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ABSTRACT 

In this thesis the chance-constrained linear goal 

programming approach is developed to cover the following cases 

when the parameters have non-negative distributions: 

the exponential and the 'chi-square distributions. 

Case 1, when the right hand side coefficients are exponential 

or chi-square random vdriables. 

Case 2. when the input coefficients are exponential or chi- 

square random variables. 

The following have been achieved: 

For Case 1 

1. We have developed a method for constructing deterministic 

linear goal programs equivalent to the original 

probabilistic linear goal programs. 

2. We have given a probabilistic interpretation to the 

deviational random variables and the deviational random 

variable levels. 

For Case 2 

We have developed a method for constructing deterministic 

nonlinear goal programs through the definition of the 

probabilistic deviational variables. 

4. We have transformed the equivalent deterministic nonlinear 

goal programs into equivalent signomial goal programs. 

S. We have developed a computational algorithm for solving 

nonlinear goal programs generally and, more particularly, 

deterministic nonlinear goal programs equivalent to 

chance-constrained goal programs. 
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6. We have proved that Sengupta! s-transformation for 

obtaining deterministic programs equivalent to chance- 

constrained programs does-not lead to solvable programs. 

7. We have-formulated and solved a practical application 

- namely that of finding the "optimal distribution of 

exports and, imports to the marine, ports" using the 

methods and the algorithm presented in the thesis. 

The methods can be used when a program has mixed goals, 

some with right hand side coefficients or input coefficients 

that are exponential or chi-square random variables; -others, 

deterministic, that is without random variable parameters. 
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INTRODUCTION 

In many applications of mathematical programming to real 

world problems the decision-maker has to deal with multi- 

objectives and goals which are often conflicting and 

competitive. 

Linear goal programming is one of the techniques capable of 

solving these problems. Addit ionally, most of the problems where 

, linear goal programming is applied to economics, certain 

parameters such as prices, supplies and demands which are 

non-negative random variables with probability distributions. 

In such cases, when some or. all of the parameters are random 

variables, we have probabilistic linear goal programming 

problems. 

Up to now, most of the area of probabilistic linear goal 

programming, which is very closely related to non-linear goal 

programming, has not been researched, and the studies presented 

in this area are unwieldy or complex. Moreover, the techniques 

for solving probabilistic linear programming problems when the 

parameters are non-negative random variables have not been 

established completely. 

As far as the author is aware, there have been only two 

attempts, both due to Ignizio, to employ nonlinear 

programming methods to solve nonlinear goal programming-problems. 

The objective of this research is to develop a chance- 

constrained goal programming approach for solving problems when 
the linear goals have non-negatively distributed parameters. 
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We present two* methods to., transform probabilistic linear 

goal programs (models) into equivalent deterministic linear or 

nonlinear goal programs when the right hand side or the input 

coefficient of the goals have exponential and chi-square 

distributions. 

For the first time, the condensed geometric programming 

technique is, employed to develop a "sequential double condensed 

geometric goal programming" algorithm to solve the equivalent 

deterministic nonlinear goal programs and also nonlinear goal 

programs in general. 

Some numerical examples are presented to demonstrate the 

methods and the algorithm. 

Finally, the problem faced by many emerging countries of 

optimizing the distribution of exports and imports on their 

marine ports is formulated and the method of solution is 

illustrated by an example. 
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CHAPTER I" 

. 
GOAL' PROGRAMMING' (G*P)'- 

1.1''Introduction 

The technique of Goal Programming (G P). is one. of 

several possible techniques used for solving problems with 

. 
multiobjectives. In the linear case, it is an extension of 

linear programming (L P) [511 

GP allows the solution of problems having, simultan- 

eously, a system of complex objectives (conflicting and 

competitive) rather than. a single objective. The G P. 

technique is not the ultimate technique for all, multiple 

objective decision problems. It requires that the decision 

maker be capable of defining, quantifying and ordering the 

objectives, or selecting the optimum approach to obtain the, 

priorities and weights [51,38ý 37,541 

1.2 Literature'Survey and Formulation 

This section presents thefundamental concepts of GP 

and the standard'form of the GP model (program) through an 

account of the'historical development of GP These concepts 

and formulation play an important part in the following chapters. 

Some autýors (e. g. [513) consider that linear GP isý'an 
extension, of LP, while others [37,53,383 consider 
that LP 'is a special case of linear GP. For particular 
cases, Markowski [533 was able to prove by duality theory 
that LP is a special case of linear GP but the 
converse is not true. 
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The concept of GP was first introduced by Charnes and 

Cooper (1955), as an issue [71 for unsolved LP problems. 

In (1961). they used the name, GP in their. book 181 

"Linear Programming". Their approach was to use deviational 

variables to transform objectives and constraints into. goals 

in a standard form 2 and hence optimization becomes an 

attempt to minimize these deviations. The-linear, multiple 

objective problem becomes a conventionall,, L P, problem where 

the single objective function is a linear function-of the 

deviational variables. -The 
formulation is as follows: 

minimize a g(d-, d + (1.1) 

N+jN 
subject to. Z a' x+ C1 d bi 1,29 

j=l 
1,2, M 

xdd+01,2, N 

2, M 

(1.3) 

A goal is a mathematical function of the decision variables 
which--regpresentsthe combination of an objective, with a 
target (i. e., right. hand side) value. The mathematical form 
of a goal is either: f(x) :ýb or f(x) !, - b or f(x) =b 
where x is the vector of decision variables. A constraint 
has the same mathematical appearance as a goal. However, 
the difference between a goal and a constraint is that a 

, goal implies-some flexibility, whereas a constraint, at 
least in the mathematical sense is absolute or inflexible 
1,38 , page 26 1. 

The standard form of a goal is obtained by adding the 
deviational variables to the left hand side of a goal and 
transforming inequalities to equations. Hence, the goal 
becomes equivalent to an equality constraint. 
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where 

x decision variables, j 1,2, N 

aij constants representing input coefficients, 

i=1,2, ... M, j=1 , 2, ... N 

bi constants-representing 'target values (aspiration 

levels), i=1,, 21 ... M 

d i'di non-negative deviation al variables which represent 

under and over achievement respectively of the 

i th 
goal, i. e. 

N 
d biZa x i lp 29 ... M i ij j- 

J=1 

d+N : aijx bi i 1., 2ý ... M 
j j 

and 

d- d+0f or all ii i1,2,, ... M (1.6) 

g(d-, d+) linear function of the deviational variables d-, d + 

where dd are the vectors of deviatiOnal 

variable. 

The constraint set (1.2) is the standard form for a goal 

set. 
Ijiri (1965) used a generalized inverse approach [391 

to study GP problems and introduced the notion of 

"preemptive priority factors" to treat multiple goals according 

to their importance, assigning weights to goals of the same 

priority level. Accordingly, the formulation of aGP model 

(program) becomes: 

Find x =-(Xl" X21 '** XN)- 

So as to minimize: 
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{P 
1 Egl(d-, d+)], P2E92(d-, A + )31 see, P Eg"Jd-, d+)], kk 

000 PKE 9K (d-" d+) II 

K : 51 M (1.7) 

subject to N 
E'ý a d-- -d+biM (1.8) 

j=l ijxj +iii 

xj d+z0 for all i 1,2. % *71o m (109) 

19.2t, N 

where 

Pk is the priority level associated with 9k(d 'd 
+ 

Pk-l is more, important than ýPk-l for all- k=2,3, K 

gk(d-t'd+) is a linear function of the weighted. deviational 

variables at the k th 
priority level., 

_ 
Although Ijiri reinforced and refined the concept of GP 

and, developed it as a distinct mathematical programming 

technique,, the generalized inverse approach is efficient for 

attacking problems-of multiple goals only if the variables 

involve&in the problem are not required to be non-negative' 

If the non-negative constraints are critical in the solution, 

then it is better to, use some other approaches. - Further., the 

approach of generalized inverse. is not considered to be a 

practical one for solving real world GP program, in 

particular, when priorities and weights of goals are used in 

large size problems. 

Contini, B. (1968) suggested a form of cliance-constrained 

goal programming (C CGP when the parameters ýb have 

The non-negativity condition is very"important for 
econolmic probl. ems. Iý, Ik 
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normal distributions [161 Contini"s work and its 

drawbacks will be discussed in Section 2.5. 

In the text-by Lee (1972), a multiphase simplex 

alg6r'ithm, -referred'to as a modified simýlex procedurelý 

was presented [50,511- In order to find an optimal 

comproiaise among c, onflict I ing'go . als with priorities, he used 

a multicriterion simplex algorithm-With lexicographical' 

minimization of the weighted sum of the deviations from I., the 

aspiration levels (bi) 'Lee's text did much t'o popularize 

GP and its'pote n ti al for solving severa 1 typ es of problems 

. pplications in the real world. with' a 

More recent texts by Ignizio''(1976,1982)'mak'e use of an 

achievemen It function which is an ordere .d vector expressing the 

level of achievement of each set of goals with a'priority 

scheme'. The generalization 6f'Lee's formulation, using 

Igniziols'notation, is referred to as the generalized GP 

program and its formulation is as follows [37,381 

e 

Find x = (xl,, X2-1 a00X, 

so as to 

lexico-m in a 
. 
[Cgl(d-, d + )31C92 (d-, d + )3.9 

.* *Cgk(d-, d + [gj((d-, d+ 

K : r- M 

subject to fi(x) + d- i-ai bii=1,2,. ** M (1.1 1) 

xj,, d- i d+0, = 1,, 2,... M (1912) 

1,2,. .. N 

At that time, the solution of GP problems by the 
simplex method had not been thoroughly discussedin the 
literature. 
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where fi(x)... is a function,, (ýinear or nonlinear) of 

decision variables and gk(d-,; d + is a function (linear, or 

nonlinear) of deviational variables and in linear GP 

programs each f1 (x) and 9k (d d for,., all i=1,2, 
ý... 

M 

and. k=1,2,... K, must be a linear function. Ignizio has 

further modified the existing-methods for solving single 

objective nonlinear programming problems (Griffith and Stewart 

[321 -and pattern search [361 method) to solve GP programs 

when the, fi(x) are nonlinear. functions (Chapter 5 contains 

all the'details about nonlinear G P. ). Ignizio also presentýd 

the sequential linear GP approach SLGP which is the 

original approach to the lexicographic GP program and treats 

it as a series of LP programs (see Section 1.3). Dauer 

and. Kruger (1977) presented "an iterative G P" method [191 

This method is a, generalization, of the, ,SLGP approach, and 

can be used to solve integral and, nonlinear GP programs 

and, in turn, probabilstic GP programs. 
-We 

will present 

this method in. the next section. 

Markowski (1980) presented the, theory and methodologies 

of linear GP duality [5131 

Since the standard form o, f goals are equality cons tTaints 

with deviational variables d- d+ (as in equations (1.11)), 

the weights may be.. associated with 'd- 
,d+ in an achievement 

function or. in the constraints. Widhelm, W. B. (1981) presented 

three models: Minsum, Minmax and Maxmin. The basic difference 

between the three models is in-the form of 
ýhe achievement 

function; but in each of them weights-are associated with d 

d in the constraints. He gested-[861ý a norming 

correction method for t ese models. 
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Sometimes, the assignment of preemptive priorities and 

weights causes problems for decision-makers There are 

many approaches for dealing with this problem. The 

"nondominated solution set" is one of the most important 

approaches to deal with this problem. But this approach 

suffers from a primary disadvantage in that the number of 

efficient extreme points is enormous even for modest size 

problems E37j 381 

Lately,, some approaches were presented to provide a link 

between' GP and interactive approaches [381 such as: 

Interactive Goal P IG P) and Sequential Information 

Generator for Multiple Objective Problems CS IG M oP) 

The disadvantage of the S IG M oP approach is that it is 

possible to construct an inconsistent constraint set. 

Masud and Hwang (1981) avoided this disadvantage of 

S IG M oP in their approach [541 "interactive sequential 

Goal programming (I SGP), which combines and extends 

attractive features of both GP and interactive solution 

approaches of multiple objective decision making problems. 

But most of the recent literature on GP consists of 

accounts of applications in many various fields 152,47,37, 

53,381 such as manpower planning, production planning, 

transportation, inventory, health care systems, agriculture 

-planning, allocation of library funds, insurance agency 

management. 

This depends, on the nature of the problem and the decision- 
maker [373 . In many real world problems, prior 
assignment of preemptive priorities is considered an 
advantage of the GP technique and not a disadvantage or 
handicap for the solution of those problems. 
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1.3____Sequential Goal Programming Algorithm 

In this section we present again the sequential GP 

algorithm due to Dauer'-and Kruger"'[19,201 because it is 

capable of solving linear or nonlinear !GP, problems generally 

and CCGP' problems in particular (see Section' 5i 8) by 

incorporating in it a corresponding optimization algorithm. 

This algorithm is based on first decomposing a goal program 

to K "single-objective" subprograms,, according to their 

priority levels; and then solving a series of subprograms such 

that the solution of the subprogram associated, with pribrity 

level A, k=2, '3, .. -. K, includes the optimum solution of 

the subprogram associated with priority level (k - 1) as a, ' 

constraint. Let the subprogram associated with the priority 

level k have the following form: 

minimize ak 9k (d 'd 
+ 

subject to 
fi (X) +di- d+i 

x. dvd*. > 0 

(1.13) 

bi for Pk 

(see the program (1.10)-(1.12)). 

That is, we are minimizing the k th term of the achievement 

function subject only to those goals in priority level k 

(i. e., iEP k) * 
The procedure of algorithm is as follows: 

Step 1 

set k, = 1 

Step 2 

Folm the program associated with priority level 1 only, 

as in The resultant program is a 
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conventional (single-objective) program and may be 

solved by an appropriate optimization algorithm. 

Step 3 

Solve the single objective program associated with 

priority level k. Let the optimal solution to this 

program be, given as -a* where a is'the optimal' kk 

value of gk(d-, d+) 

Step 4. 

Set k=k+1. If k> K' go to Step 7. 

Step 5 

Form the equivalent single objective program for the 

next priority level-(level k This program is given by: 

minimize ak 9k(d d (1.16) 

subject to 
ft(X) + d- b ttt. 

gs (d-, d+) a* (1.18) 

x,, d-, d+0 

where 
s 1,2, k-1 

t set of subscripts associated with those 

goals included in priority levels 1,2, k 

Step 6 

Goto Step 3. 

Step 7 

The solution vector x associated with the last single 

objective program solved, is the optimal vector for the 

original goal program. 
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CHAPTER 2 

PROBABILISTIC, PROGRAMMING (P P), 

2.1 Introduction 

In this chapter we present a brief account of the works 

introduced to study and apply probabilistic linear goal 

programming (P LG P) . The drawbacks of these works are 

determined and analysed (section 2.5). 

We also give the most important factors to choose'the 

chance constrained programming 'approach (CC P) 'to study 

P LG P in the next chapters. Therefore the fundamental 

concepts of 'PP are given (sec-tion 2.2),, 'and, in, section 

2-. 4, the formulation and properties of the CC P model are 

presented as a necessaryý part of the study of CC GP 

2.2 Probabilistic, Programming Technique 

PP technique is a technique which deals with the 

theories and methods of mathematical programming, in which 

random variation of the parameterS(coefficients) are 

incorporated into the models. The random variation of the 

parameters may arise from several sources, depending on the 

type of problem and the't'Ype of decisions arrived at [621 

In the classical situation, these coefficients'are 

assumed to be completely known, but, if one wants to be more 

realistic, then this assumption must be relaxed [771 

Tintn, er (1941) dis, tinguished between subjective risk and 

subjective uncertainty. Heýconsidered that to be a 

subjective risk when "there exists a probability distribution 
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of anticipation which is itself known with certainty" and 

subjective uncertainty when "there is a priori probability of 

the probability distributions themselves. " [751 . 
In this dissertation, we deal with problems of the first 

kind, where the probability distributions of the random 

variable parameters are known. 

2.3 Probabilistic Linear Programming (P L P) 

A LP problem is said to be a PLP problem if one or 

more of the parameters is known only by its probability 

distribution. 

These problems can be solved by one of the following 

principal approachesi : 

(1) stochastic linear programming (S L P) , [65,63,62,77,76,691 ; 

(2) linear programming under uncertainty which, in some 

special cases, is called two stages programming under 

uncertainty [17,83,18,62,77,76,78,, 84,82,33,8S, 791 and 

(3) C CP [62,77,761 , which will be discussed in detail 

in the next section. 

These three approaches have the following characteristics 

in common: 

First, the initial probability distributions of the 

parameters are incorporated to convert a PL P model into 

deterministic form. 

There are other approaches such as transition probability 
programming, probabilistic sensitivity analysis, ... etc. 
[641 . These approaches are considered to be less general 
than the approaches mentioned above. 
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Second, a set of decision rules having some optimality 

properties are defined. Methodsýof incorporating probability 

distributions and specifying decision rules are of course 

different in the different approaches 162,771 . If the 

initial distribution of the parameters is either unknown or 

incompletely specified, the problem of characterizing the 

optimal decision variables becomes much more complicated. 

Such problems come under, the headings of decision rules-, under 

uncertainty and simulation techniques [761 

2.4 Chance-Constrained Programming 

An ordinary LP model'is said to be a chance-constrained 

programming model if its linear constraints arel, associated 

with a set. of. probability measures indicating the extent of 

violation of the constraints. 

If the general form. of an ordinary LP is as follows: 

N 
maximize Z=Z (2.1) 

i -2 1, 
ljxj 

N 
to Z bi i subjec4il. 

j 
lijxj 

(2.2) 

x0j, 

(2.3) 

where 

xi are decision variables, j=1,2, ..., N and aij, bi, 

ci are constants for I=1,2, ... ' M, j=1,29 ... 3, N 1, 

the problem is then to. choose a set of values for ýfie variables 

X. " j 1,, 20 ... tN, so that: i 
(a) they satisfy all the'constraints'(2.2), (2.3) and 

ýN (b) they make T cjxj a maximum in accordance with the 
j=1 
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given criterion elements : cj, J, = 1,2ý N 

A: C'C P formulation' would rep'lace'-ihe P'r"oblem (2.1) 

(2.3) with the following problem CIOP 6,21 

op. timize f (C , X) (2.4) 

subject to. N 
ýp E aijxj, :sb1., 2,.. *., M r 

(2.5) 

x. ýO' j=1,2,..., N 

(2.6) 

oýYiý1, ' 
(2.7) 

where 11P 
r 

means 'probability'. Here" ' aij , b' io cj ''for 

iý 1,29' M, jN are not necessarily 

constants and, in general, some or all of them are randomý 

variables'. Yi, i 1, '2, M are preassigned constants 

called "Tolerance measures" where Yi 'indicates the extent to 
th which the i inequality'is satisfied (i-. e. the extent to 

which there are no viol'a'tl'ons of the i th- inequality),. ' In 

other words; - 0 :51 '- yi 1 indicates a, probability measure 
th of the extent to which violations of the ', -, i constraint are 

permitted. Thus, an element 0 :5 yi :51 js associated with 

a constraint 
N 

jýl 
I 

aijxj :5 bi to g iv 

Ie 
N 

Pr a ijlj bi) yj (2.8) 

when deciding, upon an objective, there is a fairly wide range 

of reasonable'choices, to be'considered for, the form'of '(2.4) 

as a replacement for (2.1) 
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From the above, we conclude that CC P approach 

is important in studying PLGP problems becaiis e:. 

(1) C CP allows the constraints to be violated with 

preassigned probabilities. This assumption is, in 

accord with the assumptions of GP .- 
(2) The present assumptions or objectives of other PLP 

approaches (see section 2.3) are not in accord with GP . 

Furthermore, the -CC-P model has-two desirable properties 

[803 (a) it leads to an equivalent linear or nonlinear 

deterministic program that has the same size as the 

deterministic version; and 

(b) the only information required about each 

uncertain element is the yi fractile for,. the unconditional 

distribution. 

C CP was first presented by Charnes and Cooper (1958) 

to solve the scheduling of the production of heating oil, 

which is an important and complex management problem Ell] 

Also, in (1959), they presented new conceptual and, analytical 

framework for problems of temporal planning under uncertainty 

[91 In (1963) they developed different, kinds of decision 

rules and optimizing objectives that may, be used so that, 

under certain conditions, an equivalent deterministic 

programming problems can be achieved in the sense that all 

random elements have been eliminated L' '12,101 

In the last few years, the C CP approach has been 

generalized in several directions and applied to. various, 

industrial and economic problems -[57,133,14,66,, 45,67, 

70,45,44,721 For economic problems, most of them have 

non-negatively distributed parameters; in this field 
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Sengupta presented some studies 170,66,681 . But, up to 

the present, there are many areas in thi's field that have not 

been researched. 

We will present in Chapters 3 and 4 an analytical study 

of CC GP' with non-negatively distributed parameters (chi- 

square and exponential distributions) from various aspects. 

2.5 Probabilistic Lbiear Goal' Pro'gr'am'min'g (P LG P) 
_ 

Up to now, there are many areas of GP which have not 

been completely researched, such as PL GP and nonlinear 

GPI which are very closely related (as will be shown in 

sections 3.4 and 4-4) - The LGP model becomes aPLGP 

model when some or all of the parameters are random variables. 

The PL GP technique is one of the most important techniques 

for optimal decision-making under uncertainty, where there are 

many problems in the practical application of GP having 

random variable parameters. Unfortunately, the studies 

presented in this area (P LG P) are unwieldy or complex 

[16,50,43,44,453 . 

Now, we present briefly, the studies that have been 

introduced and determine and analyse most of their drawbacks 

about which more research is needed. 

Charnes, Cooper, Neihaus and Sholtz (1968) have jointly 

developed a manpower planning model which considers the effects 

of Markov processes from period to period. [151 

And other areas such as dynamic GP. , post optimality 
analysis of GP 0 ... [37 Chapter 9.50 Chapter 71 
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Contini (1968) used a generalized inverse method [391 

to study CC GP. when the vector of the targets values b 

(: b is vector of bit i-1,2,..., M, see section 1.2) 

represents random variables having a normal distribution. 

He considered b as endogenous variables and the decision i 

variables x (x is vector of xj, j=1,2,..., N) as 

exogenous variables [163 i. e. 

Ax +ub (2.9) 

where the elements of u have N(O, E) , and the matrix A is 

constant. But, Contini's approach, however, suffers from many 

drawbacks. The most important of these drawbacks being: 

(1) often, the form of equations (2.9) are not realistic 

for applied economic problems, in that: 
rs 

. -. a) most real economic problems can not be put in this form. 

b)' usually, most economic parametersý'are non-negative, 
Ln 

and in turn, the normality assumptions are not valid 

for most applied economic problems, 

, (2) generalized inverse method was used, to Fcvj, ý the 

resultant models, although this method is, not efficient 

for economic problems (see section 1.2)". 

'it is impossible to-use this, ýapproach, when the elements 

ofýthe matrix A are, random variables'.. 

(4) it is very difficult, or often'-impossible to, use'this 

approach when priorities, and weights'are*to be considered. 

Lee (1972). presented, two examples to, study''the effects of 

uncertainty on the. GP. models- [501 whilst"keeping the simplex 

algorithm. To some, extent Leelsýapproach., resembles the 

piecewise, linear approximation approach, ', of El-maghraby_, ý, [26,271. 
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The-results using Lee's approach showed by contrast, when 

a non -P GP of these examples are solved'using the 

expected values (of random variab le'parameters)-, -the results 

are'morell-reasonable". In addition,, El-maghrabyls'approach 

is too cumbersome to, work with if the size-of-the problem 

becomes large. 

Keown & Martin (1977), Keown (1978) and Keown 

Taylor 111 (1980) presented three attempts to form CC GP 

models for working capital management [431 , bank liquidity 

management [441 and capital budgeting in the production area 
[451 respectively. The above attempts suffer from the 
following fundamental disadvantages: 

in each attempt, the normal distribution is used as the 

approximate distribution of the random variable parameters 

despite the fact that some of these parameters have non- 

negative distirbutions (e. g. the future demand for certain 

products, the level of cash balances, ..., etc. ) and 

which therefore are best approximated by non-negative 

distributions [56,621 . 
(2) in each attempt the deviational random variables were 

considered as deviational deterministic variables and 

they did not distinguish between the values of deviation 

variables and their bounds. 

In chapters 3 and 4, the disadvantages of PL GP studies 

noted in this section will be treated by replacing the 

assumption of normality by the non-negativity assumption 

about the distributions of parameters (exponential and chi- 

square distributions are used) and presenting a probabilistic 

interpretation of the deviational variables. 
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2.6 Conclusion 

In this chapter we have'determined and analysed the 

drawbacks of. the PL. GP studies'that have been presented and 

indicated the points about which more research is needed. 

Also the effective factors to use CC P approach to study 

PLGP have, been given. 
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CHAPTER 3 

CHANCE CONSTRAINED GOAL PROGRAMMING 

CC CG P) WITH EXPONENTIALLY DISTRIBUTED PARAMETERS' 

Introduction 

The' Dresent chapter deals with the 'approach of CC GP 

when the goals have exponentially distributed parameters. 

In Section 3.3., we present a method to transform 

probabilistic goal programs into the deterministic goal 

programs when the right hand side coefficients biý, i = lsý2,... 'M 
have exponential distributions (Case 1). In addition, a 

probabilistic interpretation of deviational random variables 

will be given and deviational random variable levels will be 

defined. 

In Section 3.4, by a method similar to that mentioned 

above, we form the transformed deterministic goal programs and 

define the probabilistic deviational variables when some or all 

of the input coefficients aij, i=l, 2,... 3, M; j 1,2,..., N 

have exponential distributions (Cases 2 and 3 respectively). 

In addition the equivalent signomial programs are presented. 

3.2 Exporientially Distributed Parameters 

In this chapter, we consider the right hand side 

coefficients or input coefficients to be exponentially 

distributed random variables. 

I 

The main reasons for choosing the exponential distribution 

as the non-negative distribution for'the coefficients are: 
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1. it is usedfor a wide class of economic models 

involving non-negative prices, input coefficients and 

non-negat3-ve resource vectors [621. 

2. it is related to the chi-square distribution 142,211 

3. under certain conditions, it provides a'limiting 

distribution for a wide class of non-negative variables 

by a', limit theorem [71,661 Cjust as the'normal 

distribution provides a limiting distribution for many 

distributions under the central limit theorem. ) 

3.3' Case 1': Thei Right, Hand Sid6 Coefficients' (b ii 

In this section, we consider the'goal set (see Section 1-2): 
N 
Za ij, j ,b 

j=1 
N 
Z ai. X, ý: bi. i= m+l, m+2,..., M (3.2) 

I j=l 

0 where x '2' j 

xj 1929 ... N are the decision variables; 

aijp j 1.2,,...,, N are constants; 

and bi i=1,2,..., M are mutually independent random 

variables, having exponential distribution with two-parameters 

(ai, ai) The density fuction of bi is 

f(bi) e111biZ: aiZ: 0 (3.3) 
ai 

with mean,. E(b i (3.4) i) + C-i 

The, disadvantage of the single parameter 
' 
tial 

distribution is that its density function has itSmode at 
the origin, bi = 0. This can be avoided by hypothesizing 
a two-parameter exponential distribution (621 . 
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and variance, vcar (b 
1)-ai. 

i-1,2, ev. M (3-5) 

Now, we present a method to determine the optimum values of 

the x's namely those which satisfy the goals (3.1), (3.2) 

to the fullest possible extent according to their priorities 

with probabilities, that are greater than or equal--to 

preassigned probabilities (i. e. tolerance measures). 

Our method is developed as follows: - 

First: the deviational random variables. 

The goal set (3.1) and C3.2) can be formed in the standard 

form by adding non-negative deviational. random variables 

d' for i 1,2, m, m+I, ... M (see section 1.2) i 

N 
Ea d- b 

j=1 ij, j iii 
(3.6) 

such that 
N 

max 0, bEa 
j=l ijxj 

(3.7) 

N 
max 0, Zai 192p ... m., m+1�..., M 

(3.8) 

(d :0nd-k 0) =0i= r 
(3.9) 

and 

0ud. > 0) =P (d- > 0) + ri1ri. ri, 
i=1,2,..., m, m+l,..., M '(3.10) 

These probabilities are assigned by the decisýion-maker 
according to the implicit cost of such an assignment. 0 
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Second: the chance-goal set. 

Since bi, i,, = 1,2,..., mm+l,..., M are random variables, then, 

from Section 2.4, the goals C3.1), C3.2) may also be reformed 

using the following chance-goal. set: 

N 
Pr Ea 

Ij xj5 bi) Yi i 
j=j 

N 
Pax '->, 

ýýbi) 
yj i m+l, m+2,...., M (3.12) 

r, ij i 

where 0 -5 Yi 1 fo r all i: 1,2,..., m, m+l,..., M The yi 

are preassigned constants called tolerance measures, in the 

sense that'the probability'that 
I 
th 

:e, 'i th 
goal is satisfied 

is equal to, yi or, -in other words-the probability that the 

i th 
goal is 'not satisfied is equal to (1-yi). 

Equations (3.11). ý(3,. 12) are equivalent to: 

N 
1 F, ( 

jEla ij xi Yi i 1,2,,..., m (3.13) 

N 
Fij Za ijxj Yi m+l, m+2,..., M (3.14) 

j=l- 

where Fi is the cumulative function of the exponential 

variable bi 

Hence 

or 

and 

N1 
E a.. x. Fi- (1-'Yi) i 

, j=j 13 1 

N 

fZa. x. =- cr in yi + cL 
j=j 

Z a. x. = Fi 
j=j 11 3 

i= m+1, iný2,...., M (3.17), 
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or 
N 

jZlaij, j -ai ln (. 1-yi) + ai i= m+l, m+2,..., M 

where F is, the inverse function of the cumulative function 

Fi 

Third: the deviational random variable levels. 

After the chance-goal set (3.11), (3.12) has been converted to 

the deterministic goal set (3.16), (3.18). It can be reformed 

in standard form by adding deviational random. variable levels 

dd+ for all iM, such that i 
N+ 
Ea ij, j +didiai ln Yi + 'i im 

j=l 

Edd cr ln Cl-yi) + cti i= m+1,... M 
j=i 

(3.20) 

where 

IN di = max 10, (-cri lnyi +ai) -E aijx Ii= lp2p ... 1, m 

(3.21) 
N 

max 10, (-al ln(l-yi) +ai) Za ijxj Ii =m+l, m+2,..., M 
j=1- 

(3.22) 

N 
d max C 0,, CEa ijxj (-a i lnyi +ai)l 

(3.23) 
N 

max CO, CEa ijxj (-cr i ln (1-yi) + ai) I 
j=l 

i= m+l, m+2, .... M 

(3.24) 

and 

d d+ a0 d- . d+ 0 

for all 1,2,... , M, -M+1, ... Sm 3 . '2 5) 
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The definitions of 'd- , 1 
d+ in (3.7), '(3.8) and of 1 

d- , dý i1 

in C3.21) - C3.25) show that: 

(1) The di are the lower levels of the negative deviational 

random variables di with probability Yi for i=1,2 .... PM 

and (1-yi) for i= m+l, m+2,..., M if and only if d+ is 

equal t'o zero for all i 

P -Yi if d 0, i =1,2,..., m r 
(3.26) 

= 1-yi if di =0, i=m+l, m+2,..., M 
. 

(3.27) 

or equivalently, 

ýr(di < di) =. 0 if di' mop 
_i 

= 1., 2_,.. ., m ... m 

(3.28) 

1--yj if, d->09 i =1,2e. . (3.29) 

-, Yi, if di >0'i- M+l 2 ... ein 
(3.30) 

Definition 3.1 

Pr(di <di) is a monotonic increasing function of di 

for all i=1,2,..., m, m+l,,.., M and is defined for d 2t 0 i 

This follows immediately from the definition of a cumulative 

distribution function. 

(2) The d+ are the lower levels of the positive i 

deviational random variables with probability 1-yi 

i and yi, for i m+l,..., M if and only if 

di is equal to zero, i. e., 

for 
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1-Y 

Y 

or equivalently 

p+< d+j) 
ri 

Definition 3.2 

if 'd 0, i=1,2, 

(3.31) 

if d=0, i= M"1*1) ... Im 
(3.32) 

0 if d 0, i 

(3.33) 

if d+ >0, i =1,2,..., m (3.34) 

1-Y i if di >0, i =M+1,..., M (3.35) 

P (di+ < d+i)' is a-monotonic increasing function of dj 
rii 

for all i=1,2,..., m, m+l,.,,, M and is defined for all 

d+2: 0 This follows immediately from the definition'of a i 

cumulative distribution function also. 

Lemma 3.1 

The i th 
goal in the goal set (3.1), C3.2), 

i is satisfied with probability greater 

than or equal to, 
- Yi if and only if: 

d+0 i 

and 

=0 

Proof 

(1) if di 0 

From (3.26) 

Pr(d d Yj r 

i= 

i= 

(3.36) 
, 76 
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Since'-Pr(d-i 'ý d-j) i's'a monotonic increasing function of 

Cdef inition -3. 'l) 

"Prom C3. S6), (3.37). j. then 

-(. d- >- 0) =- P (d-- >- d7) +P Cd- < di Pr 
rIri j) Z: Y, i 

(2) , If di `= , '0 `, v. i= m+lm+2,. -.., M 

From (3.32) 

+ ILI, 0 p d+)- Y.; 

Since P (d+i < d+i)- isa'monotonic increasing function 
r 

(definition 3.2) 

'From 
(3.39), (3.40), then 

P (ä' d+) 2: yi 

Q. E. D. 

(3.39) 

(3.40) 

(3.41) 

Fourth: the transformed deterministic goal program- 

In lemma 3.1, it was shown that 'the i th 
goal o, f the goal set 

(3.1), (3.2), i is satisfied with 

probability greater than or equal to Yi when d+ 0 for 

.i= 
192 m and d i- 0 for io m+l,,..., Im 

Since from (3.10): 

d-j) -ý P (di < d-) jP Ccl d+) fP< d+) 

C3 .5 7) 

' (3.38) ý 

(3.42) 

in the case d+ >0 for all i 1,2,..., m and d>0 for i 
all i-= m+l, m+2,..., M then the i th 

goal 

is satisfied to the fullest possible 

extent when d+ for i 1,2,..., m and d- ior 

i m+l, m+2,..., M are a minimum because Pr(di < di) and 

P (d +< d+) are monotonic increasing functions of d- , d+ riiii 
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respectivelyjdefinitions 3.1, and 3.2) -ý- 
From above, we can determine theý values, of ,x Is -those which 

satisfy the goals C3.1), -C3.2) to the fullest possible-extent 

according, to theirý priorities with probabilities greater than or 

equal to Yi 3, i= by solving the 

following transformed deterministic goal program: 

Find x= Cxlv X2', "***' xN) .. 11 1,1 '', Iý 
go as to 

lexico - min a {191(d-, d+) 3"[92(d-. d + )'3-1- ***I[gk(d-, d + 31" 

CgK(d Sd )3 K :5M3.4'3) 

subject to 
N 
Zad d+ a lnyjý-+a m 

j=l ij, j, i 

i ., ý- (3.44) 
N+ 
Za ij xi+ di d -a i ln (1-yi) + ai, i =, m+l-, m+2,. .. pM j=l 

(3.45) 

x, dd+Z: 0i1,2,..., M. (3.46) 

j 

and 

d+1,2,..., m '(3.47) gk'(d a 
'Epk i "'z'pk' 

di 

il M+1.1..., M 

k 1,2,..., K 

where Pk 
,s 

the k th 
priority level. 

It is worth noting that: 

(1) The terms of the achievement function cU (3.43) are 

linear functions-of the lower levlels, of the deviational 

random variables -, di, 1,2 M which were 

defined in (3.26) - (3.35). 

ft 
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(2) The'goal set (3.44), (3.4S), are linear constraints. 

Consequently, the above program can be solved either by 

a multiphase algorithm or by a sequential linear 

algorithm '[38, '37,503 

3.4 Thd. lnput Coefficients (a ij) 

In this section, we consider the input coefficients 

aij pi= lt2 M, j1,2,..., N of the goals: 

N 
Er aijxj :s bi 1'2'... 'm j=j 
N 
Z ai I X' i z: bi3. = m+l, m+2.,..., M (3.49) 

., 
j=i 

to be, random variables. having exponential distributions. Two 

cases are*presented. In the first, only some of the aij's 

of the i thý 
goal,. are-exponentially,, distributed random 

variables (Case 2); in the second, all of the aij's of the 

1 
th 

goal are exponentially distributed random variables 

(Case 3) . 

3.4.1 Case 2: Some_of the aijIs' have''exponential distributions 

We consider the goals (3.48), (3.49) 
N 
Eai 'X i :5b; i=- (3.50) 

j-1 
N 
ZabL= m+l, m+2, M 

j=l' I 
ij, j i-11 

where' 

b are constants for i'= 1,2, ..., m, m+l,,,., M; 

x are the decision variables for j 1., 2,..., N; and 
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a are constants for ij 

and mutually independent random 

variables for i4 j =. 1,2,..., n,, Cn < N) 

having exponential distributions with mean (a ij +a ij) 
2 

variance ai', 

The density function of aij is : 

f(aij) = a' e- 
(aij-ai i )lajj 

a ýt a 
ij ij ij 

i =-1,2,..., M 

j=1, n a. -... 

By a method similar to that presented in Case 1, we construct 

a deterministic goal program to determine the optimum values 

of the x's namely those which satisfy the goals (3.50), 

(3.51) to the, fullest-possible extent according to their 

priorities with probabilities greater than or equal to the pre- 

assigned probabilities Cyi). Thislmethod is developed as follows: 

First: The deviational random variables. 

The goal set'(3.50), (3.51) can be reformed in standard form 

by adding 
a- 

, 
I'* : 

non-negative random variables 

a+db1,2,..., M (3.53) ijxj ii 
j 1,2,..., N 

where. 1,2,..., M are defined in the same way 

as for Case 1 by equations (3.7) - (3.10). 

Second: The chance-goal set. 

Since, for i=1,2,. O*, m., m+l,..., m j 1,2.,...., n (n < N) 

the aij are random variables,. the goal set (3.50), (3.51) 

can be expressed as the following chance-goal set: 
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N 
'a ij, j b j) i=l 

N 
pr ýilij, j ; -> bi) 

Yi i-1,2,3,..., m (3.54) 

yi, i= m+l., m+2,..., M (3.55) 

where. y are preassigned constants such that 

0: 5yi 1 for all i 

The goals (3.54), (3.55) are equivalent to: 

nN 
pTC 

jZja ijxj ý: bi - , =E 
aijx i yi' i 

j n+l 
(3.56) 

nN 
PrEa ij'j ý: biE'a Yi m+l, m+2, ... tM j=l j=n+l 'jxj 

(3.57) 

to transform goals (5.56), (S. 57) to deterministic goals, we 
n 

first transform the variable E'a ijxj iM 
j=l 

into a weighted finite sum of random variables wij plus a 

deterministic term. Each of the variables w ij has a 

chi-square (X 2 distribution with two degrees of freedom [671. 

Since the 
I 
variable s aij, i=1,2,..., M j 1,2,..., n have 

exponential distributions and xj'ýt 0 then: 

nnn 

j: laijxj 
Z 12(aij-aij) laijlaij +Za T j=1 j=l ijxj 

where 

nn 
Eaw+Z 2a (3.58) 

i=l ij, j 13 j=l ij, j 

wij [2(aij-ctij) aI ij IX2 (2) (3.59) 

to obtain the equivalent deterministic goals we use a, result, 

due to Box [63 which gives the exact distribution of a 

weighted sum of X2 distributed variables. 
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Box's result is given in the following theorem. 

Thebrem 3.1 

if X2 Csj) is a chi-square distributed variable with 

s degrees of freedom and A is a constant, the exact i 
'' I, I. . 'ý II "1 1. n- 

i- 

distribution of yE. Xj X2 CS, i where the si 2gi 
j=1 

are even integers, is a weighted, finite sum of X2 distributions 

and given by: 

n- gj 
2 p (y > YO) =EEp r1X 

(2t) >y0/Xi1 (3.59) r j=l t=1 
Tljt 

In (3.59), each njt is a constant involving only the X's 

and is given by: 

h nj (gj) h 2t 0 (3.60) j (g-, h) j (h) 

nX 
IT 

1 19i 
Tli (9j dýj j- d 

Using David &Kendall's tables of symmetric function 121,423 

which gives the moments j1p in terms of cumulants K (h) j(h) 

we can determine ij(g 
I -h) , where 

(3.62) (h- 1) Egd 

Proof: [6, page 2911 . 

Substituting transfomation (3.58) in (3.56), (3.57) yields: 

nnN 
1-prEa ij, j, ij 2: 2 (b iEa. x. -E aijxj)j = yiý 

j=l j=l 13 J j=n+l 

i=1,2,..., m (3.63) 
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nn 
; Pj 

ýE 
ý7- -x -Wi5 ý: 2 Cbi -ZaZaY- 

j=j j=1 'jxj j=n+l 'jxj 

i. = m+l,, m+2,,.,,, M (3.64) 

By applying theorem, 3.1, equations (3.63), (3.64) are 

equiValent to. "' 

nN 
2(b 

1Ea 13 xIa 13 xj 
1nP (2-)' j'=n+l Yi ij ri= j1a ijxj 

1,2, (3.6*5) 

nN 
2(b Ea ijxj Ea 

ij x 
Tlijp 

rx2 
(2) 

1 
j=l =n+l Yi 

a ijxj 

(3.66) m+lm+2,..., M, 

where 
nax 

TI 1121... pM (3.167) 
dýj ijxj iLdxd 

Since nN 
2(b ZZa 

1] x 
, 

Pr 
[X2(, 

2) ý: 
-i 

j=j 11 1 j=n+l i 

"ijxj 
nN 

(b a ij, j Zai, j, j) I lij, j (3.6 1 8) j=l j =n+l 

on substituting (3.67) , (3.68) in (3-65) (3.66) we obtain 

the deterministic goals: nN 
nn aid xd 

(bi -j Ela ijxj -Ea.. xj) ai, jxj 
1-E-ý II (l - ý' e 

j=1 dýj aix 

i-1,2,..., m (3.69) 
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nN 

nnax _1 -(bi - 
jý, 

"ijxj Ea 
1) xa ijxj 

E 11 
. 

cl id dej n+l 
j=l dýj ijxj 

= Yi i=m+l, m+2 .... sm (3.70) 

Third: The probabilistic deviational variables- 

Goals (3.69), (3.70) can be reformed in the standard form by 

adding deviational variables d- d+ for 

as follows: 

nN 
nnax -(b Ea ijxj j='+j 

aijxj) /cr ijxj 
E 11 (l - Cr 

id 
xd1e 

j=1 n 
j=l dýj ij, i 

di - di i=1,2,..., m (3.71) 

,nn cr id xd -1 
ýZ li (1 cr X. ) 
j=l dOj ij i 

+di -'d i= yi 

where 

nN 
-(bi -EaEa 1] xi) /a ijxj 

e 
j=l 'jxj j=n+l I 

i= (3.72). 

N 
d max CO, yi - Pr( Ea ijxj , bi)] i lp2,..., m 

j-1 
(3.73) 

N 
max [01, yi - Pr Za ijxj , bi) i m+l, m+2, ... m 

j=l 
(3.79) 

N 
d max [0 Pra ij xj --5 bi) -yi] i"1,2,.. -, m 

j=l 
(3.75) 

N 
max CO, PrZa ijxj 2: bi) - yi] i= m+l, m+2,..., M 

j=l 
(3.76) 
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and 

0di d+' -:; I, d- di=0 

for all i (3.77) 

From the above we' conclude 

Result . 3.1 

The i 
th " goal is satisfied with probability greater than 

or equal to Yi if and only if di =0 andý d+ý Oýv 
1 

i=i., e. 

N 
P bi 
r 13 1+ 

or 
YI+d i=lp2 .... Om 

Pr (di 2. - 0) 

and 
N 

Pr Ea ij, j , bi 
j=l 

Yj +d+ or i 
Pr(di z 0) 

Result 3. '2 

The i th, 
goal is satisiied with'P'robability is 

less than or. equal to if and only if di 0 and, 

di01i=l, 2,3,...., m, m+l, M, i. e. 

N 
a- 1. Pr Za ij, j :5 bi) 

j=l 
Yi -d i 

or Pr (di -4 0)" 

I 
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and 
N 

P' aý bi 
r lj, j 

or + Pr Cdi ý-. 0 
Yi i= 

Fourth: The transformed deterministic goal program- 

From results 3.1 we can determine, the optimum values of x's 

i. e. those which satisfy the goals (3.50), (3.51)) to the 

fullest possible extent according to their priorities with 

probabilities greater than or equal to the preassigned 

probabilities Yi . (i = 1,2,..., M) by, solving the 

transformed deterministic goal program. 

Find x= (xl-, x2l Ix N) 
So as to 

lexico-min a- t 191(d-) 3'Eg2 (d-)],. **3'[gk (d-)Ipos., Cg K (d-)] 

K :5M (3.78) 

subject to nN 

-(b. -Ea ijxj E- a ijxj /Cr ijxj 
nn aidxd l j=l j=n+l 
EH (i -ae 

j=l dýj ijxj 

d+ i, Yi 

nn idxd, 

j =1 dýj ijxj 

+dd+ ii Yi 

i-1,2,..., m (3.79) 

nN 
- (b i-j ýjaij xj -j 

=S J. 
a ijxj )la ijxj 

e 

i= (3.80) 

Ixi ; >-, 0- 1,2,..., N 

1dd+=0 for all i 1,2,..., m, m+l,..., M 
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where 
-)=Z d- 1,2, ... sm)m+lt fm 9k Cd 

"epk 
(3.83) 

3.4.2, The equivalent signomial program- 

In subsection 3.4.1, -it was shown that the set C3.79)t 

(3.80) of the program (3.79), (3.80) consists of very 

complicated nonlinear constraints. But they can be 

transformed to standard signomial form (see definition 5.3 

t3,241) as follows: 

For each of the goals (3.79), (3.80) 

nN 
nna id xd -1 -(bi- Z a.. x. - E+a ijxj 

) /CT 
ijxj 

y -Y E- TI (i -e j=l n1 i 3- 'fj =1 dýj ji 

+ Y- Y- d+ (3.84Y 

or n N 

n n -1 -(bi- Z a ijxj- ' aijx i c, ijxj, 
_1 , 

Yi E 11 x (1 - id de j=l n=n+l 
j=l dýj x 

+ yi di - Y- d+1i ii (3.85) 

define addit ional variables zij , z! j where 

nN 
bi Za ijxj Za ijxj 

z 
j=l j=n+l ztO z i=1,2, ..., m (3.86) 

ij 
a ijxj 

ij 

nN 
bi -E ra x ijxj 

+l n Z! .=- '- c9Z. >-. 0 9, i=m+1�m+2, .--M- 
crijx i 

li 

-ll 
(3.87) 
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and c is a, large positive constant.,, Then-goals, C3.84), 

(3.85) can be replaced by the two following sets of goals 

and constraints: 

n 'n a id xd -1 z ij 
+ Y-1 Y- 

1+ 
Yi -Y il Cl aed j=l dýj ijxj 

88) 

nN 
b- a X. - zbEa b-1 Z ai., x 1 

J=l 
i 'ij ij +i lj, xj + 

j=n+l j'-=, 

(3.89) 

j 192 n 

or 
nn aidxd 

Y- e-zli + y-1 y-1 d+ 1 
CT X 

i m+l, m+2,..., M (3.90) 

n N, 
bi a bi E aij, j + bi z aijxj bi ca ijxj ijxj zlj + 

j=n+l 

j= m+1, m+2,..., M 

-j= 

Since 

Z 

and z! ý 
e Cl 

13 

where 

pij Z ij 

(3.91) 

(3.93) 

(3.94) 

'(3.95) 



38 % 

1 p! =1- (3.96) 

lý .e -> Co 

(see Appendix -A) 

Using C3.93), C3,94), goals (3-88) or (3.90) can be 

replaced by the twd following sets of goals and constraints: 

-1-1nn, 
cr iax d -1 -1-1+ EH (i - 

j-1 dýj a ij xi 

(3.97) 

fij +z ij (3.98) 

or 
Jnn-ax id d to- + d- - y-l. d + Yi cr ijlxj ij Yi iii j 0i 

i=m+l, m+2,..., M (3.99) 

!. +Z! -I=1 (3.100) 

j=1,2,..., n 
and 00 

(3). By means of the above transformations, goals (3-84), 

(3.85) can be replaced by the folloWing three sets of 

signomial constraints.: 

-1 -1nna idxd -1 - -1 + Yi yE Ti - (i Pý +y d- yj d. 1 (3.101) i. j=1, 
ýdýj 

"7ijxjl 

-1 
nN 

bi oijx j zij +b i izict ijxj +biEa1 (3-102) ijxj j n+l i=l 
j=1,2,. .n 

pij + zij (3.103) 
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or 

nn CT x -1 E id d lý -1 -1 + Yi ci - ij yi di - yi di. (3.104) 
j=l dýj ij xj 

nN 
cr. x. Z! -+b1Ez aijxj - bi c cr 1 i ijxj ijxj 

(3.105) 

+ (3.106) Pii 
ai 

and ý-4. co 

i=m+l, m+2.... Im -. 
j=1,2,..., n 

Constraints (3.102), (3.103) or (3.105), (3.106) are in 

standard signomial form 1. On carrying out the summation'in 

the left hand side of (3.101) or (3.104), constraints (3.101) 

or (3.104) are also seen to be in standard, signomial form 

(see example 3.1, section 3.5). 

It is worth noting that: 

(a) constraints (3.102), (3.103) or (3.105), (3.106) are 

rigid constraints related with goal sets (3.101) or 

(3.104) respectively.. 

(b) the transformation to signomial form leads to a goal 

set consisting of M goals in standard form and a 

constraint set consisting of 2n, M rigid constraints 

of N decision variables, 2n M additional variables 

and 2M deviational variables instead of a goal set 

consisting of M goals. of N decision variables and 

2M deviational variables. 

The con§traints(3.102), (3.103) and (3.106) are'in 
posynomial form (see definition 5.3 [3,243). 
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(4) Hence., program (3.78)-(3.82) is equivalent to the 

following signomial program: 

Find x= Cxl., x, ...., x N) 

So as to 

lexico-min a, =, 
ý1gl(d-)-3I-Cg2(d-)3,. 

*., Lg k(d-) 

Ig KCd-) I 

KM (3.107) 

subject to 

Y-11 
1jmna id Xd 

Yll dJ E II (l PI I+ 
yJl di a x j j=l dýj ij i 

(3.108) 

bi1 CT 
nN 

+b3.1 Ea 
11 XI+ bi 1E 

aijxj =1 ijxjzij i=1,2,... ,m (3-109' 

f +z ij ij (3.110) 

yj 
1 nna, x -1 id dy -1 d- - y- 

1d+=1 P 
a 

Iiiii f 

' li j=l dýj ijxj 
i=m+l, m+2, ... pM (3.111) 

bi 
n 

-1 
N 

+bi EabiEa bi ccTijxj 1 ijxj + ij xj z1 j 'jxj (3.112) 

. j=1 j=n+l 

+ Z! (3.113) 
i=m+l, m+2,..., m 
j=l,, 2, 

xitz P ijpz! j, pijtp! j ý02... IM (3.114) 

j=1,2,..., N 

0 : r. d-. , d+ :51, d- .d+=0... PM i (3.115) 
11 i 
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Cd d 
, 
gk 

'Epk i 
(3.116) 

and 

c is a large positive constant-ý 

The above, program can be solved by the algorithm 

presented in section 5.8 for solving nonlinear goal programs.., 

In section 3.5, we present a simple numerical example 

to illustrate the various steps in arriving at the transformed 

deterministic goal program and transform it to the equivalent 

signomial program. 

3.4.3 Case 3: all aij's have exponential distributions 

If we consider Case 2, when all the a ij, s for 

i=1.2,..., m, m+l, ... tM ,j=1,2,..., nn+l....., N, have 

exponential distributions, then this case is* equivalent to 

Case 2 with n=N In turn, the transformed deterministic 

goal program is : 

Find x- (xltx2l*"IxN3 

So as to 

lexico-min a, = 
f 191(d-)3, Cg2(d-)]',, ***, Cgk(d-)31"*'CgK (d-)] 

K :5M (3.117) 

subject to 

NN-ax-1 -(bi -Ea ijxj ) la i, jxj id de j=l + d- fj=1 
dflý j 

i=1,2,..., m 
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N 
NNa %-- i-- ii-i 'j- ii -I ied j=l 

+ d- -d .Y j=l dýj ijxj 
e 

x3 ?-0 i=102v ... IN 

0 :5 d- d1 d-. d+ 3. 

i=1,2,..., m, m+l,..., M (3.120) 

9k Cd-) Ed i=1,2 .... lmlm+l,..., m (. 3.121) 
iepk 

k=1,2 1 
. ', K 

By applying the transformations set out in subsection 3.4.2;. 

program (3.117), (3.120) is equivalent to the following 

signomial, program.: 

Find x= Cxllx2l"'IxN) 

So as- to 

lexico-min a 191(d-)1,192(d-)])**'J'Cgk(d-)31*0*3"CgK Cd-)] 

K :5M (3.122) 

subject to 

NN cr id x+ 
y -Y. z Pýj Y- d- - y- d 

i1 j=l Oj cr ijxj 1i 

i=1,2,..., m 

N 
bi 'a 

ij, j, ij, b i, j=l iyjxj (3.124) 

(3.12,5) 
pij + zij 

NNaidxd 
z li +y d- y-1 d+ =1 Y' Y' 

J=l Oj a ijxj 
Pij 

Iiii 

i=m+l, m+2,..., m (3*126) 
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N 
bz+ bi a, ijxj bi 1Ca 

ij xi 
(3.127) 

i ijxj ii 
i=m'+l., m+2, ''. . VM 

xif z ij., zil 1 js pij-, P! j 

3.1 29) 

0: 5dit di 1, di. di 0 

where 

9k Cd Edi 
iCP k 

01 -ý- oo , 
k=lS2p... pK 

Programs (3.117)-(3.120) and (3.122)-(3.. 130) are considered to 

be special cases respectivelyýof programs (3.78)-(3.82), 

(3.108)-(3.115) and in turn they have the same properties as 

programs (3.78)-(3.82), (3.108)-(3.115) of subsection 3.4.2. 

The program (3.122)-(3.130) can also be solved by the 

algorithm presented in section S. S. 

3.5 A Numberical Example 

If we want to determine x's which satisfy the following 

goals:,. 

allx 1+ a12X2 +, 3x3 :5 25 (3.132) 

2x +Xb (3.133) 12+ X3 2 

x1+X2b33.134) 
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to the fullest- possible extent, with probabilities greater 

than or equal to: y1= '55 1 Y2 = . 70 Y3 70 respectively, 

such that goals (3.133), (3.134) have first priority and 

C3.132) has second priority, where: all, a 12 1b2 and b. have 

exponential distributions with parameters 

Call a 

(a 12 4 cr12 7 1) (3.135) 
(a 29a2 3) 

(a 34a3 2) 

respectively. 

Step 1 

Transform probabilistic goals (3.132)-Cý. 134) to 

deterministic goals in standard form as follows: 

(1) From (3.71) the following goal corresponds to goal (3.132): 

_X2) 
1e -(25-3x, -4x2-3x3)/Xl 

.x1 

xl -l + (1 --) 2 
= 

-(25-3x, -4x2-3x3)/x2 
eI 

.. 55 (3.136) 

(2) From (3.19), (3.20) the following goals correspond to 

goals (3.133), (3.134): 

2x, + d-, - d+ -3 In (. 70) +9 (3.137) + X2'+ X3 22 

x1+X2+d3-d3 -2 In (. 30) +4 (3.138) 
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Step 2 

The transformed deterministic goal program (see 

fourth. page 26 and 35) is: 

Find x- Cxllx2, x', )' 

So as to, 

lexico-min a Cd+2 + d; ) 2 Cdj) 31 

subject to 

2xl +-X2 + x. + d- d+ 10.07 

x+x+ d- d+6.408 1233 

-(25-3x 1- 4x2-3x3)lxl 

12 

X2- x1e 
-(25-3x 1- 4x2-3x3)lx2 

d1d1 . 55 

X 

dd 

0ýdý . 55 

j =1,2 3 

i=I, 23 

. 45 

(3.139) 

(3.140) 

(3.141) 

(3-142) 

(3.143) 

(3.144) 

Step 3 

The following signomial goal programing is equivalent 

to program (3.139)-(3.144) (see subsection 3.4.2): 

Find x- Cxl'ýxi, "'ýc3) 

So as to: 

lexico-min a+ +'d (-d-)) (3.145) 2 3) 

ýubject to 

+dd+ 10.07 (3.146) 2x, '+ x2 + x3 22 

x+x+ d- - d+ 6.408 (3.147) 1233 
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xx P12 
lpil 2 - + 

_ x1 X2 +d 1 d . 55 (3.148) 

. 04x, z 11 + .1 
12x 1 +. . l6x2 + . 12x, 1 C3.14 , 9) 

. 04x 2 z12 + . 12x 1 . 16x 2+ . 12x, 1 (3.150) 

pil + -Zii 
C3.151) 

P12 + Z12 (3.152) 

xjl9zij fij jd., d+. 0 
i=1,2,3 (3.153) 

did ol j=1,2,3 

0 d- :5'. 55'"' 1 0 :5 d+ 1 . 45 (3.154) 

where 
z 

biZa ij xj ai. z xz 
Zij 

ijxj i=l, j-1,2 

1-z1 pij ij (3.156) 

and 
00 

Step 4 

By using the algorithm Which is presented in section 

5.8', the' global - solution to the above program is 

X1 3.204 x23.204 x3 0 

d0d o45 
d *458 d+0 22 
d- 0d+0 3ý 3 

(the detailed solution is given 11n Appendix. D. ý) 
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3.6 Conclusion 

In this chapter, the approach of CC GP has been 

presented when the goals have exponentially distributed 

parameters. 

Two cases have been considered: 

The first-, when the right hand side coefficients have 

exponential distributions. In this case: 

(1) We have developed a method to construct the transformed 

deterministic linear goal program. 

(2) The probabilistic interpretation of the deviational 

random variables and the deviational random'varia'bles 

levels have been introduced. 

The second, when some or all input coefficients have exponential 

distributions. In this case: 

a method similar to that in (1) has been de'veloped to 

construct the transformed deterministic nonlinear goal 

programs; 

(4) the probabilistic deviational variables have been 

defined; and 

the signomial programs equivalent to the transformed 

deterministic nonlinear goal programs have been 

presented. These can be solved by the algorithm 

presented in section 5.8. 

The procedures of these methods have been clarified by 

two numerical examples. In addition, our methods allow the 

goal set to contain a mix of probabilistic goals, some of them 

have right hand side exponentially distributed variables and 

the others have input which are exponentially distributed 

variables and of course, deterministic goals aLso, as shown 

in examples 3.1 and 4.1. 
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CHAPTER 41 

CC GP With Chi-Square Distributed 

Paramat6rs 

4.1 Introduction 

In this chapter we consider CC GP approach, when the 

goals have chi-square distributed parameters. Using the 

methods presented in Chapter 3,, we present-the transformed 

deterministic goal programs when: 

(i) the b Is have X2 distributions (Case 4. Section 4.3), i 

or 

(ii) some or all of the aij's have X, 
2 distributions 

, 
(Cases 5,6 respectively, Section 4.4). 

The signomial programs* equivalent to the transformed determin- 

istic goal programs of Cases 5 and 6 are presented also. 

In aadition, in. Section 4.5 we prove that Senguptals- 

transformation (for obtaining deterministic programs when the 

aijIs have x2 distributions) does not lead to a solvable 

program. 

4.2 Chi-Square Distributed Parameters 

In this chapter, we consider the following two cases - 

first when the bits have X2- distributions and second when 

some or all of the a Is. have x2 distributions. 
i ij 

We consider parameters having, X2 distributions for 

the following, reasons: 
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2 it is known that aX distribution arises when 

considering the sum of squares of independent random 

variables, each of which comes from a normal population 

with zero mean and unit variance. However, if each of 

the random variables comes from a normal population with 

non-zero mean and constant variance, then the resulting 

distribution, of the squares of the independent variables 

defines a non-central X2 distribution 162,41,491 

Statistical tables of -non-central X2 variables are 

available 130p581. In addition, -the non-central X2 

distribution may be closely approximated by a central X2 

distribution 161,421 

(2 ax2 distribution is closely related to other non- 

negative continuous distributions (e. g. the exponential 

and gamma distributions), that have been used frequently 

in operational research 1621 

(3) X2 variables have the well-known reproductive property 
22 that a sum of independent x variables also has aX 

I distribution. 

the ratio of two X2 variables is distributed like 

Fisher's (F) distribution, for which standard statistical 

tables are available [301 . 

4.3 Case 4: The right hand side coefficients (b ils) 

We investigate, the implications of replacing the 

assumption that the hi's have exponential distributions, 

Case 1; with the assumption that they, havle X2. 



so 

2 If bi X Csi) with density function 

s Si bi 
22 

ebi0 
.f 

(b j) sC 
Cb i) 

(4.1) 
' ý 

- 
" 

2 
then, *the goals 

N 
E ab x (4.2) 

- ji j=l ij 

N 
i m+l, m+2,.. '., M b : a x (4.3) 

j l ij j i 

can be reformed as the chance-goal set: 

N 
pEa. b 

r 1j'j-' i) Yi (. 4.4) 
j-1 

N 
Pr Zaiixi2: b i) Yi i m+l, m+2,..., M (4.5) 

3-1 

where 

a ij are constants for all i 112 .... ýMOM+lj... 'Mý j =112'... 'N; 

yi are preassigned constants where 0 :ýYi _-, 1 

i=1,20 ... )m. %m+lP. *. 'W 

The goals (4.4), (4.5) are equivalent to: 

N 
E'a x. = F_ 1 (1-yi) ij C4.6) 

j=l 
N 
EaX. = F_ 1 Cy ), i= m+lm+2,..., M C4.7) i ij 

where F is the inverse function of the cumulative function of 
2 

aX rand, om variable with si- degfees of freedom. 

Since the yi ,i= are con stants, 

then F_ 1 (1-yi) and F_ 1 (Yi) are constants also and can be 

calculated from statistical tables C301. We can refo rm goals 
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(4.6), (4.7) in standard form for goals by adding the 

deviational random variable levels d- ,d+ of the deviational 

-- 
I 

a+ 
ii-+ 

random variables d respectively, where dd 

di and di, are defined in the same way and have the same 

probabilistic interpretation as in Case 1. This is done as 

follows: 

Ea ij, j ,- di - di = F- (1-yi) i-1.2...., m (4.8) 
A=1 

N 
ýlaijxj +dd+m F- 1 (Y. ) ,i= m+l, m+2,..., M (4.9) i-i1 

We can determine the optimum values of the x's namely those 

which satisfy the goals (4.2), (4A) to the fullest possible 

extent according to-their priorities with probabilities greater 

than or equal to preassigned values (see Fourth, page 26 ) by 

solving, the following transformed deterministic goal program: 

Find x= (x 14 x 29 .... XN) 

So as to 

lexico-min a =- 
(rLgl(d-, d+)], Cg (d-, d+). j -, d + )l 

2 '., ---., Cgk(d 

subject to 

, 19 

N+ 
E aijxj + di -d 

j=l 
N+ 
Ea ijxj +di-di 

j=l 

and 

F1(1-) 

= F'() 

xj v di v di 

(4.10) 

i =1»29 ... ym 

i=m+l, m+2,..., M (4.12) 

1,2, ... 'm (4ý. 13) 
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gk Cd d+ d- 
icpk ilep k 

i=1,2,..., m 

M+l, m+2,..., M 

1,2,..., K 

The above program is a deterministic linear goal program and 

can be solved using either a multiphase algorithm or a 

sequential linear algorithm [38., 37,501 

4.4 The Input Coefficients (aijIs) 

In this section, we consider the case where some or all 

of the quantities aij the input coefficients of the goals 

have X2 distributions with sij degrees of freedom. The 

consequences of replacing the assumption of Section 3.4, that 

the a ij Is have exponential distributions with the assumption 

that they have X2 distributions are investigated below. 

4.4.1 Case 5: Some of the a ij's have chi-square distributions 

We assume that, a has aX2 distribution with s degrees ij ij 

of freedom and that its density function is given by 

s a.. a.. a- 1- -13 
f(aij) 1Ca.. 2e2a. 0 (4.15) 

s2 1) 3. j 

. -j 
l-, 2,,..., n and 

_. 
n'<, N 

Since the quantities aij for i 1,2, n= 11'2 2 S' n, (n'< 

are X2 random variables, the goals: 
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N 

jEla ijxj ,bi3.1,2,.. *pM 

N 
a ij, j , bi i M+1-"M+2, ,M 

will be rep. laced by the following chance-goal set 

N 
pZ aijxj :5 bi) yj 

j=l 

N 
pEa bi) Yj r jý ;. l ijxj 

where 

i=1,2,..., m 

i= 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

bi and aij for ij= n+l,.,. n+2,..., N 

are constants; 

x for j=1,2, N are decision variables; and 

Yi for i, =-1; 2.,... ýMýM+lv ... M are preassigned constants 

where 0 !5 yi -, ý 1 

Goals (4.18). (4.19) are equivalent to: 

N 
1-P. ( Ela ijxj ,bi-Za ij 'X )= Yi 

=n+l (4.20) 

mN 
prSabiEa Yi 

j=l ijxj j=n+l 'jxj 
(4.21) 

i m+l, m+2,..., M 

let sij = 2gij 

When si is not an even integer, it may be approximated by 
an even integer [681 
For applied problems, if Sij IS odd, it can be-approximated 
by sij-1 or sij+l and the choice between si. -l and 
si +1 is closely related to tests of hypothese2 and 
siinificance levels of the mean sij of aij 
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where gij is an integer number. 

Chance-goal set C4.20), C4.. 21) can be transformed to a 

deterministic goal set by applying theorem 3.1, page 31 

as follows: 
N 

ng ij b E+l. a ij xi 
rL 3. jt 

Prcx 2 (2t) 2: =n 
j=1 t=11 Ix j, 

(4.23) 
N 

n gij bi 
j= 

E 
+1 

aijxj 
EEn.. P (X 2 (2t), ý:, n 

j=1 t=1 ijt rx 

(4.24) 

or 
n 9ij 

-2ý. j I-EE 
ij-h) 

PrýX (2(gij-h)) zt xb 
j=l, gij-h=l 

'lij (g i 

- -1 
N 

+1 
a ijxj Yi 

I i=1,2,3,..., m (4.25) 

EEPx (2(cij-h)) Z: X- b 
j=l gij-h=l 

Tlij (gij -h) r. 
ý 

-1N xiE 
+1 

a ijxj yiý 
j=n 

(4.26) 

where 

"( i'llh) /h nij (gij) h ?-0 (4.27) ij (gi 
3 -h) 

nx 91j 
11 (-I i=l., 22 O.. pm, m4. l9*. 

o)m Tlij 
(9ij) dý iX j- xd 

(4.28) 
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and 

>, 
-1 

N 
Pr JX2 (2 (. g ij -h) k x, b1-x. ' Za 

1-3 x1ý 

(g -h- 
N 

-1-(x-lb -x E aijx ) [> 
2 ie 2 =n+l. 

-1 
N gij-h-1 

(x, bxE 
+J. 

a ij, j 
n 

gij-h-1 
t +Z2 (gij-h-1)(gij-h-2) ... (gij-h-t)(xj bi 

t=l 

-1N aijxj) xZ 
i-n+l 

(4.29) 

(see ApPendix B)* 

Taking account of (4.27); (4.28)'and (4.29), the equations 

(4.25) and (4.26) yield: 

n. 
11 gij ., 

2- 
(gi j- h-1) 

nxd gij 
1-E ýz /h IT (l 5F- j=j gij- 

(gij -h-lT! - 
[ 

(i; p(h) 
dýj j h=l j( 

1-1 
- (x ib i- Zai'x)g. 

. -h-1 i =n+l 
ii 

71 -1) lj e( (x 
3b i- xiZ a1, x i i =n+l 

gij-h-1 
t1 2 (gij-h-1)(gi. -h-2),..., (gij-hý-t)(xj b 

t=l IJ 

-1 N g.. -h-t-1 
xjZ aijx i) 

'J Yi 
j=n+l 

i=1,2,..., m (4.30)' 

and 
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n gij (g: Lj -h- 1) n xd -9 13 
ZZ Cg -h-1 ij (b)ý / h! )ý Il 7j-) 

j=l gii-h=l ij doj 

-- 
1 -1 

N 

, f(x b- xi Ea 
j=n+l 'jxj 

(x-lb -x- 
1Zax 

g ij -h- 1t 

t2 
(gij-h-1)Cgij-h-2) ... (gij -h- t) 

1 Ný g ij -h-t-1 
x3 bi-x 

3=Z +i 
a ijxj ))1- -(i 

in 

i=m+1, ni+2, . (4.31) 

Goals (4.30). (4.31)"can be formulated in standard form for 

goals by adding the probabilistic deviational variables 

di., a+ for i where d-, d+ are iii 
defined in the same way and have the same pTobabilistic 

interpretation as in Case 2. 

When this is done, we have 

ngii 2- 
(gij-h-1) 

n xd) -9 13 
h-1) i' 

Ith) / h! ) ir (i -x 
j=l gij-h=l 

Tgij- dýj 

1 -1 _, 
N 

--7(xj bi-x i j= 
E 

+l 
aijx iy gij-h-1 n( (x i 

lbi-x 
i1Z aijxj) + 

i =n+l 

gij'-h-1 
2 (gij-h-1)(gij-h-2) (g13-h-t)Cý 

t=l 
g. 

- lb 
x- 

1Ea) 13 
i6 +d -d 

i=1,2,..., m (4.32) 

and 
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gij 
2- 

Cg ij -. h- 1) 
1. P �nxd 

-gij 
ZE /h IT (1 

j-i gij-h=l 
(gij- h-17T. ij(h) d, Oj 

11N 
- 7(. xj bi-�E 

+l 
a ij xj 

x_, 
N g. --h-1 (Cx- b-. Ea.. x. ) 'J 

-n+l 

91 3 -h- 1t 
Z2 (gij-h-1)(gij-h-2) ... (gij-h-t)( 

t-1 

Ng -h-t-1 + 
x bi-x 

j= 
E 

+1 
a ijxj + di di Yi 

n 
(4.33) 

where the g(h) are determined using the cumulants kij(h)'P 

nx. -h 
k (h- 1) 1EE gii (i -3)Ih>0 (4.34) ij (h) dýj xd 

(see theorem 3.1) 

and 

11 
=11 (4.35) 

ii(o) 

-1 ,2 ný 

Hence, we can determine the optimum values of the x's namely 

those which satisfy the goals (4.16), '(4.17) to the fullest 

possible extent according to their priorities with 

probabilities greater than or equal to preassigned values 

(see Fourth, page 35), by solving'the following transformed 

deterministic goal program: 

Find x= (xllx22**"XN) 

so as to 

lexico-min a= 
ý[gj(d-' )3'Eg2(d-)3,. . [g k(d-) 3 C9K cd-) 'I 

1 (4.36) 
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subject to 

N 9ij -Z-Ckij-h-1) nx 121) 
-9ij 

a -Z (gjj-h-lTr- j) (h) /h IT, (i 
x h-1 Oj i jýl gii- 

N 

I-xb -x Ea 2jii j=n+l ijxj N g. --h-t-1 
ec CX lb 

-x- 
1E 

IIII, i1i j=n+l., ijxj 

, 
gij-h-1 

"t E2 (gij-h-1)(gý. 
lj-h-2)... 

Cgij-h-t)C 
t=l 

'l N g. --h-t-1 + xibi -x i1E aijx i+ di-di Yi 
j =n+l 

(4.37) 

n 9ij 
2- 1 

(gij-h-1) 
nxd- 9ij 

(gjj-h- i j, 
P(h) 

- 
h! 11 (1 - j=l gij-h=l 0-, dýj 

1 -1 -1 
N 

- -, xb ý-x - E- a i'1 j=n+l 'j'j 
-1', 

N gih-h-i 
e( (x b- x- Z'ax) i'ii 

=n+l 'J i 

gij-h-1 
t E2 (gij-h-1)(gij-h. -2) ... (gij-h-t)( 

t=l 

1N gij-h-t-1 
+ d--d + xbxE aijx i 

n=n+l 

1=m+l, m+2,..., M 

xj 0 

0 d+ 

and 

9 (d-) k 'Epk 

+ 

(4.38) 

(4.39), 

(4.40) 

i=l 2;... 0f %Mpm+lpe*opm (4.41) 
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4.4.2 The Equivalent Signomial' Program 

Constraints (4.37), C4.38) are very complicated non-,, 

linear constraints but they can be transformed to, standard 

signomial form using the same method that was used in subsection 

. 
3.4.2. When this is done, program (4.36)-(4.40) is equivalent 

to the following signomial program: 

Find x= (xl, x2l,.,,, x N) 

so as to 

lexico-min a Ig 1 Cd-)], Cg 2 (d-)] gI gK (d-)] 

K :5M (4.42) 

subject to 

-1 -ng ij 2 
-(gij-h-1) x C1 

- 9ij 
Yi 

I- 
Yi zE (gi. -h-l)-! 

(ij(h) /h! ) 1T (1 - -) 
I[ 

, 
j=l gij h=l I dýj , xj 

gij-h-1 gij-h-l 
t 

i(z ij +E2 (gij-h-1)(gij-h-2) ... 

+ gij-h-t) zij + yildi - yild. 

i=1,2,..., m (4.43) 

N 
bi 1x 

zij +bi1 
j= 

E 
+1 

a ijxjt (4.44) 
n i=1,2 m 

pij + zij C4.45) 

9- -(g h: ý 1) -glj n 13 13 
E2d 

jýl g -h=l 
(gij-h-IT. f i (h) dýj J 

g. . -h-1, 9ij-1 1j ,-, t +E2. (gjj. -! h-1) (gij-h-2) ... C 
t=l 

g., j-h-t.; l 
gij-h-t) z ij + Yi diyd 

i=m+l, m+2,..., M (4.46) 
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N 
b-i xj zi bi 1 

j=z 
a ijxj bi1cx (4.47) 

ij + 
n+l. 

+1zI ý-l 11 j=1,2,. . 
ýij 7 ij 

,,, :-, -iI- (4.48) 

fI 
Xp Zjj, zjj, pij, fij 0 i=1,2,..., M, M+lte.. Pm 

(4.49) 

0 d- + d-. d + 

ýj, 
di" 1 

(4.50) 

where N 
ba 

3-j 
xi 

zij j=n+l 
x i=1,2 .... Im 

z 
j=1,2,..., n 

rij ij 

N 
Ea ij, j (4.53) 

zij +C 
x i=m+l, m+2, ... 9M 

j=1,2 .... ,n 
z (4.54) pij ii 

c is a large positive constant and ý 4. CO 

Constraints C4.44), (4.45), (4.47) and'(4.48) are in standard 

signomial form Also, on substituting. in (4.43) and (4.46) 

for i'P as functions of x and carrying out the summation j(h) 
in the left hand side, the constraints (4.43) and (4.46) are 

also seen to be in standard signomial form. 

(4.44), C4.45) and (4.48) are in posynomial form (see 
definition 5.3). 
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It is Worth noting that the constraint set C4.43) (4.48) 

have the same properties as those of the-constraint set 

(3.108)-(3.115) stated in page 39 . Also the above 

signomial program can be solved by the algorithm presented in 

Section 5.8. 

4.4.3 Case 6: ' All' aij's Have Chi-square. Distributions 

To consider the particular case when all aijIs 

for i=1,2,..., m, m+l,..., M; j=1,2,..., n, n+l,..., N, have 

2 
x distributions, we note that this case is equivalent to 

Case 5 with' n=N.. Hence the transformed deterministic 

goal program is: 

Find x= (Xllx2l***'xN) 

so as to 
lexico-min a= 

ýCgj(d-)3 rgK(d-)] *C92(d *', 'Cgk(cl )]-I -l" 

K :9M (4.55) 

subject to 

N gii 
2- 

(gi j- h-1) Nx -913 

(g. h-l)! 
[(i'llh) 

/h! ) d 

j=l gij-h= ij j( dýj xi 

1b 
X-1 1 9, -h-1 gij-h-1 

(b i- xi+E 2t(gij-h-1) (gij-h-2) 
t=l 

(gi. -h-t)(g. x. 
') 9 -h-t-1 

+ d- - d+ 
Jý 1jii= Yi 

(4.56) 
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N gii 
2- 

(g ij -h- 1) N iEE 
-- V- Cij Ch) hl! 1 11 

j=l gj-h=l 
Cgij-h 'T* dýj 

1 -1 gij-h-1 

e- 
jbixj 

C Cbix-') 
gij-h-1 

+E2t (gi -h- 1) Cg -h- 2) i 
t=l 

g 3. ] -h-t-1 
(gij -h-t) Cbix i+ di - d+. 

x 

d+-. 5 1, d- d+ i io i 

and 

i=m+lsm+29...,, M (4.57) 

j=1,2,..., N (4.58) 

i=1,2,.,., m, m+l,..., M (4.59) 

gk (d-) Ed i=1,2,..., m, m+l,..., M (4.60) 
iep k 

By applying the set of transformations set out in sub section 

4.4.2., the above program is equivalent to the following 

signomial program: 

Find x= (xlpx2l***IxN) 

so as go 

lexico-min a= 
(191(d-) (d-)],. Cd-)],...; [g (d-)] 3'Cg2 

*'-'Cgk K 

K :!; M (4.61) 

subject to 

N glj -Cgij-h-1) N -913 
y2 

111 /h 1) il 
j: l gi. 

l: 
h:! l Cgij -h- 

(ij (h) Oj xi 

g -h-1 9ij-h-1 
(b X-1) ij +E2t (gjj-h-1)(gjj-h-2)'*-' 

t=l 

g.. -h-t-1 (gij-h-t) (bix i+ 
'Yi di Yi di 

i=li2,..., m (4.62) 
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9. Ccr jj -h- 1) -9ij 0N N 1] 
/h 

xd) 
E cgij-h-1) I I 

-ýh=l 

[ 
Ci'llh) 

j=1 9ij 

-1 
g 13 -h-1 

gii- h-1 
t Cbixj +E2 Cgij-h-1)(gi. -h-2) Pij 

t=l I 

.. (gij-h-t)(b. x- 
1) gij-h-t-I 

y -1 d- - y- 
id + 

j 

i=m+l, m+2,...., m 

+I X-1 1 pij 2i 

xi pij 

0 :5 di ,di :51, didi 

where 

gk (d-) di 
iep k 

1-1b x-1 pij Z- -Z ij i=1,2,..., m, m+l,..., M 

j=1,2,..., N 

(see Appendix A) 

and 

n 
4.5 The Approximate Distribution of Zax. 

j=l ij j 

=1 

(4.63), 

(4.64) 

(4.65) 

(4.66) 

(4.67) 

(4.68) 

In the previous section CCases 5 and 6) our transformed 

deterministic goal programs were obtained by using the exact 

distributions of the variables E akjxj pk=1,2,..., m, m+l,..., M 

where aN X2(s ) and the x are decision variables. In kj kj 

this section, we prove that Sengupta's transformation [62,70,671 
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in which the, exact-distribution of Ea ki xj is approximated 

by a central X2 distribution whose_first. two moments agree 

with those of the distribution of Za kjxj does not lead to 

a solvable program because the parameters of the approximate 

distribution depend on the decision variables x as will be 

shown below. 

Since a kj ý, X2 (S kj) 

and E(akj) = Skj variance (a kj) 2s kj (4.69) 

then akj can be written as the square of a normally distributed 

variable [42, page 380 1: 

22 
a, jxj 2ý= (n. jrj) where r Y'X 0 (4.70) 

Ij 

k=1,20.0 �m, jn+1, """ �M 

=1 � 2, ... �n 

and the nkj are independent normal variables with finite means 

and variances, then the input coefficient a kj has the 
2 distribution of n for j=1,2,..., n 

, kj 
Since the rjIs are non-stochastic decision variables and 

the nkj's are. -assumed'to be independent, then the (kkj are 

independent normal variables with expectations mkj and 

variances vkj , i. e. 

kj Eki rx-i E (Mkj) 

vrx iI-A kj (4.71) 

2 
Vkj - variance 

kj 
B( ý 

kj 
- Mkj) xi variance (n kj) 

xiB kj (4.72) 
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A ki and Bki are constants such that: 

A= (4 s43 28 s 
2. 

+ . 
10 s+ 42) /4s3 kj kj S kj kj kj kj kj 

=S C(4 s43 28 s2+ 10 s+ 42) 4s3 Yj S, 12 B kj kj kjS, Ski kjki kj ki 

(see Appendix Q. 

We have now 

n2n2 
Pk 0ýa kjxj z-- ,Eý= E- T kj Cq kj + lnkj ) (4.73) 

j=l kj j=1 

where 

- 1ý m/ /V-k 
j=A/A Mkj' 0 kj kj kj (4.75Y 

q kj ki 
m kj) YrVkj (4.76) 

k=1,2,..., m, m+l,..., M 

j=1,2,..., n 

We note that qkj follows the standard normal distribution 

(i. e. , qkj %, N (0,1) ). 

Hence, the characteristic function of P (t) is given by: 
11, 

k ýPk_ 
212- itpk n-1 00 'tVkj(qkj+"lkj) --f qkj 

d qkj (t) E(e 11 C (270 e Pk j-=l 

(4.77) 

since the integral in (4.77) 
, 

is equal to 

11 
[2Tr/(l 2it ve 

it Vk 
Jj mI /(1-2it V kj 

kj (4.78) 

then: 
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n itV ;2 
E ki ki 

n1 j-1 (I 2it V ki) -7 
ýp (t) (1 - 2it, Vkj e 

k j=l 

i=/ ---i (4.79) 

From (4.79) allthe moments of the distribution of Pk can be 

derived since the 
-T-moment 

( "J ) is 1421 T 

Ill 
= (_i)T -. d T 

(D (t) 

tTI t=o (4.80) 

We note that the characteristic function (4.79) of- Pk is 

closely related to, that of a non-central x2 distributed 

variable 1411 

Sengupta suggested approximating Pk by a central X2 

distributed variable Pý using the first two moments from 

the characteristic function (4.79). 

n 
-2 

11= 
mean (Pk) = 

.2 
Vkj +V kj Tnkj 

n2 
Ex (A +B (4.81) 

j-1 j ki kj 

n 
variance (P 2V2+ 2V 2 -2 

.2 k) , j: l kj kj mkj 

I,., n 222 
=2EX. (2 AB+B (4.82) 

j=l 3 kj kj kj 

if we define the variable P' such that, k 

p 'Xý2 s- kk 

then the first two moments of Pk are: 

s 2s (4.83) kk 

I 
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By equating the first two moments of Pk with those of 

PI where is to be determined, we have from (4.81),, 
-Pk kPk 
(4.82) and (4.83) 

n 
.2 rV ki "' Vkj Tn 
kj Pk Sk (4.84) 

j=l 

22 -2 2 
. (4.85) 2'E Vkj +2V kj mkj 2 ?k sk 

j=1 

2 Hence P is approximately X (s with 
ý 

k/Pk k) 

222222 E Vki +2 Vki. Tnkj 
'. Zx3 (2 

-A kj B kj +B ki) 
?k 

j=i 
--- 2-=l (4.86) n 

i2 n2 
Zv kj +V kj kj E X. (A k* +B 

j=l j =l- 
kj 

n2n22 
Ev+VExA+B 

s W-1 
kj kj kj 

Ej=, 
i( kjý kj 

(4.87) kn22 
i2 �n 22 '2 E Vkj +2 Vkj kj) Exj (2 A kj B kj +B kj)] j=j =i 

From (4.87), we find that sk (the 
n 

parameter of the 

approximate distribution of Pk=Ea kjxk 
) 

is'a, function of 

the unknown decision variables xj j=1,2,..., n and 

consequently, it is impossible to transform the chance-goal 

set (4.18), (4.19) into deterministic goals by using the above 

approximation. 

4.6' A Numerical Example 

Suppose we want to determine xl, x2 satisfying to the 

fullest possible extent 

H: 

i! 0, 
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a 11 x1+ a12 X2 20 (4.88) 

xi +X2 b2 (4.89) 

with probabilities greater than or equal to: 

Y1 = . 75 Y2 -3 * 50 respectively, 

where -all, a 121 b2 have x2 (2), x2 C4), X2 (10) distributions 

respectively and goal (4A8) has first priority and (4.89) has 

second priority. 

Solution 

Step 1 

transform probabilistic goals (4.88), (4.89) to deterministic 

goals in standard form as follows: 

From (4.56) the following goal corresponds to goal (4-88): 

1 
.. (x1 

e- 
10/x 1 

+' ( 
Zx 1) (X 

x2)2- 10/X2 

2 

x22e_ 10/x 
,2 (l + 

1) + d- d+ =ý . 75 (4.90) 
2 -x 1x211 

where 
1 (4.91) if (0) 12(0) 

and 
2 -1 

12(l) K 12(l) (1-1)! z 912 x dý2 1 

x 
2( 

x 
(4.92) 

2) From (4.9 ) the following goal 'corresponds to goal (4.89): 

x+x+ d- -d+= F- 1 (. 50) = 9.34 (4.93) 1222 
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Step, 2 

since the goal (4.88) has the first priority and (4.89) has' 

the second-priority; -then our transformed deterministic goal 

program is: 

Find x Cxl., x2) 

so as to 

lexico-min: a cd-), cd-) 12 (4.94) 

subject to 

xI -10/xl 2x 1x22- 10/x 2 
-) e+ -ý )( -) e (7772 

1- x 2ý 
72-xl- 

)2e 
-10/X 2 (1 + 

10) 
+ d- - d+ = . 75 (4.95) 

x2-xi x2 11 

x+ d- -d+9.34 222 (4.96) 

x 'd ,ddId0 (4.97) 1' XV 1122 

St2p 3 

from sub-section 4.4.3, the following signomial goal program 

is equivalent to program (4.94)-(4.97): 

Find x= (XlVx 2) 
so as to 

lexico-min a (d 1) , Cd 2 (4.98) 

subject to 
xx22 2x 1 1 

X, x2 
P12 (x 

I- x2x 1- x2 

10 + 

x+d1-d1 
75 (4.99) 
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+ . 
10 x1=1 (4.100) 

10 X- 
1=1 (4.101) 2 

x+ -X + d- -d+ .=9.34 (4.102) 11 222 

x A, -x d (4.103) 1 21 12 2' Pll' P12 ý-" 0 

and 

Step 4 

using the algorithm presented-ý, in Section 5.8; -the global 

solution is: 

x --, 3ý-34 X2 6 

di'- 0' d1.19 

d2 0d2=. 0 

The detailed solution is given in Appendix E. 



70 

4.7 ' Conclusion 

Using the method presented in Chapter 3, in this 

chapter, we have presented: 

(1) the transformed deterministic linear goal program when 

the right hand side coeffic-ients of the goals have x2 

distributions, 

the transformed deterministic non-linear goal programs 

when some or all of the input coefficients have x2 

distributions, 

(3) the signomial. programs equivalent to the transformed 

deterministic non-linear goal programs, 

(4) a numerical example to illustrate the various steps in 

arriving at the transformed deterministic goal program 

and transformi-. Ag it to the equivalent signomial program 

when the goal set contains a mix of probabilistic goals 

(see Section 3.6), - 
(5) Sengupta's transformation to obtain an approximate 

TI 2 distribution for Z a.. X. when aX and proved 
j. lý 13 J 

that this-transformation does not lead to a solvable 

program. 
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f" rA T% MITI T11 rI 

NONLINEAR GOAL PROGRAM ING 

5.1 Introduction 

It -ýias shown in Chapters 3, and 4 that CC GPs tudy 

is closely related to nonlinear GP . As, yet, there are no 

special nonlinear, programming methods for solving nonlinear 

goal programs. 1.7he 
field of, nonlinear programming 

has concentrated on,. the solution of problems with a single, 

objective function. Additionally, there is, in general, no 

way to guarantee finding the global optimum, for a given 

problem unless that problem, -is of a very special form. 

Experience in single objective nonlinear, programming has 

indicated that [371 

(i) a particular method may perform well on one problem but 

poorly on a slight modification of that problem; 
(ii) the results obtained by any method are, highly dependent 

on the starting point or points used to initiate the search; _ 
(iii) one can only hope to obtain a -local optimum unless the 

problem is of a very special form. 

The only attempt to employ the methods for nonlinear single 

objective programs to solve nonlinear goal programs was 

presented by Ignizio (see n6xt section). 

In this chapter we employ, for the first time, a condensed 

geometric programming technique [31 to solve nonlinear goal 

programs. 
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The formulation of subprograms of a goal program as 

generalized geometric-programs, and, a, ". sequential double 

condensed geometric goal programming" algorithm are presented 

in Section 5.7 and 5A respectively. An illustrative 

numerical example which demonstrates the formulation and the 

procedures of the algorithm is presented in Section 5.9. Our 

algorithm is constructed by, combining a "sequential goal, 

programming" algorithm (which was given in Section 1.3) with 

a "double condensed geometric programming algorithm (which is 

given in Section 5.6). Therefore, the condensed algorithms a; e 

necessary, for the double condensed geometric algorithm given 

in Section S. S. 
I 

The effective factors which lead us to use a double 

condensed algorithm are given, in Section 5.3. Also, the 

fundamental concepts of the theory of geometric programming and 

the technique of condensation, which are the basis. of the 

double condensed geometric algorithm, are given in Sections S. 3 

and 5.4. 

In the next section, modified Ignizio methods to solve 

nonlinear goal programs and their most important drawbacks are 

pre sented briefly. It will then be possible to compare those 

methods with the algorithia given in Section 5.8. 

5.2 The''Existing Modified_Methods for''Soly'ing Nonlinear 

Goal Programs 

Ignizio modified both the Griffith & Stewart and the 

pattern search techniques to solve nonlinear goal programs. 

We present below a brief outline of these methods., 
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1. 'The modified Griffith & Stewart method [32,41 : 

This method is based on transforming a nonlinear function 

into a linear function'by using the Taylor series-of the . 
function about a given point and ignoring all terms of higher 

order than the first, and then using the modified simplex 

algorithm [50,371. 

This method suffers from some of the drawbacks listed in 

Section-5.1 and, in addition, has a set of drawbacks peculiar 

to tile method itself: 

(1) as yet, there are no proofs of convergence to a local or 

a global solution when this method is used; 

(2) the linear approximation,, as mentioned above, is only a 

"good" approximation to the nonlinear function in the 

"neighborhood" about the starting point (initial point); 

(3) one must employ either a numerical or an exact method of 

differentiation in the performance of the algorithm (which 

in turn implies that the problem must be amenable to such 

methods). 

2. The modified search method [36,41 : 

This method avoids'the, third drawback ofthe above method. 

It is based on an extension of the search method of Hooke & 

Joeves which is one of a class of search techniques known as 

accelerated search methods. Such methods increase their 

search step size if previous searches have been successful and 

maintain or decrease the step size otherwise. The pattern 

search method is based on constructing sequential patterns, which 

contain a number of trial points. In each'trial we, pert'urb'each 

of the decision Variab"es and evaluate the'achievement function. 
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This method, also, suffers from drawbacks, the most important 

of these are: 

(1) as yet, there are no proofs of convergence to a local 

or a global solution by this method; 

(2) it depends on the perturbation step size, as yet there 

is no certain method of obtaining the best perturbation 

step size' P 
(3) there is no effective rule to terminate the search; 

if the starting point is a local optimal point, then the 

pattern search will not progress. 

S. 3 Geometric Programming 

Geometric programming is considered a relatively new 

technique, developed for solving nonlinear programming problems. 

Geometric programming algorithms have recently been improved 

so that they now provide powerful tools for solving nonlinear 

programming problems in general. 

The original mathematical development of geometric 

programming used the arithmetic-geometric mean inequality 

relationship between sums and products of positive values [31. 

This section provides the fundamental definitions and concepts 

of geometric programming theory, and a summary of the existing 

methods used in practice for solving generalized geometric 

programs. 

The first work on-geometric programmingýwas carried . out by 
Zener in the early sixties, later generalized by Duffin, 
Petersofi., Passy, Avriel, Dembd and others [29,, 3,241 . 
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5.3.1 Definitions and Background 

Definition 5.1: Feasible points or feasible solutions; 

feasible regions. 

A feasible point or a feasible solution is q point that 

satisfies a particular set of constraints. The feasible 

region of a set of constraintsis the set-of its feasible 

points 141 .I 

Definition 5.2: Consistent constraints. 

A set of constraints is said to be consistent if it has at 

least one feasible solution [231 

Definition 5.3: Posynomial and signomial functions. 

A real values positive function p(x) is called a posynomial 

if it is given by-"' 

T 
p(X) E pt(x) 

t=1 
T ýtj a t2 a tN Ectx1x2... xN 

t=1 
TNa 

tj EC 11 x 
t=l t j=l j 

and xi .4ct>0 
j=1,2 N 

t=1,2 T 

where the terms pt(x) are called monomials or single-term 

posynomials, the exponents at, are arbitrary real constants and 

the coefficients ct are positive constants. 

When the coefficients ct are not restricted to positive 

values, the above functions (5.1) are called sýgnomials or 

generalized posynomials. A signomial may be considered as 

the difference between two posynomials [33 . 
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Definition'5; 4: ,A regular geometric program. 

A regular geometric'program is defined'as, the following 

primal problem in the variables x 

minimize, g oCX) (5.2) 

subject to 

gi(x) :5 (5.3) 

Ixi. 
0ý (5.4) 

T 
where 

gi(x) Z Pit(x) 
t=l 
TiNXa 

t11 
cit 

j% 

C. t'ý7 0 
L 

Let z ln xi , 
then the above primal program may be 

transformed into an equivalent convex program [24,231 

Definition 5.5,: A dual geometric program. 

Associated with every primal or regular geometric program is 

a dualýgeometric program and vice-versa. A dual program is 

defined as the following linearly constrained nonlinear 

mathematical programmiqg problem in the variables w 131 

MTi Citwio itý 
maximize d(w) nnW (5.5) 

i=D t=l it 

subject to 
T 

0 
a normality condition: EWt (5.6) 

t=l 0 

MTi 
and'orthogonality conditions: E 

''. 
E Wit, a itj_= 0ý. 

i=l t=l 
(5.7) 

T 

Ilio =. 
t: lwit 

i-'1,2,..., M (5.8) 
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note that there are exactly (N + 1) independent dual constraint 

equalities, and exactly T independent dual variables w 

one for each term of the primal problem, 

m 
ET 

i=O 
(5., q) 

Definition'S. 6: the degree of difficulty, 

The degree of difficulty of a regular geometric programming 

problem (primal, problem) is defined by the relation: 

degree = the number of terms - the number of decision 

variables -1 

= CN, + 1) (5.10) 

if the primal problem has"z'ero-degree I of " difficulty, the global 

solution of the dual problem'and hence the global solution of 

theprimal problem is obtained by solving the system of linear 

equations (5.6) and (5.7). 

If the problem has degree of difficulty greater than zero, 

the corresponding system of linear equations has no single 

solution 1241 

Definition 5.7: Tight and loose constraints. 

An inequdlity constraint, g(XA) :50, is said to be tight at a 

A, if it becomes'an equality gCý) =0 ''at that given. poini X 

point. It is said to be loose if it becomes a strict inequality, 

A g(X) <0, at that point., 

If a primal constraintý is loose,, at optimality, , 
then, all 

dual, variables associated with that constraint, -will, 
ýe, zero at 

optimality [3, theorem 3.7.1.. -In this case, we-cannot, obtain 

the global'solution of the dual problem and in turn of the 

primal problem. 
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Def . init-1on-'S-. 8:; A generalized geometric program. 

The following primal program: 

"minimize 
go W 

subject to 
gi Cx) -. 5 a 

xi> 
10 

a. t3 where gicx) a itlit IT X., 
t=l j=1 J 

i=0113,. 
*O, 

m 

and a it ýi1, 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

such that cit ý,, 0 

is called a generalized geometric program. When ait equals 

+1 for all i, t, then the program (5.1l)-(5.14) is a 

regular-geometric program. 

We can rewrite the above program in the following form: 

minimize: PO(R) QO(R) 
subject to 

pl(i) Ql(R) '(5.16) 

x>0 j=1,2,..., N (5.17) 

wh. ere pi(l) and Qi(x), -s i=o, 1,2,..., M: areýposynomials- 

(see Definition 5.3)., 

Definition' S. 9: ' ,A quasidual progr=. 

Corresponding t1o, the primal program in Definition (#e 

generalized program) there exists a quasidual program defineý 

as the following li'n'ear iyl- c ons t-r 
11 
ai 

- 
ned nonlinear program in 

the variables W 
iý. 
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MTi Cit wio ýait 
w it 

'70 

Maximize d(w). ao 
ý 

11 , II 
Iw 

i=P t=l it 

subject to T 
0 

a generalized normality condition: Ea 
ot, wot a0 

t=l 

and the orthogonality conditions: 

mT0 
ý- E', E ait aitj wi t -= 0-, j=l,, 2.,..., N (5.20) 

i-D t=l 

Ti 

w 10 
E cr it w it i=0,1,. * O'm t=l 

(5.22) 

where ao = +1 if g0 (X. ) >o (5.23) 

Go =g O(x <0 (5.24) 

and x is a stationary point of the generalized program 

(5.11) - (5.14) [231 

the value of ao will usually be known in advance for most 

problems. Since the orthogonality'conditions are homogeneous, 

changing the sign of ao simply reverses the signs of all 

other quasidual variables w Hence, a wrong initial guess for 

ao will only cause all the quadidual variables w to 
I 

have 

the wrong sign, (all will be negative) but they will be correct 

in absolute value. 

S. 3.2 The Existing Methods used in'Practice for Solvin 

Generalized Geometric Programs. 

The three principal methods used in practice for solving 

generalized geometric (i. e., signomial) programs are: 
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a method based on duality theory; 

a method based on partial condensation; and 

a method based on double condensation. 

The first method is based on duality theory, where one caný work 

with the linearly constrained quasidual program'instead of - 

attempting the direcr solution of the primal program. Passy, 

Wilde , Blau &'Wilde; Duffin'& Peterson and others [31 have 

made attempts at'generalizing some of the prototype, concepts 

and theorems of regular geometric programming-in order to 

Include programs with negative as well as positive terms. They 

have found, that most of the important prototype theorems are 

not valid in the more general, setting, [24,3,23,1 

The second method was presented"by Avriel & Williams Ell and 

is based on approximating a generalized program by a sequence 

of regular programs where the sequence of optimal solutions of 

the regular pyograms converges to a local minimum of the 

generalized program (except in pathological-cases. The details 

aýre given in Section 5.5). This method forms the basis of 

the third method. Similar algorithms to the Avriel & Williams 

algorithm have been developed independently by Broverman & 

Felerowicz & McWhirter., Pascual and Ben--Israel 1231 but for 

somewhat smaller classes of programs and without convergence 

proofs. 

The third method is due to Avriel, Dembo and Passy [2,29,231 

It is a combination of the'Avriel & Williams algorithm (the 

second method) and a cutting plane algorithm [40 , by double 

condensation of all primal inequality constraints, in which all 

the constraints are ultimately condensed into monomials 
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(single-term"posynomials). The-details of this, method are 

given in, Section 5.6. 

By, using algorithms developed for the, first, method, we 

can obtain a stationary point for the quasidual program when 

the, degree of difficul. ty is small,,, 13,, 231 , which is also a 

stationary point. for the primal program- In, order'Ito guarantee 

that this st4tionary. point is a, local, minimum, higher order 

conditions should, be checked, [87,741,. Also, to, guarantee a 

global minimum one must find the smallest of the primal local 

minima, Passy & Wilde [601 called this procedure 

pseudominimization. 

However, these algorithms will in general fail to-find a 

stationary point for the primal. program in those cases where some 

or all of the constraints, of the, primal program are loose at 

the solution. 

-The algorithms developed for the second method will be 

subject to the shprtcomings, associated with the solution of 

regular geometric programs, namely large degree of difficulty 

and loose constraints (see Definitions 5.6 and 5.7). 

The third method avoids the shortcomings of the second 

method by solving each regular program of aýsequence of 

regular programs by the cutting, plane-algorithm., 

Additionally, a "better" local-minimum of the generalized 

program may be obtained by, using the Phase 1 algorithm of this 

method. ' We give details of this in Subsection 5.6.2. 
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S. 4 'A Condensed Geometric Programming Technique 

This technique is constructed on a. pa_rticular type. 9f 

transformation based upon the arithmetic-geometric mean 

inequality. It was called condensation by Duffin who- first 

suggested the technique, 133 . The basic underlying principle 

of condensation is to approximate a multiterm. posynomial 

function by a monomial or a. single-term function. Later,, we 

will see that this concept becomes very, useful since the, ýý 

logarithmic transformation of a single term, 'multivariable 

function results in an equation linear., in, the logarithms of the 

primal variables. 

The objective of this section is to present a-cutting- 

plane algorithm to solve regular geometric programs. Therefore,, 

to be'gin with, the definitions and theorems related-to the 

method of condensation and properties of condensdd posynomials 

will, be presented. Then we, will demonstrate how condensation is 

used to approximate a regular geometric program by a linear 

program. 

5.4.1 DefihitioTis and Theorems 

Definition 5.10: the arithmetic-geometric inequality. 

If ulp u 20 **00 un are arbitrary non-negative numbers and 

61., 6 2" .... 6n are arbitrary positlive weights satisfying 121 

n 
a normality condition: E 

.6 

then 
n 
TT LA 

I-- 

:- 

(5.25) 

(5., 26) 
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Defin'ition'S. 11: regularity conditions. 

A set'of constraints gi(x) :51, i=1,2,..., M is said to 

be regular whenever Ell : 

(1) the feasible set x= {x1gi(x) :9 

is compact and nonempty. 
A 

(2) 
-for, 

each x such that I(xA) {ijgiCý) the 
A 

cone generated by the vectors Vgi(x"') ,i cI(x) is a 

pointed cone, i. e., the origin is not contained in the 

convex hul 1 of V gi 
JA) 

,ieI 

Q) 

. 

Condition. 1 is masily satisfied. for generalized geometric 

programming problems by placing upper and lower bounds, on each 

decision variable. It follows that the feasible set, is compact 

and nonempty. Condition 2 is included to rule out the-possibility 

of singularities occurring on the boundary of the constraints 

set. A generalized geometric problem possessing an optimal 

solution which is positive will satisfy condition 2. 

Condition 2 can always be satisfied by adding a large 

positive constant to the primal objective function [3,233. 

Definition 5.12: quasi-minimum. 

The vector x* is said to be a quasi-minimum of the problem: 

minimize 

subject to 

90 W 

g(x) ý 0, (5.27) 

where g_, gý, ..., g,, are real-valued continuously 

differentiable functions, if x* 

i=1,2,.,.., M and the necessary ci 

i. e., a quasi-minimum is a poi nt 

conditions for a local minimum. 

satisfies gi(x*) ?0 for 

onditions for a minimum J481 
-I, " ý' 1 1. ý -ý -I-1. '' 

x* which satisfies necessary 

Alternatively, we can say that 

a point that it not a quasi-minimum cannot be a local minimum. 
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If x* is a quasi-minimum, then goCx*) is said to be a 

quasi-minimal value Ell 

Lemma S. 1: 

Suppose that the constraint set C5.27) is regular and let 

go(x) be anon-constant affine function and B(x) the 

boundary of the feasible set x. If x* is a quasi-minimum 

of problem C5.27) then x* E B(x). II 

Proof: [1, page 1131 . 

Definition 5'. 13: stable and unstable quasi-minimum. 

Suppose that the constraint set of problem (5.27) is regular, 

then xI cB(x) is called a stable (unstable) quasi-minimum 

[13 if and only if Vg 
0 

(x*) is (is not) contained in the 

interior, of the cone generated by the vectors vgi(x*) 

i cI(x*) , where I(x*) is the index set for which gi(x*) 0 

Theorem 5.1: 

, 
If the constraint set of (5.27) is regular and 

X* cB(x) is a stabl'e quasi-minimum, then x* is a local 

minimum of problem (5.27). 

Proof: [1, page_1341 . 

Defini'tion 5.14: condensed posynomials. 

For the set of weights 6 such that 

T 

ý. 
ýla t6t .>0 (5 

1 t2 -ýS) t 

the arithmetic-ge6met-ýicýinequalitý'(see Delinition'5ý10)''- 

tAes the form 
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TTu 
Eu 11 1( 

t 

t=l t t=l 
6t (5.29) 

consider the posynomial g(x) , 

a ti ut (x) = ý, - ct r1, x� (S. 30) 
t=l j=I 3 

We define the condensed posynomial g(x, x) , formed at the 

point x>0 as: 

Tut (X) t 
g (X., X) = r, (6 

t=l t 

Ni (x) 
0 11 x (5.31) 

j=j j 

where 
Tctt (x) 

t=l 6t (X_) 
(5.32) 

T 
E'a tj St(X) j=1,2,..., N (5.33). 

t=l 

It is easily observed that g(x, R) is a monomial for given 

x>0 We will choose the set of weights 6 (R) such that: 

u 
(5.34) 

As a direct consequence of the arithmetic geometric inequality 

(5.29), we have that: 

g(x) ; -* 
-9(X, R)'. iI-.. I- (5.35) 

It is possible to arrive at the identical approximating function 

(condensed posynomial) using acI ompietely'different approach*' 

In that approach, we approximate a posynomial function by a 

first order Taylor-Scries [231. 
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Properties of condensed posynomials 

The following lemma gives the relationship between 

condensed and regular posynomials. 

Lemma: 'S. 2: 

if g(x) is any posynomial function and j(x, R) is 

the condensation of- g(x) at the point then: 

(a) jCx, i) gcx) 

ýax ex 
cc) gWZ: i Cx " 

R) 

Proof : [23' page 31,1 . 

if 

j=1,2,. oepN 

for all x>0 

(5.36) 

(5.37) 

(5.38) 

5.4.2 Linearizing Geometric Programs Using Condensation 

In this subsection we demonstrate how a regular geometric 

program may be approximated by a linear program using 

condensation. Consider the regular geometric program specified 

in Definition 5.4. We can transform it into an equivalent 

program with a linear objective function. Instead of 

minimizing go(x) we iaY' define-an additional variable, xo 

such that 
A 

x0 90M (5.39) 

and then minimizeý'x"-. From, inequality (5.39) '9'*'0(x) 
0 

provides a positive'lower bound on the variable x0 and 

therefore inequality (5.39) will, be satisfied as a strict, 

equality at the optimal solution since x is being minimized 
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let 9 CX). =. g (x) 
:51 (5.40) 

0x0 

where g'OCx) is the objective function of the regular program 

of Definition 5.4. Define the-set x as: 

-IX= {x 10 C XýB :5x :ý XUB 2 

Here x 
ýB 

and XýB are upper and lower bounds on the 3j 
variables x respectively. 

We will refer to the following program as g p. 

minimize X0 

subject to 
gj(x) :91 

<x ýB: 5x :5 xýB 3ii 

i=0,1,2,..., M 

j =0,1,2, ... �N 

(5.41) 

(5.42) 

(5.43) , 

(5.44) 

where gi(x) are posynomials for i=o, 1,2,..., M. gp is 

equivalent to the regular geometric program 'in Definition 5.4 

in the sense that the optimal solution to both programs is the 

same, provided that the variable bounds are chosen in such a 

way. as not to be active at the optimal solution. 

Consider the condensed program, j-p(R) 
, obtained by 

condensing all the posynomial constraints of gp to monomials 

at the point R- 

Fýp JX) minimize x0 (5.45) 

subject to 
N 

gi(x, x) ai(x) 
. 
11 x :51 (5.46) 

LB UB 0<xj, :5x !5x j=o, 1,2,,,,, N (5.47) 
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It follows. from inequality C5.38) that a point, x. , which 

satisfies-the gp constraints C5.43) will also satisfy the 

constraints CS. 46) of j-p(R) 
, i. e., 

gicxF"I) :5 gi(XF) :5l i=o, 1,2,..., M (5.48) 

In general the converse will not, be true., This implies that 

the feasible set of gp is entirely contained in and 

therefore the solution of j-p will generally not be a feasible 

po int for gp . In fact it can be shown by using inequalities 

(5.39) and (5.48) that 

gp x* ( up (5.49) 

where x* (gp and x* ( Fp- are the optimal solutions of 9p 00 

and gpQ respectively. 

TP-(R) will now be shown to be equivalent to a linear 

program. 

The natural logarithmic function, F(Y) = In Y, is 

monotomic increasing and defined for Y ý' 0 Therefore, the 

following program-will be equivalent to 

minimize in xo (5.50) 

subject to 

in ji(x, R) = lnýe 1- 
(R) +E ýij(R) in xj :50 

j=o 

: LYIýXýB :5 ln x5 ln XýB . 
(5.52) 

j 

This program is a linear program in the variable ln xV 

j=o, 1,2,..., N However,,: i't is not in a form suitable for-., 

direct application of the simplex method since the variables ln x-, 

may take on negative values. We therefore define new variables 
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such that 

z In x In xýB (5.53) 

ZýB ='ln',. XýB XLB 

and set z such that 

zz0 :gz :5 zýB jý' (5-55) 

Substituting the above in (5o5 O)-(5.52) gives the following 

program 

LB 
-minimize z0+ In xo (5o56) 

ject, to 

ji(z,, R) zýln 6i(R) LB +Z In xj 
J=l 

N 
z S0 i=oPi'-'M (5.57) 

j=o 

0z :5 zUB j=o, 1,2,... N (5.58) 

we note that: 

(a)' N 
in + Z, j (x) In , xLB In, gi(xLB, x) (5.59) 

j=o 

is a constant 

(b) In x 
LB_ is a, constant. 0 

We may rewrite the above program CS. 56)-CS. 58) as follows: 

minimize z 0 (S. -60) 

subject to 
N 

z-< 
T 1D 

- In gi Cx"; x) i=o, I' "M j=o 

(5.61) 

0z :5 ZýB (5.6-2) 
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We will refer to this program as LPCR) since it is a 

regular linear program in the upper bound variables z and 

is coýstTucted about the point R. LP(R) is solved 

efficiently using a modified version of the dual simplex method 

[811 , which accounts f or upper-bounded variables. 

5.4.3. ' A'Cuttiftg Plane Algorithm for Sdlving-a Regular 

Geometric Program (gp) 

In this subsection a cutting plane algorithm is presented 

for solving the regular geometric, program gp . This 

algorithm is based on Kelley's algorithm [401 for convex 

programs and was presented a second time by Dembo [22,23,23 

to solve regular geometric programs. As mentioned previously 

in Defiiiition 5.4, a regular geometric program may be 

transformed-into an equivalent convex program which therefore 

makes it amenable to any of the methods-available for convex 

programs suchýas the cutting plane'algorithm-*ý Although noted 

for its poor convergence characteristics [881 1 it has the 

following advantages for our particular problem: 

The convergence of-the cutting plane'algorithm is 

satisfied where: 

(a) the constTained-minimum value of the objective function 

of the gp is positive, 

(b) the gp constraint set is compact (since there are 

upper and lower'bounds on each variable). 

(2) Using suitableitransformations,, -tlýeýproblem, to, -be solved 

at each iteration, is; aIinear program a-s-described below. - 
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Consider the gp 

minimize x0 (5.63) 

sub ject to, 

gicx) :51 (5.64) 

XýB :5X :5 XýB 0< (5.65) 
, 

The algorithm proceeds as follows: 

-,., 
Step 1 

0 

Using an arbitrary starting point, x linearize 

the gp as described in subsection 5. 4.2 and form 

LP (xo) 

set m 

Step 2 Solve LP(xm- 1 Call the solution z m and compute 

xm by equation (5,53). 

Step 3 Evaluate the gp constraints at xm 

(a) If g (x") 1+C i=l, l, 2,. p M (5.66) 

where e. is some, small, predetermined positive 

number, then xm is optimal. 

(b) Otherwise define 

g, (x) =. max 9F(xm) gF( (5.67) 
F 

4 Step 4 -(as' 'in'D' ition 5.14) Z 
(X) t xM Condense ga efin 

(x, xlý) which 'in tUr3i is transformed to obtain 

into the linear constraint' 

Cz, R) :5 0 g (5.68) 
11, 1 I 1 Z 

...... Add this constraint, to the tableau, of 
M-1 

, LP(x .,,, and 

My- problem iname-the new LP(x,, Set m+l ;, ,. return 
. 

to, Step 2. 
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In Step 1 the gp is approximated by a linear program 

L P(xo) for which highly. efficient algorithms have been 

developed 1183 If the point xm I obtained by solving 

LP (x M_ 1 lies outside the region described by 

gi(x) i=o, l,..., M I then Step 4 generates a modified LP 
LB 

problem that excludes z111 Czm - ln x"' - ln x) from its 

feasible region. Thus a series of LP's with progressively 

.. 
smaller feasible r. egions, are solved until a point xm is 

obtained which satisfies C5.66), at which stage the algorithm 

,, terminates. 

This type of algorithm is known as a "cutting-plane" 

. algorithm and the constraints generated in Step 4 are known as 

", cuts", since they cut off part of the feasible region of the 

'approximating linear program at each iteration. 

In order to see that this cut does not cut off any 

, section of the feasible region of gp I we observe from 

inequalities (5.48) that for any point, xF feasible for gp 

we have' 

M gt(x (5.69) FIX gZ(xF) :5 

XF will also be feasible for the cut. At each iteration 

m of the above algorithm we are required to solve the linear 

programming problem LP(x M-1 However, the problem LP(xm) 

solved at, iteration M+l differs from LP(xm only in that 

it has an additional constraint. Use of the dual simplex 

method for bounded variables [811 enables the transformation 

L P(X M-1 to LP (xm) to be carried out in such a manner 

M-1 
, -'that ihe:: optiia*l solution to L'P(x 'is "used'as'the starting 

M 
: pointýfor the solution of L, P(x Thus, -ýonly a modest 
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amount of computation is required in moving from one 

iteration to the next Call the details 'about the computational 

advantages of the dual simplex method for bounded variables to 

solve a sequence of LP Cxm) are given in [233 

'S. S A 'Partia-Ily Cohdehs*6d Method 'for So1ving 'Generalized 

Geiometricý 'Pro*grams 

In this section we present a, partially condensed method 

as one of the methods*used in practice for solving generalized 

geometric programs, since it forms the basis of sections 5.6 

and, 5.8. We consider the generalized geometric program as in 

Definition 5.8: 

minimize P 
O(R) -, QO(R) (5.70) 

subject to 

PQ (R) i i=1,2, *oo9M (5.71) 

xj >0 j=1,2,. eo, N (5.72) 

The above program is equivalent to the following program which 

will be referred to as ggp 

minimize x0 (5.73) 

subject to 

Pi(x) ,-I 
(5.74) 

1+Qicx-T 

0<x ýB 
X. :5 xýB j=o, 1,2,..., N C5.75) 

subsection 5.4.2). (s 

It is noted that ggp has -an unconstant affine 

objective function and in turn, a quasi-minimum Of. ggo p 'belongs 

to the boundary of the feasible set x (see Lemma 5.1). 
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Avriel & Williams referred to the above program as a 

'complementary geometric program' and their version differs 

f iom ggp in that' no 'bounds are' placed on the' variables x0 

However, 'for convergence of their algorithm Cgiven below) it 

is"required that the feasible set 'x be compacvand bounding 

th'e'variables' as above is one way of guaranteeing this. 
CO 

Let QiCx, x denote the monomial obtained by condensing 

the"posynomial (1 + QiCx))''at the point xCP). The following 
(P) 

program obtained by substituting Qicx, x for' (1 + Qj(x)) 

-in . '9 9p, will be referred as gp 
(P) 

(P) 
minimize x0 (5.76) 

subject to 
Pi(x) 

(5.77) 
Qi(X, X(P)) 

0<x ýB' 
x'. :5 XYB j=o, l', 2,..,, N (5.78) 

This program has the following interesting properties [21 

-g P(P) is a regular geometric program, since the functions 

x, x(P))) are posynomials. (Pj(x) Qi( 
(2)-' Any point xF satisfying the constraints of gp(P) will 

satisfy the constraints of ggp This can be observed 

by the condensation inequali. ty. (5.318) 

Pi Cx F) (5.79) 
l+'QJXF) "' Qi(XFIX 

Inequality (5.79) implies that the feasible set of gp(P) 

is, entirely contained- in, g g, p and -, 
therefore: -the optimal 

(P) 
solution to ýp will be. a feasible but not necessarily 

an optimal p. oint, f or, ggp Under th, e regularity conditions 
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(see Definition 5.11) AVTiel & Williams proved that the 

sequence of optimal solutions to, gp(-P) problems,, where gp(O) 

is constructed using a point feasible for ggp, and gp(p) 

p=1,.,, is constructed using the optimal solution to gp 

converges to a quasi-minimum [1, theorem 5.31 which is a 

local minimum of g-gp (except in pathological cases, when a 

quasi-minima. is, an unstable minimum (see Definition 5.13)). 

Duffin & Peterson [231 speculate, however, that convergence 

t, o an unstable, minimum, will, be rare, owing to roundoff errors 

in, computer arithmetic. 

5 5.1 The Avriel &'Williams 'Algorithm 

Step 1 Construct gp(O) as described in (5.76)-(5.78), 

using the point x(O) which is a feasible solution 

to 99 p 
i. teration i 

Step 2 Let x(') be any optimal solution to gpC'-') 

Step-1 Construct- gp(') using the point"' x(')' 

Put 1 i+1 

Stepi4, - Repeat steps 2 and 3 until convergence is obtained. 

It is noted that at each iteration a regular geometric 

--program 
is solved and therefore the algorithm'may be used in 

ý, -E6njunction with any algorithm'-for solving regularýgeometric 

problems. 

: 5., 5.2 Termination 'o'f Avriel Williams Algorithm 

ýDembo [231 suggested the following, simple criterion, to 

'terminatethe above. algorithm: 
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Stop when. we obtain xoCi*l) such that 

(i) Ci+l) 
0' 0 :5ý F- (5.80) 

Xci) 0 
Where 6 is some small positive number. Other, different, 

criteria could also be used to obtain convergence. But these 

criteria are complicated and from the point of view of 

computational efficiency one would probably solve the program 

using the above criterion and then test to see if the solution 

obtained (x*(i+11 ) is in fact a local minimum. The necessarY 

conditions for, a local minimum are those of Kuhn-Tucker [48,743 

If these conditions are not satisfied by the,. above.. solution then 

the solution procedure should be continued using a smaller value 

for e in (5.80). 

Sufficiency. may be tested for by using the second order 

conditions described in Wilde and Beightler [871 , page 52). 

A'Double Condensed Method for Solving Generalized 

Geometric Programs 

5ý6'. 'l--Phase 2 Al'gorithm 

As mentioned previously (see'sub - sectio n 3.2). this 

method provides a complete algorithm for solving gg P, by 

combining the Avriel & Williams algorithm Csee subsection 5.5.1) 

with the cutting plane algorithm (see subsection 5.4.3). This 

,, is-done by double condensation of the generalized program 

sinc'e (i) a generalized'p, rogrami"ls condens*ed to a regular 

program then (ii) a regular program is condensed to a monomial 

program which is equivalent to a linear program. 
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However, Avriel & Dembo and Passy found that there is possibly 

a more efficient way, of combining the above two. algorithms 

whereby convergence to aggp solution is accelerated. This 

acceleration technique is based on the following observations 

pertaining to the above two algorithms: 

(1) The sequence, of optimal solutions of gpCP) programs is 
(P) feasible for ggp and thus each such solution x (gp 

0 
Js greater than orýequal to the, optimal solution to the 

g gp i. e. 

X*( 9p 
(P) 

X*Cg gp 0-0 

M (2) The sequence of optimal solutions of Lp (x programs 

(cutting plane iterations) converging to a particular 

gp 
(P) 

solution is not feasible for the-, ,gp (P), 
and 

thus 

x*( L P(xm)) x*( 9 P(P)) (5.82) 
00 

At. some stage, during the course of, proceding to a solution of 

gp(P) the current optimal solution x* L p, (xm)) may be 
0 

feasible for ggp This point may have a lower objective 
(P) 

function value than the solution to gp itself and usually 

P-) it, will serve as a 'better' point than the gp optimum, for 

the formation of g p(p*"') 'Hence, `- this'-a-lgori'thm with the 

accelerati=technique proceedsbythe-following steps: 

Let lutibn of' gpCP)'- obtained xm9P indicate aný, optimal so 

after m cutting plane iteration. 

Step 11 Set p1 

iieration p 
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Step 2 Using the point xOIP which is a feasible solution 
CO, P) to gg p to construct gp as described in 

Section'S. 5. 

Step 3 Linearize gpCOIP) and form L-p(xo, P) as described in 

subsection 5.4.2. 

Steg_4, Set m- 1 

Step -5 Solve Lp Cx M-"V) Call, the solution xm'P 

Step 6 Evaluate the, gg p constraints at xm") 

(1) if 
ýgjcxm"P) 

>1_+ IE for any value of i 

define g (x)-= max{ x 
F 

9F( 9, (xm'9) > 

M! MIIP xpx 

if gi(xm'P) 1+E and 0 
-0 

x 
for all i=1,2,..., M 0 

the convergence criterion is not satisfied. 

In that. case , put p= 

XORP XM, P go to step 2. 

mjý Mvp x0 P_ x0 
'l, +E and if gi(xMP) 

x 
"0 

the convergence criterion is satisfied. 

M9P In that case, test the point x 
mop (a) if x satisfies the necessary conditions for 

a local minimum, go to step 8. 

M, P (b), if x does not'satisfy the necessary 

conditimis'o"f a ikal'minimum a small'er-value'of 

is cho s en, -'ih the'ýconvergence, criterion-and,,, 
0P 

x ---, go"to. step 2. put", p P, +'ýA x 

the number-of cutting plane iterations needed to 
ý: obtain the optimal solution of gp(P-1) 
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'Step, 7 Condense gz(x) at xral 1, - (see Def inition S. 14 

to, obtain gj: x, x""P) which, in turn, is transformed 

into the linear constraint 

0 

Add, this cons traint to Lp Cxm- 1 P) name the new 

Lp program Lp(x M'P put''M m+ 1" 

go-to step S. 

M'P SteO 8 X. is the optimal solution' of ggp stop. 

reasons thatwill be made obvious in the next subsection, 

the above algorithm to be referred to as the phase 2 algorithm. 

S'. 6.2 Phase I Al'gorithm 

, 
_The 

phase 2 algorithm of the previous subsection requires a 

starting point which is a feasible solution to the g gp 

constraints: 

Pj(x) 
i-o, 1,2,. . 3, 

M (5.83) 
+ Qi(x) 

I nmany'cases, determining a value for x which satisfies 

--ý(5ý83)'for all- i=o, 1,2,...,, M m4y, be as difficult as the 

solution of the g gp itself. The authors of [21 determined 

-,,, 
the sufficient condition to obtain a feasible solution point to 

, 
'(5.83) (see the theorem given below). They'presented a 

'p aSe12 algorithm which, under their condition, is guaranteed 

to yield a solution of (5.83). Unfortunately, in general, the 

Except in pathological cases, xmIP is un'stable point 
5'. 5) (see ýSection- 

-of, the-.. similarities between this-algorithm, and. ýthe ,,,, 
Because, 
corresponding Lp algorithm for fin'ding-an'initial fe-asible 

they called-it; the p4as e1 alg9rithm.. c--., 
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conditions necessary to ensure convergence of phase 1 do not 

hold the condition referred to above is sufficient for 

identifying a feasible solution point, but not necessary, i. e., 

there are points satisfying inequalities (5.83) which do not 

satisfy that condition. 

Consider the following generalized geometric program, 

called ggp (w) , formed fro m the ggp problem of Section, 5.5,: 

M 
9 g, p Cw)' minimize Il wi (5.84) 

-1=0 
subject to 

Pj(, x). 
:5w1 i=o,, l., 2,,...., M CS. 85) 

+ Qi(x) 

w i=o, 1,2,..., M (5.86) 

0<x ýB 
:5xx 

ýB j=oJ, 2,..., N (5.87) 

"-The reason for introducing ggp (w) is made obvious by the 

theorem below. 

Theorem 5.2 

The point x x* satisfies inequalities (5.83) if and 

only if the optimal solution to ggp(w) is (X*, w*) 
M 

where wi, 
1=0 

-Proof: [23, page 611 

local minimum of _g gp Cur) is equal,, 
_, 'to 

the global 

minimum, thený the-solution of 99 Cw),, using, the., phas e2 

algorithm may be guaranteed-to, yield, a feasible, point , 
to,,,, 

inequalities (5,. 83).,, In, ca'se's where,,, g g, p (w). has more, than', one 

minimizing. point, weýknow, the desired solution,, is, One of, them. 

However, convergence to this'particular solution-is not 

guaranteed. 
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The steps of phase 1 are summarized as follows: 

Step 1- Let Xoý be any'point. satisfying 

0<x ýB 
:5 xj .5 XýB j. =o, 1,2,.,,, N (5.88) 

'def ine 

Step 

st6p 

Pi W) 
W? max .11 i-o 11., 2 )m 

.11 1ý ý, 

ý 11 
+ Qi (xO ) 

(5.89) 

The point (xO, wO) , where -W 
0- (WOO WO, OSOJW 

0 
01M 

is thus a feasible solution for ggp(w) . 

Consider the value of w0j' for i-o, 1,2,.,., M: 

(1) if w? '= 1 for all i, then phase 1 terminates, 1 
and 'xO solves (5.83). 

(2) if for at least one'value of i W? >, l', I 
then we solve' 99 P(w) 'using the'phase 2 algorithm 

with initial point (2, wo). 

Examine the optimal solution (x*, w*) to g gp(w) 

(1), if w*i 1- for, all i, then , x* will be a 

solution to (5.83), 

(2) if for some i w! >1, then the algorithm 

has failed to converge to a global solution of 

ggp(w) 

There is one further application of the phase 1 algorithm. 

I Assumeýýthat during the course of seeking a solution to a gg p 

the phase 2 algorithm converged to a local but not global 

minimum of the problem. We could attempt'to improve on this 

solution by constraining the objective function to'a value less 

than that attained previously and', 'ýblviýi", th'6"r6ý'ulti'ng-, p'rbblým 
ig', 'tlie phase 1, -al* orithM. "If- liis'ý-` 1-c0 nverges It. o- a-*f e'a us ing 9 sible 
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solution, of the restricted problem this solution may be used 

as a starting value for the phase 2 algorithm,, which will then 

converge to-a. 'Iýetterll local minimum 

5.7 Th6, Totmulation Subprograms Of *d 'Goal Program as 

Geiieraý-I. i: t6d, 'Gei6i66, tri: c- Programs 

In the next section an. algorithm, will be presented to 

Solve a nonlinear goal program in a sequence of nonlinear 

subprograms (see Section 1.3), each of them having a single 

olijective (i. e. single objective function). This algorithm 

requires the subprograms of a goal program to be formed as 

9 efieralized geometric programs. In this section we discuss some 

of the difficulties which are encountered in formulating the 

subprograms of a nonlinear goal program as generalized geometric 

'programs. 

Equalityý, Goal' Set 

From Section 1.2 the general goal program: 

-Find x (xllx2l**'xN) 

so, as, to 

ie-xico min a 19lCd_, d+)1,. ý. *y19 k (d_i'd+)39.,. C 

KM (5.8'9) 9K (d 'd 

iubject to + X) td bi i-; 1,2,..., M C5.90) fi( d 

xj, di, di Z0 j=1,2,..., N (5.9'1) 

Where' x and d+ are decision var iables an d deviational 
'ýP i 

,.,, variables re spective 
"1y. 

it that the goal set in the 

standard form (5.90) are equality constraints. Since the only 
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constraints allowed in formulating a generalized geometric 

. 
program are inequality-constraints; therefore we must convert 

the equality goal constraints to inequality constraints before 

formulating subprograms of the goal program as generalized 

programs. 

Proposition S. 1 If: 

the th 
goal of gaol set (5.90) is:. 

fj(x) + di - di bi (5.92) 

di is include d in an achievement function (5.89) and 

d. is not included;, and i 
(iii) d; 7 is minimum in the optimum solution, then the goal 

(5.92) is equivalent to: 

bi fi ()c) + d, 

Proo'f: the proof, follows immediatelyfrom'the definition 

of the. deviational, variables d- ,d+ (see Section 1.2). i i- 

(5.93) 

-Results 
5.1 

Since di is a minimum in the op, timal, solutlion, then, in 

ýh e op t 

If 

-an 

al so 

di > 

di 

di 

d+ i 

lution: 

0 and 

0, and 

0 an d 
= ýf i (X) 

fj (x) < bi 

fi (x), =, b_i 

Z 
then d", ='O (5.94) 

, 
then d+ 70 (5.95) 

'j- 

then dt, 0ý' 

(5.96) 

'Proposition S. 2 

Let the goal C5.92), if 

d. is included in an-achievement function C5.89) and 

di is nolt included, and 
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d+ is minimum in the optimal solution, i 

then the goal C5.92) is equivalent to:, 

fi(x) - di+ bi (5.97) 

Proof: The proof follows immediately from the definition of the 

deviat ional variables also, 

Results* 5.2 

Since d+ 'is a minimum in the optimal solution, - then 

inthe optimal solution: 

if di >0 and fi(x) > bi then d0 (5.9.8) 

(2) if di =. O and fi(x) = bi then di0 (5.99) 

(3) if di =0 and fi(x) < bi then di >0 and 

di = bi fi(x) C5.100) 

5. '7.2 Equality Constraints Related with Goal Set 

There are some special nonlinear goal programs which have, 

equality constraints related to one or more goals in standard 

form and which do not represent goalsý(i-e- do not include 

deviational variables d9d), as, in programs: 3.107 

3.122- 3.1303,4.42 - 4.50 and 4.61 - 4.66 

Since an equality constraint g(x), is exactly 

-equivalent to the pair: of inequality constraints, -. g(x) 2: -, l -, and- 

g(x)ý,: 5 1, any, equality constraint can, be-replaced by two 

inequa, lity. constraints 133 ., -'This however-, has-two main-, - 

disad%rantages. [231 

-(l).,.,,, -, The size of the problemis greatly increased-. 

(2)r I difficulties-. ý, may-result,. since the. above approach 

generally leads to two rows of the, linear program (see the cutting 

plane algorithm) having identical coefficients., 
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Generally one of these inequalities is redundant and -, . 

,, the equality constraint may be replaced by one inequality 

, constraint which should be tight at the optimal solution. If 

-, the incorrect sense ofýthe inequality is chosen (i,. e. -the 

,. constraint is loose at the optimum) then the problem must be 

, S'olved again using the opposite sense of the inequality. Choosing 

-, the correct sense of the inequality may be accomplished-if the 

equality has some interpretation, by means of which one can 

%replace it by an inequalityýusing logic based on the nature of 

the problem. 

For equality constraints which do not have-such 

interpretations as (3.112) and-(3.113); we must consider the 

equality constraint replaced by inequalities, written both ways 

51 The entire problem must then be sol. ved'using both forms 

of the constraint and the correct sense of the inequality 

deduced from the computer output (see Appendix D, E). 

'S'. -7. '3 'Bounding Problem Variables 

In accordance with. the requirements to form generalized 

geometric programs, all problem variables must be bounded from 

above and below by positive, bounds. For some applications,, most 

of', the variables will b. e-bounded by physical considerations. 

I However, when no accurate bounds on the variables are available 

artificial ones must be assumed.. This; must be, done with caution 

and optimal solutions examined to see if any variables are at 

their bounds. If s'ome variables are on their artificial bounds 

at-the" optimum then, these'- bourids, have', been' incorrectly chosen 

the problem must be s9lve&-again with a le-ss'. restricting set, of, ý 

I ., Vq. "IýýI,. bounds. 
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,", III--+ Bounds of the form 'xj., dij di 0 for all 

1=1, -2,..., M 'may .b e' replaced bIy xjj di, d+ -2t. e, where 4E is 

S-'ome small positive number, in order to ensure positivity of the 

variables. The problem is then solved and if the solution 

.. contains variables xi. 4 di, di such that, x j, or di or 

dC then these variables may be assumed to have an optimal 

value of zero [231 The correct choice of a value for e 

depends on the problem being solved, however in most cases [221 

10- 6 
was found to be suitable (see Section 5.9). 

'5.8 A Sequential Double Condensed Geometric Goal Programmin 

Algorithm 

In Section 1". 3 an algorithm for solving a general goal 

program, by, solving a series. of single objective programming, - 

subprograms was given. Section 5.3 gave an efficient algorithm 

to solve a generalized geometric program as a nonlinear single 

objective program. Thus by simply combining the above two, 

, algorithms$, we have a'complete algorithm, for solving nonlinear 

goal programs. 

Let the general goal program (see Section 1.3) be: 

Find- N) x (Xl"x2' 

ýso 
as to. 

lexico-min aCg1 (d_ d+) IC 9k Cd-, d+)-],. E 

g "(d d+)]-) -K K C5.101) 

..., subject to Gi,: 'fi(x) 4. d. b i=1921 ... pM (5.102) 

d_1 ;dz ý'Nv' x j! i j=1; 2,., 
1ý., 

(5.103) 

'M 
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Using Propositions. 5.1 and 5.2, the above program is 

equivalent to the following program. 

Find x Cxl 31X 2,1-I'xN3 

so as to 

lexico-min a 191(d-td+)-3, C92 (d-., d""*)1j..., Cg-kCd-9d + )II c 

gK Cd -, a+ )-] IK-. 
5 M (5.104) 

subject to 

fiW+ d-i b i- (5.105) 

(X) - di I f. bf i'ým+l,, m+2,,,.,, M (5.106) 

X0 
-- 

d2d (5.107) 

,, From the above program, the subprogram associated with priority 

level k (see Section 1.3) is: 

minimize ak 2" Wd Id+) (5.108) 

subject to 

where 

t dt kbt 

f t, 
(x) -d+ i' : 9-btt 

9 (d-, d+) a* ss 

d-, d+2: 0 

s=1,2,.. . �k-1 

(5.109) 

(5.1,10) 

(5.111) 

(5.112) 

t, t belong to the set of subscripts associated with 

those goals included in priority levels 1,2,3,..., k 

Since equality constraints-(5.111), represent the accomplished'-', 

levels of goals 1,2,..., k-1 'it is correct to say that: 'ý'.! 

a* gs Cd d+) 
S 

Jn turn.. the above program--isýequivalent tothe following, 

, program: 
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min a Cd-, d+)* k gk (5.114) 

subject to 

ft Cx) + dt bt (5.115) 

ftt (X) - dt, * ; -> bt, (5.116) 

g Cd-sd+)* :5 a* s=l,, 2,, k-l 
ss 

(5.117) 

X, d-, d+ý: 0 (5.118) 

we denote the, deviational variables vector of dimension M 

by d such that: 

d= {d-t, d+t, ; -> 01 t=1,2,..., M; tl=m+l,, m+2.,.,,, tt M1 (5.119) 

and define the decision-deviational variable, set Cx, d) by: 

0 ,c xýB :5 xj :5 xýB (X, d) x for all j and 

IE d, -. 5 d UB for all d where c -)- 0 

-Now, 
program (5.114)-(5.118) is equivalent to the following 

generalized geometric program ggp (see Section 5.5) and will 

b e , r6ferred to as (9 9P)k 
. . 

(9 9P)k minimize do 

subject to 
P tk(xld) G k1 t 1+ Qtk(xld), 

(5.121) 

0 .5x 
LB 

: 5, x : 5'XUB (5.122) 
UB 

Ed-. 5 d (5.123) 

where""' t 1,2,.. * indicates the set of subs cripts 

associited 'with the constraints of the, k th sub- 

program. ,! 
Vhen t-o; the. constraint is: - 
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gk d 'd 
+ 

gok-, d0 where: 

o gk (d-, d 

(see subsection 5.4.2). 

Now, our algorithm proceeds as follows': 

Set k=1 

S_tep 
_2 

Establish (9 9P)k as in (5.120)-(5.123) 

Step 3 Find a feasible solution point to (5.121), by 

guessing or by the phase 1 algorithm (see subsection 

S t'ep Solve (ggp) k by the phase--2'algorithm (see 

subsection 5.6.1) and obtain'a local minimum solution 

to (9 9 P) k 

-Step 5 Use'phase 1 to obtain a "better" local minimum 

to (9 9P)k 

(1) 1f possible find a 'Ibetterllýlocal minimum point. 

We consider this'point an optimaI's'olution, (x*, d* )k 

and a* is the optimal value' of 9k Cd-, d + 
k 

C-2) if it is impossible to find a "better" local 

minimum point, we consider the local point found in 

Step 4 as the optimal solution point (x*, d* )k 

-Step 
6 'K' Set kk+f ý'If. go to step 9. 

Ste ,p7 Establish (g g R) k 

Go to step 3 

Step 9 The solution (X*, d* )k is the optimal solution for 
, 

the original nonlinear goal program. 
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This algorithm ha's the following properties: 

(1) By using this algorithm, we guarantee to obtain a local 

or a better local minimum point for each of the subprograms. 

In turn, i ii g ives detailed information about the accomplishment 

for each objective according to their priorities. 

(2) The double condensed method does not suffer from the 

drawbacks of the' Griffith & Stewart and the 
-pattern search 

methods (see Section 5.2). 

(3) If for the nonlinear goal program subprograms 1,2,.,,, k-1 

are linear programs and subprograms k, i+l, K are 

nonlinear programs, then by the above algorithm, we can solVe 

subprograms 1,2,..., k-1 by the simplex method directly. 

T is-, saves effort when solving problems by hand. This aspect 

will beClarified in Section 5.9 and Appendix D. 

5.9 Example 5.1 

I. 

In order to demonstrate' the*procedures of the algorithm 

9 Yiven in the previous section, we solve again, the following 

example which was presented and-solved by Ignizio [37, page 1633. 

Nonlinear goal program 

Find x= (xl. %X 2) 

so as to 

lexico-min a '{(d3)p' (2d 1 

subject to 

xxd 16 A 121 
22 (x - 3) +, + _x +d-d 

G3 :x1+X2d3d36 

(see., Figure 5.1). 

ý5 
. 125) 

(5.126) 

(S.. 127) 
1ý.. " -ý 
(5.123) 
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Solution 

Step 1 From C5.125)-C5.128')t the 1 st subprogram is: 

minimize a 1, =d+ (S. 129) 

subject to 
. -d +X +d x =6 (5 130) 3 i 2 3 I . 

X1, x2p d3 d30 (5.131) 

ýThe, above program is a linear program. In turn, using the simplex 

method (see the third, property of the algorithm in Section 5.8),, 

ttie'optimal value of objective function (5.129) is: 

a* d0 13 (5.132) 

Step. 2 

From (5.125)-CS. 128) and CS. 132), 
- 
the 2 nd subprogram'is: - 

minimize a 2d +d 21 
.2 

(5.133) 

subject to 

x1x2+d1d1 16 (5.134) 

(xl-3) 2+ 
x2 d- 22 d+9 2 (5.135) 

x1+x, +d. 3 7d3= 6 (5.136) 

d30 (5.137) 

xi I dip di 2: 0 j =1,2 (5.138) 

1=1,2,3 

From Section, 5.7 and (S. 113), prog ram (5.133)-(5.1'38) 

is equivalent'to: 

minimize, a2.0 2d d 1 -. 2 (5.139) 

subject to 

x1x2d 16 (5.140) 
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2- 2 
x1+ -X2 - 6x, + d2 :50 (5.141) 

x+X-d 123 6 (5.142) 

d (5.143) 

where e0 

3* From (5.120)-C5.123), the 
'program 

C5.139)-(5.143) is 

equivalent to-the following gen eralized geometric program 

(9 9P)2 where: 

(9 902 minimize d0 (5.143) 

subject to 

P 12(x, d) 2d, +d2 
G 12 1+Q (X d) d 1 (5.144) 

,7 , 0 

P 22 (X, d) 16 G22 1x, d) 
xx+d 121 

(5.145), 

P (X, d) 32 
22 

x+x 12 G 32 '+Q32(x'ý') + 6x +d2 1 
(5.146) 

f 

P 42 (xd) X+X2 
G42 

+ 6+d 
51.1 4ý 7) 

3 

P 52 (xd) d +3 
G 1+Qr- d) 52 

(5.148) 

IE :sd :5 42 
0 

xd6 , x2,1 
(5.149) 

d 16 

d 2' J 

, where the bounds on the variables in CS. ' 149) are artificial 

ction S. 7., 3) bounds (see subse 
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Step 3 By guessing, we consider (x, d) O'l to be a feasible 

solution point to program (5.143)-(5.149) 

where: Cx, d) 0, do = 42, x1 -- 4. S3, x2-1.46, d1= 16, 

', I I .-" 

d2 .= 10, d3 

Step 4 Now, we solve (9 902 using the phase 2 algorithm 

(see subsection'S. 6.1) as follows: 

We consider the condensation of posynomials 1+ Qt2 

t=2.3,4 at the point (Ra) = (x, d) O'l 

xx 
6221(x, d) dý S. 222(x, d) 

Q22 . (. - --) 6221(x, d) 6222(x, d) 

1.8301 xi 
2925 

xi 
2925 (d 1) . 7075 

6x 
6321(Xid) 

d+ 
6322(Xpa) 

Q32 =(--)(- 
6321(x, d) 6322 

73104 . 269, 4.6593 x (cl+) 2 

6421x, 
d) d3422 (x, d) 

Q42 
64il(x, d) 61+22(ipa)) 

,, where the weights 6 0,1 are computed'at-JR; a) =, Cx,, d) 

'according 
to (5.34), for example: 

i. R 2 a (x,, d) 
, *2925 and 221 

(S. 150) 

(5.151) 

6 

(5.152) 

""ý22kAl' uJ 

Q12- and. 1Q-, are, not.., condensed -because-they am-- 52' 
ý-single terms. 



114 

a Cx, d) . 7075 etc. 222 CR .. 

CC) I I) 2. Thus gp will be the following program: 

minimize -d 0 

subject to 
1+'1 

gl2cx, d)' = 2dj(do)- + A2 Cd )- :51 2o (5.153) 

-. 2925 - . 2925 

I- 
II: I" 922 (X, d) = 8.7427 x, x2 (d 1)* 

7075 
.. 5 1 

(5.154) 

1.269 + . 269 
932 2146 x1 (d2) + 

. 2146 x_' 
7310 

x2 (d+) 269 
:51 122 

1.667 x+ . 1667 x1 942 2 (5.156) 

-1 + d1 952 3 
(5.157) 

Ptk(x, d) 
where gtk Cx, d) =- 

Qtk 

3. Now, we condense g t=1,3,4 into single tk 

posýynomiallterms at the p, o 
1 
int (X, (x, d)OI 

-- 76191 9991 
912 2.9358 Cd 1). (do)-* 1 (5.158) 

8.7427 x --. 
2925X- 2925 (d-)-* 7075 

:51 922 121 
(5.159) 

932z 1.5419 x 
1.149 

.6 Ix 
' 1882 (d + 269 

:51 22 
(5.160) 

i'ý5 6 3_ 2437 2904 xx 942= (5.161) 

and are single posynomial terms and do not 922 952 need 

to be condensed. 
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95Z= (10) 6 d+ 3 (5.162) 

(We assume E= (10) -6 see subsection 5.7.3). 

4. Using transformations (5.53) and (5.54) 

zo Ind - In 
0 

d LB 
0 z 

UB 
= 0 

In dUB _ In dLB 
00 

(5.163) 

'in x- ln x 
LB 

z 
UB 

- In x 
UB 

_ Inx LB (5.164) 

z2 In x2 - In x 
LB 
2 z 

UB 
. 2 In XUB _ In xLB 22 (5-165) 

Z3 In d1- In Cdl) LB 
z 
UB 
3 = In (d-)UB - In 1 (d-) LB 

1 (5.166) 

Z ln d+- In 42 (d+) LB 
2 z 

UB 
4 = In (d +) UB 

- In 2 (d+) LB 
2 (5. 

. 
167) 

+ 
Z5 In d- ln 3 

LB (d+) 3 
UB 

Z S = ln (d+) UB 
- ln 3 (d+) LB 

3 (5.168) 

We-ý obtain the program L P(O 

. min imize.. z 0 
(5;. 169) 

sub ject to 

912(zl . 7619 z3 -4.35 . 9991 zo 5 44 (5.170) 

9,2ýzl(ýla)) -. 2925 z, . 2925 z2 . 707 5 z. f- -20.0248 

(5-171) 

9,2(z, (x, d)) 1.1496 z, + . 1882. z . 269 2 Z4 21.7327 

(5.172) 

942(z., (x, d)) . 7563 zl,: ý,,, . 2437 
"lz2, 

s 15,, 05 19. (5.173) 

ý, 
2Cz, '( x a)) Z5 :5 0 (5.17J) 

0 z0 17.55 

0 zJ)z 21z, ý5 1 5.607 

0 z 3 -: 5 16. 588 5'. 175) 

0 :5z4 :s 16. 118 
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S., The. solution to the above program is 
., 

Cx, d) 

do 2.867., x 1. = 
'. 

3378 , x2 `2 6, d- 16 ,d+ . 00013 and 12 
d+ The values of the 3 'C9 902 constraints (5.144)- 

(5.148), at CXd) are: 

G12 11.1615 > -1 (5-176) 

G 22 ', 8876 <1 (5.177) 

G 17.8174 >1 (5.178) 3 2' 
G -1 (5.179) 42 1.0563 > 

G1 (5.180) 52 

6. Constraints G12, G are violated at point (x, d) 32, G42 

S6"we linearize G32 (see (5.67)) at the present solution 

(X, d), 

g (Z, (X, d) -. 99303 Z+1.994 z 00006 32 12 5 15* 599 

(5.181) 

Inequality (5-181) represents cut number. 1 

7. (5.181) is added to program LP(oll) to, obtain LP( 1.11) 

(xld) 2 The solution to LP('-")- is' 
_ 

do 8.371,, x11.3134, x21.5432, d1 ='162 d2 . 01143 

and d+ (10)- 6 
3 

The values of "'the (9 9 P) 2 constraints (S. 144) - (5.148) at 

are: -, (xv 

G 3.8241, > 1'. 12 (5.182) 

G 8876 <1 22 (5.183) 

G . 5204 <1 2 (5.1841 3 In 

. 4761, <1 ý942, ý (5.185) 

(5.186) 
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8. From CS. 182) we note that the first constraint of 
2., l (9 9P)2 is-not satisfied at the point Cx, d) Therefore 

we continue with constructing the cuts and solving the linear 

programs. After adding the- 8 th 
cut, we obtain the point 

91,1 (X, d) d0 18.2587, x1=3.7177, x2- = 2.27049 dl = 8.87079 

d2 52809 d3 

9,1 
9. The point (x, d) satisfies the (9 gp)2 constraints 

(o, 2) 
and may be used to form the program gp For (9 9P)2 

-convergence to the local minimum is shown in Table 5.1 [223 

Table 5.1 

Program (9 9P)2 Convergence to the local minimum 

-Phase 2 
Iteration 

Number 
of Cuts 

Next, approximating point + (dop xlP X2dI, d2, + d 3) 
Comments 

0 (x, d) O'l : (42,4.53,1.46,16 10, 0) 

1 8 (x, d) 9,1 
: (18.2313.72,2.27,8.87,. 53, 0) 

2 8 (x, d) 9,2 
: (l4.40,3. l7, '-2-ý. '82; 7. -2, . 01, 0) 

3 (x, d) 4,3 
: (14. '071'3'-08,2'. 91,7.04,0 0) 

4 4 ' 
Lodal 

4 3 (X, d) - , -111 : (l4-, -, --3 opti- 
mum 
(global 
also) 

From Table 5.1., point (x, d) 44 is a local minimum. It 

_., 
is'also a global minimum, i. e .,, that is'the best solution to 
ý9-9 P) (See Figure 5.1). 

Ste P5 Although we cannot obtain a befter solution to (g g P) 2 

than (x, d)4,4 (see Figure 5-1). we dem. onstrate the use of 

phase 1 below: 
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X2 
4 

8 

6 

110 
X, 

II 

Figure 5.1.. Solution', to, Example', 'S. 'l'. ' 
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5 
1d ýg 92 minimize II w (5.187) 

i=l 

subject to 

2d 1 +d2 
dw1 (5. l88) 

0 
16 

- :5w2 (5.189) 
x1x2 +d 1 

22 
x ' I 2 

+ :5w3 (5.190) 
6x +d 12 

x +X , 2 1 
:5w4 + 

(5.191) 
6+d3 

d+ 3 
:9w 5 (5.192) 

IE :5d 13. S. 
o 

C :! ý x, x' .dr. 6 123 
di 16 1 (5.193) 
d+ 10 2 

1 :5w3 i=1,2,..., S 
J 

Starting at the point do (13.5. x1 . 3, x 20 3, d1 =79 

d =OV d =0) 2.3 
Note that d0 violates c onstraint (5.144). 

Howevers starting point (x, d, w) 0: d 
0 

13.5, x =3, x =3, d-=7, 121 

., 
d2 d3 =O, w i =1.5, i-1,2,..., S satisfies constraints (S.. 188)- 

(5.193). 

2-0- : 'Solve (9 9P(w))2 by the phase 2 algorithm with initial 

feasible point (x, d, w) 0 as shown in Table 5.2. 
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Table S. 2 

Program (9 9PCw)')2 Convergence to a local minimum 

Phase 1 No. Next approximating point Comments iteration of cutsý (d d++ 
0.2ý 

d 
. 2', d, wl. V. 3... 4, w, ) 

-IIý, -01 
(l3, -5j, 3q3s, 7tOqOqZv2q2,2,, 2) 

, 
2 (13.5,3.087,2.999,0,0,1,1,1,1.014sl) 

21 (l3.5t3.08592.999ý6.7,5,, O., 09,1., 1,1,1.014,1) Local 
9pti- 
mum 

From Table 5.2 the local minimum point to (9 9 (w) 2 is: 

13.5, x 3.085, x 2.999, d- =-6.75, d+0, d+ 01 0-. 1223 

wW2 W3 = W5 W4 m 1.014 

Since w4 1.04 >1 then the algorithm has failed to 

converge. 
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I--- 
ý- ýýt, -- -, I -I -- 

In this chapter, we have, specified how to formulate 

-_a nonlinear goal. program as a sequence of generalized 

g metric programs. We have also reformulated the "double eo 

, condensed ge, ometric programming" algorithm (phase 2) into 

one which is easier to apply. Additionally, we have 

_presented 
"sequential double condensed geometric goal 

, programming" algorithm for solving nonlinear goal programs 

generally and CC GP programs in particular. 

Finally, the procedures of our algorithm have been 

_ihustrated 
by a numerical example. ' 
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CHAPTER 6 

CC GP AND THE DISTRIBUTION OF EXPORTS & IMPORTS 

ON THE MARINE PORTS OF THE EMERGING COUNTRIES 

Introduction 

It is not uncommon for most of the marine ports of the 

emerging countries to be suffering from congestion [25,551 in 

some or all of, the stagcs, in the turnover 1 of the goods they 

handle despite the fact that other ports in the same countries 

do not use all their available capacities. 

It is generally agreed that the most important factor 

leading to congestion is a misdistribution of exports and 

imports on the ports 125,341 

The problem of optimizing distribution of exports and imports 

differs in the following ways from traditional distribution 
. 1.1 

problems: 

because there are competitive and conflicting goals, as 

shown in the next section; 

, (2) often the amounts exported and imported and the transport 

prices are non-negative random variables [28,351 where 

the random variations depend on many factors such as 

weather, demand and supply, etc. 

',., The stages in the turnover of exports-are (i) transporting the 
exports from the exporting centers to the ports, (ii) storage 
at the ports, and, (iii) loading on. the quayslor wharfs. The 
stages in the turnover of imports are (i) discharging the 
imports on the quays or Wharfs, (ii) storage at the ports,, and 
(iii) transporting from the pOrts'to the importing centers. 

thelýport-of Al'xandria is usually congested 2 e. g. in'Egypt' e 
although the ports at Matroh and El-ghardaka have unused 
capacities [731 
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In Section, -6.2, we present a CC GP' model to optimize 

distribution of exports and imports on'the marine ports. In 

Section 6.3 the formulation and, solution to the model is 

illustrated by a numerical example. 

6. Z A C'C' GP model' for the 'distribution of ex-Oorts 'and 

im-06rts 

In general, any country is divided into exporting and 

imports centers. We consider that there are M centres. The goods 

exported and imported are classificated into groups according to 

their kinds Ce. g. general goods, food-stuffs, wood, ..., etc. ). 

In addition, the kinds of goods that are handled determine the 

kinds of quays, wharfs, storages that are required and the 

means of transport (rivers, roads, and railways) to be used [251 

We consider that there are T groups of goods., Further we 

assume that transport prices and the amount of exports and 
2 imports of some of the groups have exponential and X 

distributions respectively. 

We now define the decision variables and parameters used 

in the model. 

xijt The amount of goods, belonging to_group, t, t=1,2,... 'T- 
Which can b, e exported from the, 

-, 
3. 

th 
., exporting center 

th trough the po. r, t,,. i=-_1,2,, ., M; J-1,2, ..., N. 
ý 

A The amount, of goods belong ing,, to, 'group 
: t, t=1,2, . t 

which are r, equired. to be expprted.., W,, e as. sume. tha. t the, 
2 

quanti'ties At . -for,, t=1,2,. are, X, (S 
t random 

variables and. for...., t=! tl, +lt! +2,..,, T, are constants. 
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yjjt The amount of goods belonging to group t which can 
be imported through the j th 

port, to the i th 

importing center,, j-l, 2,. --, N; i=1,2, ***. %M. 
B The amount of goods belonging to group t, t-=1,2,..., T t 

which are required to be imported, we assume that the 

quantities Bt t-n. l, 2t..., t1 are X2 CS t') random 

variables and for t-t"+l, t'1+2, -. -, T, are constants. 

Yt" Is the probability that the amount of goods belonging 

to group t, t-1,2,..., tl (t1 <T) which are to be 

exported is less than or equal to the amount which can 
be exported. 

Is the probability that the amount of goods belonging to 

group t, t-lp2poeept" Ct" <T) which are to be imported 

is less than or equal to the amount which can be 

imported. 

th L The loading and discharging capacity of the' j port jt 
for the t th 

group of goods. J-1,2,..., N and 

-d The transport capacity to transport goods of group tj 

t-1,2, -,.., T either from the ports to t4e impprting 

centers or from the exporting, centers to the ports. 

C : -The price of transporting one unit of the goods belonging jt 

-to group t th either from the 
th exporting and importing center to the port or from 

th th the j port to the ý'i -exporting. and, importing 'center. 

We assume that th6ý'. c" )I M (M" -1-2- <M), land 

(nt<N)- areýexponentiallyý,, d3. st'ribuie'd*" 

random variables with parameters, a and that ijt, ij t 
for + the c i-m+l, m+2, *.., M; j=n'l, n+2,..., N are ijt 

constants. 
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ct : The total cost of transporting the goods belonging to 

group t. 

: The probability that the transport cost of goods 

belonging to group t is less than or equal to Ct 

Goals related to the amount exported and imported 

If the decision maker wants to export amount At and 

import amount Bt of goods belonging to group t, t=192p... 9T 

such that the probabilities of exporting amount At 

, t' and of importing amount Bt are 

Yt and Xt respectively., While at the same time minimizing 

the. occurrence of congestion, these goals can be written as 

follows: 

MN 
Pr x ijt IAtyt t=1,2,..., tl (6.1) 

MN 
EZ xijt a At 

i-1 J-1 
(6.2) 

MN 

PEr yijt B t) xt' tl-l 
,, 
2,... St-, (6.3) 

iml j=1 

MN 
Bt yi t=t l I+ 19 t11+22 .... T jy 

. . 
(6.4) 

Since A for t-1,2, ... t t t' and B for, t=l ' 2, t" are 
22 

X (St) X (St') random variables respective 11 yo then the following 

transformed deterministic', goals in standard fro m are eqx! ivalent 

to goals (6.1)-C6.4). 
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M 

E 
N 
EX+x X+ - F- 1 CY (6.5) ijt ttt Jul Jul 

M N 
-+ E E xijt + at - at ýA t t=t'+lttl+29 .... T 

Jul Jul 
(6.6) 

M 

- .: 
N+ 
: Yiit + Yt - Yt MFC; k d t=1,2,..., tII (6.7) 

I Jul Jul 

M 

E 
N+ 

-b B t=t"+l., t"+2 . T +b IY 
Jul t t .9 ,, iit t Jul 

, (6.8) 

(For goal s (6.5), (6.7)l see Section 4.3; for goals C6.6), (6.8), 

Section 1-2). 

n ere 

F (Yt and F (Xt) are the inverse functions of the 

cumulative functionsýof the variables X2 (St) and 

X2 (StI) respectively. 

an d yt are the lower levels of, the amount's of, goods 

belonging to group t that cannot, be exported,. 

(i. e. that cannot be arrived to the ports from the 

exporting centers or arrived to ports and cannot be 

loaded) or arrived at the importing centers, with 

probabilities (1-Y and respectively. " tt 
*They represent the blocking in'the-ports or in"the 

means of transport. 

and - t 
the lower level y+ are S of the additional amounts of t 

goods belonging to group t that can be exported 

or imported, with probabilities t ýand,, X 

respectively. _, - 
(See third section 3-3). 
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and bt are the amounts of goods belonging to group t 

that cannot be, exported or arrived at the importing 

centers. They represent the blocking in theports or 

in the means of transport. 

a and b+- are the additional amounts of goods belonging to tt 
group t that can be exported or imported respectively. 

The'loading and discharqing goals 

The purpose of these goals is to minimize the occurrence 

of congestion (in any port, of any group of goods) arising from 

the'loading and discharging processes. These goals can be 

formulated as follows: 

M+ 
(xijt + yijt) + Ljt - Lit = Ljt j=1,2,..., N (6.9) 

t=l 2 ... iT 

L it and Ljt are respectively the under-achievement and the 

over- 
I- 
ach 

I 
ievement of the loading 

, 
and discharging capacity of goods 

th 
of group t in the j port. 

The 'transport goals 

The purpose of these goals is to minimize the occurrence 

of. 
1congestion 

arising from the transport capacities. The'y are: 

MN 
(Xijt + Yijt) + dt dd t=1,29..., T f(6.10) 

jtt 

Where 

d and ý'd are respectively the under-achievement and the over- tt 
achievement, of the transport capacities in trans porting goods of 

group 
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The transportcost goals 

The purpose of these goals is to minimize the total 

transport cost between the ports and the exporting and 

importing centers given that the probability that the total 

transport cost of the t th 
group of goods is less than or 

equal to ct , is greater than or equal to t=1,2,..., T. 

These goals can be written as: 

1. N 

jj@l 
c ijt cxijt + Yijt) :5 Ct) it 

Since each cijt v ilp2l,. -. Pm; jol, 2,..., n has an exponential 

distribution with parameters (aijt, a, jt) then, from (3.69), 

theýfollowing transformed deterministic'goals, -in-standard form 

are equivalent to goals (6.11): 

mn dd I (xdd It +yddlt) -1 
EI cr 

j 
exp 

J-1 dd jij ijt(xijt +Yijt 

ým nmN 
a +Yijt) c ijt (Xijt ijt Xijt +Yijt t, iýl J-1 i-m+l j-n+l 

a ijt (Xiit + Yijt) + ýt +t it t-1,2,..., T (6.12) 

where 

0 :50 tttt, 

See results 3.1 and 3.2. 

The achievement function 

Since the decision-maker's objective is, to decrease the, 

occurrence of congestion and to minimi. ze, the total transport 

cost then one possible priority structure is: 
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"Ifirst 
priority: to minimize the exporting and importing a'mounts 

or their lower levels that cannot be exported or arrived 

to importing centers. These amounts- represent a blocking 

in the ports- or in the means of transport. 

The quantity to be minimized is: 
T 

r [(X-t + a-) + (y- + b-)] 
ttt, t 

second priority: to minimize the over-achievement of the loading 

and discharing capacities and the over-achievement of the 

transport capacities. The quantity-to be minimized is: 

NT+T+ 
EE Ljt) +(Zdt 
jtt 

third, priority: to minimize the probabilities that the 

transport cost goals are not satisfied. 

The quantity to be minimized is: 
T 

t 

This priority structure will yield the following goal program. 

Find xijtp yijt for i-1,2,...,, M; 

So as, to 

to T tit T 
aE X- + 'E a- + l. 'E. 'y- E ; b7) lexico-min t ttt tul tntl+l tzi t=tll+l 

TN+T 
ZLt+ d+ 

t3sl j1 t) 
u itul '2 

subject to 
MN + xnF-. 't-1 2' t "ijt + Xt 

i: i jýl t 

(6.13) 

(614) 
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-W N+ 
E E xjjt + at - at - At (6.15) 

i-l J-1 
M, 
E 

N+ 
- Ey -y +y 

1 F- (X ) tsslp2jo . pt" (6.16) 
jul 

ii t t t jmj t , 

ým E 
N b- b E Yiit +tt B t t-t"+l. tt"+2, ... 'T (6.17) 

i-1 J-1 
M 

L- L+t mL (xiit + Y'it) + it -i it j-1120...,, N (6.18) 
jnj 

+ (Xijt + Yijt d- -d tt d t-1,23,...,, T t (6.19) 
j 

mn cr dd'tCxddlt+ Yddlt) 1 -1 , 
EEn +Yi. ) exp 

J-1 J-1 ddlýijll ijt jt 

mnmN 
cE aiit EZc (x 

t i-1 J-1 
(Xiit "Yijt) 

i-m+l j-n+l ljt ijt yijt) 

+n t=1,29 ... OT (6.20) aijt(Xijt+Yijt tt 
ýt 

The. equivalent signomial program: 

The above program is equivalent to the following sigýiomial 

program (see subsection 3.4.2). 

Find xijtv Yijt for iOl. 2. A, J-ls29 ... 

So as to 

tv T tit T 
lexico-min anx+a+ -Z b- tt yt t t1 t-tI+1 t-1 t=t +1 

TN+T+T-), 
EZ Lj 

t+ý dt) ,(E 
ýt I'l-I 

-- (6.21) 
tal Jul t1 tul 
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subject to 
M 
K 

N 
E x ijt + -Xt 

+ 
- Xt' F_ Cyt) t=1,2,..., tl (6.22) 

i=1 j=1 
M 
ý 

N 
E xijt + at + 

-at At totl+l, tl+2,..., T (6.23) 
l i l j 

ý ý yijt + y y Y+ t. F- 1 t=l,, 2l ...., t" (6 . 24) 
i l j l 
M 
E 

N 
E yijt bt + bt Bt t=t"+lý, t'l+2, --. J (6.25) 

i 1 j l 
m 
E (X. 

,, +Y; , ') + L, , 
+ 

- L, .=L,,. j=1,2,..., N (6.26) 

MN 
EE Cxi t + yij t) + d- dd ttt t=l, 2) .... T (6.27) j i-i j=l 

n 
EE 
M Odd' t(xddl t 11 1- 

+yddl t) Pý + ý 
i=l j=l (x ddl ýij Clijt ijt'Y jt 1 ijt 

+ 
tt t=1,2,..., T (6.28) 

mn 
II)tzijt(Xijt+ Yijt) +, Ea (x 

lj ljt t +y ljt + 
i=i j=l 

m N 
E, E cijt(xijt+yijt) Ct i=1,2,... pm ('6.29) 

i=m+l j =n+l 
j=1,2,...,, n 

t=1,2$... IT 

fijt + zijt 1 i=l,, 2 .... $M (6.30) 

j=1,2,,..., n 

t=1,2,..., T 
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where 
mnI 

zij t. . 
[C 

ta ij t (Aij t", Yij t) isol j=l 

mN 
EEc ijtcxijt+Yijt) i-m+l. j-n+l 

zijt , 

lij t 

and 

This program can be solved using the algorithm presented in 

Section 5.8. 

6.3 A Numerical Example 

(6.31) 

(6.32) 

We consider. program (6.2l)-(6.30)-in Section 6.2 and 

assume two exporting and importing centers i=1,2 ; two ports 

j=1,2. and two groups of goods t=1,2. Such that: 

2 A, X 70) y . 90 A2= 100 

B1 50 B2 X2 (50) X2= . 90 

Ll, , 80 L21 80 

L 12 = 100 L22 so 

d, - lso d2 90 

c2ll - 10 C 221 = 

c212 =5 c22, = 12 

cl 600 C2 900 

ýl 
. 70 ý2 

. 60 

and clll-, C121, C1121 c, 22' have exponential distributions with 

parameters: 

(1 
1] t cxij t+Yij t) 
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(01 111 "Saiii,, 2) 

(CI 121 "4 G121 M 6) 

(a 112 03 G112 0 

(a122 M6 a122 ý *S) 

respectively. 
Substituting the above values of the parameters in 

program (6.2l)-(6.30), we have the following program: 

Find xijtp Yijt for 1-1,2 ; j-1,2 and t-1,2 

so as to 

lexico-min a 
((x--a-+y-+b-) 

, (L +Ll, +L+2 +L2+ 1221 11 212 

d++ d+) 
, (ý- + ý- )) 

1212 

subject to 

xiii +X 121 +X 211 +X 221 +X1 
+ 

-x1 
-1* 

mF(. 90) = 100.4 

(6.34) 

, 
1,1x 112 +X 122 +X 212 +X 222 +a2- a2 m 100 (6.35) 

Ylli + y121 + y21t + y221 + b- 1 -b+ 1 = so (6.36) 

y112 + y122 + y212 + y222 + y2 - - y+ 2 - F-1(. 90) - 76.2 
(6.37) 

x ill + ylll'+ X211 + Y211 + L-1 1 -L+. 11 so (6.38) 

x 121 + Y121 + X221 + Y221 + L-1 2 - L+ - 21 80 (6.39) 

X112 + Y112 + 'X212 + Y212 + L12 -L 12 = 100 (6.40) 

X122 + Y122 + X222 + Y222' +'L- 2'2 -, L +,. 
22"' O z 'SO (6.41) 

+ ylll + X121 + Y121 + X211 '+ Y211 + X221' + Y221'+ 

d---. d+- 1so (6.42) 

x 112 + Y112 + X 122 +y 122 +X 212 +y 212 +X 222 +y 222 + 

d- - 2 dt 
2 

90 - (6.43) 
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2 (x 
III +Y. 11OFT11 - *6CX12I+y12I)Pt2l 

+ 70 zcx 
ill +y ill . 6Cx 

121 +y 121) 
(6.44) 

lcx 112+Y'112)Pll2 
CX122+yl2Z)Pl22 

+ . 60 1CX112+Y-112) - *SCX122+yl22) 22 

(6.45) 

2z, ll(xlll*)rlll) +SCxlll+y. 111) +4(xl2l+)rl2l) +'OCX211+)'211) + t, 

8 CX221+Y221) - 600 (6.46) 

.6 Z121(xl2l+yl2l) +S(Xlll+ylll) +4 (X121+YI21) +16(x2ll+y2ll) + 

8(x221 +Y221) - 600 (6.47) 

z 112(Xll24'yll2) +3(xll2+yll2) +6 (Xl22+yl22) +S(X212+y2l2) + 

12Cx 222+Y222) 900 (6.48) 

. 5z 122CX122+yl22) +8 (Xll2+YI12) +6 CX122+YI22) +SCX212+y2l2) + 

12(X222+Y222) - 900 (6-49) 

fill+ z ill 
F121+ z 121 

P112+ z 112 

P122+ z 122 

The solution to this program using the algorithm presented in 

Section 5.8 (see the solution to example 3.1, Appendix D) is: 

{0,112.8,0} 

xill 20.4 Ylil so 

x 80 0 
121 Y121 

x 211 
0 Y211 0 
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X221 0 Y221 0 

X222 0 Y222 0 

X212 0 Y212 0 

XI 12 so Y112, 76.2 

x 122 so Y122 0 

x1 0 + 
x 0 

a 2 0 a+ 2 0 

b, 0 b, 0 

Y2 0 + Yq 0 

Ll, 9.6 Ll, 0 

L- 21 0 L+ 21 0 

L- 12 0 L+ 12 26.2 

L 22 0 L 22 0 

d; 1 0 d 1 .4 

cl 2 0 d+ 2 86.2 

1 0 
1 . 078 

2 0 
2 . 184 
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6.4 Conclusion 

In this chapter, we present a CC GP model to optimise 

the distribution of the amounts exported and imported by the 

marine ports. A numerical example is presented to illustrate 

the use of the model and its solution. 

The model allows a decision-maker: 

-ý-To determine the optimum method of distributing exports 

and imports, taking into account the priorities of the 

goals and the probabilities that the goals are not 

and hence to estimate the risk involved. 

2 7o, construct schedules to determine the amounts of goods 

to be exported and imported by each port; either to avoid 

congestion in any stage of the turnover of goods or to 

minimize its cost. 

-: 5. jo, determine whether congestion is caused solely by a 

misdistribution of the goods to be exported and imported 

by the ports or rather by such a misdistribution together 

with some or all of the other factors mentioned in 

Section 6.1. 

4. To estimate the amount and the kind of new investments to 

put into the existing ports and/or to determine where 

to construct new ports and what their specifications should 

be. 
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CHAPTER 7 

SMIARY AND SUGGESTIONS FOR 

FURTHER RESEARCH 

I 

, 
In this chapter, we give a summary of the research work 

I presented in this thesis and offer some suggestions for 
I, - 

further research. 

7.1 The Contributions and Summary of the Thesis 

The general objective behind this researchyas to develop 

the approach of chance-constrained linear goal programming, 

'when the parameters in the goal set are random variables 

having,, non-negative distributions. Two possible distributions 

were considered for those parameters: the exponential and the 

. chi-square distributions. 

The main contributions presented in this thesis are: 

First, we have developed a method for transforming-. probabilistic 

linear goal programs into equivalent deterministic linear 

goal programs when the right hand side coefficients of the 

, 
goals have exponential or chi-square distributions. Also, 

the probabilistic interpretation of the deviational 

-random variables and their levels i5, presented.:,,. ' 
Second, we have also developed a method for transforming-.,,,,,,, 

probabilistic linear, goal programs into equivalent 

deterministic nonlinear goal, programs. when-, the:, input,,,, ý', ý., ý 

coefficients in the goal 'set have. exponential or, chi- 

-have further:. transformed' , square distributions. We the 
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equivalent deterministic nonlinear goal programs into 

eI quivalent signomial, goal programs. 

- : In both cases, probabilistic deviational variables were 

iniroduced. 

In. addition, we have proved that Senguptals transformation 

-to obtain an approximate distribution for Z aijxj when aijIs 

have chi-square distributions does not lead to a solvable 
I 

program. I- 

Third#' we have presented a set of propositions which make it'- 

possible to formulate a nonlinear goal program as a sequence 

of,, generalized geometric programs and developed an algorithm 

"the sequential double condensed geometric goal programming, 

algorithm" to solve nonlinear goal programs generally, and 

the signomial goal programs equivalent to the transformed 

deterministic nonlinear goal programs, in particular. 

ourth, we have formulated the problem of-optimizing the, 

distribution of exports and imports on marine pqrts and 

s, olved it using methods presented"in'the, thesis and the 

s1equential double condensed geome. tr 
I 
ic'goal prýqgramming 

algorithm. 

We n'ow summarize the contents of 'each chapter. 

apt I er 1 The fundamental concepts of goal program ming and 

the standard form of a goal program are presented, through 

an account of the historical develo. pment of, goal 

programming. In addition, the. sequential goal programming, -. 

algorithm due to Dauer & Krueger is P'r e sen tedb e'c a, us e any 

optimization algorithm appropriate to the' problem 'under, 
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consideration can be incorporated in it for solving linear 

or nonlinear goal programs as is shown. 

Chapter 2: A brief account is given of the main works 

presenting the study and applications of probabilistic 

linear goal programming. The most important drawbacks of 

these studies are determined and we indicate the points 

about which more research is needed. Further, the effective 

factors which lead us to use a chance-constrained 

programming approach to study probabilistic linear goal 

programming are given. 

Chapter 3: The chance-constrained goal programming'approach with 

linear goals having exponentially distributed parameters is 

presented. The probabilistic interpretation of the 

deviational random variables and their levels given. 

Chapter 4: This chapter deals with the approach of chance- 

constrained goal programming when the linear goals have 

chi-square distributed, parameters. In addition, it contains 

the proof that Senguptals transformation to obtain 

equivalent deterministic goal programs when the input 

coefficients of the goals have chi-square distributions, 

does not lead to a solvable program. 

Chapter 3'and 4 show that the study of chance- constrained 

programming when the input coefficients have exponential or 

chi-square distributions, is closely related to the methods 

for solving nonlinear goal programs. 

Chapter 5:, Here, a condens'ed geometric programming technique 

is ampl9yed to solvIe'nonlinear goal programs., this is the 

first time: for.,, this, to be done. 

II 
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The formulation of subprograms: of a goal program as 

generalized geometric programs and a, "sequential double 

condensed geometric goal programming" algorithm are 

presented. This algorithm is constructed by combining a 

"sequential goal programminelalgorithm with a "double ' 

condensed geometric programming"-algorithm. Therefore, 

the fundamental concepts-of the geometric programming 

technique, and the algorithms for solving condensed 

geometric programs which, are necessary, for a "double 

condensed geometric programming" algorithm are presented. 

Chapter 6: The formulation of the "exports and imports 

distribution" problem in the emerging countries using a 

chance-constrained goal programming model has been 

presented. The model is transformed into a deterministic 

nonlinear goal program using the method presented 

previously. 

Finally, a simple numerical example is given to 

illustrate the formulation and the solution'to the model. 

7.2 Sugg6stions For Further Research 

The research work described in this thesis can be 

developed in several directions. 

First, more research is needed about the chance-constrained 

goal programming approach when some right hand side* 

coefficients bi for i=1,2j., M or some single 

goal input coefficients aij, j =, 1,2,..., N 
, 
are 

dependent random variables and have exponential or 

chi-square distributions. We think that the use of a 

multivariate exponential distribution is important in 

these cases. 
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Second, the "sequential double condensed geometric goal 
programming" algorithm requires a more efficient algorithm 

than the phase 1 algorithm to obtain the starting-points. 

Third, it was shown that the study of chance-constrained goal 

programming when some of the parameters are non-negative 

random variables is closely related to nonlinear goal 

programming. As yet, three only, nonlinear programming 

methods have been employed to solve nonlinear goal problems. 
Hence, more research is needed. about methods for solving 

nonlinear goal problems, especially since., most real world 

problems are formulated as nonlinear goal programming 

models. 

Fourth, combining the chance-constrained goal programming 

approach and the interactive sequential goal programming 

approach is important for solving probabilistic multiple- 

objective decision problems. These problems involve 

trade-off decisions. This combining will provide the 

decision maker with a learning process about the system. 

Fifth, in most real life situations, the solution is only part 

of the information that is really needed. Often, more 

important than obtaining a solution to the problem is to 

obtain information that will enable us to improve the system 

itself. We can obtain such information using sensitivity 

analysis. However, it appears to us that, for chance- 

constrained goal programming, the study of the use of 

sensitivity analysis for the tolerance measures or the 

parameters of the probability distributions has not been 

I touched upon. 
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APPENDIX A 

Logarithmic and Exponential 

Terms In Signomial, Form 

In many mathematical models related to the real-world 

logarithmic or exponential terms often appear in the 

formulation. 

We. can transform'these terms into signomialform (see 

definition 5.3) by using limiting approximations as follows [3]. 

First: logarithmic terms 

From elementary calculus, the logarithm of an arbitrary real 

number x is defined by 

xx 
ln(x) dy f y- dy (A. 1) 

Suppose that we define an arbitrary small positive quantity 

and restructure the above equation in the following manner: 

Hence, 

and 

x C-1 In(x) MIy dy (A. 2) 

In Cx) (A. 3) 

limit [c- 1x 
C-1 in x (A. 4) F -)- 0 

This procedure is valid numerically, since it is easily seen 

that as c approaches .0 then Jlxe - J1 is very close 

to in x as shown in Table A. l. 
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Tab le A. 1 

clo) -1 clo)- 2 clo) -3 Clo) -4 clo) -5 clo) -6 ln x 

1 0 0 11 1 0 0 0 01 0- 

ý. 718 . 696 . 6934 . 6932 . 693 . 693 . 693 

3 1.1612 1.1047 1.0992 1.0987 1.0986 1.0986 1.0986 

4 1.487 1.3959 1.3876 1.3864 1.3863 1.3862 1.3863 

5 1.7462 1.622S 1.6107 1.6096 1.6095 1.6094 1.6094 

Cthe valueIn row x and column e represents the value 

IS-1 xe - IE-1). 

Second: exponential terms 

From the calculus' also, it is well knwon that: 

ex limit (l +X 
0.00 0 

Hence ex (i +x 

where 00 

(A. 5) 

(A. 6) 
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APPENDIX B 

The Integration Of A Product Of 

Exponential And Rational Functions 

If y is a random variable and n, a are constants 

such that, 'n is a non-negative integer, number then 

n ýn 
yn e ay dy = e'y ykn (n - 1) (n- 2') ... (n-k+l) 

y n-k 
a k+l k=l a 

(B. 1) 

Hence 

PY Cx 2 (2(gij-h)) > bi/xj) 

Co Cgij -h) (gij-h)-i 
f -ly dy 

b, /, 
.F 

(gij-h) 2ye 
i. -i 

-(g. --h) 00 2 ij f 
(gij -h-1) bi/x 

Substitüting (B. 1) in (B. 2) 

. 1. 

y 
(gij-h) -I 

e-ly dy 

'P, (x 2 (2(gij-h)) > bi/xj) 
r 

2 
-(gij-h-1) - Jbi/x. 

_1 
glj-h-1 

(gij-h-l)l 
eJ l(bix 

gij-h-1 
t 

+E2 (gij-h-1)(gij-h-2) 
t=l 

(gij-h-t)(bixj- 1) glj-h-t-1 
II 

(B. 2) 

a -hýl j (B . 3) 

I. S. Goradshteyn and I. M. Ryzlik (1965): "Table of 
integrals series and products" Academic Press, 
New York and London. 

LI 
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Also N 
bZa 

pr CX 2(. 2Cgij-h)' > 
j=n+l 

3 

- (gjj -1 Cx ibi ý-xj j= 
E 

+l 
a ijxj 11 2fe' (X ibi-xi* 

NgJ. - g 13 -h-1 
t Eax+z2 (gij-h-l)* 

j =n+l t=l 

-1 -1 (gij-h-2) ... Cgij-h-t)(xj bi-xi 

N gij-h-t-1 
Ea ijxj j=n+l 

gij -h2: 1 (B. 4) 
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APPENDIX C 

The Mean And Variance of nkj 

This Appendi 

Var(nkj) used in 

We calculate 

If y is written 

we have: 

r. pres. ents the values of E(n kj and 

section 4.5. 

ýthem by Taylor's Theorem 1591 as follows: 
I 

or X2 and y0 is the mean of y 

13 
. 1. icy cy 2+13 y YO 2. , 

Y03Y 0- -9 -YO3 
2y01 

-156 (y -Y o 
y-o 

4 -. 7 

384 (Y-yo) Yo 

Al s o, since 
.n2 X2 CS 

. 
ki kj 

E'(n 2s 
var(n 

2 2s kj kj kj kj 

then 

2 
nkj = CE(nkj)3 

1 Cn 2 
ki 

+ En 2 
16 kj 

+1 En 2-E (n 21 CE (n 2 )3_1 2 kj kj kj 

223 E. (nki ) 12 
-CE 

(nkj 7 

s 
- E(n 2 )]3 [E(n 2 

kj kj 

1) 

is 22427 
-385 Enkj -E (nkj [ECnkj)] (C. 2) 

By taking expectations on both sides of (C. 2) 

we have 
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.1 +' 
1E Cn 2-1122 

S_72 E(nkj) 0 Ski 
. .7 kj -ski )S kj - -ý E(nkj-skj) kj 

1- 57 
2324 _7 E Cn s E(n s 16 kj -ski kJ =2 8 kj - kj kj 

25 
+-27 E(nkj-skj) ski ***00 

(8s 4 2s 3 56s 2 
+2 Os' + 84)/8s 3 AS -I_ kj ki kj kj kj ki 

(4s 4-S3,28s 2+ los + 42)/4s 3 rSF, 7 kj ki kj kj ki kJ 

Akj'* (C. 3) 

where A kj is constant 

Also 

Var(n E(n 2 E(n 2 
kj kj kj 

C(2s 43 28s 2 
+42) -ski- kj+loskj kj , 

4s 3rB 
ki Ski kj (C. 4) 

where B is constant. kj 

v 
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APPENDIX D 

The Solution to Example-3.1 

From Section 3.5, the subprogram associated with the 

first level priority of program (3.145)-C3.154) is: 

minimize ad+ 12 + d- 3 (D-1) 

subj'ect to 

2x +X 12 +X+ d- 32 d+= 10.07 2 (D. 2) 

x+X+ 12 d- -d+ 33 6.408 (D. 3) 

X, d-, d k0 (D-4) 

The above program is a linear program, the solution by the 

simplex method is: 

ad+ dý (D. 5) 23 

2. From (3.145)-(3.154) and (D. 5) the subprogram associated with 

the second level priority of program (3.145)-(3.154) is: 

minimize a2 ý d, (D. 6) 

subject to 

2x +X+X+ d- -d+= 10.07 (D. 7) 12322 

xi + x, + d- -d+=6.408 (D. 8) 33 

x+ 
d- - d+ 55 (D. 9) 2 

XX1)-1 
f12 11 2 

, 04xlzll +'ý. 12xj + . 16x, + . 12x, m1 (D. 10) 

. p4x 2 Z12 + . 12x, l + 16x, + . 12x, zo 1 (D. 11) 

pll-, ý ýZ10711 
(D. 12) 

,+ -Z12ý (D. 13) 



Ti 

149 

,a1=d2+d3=0. 
(D. 14) 

XlIX2-'x3" d 21 d2 pd 3 d. 3tzllIZ12IP11IP12 
ý: 0 CD. 15) 

0d-: 5 . 55 0 :9d .45 (D. 16) 
1 

and 
Co 

3. From Section 5.7 and inequality (5.113) the above program 

is equivalent to: 

minimize a dý (D. 17) 
21 

subject to 

2x +d+ :5 10.07 (D. 18) 
1 x2 + -X3 2 

x+X+d-6.408 (D. 19) 
123 

. SS +x- 
1x 

+pý +x -1 x d- 55x-ý- x- 
ix ed- :51 12 11 121-61z. 1 2p12 -1 

(D. 20) 

. 04x 1z 11 + . 12x 1+ . 16x 2+ . 12x 31 
(D. 21) 

*04x2zl2 + . 12x 1+ . 16x 2+ . 12x 3 -: 5.1 (D. 22) 

+Z (D. 23) 

P12 + Z12 (D. 24) 

d++d 23 
(D. 25) 

d d-, d + (D. 26) xllx2lx3ld2' 2P 3 3'zll'zl2'Pll'Pl2 0 

0 :5d, :5 . 55 0 :5 dj . 45 (D. 27) 

and 

4.00 0 (D. 2 8) 

Note that equalities (D. 10)-(D. 13) have been replaced by 

inequalities CD. 2l)-(D. 24), where inequalities (D. 2l)- 

(D. 24) are tight in the optimal solution (see subsection' 

5.7.2). 
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4. From CS. 120)-CS. 123), the above program is, equivalent to 

the generalized geometric program 
-Cg 

9P)2 

(9 9P)2 minimize a20d1 (D. 29) 

- -U4-4- 4-- 
auuJv%, A. 6, V 

2x'+x +X 12 3 
:51 (D. 30) 

10.07+d+ 2 

6.408 

x 1+x2+d 3 

. 55x +X 1 le x +X 2 11 1 d- 21 
- 
x +. ssx e +x Dý 2+' 2f 12 

:51 
d- 11 

(D. -32) 

. 04-x 1Z + . 12x, + . 16x, + . 12x, :51 (D. 33) 

. 04x, Z, 2 + . 12x, + . 16x, + -12X3 K1 (D. 34) 

1 (D. 35) 
piCzilý 

1 (D. 36) 
p12+z12ý 

d++d- 2 3 
_ (D. 37) 

xx d-, d + d-, d +Zk C- 
VX2' 3223 3' ll-'z12"pll'f12 (D. 38) 

,E :5d- :5 . 55 1 eE :5d+ :5 . 45 1 (D. 39) 

and 

ý -t -, is -* 0 (D. 40) 

S. Consider the initial point: 
(d- 55, x, 00 d+=02, d- =-3.69, x2 = 2.73, x. 230 

z11 = '85 1 z12 0 *37 , pl, = '999, P12 1 

(D. 41) 
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The point CD. 41) does not satisfy constraints (D. 30)-(D-37). 

6. Construct 9 gpCW))' 2 to obtain an initial feasible point: 

(9 gPcw))2 
8 

minimize nW 
. 
(D. 43) 

subje ct to 

2xl+x2+x3 

+ :SW (D. 44) 
10.07+d2 

6.408 
,- :5W2 (D. 45) 

x +x +d 123 

ý. Ssx +x 12 +g x +X 11 1 d- 21 

xl+- SSX2 0 +X Oll +X 
W 

1d1 
(D. 4 6) 

. 04x 1Z 11 + . 12x, + . 16X2 + . 12x, W4 (D. 47) 

. 04x2zl2 + . 12x, + . 16x2 + . 12x 35 (D. 48) 

1 

+z ý 
W6 (D. 49) 

pll ll 

1 
l W7 (D. 50) 

pll +Z12ý- 

+ d2 +d3 
W8 (D. 51) 

W 1 i=1,2,.... 18 (D. 52) 

7. The solution to (9 9 CW))2 by the phase 2 algorithm 

(see example 5.1) is shown in Table D. l. 



152 

Table D. 1 

Phase 1 No. of Next approximating point Comments iteration Cuts Cd -+d-z 
lsxl2x2. lx3, 'dZ) 31z. 11,12.4,1.41,. ) 

0 (. 55,3.69,, 2.73,0,0,0,. 85,. 37,. 99,1) not 
feasible 

13(. 55,3.642., 2.772ý0,0., O,. 82.,. 037, feasible 999pl) 

8. We consider the feasible point as an initial point. Using 

the Phase 2 algorithm the optimal solution to (9 9P)2 is 

computed. The result is shown in Table-D. 2 [223 - 

Table D-2 

Phase- 3 No. of Next approximating point Comments iterations Cuts (d -d+ d- zz llxl-'x2lx3 21 P 11' 12ellIP12) 

0 (. 55,3.642,2.772,0,0,0,. 82,. 037, 
. 99921) 

13 (0,2.77,3.96,0,0,0,. 302,. 014,1,1) 

2 13 (0,3.204,3.204,0,0,0,. 6773,. 6882, local and 
. 9998,. 9999) global 

solution 

Hence, the global solution to example 3.1 is: 

a2 0 

xl 3.204 x2 3.204, x3 0 

di + di . 45 

d 2 . 458 d 2 0 

d 3 0 + d 0 3 

Note in this example 3 (10) 
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APPENDIX E 

The Solution to Example 4.. l 

From Section 4.6, the subprogram associated with the first 

level priority of program (4.98)-(4.103) is: 

minimize a1d1 

subject to 
11 2 )- 

ý 
4- 21 

l 
Pli 2 Tx- x 

P12 
12 

x1 -2 (1 "" lOx2 1 )P12 + di - dJ . 75 + (3F 1) 
2 

(E. 2) 

10 x11 

P12 + 10 x21 (E. 4) 

xlIx 2'pll'pl2 ýý 0 (E. 5) 

0 -: 5 dd+ --ý I (E'. 6) 1 

and 
-0: 00 

2. From Section 5.7 the above program is equivalent to the 

following program: 

minimize a d, (E. 7) 

S ubject to 
X2) X2 
x1 2x P12 

11 x2 

CX1 1) -2C, + lox- 1) d- . 75 (E. 8) 
X .2 

P12 1 2 

Pil + 160 
1 

xi 
1 

; -> 1 (E. 9) 

ý(E 10) Pl'2 + 10 ý X2 ý-> l 

X l., x2'Pll'pl2 ý-> 0 
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Note that equalities (E. 3), (E. 4) have been replaced by 

inequalities CE. 9), CE. 10), where the inequalities CE. 9), 

(E. 10) are tight in the optimal-solution (see subsection 

5.7,.: 2. ) 

3. From (5.120)-(5.123), the program (E. 7)-(E. 11) is equivalent 

to the generalized ge 
- 
ometric program (g gp), , where: 

(g g p) minimi ze -ad (E. 12) 

subject to 

14ýý +4 X-2 x2+ 12x -2 x2+4 OX-2 x 12x- 1x d- 11 12 11 1 2P12 1 2P12 +121 

+ 4x, 3x 3d- + 3x- ix 
X-3X3 Ei + 8X-1x +4x- 

3X3 
2112121 2P-11 1 2f12 

+40x- 
3x2 ýe + 4d -+ 12x- 2x2d-+ 3x -2 x2 11 :91 (E. 13) 12 12 112112 

1 
-1 -1 :51 (E. 14) 

Pii +lo ý xi ý 
1 

-1 -1 :51 (E. 15) 
P12 + 10 X2 

XV X21 p1l; P12 (E. 16) 

d1 :ý . 75 (E. 17) 

and 
4. co 

Vc -* 0- 

4. Consider the initial point: 

d, = 0., x1 = '0001 ' X2 2" *0001 v P11 * 20 -1 
P12 =0j '(E. 18) 

The point (E. 18) satisfies constraints (E. 13)-(E. 17) . 

The 
'opýimal, 

solution to (g gp)l , obtained using the phase 

2 algorithm (see example 5.1), is shown in Table E. l. 
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Table E. 1 

Phase 2 No. of Next approximating point 
iterations-, cuts ,- Comments 

.II 
Cdl,.. 'xl.. X2. -,. 

P11) P12 ) 

0 
. (0, . 0001, . 00010 0., 0 

10 (0, . 0001, . 0001,0,0) local and 
global solution 

From Table E. 1 ad0 (E. 19) 

6. From (4.98) - (4.103) and (E. 19) the subprogram associated 

with the second level priority of the program (4.98)-(4.103) 

is: 

minimize a2=d2 (E. 20) 

subject to 

-x2+ 
(l -x21x1 

-2 
3ý 1-tC1- -R7) 11 -Z -Z-x ) (- - 1) 112 

1P1x2 

x 
-2 + (- 1) (1 + lox-1) Pý2 +d . 75 (E. 21) x2+". 

1100 -1 X- 
1 2: 

21 

(E. 2 2) 

P12 + 10 ý-l X2 
1 ; -,. 1 (E. 23) 

x+x+d>9.34 (E. 24) 122 

d10 (E. 2 S) 

x1p x 21 P111 ý12 d1d2k0 (E. 2 6) 

and 

0 -)- oo 

In turn, the above program is equivalent to the generalized 

geometric program Cggp)2. 
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(9 9 P) 2 minimize cl 2 

subject to 

Eff 
. 
4x- 2x2+ 

11 1 2PIl -. 12 x-2 x2 1 2P12 . 
40x- 2 

+I x2P12 12x- ix d- +121 

33 -1 + 4x x2d1+ 3x 1x2+ 
-3 3 

X1x 23 / El + 8x 1 x2Pll -3 3 
+ 4x, x2P12 

1 

32 40x 1 x2P12 + 4d 1+ 
-2 2 12x 1x2d1 

-2 2 3x 1x2-: 5 1 (E. 2 7) 

1 

+ 10 x1f 
(E. 2 8) 

1l 
- 

(E. 29) 
x P12 + 10 2 

9.34 (E. 30) 
x1+X2+d2 

IE 
-1 d (E. 31) 

x 1, x2, pll' P12 d- d- z: 112, 

7. Consider the initial-point: 

{d- -- 2$x4, d, =0 21= 2-51 X2 9 Pil '99991 P12 = . 9999) 

(E. 32)" 

The point (E. 32) does not satisfy the constraints (B. 27)- 

(B. 31). Using the phase 1ýalgorithm we obtain a feasible 

point as shown in Table E. 2. 

II 
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Table E. 2 

Phase 1, No. of Next approximating point Comments 
te 

.rIa. 
ti 

I 
ons cuts (d2l X1. x2. , d-1, P-11'. P12. ) 

0V (2,2.5,4,0, . 9999, . 9999) not 
feasible 
point 

14 (9.3411.648t2.934.. O,. 99999 feasible 
. ý999-9. ) point 

8. The optimal solution to C99P)2'. obtained using the 

phase 2 algorithm (see example 5.1). is shown in Table E. 3 

C2 21 . 
Table E. 3 

Phase 2 
iterations 

No. of 
cuts 

Next approximating point 
(d - "xl., X Comments 2.21 dl' P111 F12) 

0 - (9.34,1.64822.934,02.99991.9999) 

1 3 (4.935,2.462,4.551,0,. 9999,. 99997) 

2 4 (1j854,3.181,6,0,. 9999, -99997) 
3 5 (. 659,3.261,6,0,. 99999.99997) 

4 5 (. 2588,3.279,6,0,. 9999,. 99997) 

5 5 (. 1115,3.297,6,0,. 9999,. 99997) 

6 5 (. 0528,3.312,6,0,. D999,. 99997) 

7 5 (. 0265,3.324,6,0,. 999,. 99997) 

8 5 (. 0126,3.333,6,0,. 9999,. 99997) 

9 5 (. 00415,3.341,6,0,. 9999,. 99997) 

10 3 (. 00205,3.348,6,0,. 9999,. 99997) 

11 3 (0,3.341,6,0,. 9999,. 99997) 

12 -2 (0,3.34,6,0,. 9999,. 99997) local and 
global 
solution 
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Hence, the global solution to example 4.1 is: 

a0 2 

XI 3.34 X2 =6 
d0d+=,. 

19 1 
d20d+=0 

2 

Note In this example (10)5 

4 

" 
"�" '" -' 
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