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Summary 

 

Biodiversity is the product of millions of years of evolution and forms the basis of 

earth‘s life support system, but the magnitude and relative diversity of global species 

richness remains unknown. On earth there may be over 100 million species but fewer 

than 2 million have been formally described. Coverage across different biological 

groups is very uneven with a known taxonomic deficit especially marked for 

microfauna and meiofauna due to problematic identification and hyper abundant 

representatives. Soft-bottom benthic meiofauna are ubiquitous, highly abundant 

organisms that play a crucial role in marine ecosystem functioning. Nevertheless, 

quantifying community structure using standard morphological approaches requires 

highly skilled taxonomists that are in short supply, and is very time consuming. The 

development of massively parallel sequencing has paved the way to explore 

microbial and meiofaunal diversity in time and space. Several studies have used 

pyrosequencing to assess the diversity of bacteria and archaea in the marine 

environment but there has been comparatively limited focus on eukaryotes. 

Moreover, diversity estimates derived from earlier second-generation sequencing 

studies are now known to be artificially inflated and skewed, due to several problems 

ranging from DNA manipulation and PCR amplifications to bioinformatic analyses. 

Here, I initially provide an overview of the emerging field of meiofaunal biodiversity 

assessment, using 454 Roche sequencing. The field differs substantially from 

environmental sequencing of prokaryotes and even some protists and so warrants 

separate attention. Empirically, meiobenthic richness of numerous phyla was 

estimated at alpha (local) and beta (European) scales, illustrating the extensive, but 

also spatial nature of meiofaunal richness and putative distribution patterns. Further 

to this, I sequenced carefully constructed artificial nematode control communities to 

assess the drivers (richness and genetic diversity) of DNA recombinant (or chimera) 

formation in environmental DNA PCR reactions. These advances provide a fast, 

objective and cost-effective way of accurately exploring and elucidating biodiversity 

in environmental samples. 
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Classification of biodiversity 

 

Biodiversity or biological diversity is a term used to describe the numerous life 

forms found on Earth. One of the characteristics of the living world is its complex 

structure and hierarchy and the need of classification as a requirement to understand 

the diversity of living organisms and their biological and evolutionary relationships. 

Ultimately classification provides the unifying scaffold upon which biological 

knowledge is assembled. Researchers in many areas of biology use classification 

(taxonomy) as a structure for comparative genetics/genomics and also as the basis for 

drawing broad conclusions about the diversity of living organisms (Parfrey et al. 

2006).  

The diversity of life forms have been classified into four to six primary 

―kingdoms‖, mainly assembling organisms that share common features and 

evolutionary traits into taxonomic groups. The most significant system is the 

Whittaker five kingdom structure, recognizing Monera (prokaryotes) and four 

eukaryotic kingdoms: Animalia (Metazoa), Plantae, Fungi and Protista  (Simpson & 

Roger 2004). Nowadays the existence of six-kingdoms of life it is widely accepted 

and includes the Bacteria (prokaryotes) and five eukaryotic kingdoms: the Protozoa, 

Animalia, Fungi, Plantae and Chromista  (Cavalier-Smith 2004, 2010). Perspectives 

on the classification of the eukaryotic diversity have also become a daunting task in 

recent years. Eukaryotes (organisms containing nuclei) are highly distinct but also a 

highly variable group  (Baldauf 2003) that encompass an incredible morphological 

diversity  (Parfrey et al. 2006) and are very complex at the cellular and genetic level. 

Nonetheless phylogenomic analysis has helped to clarify the evolutionary links 

between major groups of eukaryotes allowing the delineation of five  (Koonin 2010) 

or six supergroups  (Roger & Simpson 2009). The main eukaryotic groups proposed 

are the Opisthokonta, Amoebozoa, Plantae, Chromalveolata, Rhizaria and Excavata 

(Figure 1.1). In brief the Opisthokonts contain animals, true fungi and some 

unicellular groups, including the free-living choanoflagellates and also some free-

living amoeba  (Simpson & Roger 2004). The Amoebozoa include a diversity of 

predominantly amoeboid members that are mainly free-living. The Chromalveolata 

comprise unicellular and multicellular forms with four major groups of eukaryotic 

algae: dinoflagellates, cryptophytes, haptophytes and stramenopiles but also include 
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non-photosynthetic forms  (Simpson & Roger 2004; Parfrey et al. 2006). The 

Rhizaria unites a heterogeneous group of free-living unicellular flagellates and 

amoebae, namely the Foraminifera and Radiolaria  (Burki et al. 2010; Cavalier-

Smith 2010) and the Excavata are unicellular eukaryotes, most of which are 

heterotrophic flagellates  (Simpson & Roger 2004).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1- A diagrammatic tree depicting the organization of eukaryotes into six 

major groups (from  (Simpson & Roger 2004)). 

 

 

The ultimate goal in taxonomy and biology in general is to assess species 

identification so that almost all studies in biology, whether at the level of molecules, 

cells, individuals or populations, are typically referenced to the level of the species. 

The process of allocating individuals to a given species clearly depends on the 

criteria by which species are defined and delimited  (Balakrishnan 2005), which are 

in turn connected by the concept of what is a species. Although no concept is 

universally accepted, one of the most documented and applied is the ‗biological 

species concept‘  (Mayr 1963; Avise & Wollenberg 1997; Hendry 2009), where 

species are groups of actually or potentially interbreeding individuals that are 

reproductively isolated  (Velasco 2008). This concept is sufficiently ambiguous to 

allow for some genetic exchange between species, since some estimates hold that 

25% of all plant species and 10% of all animal species hybridize successfully with at 
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least one other species,  (Velasco 2008; Hendry 2009). The ―biological species 

concept‖ does not take in to account groups that are geographically separated 

(allopatric) and it is hard to predict if these groups would collapse into a single 

species if they did become sympatric. In addition, it does not englobe organisms 

without sexual reproduction, such as viruses and most eukaryotic microbes. For 

many reasons the species concept continues to be the subject of much debate  (Jensen 

2010) and unconventional species concepts revolve around the magnitude of 

morphological or genetic differences between groups  (Hendry 2009). The difficulty 

of a species concept is in deciding just how big a difference is to delimit or identify a 

species within a particular group.  

Identifying a certain group or level by taxonomic classification can be supported 

by molecular/ biochemical data and by morphological characteristics  (Avise & 

Wollenberg 1997; Blaxter 2003b; Cavalier-Smith 2006) which can be used solely or 

in combination. Establishing whether a certain morphologically or genetically 

distinguishable group of organisms represents a species has proved to be a 

challenging task  (Avise & Wollenberg 1997; De Queiroz 2007; Vogler & Monaghan 

2007; Jensen 2010). Difficulties vary from intraspecific genetic difference from the 

level of a few nucleotides to whole chromosomes  (Parfrey et al. 2006), particularly 

conservative genes such as those coding for rRNA  (Fenchel & Finlay 2006; Parfrey 

et al. 2006) and also accuracy of molecular versus nuclear markers  (Shaw 2002) to 

the existence of ―cryptic‖ diversity  (Blouin 2002; Bickford et al. 2007). 

 

Components of biodiversity 

 

Biodiversity covers a range of different levels of organisation from the genetic 

variation between individuals and populations, to species diversity, assemblages, 

habitats, landscapes and biogeographical provinces  (Gray 1997; Sala et al. 2000; 

Loreau et al. 2001; Hooper et al. 2005b). There are, in general, three main categories 

of biodiversity: genetic diversity, species diversity and habitat diversity  (Gray 2000; 

Feral 2002).  

Genetic diversity characterizes the amount of genetic information within and 

among individuals of a population, a species, an assemblage, or a community  (Feral 

2002). It is extremely important because it represents a requisite for evolutionary 
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adaptation to a changing environment  (Gray 1997; Sala & Knowlton 2006). To 

understand many ecological and evolutionary processes, it is crucial to document 

genetic diversity of species, populations, or individuals of interest  (Müller et al. 

2003). In addition, it is necessary to understand the mechanisms for creating and 

maintaining the observed patterns of diversity. Thus, studies of genetic diversity have 

the potential to provide insights into many fields including conservation biology, 

population and community ecology, and evolutionary biology  (Feral 2002; Hooper 

et al. 2005b). On the other hand, species diversity is the most commonly used 

synonym for biodiversity, and it mainly represents the species richness/ number of a 

species in an area  (Whittaker 1972; Gray 1997; Hooper et al. 2005b). Important 

conceptual components of species diversity include richness, evenness, dominance, 

and rarity of species  (Wilsey et al. 2005). These components are characterized by 

the way in which the presence of each species is weighted by factors such as 

abundance or biomass  (Magurran 1998; Magurran 2004). With species richness, 

each species contributes to diversity in the same manner regardless of its abundance 

or biomass. Some measures, such as species evenness, weight each species by its 

relative abundance or biomass. Species diversity indices (e.g., Simpson‘s 1/D or 

Shannon‘s H) represent composite measures, and are sometimes calculated so that 

richness and evenness are mathematically independent  (Smith & Wilson 1996). 

Other measures centre on a restricted subset of species. Species dominance (e.g., 

Berger-Parker index) is the relative importance of the one species contributing the 

most to total abundance or biomass. In contrast, species rarity is a measure of the 

proportion of species that meet the restriction that their relative abundance or 

biomass is below some threshold  (Wilsey et al. 2005; Chao et al. 2006). The number 

of species alone may not be the best predictor of ecosystem properties and 

biodiversity  (Purvis & Hector 2000; Hooper et al. 2002) because the number of 

individuals per species varies and complete inventories of all the species in the world 

is practically impossible. Finally, habitat diversity represents the variation in the 

collection of assemblages, communities, and habitats within a region  (Whittaker 

1972).   

Although these are the three main components of biodiversity, there are others 

such as taxonomic and functional diversity  (Norse 1993). Taxonomic or phyletic 

diversity is highest in the sea  (Gray 1997; Bouchet 2006) and it involves the 

variation and variability of phyla of organisms  (Brunel 2006). For example, in the 
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marine environment, considered to have high phyletic diversity, 32 out of the 33 

animal phyla are present  (Norse 1993). Functional diversity is the range of functions 

that are performed by organisms in a system  (Gray 1997). Functional diversity is 

usually associated with phenotypic diversity since phenotypic diversity between 

individuals, populations, and species is usually described in terms of the variation in 

external morphology or traits of individuals  (Hooper et al. 2002; Hooper et al. 

2005b; Carvalho et al. 2010). Thus functional diversity, which is also tightly 

associated with genetic diversity, represents an important measure of the adaptation 

of the organism to its environment because it interacts with biotic and abiotic factors 

of the environment. To understand how changes in biodiversity influence species 

loss, and ultimately ecosystem properties, it is fundamental that the functional traits 

of a species be recognized  (Chapin et al. 2000; Sala et al. 2000; Hooper et al. 

2005b; Sala & Knowlton 2006). 

Biodiversity is very dynamic in nature as populations are constantly evolving and 

all of its constituent components overlap and interconnect in a complex set of 

relationships  (Feral 2002). Biodiversity results from combined effects of speciation, 

extinction and climatic changes at all levels  (Sala et al. 2000; Loreau et al. 2001; 

Hooper et al. 2005b; Sala & Knowlton 2006). Because biodiversity loss causes 

alteration or destruction of habitats  (Loreau et al. 2001; Hooper et al. 2005b) and 

ecosystem processes  (Naeem & Wright 2003; Covich et al. 2004; Loreau et al. 

2006) the study and understanding of biodiversity is of major importance in 

understanding biotic/abiotic interactions in ecosystem function.  

 

Measuring biodiversity 

 

There is an increasing interest in quantifying the patterns in species diversity by 

comparing components of diversity that occur within (alpha-diversity) and among 

samples (beta-diversity) at multiple sampling scales  (Ugland et al. 2005; Thrush et 

al. 2010). Within-habitat diversity or alpha-diversity represents a group of organisms 

that interact and compete for the same resources or share the same environment and 

it represents species richness within a given area. Between-habitat diversity or beta-

diversity is the degree of change in species composition between locations or 

communities  (Gray 2000). High beta-diversity implies low similarity between 
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species composition of different habitats. It is usually expressed in terms of a 

similarity index between communities (or species turnover rate) between different 

habitats in the same geographical area  (Gray 2000; Ricotta 2010). The interplay of 

the mean within-group diversity and between-group diversity is named geographical 

diversity or gamma-diversity  (Gray 2000). Nonetheless, the complexity of scales 

and units makes it impossible to assess community biodiversity using a single 

measure  (Sala & Knowlton 2006).  

The measure of biological diversity most commonly used in ecology is species 

richness (number of species)  (Magurran 1998; Magurran 2004), as it not only allows 

basic comparisons among sites but is also a fundamental measure of community 

status  (Gotelli & Colwell 2001). However, all biologists who sample natural 

communities are overwhelmed with the problem of how well a sample reflects a 

community‘s true diversity  (Hughes & Hellmann 2005). This is mainly because 

observed species richness depends strongly on sample size; thus it is not reasonable 

to directly compare observed species richness in samples of unequal size. The 

techniques of species accumulation curves  (Colwell & Coddington 1994) and 

rarefaction  (Sanders 1968), plotting species richness versus sample size, are often 

used to compare observed species richness in two communities at a common sample 

size  (Hughes & Hellmann 2005).  

Species–accumulation curves are used to evaluate the effectiveness of sampling or 

to compare species richness among habitats using rarefaction  (Gotelli & Colwell 

2001; Magurran 2004; Shaw et al. 2008). This approach does not need to be area-

based because rarefaction explicitly controls for differences in the numbers of 

individuals among samples  (Gotelli & Colwell 2001; Hughes et al. 2001; Hughes & 

Hellmann 2005). Individual-based rarefaction provides the expected numbers of 

species with increasing numbers of individuals sampled, assuming a random sample 

of individuals in the community  (Crist & Veech 2006). Sample-based rarefaction 

describes the average number of accumulated species as the number of samples 

increases  (Gotelli & Colwell 2001; Gotelli et al. 2010). Such analysis provides an 

important step in quantifying the contributions of different habitats to broad-scale 

patterns of species richness or temporal patterns of richness within habitats  (Crist & 

Veech 2006). A crude indication of species richness are the rarefaction curves, where 

cumulative species richness represent a function of the numbers of individuals 

sampled, assuming that the ranking on sample diversity will not change with further 
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sampling  (Hughes & Hellmann 2005). Rarefaction curves are often constructed from 

samples taken within habitats to determine the efficacy of sampling the true species 

richness of a given habitat, or to compare species richness among habitats on an 

equal-effort basis (Gotelli & Colwell 2001). Rarefaction accounts for the fact that 

large samples have more species (or any taxonomic unit) than small samples even if 

they are drawn from the same community (Hughes & Hellmann 2005). As ecological 

samples are not usually large enough to include more than half the potential species, 

the rest of the distribution is hidden in the non-observed species (Wilsey et al. 2005). 

Although rare species are arguably the most important components of diversity, their 

abundances are inevitably poorly typified (Chao et al. 2009). The difficulty becomes 

even more acute as species richness increases. The more speciose a sample or taxa is 

the harder it will be to access true levels of diversity. Nonetheless, rarefaction 

methods either sample-based or individual-based allow a meaningful standardization 

or sampling effort and permits comparison of datasets  (Hughes et al. 2001). 

 

Patterns in biodiversity 

 

Biological diversity is not evenly distributed over the surface of the planet and 

several global patterns of spatial variation in biodiversity have been explored. These 

patterns can be different in hotspots and coldspots (highs and lows) of diversity, 

change with spatial scale (e.g. species–area relationships and relationships between 

local and regional richness) and along gradients across space or environmental 

conditions (e.g. latitude, longitude, altitude, depth, peninsulas, bays, isolation, 

productivity/energy and aridity)  (Sala et al. 2000; Gaston 2007, 2009). The most 

famous large-scale biodiversity pattern in ecology is the latitudinal gradient  

(Lambshead et al. 2000) where there is a tendency of lower latitudes to have more 

species than higher latitudes  (Fuhrman 2009; Gaston 2009). There is probably 

higher productivity in lower latitudes providing more resources that can generate 

more niches but also higher temperatures in low latitudes increase the metabolic rate 

and make biological processes, including speciation, occur faster  (Fuhrman 2009). 

Nevertheless, no consensus has been reached about the mechanisms behind this 

phenomenon  (Willig et al. 2003; Hillebrand 2004).  
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There are at least two rival interpretations to explain biodiversity patterns and 

community assembly. The first is that there is limited dispersal of species combined 

with unrestricted entry into communities (dispersal assembly models), such theory 

was proposed by Hubbell (2001) as ―the unified neutral theory of biodiversity‖, 

where neutrality assumes that all individuals in a community are strictly equivalent 

regarding their prospects of reproduction and death  (Chave 2004). The second 

interpretation is that species‘ dispersal is combined with environmental filtering 

(niche-assembly models)  (Leibold et al. 2004). Dispersal assembly models predict a 

progressive decay of community similarity in space and through time, reflecting the 

effect of dispersal limitation and the stochastic replacement of individuals from the 

community. In contrast, niche-assembly models are expected to have more 

predictable community composition among sites and/or time periods characterized 

by similar environmental conditions (Chave 2004). In between these hypotheses 

Lourens Baas-Becking (Baas-Becking 1934) hypothesised that ―everything is 

everywhere but the environment selects‖ (Finlay 2002). The ‗everything is 

everywhere‘ hypothesis implies a lack of biogeographic patterns and provides 

evidence of the high dispersal potential of microorganisms  (Finlay 2002; Foissner 

2006; Martiny et al. 2006; Ramette & Tiedje 2007; Fuhrman 2009; Cermeno et al. 

2010; Schauer et al. 2010). This theory supports the notion that current distributions 

of organisms are the result of ecological and historical factors, including dispersion 

by wind, water and animals, and adaptations to local conditions that change over 

space and time  (Fuhrman 2009). However the ubiquity model might be bias because 

of under-sampling and misidentification of the samples  (Mitchell & Meisterfeld 

2005). Furthermore, currently there are several microorganims with known restricted 

distributions, such as protists (Foissner 2006; Foissner 2007) and flagellates  (Bass et 

al. 2007) and also amoeba  (Smith & Wilkinson 2007). 

 

Marine biodiversity: meiofauna 

 

The term meiofauna was introduced by  Mare (1942) to describe benthic metazoan 

fauna ‗of intermediate size‘. Twenty-five years ago, scientists believed that the ca. 

1.6 million species described represented approximately 50% of plant and animal 

species on the planet; his estimate has now increased to 1.7-1.8 million described 
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species with estimates of between 10-100 million species probably still remaining to 

be discovered  (Bouchet 2006). In the marine environment, the total number of 

marine species is still unknown, and estimates range from 500,000  (May 1992; Gray 

1996), 5 million  (Poore & Wilson 1993), to more than 10 million species  

(Lambshead 1993; Gray 1997). These numbers are biased as there is a serious deficit 

in taxonomic expertise  (Buyck 1999; Tautz et al. 2003) so that many highly diverse 

groups of organisms are disregarded (Fig. 1.2). Also, the fact that many taxa 

considered to be the same may actually be different  (Knowlton 1986, 1993; Hebert 

et al. 2004) may lead to a 10-fold underestimation of marine biodiversity  (Sala & 

Knowlton 2006). In addition, many studies rely only on macrofauna data and do not 

take into consideration meiofaunal taxa  (Hebert et al. 2003b) and this presumably 

significantly biases the number of described marine species. Studies on meiofauna 

suggest that these organisms are of pivotal ecological importance and comprise the 

major part of ocean biodiversity  (Rysgaard et al. 2000; Vanaverbeke et al. 2000; 

Gheskiere et al. 2005b; Rundell & Leander 2010). 

 

 

Figure 1.2- Known and estimated diversity of a selection of animal phyla (from 

Blaxter (2003). Known species numbers for larger taxa, like vertebrates and some 

molluscs are closer to reality than for smaller taxa, like bacteria, arthropods and 

nematodes where estimates are far from reality. 
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Most quantitative studies on meiofauna communities have established that the 

minimum size of meiofauna retained on the sieves used to process samples, is 

between 63 μm to 500 μm  (Gheskiere et al. 2006; Rundell & Leander 2010). 

Meiofaunal abundance per unit area is much higher than for macrofauna, leading to 

higher meiofauna richness within a particular patch  (Snelgrove & Smith 2002) 

though this is not very informative on a broader scale.  

Nematodes are often the most abundant metazoans in the soft sediments of 

estuaries and intertidal sediments  (Rysgaard et al. 2000). They are characterised by 

direct benthic development, with the whole of their life-cycle closely coupled to the 

sediment and with no specific dispersal phase (Nybakken 1997). In estuarine 

sediments, meiofaunal organisms facilitate biomineralization of organic matter and 

augment nutrient regeneration  (Aller & Aller 1992; Berg et al. 1998; Rysgaard et al. 

2000) and can also be a major dietary component of commercial species  (Carlson et 

al. 1997). Meiofauna exhibit high sensitivity to anthropogenic inputs, making them 

excellent indicators of estuarine pollution  (Kennedy & Jacoby 1999; Mirto & 

Danovaro 2004; Gheskiere et al. 2005b). Distribution and abundance of the 

meiofauna are mainly controlled by physio-chemical factors such as grain size, redox 

potential and tidal exposure  (Nybakken 1997; Gheskiere et al. 2005a). Nonetheless, 

the presence of the biogenic structure (e.g., animal tubes or burrow, system root) is 

also known to affect meiofaunal distribution and abundance  (Bell et al. 1978).  

The most abundant and ubiquitous phylum of the meiofauna on earth  

(Lambshead 2004) and in nearshore marine and estuarine waters is the Nematoda  

(Vincx et al. 1994; Lambshead & Boucher 2003; Urban-Malinga et al. 2006). 

Nematodes are so cosmopolitan that recently were also found to inhabit hypoxic 

conditions in a deep mine in South Africa  (Borgonie et al. 2011) and are also known 

to inhabit Antartic regions  (Andrassy & Gibson 2007; Barnes et al. 2008) . They 

often outnumber those of all other meiofaunal taxa collectively, as they constitute 80-

90% of metazoans on average  (Lambshead 1993; Soltwedel 2000). Because 

Nematoda represent the most abundant and rich phyla in the meiobenthos brief 

ecological aspects will be addressed.  
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Nematode biology, biodiversity and ecological importance 

 

Nematodes, or roundworms, are an ancient and diverse group of organisms  (Platt 

et al. 1984). Although many taxonomic discrepancies are found within the phylum 

Nematoda  (Meldal et al. 2007), small subunit ribosomal DNA sequences support 

three major clades: Chromadoria, Enoplia and Dorylaimia  (Blaxter et al. 1998; De 

Ley & Blaxter 2004). The first two include various groups of marine, estuarine and 

freshwater nematodes, while the Dorylaimia are mainly fresh water  (Abebe et al. 

2008). Nematodes are unsegmented pseudocoelomates, generally translucent and 

with a simple body plan  (Heip et al. 1985; Hajibabaei et al. 2005; Abebe et al. 

2008). The body is essentially an elongated cylinder consisting of a body wall with 

cuticle, epidermis, somatic musculature, digestive and nervous system (Figure 1.3)  

(Heip et al. 1985; Hajibabaei et al. 2005). Development normally includes an egg 

stage and three to four juvenile stages with a moult at the end of each stage. The 

generation time is species dependent and varies from a few days to a year or more  

(Abebe et al. 2008). 
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Figure 1.3- General features of male and female nematode (from 

http://classes.seattleu.edu/biology/biol235/hodin/nematodePriapulidGroup/nematode

s/formAndFunction.htm).  

 

 

Nematodes exploit multiple ecological niches and include free-living terrestrial 

and marine microbivores, meiofaunal predators, herbivores, and animal and plant 

parasites  (Heip et al. 1985; Coghlan 2005). Parasitic nematodes are important 

pathogens of humans, infecting several thousand people, and causing damage to 

domesticated animals and crops  (Heip et al. 1985; Mitreva et al. 2005). Whereas the 

importance of parasitic nematodes has been recognized for decades, the same is not 

true for free-living species, especially those inhabiting freshwater and marine 

environments. Free-living nematodes remain relatively unstudied, despite their 

abundance (millions per m
2
) in soils and sediments and their occurrence in a broad 

range of habitats  (Heip et al. 1985). Although free-living nematodes are also found 

in terrestrial habitats  (Freckman et al. 1997) the majority are marine species  

http://classes.seattleu.edu/biology/biol235/hodin/nematodePriapulidGroup/nematodes/formAndFunction.htm
http://classes.seattleu.edu/biology/biol235/hodin/nematodePriapulidGroup/nematodes/formAndFunction.htm
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(Lambshead & Boucher 2003). They inhabit littoral  (Heip et al. 1985; Lambshead 

1986), freshwater  (Andrassy & Gibson 2007) and abyssal sediments  (Copley et al. 

2007), where they frequently dominate the meiofauna size fraction.  

The density, diversity and/or composition of nematode assemblages has been 

related to differences in sediment composition, hydrodynamic conditions, salinity, 

organic content and food resource availability  (Heip et al. 1985; Soetaert et al. 1994; 

Soetaert et al. 1995; Li et al. 1997; Moens et al. 1999b; Steyaert et al. 1999; Tita et 

al. 2002; Somerfield et al. 2003; Steyaert et al. 2003). Nematode abundance also 

seems to decline with increasing water depth  (Soltwedel 2000; Vanreusel et al. 

2000) and distance from continents  (Cook et al. 2000). Hence, the highest nematode 

abundance tends to be found in rich lowlands, marshes and marine mud around the 

coastline except for some tropical areas  (Alongi 1987; Boucher & Clavier 1990). 

Global marine nematode species richness may exceed 1 million (Lambshead 

2004) but only a few thousand are described  (De Ley et al. 2005). Since marine 

nematodes are so diverse and abundant they are believed to be of major ecological 

importance playing an important role in decomposition processes  (Snelgrove et al. 

1997; Austen 2004) and recycling of nutrients  (Austen 2004). They have also 

proved to be highly sensitive indicators of anthropogenic stress in a range of 

situations  (Lambshead 1986; Lambshead & Paterson 1986; Schratzberger et al. 

2000; Austen et al. 2002; Steyaert et al. 2007). The inherent ecological importance 

of the Nematoda, high species diversity, abundance and ubiquity, coupled with high 

reproductive rates with no dispersal phase  (Lambshead & Paterson 1986; Boucher & 

Lambshead 1995), a short life span and a sedentary life inhabiting mostly sediments, 

make nematodes ideal candidates for bio-monitoring studies  (Platt et al. 1984; 

Schratzberger et al. 2000; Gheskiere et al. 2005a).  

Traditional nematode taxonomy is supported by morphological traits only. These 

include differences in head (size, shape and orientation of sensilla, feeding apparatus 

and sensory amphids) and tail structure but also in the reproductive system shape  

(Heip et al. 1985). Some of the morphological differences in nematodes can be 

associated with different feeding mechanisms (predators, omnivores, deposit feeders, 

epigrowth feeders)  (Moens et al. 1999b; Macas et al. 2007). Despite their apparent 

similarity and simple morphology nematodes occupy very different roles and trophic 

positions in sediments  (Heip et al. 1985) making the  identification of functional 

guilds ecologically very important and informative (Yeates & Bongers 1999; 
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Bremner et al. 2006). Moreover, studies on macrobenthic invertebrates have shown 

that combining functional and taxonomic diversity can reveal different relationships 

between assemblages (Bremner et al. 2003; Bostrom et al. 2006; Bremner et al. 

2006). Nevertheless, studying the ecological importance of nematode worms is 

limited mostly because identification at the species level is problematic in many 

cases  (Snelgrove et al. 1997; Lambshead & Boucher 2003). This is mainly due to 

the subjectivity of individual taxonomists, impasse in nomenclature and the existence 

of cryptic species  (Cook et al. 2005; De Ley et al. 2005). In addition, the massive 

number of nematodes to be identified in a single sample, preparing slides for 

microscope observation, the need for high resolution microscope and the fact that 

most species can only be identified from adult characters  (Litvaitis et al. 1994 ; 

Warwick & Clarke 1998; Floyd et al. 2002; Powers 2004; De Ley et al. 2005) makes 

identification of nematodes using external morphology problematic and very time 

consuming.  

 

Molecular identification strategies 

 

Recently there has been an escalation in the range of DNA-based technologies 

used in biodiversity studies, by establishing methodologies for species identification 

either through DNA barcoding  (Hebert et al. 2004; Lambert et al. 2005; Ward et al. 

2005; Hajibabaei et al. 2006; Pfenninger et al. 2007), DNA arrays or phylochips  

(Loy et al. 2002; Pfunder et al. 2004; Garaizar et al. 2006; Peplies et al. 2006; Tobler 

et al. 2006; Allen et al. 2007), and/ or through cutting edge sequencing techniques 

like Massively Parallel Sequencing (MPS)  (Sogin et al. 2006; Huber et al. 2007; 

Porazinska et al. 2009; Medinger et al. 2010). Such principles were built on much 

earlier applications of molecular methods to describe and investigate taxonomic 

diversity and relationships (Ferguson 1980; Hillis & Moritz 1990) providing the 

necessary technological and conceptual platform to advance biodiversity assessment. 

A DNA-based taxonomy system should be straightforward. It should encompass 

sample collection and sample character (e.g. tissue from a given individual); a 

validated DNA extraction method; PCR amplification of one or more regions of a 

chosen gene and sequencing of the target region. The resulting sequences should be 

made available through a public database, linked to a species description, including a 



   General Introduction - 1 

 

 

16 

definition of its taxonomic status  (Tautz et al. 2003; Wilson et al. 2005).  The aim of 

such a system of classification is to establish defined molecular operational 

taxonomic units (MOTU; Floyd et al. 2002; Blaxter et al. 2005) on the basis of 

sequence differences in short, orthologous marker gene sequences  (Tautz et al. 

2003; Blaxter et al. 2004). Floyd et al. (2002) initially defined a MOTU as a group of 

sequences that differed from one another by three or four nucleotides in a 500-bp 

gene region. Although it is unclear how well MOTU diversity corresponds to species 

or ecological diversity  (Vogler & Monaghan 2007; Abebe et al. 2011), it certainly 

has an important role in evaluating genetic diversity within defined taxa and/or 

communities. This follows the general definition of operational taxonomic units 

(OTU) as groups of organisms used in a taxonomic study without designation of 

taxonomic rank  (Floyd et al. 2002). A variety of molecular markers have been used 

to identify or delimit species or species-like units  (Shinn et al. 2000; Bucklin et al. 

2007; Bellemain et al. 2010; Nassonova et al. 2010). The most widely used markers 

to study environmental samples are the nSSU and nLSU genes  (nuclear small 

subunit and large subunit ribosomal of 18S rDNA)  (De Ley et al. 2005; Bhadury et 

al. 2006), mainly because of their highly divergent regions flanked by conserved 

regions (Figure 1.4).  
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Figure 1.4- Diagram of the ribosomal DNA (rDNA) gene and location of the 

primers used in this study (SSU_F04; SSU_R22; SSU_R26) within the small subunit 

gene (SSU or 18S). The internal (ITS1 and ITS2) and external (5‘ ETS and 3‘ ETS) 

transcribed spacers, the 5.8S gene as well as the large subunit gene (LSU or 28S) are 

also illustrated.  Within the 18S the V1–V9 boxes denote the variable regions of the 

18S rDNA subunit (V6 exists in prokaryotes only). Position of the primers and sizes 

are approximate. 

 

 

Conservation within sequences facilitates alignment and primer design for 

different OTUs while divergent regions are suitable for species discrimination  

(Floyd et al. 2002). In addition, the nSSU genes are multicopy, making them 

relatively easy to amplify  (Abebe et al. 2011). In contrast, molecular markers like 

the internal transcribed spacer (ITS) and cytochrome c oxidase subunit 1 (COI) are 

not very commonly used in meiobenthic DNA-based studies. This is predominantly 

because in nematodes ITS regions are very difficult to align  (Floyd et al. 2002) and 

the COI gene is characterised by  unusual molecular evolutionary rates and 

processes. Nevertheless, COI combined with other markers could be used at the 

species levels to differentiate cryptic species  (Blouin et al. 1998; Smith et al. 2006; 

Derycke et al. 2007). 

 

Next Generation Sequencing  

 

The automated Sanger method is considered as a ―first-generation‖ technology, 

and newer methods are referred to as next-generation sequencing (NGS) (Metzker 

2010). NGS is being developed for single individuals but also for whole-populations 

(metagenomics)  (Noonan et al. 2006; Bohannon 2007; Frias-Lopez et al. 2008; 

Lazarevic et al. 2009; Nowrousian 2010; Quaiser et al. 2011; Unterseher et al. 2011) 

revolutionizing the study of ecology and evolution. Metagenomics and metagenetics 
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both apply to analysis of a multi- genome unit, or community, where the latter is 

widely applied by the use of homologous genes whereas metagenomics represents a 

more functional approach usually encompassing different genes  (Hugenholtz & 

Tyson 2008; Mou et al. 2008). With the advances of next generation sequencing a 

metagenetics approach might help to dissect ecological questions  (Porazinska et al. 

2010) at a new level of precision  probably advancing the entire field of ecology by 

answering questions not possible before in macroecological studies. 

Massively Parallel Pyrosequencing (MPS) is one next generation sequencing 

method  (Hudson 2008) developed by 454 Life Sciences that has dramatically 

reduced the time and cost constraints of DNA sequencing (Margulies et al. 2005). It 

uses pyrophosphate release as a method for detection of base incorporation, and is 

capable of sequencing hundreds of thousands of DNA molecules in parallel on a 

picotitre plate, also named as pyrosequences (Hall 2007; Meyer et al. 2007; Meyer et 

al. 2008b). Furthermore, it not only produces large amounts of data at a low cost, but 

also allows sequencing of environmental DNA without a prior cloning step  

(Ronaghi et al. 1998; Ronaghi 2001; Edwards et al. 2006; Rabouille et al. 2006; 

Turnbaugh et al. 2006; Meyer et al. 2007). It is now possible to identify multiple 

discrete samples on a single sequencing plate using sequence information  (Binladen 

et al. 2007; Meyer et al. 2007) and the full power of this novel sequencing 

technology is and can be applied to numerous, diverse samples simultaneously.  The 

first groundbreaking publication detailing this method described the use of MPS for 

shotgun sequencing and de novo assembly of a bacterial genome  (Margulies et al. 

2005). The approach is now routinely used for metagenetic analyses to characterize 

natural assemblages of microorganisms, mostly prokaryotes, from a variety of 

ecosystems  (Sogin et al. 2006; Huber et al. 2007; Stoeck et al. 2010; Huse et al. 

2008; Amend et al. 2010; Roossinck et al. 2010; Youssef et al. 2010; Orsi et al. 

2011; Pawlowski et al. 2011; Unterseher et al. 2011), shotgun transcriptome analyses  

(Hughes & Vogler 2006; Gracey 2007; Weber et al. 2007; Coppe et al. 2010; Blanca 

et al. 2011) and a range of other applications.  

In the last decade, the use of next-generation sequencing has allowed a much 

deeper sampling of environmental biodiversity by producing many orders of 

magnitude more sequence information than the Sanger-sequencing approach (Haas et 

al. 2011), even so an accurate assessment of biodiversity is central to any biological 

study. The identification of taxa present in a given community is likely to be crucial 
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for understanding what that community does; nonetheless different methodological 

approaches can result in discrepant estimates from the same sample  (Quince et al. 

2009). The unveiling of highly diverse and uncharacterized environmental samples 

has hypothesized the existence of a the ―rare biosphere‖ (Sogin et al. 2006). 

Nonetheless, this has proved to be a controversial matter because pyrosequencing 

generates a substantial amount of sequences with intrinsic error rates that could lead 

to overestimation of the number of rare OTUs (Kunin et al. 2009; Quince et al. 

2011). Currently the method widely used to measure biodiversity in environmental 

samples is to PCR amplify the region of interest followed by pyrosequencing  (Huse 

et al. 2008; Haas et al. 2011). Nonetheless, amplification from a multi-template 

population can be problematic since artificial chimeras can be generated (Gonzalez et 

al. 2005; Smyth et al. 2010). Chimeras between two different DNA molecules with 

high sequence similarity (homologue genes) take place during PCR when incomplete 

extension occurs in one round of PCR and thus the resulting fragment acts as a 

primer for a different sequence in the next step  (Wang & Wang 1997). This has 

become a common a problem in environmental studies as chimeras produce diversity 

that is not present in the original sample  (von Wintzingerode et al. 1997; Hamp et 

al. 2009; Reeder & Knight 2009; Stoeck et al. 2009; Huse et al. 2010) and thus 

levels of biodiversity become inflated and unrealistic. In fact, it has been estimated 

that up to 30% of PCR products from a standard PCR are artificial chimeras  (Wang 

& Wang 1997; Cronn et al. 2002). Multiple factors seem to influence the formation 

of PCR-induced chimeras and include; PCR cycles, Taq polymerase, extension time, 

the quality of DNA and shorter amplicons  (Wang & Wang 1997; Shafikhani 2002; 

Gonzalez et al. 2005; Lahr & Katz 2009; Smyth et al. 2010). In response to the 

problem, several bioinformatic approaches have been developed and optimized in 

order to identify these multiple errors in pyro-sequenced environmental datasets  

(Zhang et al. 2000; Cole et al. 2003; Huber et al. 2004; Ashelford et al. 2005; 

Gonzalez et al. 2005; Ashelford et al. 2006; Haas et al. 2011; Quince et al. 2011).  

 

Advances in nematode molecular identification 

 

Due to the high level of technical expertise required to accurately identify marine 

nematode species and a potential deficit of 960,000 unnamed species, it is unlikely 

that identification of all marine nematode species will be achieved only by 
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morphological-based taxonomy  (Lambshead & Boucher 2003). However, advances 

have been made with new molecular techniques that provide high throughput 

methods for the identification and classification of micro and meiofaunal taxa  (De 

Ley et al. 2005). It has also been suggested that combining both taxonomic and 

molecular techniques may help clarify the reliability of nematode species 

biodiversity estimates (Bahr et al. 2005; Blaxter et al. 2005; Bhadury et al. 2006, 

2008). Nevertheless, much of the genetic variation in marine habitats has been 

uncovered by the advent of molecular techniques alone  (Knowlton 2000; Feral 

2002). In fact, molecular appraisals of currently accepted marine nematode 

morphospecies are now uncovering genetic structuring indicative of extensive cryptic 

speciation  (Derycke et al. 2005). Currently, amplification and sequencing of 

diagnostic regions of nematode DNA have become the major source of new 

information for advancing our understanding of evolutionary and genetic 

relationships  (Hajibabaei et al. 2007a; Meldal et al. 2007). Combining MOTUs with 

improvements in environmental DNA extraction promises a rapid method for 

assessing the diversity of marine nematodes, en mass, at any given location  

(Porteous et al. 1997; Floyd et al. 2002; Blaxter 2004; Blaxter et al. 2005). The 18S 

rRNA gene has proven particularly useful in constructing viable nematode DNA 

barcodes and has been used in a number of studies to identify assortments of marine  

(Bhadury et al. 2006), and terrestrial free living nematodes  (Donn et al. 2008), and 

both plant and animal parasitic species  (Casiraghi et al. 2006; Riga et al. 2007). 

Molecular taxonomy could denote clear advantages when comparing to traditional 

taxonomy such as (i) applicability to a wide range of taxa, and different life stages, 

including those possessing few distinctive morphological features; (iii) a 

standardized approach for sample processing, interpretation, and comparison across 

different studies and (v) the ability to taxonomically characterize large numbers of 

samples that are typical of most ecological studies  (Caron et al. 2009; Abebe et al. 

2011). Regardless, sequences alone cannot say much about a species ecological role  

(Tautz et al. 2002). Information about the interaction of organisms with their 

environment will be incomplete because they lack morphological information that 

relates to function  (Abebe et al. 2011). Open relational databases such as Nematol 

(http://nematol.unh.edu/) serve as portals for the collation of morphological, 

molecular and ecological data pertaining to nematode phylogeny and biodiversity. 

Also, by combining bioinformatic databases and high throughput methodologies with 

http://nematol.unh.edu/
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videocaptured digital images of known specimens may allow the interpretation of 

both morphological and molecular data of nematode taxonomy, thus facilitating a 

less subjective approach to biodiversity appraisals.  

 

Aim and outline of the thesis 

 

The aim of this thesis was to use massively parallel sequencing to estimate 

molecular diversity of littoral meiofauna populations around the UK and mainland 

Europe. Advances in sequencing technologies are known to allow the 

characterization of environmental communities from different ecosystems, yet some 

flaws are currently known to exist. This thesis is divided in chapters: CHAPTER 2 is 

an overview of the 454 meiofaunal metagenetics in biodiversity assessment, in 

addition to presenting and discussing novel datasets from marine and tropical rain 

forest habitats. CHAPTER 3 describes the relative richness of multiple metazoan 

meiofaunal phyla inhabiting the marine benthos on two sandy beaches in the UK, 

using second generation sequencing approaches. The data quantify previously 

unknown and substantial levels of relative richness that refute currently accepted 

paradigms of phylum rank abundance. In CHAPTER 4 levels of alpha and beta 

diversities and community composition for meiobenthic communities are described 

using next-generation sequencing technique. This will clarify our understanding of 

the scale and extent of community variation across marine ecosystems. CHAPTER 5 

describes how chimera formation during PCR can be influenced by species richness, 

sample taxonomic similarity and nSSU molecule secondary structure. In CHAPTER 

6 a final discussion and concluding remarks can be found.  



 

 

 

 

 

 

CHAPTER 2 - Ultrasequencing of the meiofaunal 

biosphere: practice, pitfalls and promises 
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Introduction 

 

Robust, quantified biodiversity assessment is key to deep understanding of the 

relationship between biodiversity and ecosystem functioning. The effects of major 

anthropogenic stressors on global ecosystems, including elevated CO2, pollution, 

habitat loss and fragmentation, add urgency to this field, demanding an increasing 

focus on mechanistic and predictive studies. However, investigating the role of 

biodiversity in maintaining ecosystem function, resilience and recovery  (Sutherland 

et al. 2006) can be meaningfully addressed only if biodiversity can first be identified. 

The identity of macrofaunal and floral communities can be ascertained by teams of 

trained taxonomists/ecologists with their skills being augmented by globally 

integrated molecular barcoding approaches (Hebert et al. 2003a; Hajibabaei et al. 

2007b). Similarly, recent advances in sequencing power and the molecular 

identification of microbes are facilitating the more realistic characterization of the 

phylogenetic affinities, identity (DNA sequences), composition (Sogin et al. 2006; 

Huber et al. 2007) dynamics and even functional capacity (Edwards et al. 2006; Mou 

et al. 2008) of prokaryotic communities. There remains, however, a well-

acknowledged biodiversity identification gap related to eukaryotic meiofaunal 

organisms  (Blaxter 2003b; Blaxter & Floyd 2003; Tautz et al. 2003; Blaxter et al. 

2005). 

Meiofaunal taxa are a paraphyletic assemblage, grouped on the basis of size (i.e., 

organisms that pass through a 0.5 mm sieve but are retained on 25 to 65 μm sieves). 

Approximately 60% of animal phyla have meiofaunal representatives and meiofaunal 

Platyheminthes, Nemertea, Nematoda, Rotifera, Annelida, Arthropoda, Tardigrada, 

Mollusca and Chordata have taxa that occupy key roles in marine, freshwater and 

terrestrial habitats  (Higgins & Thiel 1988; Giere 2009). Meiofaunal assemblages are 

dominated by nematodes and are characterized by high abundances (up to 10
8
 

individuals per 1 m
2
) and diversity (up to 60 morphological species per 75 cm

3
 of 

sediment) (Lambshead 2004). Thus, although meiofaunal organisms are conceptually 

and demonstrably ecologically important  (Snelgrove et al. 1997; Danovaro et al. 

2008a), current estimates of global species richness remain a matter of conjecture  

(Lambshead & Boucher 2003). For nematodes, global estimates of species richness 

range from 100,000 to 1,000,000, but only ca. 23,000 species have been described  



Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises - 2 

 

 

23 

(Platt & Warwick 1983; Coomans 2000), and contemporary studies routinely recover 

between 30-40% of sampled taxa that are new to science  (Lambshead 2004). 

Meiofaunal taxon diversity and abundance is so great that effectively studying 

communities requires a huge investment in resources and labour. The effort 

expended in assigning only 10% of nematodes to known species was 120-fold that 

required to successfully assign all vertebrate morphospecies to known taxa  (Lawton 

et al. 1998) in tropical forest habitats. 

The identification bottleneck associated with meiofaunal taxonomy is confounded 

by a range of taxonomic hurdles: the small size and fragility of organisms, 

convergent evolution, morphological conservatism  (Derycke et al. 2005; Bhadury et 

al. 2008; Derycke et al. 2008b; Fontaneto et al. 2009) and developmental and sexual 

variation in morphology  (Tautz et al. 2003; Lambshead 2004; Blaxter et al. 2005). 

Perhaps the most restricting factor in meiofaunal research is the mismatch between 

the diversity and abundance of multiple phyla occupying a range of ecological niches 

and habitats and the number of taxonomists that are able to simultaneously identify 

and catalogue meiofaunal diversity. In order to address this impediment, it has been 

suggested that en mass molecular identification of meiofaunal communities may 

significantly advance knowledge and progress in meiofaunal research  (Blaxter & 

Floyd 2003; Markmann & Tautz 2005). Whilst the molecular identification of 

meiofaunal communities shares similarities with current molecular barcoding  

(Hebert et al. 2003b) and microbial phylotype approaches  (Kemp & Aller 2004; 

Shaw et al. 2008), there remains a difference in methodology and taxonomic richness 

and diversity. 

 

Phylotypes, molecular operational taxonomic units (MOTUs) and barcoding for the 

identification of biodiversity 

 

With a molecular barcoding approach, a standardized homologous region of the 

genome (e.g. the mitochondrial cytochrome oxidase subunit I gene [COI] for 

animals) is used for species identification, and is linked to a virtual or actual physical 

molecular voucher specimen  (Hebert et al. 2003a; Ratnasingham & Hebert 2007). 

However, when dealing with individuals or communities of microscopic organisms, 

the whole voucher specimens are sacrificed usually in order to extract genomic DNA  
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(Blaxter et al. 2005; De Ley et al. 2005). Advances in videocapture technology of 

microscopic organisms (De Ley et al. 2005) and individual organismal PCRs  (Floyd 

et al. 2002; De Ley et al. 2005; Floyd et al. 2005; Bhadury et al. 2006; Meldal et al. 

2007) can overcome this problem and forge a link between taxon 

ecology/morphology and community-based DNA analyses. Such research provides 

potential for linking taxonomy, phylogeny  (Forest et al. 2007; Warwick & 

Somerfield 2008) functional  (Petchey & Gaston 2006) and molecular ecology. It 

also effectively engages and links morphological taxonomists with molecular 

ecologists, a connection that will be vital for a holistic approach towards ecosystem-

based research. However, standard barcoding approaches are not appropriate for 

large-scale environmental analyses mainly because of extensive abundances and 

putative hyperdiversity of some taxa (e.g. nematodes, Lambshead (2004); 

Lambshead & Boucher (2003)). Further to this, the extent of taxonomic coverage and 

lack of taxonomic expertise, manpower and resources makes the task of barcoding 

environmental samples inefficient.  

Instead, the proposed identification of operational taxonomic units (OTUs) in 

eukaryotic metagenetic analyses has more in common with prokaryotic phylotype  

(Kemp & Aller 2004) delineation than with species identification using standardized 

barcoding approaches. The term metagenomics is sometimes used to consider the 

analysis of any environmentally-derived genomic DNA  (Hugenholtz & Tyson 

2008). Here though, there is a distinction between metagenetics, the large-scale 

analysis of taxon richness via the analysis of homologous genes, and metagenomics, 

the functional analysis of environmentally derived DNA from unculturable 

organisms  (Edwards et al. 2006; Rodriguez-Brito et al. 2006; Blow 2008; 

Hugenholtz & Tyson 2008; Mou et al. 2008). 

Bacterial phylotypes are groups of sequences that are created by subjecting a 

larger community of sample-derived shotgun sequences, to a user-defined base pair 

cut-off algorithm. In most cases, phylotypes of a particular grouping (e.g. 97% for 

bacteria, Venter et al. 2004; Shaw et al. 2004) are used as a proxy for ―species‖. 

Although microbial communities can be orders of magnitude more diverse than 

micro-eukaryotic communities, the similarities of their intractable community 

compositions have led to similar approaches in studying eukaryotic protists  (Moon-

van der Staay et al. 2001; Moreira & Lopez-Garcia 2002) and meiofaunal organisms  

(Floyd et al. 2002; Blaxter & Floyd 2003). For meiofaunal organisms, Floyd et al. 
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(2002) formally defined the molecular operational taxonomic unit (MOTU) concept 

whereby sequences derived from individual specimens are defined as belonging to 

the same MOTU, based on a user-defined cut-off. The term was later extended to 

community DNA extractions in Blaxter et al. (2005). Normally, the MOTUs do not 

have any formal correlation with published species descriptions. However, 

correlations can be achieved by de novo elucidation of cryptic species  (Abebe & 

Blaxter 2003) bioinformatic sequence comparisons to existing databases (with both 

molecular and morphological data), further sequencing, or future classifications, 

termed ―reverse taxonomy‖  (Markmann & Tautz 2005). 

 

Environmental metagenetics 

 

Until recently, most molecular identification was achieved using Sanger chain-

termination sequencing  (Kemp & Aller 2004; Venter et al. 2004). However, there 

has recently been a rise in the use of ultrasequencing platforms  (Margulies et al. 

2005) for metagenetic identification of microbial phylotypes using homologous gene 

region (Sogin et al. 2006; Hall 2007; Huber et al. 2007) derived from environmental 

DNA. The recent increases in sequencing throughput represent a significant shift in 

our ability to disentangle the biotic complexity of ecosystems. From sample 

collection to data analysis, there are numerous steps, questions and an exponentially 

large number of hypotheses that could be tested in order to optimally analyse 

environmental meiofaunal diversity.  

Here, an overview of the relevant focal areas is provided in an attempt to highlight 

potential approaches and pitfalls in meiofaunal metagenetics. Secondly, two datasets 

derived from independent ultrasequencing experiments of marine benthic and 

tropical rain forest habitats are presented. The aim is to illustrate the advantages and 

limitations of ultrasequencing approaches in addressing large-scale identification of 

complex eukaryotic communities. The tropical rain forest case study predominantly 

targeted nematodes, whereas the marine example targeted collective meiofauna 

(extended to include organisms ranging from 45 µm to 1000 µm in size). The 

approaches and data presented do not test specific hypotheses regarding metagenetic 

analyses, but provide a resource that will be useful to researchers wishing to pursue 
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similar research. Although meiofaunal organisms are the primary focus, the general 

principles are easily transferrable to other eukaryotic as well as prokaryotic taxa. 

 

Methodological overview and rationale 

Sample preservation and extraction 

 

Once an ecologically suitable sampling strategy has been designed, an appropriate 

decision needs to be made regarding sample processing. Given the diverse and 

dynamic nature of the micro- and meiofauna, it is predicted that after removing a 

small subsample of the community, a natural progression of ecological interactions 

will change the population composition. It is therefore important to either preserve or 

process samples shortly after collection. Some experiments (e.g. those with small 

sample sizes or local collection regimes) may lend themselves to field processing. 

Others will necessitate sample, and more importantly, DNA preservation. Such 

decisions are based predominantly on logistics. Moreover, if sampling regimes are 

extensive and geographically diverse, it is preferable to deal with a large number of 

small samples, rather than vice versa.  

Formalin is the preferred fixative for morphological analyses of the meiofauna  

(Giere 2009), but specimens fixed in formalin yield low quality and degraded DNA 

(but see Thomas et al. 1997 and Bhadury et al. 2005). Conversely, samples fixed in 

ethanol yield DNA optimal for downstream molecular manipulations, but corrupted 

morphological features due to osmotically driven shrinkage  (Bhadury et al. 2006). 

In an attempt to overcome these constraints, samples are often split between formalin 

and ethanol preservation to yield distinct samples for morphological and molecular 

genetic analysis, respectively. Adopting a split sampling approach, however, not only 

creates a problem of potentially unequal community composition between samples, 

but also precludes obtaining both morphological and molecular data from the same 

individual  (Yoder et al. 2006). An answer to the preservation issue is the use of a 

solution of 20% DMSO, 0.25 M disodium EDTA, saturated with NaCl, pH 8.0, 

known as DESS by  (Yoder et al. 2006). Originally proposed for the preservation of 

avian blood samples  (Seutin et al. 1991), DESS has yielded PCR-ready DNA from 

individual nematodes and communities of entire soil/sediment samples for up to 1 
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year at room temperature. DESS works by inactivating naturally occurring nuclease 

activities by a combination of a severe osmotic shock, followed by rapid 

transportation of disodium EDTA and NaCl into tissues enabled by DMSO  (Yoder 

et al. 2006). As with all DNA preservation approaches, it is important to optimize the 

DNA to buffer ratio to achieve effective preservation. Such is particularly the case 

for wet soil/sediment samples where the inclusion of significant volumes of sample 

water may dilute either the concentration of ethanol and/or DESS, preventing 

complete inhibition of nuclease activities.  

Meiofaunal organisms must always be extracted from the substrate because the 

biomass is orders of magnitude lower than the actual sample volume of soil, 

sediment, or water. Separation can be achieved by employing several approaches 

(reviewed in Somerfield et al.  2005)), including those that rely on agitation of the 

sample in large volumes of water followed by retention of the community on sieves. 

Such mass decantation approaches rely on the different settling speeds of abiotic 

particles compared to the biotic fraction. Medium to coarse grain sediments can often 

be decanted successfully by mass decantation alone, but muddy or high in clay 

aggregate samples may require prior rinsing or sonication  (Murrell & Fleeger 1989; 

Giere 2009). Following mass decantation, samples are frequently cleaned using 

flotation/centrifugation approaches using either sugar solution  (Jenkins 1964; 

Esteves & Silva 1998), or Ludox
®

, a colloidal silica solution with a specific gravity 

tailored to user specifications  (Markmann & Tautz 2005; Giere 2009). While passive 

methods recover both living and dead components of the community, active methods 

(e.g. Bearmann Funnel and its modifications) recover only living components 

because they depend on organismal locomotion  (Baermann 1917; Whitehead & 

Hemming 1965). During all of these procedures, it is important to note that 

communities are continually manipulated via the use of measuring cylinders, funnels 

and stainless steel sieves. From a DNA-based perspective therefore, the potential for 

cross contamination of a minor fraction of biodiversity between samples is a concern. 

Cleaning of apparatus should therefore be rigorous and standardized, with 

pressurized water augmented by autoclaving and UV treated where possible. Cross 

contamination can be tested by performing intermittent negative control experiments, 

involving no samples. 
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Experimental Design 

 

Case Studies: 

1. Marine littoral benthos 

Three 44 mm x 1000 mm sediment cores were taken ca. 10 m apart from the low 

water intertidal zone from the beach at Littlehampton on the south coast of England, 

UK, during July, 2007. Samples were stored for approximately 6 months at room 

temperature in DESS solution (ratio of 1:3, volume drained sediment to DESS 

volume respectively). A meiofaunal fraction designed to include the larger 

nematodes (45 µm-1000 µm) was isolated by mass decantation, followed by Ludox
®

 

(specific gravity 1.16) centrifugation, utilizing combinations of stainless steel and 

Millipore disposable nylon net filters (Millipore Corporation). 

 

2. Tropical Rainforest 

In March 2007, soil, litter and understory habitats were sampled at La Selva 

Biological Station, Costa Rica following the protocol described by Powers et al.  

2009). Briefly, four locations (at 200 m, 300 m, 400 m and 500 m markers) along the 

Sendero Suroeste trail were selected. Within each location, a sampling plot (22 m 

radius circle, 1520 m
2
) was divided into 4 quadrants. Within each quadrant, one 

random canopy tree and one random understory tree were selected as sampling 

points. Two soil (15 cm depth) and two litter (overlying soil) samples were collected 

from 15 cm x 15 cm areas (within 1 m to 2 m away from the canopy and understory 

trees). A total of 8 subsamples (2 trees X 4 quadrants) were pooled to make up one 

composite soil sample and one composite litter sample per plot. The epiphytic 

material (e.g. lichen, moss, algae) present on the surface of stems of canopy and 

understory trees was collected to represent canopy sample. Each tree was sampled at 

three equidistant (between 2.5 cm and 2.5 m from the soil surface) vertical strata. A 

15 by 15-cm area was sampled in each of the strata for a total of 24 subsamples (3 

strata X 2 trees X 4 quadrants) pooled to form one composite canopy sample per 

plot. Samples were stored in a cooler and transported to Universidad Nacional for 

immediate processing. Litter and canopy samples were cut into smaller pieces, mixed 

thoroughly, and 15-30 g of subsamples were used for nematode extraction. Litter and 

canopy subsamples were further chopped in a blender in 150 ml of deionized water 
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for 10 s and set onto cotton wool filters  (s'Jacob  & van Bezooijen 1984) placed in 

extraction trays. Nematodes were collected at 24 and 48 hr intervals and immediately 

counted for total abundance under an inverted microscope. Nematodes from soils 

were extracted from ~100 g of subsamples using sugar flotation and centrifugation  

(Jenkins 1964) and counted immediately.  

 

Community DNA extraction   

 

Following sample manipulation for traditional meiofaunal ecology studies, the 

community is retained on 25-45 µm stainless steel sieves or filters. Samples are then 

rinsed from sieves using approximately 40-60 mL of water, ethanol or DESS, 

depending on experimental design. However, for the purposes of DNA extraction, all 

target organisms have to be removed from solution and placed in a suitable cell lysis 

buffer for DNA extraction. Specimen retrieval can be achieved by removal from 

Ludox-water interfaces  (Markmann & Tautz 2005), centrifugation (but note, the 

specific gravity of DESS is unsuitable for centrifugation separation), successive 

subtraction and examination of aliquots of water, or using disposable sieves and 45 

µm meshes. The aim is to reduce the community into a volume from which genomic 

DNA can be effectively liberated. 

Once removed from the sample, DNA can be extracted from taxa, but before 

proceeding, two issues should be considered. First, although extraction methods 

target organisms of a desired size range, the sample is likely to contain additional 

taxa such as bacteria, Archaea, Fungi, Plantae etc., present in the environment, 

adsorbed on the surface of, and present in the guts of targeted organisms. Second, 

decaying organic matter, containing humic substances and secondary metabolites 

(e.g. polyphenols, tannins and polysaccharides  (Zhou et al. 1996; Porebski et al. 

1997) can potentially inhibit PCR and sequencing reactions.  

To achieve effective DNA extraction and overcome the problem of 

environmentally derived inhibitors, several approaches have been developed to 

obtain PCR-ready genomic templates from environmental samples. Sample cell 

disruption can be more effective using bead beating, though there is a risk of 

shearing DNA into smaller fragments  (Picard et al. 1992). Conversely, using longer, 

more gentle treatments, such as spinning wheels, sodium dodecyl sulphate (SDS)  
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(Huber et al. 2002; Sogin et al. 2006), enzymes, heat, or freeze thaw processes, 

generally yield higher molecular weight genomic DNA extracts  (Zhou et al. 1996; 

Porteus et al. 1997; von Wintzingerode et al. 1997). Environmental DNA extraction 

protocols either use a combination of CTAB, phenol, chloroform, caesium chloride 

etc.  (Sambrook et al. 1989; Porteus et al. 1997) or proprietary chemicals to clean 

DNA extracts (e.g. Epicentre SoilMaster™, ZR Soil Microbe™ and Mobio 

PowerSoil™ DNA extraction kits) in association with various column formats. 

However, given that most proprietary environmental kits are designed for extracting 

DNA from microbes, they usually have a maximum capacity of ca. 250 µg of DNA, 

or eluates of ca. 200 µL, and it is widely acknowledged that overloading results in 

poor DNA yields. Consequently, for eukaryotic environmental work, either the 

community has to be partitioned into 250 mg of DNA aliquots, or somehow digested 

in a very low volume lysis buffer prior to kit usage. An alternative may be to use a 

combination of traditional lysis, followed by a large capacity DNA extraction kit, as 

used in the marine case study here. 

 

Case Studies: 

1. Marine littoral benthos 

Out of seven different DNA extraction methods tested on whole community 

marine environmental samples, the QIAMP DNA Blood Maxi Kit (Qiagen) yielded 

the most consistent PCR results (Figure 2.1) and was used for subsequent DNA 

extractions. 
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Figure 2.1 - The 18S rDNA primer sets used in the marine littoral meiobenthos and 

tropical rainforest analyses. The number beneath each nucleotide base highlights the 

conservation of the priming site (calculated by visual inspection) derived from an 

alignment of ~170 sequences derived from NCBI representing each of the phyla 

containing meiofaunal representatives (supplied in the Supporting Information). 

Sequences representing Nematoda were subsampled throughout the currently 

accepted phylogenetic range presented in Meldal et al. (2007) and all base pair 

positions were 100% conserved in all primer pairs but see Porazinska et al. (2009) 

for further primer bioinformatic comparisons. 

 

 

2. Tropical Rainforest 

Samples were transferred into ZR BashingBead Lysis Tubes (Zymo Research 

Corp, Santa Ana, CA) and disrupted using a Mini-BeadBeater (BioSpec Products, 

Inc. Bartlesville, OK) at maximum speed for 2 min. Genomic DNA was extracted 

using a ZR Soil Microbe DNA kit according to the manufacturer‘s protocol.  

 

Choice of genomic loci for delineation of meiofaunal molecular 

operational taxonomic units (MOTUs) 

 

There are clear conceptual differences between metagenetic and specimen-based 

barcoding analyses. Hebert et al. (2003a) chose the mitochondrial COI gene as the 

standardized barcoding gene for animals for a number of well-established reasons. 

Mitochondrial DNA has a haploid mode of inheritance, elevated rate of molecular 

evolution, lacks introns and has limited recombination  (Clayton 1984; Wilson et al. 

1985; Avise 1994; Piganeau et al. 2004; Tsaousis et al. 2005). Moreover, indels are 
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rare in mtDNA protein coding genes, universal primers for the COI gene are fairly 

robust  (Folmer et al. 1994; Zhang & Hewitt 1997) and the mode of molecular 

evolution of COI usually facilitates species discrimination whilst also retaining 

phylogenetic information for the majority of animal taxa  (Hebert et al. 2003a; 

Hebert et al. 2003b). Unfortunately though, the COI gene is not optimal for 

molecular taxonomic identification purposes for nematodes because nematode 

mitochondria have high mutational rates, display excessive saturation, biased 

substitution patterns and are very A+T rich  (Blouin et al. 1998; Blouin 2000). 

Furthermore, primers used for most barcoding studies  (Folmer et al. 1994) are 

poorly conserved across nematode diversity, and alternate conserved regions for 

primer design are not evident  (Blouin et al. 1998). Given that meiofaunal 

communities can comprise between 50-90% nematodes  (Lambshead & Boucher 

2003), other nuclear markers may be more appropriate for meiofaunal metagenetic 

studies  (Blaxter 2003a; Blaxter et al. 2003). 

It is widely acknowledged that alternative markers are required for certain taxa, 

and attempts are being made to include suites of markers in DNA barcoding. 

Examples of alternative markers include nuclear ribosomal RNA genes that have 

been used for decades to identify phyla of microscopic eukaryotes. It was first 

demonstrated in the 1960‘s that ribosomal RNA genes (rDNA) and their gene 

products (rRNA) could be used for the taxonomic classification of microbial species  

(Doi & Igarashi 1965; Dubnau et al. 1965; Pace & Campbell 1971). The genes 

coding for rRNA are particularly well suited for molecular taxonomy, because they 

are universally found in all cellular organisms and are of relatively large size. They 

also contain both highly conserved and variable regions that facilitate the design of 

very conserved primers that amplify diagnostic regions  (Woese 1987; Floyd et al. 

2002; Markmann & Tautz 2005; Carvalho et al. 2009). 

 For eukaryotes, both the nuclear 18S small subunit (nSSU) and 28S large subunit 

(nLSU) rDNA genomic regions are excellent candidate genes for molecular 

identification as they are present in tandemly repeated, multiple copies (50-150 

copies per cell), and undergo concerted evolution (Markmann & Tautz 2005). The 

latter two attributes facilitate their amplification from microscopic organisms that are 

highly conserved within a species, and divergent among species. DNA barcoding 

studies utilizing rDNA genes have focused on the more variable portions of the 

genes: the D2-D3 ‗diversity loop‘ regions of the 28S and the 5‘ region of 18S. While 
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both 18S and 28S are probably equally useful for molecular identification, both cases 

presented here utilize 18S, predominantly because for free-living nematodes at least, 

universal 18S primer sets are more consistent for PCR amplification than 28S primer 

sets  (Bhadury et al. 2006; Porazinska et al. 2009). There are also significantly more 

18S than 28S sequences in public repositories (e.g. recent SILVA databases contain 

868,390 18S vs. 143,653 28S entries)  (Pruesse et al. 2007), enabling more accurate 

and comprehensive taxonomic assignment to query sequences  (Blaxter 2003a). 

What remains less clear is the extent to which variation in 18S or 28S genes follows 

the division of individual organisms into biological species. Within Nematoda, some 

species have identical 18S sequences, while other congeneric species differ by over 

2%  (Blaxter et al. 1998). 18S (and 28S) are good markers for deep phylogeny  

(Blaxter et al. 1998) but may be less suited to distinguishing between closely related 

taxa: available data suggest that the D2-D3 loop of 28S may be the better marker in 

this respect  (Ye et al. 2007; Subbotin et al. 2008). 

 

Marine littoral benthos and tropical rainforest case studies 

 

To select optimal 18SrDNA primer pair combinations, the genomic location of 

available primers (http://nematol.unh.edu/, http://www.nematodes.org/) and numbers 

of segregating sites spanning primer pairs ca. 400 bases apart (recommended for 

Roche 454 GSFLX sequencing) were investigated. Furthermore, the resolving power 

of target regions  (Porazinska et al. 2009) and level of primer sequence conservation 

across meiofaunal metazoans was also considered. Consequently, two candidate 

regions, defined by primers SSU_F04 and SSU_R22 towards the 5‘ end and NF1 and 

18Sr2b towards the 3‘ end of the 18SrDNA gene (Figure 2.2) were used 

independently in the marine and rainforest samples. 

 

 

 

 

 

 

http://nematol.unh.edu/
http://www.nematodes.org/


Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises - 2 

 

 

34 

 

Figure 2.2 - Examples of three independent primer sets for the identification of 

mixed metagenetic amplicon pools. The Roche 454 adaptor precedes a five base 

molecularly identified (MID) tag immediately prior to locus-specific forward and 

reverse primers respectively. Bidirectional and unidirectional sequencing can be 

achieved by combining A and B adaptors and appropriate Roche 454 emulsion PCR 

kits (II or III). In the current example, sequencing from the 5‘ end of the forward 

primer could be performed by hybridizing the Roche 454 adaptor B onto the beads 

during emulsion PCR and sequencing with the A sequencing adaptor. 

 

PCR and sequencing strategies 

 

At the time of writing, three ultrasequencing platforms (the Roche 454 GS 

Titanium Series, the Illumina SOLEXA Genome Analyzer and the Applied 

Biosystems SOLiD™ System) were readily accessible by the research community. 

Presently, the Roche 454 system is the intuitive choice for any form of metagenetic, 

or metagenomic analysis, simply because of greater read lengths and subsequent 

clarity of annotation of individual reads  (Blow 2008; Hugenholtz & Tyson 2008). 

Whereas the Illumina Genome Analyzer and ABI SOLID™ generate many gigabases 

of sequence data partitioned into 150bp base reads per instrument run, the Roche 454 

Titanium platform generates about 400Mb of data from 0.8 million 400-450 base 

reads.  

Consensus sequence accuracies of the Roche 454 sequencers range from 99.97% 

to 99.9984%, with individual per-base error rates of between 0.6% and 0.49%. The 

large majority of per-base errors (between 39%-98%) are derived from misreading of 

the lengths of nucleotide homopolymers effects, including extensions (insertions), 

incomplete extensions (deletions) and carry forward errors (insertions and 
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substitutions) (Huse et al. (2007); Margulies et al. (2005); http://454.com). 

Nucleotide homopolymers are relatively rare in coding genes and in 18S and 28S in 

particular but quite common in nSSU variable region four (V4). 

Following the publication of Margulies et al. (2005) de novo sequencing of 

Mycoplasma genitalium, it was clear that parallel pyrosequencing represented a 

paradigm shift in the cost and volume of sequencing compared to chain-termination  

(Sanger et al. 1977) approaches. However, in order to utilize such sequencing power 

for multi-sample metagenetic investigations, methods had to be devised to pool and 

then recover amplicons on single, or multiple Roche 454 picotitre plates. Physical 

gaskets can be used to partition Roche 454 picotitre plates from between 2 and 16 

samples (as used in Sogin et al. 2006), but this sample multiplicity is inevitably 

associated with lower overall sequence throughput per picotitre plate. A number of 

ways have been suggested to separate samples post-run in silico. These range from 

pooling of different easily identifiable loci  (Thomas et al. 2006), to use of 

individually molecularly identified (MID) linkers to independent samples (Meyer et 

al. 2008, 2007; Parameswaran et al. 2007; Roche 454). However, for metagenetic 

samples, incorporating MID linkers and universal Roche 454 adaptors into fusion 

primer sets  (Binladen et al. 2007) is probably the easiest and most cost-effective 

way of tagging amplicons. Following Binladen et al. (2007) study-specific forward 

primers can be synthesized preceded by a sample-specific MID tag and either Roche 

454‘s A or B universal adaptor sequences (Figure 2.2). Thus, each experimental 

sequence will begin with the MID tag and the PCR primer, and these can be 

recognized via pattern-matching algorithms to sort individual reads into sample sets. 

Binladen et al. (2007) initially proposed the use of 2 base tags yielding 16 (4
2
) 

different MID combinations. However, Huse et al. (2007) strongly recommends the 

use of MID adaptors that differ by at least two bases to limit the potential of 

misallocation due to errors in the MID sequence itself.  Eighty two of the possible 

1024 (4
5
) five base MID tags that can be combined to fulfil these criteria are 

currently listed at the Josephine Bay Paul Center‘s Visualization and Analysis of 

Microbial Population Structures (VAMPS) website 

http://vamps.mbl.edu/resources/keys.php, and are supplied here in the supplementary 

review file. For even higher stringency, Hamady et al.  2008) and Hamady & Knight  

2009) constructed 1,544 optimal eight base error-correcting barcodes based on 

Hamming codes, which minimise redundancy. Given the nature of Roche 454 

http://454.com
http://vamps.mbl.edu/resources/keys.php


Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises - 2 

 

 

36 

sequencing, homopolymers are also best avoided and it is optimal (although probably 

not essential with contemporary read lengths) to utilise primers that require the least 

number of parallel sequencing nucleotide flows  (Huse et al. 2007; Meyer et al. 

2007; Meyer et al. 2008a) to maximise sequencing efficiency through the adapters 

and primers. 

 

Case Studies: 

1. Marine littoral benthos 

The 18S rDNA fragment spanning the primers SSUF04 (5‘-

GCTTGTAAAGATTAAGCC-3‘) and SSUR22 (5‘- GCCTGCTGCCTTCCTTGGA-

3‘)  (Blaxter et al. 1998) was amplified using MID-tagged fusion primers using 1 µl 

of genomic DNA template (1:500 dilutions) in a 40 µL reaction using Pfu DNA 

polymerase (Promega), according to manufacturers‘ recommendations. Sample-

specific PCR reactions involved a 2 min denaturation at 95 ºC, then 35 cycles of 1 

min at 95 ºC, 45s at 57 ºC, 3 min at 72 ºC and final extension of 10 min at 72ºC. 

Negative controls were included for all amplification reactions. Electrophoresis of 

PCR products was carried out on a 2% Top Vision
TM

 LM GQ Agarose (Fermentas) 

gel and the expected 450bp fragment was purified using the QIAquick Gel 

Extraction Kit (Qiagen), following the manufacturer‘s protocol. All purified PCR 

products were then quantified with an Agilent Bioanalyser 2100, diluted to the same 

concentration, pooled and sequenced (A-Amplicon, alongside 10 additional unrelated 

experimental samples) on a half-plate of a Roche 454 GSFLX sequencer at Liverpool 

University‘s Advanced Molecular Genetics Facility, UK. 

 

2. Tropical Rainforest 

Individual PCR amplifications were performed following protocols described in 

detail elsewhere  (Porazinska et al. 2009) using tagged fusion primers and 1 µL of 

DNA template. A total of 12 metagenetic samples (all derived from single PCR 

replicates) were pooled and sequenced together on a single GSFLX half-plate at the 

Interdisciplinary Center for Biotechnology Research at the University of Florida, 

Gainesville, FL. Through earlier experiments with artificially assembled nematode 

communities, it was determined that the use of a single in-house PCR replicate as 

well as a single emulsion PCR and pyrosequencing run is sufficient for both 

qualitative and quantitative nematode community analysis (Porazinska et al. In 
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Review). To illustrate potential information that can be drawn from metagenetic 

studies, data from a single location within the transect (i.e. one soil, one litter, and 

one canopy) is presented here.  

 

Bioinformatic analyses of metagenetic datasets 

 

The increase in read number and read length generated through contemporary 

ultrasequencing platforms requires novel sequence analysis packages that reduce 

computational runtime and increase OTU clustering efficiency. Read scaling has 

made algorithms using direct pairwise comparisons of all available sequences 

(N*(N-1)) computationally intractable  (Yu et al. 2006; Huson et al. 2007) and has 

reduced the efficiency of programs using distance matrices methods (N*(N-1)/2)  

(Schloss & Handelsman 2005). Distance matrix methods have been used previously 

for bacterial metagenetic analyses  (Sogin et al. 2006) . However, the time required 

for the generation of distance matrices can increase exponentially with an increase in 

sequence number or metagenetic diversity, and the derivation of a distance matrix 

inevitably includes estimation of pairwise alignments. Rapid processing of large read 

numbers requires either reduction of this search space by heuristic avoidance of 

irrelevant comparisons or implementation of approaches less bound by problems of 

pairwise comparison. The latter refers to k-mer algorithms, which can cluster 

sequences based upon the probability of matching a particular word between 

sequences  (Sun et al. 2009).  

Sequence entry order is a primary concern for developing OTU clustering 

algorithms.  Available programs assign sequences to OTUs based upon fixed 

distances from an initial seed  (Blaxter et al. 2005; Sun et al. 2009). Consequently, 

an outlier seed can heavily influence generation of OTUs. While it is possible to 

randomize the sequence entry order, this process becomes increasingly inefficient as 

progressively more reads are used. Furthermore, randomization of sequence order 

can lead to variations in the final OTUs  (Floyd et al. 2002; Blaxter et al. 2005). 

The analyses that have been performed here are based upon Operational 

Clustering of Taxonomic Units from Parallel UltraSequencing (OCTUPUS, Sung et 

al. in review), a program that attempts to address both seeding and runtime problems 

by interlacing sequence alignments and pairwise comparison in order to generate 
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OTUs (beta version available from the Thomas laboratory on request). OCTUPUS 

takes advantage of k-mer algorithms (Zhang et al. 2000) to make pairwise 

comparisons against consensus sequences, and can be faster than distance matrix 

methods  (Schloss & Handelsman 2005) or k-mer comparisons using unique 

sequences  (Sun et al. 2009). The consensus sequences OCTUPUS uses are 

continually evolving based upon the sequences assigned to the OTU. Once repeated 

multiple alignments of the OTU sequences result in an unchanging consensus 

sequence, the OTU is considered a ―fixed OCTU‖. Each OCTU potentially 

represents one taxonomic group based upon the identity cut-off. By using fixed 

pairwise comparisons against a variable consensus sequence, seeding error can be 

reduced. 

 

Data Analysis 

 

Sequences generated from the Roche 454 GSFLX from both the marine littoral 

benthic and tropical rain forest habitats were first checked for quality using Lucy  

(Chou & Holmes 2001) at default parameters. The sequences were then trimmed, 

binned according to MID tags and clustered at 95, 96, 97, 98, and 99% similarity 

match using the OCTUPUS pipeline (Sung et al. in review). Fixed OCTUs were then 

compared by megablast  (Altschul et al. 1997) against the NCBI database. A major 

concern with the analysis of PCR-generated homologous gene regions is the 

formation of in vitro recombinant DNA molecules, or chimaeras, where molecules 

from two different origins artificially combine during PCR  (Meyerhans et al. 1990). 

One quick and objective way of flagging a putative chimera is to use the ―greedy‖ 

(taking in more sequences than it should) nature of the megablast algorithm and 

compare the length of matched bases from the top hit in a megablast search to the 

length of the query sequence. As long as the database sequence is longer than the 

query sequence, and a portion of the 3‘ end does not match, it is likely that the query 

is a recombinant. Given that recombinant molecules can form at any position along a 

DNA sequence  (Qiu et al. 2001), and referring to previous analyses including 

control datasets  (Porazinska et al. 2009), we applied a strict quality filter that 

allowed a four base length difference between a query OCTU sequence and the 

matched database sequence for further analyses.  
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Data overview and interpretation 

 

Community PCR and sequencing yielded a total of 29756 high quality sequences 

over 200 bases from the marine samples (core 1: 9893, core 2: 9908 and core 3: 

9955, GenBank numbers to be allocated), generating between 246 and 1327 putative 

non-chimeric OCTUs between the 95%-99% cut-offs (Figure 2.3a). For the tropical 

rain forest, the three samples yielded a total of 40334 high quality sequences of at 

least 200 bases (soil: 23742, litter: 10854 and canopy: 5738, Genbank numbers to be 

allocated), generating between 625 and 5671 putative non-chimeric OCTUs between 

the 95%-99% similarity match (Figure 2.3b). Putative chimera detection for the total 

datasets ranged from 35%-38% and 44%-49% for the F04-R22 (marine) and NF1-

18Sr2b (rainforest) data respectively. Many, but not all putative chimeric OCTUs 

were made up of low copy number reads and accounted for ca. 20% of reads used in 

generating the OCTUs.  

 

Figure 2.3- Number of operational clustering of taxonomic units (OCTUs) found 

in (a) the marine littoral benthos and (b) tropical rainforest case studies for each base 

cut-off. Putative non-chimeric OCTU numbers are presented for the total data, 

Nematoda and other Eukaryota (including OCTUs with BLAST hits to 

‗environmental samples‘ representing unclassified taxa). 
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PCR recombination and chimera formation 

 

The proportion of putative chimeras representing OCTUs is disconcerting, 

especially as recent control experiments on artificial nematode communities only 

identified a level of 0.4% of total reads  (Porazinska et al. 2009). PCR recombination 

will (a.) suggest the existence of sequences that do not actually exist in the 

investigated sample, but also (b.) give a false impression of organism richness  

(Markmann & Tautz 2005). In vitro recombination of homologous DNA leading to 

chimeric molecules is widely reported in the microbial literature and detected in 

databases  (von Wintzingerode et al. 1997; Qiu et al. 2001; Ashelford et al. 2005), 

and levels up to 33% have been reported from meiofaunal communities  (Markmann 

& Tautz 2005). In the latter example, as in many chimera detection approaches  

(Huber et al. 2004; Shaw et al. 2008), query sequences were split into 50:50 blast 

query fragments and were identified as putative chimeras if the 5‘ query and the 3‘ 

query had best BLAST matches to different taxa, suggesting that the 5‘ and 3‘ ends 

of the sequence are derived from different species. Upon revisiting the data, it is 

apparent that the 50:50 blast approach can fail to detect some chimeric formations, 

especially for recombinants that occur further from the sequence midpoint. 

Accordingly, a stringent base matching approach at the 3' end of the query sequence 

against complete reference sequences appears to be the more conservative way of 

approaching chimera quality control, at least for the taxa involved in this study. 

Slightly more putative chimeras were generated from the 3‘ end of the 18S rDNA 

terrestrial samples, compared to the 5‘ end of the 18S rDNA marine samples. It is 

therefore tempting to suggest that the 5‘ end may be less susceptible to chimera 

formation, perhaps due to differing secondary structures and levels of polymorphism  

(von Wintzingerode et al. 1997; Qiu et al. 2001) though the experiments vary in 

many aspects. In the marine case study, environmental samples were stored in DESS, 

whereas the tropical rain forest samples were processed without storage. 

Additionally, the two studies used different DNA polymerases and extraction 

methods; Promega Pfu and spinning wheel digestion for the marine samples and 

New England Biolabs DyNAzyme Hot Start polymerase and bead beating disruption 

for the terrestrial samples, potentially also affecting the incidence of chimera 

formation (Qiu et al. 2001). Furthermore, as is usually the case with ultrasequencing 
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experiments, there was no replication of the actual 454 step, and so it is difficult to 

draw accurate conclusions without further experimentation and hypothesis testing.  

In many ways, metagenetic ultrasequencing experiments are the ideal ―breeding 

ground‖ for recombinant DNA molecules. They are based on the amplification of 

homologous regions from a large number of potentially highly related organisms  

(von Wintzingerode et al. 1997; Qiu et al. 2001). The taxonomic composition of the 

samples may contribute to the level of chimera formation  (Qiu et al. 2001), but more 

empirical work needs to be done to assess the level of chimera formation in 

community-based PCR. The chimera detection approach applied here is particularly 

aggressive and could also exclude taxa that incorporate five base or more indels in 

BLAST assignment. Further solutions may therefore be necessary to advance the 

field of chimera detection, but given that chimeric molecule formation is potentially 

highly spatially stochastic, a quick and ideal solution may be unattainable without 

reference to control datasets. It is therefore better to try and reduce the level of DNA 

recombination within environmental PCRs by adhering to the following procedures 

(a.) performing ―gentle‖ methods of DNA extraction (enzymatic digestion and using 

spinning wheels) (Huber et al. 2002), rather than bead beating approaches, (b.) 

increasing polymerase extension times and (c.) where possible, reducing the number 

of PCR cycles to the minimum (e.g. 20)  (Meyerhans et al. 1990; von Wintzingerode 

et al. 1997; Qiu et al. 2001).  

 

Sample and taxon coverage 

 

Both sampling and sequencing approaches achieved between five and twenty 

three times deeper sequence coverage per core than is usually revealed with chain 

termination clone library approaches  (Kemp & Aller 2004; Blaxter et al. 2005; 

Markmann & Tautz 2005) at approximately 1% of the cost. The coverage and cost-

effectiveness of Roche 454 sequencing therefore brings substantial advantages to 

studies aiming to elucidate the molecular genetic richness of complex eukaryotic 

communities.  
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According to BLAST results, both primer sets (SSU_F04-SSU_R22 and NF1-

18Sr2b) amplified homologous 18S gene regions from a substantial proportion of not 

only meiofaunal, but representatives of the Kingdoms Protista, Plantea and Fungi, in 

addition to those OCTUs with BLAST hits to ―environmental samples‖. The latter 

are generally representative of the total data (e.g. comprising ca. 50% nematodes, in 

addition to further eukaryota) and further manual BLASTing can refine the 

taxonomic assignment of specific groupings if required. It is clear therefore that both 

primer sets are very highly conserved in eukaryotes. The primary difference between 

the two primer sets is that SSU_F04 and SSU_R22 span a more variable region of 

the 18SrDNA gene (ca. 30% more polymorphic sites) compared to the NF1-18Sr2b 

region. Of the meiofaunal phyla that may have been expected to be present in both 

environments, notable exceptions are Cnidaria, Nemertea, Rotifera, Brachiopoda and 

Echinodermata in the marine habitat, and Platyhelminthes, Annelida and Mollusca in 

the tropical rain forest habitats. This might have been mainly due to the small scale 

sampling and the patchy nature of meiobenthic organisms in the sediments. Further 

to this, seasonal variations in organisms life history strategies and primer bias 

towards some phyla must also be considered. Visualizing the conservation of the 

marine primer sets within the small subunit reference database from SILVA using 

ARB  (Ludwig et al. 2004; Pruesse et al. 2007) suggests that all of the above, with 

the exception of cnidarians, should have amplified if genomic DNA was available in 

the PCR reaction. Therefore, these phyla were either not present in these samples 

(reflecting actual biology, or the result of taxon extraction methods), or competitive 

PCR  (von Wintzingerode et al. 1997) may have prevented amplification of the 

missing phyla. Revisiting the priming sites of SSU_F04 and SSU_R22 however, 

reveals that ca. 50% of cnidarians have a base pair mismatch at the penultimate 

3‘position of SSU_R22, suggesting that primer mismatching will reduce the 

amplification of cnidarians in similar studies. In the tropical rainforest case, although 

undetected in the samples presented here, both flatworms and annelids were 

recovered in the remaining replicate samples. Absence of molluscs may be 

associated with the exclusive nature of the extraction methods. 

It is clear from Figure 2.3 that OCTU generation at multiple different cut-offs 

provides very different estimates of richness per sample as OCTUs are created at 

ever deeper levels of phylogenetic resolution. At fine levels, intraspecific variation 

will be sampled in some taxa, whereas at deeper levels, certain taxa will be grouping 
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on the basis of genera, order and higher taxonomic levels  (Shaw et al. 2008). Many 

nematode morphospecies can be separated on the basis of very low 18S sequence 

divergence (e.g. 2%)  (Blaxter et al. 1998), whereas intragenomic and intraspecific 

sequence variation will invariably be higher in other species and phyla. It is likely 

that the OCTU cut-off level that broadly correlates with species will occur between 

95% and 99% 18S sequence divergence, but there will obviously be exceptions 

according to the actual species involved in the samples. Without explicitly referring 

to species, OCTU discrimination does however provide comparative metrics that can 

appraise relative diversity between samples.  

Considering the 97% OCTU cut-off, the marine samples two (174 OCTUs) and 

three (160 OCTUs) contained more than twice the OCTU richness of sample 1 (71 

OCTUs) (Figure 2.4). Thus, although all three intertidal cores were collected within 

10m of each other minor changes in microhabitat (e.g. sediment grain size, detritus 

and organic matter and bacterial assemblages) can significantly alter meiofaunal 

richness between samples, even at microspatial scales  (Giere 2009).  

 

 

Figure 2.4- Number of putative non-chimeric OCTUs (clustered at 97% 

similarity) found (a) in the marine littoral benthos and (b) tropical rainforest case 

studies for sample site. Data are provided for totals, Nematoda and other Eukaryota 

(including OCTUs with BLAST hits to ‗environmental samples‘ representing 

unclassified taxa). 

 

In the terrestrial dataset, while the soil habitat had fewer nematode OCTUs (35) 

than either the litter (149) or canopy (97), the pattern was reversed for other 

eukaryotes, particularly for mites (soil: 179, litter: 6, canopy: 1) (Figures 2.4 and 
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2.5). As expected, plant-parasitic nematodes were more diverse and abundant in the 

soil environment, with bacterial- and fungal-feeding nematodes predominating in the 

litter and canopy.  No omnivorous/predatory nematodes were observed in the soil.  

Recalling that the extraction methods used in the tropical rain forest study were 

optimized for nematode taxa, the diversity patterns regarding eukaryotes other than 

nematodes may be inaccurate. For instance, the nearly complete absence of mites and 

springtails in litter and canopy seems unrealistic. Also, extremely low recovery of 

fungal sequencing reads is unusual, but appears not be an artefact of primer 

conservation. It is likely that extraction methods, biology and/or competitive PCR 

interactions  (von Wintzingerode et al. 1997) may have been the cause of the lack of 

fungal sequences in the terrestrial dataset. 

 

 

Figure 2.5- Pie chart illustrating the relative proportion of OCTUs (clustered at 

97% similarity) belonging to each taxonomic grouping found in (a) the marine 

littoral benthos and (b) the tropical rainforest case studies. BLAST hits to 

‗environmental samples‘ represent unclassified taxa. 

 

Perspective and future directions in eukaryotic environmental 

metagenetics 

 

Ultrasequencing accompanied by BLAST annotation can clearly assist in the 

assessment of relative MOTU richness from large numbers of ecological samples. 

The increased throughput in sequencing afforded by new generation sequencers 

enables faster access (weeks rather than years) to larger amounts of data spanning the 
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breadth of the eukaryotic domain of life, at a fraction of the cost. Environmental 

metagenetics may therefore widen the identification bottleneck and increase the flow 

of information that is currently associated with the taxonomy and identification of 

smaller organisms in biodiversity assessments  (Blaxter 2003a; Blaxter & Floyd 

2003; Tautz et al. 2003). There are however, some fundamental limitations regarding 

the approach. Relating species to MOTUs will always be a contentious issue, but 

bioinformatic sequence comparisons and additional molecular assisted taxonomy 

will inevitably bridge the gap as further voucher specimens are linked to sequences  

(Blaxter 2003a; Blaxter et al. 2003; Markmann & Tautz 2005). 

The data here refer explicitly to the relative number or richness  (McIntosh 1967) 

of MOTUs and not diversity, that takes into consideration both richness and evenness  

(Good 1953; Hurlbert 1971; Magurran 2004). Since prokaryotes are unicellular and 

accepting the limitations of PCR-based approaches, prokaryote ecologists often make 

the assumption that numbers of reads reflect phylotype diversity (ie, one 16S 

sequence per individual prokaryote) in metagenetic datasets  (Kemp & Aller 2004). 

The same assumption however, cannot be readily made for multicellular organisms 

that comprise different numbers of cells that will change in relation to developmental 

stage (especially using multicopy 18S markers). Very little work has been performed 

on the quantitative aspect of environmental metagenetics, but preliminary 

investigations suggest that number of reads may not correlate with small scale 

differential amounts of DNA template  (Binladen et al. 2007), or numbers of 

individuals  (Porazinska et al. 2009). Given the unequivocal need for quantitative 

assessments in biodiversity assessment, investigations that are more comprehensive 

will be required to test the quantitative nature of metagenetic datasets at a range of 

taxonomic levels. Further to this, trials of independent PCRs (standard and emPCR 

for Roche 454 sequencing) of the same samples will enable the assessment of 

replicability within datasets, regarding both quantification and chimera formation. 

 

The need for homology in MOTU derivation 

 

It is clear that single primer pair combinations will never coamplify all taxa and so 

it may be necessary to use primer cocktails  (Ivanova et al. 2007), or more than one 

diagnostic region per study. The latter solution however, only becomes 
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comparatively meaningful if the multiple diagnostic regions can be linked to the 

same genome from which they were derived. Otherwise, the result is two unlinked 

MOTU derivations and independent BLAST annotations. We feel that the two 

regions featured here are optimal for eukaryotic metagenetic analyses and perhaps in 

the future, with ever increasing read lengths and paired-end methods, it may be 

possible to incorporate both in MOTU derivation. Further data comparisons will 

elucidate which may be optimal, but at least for the time being other researchers are 

urged to use the same locus and regions to enable comparative analyses, following a 

similar ethos to the barcoding movement. 

To conclude, perhaps one of the most crucial issues of environmental 

metagenetics is to maintain a bioinformatic paper trail so that the scientific 

community will be able to BLAST annotate future queries and link MOTUs to 

already existing MOTUs. By linking independent datasets, there is the potential to 

facilitate the integration of all metagenetic datasets opening up the possibility of 

ecosystem-based approaches to a range of spatially and temporally heterogeneous 

evolutionary and ecological questions. We are investigating database mechanisms of 

how to achieve this and look forward to developments in the emerging field of 

eukaryotic environmental metagenetics.  

 

 

 



 

 

 

 

 

 

 

CHAPTER 3 - Second-generation environmental 

sequencing unmasks marine metazoan biodiversity 
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Introduction 

 

Biodiversity is the product of millions of years of evolution and forms the basis of 

earth‘s life support system, but the magnitude and relative diversity of global species 

richness remains unknown. On earth there may be over 100 million species  (Blaxter 

2003b) but fewer than 2 million have been formally described  (May 1988). There is 

also a pronounced bias towards the study of larger organisms, leaving the most 

speciose communities that are dominated by microscopic organisms, understudied. In 

order to study diverse environments dominated by small taxa, second generation 

sequencing has been employed for the quantification of bacteria, archaea  (Sogin et 

al. 2006; Huber et al. 2007) and viruses  (Angly et al. 2006; Desnues et al. 2008) but 

large knowledge gaps still exist regarding the organization of diversity within several 

eukaryotic kingdoms, including the Metazoa. The Kingdom Metazoa, also known as 

Animalia, consists of multicellular heterotrophic organisms ranging from Porifera to 

Chordata. Contemporary phylogenetic studies routinely recover a monophyletic 

Bilateria – Triploblasta clade (including deep-branching Ecdysozoa, Lophotrochozoa 

and Deuterostomia)  (Dunn et al. 2008; Philippe et al. 2009), but no consensus view 

exists of the precise relationships between the Bilateria, and the basal groups of 

Porifera, Ctenophora, Placozoa, Cnidaria and Coelenterata  (Dunn et al. 2008; 

Philippe et al. 2009). Marine benthic metazoan communities display some of the 

highest α-diversity on the planet and occupy one of the largest ecosystems on earth, 

where only 1% of species are estimated to be known  (Snelgrove 1999). Benthic 

meiofauna (small metazoans between 45 µm and 500 µm in size), comprise members 

encompassing 60% of animal phyla and represent a major part of marine biodiversity  

(Snelgrove 1999). Dominated by nematodes and characterized by high abundances 

(up to 10
8
 individuals per 1m

2
) and diversity  (Lambshead 2004), meiofaunal 

assemblages perform essential roles in marine ecosystem processes, namely nutrient 

cycling, secondary production, sediment transport and mineralisation  (Giere 2009).  

A metagenetic approach is applied (ie. the large-scale analysis of taxon richness 

via the analysis of homologous genes) using second-generation sequencing of the 

18S nuclear small subunit (nSSU) ribosomal RNA (rRNA) gene to assess 

simultaneously the relative levels of richness and patterns of diversity of multiple 

metazoan phyla across an ecological gradient in a temperate benthic ecosystem. The 
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heterogeneous levels of accumulating taxon richness derived from the benchmarked 

analyses were broadly congruent with those derived from intensive morphological 

assessments, but MEGABLAST annotation revealed a previously unidentified 

phylogenetic breadth of microbial metazoan life. Moreover, the finding that the 

largely predacious turbellarian Platyhelminthes represent a substantial proportion of 

benthic diversity quantifies their hitherto unrecognised ecological importance in 

benthic food chains. Annotated metagenetic analyses enable the objective assessment 

of microbial biodiversity throughout all ecosystems, facilitating understanding of 

linkages between microbial biodiversity and ecosystem processes. 

 

Methods 

Sample collection  

 

Twenty four benthic samples were collected from the low tide mark along an 800 

m transect, using a standard corer methodology (Platt & Warwick 1988) from marine 

sandy beach substrata in Prestwick (three every 100 m between 55º30.481‘N, 

4º37.489‘W and 55º30.194‘N, 4º37.368‘W) and a further three from Littlehampton 

(50º48.021‘N, 00º32.530‘W), UK, during summer 2007. The latter sampling site was 

used as a geographically disparate out-group comparison. For the sequencing 

analysis, each biological sample comprised three pooled 44 mm diameter x 100 mm 

benthic samples taken approximately 10 m apart. An additional core was taken for 

sediment analysis. All samples were immediately fixed in 500 ml storage pots 

containing 300 ml of DESS (20% DMSO and 0.25 M disodium EDTA, saturated 

with NaCl, pH 8.0)  (Yoder et al. 2006). The meiofaunal size fraction was 

mechanically separated from the sand and concentrated by decanting five times with 

filtered tap water through a 45 µm filter. Subsequent separation from fine silt was 

achieved by repetitive centrifugation in 1.16 specific gravity (sg) LUDOX-TM 

solution  (de Jonge & Bouwman 1977).  Following centrifugation, each sample was 

retained on a distinct mesh sieve which was then folded, sliced and placed in a 15 ml 

falcon tube and kept at -80°C until DNA extraction. Samples were lysed overnight at 

55°C in lysis buffer (100 mM Tris-HCl, pH7.5; 100 mM NaCl; 100 mM EDTA; 1% 

SDS, 500 µg/ ml proteinase K), assisted by spinning wheel mixing, and DNA 
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extracted with the QIAamp DNA Blood Maxi Kit (Qiagen) following the 

manufacturer‘s protocol. 

 

Primer design and PCR strategy 

 

The genes coding for ribosomal RNA have been used for decades for the 

identification of microbial species  (Doi & Igarashi 1965; Pace & Campbell 1971) 

and are well suited for taxonomy. Mainly because they are ubiquitous in cellular 

organisms; are of relatively large size; contain highly conserved and variable regions 

that facilitate primer design; and are present in tandemly repeated, multiple copies 

enabling efficient PCR amplification  (Floyd et al. 2002; Markmann & Tautz 2005; 

Carvalho et al. 2010). For environmental metagenetic discovery, the choice of the 

nuclear small subunit (nSSU) makes sense due to the considerable more reference 

sequences are available in public databases for nSSU (1,246,462) than the large 

subunit (180,344)  (Pruesse et al. 2007). Moreover, ‗universal‘ nSSU primers have 

been shown to amplify more taxa from mock communities than those designed for 

the LSU  (Porazinska et al. 2009). The 5‘ region of the nSSU exhibits more 

segregating sites than the 3‘ region in Metazoa (Floyd et al. 2002) and so was 

selected as the target area for OCTU discrimination. MEGA version 4.1  (Tamura et 

al. 2007) was used to align and compare a wide range of metazoan nSSU sequences 

with respect to existing degenerate primers and putative new priming sites spanning 

a region between 250-500bp in length (a combination of average mean read length 

and maximum permitted amplicon size respectively, of a 454 Life Sciences, Roche 

Applied Science GSFLX amplicon sequencing run). Of all primer permutations, the 

SSU_FO4 (5‘-GCTTGTCTCAAAGATTAAGCC-3‘) and SSU_R22 (5‘- 

GCCTGCTGCCTTCCTTGGA-3‘) (Blaxter et al. 1998) primers were selected as 

they exhibited  pronounced homology across meiofaunal phyla, but also flanked a 

highly divergent region of the nSSU and were used for subsequent amplicon 

generation. Fusion primers were then developed in which a proprietary primer 

sequence (Adaptor A or B) of the Roche 454 GSFLX sequencing technology and a 

sample-specific five nucleotide key tag (to differentiate between multiple samples) 

were included  (Binladen et al. 2007). All fusion primers were designed using 

PRIMER PREMIER 5.0 (Premier Biosoft International,
 

Palo Alto, Calif.), 
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considering physical and structural properties of the oligonucleotides (such as 

annealing temperature, G+C percentage, hairpins and false priming). The forward 

fusion primers were ca. 45 bases in length and designed such that the 454 A-adaptor 

is followed by the tag (each of which differed by at least two bases)
 
 (Binladen et al. 

2007), and then by the experimental forward primer (SSU_FO4). The reverse 

primers were designed similarly, to optimise thermal compatibility. PCR 

amplification of the specified nSSU region was performed using 1 µl of genomic 

DNA template (1:500 dilutions) in 3 x 40 µl independent reactions using Pfu DNA 

polymerase (Promega). PCR conditions involved a 2 min denaturation at 95 °C, then 

35 cycles with 1 min 95 °C, 45 s 57 °C, 3 min 72 °C and final extension of 10 min at 

72°C. Negative controls (ultrapure water only) were included for all amplification 

reactions. Electrophoresis of triplicate PCR products was undertaken on a 2% gel 

with Top Vision
TM

 LM GQ Agarose (Fermentas), and the expected 450 bp fragment 

was purified using the QIAquick Gel Extraction Kit (Qiagen) following the 

manufacturer‘s instructions, prior to pooling identical samples. All purified PCR 

products were then quantified with an Agilent Bioanalyser 2100, diluted to the same 

concentration, pooled together to create a single sample and sequenced in one 

direction (A-Amplicon) on half a plate of a Roche 454 GSFLX (454 Life Sciences, 

Roche Applied Science) sequencing platform at Liverpool University‘s Centre for 

Genomic Research, UK. 

  

Sediment analysis 

Particle size analysis was carried out using a Malvern Mastersizer 2000, which 

uses laser diffraction to calculate the particle size distribution for individual sediment 

grains in the range 0.02-2000 μm. To prevent flocculation, prior to testing, the 

samples were immersed for 24 hours in distilled water with added dispersant (sodium 

hexametaphosphate). The Mastersizer determines particle size distribution by volume 

and the results of the particle size analysis are reported as the cumulative median 

grain size. 
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Data Analysis 

 

Sequences generated from the Roche 454 GSFLX pyrosequencing were analysed 

using the Operational Clustering of Taxonomic Units from Parallel Ultrasequencing 

pipeline (OCTUPUS, supplementary software available at 

http://OCTUPUs.sourceforge.net/). Briefly, OCTUPUS comprises a number of Perl 

scripts that concatenate quality trimming  (Chou & Holmes 2001), tag matching and 

size culling, prior to the assignation of user defined substitutional difference based 

cut-off clustering. The clustering module of OCTUPUS involves three steps. 

Initially, sequences are compared successively to each other by MEGABLAST  

(Zhang et al. 2000) to define different OCTU groups, separated by a user-defined 

genetic distance. If an unassigned sequence matches an existing OCTU sequence 

(e.g. 97% similarity or more), the companion sequences are aligned using MUSCLE  

(Edgar 2004) and if the resulting consensus sequence differs from the original 

alignment, the consensus OCTU sequence is changed to reflect the diversity of 

sequences within the OCTU cluster. If the consensus OCTU does not change 

following a pre-set number of novel comparisons, further consensus OCTU matching 

sequences will be placed within the OCTU cluster, bypassing a computationally 

intractable number of multiple sequence alignments that would otherwise be required 

in the analysis of large metagenetic datasets. Benchmarking trials have shown that 

ten additions to the OCTU cluster without consensus amendment provides a stable 

estimate of OCTU numbers and was used throughout here. OCTUs were annotated 

using MEGABLAST (megablast -d database path -D 2 -p 90 -a 2 -b 1 -v 1 -i infile -F 

F > outfile) against the downloaded GenBank/EMBL/DDBJ nucleotide database and 

taxonomic annotation was restricted to matches of 90% and higher.  

Acknowledging concerns regarding the misinterpretation of levels of richness due 

to the formation of recombinant DNA molecules in environmental DNA sequencing  

(von Wintzingerode et al. 1997; Reeder & Knight 2009) an aggressive putative 

chimera-culling regime embedded within the OCTUPUS pipeline for the primary 

dataset was adopted. The OCTUPUS chimera screening was followed by manual 

removal of putative false positive OCTUs (i.e. those that exhibited more than 10 

consecutive base pair mismatches with the MEGABLAST reference sequence) and 

retrieval of clear false negative chimeras (i.e. those that exhibited 100% length 

matches with already sequenced taxa). In order to compare independent estimates of 
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taxon richness, the OCTUPUS clustering algorithm was also tested against the 

HCluster algorithm of ESPRIT (Sun et al. 2009) on a subsample of the larger dataset. 

Finally, OCTU richness generated from the above OCTUPUS algorithm was 

benchmarked at a range of percentage similarity cut-off against a reference dataset 

comprising the metagenetic analysis of a phylogenetically diverse combination of 41 

nematode  (Porazinska et al. 2009) species. Scripts for preprocessing the above data 

are available from the Natural Environment Research Council‘s Environmental 

Bioinformatics Centre Script Repository (http://nebc.nerc.ac.uk/tools/scripts/general-

bioinformatics). For the 54 OCTUs exhibiting BLAST hits below 90% identity, 

manual MEGABLAST searches were performed and phylogenetic affinities 

investigated via the NCBI taxonomy browser. Sequence data and all associated 

fusion primer codes have been deposited in the GenBank/EMBL/DDBJ short read 

archive under accession number SRA009394.2/PWick_LHampton_2007. For direct 

ecological comparisons of between sample OCTU richness, the original dataset was 

reanalysed using 15,000 randomly picked sequences (over 200 bases in length, n= 

135,000) from each sample, prior to OCTUPUS clustering and annotation. The total 

number of OCTUs generated from the original and standardized datasets was 

significantly correlated (Spearman‘s coefficient: ρ = 0.783, p = 0.0132), 

nevertheless, interpretations derived from direct comparisons of richness between 

samples refer to the standardized dataset. Sample cluster analyses (UPGMA) were 

performed using the Multivariate Statistical Package  (Kovach 1999) using 

Sorensen‘s Coefficient on a binary (presence/absence of OCTU) data matrix. 

Phylum-specific rarefaction curves for the Prestwick transect were generated using 

EstimateS (Version 8.2.0, R. K. Colwell) using a range of estimators (e.g. ACE, 

Chao1, Jackknife1 and Bootstrap) that yielded very similar results. The ACE 

abundance-based coverage estimator  (Chazdon et al. 1998) was used because it 

represents a consensus view of the analyses and has proven to work well for the 

analysis of metagenetic datasets  (Huber et al. 2007).   

 

 

http://nebc.nerc.ac.uk/tools/scripts/general-bioinformatics
http://nebc.nerc.ac.uk/tools/scripts/general-bioinformatics
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Results  

Taxon richness estimates 

 

Nuclear small subunit rRNA amplicons were generated from eight benthic 

samples from the low tide zone of an estuarine beach near Prestwick on the West 

coast of Scotland, and from one sample from a beach in Littlehampton in the South 

of England. The amplicons were processed for sequencing on the Roche 454 FLX 

platform generating a total of 353,896 sequences that were quality filtered to 305,702 

for downstream analysis (Table I). 

 

Table I. Total number of pyrosequencing sequences after quality control and 

chimera screening. Data are shown for reads passing the initial quality trimming, tag 

matching and size culling steps (QC tag reads) and reads underpinning OCTUs that 

were estimated to be non-chimeric (Chimera check reads) from the Prestwick and 

Littlehampton (LH) sample sites.  

 

 

When performing metagenetic assessments of taxon richness, it is important to 

cluster taxonomic units in a biologically meaningful fashion, since even slight 

differences in similarity cut-offs and using different algorithms can result in 

significantly different estimates of richness. The taxon clustering comparisons 

between ESPRIT  (Sun et al. 2009) and OCTUPUS (the Operational Clustering of 

Taxonomic Units from Parallel UltraSequencing, supplementary software available 

at http://octupus.sourceforge.net/) (Figure 3.1) on the subsampled beach 

pyrosequencing data show that ESPRIT had higher-estimates than OCTUPUS 

(between 1.1x-4.4x, over the 90-99% cut-off range).  

 

http://octupus.sourceforge.net/
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Figure 3.1. Lineage-through-time plots for OCTUPUS and ESPRIT. Mean 

number of OTUs plotted against each percentage identity cut-off (90-99% similarity) 

generated using 5000 subsampled sequences (>199 bases in length) from three 

independent sample sites (Prestwick 2, 7 and Littlehampton 1) using OCTUPUS 

(squares) and ESPRIT‘s HCluster (Sun et al. 2009) (circles) OTU clustering. Values 

are given as average ± s.d. (n= 9).  

 

Phylogenetic  (Blaxter et al. 1998) and barcoding  (Bhadury et al. 2006) studies 

based on the analysis of chain-termination nSSU gene sequences suggest that 

intraspecific divergence at least in nematode species is low (1-2%). However, the 

true level of intragenomic and intraspecific variation among rRNA gene repeats is 

largely unknown and genome wide analyses reveal a dominant set of conserved 

sequences accompanied by rare variant sequences  (Stage & Eickbush 2007). Our 

benchmarking exercise, performed against a reference control dataset comprising 41 

species  (Porazinska et al. 2009) revealed that the 96% similarity OCTUPUS 

clustering algorithm with accompanying chimera screening estimated taxon richness 

that was most closely aligned with species richness. At 96% similarity, OCTUPUS 

resulted in 37 operational clustered taxonomic units (OCTUs), whereas at 97% 

OCTUPUS resulted in 51 OCTUs from the control metagenetic analysis (Porazinska 

et al. 2009). Thus, although richness may be underestimated by at least 10%, a more 

conservative approach was adopted by setting a 96% identity OCTU cut-off for all 

subsequent numerical comparisons. At this cut-off, an OCTU is likely to (at worst) 

correspond to a group of related species. Following the 96% similarity OCTUPUS 
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clustering strategy, the total number of putatively non-chimeric tag reads and OCTUs 

was 217,221 and 428, respectively. Prior to chimera screening, 1013 OCTUs were 

clustered from the initial quality screened 305,702 reads. 

Community richness is closely linked to the environment 

 

The peak of standardized OCTU richness for all phyla was within samples 6, 7 

and 8 from Prestwick, and cluster analyses indicated clear and fine scale hierarchical 

distinctions in OCTU composition within and between the two sites, with clear 

divergence of samples from Littlehampton (Figure 3.2). OCTU richness and 

sediment grain size were positively correlated (Spearman‘s correlation coefficient, n 

= 9, ρ = -0.82, p = 0.0108). 
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Figure 3.2. Taxon richness and community similarity in relation to ecology and 

space. (a) Number of different OCTUs per sample for each phylum after data 

standardization derived from the Prestwick (8 sampling sites) and Littlehampton (1 

sampling site) marine littoral benthos; (b) grain size represents the relative 50% 

cumulative median grain size (μm) per site, and cluster analyses (UPGMA) using 

Sorensen‘s Coefficient represent the number of shared OCTUs between the nine 

independent samples.The positive relationship between grain size and sample 

richness is highly significant (Spearman‘s correlation coefficient, n=9, ρ = -0.83, P = 

0.0108). 

 

 

Dominance of the Nematoda and rise of the Platyhelminthes 

 

Plotting phylum richness rank for all nine independent samples (Figure 3.3) 

shows that the Nematoda are the most OCTU-rich in all nine samples, with 

Platyhelminthes and Arthropoda ranking second and third in all, respectively. 
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Figure 3.3. Phylum rank abundance plot. Community assemblage OCTU richness 

rank order for the main phyla recovered from the Prestwick and Littlehampton 

samples (after data standardization). The frequency of ranking (out of the 9 samples) 

is represented by the diameter of the symbol at each rank. Single symbols per 

phylum represent a constant ranking, whereas multiple symbols highlight variance in 

phylum rank order throughout the samples.  

 

 

Annotated metagenetic analyses can yield robust relative richness estimates and 

here it was possible to assign 374 OCTUs to phylum (Figure 3.4). The PCR primers 

used are not fully specific to Metazoa, and thus other nSSU genes were sequenced 

from protist taxa from the Alveolata (2 distinct OCTUs), Cercozoa (3 OCTUs) and 

stramenopiles (15 OCTUs). Of the metazoan OCTUs, 182 were from Nematoda, at 

least three times more than from any other individual meiofaunal taxon (Figure 3.4). 

Platyhelminthes (61 OCTUs) was the second richest phylum, followed by the 

Arthropoda (29 OCTUs including Copepoda, Ostracoda and Malacostraca), 

Mollusca (22 OCTUs), Gastrotricha (7 OCTUs), Annelida (6 OCTUs), and five less 

rich phyla (e.g. Bryozoa, Echinodermata, Cercozoa, Rotifera and Alveolata with 

between 1-3 OCTUs each).  
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Figure 3.4. Percent identity to known sequences and number of OCTUs found for 

the main phyla. Number of different OCTUs for the main phyla recovered from the 

Prestwick and Littlehampton meiofaunal samples and their different levels of identity 

to nSSU in the GenBank/EMBL/DDBJ nucleotide database.  

 

Metagenetics reveals phylogenetically distinct taxa 

 

According to the comparisons of the OCTU sequences with the NCBI database 

the majority (95%) of Nematoda OCTUs have never been sequenced before (Figure 

3.4, Table II).  
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Table II. OCTUs with 100% identity to nSSU sequences in the 

GenBank/EMBL/DDBJ database. 

 

 

Similarly, only 6.5% of Platyhelminthes and 17.2% of Arthropoda OCTUs had 

100% identity to previously sequenced specimens. The Annelida, Mollusca and 

Stramenopiles, however, had 50%, 23% and 26.6%, respectively, of their OCTUs 

with a 100% identity to previously sequenced taxa. None of the Gastrotricha OCTUs 

were identical to previously sequenced taxa. Overall, 54 OCTUs (representing 7247 

individual sequences) had identities below 90% to any reference nSSU sequence 

(OCTUs<90% identity), and may represent previously unsampled diversity. Given 

the nature of the adopted clustering algorithm, the OCTUs<90% identity do not show 

any pattern of variation that would be expected of a chimeric assemblage of the 

already defined 428 OCTUs. Fifteen of the OCTUs<90% identity (300 sequences) 
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were robustly placed within identified phyla (mainly Nematoda). A further 36 were 

either sisters to the sequences from known phyla, or represented deep, likely 

misplaced branches (Figure 3.5).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Putative taxonomic classification of 39 OCTUs that had less than 90% 

sequence identity to nSSU in GenBank/EMBL/DDBJ. 

 

 

Surprisingly 11 OCTUs<90% identity, comprising 107 sequences in total 

distributed across the sampling area were not affiliated to any phyla. The similarity 

of the latter sequences ranged between 83-89% to known nSSU genes, suggesting 

that they may represent unknown, distinct lineages. Furthermore, three OCTUs 

resulted in no MEGABLAST hit, but two of these exhibited signatures of relaxed 

selection, indicating that they may represent translocated ―orphan‖ nSSU genes, that 

are no longer constrained by function.  Resampling to generate longer sequences 

beyond the 200 base pairs presented here will be required to confirm or refute the 

biological reality of these phylogenetically distinct sequences. 

 

 

 

 



Second generation environmental sequencing unmasks marine metazoan biodiversity - 3 

 

 

62 

Metazoan richness curves do not approach saturation 

 

Along the Prestwick transect, the slope of OCTU rarefaction curves at 96% cut-

off for the Nematoda, Platyhelminthes, Arthropoda, Mollusca, Stramenopiles and 

Annelida phyla did not reach an asymptote (Figure 3.6). Thus, still 217,221 samples 

and 374 OCTU-defined taxa fail to achieve saturation, even for low abundance phyla 

where rarefaction curves tend to converge  (Tipper 1979). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.6. Rarefaction curves of the abundance-based coverage estimation 

(ACE) diversity estimator. Plots are shown for the (a) Nematoda, (b) 

Platyhelminthes, (c) Arthropoda (blue) and Mollusca (red dashed), (d) Stramenopiles 

(blue) and Annelida (dashed red) at 96% identity OCTU cut-off for the Prestwick 

meiobenthic samples 1-8. Curves were estimated from 100 randomizations, without 

replacement, using EstimateS, version 8.2.0. 
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Discussion 

 

Both ESPRIT  (Sun et al. 2009) and OCTUPUS can be used to cluster OTUs from 

the size of the environmental metagenetic dataset presented here, without the need of 

a computing cluster. Nonetheless, ESPRIT may overestimate OTU richness, 

presumably because it counts both substitutional and independent insertion/deletion 

(indel) events in OTU clustering. One of the most widely publicized artefacts of 454 

Roche pyrosequencing is its inherent inaccuracy in calling homopolymer runs, 

including extensions (insertions), incomplete extensions (deletions) and carry 

forward errors (insertions and substitutions)  (Margulies et al. 2005; Huse et al. 

2007; Kunin et al. 2009). Therefore, clustering algorithms that use indel data 

informatively, especially as independent events at homologous base positions  are 

likely to be susceptible to higher OTU estimates. Analyses herein, and those of Sun 

et al.  (Sun et al. 2009) suggest that OCTUPUS generates a conservative number of 

OTUs compared to both ESPRIT and combinations of MUSCLE  (Edgar 2004) and 

DOTUR (Schloss & Handelsman 2005). Nonetheless, it is imperative when possible 

to benchmark the analytical framework against real or simulated data, in order to 

estimate taxon richness as realistically as possible  (Kunin et al. 2009). 

The patterns of taxon richness along the Prestwick transect exhibited remarkable 

differences even at a micro-geographic scale. Although numerous environmental 

factors influence meiobenthic distribution and assemblage, grain size, examined 

here, is known to be the predominant driver of meiofaunal community structure and 

diversity  (Giere 2009). Nonetheless, the fine scale community structuring also 

indicates that there are likely to be a host of additional biotic (e.g. prokaryote 

communities and organic matter) and abiotic (sediment grain shape, surface 

composition) micro-geographical factors responsible for community structuring 

within the benthos (Giere 2009). 

Nematodes account for approximately 80% of all individual animals on earth 

(Bongers 1988), but quantifying the levels of relative richness between major 

metazoan phyla has not been practical hitherto, due to the taxonomic magnitude of 

the challenge. Remarkably, along only an 800 m transect, 182 Nematoda OCTUs 

were found, compared with 450 species of nematode that have been described from 

around the entire British Isles  (Warwick et al., 1998 ). From a geographical 
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perspective, these data represent the discovery of 40% of the previously known 

phylum richness from a transect that represents 0.004% of the length of the British 

coastline (ca. 17,820km, Ordnance Survey). Molecular definition of substantial 

meiofaunal taxon richness at micro-geographic scales are in alignment with intensive 

morphological studies  (Warwick et al. 2006), yet recent metagenetic studies from 

the microbial biosphere have suggested that taxon richness may be orders of 

magnitude more than previously expected  (Angly et al. 2006; Sogin et al. 2006; 

Huber et al. 2007; Desnues et al. 2008). Reeder & Knight (2009), Quince et al. 

(2009) and Huse et al. (2010) have recently provided alternative interpretations, 

based on pyrosequencing error, DNA recombination and clustering approaches, for 

earlier studies reporting extensive richness and rare biospheres derived from Roche 

454 pyrosequencing. The data here has been quality/size filtered, only substitution 

variance has contributed to taxon identification and a particularly aggressive chimera 

screen has been applied to featured OCTUs. In combination with the benchmarking 

exercise performed against known taxa, it is therefore highly unlikely that the 

delineated taxa are based on sequencing error and taxon estimates are likely to 

underestimate richness by at least 10%. Although global nematode diversity 

estimates range from 1 to 100 million species, only 24,000 species have been 

described  (Platt & Warwick 1983) with approximately 2000 marine species 

catalogued in Europe  (SMEBD 2009). Such relative paucity of taxonomic 

knowledge of nematode biodiversity is a product of their numerical dominance, the 

number of taxa, and the high level of cryptic species: this taxon is thus a prime 

candidate for taxonomic exploration using metagenetic analyses. Why are Nematoda 

so dominant, in both abundance and diversity, in meiofaunal communities? Benthic 

nematodes are small in size and possess rapid generation times, and these attributes 

may have facilitated rapid adaptation to local conditions and habitats, especially in 

interstitial niches. The taxonomic richness of nematodes is additionally likely 

promoted by ancient ancestry  (Aguinaldo et al. 1997) and the absence of a dispersal 

phase, promoting speciation across structurally and spatially heterogeneous 

environments during glacial and interglacial periods. Nematodes also have 

cryptobiotic adaptations, including resting eggs and highly resistant larvae  (Jonsson 

2005), and they are considered to be especially resistant to environmental challenges, 

being among the last taxa to disappear in an environmental catastrophe (Boucher & 

Lambshead 1995). As no other meiofaunal phylum shares all such characteristics 
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simultaneously, nematodes may have had the time and the potential to diversify, 

endowing them with collectively optimal traits for domination of the marine benthos. 

Considering all metazoan taxa, the detection of 428 OCTUs on only two sites is 

likely a gross underestimate of actual metazoan richness. 70% of Nematoda OCTUs 

were unique to Prestwick and 58% to 100% of the OCTUs for the other phyla were 

only present in Prestwick. In the absence of large-scale dispersal events sustaining 

ubiquitous meiobenthic communities  (Giere 2009), levels of marine meiobenthic α-

diversity, at the very least, in other parts of the world are likely to exceed 

expectations.  

Contrary to most morphological assessments of marine meiobenthic richness  

(Heip et al. 1988; Warwick et al. 2006), Platyhelminthes were consistently ranked as 

the second richest phylum in all the investigated samples. Platyhelminthes normally 

have to be identified from living or well-preserved material and their low ranking in 

other surveys perhaps arises from a global lack of taxonomic expertise, from 

extensive crypsis, and from delicate body structures that do not survive harsh 

extraction methods. Given that the majority of free-living turbellarian 

Platyhelminthes encountered here occupy a top predacious role in benthic 

ecosystems  (Reise 1988), the empirically demonstrated prominence of this phylum 

proves that conventional diversity assessments provide a notably distorted 

perspective of trophic relationships within the benthos  (Giere 2009). Only 6 

polychaete annelid OCTUs were identified, despite their dominance of benthic 

infaunal biomass  (Warwick et al. 2006; Giere 2009), probably because biomass 

dominance is affected by non-meiofaunal taxa (with only reproductive propagules 

and larvae being sampled here). Similarly, molluscan OCTUs comprised 21 bivalves 

and a single gastropod (Littorina littorea), likely representing larval and juvenile 

stages that are temporary members of the benthic meiofauna. Here, a large 

percentage of OCTUs that have never been sequenced before were also uncovered, 

despite the nSSU region sampled here being the most frequently used genomic 

region for meiofaunal barcoding studies  (Floyd et al. 2002; Blaxter et al. 2005). 

Some of our metagenetic sequences were clearly attributable to phyla, but were not 

closely related to previously sequenced taxa, possibly uncovering a high level of 

phylogenetic novelty across a micro-geographic scale that has not been shown from 

morphological or conventional DNA barcoding studies  (Bhadury et al. 2006) of the 

meiobenthos. 
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Quantifying biodiversity in species-rich environments raises questions of whether 

the sampling effort was sufficient to fully represent the natural community. Here, 

despite an extensive sampling strategy the slope for OCTU rarefaction curves 

remained incomplete and the true standing diversity of an unremarkable Scottish 

beach is likely to exceed this estimate by an undetermined number of taxa. Such 

observations illustrate clearly the likely extent of marine meiofaunal diversity, and 

importantly reveal that extensive sampling combined with ultrasequencing 

technologies make realistic estimates of genetic diversity tractable in one of the 

largest ecosystems on earth. 

The present data offer novel insights into the organization, magnitude and identity 

of meiofaunal richness, but the mechanism of taxon delineation here warrants 

additional focus. In a multi-site terrestrial survey, 60 times more traditional 

taxonomic scientific effort had to be expended in assigning only 10% of meiofaunal 

taxa to known species, compared to parallel studies that successfully assigned all 

vertebrate morphospecies to known taxa (Lawton et al. 1998). Lambshead  

(Lambshead 1986), using morphological taxonomy, spent three years describing 113 

nematode morphospecies from the Firth of Clyde region (including the Prestwick 

sampling site), from approximately one fifth of the volume of sediment analysed 

here. Our study identified 182 Nematoda OCTUs in approximately 3% of the time. 

Moreover, whereas the expertise of morphological taxonomists is of necessity 

restricted to certain groups, high-throughput nSSU sequencing enables the 

simultaneous OCTU delineation of multiple phyla from large numbers of samples. 

Importantly, metagenetic analyses can also be linked retrospectively to 

morphospecies by using reverse taxonomy (Markmann & Tautz 2005). The 

approaches described provide a rapid, objective and cost-effective framework for 

exploring links between phyletic diversity, ecosystem structure and function. Such 

advances promise to impact substantially on our ability to elucidate and predict the 

relationship between biodiversity and ecosystem function  (Solan et al. 2004; Worm 

et al. 2007; Danovaro et al. 2008a): issues central to notions of resilience, recovery 

and sustainability  (Palumbi et al. 2008). 



 

 

 

 

 

 

 

 

 

CHAPTER 4 – Marine meiofauna biodiversity 
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Introduction 

 

Biodiversity is the main biological focus of habitat quality that represents both 

intraspecific variation (genetic diversity) and community variation (richness, 

abundance and evenness of species) at different spatial scales  (Whittaker 1972; Jost 

2007). Distribution patterns are relatively well understood in macroscopic organisms 

such as plants and animals, but are strongly debated in small-bodied taxa  

(Lambshead 1993; Platt 1994; Lambshead & Boucher 2003) such as eukaryotic 

meiobenthic fauna. The meiofaunal size fraction comprises communities of small 

sized organisms (50 – 500µm), that are essential to the ecosystem functioning of 

benthic ecosystems due to their high abundance, diversity, fast turnover rates  (Platt 

& Warwick 1988), role in nutrient cycling  (Gee & Warwick 1996; Warwick et al. 

2006) and mineralization processes  (Gheskiere et al. 2004).  

The description and interpretation of large-scale ecological processes and patterns, 

defined as macroecology  (Brown 1995), of marine biodiversity is still controversial 

and subject to many discussions (Heip et al. 1990; May 1994; Lambshead et al. 

2000; Allen et al. 2002; Thompson & Townsend 2006; Enquist et al. 2007; Howeth 

& Leibold 2010). One of the key goals in macroecology is to identify the processes 

that underlie the patterns that are found  (McGill & Collins 2003). Such patterns are 

usually assumed to occur due to the differing characteristics of species, which in a 

given environmental milieu cause one species to be common and another rare, or one 

species to be a specialist adapted to a narrow range of conditions, whereas another is 

a generalist that can be found everywhere (Bell 2001). Efforts to develop a global 

picture of diversity in the sea are hampered by the small number of key studies, the 

varied sampling protocols applied, the different diversity indices employed to 

measure diversity, and the varying levels of taxonomic resolution applied within 

particular studies (Clarke 1992; Clarke & Crame 2010). Gray  (1997) stated that 

marine biodiversity is higher in benthic (bottom-related) rather than in pelagic (in the 

water column) systems, and on coasts rather than in the open ocean, since there is a 

greater range of habitats near the coasts. Although molecular data have revealed the 

vast scope of microbial diversity in virtually all habitats  (Green et al. 2004; Slapeta 

et al. 2005), the fundamental conflict between ubiquitous and endemic distribution 



Marine meiofauna biodiversity distribution patterns and estimates - 4 

 

 

69 

patterns, in relation to the ‗everything is everywhere‘ dispute (Finlay 2002; Foissner 

2007; Cermeno & Falkowski 2009; Nolte et al. 2010), is far from being resolved.  

The development of massively parallel sequencing has paved the way to explore 

microbial and meiofaunal diversity in time and space  (Sogin et al. 2006; Huber et al. 

2007; Amaral-Zettler et al. 2009). Several studies have used pyrosequencing to 

assess the diversity of bacteria and archaea in the marine environment (Galamba et 

al. 2001; Huber et al. 2007), but there has been comparatively limited focus on 

eukaryotes  (Brown et al. 2009). Of the studies that are available, research questions 

have focused almost exclusively on diversity  (Amaral-Zettler et al. 2009; Stoeck et 

al. 2009), with little data available for understanding macroecological patterns of 

distribution. Next generation sequencing studies have tried to link genetic diversity 

directly to species richness by sorting out operational taxonomic units (OTUs; 

proxies for species) from the genetic diversity data. Measures of abundance are more 

difficult to assess in molecular taxonomic studies of microorganism biodiversity 

because of underlying PCR bias (Amend et al. 2010; Bellemain et al. 2010) and poor 

correlation of the amount of gene copy numbers to biomass or cell frequency (von 

Wintzingerode et al. 1997; Amend et al. 2010).  

Biodiversity estimates are still far from reality, many habitats have been poorly 

sampled and several species-rich taxonomic groups, especially smaller organisms, 

remain poorly studied (Costello et al. 2006; Costello et al. 2010). About 11 to 33% 

of European marine metazoan species have been predicted to be undescribed  

(Costello & Wilson 2011), and outside European seas it appears that the proportion 

of undescribed species is much higher  (Bouchet 2006; Brandt et al. 2007a; Brandt et 

al. 2007b). In this thesis complete levels of richness were achieved for some 

European meiobenthic samples, within the sampled scale. Further to this and for the 

first time are also shown levels of α and β diversities and community composition for 

meiobenthic communities around the UK coast and mainland European samples 

derived from next-generation sequencing. This will help clarify the scale and extent 

of community richness and composition across eukaryotic marine meiobenthic 

ecosystems. 
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Material and Methods 

Sample collection  

Sixty six sandy marine benthic samples were collected using a standard corer 

methodology  (Platt & Warwick 1988) from 23 sampling stations around the UK and 

France, Spain, Portugal and Gambia (see Supplementary Figure S1, 

Supplementary Table SI) during the summers of 2007-2008. Distances between the 

23 sampling stations represent approximate distances between multiple points using 

Google Earth (Supplementary Figure S2). The UK samples comprised 16 sampling 

sites; France/ Spain/ Portugal comprised 2 sampling sites each and Gambia one 

sampling site. Each biological sample comprised a single 44 mm diameter x 100 mm 

benthic core and was taken approximately 10 m apart from companion samples. An 

additional core was taken for sediment analysis. All samples were immediately fixed 

in 500 ml storage pots containing 300 ml of DESS (20% DMSO and 0.25 M 

disodium EDTA, saturated with NaCl, pH 8.0)  (Yoder et al. 2006). The meiofaunal 

size fraction and DNA extraction were performed according to Chapter 3.  

Primer design and PCR strategy 

The primers SSU_FO4 (5‘-GCTTGTCTCAAAGATTAAGCC-3‘) and SSU_R22 

(5‘- GCCTGCTGCCTTCCTTGGA-3‘) were used to amplify approximately 450bp 

of the nuclear small subunit rDNA (18S rDNA). Primer selection was based on 

nuclear small subunit rDNA (18S rDNA) pronounced homology across meiofaunal 

phyla, but also highly divergent regions  (Blaxter et al. 1998) and were used for 

subsequent amplicon generation. Fusion primers, PCR amplification and 454 

sequencing were then developed according to Chapter 2.  

 

Data Analysis and generation of Operational Taxonomic Units 

 

During the course of the PhD program, substantial advances were made in the 

analysis of 454 Roche amplicon sequencing datasets. Prompted by discussions in 

Reeder and Knight (2009) and Quince et al. (2009) on the confounding effects of 

PCR/sequencing errors and chimera formation regarding second generation 

environmental sequencing datasets, I adopted the AmpliconNoise algorithm for the 

analysis of the large European dataset. Thus, sequences were analysed using 
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AmpliconNoise followed by chimera removal using Perseus  (Quince et al. 2011). 

The AmpliconNoise algorithm denoises pyrosequencing data by reducing per base 

sequencing errors, comprising filtering, flowgram and sequence clustering steps. 

Following analyses of control communities, it has been shown to reduce noise by 

approximately 50% in environmental data sets  (Quince et al. 2011). Chimeras were 

identified using Perseus  (Quince et al. 2011). This algorithm generates a Chimera 

Index (CI) for each read an index greater than or equal to zero with higher values 

corresponding to reads that are most likely to be chimeras. Denoised and chimera-

removed sequences were then used to identify Operational Taxonomic Units (OTUs). 

OTUs were calculated using a complete linkage-clustering algorithm, measuring the 

distance between the most distant members in each cluster, at a 99% identity cut-off. 

Based on previous studies suggesting that different algorithms might influence 

estimates of taxon richness specially at higher cut-offs  (Quince et al. 2009; Hao et 

al. 2011; Quince et al. 2011), the AmpliconNoise algorithm (Quince et al. 2011) was 

tested against the OCTUPUS clustering algorithm (http://octupus.sourceforge.net/) 

on the present normalized dataset at different cut-off percentage identities. 

Taxonomy assignment was performed using MEGABLAST (megablast -d database 

path -D 2 -p 90 -a 2 -b 1 -v 1 -i infile -F F > outfile) against the downloaded 

GenBank/EMBL/DDBJ nucleotide database and OTUs annotation was restricted to 

matches of 90% and higher, using the OCTUPUS annotation and parsing toolkit. 

 

Diversity and community analysis 

 

For direct ecological comparisons of between sample OTU richness, the original 

dataset was normalized using 9,490 (i.e the lowest coverage achieved in any one 

sample) randomly picked sequences (over 200 bases in length, n= 218,276) from 

each sample, prior to de-noising and OTU clustering. The total number of OTUs 

generated from the original and normalized datasets was significantly correlated 

(Spearman‘s coefficient: ρ = 0.535E-5, p = 0.0001), nevertheless, interpretations 

derived from direct comparisons of richness between samples refer to the 

standardized dataset. 

Sample-specific rarefaction curves were performed using the DiversityEstimates 

software package via AmpliconNoise and phylum-specific rarefaction curves were 

http://octupus.sourceforge.net/
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generated using EstimateS (Version 8.2.0, R. K. Colwell) using a range of species 

richness estimators (e.g. ACE, Chao1, Jackknife1 and Bootstrap) that yielded very 

similar results. The ACE abundance-based coverage estimator (Chazdon et al. 1998) 

was used because it represents a consensus view of the analyses and has proven to 

work well for the analysis of metagenetic datasets (Huber et al. 2007). In order to 

assess the similarity between samples according to meiofaunal community 

composition, Bray-Curtis similarity distances were computed between samples based 

on a presence/absence similarity matrix (data was prior square-root transformed to 

down-weight the importance of very abundant OTUs without losing the influence of 

rarer OTUs). Site similarities were then visualized by multidimensional-scaling 

(MDS) using Primerv6 software  (Clarke & Gorley 2006). The ecologically distinct 

samples from Gambia were removed from the MDS analysis, since their inclusion 

precluded effective visualization of multivariate ordination of the European samples. 

In order to test for significant differences of community assemblages between 

sampling sites a permutational multivariate analysis of variance (PERMANOVA)  

(Anderson 2001) was used. Analyses were based on Bray-Curtis dissimilarities on 

untransformed data of OTU presence/absence matrix over the 22 sampled sites with 

1000 permutations. To test if there was an association between geographic distances 

and community composition per phylum a nonparametric Mantel-type test 

(RELATE) based on distance matrices derived from geographic distance and 

community composition (presence-absence data) was performed using PRIMERv6. 

The biodiversity of the different samples was also reported as the number of 

operational taxonomic units (OTUs) and quantified using Shannon-Wiener 

biodiversity measure (H‘, using log base 2) and the equitability of meiofauna 

assemblages was estimated as Pielou‘s index (evenness J‘). The Shannon–Wiener 

index  (Ricotta & Szeidl 2006) is a nonparametric diversity index that combines 

estimates of richness (the total number of OTUs) and evenness (the relative 

abundance of OTUs). For example, communities with one dominant species have a 

low index, whereas communities with a more even distribution have a higher index. 

Where appropriate, sequential Bonferroni corrections, which are more sensitive to 

false positives than the standard Bonferroni technique, were applied  (Rice 1988). 
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Results  

Sequence data and sampling efficiency 

 

Amplicons were generated from 23 benthic sampling sites from the low tide zone 

of marine sandy beaches around the UK, France, Spain, Portugal and Gambia. The 

total number of reads derived from Roche 454 FLX platform for all sampled sites 

was 877,423 which, after de-noising and chimera removal, were reduced to 694,802 

sequences further used for downstream analysis. Clustering comparisons derived 

from OCTUPUS and AmpliconNoise show that OCTUPUS generates more 

Operational Taxonomic Unit (OTU) especially at higher similarity cut-offs, 

underestimating richness at lower similarity cut-offs (Figure 4.1). The OTU richness 

did not vary substantially throughout the tested cut-offs, and since many of the 

primary objectives of the current chapter are related to distribution, the 99% cut-off 

was chosen to avoid the confounding effect of ―clumping‖ species genotypes within 

a lower level cut-off. Nonetheless both normalized and lower similarity cut-offs were 

performed on all analyses and exhibited the same ecological patterns (data not 

shown) and no substantial richness differences (Supplemental Table SII). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Lineage-through-time plots for OCTUPUS and AmpliconNoise. 

Number of OTUs plotted against each percentage identity cut-off (96-99% 

similarity) on a normalized dataset (4000 sequences randomly selected) using 

OCTUPUS (circles) and AmpliconNoise (squares) OTU clustering.  
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Sampling saturation profiles varied between the sites under study showing that 

sequencing effort was sufficient for some samples and far from completion for others 

(Figure 4.2a, 4.2b). From a qualitative perspective, sufficient sequencing effort was 

achieved for samples derived from Seaham, Dunnet Bay, Harwich, and Prestwick 

(UK) and Gambia (Africa). Samples showing a representative sampling effort and 

almost showing signs of saturation included Mera and Sada (Spain), Skye Staffin, 

Littlehampton, Exe, Fraserburgh (UK), St Jean Luz (France) and Vila Nova de 

Milfontes (Portugal). Sampling sites far form reaching an asymptote included 

Egremont, Moggs Eye, Porthawan, Sheerness, Firth of Fourth, Freshwater West, 

Silecroft (UK), Cap Ferret (France) and Praia Limpa (Portugal).  It is worth noticing 

that Freshwater West and Sheerness showed high number of sampled sequences but 

were still not representative of the true community richness whereas sites with fewer 

sampling effort are fully representative of local community richness (e.g Prestwick, 

St Jean Luz and Gambia). Rarefaction curves also give an indication that Sheerness 

represents one of the most diverse sampled site whereas Vila Nova de Milfontes one 

of the less diverse. 
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Figure 4.2. Sampling saturation profiles for samples collected in the UK, France, 

Spain, Portugal and Gambia, at a 99% sequence similarity level for OTU clustering. 

UK samples: Skye Staffin, Littlehampton, Exe, Fraserburgh, Egremont, Mogs Eye, 

Porthtawan, Dunnet Bay, Sheerness, Firth of Fourth, Freshwater West, Newborough 

and Silecroft. France samples: St Jean Luz and Cap Ferret. Spain samples: Mera and 

Sada. Portugal samples: Praia Limpa and Vila Nova de Milfontes. 

 

Community diversity (α and β) and similarity  

 

Relative OTU numbers at a 99% similarity cut-off indicate that Cap Ferret 

(France) and Sheerness (UK) were the most species rich samples with 313 and 282 

different OTUs, respectively, followed by Harwich (UK) with 247 different OTUs. 

Egremont, Prestwick and Exe (UK) showed ca. 200 different OTUs. There were two 

further identifiable groups of samples that showed similar OTU richness. The first, 
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with higher OTU richness (ca. 160 different OTUs), comprised samples from 

Freshwater West, Firth of Fourth, Sada, Silecroft, Praia Limpa, Newborough and 

Mogs Eye. The second group, representing samples with lower levels of richness (ca. 

100 different OTUs) included Mera, Sky Staffing, Seaham, Littlehampton, Dunnet 

Bay, Fraserburgh, Porthawan, St Jean Luz and Vila Nova de Milfontes (Figure 4.3). 

The diversity of the different samples observed by means of the Shannon  (H‘) and 

Pielou‘s (J‘) indexes were highly correlated (ρ =0.9871, P=3.26E-16, p<0.0001) and 

the higher the OTUs richness the more even the OTUs distribution within a sample 

(Supplementary Figure S3). Furthermore the patterns of OTUs relative numbers 

throughout the sampled sites are similar to the ones observed for H‘ and J‘ indexes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Relative OTU numbers for each sample site at a 99% sequence 

similarity level on normalized dataset. Stars highlight the first three samples with 

high OTU richness and black bars indicate samples with high, middle and low OTU 

richness. Skye Staffing (SkyStaf), Littlehampton (LH), Exe (Exe), Fraserburgh 

(Fraser), Egremont (EGR), Mogs Eye (MEye), Porthawan (Porthw), Sheerness 

(Sheer), Firth of Fourth (FirthF), Freshwater West (FreshW) and Silecroft (Silecr). 

France samples: St Jean Luz (stJean) and Cap Ferret (CapFer). Spain samples: Mera 

(Mera) and Sada (Sada). Portugal samples: Praia Limpa (PrLimpa) and Vila Nova de 

Milfontes (VNM). 
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Observations from numbers of shared vs. unique OTUs show that the majority of 

the sampled sites had 25-40% of unique OTUs present on each site, numbers only 

greatly surpassed by Gambia samples that had 74% of unique OTUs only sharing 

26% of the OTUs with other sites. Further to Gambia, Cap Ferret and Sheerness 

samples also showed high percentages of unique OTUs, with 60% and 53% unique 

OTUs, respectively (Figure 4.4).  

 

 

Figure 4.4. Relative shared and unique OTU percentages for each sample site at a 

99% sequence similarity level on normalized dataset. Shared OTUs are represented 

by the grey bars and unique OTUs by the black bars. Skye staffing (SkyStaf), 

Littlehampton (LH), Exe (Exe), Fraserburgh (Fraser), Egremont (EGR), Mogs Eye 

(MEye), Porthawan (Porthw), Sheerness (Sheer), Firth of Fourth (FirthF), Freshwater 

West (FreshW) and Silecroft (Silecr). France samples: St Jean Luz (stJean) and Cap 

Ferret (CapFer). Spain samples: Mera (Mera) and Sada (Sada). Portugal samples: 

Praia Limpa (PrLimpa) and Vila Nova de Milfontes (VNM). 

 

 

The MDS ordination of sites by community composition does not show an 

obvious pattern of geographic separation between sites (Figure 4.5). Nonetheless, 

MDS-analysis data combined with the PERMANOVA indicates that overall there are 

significant differences (p<0.001) in community composition between sites. The 

ordination of samples by (MDS) shows that in general regions geographically further 

apart tend to be less similar, nonetheless exceptions to the rule exist. Samples 

clustering alone are Sheerness, Freswater West, Skystaffin, Dunnet Bay, Silecroft, 
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Seaham, Egremont and Newborough. It is worth noticing that samples from Spain, 

Portugal and France have similar community composition together with Prestwick 

and Littlehampton. Vila Nova de Milfontes in Portugal seams to represent an outlier. 

 

Figure 4.5. Multi-Dimensional scaling (MDS) configuration plot for the sampled 

sites based on square-root transformed data of OTUs abundance (a) and sample 

localization map (b). Plotted are sixteen samples around the United Kingdom (UK), 

two samples from France (FR), Spain (SP) and Portugal (PT). Skye Staffing 

(SkyStaf), Littlehampton (LH), Exe (Exe), Fraserburgh (Fraser), Egremont (EGR), 

Mogs Eye (MEye), Porthawan (Porthw), Sheerness (Sheer), Firth of Fourth (FirthF), 

Freshwater West (FreshW) and Silecroft (Silecr). France samples: St Jean Luz 

(stJean) and Cap Ferret (CapFer). Spain samples: Mera (Mera) and Sada (Sada). 

Portugal samples: Praia Limpa (PrLimpa) and Vila Nova de Milfontes (VNM). 

 

Community composition and richness  

 

The taxonomic distribution and abundance of the main meiofauna representatives 

was explored (Figure 4.6, Supplementary Table SII).  The total number of OTUs 

found in all sampled sites was of 2183 and could be assigned to 23 different phyla, 

but five phyla were represented by no more than 3 OTUs (Orthonectida, Tunicata, 

Gnathostomulida, Porifera and Excavata). From the 23 different phyla 14 

corresponded to marine meiofauna representatives. By far the most abundant phyla 

throughout all samples were the Nematoda, which formed up to 40% of all 

meiofauna OTUs for the majority of the samples. Platyhelminthes were the second 
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most abundant followed by the Arthropoda (mainly represented by Copepoda) with 

20% and 10% representation in general, respectively. On average, there seems to be 

a clear taxonomic ranking pattern that follows Nematoda, Platyhelminthes, 

Copepoda, Annelida and Gastrotricha, nonetheless exceptions exist in some 

European samples where Platyhelminthes and even Copepods were ranked first. 

There was a clear taxonomic distribution pattern, where samples from the UK 

appeared to have a more homogenous community composition where the other 

European sampled sites proved to be more heterogeneous. Spearman‘s correlation 

(sequential Bonferroni corrected) showed a significant inversely proportional 

association of OTUs richness between the Nematoda and the Platyhelminthes (ρ 

=0.0025, α >0,05) but no such association was found between other meiobenthic 

phyla. 

 Correlations between OTU richness and grain size were performed using 

Spearman‘s correlation coefficient (ρ) nonetheless no significant association was 

found (ρ =0.377, p =0.325). Further more, Spearman‘s correlation showed a 

signification relationship (p<0.05) between the main meiofaunal phyla and 

geographic distance whereas the same correlation was not found for the protists 

(Table III). 

 

Table III. Spearman‘s correlation (ρ) and significance test (p) between 

community similarity and geographic distance derived from a Mantel-type test, for 

the main meiofauna phyla and protists (shaded in grey: Rhizaria, Alveolata and 

Stramenopiles). p>0.05 are non-significant. 

Phyla Spearman‘s correlation (ρ) Significance (p) 

Nematoda 0.279 0.002 

Platyhelminthes 0.354 0.001 

Copepod 0.219 0.01 

Annelida 0.145 0.065 

Mollusca 0.252 0.001 

Tardigrada 0.169 0.03 

Rhizaria -0.007 0.518 

Alveolata 0.072 0.178 

Stramenopiles 0.013 0.41 
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Figure 4.6. Taxonomic distribution of OTUs assigned to the main representatives 

of meiofauna phyla (with more than 5 OTUs) found in the 23 sampled sites. 

Clustering was performed at 99% similarity level on normalized data. Plotted are 

sixteen samples around the United Kingdom (UK), two samples from France (FR), 

Spain (SP) and Portugal (PT) and one sample from Gambia (Gamb). Skye Staffing 

(SkyStaf), Littlehampton (LH), Exe (Exe), Fraserburgh (Fraser), Egremont (EGR), 

Mogs Eye (MEye), Porthawan (Porthw), Sheerness (Sheer), Firth of Fourth (FirthF), 

Freshwater West (FreshW) and Silecroft (Silecr). France samples: St Jean Luz 

(stJean) and Cap Ferret (CapFer). Spain samples: Mera (Mera) and Sada (Sada). 

Portugal samples: Praia Limpa (PrLimpa) and Vila Nova de Milfontes (VNM). 

 

 

The slope of OTU rarefaction curves at 99% cut-off for the main meiofauna phyla 

Nematoda, Platyhelminthes, Copepoda, Annelida and Gastrotricha did not reach an 

asymptote indicating an under sampling of these phyla (Figure 4.7). Thus, still 

694,802 samples and ca. 2000 OTU-defined taxa fail to achieve saturation, even for 

low abundance phyla where rarefaction curves tend to converge  (Tipper 1979). 

Richness estimates were higher for Nematoda and the lowest levels found within the 

main meiofauna representatives were the Annelida.  

Almost 5% of the OTUs recovered no significant match to known ribosomal 

databases (OTUs <90% identity) and were named as not assigned (NAs) 
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(Supplementary Table SIII). These OTUs might represent previously unsampled 

diversity that is not available in public databases. Further manual analysis of these 

OTUs showed that the majority was placed within the Nematoda (43% OTUs, 5168 

sequences) and almost 14% corresponded to taxa that are simply annotate as 

―Environmental Samples‖. Manual annotation of the 454 Roche reads annotated as 

environmental samples show that many are indeed nematodes.  

 

 

Figure 4.7. Rarefaction curves of the abundance-based coverage estimation 

(ACE) diversity estimator. Plots are shown for (a) All phyla, (b) Nematoda, (c) 

Platyhelminthes (full line) and Copepoda (dashed line), (d) Annelida (full line) and 

Gastrotricha (dashed line) at 99% identity OCTU cut-off all meiobenthic samples 

(UK, United Kingdom; EU, Europe), except Gambia. Curves were estimated from 

100 randomizations, without replacement, using EstimateS, version 8.2.0. 

 

Discussion 

Deriving accurate identification of OTU richness 

 

The introduction of pyrosequencing technologies has revolutionized our ability to 

explore the so-called ―hidden diversity‖  (Foissner 1999; Slapeta et al. 2005). 

Nonetheless, major concerns focusing on the data analysis of the massive amount of 

data produced by these sequencing methods requires efficient and flexible 
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bioinformatics applications. Bioinformatic analysis has developed rapidly recently 

and new emerging tools are becoming available to test the veracity of unknown 

microbial communities. Despite using OCTUPUS on a previous environmental 

dataset using a very conservative approach, this pipeline when compared to a 

recently developed software AmpliconNoise (Quince et al. 2011) appears to 

overestimate OTU richness at higher levels of similarity cut-off. Although 

differences in OTUs richness at lower cut-offs were similar between pipelines, 

estimates diverge, whereby OCTUPUS generates five-times more OTUs than 

AmpliconNoise at stringent clustering similarity. Although sequencing of 

environmental DNA has allowed us to venture into a vast diversity of unknown 

microorganisms, much of this putative ―new diversity‖ may derive from flawed 

bioinformatic approaches  (Kunin et al. 2009; Reeder & Knight 2009; Huse et al. 

2010; Quince et al. 2011).  

Genomic approaches to taxon diagnosis exploit diversity among DNA sequences 

to identify organisms (Kurtzman 1994; Wilson 1995) and the choice of an accurate 

method to discriminate between different OTUs, defined as a proxy for species as 

long been an argument. Here all ecological comparisons analysis were performed on 

normalized datasets at both cut-offs 96% and 99% and the observed patterns were 

congruent, although richness estimates using AmpliconNoise differed slightly. OTU 

richness is dependent on the level of similarity used to define its clustering  (Floyd et 

al. 2002; Huse et al. 2010; Kumar et al. 2011). In general a cut-off of 97% similarity 

is often considered as a proxy for species (Vandamme et al. 1996; Uilenberg et al. 

2004) and in fact in eukaryotic organisms such as nematodes, a cut-off of 99.5% has 

been justified for chain termination sequencing datasets (Blaxter et al. 2005). 

Nonetheless it would be unadvisable to apply an identical biological limit to different 

taxa (Goldstein et al. 2000). Different copies of the rDNA gene exist and evidences 

(derived from personal data and Porazinska et al. 2010) indicate that in the case of 

the Nematoda most species have a dominating common sequence and variants 

represent a minority, that could either be real or sequencing artefacts. At 99% 

similarity the probabilities of recovering the maximum number of OTUs in a sample 

are higher (Porazinska et al. 2010). Further to this, Hebert et al. (2003) showed that 

levels of sequence divergence for the COI in eleven phyla of the metazoa, are 

regularly greater than 2% between species pairs with the exception of the Cnidaria 

with the majority of the species pairs having a sequence divergence less than 1%. 
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Avise  (2000) also supported that intraspecific divergences are rarely greater than 2% 

and most are less than 1% for the COI gene. The COI gene has high evolutionary 

rates and even so it enables the discrimination of closely allied species with a 

sequence divergence of 1-2%. Nuclear genes like the 18S rDNA have a highly 

conserved sequence core but also possess rapidly evolving variable regions (Woese 

et al. 1990; Hillis & Dixon 1991; Gillespie et al. 2006) and also have an extreme 

variation in gene copy number in eukaryotes (Amaral-Zettler et al. 2009). 

Nonetheless, the nSSU is a slower evolving gene and intra-species variation should 

not be lower than 2%. Of course there are exceptions to the rule and intra- and inter-

species variability should not be ruled out when defining OTU richness and diversity. 

Richness estimates should always encompass at least two different cut-offs whereas 

for ecological comparisons such as biogeography or community composition 

between different sites the use of a higher cut-off will better reflect the physical 

distribution of possible multiple genotypes derived from biological species. 

 

Biogeography richness of marine benthic eukaryotes: local and regional richness 

 

Microorganism diversity in the oceans has been hypothesized to be much greater 

than previous estimates based on conventional molecular techniques  (Sogin et al. 

2006) elevated estimates of diversity and the extended rare biosphere are likely to 

have been derived from misinterpretation of data  (Pedros-Alio 2007; Elshahed et al. 

2008; Hamp et al. 2009; Kunin et al. 2009; Huse et al. 2010; Youssef et al. 2010). In 

this study, rarefaction analysis revealed quite different levels of complexity and 

diversity across the several marine environments. Predicted estimates of richness 

were between 100 to 500 different OTUs (using a 99% identity cut-off). Nonetheless, 

for the majority of the samples eukaryotic diversity was not exhaustively 

characterized. Surprisingly, for the first time diversity levels were accomplished for 

some sites around Europe, including the UK coast. Sheerness represented one of the 

most rich sample site but with insufficient sampling effort, on the other hand 

Harwich that is just 80Km apart and also very OTU rich, covered true representation 

of local diversity, and both samples exhibited high community evenness patterns. At 

such a small spatial scale distance effect seems to be negligible showing clear 

evidences of habitat uniqueness and segregation. 
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In traditional molecular studies, dominant populations have masked the detection 

of low abundance OTUs, their overwhelming genetic diversity, and their individual 

distribution pattern in marine environments  (Sogin et al. 2006). This could be the 

case of Gambia samples with low species richness but with the highest beta diversity 

or maybe simply because it is just very singular. Nevertheless, Gambia nutrient-rich 

coastal upwelling should provide available nutrients for higher meiobenthic richness. 

Contrarily, communities showing high alpha and beta diversity with an even species 

distribution, like Cap Ferret, Sheerness and Harwich suggest a high species turnover 

on this scale of sampling.  

Information from estimates of diversity derived from rarefaction curves combined 

with OTUs richness suggests that there are disparate meiobenthic communities. This 

is indicative of specific local richness and diversity that probably depends upon local 

environmental factors [sediment grain size, salinity, temperature, organic matter and 

chlorophyll a (Chl-a)] and dominating species. In fact, local adaptation together with 

ubiquitous distribution will increase the probability of finding shared OTUs on the 

same habitat type, independently where that habitat exists (Finlay 2002). In this 

study 60-80% of OTUs were shared between the majority of the sampled sites and 

ca. 20%-40% were unique to a given site. The diversity of habitats found around the 

UK coast might also explain higher percentages of unique OTUs (endemic OTUs 

with narrow range size) in some samples that were independent of the sample size. 

Species-based measures of β diversity have been useful to study distributional 

patterns, because they can evaluate whether similar environments contain the same 

species despite distance and other geographic barriers (Noguez et al. 2005). Thus 

asserting that meiobenthic communities are ubiquitous but also confirm confined 

groups in marine coastal environments at the intertidal level.  

 

Community similarity between sites 

 

Muldimensional scaling of eukaryotic diversity between all sites suggests that 

there is a distinction in community composition into biogeographic areas between the 

UK coast and France/Spain/Portugal. The decrease in community similarity with 

geographic distance is a universal biogeographic pattern observed in communities 

from all domains of life  (Nekola & White 1999; Green et al. 2004; Horner-Devine et 

al. 2004). Nonetheless, not always the closer regions had similar community 



Marine meiofauna biodiversity distribution patterns and estimates - 4 

 

 

85 

composition and vice-versa but there was a tendency for some main biogeographic 

patterns. Sites located in the North of the UK tended to be more similar whereas 

West and East coasts were more dissimilar, where samples located in the Southwest 

were more similar to the other European samples, probability due to geographic 

proximity. This suggests that long-term dispersion of environmental benthic 

communities would be expected to occur from Southwest UK to the European 

Atlantic coast (France, Spain and Portugal) due to the Gulf Stream currents. 

Contrarily, the North Atlantic drift currents could structure meiofauna communities 

due to homogenization effect of currents along the UK Northwest coast. There is also 

the existence of a surface current of North Atlantic water reaching as far as the 

Alboran Sea that might mark the main barrier between Atlantic and Mediterranean 

populations for some marine invertebrates (Maldonado & Young 1996). There are 

evidences that distinct populations are often difficult to detect in the marine 

environment (Palumbi 1992) in particular for marine invertebrates with high 

dispersal potential lacking a sharp geographical differentiation and genetic variation 

occurring almost exclusively within populations (Barber et al. 2000; Taylor & 

Hellberg 2003). In addition, Meiofauna have been observed to aggregate in clumps 

of ‗marine snow‘  (Silver et al. 1978), and transport via these small organic parcels 

would presumably provide nutritional sustenance during pelagic journeys. Some 

authors have additionally suggested that meiofauna can be transported via sea ice  

(Giere 2009) and floating pieces of rubbish  (Barnes & Milner 2005).  In terms of 

anthropogenic transport, ballast water (and its associated sediment) and fouling on 

vessels are known to carry meiofaunal populations across oceans during shipping 

operations  (Giere 2009). In this study, there was a correlation between distance and 

community similarity suggesting that dispersal is a limiting factor (Martiny et al. 

2011) for the main representatives of eukaryotic marine meiofauna and local 

environmental and biotic factors will also affect community composition. Different 

combinations of environmental variables can influence meiobenthic communities 

structure (Coull 1999) such as temperature, water depth, salinity, Chl-a and silt-clay 

content  (Vincx et al. 1990; Danovaro & Gambi 2002; Danovaro et al. 2008b). 

Despite no such parameters were measured in this thesis and samples are all from the 

same depth, it is possible that temperature, salinity and food availability (Chl-a) 

could greatly dictate the heterogeneity of the studied meiobenthic communities. 

Furthermore, high meiofauna richness has also been found in upwelling regions and 
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frontal areas (Pfannkuche 1985; Hua et al. 2009) due to the increase of available 

food resources in the sediment. Thus further suggesting that there are abiotic factors, 

such as tides and currents affecting meiobenthic community structure  (Steyaert et al. 

1999; Steyaert et al. 2003; Austen & Widdicombe 2006).  

 

Assessing meiofauna geographic patterns and richness 

 

Biodiversity assessments are fundamental for basic diversity science from an 

ecological, biogeographical and evolutionary perspective (Miloslavich et al. 2010) 

and high-throughput sequencing has further simplified this task. Relative abundances 

across the marine benthos offer strong insights of community patterns. The fine-scale 

community structuring indicated a general pattern where the Nematoda are always 

dominant and the most abundant in marine sediments, also reported in taxonomic  

(Blaxter 2004) or molecular  studies. These usually are followed by the 

Platyhelminthes and Copepods, nonetheless derived from the disparity of the 

sampled sites there were some exceptions to the rule. In fact meiofauna community 

structure was more homogenous in the UK samples whereas France, Spain, Portugal 

and Gambia were clearly more heterogeneous with some samples being dominated 

by the Platyhelminthes within the meiofauna representatives. This shows clear 

evidence for a distinguishable community pattern between the UK and mainland 

Europe despite high percentages of widespread-shared OTUs between some samples. 

In fact, regional differences in the composition of the metazoan meiofauna along 

continental margins are hard to detect, because of pronounced local variations  

(Soltwedel 2000) and numerous biotic and abiotic factors  (Soltwedel 2000; 

Soltwedel et al. 2005) that might hamper community assemblages.  

The richness estimates derived from the rarefaction curves indicated that our high-

throughput sequencing study was not sufficient to sample all meiobenthic diversity, 

thus asserting that meiobenthic diversity is extremely rich. Numbers of estimated 

richness from our study suggests the existence of more than 4500 OTUs of 

meiobenthic eukaryotes and more than 1600 OTUs of nematodes just for the UK 

coast and some samples around France, Spain and Portugal. Current estimates of 

marine benthos around the British Isles are of about 450 species of nematodes (Giere 

2009) and Costello et al. ( 2006) estimates for the European marine nematodes is 
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about 1,837 species. Lambshead & Boucher (2003) reported that 30–40% of free-

living Nematoda in European seas found in field surveys were new to science. 

Nonetheless, Costello  (2011) estimate that the average number of species remained 

to be discovered in European seas is ca. 8500 and that only 3% of free-living 

Nematoda in Europe were described.  

In microorganisms in general, the most abundant and dominant species have 

higher dispersal rates (Finlay 2002; Cermeno et al. 2010) and thus are more 

ubiquitous which may be the case of the Nematoda and Platyhelminthes. The 

observed significant association of Nematoda richness being inversely proportional 

to the Platyhelminthes richness suggests that these most abundant phyla might have 

an impact on how other meiobenthic organisms are structured in the community. 

Some members of the community might serve as keystone species whereas others 

could simply be the result of historical ecological impacts that would potentially 

become dominant if shifts in environmental conditions occur (Freckman et al. 1997; 

Hooper et al. 2005a). Some species of Nematoda might represent the ―driver 

species‖ Walker (1992) refers to in environmental communities, whose roles in 

regulating community function is crucial. Thus, because nematodes are the most 

abundant metazoa in marine sediments (Lambshead & Boucher 2003; Lambshead 

2004; Bhadury et al. 2006) it seems intuitive that they will directly model the 

dynamics and community assemblage patterns. Ecological grouping in nematodes is 

often related to substrate type (mud or sand) and feeding mode (microvores, 

predators)  (Giere 2009). Despite there being no significant association with 

sediment type, apparent correlations between granulometry and diversity may well 

be caused by the intrusion of other factors  (Boucher & Lambshead 1995). 

Nematodes and Platyhelminthes did not show a correlation with geographic distance 

supporting the cosmopolitanism of these phyla and further suggesting that specific 

differences might occur within each phylum. The results also indicate that 

community and/or taxa ecology and geographic distance could be determinative of a 

community diversity and richness. This could be the result of the existence of 

numerous microhabitats, microclimatic properties, soil chemical properties, and also 

organisms differentiated life cycle events in meiobenthic environments (Giere 2009). 

Further to this, some organisms may exist in quiescent or dormant stages  (Coleman 

2002), allowing for considerable niche space for the impressive meiobenthic 

diversity. The role of redundant species and their functional roles are crucial to 



Marine meiofauna biodiversity distribution patterns and estimates - 4 

 

 

88 

understand the relationship between biodiversity and ecosystem function. Without 

understanding the biology of species involved, it can be difficult to decide how many 

functional types are present in a system or determine the functional roles of 

individual species  (Bolger 2001). High-throughput studies continue to give insights 

and predictions of richness but further refinement (seasonal variation, biotic 

parameters) is needed to understand the extent of community change and diversity 

across benthic ecosystems. It seems that even applying conservative approaches and 

eliminating chimeras and other artefacts from environmental datasets estimates of 

diversity and richness are still beyond our expectations. 

 

 



 

 

 

 

 

 

 

 

 

 

CHAPTER 5 - Sample richness and genetic diversity as 

drivers of chimera formation in nSSU metagenetic analyses 
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Introduction 

 

Utilizing second-generation pyrosequencing technologies in environmental DNA 

analyses have provided unique insights into prokaryotic  (Sogin et al. 2006; Huber et 

al. 2007) and eukaryotic  (Massana & Pedros-Alio 2008) molecular diversity and 

ecology. Massive parallel pyrosequencing has the potential to produce a large 

volume of data relatively cheaply and with an unprecedented read depth, generating 

millions of DNA sequences within a matter of hours  (Margulies et al. 2005). One of 

the major data analysis challenges is determining if sequences produced from 

pyrosequencing-amplified regions of marker genes correspond to genuine biological 

diversity. Recently, studies have recognized that biodiversity levels have become 

inflated due to artefacts associated with sample processing including both the PCR 

amplification and the pyrosequencing itself  (Kunin et al. 2009; Haas et al. 2011; 

Quince et al. 2011). PCR amplification with universal primers applied to genes 

conserved across phyla, such as the ribosomal nuclear small subunit (nSSU), is 

commonly used to identify microbial eukaryotes in natural environments. The 

extreme conservation of primer binding sites and the availability of extensive 

database resources  (Pruesse et al. 2007) has resulted in the nSSU being the most 

widely used marker for studying the molecular taxonomy of a diverse range of 

eukaryotes. Target taxa range from all protist kingdoms  (Pawlowski et al. 2011) to 

metazoan microorganisms, that are dominated by the Nematoda  (Porazinska et al. 

2009). In such analyses, one of the most commonly reported sources of sequence 

artefacts associated with highly homologous nSSU genes from environmental DNA 

samples is the formation of chimeric sequences during PCR amplification  (von 

Wintzingerode et al. 1997; Huber et al. 2004; Quince et al. 2009; Reeder & Knight 

2009; Quince et al. 2011).  

Chimeric sequences, or chimeras, are generated when incomplete extension 

occurs during PCR amplification and the resulting amplicon re-anneals to a foreign 

DNA strand and is copied to completion in the following PCR cycles. Chimeras are 

composed of two or more phylogenetically distinct parental sequences and have been 

shown to occur in PCR-amplified nSSU datasets with frequencies of 30% to 70%  

(Wang & Wang 1997; Ashelford et al. 2006; Haas et al. 2011) thus leading to false 

diversity estimates and false novel taxa. The critical factors that seem to affect PCR-
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generated recombination are the number of PCR cycles, PCR extension time, 

template concentration, Taq DNA polymerases and amplicon size  (Wang & Wang 

1997; Qiu et al. 2001; Lahr & Katz 2009; Engelbrektson et al. 2010). Chimera 

formation can be minimized experimentally by PCR optimization, nonetheless, 

though no method has yet proved to be entirely effective. The importance of 

detecting chimeras is such that a plethora of bioinformatic software has also been 

developed, such as Chimera_Check  (Cole et al. 2003), Bellerophon  (Huber et al. 

2004), CCode  (Gonzalez et al. 2005), Pintail  (Ashelford et al. 2005), Mallard  

(Ashelford et al. 2006), Chimera Slayer  (Haas et al. 2011) and Perseus  (Quince et 

al. 2011). With the exception of Perseus, most of these approaches will only detect 

clear induced chimeras  (Smyth et al. 2010) and their accuracy for chimera detection 

has not been rigorously tested  (Haas et al. 2011) or is still at an early stage, 

especially given recent advances in environmental DNA sequencing approaches. 

Although metagenetic analyses are clearly based on complex and phylogenetically 

diverse assemblages, the roles of sample richness and phylogenetic diversity in 

driving chimera formation are largely unknown.  

Wang and Wang  (Wang & Wang 1996, 1997) tested how sequence similarity 

between cloned 16S rRNA genes or mixed bacteria genomic DNA can influence 

PCR-based chimera formation. Nonetheless, these investigations were performed on 

a very small scale, did not consider sample richness, and pre-dated the current second 

generation sequencing perspective of amplicon pool diversity. The overarching aim 

here is to (a.) analyze the effect that richness, evenness and genetic diversity play in 

chimera formation and link this to diversity estimates, and (b.) understand how 

chimeras are formed with respect to variable genetic diversity and secondary 

structure of the parent nSSU molecule. To this end a nSSU dataset was generated by 

454 Roche pyrosequencing on control pools of closely and distantly related 

nematode mock communities of known identity and richness. 
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Material and Methods 

Sample preparation 

 

To test if chimera formation during PCR reactions was associated with taxon 

richness or with phylogenetic distance, 74 Sanger-sequenced single nematode 

species were blast aligned to a contemporary Nematoda phylogenetic framework  

(Meldal et al. 2007). Subsequently, the sequences were aligned using ClustalX and 

pairwise distances (p-distance) were calculated using MEGA 4.1  (Tamura et al. 

2007). Based on the phylogenetic affinities of the nematode sequences, subsets of 

closely related (mean pairwise divergence [MPD] of 25%, refered to as 

―phylogenetically close‖) and distantly related (MPD of 40%, refered to as 

―phylogenetically distant‖) nSSU controls were generated by pooling the DNA 

extracts of 12, 24 or 48 individuals.  

DNA extraction and preparation 

 

DNA extraction from DESS-preserved  (Yoder et al. 2006) single worms was 

performed using a DNeasy Blood & Tissue Kit (Qiagen Inc), following the 

manufacturer‘s instructions. After extraction all DNA was eluted in 40 µl of AE 

buffer and samples were stored at –20 °C until use. The DNA extracts from all single 

individuals were quantified using a Nanodrop spectrophotometer and diluted to 0.5 

ng/ µl, and five replicates of the 12, 24 and 48 individuals selected for the closely 

and distantly related treatments.  

 

PCR amplification and sequencing analysis 

 

The primers SSUFO4 forward (5‘-GCTTGTAAAGATTAAGCC-3‘) and 

SSUR26 reverse (5‘-CATTCTTGGCAAATGCTTTCG-3‘) were used to amplify 

approximately 450bp of the nuclear small subunit rDNA (18S rDNA) region  

(Blaxter et al. 1998). Fusion primers were then developed according to Chapter 2. 

PCR amplification reactions and the thermocycle for the targeted nSSU region were 

optimised. Optimised reactions were performed using 0.25ng/ul of genomic DNA 

template in 3x40 μl reactions using Pfu DNA polymerase (Promega) for each of the 

closely and distantly related nematode pools (12, 24 and 48 individuals) and all 

individual DNA extracts. PCR thermocycle conditions consisted of a 2 min 
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denaturation step at 95 °C followed by 35 cycles (thus facilitating the generation of 

chimeras  (Wang & Wang 1996, 1997; Haas et al. 2011)) of 1 min at 95 °C, 45 s at 

55 °C, 3 min at 72 °C and a final extension of 10 min at 72 °C. Negative controls 

(ultrapure water only) were included for all amplification reactions. Electrophoresis 

of triplicate PCR products was undertaken on a 2% gel with Top Vision
TM

 LM GQ 

Agarose (Fermentas), and the expected 450bp fragment was purified using the 

QIAquick Gel Extraction Kit (Qiagen), following the manufacturer‘s instruction. All 

purified PCR products were quantified with an Agilent Bioanalyser 2100 and diluted 

to the same concentration (10 ng/µl). PCR amplifications from single nematodes and 

pooled nematodes were sequenced in a single direction (A-Amplicon) on a quarter 

and three quarters of a plate, respectively, using a 454 Roche GSFLX (454 Life 

Sciences, Roche Applied Science) sequencing platform at Liverpool University‘s 

Centre for Genomic Research, UK.  

 

Denoised reads and detection of chimeric PCR molecules  

 

Pyrosequencing reads derived from 454 Roche data contain a substantial number 

of errors (referred to as noise), which includes sequencing errors, PCR single base 

substitutions and PCR chimeras  (Quince et al. 2009). AmpliconNoise was used to 

remove noise from the pyrosequencing data, this comprises filtering, flowgram and 

sequence clustering steps. It has been shown to reduce noise by approximately 50% 

in environmental data sets  (Quince et al. 2011). Subsequently, chimeras were 

identified using Perseus  (Quince et al. 2011): this algorithm generates a Chimera 

Index (CI) for each read greater than or equal to zero with higher values 

corresponding to reads that are most likely to be chimeric. Perseus by pairwise 

alignments to all sequences of greater than equal abundance identifies the most likely 

parent sequences of the candidate read and the most likely break point. Logistic 

regression is then used to classify chimeras so that the pyrosequencing data output 

lists chimeric and non chimeric sequences. The lower the probability of the sequence 

evolving naturally, the higher the Chimera Index  (Quince et al. 2011).  

Perseus finds break point positions in the two parent sequences. To compare 

across the whole data set it is necessary to fix these positions relative to a reference 

sequence. To do this, a four-way alignment between each chimeric sequence, its two 

parents and the C. elegans reference sequence was formed. The most likely break 
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point was identified by minimising the number of differences between the sections of 

the parents contributing to the chimera and the chimera itself. The position of each 

break point on the reference sequence was then recorded and from this, the frequency 

breaks occurring at each position could be calculated. MFold, RNA-folding software 

was used to predict the potential role on chimera formation of the secondary structure 

of the 18S rDNA amplicon region (Markham & Zuker 2008). 

 

Generation of Operational Taxonomic Units 

 

Denoised mock nematode community data from which chimeras had been 

removed was used to identify Operational Taxonomic Units (OTUs). OTUs were 

calculated using a complete linkage-clustering algorithm, measuring the distance 

between the most distant members in each cluster, at a 99% identity cut-off. The 

number of OTUs generated was then used to determine the effect of taxa richness on 

chimera formation within a sample. Although numbers of reads within treatments 

varied this did not have a significant effect (ANOVA, p>0.05) on chimera 

frequencies, number of OTUs and/ or Shannon Index. However, all the analyses were 

also performed on a normalised dataset by subsampling equal read numbers from 

each treatment and observations were found to be congruent with the non-normalized 

data (data not shown).  

 

Statistical analysis 

 

Species richness or in this case OTU richness takes no account of the evenness of 

the distribution. An index with better properties is the Shannon index. This increases 

with more taxa but also as the distribution of abundances across taxa becomes more 

even. The Shannon Index of biodiversity was established for each sample using 

Vegan R  (Dixon & Palmer 2003). To analyze the relationship between overall 

chimera percentage and the explanatory variables (e.g. phylogenetic relatedness, 

richness, diversity, number of reads) a linear model was fitted to the data, giving a 

multiplicative coefficient for each explanatory variable. An analysis of variance 

(ANOVA) was then performed to statistically determine which of the variables had 

an effect on the chimera percentage. Variables without a significant effect on 
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chimera percentage were removed and the model was refitted to give accurate 

ANOVA results. A probability (P-value) less than 0.05 was considered significant.  

 

Results and Discussion 

 

Here, it was possible for the first time to assess the effect of OTU richness, 

evenness and phylogenetic relatedness on chimera formation in a second generation 

sequencing environmental dataset. Moreover, a rigorous experimental design and 

bioinformatic analysis facilitated the identification of chimera breakpoint frequencies 

within the parent nSSU molecule. The ‗mock community‘ contained equivalent 

concentrations of 18S rDNA genes of individual nematodes of known identity and 

richness. Nematodes are the most abundant phylum of meiofaunal environmental 

samples representing a major part of biodiversity and performing numerous essential 

roles in ecosystems processes  (Snelgrove 1999; Blaxter et al. 2005). The nematodes 

that were chosen included both phylogenetically distant and closely related species to 

emulate a likely environmental assemblage. Nuclear small subunit rDNA amplicons 

(aka. 18S rDNA) were generated from 74 individual Sanger-sequenced nematodes 

that were pooled to form closely related and distantly related nematode assemblages. 

Amplicons were sequenced on a Roche 454 GSFLX platform and generated a total of 

339,515 pyrosequence reads. AmpliconNoise  (Quince et al. 2009) generated 

236,406 reads after removing errors arising from PCR and pyrosequencing and 

truncating sequences to a uniform 200bp. Chimeras were detected in denoised ‗mock 

community‘ data using Perseus algorithm  (Quince et al. 2011) and ca. 42% of the 

sequences were classified as chimeric and were removed before taxon richness was 

assessed by clustering sequences into Operational Taxonomic Units (OTUs) at a 99% 

identity threshold for each dataset. A summary of the mean number of reads, 

denoised sequences, chimera percentages and OTUs for each dataset is given in 

Table IV.  

 

 

 

 

 



Sample richness and genetic diversity as drivers of chimera formation - 5 

 

 

96 

Table IV – Mean numbers of OTUs, denoised sequences, chimera percentages 

and reads for the pools of close and distantly related nematodes with 48, 24 and 12 

individuals, respectively. 

 

 

 

 

 

 

 

Denoised sequences contained between ca. 15% to 60% of chimeras in some 

pools, confirming that 35 cycle PCRs do indeed generate numerous chimeras (Wang 

& Wang 1996, 1997; Qiu et al. 2001; Sipos et al. 2007) even within a small mock 

environmental dataset. The results stress the importance of a chimera removal step to 

allow an accurate estimation of OTU numbers and robust estimates of biodiversity 

levels in environmental samples. 

Overall the mean OTU numbers was approximately double the number of unique 

nematode species in each pool. This could be associated not only with sequencing 

artefacts but also because organisms frequently contain multiple copies of 

heterogeneous nSSU genes  (Clayton et al. 1995). To assess the impact on the dataset 

of multi-copy nSSUs, all single nematode PCR products were amplified with unique 

MID-tag sequences. Of the 74 MID-tagged single nematode amplifications, 61 were 

single copy 18S rDNA and 10 were double copy but all taxa were represented by a 

similar total number of sequences in PCR reactions (data not shown).  

A striking observation was the difference in chimera formation between close and 

distantly related nematode assemblages. In the latter the mean percentage of 

sequences classified as chimeric was 55% for the 24 and 48 species pools and was 

significantly higher (ANOVA, p<0.001) than the equivalent pools of closely related 

nematode assemblages that had 35% chimeras. In line with the previous observation 

the mean percentage of chimeras was significantly lower (ANOVA, p<0.01) in the 

12 species pools irrespective of the similarity or distance of the individuals in the 

nematode assemblages (Table IV). These results suggest that chimera formation is 

significantly higher in more phylogenetically diverse and richer data sets.  

Although the studies were on a smaller scale, Qiu et al. (2001) and Wang and 

Wang (1996) analysed chimera formation with bacterial rRNA clones and also found 
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that PCR artefacts and chimera frequency increased as species diversity increased. 

To further confirm this, OTU diversity within the two nematode assemblages (close 

and distant pools) was expressed using the Shannon Index  (Ricotta & Szeidl 2006). 

OTU diversity (Shannon Index) and OTU richness (OTUs numbers) showed a 

significant effect (ANOVA, p<0.01, p<0.001) on chimera frequency further 

supporting the hypothesis that more diverse and richer samples generate a higher 

frequency of chimeric molecules. Additionally, diversity (Shannon index) had a 

significant effect both on the closely (p<0.05, P= 0.0324) and distantly (p<0.01, P= 

0.0023) related nematode assemblages, and had a positive relationship with chimera 

frequency (Figure 5.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1- Chimera percentage and Shannon Index on close and distant related 

pools of nematodes. 

 

 

Analysis of chimera breakpoint occurrence in nSSU amplicon sequences revealed 

that regions with higher nucleotide sequence similarity had significantly higher 

breakpoint frequencies (p<0.001, P= 0.00039) (Figure 5.2a, 5.2b). Indeed, in studies 

with bacteria using 16S rRNA gene a large number of competing templates with 

fairly high sequence similarity generated more chimeras  (Wang & Wang 1996; von 



Sample richness and genetic diversity as drivers of chimera formation - 5 

 

 

98 

Wintzingerode et al. 1997; Haas et al. 2011). Presumably, one explanation for this 

phenomenon may be the priming of strand synthesis by prematurely terminated 

templates in the next PCR round.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2- Nucleotide diversity (Shannon Index) and breakpoint frequencies 

occurrence in single nematodes and parental chimeric sequences, respectively. 

 

 

Different copies of the nSSU genes from the same organism may differ by up to 

6.5%  (Clayton et al. 1995; Wang & Wang 1997) and in the present study alignment 

of close and distantly related nematodes indicated an overall sequence divergence of 

10% and also enough to generate chimeras. To better reflect an environmental 

dataset, in the present study an alignment of ten representatives of each meiofauna 

phyla was performed and a 23% overall sequence distance (data not shown) was 

observed for the same nSSU region. In fact, Wang and Wang (1997) (Wang & Wang 

1997) suggested that despite some degree of nucleotide mismatching, partly 

terminated heterologous 16S rDNA templates can often be completed in the 

subsequent polymerization step resulting in chimeras. Thus, the possibility that 

formation of chimeric sequences between different copies of the nSSU genes was 

also likely to occur  (Wang & Wang 1996; von Wintzingerode et al. 1997; Haas et 

al. 2011) is now confirmed with this experiment. It is probably, the degree of 

sequence similarity within each individual that may determine chimera breakpoint 
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formation. This is an issue inherently associated with the fact that nSSU gene is a 

multicopy gene and intra-specific variability might have a determinant effect on 

chimera formation, especially when sample richness is quite high. Hass (2011) and 

Wang (1996) verified that more similar 16S rDNA genes more readily form chimeras 

but they did not discard the possibility of chimera formation among different species. 

In fact, the latter phenomenon is evident for the first time in the present study where 

chimeras are more often generated among richer, phylogeneticaly diverse samples, 

although the region where the chimera forms has to have sufficient conservation to 

favour hybridization and chimera formation.  

Chimeras are generally composed of two true sequences, occasionally more  

(Quince et al. 2011), with a discrete break point where the transition from one 

sequence to another occurs. In the present dataset the distribution of chimera 

breakpoints showed a similar pattern across closely and distantly related nematode 

assemblages, with a mean peak of frequency at the first 140bp of the selected nSSU 

region (see Supplementary Figure S5.1 of Appendice I). Although GC content is 

thought to correlate with chimera formation due to inefficient strand separation and 

susceptibility to secondary structure formation, a detailed analysis of the parent 

chimeric sequences at the breakpoints did not reveal a significant correlation between 

GC rich regions and chimera frequencies. To further investigate the breakpoint 

region, the secondary structure of the amplified nSSU fragment was modeled in 

twelve single nematode sequences at 55°C and 65°C folding temperatures (see 

Supplementary Table SI of Appendice II). Analysis of the nSSU secondary 

structure showed that the regions where the breakpoints occurred coincided with 

hairpin loop structures at both temperatures, although at 65°C regions of secondary 

structure were less abundant (see Supplementary Table SI of Appendice II, Figure 

5.3).  
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Figure 5.3 – Most frequent predicted secondary structures found on the 18S 

rDNA amplicon at (a) 55ºC and (b) 65ºC folding temperatures, using as an example 

two single nematodes. Arrows indicate where the most frequent breakpoints occur 

generally matching hairpin-loops. 79TN11consensus and 25LBFB8F04 are the 

names of each nematode. dG; free energy necessary for sequence stability at a given 

temperature. 

 

 

Hairpin-loops are common motifs in nSSU gene secondary structure due to their 

importance in ribosome folding and function  (Chen et al. 2004) and their presence 

requires greater energy for melting to occur during PCR and their maintenance will 

make it more difficult for DNA polymerases to read through. Modelling in silico 

revealed that the nSSU amplicon region in the present study retained some secondary 
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structure at the primer annealing temperature (55°C) and may have been one of the 

causes of premature termination of DNA synthesis. This is corroborated by results of 

multiple sequence alignments of PCR-induced chimeras  (Wu et al. 2007) that reveal 

the recombinant regions were correlated with DNA template secondary structures. 

Fewer secondary structures of the nSSU amplicon were found at 65°C, suggesting 

that i) primers should be designed with a high annealing temperature and/or ii) genes 

chosen for environmental metagenetic analyses should be selected for a low tendency 

to secondary structure formation which should reduce the disposition of complex 

samples to form chimeras.  

The investigative use of higher annealing temperatures in this study was not 

possible since the optimal thermocycling conditions used to amplify meiofaunal 

representatives  (De Ley et al. 2005; Floyd et al. 2005) preclude more stringent 

annealing temperatures. In fact, an intuitive general rule for metagenetic studies 

would be to avoid high annealing temperatures to ensure the co-amplification of 

large ranges of taxa from disparate phyla. This implies not only having very high 

quality DNA samples with uncontaminated laboratory environment but also 

compulsory stringent analyses by using algorithms to remove artefacts and/ or 

putative chimeras after sequencing. In addition, the use of reference databases to 

detect chimeric molecules in environmental datasets is complicated by their 

unpredictable diversity, meaning that reference data may not be representative of the 

true diversity. On the other hand, the existence of chimeric sequences in public DNA 

databases is well known  (Hugenholtzt & Huber 2003; Ashelford et al. 2005) and the 

risk of classifying chimeras as new organisms is becoming higher than the risk of 

neglecting non-chimeric ones.  

Experience from recent studies where ca. 65% of the sequences generated from a 

454 Roche environmental dataset were discarded leads us to suggest that metagenetic 

analyses are the ideal ―breeding ground‖ for recombinant DNA molecules. DNA 

amplification by PCR has become the main crucial step used for next-generation 

sequencing technologies in the analysis of environmental samples and so PCR-

derived artifacts are continuously increasing. Based on the analyses, the theory of 

chimera formation having a stochastic distribution (Jumpponen 2007) should 

probably be re-evaluated because their occurrence can be influenced by several 

factors, namely PCR conditions, amplicon nucleotide diversity, molecule folding 

structure and sequencing strategies. In fact, almost all steps of the molecular 



Sample richness and genetic diversity as drivers of chimera formation - 5 

 

 

102 

approach can introduce biases or errors (von Wintzingerode et al. 1997). Overall, this 

study will significantly contribute to a better understanding of chimera formation and 

pyrosequencing strategies to be considered when conducting any studies focused on 

the PCR amplification of environmental DNA. 
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Biodiversity studies on microorganisms using next-generation sequencing 

approaches have proved to be a challenging task. In this thesis it was possible to 

demonstrate levels of biodiversity and richness of meiobenthic communities that 

were previously unknown. Patterns of community assemblages within the European 

coast were assessed to reveal the distribution patterns of small-sized aquatic 

organisms. Further to this and with the accelerating pace of available bioinformatic 

pipelines it was also possible within four years to test several different in silico 

approaches to analyse optimally massive datasets. The field however, is still in its 

infancy and certainly many developments will emerge as the field of metagenetics 

matures. Acknowledging problems inherent in PCR-amplification and in silico data 

analysis derived from pyrosequenced environmental samples gave insights to further 

minimize and possibly to avoid future misinterpretation of diversity levels. 

 

Distribution patterns of marine meiofauna 

 

The factors determining the extent of a species geographic range have long 

interested biologists (Darwin 1859; Mayr 1963). Various environmental factors 

influence organism abundance and community composition (Soltwedel 1997; Wilson 

et al. 2004; Ingels et al. 2006) namely dispersal, birth and extinction  (MacArthur & 

Wilson 1967; Holt et al. 2005), in addition to interspecific interactions such as 

competition and predation. The ability to disperse depends on many aspects that may 

be specific to particular groups of organisms  (Holt et al. 2005). Suggesting that 

patterns of biodiversity are the result of past events that can provide important clues 

about the history of a species and help explain its current population structure  (Feral 

2002).  

Although biological diversity processes may be similar in both marine and 

terrestrial environments the major differences appear largely as a result of the 

dispersive nature of marine larvae and the wide distribution of organisms and of 

habitats (Snelgrove et al. 1999; Feral 2002). About 70% of marine species have a 

planktonic larva phase, which is associated with very high fecundities, explosive 

reproductive potential and important dispersal and migratory capacities (Palumbi 

1992). Accordingly, the wide, or even cosmopolitan distribution of marine 
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meiofauna has previously been considered a ―paradox‖ because most meiofaunal 

organisms typically do not have a planktonic larval stage (Giere 2009) and so 

dispersal is primarily due to the suspension of adults and juveniles in the water 

column  (Shanks & Edmondson 1990). The metapopulation concept in coastal 

marine benthic invertebrates relies on the fact that these taxa are likely to be 

restricted to a range of habitats with often pronounced ecological gradients 

(temperature, salinity, light, trophic abundance)  (Reise 2003; Derycke et al. 2008a; 

Giere 2009) limiting distributions according to physical and biological constraints  

(Gray 1997; Giere 2009; Gray & Elliott 2009). Meiobenthic communities are known 

for having high numbers of cryptic species, morphologicaly very similar or even 

identical but genetically very divergent. This high species and genetic diversity 

might suggest that some meiobenthic faunal distribution has distinct ecological 

ranges because of intensive metapopulation dynamics  (Derycke et al. 2008a). The 

data reported in the present thesis reveals a high level of common shared OTUs 

between sites and is congruent with a metapopulation concept, as previously 

proposed as characteristic of many coastal invertebrates  (Harrison & Hastings 

1996). In such a model each sample point is envisaged as a patch with exchange of 

individuals between them with local populations sustaining themselves over 

generations and exhibiting dynamics partially independent from other such 

population within a region  (Harrison & Hastings 1996). However, in addition to the 

metapopulation concept there are local self-sustaining populations identified by the 

presence of unique OTUs that are not shared between sample sites, presumably 

representing specific locally adapted organisms. 

Genetic pools of the majority of widely distributed species are rarely homogenous 

from throughout habitat ranges (Hilbish 1996; Avise & Johns 1999). This may be 

because of several nonrandom factors including neutral genetic drift and strong 

selection through local adaptation  (Servedio 2004). In fact, several morphological 

features such as a panoply of highly specific feeding apparatus of some meiobenthic 

representative‘s supports the trophic niche-partitioning, as is exemplified by the 

narrow selection of bacterial strains consumed by stenophagous nematodes (Moens 

et al. 1999a) or harpaticoids that exhibit preference for habitat patches dominated by 

diatoms  (de Troch et al. 2008). Furthermore specialized reproductive strategies 

(Michiels & Traunspurger 2005; Mittelbach et al. 2007) are also known in 

meiobenthic species that further allows them to colonize and persist successfully in 
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the benthos. Meiofauna are known to specialize and strategically adapt to their 

environment, representing animals with high potential for sympatric speciation, 

opening possibilities for new niches and evolutionary pathways without any 

geographic separation  (Palumbi 2003; Giere 2009). The results provide evidence of 

a heterogenous meiobenthic local distribution in which 50% of the taxa identified 

were endemic that is similar to the 30% previously reported for protist distribution  

(Foissner 2006), reflecting high species turnover between sites (b-diversity) and thus 

high regional diversity. Nonetheless, large-scale distribution of some meiobenthic 

representatives is still unexplained as are the mechanisms behind the widespread 

distribution of meiobenthic species. An interesting analysis that could provide 

insights into this question may be the comparison with microorganism distribution. 

The model of ubiquitous dispersal of microorganisms (Finlay & Clarke 1999; 

Finlay 2002; Fenchel & Finlay 2004; Finlay 2004; Finlay & Fenchel 2004) has 

contributed much to our understanding of microbial diversity and distribution. The 

idea that ‗everything is everywhere‘ (Baas-Becking 1934) based on the assumption 

that the enormous dispersal capabilities of microorganisms allow them to expand into 

almost any habitat  (Finlay 2002; Fenchel & Finlay 2004) still remains a 

controversial issue  (Foissner 1999; Coleman 2002; Lachance 2004). Ubiquitous 

distributional patterns were demonstrated in different groups of protists  (Finlay & 

Esteban 2001; Wilkinson 2001; Fenchel & Finlay 2004; Finlay et al. 2004; Finlay & 

Fenchel 2004), with microorganisms showing enormous population sizes, small body 

sizes and high dispersal rates with a cosmopolitan distribution and relatively low 

diversity. The theory further suggests that prokaryotes, unicellular eukaryotes and 

small multicellular organisms have a cosmopolitan distribution because of their 

minute sizes and their ability to form dormant stages (cysts, eggs, spores), which 

facilitate dispersal by air, dust, and migrating animals (Alongi 1990; Foissner 1999).  

However, a contrasting model to the generalization of the neutral model arises from 

the fact that the rate of dispersal of microorganisms is not sufficiently high to 

overcome historical dispersal limitations and human influence  (Feral 2002; Foissner 

2006; Foissner 2007). Even in the absence of any physical or genetic barriers for 

dispersal, the fact that some species or taxa have a ubiquitous or large-scale 

distribution does not imply that the majority will colonize and have time to adapt to 

the new environment  (Kristiansen 2000). This facilitates the existence of endemic 

taxa, many of which remain to be discovered  (Telford et al. 2006; Foissner 2007). In 
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fact, there are several microorganims with known restricted distributions, such as 

protists (Foissner 2006; Foissner 2007) and also protozoan (Bass et al. 2007; Smith 

& Wilkinson 2007). Thus suggesting that the ubiquity model might be bias because 

of under-sampling and/or misidentification of the samples (Mitchell & Meisterfeld 

2005), representing a crucial problem for evaluation of distribution patterns  (Finlay 

& Clarke 1999; Finlay et al. 2004). Nonetheless, the theory used to explain 

microorganism distribution do not fully explain marine meiofauna taxa distribution 

as many do not have a dormant stage but still have a wide dispersal distribution  

(Foissner 2007; Giere 2009).   

Continental and even cosmopolitan distribution among meiobenthic taxa appear to 

result from a variety of dispersive mechanisms (Giere 2009) differing always 

between taxonomic groups (Brandt et al. 2007a). Meiofauna have been observed to 

aggregate in clumps of ‗marine snow‘ (Silver et al. 1978), and transport via these 

small organic parcels would presumably provide nutritional sustenance during 

pelagic journeys. Some authors have additionally suggested that meiofauna can be 

transported via sea ice (Giere 2009) and floating pieces of rubbish  (Barnes & Milner 

2005). In terms of anthropogenic transport, ballast water (and its associated 

sediment) and fouling on vessels are known to carry meiofaunal populations across 

oceans during shipping operations  (Giere 2009). Giere  (2009) further suggests that 

these natural rafts, whether marine snow, sea ice or drifting islands, could have been 

responsible for repeated trans-oceanic long-distance transport resulting in little 

differentiation in meiofauna between distance regions. Although molecular data have 

revealed the vast scope of microbial diversity in virtually all habitats (Green et al. 

2004; Slapeta et al. 2005), the fundamental conflict between ubiquitous and endemic 

distribution patterns, as basic to the ‗everything is everywhere‘ dispute  (Finlay 2002; 

Foissner 2007; Cermeno & Falkowski 2009; Nolte et al. 2010), is far from being 

solved. Environmental and biotic factors probably play a part in determining local 

patterns of meiobenthic abundance and diversity. In fact, environmental factors 

might explain more of the variance in community structure than geographic distance, 

especially when considering that habitats in close proximity are often similar with 

respect to their environmental characteristics (Fierer 2008). In this thesis, there was a 

correlation between distance and community similarity suggesting that dispersal 

could represent a limiting factor (Fuentes 2002; Martiny et al. 2011) thus for some 

representatives of eukaryotic marine meiofauna the neutral theory (Hubbell 2001) 
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should not apply. Bell (2000) emphasized that neutral patterns (i.e. random 

accumulations of differences between sites) may result from non-neutral processes 

and showed that metapopulation dynamics can provide neutral type patterns through 

sporadic populations at a landscape scale as local extinctions and re-colonization 

takes place. The direct assessment of life-history-traits such as individual 

reproductive success, that underpins the neutral model (Hubbell 2001) would be 

essential to decide which theory (neutral or niche) a given environmental community 

follows, but it is clear though that metapopulation dynamics apply to coastal 

meiobenthic communities. It is also likely that differences in meiobenthic 

communities might also result from environmental and abiotic factors correlated with 

distance, such as salinity, food availability and currents dynamic that is also closely 

linked to seasonality and this was not addressed in the studies in this thesis. 

 

Diversity and composition of marine meiofauna 

 

Species richness is the simplest way to describe community and regional diversity  

(Magurran 2005; Magurran & Henderson 2010) and thus it forms the basis of many 

ecological models of community structure (MacArthur & Wilson 1967). Quantifying 

species richness is essential, not only for basic comparisons among sites, but also to 

tackle the saturation of local communities colonized from regional source pools  

(Cornell 1999). Compilations of the global inventory of species are uncertain, mainly 

because many species may remain un-described and also because various taxonomic 

groups contain synonyms (species that have been given two or more names) or 

misidentified organisms (Alongi 1990; Foissner 1999; Costello & Wilson 2011), that 

contribute to inflate species number. In addition, different taxonomic experts differ in 

their estimates of the global number of species for particular taxa. For example 

estimates of overall taxon diversity of animal life on Earth are in the tens of millions, 

with ca. 1.8 million animal species formally described (May 1988; de Meeus et al. 

2003). Coverage across different biological groups is very uneven with a known 

taxonomic deficit especially marked for microfauna and meiofauna due to inherent 

problems in identification and hyper abundant representatives.  

Microorganism diversity in the oceans has been claimed to be much greater than 

previous estimates based on conventional molecular techniques  (Sogin et al. 2006), 

but elevated estimates of diversity and the extended rare biosphere are likely to have 
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been derived from misinterpretation of data  (Pedros-Alio 2007; Elshahed et al. 

2008; Hamp et al. 2009; Kunin et al. 2009; Huse et al. 2010; Youssef et al. 2010). 

European marine biodiversity inventories, based on morphological analysis, reported 

a total 29713 species-level taxa that were catalogued from European seas, including 

the Arctic, deep-sea and Black-sea, where about 16056 were represented by marine 

meiofauna  (Costello et al. 2006). This level of richness is proportionate with that of 

total estimates of 16000 protozoan species  (Fenchel & Finlay 2006), albeit careful 

should be taken regarding these estimates since they are derived from morphological 

data only. In this thesis total estimates of taxon richness for meiobenthic taxa were of 

1714 and 2700 at 96% and 99% cut-offs, respectively. Nonetheless, comparisons of 

richness should only be conducted between similar habitats because of known 

gradients of diversity (Lambshead et al. 2000; Gage et al. 2004; Hillebrand 2004; 

Allen & Gillooly 2006; Mittelbach et al. 2007; Danovaro et al. 2008b; Fuhrman et 

al. 2008; Gotelli et al. 2009) such as occur in deep-sea vs. coastal areas or tropics vs. 

Arctic  (Gray 2000, 2001; Crame 2009; Clarke & Crame 2010). In addition, 

estimates derived from morphological analysis are not really comparable with 

molecular data due to constraints of taxon assessment that will be further addressed, 

especially given the swift development of sequencing approaches to delimit richness. 

Species richness is a natural measure of biodiversity, but it is an elusive quantity 

that is difficult to measure (May 1988). A fundamental problem is that, for diverse 

taxa, as more individuals are sampled, more species will be recorded  (Bunge & 

FitzPatrick 1993). The same, of course, is true for higher taxa, such as genera or 

families. The sampling curve rises relatively fast at first but slows down in later 

samples as increasingly singular taxa are added. In principle, for a survey of some 

well-defined spatial scope, an asymptote will eventually be reached and no further 

taxa will be added (Gotelli & Colwell 2001; Shaw et al. 2008). In this thesis the 

richness estimates derived from the rarefaction curves indicated that our high-

throughput sequencing study was not sufficient to sample all biodiversity but also 

alludes to the fact that meiobenthic eukaryotic phylum diversity is extremely rich. 

Rarefaction estimators of richness produced in this study reveals the existence of 

more than 4500 OTUs of meiobenthic eukaryotes and more than 1600 OTUs just for 

nematodes, for the UK coast and also for some samples around France, Spain and 

Portugal, from a single habitat, i.e. a narrow marine littoral range. Thus the study 
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unmasked levels of intertidal meiofauna richness and diversity that clearly surpassed 

expectations.  

Gotelli & Colwell (2001) also stress that species richness is not necessarily the 

``correct'' way to measure diversity, but that patterns of diversity will be very 

sensitive to which measure is used. Currently it is widely established that patterns of 

species richness are greatly influenced by temperature and so there is a cline from the 

Arctic to the tropics (Crame 2009; Clarke & Crame 2010). The pattern of taxon 

richness along the sampled transects exhibited remarkable differences at a large and 

small-geographic scale, but no clear-cut north-south richness pattern was observed 

between the sampled sites. This could be associated with the absence of sharp and 

distinct latitudes and when present (for example Gambia) there was not enough 

sampling from those regions. Nonetheless, the fine-scale community structuring 

indicated a general meiobenthic community pattern ranking the Nematoda as the 

most abundant and dominant in marine sediments, as previously reported in 

taxonomic (Blaxter 2004) or small-scale molecular studies. These are usually 

followed in abundance by the Platyhelminthes and Copepods, nonetheless derived 

from the disparity of the sampled sites there were some exceptions to the rule. There 

was a clear community composition pattern between UK and Europe despite high 

percentages of widespread-shared OTUs between some samples. The UK samples 

showed a more homogenous community structure whereas France, Spain, Portugal 

and Gambia were clearly more heterogeneous and the Platyhelminthes were 

sometimes the most abundant phyla within the meiofauna representatives. In fact, 

regional differences in the composition of the metazoan meiofauna along continental 

margins are generally hard to detect, because of pronounced local variations  

(Soltwedel 2000) and numerous biotic and abiotic factors (Soltwedel 2000; 

Soltwedel et al. 2005) that probably hamper community assemblages. Although 

numerous environmental factors influence meiobenthic distribution and assemblage, 

grain size, is known to be the predominant driver of meiofaunal community structure 

and diversity  (Giere 2009). Nonetheless, the fine scale community structuring also 

indicates that there are likely to be a host of additional biotic (e.g. prokaryote 

communities and organic matter) and abiotic (sediment grain shape, surface 

composition) micro-geographical factors responsible for community structuring 

within the benthos (Giere 2009). High-throughput studies continue to give insight 

and predictions of richness but further refinement (seasonal variation, biotic 
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parameters) is needed to understand the extent of community change and diversity 

across benthic ecosystems. The results reported in this thesis reveal that even using a 

conservative approach and eliminating chimeras and other artifacts from 

environmental datasets estimates of diversity and richness are still beyond our 

expectations. 

 

Taxonomic assessment and OTU definition 

 

For years morphological methods were the only method widely used to identify 

organisms. Moreover, the biosphere is so extraordinarily diverse that methodical 

cataloguing of biodiversity by traditional methods will probably never provide a 

complete ‗species list‘ for the planet (May 1988). This recognition, coupled with real 

controversy over both how to define and how to diagnose ‗species‘  (Adams 1998), 

has led to proposals for the development of molecular taxonomy based methods 

based on a defined part of the genome (Seberg et al. 2003; Tautz et al. 2003). For 

any taxon diagnosis system, heuristics are necessary for defining operational 

taxonomic units (OTU), based on sequence differences at short, orthologous marker 

gene sequences  (Tautz et al. 2003; Blaxter 2004). This follows the general definition 

of OTUs as groups of organisms used in a taxonomic study without designation of 

taxonomic rank, which might be a proxy for species (Countway et al. 2005; Caron et 

al. 2009).  

There is a mismatch between the total numbers of identified species when 

morphological taxonomic methods or molecular taxonomy are applied to identify 

species. This is perhaps unsurprising considering the time it takes for a taxonomist to 

identify a species using its morphology and the time it takes using gene sequences. 

Moreover, with the advent of next generation sequencing methods, which have the 

capacity to generate millions of sequences (so called pyro-sequences) in a few hours, 

this difference has become even more exaggerated. The advantages of DNA-based 

methods may be to improve both the accuracy and precision of species identification, 

helping to identify species hard to diagnose morphologically and also enabling non-

taxonomist to identify species rapidly and reliably (Ebach & Holdrege 2005; Gregory 

2005; Hebert & Gregory 2005; Schindel & Miller 2005; Smith 2005). Due to the 

large amount of sequencing data produced, it is anticipated that it will be possible to 

address the species richness of protists (Medinger et al. 2010) and also of other 
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microorganims. Such approaches have already shown that both eukaryotic and 

prokaryotic micro-organisms have large intraspecific genetic differences, even for 

conserved genes such as those coding for 18S rDNA  (Fenchel & Finlay 2006).  

Despite the great potential of molecular taxonomies there is a major impediment 

that is to establish the amount of genetic dissimilarity that should be accepted as 

intra-specific. This is complicated by the fact that rates of evolution for the same 

gene in different taxonomic groups may vary  (Goldstein et al. 2000; Caron et al. 

2009). In Bacteria for example, where the species concept is very conservative, 

species differ by values in the order of 1 to 2% in nSSU (16S or 18S rDNA) gene 

sequences (Hackstein 1997; Caron et al. 2009). In general for 18S rDNA genes, a 

97% OTU similarity is often considered as a proxy for species (Vandamme et al. 

1996; Uilenberg et al. 2004) and in fact in eukaryotic organisms such as nematodes, 

99.5% similarity has been justified  (Blaxter et al. 2005). Moreover, using 99% 

similarity the probabilities of recovering the maximum number of species‘ genotypes 

in a sample are higher (Porazinska et al. 2010). More stringent similarities are known 

to inflate estimates of taxon richness nonetheless this should be more appropriate for 

the study of environmental community patterns.  

Hebert et al. (2003) showed that levels of sequence divergence for the COI 

(citochrome oxidase subunit 1) in eleven phyla of the metazoa, are regularly greater 

than 2% between species pairs with the exception of the Cnidaria with the majority 

of the species pairs having a sequence divergence less than 1%. The COI gene has 

high evolutionary rates and even so it has enabled the discrimination of closely allied 

species with a sequence divergence of 1-2%. Nuclear genes like the 18S rDNA have 

a highly conserved sequence core but also possess rapidly evolving variable regions  

(Woese et al. 1990; Hillis & Dixon 1991; Gillespie et al. 2006) and also have an 

extreme variation in gene copy number in eukaryotes  (Amaral-Zettler et al. 2009). 

The choice of 18S rDNA as a marker for species has already been described in 

marine metazoa and is reported to have less intra-species variation than the COI gene 

(White 2011). However, there are exceptions to the rule and intra- and inter-species 

variability should not be ruled out when defining OTU richness and diversity. 

Richness estimates should always encompass at least two different cut-offs and for 

ecological comparisons such as biogeography or community composition between 

different sites the use of a higher cut-off will better reflect the distribution of 

genotypes within a biological species. Relating species to OTUs will always be a 
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contentious issue, but bioinformatic sequence comparisons and additional molecular 

assisted taxonomy will inevitably bridge the gap as further voucher specimens are 

linked to sequences  (Blaxter 2003a; Blaxter et al. 2003; Markmann & Tautz 2005). 

OTU richness estimates provided by nuclear ribosomal genes (nSSU, 18S rDNA) 

from next generation sequences can vary according to the particular region surveyed, 

and absolute richness estimates based on different portions of the 18S rDNA gene 

could be used as complementary source of information.  

The name of a species embodies a wealth of biological information, whereas 18S 

rDNA gene sequences do not, per se, provide any such information  (Fenchel & 

Finlay 2006). Nonetheless, the use of a classical taxonomic approach, based on 

phenotypic characteristics combined with the increasing availability of large 

molecular datasets, could represent a means to determine local and global numbers of 

species. Even though it is considered desirable in community ecology that the 

individuals in a sample are identified to the species level (Gotelli 2004), it is not 

essential for the study of ecological patterns to assign species-level taxa  (Somerfield 

& Gage 2000; Terlizzi et al. 2003; Quijón & Snelgrove 2006; Naser 2010). It would 

have thus not been mandatory to assign the inferred OTUs to species to perform 

ecological analyses  (Pfenninger et al. 2007).  

 

Molecular and in silico advances of pyro-tagged environmental samples 

 

High-throughput techniques are not only being developed for single individuals 

but also for whole-populations, revolutionizing the study of ecology and evolution. 

These techniques include cheap, very fast and high capacity DNA sequencing, 

producing large amounts of data at a low cost (Ronaghi et al. 1998; Ronaghi 2001; 

Edwards et al. 2006; Rabouille et al. 2006; Turnbaugh et al. 2006; Meyer et al. 

2007). The use of next generation sequencing to study environmental community 

biodiversity commences with an important phase of sample processing. Here, 

sampling strategies are known to influence diversity levels (Bett et al. 1994); one has 

to have sufficient representation of the study area to extrapolate biodiversity levels as 

close to reality as possible (Gotelli & Colwell 2001; Chao et al. 2009). In this study 

such explicit assumptions were clearly not achieved for all sampling areas. Further to 

this, sampling from the intertidal zone will likely result in different numbers of 
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richness and diversity levels compared to subtidal, neritic and oceanic zones. The 

same applies for differences between the depth sampling areas  (Soltwedel et al. 

2005) such as the benthos versus pelagic zones. Sample procedure and manipulation 

are also important for keeping sample integrity. Conceptual issues such as the choice 

of the gene(s) used in the study are also very important considerations. For example, 

some species possess multiple RNA gene copies with somewhat different base pair 

compositions (Scholin et al. 1993). These different sequences could conceivably 

produce multiple OTUs for a single specimen if the differences are large enough, 

although it appears to be relatively rare (Caron et al. 2009). Similarly, the use of 

rapidly evolving genes or intergenic spacer regions might result in the creation of 

multiple OTUs for individuals that would be grouped into a single species using 

other criteria  (O'Mahony et al. 2007). 

DNA manipulation  (Medinger et al. 2010) and PCR conditions  (Qiu et al. 2001; 

Wu et al. 2010) are probably one of the main drivers of diversity artefacts in pyro-

sequenced samples. In fact, almost all steps of the molecular approach can introduce 

biases or errors (von Wintzingerode et al. 1997). Specifically, during PCR-

amplification when incomplete extension occurs the resulting amplicon re-anneals to 

a foreign DNA strand and is copied to completion in the following PCR cycles, 

generating chimeric sequences (Wang & Wang 1996, 1997). These chimeras are then 

hugely amplified during the pyrosequencing step and when further analysed may be 

mistakenly identified as new species  (Kunin et al. 2009; Huse et al. 2010; Quince et 

al. 2011), thus greatly inflating community richness. Although not entirely effective, 

chimera formation can be minimized experimentally by PCR optimization, by 

reducing the number of PCR cycles and increasing extension time, using lower 

template concentrations and a shorter amplicon size (Wang & Wang 1997; Qiu et al. 

2001; Lahr & Katz 2009; Engelbrektson et al. 2010). 

Massively parallel sequencing is used to analyse a population of PCR products 

arising from amplification of environmental samples and is followed by 

bioinformatic analysis in order to discriminate biodiversity levels. The first obstacle 

faced is the analysis of the huge amounts of data generated by these experiments. 

This starts with the fact that there are currently no unified data formats and the need 

to map millions to billions of sequences  (Nowrousian 2010). The development of 

bioinformatics tools and databases to better cope with these types of data will be one 

of the main factors determining how effective next generation sequencing will be for 
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a wider research community. Caution is required when choosing a program to 

analyse the massive number of sequences produced. Several problems inherent to the 

analysis of 18S rDNA gene pyro-sequences are currently recognized and mostly 

focus on the generation of high levels of richness associated with chimeric sequences  

(Huber et al. 2004; Ashelford et al. 2005; Gonzalez et al. 2005; Ashelford et al. 2006; 

Haas et al. 2011; Quince et al. 2011) and the way sequences are clustered and also 

the algorithm used (Ashelford et al. 2006; Kunin et al. 2009; Quince et al. 2009; 

Huse et al. 2010).  Further to this, the use of reference databases to detect chimeric 

molecules in environmental datasets also requires caution because environmental 

samples are very diverse and reference data is unlikely to be representative of the 

true diversity. Furthermore, the existence of chimeric sequences in public DNA 

databases is well known (Hugenholtzt & Huber 2003; Ashelford et al. 2005) and the 

risk of classifying chimeras as new organisms is becoming higher than the risk of 

neglecting non-chimeric ones.  

The advent of next generation sequencing represents a major breakthrough in 

molecular biology, genetics, and beyond, as well as a great leap forward for 

genomics and systems biology analyses  (Nowrousian 2010). Overall, this study will 

significantly contribute to a better understanding of chimera formation and 

pyrosequencing strategies that should be considered when conducting any study 

focused on the PCR amplification of environmental DNA.  
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Appendix I 

 

 

 

Supplementary Figure S1- Geographic localization of the 23 sampled sites. Each 

sample comprised three replicates and sampled sites comprised 16 samples from the 

United Kingdom (1- 16), two samples from France (17, 16), Spain (19, 20), Portugal 

(21, 22) and one sample from Gambia (23). 
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Appendix II 

 

 

 

 

Supplementary Table SI- Geographic coordinates of the 23 sampled sites in the 

United Kingdom (UK), France (FR), Spain (SP), Portugal (PT) and Africa. 

Abbreviations for each site are given (brackets).  
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Appendix III 

 

 

 

Supplementary Figure S2- Distance matrix of the 23 sampled sites from United 

Kingdom, France, Spain, Portugal and Gambia. Distances are given in Km.  
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APPENDIX IV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure S3- The Shannon (H‘) and Pielou‘s (J‘) diversity 

measures for all sampled sites on normalized dataset at 99% sequence similarity 

level. UK samples: Skye staffin, Littlehampton, Exe, Fraserburgh, Egremont, Mogs 

eye, Porthawan, Sheerness, Firth of Fourth, Freshwater west and Silecroft. France 

samples: st Jean Luz and Cap Ferret. Spain samples: Mera and Sada. Portugal 

samples: Praia limpa and Vila Nova de Milfontes. 
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APPENDIX V 

 

 

Supplementary Table SII- Number of total OTUs for all metazoan phyla found 

in the 23 sampled sites. OTUs clustering were performed on non-normalized data at 

96% and 99% sequence similarity cut-off. 
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APPENDIX VI 

 

 

 

 

 

Supplementary Figure S4 - Chimera breakpoint frequencies on closely (a) and 

distantly (b) related pools of 48, 24 and 12 individual nematodes, respectively. 
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APPENDIX VII 

 

 

 

 

Supplementary Table SIII- Predicted secondary structure motifs found on the 

selected 18S rDNA amplicon of single nematodes (hairpin-loops location and dG) 

and the correspondent breakpoint position on the chimeric sequences.  

 

 

 

 

 

 

 


