineral lattices, 

organisms or faecal material, or (5) flocculation of colloidal organic matter and inorganic matter 

during river and sea water mixing (Olsen et al., 1982). 

Literature regarding the association between metals and suspended or seabed sediments in 

aquatic systems is abundant due to the possible toxic effects of these substances in the 

environment. Metals in sediments can be partitioned among different phases ox the surface of the C -- H 

particles. The most important phases for metal binding in aquatic sediments are: (1) the 

aluminosilicate minerals; (2) hydrous oxide coatings of iron, manganese and aluminium; (3) 

organic matter coatings; and (4) to a lesser extent carbonates (Forstner and Wittmann, 1979; 

Lion et al., 1982; Millward and Moore, 1982; Feely et al., 1983; Luoma and Davis, 1983; Tessier 

et al., 1985; Santschi et al., 1990). The partitioning of a metal ion amongst these phases is 

influenced by: (1) the binding capacity of each phase; (2) the binding intensity of the metal ion 

to each phase; (3) the abundance of each phase in the sediment; (4) solution parameters such as 

pH `and dissolved ligand concentrations which may influence the speciation 'of dissolved metal 
ions; and (5) the concentration of other metal ions which may compete with trace metals for the 

available binding sites (Luoma and Davis, 1983). Each of these influencing factors have' been 

studied in certain detail by numerous authors and various reports have appeared in the literature. 

Some useful reviews can be found in Forstner and Wittmann (1979); Olsen et al. (1982); Luoma 

and Davis (1983); Honeyman and Santschi (1988) and Santschi et al. (1990). ' 
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In the present study, an estimation of the abundance of each of the most important sedimentary 

phases (i. e. organic coatings and hydrous iron/manganese oxides) was determined by bulk 

chemical analyses. The organic coatings were estimated only in terms of the total organic carbon 

in the fine fraction, and total organic matter in the coarse fraction, without specific determination 

of the chemical composition (e. g. humic and fulvic acids content) of these organic materials 

which may influence the adsorption of metals. The iron/manganese hydrous oxide content was 

estimated by the analysis of iron and manganese after a partial sediment extraction with nitric 

acid and hydrogen peroxide (this method extracts the inorganic and organic coatings without 

dissolving the sediment inorganic matrix). Iron and manganese oxyhydroxides can exist in 

various forms (for examples see Luoma and Davis, 1983; Santschi et al., 1990) depending on the 

prevailing physicochemical conditions, and each of these forms may have very different metal 

binding capacities (for examples see Luoma and Davis, 1983); therefore, bulk determinations of 

iron and manganese in sediments can only serve as rough indicators of the abundance of hydrous 

oxides of these elements in the surface of the sedimentary particles. 
In the present study, the possible metal association with particular sedimentary phases was 

investigated through statistical analyses. Statistical relationships have been used in the past by 

several authors for this purpose (e. g. see Thomas, - 1972; Van de Meent et al., 1985; Sigg et al., 

1987; Schults et al., 1987; van der Weijden and Middelburg, 1989; Gardner et al., 1990). 

However, it is necessary to consider that a correlation between a metal and a specific phase is 

not necessarily an evidence of the chemical association of the metal with that particular phase; 

this problem is more evident when a metal shows high correlations with more than one phase. 

Although attempts by various authors have been made to selectively extract and analyse each of 

the main sedimentary chemical phases and their associated metals, there is at present no method 

that can specifically extract each particular phase without possible alteration or co-extraction of 

other phases. The sequential extractions method to determine the adsorption of metals to specific 

phases in sediments has been employed by several authors, however, the various limitations 

found in this procedure and in particular the lack of general validation make of this method (see 

Nirel and Morel, 1990) a tool that is difficult to apply in practical terms for the assessment of 

metal contamination in sediments when a large number of chemically heterogeneous samples is 

to be analysed. 

A review in the present knowledge of the factors controlling sediment transport in Liverpool 
Bay has alrgady been presented in Chapter 2. In the present Chapter, the results on the analyses 
of sediment parameters involved in contaminant-particle associations are presented and discussed. 
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The results of the analyses of various elements are also discussed in this Chapter (the raw data 

of these analyses are shown in Appendix B. 1 to B. 4). 

4.1.1. Grain size distributions 

Fine grained particles generally have greater affinity for pollutants relative to coarser particles 

because they have greater surface area per unit weight, providing larger areas for the deposition 

of organic and inorganic coatings that may act as scavengers of substances such as PCBs and 

heavy metals in aquatic systems (Olsen et al., 1982; Luoma and Davis, 1983). Fine sediments 

are also enriched in layered aluminosilicate minerals which contain more binding sites per unit 

area than other minerals such as quartz (main component of larger sedimentary particulates such 

as sands) which is relatively unreactive compared to organic and clay phases (Olsen et al., 1982). 

This greater affinity of fine particles for contaminants is reflected in higher concentrations in fine 

than in coarse sediments, this observation in turn, indicates that the grain size distribution within 

sediment samples, is a critical variable to determine in any study of sediment contamination. 
It is not surprising, then, that in most studies of contaminant concentrations in bulk sediments, 

high, correlations are found between the amount of fine sediments in the samples and the 

contaminant concentrations. Therefore, the spatial distribution of the concentrations of a 

contaminant in bulk sediments from a particular area will reflect the grain size composition of 

the sediments in that particular area (for examples see Thomas, 1972; Forstner and Wittmann, 

1979; Kramer, 1986). 

One of the several methods (see Forstner and Wittmann, 1979; Cauwet, 1987) for correction 

of grain size effects in the assessment of contamination in sediments that has been most 

commonly used, is the separation by sieving of the bulk sample into two or more grain size 
fractions for their analyses. Several studies have been only focused on the study of the finer 

fractions as contaminants tend to concentrate in these particle sizes and coarse sediments are only 

regarded as diluting factors. However, various authors have reported relatively high 

concentrations of trace metals in coarse grained sediments, therefore, the contribution of the 

coarse sediments as metal carriers within bulk sediments has to be taken into consideration, in 

particular if the fraction of fine material within those sediments is small (Kramer, 1986; Cauwet, 

1987; Brook and Moore, 1988; Grant, 1990; Martincic et al., 1990). 

In the present study, two sediment fractions were analysed for trace element content: a fine 
fraction consisting of sediments smaller than 90 tm in diameter, and a coarse fraction including 

sediments in the size range between 90 and 500 µm. These size fractions were chosen as the 
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heavy metal part of this project was initiated as part of a monitoring program for North West 

Water Authority which follows the guidelines for environmental monitoring from the Ministry 

of Agriculture Fisheries and Food (see methods in Eagle et al., 1978). The upper limit in the fine 

fraction (90 µm) was adopted by MAFF "... because naturally-occurring marine sediments below 

approximately 90 pm tend to be bound together in agglomerates and, consequently, require 

different drying and separating techniques from the coarser fraction, which can be simply oven 

dried. This is, therefore, the finest size at which it is possible to physically separate two fractions 

without having agglomerated fine material retained with the coarser fraction. The upper limit of 

the coarser fraction analysed (500 pm) was selected because of the difficulties of preparing 

representative samples for analysis with coarser material" (Eagle et al., 1978). 

4.1.1.1. Fine fraction in bulk sediments 

The "fine fraction", as previously defined in this thesis, contains the sediment grains smaller 

than 90 µm in diameter. According to Wentworth's grain size scale (Dyer, 1986, pp. 16-17), this 

fraction will contain particles of clay and silt (muds) and a fraction of very fine (62.5-125 µm) 

sands. 
Figure 4.1a shows the distribution of the fine fraction in the bulk (<4000 pm) sediments. The 

mean value for all seventy samples was -7%. The highest values, ranging from 24 to 59%, were 

found in the Burbo Bight area near the mouth of the Mersey Estuary, in samples U-9, YY-1 to 

YY-4 and NW-24 (see Figure 3.1 for the location and identification of stations), with sample 

YY-1 showing the highest value. Other stations with a relatively high proportion of fine material 

were K-11 (12%) and L-11 (-14%) located within the sewage sludge disposal area (Site SI), and 

stations P-11 (31%), Q-11 (11%), R-11 (17%) and T-12 (14%). Values for each of the 70 

samples taken in this study can be found in Appendix B. 3. 

Figure 4.1a shows that muddy sediments are distributed in patches within the sampling area, 
however, a general trend in the distribution of fine sediments can be observed. Excluding muddy 

patches and the Burbo Bight samples, bulk sediments from Liverpool Bay contain less than 10% 

of fine material with values increasing from south to north. The lowest values can be found in 

the southern region including stations labelled with numbers 6 to 9 between transects G and S 
(27 stations). Fourteen stations in this region had values lower than 0.5% of fine material, with 
a minimum of 0.07% at station S-7; seven stations had values between 0.5% and 1%, and three 
stations values between 1 and 2%. 
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Fig. 4.1. Distribution of the grain size fractions in "bulk" sediments (<4000 µ. m), (a) fine fraction 

(<90 µm), (b) coarse fraction (90-500µ. m), (c) 500-4000 µm fraction. Values are given 

as a percentage dry weight. 
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Stations labelled with the number 10 can be considered as a boundary between the zones of 

lower values in the south and higher values in the north. A gradient can be observed around these 

stations particularly in the central region where in a short distance values increase from less than 

1% to valuesAtween, 5 and 10% in the northern region. Only stations N-11 and S-il presented ý+---- 

low values (lower than 1 %) in the northern region. 

The irregular distribution of fine sediments in Liverpool Bay found in this study is consistent 

with previous reports for this area. Scattered small muddy patches along the bay, with larger 

muddy deposits toward the River Mersey near the Queen's Channel have been also reported by 

Sly (1966), Crickmore and Kiff (1972), Norton et al. (1984a; 1984b), Rees (1984), Kiff and 

Nunny (1984) amongst others. 
It is important to stress that, as reported by Norton et al. (1984a; 1984b) and Kiff and Nunny 

(1984), continuous changes in the composition of sediment in Liverpool Bay take place in 

response to 1 he highly dynamic environment. Both long term and short term variations in 

hydrographic conditions lead to a continuous'cycle of erosion and deposition, producing constant 

changes in bed sediment composition. Therefore, samples taken during one particular survey can 

only be representative of the conditions under which the survey took place and care must be 

taken if generalisations are to be made from a single survey. 

Contour maps such as that shown in Figure 4.1a are presented throughout this thesis aiming 

to present an overall picture of the distribution of the property presented in a given map. 

However, the author recognises the limitations of contouring discrete data sets, and in particular 

of properties such as the mud content in sediments from Liverpool Bay (Fig. 4.1a) which show 

a great spatial and temporal variability. On the other hand, however, if general patterns in the 

spatial distributions are apparent, contour maps can be a useful tool for visually displaying large 

data sets that otherwise would be difficult to present and describe. 

Norton et al. (1984a; 1984b) presented the distributions of fine sediments (<90 µm) in 

Liverpool Bay for four different surveys during 1975-1980. Results from these surveys showed 

variations in the distributions of fine sediments between surveys, however, some consistency 

could be observed in the results from these surveys, and with the results presented in this thesis. 
When comparing the distribution of fine sediments from this study (Fig. 4.1a) with the 
distributions presented by Norton et al. (1984a; 1984b), it can be seen that the areas of low 

values (<5%) in the south and higher values (5-10%) in the north are apparent in all surveys 
indicating - that this north-south gradient is probably a permanent feature in fine sediment 
distribution in Liverpool Bay. 
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The presence of a north-south gradient in the fine sediment distribution in Liverpool Bay is 

probably related to the topography of the region, as stations from the southern part of the 

sampling grid are shallower and closer to the North Wales coast than those in the north. It has 

been reported (e. g. Howarth, 1984) that currents intensify toward the North Wales coast, 

therefore, the shear stress on the sea bottom is stronger in this region than over deeper water 

sediments, making the deposition of fine material more unlikely. In a study of radiolabelled 

sewage sludge dispersion on the seabed in Liverpool Bay, Crickmore (1972b) found that although 

some of the sludge released in the dumping ground area was transported and deposited in muddy 

areas of beaches along the North Wales coast, no evidence of radioactive sewage sludge 

deposition was found in the sediments some 10 to 15 km off the coast, and suggested that in this 

tracer free area, characterized by "clean" sea bed conditions, bed shears would be sufficiently 

high to prevent retention of sludge particles; this observation may also be applied to fine grained 

sediments. Crickmore and Kiff (1972) also reported a "clean" bed in the area off the North Wales 

coast inshore of the 20 m depth contour with less than 1% of the sediment being finer than 60 

µm. 
In contrast fo 

. the fine sediment distributions presented by Norton et al. (1984a; 1984b), ý-- 

Figure 4.1a shows no "tongue" of high fine sediment values immediately outside the Queen's 

Channel extending west towards Site SL The maximum concentrations of fine sediments in the 

present study were found nearer to the Burbo Bight area, southeast from the area of maximum e 

values reported by Norton et al. These authors showed that these mud deposits change in size 

and position with time, therefore, this discrepancy in the position of maximum concentrations of 

fine sediments near the Mersey is probably due to the, natural variations in the sediment 8 

composition in this hydrodynamicaly complex area. 

There is no evident enrichment of fine particles in or near Site SI (Fig. 4.1a), therefore, it 

seems, . that no significant alteration in the physical characteristics of the natural sediments 
in Liverpool Bay occur due to sludge dumping activities. It has been extensively reported (e. g. 
Crickmore, 1972a; 1972b; Barret et al., 1972) that after disposal, sludge solids, composed mainly 

of <90 µm particles (Norton et al., 1984b), are rapidly dispersed over large areas in Liverpool 

Bay before reaching the sea bed. The principal direction of sludge movement is towards the 

coastal areas and the main accumulation of sludge residues occurs in existing natural mud 
deposits, as there is a similarity in settling velocities and hydrodynamical behaviour between 

sludge particles and fine inorganic particles (Crickmore, 1972b). 
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Sample T-14, taken at Site Z where approximately three million tonnes of dredged spoil are 

dumped every year (Rowlatt et al., 1986), shows no particular enrichment in fine sediments even 

though approximately 30% of the discharges consist of mud size sediments. In a detailed study 

on the effects of spoil dumping in the sediment composition around this area, Rowlatt et al. 

(1986) observed no particular enrichment in fine sediments near this area due to the discharges 

and suggested that the mud fraction of the dredged material is rapidly transported away from the 

site. Therefore, this area is non-accumulating with respect to mud probably due to the 

shallowness of the Site (-10 m depth), where under normal tidal conditions, fine sediments are 

likely to be transported and even cohesive mud deposits would be subject to redistribution during 

storms (Rowlatt et al., 1986). 

4.1.1.2. Coarse and 500-4000 pm fractions in bulk sediments 
In the present study the "coarse fraction" includes particles in the range of 90 to 500 pm. In 

Wentworth's classification this fraction includes medium sands (250-500 pm), fine sands (125- 

250 pm) and a fraction of the very fine sands (62.5-125 pm). In the 500-4000 pm range, coarse 

sands (500-1000 pm), very coarse sands(1000-2000 pm) and granules(2000-4000 pm) are a-- 

included. 

The distribution of the coarse fraction in bulk sediments is shown in Figure 4.1b. Values 

ranged from 31% at station M-10 to 99% at station Q-9, with a mean value for seventy samples 

of approximately 71 %. An irregular distribution of this fraction can be observed in Figure 4. lb, 

however, there is an apparent gradient with values increasing from the northwest toward the 

southeast of the sampling grid. In the northwestern region, including samples labelled 10 to 13 

in transects G to N, values lower than 60% were present, whereas in the southern and eastern 

areas the coarse fraction contributed more than 75% of the bulk sediment weight, with the 

exception of samples from the Burbo Bight area, and the patches of low values centred at stations 

L-7 and Q-7 (see Appendix B. 3). The region of highest coarse fraction in the south-east 

contained 10 samples with values above 90%. A high value (-96%) was also found in sample 
T-14 taken at Site Z. 

Values for the 500-4000 pm fraction ranged from less than 0.8% at stations T-14 and Q-9 to 

a maximum of -69% at station M-10. Figure 4.1c shows the distribution of this fraction in the 
bulk sediments. In this figure an opposite trend to that of the distribution of the coarse fraction 
(Fig. 4.1b) can be observed. In, this case the zone of maximum values is in the northwestern 
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region with values ranging from -58% to -69% whereas the low values (<10%) are found in the 

eastern region. All values in the Burbo Bight area were lower than 8% (Appendix B. 3). 

The opposite distribution of the coarse and the 500-4000 µm fractions is reflected in the linear 

correlation coefficient between these two fractions. When all seventy samples were considered 

in the calculations, a r= -0.812 coefficient (highly significant p«0.001) was obtained, however, 

when the values from samples containing more than 20% of fine material (7 samples) were 

excluded, the linear correlation coefficient increased to -0.977. No significant correlations were 

observed between these two variables and the concentration of fine fraction in the bulk 

sediments. 
Decreasing amounts of material coarser than 500 pm toward the Mersey have been previously 

reported (Sly, 1966; Norton et al., 1984a). Norton et al. (1984a) reported naturally occurring 

gravels (>4000 pm) at the sewage dumping ground and to the west and southeast of the site; 

these gravels were often accompanied by very coarse sands and granules. These authors also 

presented an eastern boundary of coarse sand population, roughly coinciding with the isoline 

separating the areas of 500 to 4000 pm fraction with values higher than 20% to the northwest 

and lower than 20% towards the east and southeast (Fig, 4.1c). The gravel deposits offshore, a-ý- 

with their associated coarse sand populations, will only be rarely disturbed as threshold velocities 

(promoted both by tidal and wave induced flows) for the movement of these particles will be 

rarely attained (Norton et al., 1984a); therefore, the areas of high concentrations of material 

coarser than 500 pm in Site SI and to the west of the site most be an almost permanent feature 

of the grain size distribution in the bay. 

Norton et al. (1984a) described in some detail the sediment dynamics in Liverpool Bay. The 

eastward and southeastward transport of medium and fine sands originating from the Irish sea 
(see the literature review in this subject Chapter 2) is a relatively continuous process as shear 

velocities required for initiating the movement of these particle sizes (1.5 and 1.4 cm s'4 for 350- 

500 and 180-350 µm sand populations respectively; these sizes are denoted as medium A and 

medium B populations in Norton et al. report) are attained for approximately 40% of the time 
in Liverpool Bay. During neap tides these sands will not be transported as maximum shear 
velocities are in the order of 1.0 cm s' under these tidal conditions (Norton et al., 1984a). Under 

some conditions (shear velocities above 2.1 cm s'') finer sands will be transported in suspension 
whereas medium sands will only be transported as bedload. These different transport mechanisms 
produce sorting of sands reflected in polymodal sand distributions as those reported by Norton 

et al. 1984a. These authors agreed with Sly (1966) in reporting finer and better sorted sand 
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populations towards the Mersey. Norton et al. (1984a) also reported fine sand populations 

(defined by these authors as the 125-180 µm fraction) occurring only in restricted areas including 

the vicinity of site Z and samples with "above average" concentrations of mud. 

4.1.1.3. Fine fraction in "total" sediments 

The distributions of the fractions within the bulk sediments previously discussed are intended 

to provide a general idea of the grain size composition of the sediments from Liverpool Bay. 

This grain size composition is usually a good indicator of the hydrodynamical conditions 

prevailing at the area during the sampling period. However, chemical analyses were only carried 

on sediments <500 pm in diameter, therefore, only the contributions of the fine and coarse 

fractions to these "total" (<500 µm) sediments will directly reflect the grain size effects on the 

concentrations and distributions of the chemical parameters reported and discussed later in this 

thesis. 

Figure 4.2a shows the distribution of the fine fraction in the total sediments. The distribution 

pattern presented in this figure shows no obvious difference to the one presented in Figure 4.1a 

for the fine fraction in the bulk sediments. The mean value for all samples in this case was 8.8 % 

and the maximum and minimum values were -61 % and 0.08 % respectively. 
The contribution of the coarse fraction to the total sediments is presented in Figure 4.2b. It is 

not surprising that this distribution is exactly the opposite to that shown in Figure 4.2a as both 

fractions add up to 100% of the total sediments. This figure is presented, however, to stress the 

importance of the coarse sediments as metal carriers, particularly in those situations in which the 

coarse fraction is by far the major component of the total sediments. 

The coarse fraction in the total sediments had a mean value of -91 % for the seventy samples 
taken in this study; the minimum and maximum values were -40% and >99.9% respectively. 
Figure 4.2b shows that the coarse fraction is a very large component of the total sediments of 
the southern region, with values above 95% in all the samples excluding those from the Burbo 
Bight area. A large proportion of samples in this region (26 samples) had values larger than 99 % 

(see Appendix B. 3). 

4.1.2. Aluminium in the total fraction 

The distribution of the aluminium concentration in total sediments is discussed in this section, 
as this measurement is often used as an indicator of the clay content of sediments (Forstner and 
Wittmann, 1979). 

56 



Clays have often been reported as the main metal carriers in aquatic sediments due, in part, 

to their high surface to volume ratio, which increases the chances of metals to adsorb onto their 

surface as compared to larger particles. Electrical charges on the surface of clay particles also 

increase the preference of metal ions for this particular sediment component. On the other hand, 

other components of natural sediments such as quartz, feldspars and carbonates are relatively 

metal poor and are considered to dilute the bulk sediment metal concentrations. For these reasons, 

aluminium in sediments has been used by several authors to "normalize" (correct concentrations 

due, in this case, to grain size effects) metal concentrations in sediments and particulate material 

(see for example Windom et al., 1989; Duinker, 1981; Ridgway and Price, 1987; Kemp et al., 

1976). 

There are no previous records in the literature of aluminium analyses in sediments --- 

from Liverpool Bay, with the exception of a study by Rowlatt et al. (1986). These authors 

studied the effect of the disposal of dredged materials in the sediments around Site Z and 

normalized the concentrations of mercury, chromium, copper and zinc ko that of the aluminium 4=- 

content in the sediments. Unfortunately, only three stations in the present study (T-12, T 14 and 

U-15; see Fig. 3.1) coincide with the region studied by Rowlatt et al., therefore, it is difficult to 

make comparisons. The study of trace metals against an aluminium background has been recently 

recommended by other authors studying metals in sediments from Liverpool Bay (Rowlatt, 1988; 

McLaren, 1987), therefore, the author of this thesis hopes that the aluminium data presented here 

may provide a useful baseline for comparisons with future metal surveys in the region. 

The distribution of the percentage of aluminium in the total sediment is showed in Figure 4.2c. 

This distribution closely resembles that of the fine fraction in the total sediment (Fig. 4.2a). 

Values for aluminium in the Burbo Bight area had a range from 2.71% at station NW-24 to 

4.01 % at station YY-1 (maximum value in the whole sampling area). The gradient from north 

to south showed values above 1.5% in the north (with a maximum of 3.20% at station P-11), and 

values below 1% in the south (with a minimum of 0.70% at station S-7). 

The observed relationship between the distribution of fine fraction and the aluminium 

concentration (Figs. 4.2a and 4.2c) was not unexpected as an increase in muds may imply an 
increase in the clay content in the sediment. A highly significant linear correlation coefficient 
(ra0.972, n=70, p«0.001) was obtained between these two variables, which suggested that the 

aluminosilicate component may represent an almost constant fraction of the fine sediments. A 

closer inspection of the relationship 6eiwttv% these two variables (Fig. 4.3), however, indicates 
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Fig. 4.2. Distribution of the percentage in dry weight of (a) fine fraction, (b) coarse fraction and 
(c) aluminium in the total (<500 pi-n) sediments. 
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that their association can be better described by a second order model than a linear one. The 

regression equation for a linear fit, 

% Al - 0.953 + 0.0572 % Pine, 

had an adjusted coefficient of determination (r2) of 94.3 %, whereas this coefficient increased to 

97.4% when a quadratic term was included in the regression 

% AI - 0.864 + 0.0813 % fine - 0.00052 (% fine)2. 

The second order relationship indicates that at low concentrations of fine fraction (i. e. the 

southern region in Fig. 4.2a), the aluminosilicate component constitutes a higher proportion of 

the fine fraction, and as the amount of fine fraction in the total (and bulk) sediment increases 

(e. g. the Burbo Bight samples), the clay, contribution to the <90 pm fraction decreases. Sly 

(1966), McLaren (1987) and Norton et al. (1984a) reported an increase in the fine sands towards 

the coastal areas of Liverpool Bay. Furthermore, Norton et al. (1984a) reported fine sand 

populations (125-180 pm) ".. only encountered in the vicinity of site Z,..., and often associated 

with above average concentrations of mud", and suggested that due to the ease of erosion and 

transport in suspension of these sands, they will occur only in areas where conditions are 

sufficiently calm to allow for their deposition, which in Liverpool Bay coincide with areas where 

mud deposits will occur. Therefore, the decrease in the contribution of the clay component to the 

fine fraction, as the amount of fines in the sample increases, can be explained by an increase in 

the contribution of the very fine sands (size range 62.5-125 pm) which where included in this 

<90 pm sedimentary fraction (i. e. sands with diameters 62.5-90 pm). 
An important observation resulting from the possibility of having variations in the proportions 

of clay size particles between the fine fractions of different sediment samples, is that there will 

also be variations in the available surface area which is a critical parameter as an increase in 

surface area increases the availability of sites for the formation of organic and inorganic coatings 
(such as hydrous iron/manganese oxide coatings), which in turn may result in an increase in the 

contents of metals, PCBs and other contaminants in the sediments (Forstner and Whittmann, 

1979). If this is the case, the available surface area in the fine fraction of sediments with low 

amount of fines (i. e. mainly those from the southern part of the sampling grid; see Fig. 4.1 a) will 
be higher than the available surface area in fine sediments of muddy samples (e. g. those from 

the Burbo Bight; Fig. 4.1. a). 
Using the second order equation as an example, it also must be noted that at zero concentration 

of fine fraction, a concentration of aluminium larger than zero (intercept=0.864%) will be 

obtained. Sample S-7 presented the minimum values of fine fraction (0.075%) and aluminium 

58 



4.3 

.. 

E 
J 

C 

E 
Z) 

1-4 

Q 

Fig. 4.3. Scatter plot of the aluminium content versus the fine fraction content in the total 
sediments including the first and second order regression lines. 

Fine fraction (%) 



(0.70%), indicating that not all the aluminium in the total fraction was supplied by the 

aluminosilicate component in the fine fraction, but at least a fraction of it was present in the 

coarse sediments. A qualitative (visual) inspection of the coarse fraction in the sediments with 

very low amounts of fine-material indicated that most of it was composed of clean sands, 

therefore, as these sediments are mainly composed of quartz (low in aluminosilicate minerals) 

the aluminium in the coarse fraction may be present as aluminium oxide coatings in the surface 

of the particles. The presence of oxides of iron/manganese in the surface of these particles was 

evident as the colour of their surfaces was reddish-brown, this observation suggesting that other 

oxides such as aluminium oxides are likely to occur. 

4.13. Organic carbon and nitrogen 

4.13.1. Organic carbon in the fine fraction ; 
The total organic carbon distribution in fine sediments from Liverpool Bay is shown in Figure 

4.4a. Carbon concentrations ranged from a minimum of 1.24% (station R-10) to a maximum of 

3.05% (station K-8) and had aýmean value of 2.03% (69 samples). The highest concentrations 

(>2.5%) were found as patches at stations K-8, M-8, M-9, M-10, N-10 and S-9 (Appendix B. 4); 

the largest patches were found in the southeastern borders of Site SL Excluding the region 

outside the Queen's Channel (Fig. 4.4a), there is a general trend of increasing values from less 

than 1.75% in the northwest of the sampling region to values higher than 2.25% towards the 

south and southeast. Samples from the Burbo Bight area showed a relatively large variation in 

total organic content with values ranging from 1.59% (sample YY-3) to 2.31% (station YY-2); 

stations T-12, T-14 (Site Z) and U-15 immediately out (west and northwest) of the Queen's 

Channel presented concentrations of 1.40,1.45 and 1.35% respectively. 
The organic carbon concentrations found in this study are within ranges previously reported 

for sediments in this area. Kiff and Nunny (1984) reported carbon concentrations in sediments 

<63 pm within a range of 1.6 to 3.2% with the distributions presenting no particular trends, 

although slight elevations in the southeastern area of Site SI were observed. These authors found 

no evidence of any significant change in organic carbon concentrations between six surveys in 

a three year period. Norton et al. (1984a) reported concentrations in <90 µm sediments ranging 
from less. than 1% to 4.5%, with the lowest ' concentrations occurring in the offshore and 
southwestern areas, and an increase in values throughout the eastern inshore parts of the bay. 
Elevations in concentration were found, " in particular, at, or immediately inshoreýSite SI with 
values between 2.0 and 4.5%; these elevations were particularly noticeable during one of their 
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four annual surveys (1978 survey), which showed an organic carbon distribution (see Fig. 12 in 

Norton et al., 1984a) similar to the one reported in this study (Fig. 4.4a). 

It is clear that, although carbon concentrations seem to remain within a relatively constant 

range with time (Kiff and Nunny, 1984), carbon distributions change (see Fig. 12 in Norton et 

al., 1984a) as sediment grain size distributions change in response to variations in 

hydrodynamical conditions that control sediment transport in Liverpool Bay. Therefore, 

generalizations in the distribution pattern of organic carbon in fine sediments presented in this 

study must be viewed with caution if comparisons with other surveys are to be made. However, 

if factors controlling the distribution of organic carbon in sediments are considered, it may be 

possible to draw some general conclusions with regard to distributions of organic carbon in the 

sediments from Liverpool Bay. 

Highly significant (p«0.001) negative linear correlations were obtained between the organic 

carbon content in the fine fraction, and the logarithm of the concentrations of aluminium 

(r=-0.495) and the percentage of fine fraction (r=-0.519) in the total sediments. As shown in 

Figure 4.5a, these negative correlations indicate that organic carbon in fine sediments increases 

as the amount of fine material in the total sediment decreases. It has been previously suggested, 

from Figure 4.3, that the proportion of clays within the fine fraction increases in samples 

containing lower amounts of fine fraction in the total sediments and vice versa. If this 

observation is true, then the surface area per unit weight in the fine fraction is higher in 

sediments with lower fines (southern area Fig. 4.2a), therefore, a higher organic content in these 

sediments is not unexpected (Fig. 4.4a). 

The significance in the correlation between organic carbon and the fine fraction and aluminium 
in total sediments only indicates that there is an overall tendency of carbon to increase as these 

variables decrease, however, as indicated by the determination coefficients (r2=0.27 for carbon 

vs fine fraction; r2=0.24 for carbon vs aluminium), the fine fraction and the aluminium content 
in the total fraction can only predict about 25% of the variance in the organic carbon content in 

fine sediments (see also the scatter in the data presented in Fig. 4.5a), therefore, other factors 

have to be considered to explain the distribution of the organic carbon values reported in the 

present study. 

The scatter in the data presented in Figure 4.5a indicates that samples with similar amount of 
fine material may have substantially different carbon contents. It would be expected that, if the 
source of organic carbon was the same for all particles, the primary factor controlling the carbon 
distribution in the sediments would be the available surface area for deposition, therefore, it 
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Fig. 4.4. Distribution of (a) organic carbon (%) and (b) S13C (%o) values in the fine fraction, 

(c) organic matter content (%) in the coarse fraction and (d) organic carbon in the total 
fraction(%). 
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would be roughly controlled by the grain size distribution. However, if different sediments 

receive carbon depositions from different sources and at different rates, the grain size effect on 

the carbon distribution may be overshadowed. This effect is increased if the particles (particularly 

the fines) do not have the same origin (i. e. natural, sewage sludge, dredged material, etc. ). Kiff 

and Nunny (1984) found no significant correlations between the organic carbon in fine sediments 

and the amount of clay in samples from Liverpool Bay. These authors concluded that there has 

been a considerable enrichment of organic matter in parts of the bay although its origin was not 

established. Norton et al. (1984a) also concluded that sludge dumping and dredged spoil disposal 

were significant sources of organic matter in sediments from Liverpool Bay, but these effects 

were superimposed making it difficult to assess the particular sources. 

In order to assess the possible sources of organic carbon in the fine sediments, carbon to 

nitrogen (C/N) atomic ratios, and carbon stable isotopes ratios (S13C) were determined in the 

present study. These methods have been applied by several authors (see review by Gearing, 1988) 

to determine qualitatively (and in some cases quantitatively) the sources of organic carbon in 

marine sediments and other materials. 

4.13.2. C/N ratio and carbon stable isotopes ratio (S13C) in fine sediments. 
The sources of organic matter (particularly marine vs terrigenous) in estuarine and coastal areas 

have been studied by several authors through determinations of C/N atomic ratios and/or S13C 

(e. g. Sackett, 1964; Pocklington and Leonard, 1979; Burnett and Schaefer, 1980; Tan and Strain, 

1983; Giordani and Angiolini, 1983; Gearing et al., 1984; Gearing, 1988; Lucotte, 1989). 

The use of C/N ratios is based on observations that, in general, terrestrial organic matter shows 

an enrichment of carbon over nitrogen atoms, presenting "high" C/N values (>12) as compared 
to marine derived organic matter presenting typical "low" (<10) C/N ratios (Pocklington and 
Leonard, 1979). On the other hand, S13C estimations have been used to trace the source of 

organic matter based on the fact that many reactions fractionate isotopes during the biochemical 

production of organic matter (Gearing and Pocklington, 1990). These fractionation reactions 

result, in general, in a noticeable difference between the 13C/12C ratios between terrestrial organic 
material (typically low, more negative S13C values) and organic matter produced in the marine 
environment (higher, more positive S13C values). These ratios are maintained as the organic 
material moves through the biosphere and geosphere, therefore, mixtures of organic matter from 
two sources will result in isotope ratios intermediate between those two sources, in proportion 
to the fraction of material from each source (Gearing, 1988). Both methods of determination of 
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organic matter sources have their limitations since, large variability within a source may occur, 

mating differences between two different sources less obvious. For example, terrestrial plants 

with different photosynthetic pathways (i. e. C3 or C4) usually present large differences in S13C 

values, with C3 plants showing values around -27.0%o whereas C4 plants show values around 

-13.0%0. Marine diatoms show values around -20.0%o whereas nanoplankton shows values around 

-23A%o (Gearing, 1988). Another limitation, important with regard to the Liverpool Bay area, 

is that if more than two sources of organic material are present (e. g. riverine, sewage sludge, 

dredged spoil, autochthonous, etc. ), the determination of S13C or CIN values can only be used 

to roughly determine the possible sources but it will be difficult to assess the contribution of each 

source to the total organic matter in a particular sample. When more than two carbon sources are 

present, the determination of other stable isotope ratios (e. g. nitrogen, hydrogen and sulphur 

isotopes) and other variables such as lignin oxidation products can be useful for tracing and 

quantifying the individual contribution of each source to the total carbon in a particular sample 

(Gearing, 1988). Bearing in mind these limitations, S13C determinations have been very useful 

for a variety of studies in ecosystems, particularly estuaries and unpolluted coastal areas, where 

there are only two dominant sources of carbon with considerable isotopical differences (see 

review by Gearing, 1988). 

The distribution of 5i3C values in fine sediments from Liverpool Bay observed in the present 

study, is presented in Figure 4.4b. The eastern region, closer to the Mersey Estuary, shows a 

gradient with decreasing (more negative) values towards the coast indicating inputs of 

terrigenous organic carbon from the Mersey Estuary. In the region of low values outside the 

Queen's Channel a range between -21.02%o at station T-14 (Site Z) to -21.57%o at station YY-3 

can be found. The lowest values of 513C in the bay as a whole, however, were found at stations 
J-7 (-22.31%0) and J-9 (-22.02%o) in the southern most region of Site SI; also within Site SI 

sample K-9 showed a very low (-21.49%o) value. Patches of low 813C were also found around 

stations L-8 (-20.71%o), M-9 (-20.83%o), P-11 (-21.16%o) and R-11 (-21.15%o). 

The highest (more positive) values, more typical of organic matter of marine origin, were 
found in the northwestern sector of the sewage disposal site (Fig. 4.4b), with values higher than - 
19.10%o at stations K-11, K-12, L-9 and a maximum of -18.49%o at station J-11. The central- 
southern region, where the lowest proportions of fine fraction were found, was also an area of 
relatively high S13C values (>-20.00%) with maxima at stations Q-7 (-19.28%0) and Q-9 
(-19.06%0). 
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Unfortunately, several of the samples (32 of a total of 70) analysed for organic nitrogen were Q-- 

below the detection limit of the instrument. The number of analysed samples did not allow for 

drawing a reliable contour map for comparisons with other variables. However, a similar 

distribution to the organic carbon content (Fig. 4.4a) is expected as indicated by the high linear 

correlation (r=0.818, n=38, p«0.001) between carbon and nitrogen in the samples. This 

relationship, represented in Figure 4.5b, was expected as the nitrogen and carbon content in a 

sediment must increase if the total organic matter in the sample increases. 

The C/N atomic ratios for the 38 samples determined in this study are presented in Figure 4.6. 

The mean value for all samples was approximately 9.9 with a minimum of 7.1 and a maximum 

of 17.0. It can be observed that samples from the Burbo Bight region had homogeneous ratios 

of around 10. However, the highest ratios, characteristic of terrestrial organic matter, were 

observed in the southern part of the sewage disposal site (atomic ratios -13) and in three samples 

in the extreme northwestern part of the sampling region where the maximum value was observed 

(station G-11, Fig. 4.6). Most of the samples between Site SI and the region outside the Queen's 

Channel presented ratios lower than 9.0 with the exception of stations M-12 (10.4) and Q-11 

(10.0). The lowest ratios were found in the central-southern region with values lower than 8.3 

and the minimum of 7.1 at station S-7, these values suggesting that most of the organic matter 

in sediments from this area is predominantly of marine origin. 
A relationship between the carbon stable isotopes ratio and the C/N ratio was found in the fine 

sediments analysed in this study. A significant correlation (r=-0.538, n=38, p«0.001) between 

these two variables was observed, indicating that in general, high C/N ratios correspond to low 

513C values, both characteristic of a higher content of land derived organic matter as compared 

to low C/N ratios and higher (less negative) S13C values indicating higher proportions of marine 

organic carbon (Fig. 4.5c). Figure 4.5c indicates that there is a general tendency in the 

relationship between the isotopic composition and the C/N ratios in the organic matter in 

sediments from Liverpool Bay, however, the dispersion in the data indicates that more than two 

carbon sources exist, each of the sources with different organic matter composition. 

The low S13C values (<-21.0%o) and high C/N ratios (>12.6) in the southern part of Site SI 
indicate a possible significant contribution of land-derived organic matter to the total organic 
matter in sediments from this area. Analyses of three sewage sludge samples similar to the 
material dumped at Site SI showed 6'3C values around -24.0%o and C/N ratios around 15. 
Therefore, it is possible that a significant proportion of the organic matter in sediments from the 
southern region of Site SI is from the sewage sludge discharges in the region. An interesting 
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observation is that the sewage disposal area is subdivided in several sectors for the control of the 

discharges, and that from early 1988 the dumping activities have been concentrated in the 

extreme southern sector of Site SI (P. C. Head, North West Water, pers. comm. ); this observation 

supports the hypothesis that the observed values of 513C and C/N ratios in this area result from 

the disposal of sewage sludge. 
Another area with low S"C (less than -21.0°%) values and relatively high (-10) C/N ratios is 

that near the Queen's Channel, outside the Mersey Estuary. Figure 4.4b shows that there is an 

apparent gradient of S13C values in this area indicating the influence of the run-off from the ' ---- 

River Mersey exporting some organic matter with higher proportions of land derived organic 

carbon than the natural organic matter in the bay which contains a higher proportion of marine 

organic carbon. The S`3C values found in this study for the whole area are within ranges reported 

for other coastal and estuarine sediments (see Gearing et al., 1977; Tan and Strain, 1983) 

although in general the values found in the present study, even the ones near the Mersey, seem 

to be within ranges more characteristic of organic matter of marine origin. This observation 

would not be unexpected since, according to the sediment transport patterns discussed in chapter 

two, the net transport of particles (and their associated organic matter) is from the bay towards 

the Mersey Estuary (according to Taylor, 1986, -90% of the sediment in the estuary is 

transported from Liverpool Bay and the remainder from riverine and other inputs), therefore, the 

organic matter tends to be transported in the sedimentary phase from the bay toward the land. 

The gradient shown in Figure 4.4b may be a result of organic matter being transported in solution 

out of the Mersey and being flocculated and precipitated outside the Queen's Channel. A large 

proportion of riverine organic matter is precipitated during estuarine mixing, flocculation 

increasing with increasing salinity (Forstner and Wittmann, 1979). Carbon isotope studies 
(Gearing et al., 1977) suggest that natural inputs of terrestrial organic matter into marine systems 

are very limited and that this organic matter plays only a small part in determining the 613C value 
of the total organic carbon in continental margin sediments. This observation suggests that the 

patches of low (less than -20.5176) 613C values found in the present study may be related to' the 
discharges of wastes into Liverpool Bay rather than to natural or riverine inputs of organic 
matter. 

The lack of a significant correlation between the total organic carbon content and the stable 
isotopic ratio, and between organic carbon and CIN ratios indicate that the total amount of 
carbon in the sediments is not necessarily an indicator of anthropogenic effects. For example, 
station K-8 in the southeastern limits of Site SI presented the maximum total organic carbon 
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concentration (3.05%). This observation may lead to the conclusion that, given the location of 

the sample, this enrichment of carbon is due to the discharges of sewage sludge in this area, 

however, this sample presented one of the lowest C/N ratios (7.9) and a relatively high (-19.7%o) 

VC value both characteristic of marine derived organic matter. On the other hand, another 

sample with high carbon content was M-9 (2.76%). This sample presented a relatively low S13C 

value (-20.8), indicating the possible contribution of organic matter derived from sewage sludge 

discharges. Stations J-7 and J-9 did not show total organic carbon values significantly above the 

average for the whole region (-2.03 %), however, these samples presented the highest S13C values 

(-22.3 and -22.0%o respectively). Some samples containing high proportions of fine fraction, 

particularly the muddy patches around stations P-11, R-11 and T-12 (Fig. 4.2a) also presented 

low stable isotope values indicating the presence of sewage sludge derived organic matter. This 

observation is consistent with the results by Crickmore (1972b) as this author found evidence of 

radiolabelled sewage sludge particularly associated to the mud patches to the east of the sewage 
disposal site. 

The three samples in the extreme northwest sector of the sampling grid with C/N ratios above 

13 (stations G-11, G-13 and H-10) also showed relatively low 613C values (-20.7, -20.8 and 

-21.3%o respectively) indicating possible inputs of organic matter derived from the sewage sludge 

discharges. It must be remembered, however, that although the disposal of sewage sludge could 
be an important source of organic matter from a local point of view, several possible sources of 

organic matter remain which have not been considered, therefore, the observations about the 

possible contributions of sewage derived organic matter should be considered as tentative. 

4.133. Organic matter in the coarse fraction 

Figure 4.4c shows the distribution of an estimation of the - organic matter in the coarse 
sediments as determined by loss on ignition at 550°C. Excluding the area outside the Queen's 
Channel, a gradient of decreasing concentrations from values higher than 0.50 % in the 
northwestern region to values lower than 0.40% in the southeast can be observed. The highest 

values in the northwestern region were found at stations G-13 (0.71 %) and H-12 (0.69%) whereas 
the lowest values in the southern region were found at stations M-6 (0.26%), P-6 (0.26%) and 
S-7 (0.24%). The mean organic matter concentration for the whole region was -0.46%. Samples 
from the Burbo Bight area had the highest organic matter concentrations in the whole sampling 
area, with a value up to 0.91% at station YY-3, however, sample YY-2 had a concentration of 
only -0.53% emphasizing the great variability in sediment characteristics from this muddy zone 
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already shown with the organic carbon content of the fine sediments. A tongue of increasing 

carbon content in coarse sediments out of the Queen's Channel is an interesting feature shown 

in Figure 4.4c. A less obvious tongue in the same position, with increasing values of the 

percentage of coarse material towards the channel and decreasing values of fine sediments, is 

presented in Figures 4.2a and 4.2b. 

Due to analytical limitations it was not possible to determine the organic carbon content nor 

the organic nitrogen content in coarse sediments. The same detection limitations did not allow 

for a determination of the carbon stable isotopes ratio in this fraction, therefore, an assessment 

of the possible sources of organic matter in the coarse fraction is even more difficult than that 

of the carbon in the fine fraction (see discussionabove). An examination of the relationship (if 

any) between the organic matter in the coarse fraction and other parameters such as grain size 

distributions and organic carbon in the fines, however, may yield some information regarding the 

sources of this organic matter in coarse sediments. 
Highly significant linear correlations (p«0.001) were found between the organic matter 

content in the - coarse fraction and the aluminium concentration (r=0.734) and fine fraction 

concentration (r=0.752) in the total sediment. These relationships presented in Figures 4.5d and 

e indicate that, in general, the organic matter in the coarse sediments increases as the amount of 

fine material increases. This observation suggests that coarse sediments may be getting part of 

their organic matter from the fine particles, richer in organic matter. The regression equation 

obtained for the relationship with aluminium was 

O. M. - 0.250 + 0.142 % Al, 

(r2=53.2%, F=79), whereas the equation with the percentage fine fraction was 
O. M. - 0.381 + 0.0085 % fine, 

(r2=56.0%, F=88.7). The correlation coefficients indicate that the relationship between the organic 

matter in the coarse fraction and the amount of fine particles in the samples is significant, 
however, as indicated by the determination coefficients (r2 values) in the regression analyses, only 

approximately 55% of the variance in the organic matter content of coarse sediments can be 

explained by the variations in the amount of fine particles in the sample. A closer inspection in 

these relationships indicated that, at concentrations of fine fraction in the total sediment lower 

than 5%, (i. e. those samples in the southern region, Fig. 4.2a), there was no significant 
relationship between the amount of fine fraction and the organic content in coarse sediments 
(r=0.051, n=38) or between the aluminium content and the organic matter (r=0.317, n=33). This 

observation indicates that the organic carbon content in the coarse sediments is only significantly 
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influenced by the transfer of carbon from the fine particles when there is a high enough (>5%) 

amount of fine particles coexisting with the coarser material. When the amount of fine fraction 

was lower than 5% (% aluminium lower than -1.2), the organic matter, content in coarse 

sediments varied without particular trends between 0.24 and 0.45% (Fig. 4.5d and e). 

4.13.4. Organic carbon in total sediments 

The amount of organic carbon in the total sediments was computed, first, by transforming the 

organic matter data in the coarse sediments to organic carbon values by the use of an empirical 

factor (O. C. =O. M. /1.887; Gearing and Pocklington, 1990); and second, by adding the contribution 

of the fine and the coarse sediments to the total organic carbon taking into consideration the 

carbon concentration in each fraction, and the contribution (in weight) of each fraction to the 

total sediment weight. 

The distribution of the organic carbon content in the total sediments is shown in Figure 4.4d. 

Excluding minor details, this distribution is similar to that of the distribution of the fine fraction 

in the total sediments (Fig. 4.2a), suggesting that the organic carbon content in the total 

sediments depends on the amount of fine material present in the sample. The mean value for the 

whole region was -0.40% and the maximum and minimum values were 1.19% and 0.14% 

respectively. 
The correlation coefficient between the organic carbon in the total fraction and aluminium in 

the same fraction was r=0.965; a similar coefficient was obtained with the percentage fine 

fraction (r=0.964). The regression equations were: 
total carbon - -0.0867 + 0.317 % Al, (t2-93.1%), and 
total carbon - 0.211 + 0.0186 % fine, (r2=92.9 %). - 

The determination coefficients indicate that approximately 93% of the variance of the organic 

carbon in the total sediment can be explained by the variations in the amount of fine material in 

the samples. The relationship between the organic carbon in total sediments and the amount of 
fine material in the sample is usually a common feature of natural organic matter distribution in 

marine sediments (Romankevich, 1978; Pocklington and Leonard, 1979; Norton et al., 1984a) 

as the surface area in the sediments increases with the decrease in grain size. Therefore, it is not 

surprising that when the total sediment, is analysed without fractionation, a good correlation 
between these two variables may be found. 

. 
The importance of analyzing different sediment fractions can be highlighted with one example. 

Sample G-9 presented organic carbon concentrations of 2.0 and 0.19% in the fine and coarse 
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fractions respectively. The organic carbon value in the total sediment (0.20%) being very similar 

to the concentration in the coarse fraction indicates that the main carrier of carbon in the total 

sediment at this station was the coarse material. This observation is hardly surprising considering 

that the coarse fraction constituted -99.8 % of the total sample weight. However, this observation 

could not be made with certainty if the organic carbon was only measured directly in the total 

sample. The importance of coarse sediments as carriers of chemical substances such as organic 

matter and contaminants (e. g. heavy metals and PCBs) in the marine environment has been 

neglected or simply overlooked as the fine sediments tend to show higher concentrations of these 

substances. However, in areas such as Liverpool Bay where most of the sediment contains 

substantial amounts of coarse material and muddy samples are only confined to small patches 

when considering the whole area, overlooking the role of the coarse fraction as a carrier of 

chemical materials implies overlooking a very important component in the organic carbon and 

pollutants budget in the area. This subject is further explored in the following sections concerning 

the heavy metals, arsenic and PCBs in sediments from Liverpool Bay. 

4.1.4. Iron and manganese distributions 

Hydrous oxides of iron, manganese and aluminium represent significant sinks of heavy metals 

in aquatic systems (Forsther and Wittmann, 1979). These oxides, particularly those of iron and 

manganese, readily sorb or co-precipitate cations and anions even at low concentrations, 

therefore, these phases are important in controlling heavy metal distributions in aquatic systems 

(Forstner and Wittmann, 1979). The importance of hydrous iron and manganese oxides as 

surfaces for metal sorption is extensively documented, for particles in diverse aquatic systems 

(e. g. Balzer, 1982; Lion et al., 1982; Millward and Moore, 1982; Olsen et al., 1982; Luoma and 

Davis, 1983; Laxen, 198'?; Tessier et al., 1985; Sigg et al., 1987). These oxides normally occur 

as coatings on sediment surfaces, or as discrete small particles of iron (Sigg et al., 1987) and 

manganese (Luoma and Davis, 1983) oxides. 
Iron oxides in sediments occur in a continuum of states, ranging from a highly amorphous 

oxyhydroxide, which forms upon precipitation, to increasingly crystalline solids which form as 
the initial precipitate ages (Luoma and Davis, 1983). Freshly precipitated amorphous iron oxides 
have greater metal binding capacity than the crystalline forms because the former present greater 

specific surface area (-600 m2 g4) than the later (e. g. goethite has an area of 30-50 m2 g'1) as 
crystallization reduces the surface area of the solid (Luoma and Davis, 1983). The difference on 
metal sorption capacity of different forms of iron oxyhydroxides indicate that the predominance 
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of one or another form in a particular sediment will be reflected in the amount of metal bound 

to iron species in that sediment. Therefore, a determination of total iron in the sediment surface 

can only be used as a rough indicator of iron hydroxides content in such sediment, but the 

capacity of those oxides will depend on the particular forms present and can not be determined 

with precision with this particular determination. 

The binding capacities of hydrous manganese oxides are similar to those for amorphous iron 

oxides, but significantly greater than the capacities of crystalline hydrous iron oxides (Luoma and 

Davis, 1983). Manganese in sediments, however, may occur simultaneously as manganese oxides, 

manganese carbonate and organically bound manganese (Luoma and Davis, 1983), therefore, as 

in the case of iron, the determination of total manganese in the surface of the sediments can only 

be used a rough indicator of the manganese oxide content in these surfaces. It is important to 

mention, however, that at present there are no methods 
quantitatively 

differentiate either cr 2 

amorphous from the various crystalline forms of iron oxides, - or the various forms of manganese ý--- 

oxides in the sediments; therefore, the study of possible metal-sediment associations with iron 

or manganese oxides through statistical analysis remains as a useful option. 

4.1.4.1. Iron concentrations in fine sediments 

The distribution of the percentage of iron in the fine sediments is shown in Figure 4.7a. The 

maximum values were found in the central region of the sampling grid along an axis in an east- 

west line. This line included stations K-8, L-9 (both within the SE of Site SI), M-10, N-10 and 

Q-9 with concentrations of 3.06%, 4.54% (maximum), 3.22%, 4.52% and 4.30% respectively. 

The mean iron concentration for the whole region (67 samples) was 2.18 %. Most samples in the 

area to the west and north of Site SI presented values in the range of 1.70% to 2.00%, the only 

exception beivt at station G-9 showing an iron concentration of 2.58% (see Appendix B. 1). k- 
Concentrations in the Burbo Bight area were not particularly elevated showing values within a 

range of 1.61 % (sample YY-3) to 2.29 % (sample YY-2), these values . were close to, or below 

the mean concentration for the whole region. The area of lowest iron concentrations in fine 

sediments was found in a zone to the northwest outside the Queen's Channel mouth, near Site 
Z, with values of 1.36% (minimum), 1.43% and 1.40% at stations T-10, T-12 and T-14 (Site Z) 

respectively. 

- The distribution of iron in the fine fraction (Fig. 4.7a) shows no particular enrichment of this 
metal at the stations near the Mersey Estuary nor at the stations near Site Z. This observation 
indicates that the iron inputs from the Mersey River and from the discharges of dredged material 
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into Liverpool Bay do not constitute significant sources of contamination of sediments in the bay 

with this element. The area of highest iron concentrations in the central region of the sampling 

grid extending eastward from Site SI, may reflect the inputs of sewage sludge derived iron. 

However, the concentration of this metal in the sewage sludge analysed in this study (-1.98%), 

suggests that sewage sludge disposal would not contribute to a significant enrichment of iron 

above the possible natural levels in the bay; that is, if the fine fraction of one particular sediment 

sample consisted of 100% sludge particles, the iron concentration for this fraction in that 

particular sample would be similar to the average concentration for the whole bay (2.18%). 

Campbell et al. (WRc unpublished report for North West Water Authority, England) reported iron 

concentrations around 2% in digested sludge samples from Davyhulme (Manchester) sewage 

treatment works from which a large proportion of the sludges discharged at Site SI originate. 

These authors concluded that the iron, manganese and nickel in these sludges may result from 

the supply of these elements in particulate form from non-industrial sources, such as runoff and 

weathering. Therefore, as particles in the sewage sludges discharged at Liverpool Bay do not 

seem to be enriched in iron above natural levels during sludge treatment, it is unlikely that the 

disposal of sewage sludge would be reflected in an enrichment of this metal in the sediments 

from this area. 
Kiff (1984) studied the concentration of some metals in different grain size fractions in 

sediments at four sites in Liverpool Bay and suggested that iron and manganese showed 

distributions indicating a predominance of natural sources for these metals; evidence of relatively 

high inputs of iron from natural sources was found by Kiff (1984) as high concentrations of 

magnetite (Fe304) and chromite (FeCr2O4) were present in the heavy mineral fractions analysed. 

The iron concentrations in the finest fractions observed by Kiff (1984) were 

within the range of concentrations observed in the present study. Rowlatt (1988) determined iron 

concentrations in sediments from Liverpool Docks, the Mersey Estuary, and several samples from 

Burbo Bight. This author analysed bulk sediments, therefore, his results are only comparable with 
the calculated values for the total sediments from this study. The concentrations in the total 

sediments from the Burbo Bight area in the present study ranged from 0.80 to 1.2%, these results 
are consistent with the values reported by Rowlatt (1988) in this particular area. In spite of the 
importance of iron as a metal carrier in aquatic systems, no previous studies were found in the 
literature (apart from the two mentioned above) reporting iron concentrations in sediments from 
Liverpool Bay, therefore, the present study may provide the first relatively large data set 
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reporting this variable, which is important in geochemical studies of trace elements in marine 

sediments. 
The distribution of iron in fine sediments (Fig. 4.7a) is, in general, similar to the distribution 

of organic carbon (Fig. 4.4a). The relationship amongst these two variables can be observed in 

Figure 4.8a and is reflected in a significant correlation coefficient (r=0.539, p«0.001). A 

correlation between iron and organic carbon in sediments has often been reported (Sholkovitz et 

al., 1978; Forstner and Wittmann, 1979; Olsen et al., 1982; Luoma and Davis, 1983). Iron and 

organic materials tend to form surface coatings on particles and usually correlate well with the 

amount of fine sediment in a sample as a function of the available surface area (Luoma and 

Davis, 1983), therefore, the significant correlation between organic carbon and iron in the fine 

sediments in the present study is probably a result of a covariance of both variables (rather than 

a direct chemical association between iron and organic materials) as a function of the available 

surface area for the formation of coatings. However, the correlation can also be a result of a close 

physicochemical association between iron and organic material in the sediments (e. g. through the 

formation of iron-organic colloids, Sholkovitz et al., 1978); this possible association in the 

sediment has been observed in the water column in Liverpool Bay where, in a study of chemical 

speciation of some metals, Nimmo et al. (1989) observed significant iron-organic associations. 

With the information available in the present study it is not possible to establish the exact cause 

of the iron-organic carbon correlation, however, it is possible that both factors mentioned above 

are playing a role in the sediments analysed in this study. 

The relationship between the iron in fine sediments and the amount of fines in the total 

fraction is presented in Figure 4.8b. The correlation coefficient between the iron concentration 

and the logarithm of the fine fraction concentration (r=-0.430, p<0.001) indicates that, as in the 

case of the organic carbon, higher concentrations were present in sediments where the fine 

fraction was lower. This observation, as in the case of the organic carbon, may suggest that the 
fine fraction in the sediments with lower percentage of fines may contain a larger proportion of 

small sized particles such as clays (see discussion for the aluminium distribution), which provide 
higher surface areas for the precipitation of organic and inorganic coatings. Hornung (1986; cited 
by Cauwet, 1987) reported that the proportion of large grained sediment (e. g. sands) does not 
affect the distribution of metals in the fine fraction, if the latter remains higher than 5%, but if 

the fine sediment represents only a very small fraction, the enrichment effect is enhanced and 
metal concentrations in fine particles are higher. Unfortunately, Cauwet (1987) did not discussed 
the possible reasons for this enrichment effect. Enrichment in sediments with low fines was not 
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Fig. 4.7. Distribution of iron concentrations (%) in (a) the fine fraction, (b) coarse fraction, and 
of manganese concentrations (µg g'') in the (c) fine fraction and (d) coarse fraction. 
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thg cases of 

only observed inniron and organic carbon " in this study, but was also observedlor 4- 

most of the other elements (except mercury) and particularly in the manganese concentrations 

discussed below. 

4.1.4.2. Iron concentrations in the coarse fraction 

Figure 4.7b shows the distribution of iron in coarse sediments. This figure shows, an 

enrichment area in the central region, similar to that for iron in fine sediments (Fig. 4.7a). 

Concentration values of 0.36%, 0.38%, 0.39% and 0.40% (maximum) were found in samples 

from stations M-10, N-9, P-9 and Q-9 respectively. In contrast to the iron in fine sediments, iron 

in the coarse fraction presents an enrichment in the samples west to Site SI. Samples from 

transects G and H had a range from 0.35% in samples G-7 and H-8, to 0.39% in samples G-9, 

H-10 and H-12. The lowest values were recorded in the south at stations M-6, N-7, P-6 and P-8 

with concentrations of 0.25 %, 0.23 % 0.20 % (minimum) and 0.25 % respectively. The mean value 

for all samples (67) was 0.31 %. Iron in the coarse sediments from Burbo Bight presented a wide 

range from 0.28% in samples YY-1 and YY-2 to 0.38% in sample YY-3. 

It is difficult to determine from the distribution pattern presented in Figure 4.7b, the possible 

sources of iron in the coarse sediments. The correlation between iron in the coarse sediments 

with iron in the fine sediments was non significant, indicating that there was no overall 

relationship between the iron in the different grain sizes, however, the highest values in the 

central region were present in both fractions indicating a possible common source. The amount 

of fine sediments in three of the samples with highest iron in the coarse sediments (stations N-9, 

P-9 and Q-9) was 0.64,0.89 and 0.31 %, therefore, it seems unlikely that the high iron 

concentrations in these samples were a result of iron transfer from the coexisting fine particles. 
It is possible that part of the relatively high iron values may result from iron inputs in solution 
from the rivers Dee and Mersey as some of the coarse sediments from stations nearest their 

mouths present high concentrations; once in the bay iron precipitation from solution may occur 
in coarse particle surfaces. Stations in the Burbo Bight (except YY-3) had iron concentrations 
in coarse sediments near or below the mean value (around 0.31%), therefore, considering that 
these samples are the most influenced by the River Mersey, if 

_ 
inputs from the Mersey are 

important for iron enrichment in coarse particles, large amounts of fine material and organic 
matter in these samples may be promoting re-dissolution or limiting iron precipitation due to low 
redox potentials in which iron oxide formation is less favourable (Forstner and Wittmann, 1979). 
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The high concentrations in the region to the west of Site SI are difficult to explain. According 

to sand transport patterns in this region (e. g. see McLaren, 1987), these coarse particles are being 

transported from offshore toward the east. In Figure 4.7b, the decreasing iron concentrations 

towards the central parts (except zone of high values) of the sampling grid may suggest that as 

these coarse particles are being transported, iron is being lost from their surfaces, however, the 

mechanism responsible for this removal would difficult to assess, although could be explained 

as a result of abrasion of the coatings as suggested by Cerling and Turner (1982) for iron and 

manganese release from riverine coarse (1.2 to' 3.3 mm in diameter) sediments. Another 

possibility is that, within the sand fraction, the coarser sand populations that seem to be dominant 
K 

in the area west from Site SI (Norton et al., 1984a) contain higher iron concentration that the 

finer sandswmore abundant in the eastern sector of Liverpool Bay (Norton et al., 1984a). Iron and q-- 

manganese enrichment in coarse sands, in relation to finer sands, has been previously reported 

in riverine sediments (Cerling and Turner, 1982; Brook and Moore, 1988). Brook and Moore 

(1988) quoted several other studies fording this enrichment in coarse sediments and explained it 

as probably a result of an increase in iron and manganese coating thickness with increasing 

particle size, either due to long residence times of coarse particles in oxygenated, relatively high 

velocity currents, or to greater supply of iron and manganese oxides in the coarser, more 

permeable (more exposed) sediments than finer, less permeable material. 
As in the case of the fine fraction, iron and organic matter in the coarse sediments were 

correlated (r=0.368, p=0.002) although in this case the correlation is weaker. Figure 4.8c shows 

that there is a general trend for iron concentrations in the coarse sediments to increase as the 

organic matter content in the sediments increases. This general trend indicates that both variables 

are probably being partially controlled by a common factor, probably 'a physicochemical iron- 

organic matter association as the role of the surface area in these coarse particles may be less 

important that in the fine sediments. However, as indicated by the dispersion of the data and by 

the significant but low correlation, different factors controlling these variables may be playing 

a more important role. In contrast to the organic matter, iron in coarse sediments does not 
correlate with the amount of fine fraction in the total sediment. In the case of the organic matter 
the correlation was explained as a possible transfer from the abundant fine particles to the coarse 
particles probably just by physical contact between particles, therefore, this transfer may not 
occur with iron as the concentration of iron in the coarse particles is independent of the amount 
of surrounding fine particles. °"--, - 
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4.1.4.3. Manganese in fine sediments 
The distribution of manganese concentrations in fine sediments is shown in Figure 4.7c. An 

enrichment of this metal can be observed in the central-southern part of the sampling area, 

including the southern part of Site SI. The highest values were found at stations J-9, K-8, L-9, 

L-10, M-6, P-10 and Q-9 with concentrations of 5500,10200,22900 (maximum), 8700,13700, 

6100 and 8400 pg g'1 respectively. Values decreased towards the northwestern part of the 

sampling grid where concentrations lower than 1000, pg g'1 werefound. The lowest 

concentrations were found at stations J-11, J-13, K-10, K-11, L-11, L-12, L-13 and M-12 with 

values no higher than 600 pg g'' and a minimum of 530 pg g'' at station J-1 1. The mean 

concentration for all samples analysed (67) was 2549pg g'1. In the Burbo Bank area manganese 

concentrations were between 1050 (station YY-3) and 1490 pg g'1 (station YY-2). Low 

manganese concentrations were also found at stations T-12 and T-14 (Site Z) with values of 870 

and 680 pg g'1 respectively. 

The distribution of manganese in fine sediments was, in general, similar to the iron distribution 

(see Fig. 4.7c and 4.7a). This similarity is reflected in a significant correlation coefficient 

(r=0.638, p«0.001) and is also represented in a plot of manganese versus iron shown in Figure 

4.9a. As in the case of iron, there seem to be no significant inputs of manganese from the River 

Mersey or from the discharges of dredged spoil in Liverpool Bay. As in the case of iron, the 

possible role of dumping sewage sludge in the manganese enrichment in the central area 
including part of, Site SI can be evaluated from the concentrations of this metal in sewage 

sludges. The concentration of manganese in the digested sludge analysed in the present study was 

642 pg g'1; this value is similar to the concentration for Davyhulme works digested sludge 

reported by Campbell et al. (WRc unpublished report for North West Water Authority, England) 

of 661 pg g''. The concentration of manganese in the sludge was more than an order of 

magnitude lower than the concentration at stations with highest manganese values (i. e. L-9, M-6, 

K-8, Q-9 and L-10) above 8000 pg g'1. Concentrations in the sludge were approximately only 
25% of the mean concentration (2549 pg g') for the whole area, therefore, it is unlikely that 

sewage sludge disposal in Liverpool Bay contributes significantly to the manganese levels 

observed in the sediments. 

The possibility of natural inputs of manganese had to be explored as the inputs of- sewage, 
dredged spoil and discharges from the Mersey did not seem to explain, the elevation of 
manganese concentrations in fine sediments. The area of higher manganese concentrations was 
in the south, nearer to the North Wales coast, probably suggesting inputs from the land in this 
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region. The presence of mineralized areas in North Wales is well known as mining of minerals 

such as sphalerite and galena was an important activity in the past (Elderfield et al., 1971). High 

concentrations of several elements including manganese are reported for sediments in this area 

in a geochemical atlas of England and Wales (Imperial College of Science and Technology, 

1978). Manganese concentrations above 4000 pg g" were reported in this atlas, in samples of 

sediments <200 pm in diameter taken from tributaries, the main stream and the estuary of the 

River Conwy draining into Liverpool Bay; it is possible that if metal analyses had been carried 

on the fraction <90 pm fraction, higher concentrations would have been observed. Therefore, 

natural inputs of manganese from the mineralized areas of North Wales seems to be a reasonable 

explanation for the observed high values in fine sediments in Liverpool Bay. 

Manganese in fine sediments was significantly (p«0.001) correlated with the organic carbon 

content in this fraction (r=0.633), with aluminium (r=-0.657) andAfine sediment content <-- 

(r=-0.813) in the total sediment. Figure 4.9b shows a general trend of manganese concentrations 
increasing as the organic carbon concentrations increase. This relationship between manganese 

and carbon is probably a result of a covariance as a function of the available surface area, rather 

than a physicochemical association between these two variables. The stronger correlation of 

manganese with the percentage of fine fraction in the total sediment, as compared to that with 

organic carbon, may be evidence of a strong control of manganese concentrations by the grain 

size composition. The relationship between manganese in fine sediments and the fine sediment 

content in total sediments is presented in Figure 4.9c, and the relationship with the aluminium 

content is presented in Figure 4.9d (note that data are plotted as logarithm values). These figures 

show that manganese concentrations increase rapidly as the amount of fine sediments in the 

sample decreases. The same behaviour was observed for iron and carbon concentrations (Figs. 

4.8b and 4.5a respectively), however, the enrichment of manganese in samples with lower fine 

sediment contents is much more evident. For example, the highest manganese concentrations 

were above 8000 pg g't, that is, more than three times the average for the whole region (2549 

pg g'1) and the maximum (22900 pg g') was nine times higher than the mean. On the other 
hand, the maximum iron value (4.54%) was only 2.1 times the mean concentration (2.18%) 

whereas the highest carbon concentration (3.05%) was only 1.5 times higher than the mean 
(2.03%). From figures 4.9c and 4.9d it can be seen that the general trend in the relationship 
between manganese and grain size descriptors is somewhat disrupted by the samples with highest 

amounts of fine sediments. These samples, forming a distinctive group of seven in the lower right 
of the plots, corresponded to the stations in the Burbo Bight area (NW-24, YY-1, YY-2, YY-3 
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and YY-4), station T-9 (near Burbo Bight) and station P-11. The position of the samples may 

suggest that inputs from the River Mersey may be influencing the manganese concentrations in 

these stations, as compared to the remaining stations where only one common source is the main 

contributor to the manganese observed in these sediments. When the seven samples mentioned 

above were not included in the correlation analyzes, the correlation coefficients between 

manganese and aluminium, and manganese and percentage fine fraction increased significantly 

to r=-0.806 and ra-0.879 respectively. A regression analysis indicated that approximately 77% 

of the variance in the manganese concentrations in fine sediments could be predicted by the 

variations in the amount of fine material in the total sample; the regression equation obtained 

was: 

1og-Mnr,,. - 3.38 - 0.527 log-%fine, (n=60, F=198, p«0.001). 

4.1.4.4. Manganese in coarse sediments 
Figure 4.7d shows the distribution of manganese in the coarse fraction. As in the case of iron 

(Fig. 4.7b) this distribution shows an enrichment of manganese in the central region along an 

east-west line, with the maximum concentration (440 µg g'`) in sample Q-9, and a region of high 

values (higher than 300 pg g4) in most of the samples to the southeast of transect S. excluding 

stations YY-1 and YY-2 showing values lower than 200 µg g'1. The lowest value was found at 

station N-12 (92 pg g'1) within an area of values lower than 150 pg g"1 including stations K-10, 

K-11, L-11, M-11, M-12, N-12, P-12 and Q-11. The sample from Site Z (station T-14) also had 

a low value of 119 pg g'1. The mean concentration for the whole region was 222 µg g'1. 

The similarity in the distributions of manganese and iron in the central region may suggest a 

common source of these metals in this particular section of the bay. A significant correlation 
(r=0.526, p<0.001) between these two elements was observed, this correlation is reflected in the 

similarities observed in figures 4.7b and 4.7d. However, when comparing these two figures, 

obvious differences appear as also indicated by the magnitude of the correlation coefficient and 
the scatter of the data presented in Figure 4.10a. The main difference between the distributions 

of iron and manganese in the coarse fraction was that manganese did not show the gradient of 
increasing concentrations towards the west and northwest of Site SI, previously discussed for the 
iron distribution. The region near Burbo Bight with relatively high values (>300 pg g1) as 
compared to the mean, included stations YY-3, YY-4, NW-24, U-9, U-11, T-8, T-9, T-10 and 
S-9. Some of these stations are under the influence of the discharges from the River Mersey and 
Probably from the River Dee, therefore, it is possible that the content of manganese in coarse 
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sediments may be significantly affected by riverine discharges, as opposed to the manganese 

content in fine sediments which do not appear significantly enriched by these inputs. 

Manganese in the coarse sediments, as opposed to iron, did not present a correlation with the 

organic matter content, and -showed a weak linear correlation (r=-0.313, p=0.010) with the 

amount of fine sediments in the total fraction, after a logarithmic transformation of the data. The 

relationship between manganese in coarse sediments and the amount of fines in the sample 

presented in Figure 4.1Ob, shows a large scatter in the data which does not allow one to draw 

a firm conclusion on the significance of this relationship. However, when the seven samples 

(P-11, U-9, NW-24, YY-1, YY-2, YY-3 and YY-4) with the highest amount of fine sediments 

(higher than 26%) were excluded from the correlation analysis, the correlation between 

manganese concentrations in the coarse fraction and the percentage of fines increased 

significantly to a value of r=-0.515 (n=60, p<0.001). This observation indicates that if the 

muddiest samples are not considered, higher concentrations of manganese in the coarse fraction 

(as in the fine fraction) are to be found, in general, in sediments with lower concentrations of fine 

particles. 

4.2. TRACE ELEMENT DISTRIBUTIONS 

4.2.1. Mercury 

4.2.1.1. Mercury in the fine fraction 

The distribution of mercury in the fine sediments, shown in Figure 4.1 la, Skats A"'C tw ý--- i 

fe the distributions of the fineA fraction (Fig. 4.2a) and +ho. t of ý-! 
aluminium in the total sediments (Fig. 4.2c). Mercury concentrations lower than 0.25 pg g` were 
found in the southern region, with a minimum of 0.02 pg g'' at station M-6, and values around 

or lower than 0.1 pg g` at stations M-8, N-7, N-11, P-6, P-8, P-10 and Q-9. The mean value 
for the whole sampling region (67 samples) was 0.56 pg g'`. Three areas of mercury enrichment 

can be observed in Figure 4.11a. The first is centred in Site SI around station K-10 with a 

concentration of 1.41 pg g'; the second is south of Site Y where the maximum value for the 

whole sampling grid (2.09 pg g'') was found at station P-11; the third and larger area was found 

around the stations nearest to the Queen's Channel and the Burbo Bight, with most values over 
1.00 pg g't and up to 1.56 pg g-' at station NW-24. 

The concentrations of mercury reported here are, in general, within ranges previously reported 
for this area in a similar grain size fraction. For example, McLaren (1987) reported a range of 
mercury concentrations (in sediments <63 pm) between 0.78 and 1.88 pg g1 and Norton et al. 
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Fig. 4.11. Distribution of mercury in (a) fine sediments and (b) coarse sediments, and of arsenic 
in (c) fine sediments and (d) coarse sediments. Concentrations values are in µg g'1. 
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(1984b) reported concentrations between 0.7 and 1.8 pg g'1 in sediments <90 pm, both reports 

included a similar sampling grid to that used in the present study. Law et al. (1989) reported 

values from 0.08 to 2.6 pg g't in <90pm sediments from the whole northeastern Irish sea with 

the highest concentrations occurring near the Mersey. 

The distribution of mercury in the fine fraction shown in Figure 4.1 la reveals the three main 

sources of this metal into Liverpool Bay. The largest mercury source into the bay, as reported 

by several authors (e. g. Jones, 1978; Campbell et al., 1986), is that from the River Mersey and 

its estuary which receive substantial amounts of mercury-contaminated effluents from chlor-alkali 

industries (Campbell et al., 1986). The gradient of decreasing mercury concentrations westwards 

from the Queen's Channel is evidence of the Mersey inputs, however, these inputs seem to be 

partially superimposed to inputs from discharges of dredging spoils at sites Y and Z which also 

show nearby mercury enrichments. Evidence of the effects of sewage dumping on mercury levels 

in the sediments is shown by the enrichment in the middle of Site SI, however, as previously 

discussed, sediment and sludge transport is towards the east of Liverpool Bay, therefore, part of 

the sewage derived mercury may be contributing to the enrichment observed in the area near the 

Mersey. Jones (1978) calculated mercury inputs into Liverpool Bay from the Mersey as 5-10 

tonnes per year, from dredged spoil as 3-7 tonnes per year and from sewage sludge dumping as 

1-2 tonnes per year, therefore, the high values in the eastern part of Liverpool Bay (Fig. 4. lla) 

may be largely due to the discharges from the main source of mercury into Liverpool Bay, i. e. 

the Mersey river and estuary. 

Mercury in fine sediments presented a high correlation with both aluminium and fine fraction 

concentration in the total sediments. The correlation coefficient between mercury and the 

logarithm of the aluminium content was r=0.745 (p«0.001) whereas the correlation between the 
logarithm of mercury and the logarithm of the fine fraction was r=0.769 (p«0.001). The 

corresponding regression equations were 
Hg - 0321 + 1.90 log-%A1, (r2=56%, F=82), and 

log-Hg- -0.641 + 0.441 log- % fine, (r2=59 %, F=94). 

The correlations between mercury and the grain size descriptors indicate that the concentrations 

of mercury in fine sediments increased as the content of fine sediments in the total sediment 
increased. These relationships, represented in Figures 4.12a and 4.12b, showed that the highest 

concentrations of mercury in the fine fraction were found in the muddiest samples, which are 
particularly distinguishable in Figure= 4.12a as a group of seven' points' with aluminium 
(logarithm) values ̀higher than, 0.40 (stations P-11, U-9, NW-24 and YY-1 to YY-4). Mercury 
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in the fine fraction did not show positive significant correlations with any other sediment 

parameter, indicating that the mercury in Liverpool Bay fine sediments is mainly controlled by 

the fine particle content in the total sediment, however, as showed by the determination 

coefficients from the regression analyses and by the dispersion in the data in figures 4.12a and 

b, only approximately 60% of the mercury variance can be predicted by the variations in fine 

particle content of the sediments. 
Thomas (1972) summarized the adsorption processes by which mercury may be bound in a 

sediment as follows: (1) cationic adsorption or co-precipitation adsorption on to iron oxide 

surfaces; (2) irreversible adsorption of mercury by sulfide surfaces; (3) mercury ion-humate 

complexes stable between pH 3 to 6; (4) covalently-bonded sulfo-organometallic compounds; and 

(5) adsorption by clays. Several authors (e. g. Rae and Aston 1981,1982; Craig and Moreton, 

1986; Langston, 1985; Taylor, 1986) have reported a high correlation between the organic carbon 

and the mercury content in sediments from the River Mersey and its estuary. This observation, 

also reported in other areas (e. g. Crecelius et al., 1975), has led some of these authors to the 

conclusion that the association of the mercury with the sediment is through interactions with the 

organic matter. However, most of these studies have been carried on bulk sediments and high 

correlations with the amount of fine material within the samples were also reported, and as 
Taylor (1986) mentioned, although significant correlations have been shown in the Mersey, any 

causal relationship has still not been proven. Norton et al. (1984a) also reported significant 

correlations between mercury and carbon in fine sediments in Liverpool Bay, although the 

significance in the correlations changed between surveys and even reported a non-significant 

correlation in one of the surveys (see Table 8 in Norton et al., 1984a). On the other hand, very 
low or non-significant correlations have been observed for some freshwater, coastal and marine 

sediments in other areas (Cranston, 1976; Kemp et al., 1976; Thomas, 1972; Taylor, 1986), this 

observation indicating that the mercury association with organic matter in sediments is not a 

general rule. In fact, Thomas (1972) and Senaratne and Dissanayake (1989) reported mercury 

associations with iron and manganese hydroxides in lake and coastal marine sediments 

respectively. 

Based on. observations of Rae and Aston (1981) on coastal intertidal sediments in the 
northeastern Irish Sea including Liverpool Bay, on studies by Norton et al. (1984a) on Liverpool 

Bay sediments, and on the studies in the River Mersey mentioned above, a correlation between 

mercury and the organic matter and between mercury and content of fines in sediments from 
Liverpool Bay in the present study could be expected. However, although the correlation with 
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the content of fine particles in the samples was observed, 
the tats caibaH 

a significant negative correlation was observedA(r0.411, 

p=0.001 for the logarithm of Hg vs organic carbon) Ibis observation indicated that there was in 

general, an opposite trend between these two variables (see Fig. 4.12c). Significant negative 

correlations between the logarithm of the mercury concentration and the logarithm of the 

manganese concentration p«0.001) and the logarithm of mercury versus the organic ý-- 

nitrogen concentration (r=-0.411, p=0.001) were also observed. 

The negative correlation of mercury and organic carbon does not necessarily reflect a lack of 

a mercury-organic matter association, but as also indicated by the negative correlation with 

manganese, is probably only a result of the strong negative correlation between organic carbon 

(and manganese) and the amount of fine material in the samples. As already indicated in the 

discussion of carbon, the organic carbon was particularly enriched in the sediments (see Fig. 

4.4a) containing very low amounts of fine material particularly seen in the southern region (see 

Fig. 4.2a), whereas concentrations of mercury (Fig. 4.11a) were lowest in this area of the bay. 

The complexity of the relationship between mercury and carbon is a result of the possible 
dcrý vcd 4. aß.. different sources of these substances. Whereas mercury is mainly A anthropogenic sources and 

is mainly associated to terrigenous organic material in the River Mersey system, organic matter 
in sediments from the bay may be derived from the western section of the Irish Sea, from local 

inputs mainly due to primary production, from riverine inputs and from discharges of wastes in 

the different disposal sites. The natural marine inputs of organic matter into sediments from 

Liverpool Bay may be overshadowing the mercury-organic matter relationship previously reported 
in sediments in the bay (Rae and Aston, 1981; Norton et al., 1984a) and in sediments from the 
Mersey river and estuary (Rae and Aston 1981,1982; Craig and Moreton, 1986; Langston, 1985; 

Taylor, 1986) . Evidence supporting a possible specific association between mercury and land 

derived organic matter in sediments from Liverpool Bay, is provided by a significant (p<0.001) 

correlation observed between the mercury and the carbon stable isotopes (r--0.450). This 

relationship, presented in Figure 4.12d, indicates that mercury concentrations in fine sediments 

generally increase as the 813C values become more negative, and as already discussed, more 
negative 513C values indicate higher proportions of land derived organic matter; in other words, 
Figure 4.12d indicates that mercury increases as the proportion of land derived organic carbon 
increases for these samples. 
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4.2.1.2. Mercury in the coarse fraction I 
As in the fine fraction, a gradient of increasing concentrations from south to north was present 

for the distribution of mercury in the coarse fraction (Fig. 4.11b). The mean mercury 

concentration in the coarse material for all (70) samples was 0.030 µg g''. In the southern region 

of low values, concentrations for most samples were lower than 0.010 pg g4 and a minimum of 

0.003 pg g'1 was found a station S-7. Values higher than 0.020 pg g't were found at stations in 

the northern region with concentrations higher than 0.060 pg g' in some samples (M-12, Q-13, 

R-12, S-13 and T-12). The highest values were found at stations in Burbo Bight with 

concentrations in the range of 0.074 pg g"t (station YY-4) to 0.178 pg g'' (station YY-3). Stations 

T-14 and U-15, the nearest to Site Z, presented concentrations below the mean value (0.024 and 

0.021 pg g"1 respectively). It is interesting to note that the concentrations at stations U-11 and 

T-10, immediately out of the mouth of the Queen's Channel were very low (0.005 and 0.004 pg 

gl respectively). 
In general, the distribution of mercury in both fine and coarse fractions was similar. A high 

correlation between mercury in fine and coarse fractions was observed (r=0.684 after a 

logarithmic transformation of both variables), and as shown in Figure 4.13a, the highest 

variability in this relationship occurred at low mercury concentrations in the coarse fraction 

(values lower than -2.15 in logarithmic scale, equivalent to values lower than 0.007 µg g'1). If 

concentrations lower than 0.007 pg g'' in the coarse fraction were excluded, the correlation 

between fine and coarse fractions increased to r=0.798 (n=56), this correlation indicates that the 

mercury distribution in the coarse fraction could be largely described by the distribution in the 

fine sediments through a linear regression 

log-Hg,.,,, - -1.34 + 0.659 log-Hgß�e, (r2=63%, F=94.4). 

The correlation between mercury in fine and coarse fractions is a result of the large effect of 

the amount of fine particles in the total sediment on the mercury levels in fine and coarse 

particles. After a logarithmic transformation of the data, large correlations of the mercury in the 

coarse fraction with the aluminium and fine fraction content in the total sediment were observed 
(r=0.853 and, 0.822 respectively). These correlations show that the parameters related to the j-, 

amount of fine fraction in the total sediments were good predictors of the mercury content in the 

coarse sediments (see also Figs. 4.13b and c). The regression equations were: 
1og-ftos 

. se - -1.95 + 1.83 log- % Al, (r2=72%, F=182), and 
log-H&.,,,. - -1.91 + 0.428 log-% fine fraction, (r2=68%, F=141). 
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A positive significant (r=0.666, p«0.001) correlation was observed between mercury 

concentrations and the organic matter content in the coarse sediments (see Fig. 4.13d). Although, 

as previously indicated, a correlation itself does not confirm a chemical association, the lack of 

correlation between the mercury contents and other geochemical parameters (e. g. iron and 

manganese contents) in the coarse fraction may suggest that mercury in the coarse sediments is 

specifically associatedwt+h the organic matter at the surface of coarse particles. The previous 4- 

observation, together with the fact that a high correlation between the organic matter content in 

the coarse fraction and the amount of fine particles in the total sediment was also observed (see 

Section 4.1.3. in this Chapter), may suggest that the mercury is being transferred from the fine 

particles associated with the terrigenous organic matter to the coarse particles, presumably by 

physical contact between particulates. 
In summary, the distribution presented in Figure 4.1 lb indicates that mercury in coarse 

sediments largely originates from the Mersey. The largest mercury concentrations, observed in 

the Burbo Bight samples, coincide with the largest organic matter values (see Figs. 4.13d and 

4.4c) and the largest amount of fine material (Fig. 4.2a and 4.2c). The low values immediately 

outside Queen's Channel result from relatively low amounts of fine material (see Fig. 4.2a) being 

deposited in this area as a result of intense tidal currents, therefore, this high currents may be 

maintaining coarse sediments in this section relatively clean. The area of high values to the north 

and west of Queen's Channel is also probably due to the Mersey inputs as coarse sediments 

closer to Site Z (stations T-14 and U-15) probably derived from the dredged spoil discharges, 

presented lower concentrations than the nearby samples. The high concentrations in the 

northeastern area of Site SI coincide with samples containing high amounts of fine particles and 

also high organic matter values (see Figs. 4.2a and 4.4c), these high values are probably a result 

of mercury inputs from sewage sludge disposal, however, this hypothesis is difficult to confirm 

with the available information. The region of low values in the south probably resulted from the 

lack of deposition of fine particles in this relatively shallow area were currents intensify, leaving 

the coarse sediments relatively free of the effects of the contact with contaminated fine particles. 
It is interesting, however, that within this area a sample was present (station J-7) which contained 

a high amount of fines (-6%) compared with the surrounding samples and a slight organic matter 

and mercury enrichment in the coarse sediments. This relative enrichment probably reflects the 

recent inputs of sewage sludge that, as previously mentioned in the S13C discussion (see Section 

4.1.3. ), have been concentrated in this section of the dumping ground from early 1988 (P. C. 

Head, North West Water, pers. comm. ). 
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4.2.2. Arsenic 

4.2.2.1. Arsenic in the fine fraction 

The distribution of arsenic in fine sediments (Fig. 4.11c) was very similar to those of iron (Fig. 

4.7a) and manganese (Fig. 4.7c). The maximum concentration of 144 pg g` was found at station 

L-9. Most of the stations in the central region of the sampling grid had high values with 

concentrations above 30 pg g'`, and values above 50 pg g'1 at stations G-9, K-8, L-10, M-10, N- 

11, P-10 and a value of 131 pg g'` at station Q-9. The mean value for all samples (67) was 26 

pg g'`. The northwestern region, with values lower than 15 pg g'`, had a minimum of -9 pg g-' 

at station N-13. Samples form Burbo Bight had concentrations below the mean, between 16 pg 

g" (station YY-3) and 22 pg g-' (station YY-2). Samples near Site Z (e. g. T-12, T-14, U-15) also 

had concentrations below the mean (15,14 and 16 pg g` respectively). 
The distribution of arsenic in fine sediments (Fig. 4.11c) seems to indicate that the disposal 

of sewage sludge could be the cause of this element's enrichment in the central region of the 

sampling grid including the southern sector of Site SI. However, as in the case of iron and 

manganese, arsenic levels in the sewage sludge (16.2 pg g"`) are lower than the mean 

concentration for the whole region (-26 pg g') and nearly one order of magnitude lower than 

the highest recorded concentration at station L-9 (144 pg g`). Thus, the main source of arsenic 

into Liverpool Bay seems to be the natural inputs from the mineralized areas of North Wales; 

this hypothesis is based on previous reports of arsenic levels in this region. For example, 

Thornton et al. (1975) reported arsenic concentrations between 5 and 65 pg g-' in the fraction 

<200 'pm of sediments from the River Conwy tributaries draining mineralized areas in North 

Wales. Arsenic values in the <200 pm fraction higher than 150 pg g'`, and high values near the 

Conwy Estuary are reported in a geochemical atlas of England and Wales (Imperial College of 
Science and Technology, 1978). Other trace elements are also present in very high concentrations 
in the sediments of the tributaries and the estuary of the River Conwy, particularly zinc and lead, 

resulting from the mining activities of sphalerite and galena in the past (Elderfield et al., 1971). 

Therefore, mine tailings could be the source of the relatively high arsenic levels found in the fine 

fraction of the sediments analysed in this study. Unfortunately the arsenic data presented in this 

thesis could not be compared with other data for the region as there are no previous reports in 

the revised literature of arsenic in sediments from Liverpool Bay, however, natural enrichments 
of arsenic in coastal sediments have been previously reported for other regions. For example, 
Windom et al. (1989) reported arsenic enrichments in unpolluted coastal sediments of the 

southeast coast of U. S. A. of approximately seven times above the predicted natural levels, which 
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they attributed to inputs from phosphate rich minerals. Therefore, in contrast with mercury which 

mainly derives from anthropogenic inputs, arsenic levels in Liverpool Bay seem to be within the 

limits of the natural variability of this element. 
The highest correlations of arsenic with sediment parameters in the fine sediments were found 

with manganese and iron concentrations. The highest correlation (r=0.916, p«<0.001) between 

arsenic and manganese was obtained after a logarithmic transformation of both variables, this 

relationship is represented in Figure 4.14a and can be described by the following equation: 

log-Asp - -0.607 + 0.603 log-Mna.,, (r =84%, F=337). 

The correlation coefficient between arsenic and iron concentrations was r=0.806, and the 

regression equation describing this relationship (see also Fig. 4.14b) was: 

Asp - -40.5 + 30.3 Fen1e, (rz=64%, F=120). 

The high correlation of arsenic with iron and manganese was not unexpected as hydrous iron and 

manganese oxides have been reported as the main carrier phases of arsenic in freshwater and 

marine sediments (Langston, 1983,1985; Peterson and Carpenter, 1986; Belzile, 1988). 

Furthermore, it has been suggested that the arsenic is specifically associated to the iron 

component in aquatic particles (Edenborn et al., 1986; Belzile and Tessier, 1990; Carpenter et 

al., 1978; Mok and Wai, 1989), rather than to iron and manganese hydroxides indistinctively. 

This specific arsenic-iron association (according to Salomons and Forstner, 1984) may be due 

to the fact that under normal pH conditions in aquatic environments, S-MnO2, amongst other 

mineral phases, is negatively charged therefore exerts stronger affinity for transition metal cations 

(e. g. Cu, Ni and Zn), whereas iron oxides present a positive charge that permits the association 

of elements with aqueous anionic charge such as phosphate and arsenic. It is important, however, 

to mention that the possibility of arsenic uptake by manganese oxide phases in sediments has also 
been suggested. For example Takamatsu et al. (1985) concluded from their study of arsenic in 

lake sediments that hydrous manganese oxides, positively charged from the adsorption of Mn(II) 

ions, could play a significant role in the accumulation of arsenic on the surface of particulates. 

The possibility of a specific association of arsenic with iron or manganese was explored by 

analyzing the arsenic: iron and arsenic: manganese ratios in the fine sediments (see Figs. 4.15a-c). 

Assuming that the main source of arsenic and manganese into Liverpool Bay is common to both 

(i. e. the mineralized areas of North Wales), Figure 4.15a indicates that in sediments near the 

source (represented by high arsenic and iron values, see also Fig. 4.14b) arsenic is enriched in 

relation to iron and, as particles from the mineralized areas are transported within the bay, the 

arsenic appears to be diluted by the iron phase of fine particles with a different origin (e. g. from 

84 



4.14a 

2. 

2" 

r. 2 
rn 
0 
'ý' 1 
U 

.a1 
N 

C- 1. 

I. 

1" 

o. 

1 

1 

rn 

U 
c a) 

cl: 

4.14b 
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the western section of the Irish Sea) and the arsenic: iron ratio decreases almost linearly (in Fig. 

4.15a, r=0.624, p«0.001). Conversely, sediments near the source (represented by high 

manganese values in Figs. 4.15 b and c) present a low arsenic: manganese ratio indicating that, 

although both elements are present in high concentrations (see also Fig. 4.14a), manganese 

concentrations are proportionally much higher than arsenic. As particles from the mineralized 

areas are transported within the bay, arsenic remains more associated to the solid phase whereas 

manganese is mobilized more rapidly. Therefore, the arsenic: manganese ratio increases with 

distance from the source. The lower mobility of arsenic may be due to its ' association to iron 

phases that are in turn less mobile (less soluble) than manganese hydroxide solid phases in 

surface sediments (Edenborn, et al., 1986; Belzile and Tessier, 1990; Mok and Wai, 1989). The 

high correlation between arsenic and manganese may therefore indicate a common source rather 

than a direct geochemical association between these two elements. 

The arsenic: iron ratio in the fine fraction presented a high correlation with the amount of fines 

in the total sediments (r=-0.728, p«0.001, after logarithm transformation of both data sets). 

Figure 4.15d indicates that there was a clear tendency of the arsenic: iron ratio to decrease as the 

amount of fine material increased. Therefore, in general, muddier samples were depleted i nc--- 

arsenic when compared to samples with low fines, however, this general tendency was 

overshadowed in samples from Burbo Bight (see data points with values >1.40 in the logarithm 

of percentage of fine in Fig. 4.15d) probably due to arsenic inputs from the Mersey. When 

samples from the Burbo Bight region were excluded from the calculations, the correlation 

coefficient for the relationship presented in Figure 4.15d increased to r=-0.853 and the following 

regression equation was obtained: 

Iog-As: Fea�C - 1.07 - 0.243 log-%fine, (r2=72%, F=155, n=60). 

Not unexpectedly, a high correlation was also observed between arsenic in the fines and 

aluminium in the total sediment (r=-0.538 and -0.726 after, exclusion of the seven muddiest 

samples; both variables in logarithm). - 
A significant correlation was obtained for the arsenic (after logarithm transformation) and 

organic carbon concentrations (r=0.633, p«0.001), and also with organic nitrogen (r=0.647, 

p<0.001). This correlations could suggest a possible arsenic-organic matter association, however, 

the strong association between arsenic and iron/manganese hydrous oxides extensively reported 
(Langston, 1983,1985; Peterson and Carpenter, 1986; Belzile, 1988), and the fact that after the 
inclusion of carbon in a multiple regression analysis no significant increase in the variance of 
arsenic already explained by the iron content was observed, seem to suggest that the significant 
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correlation between carbon and arsenic in the fine fraction only reflects a covariance due to a 

similar effect of the amount of fine material in total sediments on both variables. 

4.2.2.2. Arsenic in the coarse fraction 

As in the case of arsenic in the fine fraction, arsenic in the coarse fraction (Fig. 4.11d) showed 

a similar distribution to iron (Fig. 4.7b) and manganese (Fig. 4.7d). A mean arsenic concentration 

value of 3.82 pg g'1 was obtained for all (70) samples. High concentrations in the central region 

were aligned in a west-east line along stations L-9 (4.73 µg g'1), M-9 (6.30 µg g'1), N-9 (6.12 

pg g'`), P-9 (7.38 µg g'1) and reaching the maximum at station Q-9 (8.22 pg g'1). Values above 

4.50 pg g'1 were also observed in samples from the west of Site SI at stations G-9, G-11 and H- 

10. Values above 5.00 pg g-' were registered in the eastern region at stations S-9, T-8 and U-11. 

Concentrations in the Burbo Bight area ranged between 3.60 pg g'1 (station YY-1) and 4.72 pg 

g'1 (station YY-3). The lowest concentrations were observed at stations Q-1 1 and P-10 (1.46 and 

1.82 pg g''), and at stations N-7 and N-8 (1.92 and 1.81 µg g'' respectively). 

The similarity between arsenic and iron, and arsenic and manganese distributions in coarse 

sediments indicates, as in the fine fraction, a possible strong geochemical association between 

these elements. High correlation coefficients (r=0.740 and 0.739, p«0.001) were observed 

between arsenic and both iron and manganese, these correlations are reflected in the high degree 

of linearity shown in Figure 4.16a and b. The arsenic: iron and arsenic: manganese ratios in the 

coarse sediments (Fig. 4.16c and d) presented a generally similar trend to that in the fine 

sediments (Fig. 4.15c and d), therefore, the same observation can be applied in both grain size 
fractions regarding the possible specific arsenic-iron association in the sediments from Liverpool 

Bay, and the discussion on the possible sources of iron in the coarse sediments presented in 

Section 4.1.4. may be applied to arsenic. Non-significant correlations were observed between 

arsenic in the coarse fraction and other important parameters such as organic matter, aluminium 

and the fine fraction content in the sediments. 

4.23. Cadmium 

4.2.3.1. Cadmium in the fine fraction 

The distribution of cadmium in fine sediments is shown in Figure 4.17a. In spite of the 

patchiness of the distribution, three areas of, cadmium enrichment can be identified. The largest 

enrichment zone was found in the southern region of the sewage disposal area, with 
concentrations higher than 0.75 pg g'1 in most samples and values above 1.20 µg g't at stations 
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Fig. 4.17. Distributions of cadmium in (a) fine sediments and (b) coarse sediments, and of 
chromium in (c) fine sediments and (c) coarse sediments. Concentration values are in 

µg g1. 
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G-9, H-8, J-9, K-8 and L-9. The maximum value of 2.46pg g"1 was found in sample P-11, 

centred in a patch of high values in the central part of the sampling grid, between Site SI and 

Queen's Channel. The average cadmium concentration for the whole region was 0.65 pg g'. 

There was also an enrichment of cadmium in samples near the Queen's Channel with a value up 

to 1.24 pg g'1 in sample T-9. Samples from the Burbo Bight showed a range of cadmium 

concentrations from 0.66 to 0.81 pg g'1, that is, concentrations in this area were only slightly 

above the mean concentration. Low concentrations were found toward the north and 

northwestern part of the sampling grid, where values were lower than 0.50 pg g'', and in some 

cases (stations J-13, L-13, N-10, N-11 and N-12) lower than 0.22 pg g1. The minimum cadmium 

concentration for the whole region was 0.11 pg g4 at station S-7. 

The distribution of cadmium in the fine sediments seems to reflect the main sources of this 

metal into the bay. This distribution, however, is difficult to explain based on possible specific 

cadmium associations with a particular sedimentary phase (or phases) as this metal, in contrast 

to any of the other of the elements analised, did not present significant correlations with any of 

the sediment parameters, with the exception of a low correlation (r=-0.32, p=0.008) with 813C. 

The correlation of cadmium with S13C, and its distribution (Fig. 4.17a) indicate that the main 

sources of this metal are the land derived discharges from the River Mersey and the sewage 

sludge disposal at Site SI. MAFF (1987) reported an estimation of cadmium loads discharged into 

Liverpool Bay of 1.6,2.7,3.7 and -121ilograms per tide from sewage sludge dumping, dredge 

spoil, other discharges (probably referring to direct trade and sewage effluents) and the Mersey 

Estuary respectively. 
Considering that cadmium inputs from the Mersey are much larger than other inputs it would 

probably be expected to find the highest concentrations near the Queen's Channel, however, the 
highest concentrations were found at station P-11 and in the southern part of Site SL The fact 

that cadmium levels in samples from the Burbo Bight (probably the area most influenced by the 
Mersey inputs) were lower than in other areas, may be due to the peculiar chemical behaviour 

of cadmium as compared to other trace. metals. Cadmium adsorption onto sediment particles is 
influenced by the salinity of the water, particularly the presence of chloride ions that tend to form 

complexes with cadmium, and decrease adsorption and favour desorption of cadmium from 

particles (Salomons and Eysink, 1981; Lion et al., 1982; Forstner, 1984; Comans and van Dijk, 
1988). Therefore, a large proportion of the cadmium entering Liverpool Bay from the Mersey 

runoff may remain in solution (according to Sadiq, 1989, the major chemical form of cadmium 
in standard seawater is CdCl2 ,a neutral species with a low affinity for sorption) in contrast to 
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other metals such as mercury which tends to remain strongly associated to the sediments and as 

a consecuence shows particularly high concentrations in the sediments from samples near to 

Queen's Channel including Burbo Bight. 

The lack of correlation with any particular phase observed in the present study may be, in part, 

related to the widely reported relatively low tendency of cadmium to adsorb onto particles as 

compared to other trace elements (Forstner and Wittmann, 1979; Olsen et al., 1982; Balistrieri 

and Murray, 1984). According to Sadiq (1989) the low tendency of cadmium to sorb may be the 

reason for contradicting reports on cadmium adsorption with regard to the specific phases to 

which this metal associates in sediments. For example, Davies-Colley et al. (1984) reported iron 

oxides as the main phase to which cadmium associates in aerobic estuarine sediments with 

relatively low contributions from organic and manganese phases. Cadmium associations with iron 

and manganese oxides have also been suggested by Rosental et al. (1986), Brook and Moore 

(1988) and others; these reports also suggest a minor association with organic matter. Windom 

et al. (1989) reported the organic phases as probably the most important carriers of cadmium in 

unpolluted sediments from the southeast coast of U. S. A., whereas Lion et al. (1982) also 

suggested a control of cadmium adsorption by organic coatings. Brook and Moore (1988) 

indicated an strong tendency of cadmium (also manganese and zinc) to increase with decreasing 

particle size, whereas Libert (1987) suggested that cadmium partitioning between liquid and 

sedimentary phases was dependent on sediment concentrations but was not dependent on the total 

surface area, that is, the sediment size. 

It is evident from the previous discussion that reports on cadmium associations in sediments, 

although well documented, are sometimes contradictory and may be strongly dependent on the 

sediment characteristics, and on the concentration of each sedimentary phase in particular. 
Another obvious controlling factor is the sources of this element. In Liverpool Bay, the high 

values in the sewage dumping ground are probably due to the discharges in this area (the 

concentration of cadmium in the sewage sludge was 11.90 pg g'', that is, 18.6 times the mean 

cadmium concentration for the whole region), however, a considerable proportion of cadmium 
from the original sludge load may be lost from the particulate phase into solution when sludge 
particles come in contact with seawater. Desorption experiments cited in Forstner and Wittmann 
(1979) showed a high release of cadmium (93% in 4 weeks) from sewage sludge particles after 
contact with seawater, this metal 'presented, by far, the highest desorption when compared to 

other metals such as copper, nickel, 'lead, ý zinc, chromium, manganese and iron'' showing 
desorption of 69,63,58,38,0,0 and 0%, respectively. In a study of some metals in particulate 
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and dissolved phases, Norton et al. (1984c) suggested that dumping of sewage at Site SI was not 

a significant source of dissolved metals (zinc, copper, cadmium and nickel) into Liverpool Bay, 

however, these authors observed elevations on dissolved cadmium and nickel levels in some 

samples at the dumping ground. These elevations were explained as a possible result of 

desorption from sewage sludge particles. On the other hand, in the same study, significant 

negative correlations of dissolved metals and salinity indicated that the most important sources 

of dissolved metals into Liverpool Bay are the riverine and estuarine discharges. 

To add to the complexity of cadmium distributions in fine sediments from Liverpool Bay, 

cadmium levels higher that 5 pg g'' are reported for sediments in the mineralized areas of North 

Wales (Imperial College of Science and Technology, 1978), making natural sources, if not a 

significant contributor to the overall cadmium levels, possible sources of localized enrichments 

of this metal in sediments from the bay. On the other hand, it has been reported that 

phytoplankton has a strong ability to bind cadmium (compared to other toxic metals) from 

solution (Golimowski et al., 1990), therefore, natural phytoplankton populations in Liverpool Bay, 

exposed to dissolved cadmium originating mainly from riverine runoff, could represent a source 

of this metal to the sediments, from deposition of cells after death. 

4.2.3.2. Cadmium in the coarse fraction 

Figure 4.17b shows the distribution of cadmium in coarse sediments. This distribution has 

similar features to the distribution of the fine fraction in the total sediments (Fig. 4.2a). An area 

with several values lower than 0.010 pg g" was present in the southern region, with a minimum 

of 0.005 pg g'1 at station K-8. Most samples in the north were within 0.010 and 0.020 pg g"1. The 

mean value for the whole area was 0.027 pg g''. The highest values were found in the Burbo 

Bight samples with a range from 0.063 pg g4 at station YY-2, to 0.188 pg g'4 at station YY-1. 

As in the case of mercury (Fig. 4.11b), the concentration of cadmium in the coarse sediments 
immediately outside the Queen's Channel (U-11 and T-10) was low (0.012 and 0.009 pg g'1, 

respectively). 

1 Cadmium in coarse sediments presented highly significant correlations with the amount of fine 
fraction and aluminium in the total sediment. The corresponding correlation coefficients after 
logarithmic transformation of the variables were r=0.661 and 0.778 respectively. As indicated by 

the correlation with mercury (r=0.767) and a comparison with the distribution of this metal (Fig. 
4.1 lb), cadmium and mercury presented similar distributions' suggesting potentially similar 
sources and associations in the sediment. The correlation between cadmium and organic matter 
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(r=0.616) and the lack of correlation with iron and manganese indicates that cadmium is probably 

associated to the organic phase in coarse sediments. In general, the discussion regarding the 

sources of mercury may in general hold for cadmium, that is, the inputs from the Mersey may 

be the main source of this metal in the coarse sediments in the eastern sector of the bay, and 

also, cadmium in coarse particles may originate by transfer from the fine particles. However, 

contrary to the mercury distribution, cadmium was not particularly enriched in the samples from 

the north of Site SI even though these samples contained relatively high content of organic matter 

(see Fig. 4.4c). This observation may be explained by the stronger mercury-organic matter 

association as compared to the cadmium-organic matter association (Olsen et al., 1982) together 

with the higher solubility of cadmium. In other words, more cadmium than mercury may be lost 

into solution during the transfer from the fine particles, therefore, only in areas such as the Burbo 

Bight where the amount of fine particles is very high and where there is a constant riverine input 

(also occurring in the area northwest of Queen's Channel) is the transfer of cadmium from fine 

particles to coarse particles noticeable. On the other hand, a direct adsorption of dissolved 

cadmium onto the organic matter in coarse particles near the Mersey may occur, and/or organic 

matter from the Mersey carrying cadmium (and other elements) may be deposited onto the 

surface of the coarse particles rather than being transferred from finer particles; the possibility 

of two or more of these mechanisms occurring simultaneously is not unlikely. 

4.2.4. Chromium 

4.2.4.1. Chromium in the fine fraction 

Figure 4.17c shows the distribution of chromium in fine sediments. This metal presented higher 

concentrations in the central region along an east-west line, with values higher than 70 pg g'1 in 

most samples (except at station R-10 with 54 pg g'1). Maximum concentrations were found at 

stations K-8, K-9 and L-9 (within Site SI) with values of 90,95 and 91 respectively, and in 

samples P-10, P-11 and Q-11 with values of 85,95 and 96 pg g'1 respectively. Sediments from 

Burbo Bight showed values from 62 (station YY-3) to 84 pg g'1 (station ' YY-2). The mean 

concentration for the whole region (70 samples) was 65 pg g'1. In the northwestern region of the 

sampling area values lower than 50 pg g'1 were found, with the minimum of 38 pg g4 at station 
H-12. Low values were also found near Site Z, at stations T-10, T-12 and T-14 with 

concentrations of 53,55 and 51 pg g'' respectively. 

As partially suggested by comparison of Figure 4.17c with Figures 4.7a and 4.4a, chromium 
in the fine sediments correlated significantly with iron and organic carbon concentrations 
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(r=0.571 and 0.588 respectively, p>0.001; see also Figure 4.18a and b). No significant 

correlations were found with other sediment parameters, indicating that chromium in the fine 

sediments may be specifically associated with the organic matter or hydrous iron oxides (or 

both). 

Although the possible association of chromium with manganese oxides in aquatic sediment 

surfaces has been suggested (Feely et al., 1983), in the present study the lack of correlation with 

manganese concentrations may indicate that no association of chromium with oxides of 

manganese is taking place in Liverpool Bay sediments or if it exists, this association is not 

important. On the other hand, the specific association of chromium with manganese oxides in the 

study by Freely et al. (1983) could not be confirmed, however, given the metal extraction 

procedure used by those authors, the association of chromium with iron oxides remained as a 

possibility. The possible specific association of chromium with iron oxyhydroxides in aquatic 

particles has been suggested by several authors (e. g. Loring, 1981; Sigg et al., 1987; Angelidis 

and Grimanis, 1989). Sigg et al. (1987) suggested that chromium is preferentially bound to iron 

oxide surfaces as, under oxic conditions, chromium should, in thermodynamic equilibrium, occur 

as Cr(VI) and the CrO42' ion could be bound to positively charged surfaces of iron oxides. 

Significant association of chromium with organic phases has also been reported (Forstner and 

Wittmann, 1979; Rosental et al., 1986; Angelidis and Grimanis, 1989, Golimowski et al., 1990). 

In the case of associations with organic matter chromium exists probably in the Cr(III) oxidation 

state which is readily complexed with organic forms onto sediment particles (Rosental et al., 

1986) as chromium species in this oxidation state such as Cr(H2O)63+, Cr(OH)2+, Cr(OH)2+ 

(Golimowski et al., 1990) are positively charged. Therefore, the magnitude of the correlation 

coefficients with iron and organic carbon may indicate a possible association of chromium with 

both phases in the fine sediments from the present study. It is possible that the association with 

iron phases is more important as a stepwise regression analysis using iron and carbon as 

predictors indicated iron as a better predictor for the chromium variations in the fine sediments. 

The multiple regression equation resulting from this analysis (after the exclusion of samples L-9, 

N-10 and Q-9 representing obvious outliers, see Fig. 4.18a) was: 

Cr,,. - 12.8 + 15.0 Few + 10.4 carbon,,. (r2=44.2%, F=25.5); 

approximately 90% of the variance explained through this equation could be accounted for by 

the the variations of iron. 

The lack of a stronger correlation between chromium and iron or the organic matter may be 

due to the 'different sources of these substances. It has been already mentioned that iron in 
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Liverpool Bay may have some important contributions from the mineralized areas of North 

Wales. On the other hand, the highest chromium levels (-60 pg g') reported in sediments from 

the mineralized areas of North Wales (Imperial College of Science and Technology, 1978) were 

similar to the mean concentration for the whole bay in the present study (65 pg g'), therefore 

natural inputs of chromium from the North Wales mineral areas may be unimportant. An 

important source of chromium into the bay seems to be the sewage sludge disposal at Site SI as 

the concentration in the analysed sludge sample (885 pg g'`), similar to concentrations reported 

by North West Water Authority (845 pg g'1, see Table 2.2), was approximately 14 times higher 

than the mean concentration for the fine sediments in this study. 

Data reported by MAFF (1987) indicate that the largest source of chromium into Liverpool Bay 

is the disposal of dredge spoil mainly at Site Z (approximately 113 tonnes in 1984) whereas 

sludge dumping and the Mersey discharges seem to contribute each less than half this amount 

(approximately 42 tonnes in 1984 respectively), it is important, however, to note that the 

concentrations of chromium in dredged spoil and sludge particles may have been similar as 

approximately three times more dredged spoil was discharged in Liverpool Bay that year. 

Samples nearer Site Z (T-14 and U-15) did not show a particular enrichment of chromium and 

even presented concentrations (51 and 57 µg g'' respectively) below the mean for the whole 

region. This observation is probably due to the rapid removal of fine sediments from this area 

(Rowlatt et al., 1986; see also review of sediment transport in the bay in Chapter 2) and possible 

dilution with cleaner fine sediments. On the other hand, samples from Burbo Bight presented 

concentrations above the mean and a high concentration (84 pg g'1) at station YY-2 also showing 

a relatively high organic carbon (2.31 %) and iron concentration (2.29%) as compared to samples 

nearby. Chromium concentrations found in the present study were in general agreement with 

previously reported values in fine sediments in Liverpool Bay (e. g. Norton et al., 1984b; Kiff, 

1984; Kiff and Nunny, 1984; McLaren, 1987; Law et al., 1989) and even the position of the 

maximum values in the central region seems to agree with the distributions presented by Norton 

et al. (1984a, 1984b). 

Finally, a comment on the level of contamination of chromium in fine particles in Liverpool 

Bay can be made. McLaren (1987) reported background values of metals in sediments from this 

area, including chromium with a value of 25 ±6 µg g'!. Using this value as a reference, the 

average enrichment value (mean concentration divided by background concentration) for the 

whole bay was -2.6 with a range from 1.52 to 3.84. Therefore, it 'can be said that there is a 
measurable impact from human activities on the chromium levels in sediments from the whole 
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of the sampling region considering that the main inputs of chromium into Liverpool Bay are 

anthropogenic. 

4.2.4.2. Chromium in the coarse fraction 

Chromium concentrations in coarse sediments (Fig. 4.17d) presented a similar distribution to 

that of organic matter shown in Figure 4.4c. The zone of high values in the northwestern part had 

concentrations above' 4.50 pg g'' at stations G-11, G-13, H-10, H-12, J-11 and L-13. The mean 

concentration for the whole region was 3.46 pg g'1. Chromium concentrations gradually decreased 

toward the central and southern areas where values between 2.50 and 3.00 pg g'' were found in 

most of the samples. Minimum values were recorded at station K-9 (2.30 pg g') within Site SI 

and stations R-6 and S-7 (2.02 and 2.03 pg g'1 respectively). High chromium concentrations were 

observed in sediments from Burbo Bight with values ranging from 3.78 pg g'L at station NW-24 

to 6.31 pg g-t at station YY-3. Low values in the vicinity of the Queen's Channel at stations T-10 

and U-11 with concentrations of 2.38 and 2.47 pg g'' respectively. 

Chromium in coarse sediments was strongly correlated with the amount of fines and aluminium 

in the total sediments. The correlation coefficients after logarithmic transformation of the data 

were r=0.734 (see also Fig. 4.18c) and 0.717 (p«0.001) respectively; the regression equations 

were: 

log-Cr,. - 0.481 + 0.104 log- % fine, (r=53.2, F=79), and 
log-Cr 

.. r. - 0.475 + 0.421 log-%o Al (r2-50.8 %, F=72). 

This metal, as in the cases of cadmium and mercury, may be transferred from the fine particles 

to the coarse particles, and as indicated by Figure 4.18c, the higher the amount of fine particles 
for interaction, the higher the metal being transferred to the coarse particles. 

There seems to be a specific control of the chromium content in the coarse fraction by the 

amount of organic matter present in these particles. Whereas no correlation was found between 

chromium and manganese in this fraction and the correlation with the iron, although significant 

was relatively low (r=0.423, p-0.001), a very high correlation was found with the organic matter 

content (r-0.899, p«0.001). The regression equation for the relationship between chromium and 
organic matter in the coarse fraction, also represented in Figure 4.18d was: 

Ä Cri - 0.796 + 5.84 O. M., (r2=80.5%, F=286). 

The variance explained by the inclusion, of iron as a predictor in a multiple regression analysis 
did not increase, indicating that in the coarse sediments the correlation between chromium and 
iron was probably a result of a covariation, and that chromium in coarse particles is specifically 
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associated with the organic matter in the sediment; Rosental et al. (1986) also reported that most 

of the chromium in coarse sediments in their study was associated with organic matter. Therefore, 

the discussion of the distribution of organic matter in the coarse fraction (see Section 4.1.3 and 

Fig. 4.4c) also applies to the distribution of chromium shown in Figure 4.17d. 

4.2.5. Copper 

4.2.5.1. Copper in the fine fraction 

The distribution of copper in fine sediments (Fig. 4.19a) partially resembles the distributions 

of iron and organic carbon (Fig 4.7a. and 4.4a respectivelly). The central region of the sampling 

grid showed the highest concentrations, distributed within an elongated zone with the major axis 

orientated in an west-east line. High values in the central region were recorded at stations L-9 

(157 pg g't), L-10 (168 pg g'1), M-9 (144 pg g'1), M-10 (173 pg g'`), N-8 (168 pg g'`), P-9 (176 

pg g'1) and the maximum at station N-10 (225 pg g'`). Stations G-9, R-8 and S-8 also had high 

concentrations (199,175 and 166 pg g'1 respectively). The mean copper concentration for the 

whole region was 71 pg g'1. The lowest values were found in the northwestern corner of the 

sampling region with a minimum concentration of 23 pg g'' at station H-12, and low values at 

G-1 1 (28 pg g'1), G-13 (25 pg g4) and J-13 (30 pg g''). Concentrations below the overall mean, 

with values between 37 pg g'1 (sample YY-3) and 52 pg g4 (sample YY-2), were found in the 

samples from the Burbo Bight. Samples from stations near Site Z (T-12, T-14 and U-15) also 

showed copper concentrations lower than the- overall mean (37 and 36 and 69 µg g4 

respectively). 

The distribution of copper in fine sediments shown in Figure 4.19a may suggest that the main 

source of this metal in sediments from Liverpool Bay is the discharges of sewage sludge at Site 

SI. This observation is consistent with reports of annual copper discharges in the bay from 

several sources (Norton et al., 1984c; MAFF, 1987), and with previously reported copper 
distributions in fine sediments from this area (Norton et al., 1984b). 

Although annual copper discharges from the River Mersey are reported to be similar to the 
discharges from sludge dumping (Norton et al., 1984c; MAFF, 1987), the lack of copper 
enrichment in sediments near the Mersey may be related to the different speciation of copper in 
both sources. Whereas copper from the sewage sludge is probably largely associated to particles, 
copper from the Mersey may be largely in solution. Nimmo et al. (1989) and Norton et al. 
(1984c) reported dissolved copper in Liverpool Bay originating mainly from riverine inputs, as 
dissolved copper correlated (negatively) strongly with salinity even in samples near Site SL 
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Fig. 4.19. Distributions of copper in (a) fine sediments and (b) coarse sediments, and of nickel 
in (c) fine sediments and (d) coarse sediments. Concentration values are in p. g g''. 
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Furthermore, Nimmo et al. (1989) reported approximately 99% of dissolved copper in this area 

is mainly present as copper-organic complexes, and metal-organic complexes have a hydrophilic 

character which increases their solubility and mobilization from solid phases (Olsen et al., 1982). 

This observation is consistent with reports of possible copper release from particles into solution 

during estuarine mixing (Salomons and Eysink, 1981) and with the considerable partitioning of 

copper observed in the liquid phase of estuarine systems such as the Rhine (Golimowsky et al., 

1990). Therefore, copper being transported form the Mersey river and estuary into the bay will 

tend to remain in solution and will not directly enrich the sediment particles in areas such as 

Burbo Bight. 

The enrichment of copper inside and east of Site SI is due, in part, to the high levels of this 

metal in the sewage sludge (-649 pg g'`) which is approximately 9 times higher than the mean 

value for the whole region (see Table 4.1 for comparison with other elements). After sewage is 

discharged, a large proportion of copper may remain associated to particles and deposited on the 

seabed. Norton et al. (1984c) observed no obvious effects of sludge dumping in the levels of 

dissolved copper around Site SI, this observation being consistent with reports of minimum 

effects of salinity on the association of copper with solid phases (Millward and Moore, 1982; 

Forstner, 1984) as opposed to elements such as cadmium which tend to desorb more readily from 

particles when they come into contact with saline water (see cadmium discussion in Section 

4.2.3). On the other hand, it is important to consider that although considerable redissolution of 

copper may not take place immediately after sewage disposal, there is a report, from observations 

in laboratory, of 25% of copper from sewage solids being released after only four days in contact 

with seawater and also of copper remobilization from sediments as a result of degradation of the 

organic matter associated to these particles (Paulson et al., 1991). Therefore, copper associated 

with particles both in bed sediments and in suspension may also represent an important source 

of dissolved copper in Liverpool Bay waters, but may not produce obvious local effects, as in 

the case of cadmium, due to a relatively slower desorption rate which is dependant upon the rate 

of organic matter degradation. 

The possibility of specific associations of copper with a particular sedimentary phase in the 
fine fraction was difficult to establish as the correlations of the logarithm of copper with organic 
carbon (r=0.623), logarithm of iron (r=0.705) and logarithm of manganese (r=0.645) were all 
highly significant (p«0.001) and similar. 

An association of copper with the organic matter in fine sediments from Liverpool Bay is not 
unexpected, as the organic fraction of sediments and suspended particles in aquatic systems has 
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Table 4.1. Descriptive statistics' for the concentration of elements in the fine fraction. 

Statistics for grain size descriptors and other sediment parameters, and the 

results for the analysis of a digested sewage sludge sample are also shown in 

this table., 

n mean sd rsd min - max max sludge slud 
min mean 

Hg 67 0.56 0.48 85.7 0.02 2.09 105 2.71 4.8 

Cd 70 0.65 0.47 72.3 0.11 2.46 22.3 11.9 18.6 
Cr 70 65 14 21.3 38 96 2.5 885 13.6 

Cu 70 71 48 68.2 23 225 9.7 649 9.1 

Ni 70 41 9.2 22.6 25 68 2.7 107 2.6 

Pb 70 234 225 95.7 70 1214 17.2 689 2.9 

Zn 70 280 127 45.0 135 904 6.7 1425 5.1 

As 67 25.7 23.9 92.7 9.3 144= 15.5 16.2 0.62 

Mn 67 2549 3609 142 531 22900 43 642 0.25 
Fe 67 2.18 0.63 28.9 1.36 4.54 3.3 1.98 0.91 

C 69 2.03 0.39_ 19.2 1.24 3.05 2.5 27.8 13.7 

N 38 0.25 0.07 30.8 0.13 0.45 3.5 2.06 8.2 

C/N 38 8.46 1.89 22.3 6.12 14.6 2.4 12.9 nd 
513C 69 -20.3 0.76 3.7 -22.3 -18.5 nd -23.9 nd 

Al 70 1.46 0.74 50.7 0.70 4.01 5.7 nd nd 
Fine 70 8.79 12.6 143 0.08 61.01 763 nd nd 
coar 70 91.21 12.6 13.8 39.0 99.9 2.56 nd nd 

Note: ' The statistical descriptives include: number of samples (n), mean 
concentration in sediments, standar deviation (sd), relative standar 
deviation (rsd), minimum, maximum, ratio between maximum and minimum, 
mean concentration in the sludge and the ratio between the concentration 
in the sludge and the mean concentration for the n sediment samples. 

b The units of concentration for all the elements are µg g'1, except for 
Fe which is in percent. The units for organic carbon and nitrogen are 
in percent whereas the 513C values are in L. The aluminium, fine fraction 
and coarse fraction are given as: a percent of the total (<500 µm) 
sediments. 

nd= not determined. 
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been widely reported as the dominant compartment of copper in the non-detrital fraction (e. g. 

Oakley et al., 1981; Olsen et al., 1982; Davies-Colley et al., 1984; Hirata, 1985; Rosental et al., 

1986; Hall and Chang-Yen, 1989; Brook and Moore, 1988; Szefer, 1990); this metal is probably 

complexed with the organic matter (Rosental et al., 1986) particularly with humic acids (Oakley 

et al., 1981). Although the preference of copper for organic phases may be suggested by high 

Cu(II)-organic. matter stability constants, the partitioning of copper (and other metals) in 

sediments will also depend on the abundance of each particular phase available for metal 

associations (Luoma and Davis, 1983). Therefore, as the possible association of copper with 

hydrous oxides of iron has also been established (Millward and Moore, 1982; Lion et al., 1982; 

Davies-Colley et al., 1984; Laxen, 1985; Tessier et al., 1985), it is likely that copper in fine 

sediments in Liverpool Bay is partitioned amongst organic and iron phases. The overall trend of 

increasing copper concentrations as organic carbon and iron concentrations increase is represented 

in Figure 4.20a and. b. 

Although copper associations with manganese oxides may also occur (Olsen et al., 1982; Feely 

et al., 1983), the correlation between manganese and copper became non-significant when the 

samples with copper concentrations higher than 100 µg g't were excluded from the correlation 

calculations. Therefore, for the majority of samples (n=55) there was no covariation between 

copper and manganese that could suggest an association of copper with manganese oxides. 

A close analysis of the copper concentrations in some of the samples may provide a good 

example of the difficulty in determining with certainty the sources of metals in Liverpool Bay 

sediments. Figure 4.20c indicates that copper was negatively correlated with the amount of fine 

sediments in the total sample (r--0.543, p<0.001), therefore, as in the case of iron, carbon, 

manganese and arsenic, the highest copper concentrations were found in samples with very small 

amount of fine fraction. For example, sample L-9 showing the highest manganese concentration 

(22,900 pg g"`), also showed one of the highest copper concentrations (157 pg g'`). Having 

established the possibility of sediments with high levels of manganese being derived from the 

mineralized areas in North Wales, and considering that copper concentrations higher than 60 pg 

g'1 have been reported in sediments from the mineralized areas and the Conwy Estuary (Imperial 

College of Science and Technology, 1978), the possibility of copper in these samples being 

derived from "natural" sources is not unlikely (very high copper levels in the Anglesey coast, 

related to copper mining activities in Parys Mountain in the past, are also found in this report). 
Furthermore, other possible inputs of copper from North Wales have been suggested as Nimmo 

et al. (1989) found elevated concentrations in dissolved copper near the mid-North Wales coast 
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coinciding with an increase in seston concentrations, these authors explained this phenomenon 

as a possible result of coastal quarry waste deposits in this region. Sample L-9 however, was 

within the possible immediate influence of sewage sludge discharges at Site SI and copper in this 

sample may have originated from sewage inputs rather than from natural sources (copper may 

also originate from both sources). This picture becomes more complex if samples K-8 and K-9 

are considered. Although these samples were taken within a short distance and within the sector 

where recent sewage dumping takes place in the southern part of Site SI, they showed 

substantially different manganese (10200 and 622 µg g4 for K-8 and K-9 respectively) and &3C 

values (-19.73 and -21.49%o respectively). Whereas the above average copper concentration at 

station K-9 (83 pg g'1), together with the manganese and S13C values, point at the sewage sludge 

as the source of copper enrichment in this sediment, it is difficult to conclude beyond doubt that 

the copper enrichment in the nearby station K-8, showing a concentration of 121 pg g'1, is due 

to the sewage discharges as the manganese and S13C values do not substantiate this possibility. 

The same observation as sample K-8 can be made in the case of sample L-9 showing a S13C 

value (-18.97%o), one of the highest in the whole region. It is also possible that (assuming that 

the high levels of manganese and iron in samples K-8 and L-9 are due to inputs from the 

mineralized areas) sediment particles with high content of iron/manganese oxyhydroxides 

collected copper from solution during transport in Liverpool Bay waters. 

The distribution of copper in'the present study was visually compared with the distributions 

presented by Norton et al. (1984a, see Fig. 16 in these authors report). From this comparison it 

was obvious that high copper concentrations around stations L-10, M-10 and N-10 seem to be 

a more or less permanent feature, therefore, it is possible that the high copper concentrations near 

the apex at Site SI are a result of "old" sewage discharges, prior to 1988. As sewage disposal 

activities were concentrated in the extreme south of this Site from early 1988, high values around 

the southern extreme section of Site SI may at least partially result from "recent" sewage 
discharges. From all the previous observations, it is obvious that more information is needed, 

particularly on the possible extent of influence of metal inputs from the mineralized areas in 

North Wales that, to date, have not been given any importance or have been simply overlooked 
in studies of metal levels in sediments from Liverpool Bay. 

Another possible source of copper into sediments in Liverpool Bay that has not been studied 

and therefore reported is the contribution ", by phytoplankton debris. Although inputs from organic 
debris precipitation may not create localized effects ("hot spots") in copper distributions in the 

sediments, its signal may be superimposed to the that from other sources. Nimmo et al. (1989) 
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reported that the total dissolved copper levels in Liverpool Bay were around ten times higher than 

those observed in open oceans. From studies of metals in dissolved and particulate phases in the 

Dutch Rhine-Meuse delta, Golimowsky et al. (1990) reported that copper in solution was taken 

up to a great extent by phytoplankton. Hirata (1985) reported similar copper concentrations in 

particulate matter and coastal sediments (37 and 38 pg g'1 respectively) in Hiro Bay, Japan, and 

slightly higher concentrations in the phytoplankton (46 pg g'`). Therefore, copper derived from 

phytoplankton debris may be an important source of total copper in the surface of sediments in 

Liverpool Bay, and these contributions may even overshadow the correlations between copper 

and organic carbon that could be expected from the review on reports mentioned earlier. 

Finally, copper concentrations in fine sediments from Liverpool Bay were compared to 

"baseline" levels (representative of natural inputs) and "benchmark" levels (concentrations in fine 

sediments outside the direct influence of Site SJ, mainly from the northern, part of the eastern 

Irish Sea) reported by Rowlatt et al. (1984). As indicated by these authors, the benchmark value 

of -27 pg g"1 suggests that sediments in eastern Irish Sea as a whole present some general level 

of contamination as compared to the baseline value of -17 pg g''. However, there is an obvious 

copper enrichment in sediments from Liverpool Bay in particular, as the mean concentration for 

the whole region in the present study (-71 pg g') was approximately 4.2 times above the 

baseline and 2.6 times above the benchmark values. The minimum copper concentration (-23 pg 

g'1) was, as could be expected from the least influenced sediments, close to the benchmark value 

and around 1.4 times the baseline value, whereas the highest value (-225 pg g'1) was 13 times 

above the baseline and 8.3 times above the benchmark values. Furthermore, even if samples with 

the highest copper levels (>90 jig g'1) were not considered assuming that they originated from 

the mineralized areas, the overall mean would be approximately 50 pg g'', that is, 2.9 times the 

baseline value and 1.9 times the benchmark value. From these observations and previous reports 

(Rowlatt et al., 1984; Norton et al., 1984a;, 1984b) it is concluded that the anthropogenic inputs 

of copper in Liverpool Bay, regardless of the specific sources and mechanisms of transport, have 

resulted in significant contamination of sediments in this region. 

4.2.5.2. Copper in the coarse fraction 

Copper in the coarse fraction (Fig. 4.19b) presented a distribution very similar to that of 
mercury (Fig. 4.11b). The mean concentration for the whole region was 1.99 µg g''. The highest 

values were recorded near the Mersey with a maximum of 9.25 tg g'1 at station YY-3 in the 
Burbo Bight; within the same area, station YY-4 presented a value of 3.96 pg g''. Copper 
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concentrations decreased toward the west and south, to a region of values lower than 1.40 pg g'1 

in most of the stations labelled with numbers 6,7 and 8. The lowest concentrations were 

recorded at stations K-8 and K-9 with values of 0.86 and 0.84 pg g't respectively. Stations T-10 

and U-1l immediately outside the Queen's Channel also showed low values (1.34 and 1.70 

respectively) as was the case for most of the metals in this fraction which are described above. 

An enrichment area around station L-10 (6.03µg g'`) in the dumping ground was also observed. 

As suggested by the similarity in the distributions of copper and mercury shown in Figures 

4.19b and 4.1 lb, there was a high correlation (r=0.820, p«0.001) between these two metals in 

the coarse sediments in the present study. Therefore, the discussion regarding the possible sources 

and associations of mercury in this fraction also apply (in general) to copper and only a brief 

description of the copper correlations in these sediments will be given. 
The only obvious difference in the distributions of mercury and copper was the presence of 

high values of copper around stations L-10 and M-10 (Fig. 4.19b) which were not present in the 

mercury distribution (Fig. 4.11b); on the other hand mercury showed a relative enrichment at 

station M-12 not present in the copper distribution (see outliers marked in Fig. 4.21a). High 

copper values in coarse sediments around stations L-10 and M-10 were also reported by Norton 

et al. (1984a; see Fig. 15 in this reference) and coincide with high levels in the fine fraction (see 

discussion above) probably as a result of a more or less stable sediment deposit with a strong 

influence of sewage sludge discharges prior to 1988, as already suggested in the discussion of 

the distribution of copper in fine sediments. 

The lack of correlation with iron and manganese, and the significant correlation with the 

organic matter content (r=0.567, p<0.001) suggests that, as in the cases of all the metals 

previously discussed, the organic matter is the main carrier of copper in coarse sediments in 

Liverpool Bay. It should be noted, however, that the correlation of organic matter with copper 
(see also Fig. 4.21b) is lower than with any other of the previously discussed metals (see Table 

4.2), in spite of the widely reported copper-organic matter association in sediments (e. g. Oakley 

et al., 1981; Olsen et al., 1982; Davies-Colley et al., 1984; Hirata, 1985; Rosental et al., 1986; 

Hall and Chang-Yen, 1989; Brook and Moore, 1988; Szefer, 1990). As suggested in the 
discussion of copper in fine sediments, it is possible that copper (and cadmium) correlations with 
the organic matter content in coarse sediments may be somewhat overshadowed by inputs of 

copper associated with organic matter from phytoplankton debris, combined with losses into 

solution of copper associated with land derived (mainly sewage derived) organic matter as the 
latter is degraded. 
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Copper in coarse sediments was also highly correlated (p«0.001) with the percentage of fines 

(r=0.720) and aluminium (r=0.756 after logarithmic transformations; see also Fig. 4.21c) in the 

total sediment, indicating that the amount of copper and other metals in coarse sediments is 

largely controlled by the amount of fines in the sediment sample. 

4.2.6. Nickel - 
4.2.6.1. Nickel in the fine fraction 

Nickel concentrations in fine sediments were irregularly distributed throughout the bay (Fig. 

4.19c). There was no apparent general trend in the distribution of this metal with the exception 

of an obvious enrichment area, with values above 50 µg g'', in the southern section of the sewage 

dumping ground. The highest values recorded in this area were at stations J-9 (68 µg g'1), K-8 

(60 pg g'1) and L-9 (68 µg g''). The mean concentration for all samples was 41 µg g'1 and the 

minimum value, 25 pg g'1, was found at station L-8. In general, samples from the northeastern 

region of the sampling grid showed concentrations below the mean value with samples near Site 

Z showing concentrations lower than 33 µg g''. Samples from the Burbo Bight showed 

concentration values near or below the overall mean ranging from 33 pg g4 (station YY-3) to 

42 µg g"1 (station YY-2). - 

The distribution of nickel in fine sediments shown in Figure 4.19c suggests that the main 

source of enrichment of this metal in sediments from Liverpool Bay ist he discharges of sewage ý- 

sludge in the southern part of Site SL However, reports of annual metal discharges into the bay 

from several sources (Jones, 1978; Norton et al., 1984c; MAFF, 1987) indicate that nickel inputs 

from sewage sludge discharges at Site SI are very low as compared with inputs from the Mersey 

and from discharges of dredged spoils at sites Z and Y. In fact, the concentration of nickel in the 

sewage sludge was 107 pg g', that is 2.7 times the average concentration for the fine sediments 
in the whole region. - 

Although the enrichment of nickel in the south of Site SI is obvious (Fig. 4.19c), the range of 
values for this metal in the . whole region was not as high as for other elements previously 
discussed with the exception of chromium. Table 4.1 shows that the relative standard deviation 
for nickel (21.3%) in fine sediments was, together with chromium (22.6%) very low, indicating 

that the distribution of these metals in the fine sediments was more homogeneous, 
, the "- 

ratio between the highest and lowest concentrations was 2.5, as compared with mercury showing 
a, ratio of . 

105 and copper showing, a ratio of 9.7 (see Table 4.1). A , more homogeneous 
distribution of nickel, as compared to other elements, may be related to its relatively lower levels ý-- 
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in sewage sludge (see Table 4.1) and also to the lower affinity of nickel for particles as compared 

to other metals. 

Balistrieri and Murray (1984), for example, reported the following affinity sequence for metal 

interactions with marine interfacial sediments: Pb>Fe>Mn>Cu>Zn>Ni>Cd (only the metals of 

interest in this thesis were taken from the original sequence reported). This sequence is consistent 

with the study of Tessier et al. (1985) in which binding strengths of several elements for iron 

oxides are reported. It is possible, therefore, that the relatively high values of nickel (also 

observed in the case of cadmium) in the south of Site SI represent only a very localized effect 

related to sewage disposal, but this effect is rapidly attenuated as fast desorption from the 

sediments takes place during the transport of these particles through the bay. Evidence of possible 

desorption of nickel from sewage sludge was reported by Nimmo et al. (1989) who -found 

particularly high levels of colloidal inorganic nickel only near Site SI. High levels of dissolved 

nickel around the sewage disposal area were also reported by Norton et al. (1984c) who 

suggested that sludge dumping was only producing very local and patchy effects and of limited 

significance. Considering Liverpool Bay as a whole, however, the main inputs of dissolved nickel 

(Abdullah and Royle, 1973; Nimmo et al., 1989; Norton et al., 1984c) are those from the 

discharges of the Mersey river and estuary. 

" Although nickel inputs from the Mersey are much larger than the discharges from sludge 
dumping (Jones, 1978; Norton et al., 1984c; MAFF, 1987), most of the nickel from the Mersey 

ßtr - rýemainSin solution, therefore, an enrichment of the sediments near the Mersey (Fig. 4.19c) e-- 

w. vIJ noth kpected. Even sediment particles transported out of the Mersey Estuary may lose some¢-- 

of the nickel into the aqueous phase before entering the bay as suggested by observations of 

possible nickel redissolution during estuarine mixing (Salomons and Eysink, 1981). ' 

Nickel correlations with organic carbon (r=0.444), iron (r=0.446) and manganese (r=0.624) in 

the fine fraction were all significant (p<0.001) but relatively low. The low correlations of nickel 

with iron and organic matter may suggest that this element does not show a specific affinity for 

one particular sedimentary phase in the study area. Possible nickel associations with organic 

phases I- have been reported (Hirata, 1985; Rosental et a!.,, 1986) in marine sediments ý-- 

and also a possible specific association with iron oxides has been reported (Loring, 1981; Olsen 

et al., 1982). There are also reports of similar distributions of nickel amongst oxide and organic 

phases (Tessier et al., 1985; Brook and Moore, 1988) and of partitioning in various degrees onto 
iron oxides, manganese oxides and organic fractions (see literature review in Forsther and 
Patchineelam, 1981). Therefore, nickel in fine sediments from Liverpool Bay may be distributed 
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amongst iron and organic phases in various degrees, probably depending to a large extent on the 

relative amount of each phase in each sample. The covariations of nickel with organic carbon and 

iron concentrations are represented in Figure 4.22a and b respectively. 

Although nickel associations with manganese oxides may also occur (Suarez and Langmuir, 

1976; Olsen et al., 1982; Feely et al., 1983; Jha et al., 1990), the correlation between manganese 

and nickel became non-significant if the 9 samples with manganese concentrations higher than 

5000 pg g'1 were excluded from the correlation calculations. Therefore, for the majority of 

samples (n=58) there was not an apparent covariation between nickel and manganese that could 

suggest a possible association of nickel with manganese oxides. It was interesting to notice, 

however, that for samples with manganese concentrations above 2000 pg g'1 a general trend of 

increasing nickel concentrations as manganese concentrations increased was observed (Fig. 

4.22c). For example, samples from stations K-8, M-6 and L, 9 showed the highest manganese 

concentrations (10200,13700 and 22900 pg g'1 respectively) and some of the highest nickel 

concentrations (60,68 and 68 pg g' respectively), whereas their corresponding S13C values 

(-19.73, -19.36 and -18.97 %o) did not suggest high levels of sewage derived carbon. This 

observation may suggest that some of the nickel could derive from the mineralized areas of 

North Wales where nickel concentrations higher than 60 pg g'1 have been reported in sediments 

(Imperial College of Science and Technology, 1978). It is of interest to note that Kiff (1984) 

reported relatively high nickel values around transect K (Site SI) and suggested that this nickel 

probably originated from North Wales. On the other hand, relatively high values of nickel were 

found at stations J-7 and 1-9 (51 and 68 pg g'' respectively) which also showed very low S'3C 

values (-22.30 and -22.02 %o respectively) indicating a possible strong influence from sewage 

discharges, however, whereas sample J-7 showed a low manganese concentration (756 µg g4), 

sample J-9 had a high concentration (5512 pg g'). The only obvious difference amongst samples 

J-7 and J-9 was the amount of fine fraction in the total sediment (6.02 and 0.16% respectively) 

and, as already discussed (see Fig. 4.9c and Section 4.1.4), manganese seems to be highly related 

(r=-0.812 after logarithmic transformation of both variables) to this parameter whereas in the case 

of nickel, the correlation with the amount of fine material in the sample was significant but low 

(r=-0.401, p-0.001, after logarithmic transformation of the percentage of fine fraction), but 

became non-significant when the 9 samples with highest manganese concentrations were excluded 
from the calculations. 

Nickel concentrations in fine sediments from Liverpool Bay in the present study were 

comparable with previously reported concentration in this area (Norton et al., 1984a, 1984b; 

{ 
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McLaren, 1987; Law et al., 1989). As in the case of copper, nickel concentrations were compared 

with the baseline levels and benchmark levels reported by Rowlatt et al. (1984). The similarity 

between the baseline (27 pg g'1) and benchmark (32 pg g'`) values indicates that sediments in 

the eastern Irish Sea as a whole present a' lo i kut. L -- of contamination as compared to copper. 4-- 

A nickel enrichment in sediments from the Liverpool Bay area in particular was apparent, as the 

mean concentration for the whole sampling region in the present study (-40 pg g') was 

approximately 1.5 times above the baseline and 1.3 times above the benchmark values. The 

minimum nickel concentration (-25 pg g'') was below but very close to the baseline value 

indicating that some sediments present natural levels of this metals, whereas the highest value 

(-68 pg g'1) was 2.5 times above the baseline and 2.1 times above the benchmark values. From 

these observations and previous reports (Rowlatt et al., 1984; Norton et al., 1984a; 1984b) it is 

concluded that the anthropogenic inputs of nickel in Liverpool Bay, regardless of the specific 

sources, have not resulted in significant contamination of sediments in this region. The lack of 

nickel enrichment in fine sediments, however, does not mean that there is not contamination of 

Liverpool Bay due to human activities, but is probably reflecting the relatively low affinity of 

this element for particles as compared to other metals. Therefore, if studies of environmental 

impact of nickel in Liverpool Bay are designed, these studies should pay particular attention to 

nickel levels in solution. 

4.2.6.2. Nickel in the coarse fraction 

Figure 4.19d shows the distribution of nickel in the coarse sediments. Some similarities 
between this distribution, and the distribution of organic matter (Fig. 4.4c) can be observed. The 

highest values were found in samples from the Burbo Bight area, with a maximum concentration 

of 3.96 pg g'1 at station YY-3 whereas the lowest value in this area in particular was found at 

station YY-2 showing a concentration of 2.45 pg g'1. Nickel values decreased away from the 
Burbo Bight, reaching a minimum at around transect P, where at station P-6 the lowest value 
(1.62 pg g'') for the whole region was observed. Nickel concentrations increased again towards 
the western region of the sampling area, reaching values between 2.60 and 2.80 pg g'1 in northern 
samples from transects G and H. The mean concentration value for all samples was 2.43 pg g'1. 
Samples from the stations near Site Z (T-14 and U-15) showed concentrations below the overall 
mean with values of 2.18 and 2.12 pg g'' respectively. 

- Nickel in the coarse fraction had a high correlation with the organic matter content (r=0.718, 
p«0.001; see also Fig. 4.23a)., This observation suggests that, as in the cases of mercury, 
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McLaren, 1987; Law et al., 1989). As in the case of copper, nickel concentrations were compared 

with the baseline levels and benchmark levels reported by Rowlatt et al. (1984). The similarity 

between the baseline (27 µg g'1) and benchmark (32 pg g') values indicates that sediments in 

the eastern Irish Sea as a whole present at low IMLL - of contamination as compared to copper. 

A nickel enrichment in sediments from the Liverpool Bay area in particular was apparent, as the 

mean concentration for the whole sampling region in the present study (-40 µg g") was 

approximately 1.5 times above the baseline and 1.3 times above the benchmark values. The 

minimum -, nickel concentration (-25 pg ' g4) was below but very close to the baseline value 

indicating that some sediments present natural levels of this metals, whereas the highest value 

(-68 µg gt) was 2.5 times above the baseline and 2.1 times above the benchmark values. From 

these observations and previous reports (Rowlatt et al., 1984; Norton et al., 1984a; 1984b) it-is 

concluded that the anthropogenic inputs of nickel in Liverpool Bay, regardless of the specific 

sources, have not resulted in significant contamination of sediments in this region. The lack of 

nickel enrichment in fine sediments, however, does not mean that there is not contamination of 

Liverpool Bay due to human activities, but is probably reflecting the relatively low affinity of 

this element for particles as compared to other metals. Therefore, if studies of environmental 

impact of nickel in Liverpool Bay are designed, these studies should pay particular attention to 

nickel levels in solution. 

4.2.6.2. Nickel in the coarse fraction 

Figure 4.19d shows the ° distribution of nickel in the coarse sediments. Some similarities 
between this distribution, and the distribution of organic matter (Fig. 4.4c) can be observed. The 

highest values were found in samples from the Burbo Bight area, with a maximum concentration 

of 3.96 pg g'1 at station YY-3 whereas the lowest value in this area in particular was found at 

station YY-2 showing a concentration of 2.45 pg g"'. Nickel values decreased away from the 

Burbo Bight, reaching a minimum at around transect P, where at station P-6 the lowest value 
(1.62 µg` g"') for the whole region was observed. Nickel concentrations increased again towards 

the western region of the sampling area, reaching values between 2.60 and 2.80 pg g'' in northern 

samples from transects G and H. The mean concentration value for all samples was 2.43 pg g"1. 
Samples from the stations near Site Z (T-14 and U-15) showed concentrations below the overall 

mean with values of 2.18 and 2.12 pg g'' respectively. 
Nickel in the coarse fraction had a high correlation with the organic matter content (r=0.718, 

p«0,001; see i also : Fig. 4.23a). This observation -suggests that, as in the cases of mercury, 
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cadmium, chromium and copper, the organic matter in the coarse sediments represents the main 

carrier phase of nickel. As in the case of chromium in the coarse fraction, however, a significant 

correlation was also found between nickel and the iron concentrations (r=0.510, p<0.001; see also 

Fig. 4.23b) suggesting a that the hydrous iron oxides may be playing a significant role as nickel 

carriers in the coarse sediments, but are not as important as the organic matter. This observation 

is supported by an increase in the explained variance of nickel when iron was included as a 

second predictor in a multiple regression analysis; the resulting equation from this analysis was: 

Nico, 
m - 

1.13 + 1.41 O. M. + 2.13 Fe..., (r2=55%, F=41.9). 

In contrast to most of the previously discussed metals, nickel in coarse sediments did not show 

a significant correlation (after the exclusion of 4 samples with the highest nickel concentrations) 

with the amount of fine fraction in the total sediments. In the case of mercury, cadmium, 

chromium and copper, the significant correlation with the amount of fine fraction indicated that 

these metals in coarse sediments may be transferred from the fine sediments, therefore, the total 

amount of metal in the coarse particles would depend on the number of surrounding fine particles 

available for metal transfer. In the case of nickel, however, the lack of correlation with the 

amount of fine sediments (see Fig. 4.23c) indicates that amount of nickel in coarse particles is 

independent of the amount of coexisting fine particles and, therefore, the correlation with the 

organic matter content may indicate that nickel in coarse sediments is being adsorbed from 

solution probably in association with organic constituents. A second possibility is that if nickel 
in coarse sediments is being transferred from the fine particles, this effect is being overshadowed 

by re-dissolution from coarse sediment particles, this observation probably reflected in a more 

homogeneous distribution of nickel values in the coarse sediments throughout Liverpool Bay as 
indicated by a relatively low relative standard deviation (-14%) when compared to other 

elements (see Table 4.3). 

4.2.7. Lead 

4.2.7.1. Lead in the fine fraction 

Lead in the fine fraction (Fig 4.24a) showed a similar distribution to those shown for arsenic 
(Fig. 4.11c), manganese (Fig. 4.7c) and iron (Fig. 4.7a). The highest concentrations were found 

at stations G-9, K-8, L-9 (maximum), M-10 and P-10 with values of 865,698,1214,707 and 
1000 pg gl respectively. The mean concentration for the whole area was 234 pg g'1. The 

northwestern region of low values showed concentrations below 100 pg g'1 and a minimum of 
70 pg g'1 at station H-12. Low concentrations were also measured in samples T-12 (90 pg g'`) 

104 



Table 4.3. Descriptive statistics" for the concentration of elements in the coarse 
fraction. The statistical descriptors for the organic matter content 
in this fraction are also shown in the table. 

n mean sd rod min max max 
min 

fine 
coax 

Hg 70 0.030 0.033 110 0.003 0.178 59 19.3 

Cd 70 0.027 0.039 146 0.005 0.188 37.6 24.9 

Cr 70 3.46 0.93 27 2.02 6.31 3.1 18.9 

Cu 70 1.99 1.49 72 0.84 9.25 11.0 35.6 

Ni 70 2.43 0.35 14 1.62 3.96 2.4 16.8 

Pb 70 8.96 3.44 38 3.30 19.9 6.0 26.1 
Zn 70 24.7 14.8 60 10.4 75 7.2 11.3 

As 70 3.82 1.36 35 1.46 8.22 5.6 6.7 
Mn 67 223 82 37 92 441 4.8 11.5 
Fe 67 0.31 0.05 15 0.20 0.40 2.0 7.0 

OM 70 0.46 0.14 30.4 0.24 0.91 3.8 8.4 

Note: a The statistical descriptives include: number of samples (n), mean 
concentration in sediments, standar deviation (sd), relative standar 
deviation (rsd), minimum, maximum, ratio between maximum and minimum, 
and the ratio between the mean concentration in the fine fraction and 
the mean concentration in the coarse fraction. 

b The units of concentration for all the elements are µg g'1, except for 
Fe which is in percent. The units for the organic matter content are 

in percent. 
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Fig. 4.24. Distributions of lead in (a) fine sediments and (b) coarse sediments, and of zinc in 
(c) fine sediments and (d) coarse sediments. Concentration values are in tg g''. 
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and T-14 (89.3 pg g4) near Site Z. Lead concentrations in the fine sediments from the Burbo 

Bight were considerably lower than the overall mean with the highest value in sample YY-2 (127 

pg g'') and the lowest value in sample YY-3 (82 pg g'1). 

The similarity e} the distribution of lead with the distributions of arsenic, manganese and iron 

in fine sediments is reflected in good ... correlations between lead and arsenic (r=0.898), 

manganese (r=0.888) and iron (r=0.694) after logarithmic transformation of all variables. From 

Figure 4.25a it could be suggested that arsenic and lead probably have similar sources, as well 

as similar geochemical associations in the sediment. Regarding the possible geochemical 

associations in the sediments, a similarity between these two elements is suggested by the 

correlations of lead with manganese (see Fig. 4.25b) and iron (see Fig. 4.25c), which indicate a 

possible specific association of lead with the hydrous iron/manganese oxides in fine sediments; 

the possible association of arsenic with these oxides has already been discussed (see Section 

4.2.2). As already indicated by the correlation coefficient, a large percentage of the variance of 

lead could be predicted by variations in the manganese concentrations through the equation: 
log-Pbt,,, e - 0.101 + 0.670 log-Mna, x, (r2=78.5%, F=242; see also Fig. 4.25b). 

A preferential association of lead with hydrous iron/manganese oxides in fine sediments from 

Liverpool Bay is very likely as this association has been widely reported for several types of 

aquatic particles and soils (Forstner and Patchineelam, 1981; Loring, 1981; Warren, 1981; Lion 

et al., 1982; Sakata, 1985; Kersten et al., 1988; Prosi, 1989; Jha et al., 1990). It is important, to 

mention, however, that a highly significant correlation (r=0.623, p«0.001) was obtained between 

the logarithm of lead concentration and the organic carbon concentration in the fine fraction. 

Although lead correlations with manganese and iron were higher, indicating that the variations 

of lead concentrations could be better explained by variations in manganese and iron 

concentrations which in turn could suggest a preference of lead for oxide coatings, associations 

of lead with organic coatings in the same sediments can also occur (Kemp et al., 1976; Warren, 

1981; Hirata, 1985; Brook and Moore, 1988; Hall and Chang-Yen, 1989). 

Whether the correlation between lead and organic carbon reflectsa chemical association----- 
or it is only a result of a covariance between these two variables as a result of the grain size 

composition of the samples is'difficult to assess. As in the cases of iron, manganese and organic 
carbon, lead showed a significant negative correlation with the amount of fine sediments in the 

samples (r=-0.811 for the logarithm of both variables; see also Fig. 4.25d), indicating that lead 

was also particularly enriched in sediments with lower amount of fine particles. This trend is 

particulary emphasized when aluminium is used as an indicator of the amount of fine particles 
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in the total sediment samples (see Fig. 4.25e). The possibility of having higher available surface 

areas in sediments with lower amounts of fine fraction has already been discussed (see Section 

4.1.2), and Figure 4.25e indicates a sharp increase in lead concentrations as aluminium decreases, 

particularly from aluminium concentrations lower than -1.5% (equivalent to approximately 5% 

of fine fraction; see Fig. 4.3). From these observations, it seems that the available surface area 

has an strong effect on the concentrations of lead (also on manganese, iron and organic carbon), 

and this effect becomes more significant in samples with a percentage of fine fraction lower than 

5% (see also Fig. 4.25d). 

Regarding the -possible sources of lead in the fine fraction, the similarity between the 

distribution of this element and the distribution of arsenic (Fig. 4.25a) would probably' suggest 

that both elements originate from the same source(s). As in the case of arsenic, lead could be 

derived from the mineralized areas of North Wales, as the mining activities that took place in the 

region were related to the extraction of two principal ore minerals (Elderfield et al., 1971): 

sphalerite (ZnS) and galena (PbS). Not surprisingly, very high concentrations of lead and zinc, 

together with other elements related to sphalerite - and galena ores (such as a arsenic and 

manganese), have been reported in sediments from tributaries, the main stream and the estuary 

of the River Conwy which drains mineralized areas in North Wales (Elderfield et al., 1971; 

Imperial College of Science and Technology, . 1978; Elderfield et al., 1979). Elderfield et al. 

(1971) reported a concentration range for lead in sediments <85 pm-in the Conwy Estuary 

between 85 and 600 pg g'' with an average of 250 pg g', and a range for zinc between 300 and 

2000 pg g'1 with an average of 900 pg g'1. These authors suggested that higher concentrations 

of these metals may be found after periods of flooding when more material from the mineral 
deposits may be washed into the streams and carried into the estuary. Considering that the 

average lead concentration in the present study was 234 pg g1 and that the highest values (up 

to -1200 pg g") were found together with high concentrations of arsenic, manganese, iron and 

other elements, all of these exceeding the concentrations in sewage sludge (the concentration of 
lead in the analysed sewage sample was 689 pg g'1), inputs of these elements from the 

mineralized areas seems to be a reasonable explanation, particularly in sediment samples where 
"anomalous" high concentrations were measured. Furthermore, Norton et al. (1984a) reported lead 

concentrations in fine sediments from Liverpool Bay exceeding the average concentrations in 

sludge particles and suggested that an "additional" source of inorganic lead may have been 

present. These authors concluded that it was not possible to tell whether this was due to a 
transient increase in sludge lead concentrations or to the dumping of an --industrial waste 
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contaminated with high concentrations of lead. Most of the high values in Norton et al. (1984a) 

study occurred to the south of Site SI (see Fig. 19; 1980 survey) where probably very low 

concentration of fine fraction were observed (where the probability of deposition of dumped 

wastes is lower according to these authors and previous studies already discussed in Chapter 2) 

and closer to possible influence from material derived from the North Wales coast, therefore, an 

alternative explanation to the high concentrations found in these authors report could be inputs 

from the mineralized areas in North Wales. In the report by Norton et al. (1984a), during the 

1980 survey in which particularly high concentrations of lead occurred, zinc (see Fig 17 in these 

authors report) presented a relatively similar enrichments at the same stations as lead. 

In contrast to arsenic, iron and manganese, however, the inputs of lead from sewage dumping 

in Liverpool Bay at Site SI are significant. This observation is hardly surprising as domestic 

wastes mix in the sewage system with water from runoff in streets, which may collect large 

amounts of lead originating from petrol combustion (Prosi, 1989). These observations, together 

with the reported very high affinity of lead towards particles (Ballistrieri and Murray, 1984), may 

explain the high concentrations of lead in sewage sludges (689 µg g' in the sludge analysed in 

this study). As compared to mercury, cadmium and nickel, large amounts of lead are discharged 

annually into the bay via sewage sludge dumping (see Table 2.3), and although the quantities of 

copper, chromium and zinc annually discharged are higher than those of lead, these differences 

are not reflected in the fine sediment concentrations as lead values are similar to those of zinc, 

and higher than those of copper and chromium (see Table 4.1) and figures 4.24a, 4.24c, 4.19a 

and 4.17c). 

The concentration of lead in the sludge was approximately 2.9 times the mean concentration 
for the sediments in the whole bay as compared to values lower than 1 for iron, manganese and 

arsenic (see Table 4.1). When the relationship between lead and manganese (Fig. 4.25b) was 

analysed in more detail, it was observed that the strong correlation between these variables was 

emphasized by samples with high lead and manganese contents. Data were split in two sets, one 

rl including samples with manganese concentration higher than 2000 µg g4 and the other one 
samples with concentrations lower than this value. The corresponding correlation coefficients 
between lead and manganese (in logarithmic scale) were 0.711 and 0.441 respectively, this 

observation indicating that although in" both cases ý the correlations were significant which 
probably underlines the possible lead-manganese associations, the association seems to be more 
significant in samples with very high concentrations of manganese which are probably the most 
influenced by the inputs from mineralized areas. Sediments with manganese concentrations in the 
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fine fraction lower than 2000 pg g"' correspond to those with a percentage of fine fraction higher 

than 1% (see Fig. 4.9c). Therefore, lead concentrations in sediments with the lowest amounts of 

fine fraction (lower than 1%) may be more directly associated to inputs from mineralized areas 

whereas sediments with higher amounts of fines, where deposition of sludge derived particles is 

more likely (see Chapter 2), are more affected by sewage-derived lead. This observation is 

probably reflected in the apparent loss on the trend of decreasing lead concentrations as the 

amount of fine fraction increases observed in samples with values higher than 1% (0 in 

logarithmic scale) in Figure 4.25d. 

Lead concentrations in the fine sediments were compared with the baseline and benchmark 

values reported for this metal by Rowlatt et al. (1984). The reported benchmark value (60 pg g') 

was three times above the baseline value (20 pg g'1) indicating and overall contamination of the 

eastern Irish Sea sediments without considering Liverpool Bay. The average concentration in the 

present study (234 pg g4) was 11.7 times above the baseline and 3.9 times above the benchmark 

values, whereas the minimum and maximum values (70 and 1214 pg g'1) were 3.5 and 60.7 times 

above the baseline value, and 1.1 and 20.2 times above the benchmark value. From these 

observations it can be concluded that fine sediments in Liverpool Bay are considerably 

contaminated with lead, as a result of high inputs via sewage sludge disposal and due to the high 

tendency of this metal to associate with sediments. The high overall mean concentration of lead 

may be, in part, caused by inputs from the mineralized areas in North Wales, however, even if 

the highest values were excluded, a mean concentration of approximately 135 pg g'' (median 

value in Table 4.1) could be expected which is 6.8 times above the baseline and 2.5 times above 

the benchmark values. 

4.2.7.2. Lead in the coarse fraction 

Figure 4.24b shows the distribution of lead in the coarse sediments. Low values were found 

in samples from the southern region with concentrations lower than 8.0 µg g" and several 

samples with values lower than 6.0 pg g"'. The minimum concentration value (3.3 Pg g-1) was 
found in samples R-6 and S-7. Station T-14 in Site Z also had a low value (5.3 µg g'1). The 

average concentration value for the whole region was 9.0 µg g'1. An area of high concentrations 

similar to that shown for copper (Fig. 4.19b) was found near Site SI around stations L-9, L-10, 

M-9, M-1 1, N-9 with values above the mean and a maximum of 19.9 pg g'1 at station M-9. High 

concentrations were also found in a line at stations S-9 (14.2 pg g'1), T-8 (13.9 pg g''), T-9 (17.2 

I. I, 
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µg g't) and U-9 (17.7 µg g'1). Samples from the Burbo Bight showed a range of concentrations 

above the mean from 9.4 µg g"t (station YY-2) to 15.9 µg g'' (station YY-3). 

The distribution of lead (Fig. 4.24b) in the coarse sediments from Liverpool Bay was partially 

similar to the distribution of copper (Fig. 4.19b), particularly regarding the area of low 

concentrations in the south and the area of high values at the apex of Site SL However, lead did 

not show a gradient of increasing concentrations towards the Mersey as obvious as that shown 

in the distribution of copper (also present in the distributions of mercury, cadmium and zinc). 

This observation indicates that lead concentrations in the coarse fraction are not as affected by 

the inputs from the Mersey as the concentrations of mercury, cadmium and zinc. 

The concentration of lead in coarse sediments did not seem to be as strongly affected as other 

metals by the amount of fine fraction in the samples, as indicated by a low correlation between 

the logarithm of lead and the logarithm of the percentage of fine sediments (r=0.469, see also 

Fig. 4.26a). When aluminium was used as an indicator of the amount of fine fraction in the 

sediments (r=0.440, Fig. 4.26b), the lack of dependence on the amount of fine sediments of the 

lead concentrations in coarse sediments became more obvious. Also in contrast with all the 

metals previously discussed, the correlation between lead and the organic matter in coarse 

sediments was relatively low (r=0.527 after logarithmic transformation of both variables, see also 

Fig. 4.26c). Low but significant correlations were observed between lead and manganese 

concentrations (r=0.434), and lead and iron concentrations (r=0.454 after logarithmic 

transformation of both variables, see also Fig. 4.26d). 

A strong affinity of lead towards sediment particles in general (Ballistrieri and Murray, 1984) 

and strong binding strengths of this metal with hydrous iron/manganese oxides in particular 
(Tessier et al., 1985) have been reported. Therefore, the low correlations between lead and the 

amount of fine material in the total sediments may, indicate a lower transfer (as compared to other 

metals) of this metal from fine sediment particles towards coarse particles as a consequence of 

a strong association of lead to the fine sediments in Liverpool Bay. 

The low correlations of lead with organic matter, iron and manganese may be due to a lack 

of a specific association of lead with one particular sedimentary phase in the coarse particles, in 

contrast to a possible preference of lead for association with iron/manganese oxides in the fine 

particles previously discussed in this Section. For example, Figure 4.26b indicates that some of 
the samples with low amounts of fine fraction showed high concentrations of lead in the coarse 
fraction. As discussed in Section 4.1.3 (see Fig. 4.5e), the organic matter content in coarse 
sediments decreased as the amount of fine material in the samples decreased, therefore, some of 
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the high lead concentrations in coarse sediments occurred in samples with low amounts of 

organic matter (see Fig. 4.26c). As indicated in Figure 4.26d, the high values of lead observed 

in samples with low amounts of fines can be explained by an enrichment in the iron content, 

therefore, lead in coarse sediments of samples with low amounts of fines may be preferentially 

carried in the iron oxide coatings, whereas lead may be preferentially carried in the organic 

phases of coarse sediments coexisting with high amounts of fines, also showing a high organic 

matter content, such as those sediments from the Burbo Bight region. 

4.2.8. Zinc 
4.2.8.1. Zinc in the fine fraction 

The distribution of zinc in the fine fraction (Fig. 4.24c) was very similar to the distribution of 

lead (Fig. 4.24a) discussed above. The mean concentration of zinc for the whole area was 280 

pg g''. The concentrations in the area of high values in Site SI were 591 pg g'' in sample K-8, 

a maximum of 904 pg g4 in sample L-9 and 548 µg g'1 at station M-10. As in the cases of other 

elements, station G-9 had a high concentration of zinc (607 µg g'1) as compared to other stations 

nearby. The lowest values in the northwestern region were found at stations H-12 (minimum), 

G-11 and G-13, with concentrations of 135,158 and 153 pg g'' respectively. Samples from the 

Burbo Bight area had concentrations near or below the overall mean value (e. g. 288 and 209 pg 

g'1 at stations YY-2 and YY-3 respectively). 

The high similarity in the distributions of zinc and lead (see Fig. 4.24a and c) and the high 

correlation amongst these two variables (r=0.862 after logarithmic transformation of both 

variables; see also Fig. 4.27a) suggest that zinc and lead may have similar sources and similar 

geochemical associations in the fine sediments from Liverpool Bay. Therefore, as most of the 
discussion regarding the possible sources and associations of lead in the fine fraction also applies 
to zinc, the following paragraphs are mainly focused on some differences observed between these 

two metals. 

As in the case of lead, after a logarithmic transformation of the data high correlations of zinc 
with manganese (r=0.744) and iron (r=0.766) were observed (see also Fig. 4.27b and c), 
suggesting zinc associations with hydrous iron/manganese oxides in the fine sediments from 

Liverpool Bay. Possible associations of zinc with oxide phases have been reported for various 
aquatic particles (Warren, 1981; Millward and Moore, 1982; Feely et al., 1983; Luoma and 
Davis, 1983; Tessier, 1985; Kersten et al., 1988; Angelidis and Grimanis, 1989). Zinc showed 
a similar correlation with organic carbon (r=0.626; see also Fig. 4.27d) as lead, and after the 
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exclusion of the two samples with the highest zinc concentrations this correlation increased to 

r=0.672 probably reflecting the commonly reported stronger tendency of zinc (as compared to 

lead) to associate with organic phases (Hirata, 1985; Rosental et al., 1986; Sigg et al., 1987; 

Golimowski et al., 1990). It is likely that zinc is partitioned amongst iron/manganese oxides and 

organic coatings to different degrees, depending on the sources of the fine particles and/or the 

physicochemical properties of the metal itself. Campbell et al. (1988) suggested that zinc in 

particles from the Mersey Estuary (largely affected by sewage and industrial inputs) may be 

mainly associated with organic phases, whereas Elderfield et al. (1979) reported zinc in sediments 

from the Cönwy Estuary (largely affected by inputs from the mineralized areas in North Wales) 

associated with iron/manganese oxides. 

It was mentioned in the discussion of lead distributions that sphalerite (ZnS) is one of the two 

principal ore minerals in the North Wales old mining zone. This observation, and reports by 

Elderfield et al. (1971); the Imperial College of Science and Technology (1978) and Elderfield 

et al. (1979) showing high zinc concentrations in sediments in the streams and estuary of the 

River Conwy, indicated the possibility of an effect of zinc inputs from the mineralized areas on 

the concentrations of this metal in the fine fraction of the sediments collected in the present 

study. This possibility is also supported'by Kiff (1984) who reported' high concentrations of 

magnetite and chromite in the heavy mineral fraction of some sediment samples from Liverpool 

Bay including the sewage dumping ground, and by a report of high concentrations of zinc (up 

to 800 pg g'' for magnetite and 8000 µg g4 for chromite) being associated with these two 

minerals (Warren, 1981). On the other hand, it could be possible that these heavy minerals 

reported by Kiff (1984) were derived from the sewage sludge and industrial waste disposal at Site 

SI rather than being transported from North Wales. In a study of the distribution of metals in 

different particle size fractions of sewage sludges (including digested sludge from the Davyhulme 

sewage works dumped at Site SI), Campbell et al. (WRc unpublished report for North West 

Water Authority, England) reported concentrations of lead and zinc higher than 2000 µg g'1 in 

the finest fraction. (<20 tun), therefore, if heavy minerals were present in this fraction, sewage 

sludge dumping could account even for the highest concentrations of lead found in the present 

study (-1200 µg g't): In the same study, however, the concentrations of iron and manganese in 

the finest'fraction were not particularly elevated (2.2% for iron and 757 µg g` for manganese), 
therefore, it seems that inputs of metals such as manganese, zinc and lead from the mineralized 

areas of North Wales could explain the high concentration of these elements in sediments with 
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very low amounts of fine material we the deposition of sewage derived particles is more ý-- 

unlikely (see Chapter 2, Section 2.4.1). 

Although the similar distribution (Fig. 4.24a and c) and the high correlation between zinc and 

lead (Fig. 4.27a) suggest that these metals have a similar geochemical behaviour in Liverpool 

Bay fine sediments, an interesting observation arose from the analysis of the ratio between these 

two metals. Figure 4.27e shows that the Zn: Pb ratio in the fine sediments analysed in the present 

study could be largely predicted by the variations in the fine fraction content of the total sediment 

through the equation: 

Zna�JPb - 1.32 + 0.6571og-%fine, (rr'=82%, F=314). 

Figure 4.27e shows that Zn: Pb ratios decreased as the amount of fine particles in the total 

sediments decreased, and as the concentration of both metals in the fine particles increased as 

the fine fraction in the sediments decreased (see Fig. 4.27d and 4.26a), proportionally higher 

concentrations of lead were found as the concentration of both metals increased, in other words, 

lead concentrations increased more rapidly than zinc concentrations. This effect is more obvious 

if the Zn: Pb ratio is plotted against the percentage of fine fraction without logarithmic 

transformation. From Figure 4.27f, it is more obvious that at concentrations of fine fraction 

higher than approximately 2% the Zn: Pb ratio fluctuated between 1.7 and 2.6, whereas this ratio 

sharply decreased from the 1.7 value at 2% of fine fraction towards a minimum of 0.48 in one 

of the samples (P-10) with the lowest proportion of fine sediments (0.23%), sample S-7 with the 

lowest amount of fine material (0.08%) showed the second lowest Zn: Pb ratio (0.51). It is 

interesting to note that a similar behaviour of the Zn: Pb ratios in relation to the grain size 
distribution in the sediments, was observed with the data reported by Law et al. (1989) for the 

<90 pm fraction of sediments in the Liverpool Bay area in particular. As an example, these 

authors report (see Table 5)Athe sample from station 4 (near the apex of Site SI) showed the-i-- 
highest lead and zinc concentrations (570 and 490 pg g't respectively) and the lowest Zn: Pb ratio 
(0.86); this sample also had the lowest amount of <90 pm fraction (0.1%) in the whole region. 
On the other hand, station 1 (near Site Z) showed the highest Zn: Pb ratio (2.8) within the region 
(zinc and lead concentrations were 390 and 140 pg g" respectively) and a very high proportion 

of the <90 pm fraction in the sample (87.8%); other samples within Liverpool Bay (stations 10, 
11,13,15 and 21) showed a Zn: Pb range from 2.1 to 2.7. 

-A Zn: Pb ratio of 4 was obtained with " the benchmark values for these metals reported by 
Rowlatt et al. (1984) and a ratio of 2.6 was obtained for the mean concentrations of lead and zinc 
in 119 samples (<90 µm fraction) in the whole eastern Irish Sea including only a relatively small 
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amount of samples from the Liverpool Bay area. These ratios may be representative of those in 

fine particles in sediments being transported into Liverpool Bay from the Irish Sea. A Zn: Pb ratio 

of approximately 2.1 was observed in the sludge. Therefore, the Zn: Pb ratio in fine particles of 

sediments iri Liverpool Bay seems to be controlled by the relative amounts of particles 

contributed by each of the main sources (i. e. those derived from the Irish Sea, sewage sludge 

derived and those probably derived from the mineralized areas). It is possible that fine particles 

of sediments containing more than 2% of fine fraction show a relatively constant Zn: Pb ratio 

(between 1.7 and 2.3) because most of these particle are either derived from the eastern Irish Sea 

or from sewage sludges (both sources showing similar ratios). On the other hand, fine particles 

in sediments with a concentration of fine fraction lower than 2% may be dominated by particles 

(showing high concentrations of lead and zinc and a low Zn: Pb ratio) derived from the 

mineralized areas in North Wales. It is important to stress at this point that most of the samples 

with fine fraction concentrations lower than 2% occurred nearer the North Wales coast (see Fig. 

4.1a), and that sediments with low amount of fines indicated hydrodynamical conditions under 

which the deposition of fine particles (such as those from sewage sludges) were less favourable 

(see Chapter 2, sections 2.3 and 2.4). 

When compared' with the baseline (85 µg g'i) and benchmark (240 pg g"`) values for zinc 

reported by Rowlatt et al. (1984), the mean value obtained for the fine sediments in the present 

study was 3.3 times above the baseline and 1.2 times above the benchmark values. These values 
indicate that although there is an obvious enrichment of zinc in fine sediments from Liverpool 

Bay as compared to the baseline value, the average concentration was only 20 percent above the 

average value for the eastern Irish Sea (as compared to a factor of 3.9 for lead) indicating that 

zinc is not extremely enriched in Liverpool Bay fine sediments as compared to other areas in the 

eastern Irish Sea which apparently are not directly affected by sewage sludge disposal, dredging 

spoils disposal or inputs from the rivers in the coastal areas particularly the Mersey. This 

observation, however, does not indicate that zinc levels in fine sediments from Liverpool Bay are 
low, but is a result of a relatively high benchmark value for zinc that is 2.8 times above the 
baseline value indicating that there is an enrichment of zinc not only in the Liverpool Bay area 
but in the whole eastern Irish Sea. 

Finally, Table 4.1 shows that the relative standard deviation for the zinc concentrations in fine 

sediments in the present study (45%) and the ratio between the maximum and minimum 
concentrations (6.7) was lower than that for lead and other metals, indicating a relatively more 
homogeneous distribution of this element amongst fine particles in the bay. When compared to 
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lead and copper, zinc shows a lower affinity towards particles (Ballistrieri and Murray, 1984), 

and as in the case of copper seems to have a higher affinity for dissolved organic matter 

(Golimowski et al., 1990) and way also play a wie rt. 
' 

rro 
e 

than lead in biological systems such 

as uptake by phytoplankton (Hirata, 1985; Sigg et al., 1988). Therefore, as compared to lead, zinc 

shows a higher mobility and is more involved in processes leading to redisolution and 

precipitation which lead to a better homogenization in the distribution of this metal. 

4.2.8.2. Zinc in the coarse fraction 

Figure 4.24d shows the distribution of zinc ' in the coarse fraction. A clear gradient of 

increasing values from west to east can be observed. The mean concentration for the whole 

region was 24.7 pg g"t. Most samples west from transect L had values below 20 pg g'1, with 

some stations showing concentrations below 15 pg g'1 and reaching a minimum of 13.6 pg g'1 

at station K-9. Concentrations in the central-southern area were also low, with the lowest values 

at stations Q-7 (10.4 pg g'1), R-6 (11.0 pg g') and S-7 (12.6 µg g"'). High concentrations were 

found at stations S-9, T-9 and U-9 with values of 63.5,69.0 and 68.2 µg g4 respectively. The 

maximum value (75.6 pg g'`) in the whole region was found at station YY-3 in the Burbo Bight 

area, where the lowest value was of 42.3 pg g'1 at station YY-2. 

The distribution of zinc'in the coarse fraction (Fig. 4.24d) indicates that inputs from the 

Mersey appear to be a significant source of this metal in coarse particles. In contrast to mercury, 

cadmium, chromium and copper, the correlation between zinc in coarse sediments and the amount 

of fine material in the total sediment was low (r=0.490) but significant, indicating that the 

concentration of this metal in coarse sediment particles may be mainly controlled by factors other 
than the amount of coexisting fine particles. 

Also in contrast to other metals (excluding lead), zinc in coarse sediments showed a low but 

significant correlation with the organic matter content (r=0.434) in the particles. A significant 

correlation was observed between zinc and manganese (r=0.549) and no correlation was observed 
with the iron content, therefore, it is possible that zinc is preferentially associated with manganese 

oxides and organic matter in coarse particles in Liverpool Bay and the proportion in each phase 
might be depending on the location of the samples. Figure 4.28a shows that some samples with 
high organic, matter content had high concentrations of zinc . whereas others had low 

concentrations. In fact, from figures 4.24d and 4.4c it can be seen that samples showing high zinc 
and organic matter values are those nearer to the Mersey whereas those showing high organic 
matter but low zinc values are those from the extreme northwestern section of the sampling grid. 
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It is likely that zinc is mainly associated to organic phases in coarse sediments near the Mersey 

outflow as manganese concentration in samples from the Burbo Bight area (where the highest 

zinc and organic matter values were observed) were not the highest (see also Fig. 4.28b). 

As in the fine fraction, zinc was significantly correlated with the lead content (Fig. 4.28c) in 

the coarse fraction (r=0.781 after the exclusion of sample M-10) which suggested that both 

metals may have also a similar geochemical behaviour in the coarse particles. It was interesting 

to note that in samples outside the influence of the Mersey, a similar trend as the one observed 
in the fine particles was observed in the coarse particles of lead concentrations increasing more 

rapidly than zinc concentrations, therefore, the Zn: Pb decreased as the concentration of both 

metals increased (this effect is particularly noticeable in Fig. 4.28d). In samples within the 

influence of the Mersey outflow, however, this trend was reversed (see Fig. 4.28e) indicating that 

within this area zinc concentrations increased more rapidly than lead concentration, probably as 

a result of higher zinc discharges than lead discharges from the Mersey Estuary which is subject 

to particularly high inputs of zinc from domestic and industrial sources that can be transported 

in solution associated with organic substances (Campbell et al., 1988), in contrast to lead that due 

to its high reactivity may be largely associated with particles (Ballistrieri and Murray, 1984) and 

most of the particles in the estuary may be retained within the estuarine system rather than being 

transported into Liverpool Bay (see Chapter 2, Section 2.3). It was also interesting to notice that 

the Zu: Pb ratios in the area outside the reaches of the Mersey inputs were similar to those found 

in the fine particles in sediments with a fine fraction proportion higher than 2% which do not 

appear to be significantly affected by inputs from mineralized areas. 

4.3. STATISTICAL CLASSIFICATION OF SEDIMENTS USING RATIO MATCHING 
From the discussions in the previous sections, it is obvious that trace element distributions in 

sediments from Liverpool Bay do not only depend on the sources of each of these elements and 
the total amounts discharged into this area by either natural or anthropogenic inputs, but are also 
determined by the particular physicochemical properties of each element, specially those 
controlling adsorption-desorption processes. As noted in Chapter 2, the hydrodynamical 

conditions also play a major role in controlling the observed trace element distributions as they 
will ultimately determine whether particles are deposited or not in a particular area. Therefore, 
considering the possible multiple sources of these elements into the bay, the difference in their 
physicochemical properties and the continuously changing hydrodynamic conditions leading to 
a continuous cycle of sediment erosion-transport-deposition, it is not surprising to observe such 
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different distributions when some of the elements discussed above are compared. However, in 

spite of the multiple controlling factors and the complexity of the distributions, an attempt has 

been made to summarize the information previously discussed. To achieve this goal, an attempt 

has been made to classify the sediments based on their elemental composition by means of 

multivariate statistical methods, in particular, by applying a technique called "ratio matching" 

(Anders, 1972; Poulton, 1989) for determining the similarity amongst samples, which is followed 

by cluster analysis used for the separation of the samples into groups or "clusters" based on their 

similarities. - 

The "ratio matching" technique used in this study to determine the degree of similarity between 

sediment samples was originally developed by Anders (1972) and later modified by Poulton 

(1989). Although this technique can be more broadly applied to various sorts of analog problems, 

both Anders (1972) and Poulton (1989) applied this method to determine the sources of various 

trace elements in sediment samples. The hypothesis on ._ which this method is based is that &- 

sediment samples of common origin will tend to have similar ratios of the concentrations of trace 

pollutants (heavy metals, PCBs, etc. ), whereas the absolute concentrations of the individual 

pollutants may vary considerably due to dilution with inert materials such as SiO2 and CaCO3 

(Poulton, 1989). It is important to mention at this point that Anders (1972) and Poulton (1989) 

analysed total sediment samples and worked under the assumption that sedimentary particles 

larger than clay and silts consist mainly of "inert" minerals such as silica or calcite and that these 

larger particles, having less surface area per unit mass available for contaminant adsorption in 

comparison to the fine grained particles, will only act as "diluent" factors, in other words, it is 

assumed that the contribution of coarse particles to the observed total metal content in a 

particular sediment sample is insignificant as compared to the contribution by fine particles. It 

has been mentioned previously in this chapter that, if total sediments are analysed, regarding 

coarse sediment materials as "inert" towards metals, therefore regarding them as "diluent" factors 

may be questionable in several situations, particularly in areas such as Liverpool Bay where a 
large proportion of the sediments are sandy with only small proportions of fine grained material, 

and therefore, the contribution -of coarse particles to the metal load in the total sediment may be 

significant. These statistical 'methods 
were therefore applied separately to the fine and coarse 

sediment fractions analysed in this study, and these analyses show that different elemental 
"fingerprint" can be observed in different grain size fractions within the same sample which 

suggest that if trace element' analyses were carried on total sediments, the fingerprinting of the 
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different fractions would have been superimposed, making the interpretation of the results more 

difficult than they already are. 
In order to compare the samples, the first step in Anders (1972) procedure was, for each 

sample, to divide the concentration of each chemical component by that of each of the other 

components obtaining this way the "concentration ratio matrix", (Y., -11, which is a triangular 

matrix of size mxm where m is the number of chemical components involved in the analysis. 
In the present study, ten chemical elements in sixty seven sediment samples were included in the 

calculations, and the data were arranged in a data file as follows: 

Element 

Hg Cd Cr Cu Ni Pb Zn As Mn Fe 

S Si Hgl Cdl Cr, Cul Nil Pbl Zni As! Mn, Fei 

a S2 Hg2 Cd2 Cr2 Cue Nie Pb2 Zn2 Ase Mn2 Fee 

m S3 

p 
1 

e 
S67 11967 . Fe67 

therefore, for each sediment sample a 10 x 10 triangular matrix was obtained. For example, for 

sample Si (A), the concentration ratio matrix looks as follows: 

{ X; J (A) } 

Hg A 

Cd Cd 
HgA CdA 

Cr Cr Cr 
HgA CdA CrA 

Fe -: Fe Fe Fe 
HgA CdA CrA FeA 
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The next step of the procedure is to compare the ratios obtained for each sample with those 

of all the other samples. For example, the comparison between sample S1 (A), and sample S2 

(B), is carried out by forming the "ratio matrix of two samples" {Yij (AB) ), which is a triangular 

matrix obtained by dividing each of the au elements of the concentration ratio matrix, (X (A) ), 

for sample A, by the corresponding b1 element of the "concentration ratio matrix", { XU (B) } of 

sample B which results in a "ratio matrix of two samples" looking as follows: 

{Yu (AB)}= 

Hg 

Hg A 

Hg A 

Cd Cd 
Hg Cd 
Cd Cd 
Hg B CdB 

Cr Cr Cr 
Hg A CdA Cr A 
Cr r Cr Cr 
Hg B CdB Cr 13 

Fe Fe Fe Fe 
Hgn CdA CrA FeA 
Fe Fe Fe Fe 
Hg H Cd B Cr B Fe 

Finally, an index of the similarity between two samples A and B is obtained from the ratio 

matrix of the two samples by reducing the matrix IYu (AB)) to a similarity coefficient ZAn. The 

similarity coefficient between any k and 1 pair of samples was defined by Poulton (1989) as an 

evaluation of the relative differences of all elements of the (Yid (kl)) matrix from 1. For each of 
the [(m x m) - m112, (m), off-diagonal elements in the (YU (kl)} matrix, the absolute value of the 
logarithm is used as a measure of the difference of each element from 1. In order to obtain a 
value of 1.0 for a perfect match (i. e. all S Y; j } values = 1.0), 1.0 is added to the logarithms, and 
the similarity coefficient takes the form: 
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Zk1 Ya I 
i-1 j-i+l In (Y, j (ki)) I+1 (m2) 

In this equation, k and i vary from 1 to n, where n is the number of samples, 71k=1 and 

ZU=Zje 

The similarity coefficients Zu for all samples form a "similarity coefficient matrix" of size n 

xn (67 x 67 in this study), as follows: 

1 

ZAB 1 

ZAC ZEc 1 

{7ý}= 1 

1 

ZAn ZBo 1 

For an example on the calculations of the similarity coefficients the following data for three 

metals in three samples is considered: 

Hg Cd Cu 

M-9 0.27 0.39 144 

YY-1 1.22 0.77 44 

YY-3 1.19 0.72 36 

In the first step, the "concentration ratio matrix", IXJ) for each sample is calculated as follows: 

( ; (mg) )- 10.27 
27 

39 

, 27 

. 
44 

, 27 

0.39 
0.39 

144 
0.39 

119 

144 
144 

1.0 

1.4 1.0 

533 369 1.0 



(X; j(YY1)}= 1.22 1.0 
1.22 

0.77 0.77 0.6 1.0 

1.22 0.77 

4 L4 44 44 36 57 1.0 
1.22 0.77 44 

{X1(YY3)}= 1.19 = 1.0 
1.19 

0.72 0.72 0.6 1.0 
1.19 0.72 

36 36 36 30 50 1.0 
1.19 0.72 36 

then, the ratio matrix { Y1! } for each pair of samples is computed 

(Y. *j (M9YY1))= 1 1.0 
1 

1.4 1 2.3 1.0 
0.6 1 

533 369 1 14.8 6.5 1.0 
36 57 1 

{Y4 (M9YY3)) = 1.0 (Y,, (YY1YY3)) = 1.0 

2.3 1.0 1.0 1.0 

17.8 7.4 1.0 1.2 1.1 1.0 

and finally, the difference from 1 of each of the off-diagonal elements in each matrix is 

calculated with the inverse of [11n {YU) (kiI + 1], e. g. in {Yu (M9YY1)) the calculation for 

the three off-diagonal elements 2.3,14.8 and 6.5 would be 1/[ Iln(2.3) I+ 1]- 0.55, 
1/[Iln(14.8 I+ 11- 0.27 and 1/11In(6.5) j+ 11- 0.35 respectively. The average from these three 

values is 0.39 and represents the similarity coefficient, ZM9YYL, between samples M-9 and YY-1. 

The similarity coefficients between samples M-9 and YY-3 and between samples YY-1 and YY-3 
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would be ZM9yy3=0.38 and ZYY1YY3=0.91 respectively. A matrix of similarity coefficients looking 

as follows is the final product of these calculations: 

1 1. M-9 YY-1. YY-3 

M-9 1.00 

., , 
YY-1 ` 0.39 1.00 

YY-3 0.38 0.91 1.00 

These similarity coefficients indicate that regardless the total metal concentration in the 

samples, the ratios between Hg, Cd and Cu in samples YY-1 and YY-3 were very similar 

whereas these ratios were very different to those found in sample M-9. These results would 

suggest that the metals mercury, cadmium and copper in the fine fraction of samples YY-1 and 

YY-3 have a similar source(s) and have been similarly affected by physicochemical processes 

(e. g. adsorption-desorption), whereas those metals in sample M-9 probably come from a different 

source(s) or have been affected to a different extent by physicochemical processes (or both). 

In the present study, the final product of these calculations were two triangular matrices (67 

x 67) of similarity coefficients, one for data in the fine fraction and one for data in the coarse 
fraction. As the number of data handled during these calculations. is very large (each of the 

similarity coefficients was obtained from a 10 x 10 "ratio matrix for two samples", and for each 

sample a 10 x 10 "concentration ratio" matrix was computed), all these calculations were done 

in a VAX computing system (UCNW) using a FORTRAN programme written by Alejandro 

Souza-Gomez, a fellow Mexican student from the Physical Oceanography Department (UCNW). 

Using the matrix of similarity coefficients as an input, Poulton (1989) used a cluster analysis 
to classify the sediments into groups with similar inter-elemental ratios, therefore, into groups 

with similar origin. In general, the problem that cluster analysis is designed to solve is the 
following: given a sample of n objects (in this study n= 67 sediments) each of which has a score 

on m variables (in this case a concentration value for m° 10 chemical elements), devise, a 

scheme for grouping the objects into classes so that "similar" ones are in the same class (Manly, 

1986). As several clustering procedures exist and discussing them is beyond the scope of this 

work, =the reader is referred to Manly (1986), Norusis (1985) and references therein. The 

clustering procedure followed by, Poulton (1989) and followed in this study is a hierarchical 

agglomerative method which, in few. words, consist of grouping the objects into bigger and 
bigger clusters until all objects are members of a single cluster. For example, in this study, the 
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Fig. 4.29. Dendrograms for the cluster analysis on the similarity coefficient matrices obtained - 
with the "ratio matching technique" applied on the content of ten elements (see text 
for details) in (a) fine sediments, (b) coarse sediments and (c) the fine and coarse 
fractions in 25 sediment samples. The vertical relative scale indicates the distance 
(dissimilarity) between clusters, in the horizontal the number of station (label) and the 

cluster membership (shown in Fig. 4.30) are indicated. 
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Dendrogram using Average Linkage (coarse fraction) 
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4.29c 
Dendrogram using Average Linkage (fine fraction and coarse fraction) 
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Fig. 4.30. Distribution of cluster memberships obtained from a cluster analysis applied on the 
matrices of similarity coefficients for ten elements in (a) fine sediments and (b) coarse 
sediments. The similarity coefficients were calculated with the "ratio matching 
technique" (see text for details). 
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concentration of iron in that particular sample, this way, the dispersion of the values of elements 

showing co-variation with iron is reduced and data from different samples will be more easily 

represented using the same scale. For example, arsenic concentrations ranged from -9 to 144 pg 

g'1 but once normalized with the percentage of iron, the range was from -5 to -30, on the other 

hand, zinc showed a range of concentrations from 135 to 904 µg g'' and after normalization, the 

range was from 70 to 240. It is obvious that if normalized values of arsenic and zinc were to be 

represented in a bar diagram using the same scale, the range in the scale would have to be from 

0 to 240 and the size of the of the bars representing arsenic would be very small. Therefore, if 

zinc normalized values were divided by 10, the range of arsenic and zinc would be similar. The 

transformation of data using multiplication or division does not affect the concept of "relative 

proportions" amongst elements because, regardless the absolute concentration values, if one of 

the elements increases by a factor of 2 from one sample to another while the other remains 

unchanged, the size of the bar representing the transformed data of the "enriched" element will 

also duplicate its size. Therefore, for data in coarse and fine fractions, after normalization with 
iron concentrations (in percent), mercury and cadmium values were multiplied by 100, lead and 

zinc were divided by 10, manganese divided by 100 and iron was multiplied by 25 in the fine 

and by 10 in the coarse fraction while the other elements (chromium, copper, nickel and arsenic) 

remained unchanged after dividing by the iron concentration. 
Figure 4.3la shows examples of patterns in samples from cluster number 1. The similarity 

coefficients between the samples in this cluster were: 

YY-1 YY-3 U-11 K-9 K-10 

YY-1 1.000 0.941 0.888 0.762 0.780 
YY-3 1.000 0.867 0.736 0.766 

U-11 1.000 0.798 0.758 

K-9 1.000 0.791 

K-10 1.000 

From these coefficients, and from Figure 4.31a it can be seen that the pattern in the elemental 

relative proportions was very similar in samples YY-1 and YY-3 whereas the most dissimilar 

samples within this cluster were K-9 and YY-3. Figure 4.31 a also shows that all samples within 
this cluster had a similar pattern in the proportions of nickel, lead, zinc, arsenic, manganese and 
iron, whereas differences amongst samples within this cluster were due to variations in mercury, 
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Fig. 4.31. Examples of the distribution of the relative concentrations (see text for details on the 

calculation of these concentrations) of ten elements in fine sediments classified in 
(a) cluster 1, (b) cluster 2, (c) cluster 3, (d) cluster 5, (e) cluster 7, (f) cluster 8, 
(g) clusters 9 (samples K-8, P-10 and L-10) and 10 (samples L-9 and Q-9), and 
(h) samples with the lowest similarity coefficients including G-9 (cluster 9), M-6 
(cluster 11), N-10 (cluster 12), P-11 (cluster 6) and T-10 (cluster 4). (see also 
dendrogram in Fig-4.29a). 

14 



90 

80 

70 

Q)60 I Cd U 
°50 
N 

X40 

X30 

20 

10 

0 

40 

35 

30 

Q) 
X25 
C. ) 
M 

y20 

Cd X15 

10 

5 

0 

YY01 YY03 U11 K09 K10 

`"i L-1.5 J07 S09 U15 



90 

80 

70 

v60 
U 
x'50 
a) 
X40 
co 
=30 

20 

10. 

0" 

70 

60 

50 
a) 

4 cd 
ä, 40 
Q) 

X30 
(1) 134 

20 

10 

0 

Cluster 3 

G11 H12 

Cluster 5 

G07 Q07 

G13 H10 H08 

L08 L07 S11 



90 

80 

70 

a)60 
4 Cu U 
'50 
a. ) 
X40 
co 
a30 

20 

10 

0 

60 

50 

a)40 
co U 
M 

>30 
. - 
cd 
a) 
P420 

10 

0 

Cluster 7 

M09 

M08 

M10 

Nil 

Hg 
Cd 
Cr 

®Cu 

Ni 
C] Pb 
[ý] Zn 

As 
i Mn 

® Fe 

P09 

P08 

S08 

K06 

4.3l e 

R08 

J09 



80 

70 

60 

Q) 
c'50 U 

a)40 

ä30 
0.1 

20 

10 

0 

100 

80 

a> 
Cd U 

60 
a) 

40 

20 

n 

Cluster 9,10 

K08 P10 

Hg 
Cd 
Cr 
Cu 
Ni 
Pb 
Zn 
As 
AM 
Fe 

L10 L09 

4.31g 

Q09 

U09 M06 N10 P11 T10 



cadmium, chromium and copper. For example, the main differences between samples K-9 and 

YY-3 are the relative depletion of mercury and enrichment of copper and chromium (use bar 

representing iron as a reference) in sample K-9 as compared to YY-3. When compared with other 

clusters (see Figure 4.31 a-g), it is evident that samples from cluster 1 were particularly enriched 

in mercury, and cadmium to a lesser degree, in proportion to other elements. 

Some examples of samples in cluster 2 are shown in Figure 4.31b and the similarity 

coefficients between these samples were: 

J-13 L-13 J-7 S-9 U-15 

J-13 1.000 0.867 0.804 0.735 0.725 

L-13 1.000 0.756 0.738 0.745 

J-7 1.000 0.813 0.770 

S-9 1.000 0.837 

U-15 1.000 

Figure 4.31b shows that the relative proportions between lead, zinc, arsenic, manganese, and iron 

in all samples from cluster 2 were similar to those shown for cluster 1 (Fig. 4.31a). The main 

difference between clusters 1 and 2 was a decrease in the proportions of mercury in particular, 

and cadmium in some of the samples, in cluster 2. The main differences between samples within 

cluster 2 were due to variations in the relative proportions of mercury, cadmium, copper and 

nickel. For example, the most similar samples (Z=0.867), i. e. J-13 and L-13, showed basically 

the same pattern, with the exception of mercury and nickel in sample L-13 which were somewhat 
depleted in relation to other elements when compared to sample J-13. On the other hand, the 

most different samples within this cluster were J-13 and U-15 (Z=0.725) with the latter showing 

a particular enrichment in copper and cadmium when compared to the former, whilst the'other 

elements showed similar patterns. It is interesting to note that sample J-7, taken at the extreme 

south of Site SI where dumping of sewage takes place, showed some enrichment of mercury, 

cadmium, chromium, copper and zinc as compared to other samples within cluster 2 (see Fig. 
4.31b). 

The relative elemental distributions in the five samples in cluster 3 are shown in Figure 4.31c. 
The similarity coefficients in this cluster were: 

w 

124 



G-11 H-12 G-13 H-10 H-8 

G-11 1.000 0.867 0.860 0.867 0.769 

H-12 1.000 0.864 0.805 0.741 

G-13 1.000 0.812 0.803 

H-10 1.000 0.791 

H-8 1.000 

In cluster 3 (Fig. 4.31c) lead, zinc, arsenic, manganese and iron seem to keep roughly the same 

proportions as in clusters 1 and 2, with only -some increase in manganese (compare the 

proportions of the manganese and lead bars in Figures 4.3la-c). On the other hand, cluster 3 

mainly differs from clusters 1, and 2 in the proportions of mercury and chromium which in the 

former are, in general, lower than in the other two clusters whereas the proportion of nickel 

seems to be higher. The main variations amongst samples within cluster 3 were related to 

changes in the relative proportions of cadmium, chromium and copper. For example, the main 

difference between samples G-11 and H-12 which were the most similar within this cluster 

(Z=0.867) seems to be a decrease in the proportion of chromium and an increase in cadmium in 

sample H-12 as compared to sample G-11. The most dissimilar samples within this cluster were 

H-12 and H-8 (Z=0.741). An obvious enrichment in cadmium can be seen in sample H-8 whereas 

the remaining elements seem to keep similar proportions in this sample as in sample H-12. 

Cluster 4 was one of the "clusters" with only one sample, T-10, and the relative distribution 

of elements in this sample is shown in Figure 4.31h. This sample showed its highest similarities 

with samples S-9 (Z=0.775), Q-13 (Z=0.741) and U-15 (Z=0.737) in cluster 2, sample U-11 

(Z=0.740) in cluster 1 and sample R-10 (Z=0.736) in cluster 5. When comparing sample T-10 

(Fig. 4.31h) with S-9 (Fig. 4.31b), it can be seen that although mercury, cadmium, chromium and 

copper are more enriched in relation to iron in sample T-10 as compared to sample S-9 (see 

relative scales), the proportion amongst these elements is roughly similar (although chromium 
is proportionally higher in sample S-9) in both samples. On the other hand, lead, zinc, arsenic 

and manganese are also enriched in relation to iron in sample T-10 and lead in particular is 

enriched in relation to other. elements in this sample, and also when compared to clusters 1,2, 
3 and 5.. 

Five, of the, seven samples in cluster 5 are shown in Figure, 
- 
4.31 d, and . their similarity l 

coefficients are shown below: 

125 



G-7 Q-7 L-8 L-7 S-11 

G-7 1.000 0.851 0.773 0.756 0.744 

Q-7 1.000 0.788 0.760 0.722 

Ug 1.000 0.769 0.742 

L-7 1.000 0.717 

S-111, 1.000 

Mercury in cluster 5 was depleted in relation to other elements as compared to clusters 1,2,3 

and 4. The pattern in the proportions of lead, zinc, arsenic and manganese remains roughly 

similar to the previously mentioned clusters, particularly to cluster 3, however, more relative 

variations amongst these elements are observed between samples within cluster 5 than between 

samples within the other clusters. Other elements within this cluster had also some variations 

amongst samples. For example, the most similar samples within this cluster were G-7 and Q-7 

(Z=0.851); the main difference between these samples was some depletion in chromium and a 

slight enrichment of copper and nickel in sample Q-7 as compared to G-7. On the other hand, 

the most dissimilar samples within cluster 5 were L-7 and S-11 (Z=0.717), with sample L-7 

showing an enrichment in cadmium in particular and in chromium, copper and nickel as 

compared to these elements in sample S-11. 

- Only one sample, P-11, was classified in cluster 6. The elemental relative distributions for this 

sample are shown in Figure 4.31h. The largest similarities shown by sample P-11 were with 

samples K-9 (Za0.741), - T-9 (Z=0.755), T-12 (Z=0.720) and T-14 (Z=0.735), all of them being 

members of cluster 1. From figures 4.31a and h it can be seen that lead, zinc, arsenic and 

manganese in sample P-11 kept similar proportions amongst each other as compared with 

samples in cluster 1, although these elements are somewhat enriched in sample P-11 in relation 

to iron and nickel. The main difference between sample P-11 and those in cluster 1 in general, 

and sample K-9 in particular, was an enrichment of cadmium in particular, and copper, in 

comparison with mercury and chromium in sample P-11. 

It was mentioned earlier that before all clusters were joined into a single one during the 

clustering procedure (see dendrogram, Fig. 4.29a), two distinctive large clusters were formed, one 
including the six clusters previosly described, and the other including clusters 7 to 12. The main 
difference between these two sets of clusters seems to be the increase in the relative proportions 
of lead, zinc, arsenic and manganese in relation to the other elements in clusters 7 to 12. From 

diagrams in Figure 4.31 it can be seen that the roughly constant proportions amongst lead, zinc, 
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arsenic and manganese mantained throughout samples from clusters 1 to 6, has changed and 

varies throughout samples in clusters 7 to 12. 

The main feature in samples of cluster 7 (Fig. 4.31e) is an enrichment in copper in relation 

to all other elements. Within this cluster, the relative proportions of mercury, cadmium,, 

chromium, copper and nickel seems to be kept roughly constant, and the main differences 

between samples within this cluster seem to be mainly related to variations in the proportions of 

lead, zinc, arsenic and manganese although variations in the proportions of the other elements 

may be significant in some samples in particular. The similarity coefficients amongst samples 

within cluster 7 were: 

M-9 M-10 P-9 S-8 R-8 

M-9 1.000 0.829 0.742 0.793 0.719 

M-10 1.000 0.724 0.758 0.736 

P-9 1.000 0.812 0.770 

S-8 1.000 0.788 

R-8 1.000 

The main differences between the two most similar samples within this cluster, M-9 and M-10, 

seem to be an enrichment in zinc and manganese and some depletion in chromium in sample M- 

10 as compared to sample M-9. On the other hand, the main differences between the two most 
dissimilar samples,, M-9 and R-8, are due to a decrease in the proportions of arsenic and 

manganese, and an enrichment in cadmium and copper in particular in sample R-8 as compared 
to sample M-9. As compared with samples in clusters 1 to 6, most samples in clusters 7 to 12 

showed an enrichment of lead in relation to zinc which has been discussed in section 4.2.8. 

Five of the seven samples in cluster 8 are.. shown in Figure 4.31f and their similarity 
coefficients were: 

P-S = K-6 J-9 
M-8 1.000', 0.824, 0.756 0.708: -a 0.703- 

N-11 1.000 0.766 0.663 0.691 
P-S 

.. 1.000 0.626 0.659 
K-6 xt. 1.000 0.743 
J-9 1.000 

127 



The most similar samples within this cluster, M-8 and N-11, mainly differed due to a relative 

increase in arsenic, and a decrease in chromium, copper and nickel proportions in sample N-11 

as compared with sample M-8. The most dissimilar samples within this cluster were K-6 and P-8 

(Z-O. 626). When comparing the elemental patterns between these two samples (see Fig 4.31f) 

it can be seen that it is not simple, as in the previously described clusters, to establish the main 

similarities which allow them to be classified in the same cluster. In fact, Figure 4.29a shows that 

the similarities between samples within clusters 7 to 10 are much lower than the similarities 

between samples within clusters 1 to 5, as roughly indicated by the distance in the vertical scale 

of this dendrogram. Therefore, at this stage only a rough description of the elemental distributions 

within clusters 8 to 12 will be given. 

Figures 4.31f-h show that manganese was relatively enriched in most samples in clusters 8 to 

11, particularly in samples K-6, J-9, K-8, L-10, L-9, G-9 and M-6. In most of these samples 

arsenic, lead and zinc are also enriched in relation to other elements, particularly when compared 

with samples in clusters 1 to 6. It can also be seen that there was also an enrichment in cadmium 

in several of these samples, whereas the proportion of mercury in all of them remained very low. 

The five samples with the lowest overall similarities, that is, the most different within the whole 

area, are shown in Figure 4.31h. Sample G-9 had its highest similarities with sample M-10 

(Z-0.765) in cluster 7 and P-10 (Z=0.723) in cluster 9. Sample M-6 showed its higher similarity 

coefficients with sample K-8 (Z=0.727) in cluster 9 and sample L-9 (Z=0.685) in cluster 10. 

Sample N-10 was the sample with the most different elemental ratios, being most similar to 

sample S-8 (Z=0.697) in cluster 7 and sample M-8 in cluster 8 (Z=0.691). 

The geographical distribution of the cluster memberships shown in Figure 4.30a shows that 

most of the samples in cluster number 1 were found near the Mersey, however, two samples from 

Site SI (K-9 and K-10) were also classified in cluster I. If, as suggested by Anders (1972) and 
Poulton (1989), similar, inter-elemental ratios between sediment samples indicate a common 

source(s) of these elements, then the fine sediment samples taken from stations K-9 and K-10 

may have similar sources than samples near the Mersey. According to the review on sediment 
transport patterns, near-bottom residual circulation and 'sewage sludge behaviour after, being 
discharged (see Chapter 2), " the possible explanation for finding similar sources in samples near 
the sewage dumping site and near the Mersey,, is that some, particles being dumped at Site SI 
have been deposited within this area whereas some of these particles may have eventually been 
deposited in muddier. areas near the Mersey, particularly in large mud deposits such as those 
found in the Burbo Bight region. 
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In order to compare the elemental ratios in the fine sediments with the elemental ratios in the 

sludge, the similarities between the sludge and sediments were calculated. These similarity 

coefficients were low, with a range from Z=0.353 with samples M-6 and P-9, to Za0.525 with 

sample P-11. Only seven sediment samples, K-9, R-11, and T-9 in cluster 1, L-12, M-11, Q-13 

in cluster 2 and P-11 showed similarity coefficients with the digested sewage sludge higher than 

0.500. The similarity coefficients amongst these samples were: 

P-11 M-11 L-12 Q-13 K-9 T-9 

Slu. 0.525 0.513 0.512 0.512 0.511 0.506 

P-11 1.000 0.702 0.698 0.715 0.741 0.755 

M-11 1.000 0.879 0.869 0.815 0.852 

L-12 1.000 0.841 0.799 0.847 

Q-13 1.000 0.759 0.825 

K-9 1.000 0.835 

From these coefficients, it can be seen that the similarity amongst sediment samples is higher 

than the similarity between the samples and the sludge. However, the higher similarity between 

the sludge and sediments in clusters 1,2 and 6 as compared in particular with samples in clusters 
7 to 12 (the lowest similarities, showing values lower than 0.400, were with samples J-9, M-8, 

N-11, P-8 in cluster 8; K-8, L-10, P-10 in cluster 9; L-9, Q-9 in cluster 10; M-6 and N-10 in 

clusters 11 and 12) may suggest that sludge is mainly affecting the element content and ratios 

in sediments from clusters 1 to 6. 

Figure 4.32 shows that the similarity between the sludge and samples in clusters 1,2 and 6 

(see Fig. 4.31a, b and h) may be due to the enrichment of mercury, cadmium, chromium, and 

copper in relation to nickel, lead, zinc, arsenic, manganese and iron. However, from the 

comparison of these figures it can be seen that this enrichment is much higher in the sludge than 
in the sediments. If, based on the similarities, elements in sediments such as K-9 and P-11 largely 

originate from sewage sludge, then mercury, cadmium, chromium and copper may be lost from 

the solid phase more rapidly than nickel, lead and zinc, whereas arsenic, manganese and iron do 

not appear to be significantly altered (note that the proportions between these three elements 
appear to be similar both in the sludge and in the sediments). 

Figure 4.32 shows that cadmium in the sludge is significantly enriched, particularly as 

compared with mercury. It can be seen, however, that sediments in cluster 1 and 2 (except 
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Fig. 4.32. Distribution of the relative concentrations of ten elements in a digested sewage sludge 
sample. S01 represents the relative concentrations in the sludge calculated as in the 

sediment samples and S02 represents the same data as in SO1 except for the values 
of nickel, lead, zinc, arsenic, manganese and iron which are ten tunes higher than in 
SO1 to facilitate a visual inspection of the pattern. The relative concentrations in the 
fine fraction of sample P-11 (the most similar to the sludge; see text) were included 
for a direct comparison of the patterns in sediment and sludge samples. 
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sample J-7) are more enriched in mercury than in cadmium. If the elements in clusters 1 and 2 

largely derive from sludge, then an enrichment in mercury in the sediments as compared to 

cadmium" could be explained by a faster cadmium loss into solution which would not be 

unexpected because, as indicated in the discussion of cadmium earlier in this chapter (see Section 

4.2.3), chloride ions may compete for cadmium with solid phases when these solids are put in 

contact with seawater. On the other hand, most samples in cluster 1 are close to the Mersey 

outflow, therefore, it is possible that some mercury from the largely contaminated Mersey Estuary 

may be influencing the levels of this metal in sediments nearby. If this is the case, it is possible 

that this mercury may leave the estuarine system in solution most likely in association with 

organic materials which, as indicated by the carbon stable isotopes distribution (see Fig. 4.4b), 

have some influence in the samples nearer the estuary. The transport of mercury in the particulate 

phase is more unlikely because, as indicated in Chapter 2, sediment transport patterns indicate 

that sediment is being largely 
, 
transported into the Mersey from Liverpool Bay, rather than being 

transported from the estuary towards the bay; the clearest evidence of this transport pattern is the 

accretion of the Mersey Estuary which has to be dredged to maintain the navigation channel and 

the Liverpool Docks in operation. 
Figure 4.30a shows that the boundary between clusters 1 to 6 and 7 to 12 separated the 

samples near the Mersey and all the samples in the northern section of the sampling grid, from 

samples in the southern sector of the sampling grid with the exception of samples in the 

southwestern area including the extreme south of Site SL When investigating if there were any 

characteristics in common between samples within clusters apart from the geographical closeness 
it was very interesting, but not surprising to find that the sediments were almost classified by 

their content of fine fraction in the total sediment. The content of fine fraction in the total 

sediment for each sample is given in Appendix B. 3. Some statistical descriptives of the fine 

fraction content in the samples within each cluster are given below: 
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Cluster ýn mean 

1 15 20.88 
2 18 11.68 
3 5 6.64 
4 1 0.09 
5 7 2.04 
6 1 34.34 
7 5 0.71 
8 - 17 0.49 
9, 4 0.26 
10 2 0.23 
11 1 0.13 
12 1. 0.59 

s. d. min. max. 

19.29 1.86 61.01 
6.41 2.01 19.34 
3.41 1.07 10.28 

1.46 0.78 5.08 

0.20 0.43 0.88 
0.24 0.16 0.81 
0.14 0.15 0.46 
0.11 0.15 0.31 

This observation indicates that, if the ratio amongst elements is an indicator of the sources of 

these elements, then the grain size composition is largely determining where particles 

contaminated with these elements are going to be deposited and, therefore, the grain size 

composition is indirectly controlling the elemental ratios in fine sediments in Liverpool Bay. As 

elemental ratios in samples classified in clusters 1 to 6 are more similar to the ratios in the 

sludge than samples in clusters 7 to 12, it is possible that these samples are the most affected by 

sewage sludge dumping. This observation is supported by reports on sewage sludge being most 

likely associated to deposits of sediments with higher amounts of fine fraction (see Chapter 2, 

Section 4.2.4). 

It was mentioned in Chapter 2 that Crickmore (1972b) suggested that the seabed composition 
is more important than zonal differences in current velocity in relation to retention of sludge 

particles in the sediments. Iti a study with radiolabelled sludge this author found a correlation 
between radiotracer distributions and mud zones in Liverpool Bay and that only near the release 

area (Site SI) was this correlation weaker, suggesting an initial association of the sludge with 

sediments irrespective of their composition. Sludge particles may initially move as bedload in 

association with sand deposits in the general south to southeastward direction of sand transport 

mentioned in Chapter 2, but as the critical tidal shear stress values are exceeded for 60% over 

sand but never over mud near Site SI, sludge particles resuspension from sand deposits will occur 
more than half of the time and not at all over muddy deposits due to tidal currents (Rowlatt, 
1986). Once resuspended, sludge particles will move in the direction of bottom residual currents 
towards the east-southeast most of the time (see Chapter 2, Section 2.2.2), and will be deposited 
in zones were the conditions for mud deposition occur, therefore, becoming preferentially 
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associated to muddy deposits. In contrast to sandy deposits, muddy deposits near the dumpsite 

will only be disturbed during stormy conditions (Crickmore, 1972b). 

Therefore, the boundary drawn in Figure 4.30a may effectively be representing a boundary 

between the most affected and the least affected sediments by disposal activities in Liverpool 

Bay. Most of the samples in clusters 1 to 6 had average fine sediment fraction concentrations 

higher than 2% whereas all samples in clusters 7 to 12 had fine fraction concentrations below 

0.88%. It is interesting to notice that the contents of cadmium and mercury, which may be 

largely anthropogenic, decreased from cluster 1 to cluster 5 (cluster 6 which was sample P-11, 

and was the sediment with highest similarity with the sludge, had also its highest similarities with 

samples from cluster 1), therefore, it seems that the sediments most affected by anthropogenic 

inputs of trace elements, particularly metals, are those with the highest proportions of fine 

particles as suggested by Crickmore (1972b). On the other hand, sediments in clusters 7 to 12 

may be the ones containing the highest proportion of "naturally" derived elements, as indicated 

by an enrichment of arsenic and manganese in particular, which are not particularly enriched in 

the sewage sludge in relation to other elements (compare Fig. 4.31e-h with Fig. 4.32). Another 

interesting feature in Figure 4.30a is that there is a small area in the southern extreme of Site SI 

within the suggested boundary of most contaminated sediments, this contaminated region 

probably indicates the effect of the recent trend of sewage sludge disposal which only started 

early in 1988, few months before samples were taken for the present study. 

Regarding the elemental ratios in the coarse fraction, Figure 4.29b shows the dendrogram 

obtained for the clustering procedure which indicates that eight clusters could be clearly identified 

in this fraction. Only cluster number 6 contained a single sediment sample (L-10), whereas 

clusters number 5 and 2 contained two and three samples respectively. Some examples of the 

similarity coefficients between samples within each cluster are given below, and the bar diagrams 

for these samples are plotted in Figure 4.33a-f. 

Cluster 1 

J-11 L-13 K-10 L-11- M-12 
J-11 1.000 0.943 0.814 0.803 0.767 
L-13 1.000 0.807 0.804 0.780 
K-10 1.000 0.868 0.780 
L-11 1.000 0.787 
M-12 1.000 
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Fig. 4.33. Examples of the distribution of the relative concentrations of ten elements (see text) 
in the coarse sediments classified in (a) cluster 1, (b) cluster 3, (c) cluster 4, (d) cluster 
7, (e) cluster 8 and (f) clusters 2 (samples T-9 and R-12), 5 (samples M-9 and M-10) 

and 6 (sample L-10). (see also dendrogram in Fig. 4.29b). 
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S-9 

S-9 1.000 

T-9 

R-12 

T-10 U-11 

T-10 1.000 0.891 

U-11 1.000 

L-9 

K-8 

Q-9 

G-7 Q-7 

G-7 1.000 0.850 

Q-7 1.000 

G-11 

K-9 

J-7 

M-9 

M-9 1.000 

M-10 

L-10 

Cluster 2 

T-9 

0.842 

1.000 

Cluster 3 

L-9 

0.742 

0.713 

1.000 

Cluster 4 

G-11 

0.848 

0.792 

1.000 

Cluster 5 and 6 

M-10 

0.788 

1.000 

133 

R-12 

0.758 

0.756 

1.000 

K-8 Q-9 

0.752 0.764 

0.706 0.751 

0.865 0.791 

1.000 0.767 

1.000 

K-9 J-7 

0.791 0.776 

0.808 0.763 

0.715 0.742 

1.000 0.789 

1.000 

L-10 

0.687 

0.727 

1.000 



Cluster 7 

U-9 YY-4 NW24 YY-2 YY-3 

U-9 1.000 0.824 0.751 0.744 0.778 

YY-4 1.000 0.833 0.806 0.748 

NW24 1.000 0.862 - 0.766 

YY-2 1.000 0.811 

YY-3 1.000 

Cluster 8 

T-14 U-15 P-11 S-13 Q-11 

T-14 1.000 0.836 0.718 0.803 0.670 

U-15 1.000 0.781 0.826 0.721 

P-11 1.000 0.811 0.800 

S-13 1.000 0.719 

Q-11 1.000 

Figure 4.30b shows the geographical distribution of the cluster memberships in the coarse 

fraction. When compared with Figure 4.30a it can be seen that cluster 7 in the coarse fraction 

corresponded approximately to cluster 1 in the fine fraction, that is, cluster 7 in the coarse 

fraction contained the sediment samples closer to the Mersey outfall. Looking at Figure 4.33d 

it can be seen that sediments in cluster 7 were those with the highest proportions of cadmium 

and mercury as compared to sediments in other clusters. Samples in cluster 8 (Fig. 4.33e) were 

the sediments with the second highest proportions of mercury and cadmium and were followed 

by sediments in clusters 1 and 2. It appears that, judging by the proportions of the elements 

amongst the various clusters in the coarse fraction, cluster 7 contained the coarse sediments with 

highest degree of contamination followed by clusters 8,2 'and 1, whereas clusters 3 and 4 

contained the highest proportions of elements such as arsenic and manganese (see Fig. 4.33a-f). 

Sample L-10 which was classified in cluster 6 and was the most different to other samples, 

showed a particular enrichment in copper such as the one showed for samples in cluster 7 (Fig. 

4.31e) in the fine fraction. 

The lines drawn in Figure 4.30b separate the most contaminated coarse sediments (cluster 7 

and 8) from the moderately contaminated (clusters ,l and 2) and the least contaminated (clusters 
3,4,5 and 6). Not surprisingly, the most contaminated coarse particles were those in sediments 
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with the highest proportions of fine material, which, as already mentioned in previous sections 

in this chapter, seem to be the source of several of the trace elements in coarse particles. As in 

the case of the fine fraction, and also indicated by the similarity in the boundaries drawn in 

Figures 4.30a and b, the cluster analysis for the coarse fraction separated the samples in clusters 

by their amount of fine fraction in the total sediment. Some statistical descriptives for the amount 

of fine fraction in each cluster for the coarse fraction is given below: 

Cluster n mean s. d. min. max. 

1 15 13.58 5.20 7.79 19.99 
2 3 5.39 3.10 2.01 8.07 
3 9 0.79 0.87 0.09 2.57 
4 23 1.82 2.19 0.13 7.05 
5 2 0.84 0.01 0.83 0.85 
6 1 0.46 ---- --- -- 
7 7 36.69 16.90 14.54 61.01 

8 7 12.35 11.10 3.35 34.34 

In order to compare the similarity in the elemental ratios between the fine particles and the 

coarse particles within sediments, a set of 25 sediments with a wide range of fine fraction 

proportions were selected and the ratio matching and cluster analysis was performed on both 

fractions in each sample. Figure 4.29c showing the resulting dendrogram from this analysis 

clearly indicates that 2 main clusters were formed during this procedure, one containing all the 
fine fractions and the other one containing all the coarse fractions except those in samples YY-1 

and YY-3. These results indicate that the elemental ratios in each fraction are, in general, 

significantly different from one another, which according to the basic hypothesis of this method, 

would indicate different sources of these elements for each fraction. The most similar fine and 

coarse fractions were those of samples YY-1 (Z=0.684) and YY-3 (0.704). These samples were 
those with the highest amounts of fine particles in the total sediments (61.0 and 57.6% 

respectively), which indicates that the proportions of elements are roughly preserved when these 

elements are transferred from fine particles to coarse particles in muddy sediments. On the other 
hand, the similarities between fine and coarse particles in other samples even with relatively high 

amounts of fine fraction were not high enough to be classified in the same cluster, for example, 
sample P-11 showing one of the most contaminated fine fractions, and containing relatively high 

amounts of these particles within the total sediment (34.3 %), showed a similarity between fine 
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and coarse fractions of Z=0.568. Other samples with contaminated fine fractions (classified in 

cluster 1) such as K-9 and K-10 (containing 2.2 and 10.4% of fine fraction respectively), also 

showed relatively low similarity coefficients (Z=0.463 and Z=0.581 respectively). Not 

surprisingly, sediments with very low amounts of fine material also showed relatively low 

similarity coefficients between the coarse and fine fractions. For example, samples G-9, L-9 and 

M-6 containing 0.21,0.15 and 0.13 % of fine fraction showed coefficients of Z=0.476,0.540 and 

0.497 respectively. 

It is expected that in sediments with largest amounts of fine material, the coexistence between 

fine and coarse particles is longer than in sediments with small amounts of fine material because, 

as described in Chapter 2, once deposited muddy sediments are more difficult to erode than 

relatively clean sands as the cohesive forces between clay particles in muddy deposits plays a 

significant role. Therefore, coarse particles in sediments with a high amount of fine particles are 

not only more enriched in trace elements because they coexist with a larger amount of fines, but 

also because they coexist for much longer than fine and coarse particles in sandy deposits. 

Therefore, the longer coexistence of particles of different sizes in muddy deposits favours a more 
homogeneous distribution of the elements amongst these particles, resulting in higher similarity 

coefficients between fine and coarse particles such as those found in samples YY-1 and YY-3. 
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y" £{. CONCLUSIONS 

There is a general trend in the distribution of fine sediments in Liverpool Bay. Intermediate 

values (5-10%) are found in the northern areas with a decrease towards the North Wales coast 

to values below 1%. The distribution of muddy deposits is erratic although the muddy banks near 

the Burbo Bight appear to be a permanent feature. 

The aluminium content suggests that the <90 pm fraction in sediments with lower amounts of 

fine particles (e. g. those from the southern region) has a higher proportion of clay than the <90 

µm fraction of sediments with higher amounts of fines (e. g. those from the muddy areas in the 

Burbo Bank). 

There was a negative correlation between organic carbon (and also iron and manganese) in fine 

particles and the amount of fine particles in the sediments. This agrees with a possible higher 

amount of clay in the fine fraction of sediments lower in fines, which provides a higher surface 

area for the formation of organic and inorganic coatings. However, the scatter in the relationship 

between organic carbon and grain size, and the distribution of S"C values may suggest that 

inputs from various sources (e. g. waste disposal, riverine and autochthonous) overshadow any 

clear trend between the available surface area and the amount of carbon in the sediments. 

In sediments with more than 5% of <90 tun particles, the organic carbon content in coarse 

sediments was correlated with the amount of fine particles in the sample suggesting a possible 

transfer from fine particles toward coarse particles. 

Mercury was the only trace element correlated with the fine sediment fraction distribution. This 

element also showed a low but significant correlation with VC. These observations are 

consistent with the anthropogenic origin of this metal, which is transported into the Bay mainly 

via the Mersey outfall and the disposal of sewage sludge at Site SI. Mercury may be particularly 

associated with the land derived fraction of the sedimentary organic matter. This may explain the 

lack of correlation between mercury and organic carbon which is often reported in aquatic 

sediments. This relationship was, however, observed in the coarse sedimentary fraction. 

Arsenic was highly correlated with iron and manganese in fine and coarse sediments in 

agreement with the reported strong association of arsenic with iron/manganese oxyhydroxides. 
It is suggested that, in contrast to mercury, arsenic is mainly transported into the bay from natural 

sources such as the mineralized areas in North Wales. Other trace elements in this study such as 



2 

lead and zinc, which may be largely derived from anthropogenic inputs, may also have some 

inputs from similar sources as arsenic. 

Although cadmium is mainly derived from anthropogenic sources, and may be preferentially 

associated with the land derived organic matter in fine sediments, it shows a different distribution 

as compared with mercury. This difference is due to the different geochemical behaviour between 

these two metals, as mercury tends to remain strongly associated with particles whereas cadmium 

tends to desorb from particles when there is an increase in salinity. 

Copper, chromium, and in a lower degree nickel, were correlated with organic carbon, iron and 

manganese in fine sediments suggesting a partitioning of these elements among organic and 

inorganic sedimentary phases. As in the case of cadmium, the role of the dissolved phase in the 

geochemistries of copper and nickel may be important, as redissolution may be significant. 

Although copper in Liverpool Bay sediments may largely result from sewage sludge inputs, there 

is a possibility of natural inputs from mineralized areas. 

The correlation analysis suggests that the organic phases are the main trace metal carrier on 

coarse particles in Liverpool Bay. Only lead and zinc showed some degree of correlation with 
iron and manganese, which indicates a possible partitioning of these metals between organic and 
inorganic phases in coarse particles. The correlation of most of the trace metals in the coarse 
fraction with the amount of fine sediments suggests a possible transfer from fine particles toward 

coarse particles. 
From the above it is concluded that the geochemical behaviour of elements in Liverpool Bay 

has to be better understood for a proper explanation of their observed distributions in superficial 

sediments in this complex area. 
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5. POLYCHLORINATED BIPHENYLS (PCBs) 

5.1. VALIDATION OF THE METHOD 

The occurrence of 'PCBs in environmental samples has been reported for more than two 

decades since they were first reported by Jensen (1966), however, it is only during the past ten 

years, and the last five years in particular, that the need for analysing these xenobiotics at the 

individual congener level has been recognised. Recent studies report various analytical procedures 

and there is, at present, no standard analytical method for the analysis of chlorobiphenyl 

congeners in environmental samples which has been adopted by a large number of laboratories 

at an international level. Therefore, in order to accurately determine the PCB composition in 

environmental samples, both qualitatively and quantitatively, each laboratory has to perform a 

careful evaluation of each step in the analytical procedure. 
In this section, the chromatographic analysis of the various PCB congeners determined in this 

work is discussed, and this discussion is followed by some comments on the results of the 

analysis of sediment reference materials which can be used as indicators of the quality of the 

sample preparation procedure prior to the chromatographic analysis. 

5.1.1. Chromatographic analysis of individual PCB congeners 

Due to the worldwide use of PCBs in large quantities in the past, a widespread contamination 

of these xenobiotics has been detected including remote areas such as the polar regions and open 

ocean environments (see Tanabe, 1988, and references therein). As PCBs consist of a total of 209 

theoretically possible congeners having different toxicological and biological responses (Tanabe, 
1988) and as a large number of these theoretically possible congeners has been reported in 

various environmental samples, their accurate analysis becomes necessary. More important from 

the point of view of the present study, an accurate analysis of various PCB congeners was 

necessary because of the wide range of physicochemical properties (eg. water solubility and 
octanol-water partition coefficients) presented by this family of organic compounds which may 
lead to different geochemical behaviours (see Brownawell and Farrington, 1986 and references 
therein) between different congeners. 

It was mentioned in' the general introduction (see Chapter 1) that the common practice 
throughout the 1970s and early 1980s was to quantify PCBs in the environment by comparing 
their packed column gas ' chromatograms with the patterns exhibited by known amounts of 

ý. 
P 

137 



individual commercial PCB formulations for example Aroclor 1254, or mixtures of these 

formulations such as Aroclor 1242 + 1254 + 1260 (Jones, 1988). This method of identification 

and quantification of PCBs relies upon matching the pattern or "fingerprint" observed in the 

sample against the pattern observed in a single or a mixture of commercial formulations. 

However, if the chromatograms of -PCBs in the environmental samples can not be matched 

against commercial formulations, then the quantification is not possible (Jones, 1988). Due to the 

differences in biological, chemical and physical properties amongst PCB congeners and isomers, 

which lead to different degrees of partitioning amongst environmental compartments and also to 

different degrees of degradation, biological uptake, metabolism, etc., PCB patterns usually differ 

between environmental compartments as well as between animal species (Boon and Duinker, 

1986), therefore, environmental samples can not often be adequately described by any 

commercial formulation or mixture of formulations and it would be inappropriate to report these 

sample PCB residues as, for example, Aroclor equivalents or Aroclor mixtures (Jones, 1988). On 

the other hand, high similarities in the patterns with the use of packed columns do not guarantee 

a high similarity in the actual congener composition (Boon and Duinker, 1986). Therefore, 

information regarding PCB composition in environmental samples obtained by packed column 

gas-chromatography can only be regarded as semiquantitative and semiqualitative. 

The ambiguities associated with results obtained by packed column gas-chromatography have 

been overcome by the introduction of high resolution gas-chromatographic techniques aiming to 

determine individual PCB congeners as well defined chemical entities (Duinker et al., 1988). An 

interesting review regarding recent advances in the analytical instrumentation side (e. g. 
development of capillary columns and improvement in detection systems), which has lead to 
higher accuracy and precision in congener-specific PCB determinations has been presented by 

Pellizary et al. (1985). 

The accurate determination of specific congeners also requires the availability of these 

congeners for the calibration of the gas-chromatograph. Since the excellent work by Mullin et 

al. (1984) in which the synthesis, relative retention times (on a 50 m, SE-54 fused silica capillary 

column) and relative response factors of all 209 PCB congeners were reported, an increasing 

number of PCB congeners have become commercially available. It is. important to mention, 
however, that although analysing the 209 PCB congeners in environmental samples is feasible 

at present, the access to all 209 
-congeners and the detailed instrument standardization and 

calibration would be extremely time-consuming and costly. Furthermore, several congeners are 
unlikely to occur in commercial formulations (which represent the ultimate source of PCBs in 
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the environment) as preferential substitution patterns occur at the chlorination stage during the 

production of these technical mixtures (Ballschmiter et al., 1989). Schulz et al. (1989) made a 

full description of the congener composition in various PCB commercial formulations and 

identified a total of 132 congeners; these authors have not detected any congeners additional to 

those reported in the commercial mixtures, in various environmental matrices such as water, 

suspended particles, fish, marine mammals, atmospheric vapour and aerosols. 

In the present study, a total of 55 individual PCB congeners were used for the calibration of 

the gas-chromatograph (see Table 5.1). 51 of these congeners were obtained from the National 

Research Council Canada as a set (CLB-1 solutions) of four mixtures of individually synthesized 

chlorinated biphenyls. The quoted concentrations in the CLB-1 solutions are believed to be 

reliable to within 2% for most of the congeners with the exception of numbers 199 and 201, 

whose purities in the synthetic products were only 81 and 83% respectively (National Research 

Council Canada). Therefore, these solutions can be used for qualitative and quantitative 

determinations of individual PCB congeners. The remaining four PCB congeners (see Table 5.1) 

were obtained from Greyhound Chromatography (Birkenhead, England) as solutions of pure 

(>99% purity) congeners. Also from Greyhound, concentrated solutions of Aroclor 1254 and 

Aroclor 1260 were obtained, together with solutions of the pure congeners recommended by the 

International Council for the Exploration of the Sea (ICES), i. e. IUPAC Nos. 28,52,101,118, 

153,138 and 180; the latter were used to corroborate the concentrations quoted for these 

congeners in the CLB-1 standard solutions (with the exception of congener No. 28 which is not 

present in the CLB-1 standards). The gas chromatograms in a DB-5 and a DB-1701 column (see 

section of methods in Chapter 3 for the chromatographic conditions) of a mixture of all 55 

congeners are shown in Figure 5.1a and b. The relative retention times with each column and the 

possible coeluting congeners from the DB-5 column (based on the relative retention times 

reported by Mullin et al., 1984; and information presented by Schulz et al., 1989) are also shown 
in Table 5.1. 

Some congeners (see Table 5.1) which were not present in the standard solutions, but 

constituted significant components of the Aroclors and of the sediment samples were identified 
ce". pý"iýh "ý 40 }fielt 

byAtheir relative retention times j. reported by Mullin et al. (1984) and the retention positions in ý-- 2 

the chromatograms in the present study. These congeners were quantified by using the calibration 
curves of one of the 54 congeners which was used in the calibration of the chromatographic 4-- 
system, and the specific calibration curve was selected by comparison of the relative response 
factors reported by Mullin et al. (1984). For example, congeners No 74,70 and 95 which were 
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Table 5.1. Relative retention time (RRT) for the PCB congeners determined in this study. The relative 

retention times are for the elution of these congeners from a nonpolar (DB-5) and an intermediate 

pollarity (DB-1701) capillary column. The chromatographic conditions are described in the 

methods chapter. 

CS Cl. RRT 
No n DB-5 
18 3 0.191-0.199 
15 2 0.193-0.201 
54 4 0.223-0.231 
31 3 0.234-0.245 
28 3 0.239-0.247 
52 4 0.286-0.296 
49 4 0.292-0.303 
44 4 0.318-0.329 
40 4 0.352-0.363 

103 5 0.354-0.365 
74 4 0.380-0.388 
70 4 0.387-0.398 
95 5 0.395-0.405 

121 5 0.400-0.410 
60 4 0.424-0.435 
92 5 0.428-0.440 
89 5 0.433-0.444 

101 5 0.439-0.449 
99 5 0.449-0.459 
97 5 0.480-0.490 
86 5 0.480-0.490 
87 5 0.489-0.498 

136 6 0.504-0.513 
77 4 0.507-0.516 

110 5 0.509-0.518 
154 6 0.512-0.522 

82 5 0.529-0.539 
151 6 0.534-0.543 
149 6 0.558-0.567 
118 5 0.561-0.570 
143 6 0.576-0.584 
134 6 0.578-0.586 
114 5 0.583-0.591 
146 6 0.597-0.605 
153 6 0.609-0.618 
132 6 0.611-0.620 
105 5 0.614-0.622 
141 6 0.634-0.641 
137 6 0.648-0.656 
138 6 0.664-0.671 

, 
158 6.0.669-0.675 
129 ý6 0.680-0.687 
126 5 0.681-0.688 
182 7 0.701-0.708 
187 7 0.701-0.708 

RRT 
OV-1701 

0.203-0.205 
0.210-0.214 
0.228 
0.235-0.237 
0.235-0.237 
0.269-0.271 
0.270-0.272 
0.296-0.300 
0.330-0.335 
0.307 
0.353-0.358 
0.353-0.358 
0.357-0.362 
0.343 
0.394-0.400 
0.384-0.389 
0.405-0.409 
0.394-0.400 
0.399-0.404 
0.449-0.454 
0.441 
0.465-0.471 
0.503-0.506 
0.513-0.518 
0.492-9.497 
0.458 

0.502-0.505 

Coelution Notes 

15 
18 

28 
31 
73 
38 

103 
57 
94,61 
76,98 
80 

56 
84 

90 
79 
86 
97 

115,111 
120 
110 

7. X 

b 
d 

e, + 
b 
at + 
at + 
a 
b 
d 
a, + 
a, + 

a 
a, + 
b 

a, + 

ý7 
a 
b 
a, d 

0.534-0.539 106 a 
0.548-0.553 106,139,140 
0.552 134 b 

143 a, + 
0.565 -- 
0.577-0.580 161 a, + 
0.587-0.592 132,105 
0.606-0.610 153,105 a 
0.618-0.622 132,153 
0.623-0.628 179 
0.630-0.632 -- 
0.659-0.662 160,163,164,186 
0.659-0.662 186 d 
0.678-0.684 126 d 
0.704 129 
0.671 187,159 b 
0.678-0.684 182,159 d, + 

ýr 
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159 6 
183 7 
128 6 
185 7 
174 7 
177 7 
171 7 
202 8 
156 6 
173 7 
201 8 
180 7 
191 7 
169 6 
170 7 
199 8 
203 8 
196 8 
189 7 
208 9 
195 8 
207 9 
194 8 
205 8 
206 9 
209 10 
OCN 
DDE 
DDT 
BLANK 

0.701-0.708 
0.711-0.718 
0.719-0.726 
0.731-0.738 
0.747-0.754 
0.758-0.765 
0.7.67-0.773 
0.767-0.773 
0.769-0.774 
0.778-0.783 
0.781-0.787 
0.805-0.808 
0.816-0.821 
0.840-0.843 
0.854-0.857 
0.870-0.873 
0.878-0.881 
0.879-0.881 
0.902-0.903 
0.922-0.923 
0.923-0.924 
0.934-0.935 
0.954-0.955 
0.960-0.961 
1.003-1.004 
1.041-1.041 
85.34-85.88 
0.497-0.504 
0.656-0.663 
0.854-0.857 

0.694 
0.687-0.692 
0.728-0.731 
0.716 
0.740-0.744 
0.749-0.753 
0.744 
0.728-0.731 
0.776-0.780 
0.769 
0.757-0.760 
0.802-0.806 
0.816 
0.878-0.882 
0.870-0.872 
0.870-0.872 
0.878-0.882 
0.878-0.882 
0.931 
0.910-0.912 
0.938-0.939 
0.924-0.925 
0.975-0.976 
0.982-0.983 
1.007-1.009 
1.024 
87.78-88.11 
0.481-0.485 

182,187 b 

-- + 

-- d, + 
-- + 

181 a, c, + 

-- a, c, + 
202 
171,156 d 
202 

157 

190 

196 
203 

195 
208 

d, + 
e, d 
d, + 
d 
d 

+ 
+ 
+ 
+ 
+ 

Notes: a)Calculated based on Mullin's RRT and confirmed by comparison 
with Schulz et al. (1989) data on Aroclor compositions. 

b) Very unlikely to occur in environmental samples (Schulz et al., 
1989) but present in the CLB-1 standard solutions. 

c)Not confirmed with a DB-1701 column due to the lack of 
standards. 

d)Difficult confirmation in DB-1701 because coelutes with other 
congeners. 

e)Coelutes with a contaminant in the blank. 

+ According to Schulz et al. (1989) these congeners would elute 
"cleanly" from a SE-54 colum because the possible coeluting 
congeners are unlikely to occur at significant levels in 
environmental samples. 



Figure 5.1. Gas chromatograms of a mixture containing the calibration standard solutions CLB-1, 
, 

congener Nos. 28,126,158 and 169, and the internal standard octachloronaphthalene 

(OCN). (a) Elution from a nonpolar DB-5 and (b) an intermediate polarity, DB-1701, 

capillary column. The retention times are shown in the horizontal axis and the relative 

retention time for each congener is given in Table 5.1. The chromatographic conditions 

for each column are given in the Methods (Chapter 3). 
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present in significant quantities in the majority of the sediment samples and were also significant 

components in the Aroclor 1254, were quantified by using the calibration curve for congener No. 

101 in the case of congeners 74 and 70 (the relative response factors reported by Mullin et al., 

1984, for these three congeners were 0.668,0.671 and 0.658 respectively) and the calibration 

curve for congener 52 in the case of congener 95 (their corresponding relative response factors 

were reported as 0.418 and 0.443 respectively). The validity of the quantification of these 

congeners, for which standard solutions were not available, was confirmed by the comparison of 

the results obtained for these congeners in the analysis of the Aroclors 1254 and 1260, with the 

results for the composition of these formulations reported by Schulz et al. (1989) who made a 

complete and reliable description of various PCB commercial formulations analysed by 

multidimensional gas-chromatography, and with the results reported by Safe et al. (1985) for 

Aroclor 1260 (see Table 5.2). 

5.1.1.1. Chromatographic resolution and peak identification 

The correct identification of PCB congeners based on a gas chromatogram using an electron 

capture detector (ECD) largely depends on a good resolution of these congeners before they reach 

the detector, as the identification is based on the comparison between the relative retention times 

of the unknown peaks in the chromatogram of the sample and the relative retention times in the 

chromatogram of the congeners in the standard solution(s) used for the calibration of the gas 

chromatograph. If two or more congeners reach the ECD simultaneously, a single peak will 

appear in the chromatogram and an accurate identification and quantification of these congeners 

will become difficult. Therefore, in an ideal gas chromatographic determination of PCB 

congeners, all of the congeners of interest should be completely resolved before reaching the 
ECD. It is important to mention that when environmental samples are analysed by HRGC-ECD 

(high resolution gas chromatography with ECD), even if a good resolution has been proven for 

the PCB congeners of interest in a calibration solution, there is still a possibility of these 

congeners coeluting with unknown compounds as the ECD gives a signal not only for PCBs, but 

for any electron-capturing substance such as chlorinated pesticides which happen to occur in the 
"PCB fraction". The use of mass spectrometric techniques can solve some of the problems of 
PCB identification but it is not generally available for routine PCB analyses at the low 

concentrations frequently found in environmental samples (Duinker et al., 1988). Therefore, it 

should be kept in mind that although the ECD is very sensitive (some congeners can be detected 

at sub-picogram I quantities) the identification of PCB congeners with this detector is not 
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Table 5.2. Comparison of the PCB congener composition of two technical PCB formulations, 
Aroclors 1254 and 1260, reported in (A) this study, (B) Schulz et al. (1989) and (C) Safe 

et al. (1985). The values in the table are as a percentage of the total Aroclor 

concentration. 

CB A1254 A1260 
No. 

A B A B C 

18 0.12 0.41 0.00 0.00 0.12 
15 0.00 0.00 0.31 0.00 0.00 
31 0.03 0.22 0.00 0.05 0.00 
28 0.20 0.25 0.00 0.05 0.04 
52 6.47 5.18 0.54 0.56 0.25 
49 1.52 1.64 0.00 0.00 0.06 
44 2.76 2.03 0.00 0.00 0.11 
40 0.32 0.20 0.00 0.00 0.03 
74 1.03 0.78 0.00 0.00 0.03 
70 3.56 3.21 0.00 0.09 0.15 
95 7.47 6.02 3.46 3.04 2.70 
60 0.53 0.54 0.00 0.00 0.14 
92 1.80 1.58 0.48 0.59 
89 4.28 1.95 0.25 0.25 0.65 

101 8.51 7.94 3.46 5.02 2.50 
99 3.43 3.60 0.00 0.11 0.13 
97 2.88 2.55 0.00 0.23 0.45 
87 4.82 3.78 0.57 0.77 0.45 

136 0.42 1.12 0.78 2.23 1.40 
110 5.79 5.85 1.13 1.90 1.70 

77 0.00 0.00 0.00 0.00 0.00 
82 1.13 0.95 0.00 0.00 0.11 

151 0.92 1.17 3.44 3.67 2.50 
149 3.62 2.21 6.46 7.83 7.40 
118 6.55 6.39 0.59 0.57 0.49 
134 0.49 0.49 0.46 0.62 0.35 
114 0.19 0.00 0.00 0.00 0.00 
146 1.01 0.83 1.52 1.49 1.30 
153 4.40 4.26 8.06 10.80 9.60 
132 2.93 1.98 2.68 3.69 
105 2.84 3.83 0.00 0.07 
141 1.12 1.04 2.39 2.56 2.50 
137 0.48 0.25 0.00 0.06 0.22 
138 5.84 3.20 6.74 6.13 6.50 
158 0.66 0.77 0.56 1.55 0.55 
129 0.52 0.23 1.11 0.20 
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126 0.00 0.00 0.00 0.00 
187 0.41 0.32 4.19 3.97 4.50 
183 0.40 0.17 2.56 1.76 2.30 
128 1.63 2.07 0.55 1.06 0.47 
185 0.00 0.00 0.49 1.34 4.10 
174 '0.39 0.34. 3.67 3.85 5.50 
177 0.30 0.21 2.41 2.21 1.90 
156 0.86 1.62 * 0.88 0.45 
173 0.00 0.09 0.00 0.36 0.06 
201 0.28 0.68 0.35 0.99 0.78 
180 1.00 0.38 6.53 7.12 9.10 
191 0.00 0.00 0.00 0.25 0.10 
169 0.00 0.00 0.00 0.05 0.00 
170 0.86 0.31 3.97 3.91 6.80 
199 0.00 0.00 2.30 1.31 2.90 196 0.00 0.00 1.98 1.68 3.10 189 0.00 0.00 0.20 0.11 0.15 208 0.00 0.00 0.00 0.17 0.00 
195 0.00 0.00 0.86 0.68 3.10 207 0.00 0.00 0.16 0.05 0.08 194 0.00 0.00 1.75 1.30 1.70 205 0.00 0.00 0.17 0.15 0 11 206 0.00 0.00 0.67 0.45 . 

0.85 209 0.00 0.00 0.05 0.05 0.06 

* Not determined 

,. .,. 'n ý =i 
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unequivocal. Improvements in the resolution of the analysis and in the preparation of the samples 

(clean up) prior to the analysis can reduce the probability of coelution of specific PCB congeners 

with other congeners or other unknown substances. 

The resolution obtained with the chromatographic conditions used during the present study 

was, in general, very good. Figure 5.1a shows the chromatogram obtained with a 60 m, DB-5 

(equivalent to a SE-54 which is mentioned later) capillary column for a mixture containing all 

55 individual PCB congeners available for the calibrations in this study. This chromatogram 

shows that 46 well resolved (baseline separated) or largely resolved peaks were observed with 

this column, and only 7 peaks contained two or three unresolved congeners. In the information 

provided with the CLB-1 standards, the National Research Council of Canada recommends the 

use of some of the congeners as "testing pairs" for the resolution during the chromatographic 

analysis. These pairs are congeners 86/87,173/202,171/201,199/203 and 196/199 which in all 

cases appear as completely resolved (baseline separated) pairs in Figure 5. la. The seven sets of 

unresolved congeners were: 31+28,103+40,129+126,159+187+182,171+202+156,196+203 and 

195+208. 

It is obvious from Figure 5.1a that, assuming that the congeners present in the calibration 

solutions were the only congeners that would appear in an environmental sample, the large 

majority of them could be identified and quantified with accuracy as they are well resolved. 
However, an accurate identification (and quantification) of the unresolved congeners would be 

impossible with electron capture detection. For example, a peak appearing with a relative 

retention time of 0.680 (see Table 5.1) in an environmental sample could correspond to congeners 
129 or 126, or both. The ECD would not give any information on whether congener 129 would 
be the only one present in the sample or, if both congeners were present, it would not be possible 
to determine in what proportion each of them contributes to the total signal given by the ECD. 

It is obvious that the problem becomes more complex if more than two congeners are coeluting 

as in the case of 171+202+156. 

Although the accurate determination of PCB congeners requires that each, of them should 
appear as a single peak, well resolved from other compounds, an unambiguous determination of 
all congeners present in commercial formulations cannot be achieved with a single column 
because no single column can completely- resolve all congeners present in these formulations 
(Duinker et al., 1988). The problem of insufficient resolution for some congeners from a single 
column has been overcome by 

- 
the use of , multidimensional gas chromatography with, electron 

capture detection, (MDGC-ECD) and a, full description of, all congeners present in. various 
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commercial formulations is now available (Schulz et al., 1989). The MDGC-ECD technique 

involves the use of two columns of different polarities in series, each in a separate temperature- 

controlled oven. The eluate of the first column is carried either through the monitor ECD, 

producing the usual chromatogram, or through the second column and the main ECD (Schulz et 

al., 1989). The usefulness of this technique lies in the fact that a preselected fraction from the 

eluate of the first column can be quantitatively transferred into the second column, therefore, only 

the coeluting congeners are diverted towards the second column whereas the well resolved 

congeners can be directed from the first column to an ECD. The chromatogram from the first 

column (which may be a non-polar SE-54 type capillary column) will include the majority of the 

PCB congeners which can be well resolved in this type of column, whereas the chromatogram 

from the second column (which may be of intermediate polarity such as an OV-210 type) will 

include only a few peaks corresponding to the congeners that cannot be resolved from the first 

column (Schulz et al., 1989). 

Unfortunately a MDGC system was not available for the present study and the application of 

this technique for PCB analysis had not yet been reported (in the literature reviewed by the 

author of this thesis). However, as special attention was paid in obtaining the maximum possible 

resolution from the DB-5 column, and as various congeners in the calibration solutions for this 

study which are present in commercial formulations can be well resolved with this type of 

column (Schulz et al., 1989), after comparing the results of the analysis of Aroclors 1254 and 

1260 in this study with the results for these Aroclors reported by Schulz et al. (1989) and by 

Safe et al. (1985) it is concluded that these congeners, together with those identified and 

quantified with the information provided by Mullin et al. (1984), were identified and quantified 

with accuracy. 

A confirmation of the identity of various congeners was performed by analysing the Aroclors 

and several (20) samples with a DB-1701 type capillary column of intermediate polarity. Figure 

5.1b shows the chromatogram` for a mixture of all 55 congeners available for calibration of the 

chromatographic'system. This chromatogram shows the same number of peaks (46) as those 

obtained with a DB-5 column, which indicates that both columns had a fairly similar resolution 
(compare Fig. 5.1 and b). However, most of the congeners coeluting with the DB-5 column were 
resolved in the DB-1701 column, for example, congeners 171,202 and 156 which coelute in the 
DB-5 column (see Fig. 5.1a) are completely separated in the DB-1701 column (see Fig. Sib). 
On the other hand, congeners which were completely resolved in the DB-5 column (e. g. 60 and 
101) coeluted in the DB-1701 column, and only in a few cases (i. e. 28+31 and 196+203) were 
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pairs of congeners not resolved with either of the two columns. Therefore, in cases in which the 

identification of a congener or group of congeners was dubious due to possible coelution, the 

reported concentrations are regarded as the sum of the coeluting congeners and the discussion 

of these values is only limited, whereas in cases such as the one for congeners 31 and 28 in 

which a partial resolution was obtained (see Fig 5.1a) in the DB-5 column, a quantification was 

done for each congener keeping in mind that the precision in this quantification is affected by 

the partial coelution with other congener(s) (Duinker et al., 1988) and these determination could 

be regarded as semiquantitative. 

5.1.1.2. Description of the composition of two Aroclor mixtures 
The concentrations of the PCB congeners listed in Table 5.1 were determined in two Aroclor 

mixtures, i. e., Aroclor 1254 and Aroclor 1260. The results of these analyses were compared with 

the results for both formulations reported by Schulz et al. (1989) and the results for Aroclor 1260 

reported by Safe et al. (1985). The comparison was made with these two reports in particular 

because in both cases all the individual congeners reported were available as individual standards 

for the calibration and identification of the chromatographic systems, and the chromatographic 

conditions used in both (by Schulz et al. in particular) studies provided very good resolution and, 

therefore, accuracy in the determinations. The results for the composition of Aroclor 1260 in 

these two reports were in good agreement, with the exception of a few congeners that coelute 

with a SE-54 column (Schulz et al., 1989) which was the only column used by Safe et al. (1985). 

As shown in Table 5.2, 
, 
the results obtained in the present study were in good agreement with 

the results from the two studies previously mentioned. - 
Before discussing the results shown in Table 5.2, it is important to comment on some relevant 

points arising from the report by Schulz et al. (1989). It was previously mentioned that these 

authors found a total of 132 congeners at concentrations higher than 0.05% (w/w) in a series of 

commercial formulations, and mentioned that in studies of various types of environmental 
samples analysed , with their MDGC-ECD technique, no additional congeners to those reported 
for the commercial formulations were found. This observation implies that the probability of 
coelution of various PCB congeners is greatly reduced as 69 of, the possible total of 209 

congeners are unlikely to occur in the environment as they are not present in the commercial 
formulations that represent the ultimate source of these xenobiotic substances (see list of the 
congeners not detected in the commercial formulations in Schulz et' al., , 

1989). '4; E 
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The explanation for the complete absence, or presence at trace levels of some of the PCB 

congeners is based on the concept of preferred substitution patterns (Ballschmiter et al., 1987). 

During the synthesis of the PCB technical formulations, an electrophilic aromatic substitution 

reaction of biphenyl is applied and this reaction stabilizes the op-dichlorine substitution patterns 

(i. e. at the positions 2 and 4), and the substitution of additional chlorine atoms is consequently 

more difficult as a result of electronic and steric effects (Schulz et al., 1989). On the basis of 

electronic effects, chlorination may occur preferentially at the 2,5-, 2,3-, 2,4- or 3,4- positions; 

thus, congeners No. 52 (2,2', 5,5') and 153 (2,2', 4,4', 5,5') are dominant components (Schulz et al., 

1989). 

On the other hand, the ionic chlorination mechanism leads to very little 3- and 3,5- substitution 

(Ballschmiter et al., 1987), thus, congeners No. 11 (3,3'), 14 (3,5), 39 (3,4', 5), 43 (2,2', 3,5), 58 

(2,3,3', 5'), 68 (2,3', 4,5'), 72 (2,3', 5,5'), 80 (3,3', 5,5'), 108 (2,3,3', 4,5') and 111 (2,3,3', 5,5'), 

amongst others, are reported as absent from the PCB technical formulations analysed by Schulz 

et al. (1989). Also absent, or present at trace levels in commercial formulations, are those 

congeners with all of the chlorine atoms present in one ring which include, amongst others, 

congeners No. 21 (2,3,4), 23 (2,3,5), 38 (3,4,5), 61 (2,3,4,5), 65 (2,3,5,6) and 116 (2,3,4,5,6) 

reported as absent by Schulz et al. (1989). The exceptions to these observations are congeners 

24 (2,3,6) and 29 (2,4,5), which were the only congeners (with more than two chlorine atoms) 

with all the chlorine atoms on one ring reported as present (at levels lower than 0.35%) in some 

of the PCB formulations analysed by Schulz et al., and their presence was accounted for on the 

basis of the favoured 2,3,6 and 2,4,5 substitution patterns. Also likely to occur only at trace 

levels (if at all) are those congeners with 4 or five chlorine atoms in one ring and only one or 

two in the other (e. g. 4+1,5+1 and 5+2 substitution patterns, Ballschmiter et al., 1987; Schulz 

et al., 1989). Of the pentachlorobiphenyls with 4+1 substitutions only three (i. e., No. 88: 

2,2', 3,4,6; No. 114: 2,3,4,4,5; and No., 115: 2,3,4,4', 6) were detected at very low concentrations, 

while the others were not detected at all (Nos. 86,93,106,109,112 and 117). Similar 

observations apply to the corresponding hexachlorobiphenyls (Schulz et al., 1989). 

It is important to note that Schulz et al. (1989) included in the list of absent congeners No. 
89 which is a 3+2 substituted PCB (2,2', 3,4,6') and is reported by Schulz et al. as a 4+1 
(therefore unlikely to occur) substituted congener. Based on the relative retention times reported 
by Mullin et at. (1984) this congener can elute cleanly C. ,a SE-54 column` and, using this 
report as a reference, this congener is reported as present; in -the Aroclor. 1254 ¢ formulation 
analysed in the present study. In a study of the composition of technical mixtures similar to those 
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analysed by Schulz et al. (1989), Ballschmiter et al. (1987) also reported congeners 92 and 84 

as coelutants and the peak eluting after this pair as congener No. 89. This congener represents 

the only discrepancy between the present study and the report by Schulz et al. (1989) regarding 

the identification of the PCB congeners in the Aroclors analysed in both studies. 

As part of the validation of the quantification made with the chromatographic conditions used 

in the present study, some comments are made in the following paragraphs regarding the data 

reported in Table 5.2. In this table, the results of the quantitative analysis of Aroclors 1254 and 

1260 in which the congeners listed in Table 5.1 were determined, are compared with the results 

reported by Schulz et al. (1989) and Safe et al. (1985). The first comparison regards those 

congeners which were available for the calibrations, and which are reported by Schulz et al. 

(1989) as being completely resolved on a SE-54 type column and therefore, can be accurately 

determined with a single column. These congeners were Nos. 52,49,44,40,187,183,128,185, 

180,191,169,199,189,207,194,205,206 and 209 (see Table 5.1). Table 5.2 shows that the 

results between the three studies are largely similar, however, some differences in the 

quantification for these congeners were expected as the composition of Aroclors vary somewhat 
from one batch to another (Alford-Stevens, 1986). The differences observed with the data of 

Schulz et al. (1989) in particular are expected to be related to differences between the batches 

of Aroclors analysed in each study, and not due to differences in the quality of the calibration 

standards because part of a recent reassessment of the concentration values in the CLB-1 

(National Research Council Canada) PCB solutions used in the present study, was performed by 

one of the authors in Schulz et al. (1989). 

The validity of using the relative retention times and relative response factors reported by 

Mullin et al. (1984) for the identification and quantification of some congeners which can be 

resolved on a SE-54 column (Schulz et al., 1989), and which in various cases represented 

significant components in the sediment chromatograms, was tested by comparing the results for 

these congeners (i. e. Nos. 74,70,99,97,136,134,146,174 and 177) shown in Table 5.2. With 

the exception of congener No. 136, there was very good agreement in the quantification of all 
of these congeners, therefore, the data reported for these congeners in sediment samples can be 

regarded as accurate. -Mullin et al. (1984) reported a relatively similar response factor for 

congener No. 136, and congeners 126 and 195 which were available as calibration standards in 

this study. The quantification of congener 136 gave similar results using the calibration curve of 
either of these congeners, therefore, the difference between the values reported in Table 5.2 for 

congener 136 can be due to differences amongst batches of Aroclors, or due to the possibility 
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of the response factor for congener 136 not being similar to those for congeners 126 and 195, 

thus, the use of the calibrations for the latter congeners was not appropriate. From the last 

observations it is obvious that, as suggested by Schulz et al. (1989), ideally one should have 

available for calibration each congener which is to be determined quantitatively in a PCB 

analysis. 
A particularly interesting set to compare is that including the congeners recommended by ICES 

(i. e. No. 28,52,101,118,153,138 and 180) for determination in environmental samples. These 

congeners were originally selected because, according to Griepink et al. (1988), they occur in 

significant proportions in many environmental samples and can be separated from most matrix 

interferences and coeluting congeners; congener No. 118 was also selected because of its toxicity. 

However, Duinker et al. (1988; see also Schulz et al., 1989) applied MDGC for the determination 

of these congeners and concluded that some of them may present the problem of coeluting with 

other congeners if a single (SE-54) column is used in the determinations. Congeners No. 52 and 

180 were the only ones reported to elute as single peaks from a SE-54 column and can thus be 

analysed accurately using only this column. In the determination by Schulz et al. (1989), after 

the first column (SE-54), congener No. 28 coeluted with No. 31; No. 101 coeluted with No. 90; 

No. 153 eluted closely from 132 and 105; No. 118 closely eluted with 149; and No. 138 eluted 

closely with 158. After the second column all of these congeners were well separated, with the 

exception of 28 and 31 which were only partially resolved. Table 5.2 and Figure 5.2a and b 

indicate that, although some of the PCB congeners recommended by ICES partially coeluted with 

other congeners from the DB-5 column used in the present study, the quantification of these 

congeners was satisfactory and the agreement with the data reported by Schulz et al. (1989) and 
Safe et al. (1985) was good. As suggested by the comparisons previously made for other 

congeners, the differences between studies found in Table 5.2 could be due to differences in the 

composition among Aroclor batches, however, the partial coelution with other congeners probably 

affect, in a minor degree, the accuracy of the results. It is important to remember that the identity 

and relative proportion of coeluting congeners was confirmed in several sediment samples (20) 

and the Aroclor mixtures by using a DB-1701 column (see for example chromatograms for 

Aroclors in Fig. 5.3a and b). 

Most of the discussions in this chapter are focused on most of the congeners mentioned earlier, 
which, in general, can be considered as accurately identified and quantified. The other congeners 
which are listed in Table 5.1 and which have not been mentioned are those reported by Schulz 

et al. (1989) as coeluting with other congeners from a SE-54 capillary column. Some of these 
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Figure 5.2. Gas chromatograms (DB-5 column) of two PCB commercial formulations (a) Aroclor 

1254 and (b) Aroclor 1260. The composition of these Aroclors is shown in Table 5.2. The 

congeners which were not present in the calibration standards (see Fig. 5.1) were 
identified with the relative retention times reported by Mullin et al. (1984). See 

chromatographic conditions in the methods. 
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Figure 5.3. Gas chromatograms (DB-1701 column) of two commercial formulations (a) Aroclor 

1254 and (b) Aroclor 1260. 
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congeners (i. e. No. 54,103,121,86,154,143,182 and 159) are not reported in the results for 

the PCBs in sediments because, although present in the calibration solutions, they are reported 

as unlikely to occur in environmental samples as they are absent from the technical formulations 

(Schulz et al., 1989). The concentrations reported for most of the remaining congeners should 

be only regarded as tentative, as the presence and proportions of coeluting congeners could not 

be evaluated. Table 5.2 shows that for some of these congeners the quantification in the Aroclor 

mixtures was in close agreement to the values reported by Schulz et al. (1989) indicating that 

the presence of coeluting congeners did not affect severely their quantification, however, as the 

contribution of coeluting congeners may change in environmental samples, the accuracy in the 

quantification of these congeners in the Äroclors, can not be extrapolated to the sediment 

samples, and the values quoted for these congeners should be considered as the summation of 

the concentrations of all possible coeluting congeners which are also listed in Table 5.1. 

The concentration values for congeners Nos. 40,136 and 170 were not reported for the 

sediment samples, as congener 170 coeluted with a compound present in the blank, and Nos. 40 

and 136 coeluted, in some samples, with large contaminants from the sediment. It is possible that 

the coeluting compound with No. 136 was DDE which had a similar relative retention time. 

Based on the relative retention times reported by Mullin et al. (1984), and on the fact that after 

injecting several sediment sample extracts in the DB-1701 column there was evidence of 

congener No. 92 coeluting with probably another PCB congener, the concentrations values for 

this congener in the sediments are believed to be enhanced by the presence of congener No. 84 

which Schulz et al. (1989) reported as being well resolved in a SE-54 type column. Also based 

on the data reported by Mullin et al. (1984) the peak eluting after congeners 92+84 in the 
Aroclor and sediment DB-5 chromatograms has been identified -as congener 89 which, as 
mentioned earlier, was reported by Schulz et al. (1989) as absent from the commercial 
formulations. 

5.1.2. Analysis of marine sediment reference materials. 
In order to test the accuracy and precision of the overall method for the determination of 

individual PCB congeners, two marine (harbour) sediment reference materials (HS-1 and HS-2) 

were obtained from the National Research Council of Canada. The concentration values for ten 

congeners (i. e. No. 101,151,153,138,180, ° 170,201,196, '194 and 209) are certified in these 
reference sediments, and these values have been used for testing the accuracy of the analysis. 

ý}' ý 
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The results for the determinations in three replicate samples of each reference sediment, of the 

PCB congeners with certified concentrations, are reported in Table 5.3. This table shows a good 

agreement, between the values determined in the present study, and those reported in the 

certification. Considering the differences in the methodology for the PCB congener 

determinations, the similarity in the values shown in Table 5.3 is remarkable, however, some of 

the differences in the reported concentrations could have been more closely studied if more 

detailed information in the certification of the reference sediments was provided by the National 

Research Council of Canada. For example, while testing the method for PCBs analysis in 

sediments, the same method (with only minor modifications) was tested on biological reference 

material (mackerel oil CRM No. 350) produced by the Community Bureau of Reference of the 

Commission of the European Communities. Together with the reference oil, this Bureau provides 

detailed information on the certification of the material, i. e., provides the data reported by the 

laboratories participating in the certification. Although a few of the certified congeners in the 

mackerel oil were slightly below the confidence limits of the certified values suggesting perhaps 

some losses during the treatment of the sample, the comparison of the results in our laboratory 

with those of the individual laboratories participating in the certification indicated that the PCB 

determination in our laboratory was within values reported and accepted for the determination 

of the certified value. Detailed information in the certified materials can be very important, 

particularly for those laboratories where the analysis of PCBs in environmental samples is done 

for the first time. 

The data presented in Table 5.3 shows that the precision of the overall method was, in general, 

similar or better than that reported for the certified values. The average relative standard 
deviations for the PCB congener concentrations in reference sediments were 7 and 9% in this 

study, whereas those calculated with the certified values were 16 and 10% for HS-1 and HS-2 

respectively. The only congener in which relatively poor precision was observed (r. s. d. "-20%) 

was No. 101 in sediment HS-2 (see Table 5.3). When all the congeners were considered, 
including those whose concentrations are not certified, the average relative standard deviation in 

the HS-1 sediment was 8.9%, with only congeners 18 and 137 showing values higher than 20%. 
For sediment HS-2 the average relative standard deviation was 12.4% with congeners Nos. 52, 
87,118, and 156 showing values higher than 20%. Although some congeners with high 

variability (e. g. 118 and 156) may not be fully resolved form other congeners with a DB-5 

column, causing a decrease in the precision of the determinations, congeners 52 and 128 are 
reported to elute cleanly (under appropriate chromatographic conditions) from a non-polar column 
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Table 5.3. Results of the determination of some PCB congeners in two sediment reference 
materials, HS-1 and HS-2, from the National Research Council of Canada. The certified 
concentration values are also included in the table together with the relative standard 
deviations for the certified and determined values. The concentration values are in ng g''. 

HS-1 

this study 
IUPAC mean s. d. r. s. d. mean 

101 1.19 0.13 9 1.62 
151 0.29 0.01 5 0.48 
153 1.78 0.15 9 2.27 
138 1.67 0.13 8 1.98 
180 0.87 0.06 7 1.17 
170 0.42 0.02 6 0.27 
201 0.32 0.01 4 0.57 
196 0.27 0.03 10 0.45 
194 0.18 0.01 8 0.23 
209 0.13 0.01 10 0.33 

mean 7.6 

certified 
a. d. r. s. d. 
0.21 13 
0.08 17 
0.28 12 
0.28 14 
0.15 13 
0.05 19 
0.07 12 
0.40 89 
0.04 17 
0.10 30 

16.3 

HS- 2 

IUPAC mean s. d. r. s. d. mean s. d. r. s. d. 
101 6.69 1.32 20 5.42 0.34 6 
151 1.62 0.18 11 1.37 0.07 5 
153 8.14 0.66 8 6.15 0.67 11 
138 7.95 0.70 9 6.92 0.52 8 
180 4.56 0.08 2 3.70 0.33 9 
170 2.19 0.18 8 1.07 0.15 14 
201 1.42 0.14 10 1.39 0.09 7 
196 1.16 0.12 10 1.13 0.12 11 
194 0.75 0.06 8 0.61 0.07 12 
209 0.61 0.02 4 0.90 0.14 16 

mean 9 - 10 



(Schulz et al., 1989). The cause of the lower precision observed for these congeners, as compared 

to others, is difficult to assess. The recoveries for the octachloronaphthalene which was used as 

an internal standard were between 91 and 98 % for all of the sediment samples analysed including 

the reference materials, therefore, no corrections were made for the concentrations determined 

in the samples. The precision observed for the internal standard during the analysis of the 

reference materials was good, with relative standard deviations of 1.4 and 3.1 % for HS-1 and HS- 

2 respectively. 

In conclusion, the method used in this work for the analysis of individual PCB congeners can 

be considered as satisfactory. Although the identification of several congeners can be regarded 

as accurate after a gas chromatographic analysis using a single column (DB-5), the confirmation 

of some of the identities with the use of a more polar column was important. Two reports which 

have been important in the validation of the method and the identification of some congeners 

were those by Mullin et al. (1984) and Schulz et al. (1989). Although the precision observed for 

some congeners was not as good as for other congeners, the overall precision can be regarded 

as good, in particular, when considering the large differences (more than two orders of 

magnitude) in concentration observed between some of the sediment samples which are reported 
in the following section of this chapter. 

5.2. RESULTS 

5.2.1. Total PCBs 

As PCB congeners show a wide range of physicochemical and toxicological properties, they 

can be studied as well defined individual chemical entities. The main aim of this chapter is, 

therefore, to discuss the patterns in the distributions of the relative concentrations of the PCB 

congeners in sediment samples in Liverpool Bay. However, as precise determinations of 
individual congeners have only 'recently been possible, literature reporting PCB congeners in 

marine sediments in particular is limited as compared with studies reporting total PCBs. Hence, 

comments are made in the following paragraphs regarding the levels of "total" PCBs (estimated 

as the sum of all congeners listed in Table 5.1 present in each sample above the detection limit) 
in the sediments analysed in the present work. In this section comparisons are made between the 
total PCB levels in samples within this study, which are followed by comparisons between the 
results in this study and total PCB levels reported for sediments in other marine coastal systems. 
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5.2.1.1. Distribution of total PCBs in Liverpool Bay sediments 

Before comparing the results for total PCBs between samples in this study, and between this 

and other studies, it is important to mention the possible limitations in the comparisons, 

particularly regarding the comparison of results between sediment samples with different 

sedimentological characteristics. 
Figure 5.4a shows the distribution of total PCBs in the total fraction (<500 pm) in Liverpool 

Bay sediments. When this figure is compared with the distribution of fine fraction in these 

sediments (see Figs. 4.2a and c), it is obvious that PCB concentrations closely reflect the amount 

of fine material in the sediment. Not surprisingly, highly significant (p«0.001) correlations were 

observed between PCB concentrations and the percentage of fine fraction in the total sediment 

(r=0.899), and between PCBs and the aluminium content (r=0.892), therefore, the results of PCBs 

in the total fraction shown in Figure 5.4a, more than showing areas of higher and lower 

contamination of the sediments may be reflecting only the distribution of fine sediments in 

Liverpool Bay. It was mentioned in Chapter 4 that the fractionation of sediments prior to trace 

element determinations was important to avoid the effect of variations in the grain size 
distribution between samples and, in most of the studies in which determinations of trace 

elements were done in the total sediments, the results were corrected or "normalized" prior to 

comparisons of the results between samples. As in the case of trace metals, given the higher 

surface area of fine particles and their higher content of organic matter, PCBs will tend to 

preferentially accumulate in the fine fraction of the sediments (see Section 4.1.1. ), therefore, it 

is not surprising that the PCB content in total sediments in this study increases as the amount of 
fine particles in the sediment increases. 

The main reason for not analysing PCBs in separate fine and coarse fractions in the present 

study, rather than analysing the total sediment, was that as the amount of sediment necessary for 

PCB determinations was comparatively much higher (up to 70 g) than for the analysis of trace 

elements (1 g or less), and several of the sediment samples collected were relatively small, it was 

estimated that for a large number of samples (-30 out of 70) collected in this study the 
fractionation would have yielded fine fraction subsamples smaller than 1 g, therefore, the 
determination of PCBs probably would have given signals below the detection limit for a large 

proportion of the samples. 

It has been mentioned (see Section 4.1.2. ) that one of the techniques most commonly applied 
for grain size correction of trace elements determined in total or bulk sediments is normalizing 
the results with the aluminium content of the sediment (see for example Windom et al., 1989; 

150 



Figure 5.4. Distribution of (a) total PCB concentrations in sediments from Liverpool Bay, and 

of these concentrations normalized with (b) the aluminium content and (c) total organic 

carbon content in the sediments. The units of concentration are pg g-', ng g-' Al and ng 

g' C respectively, and the values for each sample are given in Appendix C2. The 

contribution in percent of the organic carbon in the fine fraction to the organic carbon in 

the total sediment fraction is shown in figure (d). 
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Duinker, 1981; Ridgway and Price, 1987; Kemp et al., 1976). The dependence on the grain size 

composition observed in the present study has also been reported in other studies in which PCBs 

were determined in bulk sediments (e. g. Boon et al., 1985; Lohse, 1988; Duursma et al., 1989; 

Lara and Ernst, 1990a), and Boon et al. (1985) suggested that from the geochemical point of 

view, it would be better to standardize organochlorine concentrations in sediments with respect 

to grain size distribution or organic carbon content. 

As mentioned above, although grain size effects have been observed and reported, none of the 

studies of PCBs in bulk sediments have reported normalization of results with grain size 

descriptors such as aluminium content which is commonly applied for trace element 

normalizations. It is obvious that, as in the case of trace elements in the present study, to avoid 

grain size normalizations the analysis of PCBs in individual sedimentary fractions is 

recommended, however, fractionation of the sediments for PCB determinations is still not a 

common practice and reports are scarce (e. g. Larsen and Fytianos, 1989). 

The normalization of PCB concentrations with the organic carbon content of total sediments 

for comparing distributions within an area is also scarcely reported (the only recent report in 

which normalization with carbon was performed with the aim of comparing the distribution of 

PCBs in surface sediments is by Lohse, 1988), however, the importance of the organic carbon 

content on the surface of aquatic particles has been widely reported in studies of partitioning of 
hydrophobic organic contaminants between dissolved and particulate phases. Karickhoff et al. 

(1979) studied the sorption of hydrophobic pollutants on natural sediments and determined the 

partition (distribution) coefficients 

K, -C/C, 
where C. a concentration of the solute in the particulate phase and C. - concentration of the 

solute in water phase, for some aromatic hydrocarbons and chlorinated hydrocarbons. In their 

study, Karickhoff et al. (1979) found that Kd values were directly related to the organic carbon 

content on the sediments (as Cp values increased with an increase of the carbon content), and 

suggested that comparisons of sorption properties between particles should be made on an organic 
carbon basis, thus, Kd values normalized with the organic carbon fraction' (f,. ), defined as K0 

values (I - Kjf0. ), should be used instead of, Kd values for the comparisons. After the report 
by Karickhoff et al. '(1979), K0. values have been often used to study the partition behaviour of 
PCBs on aquatic sediments (e. g. Brownawell and Farrington, 1985; Baker et al., 1986; Lara and 
Ernst, 1990a; Brannon et al., 1991): The assumption of the K,, - KJf) model is that the 
interactions between a hydrophobic substance and particulate matter are weak and non-specific, 
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resembling the simple partitioning into an organic solvent (Lana and Ernst, 1990a). If this 

assumption is valid, then a normalization of the total PCB concentrations with the organic carbon 

content of the total sediment seems to be a better choice than normalizing with aluminium for 

comparison of the PCB levels between the highly heterogeneous sediment samples analysed in 

this study. However, some limitations arise from this assumption as it has been reported that the 

mineral phase onto which the organic films are formed in natural sediments may play a role in 

the adsorption process of hydrophobic organic compounds. Murphy et al. (1990) reported that 

the mineral effects are particularly important for less hydrophobic compounds at low organic 

carbon concentrations in particles, whereas Lara and Ernst (1990b) observed that, after removing 

most of the organic matter on some marine sediments, the sorption of PCBs on the "mineral" 

particles became increasingly significant as the hydrophobicity of the PCB congeners and the 

percentage of silt-clay fraction of the sediments increased. It is apparent from these observations 

that the association of PCBs in aquatic sediments may not be accurately described as a simple 

partitioning into the organic phase, as the mineral fraction may play a direct or indirect role in 

the sorption process. Furthermore, it has also been reported that the composition of the organic 

matter plays a role in the sorption of organic compounds onto sediments (e. g. Grathwohl; 1990; 

Murphy et at., 1990). For example, Murphy et al. (1990) observed that humic substances, as 

compared to fulvic acids, greatly enhanced the, sorption of hydrophobic organic substances, and 

that the type of humic coating influenced the amount of substance adsorbed. These authors 

reported that the sorption of hydrophobic compounds was proportional to the aromatic content 

of the organic matter and inversely proportional to their oxygen/carbon ratio. Karickhoff et al. 

(1979) reported that, on an organic carbon basis, the sand fraction within a particular sample was 

considerably less effective sorbent (50-90% reduction in Kam) than the fine fraction (<50 µm 

particles), these results probably suggesting that the composition of the organic matter was 
different between the sands and the fine particles in the report by Karickhoff et al. (1979), or that 

the mineral matrix played a major role in the organic substance-sediment association, or both. 

From the above, it is clear that the interaction between organic substances such as PCBs and 
sediment particles is far from well understood, and therefore, any method used for normalization 
of the ° PCB concentrations will have advantages and disadvantages. Duursma et al. (1989) 

reported that since the organic carbon in their sediments was correlated with silt (defined as the 
particles <16 µm in their study), it was not at all clear whether organic matter was a better 
parameter than silt content for Kd corrections. In the present study, high correlations were also 
found between the organic carbon content in the total sediment and grain size descriptors such 
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particles even though this correlation has been reported for the estuarine sediments in the region. 

However, although a correlation between mercury and organic carbon was not observed, probably 

suggesting that mercury concentrations were not controlled by the organic matter in fine particles, 

the correlation between mercury and 513C values indicated that the mercury might be associated 

and controlled by a specific fraction of the organic matter in fine sediments which is land 

derived. 

As in the case of mercury, given their organic and hydrophobic nature, a specific association 

between PCBs and the organic matter in the sedimentary particles is expected, however, as 

mentioned above, apart from the quantity, the quality or composition of the organic matter is also 

expected to play a role in the control of the PCB concentrations in sediments. The distribution 

of the normalized PCB concentrations shown in Figures 5.4a and 5.4c may, thus, indicate that 

the higher concentrations found in the northeastern sector of the sampling grid, and in Burbo 

Bight, are due to inputs from the River Mersey which is also a significant source of mercury into 

Liverpool Bay. The transport of sediments towards the coastal areas and towards the Mersey in 

particular may superimpose the PCB inputs from the Mersey, with PCB inputs from sewage 

sludge, industrial wastes and dredged material further offshore. The possible sources of PCBs in 

sediments in Liverpool Bay are further explored later in this chapter through the analysis of the 

distribution patterns of the individual congeners. 

5.2.1.2. Comparisons with PCB levels in other regions 
The comparison between PCB levels in Liverpool Bay and levels reported for sediments in 

other regions is based on the absolute PCB concentrations (rather than the normalized 

concentrations), as many of the studies have been carried out in total sediments and, in some 
cases, a description of the sediment characteristics such as grain size composition and organic 
carbon content is not given. Although, as mentioned in the previous section, the comparison 
between the results of sediments with substantially different sedimentological characteristics may 
be questionable, the aim of this section is only to put the total PCB results from this study in a 
more global context as, surprisingly (considering the concern of the PCB contamination of the 

environment And the knowledge of waste disposal activities in the region), this seems to be the 
first data set of PCB concentrations in sediments reported for Liverpool Bay (and for coastal 
marine sediments in Britain) and, therefore, represents the . 

first report on the state of PCB 
contamination of sediments in this area which: has been extensively studied for other types of 
contaminants and for heavy metals in particular. ý- x; 
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The average total PCB concentration of the sediments in this study (n=66) was 3938 pg g''. 

The highest concentrations were found at the stations in the Burbo Bight with values in this area 

ranging from 13676 pg g'1 at station NW-24 to a maximum of 37883 pg g" at station YY-1. 

Stations U-9 and P-11 also showed among the highest values in the region (17688 and 28680 pg 

g't respectively). It can be seen in Appendix B3 that the stations previously mentioned also 

contained the highest amounts of fine particles in the total sediment with values of 61,37 and 

34% of fine fraction for samples YY-1, U-9 and P-11 respectively. In the northern region of the 

sampling grid, where most of the samples showed fine particle concentrations higher than 5% 

(see Fig. 4.2a), the total PCB concentratiops ranged from 1000 to 10000 pg g'1. The southern 

sector of the sampling grid, where most of the sediments had proportions of fine fraction lower 

than I%, - total PCB concentrations where lower than 1000 pg g'' and several samples had 

concentrations lower than 350 pg g'1 (see Fig. 5.4a and Appendix C2) and a minimum of 82 pg 

g'1 at station S-7 which also had the lowest amount of fine particles (0.08%, see Appendix B3). 

Other stations with total PCB concentrations lower than 150 pg g4 were G-9, J-9 and T-10 with 

concentrations of 96,86 and 143 pg g-' respectively and fine fraction proportions of 0.21,0.17 

and 0.09% respectively. 
The data for total PCBs in the present study are` compared with the most recent reports of 

PCBs in estuarine and marine sediments (found in the literature revised by the author) which 

were determined in all cases by high resolution gas chromatography. In a recent review of PCBs 

in coastal and open ocean sediments by Fowler (1990) it is interesting to notice that the data 

reported for open ocean surface sediments are within the range of values found in the present 

study. For the Mediterranean sea, values from 0.6 to 9.0 ng g'' (all mentioned concentrations will 
be in dry weight unless otherwise stated) are reported, whereas a concentration of 0.6 ng g'' is 

reported for a sediment core from the Sargasso Sea. These values are compared against the range 

of 0.08 to -38 ng g' found in the present study. It is important to mention, however, that all of 
these studies in the open ocean were done during the mid seventies, usually with packed columns 
and during a, period in 

: which the production and wide spread use of PCBs in the largest 
industrialized countries was still common, as the production of PCBs was not banned in the 
United States ' until . 1977 ý (Knap et al., 1986). Whether the comparatively large values of total 
PCBs (it would be expected that coastal sediments such as those in Liverpool Bay receiving 
inputs of urban and industrial wastes were largely more contaminated than open ocean deep 

sediments) found in open ocean sediments were due to analytical artifacts or were a result of 
much higher inputs of PCBs into the environment in the seventies is difficult to assess. 
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Regarding the possible effect of contamination during sampling, and during sample preparation, 

it is important to mention that it was not until the early eighties that improvements in the 

analytical procedures to reduce blanks were particularly attended to, and even recently (Mudroch 

et al., 1989) blanks up to 45.6 ng gl (higher than the most contaminated sample in the present 

study) are reported. Although these blanks may have not significantly affected the conclusions 

by Mudroch et al. (1989) as their sediment samples had concentrations up to 14200 ng g4, it is 

obvious that they would have been completely unacceptable for the present work and for most 

of the studies reporting PCBs in coastal and open ocean sediments (see Fowler, 1990). As the 

original references reporting the open ocean data in the review by Fowler (1990) were not 

available at the moment of writing this discussion, it can only be said at this stage that, regarding 

possible analytical artifacts in those results, large differences in PCB levels in seawater have been 

attributed to possible contamination of the samples during collection and preparation for the 

analysis in the past (Schulz et al., 1988). However, it is also important to mention that PCB 

determinations in the dissolved phases, particularly at very low levels, are much more difficult 

and more prone to contamination than determinations of PCBs in sediments. 
On the other hand, there is evidence that the reduction of PCB inputs into the environment 

may be (at least partially) responsible for the relatively large values observed in open ocean 

sediments during the seventies. Knap et al. (1986) studied the flux of chlorinated synthetic 

organic chemical including PCBs in the deep Sargasso Sea by analysing particulates collected 

with-sediment traps deployed at a depth of 3200 m between 1978 and 1980. In the size fraction 

analysed by these authors (<125 µm) which accounted for 75-90% of the material collected, the 

total PCB concentrations on particles ranged from 50 to 350 ng g4 and had an average of -150 

ng g' which represents -4 times the maximum concentration observed in the present study. Knap 

et al. (1986) concluded that PCBs were major contaminants on particles in the open ocean up 

to 1980, although production in the United States ceased in 1977. 

Regarding the levels of PCBs in Liverpool Bay sediments as compared to other coastal areas, 
Table 5.4 shows the range of total PCB concentrations found in this study and those found in 

other regions which are reported in relatively recent studies. All these studies determined PCBs 
in sediments by glass capillary gas chromatography and some of them reported concentrations 
for individual congeners. Although, as indicated in Table 5.4, the calculation of total PCBs in the 
different studies was based on the quantification of a different number of congeners and, 
therefore, direct comparisons of the results can not be highly precise, a general comparison of 
the values can still be node as the main aim is to give a global picture of what is the status of 4-- 
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Table 5.4. Comparison of the total PCB concentrations in the sediments from Liverpool Bay 

with concentrations in sediments reported for various marine coastal and estuarine areas. 
The numbers of the congeners used to estimate the total concentration in each study (if 
reported) are shown in parenthesis preceded by a letter t. The concentrations of some 
PCB congeners taken from these references are also shown. In the column showing the 
sediment fraction analysed, (M) indicates that the sediments were muddy and `(FS) 
indicates fine sands. 



Table 5.4. 

Location 

Liverpool Bay 

Sediment 
fraction 

Total 

North Sea 

North Sea 

North Sea coast 

Rhine 
(estuarine) 

Rotterdam Harbour 

Total 

Total 

Suspended 
Particles 

Total 

Total 

Elbe Estuary 

Hano Bight 
(Baltic) 

Lagoon of Venice 
(Adriatic coast) 

Thermaikos Gulf 
(Greece) 

Total 
Susp. Part. 

Total 
(M) 

<63}Lm 

Manukau Harbour Total 
(New Zealand) (M) 

Junk Bay Total 

Tolo Bay & Chan- 
nel (Hong Kong) 

Acushnet River Total 
Estuary (Mass. ) 

New Bedford Harb.. Total 
(Estuary) Mass. 

New Bedford Total 
Harbor (Mass. )° (M) 

Upper, Hudson Total- 
River (FS) 

Buzzards Bay Total 
(New Bedford) _(M) Long Beach Harbor 
(Los 

, 
Angeles) 

t 

PCB conc. 

range (ng g"1) 

0.08-38 (t55 CBs) 
0.007-1.60 (CB 28) 
0.006-1.69 (CB 153) 

<0.05->2.0 (t3 CBs) 

0.27-4.7 (t21 CBs) 

2.1-8.2 (CB 52) 
1.8-24.6 (CB 180) 

-10--60 (CB 28) 

-10--60 (CB 153) 

200-512 (6 CBs) 
90-105 (CB 28) 
91-105 (CB 153) 
30.6-188 (t6 CBs) 
1.5-29.4 (CB 28) 
8.0-41.8 (CB 153) 

0.9 t 0.3 (t CBs) 
11.2 t 3.5 (t CBS) 

-15 (t CBs) 

5-39 (t CBs) 
0.29-0.43 (CB 28) 
0.64-4.19 (CB 153) 

0.5-14.2 (t51 CBs) 
0.1-2.3 (CB 31? ) 
0.1-1.1 (CB 153) 

31-2200 (t CBs) 
0.08-7.6 (CB 77) 
0.002-0.30 (CB 126) 
6.6-45 (t CBs) 
0.057-0.085 (CB 77) 
<0.002-0.005 (CB 126) 

-1200 (CB 28) 
-540 (CB 153) 

6100-2.1x106 (t CBs) 
170-170x103 (CB 52) 
260-54x103 (CB 153) 

1270-6840 (A1242) 
8860-26x103 (A1254) 

1410-16x10' (t CBs) 

-1300 (t CBs) 

-91 (t CBs) 

Reference 

This study 
(1991) 

Lohse (1988) 

Boon etal. 
(1985) 

Duinker 
(1986) 

Duursma et al. 
(1989) 

Japenga et al. 

(1988) 

Larsson 
(1984) 

Pavoni et al. 
(1987) 

Larsen and 
Fytianos 

(1989) 

Fox et al. 
(1988) 

Kannan et al. 

(1989) 

Farrington 
et al. (1986) 

Pruell et al. 
(1990) 

Brownawell and 
Farrington (1986) 

Bush et al. 
(1987) 

Seller and 
Simoneit 

(1986) 



total PCB levels in Liverpool Bay in relation to other coastal sediments near industrialized areas. 

Table 5.4 also indicates that in all but one study the determinations were carried out on the total 

sediments which also limits the extent of this discussion although some of these studies were 

done in areas where net sediment deposition occurs and may have a large proportion of fine 

sediments and, thus, may be comparable with the sediment samples in this study in which a large 

proportion of fine particles was observed. 
Total PCB levels in sediments from Liverpool Bay are similar to those reported for deposited 

sediments and suspended particles in the North Sea region. Table 5.4 shows that the values 

reported by Lohse (1988), Boon et al. (1985) and Duinker (1986) are all within the range 

observed in the present study. As in the present study, Boon et al. (1985) found a relationship 

between grain size composition of the sediments and PCB concentrations, and reported that sandy 

sediments had PCB levels below the detection limit of their analytical procedure. Lohse (1988) 

reported increasing concentrations (for the sum of 3 congeners, 153+138+180) towards the 

coastal areas in sediments from the North Sea, with highest concentrations (>2 ng g'') near the 

German coast, which are similar to the highest concentrations (for the sum of the same 

congeners) found in the present study in Burbo Bight. The trend of increasing concentrations 

towards the coastal zones in the North Sea is emphasized by the values reported in sediments 

from estuarine and harbour sediments (Duursma et al., 1989; Japenga et al., 1988) reaching total 

PCB concentrations of 512 ng g' in Rotterdam Harbour (see Table 5.4). A value of 0.9 ng g'1, 

within the range observed in this study, was also observed in a sediment in Hano Bight (Baltic 

Sea). Concentrations in suspended particles (-11 ng g) in Hano Bight were higher than those 

in deposited sediments (Larsson, 1984) probably suggesting that sinking particles in this region 

are acting as a source of PCBs in the sediments. Lamson (1984) and Fowler (1990) suggested 
that as the reported concentrations in sinking particles were higher than the concentration in 

surface sediments, some decomposition and compound recycling takes place after deposition, 

thus, deposited sediments may be considered as sources of PCBs into the water column. Total 

PCB levels in sediments from Liverpool Bay are, also similar to the levels reported for other 

coastal areas with intense nearby industrial activity such as the Lagoon of Venice, the 
Thermaikos Gulf and Manukau Harbour (Table 5.4). 

The fact that the PCB concentrations in Liverpool Bay sediments are similar to those of other 
industrialized coastal regions may suggest that the contamination. levels in this area are high, 

particularly if comparisons could be made with more pristine areas (for which recent data are 
lacking or scarce) where the lack of industrial activity may indicate the lack of direct inputs of 
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PCBs and other contaminants.:.. .- on the other hand, these values are comparatively much `- 

lower than the highest concentrations reported for sediments in some estuaries and harbours. For 

example, Kannan et al. (1989) analysed sediments in two areas in Hong Kong and reported a 

range of total PCB concentrations of 6.6 to 45 ng g'1 in the Tolo Bay and Channel, which are 

similar to the highest values found in Liverpool Bay, however, for Junk Bay sediments these 

authors reported a range from 31 to 2200 ng g'', that is, the highest value in this area was around 

58 times higher than the highest value in'Liverpool Bay. Bush et al. (1987) reported a range of 

total PCB concentrations of 1410-16x103 ng g" in the Upper Hudson River which has been badly 

polluted with direct inputs of PCBs, this range representing 37 to -420 times the highest value 

in Liverpool Bay: Even higher values than those in the Hudson River have been reported by 

Brownawell and Farrington (1986) and Pruell et al. (1990) in the Acushnet River Estuary region 

and in the New Bedford Harbour in particular, with a range of 6100 to 2.1x106 ng g' reported 

by Pruell et al. (1990), equivalent to -160--55000 times the highest value recorded in Liverpool 

Bay. ' According to Pruell et al. (1990) the concentrations of PCBs found in New Bedford 

Harbour sediments are the highest reported for any estuary. 

The significance of the total PCB levels found in Liverpool Bay sediments, with regard to 

possible detrimental effects, is difficult to assess. In areas such as New Bedford Harbour, 

Farrington et al. (1986) reported that harvesting of lobsters and certain fish and bivalves is 

banned because of PCB concentrations in excess of the 5 µg g'1 wet weight edible tissue 

guidelines. PCB levels above 5 pg g'1 have been reported in liver of some fish species (cod and 

whiting) in Liverpool Bay between 1981 and 1984, however, total PCB levels in muscle (wet 

weight) were reported to be between 15 and 60 ng g4 between 1983 and 1984 (Franklin, 1987). 
Except for a 1984 plaice sample in which the PCB level was above the upper level (50 ng g'1) 
of the guidelines for muscle recommended by the Joint Monitoring Programme (JMP) of the Oslo 

and Paris Commissions, PCB concentrations in the muscle of fish from Liverpool Bay were 
generally low (Franklin, 1987). The method for the determination of PCBs in sediments used in 

the present study was tested for the analysis of biological samples, including a pooled sample of 
the soft parts of three hermit crabs collected around Site SI in Liverpool Bay in 1989. The total 
PCB level in crabs was 1400 ng g'' in a lipid basis, which was equivalent to 122 ng g'1 wet 
weight. Assuming that the water content in crabs was 50%, then the PCB levels in a dry weight 
basis would be 244 ng g'' which represents more than 6 times the highest concentration observed 
in sediments in the bay. 

- 
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Total PCB concentrations in sediments, fish and shellfish in Liverpool Bay are much lower 

than in areas where severe PCB pollution has occurred, therefore, these levels may suggest that 

the inputs of PCBs in this region are of no serious concern, particularly as the concentrations 

found in fish are unlikely to pose any threat either to the fish themselves or to the people who 

eat them (Morris et al., 1989). However, in a recent study of organochlorine concentrations in 

dolphins and porpoises of Cardigan Bay (which is expected to be less contaminated than 

Liverpool Bay) extremely high concentrations of PCBs were reported in fat-rich tissues (Morris 

et al., 1989). The highest total PCB concentrations were found in the blubber of a bottlenose 

dolphin calf (290 pg g'1) and in common porpoises (93 pg g'1), these values being amongst the 

highest ever recorded for this kind of marine mammals. More important, the levels found in four 

of the six individuals analysed in this report could have serious implications for these animals 

in terms of their ability to resist disease and/or their reproductive status, and may in part be 

associated with observed population changes (Morris et al., 1989). The high concentrations in 

dolphins and porpoises were not derived from local pollution, but from the animals' normal diet 

which did not show markedly elevated levels of organochlorines (Morris et al., 1989). From these 

observations, it is clear that although the PCB levels in Liverpool Bay sediments are not amongst 

the highest reported in coastal areas, it can not be concluded that these levels pose no threat to 

the ecosystem. Several aquatic food chains start with benthic organisms which obtain their energy 
from scavenging the surface of sediment particulates. At the same time, benthic organisms may 

accumulate the contaminants in the sediments, particularly those which are lipophilic such as 
PCBs, and these pollutants may be transferred to the rest of the food chain, therefore, coastal 

sediments may act as sources of PCBs to the top predators such as marine mammals. The last 

observation leads to the conclusion that, until the transfer from sediments through the food chain 

of PCBs and other contaminants in the region is better understood, the significance of the levels 

of PCBs observed in sediments from Liverpool Bay can not be properly assessed. 

5.2.2. PCB congeners 
5.2.2.1. Variations in congener distribution patterns ("fingerprint") 

It is obvious that the strong effect of the grain size composition on the total PCB 

concentrations in sediments, . which has been discussed above, will be also observed in the 

concentrations, of individual PCB congeners. The following discussion is, therefore,, -, mainly 
focused on comparisons between the relative proportions ("fingerprint") of PCB congeners 
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between samples, rather than in the' distribution of the absolute concentrations of individual 

congeners in particular which will show a similar distribution to that shown in Figure 5.4a. 

Table 5.5 shows descriptive statistics which summarize the data in Appendix Cl showing the 

concentrations of the PCB congeners determined in each sediment sample. In Table 5.5, the 

column with the number of samples in which the congeners were not determined (either because 

of uncertainty in the identification of the congener or because the concentrations were below the 

limit of detection) indicates that some congeners were quantified in all of the samples (66) 

analysed, and that 26 of the 55 congeners shown in the table were determined in 60 or more of 

the samples. All of the congeners listed in Table 5.5 were detected in sediments with a high total 

PCB concentration. For example, the chromatograms for samples YY-1 and P-11 (Figs. 5.5a and 

5.5b respectively), which were the two stations with the highest PCB concentrations, show that 

not only all of the congeners listed in Table 5.5 were present at detectable levels in these 

sediments, but also show that many more possible PCB congeners were not determined, therefore, 

the values reported earlier for total PCBs are an underestimation of the "true" total PCB content 

in the sediments from Liverpool Bay. On the other hand, several congeners were below the 

detection limit in the sediments showing the lowest concentrations. For example, in the samples 

from stations S-7 and J-9 only 17 and 16 congeners respectively (of those included in Table 5.5) 

were present above the detection limit (see chromatograms in Fig. 5.6a and 5.6b). 

The congeners showing the highest mean concentrations (see Table 5.5) were Nos. 153 and 
138 (217 and 216 pg g'1 respectively) whereas the highest concentration for any of the congeners 
in a particular sample was found in sample YY-1 for congener 95 (1899 pg g'), with congeners 
28,118,153,138,15 and'77 also showing values above 1500 pg g1 at this station. On the other 
hand, the column showing the minimum concentration values determined for each congener 
(which represent the practical limit of detection for most of the congeners) indicates that the 

minimum quantity detected for various of the congeners was 1 pg g'L. The wide range of 

concentrations (see minimum and maximum values and the standard deviations in Table 5.5) 

observed for each congener, as in the case of total PCB concentrations, reflects the 4-- 
heterogeneity in the grain size composition of Liverpool Bay sediments. This heterogeneity is 
further illustrated by the first and third quartile values (Q1 and Q3) which indicate that, if the 
17 samples with highest concentrations and the 17 samples with the lowest concentrations are 
not considered (i. e. if a large proportion of the extreme values is ignored), variations in the 
individual congener concentrations of around one order of magnitude are still observed. 

160 



Table 5.5. Descriptive statistics for the PCB congener concentrations reported in Appendix Cl, 
obtained with the command DESCRIBE of the statistical package MINITAB. Only the 
samples in which detectable amounts of the congener were present were used in the 
calculations. The concentrations in the table are in pg g''. 

CS n* MEAN MEDIAN TRDdAN STD&V SEMEAN MIN MAX Qi Q3 

28 66 4 179.6 74.5 132.4 314.0 38.6 7.0 1600.0 12.8 191.0 
52 66 4 130.7 58.0 98.0 209.0 25.7 7.0 1080.0 15.0 139.0 

101 66 4 145.6 62.5 112.8 220.0 27.1 4.0 1140.0 22.0 178.5 
118 66 4 173.8 75.0 133.2 274.2 33.8 4.0 1651.0 23.0 204.8 
153 66 4 217.4 104.5 175.3 317.4 39.1 6.0 1687.0 24.8 250.3 
138 66 4 216.6 100.5 172.1 322.0 39.6 7.0 1792.0 23.0 253.5 
180 66 4 160.0 77.0 126.1 245.8 30.3 4.0 1489.0 19.3 201.8 

TICES 66 4 1220.0 578.0 949.0 1884.0 232.0 41.0 10386 148.0 1435.0 
18 54 16 83.6 27.5 56.8 152.1 20.7 2.0 754.0 9.7 64.3 
15 61 9 173.1 78.0 115.8 332.9 42.6 1.0 1808.0 11.0 166.5 
54 9 61 36.9 34.0 36.9 30.8 10.3 8.0 112.0 14.0 41.0 
31 36 34 47.9 19.5 38.3 65.1 10.8 1.0 250.0 11.5 40.0 
49 64 6 116.9 39.0 80.9 221.9 27.7 2.0 1248.0 10.2 119.3 
44 64 6 84.0 35.0 60.6 145.9 18.2 3.0 760.0 11.0 88.3 
74 64 6 108.0 40.0 76.5 197.3 24.7 1.0 1050.0 5.3 104.0 
70 66 4 119.8 43.5 88.3 205.8 25.3 3.0 1140.0 9.0 130.5 
95 66 4 200.2 81.0 147.4 337.6 41.6 8.0 1899.0 19.5 241.8 
60 55 15 80.7 39.0 59.0 130.2 17.6 2.0 689.0 7.0 80.0 
92 62 8 105.7 42.5 75.3 187.9 23.9 2.0 1100.0 8.0 106.5 
89 57 13 135.3 50.0 97.7 232.9 30.9 5.0 1300.0 14.0 127.0 
99 65 5 72.6 32.0 53.8 120.2 14.9 2.0 690.0 11.0 82.0 
97 62 8 47.6 17.0 33.8 81.9 10.4 1.0 450.0 6.0 53.3 
87 62 8 77.4 35.5 60.5 112.7 14.3 3.0 663.0 13.8 90.8 

136 62 8 82.0 24.0 58.9 144.2 18.3 2.0 680.0 7.0 93.0 
110 66 4 133.4 56.5 108.2 186.3 22.9 5.0 900.0 23.0 164.7 

77 10 60 330.0 97.0 214.0 494.0 156.0 19.0 1568.0 27.0 592.0 
82 45 25 27.4 16.0 22.8 33.4 5.0 3.0 174.0 6.5 30.5 

151 60 10 55.9 29.0 43.6 82.1 10.6 2.0 408.0 7.0 60.5 
149 65 5 144.2 74.0 113.4 214.5 26.6 5.0 1113.0 14.0 161.0 
134 36 34 40.0 16.5 29.4 60.6 10.1 2.0 285.0 10.0 36.3 
114 21 49 60.9 36.0 53.5 59.7 13.0 7.0 256.0 20.5 99.0 
146 65 5 141.4 71.0 108.1 231.1 28.7 1.0 1200.0 10.0 162.0 
132 19 51 138.8 56.0 110.7 200.0 45.9 3.0 752.0 33.0 137.0 
105 50 20 114.0 59.5 89.5 161.5 22.8 2.0 784.0 10.8 129.7 
141 58 12 51.2 23.0 38.8 80.0 10.5 2.0 457.0 6.0 62.0 
158 36 34 20.5 14.5 17.1 22.6 3.8 2.0 107.0 5.3 24.8 129 29 41 54.2 26.0 48.4 60.4 11.2 3.0 261.0 16.0 84.5 187 66 4 86.2 39.5 67.9 132.2 16.3 2.0 721.0 9.0 94.8 183 59 11 36.4 21.0 30.3 45.4 5.9 3.0 219.0 6.0 46.0 128 61 9 36.7 21.0 30.7 45.6 5.8 2.0 250.0 6.5 50.0 185 19 51 26.1 15.0 22.2 27.6 6.3 5.0 114.0 10.0 38.0 174 60 10 17.8 7.5 13.8 27.0 3.5 1.0 147.0 2.0 20.0 177 57 13 39.1 21.0 31.8 53.6 7.1 1.0 276.0 5.0 44.5 171 45 25 41.1 22.0 34.5 50.7 7.6 3.0 270.0 11.5 45.0 156 20 50 18.0 16.0 16.6 15.6 3.5 2.0 60.0 4.0 25.5 173 3 67 47.7 46.0 47.7 35.5 20.5 13.0 84.0 13.0 84.0 201 15 55 55.1 34.0 48.0 54.0 13.9 7.0 196.0 21.0 67.0 169 29 41 18.0 5.0 14.9 27.2 5.0 1.0 120.0 2.0 30.0 199 63 7 63.2 28.0 47.9 101.6 12.8 1.0 557.0 6.0 72.0 196 57 13 51.6 23.0 39.4 78.0 10.3 2.0 408.0 6.0 58.0 189 14 56 29.8 30.5 27.6 22.5 6.0 4.0 82.0 9.5 39.5 195 47 23 23.9 11.0 19.0 35.2 5.1 1.0 182.0 3.0 23.0 194 66 4 36.5 14.5 28.3 58.2 7.2 1.0 320.0 3.0 40.5 205 47 23 12.8 7.0 11.0 15.7 2.3 1.0 77.0 2.0 13.0 206 55 15 30.6 15.0 24.4 41.9 5.6 2.0 222.0 4.0 32.0 209 56 14 45.0 21.0 32.4 76.8 10.3 1.0 445.0 5.0 43.0 



Figure 5.5. Gas chromatograms in a DB-5 column for sediment samples (a) YY-1 and (b) P-11. 

The sample weights extracted were 15 and 40 g respectively and the final extract volumes 

were 1 and 2 ml respectively. These sediments were classified in cluster 2. 
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Figure 5.6. Gas chromatograms in a DB-5 column for sediment samples (a) S-7 and (b) J-9. The 

sample weights extracted were 70 and 60 g respectively and the final extract volumes 

were of 0.2 ml. These sediments were classified in cluster 3. 
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To evaluate the relative abundance of each congener within the PCB group, the contribution 

of each congener (in percent) to the total PCB concentration in each sample was estimated, and 

a summary of these calculations is given in the descriptive statistics shown in Table 5.6. This 

table shows that, regardless of the absolute concentrations, the contribution of each particular 

congener to the total PCB concentration varied over a relatively narrow range. For example, 

congener No. 28 contributed to the total PCB content from 1.26% in sample N-10 to 8.54% in 

sample S-7 whereas congener No. 15 contributed 0.43% and 13.4% in samples P-8 and G-7 

respectively. The first and third quartile values indicate that the contribution of individual 

congeners to the total PCB values varied within a much narrower range in most samples than the 

overall range indicated by the maximum and minimum values. 

The values shown in Table 5.6 indicate that the seven ICES congeners were significant 

components in the sediments from Liverpool Bay with average contributions to the total PCB 

levels ranging from 4.34% for congener 28 to 6.26% for congener 138. This table shows that, 

on average, congeners 153 and 138 were the largest PCB components in the sediments and that 

the seven ICES congeners contributed on average 35% of the total PCBs with their contribution 

ranging from 22.5% up to 52.4%. In order of decreasing abundance, other significant components 

of the total PCBs were congeners Nos. 95 > 110 > 15 > 149 > 146 > 70 > 89 > 92 > 49 > 187 

> 105 > 44 > 87 > 99 > 74, which cover a range from dichloro (No. 15) to heptachloro (No. 187) 

biphenyls. Thus, the list of the overall 22 most abundant congeners (>2% of the total PCBs) 

includes one di-, one tri-, five tetra-, nine penta-, four hexa-, and two heptachlorobiphenyls. The 

data shown in Table 5.6, however, only represent the average contribution of each congener to 

the total PCB content in all samples, and some important variations in the relative contributions 

("fingerprint") were observed between samples. 

An analysis of the variations of each congener (one by one) within the group of PCB 

congeners determined in the present study would be unpractical, considering that 45 of them were 
determined in more than 50% of the samples. Therefore, in order to study the general trends in 

the PCB composition among samples, and to identify samples with similar PCBs "fingerprint", 

the application of multivariate statistical techniques was necessary. 

The sediments in Liverpool Bay were classified by means of the "ratio matching" technique 
followed by cluster analysis, applied on a set of ten PCB congeners, in a similar way as they 

were classified based in their elemental content. The set of congeners used in the analysis, which 
included the ICES congeners 28 (tri-CB), 52 (tetra-CB), 101 (penta-CB), 118 (penta-CB), 153 

(hexa-CB), 138 (hexa-CB) and 180 (hepta-CB), and also included congeners 70 (tetra-CB), 187 
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Table 5.6. Descriptive statistics for the PCB congener concentrations in Appendix Cl expressed 

,_ as a percentage of total PCBs. 

CB n nd MEAN MEDIAN TRMEAN S. D. SEMEAN MIN MAX Q1 93 

28 66 4 4.34 4.32 4.26 1.43 0.18 1.26 8.54 3.44 4.91 

52, 66 4 4.37 3.41 4.07 2.55 0.31 2.24 14.21 2.82 4.71 

101 66 4 4.45 3.98 4.34 1.43 0.18 2.68 8.64 3.47 4.96 

118 66 4 5.17' ' 4.93 5.06 1.50 0.18 1.97 13.22 4.32 5.72 
153 66 4 6.24 6.34 6.25 1.10 0.14 3.34 8.96 5.57 6.89 

"138' 66 4 6.26 6.22 6.24 1.38 0.17 2.79 12.02 5.54 7.11 
180 66 4 4.90 4.59 4.81 1.76 0.22 1.97 9.77 3.78 5.73 

TICES 66 4 35.29 34.65 35.05 5.58 0.69 22.51 52.44 32.11 38.97 
18 54 16 1.60 1.38 1.57 0.69 0.09 0.66 3.48 1.07 2.15 
15 61 9 4.10 3.48 3.82 2.41 0.31 0.43 13.43 2.67 4.73 

54 9 61 0.28 0.24 0.28 0.13 0.04 0.14 0.60 0.21 0.31 

31 36 34 0.64 0.63 0.63 0.23 0.04 0.25 1.17 0.46 0.76 
49 64 6 2.43 2.41 2.44 0.60 0.08 0.98 3.49 2.05 2.88 
44 64 6 2.33 2.07 2.22 0.86 0.11 1.42 5.57 1.83 2.56 
74 64 

,6 
2.16 2.20 2.16 0.66 0.08 0.66 3.70 1.68 2.68. 

70 66 4 2.93 2.98 2.96 0.63 0.08 0.40 4.18 2.60 3.29 
95 66 4 5.60 5.11 5.43 1.75 0.22 3.23 11.34 4.63 5.95 
60 55 15 1.56 1.58 1.57 0.40 0.05 0.66 2.30 1.35 1.85 
92 62 8 2.47 2.52 2.47 0.56 0.07 1.31 3.66 2.10 2.84 
89 57 13 2.75 2.65 2.73 0.71 0.09 1.49 4.46 2.21 3.23 
99" 65 5 2.17 1.97 2.11 0.68 0.08 1.32 4.20 1.70 2.54 
97 62 8 1.19 1.13 1.16 0.40 0.05 0.62 2.62 0.87 1.32 

-87 62 8 2.24 2.00 2.18 0.69 0.09 1.31 4.59 1.80 2.60 
136 62 8 1.83 1.62 1.74 1.00 0.13 0.25 5.64 1.34 2.06 

. 110 66 4 4.32 4.03 4.28 1.08 0.13 2.25 8.20 3.68 4.95 
77 10 60 2.30 2.08 2.27 1.18 0.37 0.69 4.14 1.36 3.32 
82 45 25 0.63 0.59 0.62 0.15 0.02 0.42 1.00 0.51 0.70 
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134 36 34 0.53 0.50 0.53 0.15 0.03 0.25 0.88 

e0.42 0.67 
114' 21 49 0.74 0.60 0.61 0.64 0.14 0.35 3.48 0.50 0.71 
146 65 5 3.25 3.32 3.20 1.34 0.17 0.45 11.57 2.70 3.80 
132 19 51 2.21 2.14 2.02 1.21 0.28 0.84 6.92 1.83 2.26 
105 50 20 2.37 2.39 2.38 0.60 0.08 0.56 3.69 2.10 2.78 
141 58 12 1.19 1.19 1.19 0.22 0.03 0.56 1.98 1.07 1.30 
158 36 34 0.35 0.34 0.35 0.09 0.01 0.24 0.54- 0.28 0.42 
129 29 41 0.65 0.63 0.64 0.17 0.03 0.39 1.13 0.51 0.74 
187 . 66 4 2.39 2.41 2.41 0.67 0.08 0.40 3.66 2.05 2.84 
183 59 11 1.14 1.06 1.10 0.43 0.06 0.58 2.47 0.84 1.35 
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(hepta-CB) and 194 (octa-CB), was selected because it covers a wide range of chlorination, and 

also because the congeners in the set were detected in all 66 sediment samples analysed in this 

study, thus, all samples could be classified. 

The dendrogram resulting from the cluster analysis on the matrix of similarities is shown in 

Figure 5.7. It can be seen from this dendrogram that six clusters could be identified. The results 

from this analysis were corroborated by repeating the analysis on a second group of ten 

congeners covering a wide range of chlorination (i. e. congener Nos. 44,70,99,97,146,128, 

177,196,206 and 209). Although the congeners in this second set were all present only in 53 

samples (as compared to 66 for those in the previous set), the samples were grouped in similar 

clusters to those resulting from the first analysis. The only relatively important difference 

between the two analyses was that with the second set of congeners samples N-7 and K-6 were 

classified into a separate cluster, thus, in Figure 5.7 these samples are labelled as cluster 6 and 

sample N-10 as cluster 7. 

Figure 5.7 and the map including the cluster membership for each sample (Figure 5.8), indicate 

that most of the samples near the Mersey, and those from the Burbo Bight in particular, were 

classified in cluster 2 (a total of 14 samples were classified in this cluster). Also classified in 

cluster 2 was the sample from station K-9 (Site SI). With the exception of samples T-10, S-7 and 
U-15, all samples from transect R and eastward (see Fig. 3.1), which were not classified in 

cluster 2, were classified in cluster 1. With the exception of samples G-13, J-13, M-11 and N-11, 

all those samples shown in Figure 3.1 with labels 11 to 13 (sediments from the northern region 

of the sampling grid) were also classified in cluster 1. Thus, a large proportion (37 samples) of 
the sediment samples analysed in the present study were classified in either cluster 1 or 2 

(samples from clusters 1 and 2 are separated with a line from the other clusters in Fig. 5.8). 

Figure 5.8 shows that most sediments in the western-southern region of the sampling grid, which 
includes the south of Site SI4 were classified in cluster 4 (14 samples), whereas 4 samples were 

classified in cluster 3,4 samples in cluster 5,2 samples in cluster 6 and 1 sample in cluster 7. 

Other samples classified in cluster 5 were T-10 (near the Queen's Channel), U-15 (near the old 
Site Z), G-13 and 1-13 (northwestern corner of the sampling grid). 

Cluster 2 included some sediments with the highest PCB concentrations in the study area (the 

total PCB concentrations and the concentrations normalized with the organic carbon content are 
shown in Appendix C2). Table 5.7 shows that this cluster had a mean carbon-normalized 

concentration of 1585 ng g'`, and included the sediments from Burbo Bight in which the highest 

total PCB concentration value was found at station YY-1 (3232 ng g''C). The lowest 
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Table 5.7. Descriptive statistics for carbon normalized total concentration of PCBs in sediments 
within each cluster. The concentration values are given as ng of PCBs per gram of 
carbon. 

Cluster mean n s. d. r. s. d. min. max. 

1 590 22 364 62 108 1334 

2 1585 14 771 49 506 3232 

3 149 4 196 131 42 442 

4 373 14 417 112 74 1672 

5+6 458 10 496 108 72 1644 



Figure 5.7. Dendrogram obtained in the Cluster Analysis applied on the matrix of similarities 
for ten PCB congeners (see text for details). 
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Figure 5.8. Cluster memberships obtained from a cluster analysis based on a matrix of similarities 
for PCB congener Nos. 28,52,70,101,118,138,153,180,187 and 194. The 

dendrogram from this analysis is shown in Fig. 5.7. The line in the map separates clusters 
2 and 1, which are considered as the most contaminated, from clusters 3,4,5 and 6. (see 

text for details). 
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concentration in this cluster was found at station U-11 (506 ng g'`C). Although most of the 

sediment samples within this cluster had high amounts of fine fraction (see Appendix B3), 

showing a corresponding high concentration of PCBs (see discussion in the previous section), 

some sediments within this cluster had a relatively low amount of fine particles. For example, 

sediments from the Burbo Bight had fine fraction concentrations above 26%, whereas sediments 

from stations T-14, K-9 and U-11 had fine fraction concentrations of 3.68,2.23 and 1.87% 

respectively. 
Figures 5.5a and 5.5b show the chromatograms of samples YY-1 and P-11 classified in cluster 

2. Further examples of sediments in this cluster are given in Figure 5.9 (including the 

chromatograms of samples U-11 and T-14) and 5.10 (including the chromatograms of samples 

K-9 and S-13). From these chromatograms it can be seen that, although there was a large 

difference in the total PCB concentrations and in the amount of fine particles between some 

sediments in cluster 2, the pattern of the congeners (particularly of those congeners used for the 

classification of the sediments) remained relatively constant throughout these samples, which 

suggests a similar source (see matrix of similarities for these samples shown below): 

K-9 P-11 S-13 

P-11 0.879 1.000 

S-13 0.818 0.802 1.000 

T-14 0.815 0.834 0.882 

U-11 0.806 0.829 0.823 

YY-l 0.822 0.827 0.892 

T-14 U-11 YY-l 

1.000 

0.810 1.000 
0.867 0.867 1.000 

From a qualitative inspection of the chromatograms for samples K-9 and U-11 (Fig. 5.10a and 
5.9a respectively), which showed the lowest similarity within the group of congeners above, it 

can be seen that the proportions of not only the ten congeners used in the classification of 

sediments were similar, but several other congeners also showed the same pattern in the two 

sediments. Table 5.8, in which the mean (note that the values represent the contribution of each 

congener to the total value obtained for the summation of the concentration of the ten congeners; 
these values are referred below as the "relative concentrations") and the relative standard 
deviation for each of the ten congeners used in the sediment classification are shown, indicates 

that the largest variations in cluster 2 were found for congeners 52 (r. s. d. =22.2%), 28 
(r. s. d. =12.3%) and 180 (r. s. d. =11.2%), therefore, the differences between the patterns in samples 
from this cluster are mainly due to variations in the relative concentrations of congener No. 52. 
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Table 5.8. Mean and relative standard deviations within each cluster, of the relative 
concentrations' of each of the ten PCB congeners used in the sediment classification by 

the ratio matching technique followed by cluster analysis (see text for details). 

Cluster 1 Cluster 2 Cluster 3 
Congener mean r. s. d mean r. s. d mean r. s. d 

28 0.10 15.1 0.14 12.3 0.13 21.1 
52 0.08 17.8 0.09 22.2 0.17 21.7 

70 0.07 9.6 0.09 5.7 0.06 10.7 
101 0.10 13.9 0.09 9.6 0.09 11.1 
118 0.12 6.9 0.11 9.8 0.10 16.0 
138 0.15 8.0 0.14 4.3 0.14 9.8 
153 0.16 5.8 0.14 9.7 0.13 13.8 
180 0.12 15.7 0.11 11.2 0.11 17.2 
187 0.06 7.8 0.06 8.5 0.06 7.9 
194 0.02 13.5 0.03 9.7 0.02 9.6 

Cluster 4 Cluster 5 Cluster 6 
Congener mean r. s. d mean r. s. d mean r. s. d. 

28 0.07 26.1 0.09 39.7 0.08 4.2 
52 0.08 17.5 0.15 32.3 0.31 5.7 
70 0.05 18.4 0.08 15.0 0.10 3.7 

101 0.09 18.4 0.16 10.6 0.20 2.1 
118 0.14 27.9 0.13 27.8 0.08 12.2 
138 0.16 8.8 0.13 20.3 0.07 6.4 
153 0.16 9.5 0.13 13.2 0.08 10.5 
180 0.16 22.2 0.06 20.3 0.06 3.4 
187 0.06 22.2 0.04 25.1 0.02 24.6 
194 0.03 32.4 0.01 28.0 0.01 0 

Note ' The relative concentration for each of these congeners in each sample was computed by dividing 
the absolute concentration of the congener by the sum of the concentrations of the ten congeners. 



Figure 5.9. Gas chromatograms in a DB-5 column for sediment samples (a) U-11 and (b) T-14. 

The sample weights extracted were 70 and 60 g respectively and the final extract volumes 

were of 0.5 ml. These sediments were classified in cluster 2. 
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Figure 5.10. Gas chromatograms in a DB-5 column for sediment samples (a) K-9 and (b) S-13. 

The sample weights extracted were 70 and 50 g respectively and the final extract volumes 

were of 0.5 and 1.0 ml respectively. These sediments were classified in cluster 2. 



ý� 

y'2. 

I 

3. + " 

0 10 20 30 40 ,. = "50', "60 70 80 90 100 
Retention time (min) 



The sediments classified in cluster 1 showed a wide range of PCB concentrations and fine 

fraction concentrations in the sediments. The mean concentration for 22 of the 23 samples (the 

organic carbon in sample P-9 was not measured) in this cluster was 590 ng g"1C (see Table 5.7), 

with the minimum concentration value found at station R-6 (110 ng g'1 C) which had only 0.3% 

of fine fraction, and the maximum value found at station R-12 (1334 ng g-'C) which had 6.1% 

of fine fraction. Some samples within this cluster had fine fraction concentrations higher than 

15% (i. e. samples N-13, K-11,1-11, L-11 and M-12) and PCB concentrations above 600 ng g-1C, 

whereas some had fine fraction concentrations lower than 1% (i. e. samples R-6, S-11, S-8, R-8 

and P-9) and PCB concentrations lower than 260 ng g'IC. The similarities between a set of six 

samples from this cluster covering a wide range of concentrations, and whose chromatograms 

are presented in Figures 5.11,5.12 and 5.13, are shown below: 

G-11 L-11 P-6 Q-11 R-6 R-12 

L-11 0.838 1.000 

P-6 0.851 0.846 1.000 

Q-11 0.846 0.903 0.813 1.000 

R-6 0.863 0.846 0.880 0.822 1.000 
R-12 0.847 0.874 0.815 0.914 0.833 1.000 

As in the case of cluster 2, the patterns in the chromatograms of samples within cluster 1 

remained relatively constant regardless of the total PCB concentrations or the amount of fine 

particles in the sediments. For example, the chromatograms of samples R-6 and R-12 (Fig. 5.1 la 

and 5.11b) show a high similarity (Z=0.833), although the minimum and maximum PCB 

concentrations within this cluster were found in these samples which had 0.3 and 6.1% of fine 

fraction respectively. As in the case of cluster 2, the maximum variability in the patterns between 

samples within cluster 1 were related to variations in the relative concentration of congener 52 

(, -. -A-17.8%), although the variations in the relative concentrations of congeners 28 

(r. s. d. =15.1%) and 180 (r. s. d. =15.7%) were also important (see Table 5.8). 

A visual inspection of the chromatograms of samples in clusters 1 and 2 seems to indicate a 

relatively high similarity in the patterns between the two clusters. This similarity also seems to 
be reflected in the dendrogram (Fig. 5.7) which shows that both clusters are joined earlier in the 

clustering procedure than some samples in clusters 4 and 5. For example samples R-12 (cluster 
1) and R-11 (cluster 2) had a similarity of Za0.908, however the similarity between samples R-12 

and M-12 (cluster 1) was Z-0.932 and the similarity between samples R-11 and YY-4 (cluster 
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Figure 5.11. Gas chromatograms in a DB-5 column for sediment samples (a) R-6 and (b) R-12. 

The sample weights extracted were 70 and 50 g respectively and the final extract volumes 

were of 0.2 and 0.5 ml respectively. These sediments were classified in cluster 1. 
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Figure 5.12. Gas chromatograms in a DB-5 column for sediment samples (a) P-6 and (b) L-11. 

The sample weights extracted were 70 and 50 g respectively and the final extract volumes 

were of 0.2 and 0.5 ml respectively. These sediments were classified in cluster 1. 
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Figure 5.13. Gas chromatograms in a DB-5 column for sediment samples (a) G-1 1 and (b) Q-11. 

The sample weights extracted were of 50 g respectively and the final extract volumes 

were of 1.0 ml respectively. These sediments were classified in cluster 1. 
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2) was Z=0.933. Therefore, although samples R-11 and R-12 were very similar, they were 

classified in different clusters because of their higher similarities with other samples which were 

different enough to be classified in different clusters. This observation highlights one of the 

limitations of the clustering procedures which are not perfect because, ideally, if samples R-11 

and R-12 are similar then they` should be classified in the same cluster, however, when the 

clustering procedure is evaluated as a whole (by cluster and not by specific samples), some 

differences between clusters are evident. 
Figure 5.14 shows the 95% confidence intervals (obtained with the statistical package 

MINITAB) for the relative concentration of each of the ten congeners (used in the sediment 

classification) in each cluster. The comparison between the confidence intervals indicates that the 

main difference between the "fingerprints" of clusters 1 and 2 was due to the lower relative 

concentrations of congeners 28 and 70 (Figs. 5.14a and c respectively) and a slight enrichment 

of congener 153 (Fig. 5.14f) in cluster 1. The overlapping of the confidence intervals for the 

other congeners in Figure 5.14 suggests no significant differences in the relative concentrations 

of these congeners between clusters 1 and 2. The decrease in the concentrations of congeners 28 

and 70 in cluster 1, and the chromatograms for samples in cluster 1 and 2 shown above indicate 

that although there is a general similarity between the two clusters, the distribution of congeners 

in cluster 2 was more homogeneous, that is, lower and higher chlorinated PCB congeners tend 

to be present in more similar proportions than in cluster 1. 

The position of the stations classified in cluster 2 (see Fig. 5.8) and their higher concentrations 
indicate that sediments in this cluster represent those most directly affected by point sources of 
PCBs. It is interesting to compare Figure 5.8, in which the cluster memberships were obtained 
from a set of ten PCB congeners determined in total sediments, with Figure 4.30a in which the 

cluster memberships were obtained from ten elements determined in the fine fraction of the 

sediments. These figures show that, with few exceptions, sediments classified in clusters 1 to 6 

in Figure 4.30a, which were also mentioned as the most directly affected by anthropogenic inputs 

(see discussion in Section 4.3) correspond to sediments classified in clusters 1 and 2 in Figure 

5.8, " and in particular, those sediments classified in cluster 1 in Figure 4.30a correspond to 

sediments in cluster 2 in Figure 5.8. As in the case of most trace elements, and of mercury in 

particular, the sediments near the Queen's Channel (and particularly those from Burbo Bight) 

seem to be contaminated with PCBs transported from the River Mersey and its estuary. Also as 
in the case of trace elements, however, sample k-9 (inside the sewage sludge disposal area in 

Liverpool Bay) was classified in the same cluster as those sediments nearer the Mersey. In the 
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Figure 5.14.95% confidence intervals for each of the ten PCB congeners used for the 
statistical classification of sediments (see text). The confidence intervals were 
computed with the command ONEWAY in the statistical package MINITAB. 

a) CB28 
CXIUSTER N MEAN STDEV 

1 23 0.10383 0.01573 
2 14 0.13950 0.01720 
3 4 0.12850 0.02715 
4 14 0.07436 0.01942 
5 8 0.09400 0.03733 
6 2 0.08450 0.00354 

POOLED STDEV = 0.02106 

b) CB52 
CLUSTER N MEAN STDEV 

1 23 0.07887 0.01400 
2 14 0.08871 0.01971 
3 4 0.17050 0.03697 
4 14 0.07893 0.01381 
5 8 0.15075 0.04869 
6 2 0.30850 0.01768 

POOLED STDEV = 0.02360 
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CLUSTER N MEAN STDEV 

1 23 0.09996 0.01391 
2 14 0.09271 0.00890 
3 4 0.09150 0.01012 
4 14 0.08950 0.01649 
5 8 0.16475 0.01753 
6 2 0.19800 0.00424 

POOLED STDEV = 0.01384 
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CLUSTER N MEAN STDEV 

1 23 0.12465 -0`00857 
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Fig. 5.14 cont.... 2 

f) CB153 
CLUSTER N MEAN 

1 23 0.15839 
2 14. 0.14414 
3 4 0.13075 
4 14 0.16100 
5 8 0.12788 
6 2 0.08100 

POOLED STDEV = 0.01335 

g) CB138 
CLUSTER N MEAN 

1 23 0.15474 
2 14 0.14207 
3 4 0.13550 
4 14 0.16093 
5 8 0.13363 
6 2 0.06600 

POOLED STDEV = 0.01435 
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h)a CB187 
CLUSTER N MEAN STDEV ---+---------+"-----""-+-"----"------ 

1 23 0.063739 0.004938 (-*-) 
2 14 0.059000 0.004992 ("-*--) 
3 4 0.057750 0.004573 (---"*"---) 
4 14 0.063143 0.014016 
5 8 0.036625 0.009180 (--"*---) 
6 2 0.023000 0.005657 (------ *-------) 

POOLED STDEV = 0.008335 0.016 0.032 0.048 0.064 

j) CB180 
CLUSTER N MEAN STDEV ---+-.. .............................. 

1 23 0.12022 0.01890 . (-*-) 
2 14 0.10657 0.01189 (--*--) 
3 4 0.10800 0.01857 (-"--*----) 
4 14 0.15686 0.03480 (--*--) 
5., 8 0.06338 0.01289, ("--*"-") 
6 2 0.06150 0.00212 (...... *=. -----) 

---+---------+---...... +......... +--- 
POOLED STDEV = 0.02165 0.040 0.080 0.120 0.160 

J) CB194; 
CLUSTER N MEAN 

' 
STDEV -+----......... -..................... 

1 23' 024174" 0. 0.003270 
2 14 0.025786 0.002486 "*--) 3 4 '0.019000 ' 0.001826 (..... *5.... 

) 

4 14 0.025357 0.008205 (--*--) 
8 0.012125L ý0.003399 (-"-*-.. ) 

6 2 0.006000 0.000000 (....... *-"--""". ) 

POOLED STDEV = 0.004661 0.0000 0.0080 0.0160 0.0240 



discussion of trace elements the similarity in the composition of sediments in station K-9 and 

stations from Burbo Bight was explained by a possible transport of the sludge particles towards 

the Burbo Bight, although, it was also mentioned that trace element inputs from sewage sludge 

may be superimposedan inputs from the River Mersey run-off, which were particularly suggested 

by the high levels of mercury in the sediments from Burbo Bight, as this heavy metal is 

discharged in substantial quantities in the Mersey Estuary. The association Of mercury with the 

organic matter in sediments has been reported for estuaries in this region, therefore, particulate 

PCBs, which are certainly associated to the organic component of sediments, are expected to be 

transported in a similar way to particulate mercury in this region. Thus, the high levels of PCBs 

in the Burbo Bight sediments and the similarity of the congener distributions with other 

sediments near the Mersey may be evidence of PCB inputs from the freshwater run -off into the -s-- 

bay. 

As mentioned in Chapter 2, the direction of net sediment transport in this region is from the 

bay towards the Mersey, therefore, the input of sediment-associated contaminants from the 

Mersey towards Liverpool Bay may be limited. However, it is evident from Figure 4.4b (showing 

the distribution of S13C values) that the transport of organic materials from the Mersey towards 

Liverpool Bay is reflected in the composition of the organic matter in the sediments near the 

Mersey outfall. This land derived organic matter is probably transported in the water column as 
dissolved or colloidal organic matter which will eventually flocculate or be adsorbed onto 

particles and be deposited in the vicinity of the Queen's Channel entrance. Further evidence of 

the transport of land derived organic matter towards Liverpool Bay was reported by Nimmo et 

al. (1989). These authors reported that the rivers Dee and Mersey appeared to be significant 

sources of fluorescent material (probably consisting mainly of freshwater fulvic acids) to 

Liverpool Bay. Several studies of partitioning of organic contaminants and of PCBs in particular 
(e. g. Brannon et al., 1991; Brownawell and Farrington, 1986; Baker et al., 1986; Gschwend and 
Wu, 1985) between water and particles have stressed the importance of considering the dissolved 

organic matter in the studies of partitioning, as hydrophobic substances may remain in "apparent" 

solution in possible association with organic colloids which are not retained by filters and, thus, 
are operationally included in the dissolved phase. For example, Baker et al. (1986) studied the 
influence of colloids on"sediment-water partition coefficients of PCBs and suggested that the 

presence of colloidal-sized, non-settling microparticles played a significant role in decreasing the 

apparent Ka values of PCBs by increasing their apparent solubility. These authors concluded that 

since organic contaminants associated with colloidal matter are subject neither to sedimentation 
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nor to volatilization they may have longer residence times in the water column, whereas the 

aggregation and settling of destabilized colloids in the presence of larger particles may, however, 

rapidly remove this fraction under proper hydrodynamic conditions, thus, the geochemistry of 

organic pollutants in natural waters is closely tied to the behaviour of colloids. Brownawell and 

Farrington (1986) reported apparent oversaturation in the concentration of PCB congeners in pore 

waters of a marine sediment and also concluded that organic colloids may play a critical role in 

the biogeochemistry of PCBs in sediments. These reports suggest that, due to the apparent 

significant inputs of dissolved organic matter from riverine sources, and from the Mersey runnoff 

in particular, the input of PCBs in "solution" into Liverpool Bay may be significant, these inputs 

are reflected in the relatively high PCB concentrations in sediments from Burbo Bight and in the 

similar pattern of the PCB congeners in those sediments with a relatively low amount of fine 

particles (e. g. samples U-11 and T 14) which are within the influence of the freshwater runnoff 

from the Mersey. 

The general similarity between the pattern of PCB congeners in sediments from clusters 1 and 

2 suggests that these sediments are being mainly affected by the same source(s), however, the 

decrease in the relative concentrations of congeners 28 and 70 in sediments in cluster 1 as 

compared to sediments in cluster 2 may be due to a faster loss of these congeners into solution. 
The PCB congener composition of sediments in cluster 2 may reflect more closely the congener 

composition from the sources as they are the most directly affected by the inputs. Due to 
differences in the physicochemical properties amongst congeners, the longer the particles and 

their associated PCBs have been transported, the higher the alteration of the "original" fingerprint 

will be, due in particular, to differences in water solubility and partitioning between water and 

sediments (IKd values). For example, a recent review on various physicochemical properties of 
PCB congeners by Shiu and Mackay (1986), including aqueous solubilities and octanol-water 

partition coefficients (K. J, reported aqueous solubilities for congeners 28,70,153 and 194 of 
160,41,1 and 0.2 mg m"3 respectively, and log Ko� values of 5.80,5.90,6.90 and 7.10 

respectively. Therefore, the higher, solubility and lower partitioning into solid phases (a 

relationship between PCB congener Ka values and their 
-sediment-water partition coefficients, 

K, or K, , has been widely reported; see for example Baker et al., 1986; Brownawell and 
Farrington, 1985; Lara and Ernst, 1990a) shown by congeners 28 and 70 may cause a faster 

release of these congeners into solution during transportion, thus, sediments in cluster 1 which 
may have the same source of PCBs as sediments in cluster 2, have a more altered PCB pattern 

as they have probably, been in transport for a longer period. 
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Only four samples were classified in cluster 3 (i. e. samples G-9, J-9, Q-7 and S-7; see Fig. 

5.8). The similarities between these four samples were: 

G-9 J-9 Q-7 S-7 

J-9 0.813 1.000 

Q-7 0.814 0.773 1.000 

8-7 0.850 0.880 0.803 1.000 

The amount of fine particles in these sediments was low (0.21,0.17,2.14 and 0.08% for samples 

G-9, J-9, Q-7 and S-7 respectively) and the mean normalized PCB concentration was also low 

(149 ng g-'C) with the maximum found at station Q-7 (442 ng g-'C) and the minimum found at 

station J-9 (42 ng g-'C). In spite of the low amounts of fine material and PCB concentrations, 

the pattern of the congener distribution in the sediments within this cluster (see chromatograms 

in Figures 5.6 and 5.15) was, in general, similar to those patterns shown by sediments in cluster 

1 and 2. As shown in Figure 5.14, the confidence intervals of the higher chlorinated congeners 

in cluster 3 overlap with those in clusters 1 and 2, and the only difference with these clusters is 

due to a higher relative concentration of congener 52 and a lower relative concentration of 

congener 70 in the sediments of cluster 3. As congeners 52 and 70 are tetrachiorinated it may 
be expected that, in general, they would have similar solubilities and show similar geochemical 
behaviour. However, there are some variations in the physicochemical properties between PCB 

isomers which are related to the substitution positions of the chlorine atoms in the biphenyl ring, 

and, it seems that the three-dimensional configuration of the PCB molecules also plays a role in 

the physicochemical behaviour of the PCB congeners. For example, the aqueous solubility 

reported by Shiu and Mackay (1986) for congener 52 (30 mg m4) is lower than the solubility for 

congener No. 70 (41 mg m"3) whereas the log K., values for these congeners were reported as 

6.10 and 5.90 respectively. Therefore, based on the solubilities and the octanol-water partition 

coefficients, it is expected that congener No. 70 would be more mobile than congener 52, which 

could explain a reduction of congener 70 in relation to congener 52 in sediments from cluster 3, 

assuming that they originated from a similar source as PCBs in sediments from clusters 1 and 

2. However, this observation would suggest that if congener 70 is being lost into solution faster 

than congener 52 as a result of their respective solubilities and Ko� values, the same behaviour 
(which was not observed) would also be expected for congener 28 which also shows a higher 

solubility and lower K.,, than congener 52. It is possible that a clear trend in the relative 
concentrations of congeners 28 and 52 is overshadowed by their high variability in sediments 
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Figure 5.15. Gas chromatogram in a DB-5 column for sediment sample Q-7. The sample weight 

extracted was of 60 g and the final extract volume was of 0.5 ml. This sediment was 

classified in cluster 3. 
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within cluster 3, as these congeners showed relative standard deviations of 21.7 and 21.1% 

respectively (see Table 5.8). 

A more evident shift in the PCB congener distribution pattern in sediments of Liverpool Bay 

was observed in the samples classified in cluster 4. The chromatograms of some sediments in this 

cluster are shown in Figures 5.16,5.17 and 5.18. From these chromatograms it is evident that 

the lower chlorinated congeners are less abundant than the higher chlorinated congeners in the 

sediments of this cluster. The chromatograms also show that within cluster 4, samples K-10 and 

L-10 (Fig. 5.16a and b) had a congener pattern more similar to the patterns shown by sediments 

in clusters 1,2 and 3, as compared to samples M-11 and J-7 (Fig. 5.18a and b) which showed 

the most altered patterns. Therefore, figures 5.16,5.17 and 5.18 seem to reflect different degrees 

of alteration of the "original" pattern exemplified by sediments classified in cluster 2 such as 

those from stations YY-1 and P- 11 (Fig. 5.5) and station K-9 (Fig. 5.10a). Although the shift in 

the PCB pattern in sediments of cluster 4 is evident from the chromatograms, this shift is further 

emphasized by the confidence intervals in Figure 5.14 which show that, as compared to other 

clusters, congeners 28,52,70 and 101 in cluster 4 were at the lower end of the relative 

concentration values, whereas congeners 118,153,138,187,194 and particularly 180, were at 
the higher end of the relative concentration values. The similarities for six sediment samples in 

cluster 4 are shown below: 

J-7 K-8 K-10 L-10 M-8 M-11 
X-8 0.798 1.000 

K-10 0.813 0.711 1.000 

L-10 0.832 0.762 0.852 1.000 
M-8 0.732 0.687 0.684 0.689 1.000 

M-11 0.863 0.758 0.851 0.845 0.684 1.000 

The main differences amongst sediments within this cluster, as suggested by the relative standard 
deviations in Table 5.8 were due to variations in the relative concentrations of congeners 194 
(r. s. d. =32.4%), 118 (r. s. d. =27.9%) and 28 (r. s. d. a26.1%). The mean total PCB concentration for 
this cluster (373 ng g-1C, see Table 5.7) was lower than the means for clusters 1 and 2 but higher 
than for cluster 3. The lowest concentration within cluster 4 was found at station K-8 (74 ng g* 
'C) and the maximum was found at station K-10 (1672 ng g''C) which is located within Site SI4 
and was considered as one of the most directly affected by anthropogenic inputs of trace elements 
(see Fig. 4.30a and the discussion in Section 4.3). Excluding sample K-10, all sediments within 
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Figure 5.16. Gas chromatograms in a DB-5 column for sediment samples (a) K-10 and (b) L-10. 

The sample weights extracted were of 40 and 50 g respectively and the final extract 

volumes were of 1.0 and 0.2 ml respectively. These sediments were classified in cluster 

4. 
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Figure 5.17. Gas chromatograms in a DB-5 column for sediment samples (a) K-8 and (b) M-8. 

The sample weights extracted were of 70 g respectively and the final extract volumes 

were of 0.2 ml respectively. These sediments were classified in cluster 4. 
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Figure 5.18. Gas chromatograms in a DB-5 column for sediment samples (a) M-1 1 and (b) 1-7. 

The sample weights extracted were of 60 g respectively and the final extract volumes 

were of 0.5 ml respectively. These sediments were classified in cluster 4. 
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this cluster had fine fraction concentrations lower than 8 %, and eight of them had concentrations 

lower than I%, with a minimum of 0.15% found at station K-8 (see Appendix B3). As compared 

with most samples in clusters 1 and 2, sediments in cluster 4 showed relatively low amounts of 

fine particles and, in cases of 8 of the 14 samples, the coarse fraction of the sediment constituted 

the largest sedimentary component (>99%) and was probably the main carrier of the total PCB 

load in this sediment. If this was the case, then the pattern of the PCB congeners , in these 

sediments suggests that the organic composition of particles in these samples is affected by 

sources such as sludge dumping and/or inputs from the River Mersey. This observation is based 

on the assumption that the PCB patterns reflect an altered form of the original pattern which is 

more closely described by those in cluster 2. A higher alteration in the congener pattern in 

sediments which are further from the sources, and have a' low amount of fine material, can be 

explained by the sedimentary PCB congeners having a higher exchange with the water column, 

as . water exchange through particles in coarser sediments is favoured by higher porosities as 

compared, for example, with muddy deposits in which the porewater exchange with the water 

column is limited by lower porosities. Therefore, the higher the "flushing" of the coarser 

sediments with water containing lower concentrations of PCBs, the higher the redissolution of 

PCB congeners will be (and in particular of those lower chlorinated congeners with higher 

aqueous solubilities and lower sediment partition coefficients). 

it is important to mention, however, that if the coarse particles are the carriers of the bulk of 
the PCB loads in sediments containing a very low amount of fine particles, and if their PCB 

patterns indicate an influence on the organic composition by discharges of sewage sludge and/or 
freshwater inputs from the Mersey in particular, this influence was not obvious in the elemental 

composition of these coarse particles. Figure 4.30b indicates (see also text in Section 4.3) that 

the coarse fraction of sediments with low amounts of fine particles did not show an obvious 

effect on their element content by inputs from the Mersey or sludge discharges at Site SI, and 

were classified in clusters 2,3,4 or 5. If, on the other hand, the strong correlation between the 

grain size and the total PCB, concentration in sediments of Liverpool Bay indicates that even in 

the sediments with very low amounts of fine particles the main carrier of the total PCB load are 
the fine particles, then the PCB patterns of sediments in cluster 4 would suggest that inputs via 
sewage sludge disposal or,. freshwater runnoff are affecting the 

. organic composition of fine 

particles in.. these sediment samples.: Although this 
_ possible influence is suggested by the 

elemental composition of fine sediments near the extreme southern section of Site SI (i. e. samples 
G-7,14-8, J-7 and L-8, see Fig. 4.30a) and other samples (i. e. samples H-10, K-10, M-11), it was 
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not obvious in the elemental composition of fine particles at stations K-8, L-10, M-9, M-9, M-10, 

N-11 and P-8, whose elemental composition has been proposed as resulting mainly from the 

inputs of elements from natural sources. 

An interesting shift in the PCB congener composition was observed in the sediments classified 

in clusters 5 and 6. An opposite trend in the composition which has been previously discussed 

was observed in clusters 5 and 6, that is, a dominance in the abundance of PCB congeners with 

a lower degree of chlorination was observed. For example, Figures 5.19,5.20 and 5.21 show the 

chromatograms for five sediment samples in cluster 5. The congener distribution pattern in 

sample G-13 (Fig. 5.19a) was the most similar to the pattern for sediments in clusters 2 and 1, 

although the higher proportion of lower chlorinated congeners such as Nos. 52 and 101, as 

compared to congener 180 is evident in this chromatogram when compared to the chromatograms 

for sediments in clusters 1 and 2. The chromatograms for samples N-9 (Fig. 5.19b), P-10 (Fig. 

5.20a) and U-15 (Fig. 5.20b) show a further degree of enrichment of the lower chlorinated 

congeners which is even more emphasized in sample J-13 (Fig. 5.21). The sediments in cluster 
6 (only samples N-7 and K-6 were included in this cluster) showed the PCB patterns with the 

highest relative concentrations of lower chlorinated congeners (see Fig. 5.22). The confidence 
intervals shown in Figure 5.14 indicate that, as compared to clusters 1,2,3 and 4, sediments in 

clusters 5 and 6 showed, in general, higher relative concentrations of congeners 52,70 and 

particularly 101, and lower concentrations of congeners 187,180 and 194. The similarities 
between some samples in cluster 5 were: 

G-13 J-13 N-9 

J-13 0.677 1.000 

N-9 0.752 0.733 1.000 
P-10 0.702 0.792 0.764 
U-15 0.741 0.811 0.840 

P-10 U-15 

1.000 

0.848 1.000 

and the similarity between samples N-7 and K-6 in cluster 6 was 0.869. The mean total PCB 

concentration in sediments in clusters 5 and 6 was 458 ng g''C, with the maximum observed in 

sample U-15 (1644 ng g-'C) and the minimum observed in sample T-10 (72 ng g''C). Seven of 
the sediment samples (i. e. samples K-6, L-9, N-7, N-9, P-10, Q-9 and T-10) included in clusters 
5 and 6 had very low amounts of fine fraction (lower than 0.9%) whereas the remaining three 

samples (i. e. samples G-13, J-13 and U-15) had a fine fraction content of more than 3% and up 
to 11.4% at station J-13. The main differences in the PCB patterns among samples within cluster 
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Figure 5.19. Gas chromatograms in a DB-5 column for sediment samples (a) G-13 and (b) N-9. 

The sample weights extracted were of 50 and 70 g respectively and the final extract 

volumes were of 0.5 and 0.2 ml respectively. These sediments were classified in cluster 
5. 
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Figure 5.20. Gas chromatograms in a DB-5 column for sediment samples (a) P-10 and (b) U-15. 

The sample weights extracted were of 60 g respectively and the final extract volumes 

were of 0.2 and 0.5 ml respectively. These sediments were classified in cluster 5. 
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Figure 5.21. Gas chromatogram in a DB-5 column for sediment sample J-13. The sample weight 

extracted was of 60 g and the final extract volume was of 0.5 ml. This sediment was 

classified in cluster 5. 
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Figure 5.22. Gas chromatograms in a DB-5 column for sediment samples (a) N-7 and (b) K-6. 

The sample weights extracted were of 70 g respectively and the final extract volumes 

were of 0.2 ml respectively. These sediments were classified in cluster 6. 
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5 were due to variations in the relative concentrations of PCB congeners at both ends of the 

chlorination range as indicated by the relative standard deviations for congeners 28 

(r. s. d. =39.7%), 52 (r. s. d. s32.3%), 187 (r. s. d. =25.1%) and 194 (r. s. d. =28.0%), although congener 

118 also showed a relatively high variability (r. s. d. =27.8%). 

The substantially different pattern in the distribution of PCB congeners in sediments from 

clusters 5 and 6 suggests that the main source of PCBs in these samples was different to the 

source(s) of PCBs for sediments in clusters 1,2,3 and 4 which, as mentioned above, seem to 

be related to inputs from the River Mersey and its estuary and/or associated to inputs of wastes 

at the designated areas within Liverpool Bay. In the case of the first four clusters, it is suggested 

that the PCB congener distribution pattern in sediments of cluster 2 reflect more closely the PCB 

composition of the source(s), and the patterns shown by sediments in clusters 1,3 and 4 represent 

different states of alteration of the "original" pattern. The different degrees of alteration of the 

original pattern are probably due to the desorption of PCB congeners, which will occur at 

different rates according to the solubility of each congener and its tendency to associate with 

sediment particles, with the solubility generally decreasing and the I, increasing with increasing 

number of chlorine atoms in the biphenyl ring. Therefore, sediments in cluster 4 represent the 

highest degree of alteration of - the original pattern and indicate the highest solubility and/or 

desorption tendency of the PCB congeners with lower chlorine contents. 

, 1, ý The distribution pattern of the PCB congeners in sediments in clusters 5 and 6 can be 

explained by a higher contribution to the total PCB load, of PCBs associated to sediments from 

the Irish Sea which, according to the sediment transport patterns described in Chapter 2, are 

transported eastward into Liverpool Bay. The main transport mechanism responsible of the 

ubiquitous distribution of stable contaminants such as PCBs far from point sources, and even 

toward remote areas such as the arctic region and open ocean waters is via the atmosphere 
(Sodergen et al., 1990; Atlas et al., 1986). Therefore, it is expected that atmospheric deposition 

will be a more important source of PCBs in offshore areas than in nearshore areas where riverine 

and direct inputs through', waste disposal may, become dominant. The less chlorinated PCB 

congeners have a higher vapour pressure and rate of volatilization than the more chlorinated 

congeners (Sodergen et al., 1990; Shiu and Mackay, 1986). In a laboratory system, Sodergen et 

-al. 
(1990) studied the transport of incinerated organochlorine compounds to air, water, water 

microlayer and organisms and reported that the less chlorinated congeners were more quickly 
transferred to the air, and since the proportions of these congeners was high in the air, they were 
partitioned to the water more extensively and thus became more available for uptake by fish than 
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the highly chlorinated congeners. If, due to a higher volatility, lower chlorinated congeners are 

enriched in the atmospheric compartment, it is expected that the zones more affected by 

atmospheric deposition will be more enriched by lower chlorinated congeners. Eisenreich (1987) 

reported that atmospheric deposition was probably an important mechanism of transport of PCBs 

into Lake Superior water and sediments during periods of high precipitation, whereas Larsson 

(1984) also reported that sedimentation rates in two Swedish lakes and in a marine coastal 

sampling station (Hano Bight in the southern Baltic) strongly suggested that the atmosphere was 

the source of PCBs in these localities. Therefore, it seem reasonable to assume that the main 

source of PCBs into offshore waters and sediments in the Irish Sea is the atmosphere, and, if so, 

the PCB congener distribution pattern may show a dominance of lower molecular weight 

congeners. The influence by offshore particles on the organic composition of the sediments in 

clusters 5 and 6 with fine fraction concentrations lower than 1 %, is consistent with the 

classification of these samples in the "non-contaminated" clusters determined by their elemental 

composition (see Figs. 5.8,4.30a and 4.30b). 

All the similarities of the sediment sample from station N-10 with the other sediment samples 

were below 0.6, indicating that the pattern in this sample (see Fig. 5.23) of ten the congeners 

used for the classification of the sediments was very different. Apart from the differences in the 

distribution of the ten congeners used in the classification, this sample showed a marked 
difference in the distribution of the other congeners. For example, as compared to all of the 

chromatograms previously shown, Figure 5.23 shows that this sample was particularly enriched 
in certain congeners whereas others seem to be depleted. The total normalized concentration in 

this sample was 786 ng g'`C which is relatively high in relation to the amount of fine particles 
in the sediment which was 0.60%. Although the amount of organic carbon and the 513C value 
did not show any particular anomaly, the elemental composition of this sample was also unusual 

and showed very low similarities with the other sediments in the bay. As the PCB congener and 

elemental compositions of the sediment did not follow any particular trend in relation to the other 

sediment samples, it can only be speculated that perhaps some debris associated to the sewage 
sludge disposal at Site SI, or the remains of a benthic organism in the sample may have caused 
the unusual composition of this particular sediment. 
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Figure 5.23. Gas chromatogram in a DB-5 column for sediment sample N-10. The sample weight 

extracted was of 60 g and the final extract volume was of 1.0 ml. This sediment was 

classified in cluster 7 and showed the lowest similarities. 
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5.2.2.2. Differences in the geochemical behaviour of PCB isomers 

The complexity of the geochemical behaviour of PCB congeners is due to the considerable 

variability in the various physicochemical properties observed within this family of hydrophobic 

organic contaminants. The variability in these properties, although considerably related to the 

degree of chlorination amongst congeners, is also influenced by differences in the substitution 

pattern within isomeric groups, i. e., PCB congeners with the same number of chlorines, but 

different substitution positions of the chlorine atoms, may show differences in solubility, 

volatility, etc. (see, for example, the review on physicochemical properties of PCBs reported by 

Shiu and Mackay, 1986). 

The relationship between the structure and the toxicity of PCB congeners is one of the best 

examples of the effects of the substitution patterns on the properties of PCBs. It is well known 

that only a small number of congeners are extremely toxic, viz. Nos. 77,126 and 169, and that 

this toxicity is related to the planar configuration adopted by these congeners. The ability for a 

congener to adopt a planar configuration depends on the substitution positions of the chlorine 

atoms (De Voogt et al., 1990). The preferred conformation for all PCB congeners, including the 

non-ortho substituted congeners, is a non-planar one, however, the lack of ortho chlorine atoms 

exerts a minimum steric hindrance of rotation about the 1,1' bond and the planar configuration 

can be adopted with a minimum energy requirement. If one chlorine atom is introduced in an 

ortho position, the energy requirement for free rotation of the phenyl-phenyl bond significantly 
increases and this effect is enhanced by the introduction of more ortho chlorine atoms. Changes 

in the substitution pattern have a considerable effect on the activity of the PCB congener,, with 
toxicity decreasing (but not necessarily disappearing) as the planarity of the molecule decreases 

due to an increase in the ortho chlorine substitutions. According to De Voogt et al. (1990), the 

position of the chlorine atoms has a greater influence on the microsomal activity of PCBs than 

the number of chlorine atoms in the molecule, particularly within the group of tri-, to 
heptachlorinated congeners. 

The three-dimensional configuration of the PCB congeners may also play a significant role in 

their behaviour in the aquatic environment and their partitioning amongst different compartments 

such as sediments, the water column and air. In recent reports, some observations have been 

made in relation to the structure and the properties of PCB congeners which can lead to a better 

understanding of the PCB distribution in the different environmental compartments. For example, 
Lara and Ernst (1989) who studied the partitioning of PCBs between water and dissolved humic 

substances reported an increase in the partitioning (Kh) of congeners into the organic phase as 
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the number of chlorines increased, this observation was consistent with reports of a correlation 

between the molecular weight of PCBs and K., 
o (e. g. see data reported by Shiu and Mackay, 

1986). These authors also reported differences between isomers, with K. decreasing as the 

number of ortho chlorines increased, and also decreasing with the presence of meta chlorines 

adjacent to ortho chlorine atoms. Regarding the number of ortho chlorines, Hawker and Connel 

(1988) reported the lowest K0 value for the tetrachlorobiphenyl with the four chlorines at ortho 

positions, whereas the highest IT,.. values (around one order of magnitude higher) were reported 

for tetrachlorobiphenyls without ortho substitution. In relation to the effect of the meta chlorines 

adjacent to ortho chlorines, Rapaport and Eisenreich (1984) suggested that the reduction on Kp� 

values for congeners with chlorines at 2,2' and 3,3' positions was due to the meta substituents 

"pushing" the ortho chlorines toward the 1,1' bond, forcing a more non-planar configuration. 

Although there is some relation between the structure and the properties of PCB congeners, this 

relationship is not completely understood. Murphy et al. (1987) recently studied the solubilities, 

vapour pressures and Henry's law constants (HLCs) and reported that "the trends in the 

solubilities and vapour pressures were surprisingly uneventful", as the differences between 

individual compounds were not large, or statistically significant. On the other hand, however, 

from a closer inspection of the data some trends could be observed such as lower HLC for 

congeners with 2,3 and 2,3,5 substitution on one or both rings, or higher solubilities and vapour 

pressures for congeners with 2,3,6 substitution. 

Although the behaviour of PCB congeners in the environment may be influenced by many 

more factors than those influencing their behaviour under laboratory conditions in which the 

above observations were made, an attempt was made to examine the possibility of obvious 
different behaviours amongst congeners within specific isomeric groups in the sediment samples 

analysed in the present study. To achieve this aim, a principal component analysis was performed 

on a data set including ' five tetra-, seven penta-, four hexa-, three hepta- ý and three 

octachlorobiphenyl congeners. As the grain size had a large effect on the absolute concentration 

of each congener, it was obvious that the data had to be normalized before the analysis which, 

otherwise, would have resulted in a single principal component (related to grain size) explaining 

a: very large percentage of the total variance of the data set. To avoid grain size effects, the 

concentration of each of the congeners in each sample used in the analysis was divided by the 

concentration of congener No. 138 in that particular sample. This way, regardless of the absolute 
concentrations, the ratio congener X/ congener 138 remained constant if congener X had a 
similar behaviour to congener 138. As the principal component analysis is based on the matrix 
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of correlations, only the congeners which showed some variations in comparison to congener 138 

could be used in the analysis. For example, some of the congeners not included in the analysis 

were 153 and 180, as the ratios CB-153 I CB-138 and CB-180 / CB-138 remained relatively 

constant throughout the sediment samples in Liverpool Bay. 

The principal component analysis was performed with the statistical package SPSS-X of the 

VAX mainframe system at UCNW. The reliability of the analysis was tested with the Kaiser- 

Meyer-Olkin measure of sampling adequacy which gave a coefficient of 0.81. The Bartlett test 

of sphericity was also highly significant, therefore, the results from the principal component 

analysis were reliable (see Norusis, 1985 for details of the tests recommended before a factor 

analysis and a detailed description on a Factor analysis on SPSS-X). 

Table 5.9 shows the communalities (explained variance) for each congener, the eigenvalues 

and the percentage of the variance explained by each of the four principal components extracted 

in the analysis. This table shows that 87.5% of the total variance of the data set was explained 

by four components, although the first two components explain more than 70% of this variance. 

The column showing the communalities also shows that with these four components more than 

80% of the variance of all but two of the congeners can be explained. Table 5.10 shows a matrix 

with the loadings for the congeners on each component. Briefly, this table shows that three of 

the tetrachlorinated congeners (i. e. Nos. 44,52 and 70) were highly loaded (explained by) on the 

first principal component. Of the tetrachlorinated congeners, No. 74 was highly loaded on 

component 3, whereas congener 49 was equally loaded to both components 3 and 1. Congener 

70 also showed some obvious load on component 3. All of the pentachlorinated congeners (i. e. 
Nos. 87,95,97,99,101 and 110), except 118, showed a high load on the first component 

whereas No. 118 showed some loading on this component but was mainly loaded on the fourth 

principal component. Of the hexachlorinated congeners, Nos. 149 and 159 were mainly loaded 

on principal component 1 whereas No. 146 was highly loaded on component three and 128 was 
highly negatively loaded on component three and significantly loaded on component four. With 

the exception of congener 174, all of the hepta- and octachlorinated congeners (i. e. Nos. 177, 

187,194,196 and 199) were highly loaded on component 2. Although the load of congener 174 

on the second principal component was obvious, it was largely (and negatively) loaded on 

component 4. 

The principal component analysis indicated that some of the congeners within each specific 
isomeric group showed different behaviour to that of their isomers. To facilitate the interpretation 

of the analysis, the confidence intervals for each congener were computed using the clusters 
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Table 5.9. Final statistics obtained with the procedure FACTOR of the SPSS-X statistical 
package. This table shows that four Principal Components were extracted explaining 
87.5% of the total variance. The communalities obtained for each congener with these 
four components are also shown in the table. 

CONGENER 

44 
49 
52 
70 
74 
87 
95 
97 
99 
101 
110 
118 
128 
146 
149 
151 
174 
177 
187 
194 
196 
201 

COMMUNALITY 

. 91612 

. 86558 

. 85882 

. 96216 

. 94580 

. 94605 

. 94938 

. 82203 

. 94062 

. 97331 

. 87637 

. 82543 

. 83490 

. 90839 

. 81378 

. 80050 

. 77784 

. 67,241 

. 84160 

. 92293 

. 86807 

. 91802 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

FACTOR EIGENVALUE PCT OF VAR CUM PCT 

1 10.20876 46.4 46.4 
2 5.26413 23.9 70.3 
3 2.49414 11.3 81.7 
4 1.27307 5.8 87.5 



Table 5.10. Matrix of the loads for various PCB congeners on each principal component 
after a VARIMAX rotation of the originally extracted components. Data from a 
total of 54 sediment samples were used in the PCA. 

IUPAC 
No. 

Cl 
n 

1 
PRINCIPAL 

2 
COMPONENT 

3 4 

44 . 93433 -. 09160 . 17466 . 06525 

49 . 63045 . 15626 . 66308 -. 06342 
52 4 . 92368 -. 07488 -. 00092 -. 00586 

70 . 84693 -. 12115 . 47598 . 06025 
74 . 25183 . 13232 . 92895 . 04386 

87 . 88404 -. 31065 -. 13861 . 22094 
95 . 95306 -. 09971 . 17329 . 03281 
97 . 83516 -. 30402 . 09564 . 15153 
99 5 . 91432 -. 14916 -. 04848 . 28293 
101 . 94129 -. 27248 -. 03174 . 10969 
110 . 79339 -. 22344 -. 18401 . 40387 
118 . 43399 -. 27072 -. 12408 . 74054 

128 . 04781 . 10008 -. 75577 . 50141 
146 -. 15393 . 32431 . 87336 . 12946 
149 6 . 86194 . 10902 . 09046 -. 22531 
151 '. 82636 . 32357 -. 03688 -. 10760 

174 . 09630 . 49308 -. 12192 -. 71454 
177 7 -. 13406 . 75488 . 13822 -. 25591 
187 . 03835 . 91156 -. 02170 -. 09333 

194 -. 20507 . 87783 . 23143 -. 23818 
196 8 -. 15641 . 91477 . 06458 -. 05120 
201 -. 13097 . 94365 . 10176 -. 00614 



formed with the sediment classification previously discussed. The hypothesis on which this 

discussion is based, is that the ratio congener X/ congener 138 of sediments in cluster 2 would 

represent more closely the ratio of these congeners near the source. If this ratio decreased toward 

clusters 1 and 4 (cluster 3 was not considered as the congeners used in the principal component 

analysis were only all present in one sample of this cluster), then congener X is being lost from 

the sediments in these clusters at a faster rate than congener 138. On the other hand, if the ratio 

congener X/ congener 138 increased from cluster 2 towards clusters 1 and 3, then congener X 

is being released at a slower rate than congener 138. Differences in the rate of release of these 

congeners into solution may be due to differences in their solubilities, strength of sorption onto 

sediment particles, or both. 

The confidence intervals for tetrachlorinated congeners are shown in Figure 5.24. The ratio of 

the means between cluster 4 and 2, and between 1 and 2 shows that, in general, all of these 

congeners were lost from the sediments at a faster rate than congener 138, which was expected 
by the observations in the discussion of the previous section. The main point in the present 
discussion is the observation that the tetrachlorinated congener which showed a large difference 

01 in the principal component loadings, i. e. 74, was lost Aa much faster rate (see Fig. 5.24e) than any q-- 

other of the tetrachlorinated congeners. It is also important to observe that congener 49, which 

also showed a significant load on component three, also showed a relatively fast rate of loss from 

the sediments. Therefore, these observations seem to suggest that component three represents 

those congeners with a fast rate of release from the sediments in relation to congener 138. 

From the analysis of the structures of the tetrachlorinated congeners it is obvious that the main 
difference between congener 74 and the other congeners is that the former is the only one with 
three chlorine atoms in one biphenyl ring and one chlorine in the other (Table 5.11). If the 

solubility is the main property controlling the release of PCBs from sediments, it would be 

expected that congener 74 showed a slower release than the other isomers, as its aqueous 

solubility is lower probably due to having only` one ortho chlorine substitution (see Table 5.11). 

The higher octanol water partition 3 coefficient (Kow, ) would also suggest a possibly stronger 
association of congener 74 to the sedimentary organic matter as compared with the other isomers. 
do the other hand, however, this congener also shows a relatively high HLC (see Table 5.11) 

which indicates a higher tendency of this congener to be lost from solution into the vapour phase 
which may accelerate the transport from the solid (sediment) to the liquid (seawater) phase. 
Unfortunately there are only few studies in which the partition coefficients of PCBs between 

marine sediments and seawater are reported (e. g. Lara and Ernst, 1990a, Brownawell and 
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Figure 5.24.95% confidence intervals for each of tetrachlorinated PCB isomers used in the 
Principal Component analysis (see text). The confidence intervals were computed with 
the command ONEWAY in the statistical package MINITAB. 

a) CB44 
CLUSTER N MEAN 

2 14 0.41043 
1 22 0.31036 
4 11 0.28782 
5 5 0.57100 

POOLED STDEV = 0.09980 

b) C1349 
CLUSTER N MEAN 

2 14 0.5728 
1 22 0.3684 
4 11 0.3006 
5 5 0.4532 

POOLED STDEV = 0.1057 

c) CB52 
CLUSTER N MEAN 

2 14 0.6272 
1 22 0.5164 
4 11 0.4937 
551.2308 

POOLED STDEV = 0.2501 

d) CB70 
CLUSTER N MEAN 

2 14 0.61436 
1 22 0.46532 
4 11 0.33236 
550.70240 

POOLED STDEV = 0.07507 

a) CB74 

STDEV --+---------+------. -. +--...... ------ 
0.06779 (---*----) 
0.06204 (---*--) 
0.07952 ("---*----) 
0.26186 (....... *...... ) 

..................................... 
0.24 0.36 0.48 0.60 

STDEV ..................................... 
0.1076 (-"--*-"-) 
0.0811 (---*--) 
0.0740 (-... *----) 

) 0.2196 (....... *....... 
..................................... 

0.24 0.36 0.48 0.60 

STDEV ..................................... 
0.1538 (---*---) 
0.1347 (--*--) 
0.0790 (---*---) 
0.7501 (--... *-..... ) 

................................... 
0.35 0.70 1.05 1.40 

STDEV ..................................... 
0.05524 
0.05272 (-*-) 
0.04129 (--*--) 
0.19711 (... -*... ) 

..................................... 
0.30 0.45 0.60 0.75 

CLUSTER N MEAN STDEV ..................................... 
2 14 0.55543 0.07100 
1 22 0.37632 0.07484 ("-*.. ) 
4 11 0.22609 

_. 
0.07883 (---*---) 

5 5 0.36620 0.14261 (--.... *-_. --) 
_.. _.. +......... +......... +---------+ POOLED STDEV = w0.08249 0.24 0.36 0.48 0.60 



Table 5.11. Physicochemical properties reported for some of the PCB congeners used in the 

Principal Component Analysis. The aqueous solubilities (S) are in pg L'1 and the Henry's 

Law Constants (HLC) are in atm m3 mol'tx10-4. 

IUPAC Structure Ortho "S 'HLC blog clog slog 

NO. Cl K0 Kh Roo 

44 2,2', 3,5' 2 100 1.9 6.00 nd nd 

49 2,2', 4,5' 2 78 2.8 6.10 nd nd 
52 2,21,5,5' 2 112 2.4 6.10 nd nd 
70 2,3'', 4', 5 1 36 1.9 5.90, nd nd 
74 2,4,4', 5 1 30 2.1 6.10 nd nd 

87 2,2' , 3,4,5' 2 29 1.3 6.50 3.75 nd 
95 2,2' , 3,5', 6 3 54 2.0 6.40 3.70 5.68 

97 2,2' , 3', 4,5 2 28 1.5 6.60 nd 5.83 

99 2,2' , 4,4', 5 2 22 2.1 6.60 nd nd 
101 2,2' , 4,5,5' 2 26 1.8 6.40 3.86 5.81 

110 2,3, 3', 4', 6 2 28 1.1 nd 3.79 nd 
118 2,31 , 4,41,5 1 13 0.9 6.40 nd nd 

128 2,2' , 3,3', 4,4' 2 6 0.6 7.00 nd 6.28 
138 2,2' , 3,4,4', 5' 2 7 0.8 7.00 4.60 6.22 
146 2,2' , 3,4', 5,5' 2 7 0.9 nd 4.58 nd 
149 2,2' , 3,4', 5', 6 3 12 1.5 6.80 nd nd 
151 2,2' , 3,5,5', 6 3 13 1.6 nd 4.41 6.05 

174 2,2' , 3,3', 4,5,6' 3 5 0.5 nd nd nd 
177 2,2' , 3,3', 4', 5,6 3 4 0.3 nd 4.90 nd 
187 2,2' , 3,4', 5,5', 6 3 4 0.8 nd 4.90 nd 

194 2,2' , 3,3' , 4,4' , 5,5' 2 0 0 7.10 5.36 6.41 
196 2,2' , 3,3' , 4,4' , 5,6' 3 0 0 nd nd nd 
199 2,2' , 3,3`' , 4,5, 5', 6'. 

{_. 
3 0 0 nd 5.31 nd 

Notes: " Data from Murphy et al. (1987) 
Data from Shiu and Mackay (1986) 
Data from Lara and Ernst (1989) 

° Data from Lara and Ernst (1990a) 



Farrington, 1986) and these studies did not report data for many of the congeners used in this 

analysis. Therefore, although there is an obvious structural difference between congener 74 and 

the other isomers, it is difficult to explain how this structure induces a faster loss from the 

sediments in Liverpool Bay. 

Figure 5.25 shows that the only pentachlorinated congener being lost at a faster rate than 

congener 138 was No. 95, however, its loss was not as apparent as for congener 74 and was 
highly loaded on principal component 1. The fast rate of loss from the sediment for congener 95 

is consistent with its higher solubility which is probably induced by the three chlorine atoms in 

ortho positions. This configuration would probably also create a weaker association of this 

congener with sediments, as the lower planarity produces a lower surface area of contact with 

the sediment. Lara and Ernst (1990a) reported significantly lower sediment-water partition 

coefficients (Kd) for congener 95 as compared to congeners 97 and 101 (Table 5.11), which is 

consistent with the observation of a possible easier release of the former from the sediment 

surface. Among the pentachlorinated congeners only No. 118 showed a significant loading to a 

principal component (component 4) other than 1. The difference between this congener and other 
isomers could not be assessed in terms of its ratios with congener 138, because as shown in 

Figure 5.25 this congener had a relatively similar behaviour to the other isomers. However, an 
important structural difference can be observed for this congener, as it was the only one within 
the group which has only one ortho chlorine substitution in the molecule. In fact, this congener 
is one of the group of PCBs which causes more environmental concern because it has a relatively 
high toxicity related to its configuration which tends to be more planar than the majority of 

congeners, and is present at significant levels in the environment as compared to the most toxic 

congeners which are present at low levels in the technical formulations, and therefore in the 

environment (De Voogt et al., 1990). 

An interesting group to compare is the hexachlorinated congeners, as in terms of number of 
chlorines they should have a closer relationship with congener 138. Table 5.10 shows that 

congeners 149 and 151 were highly loaded on principal component 1, and which, as for other 
congeners loaded to this component 

. 
(see Figs. 5.24 and 5.25) the confidence intervals in Figure 

5.26 show that they had a relatively faster rate of release from sediments as compared to isomer 
138, although this release was not as strong as for those congeners more loaded on the third 
principal component such as No. 146. The faster rate of release of congeners 149, and 151 can 
be explained, as in the case of congener 95, as related to their lower degree of planarity due to 
the three ortho chlorine, - substitutions ° in their molecules. The number of ortho -chlorine 
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Figure 5.25.95% confidence intervals for each of pentachlorinated PCB isomers used in the 
Principal Component analysis (see text). The confidence intervals were computed with 
the command ONEWAY in the statistical package MINITAB. 

a) CB87 
CLUSTER N MEAN STDEV ....................... "". -"--"+. "--- 

2 14 0.32707 0.03464 (--*'-) 
1 22 0.32986 0.05301 (-*-) 
4 11 0.34100 0.06427 (--*--) 
5 5 0.61260 0.06816 ('"'"*""'-) 

..................................... 
POOLED STDEV = 0.05293 0.30 0.40 0.50 0.60 

b) CB95 
CLUSTER N MEAN STDEV ..................................... 

2 14 0.9660 0.1168 (--*--) 
1 22 0.8005 0.1213 (--*-) 
4 11 0.6518 0.1204 (---*-") 
5 5 1.3496 0.4658 (----*----) 

POOLED STD EV = 0.1767 0.60 0.90 1.20 1.50 

c) CB97 
CLUSTER N MEAN STDEV ..................................... 

2 14 0.20521 0.05905 (--*---) 
1 22 0.17082 0.03188 (-*--) 
4 11 0.16336 0.03767 (--*---) 
5 5 0.33260 0.03725 (-----*----) 

.... -+--..... ............. --......... 
POOLED STD EV = 0.04243 0.140 0.210 0.280 0.350 

d) CB99 
CLUSTER N MEAN STDEV "---+ ---" ... -+---. -----+........ -+-- 

2 14 0.32200 0.05726 (--*---) 
1 22 0.30905 0.06105 ("-*--) 
4 11 0.30182 0.06870 (---*-"-) 
5 5 0.53940 0.09161 (-----*-----) 

..................................... 
POOLED STDEV = 0.06482 0.30 0.40 0.50 0.60 

e) CB101 
CLUSTER N MEAN STDEV ------"--"+----"----+--------. +------ 

2 14 0.6535 0.0810 (-*--) 
1 22 0.6599 0.1099 (*") 
4 11 0.5742 0.0955 (-"*--) 
5 5 1.3100 0.1943 (---*"--) 

.......... +.. ----... +--...... -+------ 
POOLED STDEV = 0.1100 0.75 1.00 1.25 

CB110 
CLUSTER N MEAN STDEV -+--------. +-........ +-----.... +----- 2 14 0.6364 0.0809 (--*---) 

1 22 0.6469 0.0902 (--*--) 
4 11 0.6638 0.0947 (---*--") 
5 5 0.9652 

.. 
0.1428 (.... *..... ) 

.. y ..................................... 

POOLED STDEV = 0.0943 0.60 0.75 0.90 1.05 

g) calls 
CLUSTER N MEAN STDEV ------- +........ -+__.... __-+"--". __. _+ 2 14 0.8024 0.0781 (----*-"--) 

1 22 0.8051 0.0854 (---*"-) 
4 11 0.8015 0.1191 ("--"*-----) 
5 5 1.0054 0.0998 (........ *.... __. ) 

POOLED STDEV = 0.0929 0.80 0.90 1.00 1.10 



Figure 5.26.95% confidence intervals for each of hexachlorinated PCB isomers used in the 
Principal Component analysis (see text). The confidence intervals were computed with 
the command ONEWAY in the statistical package MINITAB. 

a) CB128 
CLUSTER N MEAN STDEV ------------------------------------- 

2 14 0.14743 0.02691 (-----*-----) 
1 22 0.17386 0.02367 (----*---) 
4 11 0.20527 0.03697 (...... *...... ) 
5 5 0.19640 0.02485 (......... *......... ) 

POOLED STD EV = 0.02788 0.150 0.175 0.200 

b) CB146 
CLUSTER N MEAN STDEV -+---------+----"-"--+----"--"-+----" 

2 14 0.71636 0.04425 
1 22 0.55091 0.08643 (--*-") 
4 11 0.41009 0.11419 (---*----) 
5 5 0.44460 0.13750 (--"---*------) 

............................... 
POOLED STDEV = 0.08995 0.36 0.48 0.60 0.72 

c) CB149 
CLUSTER N MEAN STDEV ------------------ ............... 

2 14 0.66607 0.03868 (-----*-----) 
1 22 0.63273 0.06850 (---*---") 
4 11 0.58736 0.10477 ------ 
5 5 0.71060 0.09803 (......... *........ ) 

---+---------+---------+---------+--- 
POOLED STDEV = 0.07447 0.560 0.630 0.700 0.770 

d) CB151 
CLUSTER N MEAN STDEV ---------+""- ........................... 

2 14 0.24914 0.02781 .. *........ ) (....... 
1 22 0.23986 0.03649 . (....... *""-"-") 
4 11 0.23600 0.03412 (........... *. --------_) -`rt 5 5 0.23420 0.04983 (--------- 

---------+---------+---------+------- 
POOLED STDEV = 0.03523'' 0.220 0.240 0.260 



substitutions, and the 2,3,6 configurations also increase the solubility of these congeners. The 

effect of the different number of chlorines in the biphenyl rings of congener 151 may also affect 

the sorption of this congener onto the sediment. This observation is consistent with a lower Kd 

for congener 151 as compared with the Kd for 138 reported by Lara and Ernst (1990a). On the 

other hand, it was not possible to explain the relatively faster loss of congener 146 which shows 

properties relatively similar to congener 138, although Lara and Ernst (1989) reported a slightly 

lower Kb for congener 146 than for 138 (Table 5.11). Congener 128 was the only PCB in the 

whole group included in this analysis which showed a relative increase in its ratio with congener 

138. Figure 5.26 shows that this increase was probably significant, suggesting that congener 138 

was lost at a faster rate compared to congener 128. Although this difference is difficult to explain 

from the structure of congener 128, as it would probably show a lower planarity than congener 

138 due to the two meta chlorines being adjacent to the two ortho chlorines and hence forcing 

a more non-planar configuration, it is consistent, on the other hand, with reported 

physicochemical properties for this congener which shows lower solubility, a low HLC, and its 

Kds are also reported higher than that of congener 138 (see Table 5.11). 

The congeners with a higher molecular weight than that of congener 138 were highly loaded 

on principal component 2. Therefore, the first two components seem to be also related to the 

degree of chlorination of the PCB congeners. Although there was some degree of variability of 
the ratios of these congeners with congener 138, there seemed to be no clear overall trend of a 
decrease or increase of the ratios from cluster 2 towards clusters 1 and 4 (Fig. 5.27). The fact 

that these congeners with higher chlorination than that of 138 were more loaded on principal 

component 2, and showed a near zero or a slightly negative load on component 1, and the 

opposite trend was observed for most of those congeners with a lower chlorination than congener 
138, may suggest that the variations in the ratios with congener 138 between highly chlorinated 
and lower chlorinated congener, although minor (as indicated by the overlapping of confidence 
intervals), occurred in opposite directions, i. e., when the ratio of higher chlorinated congeners 
increased, the ratios, in the - lower chlorinated decreased and viceversa. This observation is 

consistent with the discussion in the section above. The high and negative load of congener 174 

on principal component 4, which reflects an opposite behaviour of this congener as compared to 

congener 118 could not be explained. 
From, the principal component analysis it is clear that the molecular configuration, as well as 

the degree of chlorination are playing a significant role in the behaviour of PCB congeners in 

Liverpool Bay sediments: Although some of the observations could be explained by the effect 
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Figure 5.27.95% confidence intervals for each of hepta- and octachlorinated PCB isomers 

used in the Principal Component analysis (see text). The confidence intervals were 
computed with the command ONEWAY in the statistical package MINITAB. 

a) CB174 
CLUSTER N ` MEAN - STDEV ------"+---------+-----"---+--------- 

2 14 0.07457 0.00983 (----*-'-') 
1 22 0.06764 0.01732 (""*'-') 
4 11 0.07818 0.02973 (-----*-----) 
5 5 0.04420 0.01173 (....... *........ ) 

....... +......... +. --------+--------- 
POOLED STDEV = 0.01879 0.040 0.060 0.080 

b) CB177 
CLUSTER N MEAN STDEV -----+---------+---------+----------- 

2 14 0.16057 0.01156 (----*-----) 
1 22 0.15309 0.02127 (---*----) 

4 11 0.16409 0.04000 (...... *-----) 
5 5 0.11260 0.03409 (........ *........ ) 

POOLED STDEV = 0.02577 0.100 0.125 0.150 0.175 

c) CB187 
CLUSTER N MEAN STDEV ---------+-----"---+----"----+-.... 

2 14 0.41543 0.03119 (----*-----) 
1 22 0.41209 0.04232 (---"*---) 
4 11 0.41491 0.09998 (-"---*. -"--) 
5 5 0.30080 0.08293 (-------- *........ ) 

....... --+-.................... "..... 
POOLED STD EV = 0.06085 0.300 0.360 0.420 

d) CB194 
CLUSTER N MEAN STDEV ----------+-------. -+--------_t-""""" 

2 14 0.18157 0.01636 
1 22 0.15764 0.01713 (---*--_) 
4 11 0.16509 0.05817 
5 5 0.10140 0.03629 (....... *-------) 

POOLED STDEV = 0.03187 - 0.105 0.140 0.175 

e) 03196 
CLUSTER N MEAN- STDEV ..................................... 

2 14 0.22407 0.02283 (---*".. ) 
1 22 0.18864 0.02729 (---*-") 
4 11 0.22555 0.06549 ("-. -*.... ) 
5 5 0.12960 -0.03986 (--"---*------) 

..................................... 
; POOLEDýSTD EV = 0.03864 -, e 0.100.. 0.150 0.200 0.250' 

f) CB199 
CLUSTER N MEAN STDEV ................................... 

2 14 0.30093 0.03312 (.... *. -.. ý " 
1 22� 0.26355 0.03156 

_" , (-_-*-_-ý 
4 11 0.28518 0.07231 (----- -----ý 5: 5 0.18820 0.06618 (-------- *....... ) 

..................................... 
POOLED STDEV = 0.04677 0.150 0.200 0.250 0.300 



of the chlorine substitution pattern on the physicochemical properties of each congener, the 

behaviour of some congeners is more difficult to explain. So far, the discussion has been focused 

on the relationship between the structure, the physicochemical properties, and the behaviour of 

the PCB congeners in the sediment samples. However, one aspect of the environmental behaviour 

of PCBs which is not well understood and the significance of which is not known is the extent 

of the environmental degradation of the PCB congeners, in particular, by bacteria. 

Reports on microbial degradation in the environment are contradictory. Quensen et at. (1990) 

incubated aquatic sediments from two sites with PCB technical mixtures and found differences 

in the rates and types of modification of the PCB composition, which suggested that there are 
different PCB-dechlorinating microorganisms at different sites, with characteristic specificities 
for PCB dechlorination. These authors quoted some studies in which the aerobic biodegradation 

of PCBs is reported to be more limited than the anaerobic dehalogenation which implied that the 
latter can be a more important process of PCB degradation in the environment. Brown et al. 
(1987) also reported that the microbial degradation of PCBs in sediments appeared to be more 
important in the anoxic regions of the sediments. On the other hand, however, Pardue et al. 
(1988) reported that mineralization rates for a PCB mixture in sediments were significantly higher 

under aerobic conditions than under anaerobic conditions, although the maximum rates occurred 
under moderately aerobic (microaerophilic) conditions. Larsson and Lemkemeier (1989) studied 
aerobic degradation in lake sediments and reported a low mineralization which could even have 
been observed because of experimental artifacts, thus, implying that aerobic PCB mineralization 
in these sediments was unimportant. Oliver et at. (1989) studied the PCB congener distribution 
in sediments from Lake Ontario and concluded that anaerobic dehalogenation was not important 
(if occurring at all) in these sediments. Finally, the PCB congener distribution patterns in 

sediments from the Hudson River, which is severely polluted with PCBs, were postulated by 
Brown et at. (1987) to result from microbial anaerobic dehalogenation which could be an 
important process of depuration of these sediments, however, Bush et at. (1987) suggested that 
the changes in' the PCB patterns in these sediments could also be explained by the effect of 
physicochemical processes and are not necessarily the result of anaerobic' microbial 
dechlorination. 

It is clear from the above, that the role of bacterial mineralization of PCBs in the environment 
is not clear. The changes in the PCB patterns in sediments from Liverpool Bay could be largely 

explained by physicochemical processes, although the possible role of microbial activity on these 
sediments is not known. If important, anaerobic dehalogenation would only be significant in the 
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muddy areas which represent the only sediments wl reducing conditions can be established. ý-- - 

However, most of the sediments in Liverpool Bay have low amounts of fine particles which 

allows them to be more easily disturbed and transported either by suspension or as beadload 

which, in any case, would favour aerobic conditions. It has been mentioned that the 

hydrodynamical conditions in this area favour the constant movement of fine sediments in 

particular which are the main PCB carriers, therefore, considering Liverpool Bay as a whole, 

aerobic degradation of PCBs would be more likely than anoxic dehalogenation. The constant 

movement of sediment particles in Liverpool Bay also favours desorption of PCBs from 

sediments as the equilibrium between the solid and liquid phases is unlikely to be established due 

to the constant "renewal" of the water which is in direct contact with the sediment particles. 

Based on the changes in the congener patterns observed between cluster 2 and clusters 1,3 and 

4 in particular, it is suggested that desorption from sediments is the main mechanism responsible 

of the observed changes, as microbial dehalogenation would lead to an enrichment rather than 

a depletion of lower chlorinated congeners. The importance of bacteria in the geochemical 

behaviour of PCBs in the environment should, however, not be underestimated as even if they 

do not directly degrade PCB congeners, they indirectly contribute to the transfer of these 

contaminants from the sediments to the water column by mineralizing the organic matter to 

which most of the sedimentary PCB load may be associated. 

5.2.2.3. PCBs in sewage sludge 

The treatment of the sewage sludge sample prior to the chromatographic determination was 

similar to the procedure already described for PCB determinations in sediments. However, as 
indicated by the chromatogram in Figure 5.28a, the clean up procedure did not eliminate some 

unknown substance(s) which interfered with the chromatographic determination, even though only 
0.5 g of sludge sample were extracted, as compared with up to 70 g of sample used in the 

analysis of sediments. The sludge extracts were subjected to further clean up with thin layer 

chromatography which produced no improvements in the chromatograms, and finally were treated 

with concentrated sulphuric acid which decreased but did not eliminattthe interferences (see Fig. '-- 
5.28b). The lack of time did not allow for a close inspection of the possible effect of these extra 
steps in the clean up of the sludge sample, therefore, the quantitative analysis of the sewage 
sludge should be regarded as tentative. It is felt, however, that as a treatment of reagents and 
materials used in these steps was given, i. e., the thin layer plates, the water and the sulphuric acid 
were extracted with acetone and hexane before use, the possible effects could be related to losses 
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Figure 5.28. Gas chromatograms in a DB-5 column for a sewage sludge extract (a) before and 

(b) after sulphuric acid treatment of the sample (see text for details). The weight of 

sample extracted was 0.5 g and the final volume of the extract was 1.0 ml. 
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rather than contamination of the extracts with PCBs. Therefore, if any alterations occurred during 

the treatment, the concentration values for the individual PCB congeners reported in Table S. 12 

are underestimated. 

Table 5.12 shows that the mean total PCB concentration in the sewage sludge analysed was 

-320 ng g'1. This value was 8.4 times higher than the highest concentration (37.8 ng g'1), 81 

times higher than the overall mean (3.9 ng g'1) and 4000 times higher than the lowest 

concentration (0.08 ng g'') found in Liverpool Bay sediments. When the degree of enrichment 

of PCBs in the sludge is compared with the enrichment of the elements determined in the present 

study (see Table 4.1), it is obvious that sewage sludge may be an important source of these 

organic contaminants into Liverpool Bay. For example, Table 4.1 shows that the heavy metals 

with the highest enrichment in the sludge in relation to the mean concentration in sediments were 

cadmium (18.6) and chromium (13.6), as compared with a factor of 81 for PCBs. The total PCB 

concentrations found in the present study are in agreement with the concentrations reported by 

McIntyre and Lester (1984) for PCBs in sewage sludges from various works throughout Great 

Britain. These authors reported a mean value of 340 ng g'1, and a range of 10 to 21500 ng g'19 

with no trends in the PCB concentrations in relation to the type treatment given to the sewage 

sludges prior to their disposal. 

The "low" PCB concentrations in Liverpool Bay sediments, as compared with the 

concentrations in the sludge, may be largely due to the behaviour and characteristics of the 

sludges which are dumped in this area. It was mentioned in Chapter 2 (see Section 2.4.1.1. ) that 

these sludges consist, in general, of colloidal dispersions of organic and mineral solids in water. 
It was also mentioned above that several authors suggest that organic colloids play a significant 

role in the geochemistry of PCBs, as these contaminants seem to be strongly associated with 
these colloids. It is expected that the sewage sludge organic colloids will be' more easily 
transported in the water column as compared with settling solids which will become associated 

with sediments. , 
Therefore, it is possible that a large fraction of the total PCB load in the sewage 

sludge discharged in Liverpool Bay will remain in and be transported in the water column. It is 

possible, therefore, that a large proportion of the PCBs which are discharged in association with 

sewage sludge are made readily available for uptake into the aquatic food chains (for zooplankton 
ingestion for example) through the large dispersion of these wastes after their disposal. Despite 

the restrictions in the production and use of PCBs which began; in=the mid 1970's, measurable 
levels can be found even in remote areas of the globe due to the presence of these xenobiotics 
in the mobile environmental. compartments such as the water column and the atmosphere. 
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Table 5.12. Concentration of some PCB congeners in three replicate samples from a digested 

sludge. The mean of the three determinations is also given, together with the mean of 

each congener represented as a percentage of the total PCB concentration which is given 
in the last row of the column. The concentration units in the sludge are pg g''. 

IUPAC Slul Slut Slu3 mean Percen. 
No. total 

18 19040 9520 8330 12297 3.85 
15 23250 7750 7750 12917 4.04 
31 17420 6700 6030 10050 3.15 
28 22000 13000 12000 15667 4.90 
52 20020 20020 18480 19507 6.11 
49 18720 56940 49140 29120 9.12 
44 9000 9000 8400 8800 2.75 
74 3600 4500 3600 3900 1.22 
70 9000 9900 9000 9300 2.91 
95 12320 13860 12320 12833 4.02 
92 1800 1800 1800 1800 0.56 
89 6160 7280 6720 6720 2.10 

101 14400 16200 13500 14700 4.60 
99 6540 6540 5450 6177 1.93 
97 3600 4500 3600 3900 1.22 
87 9360 14430 15210 13000 4.07 

136 * 2000 2400 2200 0.69 
110 10880 16640 17280 14933 4.67 
151 6120 8670 10710 8500 2.66 
149 8820 10080 11340 10080 3.16 
118 15600 17160 15990 16250 5.09 
146 3050 3050 3050 3050 0.95 
153 25850 22000 22000 23283 7.29 
105 * 4200 3360 3750 1.17 
141 3360 3640 3360 3453 1.08 
138 14700 17220 16380 16100 5.04 
158 1200 1200 1200 1200 0.38 
187 4600 5060 4600 4753 1.49 
183 3650 3650 3650 3650 1.14 
128 2500 3500 3000 3000 0.94 
174 800 1200 1200 1067 0.33 
177 1840 1840 1840 1840 0.58 
180 * * 9570 9570 3.00 
201 3080 3520 3080 3227 1.01 
196 2800 2800 2450 2683 0.84 
194 1920 1920 1920 1920 0.60 
205 2310 2640 2310 2420 0.76 
209 1840 1840 1840 1840 0.58 

TOTAL 311150 335770 323860 319457 --. 

* not determined 



Eisenreich (1987) reported that of the approximately 5.7 x 108 Kg of PCBs which have been 

commercially produced, approximately 2x 10' Kg (-35% of the total) remain in mobile 

environmental reservoirs, and that the major fluxes are associated to processes of particle 

transport and settling, volatilization, and sediment resuspension and diffusion, whereas sediments 

represent a large sink/source of PCBs in water bodies. 

Unfortunately no reports were found in the literature regarding the congener specific 

composition of PCBs in sewage sludge, therefore, the data reported in this study could not be 

compared. Table 5.12 shows that all of the ICES congeners were important components of the 

total PCBs with individual contributions higher than 3%. This table also shows that most of the 

results between replicates were consistent, however, large variations in the concentrations of some 

congeners were observed. For example, congener 49 showed the largest contribution (-9%) to 

the average total PCB concentration, however, one of the replicates had a concentration lower 

than that of congener 153. Table 5.12 indicates that the lower chlorinated congeners showed, 
in general, higher concentrations than the more chlorinated congeners, which resulted in higher 

similarities between the fingerprint in the sludge and sediments classified in cluster 5 above. For 

example, the highest similarities of the sludge were found with samples T-10 (Z a 0.824) and 

U-15 (Z ° 0.847) classified in cluster 5 and whose PCB pattern is suggested to result largely 

from the effect of atmospheric deposition on sediments offshore Liverpool Bay and are, therefore, 

considered as the least affected by direct inputs from rivers or waste disposal in this area. On the 

other hand, however, the sludge pattern also showed a significant similarity with some samples 
from cluster 1 (e. g, Z-0.797 for sample L-13) and cluster 2 (e. g., Z=0.791 for sample K-9 

which is within Site SI). The chromatogram in Figure 5.28b shows that, in general, the 
distribution of PCB congeners in the sewage sludge did not show a marked or distinctive pattern 
-compared with previously described chromatograms, which may reflect common PCB sources 
in the sewage sludge and sediments in Liverpool Bay. 
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5.3. CONCLUSIONS 

The clean up procedure used in this study was satisfactory for the accurate determination of 

various PCB congeners in marine sediments. This clean up procedure, however, was not 

satisfactory for the analysis of sewage sludge samples. 

The grain size effect observed in the PCB determinations in this study can be overcome by 

fractionation of the sediments before the analysis. 

The distribution of the aluminium and carbon normalized total PCB concentrations indicates 

an enrichment of PCBs in muddy sediments, similar to the enrichment of mercury. The inputs 

of PCBs from the Mersey and from waste disposal may, therefore, be significant. 

The levels of PCB contamination in Liverpool Bay are similar to those reported for other 
industrialized areas such as the North Sea coast, however, these levels are much lower than those 

reported for areas heavily polluted with PCBs. The significance of the PCB concentrations in 

Liverpool Bay sediments, in relation to potential adverse ecological effects, can not be evaluated 

without an understanding of the transfer of these xenobiotics through the food chain in this area. 
The different patterns observed in the distribution of PCB congeners in sediments may reflect 

different sources of these substances into, Liverpool Bay. It is suggested that PCBs in those 

sediments classified in clusters 5 and 6 are mainly derived from atmospheric deposition in the 

Irish Sea, and that PCBs in sediments from clusters 1,2,3 and 4 are mainly derived from 

riverine and waste disposal inputs. Within the latter group, the pattern observed in cluster 2 may 

reflect more closely the PCB composition of the source(s), and the patterns shown by sediments 

in clusters 1,3 and 4 represent different states of alteration of the original pattern. 

The changes in the congener patterns may be largely, explained by the differences in 

physicochemical properties such as the aqueous solubility and K.., however, the possible role of 

microbial alteration of PCB congeners may be important. 

.ý ý- 

xt 

x_ rý 
_ __ 



CHAPTER 6. CONCLUDING REMARKS 

Liverpool Bay is a shallow and highly dynamic coastal environment. The continuous flow of 

tidally induced currents, occasionally intensified by storms, results in constant stirring which 

modifies the sediment composition by resuspension of fine particles and/or by bedload transport 

of coarser grains. As a consequence, the distribution of natural and anthropogenically derived 

chemical substances which become appreciably associated with sedimentary particles in this 

region is largely controlled by the hydrodynamic conditions. 

The distributions of trace elements and PCBs in the superficial sedimentary particles 

throughout Liverpool Bay may, therefore, be largely explained in terms of the net transport 

patterns of water and sediments in this area, in association with the possible inputs of these 

contaminants. The main inputs of these contaminants may result from the disposal of sewage 

sludge and industrial wastes at Site SI, the disposal of dredging spoils at Sites Y and Z, and from 

the contaminated outflow from the rivers Mersey and Dee. 

Once the contaminants have been associated with the natural sedimentary particles they will 

be subject to diagenetic processes such as biological and chemical transformation reactions. The 

geochemical behaviour of a particualr contaminant will depend on the physicochemical 

properties, chemical form, biological activity, etc., of that particular substance, as well as on the 

composition of the sedimentary particles. 

In the case of trace elements the partitionýn . mong different phases on the surface of the n-- 

particles can occur. The most important phases for metal binding in aquatic sediments are the 
aluminosilicate minerals, hydrous oxide coatings of iron, manganese and aluminium, and organic 

matter coatings. If different metals show different preference for specific phases, they might be 

differentially adsorbed onto or desorbed from sediment particles, according to the content of each 

phase in the particles. For example, mercury shows a strong affinity towards the organic 

sedimentary phases whereas lead shows strong affinity toward iron/manganese oxides. As the 

organic matter in'the particles is degraded mercury might be released into the water column 

whereas lead may remain associated to the oxide phase in sediment particles. Therefore, the metal 

composition in the sediment will not only depend on the original source of those metals, but also 
on the specific geochemical behaviour of each of the metals. 

The geochemical behaviour of trace metals is well documented and many books and reviews 
on this subject can be found in the literature. However, previous studies of metals in Liverpool 
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Bay sediments, largely resulting from monitoring programs by governmental agencies, have only 

reported the distribution of their concentrations throughout the bay. These distributions have been 

largely explained in terms of the location of the possible sources and the water circulation 

patterns with their associated sediment transport patterns. On the other hand, little or no 

information has been reported on the possible effects which the difference in geochemical 

behaviour among metals in sediments can have on the observed distributions. 

In this study, the abundance of some of the more important sedimentary phases was estimated 

by means of bulk chemical determinations. The possible preferential associations of trace 

elements with any of the phases was then inferred by correlation analyses. Although more 

selective chemical extraction procedures, such as sequential extractions, could give more precise 

information on the possible sedimentary phases to which elements are associated, the application 

of these methods in the present study was considered impractical. The large number of samples 

and their chemical heterogeneity would have required a laborious validation of the sequential 

extraction method for the different types of sedimentary conditions found in Liverpool Bay. On 

the other hand, early during this project, the main aim of determining the trace elements was to 

provide some background information for an understanding of the distribution of PCBs in the 

same sediment samples. 
In spite of the limitations of using bulk chemical analyses for estimating the concentrations 

of the sedimentary phases, some interesting observations have resulted from these determinations 

especially when compared with the trace element content of the samples. 

From the grain size distributions it is concluded that, although the particle size composition 

of Liverpool Bay sediments may change in response to constant changes in the 
hydrodynamical conditions, there is a general trend in the distribution of the grain size in bulk 

sediments. As in this study, previous reports indicate that sediments in the southern section of 
Liverpool Bay are low in fine particles. This results from a decrease in the depth of the water 

column toward the North Wales coast which intensifies the coastal currents and the shear stress 

over the sedimentary deposits. Therefore, even though the deposition of fine particles in this area 

may be possible during calm conditions, fine particles can be easily resuspended from the bottom 

sediments when currents intensify. Wave induced turbulence can also be an important process 

associated to the resuspension and sediment transport in these shallow areas. Sediments towards 
the northern region of the bay tend to increase in their fine particle content, and the highest 

amounts of fine particles are found outside the Queen's Channel around Burbo Bight. 
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If the aluminium content is a good indicator of the amount of clay in Liverpool Bay sediments, 

the second order relationship between the amount of fine particles and the aluminium content in 

total sediments suggests that the <90 pm fraction of sediments with low amount of fines (e. g. 

those from the southern area) has a higher proportion of clays than the <90 pm fraction in 

sediments from muddy areas. 

As a possible explanation of the relationship between aluminium content and the grain size 

distribution it was suggested that the muddy deposits, particularly in the Burbo Bank, may 

contain higher amounts of very fine sands (which is the 62.5-125 pm fraction). A preferential 

transport of very fine sands toward this area has been previously reported. In this study, the limit 

of 90 pm separating the fine and coarse fractions was chosen following the methods 

recommended by MAFF (Eagle et al., 1978), and which have been followed by NWWA for trace 

metal monitoring purposes. However, in many of the studies where sediments are fractionated 

for trace metal determinations, the limit between fine and coarse fractions is often reported as 

-63 pm. It is recommended that the use of the 90 pm limit should be avoided. The 

standardization of the analytical methods used in the determination of environmental 

contaminants results in more comparable data sets. Sandy particles often show different 

geochemical properties than smaller sized particles such as silts and clays. The difference in grain 

size which determines the available surface area for the deposition of organic and inorganic 

phases can partially explain the differences between sands and smaller particles, however, the 

different nature of mineral matrices can also be important in the control of the concentrations of 

trace elements on the particles. Thus, from the geochemical point of view the use of 63 pm as 

the limit between fine and coarse sediments results an obvious better choice than the use of 90 

pm which includes a mixture of clays, silts and very fine sands in the fine fraction. 

The distribution of organic carbon in fine sediments showed a low but significant negative 

correlation with the amount of fine particles and aluminium which may be explained by a higher 

proportion of clays in the fine fraction of sediments low in fines. An increase in clays would 

result in a higher surface area available for organic coating formation. The scatter between the 

relationship of carbon and grain size suggests, however, that the inputs of carbon from various 

sources including waste disposal, riverine inputs and autochthonous production, may overshadow 
the possible correlations between carbon and grain size which have been reported in other areas. 

The distribution of S13C values also reflects the possibility of various sources of organic carbon 
into Liverpool Bay sediments. There is evidence of terrestrial inputs of carbon from the River 

Mersey inputs as a gradient can be seen in the samples near the Queen, s Channel entrance. The 
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inputs of land derived carbon from sewage sludge disposal is also suggested by high 6'3C values 

near an area within Site SI where the discharges have been concentrated since early 1988. The 

presence of low S13C values indicated the possible dominance of marine derived organic carbon 

in some sediment samples. 

The organic matter content in coarse sediments was correlated with the amount of fine particles 

in the total sediments. This observation suggested that some transfer of carbon from fine toward 

coarse particles might be occurring. However, this possible transfer seems to occur only when 

the amount of fine particles surrounding coarse particles is high, i. e., at fine fraction 

concentrations higher than -5%. 
The distribution of the concentrations of iron and manganese in Liverpool Bay sediments did 

not appear to be significantly influenced by inputs from the River Mersey or from sewage sludge 

disposal at Site SI. Relatively high concentrations of these elements were found in fine particles 

of sediments with low amounts of fine fraction. As in the case of carbon, this observation 

suggested the availability of higher surface areas for the deposition of hydrous oxide coatings of 

manganese and iron. 

The distribution of iron and manganese in coarse particles showed patterns difficult to explain. 

The low and negative correlation between manganese and the fine particle content may suggest 

that the formation of oxide coatings in coarse particles with low amount of fine particles is 

favoured by the higher exposure of the particles to oxidizing conditions, as opposed to muddy 
deposits where the formation of oxide coatings may be inhibited by lower redox potential. 

Mercury was the only trace metal in the fine fraction showing a high correlation with the fine 

particle content in the total sediments. Mercury in fine particles was not particularly correlated 
to any other sediment parameter, with the exception of a low correlation with the St3C values. 
The low correlation with 613C values may indicate that the correlation which is often reported 
for carbon and mercury in sediments was probably overshadowed by natural inputs of organic 

matter. Mercury in Liverpool Bay fine sediments may be associated to land derived organic 

matter in particular, thus, as this organic matter might be mixed at different ratios with marine 
derived organic matter, the content of mercury is not necessarily a function of the total organic 

carbon in the sample, but depends on the composition of this organic matter. The mercury-carbon 

association in sediments often reported was probably observed more clearly in, the coarse 
sedimentary fraction. The correlation between mercury and grain size suggests that, given the 
location of the muddy areas, this element is largely transported into the bay from the River 
Mersey and from sewage sludge disposal in the bay. 
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Arsenic showed contrasting behaviour when compared with mercury in Liverpool Bay 

sediments. The high correlation between arsenic and iron and manganese in both fine and coarse 

particles, agrees with the reported preference of arsenic for the hydrous oxide coatings of these 

elements on the surface of aquatic particles. Whereas mercury is largely derived from human 

activities in the region, arsenic (as well as iron and manganese) seems to be derived from inputs 

from mineralized areas. The fine particles in some of the sediments with low amount of fine 

fraction showed very high concentrations of arsenic and manganese. These concentrations were 

many times higher than in the sewage sludge samples, and were comparable with levels of these 

elements reported in sediments from streams in the mineralized areas of North Wales. 

Lead and zinc may be largely derived from anthropogenic inputs into Liverpool Bay as their 

levels in sewage sludges, for example, as compared to the mean sediment concentrations are 

high. The correlation between these elements and the concentrations of manganese, iron and 

arsenic may also indicate possible inputs of lead and zinc from mineralized areas. The main 

mining activities which took place in the past were related to the extraction of sphalerite and 

galena which are minerals from which zinc and lead are extracted, thus, it is not surprising that 

high levels of these metals have been reported in sediments from the mineralized areas in North 

Wales. It is suggested that the "anomalously" high values of these elements which may be found 

in Liverpool Bay sediments can be explained by the inputs from mineral sources. These 

observations are not intended to undermine the importance that the inputs of lead, zinc and other 

substances from anthropogenic discharges may have on the levels of toxic elements in Liverpool 

Bay sediments. Anthropogenic inputs have caused an enrichment of metals not only in this area, 
but in the whole of the eastern Irish Sea as indicated by the reported background sedimentary 
levels and the concentrations reported in this and other studies. 

A specific association of zinc and lead with the hydrous oxide phases in sediments has often 
been reported, thus, the correlations among these variables found in this study seem to agree with 
this association. However, the correlation of lead and particularly zinc with the organic carbon 

content on the sediments may also suggest an association with the organic sedimentary coatings. 
The preference for association of one element with a particular phase does not exclude the 

partition of the element among other phases in the sediment. 
From the above it is concluded that the geochemical aspects of the distribution of trace 

elements in superficial sediments from Liverpool Bay have to be better understood fra proper 
explanation of the distribution of these elements. ' 
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A low correlation was found between cadmium concentrations and 5t3C values, whereas no 

correlations were observed between this trace metal and the other sediment parameters in the fine 

fraction. This observation suggests that, as in the case of mercury, cadmium is mainly derived 

from anthropogenic sources and is preferentially associated to the organic phases in the sediment. 
The different distributions of cadmium and mercury observed in Liverpool Bay fine sediments 

may be a result of a substantial difference in the geochemical behaviour of these elements. In 

general, mercury tends to remain associated with particles whereas cadmium tends to desorb from 

the particulate phases when the salinity of the water increases. Thus, the enrichment of mercury 

in the Burbo Bight fine sediments may be due to inputs from the river Mersey since this metal 

will remain in association with particles if these are transported from the estuarine waters in the 

Mersey to the coastal waters in Liverpool Bay. Although cadmium seems to be an important 

contaminant in the Mersey Estuary, its transport into the bay may be largely in solution as this 

element will tend to desorb from the particulate phase during transport from estuarine to coastal 

waters. 

From the correlation analyses, it is possible to suggest that copper is associated with the 

organic phases in the fine sediments in the bay. This association has been proposed by reports 
in the literature on the preferential adsorption of copper by organic coatings in aquatic particles. 
The possible association between copper and iron/manganese oxides has also been suggested in 

previous reports and cannot be disregarded in Liverpool Bay sediments since copper and iron 

were significantly correlated. The distribution of copper in Liverpool Bay fine sediments was 

complex and, although sewage sludge disposal has been recognised as the main input of this 

element into the bay, the observations from this study may suggest possible inputs from non 

anthropogenic mineral sources. 

Chromium also showed significant correlations with organic carbon and iron which is in 

agreement with reports of the association of chromium in these sedimentary phases. Nickel, on 
the other hand, showed similarly low but significant correlations with carbon, iron, manganese 
and the percentage of fine fraction. Accordingly, the lack of specificity of nickel for sedimentary 
phases has also been reported. The distribution of the concentrations of this trace metal in fine 

sediments was relatively homogeneous as a possible result of a higher solubility of this element 
in relation to the other elements in this study which tend to remain more strongly bound onto 
particulate phases. 

Based on the correlation analyses, it is suggested that the organic matter is the most important 
carrier phase of trace metals in coarse sedimentary particles in Liverpool Bay. Only lead and zinc 
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showed some correlation with the iron and manganese contents in coarse particles indicating a 

possible lower specificity for organic coatings than the other metals, i. e., mercury, cadmium, 

copper, nickel and chromium. It seems that the coexistence of coarse particles with a higher 

amount of fine particles increases the levels of trace metals in the former. Thus, it is possible that 

trace metals are transferred from fine toward coarse sediments in association with the organic 

matter. Arsenic was the only element with no correlation with the organic matter in coarse 

sediments. The high correlations with iron and manganese reflect the strong affinity of arsenic 
for oxide coatings. 

The correlations between trace elements and sediment parameters suggested different types of 
trace element-sediment associations. The geochemical behaviour of trace elements seems to play 

an important role in the control of the concentrations of these elements on the sediment particles. 
The possible impact of waste disposal in Liverpool Bay can be partially determined from the 
distribution of the concentrations of toxic elements in superficial sediments and the knowledge 

of the water circulation and sediment transport pattern. However, these distributions are also 

affected by the geochemical behaviour of each particular trace element. 
It is recommended that in studies of the distributions of trace elements in Liverpool Bay 

sediments the geochemical behaviour of each trace element should be taken into consideration. 
Thus, more specific studies on the sediment-trace element associations in Liverpool Bay are 
needed. The potential significance of inputs of trace elements from natural sources should also 
be evaluated by a closer inspection of the mineralogical composition of the sediments. 

The method used in this study for the determination of various PCB congeners was satisfactory 
for the sediment samples, but the clean up was not satisfactory for the sewage sludge samples. 

The grain size effect on the concentration of PCBs in the total sediments was not unexpected 
as these organic compounds show a strong affinity for small sized particles. The "correction" of 
the total PCB concentrations by normalization with either the organic matter content and with 
the aluminium content resulted in similar distributions of the normalized values. These 
distributions showed similarities with the distributions of mercury in coarse and fine sediments. 
Thus, after grain size correction, higher concentrations of PCBs were found in the sediments with 
high amounts of fine particles. The distribution of total PCBs suggests that the main sources of 
PCB contamination in the Bay are the inputs from the River Mersey and from sewage sludge 
disposal. 
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The level of PCB contamination in Liverpool Bay sediments is similar to those levels reported 

in other areas such as in the North Sea coast. The PCB levels found in this study are much lower 

than in sediments from areas where severe contamination with PCBs is reported. The significance 

of the PCB levels in Liverpool Bay sediments, in relation to potential adverse effects, can not 

be properly evaluated. Sediments can act as a source of PCBs into aquatic food chains where 

biomagnification may occur. Thus, even if the levels in Liverpool Bay sediments are low as 

compared to other areas, they may still be high enough to cause detrimental effects at the higher 

levels in the food chain. 

It is suggested that the patterns of the PCB congener distribution in Liverpool Bay sediments 

indicate two main different types of sources. One type of source, best reflected in the muddy 

sediments of the Burbo Bight, are the direct inputs of PCBs from river discharges and waste 

disposal activities in Liverpool Bay. Several degrees of alteration of the "original" PCB pattern 

were observed, and the changes were mainly explained in terms of the different physicochemical 

properties among congeners. The second main source is the transport of contaminated sediments 

from the Irish Sea, which show a PCB pattern suggesting atmospheric deposition as the original 

source of PCBs into the offshore waters and sediments of the Irish Sea. 

Differences in the behaviour of isomers were also observed, which resulted from differences 

in the configuration (planarity) of the PCB molecule. An increase in the number of ortho chlorine 

substitutions in the biphenyl ring increases the torsion of the molecule which may result in a 

decrease in the surface area for contact with particle surfaces. Thus, isomers with more ortho 

chlorines will tend to desorb more easily from the sedimentary particles. Although some 

generalizations could be made regarding the geochemical behaviour of PCB congeners and their 

molecular configuration, the behaviour of some congeners could not be explained in these terms. 

It is recommended that the determinations of PCBs in Liverpool Bay sediments are carried out 
in different grain size fractions. In the case of trace elements, the different "signatures" in fine 

and coarse fractions were related to different transport patterns, thus, PCBs in this study were 

probably a result from the combination of the patterns in the fine and coarse particles. However, 

the strong correlation between total PCBs and the amount of fine particles in the sediment 

probably indicates that, even in total sediments with low amount of fines, the main contribution 
to the total PCB loads in the sediments came from the fine particles. 

The sediments in Liverpool Bay were classified according to the trace element and PCB 

"fingerprints" by the application of multivariate statistical. There was a good agreement between 
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the clusters resulting from the analyses on both data sets. Not surprisingly, the classification 

suggested that the major sources of the inorganic contaminants are also the major sources of 

organic contaminants. 

It is suggested that, for a better understanding of the effects of waste disposal on the 

distributions of contaminants in Liverpool Bay sediments, the dynamical oceanography and 

sediment transport patterns as well as the geochemical behaviour of each particular organic and 
inorganic contaminant of interest should be considered. When large data sets are produced, the 

application of multivariate statistical methods can assist in the interpretation of the results. 
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APPENDIX A. Furnace parameters used for the determinations of arsenic and cadmium 
by graphite-furnace atomic absorption spectrometry. L'vov platforms 
were used with the atomization tubes. 5 pl sample volumes were injected 
into the furnace together with 5µl of matrix modifier (nickel nitrate for 

arsenic and phosphoric acid for cadmium) and 10 µl of blank (nitric acid 
1% v/v). 

FURNACE PARAMETERS FOR ARSENIC 

Step Temperature Time Gas flow Read 
No. ( C) (sec) (L/min) Command 

1 100 10.0 3.0 NO 
2 250 70.0 3.0 NO 
3 350 30.0 3.0 NO 
4 600 10.0 3.0 NO 
5 1300 5.0 3.0 NO 
6 1300 10.0 3.0 NO 
7 1300 1.0 0.4 NO 
8 2800 1.2 0.4 YES 
9 2800 2.0 0.4 YES 

10 2800 8.0 3.0 NO 

FURNACE PARAMETERS FOR CADMIUM 

Step Temperature Time Gas flow Read 
No. ( C) (sec) (L/min) Command 

1 110 10.0 3.0 NO 
2 250 60.0 3.0 NO 
3 350 30.0 3.0 NO 
4 600 10.0 3.0 NO 
5 900 10.0 3.0 NO 
6 900 10.0 3.0 NO 
7 900 1.0 0.2 NO 
8 2800 1.2 0.2 YES 
9 2800 3.0 0.2 YES 

10 2800 8.0 3.0, NO 



APPENDIX B. 1. Concentration of elements in the fine fraction. The 

concentration units for all elements except Fe are 
µg g'. Concentration units for Fe are in percent. 

Sta. Lon. Lat. Hg Cd Cr Cu Ni Pb Zn As 

G07 -41.30 29.10 0.21 0.35 

G09 -41.60 31.50 0.34 2.44 

Gil -41.90 34.00 0.28 0.29 

G13 -41.60 36.40 0.22 0.42 

HOB -39.30 30.10 0.32 1.39 

H10 -39.70 32.50 0.37 0.36 

H12 -39.90 35.10 0.33 0.37 

J07 -37.40 28.40 0.57 0.72 

J09 -37.50 30.80 0.09 1.21 

J11 -37.40 33.40 0.52 0.31 

J13 -37.40 35.80 0.49 0.17 

K06 -35.40 26.90 0.15 0.45 

R08 -35.50 29.40 0.09 1.37 

K09 -35.50 30.80 1.23 0.80 

K10 -35.40 31.80 1.41 0.41 

K11 -35.50 33.10 0.47 0.43 
K12 -35.70 34.30 0.42 0.46 
L07 -33.20 27.80 0.18 1.16 
L08 -33.30 29.10 0.21 0.48 
L09 -33.50 30.50 0.16 1.28 
L10 -33.20 31.70 0.11 0.67 
Lii -33.10 32.80 0.62 0.47 
L12 -33.10 34.00 0.54 0.75 
L13 -33.10 35.10 0.31 0.17 
M06 -31.00 26.40 0.02 0.73 
M08 -31.20 28.90 0.09 0.16 
M09 -31.10 30.10 0.27 0.39 
M10 -31.10 31.30 0.29 0.69 
Mll -31.10 32.50 0.54 0.75 
M12 -31.20 33.70 0.45 0.30 
N07 -29.20 27.30 0.08 0.53 
N08 -29.10 28.60 * 0.80 
N09 -29.10 29.90 0.16 0.45 
N10 -28.90 31.10 0.14 0.14 
Nil -28.80 32.40 0.10 0.20 
N12 -28.80 33.50 0.64 0.22 

N13 -28.80 34.50 0.47 0.28 

P06 -26.70 25.80 0.10 0.17 

P08 -26.80 28.40 0.05 0.16 

P09 -26.70 29.60 0.31 0.51 

P10 -26.60 30.80 0.08 2.05 

P11 -26.30 32.00 2.09 2.46 

P12 -26.40 33.20 0.70 0.45 

Q07 -24.90 27.10 0.20 0.36 
Q09 -24.60 29.40 0.10 0.45 
011 -24.40 31.70 0.82 0.66 
Q13 -24.30 34.20 0.72 0.98 
R06 -22.50 25.40 * 0.70 
R08 -22.60 27.90 0.14 0.60 
R10 -21.90 30.40 0.27 0.37 
Rll -22.00 31.50 1.21 0.72 
R12 -22.10 32.70 0.58 0.41 

91 43 
58 199 
44 28 
41 25 
50 35 
48 44 
38 23 
61 44 
64 54 
51 35 
48 31 
50 40 
90 121 
95 83 
64 46 
56 38 
50 32 
67 54 
68 58 
91 157 
76 168 
60 44 
57 46 
51 36 
62 79 
71 59 
77 144 
75 173 
66 60 
52 31 
63 50 
64 168 
66 62 
77 225 
66 56 
57 54 
60 39 
49 46 
44 72 
66 177 
85 137 
95 125 
66 50 
66 47 
75 82 
96 69 
64 55 

48 35 
70 175 

54 41 
78 58 

69 50 

37 130 245 
54 865 607 
43 84 158 
41 85 153 
47 123 191 
43 110 195 
41 70 135 
51 99 207 
68 307 335 
51 91 180 
41 86 177 
45 177 246 
60 698 591 
42 154 314 
38 107 199 
34 102 189 
38 83 183 
39 148 226 
25 138 214 
68 1214 904 
51 453 389 
38 91 182 
34 104 192 
33 89 179 
68 482 439 
38 220 246 
35 547 325 
48 707 548 
31 125 217 
28 90 176 
39 218 205 
45 348 322 
42 224 297 
58 247 321 
35 258 304 
37 105 182 
35 100 195 
41 133 181 
34 334 279 
31 265 333 
54 1000 483 
36 199 479 
32 116 234 
45 111 198 
30 484 473 
47 191 324 
31 165 275 
33 194 195 
36 403 313 
27 179 171 
45 139 299 

37 133 251 

15 
53 
13 
12 
16 
17 
11 
13 
39 
10 
11 
19 
69 
19 
13 
12 
11 
15 
20 

144 
51 
10 
12 
11 
48 
27 
43 
53 
13 
11 
24 

37 
32 
52 
11 

9 
11 
35 
29 
55 
33 
15 
15 

131 
19 
18 

r 

Mn 

1347 
7316 

822 
966 

1316 
1183 

739 
756 

5512 
531 
572 

4281 
10200 

622 
589 
543 
625 

1744 
1957 

22900 
8692 

540 
535 
596 

13700 
3759 
3764 
5660 

679 
572 

2669 

2882 
2602 
4680 

655 
673 
984 

4349 
2127 
6119 

925 
664 

1113 
8472 

7 07 
894 

" 
22 2211 
18 1293 
14 681 
16 1018 

Fe 

1.93 
2.58 
1.84 
1.74 
1.73 
1.89 
1.72 
1.81 
2.04 
1.93 
1.86 
1.62 
3.06 
2.31 
1.70 
1.71 
1.85 
1.83 
1.72 
4.54 
2.74 
1.86 
1.89 
2.01 
2.14 
2.19 
2.57 
3.22 
1.79 
1.78 
2.14 

w 

2.38 
4.52 
2.85 
1.88 
1.84 
1.59 
2.30 
2.23 
2.84 
2.41 
2.02 
1.77 
4.30 
2.79 
2.34 

1.96 
1.69 
2.16 
2.12 



App. Bl. cont.. (2) 

S07 -20.30 26.40 * 0.11 54 70 44 553 284 
S08 -20.20 27.70 0.21 0.32 73 166 37 322 338 27 2521 2.42 

S09 -20.10 28.90 0.78 0.90 85 60 43 191 338 22 1394 2.72 
Si]. -19.80 31.20 0.27 0.24 71 57 45 259 302 29 2254 2.59 

S13 -19.40 33.50 1.11 0.45 59 45 34 105 216 16 881 2.01 
T08 -17.70 27.40 0.82 0.49 72 45 42 121 235 18 1342 2.29 
T09 -17.70 28.60 1.45 1.24 85 78 45 158 317 19 990 2.59 
T10 -17.50 29.90 0.60 0.69 53 52 33 294 281 16 1559 1.36 
T12 -17.20 32.20 1.17 0.73 55 37 31 90 222 15 877 1.43 
T14 -16.90 34.40 0.78 0.79 51 36 30 89 201 14 684 1.40 
U09 -15.20 28.40 1.36 0.73 73 48 43 110 259 15 1072 1.99 
U11 -14.80 30.80 1.15 0.77 74 50 39 132 285 19 1397 2.00 
U15 -14.60 35.50 0.54 0.50 58 69 37 126 227 16 1168 2.00 

NW24 -12.40 28.60 1.56 0.75 79 50 41 111 288 18 1229 2.16 
YY01 -14.20 29.10 1.22 0.77 67 44 34 97 227 18 1063 1.77 
YY02 -12.70 29.50 1.70 0.81 84 52 42 127 288 22 1487 2.29 
YY03 -12.00 29.10 1.19 0.72 62 37 33 82 209 16 1056 1.61 
YY04 -13.40 28.60 1.46 0.66 70 50 35 102 254 21 1102 2.00 



APPENDIX B. 2. Concentration of elements in the coarse fraction. The 

concentration units for all elements except Fe are in 

µg g''. Concentration values for Fe are in percent. 

Sta. Hg Cd Cr Cu Ni Pb Zn As Mn Fe 

G07 0.009 0.031 3.72 1.26 2.74 7.30 15.1 4.24 237 0.35 

G09 0.007 0.011 3.58 1.18 2.58 6.74 16.3 4.54 237 0.39 

Gil 0.013 0.047 5.16 1.64 2.78 9.98 14.8 5.52 238 0.38 

G13 0.017 0.014 4.64 1.38 2.66 7.94 14.4 3.66 176 0.37 

1-108 0.006 0.016 2.90 0.90 2.54 4.74 16.2 3.46 197 0.35 

H10 0.016 0.011 4.62 1.59 2.73 10.04 18.2 6.18 274 0.39 

H12 0.025 0.012 4.88 1.68 2.76 8.36 15.1 4.84 195 0.39 

J07 0.014 0.009 3.08 1.24 2.38 6.91 13.6 3.34 204 0.28 

J09 0.004 0.008 2.68 0.90 2.50 4.34 14.9 3.72 191 0.34 
Jil 0.035 0.011 4.82 1.72 2.66 8.86 16.4 3.96 149 0.36 

J13 0.030 0.007 4.42 1.40 2.62 8.52 14.8 3.66 151 0.35 
K06 0.006 0.009 2.42 0.98 2.24 5.80 15.9 3.74 271 0.28 
KO8 0.009 0.005 2.42 0.86 2.10 7.32 18.4 3.14 279 0.28 
K09 0.007 0.010 2.30 0.84 2.28 4.44 13.6 2.46 158 0.29 

Klo 0.035 0.018 3.76 1.86 2.26 8.80 17.8 2.96 120 0.29 
K11 0.027 0.013 4.38 1.80 2.58 9.11 17.7 3.32 148 0.32 

K12 0.025 0.010 3.96 1.74 2.68 9.32 15.3 4.02 172 0.33 
L07 0.008 0.012 3.12 1.32 2.58 7.66 15.5 3.32 273 0.31 

L08 0.009 0.009 3.03 1.31 2.46 8.54 17.4 3.77 260 0.31 
L09 0.010 0.007 2.98 0.95 2.29 10.07 22.0 4.73 261 0.32 
L10 0.012 0.009 3.36 6.03 2.32 10.13 17.0 3.28 247 0.31 
L11 0.029 0.021 4.34 1.46 2.30 8.04 18.3 2.48 119 0.28 
L12 0.033 0.013 4.13 1.34 2.37 7.58 15.2 3.47 152 0.29 
L13 0.036 0.011 4.89 1.56 2.72 8.71 16.9 3.86 156 0.32 
M06 0.009 0.014 2.78 0.90 2.24 5.06 15.2 3.58 217 0.25 
M08 0.012 0.015 2.96 1.02 2.40 7.11 16.1 3.02 191 0.27 
M09 0.022 0.008 3.11 1.50 2.15 13.60 26.6 6.30 251 0.31 
M10 0.028 0.010 3.44 3.46 2.62 19.90 27.2 4.62 265 0.36 
M11 0.032 0.014 3.46 1.50 2.34 10.19 16.1 3.38 127 0.28 
M12 0.099 0.015 4.48 1.74 2.58 7.88 15.6 2.62 148 0.29 
N07 0.006 0.008 2.78 1.10 2.32 4.69 11.0 1.92 156 0.23 
N08 0.010 0.020 3.11 1.26 2.37 6.46 13.5 1.81 * 
N09 0.011 0.008 3.24 1.16 2.46 10.84 28.0 6.12 326 0.38 
N10 0.009 0.007 2.94 1.58 2.60 5.62 12.4 2.24 228 0.31 
Nil 0.009 0.009 3.12 1.60 2.54 10.12 18.4 3.64 192 0.33 
N12 0.021 0.012 2.80 1.20 2.20 6.32 11.7 2.18 92 0.25 
N13 0.025 0.015 4.08 1.48 2.56 8.18 18.2 2.36 169 0.35 
P06 0.007 0.009 2.12 0.94 1.62 4.82 13.8 2.74 159 0.20 
P08 0.012 0.007 2.78 1.26 2.04 6.16 15.3 2.16 161 0.25 
P09 0.012 0.010 2.90 1.24 2.12 10.44 33.5 7.38 337 0.39 
P10 0.006 0.007 2.76 1.06 2.48 4.30 12.1 1.82 231 0.30 
P11 0.043 0.038 3.90 3.24 2.32 12.23 23.8 2.90 155 0.28 
P12 0.029 0.017 3.04 1.48 2.00 9.52 18.1 2.74 124 0.26 
Q07 0.007 0.017 2.90 1.14 2.36 4.81 10.4 2.72 146 0.27 
Q09 0.009 0.009 2.76 1.32 2.04 11.98 31.8 8.22 441 0.40 
Oil 0.032 0.018 2.82 2.86 1.98 7.04 14.3 1.46 137 0.22 
Q13 0.076 0.042 3.60 3.18 2.50 15.52 35.9 4.64 155 0.34 
R06 0.006 0.009 2.02 0.98 1.80 3.30 11.0 2.32 * * 
R08 0.010 0.008 2.80 1.44 2.42 7.56 25.3 3.52 219 0.31 
R10 0.024 0.008 2.89 1.52 2.26 8.14 26.1 3.51 237 0.29 
R11 0.035 0.024 3.40 1.85 1.99 9.75 23.1 2.57 150 0.25 
R12 0.064 0.021 2.71 2.75 2.14 14.08 38.2 4.95 245 0.33 



App. B2. cont.. (2) 

S07 0.003 0.008 2.03 1.00 1.87 3.30 12.6 3.42 
S08 0.010 0.009 2.70 1.23 2.01 7.79 31.8 4.61 265 0.29 
809 0.036 0.021 4.33 2.10 2.24 14.23 63.5 5.17 339 0.35 
S1l 0.017 0.012 2.86 2.01 2.47 9.89 27.4 3.73 283 0.29 
S13 0.060 0.060 4.21 3.07 2.85 10.83 37.2 4.53 166 0.35 
T08 0.015 0.012 2.83 1.36 2.19 13.88 42.2 7.16 431 0.37 
T09 0.047 0.032 4.96 2.46 2.28 17.19 69.0 4.66 300 0.34 
T10 0.004 0.009 2.38 1.34 2.56 7.50 27.8 4.66 366 0.35 
T12 0.088 0.108 3.74 4.50 2.54 9.93 42.9 2.83 212 0.26 
T14 0.024 0.041 2.70 1.64 2.18 5.26 32.0 3.08 119 0.27 
U09 0.081 0.185 6.01 5.31 3.26 17.68 68.2 4.76 373 0.34 
Uli 0.005 0.012 2.47 1.70 2.85 8.18 35.7 6.12 420 0.34 
U15 0.021 0.032 2.60 2.30 2.12 7.46 28.5 2.94 130 0.25 NW24 0.130 0.076 3.78 4.38 2.56 11.54 51.7 4.56 329 0.32 

YYO1 0.089 0.188 4.76 4.84 2.94 10.83 42.6 3.60 199 0.28 YY02 0.097 0.063 3.79 4.26 2.45 9.36 42.3 3.89 189 0.28 yy03 0.178 0.177 6.31 9.25 3.96 15.84 75.6 4.72 309 0 38 YY04 0.074 0.090 4.46 3.96 3.00 11.32 47.2 4.10 356 
. 

0.31 



APPENDIX B3. Grain size distributions in bulk (<4000 µm) and total (<500 

µm) sediments. All values are given as a percentage dry 

weight. The concentration (in percent) of aluminium in the 

total fraction is also shown. 

B ULK TO TAL 
(< 4000 µm) (<5 00 µm) 

Sta Fine Coar >500 Fine Coar Al 

G07 3.27 60.93 35.80 5.09 94.91 1.20 

G09 0.13 59.19 40.69 0.21 99.79 0.79 

Gil 4.30 56.68 39.02 7.05 92.95 1.36 
G13 4.31 49.31 46.38 8.03 91.97 1.36 
H08 0.95 87.93 11.11 1.07 98.93 0.93 

H10 3.77 52.03 44.20 6.76 93.24 1.30 
H12 6.36 55.53 38.11 10.28 89.72 1.50 
J07 4.17 65.10 30.73 6.02 93.98 1.22 
J09 0.12 72.43 27.45 0.17 99.83 0.84 
ill 9.27 47.80 42.93 16.25 83.75 1.96 
J13 6.82 53.16 40.02 11.38 88.62 1.68 
K06 0.71 86.78 12.51 0.82 99.18 0.93 
K08 0.15 96.87 2.98 0.15 99.85 0.75 
K09 2.07 90.85 7.08 2.23 97.77 0.99 
1<10 6.04 51.81 42.16 10.44 89.57 1.61 
1<11 11.91 47.67 40.42 19.99 80.01 2.15 
X12 7.04 57.97 34.99 10.83 89.17 1.70 
L07 0.99 42.42 56.59 2.28 97.72 1.05 
L08 1.37 71.31 27.33 1.88 98.12 1.02 
L09 0.14 92.05 7.81 0.16 99.84 0.85 
L10 0.19 40.44 59.37 0.46 99.54 0.80 
L11 13.60 42.66 43.74 24.17 75.83 2.30 
L12 6.18 46.92 46.90 11.65 88.35 1.62 
L13 8.48 38.99 52.53 17.87 82.13 2.04 
M06 0.12 88.50 11.39 0.13 99.87 0.86 
M08 0.40 81.59 18.01 0.49 99.51 0.87 
M09 0.72 85.22 14.06 0.84 99.16 0.89 
M10 0.27 31.04 68.69 0.86 99.14 0.97 
M11 4.40 52.03 43.57 7.79 92.21 1.40 
M12 10.29 42.92 46.79 19.34 80.66 2.06 
N07 0.28 83.32 16.40 0.33 99.67 0.93 
N08 0.17 89.54 10.29 0.19 99.81 0.92 
N09 0.60 93.55 5.84 0.64 99.36 0.86 
N10 0.34 57.36 42.29 0.60 99.40 0.89 
Nil 0.34 48.16 51.50 0.71 99.29 0.94 
N12 6.38 62.12 31.50 9.31 90.69 1.60 
N13 10.37 46.11 43.51 18.37 81.63 2.17 
P06 0.62 77.85 21.53 0.79 99.21 0.90 
P08 0.27 85.70 14.04 0.31 99.69 0.89 
P09 0.87 96.89 2.24 0.89 99.11 0.90 
P10 0.16 68.79 31.05 0.23 99.77 0.82 
Pil 31.03 59.30 9.68 34.35 65.65 3.20 



App. B3. cont.. (2) 

P12 6.45 70.41 23.14 8.39 91.61 1.66 
Q07 1.28 58.54 40.18 2.14 97.86 1.20 
Q09 0.31 98.89 0.79 0.32 99.68 0.86 
Q11 11.22 76.02 12.76 12.86 87.14 1.76 
Q13 4.32 90.50 5.18 4.56 95.44 1.42 
R06 0.21 71.14 28.65 0.29 99.71 0.97 
R08 0.49 85.83 13.68 0.57 99.43 0.80 
R10 1.12 90.11 8.76 1.23 98.77 0.97 
R11 16.57 75.37 8.06 18.03 81.97 2.17 
R12 5.42 83.60 10.98 6.09 93.91 1.47 
S07 0.07 89.29 10.64 0.08 99.93 0.70 
S08 0.41 95.18 4.41 0.43 99.57 0.80 
S09 1.99 97.13 0.87 2.01 97.99 1.24 Sil 0.79 85.43 13.79 0.91 99.09 1.08 
S13 9.47 88.61 1.92 9.66 90.34 1.80 T08 2.54 96.14 1.32 2.58 97.42 1.05 T09 8.00 91.08 0.92 8.08 91.92 1 58 T10 0.09 93.19 6.72 0.09 99.90 

. 
0 84 T12 14.24 83.71 2.05 14.54 85.46 

. 
2 03 T14 3.66 95.81 0.53 3.68 96.32 

. 
1 46 U09 34.19 58.49 7.32 36.90 63.10 

. 
3 26 Uli 1.75 91.92 6.33 1.87 98.13 

. 
1 04 Ul5 3.26 94.02 2.71 3.36 96.64 . 
1 53 NW24 24.67 67.98 7.35 26.63 73.37 . 
2 71 YY01 

YY02 
59.30 37.90 2.80 61.01 38.99 

. 
4.01 

YY03 
31.08 67.94 0.98 31.39 68.61 2.99 

YY04 
55.20 40.60 4.20 57.62 42.38 3 58 26.57 65.84 7.59 28.75 71.25 . 

2.91 



APPENDIX B4. Organic carbon (OC) and organic matter (OM) concentrations 
(in percent) in fine and coarse fractions. The 

concentrations of nitrogen (%) and 6130 values (in %. ) in fine 

sediments and an estimation of the organic carbon content 
in the total fraction are also shown in this appendix. C/N 

represents the atomic ratio between carbon and nitrogen. 

FINE FRACTION COARSE FRACTION TOTAL 

(< 90 µm) (90-500 µm) (<5o0pM) 

Sts OC OM N C/N 613C OM OC OC 

G07 2.06 3.89 * * -20.60 0.38 0.20 0.30 
G09 2.00 3.77 * * -21.12 0.36 0.19 0.19 
011 2.04 3.85 0.14 17.0 -20.66 0.60 0.32 0.44 

G13 1.85 3.49 0.16 13.5 -20.71 0.71 0.38 0.50 
H08 1.90 3.59 0.17 13.0 -20.68 0.37 0.20 0.21 
H10 1.87 3.53 0.15 14.5 -21.28 0.60 0.32 0.42 
H12 1.43 2.70 0.13 12.8 -19.63 0.69 0.37 0.47 
J07 2.22 4.19 0.19 13.6 -22.31 0.44 0.23 0.35 
J09 2.37 4.47 0.22 12.6 -22.02 0.38 0.20 0.20 
J11 1.48 2.79 0.19 9.1 -18.49 0.53 0.28 0.48 
J13 1.39 2.62 0.18 9.0 -19.43 0.54 0.29 0.41 
K06 2.10 3.96 0.31 7.9 -19.88 0.24 0.13 0.14 
K08 3.05 5.76 0.45 7.9 -19.73 0.33 0.17 0.18 
K09 2.03 3.83 0.22 10.8 -21.49 0.33 0.17 0.22 
Klo 1.73 3.27 0.20 10.1 -20.37 0.47 0.25 0.40 
K11 1.56 2.94 * * -19.02 0.64 0.34 0.58 
K12 1.39 2.62 0.19 8.5 -18.93 0.67 0.35 0.47 
L07 2.48 4.68 * * -19.82 0.38 0.20 0.25 L08 2.31 4.36 0.29 9.3 -20.71 0.45 0.24 0.28 L09 2.19 4.13 0.31 8.2 -18.97 0.38 0.20 0 20 L10 2.18 4.11 * * -20.04 0.40 0.21 

. 
0 22 L11 1.51 2.85 * * -19.53 0.52 0.28 

. 
0 57 L12 1.75 3.30 -19.77 0.61 0.32 

. 
0.49 

L13 1.58 2.98 * * -20.29 0.66 0.35 0.57 
M06 2.41 4.55 * * -19.36 0.26 0.14 0.14 
M08 2.51 4.74 * * -20.33 0.33 0.17 0.19 
M09 2.76 5.21 * * -20.83 0.36 0.19 0.21 
M10 2.67 5.04 * * -20.40 0.41 0.22 0.24 
Mil 1.90 3.59 * * -20.34 0.47 0.25 0.38 
M12 1.52 2.87 0.17 10.4 -20.44 0.62 0.33 0.56 
N07 2.34 4.42 0.34 8.0 -19.78 0.41 0.22 0.22 
N08 2.37 4.47 0.35 7.9 -20.09 0.42 0.22 0.23 
N09 2.46 4.64 0.32 9.0 -20.43 0.44 0.23 0.25 
N10 2.53 4.77 0.33 8.9 -20.15 0.45 0.24 0.25 
N11 2.20 4.15 0.29 8.9 -20.23 0.43 0.23 0.24 
N12 1.68 3.17 0.22 8.9 -20.33 0.38 0.20 0.34 
N13 1.55 2.92 0.21 8.6 -20.15 0.57 0.30 0.53 
P06 2.24 4.23 0.32 8.2 -20.56 0.26 0.14 0.15 
P08 2.23 4.21 0.35 7.4 -19.71 0.33 0.17 0.18 
P09 * * * * * 0.40 0.21 



P10° 2.38 4.49 ** -20.61 0,36 0.19 0.20 

App. B4. cont.. (2) 

P11 2.24 4.23 * * -21.16 0.45 0.24 0.93 P12 1.70 3.21 * * -19.66 0.44 0.23 0 36 Q07 2.24 4.23 * * -19.28 0.38 0.20 
. 

0 25 Q09 2.28 4.30 0.31 8.6 -19.06 0.43 0.23 
. 

0 23 Q11 2.49 4.70 0.29 10.0 -20.21 0.45 0.24 
. 

0 53 Q13 1.91 3.60 * * -19.80 0.36 0.19 
. 

0 27 R06 1.90 3.59 * * -19.59 0.32 0.17 
. 

0 17 R08 2.36 4.45 * * -20.09 0.32 0.17 
. 

0 18 R10 1.24 2.34 * * -19.58 0.34 0.18 
. 

0 19 Ril 1.77 3.34 * * -21.15 0.35 0.19 
. 

0 47 R12 2.07 3.91 * * -20.51 0.37 0.20 
. 

0 31 S07 2.02 3.81 0.33 7.1 -19.64 0.24 0 13 
. 

0 13 S08 
S09 

2.41 4.55 0.34 8.3 -20.22 0.33 
. 

0.17 
. 

0 19 
Si] 

2.53 4.77 0.34 8.7 -20.33 0. 0.29 
. 

0 34 
. 

S13 
2.24 4.23 0.30 8.7 -19.85 0.43 3 0.23 

. 
0 25 

T08 
1.85 3.49 * * -20.28 0.45 0.24 

. 
0 39 

T09 
2.37 4.47 

-20.38 0.44 0.23 
. 

0 29 
T10 

2.30 
1 80 

4.34 * * -20.71 0.56 0.30 
. 

0.46 
T12 . 

1.40 
3.40 0.25 8.4 -20.66 0.37 0.20 0.20 

T14 1 45 
2.64 0.15 10.9 -21.33 0.51 0.27 0 44 

U09 
. 

2.13 
2.74 
4 02 

* 
* 

* -21.02 0.33 0.17 
. 

0.22 
U11 1.87 . 

3 53 * 
* -20'97 0.84 0.44 1.07 

U15 1.35 . 
21 55 * 

* -21.46 0.30 0.16 0.19 
NW24 2.12 , 

4 00 '20.81 0.28 0.15 0.19 
YY01 1.66 

. 
3.13 

0.25 
0 19 

99 -21.18 0.62 0.33 0.81 
YY02 2.31 4.36 . 

0 27 
10.2 -21.04 0.77 0.41 1.17 

YY03 1.59 3.00 . 
0 18 

10.0 -21.16 0.53 0.28 0.92 
YY04 2.23 4.21 

, 
* 

10.3 -21.57 0.91 0.48 1.12 
, * -21.06 0.70 0.37 0.90 



Appendix Cl. Concentration of individual PCB congeners in total sediment samples. 
Concentrations are in pg g"t. 

CO NGE NE R 

Sta 28 52 101 118 153 138 180 TICES 18 15 54 31 
G07 37 45 49 59 101 93 124 508 15 194 * 
G09 8 10 5 7 6 8 6 50 * * * 
Gil 70 46 36 74 82 80 61 449 12 78 * 13 
G13 110 177 306 275 220 252 80 1420 42 78 
H08 10 9 10 16 20 18 15 98 7 * * * 
H10 113 96 113 146 186 184 127 965 30 97 
H12 122 68 120 143 156 161 103 873 33 86 * 11 
J07 42 45 56 76 87 98 110 294 10 32 
J09 7 7 5 4 7 7 4 41 * 11 
J11 194 128 195 234 333 343 250 1677 53 172 * 26 
J13 129 295 191 107 108 119 68 1017 64 97 * 8 
X06 29 99 67 23 29 23 20 290 20 22 
1(08 7 7 5 8 9 10 13 59 * 11 * * 
K09 82 88 61 61 86 86 57 521 21 83 * * 
K10 200 212 259 322 468 467 359 2287 59 97 * 17 
K11 140 92 162 185 242 258 200 1279 42 116 8 17 
K12 85 54 77 111 135 134 80 676 18 39 
L07 24 29 29 33 43 37 46 241 21 * * 
L08 11 15 14 27 33 35 44 179 3 11 
L09 7 15 24 26 19 23 7 121 2 11 * 
L10 12 15 16 17 24 24 21 129 * * * 
L11 190 162 176 226 314 323 244 1635 65 271 17 23 
L12 + * + + + + * + + + + + 
L13 140 108 166 172 212 193 110 1101 36 78 * 13 
M06 + + + + + + + + + + + + 
M08 10 15 28 37 32 37 27 186 9 11 * * 
M09 13 22 24 71 37 38 40 245 * 11 * * 
M10 10 9 13 27 36 34 34 163 
M11 79 64 75 115 156 156 157 802 20 65 * 8 
M12 200 125 169 210 289 281 207 1481 52 145 * 29 
N07 13 51 31 13 12 10 10 140 10 11 * 
N08 * * * * * * + + + + + + 
N09 14 24 32 26 26 23 17 162 9 11 
N10 25 51 53 39 147 238 92 645 69 129 * 22 
N11 11 11 12 18 21 22 14 109 9 11 
N12 130 108 135 164 193 197 171 1098 24 78 * 13 
N13 270 139 252 296 369 357 247 1930 71 233 * 40 
P06 13 11 10 15 17 17 17 66 3 11 * 
P08 10 9 9 14 18 14 16 90 * 1 * * P09 13 18 24 23 27 24 21 150 * 11 * 3 P10 
P11 

13 18 15 10 13 11 7 87 6 13 * 1 
P 2 

1430 1080 1080 1030 1170 1250 840 7880 650 1740 40 250 1 
Q07 

+ 
46 

+ 
116 

+ 
49 

+ 
54 

+ 
69 

+ 
61 

+ 
65 

+ 
460 

+ 
15 

+ 
32 

+ 
* 

+ 
3 Q09 

Q11 
10 

250 
18 32 28 25 29 10 152 3 11 

Q13 83 
169 198 261 402 336 244 1860 * 233 34 40 

R06 11 
58 
. 

86 88 140 130 93 678 25 65 * 11 
9 8 11 13 12 12 76 * 11 R08 10 13 12 16 18 18 20 107 7 33 R10 26 22 29 37 -43 46 30 233 12 16 

R11 450 250 281 322 481 457 333 2574 104 388 * 75 
R12 195 108 149 174 236 223 165 1250 77 233 * 30 
S07 7 7 4 5 7 7 6 43 * * +, + 
S08 13 11 12 16 20 19 16 107 3 11 * * 
S09 100 58 90 112 147 145 86 738 35 65 * 14 
S11 20 18 26 34 43 46 33 220 9 22 * 3 
S13 290 139 171 250 330 307 226 1713 48 155 * 40 
T08 175 122 131 203 225 220 187 1263 55 161 * 22 
T09 95 62 77 97 140 145 107 723 18 39 * 13 
T10 10 11 9 7 8 8 4 57 2 11 
T12 244 164 186 193 275 249 218 1529 134 291 11 33 
T14 146 58 64 83 108 103 74 636 60 97 * 14 
U09 833 590 510 780 953 875 653 5194 377 388 * 145 
U11 46 33 35 43 39 51 39 286 21 28 * 7 
U15 138 199 188 143 154 152 88 1062 60 129 * 17 

NW24 750 385 473 556 756 767 544 4231 268 581 * 134 
YY01 1600 1027 1140 1651 1687 1792 1489 10386 754 1808 112 246 
YY02 700 400 486 616 858 731 551 4342 309 620 34 107 
YY03 860 616 612 694 891 907 551 5131 357 465 34 161 
YY04 725 385 450 536 797 777 652 4322 298 581 42 117 



Appendix Cl. cont... (2) 

C ON GEN ER 

Sta 49 44 74 70 95 60 92 89 99 97 87 136 
G07 42 22 19 34 58 * * * 23 11 26 12 G09 * 5 2 3 8 * 2 * 2 + * 5 
G11 23 18 27 36 77 16 30 * 22 9 20 8 G13 66 90 77 149 262 57 90 165 131 81 162 26 
H08 6 6 5 6 13 * 6 6 6 3 6 15 H10 39 37 56 67 116 34 37 49 68 22 59 35 H12 56 50 75 85 128 59 83 68 55 25 59 40 J07 33 22 22 34 51 18 25 * 27 15 31 27 J09 3 * * 3 9 + + * * * * 2 J11 87 77 100 135 197 80 120 103 85 60 93 111 J13 88 120 64 120 244 44 63 117 77 41 76 28 K06 23 39 12 33 90 7 16 32 23 14 27 2 K08 2 5 1 3 9 * 4 * 5 1 * 3 K09 36 32 39 51 71 31 36 30 23 16 26 
K10 136 97 101 146 250 78 97 126 109 79 136 255 Kll 70 66 81 108 193 62 99 92 71 41 84 100 K12 51 33 50 54 85 43 63 50 38 22 37 34 L07 15 13 12 17 29 8 10 14 15 5 16 9 L08 11 11 6 8 18 3 6 7 8 5 11 9 L09 3 6 3 9 20 2 4 10 11 8 14 2 L10 8 6 2 7 18 * * 8 9 4 9 4 Lll 133 90 117 135 285 72 120 112 82 45 96 L12 + * 
L13 '66 69 77 99 162 62 90 92 71 41 78 54 M06 + * * + + + + + + M08 
M09 

6 
14 

12 5 13 24 7 8 14 12 9 18 7 

M10 14 
13 
11 

9 
3 

14 
5 

29 
15 

* 
3 

14 
7 

14 11 6 14 11 
M11 
M12 

49 
122 

37 45 53 96 31 55 
6 

42 
6 

36 
* 

26 
6 

45 
7 

93 
N07 12 

82 113 129 241 83 127 112 82 39 85 110 
N08 * 

20 
* 

5 15 40 3 8 16 11 6 12 3 
3 13 

* 
8 

* 
17 33 * 12 N09 1 8 64 * * 

15 14 9 16 7 
N11 6 9 5 8 15 4 

33 45 15 26 7 
N12 
N13 

94 
140 

60 
114 

117 
171 

99 139 51 
8 

90 
6 

73 
6 

65 
3 

36 
7 

70 
7 

64 189 308 117 174 146 109 63 121 112 
P08 4 6 5 5 13 

4 6 5 6 3 6 5 
P09 10 9 8 14 22 6 

7 * 6 3 6 3 
P10 5 8 5 9 18 3 

13 11 6 11 8 
P11 
P12 

960 
* 

740 
* 

900 900 1540 550 
44 

840 
7 

800 
9 

570 
3 

380 
7 

430 
3 

Q07 26 18 
* 

22 
* 

26 45 
540 

Q09 6 11 5 14 24 
15 22 19 23 8 21 13 

011 
Q13 

164 
39 

114 153 171 308 
3 

101 
8 

150 
14 

151 
12 
87 

9 16 3 

R06 3 
37 

6 
41 56 103 31 48 44 32 

81 
19 

125 
42 

152 
30 

R08 4 7 
4 
5 

5 
8 

13 3 4 5 2 3 3 
R10 16 14 16 22 

15 
31 

4 9 6 6 3 6 5 
Rll 224 180 236 270 462 

12 
161 

18 19 13 9 13 11 
R12 117 78 99 117 216 74 

248 280 123 113 161 335 
S07 * 3 1 3 9 * 

102 95 55 32 66 76 
S08 7 5 6 9 15 5 

3 3 3 6 5 
S09 59 40 53 64 109 36 

9 
48 

10 6 3 6 5 
S1l 13 12 15 17 29 10 23 

58 41 26 45 28 
S13 133 102 162 180 262 105 174 

16 
129 

11 8 15 10 
T08 120 80 105 124 218 70 95 128 

87 54 90 76 
T09 62 45 59 68 100 39 72 62 

55 53 75 68 
T10 3 4 3 4 11 2 4 

38 18 39 36 
T12 171 116 152 180 269 110 135 

5 
193 

6 3 4 
T14 59 45 68 68 96 41 65 54 

95 67 95 93 
U09 572 350 480 495 898 305 390 523 

32 
272 

15 34 25 
Ull 22 24 26 29 50 21 32 32 

225 293 420 
U15 75 83 71 105 212 45 80 93 

19 
77 

6 18 13 
NW24 429 285 405 450 655 273 375 420 245 

45 81 23 
YY01 1248 760 1050 1140 1899 689 1100 1300 690 

113 
450 

215 220 
YY02 452 300 396 468 708 273 372 504 218 108 

663 680 
YY03 562 348 522 558 832 211 252 616 262 216 

218 224 
YY04 409 255 405 428 616 263 345 560 245 113 

304 
205 

560 
210 



Appendix Cl cont.... (3) 

CON GE NE R 

Sta 110 77 82 151 149 134 114 146 132 105 141 158 
G07 51 * 7 26 63 * * 30 * + 20 * G09 6 * * * 5 * * 3 * * * 
Gil 45 * * * 44 * * 43 * 25 * G13 218 28 39 43 154 15 * 88 95 116 43 22 H08 12 * * 4 9 * * 10 * 6 4 * H10 120 * * 51 126 * * 76 * 63 35 * H12 110 * 16 37 101 10 * 98 * 68 26 J07 56 * 8 21 55 * * 36 23 28 16 5 J09 5 * * 2 6 + + + + + + * ill 167 * 27 88 235 24 * 152 * 105 68 24 J13 107 * 16 30 84 10 * 71 * 47 18 7 K06 32 * 4 12 29 3 * 7 10 * 6 K08 7 * * + 6 + * 3 * 2 * * K09 57 24 8 20 58 * * 63 33 32 15 K10 264 * 36 115 331 23 48 175 160 157 95 30 K11 150 * 25 48 151 9 * 122 * * 45 18 K12 80 * 13 28 76 12 * 76 * * 20 + L07 26 * * 11 25 * * 15 * 10 8 L08 23 * 3 7 22 4 * 12 * 11 6 2 L09 25 * 3 4 14 * * 5 * 10 4 L10 17 * * 6 14 * * 7 + + 6 * L11 182 190 29 64 189 18 26 180 113 124 62 22 L12 
L13 

* 
141 

* 
* 

+ 
22 

+ 
41 

+ 
126 

+ 
12 

+ 
* 110 * 88 32 12 M06 

M08 
* 

31 
+ 
* 

+ 
4 

+ 
7 

+ + 
* 

+ + + + + + 
M09 27 * 4 7 

14 
* * 

* 
* 

10 * 18 6 2 
M10 23 * 4 9 26 * * 

16 
13 

* 
* 

* 
* 

6 
7 

2 
M11 
M12 

91 
172 

44 
* 

15 32 100 10 * 74 51 58 28 
2 

10 
N07 17 * 

27 
* 

57 
4 

173 19 * 172 * 123 53 15 
N08 * + + + 

9 
+ 

* * 3 3 2 2 
N09 28 4 7 20 10 7 N10 
N11 

48 
16 

* 
* 

15 
+ 

* 158 + 69 229 137 
11 

* 
5 
4 + 

N12 141 * 20 
5 

46 
10 

120 
* 
* 

* 
2 

10 * 8 4 * 
N13 237 * 38 82 31 32 

134 
244 

* 
6 

67 34 0 
P06 10 * * 4 10 164 64 20 
P08 11 + + 4 9 * 

* 8 6 7 4 + 
P09 23 * 3 7 19 2 * 

9 * 5 3 * 
P10 11 + + 3 8 * 

11 1 * 3 5 + 
P11 
P12 

900 
+ 

660 
+ 

120 370 950 210 
+ 

140 
1 

990 
* 

530 
3 

540 
+ 

280 
* 

007 40 + 
* 
+ 

* 
17 

+ * * * * + + 
80 

* Q09 Q 27 * 4 6 
45 
19 

* + 30 * 19 13 * 09 224 * 32 82 214 
3 

31 
* 
* 

8 * * 5 2 Q13 77 + 12 38 97 
244 * * 76 20 

R06 6 8 + * 4 8 
10 

* 
* 76 46 45 29 7 

R0 12 * + 4 10 * 
* 6 * * 2 + 

R10 31 + * 11 29 5 
+ 
* 

9 * 4 3 * 
R11 280 * 44 108 315 38 56 

23 * 19 8 2 
R12 R 138 62 22 59 161 21 

343 * 231 98 25 
17 S 5 * * + 5 * 

22 146 55 107 50 14 
S08 12 * + 4 9 + 

* 3 * * * + 
S09 88 * 13 32 89 

8 11 * 10 4 
S11 30 * 5 11 30 

10 8 76 56 61 29 8 
S13 198 * 26 77 202 

3 
23 

* 
26 

14 
214 

* 
6 

+ 8 3 
T08 131 133 19 47 142 23 24 137 

147 62 16 
T09 83 * 13 33 85 12 1 82 

76 
* 

96 48 12 
T10 8 * * * 6 

3 65 28 6 
T12 164 * 25 61 161 38 36 

4 
177 

* 
1 

2 * 5 
T14 75 19 10 28 74 10 19 74 

15 65 15 
U09 544 569 87 213 599 122 107 620 

41 
386 

58 8 20 5 
Uli 39 * 6 16 34 * 7 39 

413 210 47 
U15 139 * 19 36 108 15 13 86 6 

32 28 
NW24 512 * 73 191 488 76 64 534 * YYO1 853 1568 174 408 1113 285 256 1200 752 

389 
784 

161 
457 

40 
1 YY02 

03 
486 * 75 184 491 110 102 549 * 428 174 

07 
40 YY 448 

464 + 
* 204 567 110 115 622 * 260 190 48 65 179 488 76 96 534 * 420 161 40 



Appendix cl cont. 

Ste 129 187 
G07 * 52 
G09 *3 
Gil * 37 
G13 17 48 
H08 *7 
H10 * 86 
H12 15 61 
J07 * 33 
J09 *3 
ill 19 151 
J13 * 42 
K06 *9 
K08 *3 
K09 * 31 
K10 44 224 
K11 17 87 
K12 * 53 
L07 * 16 
L08 * 11 
L09 *3 
L10 * 10 
L11 22 124 
L12 
L13 17 71 
M06 
M08 *9 
M09 * 11 
M10 * 13 
M11 11 59 
M12 27 112 
N07 *3 
N08 
N09 *9 
N10 *8 
Nil *9 
N12 * 78 
N13 35 143 
P06 *8 
P08 *8 
P09 * 11 
Pl0 *5 
P11 170 510 
P12 ** 
407 * 29 Q09 *7 

35 138 013 
R06 

15 56 

R08 * 
6 

R10 3 17 
R11 65 207 
R12 26 90 
S07 *3 
S08 *9 
S09 15 58 
S11 * 16 
S13 35 124 
T08 25 90 
T09 17 58 
T10 *2 
T12 60 109 
T14 * 42 
U09 131 376 
Uli 9 25 
U15 15 50 

NW24 130 299 
YY01 261 721 
YY02 122 313 
YY03 104 359 
YY04 109 311 

183 
24 

26 
4 

46 
24 
15 

53 
18 

5 
3 

16 
91 
33 
18 
10 

6 
3 
7 

47 
w 

26 
r 
7 
6 
7 

24 
41 

" 
5 

49 
5 

37 
51 

4 
4 
5 
t 

180 

15 
5 

51 
21 

3 
4 
9 

73 
33 

4 
21 

7 
44 
27 
26 

36 
18 

110 
13 
18 

128 
219 
102 
131 
128 

s) 
CONGENER 

128 
, 

185 174 177 171 156 173 201 169 15 5 10 19 19 9** 

15 *49***** 
55 *8 21 22 24 *** 

4*13***** 
37 * 15 35 * 22 *** 
25 *9 26 20 17 *** 
19 *7 13 19 **** 

53 15 42 56 35 34 * 19 2 21 *7 17 15 ***2 
4*233**** 
2*1****** 

16 *6 13 13 **** 
81 19 70 98 67 45 *** 
45 10 22 39 32 ** 17 2 22 *6 21 * 15 *** 8*25*5*** 

7*25*4*** 
5*1****** 
6*24***** 

68 11 30 48 41 26 * 25 4 ******* 
* 33 8 10 30 22 ***2 

****** 
8 *2344** 

" 7*256*** 
7*365*** 

27 6 13 25 26 15 **2 47 12 20 43 34 ** 26 5 2****** 
** 
5* *13* 

104 **3*9 **** 49 4*13*2*** 
30 * 12 32 36 ** 60 15 20 * 55 45 ** 34 8 3*123** 

*13*2*** 4 
5*245** 
* 1 

160 70 90 180 160 ** 150 80 
13 *58 15 **** 6*12*3* 
55 19 24 60 54 ** 34 12 19 *8 23 19 ***3 2*11***** 

4*134**7* 
7*367***1 

75 24 40 86 67 ** 53 15 38 10 16 37 27 ** 21 8 * 
*** 4*134**** 

25 *8 25 19 19 **3 
3761 

45 
40 

* 20 46 45 29 ** 12 11 
22 * 

18 35 26 ** 28 8 
* 

10 23 22 **4 
34 
15 

12 20 
7 17 

37 39 22 13 * 35 
19 ***3 133 44 80 146 105 * 46 * 47 9*48 

25 * 10 ***1 
113 *8 

21 19 
50 126 113 ***2 250 114 147 276 270 ** 

30 
100 38 40 129 108 60 

84 196 120 
70 53 64 147 108 *0 

40 
113 * 60 126 113 ** 

101 1 40 
** 30 



Appendix cl cont.... (5) 

CONGENER 

Sta 199 196 189 195 194 205 206 209 G07 35 32 * 11 26 7 19 G09 1***1*** 
Gil 22 11 ** 12 **9 
G13 26 19 *5 14 * 15 12 H08 54**3232 
H10 55 39 * 10 33 * 28 11 H12 39 23 *9 23 7 21 26 J07 24 16 *5 13 8 12 13 J09 ****1*** 
J11 86 53 8 19 53 11 29 28 J13 28 18 *7 16 5 15 21 K06 43**2222 
K08 2***1*** 
K09 24 18 *7 15 7 11 13 K10 159 118 * 42 93 25 46 29 K11 59 37 * 17 37 12 30 28 K12 33 23 *8 18 8 15 32 L07 11 7**6485 
L08 76*24446 
L09 1***1*** 
L10 86*24 
L11 79 65 10 23 54 13 30 39 L12 ******** 
L13 42 30 * 13 25 8 15 28 M06 ******** 
M08 54**2232 
M09 87*25353 
M 
Mil 40 

10 96*26242 

M12 72 31 
4 11 27 7 19 21 

N07 1** 
18 45 12 32 40 

N08 ***1** 
N09 64 
N10 ***13234 
Nil 76* 

14 144 
N12 53 35 *13143 
N13 92 63 * 

10 31 10 30 37 
P06 43* 

23 55 16 37 55 
P08 54**2231 
P09 86*13232 
P10 2**4243 *1** 
P11 400 300 60 120 0 
P12 **** 220 * 150 200 
Q07 20 13 *598 
Q09 43*39598 
Q11 Be 70 *2*21 013 33 23 * 

29 62 20 44 60 

R08 
32*9 22 5 15 21 
64**33 

R10 9*32 13 335 Ril 149 109 24 42 
7379 

R12 59 47 10 18 
90 25 65 86 

S07 **** 38 10 30 44 
S08 64* 
S09 35 29 * 12 25 7 19 29 Sil 11 9 
S13 75 60 *37246 

348 
16 T08 64 45 

18 
9 11 

37 54 
T09 40 32 

$ 23 28 54 
T10 1** 

12 28 8 19 32 
T12 80 59 1 

T14 28 20 
18 21 50 12 32 52 

U 
Ull 19 14 3 11 

09 293 216 41 100 168 44 1112 
21 

1 253 
U15 31 22 *8 18 

* 11 12 
NW24 209 157 37 59 126 41 915 

19 
3 138 YY01 557 408 82 182 320 77 222 445 YY02 220 168 39 62 139 40 104 156 YY03 246 189 39 73 154 40 104 166 YY04 231 175 37 65 144 49 93 161 



Appendix C2. Total PCB concentrations (tPCB) and normalized total concentrations with 
aluminium (PCB/Al) and total organic carbon (PCB/OC). The units of 
concentration are pg g'1, ng g'' Al and ng g' C respectively. 

station tPCB PCB/A1 PCB/OC 

G07 1444 120 488 
G09 96 12 49 
G11 1114 82 254 
G13 4069 299 822 
HOB 266 29 124 
H10 2599 200 614 
H12 2597 173 547 
J07 1306 107 370 
J09 86 10 42 
J11 4832 247 1015 
J13 2890 172 701 
X06 794 85 555 
K08 133 18 74 
K09 1516 153 702 
K10 6755 420 1672 
K11 3621 168 621 
K12 1870 110 400 
L07 607 58 240 
L08 454 45 164 
L09 305 36 150 
L10 303 38 137 
L11 5256 229 916 
L12 + r ,r 
L13 3153 155 553 
M06 *   
M08 488 56 262 
M09 537 60 253 
M10 402 41 169 
M11 2384 170 631 
M12 4486 218 803 
N07 359 39 160 
N08 * r 
N09 473 55 191 N10 1980 222 786 N11 315 34 130 N12 3164 198 933 N13 5990 276 1128 P06 273 30 177 P08 231 26 128 P09 421 47 
P10 223 27 114 P11 28680 896 3097 P12 º 
007 1084 90 442 Q09 401 47 171 
Q11 5702 324 1080 Q13 2032 143 755 R06 192 20 110 ROB 321 40 176 
R10 687 71 356 R11 8767 404 1861 
R12 4136 281 1334 S07 82 12 64 
SOB 305 38 165 
S09 2278 184 678 Sil 633 59 257 
S13 5218 290 1324 
T08 4160 396 1444 
T09 2204 139 480 
T10 143 17 72 
T12 5314 . 262 1222 
T14 2068 142 932 
U09 17688 543 1658 
U11 967 93 506 
U15 3108 203 1644 

NW24 13676 505 1697 
YY01 37883 945 3232 
YY02 14339 480 1562 
YY03 16143 451 1440 
YY04 13882 477 1534 



APPENDIX D. ABBREVIATIONS 

813C = carbon isotopic ratio in the sample in relation to the carbon isotopic ratio of a standard. 

S-MnO2 = one form of amorphous manganese oxide mineral. 

r= Pearson's correlation coefficient. 

r2 = coefficient of determination. 

p= two-tailed significance level for the correlation coefficient. 

s. d. = standard deviation. 

r. s. d. = relative standard deviation. 

Z= similarity coefficient. 

OCN = octachloronaphthalene. 

RRT = relative retention time. 

ECD = electron capture detector. 

DB-5 = stationary phase with 95% dimethyl-(5%)-diphenyl-polysiloxane. 

DB-1701 = stationary phase with 86% dimethyl-(14%)-cyan-propylphenyl-polysiloxane. 

Kd = distribution coefficient between a solid and an aqueous phase. 

Kor = octanol-water partition coefficient. 

Ka = distribution coefficient between sedimentary and aqueous phases normalised with the 
organic carbon content. 

Kb = distribution coefficient between the dissolved humic phase and the aqueous phase. 

MAFF = Ministry of Agriculture, Fisheries and Food (U. K. ) 

NWWA = North West Water Authority (U. K. ) 

ICES = International Council for the Exploration of the Sea. 

IUPAC = International Union of Pure and Applied Chemists. 


