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Abstract

The importance of emotions for normal communicative behaviour has
been realised in computational sciences since 1999. Affective computing
aims to accommodate the need for emotions in two-way human computer
interactions. Interactivity forms the foundation of computer video games.
Engaging emotions into video games is an attractive proposition, for both
developers and game players. Affective gaming forms a growing field of
research in computer science, which relies heavily on affective acquisition
devices. Input devices for affective gaming are woefully under-invested,
particularly given the longevity of the underlying technologies.

This thesis explores the reasons for this delayed uptake and determines
what factors are required to meliorate the affective gaming domain. The
most widely used sensors available for affect detection are surveyed, and
an overview of different affect detection methods is given.

Subsequently, the design and development of a psychophysiological ac-
quisition device is described. The device focuses on the interactive and
functional qualities required for an affective gaming input device. Owing
to its novel design features, it was named the Shark-Fin mouse.

Three psychophysiological sensors are selected for their sensitivity to change
in emotional states and which are suitable to be applied to an input device.
The Shark-Fin mouse utilises electrodermal activity, blood volume (pulse)
and temperature. The mouse is designed to take advantage of 3D printing
technologies, to empower digital distribution and home-manufacturing.

As well as acquiring psychophysiological signals, the main premise of the
device was to be easily used, without set-up procedures, tapes, straps or
gels. In addition, a fully functional video game was developed to subject



the new input system to an active video game environment. The game
was designed to provoke mild levels of frustration. The game formed part
of an experiment to validate the functionality of the Shark-Fin mouse, as
both an input device and an affect acquisition tool. Along with game-state
variables, specific event-based data was recorded for analysis.

The thesis concludes with empirical analysis. We employed classifica-
tion techniques, to determine if any recognisable patterns within the psy-
chophysiological data exist, in correlation to the game-state data collected.

The final results determine that the Shark-Fin mouse offers a novel and
useful system for affect acquisition. Further, the psychophysiological sig-
nals are validated during active video game play sessions.



Contents

1 Introduction 1
1.1 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Chapter structure and hypotheses . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Advancements in Affective Gaming 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Affective Computing . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Emotional States . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Ethical Perspective . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Affective Gaming . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Emotion as an input . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Affect acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Behavioural . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Physiological . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Nervous systems . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.4 Physiological modalities . . . . . . . . . . . . . . . . . . . . 21
2.3.5 Sensors and devices . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Commercial Affective Gaming . . . . . . . . . . . . . . . . . . . . . 27
2.5 Utilising Affective Data . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.1 Generations of console platforms . . . . . . . . . . . . . . . 30
2.5.2 Commercial Affective Video Games . . . . . . . . . . . . . . 32
2.5.3 Graphical advancements . . . . . . . . . . . . . . . . . . . . 38
2.5.4 Commercial Interests . . . . . . . . . . . . . . . . . . . . . . 40

ix



CONTENTS

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Building Shark-Fin 44
3.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.1 Electrodermal activity . . . . . . . . . . . . . . . . . . . . . 45
3.1.2 Photoplethysmography . . . . . . . . . . . . . . . . . . . . . 45
3.1.3 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1.4 Final System . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.1 Early Prototype . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.3 Interim Results . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.4 Final hardware . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Ergonomic Design (Shark Fin) . . . . . . . . . . . . . . . . . . . . . 58
3.4 Testing and Verification . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Game & User Trials 71
4.1 Serious Video Games . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Video games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 Stimulating Affect Change . . . . . . . . . . . . . . . . . . . . . . . 72
4.4 Game Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.1 Interim Experiment Results . . . . . . . . . . . . . . . . . . 75
4.5 Enhanced Full Game . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5.1 The video game . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5.2 Experimental set up . . . . . . . . . . . . . . . . . . . . . . . 81
4.5.3 The experimental environment . . . . . . . . . . . . . . . . . 84
4.5.4 Data logging . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Psychophysiological Data Analysis 91
5.1 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Visual Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3 Classification methods. . . . . . . . . . . . . . . . . . . . . . . . . . 97

x



CONTENTS

5.4 Rest versus game-play . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.5 Event recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Conclusion 109
6.1 Summary of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A Signal Transmit Code 114
A.1 FEZ domino/mini code (firmware) . . . . . . . . . . . . . . . . . . . 114
A.2 Matlab Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B Circuit Diagrams 119

C Weka Output Result 121
C.1 Result Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

D Code Highlights 124
D.1 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

References 130

xi



List of Figures

2.1 The real-time affective gaming (AG) loop. . . . . . . . . . . . . . . . 12
2.2 Input modality human connectivity comparison, showing physiologi-

cal and behavioural divide. . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Nervous system pathways . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Atari Mindlink flyer, image courtesy of www.atarimuseum.com. . . . 28
2.5 Calmpute Mantra Electro Dermal Activity (EDA) input device (a) and

CalmPute CalmPrix affective game (b). . . . . . . . . . . . . . . . . 28
2.6 Time-line view of AG research publications. Publications addressing

bespoke psychophysiological hardware are shown in a lighter shade. . 31
2.7 Video game console time-line representing the introduction and com-

mercial duration of each console generation, shown in segments. Key
commercial contributions are indicated pinpointing the year of release.
Given in brackets are the names of the relevant companies. . . . . . . 36

2.8 Graphic card technology advancement since 1997 beginning in 1997 at
100 mega-texels (MT) and growing exponentially to 1,875,000 MT by
mid-2013. The vertical axis is log10(y), where y represents maximum
MT per year. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.9 Graphics advancement timeline, highlighting a historical overview of
video graphic card advancements, depicting significant graphics hard-
ware and software contributions. . . . . . . . . . . . . . . . . . . . . 41

3.4 First Proof of concept prototype using low cost. . . . . . . . . . . . . 52

xii



LIST OF FIGURES

3.5 Custom circuit, fitted with EDA and Blood Volume circuits on one
board. Built by Dr. Aled Williams, Bangor Univeristy, by modify-
ing the original Maplin (N56FL) Pulse Rate Monitor kit to return the
pulsed waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 MLX90614 IR Thermometer evaluation board transmits IR detected
temperature to TX UART port in Fahrenheit. . . . . . . . . . . . . . . 56

3.8 SharkFin mouse system diagram . . . . . . . . . . . . . . . . . . . . 58
3.9 Point of continuous contact between hand and mouse highlighted green. 60
3.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.15 AMBER Shark-fin Mouse . . . . . . . . . . . . . . . . . . . . . . . 64
3.16 SharkFin mouse signal taken over 60 seconds during play . . . . . . . 65
3.17 IR-Temperature 10s hand, 10s ice, 10s coffee . . . . . . . . . . . . . 66
3.18 Heart Rate, 30 sec with 5sec covered 5sec uncovered repeatedly . . . 67
3.19 Electro-dermal activity, 30 sec with 5sec off 5sec on repeatedly . . . . 68
3.20 Heart rate (top), EDA (middle), Temperature (Bottom) . . . . . . . . 69

4.1 Simple graphical sprites (assets) representing Target (a), Obstacle (b)
and number of lives (c). . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 First draft proof of concept Affective Game environment. . . . . . . . 74
4.3 Polygons for classes ‘Calm’ and ‘Agitated’ for the Pulse Rate . . . . . 77
4.4 Polygons for classes ‘Calm’ and ‘Agitated’ for the EDA . . . . . . . . 78
4.5 Polygons for classes ‘Calm’ and ‘Agitated’ for the Skin Temperature . 78
4.6 A screenshot from the video game. . . . . . . . . . . . . . . . . . . . 80
4.7 Video game in action, depicting a screenshot of the standard video game. 81
4.8 Video-game screen-shot showing meteor and asteroid trajectory lines,

including faded collision distances. . . . . . . . . . . . . . . . . . . . 82
4.9 Debug mode, which shows collision interaction game parameters, and

removes moving space background. . . . . . . . . . . . . . . . . . . 83
4.10 Instructions shown to the player before the game commenced. . . . . 84
4.11 The experimental environment . . . . . . . . . . . . . . . . . . . . . 85
4.12 Videogame experiment booth, highlighting the participant uninterrupted

view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xiii



LIST OF FIGURES

4.13 The data capture graphical user interface. Showing the data from the
entire duration of the game. Depicting Pulse (top, red), EDA (middle,
green) and temperature (bottom, blue). . . . . . . . . . . . . . . . . . 87

4.14 Video game assets, which are animated during game play; target (a),
meteor (b), asteroid (c), player sprite/life (d) and moving nebula back-
ground (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1 Augmented data plot key . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2 Augmented data plot time-line: showing a plot of all streams data com-

bined; three physiological signals, game state variable values (such as
score, lives, energy, etc.) and triggered ’events’, see Key in Figure 5.1.
Such that, all the data was overlaid together on the same time-line.
Heart rate peaks displayed with black dots. . . . . . . . . . . . . . . . 95

5.3 The point of change in Blood Volume Amplitude level variance, between

fixation period (cyan) and level 9 game-play (green), including the correlation

with EDA variance (blue), demonstrating a clear physiological response. . . 96

B.1 Heart rate amplification and smoothing circuit diagram. . . . . . . . . 119
B.2 Electrodermal circuit diagram. . . . . . . . . . . . . . . . . . . . . . 120

D.1 Depiction of the motion when implementing the Cartesian rotation al-
gorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

xiv



List of Tables

2.1 Early period devices suitable for affective computing. . . . . . . . . . 24
2.2 Affective gaming modalities and the current academic contributors in

order of year. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Dekker & Champion visual effects and physiological threshold condi-

tions; used in the modified video game Half Life 2. . . . . . . . . . . 34
2.4 Dekker & Champion conditions applied to psychophysiological thresh-

old criteria in the video game Half Life 2. . . . . . . . . . . . . . . . 34
2.5 Effects of game speed of Pacman, based on psychophysiological data

input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Classifiers and classifier ensembles used with the AMBER data. . . . 53
3.2 Classification accuracy from the 10-fold cross-validation . . . . . . . 54
3.3 Temperature range (◦F) . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 Example of game state data structure saved, during game play . . . . 74
4.2 Game state EVENT data. . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3 Game state EVENT decimal binary key. . . . . . . . . . . . . . . . . 89

5.1 Features extracted from the physiological data streamed by the affec-
tive mouse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Classification accuracies (in %) for the Rest/Play experiment. . . . . . 102
5.3 Event comparisons using Wilcoxon signed-rank test with Bonferroni

correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xv



LIST OF TABLES

5.4 Number of events and their respective number of occurrences, with
>5000 highlighted bold and marked with X. Events related to Meteor
(64) & Asteroid (128) strikes shaded grey. The × marks the individual
corresponding events. The event’s name key is given in Table 4.3. . . 106

5.5 Classification accuracy % for EVENT 4 TEN SECOND TIMER
BEEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.6 Average classification accuracy % for EVENT 288 – TOUCHED
BALL EVENT + SCORED EVENT, with highest underlined. . . . 107

C.1 Classification accuracy % for EVENT 4 – TEN SECOND TIMER
BEEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

C.2 Classification accuracy % for EVENT 288 – (TOUCHED BALL
EVENT + SCORED EVENT) . . . . . . . . . . . . . . . . . . . . . 122

C.3 Classification accuracy % for EVENT 4160 – (LOSE ENERGY EVENT
+ TOUCHED METEOR EVENT) . . . . . . . . . . . . . . . . . . 122

C.4 Classification accuracy % for EVENT 6144 – (BUZZ EVENT +
LOSE ENERGY EVENT) . . . . . . . . . . . . . . . . . . . . . . 123

C.5 Classification accuracy % for EVENT 131072 – (ZAP EVENT) . . 123

xvi



Acronyms

AC Affective Computing. xvii, 1, 9, 11

AG Affective Gaming. xvii, 1, 2, 11, 113

CORR Corrugator Supercilii Muscle. xvii, 36

ECG Electrocardiogram. xvii, 34

EDA Electro Dermal Activity. xii–xiv, xvii, 21, 22, 25–30, 34, 35, 38, 43, 44, 47–50,
53, 57, 59, 61, 63, 65, 67, 69–71, 78–80, 89, 91, 94, 98, 99

EEG Electroencephalography. xvii, 20, 21, 34, 53, 55, 56

EMG Electromyography. xvii, 23, 26, 28, 34, 43

EOG Electrooculography. xvii, 34

GSR Galvanic Skin Response. xvii, 21

HCI Human Computer Interaction. xvii, 1, 2, 9, 17, 111

HR Heart Rate. xvii, 27, 30, 34–36, 38, 43, 44, 78

HS Heart Sound. xvii, 34

ICG Impedance Cardiogram. xvii, 34

PGR Psycho Galvanic Reflex. xvii, 21

PPG Photoplethysmography. xvii, 22, 23, 34, 47, 49–51, 61, 81, 94, 98, 99

xvii



Acronyms

SCL Skin Conductance. xvii, 36

SCR Skin Conductance Rate. xvii, 21, 36

VG Video Games. xvii, 1, 2, 24, 56

ZYG Zygomaticus Major Muscle. xvii, 36

xviii



Chapter 1

Introduction

Emotions are described as an important facet in human interactions [25, 59]. They de-

fine normal communicative behaviour. Emotions are innate somatic sensations that are

felt internally but outwardly manifest through behavioural and physiological means,

both voluntarily and involuntarily. The inability to expressly imitate or respond to

emotions during human communication is prominent in neural development disorders,

such as Autism, Asperger Syndrome, etc.

Historically, Human Computer Interaction (HCI) have mostly been devoid of this

innate human requirement. Combining emotions with computer systems forms a grow-

ing field of research called Affective Computing (AC) [103]. Following this trend,

Affective Gaming (AG) seeks to incorporate emotion feedback into the video game

domain.

The Video Games (VG) industry is now the biggest field of entertainment world-

wide [33]. No electronic medium exploits HCI more, than VG. AG offers great scope

for naturalistic communications and interactions within the video game arena.

Relying heavily on HCI, many VG attempt to stimulate emotions to captivate the
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player. VG hold parallels to natural social intercommunication; both depending on a

naturalistic emotive exchange. Typically, in VG communicating emotion or affect is a

one way process, e.g. displaying emotive content towards the player. In life however,

communicating emotion is a two way process. For VG to reach a level of communica-

tive immersion that rivals that of real life, it needs to incorporate this two way emotive

communication. However, VG are limited by the available technology that allows two

way affective HCI to take place. What is missing are the sensory systems needed by

the computer to access emotive behaviour presented by the player.

For AG success, VG need the sensory systems to detect and recognise changes in

emotion and react to them accordingly. This would allow the game player’s affective

state to be incorporated into the game-decision mechanics. Thus, VG would make the

leap from user emotive passivity into dynamic affective feedback, more akin to real

life communication.

Affective acquisition can be categorised as either behavioural or physiological.

The sensors, needed to acquire psychophysiological and behavioural data, have been

around for some time. Both offer good insights into the affective state of the partic-

ipant. Behavioural methods look or listen to how a participant is responding to the

emotional stimuli. While, physiological methods detect the underlying-subconscious

responses produced by the body to the same stimuli.

Using psychophysiological data within video games has been considered by com-

mercial companies since the early 1980’s [142]. The question of why such technolo-

gies were not adopted by consumers is less clear. We analyse what factors may have

prohibited the early market adoption of such. In addition we offer a platform to enable

affective acquisition systems to be utilised by a diverse market; making it open source.
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1.1 Hypothesis

1.1 Hypothesis

Acquiring utile affective data derived from psychophysiological phenomena has been

well established in affective video game research. A number of commercial attempts

to kick-start affective interactions within video games environments have been unsuc-

cessful, which may have compounded the lack of investment in the area. This has led

to a shortage of affective devices commercially available, particularly for researchers,

independent game developers and consumers.

New rapid prototyping technologies offer the ability to build complex input sys-

tems capable of meeting this shortfall in affective devices. From our understanding,

we are the first institution to explore the possibility of exploiting rapid prototyping

technologies, to empower the open manufacture of affective acquisition devices, us-

ing simple inexpensive sensors for use in affective video games. The lack of available

affective acquisition devices have no doubt hindered the progression of the field.

Therefore, the outline of our hypothesis is thus:

• Creating robust, simple and easy to use hardware, capable of capturing and

streaming key psychophysiological signals, from an active video game player in

real time, is possible using new on-board micro controllers and carefully placed

sensors.

To examine our hypothesis we consider why psychophysiological input devices

have not been adopted by mainstream vendors. We survey the history of affective

gaming and its lack of impact since its initial inception over three decades ago. We

consider the viability and functionality of three low cost physiological sensors. Cou-

pled with rapid prototyping micro-controllers, and in combination with a classic video
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1.2 Chapter structure and hypotheses

game input device, we strive to prove their effectiveness at affect acquisition while

playing an active video game.

We designed and built a bespoke mouse that is ergonomically designed to harvest

the cleanest possible psychophysiological signals while in active use. The described

design process, considered the ease of use as an important factor in the overall design.

The device is called the Shark-fin mouse, owing to its unique heart rate sensor housing.

User trials were performed using a custom video-game in order to ascertain whether

usable psychophysiological data could be acquired from the device during active game-

play.

Psychophysiological modes of affect detection may be good alternative solution

compared to more natural behavioural modes, for video-games. The need for available

psychophysiological sensor hardware, specific for video game playing, is identified.

We exploit new printing technologies and rapid prototyping, and offer a solution to

cater for the lack of affective hardware currently available. We performed and analysed

data from an experiment that demonstrates psychophysiological data related to emotion

can be recorded, from an active video game.

1.2 Chapter structure and hypotheses

Chapter 2 Hypothesis

• Poor commercial investment combined with GPU logarithmic performance gains

are the reasons why affective video games have not been fully exploited, over the

past three decades.

Chapter 2 is a survey of the current commercial contributions to affective gaming and

offers an insight into the trends that has steered the gaming industry thus far. It includes
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1.2 Chapter structure and hypotheses

descriptions of affective acquisition sensors and current academic contributors to the

field.

Chapter 3 Hypothesis

• Using on-board systems and carefully positioned sensors, it is possible to build

an affective input device, which can offer robust psychophysiological signals,

suitable for seamless active use.

In Chapter 3, we describe the process of developing, building and testing a functional

affective mouse.

Chapter 4 Hypothesis

• A simple video game, designed to stimulate small changes in emotion corre-

sponding to game ‘events’, could stimulate detectable and useful psychophysio-

logical data.

Chapter 4, covers the development of an affective video game.

Chapter 5 Hypothesis

• Changes in a player’s emotion can be recognised from psychophysiological data

using pattern recognition techniques, even when using crude data taken from an

actively played affective video game.

Chapter 5 discusses the analysis of the retrieved data, using visual and various classi-

fiers and ensembles.

The conclusion and future work is given in Chapter 6.
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1.3 Contributions

1.3 Contributions

This thesis offers the following contributions.

• We present a survey of the technological advancements of affective gaming, from

a historical perspective. The survey details the wide array of affective input

modalities and their merits and demerits for affective gaming. The outcomes of

the survey, show why various affective gaming attempts may have been unsuc-

cessful. It also highlights the motivation for affective gaming and supports the

need for more affective input hardware to be developed.

• In response to this hardware shortfall, we researched, designed and developed

an affective input device. The device was ergonomically designed for the best

possible signals, while maintaining ease of use. We developed a novel design

that integrates blood volume (heart beat) sensors into a mouse, using a unique

front mounted cowl, named the Shark-Fin. The Shark-Fin assists in keeping the

finger in the correct position and offers a darkened covering, to improve signal

fidelity. We also described design features to maximise blood flow and avoid

heat build-up.

• Our analysis utilised classification techniques that looked at the correlation be-

tween psychophysiological data and the game-state data. The results of these

analysis established the utility of using affective data streams over traditional

pre-emptive emotive definitions. Traditional ideas of what should invoke emo-

tional changes may be less reliable, than interpretations from psychophysiologi-

cal data. They also verified that the mouse was capable of producing useful data,

when used in an active video game. Moreover, the results of our analysis demon-
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strated that classifier ensembles out-performed traditional single classifiers in all

of our trials, using psychophysiological data.

1.4 Publications

• Kuncheva L.I., Christy, T. Pierce, I and Mansoor, S.P. (2011). Multi-modal Bio-

metric Emotion Recognition using Classifier Ensembles, Proc 24th International

Conference on Industrial, Engineering & Other Applications of Applied Intelli-

gent Systems (IEA-AEI), NY, Lecture Notes in Computer Science, LNCS 6703,

317-326.

• Christy T. and L.I. Kuncheva, (2013). A.M.B.E.R. Shark Fin: An unobtrusive af-

fective mouse, Proc ACHI2013: The 6th International Conference in Computer-

Human Interactions, Nice, France, 488-495

• Christy T. and L.I. Kuncheva, (2014) Technological advancements in affective

gaming: A historical survey, GSTP Journal on Computing, 3(4), 32-41.

• Christy T. and L.I. Kuncheva, (2014) DIY Affective Gaming: A Practical Psy-

chophysiological Acquisition Device, submitted to IEEE TAC.
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Chapter 2

Advancements in Affective Gaming

2.1 Introduction

A computer is an electronic device that is programmatically controlled to perform an

array of logical operations, which can solve a diverse array of problems. Its invention

spurred the technological revolution and computers now dominate the world; such that

their use is pervasive in every avenue of life.

One area that continues to separate human to human communication verses human

to computer communication is the conveyance of emotion. For human to human this

process is two way, but for human to computer it is one way; from computer to hu-

man. Emotion is a crucial component in human interactions, problem solving [97] and

entertainment [103].

The role of emotion in human interactions was discovered nearly two millennia

ago and has been documented scientifically for well over a century [25, 59]. How-

ever until 1997 [106], emotions were not taken as a serious consideration within the

computational scientific community.
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2.1 Introduction

2.1.1 Affective Computing

Research by Picard et al, a professor in Massachusetts Institute of Technology (MIT),

changed the view summarised above, and spurred a new field of study called Affective

Computing (AC). The verb affect is taken from the word affectionate, meaning a men-

tal state of emotion. AC considers emotion to be a vital component in HCI, taking any

emotional transmission (to and from a computer) to be an important and utile variable.

This field is growing rapidly and changing the landscape of HCI. There are several

common methods of detecting emotional expressions. Each fall into two broad cate-

gories, behavioural and physiological; discussed further in 2.2. Affective computing

exploits the body’s subtle and obvious disclosure of these outward expressions.

No area of the modern computer revolution utilises HCI greater than that of the

computer video game paradigm. Video games have become the leading global enter-

tainment industry, overtaking the movie industry on sales and revenue statistics [33].

Provoking profound emotions is deemed to be of vital importance in many video game

genres [100].

2.1.2 Emotional States

In the last few decades, elaborate physiological sensors that require careful contact

with the body have been developed to improve emotion detection [22]. Several sys-

tems have been created that investigate the useful properties of physiological data in a

working environment [115, 147, 105]. Many of these systems limit the freedom people

have come to expect when interfacing with a computer system. There is a debate over

the accuracy of such systems for detecting and classifying states of emotion.

A big part of the problem is that emotions are as complex and unique as the people
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2.1 Introduction

who experience them [59, 105]. Labelling emotion states (such as happy, sad, angry,

etc.) from physiological and behavioural data is still work in progress [17].

Russell [116] proposes the Valence-Arousal (VA) cognitive model of affect, exten-

sively used for what is termed dimensional approach to emotion representation and

recognition [48]. However, many argue that only arousal is perceptible from the phys-

iological responses of the autonomic nervous systems [119]. Other studies have re-

ported high classification of accuracy using valence in certain conditions[104]. The

difficulty in using the VA scale for physiological signals is that context plays a signifi-

cant role in determining a label for a given emotion state [16].

Valence is the measure of attraction or averseness to a given stimuli. One could

be attracted to an object of disgust (being in awe), but feeling appalled or saddened

by its presence, making the distinction of positive and negative emotion challenging.

Considering an arousal model offers far greater scope in determining usable data from

a highly contextual environment. An area that enables the great control over context,

as well as environmental, visual and audible cues, is the interactive video game.

2.1.3 Ethical Perspective

Utilising personal data in relation to human physiology, as a form of computational

input, raises new ethical issues. Such issues would concern the access, ownership,

storage and analysis of physiological profiles, associated with individuals. For exam-

ple, the sensors used to detect heart rate and peak amplitude (pressure) could highlight

medical issues pertaining to an individuals heart condition. Without medical backing,

could the data be considered valid health information? Does the system or adminis-

trators (without medical knowledge) of such a system have a right or duty to raise a
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2.1 Introduction

concern? Could raising a false concern cause undue stress to an individual. Does any

group or organisation have permission to analyse individual medical conditions with-

out specific consent? Could such information be used by industry (such as insurance)

to monitor health? If so who would govern such use of personal data?

These types of scenarios and concerns will need to be fully explored as AC devel-

ops. However, our aim here is to highlight this new ethical perspective, and not to give

any recommendations as to the correct ethical viewpoint.

2.1.4 Affective Gaming

AG is a relatively new field of research that exploits human emotion for the enhance-

ment of player’s experience during video game play. Interestingly, affective based

video games have been considered commercially since 1982 [2].

Conventionally, a video game attempts to elicit player emotion by its story-lines,

characters, video effects, music, game-play-rewards, etc. However, there is no precise

means to assess if the expected emotion is being experienced. To be fully immersive,

it is important to be able to detect a change in the player’s emotional state as a result

of the game play. There is no provision for assessing such changes within mainstream

gaming practices. AG seeks to remedy this through the use of psychophysiological or

behavioural sensors that read, interpret and respond to changes in a player’s emotion

in real time.

Basically, an AG system acquires emotion-related signals from sensor inputs, anal-

yses the signals, and provides data to the game engine [54]. The game is subsequently

altered taking into account the type and strength of the measured emotive data. Fig-

ure 2.1 shows a diagram of a real-time AG loop.
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Physiological Signals 

Behavioural Cues 

Play Video Game 

Emotion 
Analysis Alter Game 

Figure 2.1: The real-time affective gaming (AG) loop.

To offer utility, a commercial AG system is expected to stream real-time emotive

data, be robust, and most importantly be easy to use. The main criticism to experimen-

tal research in affective computing thus far has been that it is carried out in a heavily

controlled environments, which limits its chances for practical applications. Affec-

tive gaming development has to move away from the confides of a laboratory and be

deployed in normal environments [35, 105, 21]. In addition, the lack of available hard-

ware is a limiting factor.

A particular challenge is designing a single all encompassing taxonomy of the field

because it is comprised of several broad disciplines: physiology, psychology, elec-

tronic engineering and computer science. It should also be mentioned that results of
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2.2 Emotion as an input

research into AG conducted in commercial settings are rarely published.

In this study, we survey the historical technological developments and research

efforts that are attempting to bring practical AG to reality, including academic and

commercial contributions to the field as a whole. The rest of the chapter is organ-

ised as follows. Section 2.2 summarises the difficulties in measuring and classifying

emotion. We argue that affective gaming does not rely exclusively on the accuracy of

emotion recognition. Any change of the emotional state of the player that is detected

and reflected in the game can contribute to the player’s experience. Behavioural and

physiological modalities for affective data acquisition are presented in Section 2.3. We

put the emphasis on the wealth of physiological modalities as the preferred input for

AG. Section 2.4 review other-studies that use physiological modalities in AG. Sec-

tion 2.5.1 contains a historical perspective of the development of two of AG-related

technologies: console platforms and video graphics. Finally, Section 2.6 concludes the

chapter by listing the tasks and challenges set before modern AG.

2.2 Emotion as an input

Can we recognise and classify emotion? Emotion is notoriously difficult to quantify,

measure or put into clear-cut categories [82]. The prevailing evidence from psychology

and psychophysiology is that emotions do not naturally form distinct clusters in data

spaces extracted from representational cues, but are rather facets of a continuum. The

relationship between the physiological measurements and the emotional states they

are supposed to identify is complex and ambivalent [35]. The list of difficulties faced

by researchers in automatic emotion classification has been widely discussed in the

literature [17, 35, 64]. It includes but is not limited to:
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2.2 Emotion as an input

• We don’t know what to measure.

• Emotions experienced by the subject may not correspond well to the stimuli.

• Different subjects may react with different emotions to the same stimulus.

• The presentation of emotion will differ between subjects and also at different

time moments for the same subject.

• Emotion is not clear-cut and measurable, therefore there cannot be “ground

truth” data.

• There is no agreed protocol for stimulating and measuring emotion.

• There is no agreed protocol for testing emotion classification systems.

• The classes of emotions are intricately related to one another.

A vast diversity of results have been reported in emotion recognition experiments [19,

75, 102]. Owing to the difficulties listed above, classification accuracy in identifying

categorical emotions was found to vary considerably, spanning a range between 51%

and 92% [96]. Along with the excitement, the literature contains cautious or even

sceptical views [84]. It may be that endeavours to label emotion accurately across dif-

ferent subjects might be an impossible quest using today’s technologies [106, 120, 21].

Employing interdisciplinary research effort has been strongly advocated [105, 64].

Video games are designed to entertain, and thus allow a leeway in the quest of

recognising a specific emotion. The ultimate aim of an affective game is to make

the player aware that the game recognises and interacts with their emotional state,

throughout the course of the game. Occasional misclassification will not have a crucial

impact to the player’s enjoyment or satisfaction. Furthermore, whether an emotion is
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2.3 Affect acquisition

experienced positively or negatively may not be significant. Recognising that there

has been an alteration in the state of the players emotion, could be enough to satisfy a

change in the game, thus improve the players affective immersion.

2.3 Affect acquisition

There are two distinct means of collecting affective data, namely behaviourally and

physiologically. A variety of input modalities are used to gather affective cues from

the player. Figure 2.2 shows a diagram of the major types of modalities in affective

computing.

2.3.1 Behavioural

Behavioural methods of affect detection are naturalistic, in that they mimic how we

innately detect tiny visual and communicative emotional cues. They focus on outward

emotional gestures, postures, facial expressions and reactions, etc. Behavioural man-

ifestations of emotion are somatic (corporeal), therefore can be acted and have been

shown to differ pan-culturally [29]. Communicating outward emotional gestures to-

wards a computer can feel unnatural. Research has shown that people dislike being

recorded (Always on Kinect). Other behavioural cues such as speech modulation have

shown success, but some participants have expressed discomfort at talking emotively

to machines [62]. Although, intercepting voice communication between people speak-

ing together online could overcome this. However, such a technique could raise ethical

issues and limit the types of games that affective data could be used in. In addition,

video data analysis can be computationally expensive.
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2.3 Affect acquisition

Behavioural affect detection (BAD) modes can be described as methods of emotion

capture that consider the outward expressive behaviour of a person, in relation to their

emotive responses to any given stimuli. BAD is an instinctive approach and is often

used in video game research and development [38]. Figure 2.2 (#11 – #15) lists the

general types of naturally observed behavioural modes. While, Figure 2.2 (#16 – #18)

lists the modes that are capturable through HCI.

When engaged in a communicative dialogue with a real person, it is normal to

express facial emotions and emotive body gestures or body language, as a response to

the message being conveyed. There are at least 100 documented facial expressions to

concisely describe the emotion or mood of a person [95]. However, when faced with

a video game display, such outward expressions of emotion are not expected from

the active player. Spontaneous emotions may be expressed but the player will not be

naturally compelled to react in the same way as in human to human interaction. In

addition, (as mentioned) emotive facial expressions can be acted and have been found

to differ pan-culturally

Emotion detection using cameras has been criticised for being inefficient, in that it

requires a lot of processing power to sift through video data streams [36]. However,

it should be noted that this was before the introduction of hardware visual analysis in

systems such as the Microsoft Kinect, see Figure 2.2 (gesture #13 & posture #14). In

addition, behavioural affect detection presents cultural, gender, and age differences,

making behavioural analysis difficult [111].

Voice modulation is perceived as an important behavioural modality for detecting

emotion in video games. This is a particularly useful method of analysing affect, dur-

ing natural online player-to-player conversations. However, it has been observed that

some players feel uncomfortable talking directly to a video game [61].
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2.3 Affect acquisition

2.3.2 Physiological

Physiological expressions of emotion (psychophysiology) can be exploited to over-

come some of the issues found in Behavioural emotion detection. Psychophysiological

(PPG) reactions to emotive stimuli cannon be controlled easily, thus their use in Lie

Detection. They work Pan-culturally, meaning they are not a learned behaviour. And

moreover, they can be embedded into already adopted hardware input controllers.

Research has discovered that individual reactions are unique, such that different

people will react to the same emotive stimuli differently [106]. However, physiological

affect detection offers an insight into the unconscious projection of emotion, through

signals produced as a consequence of the experience at hand, and presented through

the nervous system. The two types of physiological modalities in Fig. 2.2 come from

the central nervous system (CNS) and peripheral nervous system (PNS), respectively.

2.3.3 Nervous systems

The human body is controlled and maintained through a complex system of intercon-

nected nerves, that govern the concious and subconscious mechanisms of the working

body.

Figure 2.3 depicts the basic nervous system pathways and their connectivity hier-

archy. From the central nervous system (CNS) stems the peripheral nervous system

(PNS). The Motor pathways in the PNS are further separated by the somatic (volun-

tary) and autonomic (involuntary) nervous systems. Further, the autonomic system is

separated three ways into the sympathetic, parasympathetic and enteric nervous sys-

tems.

Although the technical workings of these systems far exceed the scope of this the-
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 Central  
 Nervous System 

 Peripheral  
 Nervous System Motor 

Pathways 

Brain 

Somatic 
(Voluntary) 

Autonomic 
(Involuntary) 

Sympathetic Parasympathetic Enteric 

Figure 2.3: Nervous system pathways

sis, here we give a basic overview of each, and their general purpose.

• Central nervous system (CNS) acts like a router, consisting of the brain and

spinal cord. The CNS is responsible for the part of the nervous system relating

to the brain and spinal cord.

• Peripheral nervous system (PNS) relays information from the extremities (limbs

and organs) to the brain. The PNS is divided into the somatic (SNS) and auto-

nomic (ANS) nervous systems.

• Somatic nervous system (SNS) is part of the Peripheral Nervous System that

deals with voluntary controls of the body, such as the skeletal system.

• Autonomic nervous system is a part of the peripheral nervous system that deals

with the below consciousness control of the visceral functions; such as digestion,

respiratory rates, sexual arousal, heart rate, etc.
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2.3 Affect acquisition

• Sympathetic nervous system is responsible for mobilising the fight-or-flight re-

sponse (fast).

• Parasympathetic nervous system works in harmony with the sympathetic ner-

vous system to regulate the rest-and-digest system (slow).

• Enteric nervous system maintains the function of the gut (gastrointestinal) sys-

tem.

Emotive data of brain-wave activity has been researched through various modes.

In the near future, it is unlikely that AG will benefit from technologies such as

functional Magnetic Resonance Imaging (fMRI) or functional Near Infra-red Spec-

troscopy (fNIRS), due to both their size and cost, see Figure 2.2 (#2 & #3) respec-

tively. The most accessible technology for neurophysiology is Electroencephalogra-

phy (EEG), with numerous commercial systems entering the market, in addition to

the professional systems employed for psychological research. EEG is an important

technology in modern neuroscience. Compared to fMRI, EEG has a worse spatial res-

olution but a much better temporal resolution [42]. The electrical potentials related to

emotion can be projected widely in an intricate pattern across the scalp, and can there-

fore overlap with potentials evoked by other activities. EEG has been utilised in the

classification of emotions in various contexts [124, 132, 14, 67] and is progressively

becoming a portable lightweight technology. Several commercially available EEG sets

are available:

• OCZ – Neural Impulse Actuator (Nia) [98]

• Neurosky – Mindset [93]

• Neurosky – Mindwave [94]
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2.3 Affect acquisition

• Emotiv – EPOC+ [32]

It is often assumed that the projections of positive and negative emotions in the left

and right frontal lobes of the brain make these two emotions distinguishable by EEG.

Practice has shown that the granularity of the information collected from these regions

through EEG may be insufficient for detecting more complex emotions [14].

For AG the area of greatest interest is the involuntary autonomic functions of the

nervous system. Being involuntary, the emotive signals emanating from the ANS are

veritable. They form a true representation of the uncontrolled emotional state changes

of the participant.

Psychophysiology (PPG) is the study of a combination of innate human physiolog-

ical responses in relation to emotional or cognitive changes. The correlation between

emotion and physiology is well founded [141, 144, 103, 146], and has been thoroughly

explored throughout psychological studies [128]. Some of the most commonly used

physiological inputs are listed below.

2.3.4 Physiological modalities

• EDA Fig. 2.2 (#6), also referred to as Galvanic Skin Response (GSR), Skin Con-

ductance Rate (SCR) or Psycho Galvanic Reflex (PGR), measures the variance

in electrical conductivity through the surface of the skin. EDA readings are ef-

fected through the sympathetic nervous system, making it a good indicator of

stress and anxiety. EDA suffers from latency, with a delay of approximately one

second for a response to be evoked, followed by approximately three seconds

for the effect to dissipate. It is among the most basic and low cost physiological

modalities available, and is widely used in physiological emotion recognition,
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2.3 Affect acquisition

including video games [26, 3]. EDA is commonly read between two fingers on

either hand, although is not limited to this area of the body [13]. Even though

there is a delay, research has shown that EDA responds very well to changes in

emotive states [4]. Moreover, even though there is a delay in the signal being

invoked, there is evidence to support that EDA responses are produced prior to

any emotive event occurring [22]. This suggests that participants pre-emptively

react to events taking place on-screen. Therefore, EDA bodes well for adaptation

into video-game controllers.

• Photoplethysmography (PPG) (blood volume) Fig. 2.2 (#7 – #8) is the mea-

surement of blood entering and leaving a given part of the body. The mea-

surable rhythmic variance in blood volume is directly related to the heart rate

(pulse). The variance in heart rate is considered a good indicator of stress and

anxiety [123]. Measuring blood volume also offers information relating to the

strength of a heart beat. These measurements are seen in a change in the am-

plitude of the blood volume waveform signal. A higher amplitude in the blood

volume waveform is also an indicator of stress, anxiety and health [23, 123].

As a sign of its pervasive popularity, heart rate input became the pivotal compo-

nent of a television game-show, called The Chair [5]. In this show, contestants

answered general knowledge questions and were expected to maintain a calm

heart rate to win money. The sensing devices suitable for affective gaming come

in the form of a clip, which uses optical technology to measure simultaneously

heart rate and blood oxygenation [123].

• Respiration Fig. 2.2 (#9) Emotion can influence breathing rates [53, 12]. The

measuring device could be a respiration belt or sensors embedded into clothing.
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2.3 Affect acquisition

For example, a force feedback vest with embedded breathing rate sensors already

features in the avid pro-gamers’ arsenal [34]. However, mainstream applications

could be hindered by utilising garments to acquire data.

• Temperature Fig. 2.2 (#10) Body temperature is affected by emotion, specifically

joy, anger and sadness [88, 89], and has been used for emotion recognition in

video games [137, 13]. Temperature sensors fall into two general types: contact

and non-contact. Both types are sensitive to movement, which can introduce

inaccuracies in the data collected. Movement is an important issue in the process

of active video game play; hence, the positions of the sensors have to be chosen

carefully.

• Electromyography (EMG) Fig.2.2 (#5) measures the electrical activity produced

by muscle movement. Activity patterns in muscles such as orbicularis oculi (eye)

and zygomaticus major (smile) are often used for affect detection. However

across the populous (including nationalities), people differ widely in terms of

how they facially display emotion[106, 120]. Besides, EMG sensors may need

to be placed at various body locations (in particular on the face), which may

compromise the player’s comfort.
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2.3 Affect acquisition

2.3.5 Sensors and devices

Table 2.1 shows a list of patents of early affect detection devices, up until the advent

of the modern video game (in 1971). These systems formed the bedrock of modern

PPG technologies. The table demonstrates that electronic devices capable of electronic

capture of psychophysiological signals were developed more than 40 years before elec-

tronic video games were introduced. It raises the question as to why such technologies

were not exploited by VG since that time? It then leads on to Table 2.7, which high-

lights the progression of the VG industry.

Sensors and devices for AG can be roughly grouped into three types.

• Gold Standard sensors. Hardware used in AG research has been borrowed from

psychological research or commercial relaxation systems, such as the BioPac[10],

IOM [145], etc. Commercial hardware for physiological acquisition is consid-

ered expensive and awkward to use [66]. Standard affect sensors give better

results when they are held still. However, the devices can be regraded as a nui-

sance, being attached to the player’s fingers, ear, etc. This makes them less

suitable for active video game play.

• Wearable sensors. Wearable sensors implies “body worn”, making long term

physical contact with the body [106]. In 1997, Picard and Healey [106] intro-

duced an affective wearable system that stored physiological data from Respi-

ration, EDA, Blood Volume Pulse (BVP) and EMG, for later analysis. Picard’s

work would later become a beacon for affective computing research [51, 70, 13].

Sensors can be embedded into clothing, glasses, gloves, shoes, hats, helmets,

jewellery, etc., making this an attractive avenue for AG. Wearable sensors are

becoming more pervasive, with large companies such as Apple, Samsung, Sony
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2.3 Affect acquisition

and Google investing into the field; Apple watch, Concept Dual-Shock-4, Min-

dRDR respectively. Wearable systems could play a key role in profiling users

behaviour throughout the day, enabling more concise recognition of temporal

states of emotion.

• Seamless contact sensors and devices. The sensors in this group come into con-

tact with the body for a limited time, for example through traditional interfaces

such as mouse, game-pad and keyboard. To be considered seamless, the user

should not be aware of any interaction with the sensor. For example, EDA could

be measured from electrodes embedded into the hand-grip of a console con-

troller or on a mouse. A comprehensive study on research devices of this type is

provided by Reynolds [115], examples of which are

– Sentograph – measures and visualises user’s touch along a two-dimensional

space.

– Touch Phone & touch mouse – measures grip strength.

– Sentic Mouse – senses directional input.

– Sqeekee – measures click pressure.

– IBM Emotion Mouse – gathers temperature, EDA and somatic movement.

Even though the core technology for physiological signal capture is mature and

well proven, hardware specifically tailored for affective gaming is still not widely avail-

able.

Affective video game input must be comfortable and intuitive to use. If a sensor

impedes the enjoyment and competitive edge that video game players expect, it is

less likely to be adopted. AG would benefit best from seamless contact sensors. The
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2.4 Commercial Affective Gaming

hardware needs to move from expensive laboratory equipment towards reliable and

affordable consumer devices [35, 105, 21]. Affective sensors can be incorporated into

already adopted video game controllers [78, 4, 13, 21]. Valve Software and Sony have

both implied that EDA and Heart Rate (HR) could soon be incorporated into standard

controllers. Producing bespoke low cost hardware for AG is feasible [13, 21, 31],

for example, by using recently released rapid prototyping platforms [43, 1] and 3D

printing.

It is proposed that this type of rapid prototyping should shape the newly forming

landscape of AG.

2.4 Commercial Affective Gaming

1982 saw the iconic video game and console developer Atari made the announcement

of a new form of computer game interface, called the Atari Mindlink. The Mindlink

suggested the use of brain waves to interact with a new breed of upcoming games,

see Figure 2.4. The Mindlink was to be used as an input device in lieu of a standard

joystick controller. The device used EMG to detect movements on the muscles of the

forehead. It was abandoned during Atari’s redistribution in 1983 [142], and never saw

its commercial début. The device was never commercially released.

An EDA device, called the Mantra Mouse, was introduced in 1984. The Mantra

Mouse sent EDA signal responses to a PC’s audio port, enabling the signal to interact

with bespoke software. Figure 2.5 (a) shows the Mantra Mouse. The device was

aimed at teaching relaxation techniques. The device is still commercially available

today [135].

By 1997, an arcade (coin-op) machine that utilised heart rate and EDA signals was
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2.4 Commercial Affective Gaming

Figure 2.4: Atari Mindlink flyer, image courtesy of www.atarimuseum.com.

(a)

REFULING        3010        10     a

(b)

Figure 2.5: Calmpute Mantra EDA input device (a) and CalmPute CalmPrix affective
game (b).
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2.5 Utilising Affective Data

released in Japan. The accompanied game was called Tokimeki Memorial Oshiete Your

Heart and is described in section 2.5.2. In 1998, Nintendo utilised a heart rate monitor

to alter the difficulty and bonus delivery of a competitive version of Tetris, described

more in section 2.5.2 . These games are discussed in further in section 2.5.2.

2.5 Utilising Affective Data

By 2001, academic research into AG officially began [115, 9, 107]. Table 2.2 lists the

research contributions made within the field of AG since 2001, including the physi-

ological sensors and video games used. Many sensors and sensor permutations have

been tested, along with several game genres.

The current methodologies used to utilise affective data can be categorised in to two

areas; threshold and emotion identification. The former uses the raw signals, taken

for various sensors, and determines a combination of thresholds to perform various

changes to the game mechanics, as seen in Tables 2.3 & 2.4. The later involves at-

tempting to determine the emotion of a player using physiological methods, such as

the valence and arousal space. Various pattern recognition classifiers have been used,

such as SVM (see section 5.3, in chapter 5), etc.

As indicated in 2.1.2, we believe determining valence is highly individual and

wholly contextually based. Therefore, to process and use meaningful affective data,

arousal and game context must be considered in combination with either physiological

or behavioural data. Far more research will be required to establish affective ground

truths in this field. Which feeds into the purpose of developing our system. To enable

such research to take place, available hardware capable of delivering affective data is

required.
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2.5 Utilising Affective Data

Tables 2.3 and 2.4 detail game variations in response to changes in physiological

data, published by Dekker & Champion [26]. In this example, visual and audible

effects are introduced to the game when particular EDA and HR signal threshold com-

binations are met. Tijs et al. [136] use 7 physiological parameters to guide the speed

of Pacman (Table 2.5).

To illustrate the developmental potential of the physiological input modalities, we

collated the accessible publications explicitly devoted to affective gaming, and noted

which ones address the engineering of bespoke psychophysiological hardware. Fig-

ure 2.6 gives a bar chart of the distribution of the publications over the years. The

papers whose main focus are psychophysiological sensors and devices are marked in a

lighter shade.

New Timline Image

Even though the publication numbers are not high, an emerging trend could be

identified. Affective input devices are beginning to make their way to the centre stage

of affective gaming.

Judging by the achievements and the potential of using physiological modalities

in AG, the future is likely to see smarter and more sophisticated implementations on

progressively smaller, more robust, reliable and noise-free devices. Wearable sensors

are also likely to become more pervasive.

2.5.1 Generations of console platforms

The introduction of the electronic computer heralded the beginning of a new era [24].

No sooner had the computer become affordable to the masses; video games became

an arising staple of popular entertainment [108]. Interactivity plays a pivotal role of
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Figure 2.6: Time-line view of AG research publications. Publications addressing be-
spoke psychophysiological hardware are shown in a lighter shade.

video games. Typically, video games allow the player to interact with the virtual en-

vironment an interface device such as joysticks, joy-pads, keyboards, mice, trackballs,

cameras, touch-screens, etc. Video game consoles have become a dominant symbol

of the mainstream video game market. Several attempts have been made to introduce

AG to the mainstream [142, 40, 41, 69, 6]. The companies involved manufactured the

necessary hardware and software to foster the use of affect in video games. However,

none of the systems were successful in the long term. Below we take a closer look at

the developmental context and the possible reasons for the delayed progress.

Figure 2.7 shows a time-line representing the introduction and commercial duration
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2.5 Utilising Affective Data

of 8 video console generations. Each generation is presented as a horizontal coloured

bar. Key commercial contributions are indicated with colours relative to the console

generation they were released on.

Earlier video game machines, such as Galaxy Game and Spacewar are acknowl-

edged, but do not form part of the public commercially available video game systems.

2.5.2 Commercial Affective Video Games

The first commercial video game, available to the paying public, was an arcade ma-

chine called Computer Space, which was released in 1971. In the same year, the first

video game console, called the Magnavox Odyssey, was released depicted in the time-

line in Fig. 2.7. This heralded the birth of the home video game and the industry as a

whole.
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2.5 Utilising Affective Data

Table 2.2: Affective gaming modalities and the current academic contributors in order
of year.

Year Modalities Game
1999 [114] EDA AffQuake (Quake II)
2001 [9] EDA Racing Dragon
2002 [120] HR, EDA, EMG, video Puzzle
2003 [46] HR Action based
2003 [130] Game pad pressure Space Invaders
2005 [111] ECG, ICG, HR, HS, EDA, EMG Pong

Temperature, questionnaire
2005 [118] User control knobs Generic
2005 [8] EDA, EMG Cards (Skip Bo)
2006 [83] HR, EDA Treasure Hunt
2006 [112] HR, EDA, facial EMG Monkey Ball 2
2007 [77] EDA, ECG, HR NHL 2003
2007 [26] EDA, HR HalfLife2
2008 [109] EEG Break-Out
2008 [60] Time, eye movement Half Life
2008 [20] HR, EOG, EDA, EEG, respiration, Temperature Tetris
2008 [62] Audio (vocal cues) Half Life Mod
2008 [113] HR, EDA, facial EMG Monkey Ball 2 &

James Bond 007
2008 [136] HR, EDA, respiration Pacman
2009 [91] EDA, EMG HalfLife2 Mod
2009 [140] Control tilt, pressure Need4Speed
2009 [76] EDA, HR, EMG, Temperature Pong & anagrams
2009 [28] EDA, HR Prey, Doom3,

Bioshock
2010 [137] EDA Racing
2010 [72] EDA, Respiration Emoshooter (FPS)
2011 [13] EDA, HR, pressure, temperature, gyroscope Racing Car
2011 [4] (Use) EDA, (Tried) HR, eye movement, Left4Dead2

Portal2, EEG, pupil dilation, EOG, posture, Alien Swarm
gesture,voice, face expression, respiration

2013 [21] EDA, HR, Temperature Custom game
2014 [31] EDA, Pulse Pong
2014 [7] EDA, HR, PPG and Temperature Death Unknown
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2.5 Utilising Affective Data

Table 2.3: Dekker & Champion visual effects and physiological threshold conditions;
used in the modified video game Half Life 2.

Emotion Game Change Criteria*

Comatose Sound (heart beat), HR + EDA < 0.8
new enemy or boss or < 0.4 below avg

Bored Black & White HR < 0.8− avg

Calm Shader (White filter) HR >×2+ avg

Worried Shader (Red filter) HR > avg ×2

Panic Shader (Bright red filter) HR >×3 above avg
+ FOV = 130

Berserk Shader (Red screen) HR >×3.5 above avg

Table 2.4: Dekker & Champion conditions applied to psychophysiological threshold
criteria in the video game Half Life 2.

Condition Criteria*

Stealth EDA 0.5� 0.7

Invisible HR < 0.5 and EDA < 0.5

Weapon damage HR & EDA ×40

Speed HR

Sound volume EDA2×0.8

Bullet time (Slow motion) EDA > cal ×3

Shake HR > 3.8 above avg
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2.5 Utilising Affective Data

Table 2.5: Effects of game speed of Pacman, based on psychophysiological data input

Physiological features* condition identified (action)

Mean SCL slow (speed up)

Number of SCR slow (speed up)

Mean HR slow (speed up)

Mean respitory slow (speed up)

CORR fast (slow down)

ZYG fast (slow down)

Key pressure slow (speed up) & fast (slow down)
& normal (nothing)
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2.5 Utilising Affective Data

In 1984 CalmPrix was introduced with a psychophysiological system called Calm-

Pute. CalmPrix was a car racing video game that used EDA signals to alter the speed

of the racing car. It used a commercial EDA sensor called the Mantra Mouse or

GSR2 [40] as an input device. The CalmPrix video game was meant to teach a re-

laxation technique, using an extremely primitive racing car game (even for the time).

CalmPrix would have been pitted against games such as the highly successful Mario

Brothers (1983) [55], Return of the Jedi and the genre creating Elite (1984) [56]. A

screen mock-up of the video game Calm Prix is seen in Figure 2.5 (b). Commercially,

it didn’t stand a chance.

1997 saw the release of Tokimeki memorial oshiete your heart, which was a provoca-

tive and alluring arcade game. The game was only available as an arcade machine in

Japan, which limited its global success. It was a Manga-comic style cartoon dating

game, far flung from the popular games of the day, such as Herc’s Adventure, Back-

yard Baseball and Claw [57]. It encouraged players to express physiological affect

(love) towards cartoon characters (Manga art), which was measured by EDA and HR

sensors. The fact that it was a publicly visible arcade game requiring emotion, may

have been a factor in it’s lack of commercial longevity.

Tetris 64 was released on the Nintento 64 in 1998. It used HR taken from a clip at-

tached to a player’s ear to control the speed of the falling shapes. The game allowed up

to four players to compete on the same screen, making it possible to alter the outcome

of the competition using emotional feedback. The game concept was rather old and the

requirement of an ear clip could have handicapped the game’s success. Although Tetris

remains a famously popular relic, it was competing against games such as Half Life,

Crash Bandicoot, Sonic Adventures, etc. [58]. In addition, it was reported that Nin-

tendo was experiencing issues with its latest console. Among these were expensive
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2.5 Utilising Affective Data

cartridges, poor graphical rendering and a complex programming interface [134].

Another physiological device that had been considered was the Wii Vitality. How-

ever, this device was not released due to speculation that it would not prove commer-

cially successful [63]. It is worth noting the gradual decline in the Wii sales, which

may have (again) formed a strong part in that decision.

2.5.3 Graphical advancements

Immersion is important for emotional experiences within video game environments

[15, 60]. The illusion of immersion and interaction with surroundings, materials and

substances in modern video games cannot be achieved without the giant steps in video

graphic hardware and software. Graphic technology and video games evolved syn-

chronously. They developed from primitive monocohrome pixelated-blocks being con-

trolled on a cathode ray tube (CRT) to advanced visually realistic, fully immersive,

simulated environments, presented on ultra high definition (4K & 8K) organic light

emitting diode (OLED) liquid crystal displays (LCD). The quality of displays contin-

uing to improve. Detailing advanced graphical techniques, such as particle systems,

billboards, shadow-maps, etc., is beyond the scope of this thesis. However, it is noted

that advanced graphical hardware and software techniques have formed an enormous

part of this growth. Here we are interested in the exponential technological growth in

video graphics performance and its relationship with video games and AG.

Companies such as Intel, Array Technologies Industry (ATI) and nVidia made vast

efforts in the graphic rendering technology arena, through competitive video card re-

leases. An advanced programming interface (API) called OpenGL [125] (Open Graph-

ics Library) was introduced in 1992. It offered a single graphical programming inter-
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2.5 Utilising Affective Data

face across all popular technologies and platforms, thereby speeding up game devel-

opment. Notably, nVidia released the Graphical Processing Unit (GPU) in 1999.

Mega (10002) Texels (MT) are defined as the number of texture elements graphic

hardware processors can manipulate per iteration. Figure 2.8 demonstrates the expo-

nential growth of MT graphics hardware performance since 1997. In 1997, the maxi-

mum MT expected from a 3D rendering graphic processor was log10(100), which grew

exponentially to log10(1875000) by mid-2013 [126].
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Figure 2.8: Graphic card technology advancement since 1997 beginning in 1997 at
100 mega-texels (MT) and growing exponentially to 1,875,000 MT by mid-2013. The
vertical axis is log10(y), where y represents maximum MT per year.

It is suggested that graphical advancements could soon reach a plateau. High-end

video game systems are now capable of animating real-time graphic renderings that are

becoming visually close to that of real life video footage. In addition, video graphic

displays have pixels that are so minute, they cannot be discriminated individually by

39



2.5 Utilising Affective Data

the human eye, with a pixel density greater than 300 pixels per inch.

This signifies that the quality of graphics and graphical performance will soon be

indistinguishable from reality. As the visual component of video games reaches a

peak, more emphasis on player’s interaction and immersion is expected. Games are

now appealing to a more sophisticated audience, with the average age of the frequent

game purchaser being 35 [33]. This calls for exploring new avenues for simulating

intelligence and affect manipulation.

2.5.4 Commercial Interests

Commercial video game publishers are rumoured to be considering psychophysiologi-

cal hardware, as part of their next generation of video game consoles [127]. Currently,

the gaming mouse company Mionix [90], are raising a Kickstarter campaign for their

R&D departmnet, MIONIXLABS [65]. The mouse will feature two sensors; HR and

EDA. It is expected to be released in September 2015 at a retail price of C129.99.

Thelmiclabs have released an EMG armband, called the MYO [133]. The MYO

currently offers detection of 5 specific gestures; wave left, wave right, spread fingers,

fist, and thumb-to-pinky. Although this does not offer affect detection, theoretically it

could be programmed to detect emotive based gestures.

Technology capable of both behavioural and physiological affect detection are be-

ginning to emerge. This may herald the birth of real commercial investment into AG.
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2.6 Summary

We hypothesised that ‘Poor commercial investment combined with GPU logarithmic

performance gains are the reasons why affective video games have not been fully ex-

ploited, over the past three decades’.

We surmise that previous attempts at AG (e.g. Atari, Marta Mouse, Konami and

Nintendo), may have lacked proper investment and each attempt was introduced at the

wrong time or for the wrong reasons. For example Atari may have been attempting

to revive an ailing company, but collapsed before they introduced their new AG prod-

uct. The Mantra Mouse (Calm Prix) was aimed at relaxation techniques and offered an

extremely primitive game, thus underwhelming their initial launch. Konami released

a seductive/erotic arcade game that was presented in public spaces. As successful as

they were, Nintendo may have been attempting to overcome the reported difficulties

they were experiencing with the Nintendo64, but lost ground to the new 128bit sys-

tems that were later released. While there was scope for graphical and performance

improvements, graphics enhancements remained the driving force for advancement in

the video game arena. This left no space for affective interaction to impress the audi-

ence (gamers). We believe that our hypothesis stands true.

As graphics advancements are reaching a plateau, game developers are having to

look at new methods to outshine the competition. This will no doubt move towards

greater immersion. To fully exploit immersive human to computer interactions, emo-

tions will play a vital role.

The general consensus is that using the player’s affective state to manipulate the

video game adds to the enjoyment and immersion experienced. AG will play an im-

portant part in the future of video game interaction. The tasks remaining for modern
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2.6 Summary

AG can be summarised as follows

1. Bring together expertise from the various fields that AG draws upon: psychol-

ogy, physiology, computer science and engineering.

2. Create unobtrusive, robust and accurate devices for inputting physiological sig-

nals such as EDA and HR among many.

3. Develop state-of-the-art methodologies for reliable emotion recognition, as well

as algorithms for detecting changes in the player’s emotional state.

4. Move AG out of laboratories and into the developer’s hands. A step in this

direction would be the creation of an open affect - application programming

interface (OA-API) for affect acquisition. When no affect acquisition hardware

device is present, the interface would emulate the required emotive techniques

necessary using software. This would enable the developer to code the game for

affective video games with or without hardware-specific knowledge.

We speculate that video graphic advancements are heading towards a plateau, which

will likely shift the game development focus towards greater intelligent and affective

based interactivity. Such a shift is expected to open up commercial perspectives for

AG, further. However, the bridge to achieving commercial AG is having affective in-

put devices available to both developer and consumer. Thus far, this bridge is only

being considered by large commercial companies, which limits the potential growth of

AG.

The future of AG will rely on initiatives in hardware, to enable the development of

new affective software. To cater for this need, we present a blue print for producing an

affective acquisition device, suitable for affective gaming.
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Chapter 3

Building Shark-Fin

This chapter outlines the construction of the Shark-Fin mouse and its preceding proto-

types, describing the hardware and sensors used.

There are three points that need to be considered when building a physiological-

sensor-equipped input device. The first, is that the sensors need to deliver readable

physiological data. Second, the device is ergonomically shaped to safeguard the high-

est sensor fidelity. And third, the device continues to works as an input, maintaining

it’s functionality and comfort.

3.1 Sensors

Any device that can respond to a signal or stimulus, particularly in relation human

physiological changes, can be considered an affective sensor. We looked at the merit

and demerits of the most widely used affective sensors, in affective video game re-

search. Taking both sensitivity and practicality into account, we selected three sensors

that would offer the optimum affective data, with the least amount of interference to
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3.1 Sensors

the user, when fitted to an input device. We selected electrodermal activity, photo-

plethysmography and temperature.

3.1.1 Electrodermal activity

EDA electrodes are used for their sensitivity to physiological changes in the dermal

layer of the skin [128]. Skin resistance changes in-line with psychophysiological re-

sponses of a participant to emotion stimuli. As the body responds to external stimuli,

tiny variations in skin secretions take place, as part of the body’s natural autonomic

nervous response system. These changes alter the resistivity of the skins dermal layer.

The skin forms resistance between the two electrode contacts and acts as a bridge for

the electrical current. The resistance is measured through a low direct current (DC),

in this case 5-volts passing through the skin. These fluctuation in resistivity form the

bedrock of affective EDA analysis.

3.1.2 Photoplethysmography

There are three commonplace modes of extracting heart rate data from the body; elec-

tric impedance, transmission and reflective.

We opted to use a transmission mode, over electric impedance and reflective modes

of PPG for two reasons. First, being electrically based, electric impedance-plethysmography,

may have interfered with the voltage from the EDA and vice versa. Second, modular

reflective mode PPG sensors were not commercially available, at the time of building.

The benefit of using reflective mode PPG sensors is discussed by Shelley & Shel-

ley [123]. Both transmission and reflective mode PPG offer a greater insight into the

physiology of a participant, by determining the signal waveform amplitude, among
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3.1 Sensors

other physiological responses [123].

Radiated infra-red light (IR-LED) is beamed through the skin, directly into the light

detector (phototransistor).

The sensors are housed in an arched shaped covering, centred on the nose of the

mouse, as shown in Figure 3.8 (Phototransistor & IR–LED). The user’s middle finger

sits in between the two components, blocking the path of the radiated IR light. As

the volume of blood changes in the user’s finger, (synchronous with a pulse) the light

that is able to pass through the finger alters respectively. This change in light signal is

detected by the phototransistor. Because it represents blood volume, the signal show

both heart rate and the height of the peak waveform, both recognised stress level in-

dicators [123]. The signal is amplified and smoothed using a simple circuit shown in

Figure B.1 [86], before being converted to a digital signal by the FEZ mini, see Fig-

ure 3.8 (Amplification and smoothing PCB). A typical heart rate signal taken from the

Photoplethysmograph is shown in Figure 3.16: Pulse.

3.1.3 Temperature

The final prototype added temperature to the BVP and EDA sensors. A pre-built infra-

red thermometer printed circuit board (PCB) was used, for simplicity. The thermome-

ter uses a MLX90614 infra-red Thermometer sensor attached to an ATmega328 Ar-

duino based evaluation board [85].

An IR thermometer was used as it offers accurate non contact measurement of tem-

perature. This deters thermal heat built up by allowing the focal point (on the palm)

to be kept reasonably ventilated. Thermal ventilation was also a factor for choosing an

open design of the mouse housing, see section 3.3. The IR thermometer is powered di-
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3.1 Sensors

rectly through the FEZ mini using 3.3 volts DC. The system sends a temperature signal

in Fahrenheit to the FEZ mini using a UART (Universal Asynchronous Receiver/Trans-

mitter) TX protocol, at a baud rate of 38400Bd. The sensor is seated under the casing

of the upper mouse enclosure and reads the temperature of the lower palm, through

a circular aperture, as seen in Figure 3.8 (Upper mouse enclosure). A typical skin

temperature fluctuation line diagram can be seen in Figure 3.16: Temperature.

A mouse was selected, as it forms (along with the keyboard) the backbone of gen-

eral HCI and its use necessitates continual hand contact. Psychophysiologically sensi-

tive mice have been considered before [115]. However, we believe that the technology

needed to convert and transfer the captured data was not available during the earlier

attempts. Such devices where the Arduino, which was released in 2005 and the FEZ

(used here) which was released in 2010. In addition the process of moulding a be-

spoke shape for the inputs casing was so easily possible. Previous attempts had to

adopt technically challenging methods of prototype construction. Prior, creating such

complex prototype systems would have been prohibitively more expensive. Such rapid

prototyping circuit technologies are continually improving.

3.1.4 Final System

The EDA, and PPG signals are processed through a simple circuit, before being sent to

the analogue to digital converter (FEZ-mini). The Thermometer signal is sent directly

to the FEZ, through its evaluation board TX/RX protocol system.
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3.2 Hardware

3.2 Hardware

The following section describes the hardware used in both the early and the final pro-

totypes. The hardware demonstrates the simplicity of the system.

3.2.1 Early Prototype

We constructed a basic proof-of-concept affect acquisition prototype, using off the

shelf, electronic components. Initially, we wanted to determine that detectable affec-

tive data could be extracted from crude hardware and sensors.

We selected the psychophysiological sensors based on their use in previous affec-

tive gaming research, and considering which would be feasible to be adapted inside a

video-game controller.

For this system, we chose two sensors; a pair of electrodes for measuring EDA and

a blood volume PPG sensor.

For the EDA, an extremely simple sensor was constructed, using an electronic

bread-board to hold two pieces of exposed wire as electrode points. The tin electrodes

measured 1mm thick, 10mm in length. We powered the simple EDA sensor circuit

using the 5 volt direct current (DC) supplied from a new prototyping board called the

FEZ Domino. A 5-volt DC was used to be in-line with previous studies. The overall

circuit voltage was lowered using a 100k resistor in a parallel circuit, to keep the signal

within the 3.3-volt input range of the FEZ, as seen in Appendix B, Figure B.2. This

lowered the entire signal waveform but maintained the EDA fluctuation detail. The

sensor can be seen in Figure 3.1.

The Pulse Rate Monitor circuit utilises a PPG blood volume detection system. We

used a Maplin (N56FL) Pulse Rate Monitor kit [79], see Figure 3.3 (a). However, the
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5 Volts 

DC Ground

FEZ 

A1

Electrodes

100k

Figure 3.1: Electrodermal electrode placement

original N56FL circuit was designed to generate an audible beep when a peak in blood

flow volume was detected. We redirected the audible beep’s electrical signal to the

FEZ Domino’s analogue input pins.

The PPG sensors are constructed of two parts:

• A light source; an infra-red light emitting diode (IR-LED)

• A light detector; a phototransistor.

They required a structure to accommodate the infra-red light emitting diode (IR-

LED) and a phototransistor. To create a structure, we fashioned a hub from the top of

a standard two litre drink bottle, see Figure 3.2 (a) and (b). The hub was lined with

paper to keep it dark and stop the light from reflecting.

The components we chose to interface the sensors to a computer were a TTL-

232R-3V3-PCB [39] USB to serial converter, Figure 3.3 (b) and a FEZ Domino [30]

analogue to digital converter, Figure 3.3 (c).

The TTL USB to serial converter, called a TTL-232R-3V3-PCB[39] allows a USB
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(a)

Infra-Red LED

Phototransistor
(b)

Figure 3.2: Bottle-top blood volume sensor casing and assembly, depicting bottle-top view
(a) and paper lined Infra-Red LED, and phototransistor placement (b).

(a) (b) (c)

Figure 3.3: TTL USB to serial converter interface (a), Blood volume photoplethysmograph
hobby kit (b), and a FEZ Domino electronic prototyping platform (c).

port to be accessed like a serial port, see Figure 3.8: (TTL). This simplifies the process

of accessing the streaming data. Because, most programming languages (including

Matlab) have native Serial Port access libraries. The TTL device’s outer sheath was

stripped to remove the USB type A plug connector. After this, the TTL measured just

24.9mm x 11.85mm x 1.6mm.

The data from the body’s psychophysiological responses need to be converted from

a fluctuating analogue electrical current into digital integer values. Therefore, an ana-

logue to digital converter was needed. We opted for the FEZ, by GHI Electronics [44].
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The FEZ acts as an analogue to digital converter. It’s a micro-controller module that

allows several analogue electrical signals to be read and converted into digital outputs

simultaneously. In our case, it read-in electrical EDA and Pulse signals and returned

an array of digital integer values to a computer in real time.

It is controlled by a 72mhz, 32 bit ARM (ARM7 LPC2387) processor which runs

Microsoft .NET Micro Framework. It is powered by 3.3 volts DC, taken directly from

the USB port. C# is used to program the module. The FEZ is relatively small, hav-

ing the dimensions of 4.8cm x 2.8cm (1.88” x 1.10”) and 11.34g (0.4oz) in weight.

The serial Universal Asynchronous Receiver/Transmitter (UART) protocol was used

to communicate between the FEZ and a standard PC

The data was organised into a string array and transmitted via Universal Asyn-

chronous Receiver/Transmitter (UART) TX channel. MATLAB was used to receive

and process the physiological data.

3.2.2 Experiment

The prototype (Figure 3.4) was used in an project experiment, led by Professor L.I.Kuncheva

et al [74], in combination with a commercial EEG headset called the Mindset [93], as

part of a wider project named A.M.B.E.R. (Advanced Multimodal Biometric Emotion

Recognition).

The project attempted to discern positive and negative emotions expressed by the

participant, in relation to hearing pleasant and unpleasant audio.

The experiment involved presenting auditory stimuli to the subject, while record-

ing their emotive response, as they were wearing a EEG headset and touching the EDA

sensor. The stimuli were selected so as to provoke states of relaxation (positive emo-
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Figure 3.4: First Proof of concept prototype using low cost.

tion) or irritation (negative emotion). The positive audio stimuli were taken from an

Apple iPhone application called Sleep Machine. The composition was a combination

of wind, sea waves and sounds referred to as Reflection (a mixture of slow violins tin-

kling bells and oboes); this combination was considered by the subject to be the most

relaxing. The negative audio stimuli were musical tracks taken from pop music, which

the subject strongly disliked. The three biometric signals were recorded for 60 sec-

onds for each of the 20 runs: 10 runs each of positive and negative stimuli respectively.

The collected data was prepared, filtered and labelled, then passed through a variety of

classifiers, as listed in Table3.1.
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Table 3.1: Classifiers and classifier ensembles used with the AMBER data.

Single classifiers
1nn Nearest neighbour
DT Decision tree
RT Random tree
NB Naive Bayes

LOG Logistic classifier
MLP Multi-layer perceptron

SVM-L Support vector machines withl inear kernel
SVM-R Support vector machines with Radial basis function (RBF) kernel

Ensembles
BAG Bagging
RAF Random Forest
ADA AdaBoost.M1

LB LogitBoost
RS Random Subspace

ROF Rotation Forest

3.2.3 Interim Results

Table 3.2 shows the correct classification (in %) for all methods and data sets. The

highest accuracy for each data set is highlighted as a frame box, and the second high-

est is underlined. All highest accuracies are achieved by the ensemble methods. The

individual classifiers reach only one of the second highest accuracies while the en-

semble methods hold the remaining 7 second highest scores. This result shows the

advantage of using the classifier ensembles compared to using single classifiers. A

series of pilot experiments revealed that none of the modalities alone were as accurate

as the combination.

The results validated that there was utility in using such a basic system for extract-

ing psychophysiological signals. We also took into account the effects of wearability

and comfort, as researched by Bonarini et al [13]. It was deemed that the EEG Mindset
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Table 3.2: Classification accuracy from the 10-fold cross-validation

Data sets and number of instances
Method 3s 4s 5s 6s 10s 12s 15s 20s

400 300 240 200 120 100 80 60
1nn 62.84 64.89 63.44 62.04 61.11 60.87 56.48 59.93
DT 64.16 58.57 67.37 65.92 58.49 62.78 69.96 58.93
RT 60.02 63.02 61.9 62.63 57.11 66.66 66.75 57.10
NB 64.69 63.81 64.45 64.48 65.02 67.82 65.43 61.07

LOG 62.04 60.37 62.59 63.27 59.26 59.16 57.59 57.53
MLP 62.46 59.37 63.28 63.36 63.43 64.22 57.05 58.47

SVM-L 62.09 61.41 63.52 62.38 62.32 59.13 58.70 56.83
SVM-R 50.81 51.16 50.56 50.52 50.18 51.19 51.66 51.33

BAG 65.56 65.62 68.25 67.09 67.37 68.79 66.46 64.37
RAF 64.51 64.65 66.08 65.27 65.86 69.58 67.29 61.57
ADA 63.41 62.21 70.00 67.59 61.07 66.28 73.80 63.30

LB 65.34 62.92 68.78 68.05 62.04 64.02 68.27 60.70
RS 64.96 64.78 66.25 68.21 64.61 67.43 68.95 61.77

ROF 66.90 65.41 66.86 67.23 67.36 69.30 65.46 62.27

device was intrusive, uncomfortable and impractical for a VG input device. Therefore,

the EEG device was omitted from the next phase of experiments. The next step was

to asses if the device was capable of functioning under normal working conditions.

Therefore, it had to be incorporated into an input device.

Our initial

3.2.4 Final hardware

The psychophysiological sensors had to be located inside the input device. This was

to ensure that all amplification, filtration and digitisation of the signals were processed

as closely together as possible. Short connection cables lowered cable noise caused by

mouse movement, which was exacerbated by amplification. The hardware for the final

prototype had to be revised to accommodate a smaller overall spacial volume.
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3.2 Hardware

To ensure the hardware would fit inside a small container, the blood volume and

EDA circuits were placed on one bespoke circuit board, see Figure 3.5.

Figure 3.5: Custom circuit, fitted with EDA and Blood Volume circuits on one board.
Built by Dr. Aled Williams, Bangor Univeristy, by modifying the original Maplin
(N56FL) Pulse Rate Monitor kit to return the pulsed waveform.

The final prototype consisted of three different sensors (EDA, BV and Tempera-

ture) interconnected with six individual circuit components (IR Thermometer, Ampli-

fication and smoothing, FEZ mini, TTL USB to Serial Converter Mouse PCB and a

USB hub), as seen in Figure 3.8.

A Temperature sensor was added to the array of sensors, because fluctuations in

periphery body temperature is considered a good indicator of stress and anxiety [111,

20, 76, 13].

We selected an IR Thermometer evaluation board, utilising a MLX90614 IR Ther-
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mometer, see Figure 3.2.4. The MLX90614 IR Thermometer evaluation board cost

around £14 (2012).

Figure 3.6: MLX90614 IR Thermometer evaluation board transmits IR detected tem-
perature to TX UART port in Fahrenheit.

The thermometer measures temperature in the range of -4 to 248 °F (-20 to 120

°C), sensitive to approximately 0.14 °C. This board allowed the participant’s body

temperature to be measured without making direct contact to the skin. This meant that

we avoided thermal heat build-up, expected using contact thermometers. The FEZ’s

UART port was programmed to transmit data at a baud rate of 38400 bps, to coincide

with that of the MLX90614 thermometer. The code used can be seen in Appendix A.

A FEZ Mini was used, instead of the FEZ Domino because the FEZ Mini offered

identical performance but on a much smaller PCB, see Figure 3.7. Apart from size,

the main difference between the two was that the Mini required soldering in lieu of

connector pins found on the Domino. For reference, the term FEZ will be used when

discussing both FEZ mini and FEZ Domino, as needed throughout this thesis. The

FEZ mini retailed at approximately £30 (2012). The total cost of the component used

in this prototype, including the manufacture of a bespoke case (£35), in 2012 was
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3.2 Hardware

approximately £100 (USD$148).

(a) (b)

Figure 3.7: Approximate size comparison of FEZ Domino (a), used in the first prototype and
a FEZ mini (b), used in the final Shark-Fin mouse.

Pressure sensors were also considered, seen labelled (piezo) in Figure 3.5, but they

caused excessive signal interference during testing and evaluation.

For the final system, the EDA circuit was powered by 3.3-volts DC, taken directly

from the FEZ. The EDA circuit sends the signal to the FEZ analogue input (pin A1),

using a 1M(ohms) resistor in parallel between the FEZ and the earth (-V) connections.

For this prototype, the electrodes were constructed of two 1cm2 brass plates, ap-

proximately 3mm in thickness. Brass electrodes were used as a low cost alternative to

the more sensitive but expensive materials (such as Silver/Silver Chloride). Brass was

used because of its resistance to corrosion. The larger surface area offered increased

signal robustness. Brass has a higher International Annealed Copper Standards (IACS)

value than Tin [11]; Tin was successfully used in our first prototype. IACS is a measure

of the conductivity of alloys in relation to that of copper.

The photoplethysmograph data-signal is low powered and noisy, thus requires pro-

cessing prior to transmitting to the FEZ. First the signal is amplified, using a typical op-

erational amplifier chip powered by 5-volts DC. The amplification increases the noise

and causes the signal waveform to become jagged, therefore smoothing is done with a
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Figure 3.8: SharkFin mouse system diagram

capacitor. The circuit is seen in Appendix B.

3.3 Ergonomic Design (Shark Fin)

In this section, the construction of the final prototype is detailed, showcasing the use

of new technologies (2011) and the ergonomic considerations that were necessary to

gain the best possible signals from the finished device.

Sensor positioning The first task was to decide where the best location for each

sensor should be. The sensors needed to function well and be unobtrusive. In addition,

the complete system was also expected to be intuitive and easy to use, without needing
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3.3 Ergonomic Design (Shark Fin)

straps or gels.

Several placement options were considered for the sensors that would not impede

the user. In addition, To support mixed-handedness (ie left and right handed users),

placing the sensors symmetrically would offer greater usability.

Photoplethysmograph: For the photoplethysmograph (PPG) we needed to use a lo-

cation that offered a strong blood flow volume. Several locations have been used,

including the ear, the forehead, the fingers, etc. [122, 13]. We chose a finger as the

fingers represent the most natural method for human interaction.

Because the thumb and little finger work to grip the mouse, the index finger, middle

finger and ring finger were selected as suitable options.

To maintain mixed-handed design, we opted to use the middle finger. In addition,

the index finger and ring finger are often (not always) used for mouse clicking.

Electrodermal Activity: EDA sensors have previously been placed on the buttons of

a mouse [115]. Because of the clicking function of the mouse buttons, this placement

area was discounted due to it causing excessive motion artefacts. Therefore, the EDA

sensor electrodes were placed on the back of the mouse case, where the palm of the

hand naturally rests and makes constant contact with the palm, see Figure 3.9.

Thermometer: The thermometer sensor was positioned such that it took advantage

of the same fixed palm location, used for the EDA. To try and reduce thermal heat

build-up, the sides of the mouse casing where kept open; thus allowing heat ventilation.

Shark Fin: To support the photoplethysmograph (transmission mode) sensors, a

structure was needed to hold both LED and phototransistor in place. Two positions
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3.3 Ergonomic Design (Shark Fin)

Figure 3.9: Point of continuous contact between hand and mouse highlighted green.

where considered for the photoplethysmograph sensors, see Figure 3.10 (a) and (b);

(a) with a vertical sensor arrangement, housed in a covered hub and (b) using a hori-

zontal sensor arrangement.

FINGER 

BUTTONS 

MOUSE 

SENSORS 

(a)

FINGER 

BUTTONS 

SENSORS 

MOUSE 

(b)

Figure 3.10: Front view of mouse enclosure depicting two possible positions for simetrical
PPG sensor placement.

Option (a) was selected because the underlying sensors would not impede the

movement of the mouse buttons and the enclosure provided a dark shade, which im-

proved the PPG sensitivity to heart signals. In addition, the hub structure assisted in
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3.3 Ergonomic Design (Shark Fin)

holding the finger still, improving the signal clarity further. A arched-housing (hub)

was designed and situated centrally between the left and right mouse button. Fig-

ure 3.11 shows the early prototype casing. Owing of its profile, the hub was named the

Shark-Fin.

(a) (b)

Figure 3.11: Earely Shark-Fin prototype casing; (a) before attaching sensors and (b) with
EDA and PPG sensors included.

The first prototype and the new design shape highlighted some issues that needed

to be overcome.

Movement Artefacts: It was clear that cable movement caused severe sensor signal

noise. The longer the span of cables between the sensors and the analogue to digital

converter (digitiser or digitisation), the greater the problem. This was particularly

noticeable when there was movement of the sensors.

Therefore the fist consideration was to reduce the amount of movement that was

available between the sensors and the signal digitisation. The obvious solution was to

place the sensors as close to the digitiser as possible. This meant that the digitisation

and sensors had to be located on the input device itself.

Once the sensors’ analogue signals where digitally converted, the issue of cable

noise was eliminated.
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3.3 Ergonomic Design (Shark Fin)

Signal quality: When the sensor was attached to a standard mouse an issue was seen

when we tried to read a pulse (using the photoplethysmograph) from the users middle

finger. When the users wrist rested on the mouse pad or table, as is customary for

most people when using a mouse, the peak-length of the blood flow waveform was

reduced by around 75%. This implied that the blood flow to the middle finger was

significantly compressed when the hand was placed on a typical mouse. Therefore, it

was important to alter the shape of the mouse, such that the wrist was raised up from

the resting position. This involved testing different mouse shapes, that lifted up the

wrist and maintained comfort when used.

We began by moulding a clay model of a mouse and testing it on five participants

with different hand sizes, to asses user comfort, see Figure 3.12.

(a) (b)

Figure 3.12: Clay model prototyping, assessing user comfort and ensuring casing lifted wrist
to support strong blood flow to fingers.

The final shape was then digitally modelled using CAD software and printed in 3D

using a rapid prototyping 3D-printer, see Figure 3.13.

The base structure of the new mouse was carefully designed to duplicate the inter-

nal housing structure of the doner mouse, to ensure that the doner mouse circuitry fit

perfectly in its new home. The scroll wheel was relocated from its centre position to

either the right or left side of the enclosure, depending on the needs of the user.

Each sensor component was incorporated into the new enclosure. The temperature
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3.3 Ergonomic Design (Shark Fin)

(a) (b)

Figure 3.13: CAD drawings of mouse structure, incorporating all internal components. Each
component were modelled accurately to ensure all the components fit perfectly together.

and EDA sensors were attached to the upper enclosure, as seen in Figure 3.14 (a). The

IR sensor of the thermometer was positioned to point through a circular window (hole).

The remaining amplification and smoothing PCB, FEZ mini, Mouse PCB, USB hub,

TTL and photoplethysmograph sensors were added to the lower mouse enclosure, see

Figure 3.14 (b).

(a) (b)

Figure 3.14: Upper (a) and lower (b) parts of the ‘affective’ mouse device, with sensors and
electronic components attaeched.

The two parts were then joined together, depicted in Figure 3.15.

Data Transmission: Each of the sensors electrical signals were digitally converted

in the FEZ. Then the data was concatenated into a string data-type packet, eg “[1 2 3
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Electrodermal Activity sensors 

Shark fin 
(Photoplethysmogram) 

Infrared Temperature  
sensor Mouse Wheel 

Open design for  
heat ventilation 

Figure 3.15: AMBER Shark-fin Mouse

4]”, where each number was represented as the following:

1 Blood pulse volume level.

2 Level of electrical conductance of the skin.

3 Skin temperature in Fahrenheit (F◦).

4 Packet counter for payload-checksum.

These data signals are transmitted through the TX-port on the FEZ and sent through

a TTL USB to serial converter. The data is sent to a PC through a standard USB-HUB.

The software code developed to operate the FEZ’s communication system and to

capture the data through the serial port can be seen in Appendix A. The code for the

FEZ was written in C# using Microsoft Visual Studio, while the PC data capture code
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3.4 Testing and Verification

was written in Matlab. The Matlab programming language environment was used to

poll (query) the serial port and store the data directly into an array.

3.4 Testing and Verification

A line graph of typical EDA signal taken from the device can be seen in Figure 3.16: EDA.

Each sensor component was individually evaluated to measure its performance against
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Figure 3.16: SharkFin mouse signal taken over 60 seconds during play

expected output values. Minimum and maximum range and temporal responsiveness

were tested.

Temperature: The temperature sensor was expected to accurately respond to vari-

ances in the temperature of the skin. To test the range of the sensor, three objects with
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extreme variations in temperature where presented to the IR thermometer’s 90◦ field-

of-view (FOV), at an approximate distance of 5.5mm. The objects introduced to the

temperature sensor were ice, a hot coffee pot and a human hand. Due to the reflec-

tive properties of ice and the coffee pot, a thin layer of paper was used to defuse the

reflection. This had the expected effect of marginally raising and lowering the surface

temperature respectively. However, these alterations did not detract from the aim of the

test, which was to measure the response of the thermometer to temperature changes.

Each object was presented one after another. The temperature data was recorded

for approximately 10 seconds, which then paused for a key press while the next object

was selected. The next object was then presented and the data recording resumed with

a key press. Figure 3.17 shows a line graph of the temperature range in Fahrenheit over

the 30 second interval of the three presentations.
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Figure 3.17: IR-Temperature 10s hand, 10s ice, 10s coffee

The expected temperature range versus the observed temperature signal can be seen

in Table 3.3.

Photoplethysmograph: To test the functioning range of the sensor, a dense, light-

absorbing card was used to completely block the light emanating from the IR-LED.
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3.4 Testing and Verification

Table 3.3: Temperature range (◦F)

Object Minimum Maximum Mean observed
Hand 55 99 91.5

Ice (surface) -30 50 48.7
Coffee 68 170 105.5

When in situ, no light was able to enter the phototransistor and therefore no current

should flow through. When the card was removed, the full range of light was passed

to the phototransistor and the maximum current should be produced. The minimum

and maximum voltage levels are 0-volts and 3.3-volts, respectively; measured from 0

to 3300 on the FEZ. The 3.3-volt is governed by the 3.3-volt analogue input cap of the

FEZ’s circuitry. The card was placed in front of the sensor for approximately 5 seconds

then removed for 5 seconds repeatedly, for a total duration of 30 seconds. Figure 3.18

depicts the recorded data. This test demonstrated the accurate function and sensitivity

of the LED and the phototransistor.
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Figure 3.18: Heart Rate, 30 sec with 5sec covered 5sec uncovered repeatedly

Electrodermal Activity: To assess the EDA sensors, a simple hand contact test was

conducted. The palm of the right hand was placed on and off the device making con-
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3.4 Testing and Verification

tact with the two sensors, at intervals of approximately five seconds. The test began

with the sensor untouched. This procedure was repeated for 30 seconds. Figure 3.19

demonstrates the unloaded (untouched) and loaded (touched) EDA circuit and the max-

imum and minimum range; 2552 and 196 respectively.
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Figure 3.19: Electro-dermal activity, 30 sec with 5sec off 5sec on repeatedly

Complete system test: After ascertaining the sensitivity, and minimum and maxi-

mum ranges, a trial was made to determine the ability of the sensors at detecting all

signals together when applying the hand onto the device. For this test, all three sensors

were recorded without any contact for approximately 10 seconds. After this time, the

right hand was placed on the mouse, covering both EDA and temperature sensors with

the palm of the hand, and the middle finger was placed inside the photoplethysmo-

graph cover. Figure 3.20 demonstrates the system’s ability to pick up all three signals

simultaneously.

As expected, the heart signal takes several seconds for the circuit to amplify the

pulse. After which the pulse is cleanly detected. The EDA responded as expected with

a small rise in current as soon as the sensors made contact with the skin. Similarly, the

temperature sensor detected the change in temperature, from room temperature to skin

68



3.4 Testing and Verification

0 5 10 15 20 25 30 35 40
0

2000

4000

P
ul

se

0 5 10 15 20 25 30 35 40
0

2000

4000

E
D

A

0 5 10 15 20 25 30 35 40

60

80

100

T
em

pe
ra

tu
re

time

Figure 3.20: Heart rate (top), EDA (middle), Temperature (Bottom)
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temperature.

3.5 Discussion of Results

We developed a psychophysiologically sensitive input device that is capable of deliver-

ing robust signals in real time. This involved looking at every aspect of the device and

sensors that makes the signal as reliable as possible. We evaluated the practicalities of

using simple sensors. Moreover, we developed a system based on available hardware

and carefully designed a prototype that is both comfortable and functional.

By shortening the interconnecting cable lengths, placing the digitisation and fil-

tering hardware on-board, and altering the standard mouse shape just enough, we

achieved our goal. We created an affective input device that functioned as a mouse that

accurately transmitted three key psychophyiological signals, with no set-up, straps,

gels or complicated start-up procedures, thus proving our hypothesis. We created the

Shark-Fin affective mouse.

The next phase was to create an affectively charged gaming environment that would

both stimulate the players emotion and test the functionality of the affective mouse.
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Chapter 4

Game & User Trials

4.1 Serious Video Games

Serious video games are created to address issues other than purely enjoyment and

entertainment [37]. They differ from classic entertainment based games in that they are

designed to produce or promote important outcomes, such as education, data analysis

or (in our case) affect stimulation and acquisition, among many other uses. Our game

was devised to validate and test the functionality of our affective mouse.

4.2 Video games

Video games offer a low risk experimental environment, such that affective data can be

exploited with little risk to the participant. They are pervasive throughout society and

require little introduction or explanation to the participants, above the description of

the game rules and concept. Games form great experimental environments, allowing

every facet to be controlled and monitored.

Our experimental environment required that the user is free to utilise the shark-

fin mouse as they would in a typical video game. The device needs to be familiar

and comfortable. The participant should simply use the hardware as a familiar tool
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and interact with the game, without the need to set up any sensors or to be connected

through straps, Velcro, sticky-tape or gels.

4.3 Stimulating Affect Change

Before full user trials could commence, a pilot game was created to ascertain if simple

emotive centred rules could act upon the players emotional state. In essence, we de-

signed an annoying game to see if we could measure stress or frustration. The game

conditions were simple:

1. Required the user to perform a seemingly simple task.

2. Add a temporal condition on the simple task.

3. Introduce hazards or to hamper the success of the simple task.

The idea was that conflicting objectives would elicit detectable psychophysiologi-

cal responses, such as frustration or stress.

To determine the effectiveness of these functions, a single level concept game was

written; as depicted in Figure 4.2. It was coded in the Java programming language,

ensuring cross-platform support. The game concept and visuals were kept simple,

such that basic shapes and colours where used to represent game assets. Assets are

defined as any reusable graphics or objects of interest that can be manipulated and

reused during the course of the game.

4.4 Game Concept

The participants were asked to use the shark-fin mouse to collect a target (white square),

see Figure 4.1: (a), as fast as they could to gain the highest possible score; the Simple
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Task. This had to be performed while avoiding an obstacle/hazard (black square), see

Figure 4.1: (b). The obstacle would appear directly between the randomly placed target

and the current mouse position, after each successful collection. Each game run was

timed, with a 60 second countdown displayed on the screen; the temporal condition.

If the obstacle was inadvertently selected, the player lost one of their three lives. The

number of lives were graphically represented as hearts, as seen in Figure 4.1: (c). The

collision of the target or obstacle where triggered by simply placing the mouse-pointer

into the area-space of either object. To add an additional annoying factor, a speedome-

ter was attributed to the mouse movement speed. Therefore, the speed of the mouse

movement had to be regulated by the participant. If they moved the mouse too quickly

then a speed bar (speedometer) would increase. The Speed bar determined the amount

of score they would receive when collecting the target object. If the maximum speed

was exceeded the energy bar would decrease and a buzzing sound was produced to

acknowledge this. If the energy bar reached zero then a life was lost. The game ended

when the timer reached zero or when all three lives were lost.

(a) (b) (c)

Figure 4.1: Simple graphical sprites (assets) representing Target (a), Obstacle (b) and
number of lives (c).

Figure 4.2 shows a screen capture of the game during play.

Game-state Data In addition to presenting an interactive video-game environment,

the video game parameters relating to player progress were recorded. The parameters

were timestamped to correspond with the mouse’s physiological data.
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Figure 4.2: First draft proof of concept Affective Game environment.

Table 4.1: Example of game state data structure saved, during game play

Time Lives Energy Speed Countdown Score Event
1395066176000 3 600 40 59 5 “null”

... ... ... ... ... ... ...
1395066242000 2 342 700 35 32 “BUZZ, CLICK”

On every graphical frame, a string array of parameter-data was appended to a text

file, stored in a user defined disk location. Time, lives, energy, speed, countdown,

score and event data were saved. An example of the saved data structure can be seen

in Table 4.1.

The time variable was represented by the epoch integer of the machine-clock being

used. The event data field was a string (word) that was appended onto the end of the

line of data, every time an event occurred. The word “null” was listed when no event

was triggered.
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The event string consisted of any or none of the following words:

• BUZZ - Mouse movement exceeds speed limit

• CLICK - Target acquired

• BOMB - Obstacle struck

• LIFE - Life lost

• ENERGY - Energy depleting

• GAMEOVER - The game has ended

Event logging Coupled with the other game state data, these variables allowed key-

events to be logged in relation to the mouse’s physiological data. The two separate

data sets were correlated using the epoch, and later analysed.

Analysis was conducted on a small data sample of four participants, each playing

five repetitions of the game for a 60 second duration. The mouse, game, data analy-

sis and results were presented at the Sixth International Conference on Advances in

Computer-Human Interactions ACHI 2013 [21].

In brief, the proof of concept affective hardware and game indicated that there was

a small positive correlation between the psychophysiological and game-state data.

4.4.1 Interim Experiment Results

The results of the trial highlight the effectiveness of the device at measuring clean

physiological signals from a fully functional mouse, while playing a video-game. Fig-

ure 3.16 demonstrates the quality of the signals achieved during a live game trial. To

test the potential of the proposed device at emotion recognition, we carried out off-line
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analyses of the data. The data consisted of the three variables (HR, EDA and skin tem-

perature) measured along the whole approximately 90-second long game run. Each

value in the sequence was the average of the previous 3 seconds of the signal. The

pulse signal was transformed into pulse rate by the following steps:

1. The raw curve was smoothed with a window of ½ a second and then with a

window of 1 second.

2. The locations of the peaks in the signal were identified.

3. The intervals between the subsequent peak locations was used to approximate

the heart rate.

4. A linear interpolation was used to set the heart rate values between the peaks.

Two categories were formed. Assuming that the player is in state ‘Calm’ during most

of the game run, we hypothesised that certain situations would provoke a negative state

which we labelled ‘Agitated’. In this experiment, a state was labelled as ‘Agitated’ if

all of the following held:

• The speed of the mouse exceeds a threshold of 200.

• The countdown clock indicates less than 25 seconds left.

• The player has lost at least one life thus far.

For example, game #3 produced 4,129 data points, 56 of which were labelled ‘Ag-

itated’ (3.78%), while the remaining points were labelled ‘Calm’. After removing the

outliers (EDA signal less than 500 and temperature signal less than 50), and concate-

nating all 20 games, we obtained a labelled data set with 60,684 data points with 5,332
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Figure 4.3: Polygons for classes ‘Calm’ and ‘Agitated’ for the Pulse Rate

data points (8.79%) in class ‘Agitated’. The task of developing a proper real-time clas-

sifier for such an imbalanced data set is one of our future lines of research. Here we

are interested to find whether there are differences between the distributions of the two

classes. A histogram was calculated for each of the three features and each class. The

polygons of these histograms are shown in Figures 10, 11, and 12.

The polygon for class ‘Agitated’ has a more jagged appearance than the one for

class ‘Calm’ because it was calculated from much fewer data points. More importantly,

however, all distributions for class ‘Agitated’ are slightly shifted to the right, indicating

increased Pulse Rate, EDA and Skin Temperature.

These findings are consistent with increased level of anxiety [71], which demon-

strates the ability of the proposed device to output genuine and useful signals.

This warranted the design of a more user-involved video game trial, having varying

levels of difficulty and more participants.
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Figure 4.4: Polygons for classes ‘Calm’ and ‘Agitated’ for the EDA
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Figure 4.5: Polygons for classes ‘Calm’ and ‘Agitated’ for the Skin Temperature
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4.5 Enhanced Full Game

Following the success of the previous game pilot study, a larger video game trial was

needed, to ascertain the reliability of the mouse PPG signals. The next version had to

represent a typical game, having varying levels of difficulty, to invoke more diverse

participant (gamer) emotive responses. Among the changes, were improved graphics,

diverse scoring and ten levels of varying difficulty.

4.5.1 The video game

The new game followed the theme of the previous version. It involved moving the

mouse over a randomly appearing white rotating target, while moving avoiding mete-

ors and asteroids. Points were scored when the mouse touched the target. The number

of points scored where determined by the speedometer, linked to the mouse. There

were ten levels, each played for sixty seconds and each with differing degrees of diffi-

culty. Between each level there was a thirty second relaxation period. This was intro-

duced to allow any psychophysiological signals to relax, before the next active level.

Each level presented to the participant a varying number of meteors and asteroids, with

more appearing in harder levels.

One asteroid would always appear in-between the mouse cursor and white target.

Other asteroids would rotate around the target, in a gravitational field. One meteor

would always chase the participant’s cursor while the others would move across the

screen at varying speeds and oscillating wave-formations. Each level also altered the

scoring rate and the sensitivity of the speedometer, making it difficult to determine a

fixed safe mouse movement speed.

The game screen-shot is shown in Figure 4.6, highlighting the games assets.
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Figure 4.6: A screenshot from the video game.

The game was specifically developed to attempt to invoke mild levels of stress. This

was done by penalising fast movement of the mouse, while at the same time requiring

a high movement speed in order to collect the target in a short time, while avoiding fast

moving obstacles. A mouse speedometer was displayed as a vertical bar on the left of

the screen. The player would have to monitor their speed, score, timing, and avoid

obstacles. The points scored for collecting the target was variable, according to the

speed of the mouse. The slower the mouse movement, the higher the score when the

target was collected. If the player moved the mouse too fast, the speedometer entered

a danger zone. Entering the danger zone decreased the energy-bar. During this time,

no points are scored. If the energy bar reached zero, a life was lost. Each game level

ends after the counter reached zero or all three lives were lost. The game played for a

total of ten levels, per participant.

Figure 4.7, 4.8 and 4.9 depict the game scene, the game augmented with the motion
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Figure 4.7: Video game in action, depicting a screenshot of the standard video game.

trajectory lines and the game in debug mode, respectively.

Audio signals were included to add to the potential irritation, at various stages of

the game. A buzzing sound was produced when the speed increased beyond a maxi-

mum threshold limit on the speed bar (the danger zone). A crashing sound was played

upon a collision with a asteroid. A rasping sound was played when colliding with a

meteor. When a life was lost, the player had to listen to another sound signifying de-

feat. Losing a life also forced the player to wait without being able to move the cursor

for 5 seconds. If an attempt to move the mouse was made during this time, a warbling

alarm-sound was played.

4.5.2 Experimental set up

The video game was used within the following experimental scenario:
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Figure 4.8: Video-game screen-shot showing meteor and asteroid trajectory lines, in-
cluding faded collision distances.
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Figure 4.9: Debug mode, which shows collision interaction game parameters, and
removes moving space background.

1. A verbal consent was obtained from the participant to have their data and facial

expressions recorded and used for further analyses.

2. The participant was shown the instructions to the game (Figure 4.10) and was

given a short opportunity to ask questions and test their understanding of the

game rules.

3. The experimenter ensured that the data streaming was working properly before

allowing the game to commence. Then the player was left to play the game

uninterrupted.

4. Each experimental session comprised of ten game levels.

5. The timer for each level was set to sixty seconds. The level finished if either the
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timer reaches zero or the player lost all their lives.

6. Each level began with three lives. Lives were lost when the energy bar reached

zero. The energy bar was depleted when either the space ship cursor collided

with an asteroid or meteor, or the mouse speed exceeded a specific threshold.

7. There was a sixty second fixation period before the new level started. The par-

ticipant was asked to relax and wait for the next level.

The experimental period lasted approximately 20 minutes.

Figure 4.10: Instructions shown to the player before the game commenced.

4.5.3 The experimental environment

In addition to changing the game, we constructed a quiet zone environment; a booth

where the game could be played without disruption. Having the player fixate on
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4.5 Enhanced Full Game

nothing but the video-game ensured the cleanest possible signals. A sound and light-

blocking booth was constructed where the participant’s monitor, the Shark-fun mouse

and a camera (to record facial expression) were placed. The environment for the ex-

periment is illustrated in Figure 4.11.

Figure 4.11: The experimental environment

The booth was built from blackout sound boards, which was designed to remove

excessive light and external visual and audible distractions. The participant was asked

to wear Circumaural (full sized) headphones, to hear the game sounds and block out

other potential audible distractions. The participants view, during an active video game

session, can be seen in Figure 4.12.

The experiment was run on two separate computers. One computer ran the game,

collected the game-state data and recorded the video game being played in full screen.

The other computer collect the physiological data and the participant’s facial expres-

sions. The computation required to run a video game, store the game-state data to disk,

capture full screen video, record the participant’s facial expressions and finally record

the mouse data, would have pushed many a system too far. Video game and face cam-

era video capture were recorded using Debut Video Capture Software. Game state data

logs were integrated into the video game, using Java. The psychophysiological data
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Figure 4.12: Videogame experiment booth, highlighting the participant uninterrupted
view.

was recorded using Matlab.

We used two identical 64 bit, Windows 7 based PCs, both running on Intel® Core™

i5-2400 CPUs at 3.10Ghz, with 8GB of RAM, and an nVidia GeForce GTX 550Ti

GPU. The video game machine was set-up with twin monitors, cloning the video game

display. One screen was for the participant and the other for the monitoring researcher,

see Figure 4.11. The mouse data cable was split from the USB-HUB, with the mouse

movement data going directly to the game computer and the physiological data stream

going to the physiological capture computer (PCC). The PCC connected to three mon-

itors. One monitor was used to control the game and data collection. The second mon-

itor showed the three physiological signals streamed from the mouse, see Figure 4.13.

The third monitor, displayed a live stream of the participants facial expressions, which

was also recorded. The observation station had a forth monitor, showing the cloned

view from the game machine, see Figure 4.11.
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Figure 4.13: The data capture graphical user interface. Showing the data from the
entire duration of the game. Depicting Pulse (top, red), EDA (middle, green) and
temperature (bottom, blue).
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Table 4.2: Game state EVENT data.
H

ou
r

M
in

ut
e

Se
co

nd

M
ill

is
ec

on
d

L
ev

el

L
iv

es

E
ne

rg
y

Sp
ee

d

Im
m

un
ity

Ti
m

er

C
ou

nt
do

w
n

Sc
or

e

#
of

A
st

er
oi

ds

#
of

M
et

eo
rs

E
ve

nt

12 29 53 645 4 3 645 24 0 57 159 2 2 –
12 29 53 696 4 3 621 95 0 56 164 2 2 96
... ... ... ... ... ... ... ... ... ... ... ... ... ...
12 29 29 236 4 2 800 0 3 29 178 2 2 131072

4.5.4 Data logging

Like the proof of concept, the data streams were recorded in two files. The first stored

the computer game event data. The second recorded the biometric sensor data. For

each file a time-stamp was stored along with each iterative data point to enable tempo-

ral comparisons of the game-play and biometric data. We ensured that the computer

clocks were synchronised using time.windows.com. Then both computers individually

stored their current time with every frame of data saved. The game data was logged as

seen in Table 4.2.

Event data was stored as an integer, which was only generated when an event oc-

curred in any given animation frame. If more than one event took place in a frame,

the event integer values were summated. Each event tag increments by 2n, where n

represents the index value of the event, as seen in table 4.3 If a SCORED event took

place then the stored integer value for that frame would be 32. However, if the SCORED

and START TICKING event took place in the same frame, then the value would be 34,

e.g. 32+2 and so on. This enabled any number of event values to be stored in a single

integer byte variable. It also simplified storing and importing the data into Matlab for
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analysis.. The EVENT variable is detailed in Table 4.3.

Table 4.3: Game state EVENT decimal binary key.

Event Integer Key Explanation
STARTING 1 Triggered when each level begins

START TICKING 2 Clock ticking sounds when ≤ 15 seconds remaining
TEN SECOND TIMER BEEP 4 Audible final 10 seconds remaining countdown beeps

TIMES UP TIMER BEEP 8 Audible long beep when level ends
RESTARTING GAME 16 The point when the next level begins

SCORED 32 Each time a player scores
TOUCHED METEOR 64 Each time the cursor collided with a meteor

TOUCHED ASTEROID 128 Each time the cursor collided with an asteroid
TOUCHED BALL 256 Each time the cursor collided with the target
SCREEN FLASH 512 Screen flashes white to synchronise face recording

GAMEOVER 1024 The game has finished
BUZZ 2048 Audible sound when mouse moved too quickly

LOSE ENERGY 4096 Loss of energy
LOSE LIFE 8192 Life lost sound

SAVING STOPPED 16384 Data-Save-Start time stamp for analyses
SAVING STARTED 32768 Data-Save-Stop time stamp for analyses

GAME PAUSED 65536 Triggered any time the game instructions were displayed
ZAP 131072 Audible sound if mouse moved before 5 second starting pause

The physiological data file contained the time-stamp (hour, minute, seconds), a

chronological checksum counter (one count per data point), followed by the three phys-

iological signals (pulse, EDA and temperature).

(a) (b)

(c)
(d)

(d)

Figure 4.14: Video game assets, which are animated during game play; target (a),
meteor (b), asteroid (c), player sprite/life (d) and moving nebula background (d).

Details of interesting game mechanics are given in Appendix D.
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4.6 Summary

4.6 Summary

The hypothesis that ‘A simple video game, designed to stimulate small changes in

emotion corresponding to game ‘events’, could stimulate detectable and useful psy-

chophysiological data’, is explored.

We developed a simple video game that was able to stimulate mild levels of emo-

tional change, which is surmised as stress. Furthermore, we demonstrated that through

the physiological data from the mouse alone, changes corresponding to game state

data were detectable. We describe the planning and development process of producing

an affective video game and an accompanying experimental environment. The chap-

ter presents a more challenging game, based on the first, designed to challenge the

player; stimulating greater detectable change in the players emotion. We considered

what parameters would be important to take forwards for analysis. The experiment

environment and setup and the operative procedures are explained, including the sys-

tems used. It is considered that the hypothesis was proven. Given the interim proof of

concept game, we consider that the hypothesis was proven true.

Following the completion of the experiment for data collection, the next stage was

to empirically analyse the newer data in more detail.
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Chapter 5

Psychophysiological Data Analysis

The data from 15 participants (13 male and 2 female) were recorded during game play,

as explained in Section 4.5.2. The average age of the participants was 35.13, minimum

21 and maximum 54.

The facial expression data, and the game video frame sequences were recorded.

This data was collected as a backup measure, to ensure that if more evidence of ’emo-

tive’ data was required that it was available. Our results did not necessitate the need

for this backup measure. Therefore the facial expression data was not used in these

analyses.

5.1 Feature extraction

Based on previous experiments with affective physiological data, eight features were

taken forward

The classification features were extracted using a Matlab toolbox called Affective-

Toolbox [73]. The AffectiveToolbox extracts ’features’ from the raw physiological

data, utilising the following functions: ExtractEEG, ExtractEMG, ExtractEOG,

ExtractGSR, ExtractHR, ExtractRESP, ExtractTEM. The features used for our
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5.1 Feature extraction

anlysis are shown in Table 5.1.

Table 5.1: Features extracted from the physiological data streamed by the affective
mouse.

Modality Feature
EDA Average

Average derivative
Average negative derivative
Proportion negative derivative

PPG Average heart rate
Average peak amplitude

Temperature Average
Average derivative

Using Matlab, each player’s collected file, game and mouse (physiological signals)

data were parsed to extract the appropriate variables. From the saved file we took the

filename, experiment number, day, month, year, time, gender and age.

From the game data, we extracted the time, level, lives, energy, speed, invulnera-

bility timer, countdown timer, score, the number of asteroids, the number of meteors

and the event game-state values. And from the mouse (physiological) data, we took the

PPG (blood volume), EDA, temperature, checksum counter and current time values.

The data streams, from both the mouse and the game-state, were aligned tempo-

rally. The physiological signals were filtered, to remove spikes in the data. This was

to overcome a known error in the temperature data, where the decimal point would

sometimes be lost during transmission. This was occasionally seen in the data as a

huge spike in value. Where the previous value might read 96.53 °F, with the next value

being 9654, then its proceeding value being 96.55.

Since each of these features requires a window, we experimented with three win-

dow sizes: 3s, 10s and 12s. We note that extracting more intricate features from the

physiological data may not be very useful. It is likely that all three signals may be
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affected by movement or changing of the position of the player’s hand on the mouse.

Consequently, the signals from the physiological sensors may also contain infor-

mation which can be attributed to behavioural input modalities. As we will not aspire

to recognise a specific emotion, but rather a change in the emotive state of the player,

the interpretation of the raw signals, even of the extracted features, is not important.

It is more interesting to find a relationship between changes in the signals and game

events, which could be related to excitement or annoyance. Recognising such states

from the player’s physiology will form the basis of affective feedback that can be inte-

grated within the game scenario.

5.2 Visual Overview

Visual analysis of the data was conducted to assess any patterns of data that stood

out. We created a visual representation of all the data collected in a single image, see

Figure 5.2. The image representation was generated for each participant.

For each game event a symbol (key) was appointed, then augmented with the game-

state data streams onto the plot. The plot consisted of the psychophysiological sensor

data and the entire game state data, such as energy levels, lives, score, etc., see Fig-

ure 5.1

This approach revealed some interesting results. The first was that some physio-

logical responses to game-related events reveal a build-up or pre-emptive period. For

example, suppose that the cursor collides with an asteroid, and a life is lost. The

physiological reaction of the player is likely to have started a few seconds earlier than

the logged event, when the participant observed the imminent collision. To account

for this, we carried out experiments where we allowed for pre-labelling of events by
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5.2 Visual Overview

Figure 5.1: Augmented data plot key

several seconds. The correlation of signals-to-events taking effect before the actual

recorded event was surprising. Physiological signals have a short delay in taking ef-

fect [128]. This pre-response could signify that the physiological changes were chang-

ing to visual stimuli and cues before the event was triggered, such as pre-empting

the trajectory of an asteroid signalling an unavoidable collision. Arguably, such a re-

sponse could also be the effect of motion artefacts, in an attempt to evade the pending

collision. Such a finding would continue to render the data useful in a video game en-

vironment [130, 140]. The second interesting finding was that the heart rate waveform

signal amplitude strongly responded to game-play.
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5.2 Visual Overview

From the photoplethysmograph, two parameters are extracted for our experiment,

heart rate interval and the signal waveform amplitude. The pulse rate, demonstrated

by the variation of distances between peaks in the HR signal waveform, showed little

temporal variability throughout our trials. One reason might be that our game did not

evoke a particularly strong emotional response, as perhaps experienced in games like

Resident Evil [18] or the Left for Dead [139] series.

However, the signal waveform amplitude showed a clear responses to the video

game stimuli. Figure. 5.3 shows a twelve second window of two signals; PPG and

EDA. The window highlights the point (vertical line) at which a participant leaves the

fixation period and begins level 9; which was a particularly difficult level.

level 9 begins
0

500

1000

1500

2000

2500

 

 

Pulse Waveform (PW)

Electrodermal Activity

Low PW mean

High PW mean

Level 9 response

Figure 5.3: The point of change in Blood Volume Amplitude level variance, between fixa-
tion period (cyan) and level 9 game-play (green), including the correlation with EDA variance
(blue), demonstrating a clear physiological response.

This change demonstrates that the participant quickly became physiologically aroused

by the change in stimuli. It is worth noting that the previous level (level 8) was ex-

tremely easy, having only a slow chasing meteor for the participant to contend with.

Level 9, however, was nothing of the sort, having a fast chasing meteor, four randomly
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5.3 Classification methods.

spiralling meteors and four highly damaging orbital asteroids. It is reasonable to sur-

mise that the participant may have felt startled or surprised by the sudden change in

difficulty. This is indicated by the contaminated signal or motion artefact in the three

seconds immediately following the commencement of the level.

Figure. 5.3 also shows the correlation of the EDA to the PPG signal responses. The

EDA signal altered with equal levels of intensity. However, EDA is extremely sensitive

to movement artefacts. The sudden change in EDA values when the game levels begin

have been a common theme, throughout most of the participants. Our analysis does not

investigate if these changes were predominantly derived from electrodermal responses

or changes in mouse pressure. Nevertheless, along with typical measures of the dermal

layers, changes in contact pressure is also an indicator of stress [130, 140]. Therefore,

the EDA signals maintain utility for affect acquisition and analysis, with either finding.

We employed several classification methods to determine any empirical correlation

between the video game and the physiological data.

5.3 Classification methods.

A set of classifiers and classifier ensembles were chosen for the experiments.

The detailed methods implemented for each classifier are beyond the scope of this

thesis. However, we give a basic overview of each.

All methods are implemented within WEKA [49, 99]. The methods were as follows

(given in brackets are the acronyms used in the related tables and figures):

1. The Largest Prior (LP). This classifier assigns the label of the prevalent class to

all objects. The class proportions are estimated from the training data.

2. Nearest neighbour (1-nn). The label assigned to an object is the label of its
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nearest neighbour from the training data.

3. Decision tree (DT). The label of an object is assigned by making a sequence of

decisions traversing a path in a tree. The tree is built using the training data.

4. RBF neural network (RBF). RBF is one of the most popular models of neural

networks. The implementation in WEKA trains of one hidden layer of neu-

rons using clustering of the training data. Symmetric multivariate Gaussian (the

RBFs) are built on the cluster centroids, and the weights to the output layer are

fitted by a logistic regression. The default number of clusters is two.

5. MLP neural network (MLP). The multi-layer peceptron (MLP) classifier is also

among the most widely used neural networks. In WEKA, the default options are

a single hidden layer with number of neurons equal to (features+classes)/2. In

our experiment, there are 8 extracted features and two classes, hence the num-

ber of hidden nodes is 5. WEKA offers various versions of the MLP training.

The parameters of the default version are: run the training for 500 epochs with

learning rate 0.3 and momentum 0.2.

6. SVM classifier (SVM). (SMO in WEKA) The Support Vector Machine classifier

(SVM) was originally proposed for two classes. It maps the original space into a

very high dimensional space and draws a linear boundary there. WEKA provides

a multi-class extension whereby every pair of classes is used to train the SVM,

and the classification decision is taken by majority vote at the end. In our exper-

iment we will be using two classes, so the multi-class extension does not apply.

By default, the WEKA implementation normalises the data before training the

SVM. The default kernel is the linear kernel, which means that the projection of
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the linear discriminant in the high-dimensional space to the original space will

also be linear. The default regularisation parameter is C = 1.

7. AdaBoost (Ada). This is an ensemble method, which builds each subsequent

classifier in the ensemble by re-weighting (the default option) of the objects in

the training data set based upon their ‘difficulty’ thus far. The base classifier is

a decision stump, which means that the class label given by a classifier in the

ensemble is obtained by comparing a single feature value of the object with a

threshold. Only 10 iterations are carried out,thereby building an ensemble of 10

classifiers.

8. Bagging (Bag). This is also an ensemble method, where each classifier in the

ensemble is trained on a bootstrap sample from the training data. Again, 10

classifiers are built, according to the default parameter. This time, however,

the decision trees are of type REPTree, which ensures better accuracy of the

individual ensemble members compared to AdaBoost.

9. Rotation Forest (RoF). This ensemble methods usually works well for large num-

ber of features. It is based on partial rotation of the space before training an

ensemble classifier. The ‘forest’ in the name, indicates that this method works

best with decision tree classifiers (J48) as the ensemble members. Like the other

ensemble methods, the default ensemble size is 10.

10. Random Forest (RaF). This ensemble methods is similar to Bagging, apart from

the base classifier. While Bagging does not specify a base classifier, this en-

semble method uses the so called Random Tree. The default ensemble size is

10.
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All methods were examined using a 10-fold cross-validation protocol.

10-fold Cross Validation

• Break data into 10 sets of size n/10.

• Train on 9 datasets and test on 1.

• Repeat 10 times, rotating test set.

• Take a mean accuracy.

Variance-corrected t-test. For a pairwise comparison of classification accuracies of

the chosen methods across the 15 participants, we used the statistical test offered by

WEKA. The equivalence of the means is calculated by paired two-tailed t-test with a

correction of the variance proposed by Nadeau and Bengio [92].

Wilcoxon signed-rank test with Bonferroni correction. To compare the classifica-

tion methods with one another using the 15 participant data sets, we used the Wilcoxon

signed-rank test. We used the MATLAB Statistics Toolbox. This is a paired, two-sided

test of the hypothesis that the difference between the matched samples (classification

accuracies of the two methods across the 15 participants) comes from a distribution

whose median is zero. The two-sided p-value is computed by doubling the most sig-

nificant one-sided value. To report statistical significance of the findings, we applied

the Bonferroni correction for multiple comparisons. The desired level of significance

was divided by the number of comparisons 10∗9/2 = 45 and only p-values under this

level were reported as significantly different.
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5.4 Rest versus game-play

5.4 Rest versus game-play

The first set of experiments examined the possibility to recognise when the player is at

rest (between levels) versus game play. Each data point in the record of each participant

was labelled as REST/PLAY according to the stored timer values. The 8 features

and the class labels were submitted to WEKA. The 10-fold cross-validation protocol

was applied for each classifier method and each participant, thereby generating a table

of estimated classification accuracies of size 15 rows (participants) by 10 columns

(methods).

Table 5.2 shows the classification accuracies averaged across the 10 cross-validation

folds. The column for the Largest Prior (LP) classifier is singled out because outper-

forming LP is the acid test for demonstrating the usefulness of the physiological sig-

nals, from the mouse. All classification methods were found to give statistically signif-

icant improvement over LP for all participants (two-tailed corrected t-test by WEKA,

α = 0.05). The only exception was for participant # 9 (underlined in the table), where

SVM and LP were on a par.

Arguably, mouse movements alone could be taken to discriminate between rest and

game play. There are at least two reasons why the results reported here are of value.

First, the participants were not instructed to keep the mouse still out of game play,

they were only asked to relax. Mouse movements might have occurred during the

pause too.

Second, we did not take into account any sequence of points. Each time-point was

taken to be an instance in the data set, so any correlation with time-neighbours is lost.

The reported classification accuracy is calculated using the features extracted from a

10-second interval regardless of the previous or subsequent time points.
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Table 5.2: Classification accuracies (in %) for the Rest/Play experiment.

Participant LP 1nn DT RBF MLP SVM Ada Bag RoF RaF
1 60.79 80.45 78.61 65.08 72.20 63.48 63.36 81.76 80.87 83.17
2 59.93 75.45 77.23 67.39 72.80 66.31 67.39 77.19 79.32 77.66
3 58.52 78.70 81.12 77.61 80.69 78.27 76.97 83.94 83.35 84.95
4 59.11 83.37 84.83 81.54 85.94 81.41 84.93 86.67 86.65 87.37
5 58.34 75.65 73.04 71.11 74.30 69.58 68.08 77.43 77.64 77.79
6 59.61 75.73 74.61 65.27 71.30 65.53 71.14 78.44 75.58 79.02
7 58.56 80.84 80.18 71.88 75.89 74.86 73.79 82.28 78.27 82.38
8 60.45 78.88 75.55 71.00 74.14 70.72 71.28 80.82 78.44 81.71
9 62.89 78.49 76.67 72.10 76.47 64.72 71.54 80.69 80.80 81.82

10 57.39 80.18 83.42 71.48 79.45 73.26 76.03 85.05 81.88 84.17
11 58.57 75.16 77.01 64.97 70.83 63.13 63.10 80.37 77.09 81.54
12 59.07 71.12 71.00 66.90 70.89 67.72 69.29 74.28 74.67 73.97
13 57.99 76.80 78.63 71.61 78.05 60.75 68.87 80.97 80.87 81.04
14 59.72 78.75 74.53 73.59 77.68 74.14 75.00 77.94 78.42 78.09
15 59.59 84.11 83.59 73.24 83.19 73.11 78.54 85.36 82.26 85.97

Average 59.37 78.25 78.00 70.98 76.25 69.80 71.95 80.88 79.74 81.38

All methods showed statistically significant improvement, except underlined.
Largest Prior (LP), Nearest neighbour (1nn), Decision tree (DT), RBF Network (RBF), Multilayer

Perceptron (MLP), SVM, AdaBoost (Ada), Bagging (Bag), Rotation Forest (RoF), Random Forest (RaF).

5.5 Event recognition

In the second set of experiments we looked at recognising game play events (see Ta-

ble 4.3) versus non-events, using physiological signals.

For each participant we removed the non-played (REST) segments of data, so that

only the game play data was analysed. We then extracted all unique values of EVENT

and tallied their occurrences.

Detecting extremely rare events is very difficult because the data for the positive

class (the event) is not sufficient for training a classifier. Hence, we chose the events

with more frequent occurrences. For each event value of > 5000 for each participant

we created a binary vector. The events > 5000 found for a 10 second window were 4,

288, 4160, 6144, 131072, as seen in Table 5.4 Bold and check marked X. For a 10 sec-

ond window, these events were TEN SECOND TIMER BEEP, TOUCHED BALL
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+ SCORED, TOUCHED METEOR + LOSE ENERGY, BUZZ + LOSE ENERGY,

ZAP.

In addition, all events relating to asteroid collisions were considered, even though

they did not exceed the 5000 threshold. The hypothesis for this decision was that a

participant may present a high emotive response to the large damage caused by striking

asteroids. The column representing both asteroid and meteor strikes is shaded grey in

Table 5.4.

Table 5.3 shows the results of the comparison of the chosen events for a 10 second

window, using the Wilcoxon signed-rank test with Bonferroni correction.

The three columns for each event are compiled from a matrix of Win-Draw-Loss.

For example, the LP classifier scored 0 sins, 1 draw (with itself) and 9 losses with

regards to event TEN SECOND TIMER BEEP (#4). This means that physiological

data recorded through the mouse enabled any classifier mode to score better than

chance and better than LP, thereby demonstrating the value of the device. On the

other hand, the Random Forest ensemble classifier significantly outperformed all other

methods (draw with itself) for 3 of the chosen events and all but one method for the

remaining 3 events. This males Random Forest a prime candidate for implementation

in a closed-loop affective game play.
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5.6 Summary

The same classification comparisons as described in section 5.3 were used. The

Random Forest classifier ensemble performed well on all the chosen events, as seen

underlined in all but one table of results in Appendix C. Even though these results

showed a statistically significant improvement, the most important finding is event #4

(TEN SECOND TIMER BEEP) see Table 5.5 (full table in Appendix C). The most

interesting finding is event TEN SECOND TIMER BEEP (#4). The reason is that

all the other events could be recognisable to some extent by motion related artefacts.

However, the 10 second timer beep has no connection to motion, as it simply was an

audible beep indicator for the final 10 seconds of each level. Therefore the classifica-

tion accuracies for this event were more reliable.

It was anticipated that collecting the target and scoring (EVENT 288) would yield

detectable psychophysiological data, based on a reward based principle. However,

even through the results accuracies were extremely high, we considered these could be

an artefact of movement that was being detected. The average classification accuracy

from all the 15 participants is seen in Table 5.6. The complete table of results for event

288 (TOUCHED BALL EVENT + SCORED EVENT) can be seen in Appendix C.

From these findings, we regard the detectable game motivator not to be the attain-

ment of the highest score but rather the quest to avoid being hit and to stay alive. Many

of the events, such as collecting the target, colliding with asteroids and meteors, and

triggering the speed buzzer require movement.

5.6 Summary

To explore our hypothesis:

’Changes in a player’s emotion can be recognised from psychophysi-
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5.6 Summary
Table 5.4: Number of events and their respective number of occurrences, with >5000
highlighted bold and marked with X. Events related to Meteor (64) & Asteroid (128)
strikes shaded grey. The × marks the individual corresponding events. The event’s
name key is given in Table 4.3.
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1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
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96

80
92

16
38

4

32
76

8

65
53

6

13
10

72

>
50

00

1 2152 ×
2 1135 ×
4 10284 × X

16 1248 ×
288 19123 × × X
289 101 × × ×
290 10 × × ×
292 46 × × ×
296 10 × × ×

4160 9813 × × X
4161 30 × × ×
4164 20 × × ×
4224 2352 × ×
4225 30 × × ×
4240 11 × × ×
4448 10 × × × ×
4512 10 × × × ×
6144 115021 × × X
6146 40 × × ×
6148 406 × × ×
6432 501 × × × ×
8320 40 × ×
8321 10 × × ×
8384 60 × × ×
10304 225 × × ×
10368 189 × × ×
10372 9 × × × ×
12352 20 × × ×
12416 911 × × ×
12420 10 × × × ×
12424 10 × × × ×
14336 191 × × ×
16576 20 × × ×
16640 10 × ×
18560 109 × × ×
98304 53 × ×

131072 52657 × X
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5.6 Summary

Table 5.5: Classification accuracy % for EVENT 4 TEN SECOND TIMER BEEP

Classifier 1nn DT RBF MLP SVM Ada Bag Rof Raf
Average 79.13 78.29 75.71 77.37 74.71 75.86 81.15 79.25 82.19

Table 5.6: Average classification accuracy % for EVENT 288 – TOUCHED BALL
EVENT + SCORED EVENT, with highest underlined.

Classifier 1nn DT RBF MLP SVM Ada Bag Rof Raf
Average 93.72 94.37 94.32 94.13 94.52 94.30 94.95 94.76 94.8

ological data using pattern recognition techniques, even when using crude

data taken from an actively played affective video game’.

We used empirical methods to analyse the data, utilising several pattern recognition

classifiers. Our analysis demonstrates that although possible, it is difficult to associate

the expected affective responses with the physiological data gathered. This is because

motion and affective signals can be hard to distinguish between. In addition, psycho-

logical aspects of seeking rewards (The Pleasure Principal) did not offer conclusive

evidence as one might expect. For example, conditions that would logically merit an

emotive reaction, such as being rewarded with points or responding to a menacing

collision, offered very high classification accuracies. Even though these signals were

strongly detected, objectively one has to question if the signal is motion or emotion re-

lated. Arguably, such high speed movement could be the cause of the detected change

in signals.

However, one signal did offer the confidence that emotion was being detected; the

ten second timer beep. The ten second timer beep was an audible signal to indicate that

the level was nearing the end. Because it was recognised with high accuracy between

all candidates, we believe that the signal was emotionally based.
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5.6 Summary

It is fair to suggest that all the signals could have been emotionally based. However,

more research, particularly on the psychology, into this challenging area is required.

Nevertheless, we conclude that our hypothesis was proven true, because an audible

signal was clearly detected. And in turn, this demonstrates the useful function of the

affective mouse.
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Chapter 6

Conclusion

6.1 Summary of Work

The video games industry is mature and extremely advanced, particularly in the field

of graphics. However, the area of dynamic realistic HCI emotive exchange, as seen in

naturalistic communication, is lacking. Emotion is a significant part of natural inter-

action. Video game systems have little way of obtaining data to ascertain real changes

in emotional states of a user, without special sensor equipment. This limits the video

games ability to react to the player naturally.

Utilising affective data from moving physiological sensors in not a trivial task. In

addition, the technology available to acquire affective gaming data is not commer-

cially available. The affective video games industry is in its infancy and faces many

challenges.

The technology for acquiring affective data has been in development for over four

decades prior to the arrival of digital video games. The reasons for the lack of adop-

tion of this technology is explored. We conclude that the investment into affective

technologies have been superseded by the need to develop and advance graphical tech-

nologies. We advocate that graphical advancement will soon reach the limit of human
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6.1 Summary of Work

perception. Therefore, the need to improve realistic and dynamic human computer

interactions, particularly in video games, will become a dominant focus.

To address the issue of the lack of available hardware, we take on the challenge of

building an affective input device. We present an affective mouse that streams three

physiological signals in real time, within an active video game. The system is aimed at

offering a solution to affective game developers, researchers and the affective comput-

ing populous. The ergonomics and sensors of the device have been carefully consid-

ered to maximise signal clarity, while balancing interactive user comfort. The mouse

requires no set-up or user preparation to use.

To test our hypothesis of producing an affective input device capable of streaming

data while playing a video game, a bespoke video-game was developed. The video-

game was successful in both highlighting the complexity of the signals, in relation to

motion, and in stimulating mild levels of detectable emotive data. We successfully ac-

quired psychophysiological data from the mouse during active gameplay.Our analyses

demonstrate that the mouse can produce clean and usable psychophysiological signals

in an active video game environment.

The mouse was built specifically using a rapid prototyping Strastasys Dimension

Elite [129] 3D printer.The Dimension Elite system offers high quality robust and usable

prototypes. The 3D assets (CAD) drawings will be offered freely to interested parties,

under an open licence.

This approach to affective hardware creation and distribution could form a new evo-

lution in advancing affective gaming hardware into independent (indie), mainstream

video game development and serious game research. Wider possibilities are also en-

visaged, such as medical, marketing and defence applications, see section 6.2.

This work supports the hypothesis that:
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6.2 Future work

Creating robust, simple and easy to use hardware, capable of capturing and stream-

ing key psychophysiological signals, from an active video game player in real time, is

possible using new on-board micro controllers and carefully placed sensors.

Physiological signals taken from low cost sensors offer utility in detecting changes

in affect during active video game play. The electronic components could be utilised

into any input device necessary, such as joy-pads, joysticks, etc. We advocate that this

system and variants of it should be adopted by developers, gamers and researchers, to

encourage and exploit active AG advancement.

It is noted that it is difficult to ascertain the emotive reaction of an individual to a

particular stimulus using rudimentary means. Our analysis demonstrated that predict-

ing a change in an emotive-state based on receiving a reward was indeterminate, thus

highlighted the issues facing classical game design. The classification methods we

used favoured ensemble classifiers over individual classifiers, for detecting emotive

content from physiological sensors.

We believe that this contribution is important as a driving force to move affective

gaming from the confides of large companies and into the hands of developers, gamers,

researchers and enthusiasts, alike.

6.2 Future work

The next step would be to produce a video game that uses the affective gaming loop

(Figure 2.1).

We envisage that to enable psychophysiological data to be more effective in video

games, personal psychophysiological user profiles may need ot be considered. By

establishing an individuals emotional responses over time, it may be possible to deter-
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6.2 Future work

mine individual patterns of emotive reactions to specific stimuli; thus training a game

to an individual. Profiling users affective states and reactions might prove invaluable

for clearer recognition of emotion. Of course, this would raise ethical considerations,

regarding how the data was stored and used, naturally. Based on the type or genre of

game, affect could (amongst many other uses) be used to:

• Alter the course of a storyline.

• Change the games difficulty.

• Give or remove rewards.

• Halt or assist progression.

The list of changes that could be incorporated, to dynamically alter the course of a

video game, is as vast as ones imagination. The fact that a video game could dynam-

ically adjust, based upon the uniqueness of an individual, opens up a new frontier in

video game design.

Additional applications could range from, but not limited to:

• Medical monitoring of at risk patients or vulnerable staff members. Watching

their responses to different situations or workloads, respectively to avoid stress,

anxiety, etc.

• Implementing new marketing methods, by monitoring user responses for new

products, designs, packaging, usability, etc.

• Tracking working time, by recording the unique physiological patterns of a per-

son actively using a system.
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6.2 Future work

• Critical working guardian, assessing the stability of a worker under extreme/-

dangerous pressure (eg MOD bomb disposal).

• Early warning system, for events that effect emotion, such as sustaining an injury

but being unable to physically respond.

With further trials, the aesthetics and usability of the mouse could potentially be

further improved. More research is needed on real time analysis. Better alternatives to

the FEZ mini (the digitiser) now exist, such as the FEZ Cerb40 II [45], being smaller

(1.2”x0.6”) and faster (168mhz 32-bit Cortex-M4). Modular reflective photoplethys-

mograph sensors are also available, which could potentially obviate the use of the fin.

Comparative trials would be necessary.
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Appendix A

Signal Transmit Code

A.1 FEZ domino/mini code (firmware)

using System;

using System.IO.Ports;

using System.Text;

using System.Threading;

using GHIElectronics.NETMF.FEZ;

using GHIElectronics.NETMF.Hardware;

using GHIElectronics.NETMF.IO;

using GHIElectronics.NETMF.System;

using Microsoft.SPOT;

using Microsoft.SPOT.Hardware;

namespace FEZtrial001

{

public class Program

{

static int counter = 0;

public static void MyThread()

{

Debug.Print("BEEP! ");

Debug.Print("Starting thread");

OutputPort LED = new

OutputPort((Cpu.Pin)FEZ_Pin.Digital.LED, true);
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A.1 FEZ domino/mini code (firmware)

AnalogIn pinAn0 = new

AnalogIn((AnalogIn.Pin)FEZ_Pin.AnalogIn.An0);

AnalogIn pinAn2 = new

AnalogIn((AnalogIn.Pin)FEZ_Pin.AnalogIn.An2);

pinAn0.SetLinearScale(0, 3300); // scale to 3.3v

pinAn2.SetLinearScale(0, 3300); // scale to 3.3v

SerialPort UART = new SerialPort("COM2", 38400); // 115200

UART.ReadTimeout = 0;// consider removing to sync data?

UART.Open();

int RX_BYTE_LENGTH = 7;

byte[] buffer, rx_byte = new byte[RX_BYTE_LENGTH];

int read_rx, voltage1, voltage2, voltage3, voltage4,

voltage0, i;

String counter_string, temperature = "", v0, v1, v2, v3,

v4, v5;

// String counter_string;

while (true)

{

UART.Flush();

// reads temperature module through TX port

read_rx = UART.Read(rx_byte, 0, RX_BYTE_LENGTH);// check

bytes length

//filter out carriage return from temp module

for (i = 0; i < (rx_byte.Length); i = i + 1)

{

if ((char)rx_byte[i] == 13)

{

// convert C/return to ]

temperature = temperature + "]";

}

else

{

// Build sting from chars

temperature = temperature + (char)rx_byte[i];
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A.1 FEZ domino/mini code (firmware)

}

}

// An0 - Blood

voltage0 = pinAn0.Read();

v0 = voltage0.ToString();

// An2 - Pressure 1

voltage2 = pinAn2.Read();

v2 = voltage2.ToString();

// TX - Temperature

v5 = temperature;

// create string ready to send to RX port

counter_string = "[" + counter+ ", " + v0 + ", " + v2 +

", " + v5 +"\n"; //Both

//counter_string = "BEEP ";// +v5;

buffer = Encoding.UTF8.GetBytes(counter_string);

UART.Write(buffer, 0, buffer.Length);

// stops counter going to high

if (counter > 20000)

{

counter = 0;

}

counter++;

temperature = "";

Debug.Print("I am here!");

Debug.Print(counter_string);

counter_string = "";

}

}

public static void Main()

{

// begins thread

Thread ThreadHandler = new Thread(MyThread);

ThreadHandler.Start();

}

}

} // end
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A.2 Matlab Code

A.2 Matlab Code

%% Simple code that reads data from the UEXT port off the FEZ

(Domino/Mini) it then plots the stored data

% the port (P) must be closed before an attempt to open it is

made.

if exist(’P’, ’var’)

fclose(P)

end

%

close all ; clc ; clear all;

% creates a port at the correct rate

P = serial(’COM16’, ’BaudRate’, 38400);

TIME = 1000; % run time in seconds

fopen(P);

disp(’Port Open’)

data = []; ep = [];

tic

disp(’Data Recording Commenced’)

while true; %toc < TIME

c = clock;

ep = [ep; c];

payload = str2num(fgetl(P)); % fetches payload-data from

device

if numel(payload) == 7; % adds payload to array only if

complete

data = [data ; payload];

end

payload = ’’;% clears payload at each iteration

end

toc

disp(’End’)
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A.2 Matlab Code

fclose(P) % closes port *** Must be done even if code crashes

disp(’Port Closed’)

temperature = data(:,7);

subplot(3,1,1); title(’Pulse’); plot(data(:,2))

subplot(3,1,2); title(’GSR’);plot(data(:,4))

x = data(:,1);

t = data(:,7);

subplot(3, 1, 3);

title(’Temperature’);plot(x,t)

AMBER.clock = ep;

AMBER.data = data;

ti = fix(clock);

fname = [’AMBER_IEEE_TRIAL_1_’ sprintf(’%i_’,ti(1:5))];

if TIME >= 60

save(fname, ’AMBER’);

disp([fname ’ saved’])

else

disp(’not saved’);

end
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Appendix B

Circuit Diagrams
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Figure B.1: Heart rate amplification and smoothing circuit diagram.
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Figure B.2: Electrodermal circuit diagram.
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Appendix C

Weka Output Result

C.1 Result Tables

Table C.1: Classification accuracy % for EVENT 4 – TEN SECOND TIMER
BEEP

Participant 1nn DT RBF MLP SVM Ada Bag Rof Raf
1 78.34 78.50 75.27 78.35 71.80 70.49 78.18 79.42 80.06
2 73.63 75.10 73.93 73.48 73.40 72.99 79.41 75.54 79.57
3 82.59 82.27 76.90 81.48 77.36 76.06 84.40 83.85 86.33
4 78.01 79.45 75.82 77.04 76.13 79.09 82.81 78.86 83.41
5 82.73 80.13 78.13 80.84 77.67 77.44 81.41 81.99 81.85
6 83.56 79.94 78.67 79.46 74.93 77.13 82.76 83.24 84.26
7 78.07 76.64 77.50 77.33 77.48 77.69 82.86 79.01 83.19
8 78.96 79.86 77.22 76.39 76.86 76.98 83.10 78.98 83.67
9 80.52 83.02 74.28 81.12 76.45 81.12 85.10 84.16 86.99

10 74.94 76.31 72.24 73.45 71.84 73.62 80.89 74.51 81.18
11 74.47 72.94 72.78 74.54 72.87 74.34 77.67 73.16 78.64
12 80.36 77.03 77.33 76.67 67.94 72.43 80.36 81.20 81.01
13 81.33 77.48 73.94 74.55 73.20 74.67 78.65 77.40 81.06
14 73.98 73.95 72.93 72.44 73.30 73.10 75.93 73.76 76.24
15 85.45 81.71 78.68 83.37 79.49 80.77 83.78 83.60 85.33

Average 79.13 78.29 75.71 77.37 74.71 75.86 81.15 79.25 82.19
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C.1 Result Tables

Table C.2: Classification accuracy % for EVENT 288 – (TOUCHED BALL EVENT
+ SCORED EVENT)

Participant 1nn DT RBF MLP SVM Ada Bag Rof Raf
1 99.04 99.41 98.90 99.41 99.41 99.41 99.41 99.41 99.37
2 86.16 84.66 85.18 86.32 84.76 84.17 87.88 87.14 88.31
3 98.90 99.26 99.05 99.26 99.26 99.01 99.26 99.26 99.26
4 93.66 95.09 95.66 95.36 95.81 95.64 95.79 95.81 95.14
5 87.48 89.23 89.98 89.55 90.34 90.12 90.26 90.28 89.57
6 92.79 95.99 95.94 94.98 95.99 95.94 95.99 95.99 95.63
7 98.52 98.61 98.30 98.17 98.70 98.57 98.70 98.70 98.46
8 87.31 90.62 87.85 87.41 88.27 87.29 91.38 88.87 92.26
9 91.82 91.94 91.82 91.57 91.84 91.69 92.35 92.29 93.00

10 96.20 96.15 96.20 95.92 96.58 96.13 96.58 96.58 96.60
11 96.47 97.62 97.52 97.08 97.62 97.62 97.62 97.62 97.27
12 96.03 97.64 97.27 97.27 97.68 97.68 97.68 97.66 97.50
13 99.77 99.63 99.63 99.77 99.63 99.98 99.63 99.63 99.89
14 99.56 99.08 99.08 99.05 99.08 99.16 99.08 99.08 99.08
15 82.10 80.67 82.49 80.86 82.85 82.03 82.57 83.12 81.66

Average 93.72 94.37 94.32 94.13 94.52 94.30 94.95 94.76 94.87

Table C.3: Classification accuracy % for EVENT 4160 – (LOSE ENERGY EVENT
+ TOUCHED METEOR EVENT)

Participant 1nn DT RBF MLP SVM Ada Bag Rof Raf
1 90.77 92.01 90.38 91.29 90.14 89.55 90.26 91.56 90.85
2 68.23 72.22 69.92 67.41 70.03 70.75 76.57 71.43 77.20
3 79.84 80.17 81.26 79.74 80.57 80.19 83.76 81.39 85.17
4 70.34 74.83 58.65 67.34 55.39 67.46 77.87 71.34 78.23
5 77.08 75.87 76.15 76.41 75.89 76.21 77.60 76.53 78.86
6 82.31 83.11 79.56 80.70 79.63 78.59 84.04 83.57 84.39
7 81.64 83.89 79.56 81.58 77.81 77.87 87.16 83.60 87.59
8 72.61 71.10 61.12 67.33 65.04 63.18 75.71 72.04 77.47
9 76.03 73.72 65.98 72.09 67.17 65.83 79.18 75.81 79.89

10 95.72 95.90 96.46 95.90 96.14 96.14 96.05 96.12 96.31
11 90.05 89.74 90.25 89.76 90.31 90.72 90.73 90.37 92.03
12 92.35 92.73 93.31 92.57 91.36 91.24 93.29 93.74 93.76
13 91.31 90.52 91.20 89.89 91.53 91.07 91.72 91.51 91.95
14 74.54 75.35 73.62 70.99 70.95 72.32 75.89 74.45 76.77
15 77.24 69.74 67.69 70.71 67.48 70.08 75.88 71.81 77.12

Average 81.34 81.39 78.34 79.58 77.96 78.75 83.71 81.68 84.51
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C.1 Result Tables

Table C.4: Classification accuracy % for EVENT 6144 – (BUZZ EVENT + LOSE
ENERGY EVENT)

Participant 1nn DT RBF MLP SVM Ada Bag Rof Raf
1 74.22 72.82 67.12 71.03 65.79 63.00 72.78 69.88 74.89
2 77.05 67.92 66.88 69.13 65.44 65.06 74.43 69.82 75.24
3 72.38 78.07 73.71 72.08 66.33 75.10 80.12 75.68 80.84
4 75.04 74.43 72.00 76.30 73.07 72.93 77.85 77.09 80.45
5 96.27 97.40 97.30 97.83 97.83 97.83 97.81 97.81 97.59
6 84.42 84.51 84.68 85.03 85.69 85.69 86.42 86.04 87.13
7 85.02 82.61 81.30 84.31 79.81 80.76 84.54 84.91 85.46
8 76.45 80.16 70.91 76.64 65.67 68.57 79.70 77.10 79.78
9 82.41 80.57 74.65 81.96 74.73 75.14 83.86 80.24 83.78

10 77.88 80.43 62.85 72.65 66.68 71.33 82.25 78.91 83.43
11 78.34 75.16 67.98 73.44 61.51 64.81 79.44 74.90 79.80
12 90.35 92.22 92.62 91.57 91.67 91.61 92.15 92.21 92.89
13 92.71 92.16 91.33 92.65 88.61 88.54 92.46 93.44 93.35
14 78.30 69.08 68.70 73.15 69.06 69.06 75.20 70.96 77.08
15 78.68 77.79 74.12 75.74 74.46 76.80 77.87 77.19 78.11

Average 81.30 80.36 76.41 79.57 75.09 76.42 82.46 80.41 83.32

Table C.5: Classification accuracy % for EVENT 131072 – (ZAP EVENT)

Participant 1nn DT RBF MLP SVM Ada Bag Rof Raf
1 76.82 78.72 73.62 77.43 74.36 74.18 81.32 81.10 82.42
2 74.47 75.18 69.67 71.31 69.27 71.93 75.31 74.93 75.53
3 95.00 95.28 95.66 95.68 96.07 95.98 96.01 96.09 96.27
4 77.70 78.99 71.32 78.68 69.17 74.83 79.97 80.84 81.87
5 71.80 69.64 70.01 75.04 66.35 69.45 73.19 74.13 73.81
6 76.96 75.38 70.59 74.43 67.18 72.98 77.07 77.77 79.16
7 86.85 81.61 80.87 81.19 80.56 80.48 83.17 81.91 84.93
8 80.14 79.02 75.36 78.11 73.13 73.55 80.39 76.60 80.96
9 73.78 79.71 72.53 72.47 73.27 72.84 79.92 74.35 80.61

10 81.67 78.71 76.32 79.68 73.66 75.74 80.92 79.80 82.61
11 84.00 86.48 82.40 82.88 82.54 84.25 85.91 83.74 86.46
12 93.16 93.22 93.90 93.55 93.99 93.99 94.15 94.15 94.40
13 78.36 82.63 80.85 79.87 77.78 76.63 81.92 82.05 81.99
14 92.68 88.51 87.48 90.06 86.56 87.15 89.69 89.62 90.78
15 73.00 66.71 62.63 65.55 64.14 62.91 71.29 69.17 71.48

Average 81.09 80.65 77.55 79.73 76.54 77.79 82.02 81.08 82.89
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Appendix D

Code Highlights

D.1 Code
The game mechanics were implemented through a movement vector object class, in
Java; utilizing seek and flee principles set out by Craig Reynolds [114]. This involved
2 classes; ParticleVector() and Movement()

Vectors The ParticleVector() class formed the object (structure) for modifying
and retrieving a coordinate point in 2 dimensional space. The template for the class
member headings are as follows.

// Vector

public class Vector

{

// 2D vector representation

private double x;

private double y;

// class public accessors and mutators

public void Vector()

public void add() // add vector to x and y

public void sub() // subtract vector to x and y

public void multi(double n) // multiply vector x and y by n

public void div(double n) // divide by n

public float mag() // return the magnitude of x and y

public void normalise() // unitise but keep direction

public Vector get() // returns a copy vector x and y

public Vector getX() // returns x

public Vector getY() // returns y

}
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Particles The Movement() class created multiple instances of ParticleVector() in re-
lation to location, velocity, acceleration and friction. It also provided a method to
update the movement and trajectory of these forces. The basic template structure for
the Particle() class is as follows:

// Particle

public class Particle

{

// define particle vectors

Vector location;

Vector velocity;

Vector acceleration;

Vector friction;

Particle(Vector l) // initialise Particle

public run(Graphics2D g2) // method to call update and

display

private update() // updates acceleration, velocity and

forces

private display(Graphics2D g2) // displays particle sprite

private void checkEdges() // maintains edge collision

behaviour

public void applyForce() // applies forces (gravity, etc).

}

Several particle classes were created by extending the ParticleMovement() class,
in a concept known as polymorphism. Polymorphism enables the methods of a parent
class to be duplicated, whilst allowing the child class to change individual methods, to
suit its needs accordingly. Below is a code snippet of class Asteroid extending the func-
tionality of the class Particle. The super keyword calls the constructor method from
the parent, thus instantiates an object from Particle, but re branded as type Asteroid.

Public class Asteroid extends Particle

{

public Asteroid(Vector pv) // initialises Asteroid

{

super(pv); // calls Particle constructor

...

}

}

Each new particle class provided the same particle control mechanisms (add(), sub(),
div(), etc.) but each alters the movement behaviour and output graphic. Such that
Meteors followed oscillating path lines and Asteroids utilised gravitational orbit forces.
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This is a particularly useful technique as it allows the fluid motion of all the game
assets, following the same motion principles of acceleration, velocity and friction.

The following Java classes were created: (asterisks * indicate extended (polymor-
phism) classes)

ASprite() // generates a single sprite

AnimatedSprite() // returns the next sprite in a sequesnce

* Asteroid() // asteroid particle

* Background() // nebula movement sptite

BallSprite() // target annimated sprite

* ChasingMeteor() // mouse following sprite

Feedback() // main executable class

* FireParticle() // orange meteor tail

* FlameParticle() // blue meteor tail

GameLevelParameterData() // game difficulty

GameNumber() // level number generator

Instructions() // instructions pause screen

LoadAudio() // loaded music and sound effects

LoadImages() // loaded all graphical sprites

Meteor() // instructions fixed meteor

MeteorSprites() // animated meteor

OSValidator() // OS detector (cross platform)

** Particle() // basic particle parent class

* ParticleConfetti() // Game Over celebrations

* ParticleSystem() // sparkling target dust

RockSprites() // insructions fixed Asteroid

Vector() // basic vector class

VectorRotation() // fast 90degree rotate algorithm

** Parent Particle, * Child Particle

Multi-Thread The game is run using five individual threads. The first thread is
responsible for running the Game Loop. This is where the graphics are rendered and
all gaming protocols are called, including collisions and particle emitters. The second
is the mouse listener. This simply returns the coordinates of the mouse cursor and
button positions. The third is the keyboard listener. The keyboard thread responded
to keyboard inputs, such as have pausing and debugging tools. The mouse movement
velocity counter was the fourth, triggering a method call every 100 milliseconds.
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Speed and Velocity On each call, the distance the mouse had moved was calculated
using:

v =
d
t

(D.1)

Where v is equal to distance d over time t. The distance is taken from the previous
mouse coordinates and its current position.

However, we are interested in the movement speed and not the distance travelled.
Therefore, we omit using the square root function in the Euclidean distance equation,
using the squared Euclidean distance equation instead. This gives a good indication of
the changes in mouse movement speed, even though it is not proportional to distance.
The value is accumulated into a Speedometer bar variable and used to display speed
bar indicator and to control the scoring speed zones.

In addition to speed, the coordinates are converted to a velocity vector. The velocity
vector is used to determine the direction the mouse is travelling, when any collisions
occur with an object. This velocity direction vector is then transferred to the colliding
objects velocity vector, giving the illusion of an impact rebound.

//Java collision code

// for each particle child in sprite particles

for (Particle p : spriteParticles)

{

// if they are meteors

if(p instanceof Meteor)

{

// evoke meteor strike method

touchedMeteorEvent(p);

}

... // methods for each type of sprite follows

}

private void touchedMeteorEvent(Particle p)

{

// add event to game state data

addEvent(TOUCHED_METEOR_EVENT);

playSound(RASP);

decreaseEnergyBar(ENERGY_BAR_ROCK_DAMAGE, 50);

// get the direction and magnitude if mouse pointer (ship)

mouseDirection = getMouseVectorDirection();

// jolt mouse cursor
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PVector mouseMoved = PVector.add(mouseDirection.location,

p.velocity);

robot.mouseMove((int) mouseMoved.x, (int) mouseMoved.y);

// make sure mouse has magnitude

if (mouseDirection.velocity.mag() > 1)

{

// transfer mouse velocity to meteor p

p.velocity.equals(mouseDirection.velocity);

} else

{

// if no mouse velocity, reverse direction of meteor p

playSound(BOMB);

p.velocity.multi(-1);

}

}

Orbital Rotation (Force) To rotate the asteroids around the target, we applied the
forces to the particle vector. The first was an attraction force and the second was a
rotation force and the third was forward velocity. This technique formed an orbital be-
haviour, which made avoiding the asteroid and collecting the target more challenging.

The attraction force simply added a reversed acceleration force to the asteroids
velocity vector, in the direction of the target. Then we flipped the x and y coordinates
of the asteroid velocity vector, so that x = -y and y = x. This rotated the asteroid velocity
vector by 90◦ clockwise. Coupled with a continuous velocity (forward) motion, this
completed the orbital motion vector technique.

The following algorithm sequence was followed:

• A new vector is created, from the target to the moving asteroid

• The vector is normalised by dividing x and y by the magnitude
x√

x2+y2
and y√

x2+y2

• Then multiplied by an arbitrary value, based on a desired orbital distance.

• The vector is rotated by 90◦ using :

// quick 90 degree vector rotation

double y = this.x; // temp y = x

double x = -this.y;// temp x = -y (negative y)

this.equals(x, y); // velocity equals temp values.
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• And repeat...

In short, the asteroid velocity direction is continually altered to be at 90◦ to the tar-
get. The distance of from the target (orbital distance) is anchored using a fixed value;
normalised and multiplied. The continuous motion of the asteroid and the quick 90◦

rotating of its direction of trajectory formed an orbital rotation effect, as depicted in
Figure D.1.

90ᵒ 
 

90ᵒ 
 

(a) (b) 
Velocity 

Figure D.1: Depiction of the motion when implementing the Cartesian rotation algo-
rithm.

Particle Emitter The vector and motion classes were also used for video-game-
effects, such as particle emitters. Particle emitters are algorithms that create a large
number of Cartesian coordinate values, with various motion attributes, such as ve-
locity, acceleration, gravity and other forces. Particle emitters where used for effects
attributed to collisions, scoring, energy loss, etc.
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