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Synopsis 
In this thesis, several aspects of the optical properties of intersubband semi- 

conductor lasers are studied theoretically, including the waveguiding properties of 

quantum cascade lasers (QCLs), the anticipated modulation bandwidth, gain and 

threshold current of intersubband lasers, and the engineering of nonlinear suscepti- 

bilities in intersubband quantum well structures. Using two computational solvers, 

for the Helmholtz and Schrödinger Equations respectively, optical waveguide struc- 

tures and multi quantum well (MQW) structures are designed for subsequent re- 

search. The waveguide design of a QCL reported by the Bell Labs reseachers is 

analysed and improved upon. A four level rate equation model was used to obtain 

the population inversion condition and modulation response for a triple quantum 

well structure (TQW) designed for intersubband lasing. An analytical expression 

for the modulation response is first obtained, followed by a numerical computation 

to verify the results. It is demonstrated that there is a unique dependence of the 

modulation bandwidth upon the output power of the laser, and that the maximum 

modulation frequency does not increase monotonically with optical output power 

as is the case with conventional semiconductor lasers. An expression describing 

the optical gain of intersubband lasers is also derived. Using this, investigations 

into the predicted achievable gain in mid-infrared (MIR) and near-infrared (NIR) 

intersubband lasers are conducted. It is found that the NIR gain is at least an 

order of magnitude higher than that of the MIR case. Self-consistent calculations 

of the optical gain are also undertaken, where the rate equations and the optical 

gain equations are solved alternately. An intersubband structure is designed for 

both triple harmonic generation (THG) and four-wave mixing (FWM). The third 

order nonlinear susceptibilities of these respective processes in the structure were 

calculated and found to be comparable to those of structures designed for just one 

process. 
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Chapter 1 

Overview of Intersubband 

Lasers 

1.1 Introduction 

Lasers are fast becoming an integral part of our lives, so much so that it 

seems almost astounding that when the first laser was successfully demon- 

strated in 1960, it was known as a "solution looking for a problem, " and 

that, within research circles at least, the acronym laser stood for "Less Ap- 

plication of Stimulated Expensive Research. " This, of course, gives credence 

to the practice of funding blue-sky research, and is no doubt much cited by 

researchers looking for funds. 

In the early 1960s, when research on He-Ne, ruby and other lasers was 

started, many laboratories and institutions also began research on semicon- 

ductor lasers. At that time, J. B. Gunn discovered what is now known as the 

"Gunn effect" in which particular solid-state devices such as gallium arsenide 

1 



1.2 Intersubband lasers 2 

and calcium sulphide were found to be capable"of driving microwave oscilla- 

tions. As a consequence, studies on III-V semiconductors were started [1]. At 

that time, it was understood that semiconductor lasers must be considered 

not only as simple diodes but also as optical waveguides. In 1962, along with 

their report of the first successful operation of semiconductor lasers, expres- 

sions and equations leading to a direct modulation limit were also discovered 

by Hall et at [1], [2]. 

Infrared semiconductor lasers, especially those emitting light in the near- 

infrared spectral region, have found numerous applications in recent years. 

Semiconductor lasers working in the mid- to far- infrared region, from 2 µm to 

2 mm, on the other hand, are rare due to the longer wavelengths and, hence, 

narrower bangaps involved. Lasers generating light in this spectral region are 

useful for many purposes, including pollution detection, medicine and free- 

space communications. However, due to the lack of suitable narrow band-gap 

materials, a departure from the traditional semiconductor lasing concept of 

electron conduction-valence bands, or interband, transition is required. 

1.2 Intersubband lasers 

The development of advanced processes for the growth of high quality semi- 

conductor crystals which has now progressed to the stage where it is now 

possible to deposit a few monolayers at a time using techniques such as 

metal-organic vapour phase epitaxy (MOVPE), and molecular beam epitaxy 

(MBE) which allows the deposition of single monolayers of atoms (N 3 A) 

at a time, has made possible the fabrication of ultra-thin semiconductor het- 



1.2 Intersubband lasers 

erostructures. 

3 

This ability to fabricate such complex structures has motivated an exten- 

sive study of the physics and applications of the devices. In particular, the 

optical properties of semiconductor coupled quantum well (QW) structures 

and superlattices in the infrared wavelength have gathered much interest 

since the first observation of the large oscillator strength of an intersubband 

transition within a QW by West et al [3]. 

Intersubband lasers offer opportunites for obtaining compact laser sources 

with emission wavelengths in nearly the whole range of the infrared range 

from the near- to the far-infrared (say 1.3 jcm - 100 pm). These devices utilise 

electronic transitions in the conduction band (or valence band hole transi- 

tions) to achieve population inversion and lasing, hence the term 'unipolar'. 

Such lasers have attracted considerable attention following the development 

by Faist, Capasso et at of mid-infrared (MIR) quantum cascade lasers [4]. 

That work gave the first practical demonstration of a long-standing proposal 

for the utilisation of intersubband transitions to obtain lasing action in semi- 

conductor superlattices [5]. Quite considerable progress has subsequently 

been made in improving the operating characteristics of those devices [6], 

[7], and it thus becomes relevant to assess the expectations of operating 

characteristics of intersubband laser devices including their anticipated gain 

and threshold current values. 

In this thesis, an investigation of the following optical properties of in- 
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tersubband devices is detailed, namely the waveguiding properties of the 

so-called quantum cascade lasers (QCLs), the anticipated modulation band- 

width, gain and threshold current of intersubband lasers, and the engineering 

of nonlinear susceptibilities in intersubband quantum well structures. The 

above topics will be briefly introduced in the following sections and the organ- 

isation of the thesis is outlined. In the following chapters, the basic concepts 

relevant to the subject of interest in the chapter will be introduced first before 

proceeding with the description of the work and investigations. 

1.3 Wave Equations for Optical Waveguides 

and Electron Wavefunctions 

The similarities between the wave equations for optical waveguides and that 

of multi quantum well (MQW) structures have long been noted, and these are 

utilised in Chapter 2, where the computational methods for solving firstly, 

the Helmholtz Equation for optical fields in waveguides to find the supported 

modes, and secondly, the conduction-band time-independent Schrödinger 

Equation for the electron in MQWs to find the energy eigenstates and the 

corresponding wavefunctions, are discussed. 

These methods are utilised to design and conduct studies of the waveguide 

and intersubband MQW structures which will be investigated in the rest of 

this thesis. 
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1.4 Optical Waveguiding Properties of Quan- 

tum Cascade Lasers 

The predominantly TM-polarised light produced by intersubband transitions 

means that there is a possibility that some light might be lost via mode 

coupling with surface plasmons, which are modes which propagate in the 

interface between two media which have dielectric constants of opposite sign, 

e. g., a metal and a semiconductor. In Chapter 3, the waveguide design of 

a working QCL reported in (6] is investigated, and improvements to the 

structure are suggested [8]. 

1.5 Rate Equations and Modulation Band- 

width of Intersubband Lasers 

A study of the light-current characteristics and threshold current density of a 

triple quantum well (TQW) intersubband structure is detailed in Chapter 4. 

Analytical expressions for the population inversion condition and threshold 

current were obtained. There, the four-level rate equations [9], [10] which 

were utilised in the calculations and those described in the following chap- 

ters are introduced. The electron transport through the TQW structure is 

also discussed. The modulation response of intersubband structures is ana- 

lytically found by performing a small signal analysis on these rate equations 

[11], and preliminary investigations of the direct current modulation response 

are conducted. 
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The two TQW structures designed for mid-infrared (MIR) and near- 

infrared (NIR) lasing are presented in Chapter 5. The requirements consid- 

ered in the design are prescribed [12]. Studies of the anticipated modulation 

bandwidth of these structures are performed using a numerical computational 

method based on the dynamics of the rate equations [13]. 

1.6 Intersubband Optical Gain 

In Chapter 6, the fundamental theory necessary to provide an adequate de- 

scription of optical gain in intersubband devices is examined, and the expres- 

sion for intersubband optical gain is derived [14]. The expression is found to 

be almost similar to that reported in [15]. The lineshape function utilised in 

that work is also incorporated into the optical gain expression presented here. 

Using the expression for gain as well as the four-level rate equations, in 

Chapter 7a self-consistent study of the intersubband optical gain is addressed 

[16]. 

1.7 Intersubband Nonlinearities 

The development of the laser also heralded the birth of the field of nonlinear 

optics -a field previously limited to studies of the behaviour ordinary light 

beams under the effect of strong externally applied magnetic and electric 

fields. The intense and focused light produced by lasers possess electric and 

magnetic fields that were so strong that the characteristics of the medium 

in which it is travelling were affected. This may be put under the general 
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category of extrinsic nonlinearity.. The complementary category of intrinsic 

nonlinearity involves phenomena such as second and third harmonic genera- 

tion, and sum and difference frequency generation, which in general can be 

described as the conversion of input light of a certain frequency to output 

light of a different frequency via interactions with polarisable material. 

One of the properties of intersubband structures is that their energy levels 

can be tailored by suitable design of the wells and barriers using the appro- 

priate semiconductor alloys. In Chapter 8, a MQW structure with energy 

levels appropriate for both triple harmonic generation and four wave mixing, 

with large third order susceptibilities is designed and investigated [17]. 
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Chapter 2 

Wave Equations for Optical 

Waveguides and Electron 

Wavefunctions 

2.1 Introduction 

The growing sophistication of semiconductor growth processes means that 

there is now scope for fabricating increasingly complex multilayer optoelec- 

tronic structures. In turn, this leads to a need for more accurate and flexible 

calculation techniques in order to optimize the performance of the desired 

devices. The Helmholtz Equation for optical fields will be used to find the 

waveguide modes in order to optimise laser design. The Schrödinger Equa- 

tion will be applied to calculate the energy levels and envelope wavefunction, 

and the corresponding lifetimes of any metastable states, which are needed 

to find the matrix elements for intersubband transitions, as well as design 

11 



2.1 Introduction 12 

the quantum well (QW) structures for intersubband lasing. In this chapter, 

the application of the Argument Principle Method (APM) to the extraction 

of the solutions to, firstly, the Helmholtz Equation for the optical fields of 

a multilayer waveguide [1], and secondly, the time-independent Schrödinger 

Equation of a multi-quantum well (MQW) structure [2] is discussed. Simi- 

larities will be noted between the forms of the two equations. 

2.1.1 The TE and TM Polarisations in a Waveguide 

In general, the modes supported in a waveguide can be categorised into two 

types. These are (i) the transverse electric (TE) modes, so called because 

the electric field (Ey) is restricted to the transverse plane, i. e. normal to 

the plane of propagation; and (ii) the transverse magnetic (TM) modes, be- 

cause in this case, the magnetic (Hy) field is restricted to the transverse plane. 

Here, Ey and Hy are the y components of the electric and magnetic fields 

respectively, where the electric field is defined as E= (Ex, EE, EZ), and the 

magnetic field is defined as ii = (H. 
, 
Hy, H=). TE modes involve the field 

components Ey, H. and HZ, while TM modes involve the field components 

HY, Exand EZ. 

2.1.2 The Electron Wavefunction in a QW 

The electron wavefunction ¢ describes the state of the electron. A rigorous 

calculation of it may be performed by solving the Schrödinger Wave equation 

with the appropriate crystal potential. However, since such an exact calcu- 

lation tends to be complicated and difficult to work with, approximations 
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(2.8), and can be written as 

Eyi(x) = A; exp[-jk di + Bi exp[+ji di] 

wpoHzi(x) = AiRi exp[-jRtidi + B1i1 exp[+jiidi] 

(2.7) 

where d; defines the thickness of the ith layer, as shown in Figure 2.4. 

Using the solutions of the above equations, the tangential fields at the 

bottom of the ith layer (x = x; ) can be expressed as a function of the fields 

within that layer as 

Eyi(xi) cos[kidi] 
K 

sin[kidi] E'yi(xi) 

L wpoHzi(xi) jkisin[Ridi] cos[Kidi] WµoHzi(xti) 

Eyi(x; ) 
_ . M; (2.8) 

wpoHzi(xi) 

where )v1 is the transfer matrix for the ith layer, with thickness d;. 

Hence, due to the continuity of the tangential fields at any layer interface 

in the multilayer waveguide structure, the fields tangential to the boundaries 

at the top of the substrate layer Eys, His, and at the bottom of the cladding 

layer Eyc, Hic, are related via the matrix product 

Eyc(xc) 

= M1M2M3 ... Mr 
Evs (xs) 

wµoH: c(xc) wltoHs(xs) 

mu m12 Eys(xs) 

_ (2.9) 

M21 M22 wµoHss(xs) 
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In general, the tangential fields at the boundaries can be written as 

Eyc (x) = Bc exp [c (x - x,. +i) ] for x> xr+i 

wßoH: c(x) = -j' CBc exp[-' c(x - xr+i)] for x> xT+i 

Eys(x) = As exp(ry"sx) for x<0 

wµoHZs(x) = j' sAs exp('Ysx) for x<0 (2.10) 

where ry"S =f y2 - köns, and ry"c =f rye - konc, where ns, nc are the 

substrate and cover complex refractive indices respectively. Equations (2.9) 

and (2.10) yield the dispersion equation 

)7('Y) _ .7 
('Ysmii + 7cm22) - m21 + 7s7cm12 =0 (2.11) 

which has as solutions the complex propagation constants '. 

0 

The same procedure is followed for the TM case, with the resulting layer 

transfer matrices Mi having the same form, but with ici replaced by -ki/n? 

in the coefficients of the sine terms, and in Equation (2.13) ry`s and ry`C must 

be replaced by -rys/ns and -7C/n2C respectively. 

In general, the square roots signs of ry`S and is can be positive or neg- 

ative. However, at the waveguide boundaries it is important to select the 

sign appropriately to correspond to whether the fields are increasing or de- 

caying. So for bound states the solutions are chosen such that Re[ys] > 0, 

and 7Re[ryc] > 0. 

For forward leaky waves which leak energy into the substrate, konc < 

ß< kons, the tranverse propagation constant in the substrate is rys = 
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f y2 - kons = YS + jys and the sign selection must be such that ry's <0 

and 'y .>0. There is no reason to modify yc since 1Ze[ry"c] must be positive. 

For the case of forward propagating waves leaking energy into the cladding, 

exactly the same conditions hold, but with sign inversion, since x>0 and 

with subscript change from S to C since kons <, 8 < konc. 

For backward propagating leaky waves with 9<0, the method is the same 

as for the forward leaky waves, with the only difference is that the region to 

be searched must be in the negative ,6 range. Hence, by imposing the correct 

sign on the -y s", 'y numbers, the desired leaky waves can be selected. The full 

description of all possible leaky waves that can be supported by a multilayer 

waveguide structure and their ys, yc, y conditions can be found in [10]. 

2.3 The Schrödinger Wave Equation 

The Schrödinger equation can be used to obtain the energy levels and wave- 

function in a MQW heterostructure. Obtaining solutions to the Schrödinger 

Equation will enable the extraction of the eigen-energy values of an unbi- 

ased/biased quantum heterostructure. The envelope wavefunction for con- 

duction electrons in a single band, WY(r, t), is described by the effective-mass 

Schrödinger equation [2], [3] 
1 

2m (r) 
V Zql(r, t) +V (r)W (r, t) = ih-W (r, t) = EW (r, t) (2.12) 

* at 

where r is the space position vector, V (r) is the potential energy at r, m* (r) 

is the spatially varying electron mass, (-h/2m*(r))V2 is the kinetic energy 
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operator (_ p2/2m*(r)), and E is the eigen-energy of the system. The 

state function can be expressed as the product of space-dependent and time- 

dependent factors, W(r, t) = 0(r)w(t), where the time-dependent part 

w(t) = e-1(E'A)t (2.13) 

The time-independent part of the Schrödinger equation, which contains the 

spatial-varying envelope wavefunction, O(r), is 

2m*(r)V20(r) 
+ V(r)i(r) = EO(r) (2.14) 

The general solution for a uniform potential can be written as the sum 

of two counterpropagating plane waves, 

di(r) = Ae"Z + Be-J" (2.15) 

where the relation 

ßc2 = 
2h2*(E-V) (2.16) 

is found from Equation (2.14). 

2.3.1 Similiarities between QW Heterostructures and 

Multilayer Optical Waveguides 

There is no difference in the form of the time-independent Schrödinger's 

equation 

-2 
A2 

V 2'(r) + [V (r) - E] (r) =0 (2.17) 

and the form of the wave equation for the transverse electric (TE) field 

v2E(r) + [kön2(r) - Q]E(r) =0 (2.18) 
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Therefore the solutions for the two equations will be similiar if the bound- 

ary conditions are analogous; the boundary conditions are analogous for the 

TE modes which are polarised in the y-direction, but a little different for the 

TM modes which are polarised in the x-direction [3]. 

2.3.2 Energy States 

The energy eigenstates, E, of a MQW structure can be of several types. 

These are illustrated in Figure 2.5, and are described [2], in analogy with 

the waveguide modes, as follows: (i) Bound states, in which the electrons 

are bounded within semi-infinitely thick left and right barriers; (ii) Type 

1 quasibound states, in which the electrons have classically free propaga- 

tion in the left and right boundary regions {these states are also referred to 

as virtual or extended states); (iii) Type 2 quasibound states, in which 

the electrons have classically free propagation in the right boundary region, 

and bounded propagation in the left boundary region; and finally (iv) For 

completeness it is noted that Type 3 quasibound states, in which the 

electrons have classically free propagation in the left boundary region and 

bounded propagation in the right boundary region, but this will not be rel- 

evant for this work as it is assumed here that an applied bias will tilt the 

MQW structure from left to right, as in Figure 2.5. 

For quasibound energy levels, the solution of the envelope wavefunction 

has boundary conditions that require an electron wavefunction to leak out, 

and hence, using the complex energy method (CEM) [5], [6], [7], the energy 
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eigen-values become complex having the form E= Er + jE;, where E; > 0, 

with the lifetime of the energy level, r, being related to the imaginary part 

of the energy eigen-values as r= hi/2E; [2]. 

All the allowed heterostructure eigenstates can be classified according to 

their eigen-energy real part, Re[E] = E,., with respect to the the heterostruc- 

ture barrier levels Vo and VN+1. If, as in Figures 2.5 and 2.6, Vo+Vbias > Viv+i, 

then for (i) bound states Er < VN+1, as in regime (a) of Figure 2.6; (ii) for 

type 2 quasibound states VN+1 < E,. < Vo + Vain� as in regime (b); and (iii) 

for the type 1 quasibound states VO + V616, < E,., as in regime (c). The bound 

states are confined within the heterostructure region, the type 2 quasibound 

states leak out from the lowest potential energy heterostructure boundary, 

VN+1, while the type 1 quasibound states leak out from both boundaries. 

The imaginary part of the eigen-energy,. Tm[E] = EE, is nonzero only for the 

case of quasibound states, i. e. for states that can leak out of the well, and it 

is zero for bound states. 

2.3.3 Transfer Matrix Formulation 

Figure 2.5 shows an arbitrary potential energy profile V(z) under a bias, 

Vbias, where V (z) is segmented into i=1, --", N layers with piecewise con- 

stant potential energy V, ". The discretised time-independent conduction-band 

effective-mass Schrödinger equation for the ith region with uniform potential 

energy Y, and constant effective mass m;, is derived in Appendix C, and is 
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Figure 2.6: The envelope wavefunctions according to the different values of 

the real part of the energy eigen states, E.. 
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given by [2] 

where 

d 
2z 'Os (z) + ks Oi (z) =0 for z; _1 <z< zi (2.19) 

Ri =fV 
AZi (E - Y) (2.20) 

where iii(z) denotes the envelope wavefunction in the ith layer, and icj defines 

the complex wavevector in the same layer along the z-direction. 

The boundary conditions for O(z) at the interfaces between layers i-1 

and i where i =1,2 """N+1, are written as [8] 

Oz-i(z: -i) = Oi(zi-1) 

ml Tipi-i(zi-i) =m dib (zi-i) (2.21) 
0-1 i 

due to the classical equation of particle current continuity. It was shown 

by Bastard [9] that for a QW, the particle current is only conserved if the 

factor 1/m* is included in Equation (2.21). As was further pointed out in 

the same paper, the boundary condition in Equation (2.21) is the only one 

which ensures stationary eigenstates even is there is a jump in the effective 

mass at the boundaries. The total wavefunction for the system 0 is then 

given by summing the wavefunctions ib in all the individual layers together. 

Rewriting Equation (2.17) into the discretised form, we have 

q/ji(z) = Atie, 7Ki(; -Zi-1) + Bie, 7Ki(z'Zi-1) 

for z; _1 <z<z; (2.22) 
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Using Equations (2.21) and (2.22) for the ith layer with thickness di, the 

envelope wavefunction and its derjvative scaled by the effective mass mi at 

the ith layer boundaries z; _1 and z; can be written as 

Yýi(zi-1) cos(kidi) -K sin(Rjdt) Oi(zi) 

L WI 
d 

`'i(zi-1) 
m sin(%£idi) cos(kidi) mi dzY'i(zi) 

Y'i 
(zi) 

_ . Ali (2.23) 
m? dz 

Y'i(zi) 

Combining Equations (2.21) and (2.23), the wavefunction and its deriva- 

tive scaled by the effective mass at the left (i = 0) and the right (i =N+ 1) 

heterostructure boundaries can be related as 

F 00 (zo) 
_ M1M2M3... MN 

1N+1(ZN+1) 

Y' ti 
(zo) 

m +l dz'YN+1 
(ZN+1) 

m11 m12 Y'N+1(zN+1) (2.24) 

M21 M22 
mN+1 d IPN+1(zN+l ) 

The travelling waves outside the heterostructure boundary regions can be 

written as 

V)0(z) = Ao exp[ýoz] for z<0 

, ON+1(z) = BN+1 exp[-ý N+1 (z - zN+1) for z> ZN+1 (2.25) 

where ry"o = jko, 'YN+i = 2KN+l" The condition that V)(z) must be bounded, 

i. e. zero at z= ±00, leads to 

F1 -Ml l+ m12 Ao 
_p (2.26) 

MO* 
. -m21 "ý m22 

m1 
BN+1 
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For nontrivial solutions the determinant of Equation (2.26) must be zero, 

and so the dispersion equation is obtained: 

. ý(E) = mil 'yo + m22 
'YN+i 

- M21 - m12 
'Yo 'YN+l 

=0 (2.27) 
mo mN+1 mö mN+i 

the zeroes of which define the heterostructure energy eigenstates. In gen- 

eral, the square root signs of 7Ze[kj] from Equation (2.20) can be positive 

or negative. At the heterostructure boundaries, however, it is important to 

select the sign appropriately to correspond to whether the wavefunction is 

decaying or increasing. So for (i) bound states 7Ze[ko] >0 and 7Ze[i N+l] > 0, 

(ii) type 1 quasibound states Re[ko] <0 and Re[kN+l] < 0, and (iii) type 2 

quasibound states 7Ze[Ro] >0 and Re[FCN+l] < 0. 

2.4 The Argument Principle Method 

The argument principle method (APM) is based on the generalised argument 

principle theorem which has the form [11] 

i 
2r 

ýc 

.f 
(z) 

dz =N-Q (2.28) 

where f is a function which is analytic within and on C and has no zeros on 

C; the contour C does not pass through the origin, N and Q are the number 

of zeros and the number of poles of f respectively, and f(z) denotes the 

derivative of f with respect to z. 

For the case that the function f has no poles, i. e. Q=0, the equation 

below maybe realised [2], [11] 

Q+P=T1 
iszPfý )dz=E(P 

(2.29) 
s=i 
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where (P are the i=1,2, """, n zeros of f which lies in C raised to the Pth 

power, and Op is the summation of these zeros for the Pth power. 

The derivative f' (z) may be found using the Cauchy integral formula 

f (z) = -2ý 
f ds (see Appendix A), where z is any point within C and s S-Z 

is any point on C. If a function is analytic at a point, its derivatives of all 

orders exist at that point and are also analytic there [11]. It can be shown 

(see Appendix A) that the derivative of f at the pointz = zo has the integral 

representation [2] [11] 

f1 (zo) _ 
. 721r 

JD 
(zf 

(z) 
)2 

dz (2.30) 

So consider a region C, and carry out the contour integral numerically 

for several values of P, approximations to c, Ql, 02i '"" maybe determined. 

When P=0, Equation (2.30) takes the form of Equation (2.28). In this 

instance, CO is an integer and gives the number of zeros of f within C. Using 

these approximations, a polynomial S(z) of degree CO may be found, the zeros 

of which coincide with the zeros of f in C. It has been found, however, that 

using Muller's Method [14], the zeros of the original function f are converged 

to very rapidly, so that the formation of the approximation polynomial is not 

necessary. Hence the program runs more efficiently when it is removed, and 

many of the complications related to the implementation of the routine for 

the approximation polynomial are not incurred. For example, in practice, 

the zeros of the approximation polynomial do not coincide with the zeros of 

the initial function f (z), and further refinements usually need to be done. 
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2.4.1 Numerical Implementation of APM 

The application of APM to the dispersion equations of Equation (2.12) and 

Equation (2.27), i. e. with f (z) = F(E) and f (z) = 77(y), is relatively 

straightforward. First, the singularity points need to be identified, after 

which the area between the singularities is enclosed by rectangular contours. 

These contours do not enclose any of the singularities. The vertical contour 

segments can approach the singularities arbitrarily close, while the horizontal 

segments should be located at a value of an order of magnitude larger than the 

real value range, on the imaginary axis [1], [2]. The path integral of Equation 

(2.29) evaluated for P=0 gives the number of zeros of f (z) enclosed by the 

contour C, i. e. the number of modes supported by the waveguide in the case 

of f (z) = Y(E), and the number of energy levels in the MQW structure if 

f (z) = Y(ry" ). The values of the propagation constants or energy levels may 

then be solved for. 

The optical waveguide dispersion equation: 

A typical multilayer-waveguide refractive index distribution in the complex 

plane is shown in Figure 2.7. The X's in Figure 2.7 correspond to the singu- 

larities konc and k0nS. According to the previously mentioned segmentation 

strategy, the region of interest in the complex plane muct be enclosed by two 

contours Cl and C2, since the singular points must be excluded from any 

path. The contour C2 encloses the refractive index with the maximum real 

part kon. x. 



2.4 The Argument Principle Method 

0 

a 

C2 

R 

32 

Figure 2.7: Complex plane representation of APM operation on the disper- 

sion equation for a multilayer waveguide. kor`am is the complex refractive 

index with the maximum real part and is enclosed by contour C2. 
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The Schrödinger dispersion equation: 

33 

The two singularities which are marked by X's in Figure 2.8, are the two po- 

tential energy levels Vo+Vb; a, and VN+1, which correspond to the heterostruc- 

ture boundary regions. The energy range for which the heterostructure en- 

ergy levels are of interest, is enclosed in rectangular contours which exclude 

the two singularities. C1, C2 and C3 are the integration contours which en- 

close regions to be searched for complex energy eigenvalues in bound, type 2 

quasibound, and type 1 quasibound respectively. 

Ei 

Bound 
Type 2 Type 1 

States 
Quasibound . Quasibound 

States States 

0 
VN+1 II VO+Vbias 

000 

000 

000 

Er 

Cl C'2 C3 

Figure 2.8: Complex plane representation of APM operation on the disper- 

sion equation for a MQW structure. 
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2.5 Conclusion 

In conclusion, the wave equations for both the optical fields in waveguides, 

and electron wavefunctions in QW heterostructures have been discussed. The 

transfer matrix formulations for both were presented and a single method, 

the APM, used for solving both analogous equations. 
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Chapter 3 

Optical Waveguiding Properties 

of Quantum Cascade Lasers 

3.1 Introduction 

In this chapter, the optical-waveguide properties of the Quantum Cascade 

Laser (QCL) [1] are analysed and discussed. Intersubband transitions involve 

predominantly TM-polarised light, where the electric field is perpendicular to 

the epitaxial layers, although some weak TE-polarised transitions are possi- 

ble under certain circumstances [2]. The interface between the metal contact 

and semiconductor in the waveguide structure reported in (3] may also sup- 

port the so-called surface plasmon modes, or electromagnetic surface modes, 

which are highly lossy, and hence, for most cases, any coupling between the 

plasmon mode and the lasing (guided) mode should be avoided. It has, con- 

versely, been argued [4] that the use of plasmon modes is an effective method 

for obtaining waveguiding. In that work, a metal contact layer (palladium) 

with a larger imaginary refractive index component than, e. g., gold or silver 

37 
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which are the metals usually used for contacts, is utilised to increase the 

reflection coefficient at the guiding interfaces, so that the penetration of the 

mode into the metal, and hence the losses at the interface, is reduced. 

The modes supported by the metal-semiconductor interface of the QCL 

waveguide can be modelled using the method of solving the Helmholtz equa- 

tion for optical fields, which was introduced in Chapter 2. 

3.1.1 Electromagnetic Surface Waves (Surface Plasmons) 

A surface wave is a mode of propagation which is confined to the immediate 

vicinity of the interface between two semi-infinite media [5]. For example, 

the occurence of ripples in water can be thought of as a surface wave guided 

by the interface between air and water. The electromagnetic surface wave, 

however, occurs at the interface between a dielectric and a metal, and was 

first suggested by Kossel [6], when he postulated the existence of "surface 

states" near the interface between a periodic dielectric layered medium and 

a dielectric homogenous one. Both TE and TM modes can be supported, 

and many modes may exist at a given frequency w. 

Electromagnetic surface waves can also exist at the interface between two 

media, provided the dielectric constants of the media are opposite in sign 

(e. g. air and silver). In this case, only a single TM mode exists at a given 

frequency [5]. The amplitude of the wave decreases exponentially in the two 

directions normal to the interface as illustrated in Figure 3.1. The modes are 

also called surface plasmon waves because of the electron-plasma contribu- 
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is defined as the fraction of the optical energy that is confined in the active 

region of the waveguide. The modal gain may then be found from the ex- 

pression g, = rg. However, using the complex energy method described 

previously, the modal gain may be directly calculated from the imaginary 

part of the complex propagation coefficient, i. e. the attenuation coefficient, 

a. This method is therefore more accurate than the traditional one. 

3.2 The QCL Waveguide 

In a conventional semiconductor laser, the epitaxial layers grown on either 

side of the active region are usually chosen to form a waveguide normal to 

these layers. This techinique has also been used in the QCL [3], [8]. The 

epitaxial layers grown adjacent to the active layer of a semiconductor layer 

ensure that most of the light propagates in the active layer. The active region 

forms the central core layer of the multilayer waveguide, as shown in Figure 

3.2. 

For the TM-polarised light emitted by a QCL, only three field compo- 

nents (Ex, Hy, EZ) need to be considered in the waveguide analysis. The TM 

modes supported by an optical waveguide can be found using the transfer 

matrix method, and Argument Principle Method (APM) described in Chap- 

ter 2, using the appropriate parameters for TM configuration. 

The structures shown in in Figures 3.3 and 3.4 have been analysed [9] and 

both are found to be multi-moded. Figure 3.3 shows the original waveguide 

structure used in [3], while Figure 3.4 shows an alternative design proposed 
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Figure 3.2: Schematic diagram of the layer structure of a typical quantum 

cascade laser. 

in [7] after a sensitivity analysis of the waveguide, which is described in Sec- 

tion 3.6. 

The details of the widths and relative permittivities of the two-layer struc- 

tures being analysed are given in Table 3.1, part of these values were taken 

from [9]. All calculations assume a gold interface contact and that the imag- 

inary part of the relative permittivity of the active region is equivalent to 

a local gain of 50 cm-1. All other epitaxial layers have been taken to be 

passive. A lasing wavelength of 4.65 pm has been assumed. 

The primary purpose of the two thin layers of high refractive index on 

both sides of the active layer of Figure 3.3, is to increase the confinement of 
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the optical power in the active region, and hence reduce the coupling to the 

lossy surface mode. The structure from [3] was found to support two modes, 

and the value of the complex propagation coefficients are given in Table 3.1. 

The modal intensities of the two modes are shown in Figure 3.5. In the fol- 

lowing analysis it will be shown that the high-index layer nearest the metal 

primarily controls the interaction between the bound modes and the surface 

plasmon; and that, similiarly, the other high-index layer near the substrate 

influences the interaction with the active region. The combined widths of 

the high-index layers will also be shown to be the primary indication of the 

degree of confinement of higher-order modes. 

3.3 Proposed Waveguide Design 

If the high-refractive-index layer nearest the metal contact is removed, the 

resulting simpler structure (Figure 3.4) has slightly improved propagation 

characteristics compared with those of the original design, as shown in Ta- 

ble 3.1. The remaining high-index layer pulls the peak of the fundamental 

mode towards the substrate, and thereby improves the confinement of the 

fundamental mode in the active region, while simultaneously reducing the 

confinement of the first-order mode in the active layer. So, the gain experi- 

enced by the fundamental mode is larger than that of the original case, and, 

the gain of the first-order mode is reduced, in comparison with the original 

design. 

The removal of the high-index layer nearest the metal contact has two 
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Table 3.1: Thickness and real part of the relative permittivity of the epitaxial 

layers that make up the two waveguide structures being investigated. 

Original design [3] 

Epitaxial layer 1234 567 89 

Thickness (µm) - 1.24 0.50 0.74 0.24 1.24 0.24 1.80 - 

Refractive index 2.50 2.92 3.17 3.20 3.47 3.39 3.47 3.04 3.04 

Fundamental mode First-order mode 

neff cm-1 ne ff cm-1 

3.2998 9.3706 3.0951 1.9805 

Proposed design 

Epitaxial layer 12345 67 8 

Thickness (pm) - 1.24 0.50 0.74 1.24 0.24 1.80 - 

Refractive index 2.50 2.92 3.17 3.20 3.39 3.47 3.04 3.04 

Fundamental mode First-order mode 

nq ! cm-1 nff cm-1 

3.2875 9.5415 3.0792 1.1235 

The effective index and modal gain of the two modes supported by each waveguide 

are given. The complex reflectivity of gold was taken to be (1.086 - j33.57). 
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favourable effects on the propagation coefficients of the two modes supported 

(Table 3.1). The modal profiles are shown in Figure 3.6. It is expected that 

the proposed waveguide structure will have the following beneficial effects on 

overall device performance: (i) it will reduce the threshold current, and (ii) it 

will suppress the excitation of higher-order modes and thereby improve the 

near and far-field optical profiles. 

3.4 Sensitivity Analysis 

The sensitivity of the above structures in Figures 3.3 and 3.4 to small per- 

turbations has also been investigated. The effect that small changes in the 

width and relative permittivity of various layers have on the propagation 

coefficient are shown in Table 3.2, where the changes in the imaginary part 

of the propagation coefficient induced by each perturbation have been ex- 

pressed in terms of the modal gain, and as a percentage change in the modal 

gain. 

Some general observations can be made about the data in Table 3.2. The 

two structures show the same degree of sensitivity to the perturbations. Also, 

in general, the modal gain experienced by the fundamental mode of the new 

structure (Figure 3.4) is larger than that of the original structure (Figure 

3.3). The new structure is better at suppressing the first-order modes. In all 

cases, the first-order modes show the greatest sensitivity to the perturbations. 

These first-order modes are close to cut-off, and hence small perturbations 

in optical parameters have a greater effect. 
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Table 3.2: Modal gains calculated for both structures after altering (i) the 

active layer width by ±5% and ±1%, (ii) the real part of the relative permit- 

tivity of the active layer by ±1%, and (iii) the width of the high-index (H-I) 

layer(s) next to the active layer by ±1%. 

Modal gain 

Fundamental mode First-order mode 

Original Proposed Original Proposed 

cm -1 % cm -1 % cm -1 % cm-1 % 

Unperturbed 9.3706 0.00 9.5415 0.00 1.9805 0.00 1.1235 0.00 

Active width +5% 9.6289 2.75 9.8257 , 2.97 2.3988 21.1 0.2687 -76.0 

Active width +1% 9.4235 0.56 9.5695 0.29 2.0651 4.27 -0.3845 -134.2 

Active width -1% 9.3168 -0.57 9.4852 -0.58 1.9853 -4.30 1.0248 -8.75 

Active width -5% 9.0946 -2.95 9.2542 -3.00 1.5499 -21.7 0.6298 -44.0 

Active index +1% 9.6831 3.33 9.8147 2.87 2.2185 " 12.1 1.4726 31.1 

Active index -1% 9.0246 -3.69 9.2447 -3.11 1.7549 -11.4 0.7759 -31.0 

H-I layer +1% 9.5050 1.43 9.5341 -0.07 1.2144 -38.6 1.1414 1.64 

H-I layer -1% 9.6185 2.65 9.5478 0.07 1.110 -44.0 1.1045 -1.64 

The actual gain of each mode and its percentage difference from the unperturbed case 

are given. 
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Variations in the width of the active layer show one surprising result. The 

modal gain experienced by the first-order mode of the new structure goes 

through a minimum as the active layer is increased, while the modal gain of 

the fundamental mode increases with active-layer width. This behaviour is 

not observed in the original design, where both modal gains simply increase 

with active-layer width. 

An increase in the value of the refractive index of the active layer increases 

the modal gain of all the modes, and there is no appreciable difference in the 

performance of the two structures to this type of perturbation. As would be 

expected, increasing the refractive index of the active layer raises the optical 

confinement in this layer. But in doing so,. care must naturally be taken to 

avoid the onset of higher-order modes. 

The results in Table 3.2 also indicate that there is an optimum value for 

the width of the high-index layer used in the new design. Increasing the 

thickness of the high-index layer causes a reduction in the modal gain of the 

fundamental mode, as more of the mode is guided in the high-index layer. 

The data in Tables 3.2 and 3.3 indicate that there are also optimum widths 

for the two high-index layers used in the original structure. 

In Table 3.3 the changes in the modal gain of both modes of the original 

structure, caused by independent variations in the width of the high-index 

layers, are presented. Increasing the width of the high-index layer nearest 

the substrate causes a decrease in the modal gain of both modes. Chang- 
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Table 3.3: Effect of independently changing the widths of the high-index 

(H-I) layers on both sides of the active layer of the. structure of [3]. 

Modal Gain 

Fundamental mode First-order mode 

cm-1 % cm-1 % 

Unperturbed 9.3706 0.00 1.9805 0.00 

H-I layer nearest the metal +5% 9.3409 -0.31 2.0443 3.22 

H-I layer nearest the metal +1% 9.3647 -0.06 1.9933 0.65 

H-I layer nearest the metal -1% 9.3763 0.06 1.9676 -0.65 

H-I layer nearest the metal -5% 9.3989 0.30 1.9157 -3.27 

H-I layer nearest the substrate +5% 9.3726 0.02 2.0151 1.74 

H-I layer nearest the substrate +1% 9.3710 -0.0 1.9875 0.35 

H-I layer nearest the substrate -1% 9.3699 -0.0 1.9733 -0.36 
H-I layer nearest the substrate -5% 9.3669 -0.04 1.9444 -1.82 

Both the actual gain of each mode and its percentage difference from 

the unperturbed case are given. 
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ing the width of this layer primarily alters the degree of interaction which 

both modes have with the active region. In contrast, varying the width of 

the other high-index layer nearest the metal has a more complicated effect. 

Increasing the width of this layer reduces the modal gain of the fundamental 

but increases the modal gain of the first-order mode. The converse is true 

if the width is reduced. The high-index layer nearest the metal contact pri- 

marily increases the interaction of the fundamental modes with the metal 

surface contact by pulling the mode closer to the contact. Any increase in 

the width of either of the high-index layers causes the first-order mode to be 

more tightly bound, and thus increases its modal gain. These results show 

that ony the high-index layer nearest the substrate is required to improve 

the guiding of the fundamental mode. The, other high-index layer primarily 

assists in guiding the first-order mode. These effects explain the improved 

performance of the new structure. 

Increasing the refractive index of either or both of the high-index layers 

in either structure causes minimal changes because these layer are relatively 

thin. Assuming that all the epitaxial layers (except the active layer) are lossy 

causes reductions in the modal gains consistent with the assumed attenua- 

tion. As would be expected, reducing the optical wavelength causes all the 

modes to be more tightly bound, i. e. more of the optical power is confined 

to the core regions, and the power also decays more rapidly outside the core 

waveguide layers, resulting in increased modal gains. 
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The basic multilayer optical-waveguide structure used in the majority of 

quantum cascade laser devices has been investigated, and has been shown 

to be multimoded. A complex-waveguide analysis was undertaken using the 

transfer-matrix method and the APM described in Chapter 2. The effect of 

small perturbations in the optical parameters on the complex propagation 

coefficient has been studied. 

This analysis has shown that a more efficient waveguide structure can be 

obtained by the simple expedient of removing the high-index layer nearest 

the metal contact from the original design of [3], in the sense that not only 

has it resulted in a better guided and more confined fundamental mode with 

a higher modal gain, but also a weaker first-order mode, in comparison to 

the original design. In subsequent chapters, studies will be conducted of the 

active region section where the lasing processes take place. 
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Chapter 4 

Rate Equation Analysis and 

Threshold Conditions 

4.1 Introduction ' 

The performance of a semiconductor laser is defined by several parameters, 

which include its threshold current density, Jth and its light-current (P - J) 

characteristics. A study of these characteristics for a triple quantum well 

(TQW) intersubband structure, as illustrated in Figure 4.1, has been pre- 

sented in [11, and will be discussed in this chapter, in order to determine the 

feasibility of achieving lasing action in such structures which utilise resonant 

tunneling to populate the upper level and depopulate the lower level of the 

lasing transition. 

Utilisation of the four-level rate equations to predict the modulation re- 

sponse is investigated here. Analytical results for a symmetric structure 

presented in [2] [3] [4], and published in [5] will be discussed. 
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Figure 4.1: Schematic diagram of a nominal TQ`V structure with four energy 

levels. 

The TQW intersubband structure shown in Figure 4.1 is essentially a 

four-level system. The lasing transition occurs in W2. Electrons are injected 

into the upper energy level of W2 through %V1 and are removed frone the 

lower energy level of W2 through W3, via resonant tunneling. The confined 

electrons undergo intersubband transitions such as stimulated radiative emis- 

sion, absorption and intersubband relaxation. It is assumed that there are 

no carrier source or sink in the wells so that the injection current densities, 

J, entering and leaving the structure are the same. 

In order to achieve this, the TQW structure is designed such that its four 
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lowest energy levels are localised one each in Wl (El) and W3 (E3), and 

two in W2 (E21) and E22)), when the structure is in an unbiased condition. 

The energy levels must also be positioned in such a manner so that at an 
2) 

- E(1))/2, coupling occurs appropriate bias/operating voltage, V, .:: (E( 22 

between El and E21)7 and between E(2) and E3. The details of the method 

of design will be discussed in Chapter 5. 

4.2 Tunneling Time 

Before proceeding with the rate equations, the phenomenon of tunneling will 

be discussed. Tunneling, or the penetration of potential energy barriers by 

particles, is an aspect of the wave nature of particles. It is necessary, how- 

ever, to state the definition of tunneling time as used in this chapter, and in 

the remainder of this thesis, to avoid confusion, as there are several defini- 

tions available in the literature. The state lifetime mentioned previously in 

Chapter 2 is one such phenomenon which has been given the name of this 

all-encompassing term. The definition used here, however, is similiar to that 

used by Choe et al [6], and Künz et al [7] which is that of resonant tunneling, 

and is defined as the time it takes an electron to travel from one side of the 

barrier in one well to the other side of the barrier in the other well when the 

wells are coupled together. 

Coherent resonant tunneling not only occurs when the energy levels of 

the relevant states (El and E21)1 as well as E(2) and E3, in this case) co- 

incide. It is rather a resonant phenomenon leading to maximum tunneling 

currents in the case of exact alignment, but also taking place for small de- 
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Figure 4.2: Two identical single QWs, each with aa single energy level are 

shown. Combining, or coupling, the two wells and leaving a thin barrier 

between the wells yields a double QW structure, with two energy levels, and 

wavefunctions which take the forms as shown, and results in an energy level 

splitting LE = EA-ES between the two energy levels, where EA > Eo > Es. 

viations [8]. Figure 4.2 illustrates what happens when two wells are coupled 

together. For simplicity, two identical wells are used in the example, but two 

wells with energy levels which coincide, either through the application of a 

bias voltage or by design, can also be coupled. Exact alignment, and hence 

maximum tunneling current, occurs when the energy level splitting, DE, is 

at a minimum value, AEmin" For the identical wells shown in Figure 4.2, AE 

is automatically at that minimum value, but in the case where alignment has 

to be achieved through the application of a bias voltage, for example, then 

there may be some slight deviation. The stronger the coupling strength, the 

greater this minimum value, AE�mi,,. A time-evolution simulation using the 

time-dependent Schrödinger equation would show the two wavefunctions os- 

cillating between the wells. The characteristic time for this tunneling may 
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then be found from the following expression [7]: 

7rh 
(4.1) Ttun=DE 

4.3 Rate Equations 

The dynamics of the electron densities in the respective energy levels are 

described by the four-level rate equations which are given below [9], [10]: 

dNl 
_J 

L2 N22ý N1 
dt eLI 

4 Ll T12 T12 
4.2 

(IN) 
= 

Li Ni 
_ 

N22) 
- aP 

(N(2) 
- N(l)) - 

N22) (4.3) 
dt L2 712 712 22 Ts 

(1) (z) (1) dN2 
_aP(N(2)-Ni'))+N2 +L3N3N2 (4.4) 

dt TS Ly 723 T23 

dN3 L2 N21) N3 J (4.5) dt L3 723 723 eL3 

dP 
= aP 

(N22) 
- Ni')) -P (4.6) 

Irp 

where N; ') denotes the electron density in Well i (i = 1,2,3) and energy 

level j- as there is only one energy level in W1 and W3, the superscript 

j is omitted. e is the electronic charge, a is the local gain parameter, P 

is the photon density, and TS is the intersubband relaxation time. L1, L2 

and L3 are the widths of the three wells respectively, aP(N(2) - N') is 
22 

the stimulated emission term and N22) /TS is the spontaneous emission term, 

while the optical losses are denoted by P/rp, where Tp is the photon lifetime. 
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The tunneling times T12 and r23, between Wl and W2, and between W2 and 

W3 respectively, are given by 

_ 
irh 

_ 
lrt (4.7) T12 QE12 

723 - E23 

where A is Planck's constant divided by 2a, and LE12, AE23 are the energy 

level splittings due to the coupling of WI and W2, and W2 and W3 respec- 

tively. The stronger the coupling strength between the wells, the larger the 

possible energy separation, hence resulting in faster tunneling time through 

the barrier, as may be deduced from Equation (4.7) above. 

Since the current injection is equal to the rate of total charge passing 

through the resonant tunneling quantum well structure, the following ex- 

pression may be obtained: 

TT [NIL1 + (N' + N22ý)L2 + N3L3J (4.8) 

where TT is the effective transit time of the carriers through the whole struc- 

ture, which includes not only the tunneling times through the barriers and the 

intersubband transition times, but also the time delays caused by intraenergy 

level scattering and electron diffusion, and J is the injection current density. 

4.4 Population Inversion Condition 

In order to find the population inversion condition, (N 2- N21») > 0, and 

the threshold current, Jth, the rate equations must be solved using steady- 

state conditions and at threshold. At steady state, the rates of change of 
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the carrier densities, dN=/dt are equivalently zero, and at threshold there is 

no lasing so the photon density, P=0. The carrier rate equations therefore 

take the form: 
(2) L2 2 Ni 

L +L1 
2 

-r12 -0 4.9 

L1 N1 N22) N22) 
=0 L2 T12 T12 Ts 

N22) L3 N3 N21) 

TS L2 723 1'23 

L2N21) N3 J0 
L3 T23 T23 eL3 

while the photon rate equation becomes 
, 

P [a(N22) 
- N21)) - 

1, 
=0 

Tp 

ON 

where ON =2- N21ý). (N 

1 

arp 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

After some mathematical manipulations, the details of which are in Ap- 

pendix B, an expression for AN is obtained: 

ON = 
ei "4TS 

+ 712 - T23 - TT] (4.14) 

where J is the current density at, and below, lasing threshold. An expression 

for the threshold current density may be found in a straightforward manner, 

by substituting the expression for AN from Equation (4.13) into the above 
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equation: 
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1 Jth 
[47S + T12 T23 - TT I 

Tp eL2 
Jth 2eL2 1 (4.15) 

arp 4TS + 712 - T23 - TT 

while the population inversion condition, where ON >0 is given by 

ei 
[4TS 

'i' 712 - 1'23 - TTI i0 

4TS ± T12 - T23 - TT >0 (4.16) 

This condition provides design rules for selecting appropriate TQW struc- 

tures and operating conditions to achieve population inversion. It is noted 

that the above conditions may be unnecessarily restrictive since, on the basis 

of work by Faist and Capasso [11], there aie some cases in which so-called in- 

versionless lasing may occur. Treatment of that case is not, however, within 

the scope of this thesis. 

4.5 Light-Current Characteristics 

In order to find the P-J characteristics, conditions at steady state above 

threshold should be considered, so the carrier rate equations become: 

(2 
J+ L2 N2 

- 
Nl 

=0 (4.17) 
eL1 Ll 712 T12 

L 
Li iz N2 12 

12 
2- aP 

(N(2) 
- Ni')) - 

NS 
=0 (4.18) 

Nýzý LN ýlý 
I- z -I- 33_ Nz 

=p (4.19) aP 
CN22) 

- N21)1 +: 
L2(2) 

J Ts L2 T23 r23 
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L2 N21) N3 J 
=0 (4.20) 

L3 723 723 eL3 

The photon rate equation is still of the form in Equation (4.13). From these, 

an expression for the current density is found 

_ 
2eL2 (1 + 2aPTs) (4.21) J 

aTp (47-s + T12 - T23 - TT) 

so that when considered together with Equation (4.15), the photon density in 

terms of the current density and the threshold current density, see Appendix 

B, takes the form: 

(4.22) P=1 (-Jlth- 
- 1) 

2a-rs 

Using Equation (4.22), the idealised linear light output power versus injec- 

tion current density characteristics is shown in Figure 4.3, for the parameters 

given in Table 4.1. The values for the photon lifetime, Tp, and the local gain 

parameter, a, were taken from [9] and [10], whereas the tunneling times r12 

and T23 were calculated from Equation (4.7) using the method which will be 

described in Chapter 5. The value for TS is within the estimates of 1-3 ps 

given in the literature [10], [12]. 

These results serve as the basis for a small signal analysis of the modula- 

tion response of the laser, which will be described in the next section. 
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Table 4.1: Parameters for the calculation of the P-J dependence. 

Local gain parameter, a 1.0 x 10-5 cm-3 

Tunneling time from Wl to W2, r12 0.52 ps 

Tunneling time from W2 to W3, r23 0.50 ps 

Inter-energy level relaxation time, TS 2.0 ps 

Photon lifetime, rp 1.0 ps 

Transit time, TT 3.2 ps 

Width of W2, L2 8.3 nm 
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Figure 4.3: The variation of the photon density with the current density. 

The threshold current density, Jth = 5520 A/cm2. 
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4.6 Small Signal Analysis and Modulation Re- 

sponse 

A small signal analysis is performed on the rate equations, where a modula- 

tion current, J. (t) = J,,, cos(wmt) is superimposed upon the pre-bias current 

J6, giving rise to variations in the steady state values of the carrier and phoa 

ton densities of the form N=N; + nti and P=P+p, so the rate equations 

are then rewritten as 
d(1V1 + nl) 

_ 
Jb + J,,, (t) LZ (N22) + n22)) 

_ 

(N1 + n, ) 
(4) 

dt eLl 
+ Ll T12 T12 . 23 

d(N22) + n22)) 
-aP 

((1V(2) + n(2)) - (N(1) + n(1))1 + 
L1 (Ni + nl) 

dt 2222J L2 7712 

(I-2 V(2) + n22)) (ýs2) + n(2)) 

-- (4.24) 
712 TS 

d(N21dý n2)) 
= aP 

((N22) + n22)) - (1Vz1) + nz1))) + 
L3 (N 3 

2 T23 

(N2(1) + n(1) (N(2) + n(2)) 
T23 

2+2 

TS 

Z (4.25) 

d(JV3 + n3) 
_ 

I, 2 (N' + n2') 
_ 

(N3 + n3) 
_ 

Jb + Jm(t) 
(4.26) dt L3 723 723 eL3 

dP 
= aP 

((N22) + 4)) 
- (R »+ n21))) -P (4.27) 

P 

Jb+Jm(t) = 
TT [(icr1+nl)Li+((Nil) +ns ))+(Ns)+nz2)))L2+(N3+n3)L3J 

(4.28) 
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where IJ and P denote the steady state values of the carrier and photon 

densities respectively, while n; and p denote the small perturbations in the 

steady state values of the carrier and photon densities. The above equations 

may be simplified, as the rate of change of the steady state carrier and photon 

densities are identically zero at steady state, and the 2nd order perturbations 

are negligible. And so, 
dnl 

= 
Jm(t) L2 n(2) nl () 

dt eLl 
+ 

Ll 712 712 
4.29 

(2) n(2) n(2) dn2 Ll nl 2- apNd - aPnd - dt L2712 712 Ts 

Ll nl n(2) 
(2) 

2p aPnd - 
n2 (4.30) L2 712 

" 
712 TP Ts 

dn(1) n(2) L3 n3 n(l) 2= apNd+aPnd+ 2 -f---- 2 
dt TS L2 723 T23 

(2) (1) 

__+ aPnd + n2 + 
L3 n3 

- 
n2 (4.31) 

TP TS L2 T23 723 

dn3 
_ 

L2 n21) n3 Jm(t) 
dt L3 T23 r23 eL3 

(4.32) 

ap p 
dt = apNd+aPnd-- 

Tp 

= aPnd (4.33) 

where Nd = N22) -1Vz1) =1/(arp) and nd = nzýý - nzl). Also, knowing from 

Equation (4.8) that Jb = e/TT(N1L1 + N, L2 + N3L3), it can therefore be 

deduced from Equation (4.28) that 

Jm(t) = e/rr(n1Li + n, L2 + n3L3) (4.34) 
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where N. = N22) + N21) and n, = n22) + n2 

The small analysis (Appendix B) results in a modulation response i which 

can be presented, using a resonance frequency coo and a damping parameter 

ry, in the familiar form: 

_ 
2eL 

(-L 

s)Jm 

. 35) (4.35) 
- wm) + jWr y 

From this expression the usual form for the maximum modulation frequency 

(MMF) can be deduced: 
s 

W= 
FW2 

-2 (4.36) 

However, due to the carrier transport dynamics of the structure under con- 

sideration, there are a number of novel features of the above expression. In 

the first place, the explicit forms of the resonance frequency and damping 

factor differ from those of conventional semiconductor lasers. In the present 

case, it is found that: 

wö _ 
2aP 

and y= 2aP +1 +- (4.37) 
TP Trv Ts 

where Tw = 712 = T23. This special case was noted previously by Yee and 

Shore [10]. 

Calculations of the modulation response using the parameters shown in 

Table 4.2 shown in Figure 4.4 show that, due to the picosecond carrier life- 

times which are typical of such structures [13), terahertz modulation can be 

anticipated. It is further observed that the carrier lifetimes in such structures 

are typically of the same order as the photon lifetime. Here, in contrast with 
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Table 4.2: Parameters 

Symbol Meaning Value 

a gain coefficient 10-IS-1 

Li thickness of quantum well 1 (WI) 40 Aa 

L2 thickness of quantum well 2 (W2) 80 fl 

L3 thickness of quantum well 3 (W3) 40 f1 

Tyy tunneling times between Wl/W2 and W2/W3 10 ps 

TT carrier transit time through the structure 125 ps 

TS intersubband relaxation time 30 ps 

Tp photon lifetime 1 ps 

interband semiconductor lasers, there sa finer balance between the contribu- 

tions of the resonance frequency and damping factor in the determination of 

the maximum modulation frequency. The consequences of this observation 

are considered next. 

4.6.1 Optical Output Power Optimisation 

The first implication of the novel features of the transport dynamics of the 

intersubband laser is that the MMF does not increase monotonically as a 

function of the optical output power of the laser. The dependence is illus- 

trated in Figure 4.5 for the case of laser emission at 10 jim. The existence 

of an optimised MMF can be readily demonstrated using Equation (4.36). 

In this way, the optimum output power for the device to achieve maximum 
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Figure 4.4: Direct current modulation response of intersubband laser. 
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modulation frequency can be found to be: 

P°Pt - \Tp TW TS / 2a 
4.38 

and the coresponding MMF is written explicitly as: 

11_1_1 (4.39) Wmax - 

VTp- 

2 Tp iw TS 

4.6.2 Carrier Lifetime Optimisation 

The maximum modulation frequency is also liable to optimisation with re- 

spect to carrier transport time constants. In turn these provide further guide- 

lines for the design of coupled QW structures to be utilised in intersubband 

lasers. For this optimisation, care must be taken to ensure that lifetimes are 

consistent with the conditions for population inversion indicated in Equa- 

tion (4.16). Considering the various time constants in turn, the following 

expressions for optimised MMF are obtained: 

2 2aP (2aP + )2 
w�`ax - TP 2 when TS --ý oo (4.40) 

2aP (2aP + )2 
cvax - 

IrP 2 
Ts when Tay --ý oo (4.41) 

In Figures 4.6 and 4.7, the corresponding response curves are given. The 

characteristic terahertz modulation frequencies which are expected, due to 

the picosecond carrier lifetimes in the device, are found. The figures may, at 

first sight, look misleading as the maximum modulation frequency increases 

as the lifetimes increase. However, it should be noted that the output power 

is also affected by the change in the lifetimes, and hence, would also change 

accordingly, thus resulting in the behaviour of the maximum modulation fre- 

quency as illustrated in the figures. 
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It has been shown that the modulation bandwidth of intersubband struc- 

tures is dependent upon carrier lifetimes, and exhibits a unique dependence 

upon the optical output power of the laser. Here, in contrast with interband 

semiconductor lasers, there is a fine balance between the contributions of the 

resonance frequency and damping factor in the determination of the maxi- 

mum modulation frequency due to the picosecond carrier lifetimes which are 

characteristic of such structures. In consequence, it is found that the MMF 

does not increase monotonically as a function of the optical output power of 

the laser. 

Analytical results have been obtained here for a special case of equal life- 

times. It is expected that the same qualitative dependence of the maximum 

modulation frequency will be found in the more general situation of unequal 

electron lifetimes. However, analytical results cannot then be easily obtained 

and numerical methods must be employed instead. This will be discussed in 

the next chapter. 
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Chapter 5 

Self-Consistent Dynamics of 

Intersubband Lasers 

5.1 Introduction 

In the previous chapter, an analytical study of the modulation response of 

the TQW intersubband laser was undertaken. There were, however, several 

approximations and assumptions that were made in order to obtain that 

simple expression for the modulation response given in Equation (4.35). In 

addition, the lifetimes that were utilised there were taken as parameters of 

the calculations. In order to verify those results that were obtained from 

the analytical study, namely the existence of an optimum output power to 

achieve the maximum modulation frequency, the results of a numerical inves- 

tigation will be detailed in this chapter. Moreover, in the present analysis, 

the relevant lifetimes will be deduced from calculations of electonic wave- 

functions in the structures. 
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There are two triple quantum well (TQW) structures which will be con- 

sidered, one which is suitable for. mid-infrared (MIR) lasing, at a nominal 

wavelength of 10 pm [1], and the other for near-infrared (NIR) lasing, at a 

wavelength of 1.55 µm [2]. These structures are illustrated in Figures 5.1 

and 5.2. 

5.2 Anticrossing 

Anticrossing affects the state lifetimes and structure energy levels, and hence, 

the transition energy. It occurs when a bias voltage of appropriate magni- 

tude is applied to a multi-quantum well (MQW) structure, and two coupled 

energy levels change position; the lower becomes the upper and vice versa as 

in Figure 5.3. 

The structures in Figures 5.1 and 5.2 are designed to have, when unbi- 

ased, a transition energy near to that corresponding to the required operating 

wavelength, so that when account is taken of the effects of the bias voltage 

and anticrossing, the resulting transition energies would correspond to the 

required wavelengths. Although anticrossing, between E(2) and El, and be- 

tween E21) and E3, results in decreased transition energies, it is nevertheless 

necessary in order for successful device operation to be achieved, as it results 

in the inversion of state lifetimes, a faster carrier escape rate from the struc- 

ture and increased overlap between the wavefunctions of the subbands [6]. 

As mentioned in the previous chapter, there is a minimum anticrossing 
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Figure 5.1: Schematic conduction band diagram of the MIR TQW struc- 

ture biased to an appropriate operating voltage. Structure composition is 

GaAs/Alo. 45Gao. 55As. Well widths are 2.8 nm, 8.2 nm, 6.2 nm. Barrier 

widths are 4.0 nm, 5.0 nm, 3.0 nm, 2.4 nm. 
Ri 

Figure 5.2: Schematic conduction band diagram of the NIR TQW structure 

biased to an appropriate operating voltage. Barrier composition is AlAs. \V1 

is AI0.2Ga0.8As. WN'2 and \V3 are both 1n0.53Ga0,47As. Well -widths are 3.1 

' -"--" nI --- Rýrrinr wirlthc are i0 tnrn 3 (1n 1 C, rn_ 1.11111. 
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Energy 

Distance 

77 

Figure 5.3: Schematic conduction band diagram of a coupled QW structure 

when unbiased (left) and when biased to an appropriate voltage (right). 

gap, or energy level splitting, between coupled energy levels and this mini- 

mum is a measure of the coupling strength between the coupled wells. The 

splitting strongly depends on the height and width of the barrier separating 

the wells and on the width and depth of the wells, and is a fundamental phe- 

nomenon associated with solutions to wave equations, and applies equally to 

probability, electromagnetic or any kind of waves. 

5.3 - Wavefunction and Lifetime Calculations 

The Complex Energy Method (CEM) and the Argument Principle Method 

(APM) described in Chapter 2 are used to perform calculations of the wave- 

functions and lifetimes of the proposed structures, the results are shown in 

Table 5.1. The wavefunctions of the NIR structure in Figure 5.4 indicate 

coupling between W1/W2 and between W2/W3 as required, the wells of the 

MIR structure are similarly coupled [1]. 
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5.3.1 State Lifetimes 

In most cases, the higher the energy level, the shorter the corresponding 

state lifetime. The state lifetimes of bound states are infinite, while those 

of quasibound states are usually of the order of the order of picoseconds or 

femtoseconds. However, in some structures there occurs an inversion of these 

state lifetimes [4], as is the case for the TQW structures in Figures 5.1 and 5.2. 

A study of the variation of the state lifetimes with well and barrier widths, 

and the state lifetimes' dependence on coupling and anticrossing has been 

undertaken [5], and the results have been utilised in the design of the TQW 

structures here. 

5.3.2 Tunneling Times 

As mentioned previously, the minimum energy splitting or anticrossing gap 

DE, is a measure of the coupling strength between the respective coupled 

wells. The stronger the coupling, the larger the minimum separation, result- 

ing in faster tunneling time through the barrier. Figure 5.5 illustrates the 

change in the wavefunction localisation as the coupling between the wells 

become stronger. When the structure is unbiased, there is no coupling be- 

tween the wells, and the wavefunctions are localised in their respective wells. 

However, as the voltage is slowly increased, the energy separation AE be- 

tween the energy levels decreases, and the wavefunctions become more and 

more delocalised. At a bias voltage of 70. meV, the mininum value of AE is 
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Figure 5.4: The wavefunction of the NIR structure's four energy levels, when 

biased to a voltage of 550 meV. 



5.3 Wavefunction and Lifetime Calculations 80 

Table 5.1: The four energy levels of the structures in Figures 5.1 and 5.2 

respectively, with the corresponding state lifetimes. 

MIR structure at a bias of 70 meV 

Energy levels (meV) State lifetimes (ps) 

El 211.2 1.26 

E22) 205.2 3.23 

E21) 80.6 1.68 

E3 76.3 0.85 

NIR structure at a bias of 550 meV 

Energy levels (meV) State lifetimes (ps) 

El 1304.8 0.82 

E2' 1283.6 1.04 

E21) 484.8 0.72 

E3 461.2 0.50 
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Figure 5.5: The wavefunctions of E(') and E3 in the MIR structure of Figure 

5.1 at different bias voltages, and their respective energy separations. 
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reached and there is alignment between the energy levels of the wells, and 
hence maximum tunneling currents are achieved at that voltage. This is also 
known as the anticrossing gap since if the bias voltage is increased beyond 

this point, the wavefunctions become localised again, but in the other well. 

The tunneling times between the wells are then calculated from the re- 

spective energy separations using Equation (5.1), where the tunneling time, 

Ttu� = 7rhi/DE. The results are shown in Table 5.2. 

Table 5.2: The energy separations between the two pairs of coupled wells of 

the MIR and NIR structures, and the calculated tunneling times. 

MIR structure 

Energy levels iE (meV) 
, Tunneling time (ps) 

E(2) and El 

E21) and E3 

3.96 

4.14 

0.52 

0.50 

NIR structure 

Energy levels IE (meV) Tunneling time (ps) 

E(2) and El 

E21) and E3 

21.2 

23.6 

0.10 

0.09 
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5.4 Modulation Response and MIR Dynam- 

ics 

The population dynamics are described by the rate equations of Equations 

(4.2)-(4.6) described in Chapter 4. In order to accomplish direct current 

modulation of the laser, it is first pre-biased to a point about threshold 

where where the linear P-J relationship holds (see Figure 4.3 in Chapter 4). A 

modulating current Jm(t) is superimposed upon the pre-bias so that the laser 

is driven by a total current Jb + J,,, (t). The optical output power will then 

respond to the modulating current. Assuming that Jm(t) is sinusoidal such 

that Jm (t) = Jmcos (wmt), where J,,, is the amplitude and w,, the frequency of 

the modulating current. The current then varies between Jb - J, n and Jb+ Jm 

with corresponding variations in the photon density (or optical output power) 

between P�«� (minimum) and Pmax (maximum). The empirical definition of 

the modulation depth can then be given as 

Pmax - Pmin 
77 __ 

4 max 

As it not possible to obtain analytical forms for the modulation response 

for the general case of unequal tunneling times, it is therefore obtained nu- 

merically, using Equation (5.1), by solving the rate equations of Equations 

(4.2)-(4.6) and (4.8) for different values of the modulating frequency w�,, (Fig- 

ure 5.6). 

The existence of an optimum output power may be observed by the be- 

haviour of the modulation response as P is increased, shown in Figure 5.7. 

In the figure, the modulation response is normalised with respect to the peak 
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Figure 5.6: Modulation response of the MIR stucture shown in Figure 5.1, 

with the parameters in Table 5.4. 
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Figure 5.7: The modulation response of the MIR TQW structure with in- 

creasing values of photon density P. Optimum output power is at P3 for 

f3= 112GHz. 
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Table 5.3: The maximum response frequency f; corresponding to the photon 

densities in Figure 5.7. 

Pl = 0.06 x 1017 cm-3 f, = 0.052 THz 

P2 = 0.31 x 1017 CM-3 f2 = 0.093 THz 

P3 = 0.50 x 1017 cm-3 f3 = 0.112 THz 

P4 = 0.96 x 1017 cm-3 f4 = 0.062 THz 

P5 = 1.50x1017cm-3 f5= 0.005THz 

Table 5.4: Parameters for the calculation of the modulation response of the 

MIR and the NIR TQW structures. 

MIR parameters 

Symbol Meanin5 Value 

a Gain coefficient 10-5 s-1 

a Jm=aJb 0.02 

TT Carrier transit time through the structure 3.2 ps 

Ts Intersubband relaxation time 1.2 ps 

Tp Photon lifetime 1.0 ps 

NIR parameters 

Symbol Meaning Value 

a Gain coefficient 10-5 s-1 

a Jm = aJb 0.02 

TT Carrier transit time through the structure 3.8 ps 

Ts Intersubband relaxation time 
. 

3.0 ps 

Tp Photon lifetime 1.0 ps 



5.5 NIR Dynamics 86 

modulation efficiency, and not its-DC value as is usually the case, in order 

to better illustrate the behaviour of the peak frequency as the output power 

varies. Hence, the various modulation efficiency plots are not unity at DC. 

It can be seen that the sharpness of the response decreases with increasing 

P. The maximum response frequency increases until a certain value of P, 

after which the familiar shape of the modulation response is lost (Table 5.3). 

In the special case treated analytically in Chapter 4, it can be shown that 

the modulation response is basically limited by the photon lifetime. The 

present simulations indicate that this remains the case for the more general 

structures treated here, so improvements should be obtained by using device 

design parameters which results in decreased photon lifetime. 

5.5 NIR Dynamics 

As the tunneling times for the NIR structure are faster than that for the MIR 

structure, it is expected that the maximum modulation response frequency 

should be higher that in the MIR case. Figure 5.8 illustrates that this is 

indeed the case. The maximum modulation response frequency for the NIR 

structure is about 155GHz, while that of the MIR structure has a value of 

about 100GHz. 
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Figure 5.8: Modulation response of the NIR stucture shown in Figure 5.2, 

normalised with respect to the peak modulation efficiency, found using the 

parameters in Table 5.4. The MMF is at about 155 GHz at the photon 

density of 1.20 x 1017 cm-3. 
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5.6 Conclusion 

Two prototype structures suitable for incorporation into intersubband struc- 

tures, for MIR and NIR lasing respectively, have been designed. The carrier 

and modulation response behaviour of the structures have been investigated, 

and results showing the dependence of the modulation bandwidth on the 

optical output power of the laser have been obtained. 

The maximum modulation frequency does not increase monotonically 

with increasing optical output power. It is possible that a further improve- 

ment in modulation bandwidth may be achieved by further optimisation of 

the TQW structure, but the fact that the carrier lifetimes in intersubband 

structures are of the same order as, or shorter than, the photon lifetime, 

indicates that the achievable direct current modulation bandwidth of in- 

tersubband lasers is essentially determined by the photon lifetime. Hence, 

improvements should be obtained by using device design parameters which 

results in decreased photon lifetime. 
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Chapter 6 

Theory of Intersubband Optical 

Gain 

6.1 Introduction 

In Chapter 4, four-level intersubband rate equations were introduced, and a 

simple expression for the gain was used in the calculations. In the present 

chapter, more consideration will be given to the formalism of intersubband 

gain, and a comparison drawn with conventional interband semiconductor 
laser gain. But first, each of the basic components which make up the gen- 

eral optical gain equation will be reviewed, and *the forms appropriate for 

intersubband calculations will be found. 

6.2 Density of States 

As is well appreciated, in QW structures, discrete levels are formed by the 

confinement of electrons in the direction of the QW thickness. The density 

90 
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of states (per unit energy per unit volume) of such confined electrons in the 

nth subband in the conduction band is given by 

Pý (E) =1 
2me H(E - E�) (6.1) 

27I, z h2 

where H(E-E,, ) is the Heaviside unit step function, me is the electron Kane 

effective mass at the bottom of the conduction band, LZ the QW width and 

En the energy of the nth subband of the QW structures. 

E 
: W; 
I. .11 t, 

n=3 i, 

Bulk 
n=2 

n =1 -' Quantum well 

E 

Quantum well 

Bulk 

P(E) P(E)1E) 

(a) (b) 

Figure 6.1: (a) Density of states p(E), and (b) carrier distribution p(E) fc(E) 

for bulk and quantum well semiconductors. W= (zgym') Lj , 

Figure 6.1 shows the steplike state density for a quantum well and the 

corresponding narrow carrier distribution. As a point of interest, it is due 

to this extra degree of confinement that the gain in interband quantum well 

lasers is larger and sharper than that of ordinary bulk semiconductor lasers. 

When the barrier height and width are sufficiently large, E. is equal to 
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6.2.1 Reduced Density of States 

Applying the k-selection rules, lot a given wavevector k, the corresponding 

upper subband energy E2 determines the lower subband energy el and vice 

versa. Therefore, only states with identical k-vectors can form a transition 

pair, and only vertical transitions in k-space can occur. Because of this 

restriction, the number of transition pairs is equal to the number of states in 

either subband, and we can describe the number of allowed transitions using 

a single density of states function, instead of one for each of the subbands. 

This single density of states function then is known as the reduced density of 

states, and takes the same form as the usual density of states for a quantum 

well 

Pred 
mr 

ýEý _ irh2Lz 
(6.2) 

but the effective mass term is now a reduced mass, which can be found from 

mlm2 
Mr = 

m1 + m2 
(6.3) 

where ml and m2 are the effective masses at the bottom of the subbands, 

which are given by [5] 

mit=me(1+EG) (6.4) 

where EG is semiconductor band gap, and En (n = 1,2, ... 
) is the energy of 

the subband of interest, with the conduction band bottom as the point of 

reference. 

6.2.2 Fermi-Dirac Distribution Function 

When dealing with transitions in semiconductors, the probability that the 

state from which the transition originates is filled, and the probability that 
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the terminal state is empty, must always be considered. These so-called 

occupation probabilities must be. taken into account when performing any 

calculation related to transitions in semiconductors, whether intersubband, 

bulk or quantum well. 

The occupation probabilities of electrons in each of the subbands in a QW 

structure can be described using Fermi-Dirac statistics by using a separate 

Fermi level for the respective subbands (called a quasi-Fermi level), which is 

determined by the subband effective mass, similiar to the method used for 

conventional semiconductor lasers. The Fermi functions for the subbands are 

then 
1 

(6.5) 
exp[(en - EFn)/KT] +1 

where e,, are the kinetic energies in the sirbbands given by en = ß, 2k2/(2m, 
a), 

k is the in-plane electron wavevector, K is Boltzman's constant, T the carrier 

temperature and EFn are the subband quasi-Fermi levels, given by 

EF� = KT1n(exp 
2( KT) 

- 1) (6.6) 
Mn 

where N,, is the carrier density in the relevant subband. Note that the above 

equation is a rearrangement (see Appendix C) of the well-known expression 

where the total carrier density is found as a product of the Fermi distribution 

function and the state density 

Nn = 
ffn(¬n)Pn(En)dE 

(6.7) 

where p� (E) is the density of states mentioned in the previous section. The 

distribution of electrons in each of the subbands then look like that shown 

in Figure 6.2. 
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6.3 Intersubband Gain Formalism 

Spontaneous and stimulated emission, giving rise to optical gain, are the 

most basic processes of all lasers. The main factors determining the optical 

spectrum of an intersubband device are carrier distributions in the subbands, 

transition matrix elements between the initial and final states, and intraband 

relaxation of carriers due to various scattering processes. The first of these 

factors can be calculated by considering the population dynamics in the sub- 

bands, which are described by the rate equations treated in Chapter 4. The 

transition matrix elements determine the strength of the interaction between 

the two states involved in the transition, and will be discussed further in 

Chapter 8. 

6.3.1 Radiative Transitions ' 

Figure 6.3 shows the subband structure of a quantum well, and the possible 

electronic transitions, both radiative and nonradiative. From the diagram 

we can see that 
110(E) _0+ E2 - Cl (6.8) 

where e,, (k) - EE(k) - E�(0), n=1,2. The transition can be designated 

by E- E2, because of the k-selection rules, so that only transitions between 

those electron state pairs that conserve energy and momentum are induced. 

This means that the interaction is reduced to a very particular region of the 

E-k diagram. 

As mentioned previously, when dealing with transitions in semiconduc- 

tors, another restriction to be considered is that transitions only occur be- 
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tween filled initial states and empty final states. Hence the transition rates 

can be written as 

R12 =R . fi(1- f2) 

R21 = R, -f2(1 - fl) (6.9) 

where R12 is the stimulated absorptiopn rate, R21 is the stimulated emission 

rate, R, represents the radiative transition rate that would exist if all state 

pairs were available to participate in the transition, and fl and f2 are the 

respective occupation probabilities of the Subbands. The net generation rate 

of photons, or the net stimulated emission rate then is 

R3 =R21-R12=R"(f2-1i) (6.10) 

This net stimulated emission rate, as wý shall see in the next section, is 

directly proportional to the optical gain in the material. 

6.3.2 General Expression for Optical Gain 

The material gain per unit length can be defined, following [3], as the propor- 

tional growth of the photon density as it propagates along some direction in 

the material. This definition can be related to the transition rates as follows: 

1 dNp 1 dNp 1 
-__ (RZi -Res) = 

R, t (6.11) 
Np dz v9Np dt v9Np v9Np 

where the group velocity, v9 in the second equality is used to tranform the 

spatial growth rate to the growth rate in time. This chronic growth rate is 

then linked to the net generation rate of photons, so that finally we have 

g= 
9 (f2 - fl) (6.12) 

v9Np 
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Using Fermi's Golden Rule, R, which is the transition rate per unit 

volume of active material (in units of s-1 cm-3) may be written as 

R_J H211 12p,. (E21 = hf2o) (6.13) 

The details of the derivation of this equation may be found in Appendix C. 

Using the above expression we can now write the gain as 

921 =h 
I9N 

pr(E21)"(f2 - fl) 
9P 

(6.14) 

where I H21I2/Np = cZe2IzI2/(2nn9eo), and IzI is the dipole moment matrix 

element. We can now write the gain equation as 

921 - 
eZ, 7rI zI2f2 

pr(E2i)"(f2 - fl) (6.15) 
vgnnyeo 

and since we know the expression for the reduced density of states, p, (E21) = 

rnr/(irh2LZ) and that c= v9n9, the gain equation now becomes [11] 

e2ýzý2mrSt 
921 - h2cneoLZ '(fs - fl) (6.16) 

6.3.3 Lineshape Function 

The gain coefficient of a semiconductor laser is, in general, proportional to the 

population inversion, and the lineshape function of the laser. This lineshape 

comes about due to the interaction of the electrons with phonons and other 

electrons, so that the lifetime of a given state is not infinite. It is presently 

believed that, on average, the electron lifetime in intersubband lasers is about 

0.1 ps, and if it is assumed that the state decays exponentially with time, 

then the energy of each state (and each transition) is no longer sharp but 

has an energy spread over a range of DE ý- h/0.1 ps 7 meV. This energy 
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broadening ultimately limits the resolution of features which can be observed 

in the gain spectrum, and is particularly important to consider in reduced 

dimensional structures like a quantum well, where the reduced density of 

states contains very sharp features. 

E 
E' 2 
E2 

AQ 

El 
E' 

i 

E1 
Figure 6.4: Three (of many) transition pairs which contribute to gain at n. 

The pairs are E2 - El, E'2 - Ei and E2 - El. 

As illustrated in Figure 6.4, when the energy states are broadened, a 

nominal distribution of the energy states labeled by El and E2, and many 
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different transition pairs contribute to gain at a particular transition energy. 

Hence, there can be spontaneous emission from any parts of the states labeled 

2 to those parts labeled 1 at the various frequencies shown in Figure 6.4. 

The lineshape function therefore describes the probable energy distribution 

of each transition pair, and in order to determine the total gain at , SZ, the 

gain coefficient gei must be integrated over all transition energies weighted 

by the appropriate lineshape function, G(hf - E21). The gain including 

lineshape broadening takes the form 

9(h) =f 921, C(hf2 - E21)dE21 (6.17) 

The specific form of the lineshape function can be determined by studying 

the time evolution of an electron state, taking into account its interaction 

with phonons and other electrons. There are several different lineshapes to 

select from the various work in the literature [7], [8], [9] but here as mentioned 

earlier, a simple first-order approximation is used, where the probability of 

finding an electron in a given state decays exponentially. This simple time 

dependence when Fourier transformed to the energy domain immediately 

leads to a Lorentzian lineshape function. The lineshape that will be used 

here, however, is essentially Lorentzian, but instead of a relaxation time 

associated with the decay of the electron, an energy dependent scattering 

term will be used instead, since the scattering rate out of a state is dependent 

on where the electron is in the state, and on how full the band is [10]: 

G(E - E21) = ýW+(C)/r (6.18) [E-`''212+[W(E)]2 

where the damping term W (c) covers the optical-phonon assisted scattering 

events that break the phase coherence of electron states participating in the 
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radiative transition. A more detailed treatment of these phonon scattering 

events has been presented by Kisin et al in [10]. A simpler approximation, 

however, which was utilised by Gelmont et al. in [5] will be applied here, 

where 

= 
-7re2 1 1)qph Nph 

W (C) 
2tß 

(K00 
Kcax 

(6.19) 
(Nph + 1)9(6 - uvph) 

where the top line corresponds to optical phonon absorption and the bottom 

line to optical phonon emission, tlwph is the polar optic phonon energy seen in 

Figure 6.3, B(e) is a step function, qph - 2mewph/h, no and icy are the low 

and high frequency dielectric constants respectively, and Nph is the phonon 

Planck function characterised by 

_1 Nph 

exp(t) - 1) 
(6.20) 

The full equation for intersubband gain including lineshape broadening there- 

fore can now be written as 

,/ 
9(lin) -h 

12oLg 

0 
de 

ir([h9 -921] 
2+- fl) 

hW(e)]2) (6.21) 

6.4 General Characteristics of the Gain Spec- 

trum 

From the general gain equation of Equation (6.16), it is apparent that there is 

a maximum value for the gain spectrum, which can be found from Equation 

(6.16) without the inclusion of the additional term of the difference of the 

Fermi-distribution functions. It is useful to define at this stage a population 

inversion parameter = N' /N(2) between the carrier densities in subbands. 
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Figure 6.5 shows the gain spectra calculated from Equation (6.21), with var- 

ious values of C. It is apparent that the gain can be positive even in the 

absence of inversion between the two subbands. 
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Figure 6.5: Intersubband gain spectra for different values of the population 

inversion parameter = N21)/N22): (a) = 0, (b) = 1/3 and (c) = 1, 

i. e. Nl = N2. Assumed material parameters: EG= 1eV, me = 0.04mo, and 

LZ = 7.6 nm, resulting in El = 138 eV, E2 = 438 eV, and ml = 1.28mg, 

m2 = 1.88mg. Source: [5] 

I 

The dominant scattering process is assumed to be intrasubband phonon 

scattering, which causes a slight bump in the long wavelength portion of 
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the gain spectra, the rate, W(e); being proportional to the step function 

O(E - h21ph). Hence the scattering process is initiated when the electron 

energy exceeds the LO phonon energy (of .:: 40 meV depending on the semi- 

conductor material). This means that transitions corresponding to e> mph 

undergo a steplike increase in the broadening by optical phonon emission. 

Similiarly the spectra are depressed ate < hw h). This effect is only slightly 

apparent in Figure 6.5 but is more obvious in the higher temperature spec- 

tra of Figure 6.6, and in the calculations of the next chapter. It can also be 

observed in Figure 6.6 that the peak gain occurs at different wavelengths for 

different temperatures, and shifts to longer wavelengths at higher values of T. 

6.5 Conclusion 

This chapter has been concerned with developing an expression to describe 

the intersubband optical gain, paving the way for investigations into the 

optical gain spectra of QW structures designed for intersubband lasing. The 

various components of the general optical gain equation have been discussed, 

and the corresponding forms appropriate for intersubband calculations found. 

The resulting expression for intersubband optical gain will now be utilised 

in the next chapter where the optical gain calculations of QW structures 

designed for lasing at mid-infrared (MIR) and near-infrared (NIR) will be 

undertaken. 
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Figure 6.6: Intersubband gain spectra for e= 1/3 at T= 100-300K: (a) 

T= 100K, (b) T= 200K, and (c) T= 300K. 
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Chapter 7 

MIR and NIR Intersubband 

Optical Gain and Lasing 

Threshold Current 

7.1 Introduction 

The previous chapter introduced the formalism of intersubband optical gain, 

where the various components which make up the expression for the optical 

gain were discussed. Here, the information gleaned from that chapter as well 

as Chapters 4 and 5 where the rate equations were discussed, will be utilised 

to investigate the optical gain spectra of QW structures designed for lasing 

at mid-infrared (MIR) [1] and near-infrared (NIR) wavelengths [2]. Self- 

consistent numerical simulations of the carrier conservation rate equations, 

optical gain and spontaneous emission spectra of the QW structures have 

also been undertaken [3], and will be described here. 

107 
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7.2 MIR Intersubband Optical Gain 

Use will be made of the MIR TQW structure introduced in Chapter 5, and 

the same notation which was introduced there for identifying the energy levels 

and subband carrier populations will be maintained. This section extends the 

previous analysis to provide a further degree of consistency by incorporating 

the intersubband gain calculations appropriate for MIR emission. We will 

restate the rate equations from the previous chapters, and write them in 

terms of the optical gain g: 

dNl J L2Nz2)N1 
at _ 

eLi 
+ Li 7*12 Tie 

7.1 

dN(2) 
_ 

Ll Nl 
_ 

N(Z) N(2) 
dt L2r12 Tie. -gp- IS (7.2) 

dN(l) 
_ 

N(2) L3 Na 
_ 

N(1) 
dt - 9P + 

Ts 
+ Li T23 T23 

(7.3) 

dN3_LZN21)N3_ J 
(7.4) dt L3 T23 T23 eL3 

dP 
=gP- 

P 
(7.5) 

where e is the electronic charge, and P is the photon density. g= erg k the 

peak intersubband gain at the lasing frequency, and c= c/ fx. is the speed 

of light in the lasing mode. T12 and r23 are the tunneling times between Wl 

and W2, and between W2 and W3 respectively, and rs is the intersubband 

relaxation time. In addition, the current injection equation takes the form 

J= 
T 

[NIL, + (N' + N(2))L2 + N3L3] (7.6) 
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where TT is the effective transit time of the carriers through the whole struc- 

ture, which includes not only the -tunneling times through the barriers and 

the intersubband transition times, but also the time delays caused by intra- 

subband scattering and electron diffusion, and J is the areal current density. 

The expression for the optical gain g(h) as stated in Equation (6.21) of 

Chapter 6 is: 

4e2Jz12l2mrf °O dchbW(E)[f2(E) - fi(el)] 

9o (M) - hL, c c. J [M - hflE]2 + [W(e)]2 
(7.7) 

where e is the electron charge, Z12 is the transition matrix element, K. the 

high frequency dielectric constant of the QW, LZ the QW width, 0. the op- 

tical transition frequency for the in-plane electron momentum 7ik =V2_ 

namely h. 52,, _ hf 0+ E2 - fl, where e2 =, e and el = h2k2/2m1 are kinetic 

energies in the upper and lower subbands respectively, characterized by the 

effective masses m1 and m2, and the distribution functions fl and f2. 

Using the parameters given in Table 7.1 the gain spectra for a single MIR 

TQW element at various temperatures is obtained, as illustrated in Figure 

7.1 below. 

Note the slight kink in the gain spectra which occurs due to the threshold 

nature of y(c) in the lineshape function. This kink reflects the fact that transi- 

tions corresponding to frequencies greater than the optical phonon frequency 

suffer a steplike increase in the broadening by optical phonon emission. The 

peak in gain occurs at 10.6µm but, as can be observed, shifts to longer wave- 

lengths with higher temperature. This effect was also mentioned previously 
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Table 7.1: Parameters used in the intersubband gain spectra simulations. 
Descriptions Values 

Upper-energy level, E22ý 203.5 meV 

Lower energy level, Eil) 78.8 meV 

Band energy gap for GaAs, E9 1424 meV 

Upper level carrier density, N2 3.7 x 1017 cm-3 

Lower level carrier density, Nl 2.4 x 1017 cm'3 

Phonon energy for GaAs, hwph 36 meV 

Effective mass for GaAs, me 0.067mo 

Transition matrix element, z12 1.5 nm 

High frequency dielectric constant, X" 10.90 

Low frequency dielectric constant, Ico 13.71 
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Figure 7.1: Calculated MIR intersubband gain spectra at 2'= 100-301X. 
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in [1], [4]. The peak gain at room temperature is very low (20 cm-') due to 

the high value of the population inversion parameter = N21)/N2(2) = 0.65. 

When this is considered together with the relatively larger optical losses at 

MIR wavelengths, it is clear that there is a need to use several such groups 

of TQW elements in, for example quantum cascade laser configurations, in 

order to achieve lasing action. It is, therefore, of interest to perform similiar 

calculations for near-infrared (NIR) wavelengths where the optical losses are 

expected to be lower [2]. 

7.3 NIR Intersubband Optical Gain 

In this section, we utilise the NIR TQW structure from Chapter 5. The 

structure is designed so that at an appropriate bias, its four energy levels are 

aligned in a manner that causes a transition wavelength of 1.55 µm to be 

achieved. At this bias voltage, there also exists an inversion of state lifetimes. 

An intrawell lasing transition scheme is chosen since, in addition to the larger 

dipole matrix elements achievable, the threshold current for intrawell is lower 

than that for interwell transitions. It is noted that although maximising the 

transition matrix element will increase the radiative transitions, but the non- 

radiative decay rate [6], [7] will also increase. Similiarly, tailoring the matrix 

element for the purpose of reducing nonradiative transitions will also result 

in a decrease of radiative transitions. 

In contrast to the case of MIR emission, calculations of optical gain at 

NIR wavelengths, shown in Figure 7.2, are seen to be significantly higher 

than at MIR wavelengths. Taken together with the lower optical losses ex- 
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pected in the NIR, this strongly suggests that NIR intersubband lasing can 

be susteained using very few coupled quantum well structures. 

Table 7.2: Parameters used in the intersubband gain spectra simulations. 
Descriptions Values 

Upper energy level, E22ý 1283.6 meV 

Lower energy level, E21), 484.5 meV 

Band energy gap for Ino. 53Gao. 47As, E9 750 meV 

Upper level carrier density, N2 1.5 x 1018 cm-3 

Lower level carrier density, Nl 7.5 x 1017 cm-3 

Phonon energy for InGaAs, hwph 45 meV 

Effective mass for InGaAs, fine 0.047rn0 

Transition matrix element, x12 1.65 nm 

High frequency dielectric constant, x,, 11.62 

Low frequency dielectric constant, no 14.66 

Using the parameters given in Table 7.2 the gain spectra for a single MIR 

TQW element at various temperatures is obtained, as illustrated in Figure 

7.2 below. 
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Figure 7.2: Optical gain spectra at NIR wavelengths for a single TQW clc- 

meat at temperatures T= 100-300K, ý=0.5 
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7.4 Self-Consistent Gain Calculations 

In Chapter 4, the optical gain term in the rate equation model was given 

using the straightforward expression 

a(N( 2) 
- N') (7.8) 22 

where an appropriate value for the local gain coefficient, a, was assumed. 

N' and N(2), of course, are the carrier densities in the lower and upper 

subbands of the well in which the lasing transition occurs. 

7.4.1 Spontaneous Emission and Threshold Current 

The single-mode spontaneous emission rate per unit volume, which is the 

spontaneous emission per optical mode, is given by the Einstein relation 

which relates the gain spectrum to the spontaneous emission spectrum (9] 

R' = 
rv99(hcl) f2(1- fl) 

V f2 - fl 
(7.9) 

where V is the QW volume, v9 is the material group velocity of the active 

region and r is the overlap factor between the mode and the TQW element 

such that v, r = VP, the mode volume. In order to find the total spontaneous 

emission rate, R8p, we multiply the single-mode rate by the number of optical 

modes in the QW volume, Nmodes, such that 

n,, ng Q2 
Vp (7.10) Nmodes = 

72 hC3 

where n9 is the group index which comes about from the frequency depen- 

dence of the refractive index, such that n9 = c/v9, and Vp is the mode volume 
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mentioned earlier. It should be noted that the present treatment is only valid 
for cavity dimensions much larger than the wavelength of interest. A method 
for finding the equivalent expression for cases where this does not apply, e. g. 

in microcavities, may be found in [10]. Using the present approach, the fol- 

lowing equation for total spontaneous emission rate per unit energy per unit 

QW volume (in units of s-1 m-2 eV-1) is obtained 

Rs ý)= ne2lzI2mrfZ3 00 
de 

h-y(E) 
"f2(E) 

[1 
- fl (61)] 

p 7f2Eoh3C3 

Jo 

jr[M - C]2 + [h'%(E)]2 l 

The radiative component of the current (excluding stimulated emission) 

required to obtain a given gain in the QW, can then be found by integrating 

the spontaneous emission rate over all photon energies: 

Jrad _ 
eL2 /' 

R8p(ý)d(M) (7.12) 
77i h)r J 

where is the internal efficiency of the laser (say 75 % ý1ý [71 ), rar is the radiative 

efficiency (usually of order 10-4 - 10-3 in MIR quantum cascade structures 

[6], [7], [10]) and J,. ad is the areal spontaneous current density (A/m2). The 

high nonradiative current (40%) [7], in QCLs results in a very high threshold 

current density (4-15 kA/cm2 for MIR QCLs). 

7.4.2 Modifications to the Rate Equations 

An additional term, the spontaneous emission term, will now be added to 

the photon density rate equation, so that it takes the form: 
22) dP 

=PP- 
P 

-}- , QspNS (7.13) 

where 6, p is the spontaneous emission factor, which is the ratio of the single- 

mode spontaneous emission rate to the total spontaneous emission [9], and 
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may be obtained from the expression below 
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Q9p= 
VfRp(hSZ)d(tSz) 12- 

f 
fll) (7.14) 

Also, by equating the the two equivalent expressions for g from the rate 

equations 

9- crg eak = a(Ný2) - N') (7.15) 

we can obtain an expression for the local gain coefficient, a, such that 

_N' N22) 
c9p (7.16) 

Using the above expressions, the gain and rate equations can be solved 

alternatively until the variables converge to constant values. From this cal- 

culation, the self-consistent gain spectra are obtained. 

7.5 Results 

Using the parameters given in Table 7.3, we obtain, for the relevant struc- 

tures, the MIR and NIR gain spectra. These are shown in Figure 7.3. Tun- 

neling times were calculated from the respective energy level splittings, DE;; 

of the coupled wells using rjj = 7rh/DE; 1. In performing these calculations 

we have assumed for simplicity that the bias applied to the TQW structures 

remains fixed throughout, although in reality the bias may change as the 

current is varied. 

It can be observed that the values of the MIR threshold currents in Table 

7.4 are comparable to those found by Sirtori et al in their experiments [11], 

[12]. The peak modal gain for 25 such elements in e. g. a QCL is found by 
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Table 7.3: Parameters used in thecalculations for the NIR and MIR. devices- 

T NIR MIR 

Photon lifetime, Tp 1 ps 1 ps 

Tunneling time, r12 0.11 ps 0.54 ps 

Tunneling time, r23 0.10 ps 0.45 ps 

Transit time, TT 3.2 ps 3.8 ps 

Well W1 width 3.10 nm 2.80 nm 

Well W2 width 3.10 nm 8.20 nm 

Well W3 width 2.06 nm 6.20 nm 

QW volume, V 1.3mm x 2.0µm x 3.10nm 1.3mm x 2.0µm x 8.20nm 

multiplying the peak gain at threshold by the mode confinement factor of 

[12], and is found to be approximately 28 cm-1, which agrees with the value 

of 30 cm-1 in [12]. The good agreement found where the experimental results 

are available gives added confidence in the model and hence its predictions 

for the NIR case. 

Table 7.4: Threshold current values for a single TQW element. 

E NIR 1 1 1 MIR 

100K 300K lOOK 300K 

33.4 A/cm2 143.5 A/cm2 576.5 A/cm2 4071.2 A/cm2 

Attention is drawn to the fact that the peak of the gain curves do not 

shift with increase in applied current. In conventional lasers, such a shift is 
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Figure 7.3: Gain spectra of the NIR and MIR structures at various threshold currents. 
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due to the change in the Fermi-Dirac distributions caused by the increased 

current, which is made possible by the quasi-continuous nature of the con- 

duction and valence bands in these lasers. In the present case, this shift is 

not observed in intersubband transitions which involve electrons occupying 

discrete subbands. 

7.6 Conclusion 

Using the rate equations for four-level TQWs from previous work, we have 

performed a self-consistent analysis of the achievable gain of a device utilis- 

ing this TQW structure, and compared the results with an equivalent TQW 

structure for MIR lasing. As the results of the MIR calculations are similiar 

to those of experimental results reported in the literature, it is to be expected 

that the NIR results are also reliable. 

The optical gain spectra was obtained from a modified standard expres- 

sion for the optical gain per unit length, using the lineshape function as 

proposed by Gorfinkel et al in [5], [4]. Comparisons between the results for 

the NIR structure and a MIR structure show that for the threshold current 

densities for the NIR at comparable values of peak gain are two orders of 

magnitudes smaller that that of the MIR structure. The recent publication 

by Kisin et al [13] indicates that several other considerations may also need 

to be taken into account in forming the lineshape function for the optical 

gain expression, including optical phonon confinement effects and electron- 

phonon scattering rates. In addition, the effect of the state lifetimes, which 
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were designed to be inverted in the TQW structure, have not as yet been in- 

cluded in the rate equation model. Recent results [14] have shown that these 

lifetimes should be taken into consideration when designing intersubband de- 

vices. This is reserved for further work, and will be discussed in Chapter 9. 
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Chapter 8 

Intersubband Nonlinearities 

8.1 Introduction 

The linear and nonlinear susceptibilities characterize the optical properties 

of a medium. If XN"N is known for a given medium, then at least in principle, 

the nth order nonlinear optical effects in the medium can be predicted from 

Maxwell's equations. All optical phenomena would be predictable and easily 

understood if the constitutive equation could just be written and the solu- 

tion found for the resulting set of Maxwell's equations with the appropriate 

boundary conditions. This, however, is seldom possible. 

Physically, X(") is related to the microscopic structure of the medium. The 

proper evaluation the nth order nonlinear susceptibility necessitates a full 

quantum mechanical treatment, which shall be considered in a later section. 

A simpler model will first be considered in order to illustrate the origin of 

optical nonlinearity and some characteristic features of X("). 

124 
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8.1.1 Electron Oscillator Model 

The electron oscillator model predicts that a polarisation, P, is induced in 

a dielectric medium under the influence of an applied field, by the resulting 

creation of dipole moments from the displaced bound charges. The polarisa- 

tion is the sum of the internal dipole moments induced per unit volume, and 

adds to the electric flux density such that the total- flux density becomes 

D= eoE + lP (8.1) 

This response of the medium to the electric field under steady-state condi- 

tions is determined by the susceptibility of the medium through which the 

wave is travelling, X, and is defined by 

P= EoX(w)E (8.2) 

where the frequency dependence, or dispersion, of X emphasises the disper- 

sive nature of the medium response. Dispersive effects are greatest at certain 

frequencies resonant with atomic transitions. When the frequency w of the 

applied field is tuned close to that of a transition, the atoms acquire large 

dipole moments that oscillate at w. 

X contains the essential optical properties of the material. It describes the 

various light-matter interactions and so its complexity determines to what 

extent these phenomena are taken into account. The refractive index n of 

the medium, for example, can be written as n2(w) =1+ X(w). In general, X 

tends to be complex and frequency dependent. 
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8.2 Nonlinear Susceptibilities 

Quantum mechanics provides an expression for the nonlinear susceptibility 

of a material in terms of the transition dipole moments and transition fre- 

quencies. There are two approaches to the calculation of the nth order non- 

linear susceptibility, X("). These are (i) the perturbative approach, which is a 

straightforward iterative third-order solution of the Liouville equation for the 

density matrix, and (ii) the diagrammatic approach, in which double-sided 

Feynman diagrams enable the solution to be written directly by following 

simple rules. As the two approaches have been evaluated and found to be 

equivalent [1], we shall be using the latter derivation. 

8.2.1 Feynman Diagrams 

The nonlinear susceptibilities may be calculated using double-sided Feynman 

diagrams (Figure 8.1) [1], [2]. These diagrams enable one to write directly 

all permutations of the interacting fields of a system, without calculating 

lower-order processes. The density matrix is given by p= and for 

the the general use, one needs to keep track of the proper time development 

of the (brat and (ket) vectors separately. Thus, one plots two parallel lines, 

with time advancing upwards. 

A photon absorbed is symbolised by a wavy line pointing upward (when 

tracing it from left to right), and a photon emitted is drawn by a wavy line 

pointing downward (when tracing it from left to right). These symbols for 

emission and absorpsion apply both on the bra and ket sides. 
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Figure 8.1: Double-sided Feynman diagram. 
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The prescription on how to translate one such diagram into a term in 

the expression for the susceptibility is given below following [1]. The rules 

are specific for these diagrams and refer to the diagram in Figure 8.1 which 

is the diagram for a third-order nonlinearity. A term includes the following 

factors: 

" Initial density matrix element p, °nm. 

" Four matrix elements, obtained as follows. Trace the left line (ket) 

upward and then the right one (bra) downward, writing a matrix el- 

ement for each interaction. Note that the transition from In) to (r) 

involves an "interaction. " The polarization order is that of the fields 

involved where wp is the field involved with the transition at the top of 

the diagram. Thus for Fig. 1 the following is obtained 

RmIRin Rnr Rm 

where a, , Q, y, µ is the Cartesian coordinate of the polarization of the 

b Im> 
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field wa, wb, w,, wp respectively. 

" Product of the propagators, 'obtained as follows. Advance in time until 

after one has crossed an interaction vertex. The propagator is given 

by the inverse of the energy difference of the states on both sides of 

the diagram including damping, minus all photon frequencies of the 

photons pointing upward (absorbed) plus all photon frequencies of the 

photons pointing downward (emitted). In Fig. 1 the first propagator 

is 

1 

Wim - 21'lm - Wy . 

The next propagator is 

1 
Wnm - 2rnm - 

(Wb 
- We) 

The last propagator is 

(-1) 
Wnr - irnr - 

(Wa + Wb Wc) 

where a (-1) is included for cases where the last interaction occurred 

on the right-hand (bra) side. 

8.3 Intersubband Dipole Moment Matrix El- 

ements 

The transition matrix element determines the strength of interaction between 

two states. This interaction can be strong, weak or nonexistent, depending 

on the wavefunctions describing the two electron states. In Chapter 2, it was 
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seen that the electron wavefunction can be decomposed into two separate 

functions - the envelope wavefunction, b(r), and the Bloch function, u(r). 

In general, for a given interaction Hamiltonian H(r) = H'. r, the tran- 

sition dipole approximation matrix element, so called because the influence 

of the photon wavevector in the matrix element is neglected [5], or dipole 

matrix element, between two states is given by 

H'"(OfIrlcc) = H'. (f. ujlrlipi. ui) (8.3) 

where ¢; = Oj. uj and of = Vi fu f are the electron wavefunctions of the initial 

and final states respectively. 

As the envelope wavefunctions V)i and of are slowly varying compared 

to the Bloch functions ui(r) and u f(r), this matrix element can be approxi- 

mately written as 

(f 
"uf 

lrIbi"ui) -- (uf Irlui) (of ]bc) + (ufl ui) (Of Irloi) (8.4) 

In the case of direct interband transitions, the second term of the above 

expression is zero, because at the same point in the Brillouin zone, Bloch 

functions in two different bands are orthogonal. On the other hand, for the 

intersubband transitions, the first term gives zero because of the fact that 

the Hamiltonian used to obtain V )f and Vi; is Hermitian [12]. In addition, the 

overlap between Bloch functions in the same band is equal to unity [13]. So 

that, for the intersubband case, the following matrix element is obtained 

(ofIrI0i) (iP, IrI7Pi) (8.5) 
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plane, with a polarisation vector, cl(O) = sin(O)5 + cos(O)z, and ak vector 

k= k[-cos(O)x + sin(9)z], where 0 is the angle between the polarisation 

vector and the z direction, and the e2 polarisation is neglected since this 

polarisation cannot induce intersubband transitions [8]. Since the envelope 

wavefunctions of the confinement potential are also functions of z only, the 

only nonvanishing component of the dipole matrix element is (Of zlb; ). The 

intersubband dipole matrix element is therefore polarised in the z direction, 

and will be referred to in the rest of this chapter as (z). 

8.4 Intersubband Third Order Nonlinearities 

The large intersubband dipole infrared transition first observed and reported 

by West and Eglash [3] in 1985 has given rise to substantial interest and 

research in intersubband nonlinearities in recent years. The transition dipole 

matrix elements in semiconductor QWs, which are of the order of a few 

nanometres, give rise to potentially large optical nonlinearities, which can be 

further maximised by suitable design of the heterostructure [4] [6]. 

The properties possessed by intersubband transitions enable their energy 

levels to be tailored by suitable design of the wells and barriers as dictated by 

the appropriate use of semiconductor alloys, as well as by an applied electric 

field. In this chapter, this versatile characteristic of intersubband transitions 

is utilised in designing a multi-quantum well (MQW) structure containing 

energy levels appropriate for both triple harmonic generation (THG) and 

four wave mixing (FWM) by the mere expedient of the application of an 

electric field [9]. 
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It is necessary that the structure energy levels behave appropriately as 

an electric field is applied and hence the use of a three well structure with 

energy levels localised in the respective wells as will be shown in the next 

section, making use of the well known fact that the energy of a confined state 

of a quantum well tracks the centre of the well as an electric field is applied 

and increased. 

A single device with multiple functions is hence made possible, especially 

since investigations of the optical Kerr effect associated with intersubband 

transitions are also possible with this structure. 

8.5 Structure Description 

The structure is a three well structure with Ino, 53Ga0 47As wells and AlAs 

barriers, shown in Figure 8.3. There are several techniques currently available 

to compensate for the high lattice mismatch between Ino. 53Gao. 47As and AlAs, 

one of which is by growing the MQW structure on an InGaAs buffer layer 

with graded indium composition on a GaAs substrate [7]. 

The energy levels are localised in the wells as follows: El and E4 in the 

middle well, E3 in the left well, and E2 in the right. This arrangement is im- 

portant as when a bias voltage is applied to the structure, energy level which 

is localised in the leftmost well will undergo the greatest increase in energy, 

followed by those in the middle well, and the right well respectively. Electric- 

field tunable X(3) for both THG (characterised by X(3) (3w =w+w+ w)) and 



8.5 Structure Description 

= 1051 

= 487 

= 364 

= 243 

=107 meV 

(a) 
1100 

612 

534 

278 

216 meV 

(b) 

133 

Figure 8.3: Conduction band diagrams of the AlAs/InGaAs coupled quantum 

well nonlinear optical structures for (a) THG at 0 meV bias, and (b) FWM 

at 200 meV bias. Shown are the positions of the positions of the calculated 

energy subbands. The widths of the InGaAs wells are 2.0 nm, 5.7 nm and 

3.0 nm respectively, and are separated by 1.0 nm AlAs barriers. 
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FWM (characterised by X(3) (W4 = 2w1 - w2)) is then possible using same 

structure, with an applied bias voltage of less than 30 meV for THG, and 

more than 100 meV for FWM. Ideally, anti-crossing between the subbands 

should not occur otherwise the 4-1 matrix element, (z14), will not be op- 

timised, hence there is a limit to the maximum bias voltage which can be 

applied. 

The energy states of the structure for THG may be pumped by e. g. a 

CO2 laser [10], whereas those for FWM could make use of sources with wave- 

lengths shorter than 5 pm such as holmium and erbium rare earth lasers and 

periodically poled lithium niobate optical parametric oscillators [11], where 

many interesting nonlinear optics applications exist. The nonlinearity is fur- 

ther enhanced because the processes will be triply resonant for small laser 

difference frequencies. i. e. the spacing between the relevant energy subbands 

will be equal to the pump photon energy. 

Table 8.1: Energy states of the structure appropriate for THG at various 

applied bias, and their transition energies. 

Vbias Ei E2 E E4 Vas E2-Ei E3-E2 E4 - E3 

10 meV 112 244 373 493 10 meV 132 129 120 

20 meV 118 246 382 499 20 meV 128 136 118 
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Figure 8.4: The double-sided Feynman diagram (left) for the triply resonant 

THG process shown on the right. 

8.6 Third-Order Nonlinear Susceptibility Equa- 

tions 

There are eight basic diagrams for X(3) (w4 = wl + w2 + w3), and six possible 

terms can be derived from each diagram, making a total of 48 terms alto- 

gether. In the case of THG, the number of terms collapse into eight, which in 

turn becomes only one when the process is triply resonant. The double-sided 

Feynman diagram which describes the triply resonant THG process is shown 

in Figure 8.4. 

Following the simple rules outlined in the previous section, we obtain the 

following equation for the triply resonant THG process: 

X(3) r3w) = 
Ne4 (Zgk) (Zkl) (zln) (Zng) 

(8.6) 
lL 

90 (W 
- Wkg - irk9) (2w 

-w9- if: 
9) 

(3w 
- Wn9 - irn9) 

where rj are the scattering rates between the subbands i and j such that 

hrij =7 meV [14]. It is assumed that only the lowest level is thermally 

populated with a density of carriers N=5x 1017 cm'3, and that the 
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Figure 8.5: The double-sided Feynman diagrams (left and centre) for the 

case of the triply resonant FWM shown on the right. 

pump beam is of frequency w=9.8µm. Using the above values, a value 

of (X(3) (3w) I=8.3 x 10-14 (m/V)2 is calculated. 

Three terms can be derived from each of the 8 diagrams describing the 

various cases of the FWM process of X(3)(W4 = 2w1 + w3), making a total 

of 24 terms altogether. These collapse into the two double-sided Feynman 

diagrams which describe the triply resonant FWM process that we are inter- 

ested in [2], and these are explicitly shown in Figure 8.5. 

From the above diagrams, two terms are obtained for the triply resonant 

FWM process, which when simplified becomes 

(3) 
_ 

Ne4 (z9n) (xn9i) (z9, 
nw) 

(Zn'9) 

X A3 CO (W1 - Wy - 1. Jg'9 - ir9'9) (04 
- Wnr9 - irnr9) 

11 
xL (Wl - Wng - Zr 

9) 
+ 

ý-W2 
- Wn9 - irrig) 

ö. 7 

where r9 and P,,, 9 are the intersubband scattering rates, and is estimated 

to be 2 ps [10]. r9 is the effective intrasubband scattering rate, assumed to 
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be 0.1 ps [10], and the pump frequency wl = 3.8µm. Using the above values, 

a value of IX(3)(w4)I = 1.1 x 10-10 (m/V)Z is found. 

8.7 Conclusions 

A MQW structure has been designed which is suitable for both THG and 

FWM, depending on the bias voltage which is applied. The calculated third 

order nonlinearities for THG, X(3) (3w), and for FWM, X(3) (w4), have been 

found, and are comparable to those of the "single-use" structures reported 

in e. g. [15] (for THG), and in [10] (for FWM) respectively. 

By applying different values of the bias voltage, the energy levels of the 

structure could be brought into resonance for optimising the third order 

nonlinearity. Moreover, the output frequency could also be tuned by changing 

the bias voltage, resulting in a multi-function tunable device. Similiar devices 

of this kind could be easily designed for operation at other frequencies of 

interest. 
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Chapter 9 

Conclusions 

9.1 Introduction 

This thesis has been concerned with the optical properties of intersubband 

devices and waveguides, with particular attention being paid to accessing 

THz bandwidths in directly modulated intersubband semiconductor lasers, 

and the optical gain achievable in these devices. Specifically, three main 

aspects of the optical properties of intersubband devices have been studied, 

namely the waveguiding properties of quantum cascade lasers (QCLs), the 

anticipated modulation bandwidth, gain and threshold current of intersub- 

band lasers, and the engineering of nonlinear susceptibilities in intersubband 

quantum well structures. 

A particular context where THz modulation bandwidths would be of in- 

terest is in optical fibre communications where significant changes in available 

system performances have occured recently, with considerable attention be- 

ing given to the use of wavelength division multiplexing (WDM) techniques. 
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In this context, a perception is emerging that data transmission at THz data 

rates may become a systems requirement sooner rather than later. The di- 

rect approach to meeting such requirements has already been taken, e. g. by 

multiplexing 100 sources at 10 Gbits/s. An ultimately simpler approach may 

be feasible based on the development of near-infrared (NIR) unipolar inter- 

subband lasers, which has been assessed to be capable of both high gain and 

fast direct modulation rates. 

In the following sections, the significance of the results obtained from 

an investigation of these various aspects of the optical properties of semi- 

conductor lasers is summarized. Proposals for future work which may be 

undertaken to further enhance the understanding of these optical properties, 

as well as utilise and expand upon the existing knowledge in related work, 

are also presented. 

9.2 Conclusions and Further Work 

9.2.1 Optical Waveguiding Properties of Quantum Cas- 

cade Lasers 

In a conventional semiconductor laser, the epitaxial layers grown on either 

side of the active region-are usually chosen to form a waveguide normal to 

these layers. It is this variant of waveguide that has been studied here, us- 

ing the numerical method detailed in Chapter 2 which allows the supported 

modes and their corresponding losses or gain to be found. An improvement 

to the structure used in the QCL by Faist et at was made from the sensitivity 
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analysis, resulting in a simpler waveguide structure, as well has better mode 

confinement. 

More recent advances in the design of optical waveguides for QCLs have 

been reported by C. Gmachl et at (Science 280, p. 1556,1998) where the 

incorporation of the QCL into a microdisk waveguide has resulted in a dra- 

matic increase in the output power intensity and decrease of threshold current 

achievable from such devices. It appears that this would be the direction to 

go into for further QCL work, in addition to diversifying into QCL intersub- 

band structures for NIR and far-infrared (FIR) lasing. Further work may be 

undertaken in this regard by modifying the waveguide Helmholtz Equation 

solver to solve for modes in microcavities. 

Moreover, although the lower threshold current of the interband cascade 

lasers might, at first glance, make them the preferred choice for mid-infrared 
lasing, QCLs has several advantages over the interband structures, most ob- 

viously, the fact that QCLs are not only tunable, but using a single material 

system, e. g. AlInAs/GaInAs, a range of wavelengths (from 3.5 - 17 pm for 

AlInAs/GaInAs) may be obtained. Investigations into the possibilities of us- 
ing different materials, such as GaAs/AlGaAs, have already been undertaken 

by various researchers (see e. g. Li et al, Appl. Phys. Lett. 72, p. 2141,1998; 

Sirtori, Invited talk, Vertical Transport and Intersubband Processes in Low 

Dimensional Structures, Sheffield, Oct. 1998. ) 
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9.2.2 Rate Equations and Modulation Bandwidth of 

Intersubband Lasers 

Analytical expressions for the population inversion condition and threshold 

current of a triple quantum well (TQW) intersubband structure were derived 

in Chapter 4, using a four-level rate equation model. An analytical expres- 

sion for the modulation response of the TQW structure has also been found 

for a special case of equal tunneling times between the relevant wells of the 

structure. Using this expression, it has been found that the maximum re- 

sponse frequency is dependent upon carrier lifetimes. It was also found that 

the modulation response does not increase monotonically with the output 

power, and that there exists an optimum optical output power for maximum 

attainable response frequency. 

The four-level rate equation model has also been used to study the dy- 

namics of intersubband lasers for the general case of unequal lifetimes, in 

order to confirm the results of the earlier analytical model. A more self- 

consistent calculation was also undertaken in Chapter 5, where the relevant 

lifetimes were deduced from calculations of electronic wavefunctions of the 

two TQW structures designed for MIR and NIR lasing which were presented 

here, and the requirements that were considered in their design prescribed. 

The unique dependence of the modulation bandwidth upon the output 

power of the laser found previously in Chapter 4 was also repeated in Chap- 

ter 5. For intersubband structures, in contrast with interband semiconduc- 

tor lasers, there is a fine balance between the contributions of the resonance 
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frequency and the damping factor in the determination of the maximum 

modulation frequency due to the picosecond carrier lifetimes which are char- 

acteristic of such structures. The fact that these lifetimes are of the same 

order, or shorter than, the photon lifetime indicates that the achievable di- 

rect modulation bandwidth is essentially determined by the photon lifetime, 

and hence, improvements should be obtained by using device design parame- 

ters which results in a reduction of the photon lifetime. There is, however, a 

trade-off in this aspect as higher gain would then be required since the losses 

would be higher for a smaller photon lifetime. 

The effect of the state lifetimes of the energy levels, which are an indi- 

cation of how long the electron remains within the structure at that energy 

level, should also be taken in consideration and included in the rate equation 

model for completeness. 

9.2.3 Intersubband Optical Gain 

In Chapter 6, an expression describing the optical gain in intersubband de- 

vices was derived by drawing on similiarites between the general gain expres- 

sion and corresponding terms for the intersubband case. The resulting ex- 

pression was found to be similiar to that derived in another work by Gorfinkel 

et at, except that the one presented here uses a reduced effective mass. 

The rate equation model has also been used in developing a self-consistent 

model of the optical gain of intersubband lasers, together with this optical 

gain equation in Chapter 7. Here it was found that for the same gain, the 
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threshold current for the NIR structure is an order of magnitude less than 

that of the MIR structure. This is attributed to the fact that the materials 

used in designing the NIR TQW structure has a lower effective mass that 

those used in the MIR case, and hence the carrier population density is higher 

for the NIR structure. 

The inclusion of the more detailed treatment of the phonon scattering 

events presented by Kisin et al (J. Appl. Phys. 82, p. 2031,1997) into the 

lineshape function could be undertaken for future work. It would also be 

of interest to apply the model to the study of FIR intersubband structures. 

Here, the fact that the transition is less than the optical phonon energy means 

that electron-electron scattering needs to be considered, and so the lineshape 

function would be altered accordingly. Tjis aspect would be of interest for 

future consideration. 

9.2.4 Intersubband Nonlinearities 

In Chapter 8, an intersubband structure designed for both triple harmonic 

generation (THG) and four-wave mixing (FWM) was presented, and the 

third-order nonlinear susceptibilities (X3) appropriate for these functions 

were calculated. The application of an appropriate electric field would al- 

ter the enrgy levels in the structure in such a manner so that when op- 

tically pumped at the appropriate frequency, the relevant processes would 

take place. 

It should be noted, however, that the calculations only take into consid- 
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eration the resonant cases. It should therefore, be of interest to develop a 

computational model to take into account the nonresonant cases, and which 

has the full 48 terms of the X3, in order to investigate the changes which take 

place as the electric field applied to the structure is increased or decreased. 

A simpler study with regard to the second-order susceptibility could also be 

undertaken. 

9.3 Other Developments 

9.3.1 Photonic Bandgaps 

A photonic bandgap (PBG) crystal is a periodic composite structure with 

a frequency gap in which all optical electromagnetic modes are forbidden. 

The originators of the concept were Yablohovich and John, who suggested it 

in 1987. Primary applications of such structures include all-angle reflecting 

mirrors, band-pass and band-stop filters, and finally, waveguides and res- 

onators. Among the principal current problems encountered by researchers 

in this field is the development of appropriate mathematical tools for analysis 

and design of these structures in practical geometries. The waveguide solver 

could be expanded into three dimensions, with some imagination, to enable 

the design of PBG structures for theoretical and experimental investigations. 

9.3.2 Nonlinearities in Cantor and Fibonacci Struc- 

tures 

The study of the nonlinear optical response of Cantor-like and Fibonacci- 

like quasiperiodic structures is an interesting field. The application of such 
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structures in optical waveguides can be seen as an extension of the analysis 

of semiconductor multilayered optical waveguides, such as ridge waveguide 

structures and Bragg optical waveguides, where previous analysis of a de- 

focusing optical nonlinearity in such waveguides has already given rise to 

interesting results (see e. g. Lambkin and Shore, IEEE J. Quant. Electron. 

14 p. 2046,1988, and IEEE J. Quant. Electron. 27, p. 824,1991. ) Fur- 

ther studies could be undertaken in this direction using the waveguide solver 

described in Chapter 2. 

9.3.3 The Poisson Equation 

When carriers are injected into a MQW structure, the presence of the elec- 

trons modifies its band structure, and therefore, its energy levels. Solving 

the Poisson and Schrödinger Equations concurrently could enable this accu- 

mulative space charge effect associated with the application of a bias voltage 

to an extended MQW structure to be taken into account. Hence, complex 

superlattice-type structures such as the QCL injector and its active region 

may then be modelled. 



Appendix A 

Basic Complex Variable Theory 

and Mathematical Definitions 

A. 1 Terms and Concepts when Dealing with 

Complex Functions 

Continuity. A function f is said to be continuous at a point zo is all three 

of the following conditions are satisfied: 

(i) lim f (z) exists, 
Z- Zo 

(ii) f (zo)exists, 

(iii) lim f (z) =f (zo). 

Note that statement (iii) actually contains statements (i) and (ii); for the 

existence of the quantity on each side of the equation is implicit. Statement 

(iii) says that for each positive number c, there is a positive number 8 such 
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that 

If (z) -f (zo)I < C. whenever Iz - zol <6 

A function of a complex variable is said to be continuous in a region R if it 

is continuous at each point in R. 

Derivatives. Let f be a function whose domain of definition contains a 

neighborhood of a point zo. We define the derivative of f at zo, written as 

f'(zo), by the equation 

f'(zo) = lim 
f (z) -f (zo) 

(A. 1) 
Z-4Z0 Z- z0 

provided the limit here exists. The function f is said to be differentiable at 

zo when its derivative at zo exists. 

Analytic Functions. A function f of the complex variable z is analytic 

at a point zo if its derivative exists not only at zo . It is analytic in a region 

R if it is analytic at every point in R. The term holomorphic is also used to 

denote analyticity. 

If a function f is analytic in a region R, then about each point z of R 

there must be a neighbourhood on which f is defined. This means that z 

must be an interior point of the domain of definition, and so analytic func- 

tions are usually defined on domains. If, however, an analytic function f is 

said to be on a closed disk Izj < 1, for example, it is to be understood that 

f is analytic throughout some domain containing that disk. 
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An entire function is a function that is analytic at each point in an entire 

plane. Since the derivative of a polynomial exists everywhere, it follows that 

every polynomial is an entire function. 

Singularities. If a function fails to be analytic at a point zo but is 

analytic at some point in every neighbourhood of z0, then zo is called a 

singular point, or singularity, of the function. For exmaple, if 

Az) (z) = z; then f'(z) _ -zz (z 910). 

Hence, f is analytic at every point except for z=0 where it is not even 

defined. The point z=0 is therefore a singular point. On the othe rhand, 

the function f (z) = Iz12 has no singular points since it is nowhere analytic. 

A. 2 Contour Integrals 

An arc C is a set of points z= (x, y) in the complex plane such that 

x= x(t), y= y(t) (a <t< b) (A. 2) 

where x(t) and y(t) are continuous functions of the real parameter t. This 

definition establishes a continous mapping of the interval a<t<b into the 

xy plane, and the image points are ordered according to increasing values of 

t. It is convenient to describe the points of C by the equation 

z=Z (t) = (t) +jy (t) (a <t< b) (A. 3) 

and we say that z(t) is continous since x(t) and y(t) are both continuous. 
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A contour, or piecewise smooth are, is an arc consisting of a finite number 

of smooth arcs joined end to end. If Equation (B. 3) represents a contour, 

then x(t) and y(t) are continuous, whereas their first derivatives are piece- 

wise continuous. 

When only the initial and final values of z(t) are the same, a contour C is 

called a simple closed contour. Examples are the circle, as well as the bound- 

ary of a triangle or a rectangle taken in a specific direction. The length of a 

contour or a simple closed contour is the sum of the lengths of the smooth 

arcs which make up the contour. 

Line and Contour Integrals. The definite integral of a complex-valued 

function f of the complex variable z, can, be defined in terms of the values 

f (z) along a given contour C extending from a point z=a to a point z=ß 

in the complex plane. It is, therefore, a line integral, and its value depends 

upon the contour C as well as the function f. Such an integral is written 

r ff(z)dz; 

Jf (z)dz or 
c 

the latter notation is often used when the value of the integral is independent 

of the choice of the contour direction taken between the two end points. 

A contour integral is a special type of line integral, where the value of 

the integral is affected by the choice of path direction taken between two 

end points. The positive direction of trversal is, by convention, taken to be 

counter-clockwise (CCW), and if a clockwise (CW) direction is chosen, the 

sign of the integral is opposite to that which would be obtained if a CCW 
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direction had been taken. 

A. 3 Mathematical definitions 

Hermitian. Lett denote the adjoint, where At is the adjoint operator 

corresponding to the operator A. Then At is defined by: 

(At&) = (OI Ac, ) for any 0, cP (A. 4) 

The operator A is then self-adjoint, or Hermitian, if 

At =A (A. 5) 

so that Equation (A. 4) now becomes 

(AOl v) = (0IAý') 
. 

for any 0, cp (A. 6) 

Orthogonal. Two complex functions, 01(z) and 02(z), are orthogonal if 

f 11(z)O2 (z) dz =0 (A. 7) 

where -i2 is the complex conjugate of 02. 

Orthonormal. Similarly, two functions, 01(z) and 02(z), are orthonor- 

mal if 
f 

ibl(z)0z(z)dz =1 (A. 8) 

A. 4 The Liouville Equations. (Chapter 8) 

In order to find the microscopic expressions for nonlinear susceptibilities, a 

quantum mechanical calculation is often required. The density matrix for- 

malism is usually the most convenient for such calculations especially when 
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relaxations or excitations have to be dealt with. The following is a modified 

excerpt from Shen, The Principles, of Nonlinear Optics, Chap. 2, John Wiley 

& Sons, 1984. 

Let 0 be the wave function of the material system under of the electro- 

magnetic field. Then the density matric operator is defined as the ensemble 

average over the product of the ket and bra state vectors 

P= 10201 (A. 9) 

and the ensemble average of a physical quantity P is given by 

(P) _ (1IPI b) 
= a(pp) (A. 10) 

where P is the electric polarization. From the definition of p in Equation 

(A. 10), and from the Schrödinger equation for 0, the equation for motion for 

p can be obtained 

ap 
=1 at ;A Pi, (A. ii) 

known as the Liouville equation. The Hamiltonian 1l is composed of three 

parts 

_ H0 + hint + hrnndom (A. 12) 

where Mio is the Hamiltonian of the unperturbed material system, ? -L; nt is the 

interaction Hamiltonian describing the interaction of light with matter, and 

ý{randý., ý is a Hamiltonian describing the random perturbation on the system. 

The Hamiltonian ? -irandom is responsible for the relaxation of the perturbed 

p back to equilibrium. Equation (A. 12) can then be expressed as 

op 
=1 [f{o + ? Iint, Pl +C 

op' (A. 13) ot ih at 
relax 
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with 
[Wrandom, P] (A. 14) 

()reZax 

t 

In principle, if 31o, -lint and 
(e) 

are known, then the Liouville equa- 
relat 

tions in Equation (A. 14) togther with Equation (A. 11) fully describe the re- 

sponse of the medium to the incoming field. In general, however, it is not 

possible to combine these equations together into a single equation of motion 

for (P), it can be accomplished only in special cases. 



Appendix B 

Rate Equations and 

Modulation Response of the 

Three Well Structure 

B. 1 Derivation of AN 

Starting from Equations (4.8)-(4.10) in Chapter 4 and rearranging, the fol- 

lowing equations are obtained 

J+ L2N22, 
- 

L1N1 
=0 (B. 1) 

e 712 Tiz 

L1N1 L2N(2) L2N22) 

=0 (B. 2) 
T12 T12 TS 

L2N22) 
+ 

L3N3 
- 

L2N21, 
=0 TS 723 723 

r(1) N(2) L3 N3 = T23L2I 
2-2 (B. 3) 

\ T23 TS 
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From Equation (4.7), 

L1N1 = 
JeT 

- 
L2(N22) + N') -L3 N3 (B. 4) 

The expressions below are then found by substituting both Equations 

(B. 3) and (B. 4) into Equations (B. 1) and (B. 2), 

Jr TT L2N22ý 723 2L2N21) 
1+T (2- )+=0 (B. 5) 

e\ T) 12 12 TS 7712 

JTt 
+ L21V(2)( 

?-1+ 723 2L2N21, 
=0 (B. 6) 

er12 
2 

712 Ts 7*12TS 712 

Equations (B. 5) and (B. 6) are respectively of the form 

Al + BlN(2) + ClN21) =0 (B. 7) 

A2+B2N2 +C2NZ1) =0 (B. 8) 

where 
A_ 1 (1 ý A, -e- T12s 

A2 

= 
J7r 

errs 
B1= .l 712 

(2-= B2=L2(-T22 S-}-ý712 

2Lz 
) 

Cl - 
Era 

\/ 

r12 
CZ 

T12 

Multiplying Equation (B. 7) by C2, and Equation (B. 8) by Cl: 

C2 x (B. 7) : A1C2 + B1C2N(2) + C1C2N$ »=0 (B. 9) 

Cl x (B. 8) : A2C1 + B2C1N2 + CZC1N21) =0 

C2C1N21) = -A2C1 - BZC1N22ý (B. 10) 

And substituting the resulting Equation (B. 10) into Equation (B. 9), an 

expression for N(2) is found, where 

N2(2)= 
A2C1 

- 
A1C2 

(B. 11) 
B1C2 - BZCl 
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By putting Equation (B. 11) back into Equation (B. 10), a similiar expres- 

sion for N21) may also be obtained 

N' = 
A1B2 - A2BI (B. 12) B1C2 - B2C1 

And so, 

ON = NZ2) - N' 
A2C1 

- 
A1C2 A1B2 

- 
A2B1 

B1C2-B2C1 BIC2-B2C1 

- 
A1(-C2 - BZ) + A2(Cl + BI) (B. 13) B1C2 - B2C1 

The actual expression for each of the above terms can then be found by 

replacing the corresponding expressions from Equations (B. 6) and (B. 7), 

JL2 
Al(-Ci2 - B2) = 

87S(T 2)2 

[4r12rg 
"i". 

(712)2 
- 712723 - 4TTTS - T12TT 

+TTT23 ] (B. 14) 

A2 (C1 + B1) 
-, 

(712) 

21 
4Tg - T23) (B. 15) 

ET, T12 

B1C2 - B2C1 = 
2(L2)2 (B. 16) 
T12TS 

So the 

Numerator 

and the Denominator 

= A1(-C2 - B2) + A2 (C1 + Bi) 
JL2 

= I4TS+T12-r23-TT ) 
ersT12 
2(L2)2 

T12TS 

And finally, 

AN 2eL2[4TS+T12-r23-TTI 
(B. 17) 
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B. 2 Deriving the Photon Density in terms of 

the Current Density 

Rearranging the rate equations above threshold, Equations (4.16) - (4.18), 

and substituting AN = N( 2) 
- N' for 1/(aTp) where applicable 22 

(2) 
L2 N2 

-L1N1+J=0 (B. 18) T12 T12 e 

L1N1 L2N22) L2P 
_ 

L2N22) 
= (B. 19) 712 T12 Tp Tg 

L2P 
+ 

L2N22) 
+ 

L3 N3 
- 

L2N21) 
-0 TP TS T23 723 

r(') N2% 2) P L3N3 = L2T23 I2- (B. 20) 
LLL 723 TS TP 

And substituting both Equations (B. 4) and (B. 20) into Equations (B. 18) and 
(B. 19), the following expressions are obtained: 

Jr TT L2N22) T23 2L2N21) L2PT23 

e`1-T 
)+ (2-)-I- 

- =0 (13.21) 
12 T12 TS T12 TPT12 

723 

6TT 
+ L2N22) 

\TT+TTJ 

2LTN21, 
+ 

LT P 

\T23 
0 (B. 22) 

12 12 S 12 S 12 P 12 

which are respectively of the forms of Equations (B. 7) and (B. 8) but now, 

1eT3 TPT19 
2 

e712 Tp T12 
L2" A L2 ý= 

Bi 
n2 

B2 L2 
\ 712 TS 

+- 
Tl l 

?s C1 - 712 

C2 
=_ 

712 
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Referring to Equation (B. 13), the terms in the numerator and the de- 

nominator are 
L2 

.1 T12 
_ 

T23 
_ 

JTT T12 123 Al (-C2 - B2) = 
C4 

+T -T 
L C4 

+ 
J J 

S S e TS TS 8712 712 

-L2PT23 4+ 
T12 

-L-3 
)1 

J 
(B. 23) 

TPT12 TS TS 

A2(C1 + B1) = 
L2 4JTT 

- 
JTTT23 

+ 
4L2PT23 

- 
L2P(T23)2 

- 
1 4L2P 

712 er12 8TS712 TPT12 TPT12TS TP 

+L2PT23, (B. 24) 
TATS 

2 2(L2) 
B1C2 - B2C1 - (B. 25) 

T12TS 

where the 
L2 J 712 

_T2g 
TT\ 

_ 
4L2 P1 Numerator = 

(4 
+ 

J Ts TS Ts TP 712 I- e 

And so, 
s AN = \4Ts + 712 -723 - TT) - 

2P eL 
(B. 26) 

2 2 p 
As the value for AN remains clamped at its threshold value even above 

the lasing, ON = 1/(arp), so an expression for the current density as a 

function of the photon density is obtained 

2eL2 (1 + 2aP7-s) 

arpZ 
(B. 27) 

where Z= 4TS + T12 - 723 - TT, and recalling the expression for threshold 

current density, Jth, from Equation (4.14), 

_ 
2eL2 

Jth (B. 28) 
aT Z P 

Then, the photon density may be written as 

1+2aPTs 
Jth 

1 
P (h 

-1) (B. 29) 
2T s a 
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B. 3 Small Signal Analysis 

Considering Equations (4.30) and (4.31), and assuming that 7-12 = T23 = TW, 

the following expressions are obtained: 
(2 (z) (2) dnd2 

= 
Lý 1 

_n2 -- aPna - (B. 30) 

dn(1) L3 n3 n(1) p n(2) 22+-+ aPnd +2 (B. 31) 
dt L2 TW TW Tp TS 

Subtracting Equation (B. 31) from Equation (B. 30), and using Equation 

(4.34), where n1L1 = J,,, (t)TrT/e - n, L2 - n3L3, results in 

dnd 
_ 

Lin, - L3n3 nd 2p 2n22 

- 2aPnd - dt LZTw TW Tp TS 

1 J,, (tL)2 2L3n3 
Tiy 

C 
eLZ - n' -)- nd 

C2aP 
+ TW 

2ý 2p 
-. 

2n2 
(B. 32) 

Tg Tp 

Noting that n22) = 1/2(nd + n, ), 

d71 
_1 

.Jm 
(t)T 2L3n3 1+11 

dt Tiy 
C 

eL2 
T n' L2 

)- 
nd 

C 2aP + 
TW TS I 

-ns 
2p (B. 33) 

TS Tp 

Adding Equations (B. 30) and (B. 31), gives 

dns 
_ 

Lin, + L3n3 n, 
dt L2Tw Ttiy 

Jm(t)TT 
_ 

2rad (B. 34) 
eL2Tw TW 

However, since n, = n(2) + n4'ß, and any change in n(2) will result in a 

similiar change in n21), as may be observed in Figure B. 1, it can be assumed 

that dn, /dt ý- 0. So, 

_ 
Jm(t)TT 

2eL2 
(B. 35) 
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Figure B. 1: Simulation results showing the variation of the carrier densities 

with time. 
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Substituting the above expression for n8 back into Equation (B. 33), and 

neglecting the term Lz since, from Figure B. 1, n3 is much smaller than 

n1, n(2) and n(l), the following expression is found: 22 

dnd J (t)TT Jm (t) TT 11 2ý7 

- nd 
(2aP +-+ -) -- (B. 36) 

dt 2eL27-w 2eL2TS Typ TS Tp 

Differentiating Equation (B. 36), and noting that dp/dt = aP-nd, the fa- 

miliar 2nd order carrier rate equation may be derived: 

ds 
dt2 + (2aP +1+ 

rs1 dt + 

where 

d2nd dnd 

dt2 + ry dt + wund = 

aP TT 11 dJm(t) 
TP -nd 2eL2 \ rw Ts / dt 

TT (1_1 ldJm(t) (B. 37) 2eL2 \T; TS I dt 

ry = 2aP +1+1 and wo 2= aP (B. 38) 
Tw Tg Tp 

B. 3.1 Second-order Photon Rate Equation 

In order to find the equivalent 2nd order photon rate equation, consider 

Equation (4.33), where dp/dt = aPnd, SO 

1 dp 
nd 

aP dt 
(B. 39) 

Differentiating Equation (4.33), and subsituting the above Equation (B. 39) 

into the resulting expression gives 

d2p 
_ aPdnd dt2 dt 

tl 
= aP 

(- 21' 
- (2aP +1 -i- 

1 )nd -F 
Jm )TT 

(1 -1 )I 
Tp . 

TW TS 2eL2 Thy TS 

2aP 11 dp Jm(t)TTaPr 1-1 

Tp 
p- 

(2aP + TW + TS 
J 

dt + 
2eL2 \Try TS / 

(B. 40) 
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And hence, 
() 

dtv F 'y d+ wöp _ 
Jm2eL2 r_S1 (B. 41) 

B. 3.2 Modulation Response 

Assuming that the modulation current is sinusoidal, with a frequency Wm, 

so that Jm(t) = Jm cos(w�, t), and that due to that modulation, the photon 

response is also sinusoidal, then 

p= J5e» It (B. 42) 

So that, 
atp 

-w2 and 
äp 

= jWmP (B. 43) 

Substituting the above terms into Equation (B. 40) gives 

aTT ()Jm 
72 

(w- w )p + jWmYP = 2eLZ TW TS 
(B. 44) 

And hence the modulation depth can be written as 

arr (1 1 )j" 
2eL2 rw zs rI (B. 45) 

P (wö -Wm) +jwm 
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Derivation and Proof of 

Equations 

C. 1 Derivation of the S'chrödinger Equation 

of Equation (2.14) 

Here, the time-independent conduction-band effective mass Schrödinger equa- 

tion is derived. Using Equations (2.12) and (2.13) from Chapter 2 where 

- h2_ 
2m" (r) 

V2'1` (r, t) + V(r) T (r, t) = EWY (r, t) (C. 1) 

and T (r, t) ='b(r)w(t), where the time-dependent part 

w(t) = e-j(E/A)i (C. 2) 

First, rearrange Equation (C. 1) into the form 

Z 

2m*(r) 
ý2ý(r, t) = EýY(r, t) -V (r)W(r, t) 

= [E -V (r)Jý(r, t) (C. 3) 
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When Equation (C. 2) is substituted into the above expression, the following 

expression is obtained 

2m*(r)V 
2V)(r)e-j(E/h)t = [E - V(r)]ib(r)e-i(E/A)t (C. 4) 

which then reduces to Equation (2.14) where: 

Zm 
ýr) 

V2'(r) +V (r)ii(r) = E1/b(r) (C. 5) 

C. 2 Proof of Cauchy's Integral Formula 

Let f (z) be analytic within and on C, a simple closed contour described 

counter-clockwise (CCW). Then for any point zo within C, 

f (zo) _ 
. 72; Jc (z 

f (z) 

zo) 
dz (C. 6) 

This is Cauchy's Integral Formula, and it says that if a function f is to 

be analytic within and on the simple contour C, then the values of f inside 

C are completely determined by the values of f on C. The proof of this 

theorem is as below: 
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Choose a small circle C. with centre zo, radius S, described clockwise (CW), 

and enclosed by C. Insert a cross-cut from C9 to C. Applying the Cauchy- 

Goursat Theorem to the simple closed curve, and noting that the two con- 

tributions of the cross-cut cancel, we obtain: 

ic 
dz +I dz =0 (C. 7) (z - zo) 9 

(z-zo) 

Therefore, 

f (Z) 
dz _-%f 

(z) 
dz-1 

f (z) -f (zo) 
dz (C. 8) 

c (x- zo)Jc9 (z - zo)9 z- zo 
Knowing that fc9 

Zdzp = -j2ir, we can write: 

f (zo) 
dz 

j 
2iröl max if (z)- f (zo)l 

f z) 
ZO) 

dz-j2ir f (zo) -ff 
(z) 

-o (z 
( 

Z C., 

L 

9I 

(C. 9) 

This expression maybe made arbitrarily small, and hence its value must 
be zero. Equation (C. 9) now reduces to 

f 
(z 

(f ) 
dz = .f 

(zo)j21r (C. 10) 

and the theorem is proved. 

C. 3 Proof of the Cauchy Formula for Deriva- 

tives 

This theorem says that if a function f is analytic at a point, then its deriva- 

tives of all orders are also analytic functions at that point. So, if C is a simple 

closed contour CCW, f (z) is analytic within and on C, and zo is within C, 

then 

f(")(zo) = 
n! 

j27r 
Ic 

(z 
f 

o)"+i 
dz (C. 11) 
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Proof: 

Start from Cauchy's Intergral FQrmula, and differentiate repeatedly with 

respect to z0: 

)=1J 
czf(- 

z) 
zo 

dz (i) f (zo 
j2ir 

_z (ii) f'(zo) 
j2ý 

jf(z)(_1)(z_zo)_2(_1)dz=12ý fc(Z 

zo)2dz 

(iii) f"(zo) =j21r 
ff (z)(-2)(z - zo)-3(-1)dz = j27 c (zf 

( zo)3dz 

etc. 

There is an observable pattern, and hence the theorem is proved. 

C. 4 Derivation of the Expression for the Sub- 

band Quasi-Fermi Levels 

00 
p (E)f, (E)dE (C. 12) N=f0 

m 1ý dE Jo ýh2Lz 1+ exp(EkT 
c) 

m 
_ 

lrh2LZ 

where 

J= 
ý00 dE 

(C. 13) 
1+ exp(EkTL o) 

dx 
ýT, 

ýEL1+ex 

kT 

= kTln[(1 + exp (- kT) + lEf, , 
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and x= (E -Ef, -)/kT so that dE = kTdx and E= kTx + Ej,. 

Substituting Equation (C. 13) back to the original equation, we have 

N7rh2LZ 
kTm, 

Nirh2LZ 
_ 

Ef, l 
exp 

( 
kTm, kT 

( (Ef, l 
p` kTm, 

) ýp 
kT 

Nir, 2LZl 
exp 

C 
kT m, 
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= ln[1 + exp kT) 
]+ 

kT 
(C. 14) 

=l+ exp - 
Ef`l 

C kT1 

=l+ exp - 
Efl C 
kTI 

Efc = 

(Efc) +1 

kTln[exp CN TLZ) 
-1] 

C. 5 Fermi's Golden Rule 

Consider the Schrödinger equation below, which relates the system Hamilto- 

than Ha of the crystal lattice to the energy E of the electron: 

Ho = 
[2ý2 +V (r)] 0= EJJ 

0 
(C. 15) 

where p is the momentum operator, r is the position vector, mo is the free 

electron mass, 0 is the wavefunction of the electron, and V (r) is the potential 
in the semiconductor. 

In order to examine the electron-photon interaction which causes transi- 

tions in the semiconductor, the photon is represented classically by an elec- 

tromagnetic wave. The wave's interaction with the electron enters into the 

Schrödinger's equation through the vector potential (see e. g. The Feynman 

Lectures on Physics (FLP), vol. II and III), which can be expressed as 

A(r, t) =e Re[A(r)e-"''t] = e2 [A(r)e-"''t + A*(r)e-"'`] (C. 16) 
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where e is the unit polarisation vector in the direction of A, and w (hw) is 

the angular frequency (energy) of the photon. The Schrödinger equation in 

Equation (C. 15) is now modified by the substitution [FLP] 

p2 -4 (p + eA)2 ý- p2 + 2eA "p (C. 17) 

where e is the magnitude of the electron charge. In expanding the square, 

the squared vector potential term can be neglected, since it does not affect 

the final results. Substituting Equation (C. 17) into Equation (C. 15), the new 

Hamiltonian is then 

H= Ho + [H'(re'-'"' + h. c. ], H'(r) 
2m0 

A(r)e "p (C. 18) 

the h. c. stands for Hermitian conjugate, and it simply means that the com- 

plex conjugate of all the terms is taken, except the Hermitian operator p. 

The term in brackets can be viewed as a time-dependent perturbation to the 

original Hamiltonian. The effect of this perturbation is to induce electronic 

transitions between the initial and final states. 

By studying the time evolution of some electron wavefunction in an initial 

state as it makes a transition (whether upward or downward) to the final state 

in the presence of the time-harmonic perturbation, it is possible to determine 

the rate at which such transitions occur (see e. g. Appendix 9, Coldren and 

Corzine). The resulting transition rate per unit volume of active material is 

given (in units of s-lcm-3) by 

R_L IHzlI2PI(E2i)IE2l=iw (C. 19) 

H ;l= (021H'(r)loi) = 
jbH'(r)id3r (C. 20) 
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Equation (C. 19) is known as Fermi's Golden Rule. Using it, the task of 

determing the transition rate, R,., is reduced to providing explicit relations for 

both the density of final states and the overlap integral (or matrix element). 
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