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Abstract 
Land use change and climate variability are the main drivers of watershed hydrological 
processes. The main objective of this study was to assess the impact of land use change and 
climate variability on hydrology of the Mara River Basin in East Africa. Land use maps 
generated from satellite images were analyzed using the intensity analysis approach to determine 
the patterns, dynamics and intensity of land use change. Changes in measured streamflow caused 
separately by land use change and climate variability were separated using the catchment water-
energy budget based approach of Budyko framework. The information on past impact of climate 
variability on streamflow was used to develop a runoff sensitivity equation which was then used 
to predict the future impact of climate change on streamflow. Finally, the impact of agroforestry 
on watershed water balance was predicted using SWAT (Soil and Water Assessment Tool) 
model. Deforestation and expansion of agriculture were found to be dominant and intensive land 
use changes in the watershed. The deforestation was attributed to illegal encroachment and 
excision of the forest reserve. The deforested land was mainly converted to small scale 
agriculture particularly in the headwaters of the watershed. There was intensive conversion of 
rangeland to largescale mechanized agriculture which accelerated with change of land tenure 
(privatization). The watershed has a very dynamic land use change as depicted by swap change 
(simultaneous equal loss and gains of a particular land use/cover) which accounted for more than 
half of the overall change. This implies that reporting only net change in land use (of MRB) 
underestimates the total land use change. The results show that streamflow of Nyangores River 
(a headwater tributary of the Mara River) significantly increased over the last 50 years. Land use 
change (particularly deforestation) contributed 97.5% of change in streamflow while the rest of 
the change (2.5%) was caused by climate variability. It was predicted that climate change would 
cause a moderate 15% increase in streamflow in the next 50 years. SWAT model simulations 
suggested that implementation of agroforestry in the watershed would reduce surface runoff, 
mainly due expected improvement of soil infiltration. Baseflow and total water yield would also 
decrease while evapotranspiration would increase. The changes in baseflow (reduction) and 
evapotranspiration (increase) were attributed to increased water extraction from the soil and 
groundwater by trees in agroforestry systems. The impact of agroforestry on water balance 
(surface runoff, baseflow, water yield and evapotranspiration) was proportional to increase in 
size of the watershed simulated with agroforestry. Modelling results also suggested that climate 
variability within the watershed has a profound effect on the change of water balance caused by 
implementation of agroforestry. It is recommended that authorities should pay more attention to 
land use change as the main driver of change in watershed hydrology of the basin. More effort 
should be focused on prevention of further deforestation and agroforestry may be considered as a 
practical management strategy to reverse/reduce degradation on the deforested parts of the 
watershed currently under intensive cultivation.  
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1 Chapter One: Introduction 

1.1  Background and motivation 
Environment is an integral part of life, as human beings derive from the environment several 

ecosystem (environmental) services that are necessary for their survival (Nelson et al., 2009; 

d'Arge et al., 1997).  Water is one of the basic needs that human beings cannot live without; 

indeed water is life! Therefore, water-related (hydrological) ecosystem services provided by the 

environment (e.g. provision, regulation and purification of freshwater) are quite valuable and 

important for human well-being (Francesconi et al., 2016; Terrado et al., 2014; Nedkov and 

Burkhard, 2012; Pert et al., 2010). This underscores the importance of sound watershed 

management for continued provision of hydrological ecosystem services (Fan et al., 2016; Daily 

et al., 2009; Brauman et al., 2007). From a hydrological point of view, a watershed includes all 

land contributing water (surface and ground water) to a reference point (outlet). It is therefore 

obvious that land comprising of any watershed would generally be under other uses such as 

forests, agriculture and urban centers, which might commonly be considered ‘primary’ land uses. 

This means that watersheds provide (and are expected to) other important ecosystem services 

(e.g. food production), besides provision of hydrological ecosystem services (Power, 2010; 

Nelson et al., 2009). In some cases, enhanced provision of some ecosystem services may also 

lead to reduced capacity of watersheds to provide other services (Jin et al., 2015; Bennett et al., 

2009) e.g. intensive cultivation to maximize food production may also lead to increased soil 

erosion and consequently degradation of water quality (Butler et al., 2013). Watershed 

degradation (e.g. through intensive cultivation) may alter soil infiltration properties which 

consequently affects how a watershed partitions rainwater into various components of water 

balance (e.g. surface runoff, lateral flow, groundwater recharge) (Recha et al., 2013; Nedkov and 

Burkhard, 2012). This shows how human activities on land (watershed) affect the availability 

and quality of water resources (Crossman et al., 2013). This linkage between water, land and 

people make it necessary to widen the scope of watershed management beyond the ‘water 

resources’ (Butler et al., 2013; Mwangi, 2013; Falkenmark and Rockström, 2004). Integrated 

water resource management (IWRM) is a broader and effective approach of watershed 

management that is now accepted globally. IWRM is a process that promotes coordinated 

development and management of water, land and related resources, in order to maximize the 
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resultant economic and social welfare in an equitable manner without compromising the 

sustainability of vital ecosystems (GWP, 2000). As such, IWRM advocates for integration of 

management of land and water because of the interdependence between the two resources. 

Indeed, land use change is one of the main drivers of change in watershed hydrology (Fan et al., 

2016; Xu et al., 2014; Jin et al., 2015; Tomer and Schilling, 2009). The growing world 

population raises the demand for some basic needs in life such as food and housing. To meet 

these demands, land transformations (e.g. expansion and intensification of agriculture and 

growth of urban centers) have occurred in many parts of the world (Hosonum et al., 2012; 

Mundia and Aniya, 2006). Deforestation, expansion of agriculture and growth of urban centers 

are some of the most common and widespread land use/cover changes worldwide (Mubea et al., 

2014; Hosonum et al., 2012; Geist and Lambin, 2001). Parts of many indigenous forests (e.g. 

Amazon and Congo Basin) have been cleared and converted to agriculture and settlements for 

the expanding local population (Ernst et al., 2013; Morton et al., 2006; Pfaff, 1991). For 

example, Gibbs et al. (2010) estimated that over 50% of new agricultural land in the tropics 

between 1900 and 2000 came from intact forests and DeFries et al. (2010) identified urban 

population growth and agricultural trade as the main drivers of forest loss in the tropics between 

2000 and 2005. The mechanism of land use/cover changes at local, regional and global levels is 

complex and requires deeper understanding of the processes and driving forces of land use 

change (Hosonum et al., 2012; Rudel et al., 2009; Geist and Lambin, 2001). Assessment of land 

use change over time helps in understanding the land use change processes and linking the 

changes to possible driving forces (Teixeria et al., 2014). This information is necessary for 

development of environmental management and conservation measures, prediction of future land 

use and modelling the effect of past and future land use change on different components of 

natural systems such as watershed hydrology or biodiversity (Ku, 2016; de Chazal and 

Rousevell, 2009). Observation of changes in land use and land cover over different scales is now 

possible through the use of satellite data. In the past, information of land use/cover could only be 

obtained from small areas through ground surveys or aerial photographs. Satellite data has now 

extended the coverage of ground observation to larger areas and the frequency of observations is 

also high making it possible to assess land cover change in larger watersheds at different 

intervals of time (DeFries and Eshleman, 2004; Al-doski et al., 2013). 
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Understanding the consequences of land use/cover change on hydrological processes is of major 

interest to hydrologists and water resources managers (Jin et al., 2015; Mao and Cherkauer, 

2009). Whereas some direct consequences such as water demands due to changes in land use 

practices (e.g. irrigation and urbanization) may be easily estimated, estimating changes in water 

balance and quality resulting from altered hydrological processes of infiltration, groundwater 

recharge and evapotranspiration is not straight-forward; it requires a thorough understanding of 

the complex watershed hydrology (DeFries and Eshleman, 2004). This is further complicated by 

the fact that any observed change in streamflow (which is the main component of water balance 

measured in many watersheds, globally) also includes the impact of climate variability (Tomer 

and Schilling, 2009; Wang and Hejazi, 2011). Climate variability is another main driving force 

of change of watershed hydrology (Fan et al., 2016; Terrado et al., 2014; Ye et al., 2013). 

Quantification of the impacts on streamflow caused separately by land use change and climate 

variability improves understanding of hydrological processes for better management of 

watersheds (Wang, 2014). This understanding is, for example, helpful to water managers who 

may be interested to know which of the two drivers has contributed more change to streamflow. 

The information is useful in designing effective watershed management interventions and 

strategies (Fan et al., 2016). Hydrologists may also be interested with this information as a basis 

for modelling future impacts of either land use change or climate change on watershed hydrology 

for planning purposes (Tomer and Schilling, 2009; DeFries and Eshleman, 2004).  Selection of 

feasible and practical watershed management strategies/interventions is an important task of 

watershed management planning (Mwangi et al., 2015a; Giri and Nejadhashem, 2014). Some 

management interventions are however long-term (e.g. afforestation and agroforestry) and their 

effect on watershed hydrology are hard to reverse (Mwangi et al., 2016a; Zhang and Zhang, 

2011; Zhang et al., 2008). Therefore, use of hydrological models to predict the impacts of such 

interventions on watershed hydrology before they are implemented, aids the planners in decision 

making (Fan et al., 2016). The impact of climate change on water resources is also a concern for 

watershed management (Hirabayashi et al., 2013; Dai, 2013). At a local level, the impact may be 

increase in magnitude and frequency of floods or it could be increase in severity of droughts 

which may affect water supply (Apurv et al., 2015; Hirabayashi et al., 2013; Lott et al., 2013; 

Dai, 2013). Thus, prediction of the impacts of climate change on water resources at a local level 

enables water managers in designing appropriate mitigation measures. 
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The main aim of this study was to assess the impact of land use change and climate variability on 

hydrology of the Mara River Basin in East Africa. Mara River Basin (MRB) (Figure 1.1) is a 

transboundary watershed shared between Kenya and Tanzania. In Kenya, the watershed cuts 

across three semi-autonomous counties (Nakuru, Bomet and Narok). Watershed management of 

the basin therefore requires integration of water-related interests of the three counties in Kenya 

as well as those for Tanzania on the downstream end of the basin. Previous studies in the 

watershed have reported that land use change (especially deforestation and expansion of 

agriculture) has caused change in watershed hydrology. The Government of Kenya (GoK, 2009) 

has also been concerned with the extent of deforestation in the Mau Forest complex, one of the 

main ‘water towers’ of the country and which is a source of several rivers including the Mara. 

Agricultural cultivation is currently predominant in the formerly deforested areas and the 

Government of Kenya is keen on restoring forest cover in as much area as possible.    

Although previous studies in the MRB have reported that land use change has caused change in 

hydrology, none of the studies analyzed the measured streamflow data to find out how it has 

changed over time. Furthermore, no study has investigated how much of observed change in 

streamflow is separately caused by land use change and climate variability. A previous land use 

change study by Mati et al. (2008) focused on net changes in land use. However, net changes in 

land use/cover may not reveal the whole extent of land use change because loss of a particular 

land use category at one point of the watershed may be accompanied by a gain of similar size of 

the same land use category at another location within the watershed during the same time 

interval. This kind of information may not be revealed when land use change focuses on net 

changes, yet the change may also have an effect on some watershed characteristics e.g. soil 

infiltration properties. Therefore, a knowledge gap exists on the overall extent of land use change 

including swap changes and how the change has impacted the water yield of the watershed, 

separately from climate variability. It is also not clear how the increase in tree cover desired by 

the Government of Kenya would impact on water availability in the MRB. Information on the 

size of the watershed that can sustainably be put under additional tree cover is also lacking. 
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Figure 1.1: Mara River Basin with land use distribution and location of gauging stations.  
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1.2  Research questions 
To fill these knowledge gaps, this study aimed to answer three sets of research questions 

organized as follows: 

1) How has land use in the Mara River Basin changed over the last 40-50 years? How are 

the dynamics of land use change particularly regarding forest and agriculture in the 

watershed? 

 

2) Has recorded streamflow in the Mara River changed in the last 50 years? If yes, how 

much of this change has been separately caused by land use change and climate 

variability? How will climate change affect streamflow of the watershed in the near 

future? 

 
 

3) What is the impact of agroforestry (as a feasible/desired future land use change) on 

catchment water balance? What size of the watershed can sustainably be put under tree 

cover? 

 

1.3  Structure of the Dissertation 
The dissertation is organized in six chapters; four of which consist of a compilation of research 

papers. Two papers have already been published in peer-reviewed journals while the third has 

been submitted to a peer-reviewed journal. The forth paper has already been published as a book 

chapter.  Each of the three sets of the research questions is answered in a separate chapter/paper. 

Chapter one gives general introduction and an overview of the study. It highlights the 

background, the problem, the objectives and the research questions addressed by the study. 

Chapter two introduces and presents a review of the state-of-the-art in watershed management. 

The concept of integrated water resources management (IWRM) as an effective approach of 

watershed management is highlighted. Watershed management planning which is a fundamental 

process of watershed management is presented. The chapter places much emphasis on watershed 

assessment which is a key component of watershed planning. A case study of watershed 

assessment in Sasumua watershed, Kenya is presented. In the context of Mara River basin, the 
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bulk of the work of this study as presented in chapters 3, 4 and 5 is part of watershed assessment, 

which is the foundation of watershed planning. 

Chapter 3 attempts to answer the first set of research questions. Satellite imagery of the MRB 

between 1976 and 2014 are analyzed in four consecutive intervals by intensity analysis approach 

(Aldwaik and Pontius, 2012) to assess and quantify land use changes that have occurred in the 

basin. Overall land use change which includes swap change, in addition to net change, is 

assessed to give a better overview of the entire land use change. The chapter also focuses on 

transitions between land use categories to identify dominant land use transitions with a particular 

focus on deforestation and expansion of agriculture in the watershed. 

Chapter 4 deals with the second set of research questions. Recorded streamflow data was 

analyzed to find out whether there has been any change. Observed change in streamflow of 

Nyangores River, one of the upper tributaries of Mara River, was separated using the catchment 

water-energy budget approach of Budyko framework (Budyko, 1974; Roderick and Farquhar, 

2011) to estimate how much of the change was caused separately by land use change and climate 

variability. The impact of climate change on streamflow of the Mara River in the near future (i.e. 

in the next 20 and 50 years) was also predicted. 

In chapter 5, the impact of agroforestry on catchment water balance was assessed (third set of 

research questions). Agroforestry is one of the feasible watershed management strategies that has 

been proposed to increase the forest cover in the already deforested (and converted to 

agriculture) parts of the Mau forest (Government of Kenya, 2009). It is considered as a practical 

solution to aid in recovery of some of the degraded parts of the watershed currently under 

intensive cultivation.  The findings of this chapter are helpful for selection of management 

strategies/interventions during the initial or subsequent cycles of the adaptive watershed 

management planning processes discussed in chapter 2. The SWAT (Soil and Water Assessment 

Tool) model (Arnold et al., 1998) was used to assess the impact of agroforestry on surface 

runoff, baseflow, evapotranspiration and groundwater recharge and overall water yield of the 

MRB. SWAT is a physically based model widely used for prediction of the impact of land 

management on water sediment and agricultural chemical yields (Gassman et al., 2007, 2010).  It 

is capable of studying ecosystem processes in a systematic manner and hence able to evaluate 

ecosystem services, particularly the hydrological ecosystem services (Francesconi et al., 2016). 
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Finally, chapter 6 gives a summary and a synthesis of the main findings from preceding 

chapters. The general conclusions of the study are based on the results of chapters 3, 4 and 5. 

General recommendations of the study particularly regarding watershed management and 

conservation are also presented. 
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2 Chapter two: Introduction to Watershed Management 
 

Publication (this chapter has been published in springer as a book chapter) 

Mwangi HM, Julich S, Feger KH. 2015. Introduction to Watershed Management.  In Tropical 

Forestry Handbook, 2nd Ed., Pancel L, Köhl M (eds). Springer-Verlag: Berlin, Heidelberg. DOI 

10.1007/978-3-642-41554-8_153-1. 

 

Abstract 

Scarcity and threats to freshwater resources from pollution, climate change, and overexploitation 

have made it increasingly important to have sound watershed management. The link between 

land, water, and people has further made it necessary to widen the scope of watershed 

management beyond the “water resources.” Overall ecosystem functions as well as the 

improvement of socioeconomic status of the local communities are of paramount importance for 

the success of watershed management. The chapter provides a general overview of watershed 

management and modern challenges originating from climate change and land-use pressures. It 

highlights some of the critical issues that should be addressed for successful watershed 

management with a regional emphasis on tropical Africa. In this context, sustainable forest 

management and also agroforestry is a key factor in water resources management in general and 

upland resources development in particular. Integrated water resources management (IWRM) 

including stakeholder participation, livelihood improvement, flood risk management, and 

financing of watershed management is presented. Furthermore, the scheme of watershed 

planning process which is fundamental for the development and implementation of watershed 

management plans is stressed. Watershed assessment, a key component of watershed planning, is 

outlined based on a case study in the Sasumua dam watershed, Kenya. 

 

2.1  Introduction 
Availability of freshwater resources is essential for human life and well-being, economic 

development, and ecosystem health (Falkenmark and Rockström, 2004). Both terrestrial and 

freshwater aquatic ecosystems require freshwater to thrive for continued supply of ecosystem 
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services to human beings. The human society equally requires freshwater for its survival and 

economic development. Therefore, both the ecosystems and the human society are linked 

through the freshwater cycle (Figure 2.1) which is a part of the entire hydrological cycle. 

Human demands for water are usually broken down into five major water use sectors (WWAP, 

2012): 

• Food and agriculture (mostly irrigation), which accounts for about 70 % of water 

withdrawals globally 

• Energy 

• Industry 

• Human settlements, which includes water for drinking and household uses such as 

cooking, cleaning, hygiene, and some aspects of sanitation 

• Ecosystems (both aquatic and terrestrial), whose water demands are determined by the 

water required to sustain or restore the benefits to people (ecosystem services) 

 

Figure 2.1: Linkages between freshwater cycles, human livelihood, and ecosystems  (Adapted 
from Falkenmark and Rockström, 2004)  

These uses, which are all beneficial for human well-being, compete for the available freshwater. 

This competition compounded by the uneven distribution of water resources over time and space 
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and the way human activity is affecting that distribution are the underlying causes of water crises 

in many parts of the world (e.g., Vörösmarty, 2009). Furthermore, climate change is 

superimposed on the complex water cycling in watersheds. Notably, the increase of extreme 

events like drought and heavy rainfall puts additional pressure on water supplies. There is 

increasing concern related to population growth, overutilization of groundwater aquifers, 

waterlogging and salinization, pollution through urban and industrial wastes, fertilizers and 

pesticides from agricultural land, and flooding of cultivated, urban, and industrial areas. Many of 

these problems are related to changes in land use, i.e., deforestation and other reduction of close-

to-nature vegetation forms like wetlands, urbanization, and intensification of agricultural 

production (UNEP, 2009). 

To address the various water crises, innovative ways of enhancing water security are required. 

Water security is defined as the availability of an acceptable quantity and quality of water for 

health, livelihoods, ecosystems, and production, coupled with an acceptable level of water-

related risks to people, environments, and economies (WWAP, 2012). This includes the 

sustainable use and protection of water systems, protection against water-related hazards (i.e., 

floods and droughts), sustainable development of water resources, and safeguarding water 

functions and services for humans and the environment. Managing the challenges of water 

security therefore requires an integrated management approach based on sound understanding of 

the watershed processes and interactions among watershed components, i.e., land, water, and 

people. An integration of natural and social science-based research is important to improve that 

understanding. 

The 1992 United Nations Conference on Environment and Development (UNCED) held in Rio 

de Janeiro emphasized, in Chapter 18 of its Agenda 21, the holistic management of freshwater as 

a finite and vulnerable resource. The chapter advocates for water resources planning and 

management for the protection of the quality and supply of freshwater resources and proposes 

application of integrated approaches to the development, management, and use of water 

resources. This integrated approach, known as integrated water resources management (IWRM), 

is now being adopted globally. Ten years after UNCED, a major impetus to improving IWRM 

was provided at the Johannesburg 2002 World Summit on Sustainable Development (WSSD). A 

large number of countries agreed to the Johannesburg Plan of Implementation, calling for the 
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development and implementation of IWRM and water efficiency strategies, plans, and programs 

at national and at regional levels. The first step in IWRM process (Figure 2.2) is to create an 

enabling environment by changing policies and laws and creating new (or rearrange) institutions 

that have a legal mandate for water resources management. With right policies, legislations, and 

institutions, IWRM planning and implementation become faster and smoother. 

For watershed management to be successful, the focus should go beyond the “water resource” 

itself and include socioeconomic and environmental concerns. Development activities in the 

watershed should be incorporated in watershed management plans, and there should be a 

concerted effort to improve livelihood. Thus, understanding the dynamics and the structure of the 

local communities is important. The community should be actively involved in watershed 

management because its success highly depends on whether or not they embrace the watershed 

management efforts. The watershed management programs should also be “environmental 

conscious,” i.e., seeking to preserve and protect terrestrial and aquatic biodiversity, preventing 

land degradation, and avoiding/reducing unsustainable land-use practices. Indeed, IWRM not 

only advocates for sustainable development and management of land, water, biomass, and other 

resources for human well-being but also the protection of natural ecosystems. In this context, 

sustainable forest management and agroforestry is a key factor in water resources management in 

general and upland resources development in particular. Forests provide a wide range of 

environmental services, some of which are water related (i.e., protection from soil erosion, 

optimal water retention, and minimal leaching of nutrients and contaminants). Thus, 

conservation of headwater forest catchments (notably tropical cloud forests; see Julich et al., 

2015) is particularly important for sustainable provision of watershed services. 
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Figure 2.2: Watershed management planning process. 

The complex relationship between land and water (including the life they support) necessitates a 

drainage-based watershed management approach. This approach brings all water users and 

potential water polluters within a particular watershed on a platform where they can share the 

water equitably for development and also control its pollution. The upstream and downstream 

water-related interests are commonly addressed and managed which minimizes water-related 

conflicts. The scale of individual watershed management units is an issue that is crucial for 
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meaningful participation of stakeholders in the watershed. In general, the scale of watershed 

units should be large enough to include the major upstream and downstream interests and small 

enough to ensure active participation of all stakeholders and allow comprehensive watershed 

assessment. In trans-boundary water basins, collaboration among the countries or states sharing 

the water basin is required. To do this, creation of international river basin organization with 

representation of member countries or states is required. Such organizations ensure that interests 

of member countries are addressed. Examples of international basin organizations in sub-Saharan 

Africa, Europe, and Asia are summarized in Table 2.1. 

Table 2.1: Examples of international basin commissions in Africa, Europe, and Asia. 

Organization Basin/watershed Participating countries 

Lake Victoria Basin Commission (LVBC) Lake Victoria Kenya, Tanzania, Uganda 

Nile Basin Initiative (NBI) Nile River Burundi, DR Congo, Egypt, Kenya, Rwanda, South 
Sudan, Sudan, Sudan, Tanzania 

Okavango River Basin Commission 
(OKACOM) 

Okavango River Angola, Botswana, Namibia 

Zambezi Watercourse Commission 
(ZAMCOM) 

Zambezi River Angola, Botswana, Malawi, Mozambique, Namibia, 
Tanzania, Zimbabwe, Zambia 

Mekong River Commission (MRC) Mekong Cambodia, Lao PDR, Thailand, Vietnam 

International Commission for the 
Protection of the Rhine (ICPR) 

Rhine Switzerland, France, Germany, Luxemburg, the 
Netherlands 

International Commission for the 
protection of the Danube River (ICPDR) 

Danube Austria, Bosnia and Herzegovina, Bulgaria, Croatia, 
Czech Republic, Germany, Hungary, Moldova, 
Montenegro, Romania, Slovakia, Slovenia, Serbia, 
Ukraine 

International Commission for the 
Protection of the Elbe River (ICPER) 

Elbe Germany, Czech Republic 

 

2.2  Integrated Water Resources Management (IWRM) 
Integrated Water Resources Management (IWRM) recognizes that water resources have many 

dimensions. Thus, the objective of IWRM is to integrate all sectors which utilize or are related to 

water resources including the different institutions and policies for efficient management of 

water resources. The Global Water Partnership (GWP), an international network founded in 1996 

to foster IWRM, defines IWRM as “a process which promotes the coordinated development and 

management of water, land, and related resources, in order to maximize the resultant economic 

and social welfare in an equitable manner without compromising the sustainability of vital 

ecosystem” (GWP, 2000). 
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The IWRM principles focus on a holistic multi-sectoral approach in water management which 

integrates/includes governance, institutional, scientific, technical, socioeconomic, and 

environmental aspects of water management (UNEP, 2010). The four principles are: 

1. Freshwater is a finite and vulnerable resource, essential to sustain life, development, and 

the environment. 

2. Water development and management should be based on a participatory approach, 

involving users, planners, and policy makers at all levels. 

3. Women play a central part in the provision, management, and safeguarding of water. 

4. Water has an economic value in all its competing uses and should be recognized as an 

economic good. 

The important question to ask in IWRM then is: “integrate what and why?” 

Sound water resources management must deal with the natural and the socioeconomic 

components of the watershed. Natural and human systems should therefore be integrated for 

efficient and sustainable management of the water resources. Integration should be done both 

within and between the systems. Integration is intended to change the traditional fragmented and 

uncoordinated development and management of water resources (GWP, 2000). 

 

Under natural system, the focus should be on: 

• Integration of land and water management: Water (of good quality and in sufficient 

quantities) is essential for most land developments (e.g., irrigation, industrial or domestic 

water supply). To ensure sustainable supply of good quality freshwater, good 

management of land (terrestrial ecosystems) is required. Thus, land and water resources 

are interdependent and require integrated management approach. 

• Integration of “blue” and “green” water management: Efficiency of water use is crucial in 

managing the rising demand and competition for water among various uses. Efficient use 

of green water (water used for biomass production, i.e., soil water used or “lost” in the 

process of evapotranspiration) would save “blue” water (freshwater in lakes, river, 

springs, and groundwater beyond the rooting zone) (cf. Julich et al., 2015). For example, 

increasing irrigation efficiency will save water for other uses, notably for domestic or 

industrial use. 
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• Integration of surface and groundwater management: Surface and groundwater resources 

are connected through the hydrological cycle which also affects their availability in space 

and time. 

• Integration of management of water quality and quantity: Water pollution is one of the 

major threats facing dwindling freshwater resources. Pollution impairs water quality and 

makes it unsuitable for most uses and therefore adds more pressure on the remaining 

freshwater resources. 

• Integration of upstream and downstream water-related interests: Excessive upstream 

water use could lead to insufficient water for downstream uses. Equitable sharing of 

water is required for sustainable development and to avoid water-related conflicts. 

Upstream human activities should assure availability and good quality of water for 

downstream users at all times. Land use in upstream areas should maintain natural flood 

retention and minimize erosion losses. 

• Integration of freshwater management and coastal zone management: Management of 

freshwater should consider the needs of coastal zones for water quantity and quality. 

Human system integration involves: 

• Cross-sectoral policy development integration: Water is a core pillar in development. 

Water is required in different sectors such as domestic, agricultural, industrial, and 

environmental. All these sectors traditionally have separate policies. Development of 

such policies should consider the specific water requirement and availability as well as 

the respective impact on water quality. 

• Integration of stakeholders in watershed planning and decision-making: Stakeholder 

participation ensures that all interests and concerns of various stakeholders are taken care 

of in the watershed management planning. 

• Integrating water and wastewater management: To minimize the pollution of freshwater 

resources by wastewater and ease pressure on freshwater resources, wastewater reuse and 

recycling is required. Opportunities for wastewater reuse and recycling are available for 

other water uses that do not require strict water quality standards (relative to drinking 

water standards), e.g., irrigation, gardening, and process water cooling (UNEP, 2005). 
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The whole idea of IWRM is therefore to facilitate efficient and smooth water resources 

management for sustainable development. Adoption of IWRM at national level helps in faster 

and smoother watershed management planning and implementation at the local (watershed and 

sub-watershed) level. Most countries are making good progress in planning and implementation 

as agreed in the Johannesburg 2002 World Summit on Sustainable Development (UNEP, 2012). 

A worldwide survey carried out by UN Water showed that about 80 % of the countries are at 

advanced stages of changing their water policies and law to accommodate IWRM, while 65 % 

have developed IWRM plans out of which 34 % are implementing the plans (UNEP, 2012). In 

Africa, a recent study commissioned by African Minister’s Council on Water found that 76 % of 

the countries are in the process of implementing national laws to allow an enabling environment 

for IWRM, while 44 % have already developed and are implementing national plans (AMCOW, 

2012). 

2.3  Participatory Watershed Management 
In participatory watershed management, stakeholders in the water resources development, 

conservation, and management are actively involved from the start of decision-making. In this 

case, decisions are not imposed on them, but they are part of the decision-making process where 

they can share their views, concerns, interests, and fears and also offer their resources in terms of 

time, finances, skills, and knowledge to the watershed management process. In the past, both 

top-down and bottom-up approaches in watershed management failed because of lack of support 

by stakeholders who did not feel ownership of the watershed management decisions (Johnson et 

al. 2002). People often resist decisions imposed on them if they were not part of the decision-

making process. Since the modern scope of watershed management goes beyond the water 

resources itself and includes improving livelihoods and sustainable developments within the 

watershed, the net of stakeholders is wide. It includes individuals, groups, and institutions that 

have direct interest in the water resources, e.g.: 

• Water users 

• People whose actions are likely to impair water quality, e.g., smallholder farmers and 

industries 

• People in forest management or with interest in environmental conservation 

• People with scientific knowledge (notably local ecology) of the watershed 
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• Government and nongovernmental institutions with interest or mandate in natural 

resource management and livelihood improvement 

Participation goes beyond informing them of the watershed management programs. It involves 

collecting and incorporating their views, fears, and interests in the watershed management plans. 

With the wide range of stakeholders with a variety of resources, participation includes 

collaborating with them for the benefit of the watershed management (FAO, 2006). 

2.4  Livelihoods and Watershed Management 
People and all their activities are an integral part of watersheds. The social, religious, economic, 

and political aspects of life should be considered in watershed management planning as well 

since they determine the level of success of watershed management efforts. Those watershed 

management efforts that are contrary to community traditions, beliefs, norms, and values are 

likely to fail. Livelihood comprises of capabilities, resources, and activities required in order to 

live (Chambers and Conway, 1991). It generally consists of everything tangible or non-tangible 

that people rely on to make a living. People use the resources at their disposal to make a living. 

The resources can be natural/physical (e.g., land, water, crops, forests, animals, etc.), financial 

(e.g., income, savings), human (education, skills, knowledge, etc.), and social (interactions, 

traditions, beliefs, etc.) (FAO, 2006). Actually it is peoples’ everyday business to make a living 

and continuously improve their living standard. Therefore, watershed management plans should 

be established within the livelihood framework. Watershed management cannot be independent 

of livelihoods, and watershed management should put as much emphasis on ways to improve 

livelihood as it does on ways to prevent watershed degradation. To improve livelihoods, special 

efforts have to be made to optimize the use of the resources available to local communities. 

Understanding the local communities’ way of living is crucial before designing watershed 

management programs. For instance, simply providing a toilet for a community that practices 

open defecation may not be enough way for improving their sanitation condition. People may 

shun the use of the toilet because of their beliefs. During watershed management planning, 

understanding local livelihoods may help to identify the resources available at household level 

and develop sustainable strategies to optimize their use. It would further help to design 

sustainable solutions to the existing environmental risks that are also acceptable to the local 

community. 
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2.5  The Role of Forest Management in Watershed Management 
Forests natural or managed are essential elements of the landscape and provide valuable 

ecosystem services to the communities in the watershed like soil protection, carbon 

sequestration, and production of timber, firewood, fruits, and fodder. Forests play an important 

role in the hydrological cycle of a watershed. Compared to other land uses like agriculture and 

urban areas, some hydrological processes are dominant and determine the partitioning of rainfall 

into streamflow and evapotranspiration (fluxes of “blue” and “green” water (Julich et al., 2015). 

For example, evapotranspiration rates in forests are higher than in agricultural systems due to 

higher canopy interception and a deeper rooting system which can access soil water from deeper 

horizons (Calder, 2005). Changes in forest cover can lead to changes in magnitude and dynamics 

of water yield, increase of dry season weather flow, and higher sediment load from soil erosion. 

The nature and magnitude of changes in the water cycle and related watershed response depend 

on the watershed characteristics (i.e., soils and relief/topography), type of change in forest cover 

(selective logging vs. conversion of forest into agricultural land), as well as the overall 

distribution and dynamics of land use in the watershed (Recha et al., 2012; Bruijnzeel, 2004; 

Julich et al., 2015). For example, the conversion of forest to agriculture in one part of the 

watershed and the simultaneous abandonment of agriculture areas in another part could balance 

the hydrological impacts at the catchment scale. It has been widely accepted that forests are 

crucial to the sustainable management of water ecosystems and resources (Calder, 2002, 2005; 

FAO, 2013). Therefore, watershed management should also promote appropriate forest 

management and protection in order to maximize the positive effects of forests or other tree-

based vegetation structures on water resources (water management through forest management). 

Finally, it has to be recognized that the hydrological function of forests is an important but just 

one in a whole bundle of benefits which forests provide to society. There is a range of 

productive, conservation, amenity, environmental, and livelihood benefits. Therefore, a key 

challenge faced by land, forest, and water managers is to maximize this wide range of multi-

sectoral forest benefits without detriment to water resources and ecosystem function. 
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2.6  Flood Risk Management 
Floodplains are preferred for human settlement and socioeconomic development because of their 

proximity to rivers, guaranteeing rich soils for agriculture, abundant water supplies, means of 

transport, and aesthetic purposes (APFM, 2007). This essentially increases flood risk because the 

magnitude of flood disaster is not a factor of flood water alone but is also augmented by the 

vulnerability of the people living in the floodplains and the economic activities present. In big 

cities of some developing countries, informal settlements spring up in public land such as 

riparian areas along the water courses (e.g., Mukuru and Mathare slums in Nairobi, Kenya). 

Informal settlements (slums) are characterized by congestion, unplanned structures made of 

weak building materials, and high levels of poverty – all of which constitute high vulnerability of 

the inhabitants to flood disaster. 

Traditionally, flood defence was the main focus for flood protection where structural solutions 

such as dykes were seen as the ultimate solutions (Chang et al., 2010). Loss of lives, 

displacement of people, and destruction of property occur when the structural flood protection 

measures fail. Such catastrophic flooding events have demonstrated the limitations of flood 

defence and the need for more strategic, holistic, and long-term approaches to manage floods in 

the form of flood risk management (Khatibi 2011; Johnson and Priest, 2008). Therefore, flood 

risk management should integrate strategies for flood protection before the flood (e.g., dykes, 

early warning systems), managing the flood disaster during a flood event (e.g., evacuation) and 

post-flood recovery measures. The strategies should comprise of structural and non-structural 

measures applicable to specific locations within the watershed. Appropriate strategies should be 

bundled in flood risk management plans which should be developed as part of IWRM (APFM, 

2007). In Europe, for example, the EU member states are required by the Flood Risk Directive 

(EC, 2007) to carry out flood risk assessment and develop flood hazard and flood risk maps as 

well as to establish flood risk management plans for areas with significant flood risk (Mostert 

and Junier, 2009). 

Preventive nonstructural flood risk management strategies, where appropriate, may include 

retaining as much water in the watershed/landscape as possible to reduce flood peaks. Land-use 

changes that minimize water infiltration (e.g., urbanization and deforestation) contribute to the 

increase of flash floods. The presence of undisturbed forests in the watershed helps to retain 
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considerable amount of water through enhanced infiltration, consequently reducing the peaks of 

flash floods (Wahren et al., 2012; Recha et al., 2012). Watershed characteristics such as 

watershed slope and soil properties, e.g., depth, porosity, water storage capacity, organic matter 

content, and antecedent soil moisture condition, determine the extent to which forests reduce the 

peaks and volume of floods. The impact of forest (or any other land use) on flood peaks tends to 

be higher in smaller watersheds than in large basins where variability in rainfall characteristics 

such as areal distribution and intensity may override the effects of land use (Bruijnzeel, 2004; 

FAO, 2013). 

It is important to realize that the flood protection provided by forest in regions where floods are 

generated (notably in the upland of catchments) has inherent limitations, particularly related to 

the magnitude of storm events (cf. Calder et al., 2007; Bathurst et al., 2011). One major 

limitation depends on the site-specific retention potential, notably in the soil. Nevertheless, it is 

reasonable to expect that the mitigation potential of forests and tree-based vegetation structure on 

flood formation would become larger with a corresponding increase of the forested area of a 

watershed particularly in the upstream headwater areas. The “forest effect” is most significant for 

the more frequent small- and medium-sized floods (Wahren et al., 2012). Another limiting factor 

for the “forest effect” in flood mitigation may be the lack of land for afforestation given other 

competitive land-use requirements, notably cropland agriculture at sites which due to specific 

topographic and soil properties would be more effective for flood protection than others. 

In order to reduce flooding risks in populated downstream areas, it may be required that rivers 

obtain more space to accommodate excess water during flooding events. In this context, forests 

in alluvial floodplain including riparian may play a crucial role. However, in many cases forest 

land along river courses have been reduced at the expense of settlements and agriculture. As a 

consequence, existing floodplain forests which are adapted to flooding events should be 

protected and maintained. For the restoration of disturbed systems and/or planting of new forests 

dedicated to water retention in floodplains, detailed knowledge is needed in terms of expected 

flooding dynamics (i.e., water levels, duration of flooding, sediment loads, groundwater flows), 

related tolerance of tree species against flooding, and potential morphological and biotic 

responses (cf. Bayley, 1995). The effect of forests (trees) on water availability during dry 

seasons or droughts needs to be considered as well. Furthermore, the acceptance of local 
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population has to be assured by establishing participatory planning and management processes 

(cf. Roggeri, 1995). 

2.7  Financing Watershed Management Programs 
One of the challenges that face watershed management programs is the source of finances 

required for their implementation. Collaboration of various stakeholders allows sharing of costs 

and resources available from different partners. It is possible to have different organizations 

(e.g., NGOs) or different government institutions having similar or related projects in the same 

watershed. In a participatory watershed management, related projects or programs which can 

complement each other should collaborate and share financial and human resources. When the 

local communities support the watershed management programs, they can as well contribute 

their time, labor, and finances to undertake some activities, e.g., soil and water conservation in 

their farms. Government is a major stakeholder in watershed management. In many countries, 

government charges some levies for water abstraction. Some of this money should be channeled 

back for watershed management. 

Recently, the concept of watershed economics has gained popularity where the concept of 

environmental services is used as a source of funds to finance watershed management activities 

(Brauman et al., 2007). The approach recognizes and appreciates the true value of environmental 

goods and services which have always being regarded as “free goods and services” from nature, 

e.g., provision of fresh quality water and carbon sequestration. In this arrangement, the 

beneficiaries of the environment services (whether locally, nationally, or internationally) provide 

some incentives to the stewards of the environmental services for the conservation of the 

ecosystem (cf. Mwangi et al., 2015b). This arrangement, commonly known as Payment for 

Ecosystem Services (PES), is a potential source of financial resources. 

2.8  Watershed Management Plans 
Watershed (river basin) management plans are the key management tools in IWRM. In Europe 

such river basin management plans are required to be established by the Water Framework 

Directive (EC, 2012). A watershed management plan is a time-bound strategy that describes how 

to achieve management objectives. The plan includes the goals, problems, feasible interventions, 

actions, participants and their roles, time frame, and resources required to carry out the stipulated 

actions for an effective watershed management. 
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The goals of watershed management planning may differ from one watershed to the other based 

on local priorities. Generally, the objectives revolve about equitable sharing of water resources, 

environmental protection, and enhanced economic and social development (Pegram et al., 2013). 

Equity in sharing of water resources should be ensured with regard to the spatial distribution of 

the users and also among the different uses. Water resources should thus be shared equitably at 

international (among countries sharing a trans-boundary basin), national (among various 

administrative regions), and local (sub-watershed upstream and downstream) levels. Equity is 

also required between different uses, e.g., domestic, agriculture, energy, industrial, etc. 

Environmental protection may target issues like control of pollution of water resources, 

biodiversity conservation, rehabilitation of degraded lands, etc. Promotion of social and 

economic development can be achieved through improving livelihoods of the local communities 

and national economy at national level. 

Watershed management planning (Figure 2.2) is not a one-way process; it is iterative and 

adaptive in nature with cycles of a few years. The lessons learned from one cycle are 

incorporated in the subsequent cycles. It should also be flexible enough to allow informed 

modification of strategies during the implementation phase if necessary. Furthermore, watershed 

planning is a participatory process where all stakeholders are involved and actively participate in 

the process. The stakeholders may include government departments, private companies, 

individuals, community groups and association, scientific community and NGOs dealing with 

agriculture, forestry, hydropower, and environmental protection. The list may be long but should 

generally include all water users (of “green” or “blue” water), potential water polluters, and 

anyone interested in environmental-related matters and livelihood improvement. This ensures 

that the interests of both upstream and downstream water users are taken into account. 

Watershed planning is done at two levels – short term and long term. Short-term planning is 

done for short period cycles (e.g., 5-year cycles), while long-term planning (for like 20 or 25 

years) is a high-level strategic planning that takes into consideration the development agenda and 

political climate of a country or of member states for trans-boundary watersheds. Short-term 

watershed planning is done at the watershed and sub-watershed level and should aim at 

identifying and solving the specific water resources problems at the community level. The short-



24 
 

term watershed plans should be designed with the aim of achieving the long-term watershed 

plans. 

The watershed management process encompasses the following steps: 

1) Stakeholder identification and engagement 

2) Watershed assessment 

a. Scoping 

b. Setting out watershed management objectives 

c. Data collection and analysis 

d. Selection of watershed management strategies 

3) Development of watershed plan 

4) Implementation of the plan 

5) Monitoring and evaluation 

6) Revision of the plan 

 

Stakeholder Identification and Engagement 

As already pointed out, watershed management is very wide in terms of the components/sectors 

it involves, e.g., agriculture, forestry, nature and biodiversity conservation, etc. This makes it 

necessary to first identify all the stakeholders in the watershed who use or are likely to pollute 

water, who may be affected by watershed management decisions, who make water resources-

related decisions, and generally anyone who has an interest in the water resources management 

including those who can facilitate or block watershed management efforts. Possible stakeholders 

in a watershed may be: 

• Land owners and managers 

• Pastoral communities 

• All water abstractors (whether individuals or private and public organizations), e.g., 

agricultural farms community-based water organizations, schools, hotels, water supply 

companies, etc. 

• Government ministries or department (at national, federal, state, and county levels), e.g., 

water, irrigation, environment, agriculture, fisheries, forestry, etc. 
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• Government of countries sharing trans-boundary water resources 

• Research institutions, e.g., universities, colleges, and public or private research 

institutions in fields related to natural resources management, e.g., in water, forestry, 

agriculture, etc. 

• Community-based organizations 

• Nongovernmental organizations 

• Environmental conservation groups 

• Individuals, groups, and companies whose activities are likely to impair the water quality 

 

All these stakeholders should be reached and informed of the intended watershed planning and 

the need for their involvement in the process to offer ideas and also raise their concerns. Of 

course, there may be some challenges when reaching some of the stakeholders, and therefore it is 

important to show them how they are going to benefit from the whole process in short and in the 

long term. This stage of stakeholder engagement influences the success of watershed 

management because if most of the stakeholders embrace the process, they will contribute in the 

planning, and it will remove some hurdles that are likely to emerge at advanced stages of the 

planning process. 

To get the maximum benefit from the stakeholders, it is prudent to know or group the 

stakeholders into various categories depending on their status, skills, and potential roles in the 

planning process (e.g., USEPA, 2008): 

• Stakeholders with technical skills, e.g., researchers, scientists, and government 

representatives 

• Stakeholders who can provide financial resources, e.g., NGOs, government ministries 

and department, companies, etc. 

• Stakeholders who can provide local or scientific information about the watershed, e.g., 

village elders, universities, research institutes, etc. 

• Stakeholders who could be having programs (already running or planned) that can be 

integrated in the watershed management planning 

• Stakeholders who will have a direct role in implementing the watershed plan 
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• Stakeholders who may be affected by the implementation of the plan 

• Any other relevant category depending on the composition of the stakeholders and their 

relevance in the watershed management planning and implementation 

Innovative ways of engaging the stakeholders should be used so as to solicit their views, ideas, 

and concerns. This could be in the form of public meetings, surveys, specialized committees, 

consultative forums, etc. The idea is to actively involve the stakeholders in the planning process 

where their resources in form of skills, knowledge, ideas, finances, connections will be used to 

benefit the process. The concerns, views, and interests of various stakeholders are also discussed 

and incorporated in the plans in the best way possible for the benefit of all the stakeholders and 

the environment. 

Watershed Assessment 

A fundamental part in the process of watershed planning or integrated water resources 

management (IWRM) is the evaluation of the current conditions of the water and natural 

resources as well as socioeconomic status in the watershed. In this step, all the information 

required for identification of issues/problems related to water resources in the respective 

watershed and specific measures to address them is collected and analyzed. The more formal 

definition of water resources assessment is “the determination of the sources, extent, 

dependability and quality of water resources for their utilization and control” (WMO, 2012). The 

assessment of the socioeconomic conditions of the watershed is helpful in understanding the 

existing and possible future growth in key water-using sectors of the economy, social dynamics, 

and interactions and possible social impacts of watershed management decisions. 

Through watershed assessment process, the following information should be obtained: 

Quantity and demand of freshwater resources in the catchment 

Since rainfall is the major source of freshwater resources in a watershed, it is necessary to have 

information about the annual precipitation amounts as well as information about its spatial and 

temporal (seasonality) variability (cf. Julich et al., 2015). Additionally, it is important to know 

about the quantity and frequency of river discharges since they form the basis for planning of 

water-related developments, water sharing, and flood risk management. Assessment of available 
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freshwater resources should also include groundwater and other surface water resources, e.g., 

freshwater lakes and reservoirs. Another important aspect of the quantification of water 

resources is the assessment of the current and future water demand in the watershed for: 

• Domestic use 

• Industrial production 

• Hydropower generation 

• Irrigation 

 

Quality of water resources 

For the planning process, it is important to know about the status of the quality of the water 

resources as well as possible sources of pollution. In general, stream water quality can be 

impaired via point sources like discharges of untreated or insufficiently treated wastewater from 

municipalities and industries. Another source of impairment is the nonpoint source pollution 

from the landscape in form of agricultural chemicals like fertilizer or pesticides as well as 

sediments eroded from unprotected soils in the landscape (e.g., after clear-cutting or forest fires). 

Socioeconomic conditions in the watershed 

The socioeconomic conditions in the watershed determine future water demand and influence 

land use and therefore impact quantity and quality of the water resources. On the other hand, 

most measures developed by the watershed management planning will also have socioeconomic 

impacts. Thus, data and information on water use, current population, and growth rates are 

necessary. In order to select or design management strategies that are able to improve 

livelihoods, information of the sources and levels of income of the community are necessary. 

Information on values, norms, beliefs, and social interaction of the local communities may also 

be required in order to design strategies that are acceptable. 

Other data and information necessary to characterize the watershed include biophysical 

characteristics (e.g., topography, soils, land use, hydrogeology, etc.) and climate (e.g., rainfall, 

temperature, evapotranspiration rates, etc. [cf. Julich et al., 2015]). The extent and quality of 

information required depend on the objectives and scope of the watershed management. 
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Watershed Assessment Process 

Scoping 

To get a preliminary understanding of the watershed and all the underlying issues, the first task is 

to carry out scoping exercise. Scoping helps to identify the scale and full extent of watershed 

problems, issues to be addressed, and external issues that may constrain or facilitate the process 

such as the government policies and legal framework. It is based on the existing data and 

information as well as discussion with the stakeholders. It therefore aids in setting the boundaries 

of the planning process and the geographical boundaries of the watershed. With scoping, the 

process remains focused. 

Setting Out Watershed Management Goals 

After scoping, the stakeholders have a clearer picture of the issues that they need to address. 

Therefore, the objectives for the watershed management are set taking into account the issues 

identified and the resources available. The goals may be broad at the start but will narrow down 

as the process continues. When setting the goals, it is important to keep in mind that all issues 

that were identified during the scoping stage may not be addressed at the same time, and 

therefore it is a good idea to prioritize some issues. An example of a goal at this stage may be to 

reduce the surface water pollution or developing an equitable water sharing plan in the 

watershed. The goals may be broad but will help in the next stage of data collection and analysis. 

Data Collection and Analysis 

As pointed out already, the extent and the quality of data and information required will depend 

on the objectives and scope of watershed management. The first step in data collection is to 

gather all the relevant existing data. The sources may include- but not limited to: government 

departments and institutions, NGOs, universities, research institutions, and credible Internet 

databases. Data quality assessment is necessary to ensure that the data used for analysis do not 

lead to wrong conclusions or wrong decisions especially the selection of watershed management 

strategies. Time series analyses (e.g., trend analysis), for example, require long-term (e.g., over 

20 years) observed data series (e.g., of discharge, rainfall, temperature, etc.). This kind of data 

always requires quality checks (e.g., wrong entries and presence of gaps) before analysis. Details 

on the causes and how to deal with uncertainties including gap filling of observed climate, 
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discharge, and water quality data are available in literature (e.g., McMillan et al., 2012; WMO, 

2012). 

Additional data may be collected if it is required and not available. Data collection is also 

necessary during the monitoring and evaluation stage. The process of data collection should 

employ the right tools, equipment, and methods to ensure data collected is credible and correct 

for decision-making. Wrong design and timing of sampling for water quality, for example, could 

lead to considerable over- and underestimations of, for example, nutrient and sediment loads in 

the watershed (McMillan et al., 2012; Defew et al., 2013; Jordan and Cassidy, 2011). 

With technological advancements, there are several tools and computer programs that are 

available for data analysis. Geographical information system (GIS) is a powerful tool for the 

analysis and visualization of spatial data. GIS is particularly useful in distributed rainfall-runoff 

modelling. It allows input of data with spatial variability (e.g., soils, land use, rainfall) in the 

models. Watershed delineation and calculation of flow parameters, e.g., flow path length, 

accumulation, and direction from topographic data (e.g., digital elevation models), are some of 

the capabilities of GIS applicable in watershed modelling. 

Remote sensing is another technology with a wide application in watershed assessment (Ward 

and Trimble, 2004). Analysis of satellite images and aerial photography is a quick way of getting 

watershed conditions. One common and important analysis of satellite images is the 

development of land-use/land cover maps of watersheds through visual or digital image 

classification techniques (Richards, 2013). This is a quick and economical way of assessing the 

current status of land use/land cover in the watershed as well as to investigate the land-use/land 

cover changes over time. Another important application of remote sensing with regard to 

watershed hydrology is the use of weather satellite to monitor earth-atmosphere systems. 

Weather satellite data can be analyzed to retrieve information for weather forecast. 

Meteorological parameters that can be derived from weather satellite data include: precipitation, 

sea and land surface temperature, radiation, wind, water vapour, clouds, and atmospheric gases, 

e.g., carbon dioxide. Methods of analysis of these parameters can be found in the literature (e.g., 

Thies and Bendix, 2011; Li et al., 2013; Trigo et al., 2008; Bellerby, 2004). Information on soil 

moisture is useful not only in hydrology but also in other applications such as crop production. 
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Research has shown that there is potential of deriving soil moisture from remote sensing data 

(e.g., Albergel et al., 2012; Njoku et al., 2003). 

Analysis of hydrometeorological data is essential for water resources assessment, conservation, 

and planning of watershed development. Weather parameters, i.e., precipitation, temperature, 

evaporation, etc., and streamflow are regularly measured in many watersheds. Analysis of long-

term observed climatic and streamflow data shows the water balance in the watershed. Several 

analyses can be carried on the observed historical data depending on the intended objective. 

Table 2.2 provides examples of some typical analysis for river discharge and rainfall data. There 

are more analysis that are applicable for the two (rainfall and discharge) and other climatic 

variables which can be found in literature (e.g., Maidment, 1993; Ward and Trimble, 2004). The 

average and variability of the climatic parameters and discharge are equally useful and 

informative of watershed conditions and can be analyzed using basic descriptive statistical 

procedures. 

Selection of Watershed Management Strategies and Interventions 

After data analysis, the existing status of the watershed will be known, and measures to improve 

or protect the evaluated conditions should be developed. The strategies and related measures 

should solve the specific problems identified, e.g., for pollution, actions or activities to improve 

water quality to the required standard should be selected. The strategies may be developed for 

different spatial scales, e.g., national, watershed, and sub-watershed (farm) level. A portfolio of 

possible interventions can be developed in a first step and afterwards the most feasible ones 

selected. Suitable criteria for evaluating the strategies should be developed and agreed upon. 

Some of the factors to consider are (USEPA, 2008): 

• Effectiveness 

• Cost 

• Acceptance by the stakeholders 

One way of evaluating the effectiveness of selected management strategies are numerical 

computer models (Leavesley, 2005). Such models are powerful tools which can be used for the 

prediction of desired scenarios where a number of processes are simulated using a number of 

inputs. However, it is important to note that different models have different capabilities, data 
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requirements, and also limitations. Quality of input data directly affects the model outputs and 

therefore the results of computer model are as good (or as bad) as the data used. The Soil and 

Water Assessment Tool (SWAT) (Arnold et al., 1998) is an example of a hydrological model 

that has been widely used for assessing land management scenarios, also in tropical regions (e.g., 

Gathenya et al., 2011; Hunink et al., 2012; Garg et al., 2012; Quintero et al., 2009). SWAT can 

be used to evaluate the effectiveness of best management practices for soil and water 

conservation on water quality and water yield. 

Economic analysis of the strategies is required to determine the cost-effectiveness of the 

strategies and also assess the cost (of implementation and maintenance/running) and the benefits 

(short term and long term) of the strategies. 

 

Table 2.2: Examples of typical analysis of streamflow and rainfall data 

Typical analysis Usefulness 
Streamflow (discharge) data 

Flow duration curves Water yield assessment; planning and licensing of water diversions from the river, e.g., 
for water supply, irrigation, hydropower, etc.; reserve (environmental) flow estimation; 
reservoir sedimentation studies; water quality management, e.g., waste-load allocation 

Frequency analysis 
1. Low flow analysis 
2. Flood frequency 
analysis 

Abstraction licensing, waste-load allocations, environmental flow estimation 
Flood risk assessment, design of hydraulic structures, e.g., dykes, culverts, spillways, 
etc. 

Flood (flow) routing Flood risk management (e.g., flood warning systems, natural, and man-made waterways 
transport management 

Mass curves Water storage reservoir design and operation 
Hydrographs Flood risk management (e.g., flood warning systems), design of water control structures 

and watershed planning 
Hydrological modeling 
and simulation 

Prediction of land use and climate change on water resources 

Double-mass curves Checking inconsistency (variation) in observed data record 
Rainfall data 

Areal rainfall Spatial representation of rainfall for planning and hydrological modeling 
Intensity-Frequency-
Duration (IDF) curves 

Peak runoff (flood) estimation, design of flood control structures 

Hydrological modeling 
and simulation 

Prediction of land use and climate change on water resources 
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Development of the Watershed Plan 

The watershed management plan is the blueprint for development and management of water 

resources. It sets out the goals, objectives, and actions for managing the water resources within a 

specified duration of time (GWP and INBO, 2009). The plan should be actionable with set time 

frames, specific roles, and responsibilities and the also the financing mechanism. 

• The plan should include: 

• Watershed description 

• Status of the watershed (from water resources assessment) 

• Stakeholder analysis 

• Watershed management goals and objectives 

• Watershed management strategy analysis 

• Selected watershed management strategies 

• Roles and responsibilities of implementation 

• Implementation schedule 

• Financing arrangement for implementation including sources of funds 

• Monitoring and implementation plan 

Implementation of the Watershed Plan 

The plan is just a roadmap to watershed management, and therefore it has to be implemented to 

achieve the set goals. It is wise to have a lead institution or team spearheading the 

implementation by coordinating the various activities. Capacity development of the individuals’, 

groups’, or agencies’ implementation activities on the ground is required and should be availed. 

Information on the progress of the implementation of the plan should continuously be shared 

among all the shareholders including those who do not have the implementation responsibility. 

This makes the process credible and smoother because stakeholders are more likely to support 

the plan when they perceive it as transparent. Continuous flow of information reduces conflicts 

and other roadblocks that may appear during the implementation of the plan. 
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Monitoring and Evaluation 

Monitoring and evaluation program is one of the main components of watershed management 

plans and should be developed during the stage of plan development. The main aim of 

monitoring and evaluation is to measure the progress of the implementation of the plan towards 

meeting watershed management objectives and to assess the impact the watershed management 

efforts are making on the watershed issues identified during the watershed assessment. 

Monitoring is intended to find out the degree and extent to which the watershed management 

plan and the selected strategies are changing the state of water resources and the economic, 

social, and ecological conditions in the watershed (GWP and INBO, 2009). 

Monitoring Criteria 

When developing the monitoring program during the plan development stage, criteria for 

measuring progress should be developed as well. It is only against these criteria that the success 

of watershed management efforts can be assessed. The criteria set ought to be realistic and 

agreed upon by the stakeholders. Criteria comprise of indicators or targets that should be 

achieved within specific time frames. The indicators can be qualitative or quantitative depending 

on the variables or activities to be measured. For example, turbidity can be used as an indicator 

for sediment load reduction in surface water. Turbidity can be measured by equipment such as 

turbidity meters which give quantitative values or Secchi disks which is more qualitative. Targets 

such as the size of total land put under agreed soil and water conservation interventions 

(including afforestation) within a time frame can also be used to monitor progress. Another 

indicator may be the annual sedimentation in lakes and reservoirs recorded in dated sediment 

cores. 

Monitoring Programs 

Monitoring should be made for the water resources themselves and also for the watershed 

management efforts. The monitoring programs should take into account these two levels of 

assessment. Measuring the water resources requires determination of the parameters to be 

measured and the frequency of measurements. The parameters to be monitored depend with the 

already-set objectives, and the frequency of measurements should be agreed upon. These 

measurements come with a cost which should also be included in the budget. The roles and 
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responsibilities of monitoring should also be thought and agreed beforehand. The monitoring 

team should be credible and diligent in their work to ensure transparency of the process. 

Monitoring the watershed management efforts is helpful to make sure that the implementation 

program is on schedule. It also helps to identify and solve any issues that may arise during 

implementation and if necessary change of tact or modification of some strategies. It is also a 

learning process where lessons learned are used to improve the planning and implementation 

process in the subsequent watershed planning and implementation cycles. For this reason, 

documentation is very crucial because it keeps a record of the process of implementation for 

reporting and for reference. 

Impact Evaluation 

Watershed management is done to achieve some objectives, e.g., minimize land degradation or 

raise efficiency in water use. Therefore, after implementation of the watershed management 

plans, it is always wise to assess whether the set of strategies developed or the implementation of 

the plan met the set objectives. It is basically assessing the impact of the implemented strategies 

on the water resources, livelihood, ecosystem, etc. as set in the objectives. The other aim of 

evaluation is to get information/lessons that should be used in the improvement of the watershed 

management program. Evaluation should be carried out on the planning and implementations 

process and the outcome of the watershed management efforts. Planning and implementation 

process evaluation should focus on: 

• Stakeholder engagement 

• Use of resources, e.g., financial and human resources 

• Organization and management of the process 

• Implementation activities (coordination and their effectiveness) 

The evaluation of the outcome of the watershed management should be based on the set 

objectives and may include impact on: 

• Water quality 

• Water sharing 

• Livelihood improvement, i.e., socioeconomic status 
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• Environmental protection and rehabilitation, e.g., rehabilitation of degraded lands 

Evaluation can be carried out using a variety of methods depending on what is to be assessed, 

e.g., observations, measurements, focus group discussion, and survey interviews. The results of 

the monitoring and evaluation process should be well documented and used to make adjustments 

in the plan. 

Revision of the Plan 

Watershed management is an iterative and adaptive process where the lessons from one stage or 

cycle are used to improve the planning and implementation process in subsequent stages and 

cycles (cf. Figure 2.2). Therefore, the results of monitoring and evaluation should be used to 

make adjustments in the planning and implementation programs. 

 

2.9  Watershed Assessment: Case Study Sasumua Watershed, Kenya 
The Sasumua dam watershed (Figure 2.3) is located in the central highlands of Kenya and 

supplies 15 % of water used in the capital, Nairobi. The local Water Resources Users 

Association (Sasumua WRUA) carried out a water abstraction survey with support of Water 

Resources Management Authority (WRMA). WRMA is the state institution with the legal 

mandate to oversee water resources management in Kenya. The objectives of the survey were to 

establish the water resources base in the catchment; establish the level of compliance of water 

use, allocation, and permit conditions; and document riparian area land-use conditions. The 

abstraction survey was necessary in this watershed because there were several unregistered 

abstractions and abstraction exceeded the licensed limit. Therefore this exercise was necessary to 

estimate naturalized flows for water allocation planning. 
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Figure 2.3: Sasumua watershed  (Mwangi et al., 2012a)  

Prior to the survey, meetings were held to sensitize the local community and especially all the 

water abstractors on the planned exercise. The meetings, which were organized through the 

WRUA committee officials and supported by WRMA, were not only important to inform the 

community of the survey but also to reduce hostility from the community and gain their 

acceptance and cooperation during the exercise. The meetings also sought to assure the 

unregistered/illegal abstractors that the exercise was not intended to arrest or prosecute them. 

Those with abstraction permits were requested to carry them to site during the day of survey 

exercise of which the schedule was communicated to them early enough. 

Existing data such as climatic, discharge, reservoir levels, and water abstraction permits were 

first collected from various organizations. Elected WRUA officials led the fieldwork which 

involved measuring of water abstraction from all diversion points which were well known by the 
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local WRUA officials. A combination of methods and equipment was used to measure the water 

diverted from the river, e.g., current meters, Acoustic Doppler Velocimeter (ADV), bucket and 

stopwatch, external pipe flow meters, and hydraulic computations from dimensions of flow 

structures 

Engagement of the local communities through their elected officials in the WRUA proved to be 

very helpful in this exercise. Most of the water abstractors including the unlicensed ones turned 

up for the exercise and gave the required information. It also gave the opportunity where the 

WRMA officials met the illegal abstractors (found to comprise 25 % of all abstractors) and 

informed them of the need to register and apply for water abstraction licenses. The estimated 

abstractions were found to exceed the permitted amount (Table 2.3). As it was found out, the 

excess abstraction was not only because of unregistered water users but also contributed by 

abstraction in excess of permitted limits by licensed abstractors (Mwangi et al., 2012b). Free 

engagement with the abstractors was very useful in getting this information which otherwise they 

would not divulge. 

Table 2.3: Surface water abstraction status of Sasumua watershed  (Mwangi et al., 2012b)  

Stream Permitted abstraction (m 3/day) Estimated abstraction (m 3/day) 

Chania 1,459 7,599 
Kiburu 11,467 12,152 
Sasumua 173 173 
 

Collaboration with other institutions working in the watershed was useful to provide data, 

information, and resources which were necessary for this exercise and also for the entire 

watershed management. Pro-poor Rewards for Environmental Services in Africa (PRESA) 

project which is a collaboration between World Agroforestry Centre (ICRAF) and the Jomo 

Kenyatta University of Agriculture and Technology (JKUAT) provided topographic, climatic, 

and land-use data. Further, research studies conducted in the watershed under the project had 

identified soil erosion “hotspots” (Figure 2.4) and identified suitable sustainable land 

management practices to control degradation of the watershed (Mwangi et al., 2012a, 2014). 
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Figure 2.4: Soil erosion “hotspots” in Sasumua watershed based on simulation using the SWAT 
model (Mwangi et al. 2012a).  
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3 Chapter three: Land use change intensity of Mara River Basin, East 
Africa 

 

Publication (this chapter/paper has been submitted to ‘Applied Geography’ Journal) 

Mwangi HM, Lariu P, Julich S, Patil SD, McDonald MA, Feger KH. 2016. Land use change 

intensity of Mara River Basin, East Africa. Applied Geography (submitted) 

 

Abstract: 

The objective of this study was to analyze patterns, dynamics and processes of land use/cover 

changes in the Mara River Basin from 1976 to 2014. We specifically focused on deforestation 

and expansion of agriculture in the watershed. The intensity analysis approach was used to 

analyze data from satellite imagery-derived land use/cover maps. Results indicate that the overall 

land use/cover change was fastest between 1995 and 2003. Swap change accounted for more 

than 50% of the overall change at all times, which indicates a very dynamic landscape 

transformation. Transition from closed forest to open forest was found to be a systematic 

transition (i.e. a dominant landscape change, as opposed to a random change). Similarly, 

transition from open forest to small scale agriculture was also found to be a dominant transition. 

The two transitions were stationary over the entire study period. This suggests a trend (pathway) 

of deforestation from closed forest to small scale agriculture, with open forest as a transitional 

land cover. The observed deforestation was attributed to continuous encroachment and a series of 

excisions of the forest reserve. Transition from rangeland to mechanized agriculture was found to 

be a dominant land use change between 1985 and 2003, which was attributed to change in land 

tenure. During the last decade, expansion of mechanized agriculture avoided gaining from 

rangeland and intensively targeted small scale agriculture, which was attributed to establishment 

of wildlife associations.  These findings are crucial for designing strategies and policies to arrest 

further deforestation in the forest reserves as well as to sustainably control expansion of 

agriculture.  
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3.1  Introduction 
Land use/cover change is a topic that has in the recent years gained interest because of its role as 

a driver of environmental change (Al-doski et al., 2013; Foley et al., 2005). It is of interest to 

many fields of science including hydrology, biology, environment, biodiversity, conservation 

and agriculture (Jewitt et al., 2015; Raini, 2009; Alo and Pontius, 2008; Mallinis et al., 2014). 

The effect of forest-related land use changes e.g. deforestation, afforestation, agroforestry on the 

flow regime of rivers and water quality has been of special interest to hydrologists and water 

managers (Mao and Cherkauer, 2009; DeFries and Eshleman, 2004; Gitau and Bailey, 2012; 

Brown et al., 2013; Mwangi et al., 2016a). Biologists have also been keen to study the effect of 

land use change on the biodiversity of flora and fauna (de Chazal and Rounsevell, 2009); 

whereas environmental conservationists are concerned about protecting land uses of high 

environmental value such as wetlands, forests, green areas in and around cities that have been 

under increasing threat of conversion to other land uses e.g. agriculture and urban centers 

(Estoque and Murayama, 2015; Öborn et al., 2015; Huang et al., 2012; Plieninger, 2012). 

With increasing world population, the demand for food production continues to rise (Foley et al., 

2005). This has led to significant expansion of areas under agriculture, especially in the tropics 

(Öborn et al., 2015; Lambin and Meyfroidt, 2011). Forests have been the main targets for 

conversion to agricultural cultivation (Mao and Cherkauer, 2009; Romero-Ruiz et al., 2012; 

Carmona and Nahuelhual, 2012). Between 2000 and 2005, DeFries et al. (2010) identified urban 

population growth and agricultural trade as the main drivers of forest loss in the tropics. Gibbs et 

al. (2010) estimated that 55% of new agricultural land in the tropics between 1980 and 2000 

came from intact forests while a further 28% came from disturbed forests. Worldwide, cropland 

increased from 5.9% to 10.6% of the global land area between 1900 and 2000 (Goldewijk et al., 

2011). The demand for housing has also gone up, causing more land to be converted into urban 

centres and cities to accommodate the needs of the rising population (Mubea et al., 2014; 

Mundia and Aniya, 2006). Globally, the urban population has risen to over 50% of the world’s 

population from about 10% in the 1900 (Grimm et al., 2008; UN-HABITAT, 2010). Since the 

same land is still expected to continue providing other ecosystem services (such as water 

purification, carbon sequestration, air purification and modification of micro-climate, and 

cultural heritage and leisure (e.g. in parks)), the pressure on land has been increasing steadily and 

so is the competition from all these land uses (Foley et al., 2005). Therefore, the entire process of 
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land use/cover change, including the patterns, dynamics, and the driving forces, is of interest to a 

wide range of stakeholders. Indeed, several studies have focused on modelling land use/cover 

based on the trends of past land use changes and the underlying driving forces in order to predict 

future land use/cover configurations (Ku, 2016; Mubea et al., 2014; Mas et al., 2014; Verburg et 

al., 2004). This information is crucial for prediction of possible impacts of the change on human 

well-being and the environment for timely interventions (Aldwaik and Pontius, 2012; DeFries 

and Eshleman, 2004).  

A good understanding of the land use/cover change processes is fundamental for the 

establishment of effective conservation and management strategies as well as for modelling 

future land use (Al-doski et al., 2013; Alo and Pontius, 2008). Superficial assessment of land 

use/cover change might not reveal the most important and dominant signals of land change, 

which may lead to wrong choice of conservation measures or inaccurate modelling of land 

change (Pontius et al., 2004). Overlay of land cover maps (of the same spatial extent), derived 

from satellite images taken at different time periods, is a commonly used approach of land 

use/cover change analysis (Mundia and Aniya, 2005). Some studies use transitional matrices to 

compare land cover maps from two different dates. These kinds of analyses are able to identify 

the patterns (spatial arrangement of land cover/uses), as well as the magnitude and rates of land 

use/cover changes. These studies, however, rarely identify or assess the processes behind the 

change in land patterns i.e. whether the observed transitions are due to systematic or random 

processes. Identification of these processes aids in linking the observed transitions of land 

categories to possible causes (Teixeria et al., 2014; Braimoh, 2006; Pontius et al., 2004). In a 

random process of land change, a given land use category usually has no particular tendency to 

gain or lose to any of the other categories. If an observed transition deviates from a transition that 

is expected of a random process, then it is said to be systematic (Alo and Pontius, 2004). 

Random processes are influenced by coincidental factors, i.e., short-term events of land 

transformation characterized by rapid and abrupt changes caused by land factors that act 

suddenly (e.g. land conflicts) (Lambin et al., 2003; Carmona and Nahuelhual, 2012). Systematic 

processes however tend to evolve in a consistent and progressive way due to factors such as 

population growth, industrial/commercial expansion or changes in land management policies 

(Teixeria et al., 2014; Braimoh, 2006; Lambin et al., 2003). Systematic transitions therefore 

show the most prominent (dominant) signals of landscape change. Thus, characterizing and 
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linking the observed patterns with the processes that cause the transitions help in deeper 

understanding of land use change and developing effective land management strategies (Mallinis 

et al., 2014; Huang et al., 2012). 

Pontius et al. (2004) developed a method to quantify, detect and differentiate between systematic 

and random processes of landscape transitions. The method analyzes land use changes relative to 

the sizes of land use/cover categories. Accounting for size of land use categories helps to identify 

systematic transitions which might be obscured especially when there are large land use 

categories which have undergone large changes (Mallinis et al., 2014). This is because large 

transitions between land categories do not necessarily constitute the most systematic landscape 

change, as large transitions between the largest land use categories can be expected under a 

random process of change. (Braimoh, 2006; Pontius et al., 2004).  The approach by Pontius et al. 

(2004), which was recently advanced/improved by Aldwaik and Pontius (2012), is based on land 

change intensities, i.e., ratio of the size of a change (loss or gain) to the size of the land use/cover 

category involved in the change. The method first calculates the land use/cover change 

intensities which would be expected under a random process of change (uniform intensity). 

Observed change intensities (of gain or loss) are then calculated and compared with the uniform 

intensity. Simply put, a land cover category is considered to gain (lose) randomly from others if 

the gains (losses) are in proportion to the availability of the losing (gaining) categories. Large 

positive or negative deviations from the uniform intensity indicate that systematic transitions (as 

opposed to random transitions) occurred between two land cover categories (Aldwaik and 

Pontius, 2012; Braimoh, 2006). The improved approach of Aldwaik and Pontius (2012) provides 

a unified framework, referred to as intensity analysis, which combines three levels of analysis: 

the interval, the category and the transition levels. The interval level is the first one and examines 

how size and speed of change vary across time intervals; the second level (category) examines 

how the size and intensity of gross losses and gross gains in each category vary across categories 

for each time interval; the transition level examines how size and intensity of a category’s 

transitions vary across the other categories that are available for that transition. This approach 

(Intensity analysis) can therefore be used to answer fundamental questions of land use/cover 

change e.g. when (time interval) was the rate of overall change fastest or slowest? Which land 

use category is relatively active or dormant and how does it compare across time intervals? 

Which transitions are intensively targeted or avoided by a particular land use category? 
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We used the intensity analysis approach of Aldwaik and Pontius (2012) to analyze land 

use/cover changes in the Mara River basin in East Africa. The land use changes, especially 

deforestation in the Mau forest at the headwaters, have been blamed for change in the flow 

regime of the Mara River as well as deterioration of river water quality (Gereta at al., 2009; 

Kiragu, 2009). Mwangi et al. (2016b) estimated that about 97% of change in the streamflow of 

Nyangores tributary of the Mara River was caused by land use change, particularly deforestation 

and expansion of agriculture. A previous land use study by Mati et al. (2008) reported that large 

scale deforestation occurred in the upper Mara and conversion of rangelands to agriculture in the 

mid regions of the basin between 1973 and 2000.  The Mati et al. (2008) study focused on the net 

changes of land use and did not investigate the dynamics of land use in details to determine 

dominant signals of land use change. Analyses based on net changes may fail to reveal the total 

change on the landscape (Yuan et al., 2016; Fuchs et al., 2015). This is because a zero net change 

does not necessarily imply a lack of change. There is a possibility that a change occurs in a such 

a way that the location of a land category changes between time 1 and time 2 while the quantity 

(size) remains the same (Pontius et al., 2004). For example, analysis of net changes may indicate 

that a particular land use (e.g. forest) did not change from time point 1 to a subsequent time point 

2. However, whereas the size of forest may have remained constant, there could have been 

deforestation in some parts of the study area which was accompanied by regrowth or 

afforestation (of equal size) in other parts. This suggests that although the size of forest was 

constant, the forest was not stable. Revealing this kind of information is important for 

conservation and management because the changes may have caused a change of hydrological 

catchment properties (e.g. infiltration properties) which subsequently affects catchment water 

yield. Our study focused on analysis of transitions among various land use categories at different 

time intervals. We particularly pay special attention to changes in forest and agriculture with an 

aim of revealing underlying processes, trends and possible driving forces.  

 

3.2  Material and Methods 

3.2.1  Study area 
Mara River basin is a transboundary watershed (13,750 km2) shared between Kenya (65%) and 

Tanzania (35%) (Figure 3.1). The Mara River originates from the Mau forest complex in Kenya, 
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flows through an expansive rangeland and drains into Lake Victoria on the Tanzanian side of the 

border. The main land uses are: forest, agriculture and rangeland. Mau is a large forest complex 

which is a source of several rivers in the region including the Mara River. It is composed of 22 

forest blocks which are gazetted forest reserves (NEMA, 2013; GoK, 2009). However, rampant 

deforestation has occurred in the larger Mau forest complex especially in the last half a century. 

The area surrounding the Mau forest is favourable for agriculture (annual rainfall ranges from 

1400 mm to 2500 mm) and therefore most of the deforested land is converted to agriculture, 

particularly small scale agriculture. The middle section of the basin is mainly rangeland that is 

used by the local Maasai people for grazing. Two national (game) reserves are located within the 

rangeland. The Maasai Mara National Reserve in Kenya and the Serengeti National Reserve in 

Tanzania are major wildlife tourist attraction sites. In recent years, agriculture, particularly large 

scale mechanized cultivation of wheat has been extending into the rangelands (Serneels et al., 

2001). The downstream section of the basin in Tanzania is mainly dominated by subsistence 

agriculture and gold mining.  

 

3.2.2  Data 
Landsat Multispectral Scanner, Thematic Mapper, Enhanced Mapper Plus and Operational Land 

imager satellite images for 1976, 1985, 1995, 2003 and 2014 (Table 3.1) were obtained from the 

United States Geological Survey. The images were chosen for varying dates in the dry season of 

January and February to avoid clouds and possible errors resulting from seasonal differences 

between time points. 

 

3.2.3  Land use/cover classification 
Image processing was performed using the ArcGIS 10.3.1 software (ESRI, 2015). Supervised 

classification using maximum likelihood algorithm was adopted using 6 land use/cover 

categories based on the information from field visits, Google Earth images and available maps of 

the area (GoK, 1983; FAO, 2002; Mati et al., 2008).  
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Figure 3.1: Mara River Basin  with 2014 land use/cover distribution.  

 

The land cover categories are: closed forest, open forest, small scale agriculture, mechanized 

agriculture, rangeland and tea plantation. Closed forest represents densely forested areas with 

closed canopies, while open forest represents areas with light tree canopy coverage and mosaics 

of predominantly forested areas with some patches of cleared/cultivated land. Small scale 

agriculture includes patterns of small cultivated areas sometimes alternation with fallow land, 
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while mechanized agriculture comprises of large coherent agricultural land of the same crop 

stand, mostly in regular shapes. Tea plantation includes both small and large tea plantations. 

Rangeland includes grassland, shrub land, savannah mainly used for grazing and game reserves. 

The land use/cover map of 1976 was resampled using nearest neighbour technique from 

originally 60m to 30m resolution to conform to the resolution of other maps for easier post 

classification comparison/analysis. 

Table 3.1: Satellite Imagery used for LULC classification  (P = path, R = Row, FCC = false 
colour composite).  

Nr. Scene Sensor Platform Pixel size Bands (FCC) Date 

1 P181 R60 MSS Landsat 3 60 m 7,5,4 25th Jan 1976 

2 P181 R61 MSS Landsat 3 60 m 7,5,4 12th Feb 1976 

3 P182 R61 MSS Landsat 3 60 m 7,5,4 26th Jan 1976 

4 P169 R60 TM Landsat 5 30 m 4,3,2 9th Jan 1985 

5 P169 R61 TM Landsat 5 30 m 4,3,2 9th Jan 1985 

6 P170 R60 TM Landsat 5 30 m 4,3,2 16th Jan 1985 

7 P170 R61 TM Landsat 5 30 m 4,3,2 16th Jan 1985 

8 P169 R60 TM Landsat 5 30 m 4,3,2 21st Jan 1995 

9 P169 R61 TM Landsat 5 30 m 4,3,2 21st Jan 1995 

10 P170 R61 TM Landsat 5 30 m 4,3,2 12th Jan 1995 

11 P169 R60 ETM+ Landsat 7 30 m 4,3,2 4th Feb 2003 

12 P169 R61 ETM+ Landsat 7 30 m 4,3,2 4th Feb 2003 

13 P170 R61 ETM+ Landsat 7 30 m 4,3,2 10th Jan 2003 

14 P169 R60 OLI Landsat 8 30 m 5,4,3 25th Jan 2014 

15 P169 R61 OLI Landsat 8 30 m 5,4,3 25th Jan 2014 

16 P170 R60 OLI Landsat 8 30 m 5,4,3 16th Jan 2014 

17 P170 R61 OLI Landsat 8 30 m 5,4,3 1st Feb 2014 

 

3.2.4  Land use/cover Intensity analysis 
To determine the patterns, intensity and the dynamics of land use /cover change, land use 

intensity analysis was performed following the framework of Aldwaik and Pontius (2012). First, 

transitional matrices were used to quantify the land use/cover change over space and time. A 

transition matrix is a two dimensional table in which land use categories at the beginning of the 
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time interval are displayed in rows while land use categories at end of time interval are displayed 

in columns (Mallinis et al., 2014, Aldwaik and Pontius, 2012). The diagonal entries indicate 

persistence whereas off-diagonal entries indicate a transition from one land use category at the 

start of the interval to another category at the end of the interval. The row totals show the size of 

land use/cover category at the beginning of the interval and the column totals show the 

corresponding sizes at the end of the interval. A transitional matrix was made for each time 

interval i.e. 1976-1985, 1985-1995, 1995-2003 and 2003-2014. 

The transition matrices were then used to perform intensity analysis following the approach by 

Aldwaik and Pontius (2012, 2013). The intensity analysis approach is a top-down approach 

organized into three levels: the interval level, the category level and the transition level. The 

method computes and compares observed intensities of land use changes with uniform intensity 

among intervals and categories. Table 3.2 gives a summary of equations (3.1-3.8) used for 

intensity analysis at the three levels; the descriptions of the mathematical notations used in the 

equations are given in Table 3.3. 

Interval level 

At the interval level, the method analyzes how the size and the annual rate of change vary across 

time intervals. The interval level analysis compares the observed annual change intensity, St, 

(Equation 3.1) to a hypothetical uniform annual rate, U (a rate that would exist if the annual 

change rates for each interval were distributed uniformly over the entire period of study 

(Equation 3.2)). The annual change rate is considered fast if St < U and slow if St > U. 

Category level 

At the category level, the intensity analysis method assess the spatial variation of size and 

intensity of overall (gross) gains, Gtj, and gross losses Lti. For each category, the intensities of 

gross gains (Equation 3.3) and gross losses (Equation 3.4) are computed and compared with a 

hypothetical uniform intensity that would exist if the change within each interval were uniformly 

distributed across the entire study area (which is equal to St). Categories that have greater change 

intensity than St are considered active while those whose change intensity is lower than St are 

considered dormant.  
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Transition level 

At the transition level, the method assesses how the size and intensity of the each transition 

(from one category to the other) varies among land use categories. For each category gain or 

loss, transition level analysis compares the observed intensity of each transition with a 

hypothetical uniform transition that would occur if the transition were distributed uniformly 

among land use categories available for the transition. Equations 3.5 and 3.6 are used for 

transition level analysis to identify the transition from an arbitrary category i to a particular 

gaining category n (Pontius et al., 2013; Aldwaik and Pontius, 2012). In other words, the 

equations identify which land use categories are intensively avoided or targeted for gaining by 

category n in a particular time interval. As such the analysis can identify which land use 

categories are intensively targeted (or avoided) by either loss or gain of a particular category. 

Equation 3.5 calculates observed intensity Rtin of annual transition from category i to category n 

for a given time interval relative to the size of category i at the start of the interval. The observed 

intensity Rtin is compared with uniform intensity Wtn calculated using Equation 3.6 which 

assumes that category n gains uniformly across the landscape. If Rtin >Wtn, then gain of n is 

considered to target i but if the opposite is true, gain of n is considered to avoid i. Considering a 

losing category, and similar to Equations 3.5 and 3.6, Equations 3.7 and 3.8  are used to assess 

the transition from a particular losing category m to a different category j. The observed intensity 

Qmtj  is calculated using Equation 3.7 while the hypothetical uniform intensity Vtm which would 

occur if category m were to lose at the same annual intensity to all non-m categories is calculated 

using Equation 3.8. If Qmtj > Vtm then category j is considered to target loss of category m 

whereas if Qmtj < Vtm the category j is said to avoid loss of category m. Therefore, with this 

analysis, it is possible to tell, for example, which land use categories are targeted (or avoided) by 

expansion of agriculture. It can also tell if a forest loses, which other land use categories would 

benefit (targeted) from that loss. 
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Table 3.2: Summary of equations used in Intensity Analysis 

Interval level equations  

𝑺𝒕 =  
𝒄𝒄𝒄𝒄𝒄𝒄 𝒅𝒅𝒅𝒅𝒄𝒄[𝒀𝒕,𝒀𝒕+𝟏]

(𝒅𝒅𝒅𝒄𝒕𝒅𝒅𝒄 𝒅𝒐 [𝒀𝒕,𝒀𝒕+𝟏])(𝒅𝒅𝒅𝒄𝒅𝒄 𝒅𝒐 [𝒀𝒕,𝒀𝒕+𝟏])  𝟏𝟏𝟏% =  
∑ [(∑ 𝑪𝒕𝒅𝒕) − 𝑪𝒕𝒅𝒕]

𝑱
𝒅=𝟏

𝑱
𝒕=𝟏

(𝒀𝒕+𝟏 − 𝒀𝒕) �∑ ∑ 𝑪𝒕𝒅𝒕
𝑱
𝒅=𝟏

𝑱
𝒕=𝟏 �

 𝟏𝟏𝟏% 
3.1 

𝑼 =
𝒘𝒄𝒅𝒄𝒄𝒕𝒄𝒅 𝒔𝒅𝒅 𝒅𝒐 𝒄𝒄𝒄𝒄𝒄𝒄𝒔 𝒅𝒅𝒅𝒅𝒄𝒄 𝒅𝒄𝒕𝒄𝒅𝒊𝒄𝒊𝒔

(𝒅𝒅𝒅𝒄𝒕𝒅𝒅𝒄 𝒅𝒐 [𝒀𝒕,𝒀𝒕+𝟏])(𝒘𝒄𝒅𝒄𝒄𝒕𝒄𝒅 𝒔𝒅𝒅 𝒅𝒐 𝒅𝒅𝒅𝒄𝒅𝒄𝒔)  𝟏𝟏𝟏% = 

 

 
∑ �(𝒀𝒕 − 𝒀𝒕+𝟏)∑ [(∑ 𝑪𝒕𝒅𝒕

𝑱
𝒅=𝟏

𝑱
𝒕=𝟏 ) − 𝑪𝒕𝒕𝒕]�𝑻−𝟏

𝒕=𝟏

(𝒀𝑻 − 𝒀𝟏)∑ �(𝒀𝒕+𝟏 − 𝒀𝒕)(∑ ∑ 𝑪𝒕𝒅𝒕
𝑱
𝒅=𝟏

𝑱
𝒕=𝟏 )�𝑻−𝟏

𝒕=𝟏

 𝟏𝟏𝟏% 

3.2 

Category level equations  

𝑮𝒕𝒕 =
𝒔𝒅𝒔𝒄 𝒅𝒐 𝒄𝒄𝒄𝒅𝒄𝒊 𝒄𝒄𝒅𝒄 𝒅𝒐 𝒕 𝒅𝒅𝒅𝒅𝒄𝒄 [𝒀𝒕,𝒀𝒕+𝟏] 

𝒔𝒅𝒔𝒄 𝒅𝒐 𝒕 𝒄𝒕 𝒕 + 𝟏
 𝟏𝟏𝟏% =  

��∑ 𝑪𝒕𝒅𝒕
𝑱
𝒅=𝟏 � − 𝑪𝒕𝒕𝒕�/(𝒀𝒕+𝟏 − 𝒀𝒕)

∑ 𝑪𝒕𝒅𝒕
𝑱
𝒅=𝟏

𝟏𝟏𝟏% 
3.3 

𝑳𝒕𝒅 =
𝒔𝒅𝒔𝒄 𝒅𝒐 𝒄𝒄𝒄𝒅𝒄𝒊 𝒊𝒅𝒔𝒔 𝒅𝒐 𝒅 𝒅𝒅𝒅𝒅𝒄𝒄 [𝒀𝒕,𝒀𝒕+𝟏] 

𝒔𝒅𝒔𝒄 𝒅𝒐 𝒅 𝒄𝒕 𝒕
𝟏𝟏𝟏% =

��∑ 𝑪𝒕𝒅𝒕
𝑱
𝒕=𝟏 � − 𝑪𝒕𝒅𝒅�/(𝒀𝒕+𝟏 − 𝒀𝒕)

∑ 𝑪𝒕𝒅𝒕
𝑱
𝒕=𝟏

𝟏𝟏𝟏% 
3.4 

Transition level equations  

𝑹𝒕𝒅𝒄 =
𝒔𝒅𝒔𝒄 𝒅𝒐 𝒄𝒄𝒄𝒅𝒄𝒊 𝒕𝒅𝒄𝒄𝒔𝒅𝒕𝒅𝒅𝒄 𝒐𝒅𝒅𝒅 𝒅 𝒕𝒅 𝒄 𝒅𝒅𝒅𝒅𝒄𝒄 [𝒀𝒕,𝒀𝒕+𝟏 ]

𝒔𝒅𝒔𝒄 𝒅𝒐 𝒅 𝒄𝒕 𝒕
=
𝑪𝒕𝒅𝒄/(𝒀𝒕+𝟏 − 𝒀𝒕)

∑ 𝑪𝒕𝒅𝒕
𝑱
𝒕=𝟏

𝟏𝟏𝟏% 
3.5 

𝑾𝒕𝒄 =
𝒔𝒅𝒔𝒄 𝒅𝒐 𝒄𝒄𝒄𝒅𝒄𝒊 𝒄𝒄𝒅𝒄 𝒅𝒐 𝒄 𝒅𝒅𝒅𝒅𝒄𝒄 [𝒀𝒕,𝒀𝒕+𝟏 ]

𝒔𝒅𝒔𝒄 𝒅𝒐 𝒄𝒅𝒕 𝒄 𝒄𝒕 𝒕
=
��∑ 𝑪𝒕𝒅𝒄

𝑱
𝒅=𝟏 � − 𝑪𝒕𝒄𝒄�/(𝒀𝒕+𝟏 − 𝒀𝒕)
∑ [(𝑱
𝒕=𝟏 ∑ 𝑪𝒕𝒅𝒕

𝑱
𝒅=𝟏 ) − 𝑪𝒕𝒄𝒕]

𝟏𝟏𝟏% 
3.6 

𝑸𝒕𝒅𝒕 =
𝒔𝒅𝒔𝒄 𝒅𝒐 𝒄𝒄𝒄𝒅𝒄𝒊 𝒕𝒅𝒄𝒄𝒔𝒅𝒕𝒅𝒅𝒄 𝒐𝒅𝒅𝒅 𝒅 𝒕𝒅 𝒕 𝒅𝒅𝒅𝒅𝒄𝒄 [𝒀𝒕,𝒀𝒕+𝟏 ]

𝒔𝒅𝒔𝒄 𝒅𝒐 𝒕 𝒄𝒕 𝒕
=
𝑪𝒕𝒅𝒕/(𝒀𝒕+𝟏 − 𝒀𝒕)

∑ 𝑪𝒕𝒅𝒕
𝑱
𝒅=𝟏

𝟏𝟏𝟏% 
3.7 

𝑽𝒕𝒅 =
𝒔𝒅𝒔𝒄 𝒅𝒐 𝒄𝒄𝒄𝒅𝒄𝒊 𝒊𝒅𝒔𝒔 𝒅𝒐 𝒅 𝒅𝒅𝒅𝒅𝒄𝒄 [𝒀𝒕,𝒀𝒕+𝟏 ]

𝒔𝒅𝒔𝒄 𝒅𝒐 𝒄𝒅𝒕 𝒅 𝒄𝒕 𝒕 + 𝟏
=
��∑ 𝑪𝒕𝒅𝒕

𝑱
𝒕=𝟏 � − 𝑪𝒕𝒅𝒅�/(𝒀𝒕+𝟏 − 𝒀𝒕)

∑ [(𝑱
𝒅=𝟏 ∑ 𝑪𝒕𝒅𝒕

𝑱
𝒕=𝟏 ) − 𝑪𝒕𝒅𝒅]

𝟏𝟏𝟏% 
3.8 

 

Error analysis 

The maps used for these analyses were made using satellite images taken at different times in the 

past. Since the maps cover the same areal extent, if the maps were completely accurate, the 

differences between them would perfectly indicate temporal changes in land use/cover. 

However, classification errors in the maps can also cause differences in the maps (Enaruvbe and 

Pontius, 2015), in addition to the observed land use/cover changes. Since the maps were made 

from the past images, there was no enough reference ground information available to measure or 

estimate classification errors in the maps. Aldwaik and Pontius (2013) proposed a methodology 

for estimating minimum errors in the maps that could account for the differences in two maps of 

the same areal extent but taken at different time points in the past. The error analysis method by 

Aldwaik and Pontius (2013) assess the strength of the changes identified through intensity 

analysis. A null hypothesis of uniform change intensity is first hypothesized at all the three levels 



50 
 

of the intensity analysis. Uniform hypothesis assumes that the change intensities are uniform and 

data errors could account for the deviation between observed intensity and hypothesized uniform 

intensity.  

Table 3.3: Mathematical notation for the intensity analysis equations 

Symbol Meaning 
T Number of time points 
Yt Year at time point t 
t Index for the initial time point of interval [Yt, Yt+1], where t ranges from 1 to T-1 
J Number of categories 
i Index for a category at an interval’s initial time point 
j Index for a category at an interval’s final time point 
m Index for the losing category for the selected transition 
n Index for the gaining category for the selected transition 
Ctij Number of elements that transition from category i to category j during interval [Yt, Yt+1]  
St Annual change during interval [Yt, Yt+1] 
U Uniform annual change during extent [Yt, Yt+1] 
Gtj Intensity of annual gain of category j during interval [Yt, Yt+1] relative to the size of category j at time t+1 
Lti Intensity of annual gain of category i during interval [Yt, Yt+1] relative to the size of category i at time t 
Rtin Intensity of annual transition from category i to category n during interval [Yt, Yt+1] relative to the size of 

category i at time t 
Wtn Uniform intensity of annual transition from all non-n categories to category n during interval [Yt, Yt+1] 

relative to the size of all non-m categories at time t 
Qtmj Intensity of annual transition from category m to category j during interval [Yt, Yt+1] relative to the size of 

category j at time t+1 
Vtm Uniform intensity of annual transition from category m to all non-m categories during interval [Yt, Yt+1] 

relative to the size of all non-m categories at time t+1 
ES

t Commission of change error during interval [Yt, Yt+1], i.e., percent of domain that is observed change during 
interval [Yt, Yt+1] but is hypothesized persistence 

OS
t Omission of change error during interval [Yt, Yt+1], i.e., percent of domain that is observed persistence during 

interval [Yt, Yt+1] but is hypothesized change 
EG

tj Commission of category j error at time t+1, i.e., number of elements that are observed gains of category j 
during interval [Yt, Yt+1] but are hypothesized gains of a non-j category 

OG
tj Omission of of category j error at time t+1, i.e., number of elements that are observed gains of a non-j 

category during interval [Yt, Yt+1] but are hypothesized gains of category j 
EL

ti Commission of category i error at time t, i.e., number of elements that are observed losses of category i 
during interval [Yt, Yt+1] but are hypothesized losses of a non-i category 

OL
ti Omission of of category i error at time t, i.e., number of elements that are observed losses of a non-i category 

during interval [Yt, Yt+1] but are hypothesized losses of category i 
ER

tin Commission of category i error at time t, i.e., number of elements that are observed transtions from category 
i to category n during interval [Yt, Yt+1] but are hypothesized transitions from a non-i category to category n 

OR
tin Omission of category i error at time t, i.e., number of elements that are observed transtions from a non-i 

category to category n during interval [Yt, Yt+1] but are hypothesized transitions from a category i to category 
n 

EQ
tmj Commission of category j error at time t+1 i.e., number of elements that are observed transitions from 

category m to category j during interval [Yt, Yt+1] but are hypothesized transitions from category m to a non-j 
category 

OQ
tmj Omission of category j error at time t+1 i.e., number of elements that are observed transitions from category 

m to a non-j category during interval [Yt, Yt+1] but are hypothesized transitions from category m to category j 
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The minimum hypothetical errors that could account for the deviations between the observed and 

hypothesized change intensity are then calculated.  Ideally, if data were perfectly correct, then 

error would not account for the deviation. In this analysis, two types of errors (commission errors 

and omission errors) are estimated. Commission error arises when the observed intensity of 

change is greater than the uniform hypothesized intensity. The reverse is true for the omission 

error. The error (either commission or omission) is the difference between the observed change 

and uniform change. The larger the hypothetical commission or omission error, the stronger the 

evidence against the null hypothesis of uniform change. The strong evidence implies that there is 

a high likelihood that the differences in the maps are not necessarily due to classification errors; 

implying that there was actual change in land use. The intensity of commission of error is a 

compliment of User’s accuracy (100% minus User’s accuracy) while the intensity of omission 

error is a compliment of Producer’s accuracy (100% minus Producer’s accuracy) (Enaruvbe and 

Pontius, 2015; Pontius et al., 2013). 

Table 3.4 gives the summary of the equations (3.9-3.28) used for error analysis at all the three 

levels. For intervals where St > U, Equation 3.9 is used to calculate the commission error as a 

percent of the study area while Equation 3.10 is used to calculate the commission of change 

intensity during a particular interval. Similarly for intervals where St < U, Equations 3.11 and 

3.12 calculate the omission error and the omission of change intensity respectively. At the 

category level, Equations 3.13 and 3.14 are used to calculate the size and intensity of 

commission of category j error respectively for active categories whose observed gain of 

category j is greater than uniform change during the interval. Similarly, Equations 3.15 and 3.16 

are used to calculate the size and intensity of omission of category j error respectively for 

dormant categories whose observed gain of category j less than uniform change during the 

interval. Similar logic is used to calculate the size and intensity of commission (and omission) of 

category i error in case of observed loss of category i. Equation 3.17 and 3.18 are equivalent of 

equations 3.13 and 3.14 while Equations 3.19 and 3.20 are equivalent of Equations 3.15 and 

3.16; the difference being that Equations 3.17, 3.18, 3.19 and 3.20 focuses on observed loss 

(instead of observed gain) of category i. 
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Table 3.4: Summary of equations for error analysis 

Equations for error analysis  
Interval level  

   𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 𝐞𝐞𝐞𝐂𝐞 (% 𝐂𝐨 𝐂𝐬𝐬𝐬𝐬 𝐚𝐞𝐞𝐚)  =        𝑬𝒕𝑺 = (𝑺𝒕 − 𝑼)( 𝒀𝒕+𝟏 − 𝒀𝒕) 3.9 

commission of change intensity during [Yt, Yt+1] =
𝑬𝒕𝑺

𝑺𝒕(𝒀𝒕+𝟏−𝒀𝒕)
 𝟏𝟏𝟏% 3.10 

𝐎𝐂𝐂𝐂𝐂𝐂𝐂𝐂 𝐞𝐞𝐞𝐂𝐞 (% 𝐂𝐨 𝐂𝐬𝐬𝐬𝐬 𝐚𝐞𝐞𝐚) =      𝑶𝒕
𝑺 = (𝑼− 𝑺𝒕)( 𝒀𝒕+𝟏 − 𝒀𝒕) 3.11 

omission of change intensity during [Yt, Yt+1] =
𝑶𝒕𝑺

𝑺𝒕(𝒀𝒕+𝟏−𝒀𝒕)+𝑶𝒕𝑺
 𝟏𝟏𝟏% 3.12 

Category level  
                           Gain category  

 𝐜𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 𝐂𝐨 𝐜𝐚𝐬𝐞𝐜𝐂𝐞𝐬 𝐣 𝐞𝐞𝐞𝐂𝐞   𝐚𝐬  𝒕+ 𝟏 =       𝑬𝒕𝒕𝑮 =
�∑ 𝑪𝒕𝒅𝒕

𝑱
𝒅=𝟏 �(𝒀𝒕+𝟏 − 𝒀𝒕)(𝑮𝒕𝒕 − 𝑺𝒕)
𝟏𝟏𝟏% − (𝒀𝒕+𝟏 − 𝒀𝒕)𝑺𝒕

 
3.13 

commission of j intensity at t+1=
𝑬𝒕𝒕𝑮

�∑ 𝑪𝒕𝒅𝒕
𝑱
𝒅=𝟏 �−𝑪𝒕𝒕𝒕

𝟏𝟏𝟏% 3.14 

   𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 𝐂𝐨 𝐜𝐚𝐬𝐞𝐜𝐂𝐞𝐬 𝐣 𝐞𝐞𝐞𝐂𝐞 𝐚𝐬 𝒕 + 𝟏 =     𝑶𝒕𝒕
𝑮 =

�∑ 𝑪𝒕𝒅𝒕
𝑱
𝒅=𝟏 �(𝒀𝒕+𝟏 − 𝒀𝒕)(𝑺𝒕 − 𝑮𝒕𝒕)
𝟏𝟏𝟏%− (𝒀𝒕+𝟏 − 𝒀𝒕)𝑺𝒕

 
3.15 

omission of j intensity at t+1=
𝑶𝒕𝒕𝑮

��∑ 𝑪𝒕𝒅𝒕
𝑱
𝒅=𝟏 �−𝑪𝒕𝒕𝒕�+𝑶𝒕𝒕𝑮

𝟏𝟏𝟏% 3.16 

                      Loss category  

 𝐜𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 𝐂𝐨 𝐜𝐚𝐬𝐞𝐜𝐂𝐞𝐬 𝒅 𝐞𝐞𝐞𝐂𝐞 𝐚𝐬 𝒕      𝑬𝒕𝒅𝑳 =
�∑ 𝑪𝒕𝒅𝒕

𝑱
𝒕=𝟏 � (𝒀𝒕+𝟏 − 𝒀𝒕)(𝑳𝒕𝒅 − 𝑺𝒕)
𝟏𝟏𝟏% − (𝒀𝒕+𝟏 − 𝒀𝒕)𝑺𝒕

 
3.17 

commission of i intensity at t = 𝑬𝒕𝒅𝑳

�∑ 𝑪𝒕𝒅𝒕
𝑱
𝒕=𝟏 �−𝑪𝒕𝒕𝒕

𝟏𝟏𝟏% 3.18 

  𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 𝐂𝐨 𝐜𝐚𝐬𝐞𝐜𝐂𝐞𝐬 𝒅 𝐞𝐞𝐞𝐂𝐞 𝐚𝐬 𝒕 =      𝑶𝒕𝒅
𝑳 =

�∑ 𝑪𝒕𝒅𝒕
𝑱
𝒕=𝟏 � (𝒀𝒕+𝟏 − 𝒀𝒕)(𝑺𝒕 − 𝑳𝒕𝒅)
𝟏𝟏𝟏% − (𝒀𝒕+𝟏 − 𝒀𝒕)𝑺𝒕

 
3.19 

omission of i intensity at t = 𝑶𝒕𝒅𝑳

��∑ 𝑪𝒕𝒅𝒕
𝑱
𝒕=𝟏 �−𝑪𝒕𝒅𝒅�+𝑶𝒕𝒅𝑳

𝟏𝟏𝟏% 3.20 

Transition level  
                            Transition from i given observed gain of n  

 𝐜𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 𝐂𝐨 𝐜𝐚𝐬𝐞𝐜𝐂𝐞𝐬 𝒅 𝐞𝐞𝐞𝐂𝐞 𝐚𝐬 𝒕 =    𝑬𝒕𝒅𝒄𝑹 =
(∑ 𝑪𝒕𝒅𝒕

𝑱
𝒅=𝟏 )(𝒀𝒕+𝟏 − 𝒀𝒕)(𝑹𝒕𝒅𝒄 −𝑾𝒕𝒄)
𝟏𝟏𝟏% − (𝒀𝒕+𝟏 − 𝒀𝒕)𝑾𝒕𝒄

 
3.21 

commission of i intensity at t = 𝑬𝒕𝒅𝒄𝑹

𝑪𝒕𝒅𝒄
𝟏𝟏𝟏% 3.22 

    𝐎𝐂𝐂𝐂𝐂𝐂𝐂𝐂 𝐂𝐨 𝐜𝐚𝐬𝐞𝐜𝐂𝐞𝐬 𝒅 𝐚𝐬 𝒕  =    𝑶𝒕𝒅𝒄
𝑹 =

(∑ 𝑪𝒕𝒅𝒕
𝑱
𝒕=𝟏 )(𝒀𝒕+𝟏 − 𝒀𝒕)(𝑾𝒕𝒄 − 𝑹𝒕𝒅𝒄)
𝟏𝟏𝟏% − (𝒀𝒕+𝟏 − 𝒀𝒕)𝑾𝒕𝒄

𝟏𝟏𝟏% 
3.23 

omission of i intensity at t = 𝑶𝒕𝒅𝒄𝑹

𝑶𝒕𝒅𝒄𝑹 +𝑪𝒕𝒅𝒄
𝟏𝟏𝟏% 3.24 

                              Transition to j, given observed loss of m  

   𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 𝐂𝐨 𝐜𝐚𝐬𝐞𝐜𝐂𝐞𝐬 𝒕 𝐞𝐞𝐞𝐂𝐞 𝐚𝐬 𝒕+ 𝟏 =        𝑬𝒕𝒅𝒕
𝑸 =

(∑ 𝑪𝒕𝒅𝒕
𝑱
𝒅=𝟏 )(𝒀𝒕+𝟏 − 𝒀𝒕)(𝑸𝒕𝒅𝒕 − 𝑽𝒕𝒅)
𝟏𝟏𝟏% − (𝒀𝒕+𝟏 − 𝒀𝒕)𝑽𝒕𝒅

 
3.25 

commission of i intensity at t+1 =
𝑬𝒕𝒅𝒕
𝑸

𝑪𝒕𝒅𝒕
𝟏𝟏𝟏% 

3.26 

  𝐎𝐂𝐂𝐂𝐂𝐂𝐂𝐂 𝐂𝐨 𝐜𝐚𝐬𝐞𝐜𝐂𝐞𝐬 𝒕 𝐞𝐞𝐞𝐂𝐞 𝐚𝐬 𝒕 + 𝟏 =  𝑶𝒕𝒅𝒕
𝑸 =

(∑ 𝑪𝒕𝒅𝒕
𝑱
𝒅=𝟏 )(𝒀𝒕+𝟏 − 𝒀𝒕)(𝑽𝒕𝒅 − 𝑸𝒕𝒅𝒕)
𝟏𝟏𝟏% − (𝒀𝒕+𝟏 − 𝒀𝒕)𝑽𝒕𝒅

𝟏𝟏𝟏% 
3.27 

omission of j intensity at t+1 = 𝑸𝒕𝒅𝒕
𝑸𝒕𝒅𝒕+𝑪𝒕𝒅𝒕

𝟏𝟏𝟏% 3.28 

 

Error analysis at the transition level is carried out using Equations 3.21 to 3.28. The analysis is 

carried out in two parts. The first one being transition from category i given observed gain of 

category n. The second part is transition to category j given observed loss of category m. For the 
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first part, when observed transition of i is greater than uniform gain of n, the size and the 

intensity of commission of category i error are estimated using Equations 3.21 and 3.22 

respectively. Similarly, the size and the intensity of omission of category i error are calculated 

using Equations 3.23 and 3.24 respectively when observed transition from i is less than uniform 

gain of n.  

For the second part (transition to category j given observed loss of category m), when transition 

to j is greater than uniform loss of category m, the size and the intensity of commission of 

category j error are estimated using Equations 3.25 and 3.26 respectively. Equations 3.27 and 

3.28 are used to calculate the size and intensity of omission of category j error when observed 

transition to j is less than uniform loss of m. 

3.3  Results and Discussion 

3.3.1  Overall Land use/cover changes 
Figure 3.2 shows the land use/cover maps of the Mara River basin (outlet taken at Mara mines 

gauging station; Figure 3.1) for the years 1976, 1985, 1995, 2003 and 2014 respectively. From 

the maps, it can be seen that rangeland is a dominant land use accounting to over two-thirds of 

the basin at all times. This is partly contributed by the presence of two protected national 

reserves, i.e., Maasai Mara and Serengeti, whose land cover fall under this land use category. 

The two national reserves have been in existence throughout the study period. The area 

surrounding the national reserves, particularly of the Kenyan side of Maasai Mara is occupied by 

Maasai ethnic community whose main socio-economic activity is pastoralism.  Therefore, the 

land surrounding the Maasai Mara is mainly used for grazing. It can be seen that most of the land 

use change have occurred in the upper part of the basin. The most notable change is the steady 

increase in small scale agriculture and a decline in forest cover (Figure 3.2). The forest cover 

reduced from about 20% to about 7.5 % of the study area between 1976 and 2014, which can be 

attributed to deforestation particularly in the Mau forest at the source of the Mara River. During 

the same period, small agriculture increased from approximately 8.5% to 21% of the landscape. 

Other land use changes of interest are expansion of mechanized agriculture and tea. Although 

they both represent a very small percentage of the basin (<1%) at all times, they have been 

steadily increasing during the study period. Mechanized farming was only almost insignificant in 
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1976 (covered ca. 0.01% of the watershed) while tea is a new land use established in the 1985-

1995 interval.  

 

Figure 3.2: Land use/cover maps. 

Overall and category-wise annual areas of gross gain, gross loss, net changes and swap changes 

are summarized in Table 3.5 for the four time intervals. Closed forest shows a net gain (23.3 

km2/year) during the first interval and then shows a net loss in all the other subsequent intervals. 

Open forest depicts a net loss over the entire study period (during all the intervals). This 

indicates a general trend of deforestation throughout the study period. Small scale agriculture 

shows a net gain in all intervals which peaked (73.9 km2/year) during the 1995-2003 interval and 

slowed (6.6 km2/year) during the last interval. The overall land use/cover change also peaked 
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during the 1995-2003 interval (at 258 km2/year) and slowed during the last interval. Most land 

use categories underwent swap change throughout the study period (Table 3.5). A swap change 

depicts vegetation (or any other land use/cover) loss occurring in one location while an equal 

gain occurs in another location (Yuan et al., 2016; Zaehringer et al., 2015; Pontius et al., 2004).   

Table 3.5: Categories of land change  (annual change in km2) during the four intervals  

 Gross gain Gross Loss Total Change Net 
Change 

Swap 
Change 

swap change 
(% of total change) 

   1976-1985    

Closed forest 42.45 19.16 61.61 23.29 38.32 62.20 

Open forest 22.30 102.89 125.19 80.60* 44.60 35.62 

Small scale agriculture 54.10 34.05 88.15 20.05 68.11 77.26 

mechanized agriculture 1.68 0.13 1.81 1.55 0.26 14.44 

Rangeland 80.42 44.71 125.13 35.71 89.43 71.46 

Tea 0.00 0.00 0.00 0.00 0.00  

Overall Change 200.95 200.95 200.95 80.60 120.36 59.89 

   1985-1995    

Closed forest 28.71 39.10 67.81 10.39* 57.42 84.68 

Open forest 18.21 43.85 62.06 25.64* 36.42 58.68 

Small scale agriculture 80.71 24.35 105.06 56.36 48.70 46.35 

mechanized agriculture 1.42 1.33 2.75 0.08 2.67 96.96 

Rangeland 40.46 61.53 102.00 21.07* 80.93 79.34 

Tea 0.66 0.00 0.66 0.66 0.00 0.00 

Overall Change 170.17 170.17 170.17 57.10 113.07 66.44 

   1995-2003    

Closed forest 48.73 59.56 108.28 10.83* 97.45 90.00 

Open forest 30.72 35.91 66.63 5.20* 61.44 92.21 

Small scale agriculture 111.11 37.21 148.32 73.90 74.42 50.18 

mechanized agriculture 2.53 1.03 3.56 1.49 2.07 58.05 

Rangeland 63.77 123.94 187.71 60.17* 127.54 67.94 

Tea 1.67 0.86 2.53 0.80 1.73 68.21 

Overall Change 258.51 258.51 258.51 76.20 182.32 70.53 

   2003-2014    

Closed forest 7.21 42.01 49.22 34.80* 14.43 29.31 

Open forest 16.32 17.89 34.22 1.57* 32.65 95.42 

Small scale agriculture 49.67 43.04 92.72 6.63 86.08 92.85 

mechanized agriculture 4.24 0.96 5.20 3.28 1.92 36.94 

Rangeland 62.34 35.90 98.24 26.44 71.80 73.09 

Tea 1.09 1.07 2.15 0.02 2.14 99.25 

Overall Change 140.88 140.88 140.88 36.37 104.51 74.19 
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The last column (Table 3.5) shows that swap change accounted for more than 50% of the overall 

land use/cover change in all the intervals.  Individual land use/cover categories also show that 

swap change accounted for more than half of the total change in most land use/cover categories 

(Table 3.5). This shows that land use change in the Mara is very dynamic which is accompanied 

by high rate of relocation of land use categories. The high percentage of swap change indicates 

that overall change is more than double the net changes, and shows the importance of detailed 

analysis of land change beyond the net change (Yuan et al., 2016). For deforestation as an 

example, analysis of net changes alone would indicate a loss rate of 10.83 km2/year for closed 

forest for the 1995-2003 interval. This however may not give the entire picture because this only 

represents 10% of the total change of closed forest during this interval. The closed forest actually 

lost at a higher rate of about 60 km2/year but it also gained (probably by regrowth in formerly 

opened up areas) by 49 km2/year. This shows that 90% of the overall change (swap change) 

would have been concealed and the actual rate of deforestation (particularly of indigenous forest) 

may be underestimated. 

The interval level analysis results (Figure 3.3) shows that the annual rate of land use change was 

fastest during the 1993-2003 period where there was change of land use in 21% of the study area. 

The annual change intensity (2.6% of the landscape) for this eight-year period is larger than the 

uniform intensity (1.91% of the landscape).  For this interval, the commission of change error in 

6% of the study area with an intensity of commission of change error of 27% of the observed 

change during the 1995-2003 interval gives strong evidence that the annual rate of change was 

indeed faster than uniform change (Figure 3.3); implying that the change was not necessarily 

solely due to map errors. Land use change was slowest during the last interval (2003-2014). The 

rates of loss of closed forest, loss of rangeland, gain of closed forest and gain of small scale 

agriculture were also highest (peak) during the 1995-2003 interval (Table 3.5). From their trends, 

it implies that deforestation, loss of rangelands and expansion of agriculture are the main cause 

of relatively fast land use change during the 1995-2003 interval. 
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Figure 3.3: Intensity analysis for interval-level change. 

 

The category level analysis also shows that loss of forest (closed and open) was active between 

1995 and 2003 i.e. the intensity of forest loss was higher than the uniform intensity (2.64%) 

(Table 3.6); the intensities of forest loss (as a percent of respective land category in 1995) were 

6.1% and 11.7 % for closed forest and open forest respectively. This means that forest 

experienced change more intensively than if the overall change were to be distributed uniformly 

across the landscape. The high percentage values in the error columns of Table 3.6 provide 

stronger evidence against the uniform hypothesis. This pattern (of active forest loss) was 

stationary across all the intervals (Table 3.6) which imply that forest was actively loosing 

throughout the study period (1976-2014). The values presented in Table 3.6 could be presented 

in graphical form as in Figure 3.4 which clearly shows forest (closed and open), and agriculture 

(mechanized and small scale) as active categories while rangeland is a dormant category when 

considering category losses during 1985-1995 period. Rangeland was a dormant category during 

the entire study period (Table 3.6; Figure 3.4) which can be attributed to its large size relative to 

the other land use categories. Although it loses at a higher annual rate than the other land use 

categories (e.g. Figure 3.4), its large size lowers the fraction of its size that is lost therefore 

making it dormant when compared to the fractions of other land use categories that underwent 

change. In other words, rangeland lost less intensively than the other land use categories. 
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Presence of a large dormant category generally causes the intensities of other categories to be 

greater than they would be in its absence mainly because of its possible large persistence 

(Pontius et al., 2013). Change in rangeland, however, plays a major role in the total land change 

in the Mara River Basin and cannot be ignored or excluded. For example, during the 1995-2003 

interval, the gross loss of rangeland consisted 48% of overall change and its (rangeland) gross 

gain constituted 25% of the overall change (Table 3.5). In terms of the total size of the landscape, 

loss and gain of rangeland occurred in about 10% and 5% of the study area respectively, 

compared with the overall change which occurred in 21% of the study area (Figure 3.3). 

Furthermore, one of the specific objectives of this study was to assess the extent and nature of 

expansion of mechanized agriculture in the rangeland (discussed under transition level results) 

and therefore excluding the rangeland would miss these important transitions. The gain in small 

scale agriculture was active (more intensive than uniform change e.g. Figure 3.4) and stationary 

(active in all the intervals) (Table 3.6) which shows small scale agriculture has been continually 

intensively gaining throughout the study period. The results from transition level analysis give 

more information on transition between land categories. We particularly focus on transitions 

among forest, agriculture and rangeland to get more details on deforestation and expansion of 

agriculture in the study area. 

 

 

Figure 3.4: Gross loss by categories for the 1985-1995 interval.  
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Table 3.6: Intensities of gains and losses 

 1976-1985 1985-1995 1995-2003 2003-2014 

a) Category gains 

 UI= 2.05 UI= 1.74 UI = 2.64 UI = 1.44 

 GI EI GI EI GI EI GI EI 

Closed forest 4.63 68.3 3.66 63.59 5.49 65.85 1.4 (3.12) 

Open forest 4.1 61.34 6.4 88.18 11.59 97.89 6.2 91.26 

Small scale agric 6.69 85.03 6.19 87.07 5.67 67.79 2.35 46.04 

Mechanized agric 11.11 100 9.3 98.41 9.41 91.22 6.81 93.7 

Rangeland  1.07 (52.91) 0.58 (70.94) 0.94 (69.72) 0.86 (44.6) 

Tea   10 100 10.87 95.99 6.35 92.62 

b) Category losses 

 UI=2.05 UI= 1.74 UI = 2.64 UI = 1.44 

 LI EI LI EI LI EI LI EI 

Closed forest 2.71 29.77 4.4 73.26 6.11 72.06 4.68 82.28 

Open forest 8.11 91.62 8.11 95.09 11.71 98.2 6.38 92.02 

Small scale agric 5.42 76.22 3.29 57.14 2.72 3.81 2.11 37.72 

Mechanized agric 11.11 100 9.26 98.31 6.94 78.54 3.67 72.2 

Rangeland  0.62 (73.82) 0.85 (55.81) 1.7 (41.16) 0.51 (68.1) 

Tea     9.69 92.25 6.5 92.51 

Values in bold indicate dormant land categories where observed intensity is larger than uniform intensity (mostly rangelands). 
UI is uniform intensity (% of size of corresponding category at the beginning of the interval), GI is gain intensity (% of size of 
corresponding category at the end of interval) and LI is loss intensity (% of size of corresponding category at the beginning of 
interval) 

3.3.2  Deforestation in the study area 
Loss of closed forest was found to have peaked during the 1995-2003 period (Table 3.6). The 

results from transition level analysis show that closed forest lost more intensively to the open 

forest than any other land use category during the 1995-2003 interval (Figure 3.5; Table 3.7a). 

The annual intensity of loss from closed forest to open forest is 3.5% of size of closed forest at 

2003, compared to uniform intensity of 0.67% (of the landscape that was not closed forest at 

2003). In other words, when closed forest lost, it lost to open forest at a rate over 5 times more 

than the rate it would be expected to lose randomly (i.e. uniformly to all other land use 

categories). This is a systematic transition which indicates that when closed forest lost, it tended 

to lose more intensively to open forest. There is a possibility that a land use category loses 

systematically to other categories but experiences a random gain from these categories at the 

same time, simply because factors that promote gain of land use/cover change may be quite 

different from those that lead to losses (Teixeria et al., 2014; Braimoh, 2006). Therefore, to 
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arrive at a conclusive evidence of a dominant signal of landscape transformation,  a given land 

use category (X) must systematically lose to a second land use category (Y), and the second land 

use category (Y) must systematically gain from the first land use category (X) simultaneously 

(Braimoh 2006; Alo and Pontius, 2004, 2008). For our case, the transition to open forest also 

indicates that open forest intensively targeted closed forest for takeover during this interval 

(Figure 3.6; Table 3.7c). Therefore, closed forest lost systematically to open forest while at the 

same time open forest gained systematically from closed forest, which shows a true and strong 

systematic transition. Systematic transitions show dominant signals of landscape transformation 

and therefore this transition from closed forest to open forest is a prominent process of land use 

change (deforestation), as opposed to a random process.  The observed systematic process of 

closed forest transition was stable across all the other intervals (Table 3.7a and 3.7c). This 

suggests that the closed forest has been consistently and systematically losing to open forest 

throughout the study period. The error intensity (EI) columns (Table 3.7) present a strong 

evidence that, indeed, closed forest lost more intensively to open forest i.e. the observed 

deviations from uniform intensity is not largely due to map errors. This is because if map errors 

could account for deviations between observed intensities and the uniform intensity, then the 

evidence for deviations from uniform intensity is weak (Enaruvbe and Pontius, 2015). On the 

other hand, the evidence for deviations from uniform intensity is strong if the errors in the data 

cannot account for deviations between observed intensities and corresponding uniform intensity. 

In our results, for example, the commission error intensity for transition from closed forest to 

open forest during the 1995-2003 interval is 85.4% of transition from closed to open forest; this 

high percentage of error intensity indicates a strong evidence against the null hypothesis that 

closed forest lost uniformly to all the other land use categories. A possible question would be: 

how large should the deviation (from uniform) be to qualify as real (real change)? First, the 

method by Aldwaik and Pontius (2013) calculates how much hypothetical error in maps could 

account for deviations. If data were perfectly correct, then error would not account for deviations 

(because there would be no map errors). Therefore, if actual error is smaller than the 

corresponding hypothetical error, then the deviation qualifies as real (Enaruvbe and Pontius, 

2015; Pontius et al., 2013). Since actual error is not precisely known, the method does not 

provide a threshold of deviation for real change. It however implies that the more the 

hypothetical error, the more the likelihood that the deviation is real. Results of transition from 
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open forest (Table 3.7b), shows that loss of open forest targeted small scale agriculture (open 

forest lost to small scale agriculture) across all the intervals. Transition to small scale agriculture 

also targeted open forest (small scale agriculture gained from open forest) across all the intervals 

also (Table 3.7d). This also indicates a stationary (similar across all intervals) systematic 

transition from open forest to small scale agriculture. 

These systematic processes of deforestation can be attributed to encroachment, excisions and 

illegal extraction of wood products from the forests especially the Mau forest at the headwaters 

of the Mara River Basin (GoK, 2009). There has been continuous and progressive encroachment 

into the Mau forest leading to massive degradation. In the larger Mau forest, for example, over a 

period of 15 years (1993-2009), a total of 28,500 ha (19 Km2/year) of forest was lost through 

encroachment (GoK, 2009).  There have also been a series of excisions (degazettement) of forest 

reserves in the watershed (e.g. Mau forest and Chepalungu forest) since Kenya’s independence 

in 1963 (GoK, 2009; Matiru 1999). The excisions of the forest have also been accelerating 

encroachment in the remaining forest reserves (GoK, 2009). There was a large scale excision of 

Mau forest in 2001 which caused much public outcry (Nkako et al., 2005; Akotsi and Gachaja, 

2004; GoK, 2009; NEMA, 2013). The excisions affected many parts of the larger Mau forest 

complex including the Eastern and South West Mau forest blocks which are partly located in the 

MRB (NEMA, 2013). An aerial survey conducted jointly by United Nations Environment 

Programme (UNEP) and Government of Kenya (UNEP and GoK, 2008) found that about 35, 

301 ha (353 km2) and 22, 797 ha (228km2) were excised in Eastern Mau and South Western Mau 

forest blocks respectively in 2001. This excision of 2001 coincides with the period of fastest land 

use change observed in our study (i.e. 1995-2003 interval) and may therefore have partly 

contributed to the fast change in land use observed between 1995 and 2003. The 2001 Mau forest 

excision could also explain the high loss of closed forest observed in the 1995-2003 interval 

compared to other intervals (Table 3.7). The Maasai Mau forest block also underwent intensive 

deforestation during the same period particularly the western side that is located in the Mara 

River Basin (Nkako et al., 2005). A study by Nkako et al. (2005) found that it (Maasai Mau 

forest block) lost over 6,300 ha between 2000 and 2005 inside the forest reserve. 

Political interference, weak law enforcement, limited management capacities of mandated 

institutions, and inadequate governance systems are some of the factors that may have led to the 
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large scale and consistent deforestation through encroachment and forest excision (GoK, 2009; 

Were et al., 2013). A study by Petursson et al. (2013) in Kenya and Uganda found that complex 

political and institutional factors as the main driving forces behind deforestation. Some of the 

excisions in the Mau forest were politically ill-motivated and poorly planned leading to irregular 

allocations (GoK, 2009).  

The results (Table 3.7) show a consistent trend of deforestation from closed forest to open forest 

and then from open forest to small scale agriculture, with open forest being a transition land 

cover in a deforestation process from closed forest to agriculture. This pathway of deforestation 

is very important for conservation because the deforestation observed in the Mau forest is mainly 

carried out illegally by encroaching into the forest reserve. It indicates that the closed forests are 

first opened (possibly for timber and charcoal) and then the opened patches are cultivated; 

eventually, the remaining trees are cleared and converted to agricultural land. As a transition land 

cover, the results show open forest as a very dynamic land cover particularly in the last two 

intervals (Table 3.7). The ratio (percentage) of swap change to the overall change (Table 3.5) has 

been increasing steadily over the entire study period; the swap change was about 95% of the total 

change in open forest during the last interval (2003-2014). This implies that as open forest was 

gaining from closed forest through encroachments/excisions, it was equally losing to other land 

use categories (e.g. small scale agriculture and tea) in other parts of the watershed that were 

opened earlier on. This shows the importance of open forest as a transitional land use in the 

deforestation process. Our findings/observations are supported by Olang and Kundu (2011) who 

observed widespread charcoal burning in the Mau forest followed by conversion of deforested 

areas into subsistence agriculture. An aerial survey by Nkako et al. (2005) also found widespread 

charcoal burning in freshly opened areas of the Maasai Mau forest block especially on the 

western side of the forest block which is located in the MRB. Were et al. (2013) also noted that 

illegal logging and charcoal burning of indigenous forests precedes extensive cultivation in 

former forest land in the Eastern block of the Mau forest. There is a possibility that the people 

opening up the forest for timber or charcoal are different from the ones who later cultivate and 

settle in the former forest land. The people opening up the forest may be timber and charcoal 

traders operating far from the forest but who have the resources, connections (with authorities 

and local people), and networks to facilitate harvesting (including deep in the thick forest), 

transport and sale of these products (Standing and Gachanja, 2014; Cavanagh et al., 2015). These 
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traders may have no intention or interest in the forest land, but their actions lead to opening-up of 

the forest thus giving the local community easier access. This makes it easier for the local 

community to start cultivating on the cleared patches of the forest and eventually clearing the 

remaining trees as they expand ‘their’ farms. Nkako et al. (2005), for example, observed that 

many destructive activities in the Mau forest were in close proximity of the forest tracks. This 

implies that one possible way of combating deforestation is to stop illegal logging for timber and 

charcoal. In cases where some patches of the closed forest have already been opened-up, 

measures should be put in place to prevent cultivation of these areas by the local communities. 

 

Figure 3.5: Transition from the closed forest  (1995-2003 interval).  

 

 

Figure 3.6: Transition to open forest (1995-2003 interval).  
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Table 3.7: Land use transitions between categories (focus: deforestation) 

 1976-1985 1985-1995 1995-2003 2003-2014 

a) Transition from closed forest (TI values as % of respective categories at the end of respective intervals) 

 UI=0.22 UI= 0.43 UI = 0.67 UI = 0.45 

(gaining categories) TI EI TI EI TI EI TI EI 

Open forest 1.72 89.17 0.94 56.43 3.48 85.35 2.35 85.02 

Small scale agric 0.67 69.00 1.1 63.23 0.67 (0.30) 0.64 30.87 

Mechanized agric 0.15 (31.96) 0.03 (93.86) 0.19 (72.56) 0.32 (29.84) 

Rangeland  0.06 (73.17) 0.31 (28.91) 0.55 (19.26) 0.3 (34.33) 

Tea   2.33 85.06 0.7 4.32 0.4 (12.13) 

b) Transition from open forest (TI values as % of respective categories at the end of respective intervals) 

 UI=1.11 UI= 0.46 UI = 0.38 UI = 0.19 

(gaining categories) TI EI TI EI TI EI TI EI 

Closed forest 2.66 64.75 0.94 53.41 0.11 (71.48) 0.64 71.97 

Small scale agric 3.14 71.83 2.69 86.87 1.2 70.81 0.37 50.65 

Mechanized agric 4.33 (82.62) 0.33 (30.38) 0.31 (18.54) 0.15 (21.76) 

Rangeland  0.70 (39.80) 0.02 (96.63) 0.15 (60.08) 0.09 (53.84) 

Tea   3.36 90.44 5.68 96.28 1.65 90.52 

c) Transition to open forest (TI values as % of respective categories at the start of respective intervals) 

 UI= 0.26 UI= 0.20 UI = 0.32 UI = 0.17 

(losing categories) TI EI TI EI TI EI TI EI 

Closed forest 1.32 82.11 0.3 35.53 0.95 67.56 0.69 76.59 

Small scale agric 1.4 83.29 0.95 80.83 0.88 64.87 0.27 38.06 

Mechanized agric 0.0 (100) 1.24 85.85 0.01 (96.13) 0.14 (18.87) 

Rangeland  0.06 (78.24) 0.12 (41.95) 0.13 (60.94) 0.06 (63.71) 

Tea     1.21 75.21 0.61 73.09 

d) Transition to small scale agriculture (TI values as % of respective categories at the start of respective intervals) 

 UI= 0.59 UI= 0.89 UI = 1.32 UI = 0.64 

(losing categories) TI EI TI EI TI EI TI EI 

Closed forest 0.76 23.9 1.61 49.05 1.34 1.88 1.51 61.92 

Open forest 2 74.53 6.48 94.69 7.68 92.61 2.81 83.06 

Mechanized agric 0 (100) 1.28 33.17 3.87 73.7 1.77 68.6 

Rangeland  0.32 (46.51 0.43 (54.04) 1.01 (25.48) 0.39 (41.35) 

Tea     3.93 74.3 4.59 92.56 

UI = Uniform intensity (% of the size of other categories, excluding the concerned category); TI = Transition Intensity; EI = 
Error intensity (% of transition). EI values in brackets are Omission intensity; EI values without brackets are Commission 
Intensities. (Bold TI values indicate that the land use category is targetted (for gain or loss) by the land use change involved, 
non-bold TI values indicate the land use category is avoided by the concerned change). 
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3.3.3  Forest recovery 
There is a systematic targeting transition from open forest to closed forest during the last interval 

(2003-2014) (Figures 3.7 and 3.8). This may be a signal of forest recovery, albeit at a slow rate 

of about 3km2/year.  This indicates that the recent government effort of evicting people from the 

forest reserve (NEMA, 2013; Boone, 2012; Nkako et al., 2005) may be working. The slow rate 

of recovery may be as a result of the fact that the eviction efforts have not been fully successful 

in some parts where some evicted communities still find their way back to the forest reserve. The 

slow rate of recovery may also be caused by the fact that the government is using natural 

regeneration method of forest recovery which may be quite slow (Mullah et al., 2012).  

 

Figure 3.7: Transition from open forest. 

 

Figure 3.8: Transition to closed forest 



66 
 

3.3.4  Expansion of mechanized agriculture in the rangeland 
The middle catchment is mainly occupied by rangelands which is the largest land use category in 

the basin. Results show that the rangelands have been continuously targeted for expansion of 

mechanized agriculture (Table 3.8). The conversion was however more intensive in the middle 

two intervals (1985-1995 and 1995-2003) where the transition from rangelands systematically 

targeted mechanized agriculture i.e. loss of rangeland most intensively targeted gain of  

mechanized agriculture (Table 3.8a) and gain of mechanized agriculture targeted loss of 

rangelands (Table 3.8b). This systematic transition which is stationary in the two intervals shows 

a strong signal of intensive expansion of mechanized agriculture in the rangeland. It is also worth 

noting that the annual rate of loss of rangeland was fastest during this period i.e. 1995-2003 

interval (Table 3.5), which indicates that other than deforestation and expansion of small scale 

agriculture, conversion of rangeland to mechanized agriculture also contributed to relatively fast 

change observed between 1995 and 2003.  

This systematic process of intensive expansion of mechanized agriculture into rangelands during 

this period (1985-2003) can be attributed to change of land tenure of the pastoral land 

surrounding the Maasai Mara National Reserve. This land is mainly owned by the Maasai 

community who are pastoralists. The Maasai community has been historically using this land (all 

the way from Mau forest down to Tanzania) communally for grazing even before 20th century 

(Waller, 1990). During the colonial period, the British colonial government created ‘Trustlands’ 

through the Trust Land Act, of 1939 (Wayumba, 2004). Trustland is a communal land tenure 

system where the land is held in trust by the county councils on behalf of the residents of the 

county councils jurisdiction (Wayumba, 2004; Nkako et al., 2005).  In order to organize and 

develop livestock production in pastoral lands, the colonial government established large 

extended family (clan) grazing schemes aimed at solving the problem of overstocking and 

overgrazing in the Northern and Southern Maasai reserves, created previously to contain the 

movement of the Maasai (Ng’ethe, 1992; Hughes, 2007). It is upon this concept of grazing 

schemes that the Government of Kenya conceived the idea of ‘group ranches’ land tenure model 

after independence in 1963 (Ng’ethe, 1992; ole Sandera, 1986), which was embedded in law by 

Land (group representative) Act of 1968 (GoK, 1968). In the areas where group ranches were 

created, the existing ‘Trustland’ land tenure system was changed to the group ranch land tenure 

system (Davis, 1970). The group ranches land tenure system is a communal land ownership 
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system where land is held in trust by a few selected people (3 to 10) on behalf of the members of 

the group ranch (Wanyumba, 2004). The membership of the groups was based on kinship i.e. 

members of the tribe, clan, family or any other group of people who owned communal land 

recognized under customary law (GoK, 1968; Kimani and Pickard, 1998). 

From late 1970s and early 1980s, the Maasai were agitating for subdivision of group ranches 

mainly due to inefficient management by the elected committee members as well as the pressure 

to include, into group membership, other youthful members who were young during group 

formations and had come of age (Kimani and Pickard 1998; Thompson and Homewood, 2002). 

Consistent push by the Maasai prompted the government to accept the subdivision of the land in 

1983.  Members of the subdivided group ranch received their share of parcel of land with private 

title deed (Kimani and Pickard 1998; Wayumba, 2004). This subdivision and privatization of the 

initially communal land to private land has since brought about major changes in land use in the 

area; mainly the expansion of mechanized agriculture (Thompson and Homewood, 2002). 

It is therefore obvious that the intensive expansion of the large scale mechanized agriculture in 

the rangelands observed during the two intervals (1985-1995 and 1995-2003) coincided with the 

subdivision and privatization of the group ranches. Lemek group ranch (formed in 1969), for 

example, was sub-divided between 1993 and 1999; Maji Moto was subdivided in 1999; Koiyaki 

was subdivided by 2003, while Ol Kinyei finished their subdivision by 2004/2005 (Snider, 2012; 

Thompson et al., 2009; Zeppel, 2006; Thompson and Homewood, 2002).  

Narok is a high potential wheat growing area (Jaetzold and Smith, 1983). Farmers, particularly 

from agricultural communities in Kenya, lease big tracks of land for large scale wheat farming. 

Even prior to subdivision of the group ranches, these commercial farming entrepreneurs 

negotiated concessions with group ranch committee members on behalf of the other members. 

However, mismanagement of income from the leases also partly contributed to members 

agitating for subdivision of the group ranches (Thompson and Homewood, 2002). After 

subdivision, the individual members were able to directly lease out their land for commercial 

farming. This caused the intensive expansion of mechanized agriculture as observed in our study. 

By 1995, for example, about 24% of the 495km2 Lemek group ranch was converted into 

mechanized agriculture (Thompson and Homewood, 2002). During the same period, Thompson 

and Homewood (2002) reported expansion of small scale farming in the rangeland by the Maasai 
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but mainly for subsistence. The study by Thompson and Homewood (2002) estimated that about 

53% of the households in the former group ranches were practicing small scale agriculture 

outside their homesteads. The Maasai being pastoralists, only small areas (less than 2 acres) were 

used for cultivation surrounded by land used for grazing. 

 

Table 3.8: Land use transitions between categories (Focus: expansion of agriculture) 

 1976-1985 1985-1995 1995-2003 2003-2014 

a) Transition from rangelands  (TI values as % of respective categories at the end of respective intervals) 

 UI= 1.96 UI= 2.22 UI = 4.14 UI = 1.42 

(gaining categories) TI EI TI EI TI EI TI EI 

Closed forest 1.78 (10.82) 2.62 19.72 4.37 7.56 0.53 (66.53) 

Open forest 0.77 (65.32) 2.93 31.06 3.53 (20.61) 1.67 17.68 

Small scale agric 2.88 38.82 2.39 9.01 3.75 (13.45) 1.28 (11.91) 

Mechanized agric 6.31 83.71 8.11 93.35 7.98 71.91 2.7 56.1 

Tea   3.26 41.03 0.79 (86.40) 0.32 (80.1) 

b) Transition to mechanized agriculture (TI values as % of respective categories at the start of respective intervals) 

 UI= 0.02 UI= 0.01 UI = 0.026 UI = 0.04 

(losing categories) TI EI TI EI TI EI TI EI 

Closed forest 0 (81.62) 0 (96.72) 0.01 (79.68) 0.02 (48.61) 

Open forest 0.05 66.91 0.01 (36.73) 0.03 4.41 0.03 (24.59) 

Small scale agric 0.01 (54.79) 0.02 15.68 0.02 (29.20) 0.11 61.07 

Rangeland 0.01 (22.72) 0.02 15.19 0.03 12.15 0.02 (44.62) 

Tea     0 (100) 0.03 (22.12) 

UI = Uniform intensity (%of the size of other categories, excluding the concerned category)); TI = Transition Intensity; EI = 
Error intensity (% of transition). EI values in brackets are Omission intensity; EI values without brackets are Commission 
Intensities 

 

3.3.5  Effect of wildlife associations and conservancies 
During the last interval, expansion of mechanized farming has avoided the rangelands and 

targeted small scale agriculture (Figures 3.9 and 3.10) in a systematic transition. This indicates a 

shift of expansion of mechanized farming from rangelands to land under small scale agriculture 

near the Maasai Mara National Reserve. Norton-Griffiths et al. (2008) observed a shift from 

mechanized farming predominantly on large plots leased to large scale contractors prior to 2004 

to an increased mechanized farming based on smallholder enterprises, often farmed by Maasai 

owners themselves. Similar observations were made by Thompson et al. (2009) who reported 

that Maasai farmers were increasingly managing medium sizes mechanized cultivation plots 
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using tractors. This may have been as a result of formation of wildlife associations and 

conservancies in recent years. The group ranches surrounding the Maasai Mara National Reserve 

were (and still are) used as wildlife dispersal areas. After subdivision of the group ranches, tour 

operators and hoteliers made arrangements with individual landowners around the Masaai Mara 

National Reserve where landowners would stop leasing out their land for cultivation and instead 

use it as wildlife dispersal areas. The landowners would in turn get some revenue from the tour 

operators who took tourists for game drive as well as hoteliers who set up camps for tourists. As 

a result, Maasai farmers themselves aggregated the small farms plots they were using for 

subsistence farming for mechanized (medium-scale) cultivation and left the other land for 

wildlife dispersal. For example, some members of the Koiyaki and Lemek group ranches came 

together and formed a community based conservation project established in 2001 (Manyara and 

Jones, 2007). The Koiyaki-Lemek conservation Trust charged game viewing fees and had 

contract with 25 tour operators that leased their campsites on Maasailand (Zeppel, 2006).  

In the last decade, some Maasai land owners came up together and started wildlife conservancies 

on their land outside the Maasai Mara National Reserve (Sørlie, 2008). In this new arrangement, 

the private land owners adjacent to the MMNR pool their land together to create a big game 

viewing area viable as a conservancy and then broker lease agreements with tour operators under 

Payment for Ecosystem Services (PES) model (Osano et al., 2013). The lease agreements range 

between 5 to 15 years (Homewood et al., 2012). In the conservancies, the landowner who join 

the PES schemes agree to move out and  are not allowed to sell their land, construct homesteads, 

cultivate, fence or graze their animals (Homewood et al., 2012). Therefore, these wildlife 

conservation efforts in the Mara may have seen the shift of mechanized cultivation from 

targeting rangelands to the areas that were already under small scale cultivation in the rangeland.  
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Figure 3.9: Transition to mechanized agriculture  (2003-2014).  

 

Figure 3.10: Transition from small scale agriculture  (2003-2014 interval).  

 

3.3.6  Impact of land use change 
The observed land use changes in the Mara River basin, mainly deforestation and expansion of 

agriculture both in the formerly forested areas of the Mau Forest Complex and in the rangelands, 

are bound to have some effects on the watersheds capacity to provide ecosystem services. Some 

studies have found that deforestation and expansion of agriculture has affected the hydrology of 

the watershed (Mati et al., 2008; Mwangi et al., 2016b; Kiragu, 2009). Mati et al. (2008) found 

that land use change between 1973 and 2000, had increased the peak flow of Mara River by 7%.  

Mwangi et al. (2016b) estimated that land use change in the last 50 years contributed to 97% of 

the observed increase in mean streamflow of Nyangores River (a headwater tributary of the Mara 
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River). Kiragu (2009) observed increased sedimentation of the Mara River which he attributed to 

deforestation and intensive agriculture currently practiced in the watershed. The increase in mean 

streamflow observed by Mwangi et al. (2016b) was attributed to reduced water use by vegetation 

(transpiration) following deforestation. Trees are generally known to consume (transpire) more 

water than most vegetation and therefore deforestation reduces water removal by trees from soil 

and groundwater. The excess groundwater in shallow aquifers is availed as baseflow component 

of streamflow. Deforestation and intensification of agriculture are likely to cause increase in 

surface runoff due to degradation of the watershed which reduces its capacity to absorb rainwater 

(reduced infiltration) (Recha et al., 2012). This may manifest as increased peak flows as 

observed by Mati et al. (2008) in the Mara River Basin. Increased surface runoff, especially on 

agricultural land, accelerates soil erosion and subsequent sedimentation in rivers, as observed by 

Kiragu (2009) in the case of MRB. 

Ogutu et al. (2009) attributed the decline in some wild animal species (e.g. giraffe, waterbuck 

and impala) to land use change in the pastoral ranches bordering the Maasai Mara National 

Reserve, mainly caused by progressive habitat deterioration. Mau forest has a rich biodiversity of 

plants (including indigenous trees), birds and wild animals (Kinyanjui et al., 2014; GoK, 2009). 

However, deforestation is destroying critical habitats for some species that are of conservation 

significance such as Cisticola Aberdare bird, yellow backed and Blue Duikers, and Giant forest 

hog (GoK, 2009; Nkako et al., 2005; Muiruri and Maundu 2010; BirdLife International 2016). 

Mau forest has also been a home to Ogiek (Dorobo) people who are a hunter-gather community 

traditionally occupying the moist montane forest areas in Kenya, especially along the Mau 

escarpment (Klopp and Sang, 2011; GoK, 2009). Deforestation of the Mau forest and occupation 

by agricultural communities has resulted in ethnic clashes in the area.  

It is therefore obvious that the observed land use change in the Mara River Basin has affected the 

watershed’s capacity to provide some ecosystem services (e.g. good quality water, good habitat 

for some wild animals and people). It is important therefore that the patterns, trends and 

dominant processes of land use change (deforestation and expansion of agriculture) observed in 

this study be used to develop strategies to arrest further deforestation of the natural forest and 

sustainably control expansion of agriculture.  
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3.4  Conclusions 
This study uses intensity analysis approach to examine the patterns, dynamics and processes of 

land use change within Mara River basin in East Africa in four consecutive time intervals 

between 1976 and 2014. We mainly focused on transitions among forest, agriculture and 

rangelands to reveal more details on deforestation and expansion of agriculture in the basin. The 

overall land use/cover change was fastest during the 1995-2003 interval and have slowed down 

during the last interval (2003-2014). Swap changes accounted for more than 50% of the total 

change in the intervals, which indicates that the land use/cover change is very dynamic i.e. 

accompanied with high relocation of land use categories within the watershed. 

A systematic transition between loss of closed forest and gain of open forest was observed (i.e. 

gain open forest intensively targeted closed forest for takeover). This transition was stationary 

over the entire study period (same across all the intervals). The stationary systematic transition 

implies that loss of closed forest to open forest is a dominant (prominent) land use change within 

the basin. A stationary systematic transition between loss of open forest and gain in small scale 

agriculture was also observed. This implies that open forest has consistently been losing to small 

scale agriculture throughout the entire study period, which is another dominant land use change 

in the watershed. We attributed the observed deforestation to continuous encroachment and a 

series of excisions of the forest reserves particularly the Mau forest complex at the headwaters of 

the Mara River. The large scale excision of 2001 partly contributed to land use/cover change 

being fastest during the 1995-2003 interval. These two systematic transitions (i.e. from closed 

forest to open forest and from open forest to small scale agriculture) also show a trend (pathway) 

of deforestation from closed forest to small scale agriculture, with open forest as a transitional 

land cover. This trend implies that closed forests are first opened-up (probably for timber and 

charcoal) and then the opened patches are cultivated. Eventually, remaining trees are removed 

(logged) as cultivation expands into the open forest. During the last interval (2003-2014) a 

systematic transition between loss of open forest and gain of closed forest was observed, which 

indicate that recent government effort to evict people illegally occupying the forest may be 

working, albeit at a slow rate. Further studies are required to investigate the whole process of 

encroachment into the forest reserves e.g. who (locals or outsiders) and for what purpose (e.g. 

timber or charcoal) is the closed forest opened up?; how long it takes for cultivation to start in 
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the opened up forest?; what are the reasons behind some parts of opened forest being cultivated 

and settled into while others experiences regrowth? 

Another systematic transition was observed between loss of rangeland and gain of mechanized 

agriculture during the two middle intervals (1985-1995 and 1995-2003). This implies than 

rangeland was intensively losing to mechanized agriculture between 1985 and 2003. This was 

attributed to change of land tenure (from communal to private) especially in the rangeland. Most 

of group ranches (under communal land tenure) in the area were subdivided to members during 

this period which may have accelerated leasing of land to mechanized large scale farmers. The 

fastest interval of overall land use change (1995-2003) also fall in this period (1985-2003) which 

implies that conversion of rangeland to agriculture also contributed to fast change in land 

use/cover in this interval, in addition to deforestation. Between 2003 and 2014, expansion of 

mechanized agriculture has avoided gaining from rangelands to systematically targeting gaining 

from small scale agriculture. This implies small plots used for smallholder agriculture in the 

rangeland are coalescing to bigger plots for mechanized cultivation. This was attributed to recent 

establishment of wildlife associations and conservancies where landowners make agreement with 

tour operators and hoteliers to stop leasing their land for cultivation and use it as wildlife 

dispersal areas, with some monetary incentives in return. 

Further studies on the possible driving forces of deforestation and expansion of agriculture 

identified in this study may be required for development of effective management strategies. It 

may be important, for example, to determine the influence of political patronage and forest 

management institutions on excisions forest reserves and how these excisions impact further 

encroachment of the forest reserves. It may also be important to investigate the influence of 

political landscape and flow of income from wildlife conservation (from both Maasai Mara 

National Reserve and from wildlife associations and conservancies) affect conversion of 

rangelands to agriculture and vice versa. 
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4 Chapter four: Relative contribution of land use change and climate 
variability on discharge of upper Mara River, Kenya 

 

Publication (this chapter has been published in Journal of Hydrology: Regional studies) 

Mwangi HM, Julich S, Patil SD, McDonald MA, Feger KH. 2016. Relative contribution of land 
use change and climate variability on discharge of Upper Mara River, Kenya. Journal of 
Hydrology: Regional studies 5: 244-260. 

Abstract 

Study Region  

Nyangores River watershed, headwater catchment of Mara River basin in Kenya 

Study Focus 

Climate variability and human activities are the main drivers of change of watershed hydrology. 

The contribution of climate variability and land use change to change in streamflow of 

Nyangores River, was investigated. Mann Kendall and sequential Mann Kendall tests were used 

to investigate the presence and breakpoint of a trend in discharge data (1965-2007) respectively. 

The Budyko framework was used to separate the respective contribution of drivers to change in 

discharge. Future response of the watershed to climate change was predicted using the runoff 

sensitivity equation developed. 

New Hydrological Insights for the Region 

There was a significant increasing trend in the discharge with a breakpoint in 1977. Land use 

change was found to be the main driver of change in discharge accounting for 97.5% of the 

change. Climate variability only caused a net increase of the remaining 2.5% of the change; 

which was caused by counter impacts on discharge of increase in rainfall (increased discharge by 

24%) and increase in potential evapotranspiration (decreased discharge by  21.5%). Climate 

change was predicted to cause a moderate 16% and 15% increase in streamflow in the next 20 

and 50 years respectively. Change in discharge was specifically attributed to deforestation at the 

headwaters of the watershed. 
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4.1  Introduction 
Changes in watershed hydrology may have far reaching impacts on a catchment water balance. 

The changes may be observed through change in water input (precipitation), water distribution 

into evapotranspiration and runoff, and in the short term, change in catchment water storage (i.e., 

soil storage and groundwater recharge).  Climate variability and human activities are the main 

drivers of changes in watershed hydrology (Tomer and Shilling, 2009; Ye et al., 2013).  At a 

local scale, change in precipitation may only be caused by changes in climate, while changes in 

streamflow, evapotranspiration and watershed storage may be caused either by climate 

variability, human activities or both. Changes in streamflow (either total water yield or seasonal 

discharge) have a major implication on water resources management and especially water supply 

(Döll and Schmied, 2012; Farley et al., 2011; Charlton and Arnell, 2011). Human activities can 

alter streamflow through changes in land use, reservoir operation and direct abstraction of 

surface water or groundwater (Carpenter et al., 2011; Biemans et al., 2011). In absence of 

reservoirs and inconsiderable water abstractions, land use change and climate variability are the 

main drivers of change in streamflow (Carpenter et al., 2011). Separation of the impacts of the 

drivers is helpful in better understanding of the watershed hydrology as well as in developing 

sound water resources management strategies (DeFries and Eshleman, 2004; Arnell and 

Delaney, 2006). However, separation and quantification of the drivers’ impact is challenging 

(Zhang et al., 2014; Li et al., 2009; Tomer and Shilling, 2009) because of the complex linkage 

between climate, human activities and the individual hydrological processes (Falkenmark and 

Rockström, 2004).  

A number of studies have proposed approaches to separate the impacts of land use change and 

climate variability on streamflow (Li et al., 2012; Wang, 2014). The approaches can be broadly 

categorized as empirically-based and process-based. Proposed empirical methods are based on 

climate elasticity (Schaake, 1990) and test the sensitivity of streamflow to changes in climatic 

factors (Ma et al., 2010). Elasticity-based methods can further be categorized into non-

parametric and water balance based methods (Sun et al., 2014). Non-parametric elasticity-based 

methods are empirical approaches that use linear relationships derived from long-term historical 

data (Schaake, 1990; Sankarasubramanian et al., 2001; Zheng et al., 2009; Ma et al., 2010). Most 

of the water balance-based elasticity methods (Dooge et al., 1999; Arora, 2002; Wang and 

Hejazi, 2011; Roderick and Farquhar, 2011) are based on the concept of the Budyko framework 
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(Budyko, 1974) of catchment water-energy budget (Sun et al., 2014). Process-based methods use 

distributed physically-based hydrological models where separation is done by alternatively 

varying and fixing (holding constant) the meteorological inputs and land use/cover conditions 

(Xu et al., 2014). Process-based methods are more sophisticated, require more data as input and 

have high uncertainty in parameter estimation whereas non-parametric elasticity methods have 

weak or no physical meaning (Xu et al 2014; Wang and Hejazi, 2011). Approaches based on 

catchment water-energy budgets are easier to use and also have better physical background (Sun 

et al 2014; Roderick and Farquhar, 2011).  

In this study, we used the catchment water-energy budget approach to separate the contribution 

of climate variability and land use change on discharge of Nyangores River; the river is a 

tributary of the trans-boundary Mara River in East Africa. Over the watershed of Mara River, 

competing land uses and socio-economic activities in the headwaters have been blamed for 

changes in its hydrological regime (Gereta et al., 2009; Mati et al., 2005, 2008; Dessu and 

Melesse, 2012). There has been significant deforestation and conversion to agriculture in the 

upstream regions of the Mara River basin (Mutie et al., 2006). Other studies have also linked 

observed high level of sediment yield and sedimentation in the Mara River to land degradation 

following deforestation (Kiragu, 2009; Defersha and Melesse, 2012). A land use change analysis 

study by Mati et al. (2008) found that the forest cover of 1973 in the Mara basin progressively 

decreased by 11% and 32% in 1986 and 2000 respectively. For the same periods, open forest 

increased by 73% and 213% respectively based on the 1973 land cover - a clear indication of the 

massive deforestation that was taking place in the area immediately after Kenya’s independence 

in 1963. At independence, almost the entire upstream area of the Mara River basin including the 

Nyangores watershed was covered by dense natural forest and pockets of montane grassland 

(Government of Kenya - GoK, 1969). Cultivation was limited and strictly controlled by the 

colonial government (Kanogo, 1987).  Mati et al. (2008) used the 1973 and 2000 land use maps 

to simulate the effect of land use change on hydrology of the Mara River. They found an increase 

in peak flow during the long rainfall season (March-May) between 1973 and 2000 which they 

attributed to deforestation in the basin. Mango et al. (2011) simulated deforestation in Nyangores 

watershed and likewise reported that further deforestation in the watershed may increase peak 

flows and reduce dry season flows. Based on the findings of these two studies, it can be deduced 

that deforestation (past or future) lead to increase in peak flows in the watershed. Change in 
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streamflow, however, is not only caused by human activities (particularly land use change) but 

also by climate variability. Information on how much of observed change in streamflow is 

separately caused by land use change and climate variability is important for water resources 

management planning including simulation of informed future land use and climate change 

scenarios. Analysis of measured historical streamflow data gives valuable evidence-based 

information of watershed response to past changes in land use and climate variability either 

individually or in combination. Such information is however lacking for the Mara River basin.  

Separation of the contribution from drivers of change in observed streamflow i.e. land use and 

climate variability is important for integrated watershed management in the Mara River basin. 

Herein, we focus on Nyangores watershed, one of the headwater catchments of Mara River basin 

where there has been a major competition between forest conservation and agriculture.  The 

objectives of the study are: (i) to statistically test the presence of a trend in measured streamflow 

data, (ii) to empirically separate hydrological impacts caused by changes in land use and climate 

variability from historical streamflow data, (iii) to further partition the contribution of climate 

variability into that caused by changes in rainfall and potential evapotranspiration respectively, 

and (iv) to predict the future relative contribution of climate change to streamflow. 

 

4.2  Materials and methods 

4.2.1  The study area 
The Mara River has a unique watershed that is characterized by several spatially-varied land 

uses: forest conservation and smallholder agriculture in the headwaters, wildlife conservation, 

pastoralism and large-scale agriculture in the mid-catchment, and mining and smallholder 

agriculture downstream. The watershed, therefore, is a major contributor to the economy of the 

region, especially through the wildlife-based tourism in the two national game reserves the 

watershed hosts (i.e., the Maasai Mara National Reserve and the Serengeti National Reserve). 

The headwater catchments (Nyangores and Amala) are the lifeline of the Mara River especially 

in dry weather season when they contribute more than 50% of streamflow (McClain et al., 2014; 

Dessu et al., 2014). 
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Nyangores River is a tributary of the Mara River which originates from Mau Forest in Kenya, 

flows through the Masaai Mara and Serengeti National Reserves in Kenya and Tanzania 

respectively and finally drains into Lake Victoria (Figure 4.1a). Nyangores watershed covers an 

area of 690 km2 and is located in the upper part of the trans-boundary Mara River basin (Figure 

4.1a). Lying at an altitude range of 1900 – 2970 m above sea level, the watershed main land uses 

are forest (Mau) and (cropland) agriculture.  The main soils are Andosols and Nitisols (World 

Reference Base –Food and Agriculture Organization of the United Nations classification). The 

region receives bimodal rainfall pattern with long rains between March and May, and short rains 

between October and November. The mean annual rainfall is about 1370 mm. 

 

Figure 4.1: (a) Nyagores River watershed; (b) Landsat satellite images showing the forest decline 
in Nyangores watershed. Dark green show the natural forest; light (faded) green and pink show 

cleared forest and cultivated land respectively.  

 

4.2.2  Data 
Daily discharge of River Nyangores recorded over the period 1965-2007 from the gauging 

station (1LA03) at Bomet town was granted for this study by Kenya Water Resources 
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Management Authority.The meteorological data was obtained from Kenya Meteorological 

Department. Daily rainfall data was obtained for Bomet water supply, Tenwek mission hospital, 

Olenguruone District Officer’s office and Baraget forest stations (Table 4.1; Figure 4.1a). 

Monthly average data for temperature (Tmax, Tmin) (Figure 4.3), wind speed, solar radiation and 

relative humidity was obtained for Kericho Hail research station (Figure 4.1a). Potential 

evapotranspiration (PET) (Figure 4.3) was calculated using Food and Agriculture Organization 

of United Nations (FAO) Penman-Monteith method (Allen et al., 1998). Several methods for 

estimation of PET are available in literature, some based on temperature (e.g. Hargreaves and 

Thornthwaite) and others based on radiation (e.g. Priestley-Taylor) (Tegos et al., 2015; Lu et al., 

2005). FAO Penmann-Monteith method is a hybrid method that incorporates all climatic and 

biological factors affecting evapotranspiration. It has been widely applied in range of climatic 

conditions and found to give better estimates of PET compared to other methods (Garcia et al., 

2004; Cai et al., 2007; Gavilán et al., 2006; Jabloun and Sahli, 2008; Ngongondo et al., 2013; 

Tegos et al., 2015). Though it requires more climatic data than most of the other methods, Allen 

et al. (1998) outlined a procedure for estimation of PET using FAO Penman-Monteith equation 

with limited data thus making it applicable in a wide range of conditions (Jabloun and Sahli, 

2008; Garcia et al., 2004). Short gaps in the daily discharge data (ca. 5 days) were filled using 

linear interpolation and inference method using the hydrograph of the adjacent topographically 

similar Amala River watershed (Figure 4.1a) (Rees, 2008); years with long continuous gaps (e.g., 

1993-1995) were excluded from the time series analyses. Missing daily rainfall data was filled 

by arithmetic mean of rainfall recorded for the particular day in the neighbouring stations. 

Average annual areal rainfall for the watershed was estimated by Thiessen polygon method 

(Szcześniak and Piniewski, 2015; Thiessen, 1911). The daily streamflow data was aggregated 

into mean annual discharge and was expressed as depth (mm) using Equation (4.1) so as to 

conform to the units (mm) of rainfall (Figure 4.2) and PET. 

 

𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎 �𝑚𝑚
𝑑𝑑𝑑

� = 𝐷𝐷𝐷𝐷ℎ𝑑𝑎𝑎𝑎 (𝑚3/𝐷)∗(3600∗24)
𝑊𝑑𝑊𝑎𝑎𝐷ℎ𝑎𝑑 𝑑𝑎𝑎𝑑 (𝑚2)∗1000

               (4.1) 
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Table 4.1: Overview of rainfall data 

Station Name station ID From To % 
complete 

Annual 
mean (mm) 

SD* CV* 

Bomet Water Supply 9035265 1967 2009 88 1363 226 0.17 
Olenguruone District officer 
Office 

9035085 1960 2002 83 1520 406 0.27 

Baraget Forest Station 9035241 1961 1998 95 1138 235 0.21 
Tenwek Mission Hospital 9035079 1960 2008 93 1448 172 0.12 
*SD is the standard deviation; CV is the coefficient of variation (SD/Mean) 

 

 

 

Figure 4.2: Annual discharge for Nyangores River  (at Bomet town gauging station) and average 
annual rainfall.  
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Figure 4.3: Monthly temperature (maximum and minimum) and potential evapotranspiration. 

 

4.2.3  Trend analysis and breakpoint test 

4.2.3.1   Mann Kendall test 
The Mann Kendall test (Mann, 1945; Kendall, 1975) was used for trend analysis of the 

streamflow data. The method has been widely used for trend analyses in hydro-climatic studies 

(e.g., Zhang et al., 2015; Ye et al., 2013; Ongoma et al., 2013; Xu et al., 2014; Sun et al., 2014). 

This test is a rank based non-parametric method used for change detection in a time series. It 

accommodates missing values and outliers, and data with skewed distributions (Partal and 

Kahya, 2006; Hirsch and Slack, 1984). However, it has been shown that the results of the 

original version of Mann Kendall method are affected by serial correlations (von Storch, 1995) 

which may increase the probability of detecting trends when they don’t exist and vice versa (Yue 

et al., 2002; Hamed and Rao, 1998). Several modifications of the Mann Kendall method have 

been proposed to limit the influence of autocorrelation in trend analysis of hydro-climatological 

data (e.g. von Storch, 1995; Hamed and Rao 1998; Yue et al., 2002; Yue and Wang, 2004; 

Hamed, 2009). The modifications mainly involve prewhitening (transformation of an 

autocorrelated series into an uncorrelated one before trend test) or modification of variance 

(Hamed, 2009; Yue et al., 2002). Each of these approaches have associated strengths and 
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weaknesses as shown by several studies (e.g. Sang et al., 2014; Aissia et al., 2014; Zhang and 

Zwiers, 2004; Yue and Wang, 2002; Yue et al., 2002; Hamed and Rao, 1998) that have explored 

their robustness in dealing with autocorrelation. In this study, the method proposed by Hamed 

and Rao (1998) was used. Hamed and Rao (1998) modified the variance of the original Mann 

Kendall method based on effective sample size. The results were further verified by the method 

proposed by Yue and Wang (2004) that is also based on effective sample size but computed from 

the sample serial correlation estimated from a detrended series. The slope of the trend was 

estimated using Sen’s method (Sen, 1968). The Hamed and Rao (1998) method (just like other 

versions of Mann Kendall) tests a null hypothesis of no trend in the time series. The time series 

(herein: annual discharge data) is arranged sequentially in order of (the year) measurement. The 

magnitude of the discharge for each year xj (j= 1, 2, … n) is compared with the magnitude of 

discharge of each of the preceding years xk (k = 1, 2, …..j-1), (j > k). The sign (sgn), given by 

Equation (4.2), is used to count the difference between the two values (xj and xk) from the time 

series. 

𝐷𝑎𝑠�𝑥𝑗 − 𝑥𝑘� =  �
1   if 𝑥𝑗 > 𝑥𝑘
0   if 𝑥𝑗 = 𝑥𝑘
−1  if 𝑥𝑗 < 𝑥𝑘

                 (4.2) 

The test statitsic S, which is defined as the total sgn of the whole time series is calculated as: 

 

𝑆 = ∑ ∑ 𝐷𝑎𝑠(𝑥𝑗 − 𝑥𝑘)𝑛
𝑗=𝑘+1

𝑛−1
𝑘=1          (4.3) 

 

For large series (number of observations, n ≥ 8), the statistic S is approximately normally 

distributed with mean and modified variance (Hamed and Rao, 1998) calculated using Equations  

(4.4) and (4.5) respectively. 

𝐸(𝑆) =  0            (4.4) 

𝑉∗(𝑆) = 𝑉(𝑆). 𝑛
𝑛𝑠∗

= 𝑛(𝑛−1)(2𝑛+5)−∑ 𝑊𝑚𝑚(𝑚−1)(2𝑚+5)𝑛
𝑚=1
18

. 𝑛
𝑛𝑠∗

      (4.5) 
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Where V(S) is the variance of the original Mann Kendall, tm is the number of data in a tied group 

(there is a tie when xj=xk), m is the number of tied groups, n*s is the effective sample size and 

n/n*s is the correction factor due to autocorrelation in the data which is calculated as: 

𝑛
𝑛𝑠∗

= 1 +  2
𝑛(𝑛−1)(𝑛−2)

∑ (𝑠 − 1)(𝑠 − 𝐷 − 1)(𝑠 − 𝐷 − 2)𝜌𝐷(𝐷)𝑛−1
𝐷=1                                                (4.6) 

where n is the actual number of observations and  ρs (i) is the autocorelation function of the ranks 

of the observations. 

The standardized statistic Z follows a standard normal distribution and is given by: 

𝑍 =

⎩
⎨

⎧
𝑆−1

�𝑉∗(𝑆)
   if 𝑆 > 0

0               if 𝑆 = 0
𝑆+1

�𝑉∗(𝑆)
  if 𝑆 < 0

           (4.7) 

 

The null hypothesis of no trend is rejected if the absolute value of Z is bigger than the theoretical 

value of Z(1-α/2) at α level of significance. A positive value of S indicates an upward trend while a 

negative value indicates a downward trend. 

 

4.2.3.2   Sequential Mann Kendall test 
The sequential Mann Kendall test (Modarres and Sarhadi, 2009; Sneyers, 1990) was used to 

detect the occurrence of a breakpoint in discharge. The sequential Mann Kendall test is a 

graphical technique used to approximate the beginning of a change in a time series based on 

progressive and retrogressive analysis of the Mann Kendall statistic. Just like in Mann Kendall 

test, the annual discharge time series is arranged sequentially in order of measurement. The 

magnitude of the discharge for each year xj (j= 1, 2, … n) is compared with the magnitude of 

discharge of each of the preceding years xk (k = 1, 2, …..j-1), (j > k). For each time step (year), 

the number of cases where xj>xk is counted. Then the normally distributed statistic tj is calculated 

using Equation (4.8) where nj denotes the number of cases where, xj > xk.   

𝑡𝑗  = ∑ 𝑠𝑗
𝑗
𝐷                                                           (4.8) 
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The mean and variance of tj are calculated using Equations (4.9) and (4.10) respectively and then 

the progressive variable statistic UF(tj) (forward sequence) is calculated using Equation (4.11). 

The retrogressive variable statistic UB(tj) (backward sequence) is calculated with the same 

Equation (4.11) but with a reversed series of the data. 

𝐸�𝑡𝑗� = 𝑗(𝑗−1)
4

                  (4.9) 

𝑉𝑎𝑎�𝑡𝑗� = 𝑗(𝑗−1)(2𝑗+5)
72

                          (4.10) 

𝑈𝑈�𝑡𝑗� =  𝑊𝑗−𝐸�𝑊𝑗�
�𝑉𝑑𝑎�𝑊𝑗�

                           (4.11) 

The intersection of the forward and the backward curves represented by the graphs of statistics 

UF(tj) and UB(tj) respectively indicates the beginning of the step change point (Partal and Kahya, 

2006; Ye et al., 2013; Wang, 2014). 

4.2.4  Separating the impacts of land use change and climate variability in runoff 
The Budyko framework (Budyko, 1974) was used as the basis to quantify the relative 

contribution of climate and land use changes to the changes in the watershed hydrology. It is a 

water and energy balance method that is used to separate the component of precipitation (P) that 

contribute to evapotranspiration (E) and streamflow (Q). The Budyko hypothesis assumes 

steady-state water balance conditions of the watershed which require a time scale where change 

in watershed storage is negligible (e.g., annual basis) (Roderick and Farquhar, 2011). The 

Budyko curve represents the long-term watershed average evaporative index (i.e., ratio of actual 

evapotranspiration to precipitation (E/P)) and the aridity index, i.e., ratio of potential 

evapotranspiration to precipitation (E0/P) (Donohue et al., 2011). A particular curve has the same 

catchment property (n) at all point along the curve but with different aridity indices (E0/P) i.e., 

different climatic conditions (Sun et al., 2014). Thus, the Budyko hypothesis postulates that 

under stationary watershed conditions, a watershed will fall on Budyko curve while under non-

stationary conditions (with effect of land use changes, i.e., change in catchment property -n) the 

watershed will deviate from the curve in a predictable manner. The steady state assumption of 

Budyko hypothesis requires use of long-term average (at least 1 year) of water balance in a 

watershed (Roderick and Farquhar, 2011; Donohue et al., 2007; Choudhury, 1999). In this study, 

the water balance was based on average values (P, E and Q) for time period spanning over 44 
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years separated into two periods based on the year when the change point in the streamflow time 

series is identified using the sequential Mann Kendall test. The start of the calendar year 

coincides with the dry season (January and February) in the watershed thus minimizing the inter-

annual change in water storage. The region has minimal ‘loss’ of water to deep groundwater 

storage (Dagg and Blackie, 1965; Krhoda, 1988). Water abstraction in the Nyangores River is 

less than 1% of mean daily discharge (Juston et al., 2014) and there are no significant storage 

dams on the river (McClain et al., 2014). 

This study utilized an empirical model developed by Roderick and Farquhar (2011) to quantify 

the relative impacts of rainfall, potential evapotranspiration and land use change on change in 

runoff (discharge). The model is based on empirical Equation (4.12) derived from Budyko 

hypothesis and proposed by Yang et al. (2008) and Choudhury (1999).    

𝐸 = 𝑃𝐸0
(𝑃𝑛+𝐸0𝑛)1 𝑛�

                                                                                                                                      (4.12) 

 E is the actual evapotranspiration, P is the precipitation, E0 is the potential evapotranspiration 

and n is an empirical catchment characteristic that represent catchment properties.  

The Roderick and Farquhar, (2011) equation is expressed as: 

𝑑𝑑 = �1 − 𝜕𝐸
𝜕𝑃
� 𝑑𝑑 − 𝜕𝐸

𝜕𝐸0
𝑑𝐸0 −

𝜕𝐸
𝜕𝑛
𝑑𝑠                                                                                                  (4.13) 

where 

𝜕𝐸
𝜕𝑃

=  𝐸
𝑃
� 𝐸0𝑛

𝑃𝑛+𝐸0𝑛
�                                                 (4.14) 

𝜕𝐸
𝜕𝐸0

=  𝐸
𝐸0
� 𝑃𝑛

𝑃𝑛+𝐸0𝑛
�                                                 (4.15) 

𝜕𝐸
𝜕𝑛

=  𝐸
𝑛
�ln(𝑃𝑛+𝐸0𝑛)

𝑛
−  (𝑃𝑛 ln𝑃+𝐸0𝑛 ln 𝐸0)

𝑃𝑛+𝐸0𝑛
�                                               (4.16) 

dQ, dP, dE0 and dn are the changes in runoff, precipitation, evapotranspiration and catchment 

properties respectively. 

The differential Equation (4.13) indicates that change in runoff is a function of climate 

variability and changes in catchment properties. The change in runoff caused by climate 

variability (dQc) is separated to that caused by change in precipitation and that caused by change 
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in potential evapotranspiration. The last term in Equation (4.13) represent the changes in runoff 

caused by changes in catchment properties.  Thus, from Equation (4.13) change in runoff caused 

by change in climate can be estimated as: 

𝑑𝑑𝐷 = �1 − 𝜕𝐸
𝜕𝑃
�𝑑𝑑 − 𝜕𝐸

𝜕𝐸0
𝑑𝐸0                                                                                                               (4.17) 

Sun et al. (2014) considered the residual change in runoff (dQR) to be the difference between the 

observed change in runoff (dQobs) and the estimated change in runoff caused by change in 

climate (dQc), and is equivalent to runoff change caused by change in catchment properties 

(Equation (4.18)). The residual change in runoff also includes short-term change in climate 

variability (i.e., intra-annual climatic effects such as precipitation intensity and temporal 

distribution of precipitation and potential evapotranspiration) (Sun et al., 2014; Roderick and 

Farquhar, 2011). Catchment property n cannot be easily measured and its value is usually 

estimated by fitting it in Equation (4.12) using the observed precipitation, potential 

evapotranspiration and runoff (Donouhe et al., 2011). Thus, changes in runoff caused by changes 

in catchment properties can be best estimated by Equation (4.18) (Sun et al., 2014).  

𝑑𝑑𝑅 = 𝑑𝑑𝑜𝑜𝐷 − 𝑑𝑑𝐷                                                                 (4.18) 

Equations (4.17) and (4.18) were used to calculate the changes in runoff caused by changes in 

precipitation, evapotranspiration and catchment properties. The relative contribution of each was 

calculated as a percentage of the observed (total) change in runoff.  

4.2.5 Runoff sensitivity and prediction of future changes in runoff using IPCC projections 
The sensitivity of the runoff to climate variability was estimated using Equation (4.19), also 

proposed by Roderick and Farquhar (2011). Equation (4.19) predicts the relative change in 

runoff as a result of unit percent change in precipitation and potential evapotranspiration.  

𝑑𝑑
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𝑑
𝜕𝐸
𝜕𝐸0

� 𝑑𝐸0
𝐸0

                                                                                                        (4.19) 

Equation (4.20) was adapted for the watershed, based on Equation (4.19), to predict the 

sensitivity of runoff to climate change. The equation predicts the expected relative change in 

runoff based on unit percent change in precipitation, potential evapotranspiration or both. 

𝑑𝑑
𝑑

= 2.07 𝑑𝑃
𝑃
− 1.08 𝑑𝐸0

𝐸0
             (4.20) 
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The Intergovernmental Panel on Climate Change (IPCC, 2013a) projected changes in monthly 

temperature for the region (Table 4.2) were then used to calculate the estimated potential 

evapotranspiration for the watershed in the near-term (2016 - 2035) and medium-term (2046 - 

2065) periods using FAO Penman-Monteith method (Allen et al., 1998). The calculated changes 

in potential evapotranspiration and IPCC (2013a) projected changes in precipitation were then 

applied to Equation (4.19) to predict the expected future changes in runoff due to climate change. 

Table 4.2: IPCC projected monthly increase* in temperature (0C) for the watershed 

Period 2016-2035 2046-2065 
Dec – Feb 1 1.5 
March – May 1 1.5 
June – July 1 2 
Sep – Nov 1 1.5 

*based on Representative Concentration Pathway (RCP4.5) - median (50%) of the distribution of Coupled Model 
Inter-comparison Project Phase 5 (CMIP5) - IPCC, 2013a) 

The IPCC fifth assessment report (AR5) (IPCC, 2013b) gives patterns of climate change 

computed from global climate model output gathered as part of the Coupled Model Inter-

comparison Project Phase 5 (CMIP5). The climate change projections are made under the 

Representative Concentration Pathway (RCP) scenarios which are based on more consistent 

short-lived gases and land use changes. The scenarios specify emissions and are not based on 

socio-economic driven (SRES) scenarios used in fourth assessment (AR4) which considered 

future demographic and economic development, regionalization, energy production and use, 

technology, agriculture, forestry and land use (IPCC, 2013b). The new scenarios for AR5 are 

based on Radiative Forcing (RF) which quantifies the change in energy fluxes caused by changes 

in drivers of climate change. RCP4.5 is one of the four RCP scenarios and aims at stabilization 

of RF at 4.5 (W/m2). The values given in Table 4.2 are the estimates of the median (50% 

percentile) of the mean distribution of the 42 models used in CMIP5. More details about the 

future IPCC climate change projections can be found in the IPCC fifth assessment report (IPCC, 

2013b) 

4.3  Results  

4.3.1  Changes in measured streamflow 
Results from trend analysis of discharge data using the modified Mann Kendall tests (both 

approaches by Hamed and Rao (1998) and Yue and Wang (2004)) showed an increasing trend 
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(with a slope of 4.75 mm/year) significant at 5% level (Figure 4.4). The change point of the 

discharge data was identified as the year 1977 (Figure 4.5) using the sequential Mann Kendall 

test. Based on the identified breakpoint, the precipitation, potential evapotranspiration and 

discharge data were split into the period before change point (1965 - 1977) and the period after 

change point (1978 - 2007) as shown in Table 4.3. This Table also shows the average annual 

values of potential evapotranspiration calculated using FAO Penman-Monteith equation for the 

two periods respectively. All the three input parameters to the water balance Equation (4.12) 

were found to have increased between the period before change point and the period after change 

point.  This implies an increase of both the water input (precipitation) and atmospheric demand 

(potential evapotranspiration) in the catchment. Actual evapotranspiration values were calculated 

for the two periods as the difference between the averages (averaged over the respective time 

periods) of measured precipitation and runoff (streamflow) (Table 4.3). Also shown in Table 4.3, 

are the long-term average annual values of the precipitation, potential evapotranspiration, runoff 

and the actual evapotranspiration covering the entire period (1965 - 2007) of the study. The long-

term values represent the average measured or calculated estimates of the water balance 

parameters in the catchment. 

 

Figure 4.4: Annual discharge of the Nyangores River. 
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Figure 4.5: Sequential Mann Kendall change point test for discharge data. The intersection of 
forward sequence statistic UF(tj) and backward statistic UB(tj) is the change point in the time 

series – in this case: 1977.  

4.3.2  Catchment properties parameter (n) 
The catchment property (n) for the watershed - estimated by fitting it in Equation (4.12) using 

the long-term mean annual values of precipitation, potential evapotranspiration and streamflow- 

was found to be 1.75 (Table 4.3). As reflected in Table 4.3 and explained in sections 4.3.3 and 

4.4.2, the watershed has undergone through major changes in catchment properties and 

particularly land use changes. 

4.3.3  Hydrological impact of land use change and climate variability  
The estimated relative contributions of land use change and climate variability to the observed 

change in runoff are given in Table 4.4. The results indicate that the observed increase in 

precipitation (Table 4.3) caused a 24% increase in runoff while on the contrary the estimated 

increase in potential evapotranspiration caused a 21.6% decline in runoff. Therefore, the net 

change in runoff caused by the climate variability was only an increase of 2.5%. The rest of the 

observed change in runoff (dQR = 97.5%), denoted as the residual change, was caused by 

changes in catchment properties which is mainly attributed to land use change as discussed in 
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section 4.4.2. From the results, we conclude that land use change is the main driver of change of 

the watershed discharge.  

 

Table 4.3: Mean annual values of water balance components  (P, Q, E, E0,) for the period before 
change point, period after change point and the entire (long-term) period, and catchment 
parameter (n).  

 period before change 
 point (1965-1977) 

period after 
change point 
(1978-2007) 

Long-term 
(1965-2007) 

Precipitation (P) (mm) 1342 1382 1373 
Potential evapotranspiration (E0)  (mm) 1517 1595 1556 
Runoff (Q)  (mm) 338 439 405 
Actual Evapotranspiration (E = P-Q) (mm) 1004 943 968 
Catchment parameter (n) 1.99 1.54 1.75 
 

 

Table 4.4: contribution of climate variability and land use change to change in streamflow 

Driver of change in runoff Contribution (mm) Contribution (%) 
Precipitation (dQp) +24.4 +24.2 
Potential evapotranspiration (dQEo) -21.8 -21.6 
Climate (dQc)  = dQp +dQEo) +2.6 +2.5 
Land use (Residual) dQR +98.4 +97.5 
Total change (observed) (dQobs) +101  
  dQp   and dQEo are changes in runoff caused by precipitation and potential evapotranspiration 
respectively 

4.3.3.1 Runoff sensitivity to climate change 
Runoff sensitivity Equation (4.20) was developed for the watershed. The equation can be used to 

predict the expected relative change in runoff as a function of change in precipitation and 

potential evapotranspiration. The equation, for example, predicts that a 10% increase in rainfall 

would increase runoff by 20.7% while a 10% increase in potential evapotranspiration would 

reduce the runoff by 10.8%. Thus, it predicts that gain in runoff due to possible increase in 

rainfall would be minimized by possible increase in potential evapotranspiration.   

        

4.3.3.2 Expected future response of runoff due climate change 
Table 4.5 shows the calculated future estimates of potential evapotranspiration calculated using 

the IPCC projected change in temperature (Table 4.2) for the near-term (2016 - 2035) and 
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medium-term (2046 - 2065) periods. The calculated values represent 4.2% and 5.3% increase in 

potential evapotranspiration for the near-term and medium-term periods respectively. The 

percentages were calculated based on the average potential evapotranspiration for the 1965 - 

2007 period (Table 4.5).  IPCC (2013a) projected an increase of 10% rainfall in the watershed 

region for both near-term and medium-term periods as shown in Table 4.5. The calculated 

percent change in PET and IPCC projected percent change in rainfall were applied in Equation 

(4.20) to predicted future response of runoff due to climate change, and the results are also 

shown in Table 4.5. The results indicate that the streamflow will increase by 16% and 15% for 

the near-term and medium-term periods due to climate change. 

 

Table 4.5: Calculated PET and predicted change in runoff for near-term and medium term 
periods. 

Period 1965-
2007 

2016-
2035 

2046-
2065 

PET (mm) 1556 1621 1638 
Change in PET (%) (reference 1965-2007 period)  4.18 5.27 
IPCC projected* change in precipitation (%)  10 10 
Predicted change in runoff (%) - based on Equation (4.20)  16 15 

*based on Representative Concentration Pathway (RCP4.5) - median (50% percentile) of the distribution of 
Coupled Model Inter-comparison Project Phase 5 (CMIP5) - (IPCC, 2013a) 

 

4.4  Discussion 

4.4.1  Change in streamflow 
It was concluded that land use change was the main driver of change in streamflow. The 

increasing trend in streamflow can be attributed to deforestation and conversion into agriculture 

in the Mau Forest and particularly the Eastern, South-western and Transmara blocks of the forest 

(Nkako et al., 2005). The forest blocks are at the headwaters of Nyangores River. Major 

deforestation and encroachment have been reported in this region. Mati et al. (2008) found that 

the forest cover in the Mara River basin was reduced by 32% between the years 1973 and 2000 

while agriculture doubled over the same period. The Government of Kenya (GoK, 2009) 

estimated that in the larger Mau Forest complex block (Figure 4.1a), the closed canopy declined 

by 31% between 1973 and 2003 while the area under combined settlements and agriculture 

increased 5 times over the same period. Catchment water yield is likely to increase upon 
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deforestation and conversion to agriculture although the extent depends on the scale, site and the 

level of degradation after conversion (Bruijnzeel, 2004; Calder, 2005). Other studies on paired 

catchment experiments have reported an increase in water yield after deforestation (Bosch and 

Hewlett, 1982; Mumeka, 1986; Sahin and Hall, 1996; Lal, 1997; Brown et al., 2005, 2013). Our 

results are also consistent with findings of a paired catchment experimental study by Recha et al. 

(2012). Their study catchment (Kapchorwa) under tropical rainforest of Nandi and Kakamega is 

also located within the Lake Victoria Basin in Western Kenya. They reported higher discharge 

for catchments that were deforested and converted to agriculture; the discharge also increased 

with time since deforestation. 

The observed increase in discharge can be attributed to reduced evapotranspiration after 

deforestation (Bruijnzeel, 2004). This is because trees are generally known to have higher 

evapotranspiration than many other land uses, including agriculture (Calder, 2005). 

Comparatively, forests have higher interception ‘losses’, greater aerodynamic roughness and 

deeper roots – all which favour higher water use. The greater canopies of forests enable them to 

intercept and evaporate more rainfall while the extensive and deeper root network enhances their 

capacity to extract water from soil and groundwater storages (Bruijnzeel, 2004; Calder, 2005; 

FAO, 2006). In dry seasons, the tree roots, which are generally deeper than for most vegetation, 

act as ‘pumps’ that remove groundwater for transpiration (Bruijnzeel, 2004). Therefore, 

deforestation generally reduces vegetation water use in a watershed.  The reduced ‘pumping’ of 

groundwater, particularly in dry seasons, make the water available for discharge inform of 

baseflow.  

In Nyangores watershed, the observed increase in discharge was mainly contributed by increase 

in baseflow as shown in Figure 4.6 where the baseflow, separated using Web-based Hydrograph 

Analysis Tool (WHAT) recursive digital filter method (Eckhardt, 2012), followed a similar trend 

to the total discharge. This implies that at the annual level, the reduced evapotranspiration- 

showing as increased baseflow- is responsible for increased discharge. 
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Figure 4.6: Temporal trends of annual baseflow, quickflow and total discharge of Nyangores River.  

 

The breakpoint of the total annual discharge trend was found to be in 1977. Our findings are 

supported by Mati et al. (2005) who reported the increase in peak flows in Nyangores watershed 

starting in the same year, 1977. As shown in Figure 4.1, deforestation has been going on 

progressively in the watershed since the 1970’s when there was massive land adjudication of the 

former communal trust lands in Kenya following the enactment of the Land Adjudication Act of 

1968. The residents of Olenguruone section (Figure 4.1a) (formerly referred as Olenguruone 

settlement scheme) applied for land adjudication in 1976 (i.e., Land Adjudication Order, 1976 

(Nakuru District)). The Olenguruone area, which is now under intensive cultivation, was 

formerly under dense natural forest and small pockets of montane open grassland (GoK, 1969; 

Muiru, 2012); grasslands, just like forest, have higher water infiltration capacities as compared 

with land under continuous cultivation (Gerla, 2007; Mao and Cherkauer, 2009; Heimann, 2009; 

Schilling et al., 2014; Everson, 2001). The colonial government that created the Olengurone 
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settlement scheme in 1941 controlled the size and the location of land that the residents 

cultivated (Kanogo, 1987; Ochieng, 2009; Maxon and Ofcansky, 2014). After independence, in 

1963, the restrictions were ‘no more’ and the locals abandoned the watershed conservation 

measures, put by colonial masters, which they deemed oppressive. At Olenguruone and the 

surrounding areas, increased acreages of land, including the hilly slopes, were put under 

cultivation which further increased with the land adjudication in the 1970s. The dense natural 

forest cover and the montane grassland in the area were cleared for cultivation and encroachment 

in the forest reserve started; all of which may have contributed to increase in discharge. Today, 

the area is under intensive subsistence agricultural cultivation and land ownership is a source of 

conflict among the ethnic communities living there. Indeed, Mati et al. (2008) found that the 

forest and grassland in the larger Mara River was basin reduced by 11% and 34% respectively 

between 1973 and 1986 while the area under open forest and cultivation increased by 73% and 

96% respectively during the same period.  

4.4.2 Attribution of changes in streamflow to changes in land use and climate variability 
Climate variability was found to have only a minimal (2.5%) contribution to the observed change 

in discharge (Table 4.4).  This can be attributed to the balance of the water input and atmospheric 

demand in the watershed. Both the water input (in form of precipitation) and the atmospheric 

water demand (in form of potential evapotranspiration) increased between the two periods.  

Thus, the total gain in discharge (24.2%) that would have been made by increased rainfall was 

reduced (by 21.6%) by the extra atmospheric water demand. On an annual basis, Nyangores can 

be classified as a water limited watershed (dryness index = 1.1). This implies that the available 

water (rainfall) does not fully satisfy the atmospheric water demand. The increase in rainfall 

between the two periods was also accompanied by a relatively higher increase in potential 

evapotranspiration (due to higher mean temperatures) which further raised the atmospheric water 

demand (i.e., further increasing the dryness index). Therefore, most of the extra rainfall was used 

up as evapotranspiration. Taking the effect of climate variability solely, actual evapotranspiration 

would have been expected to increase in the period after change point. However, as it can be 

seen in Table 4.3, the actual evapotranspiration decreased in the period after change point. The 

reduction in the estimated evapotranspiration between the two periods would then be attributed 

to change in catchment property (n). The change in catchment properties, occurring concurrently 
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with climate variability, reduced the ‘would be’ gains in evapotranspiration in favour of 

increased runoff. 

Change in catchment properties was found to be the main driver of the observed changes in 

runoff accounting for 97.5% of the change. Catchment properties that affect discharge are soil 

properties, vegetation and topography (Ward and Trimble, 2003; Yang et al., 2008; Price, 2011). 

Land use change affects these catchment properties and especially the former two in the case of 

deforestation. Therefore, the change in discharge caused by changes in catchment properties is 

equivalent to the changes caused by land use in this case. As highlighted in Section 4.4.1, the 

major land use changes in Mara River basin is deforestation and conversion to farmland which 

implies change of vegetation from natural tree vegetation to agricultural crops (mainly maize, 

beans and potatoes). Other than reduced water use, deforestation also exposes the land to 

degradation where soil properties are negatively affected eventually leading to reduction in water 

infiltration and increase in quick runoff. Soil-related factors that lead to decline in infiltration 

after deforestation include: compaction of top soil (increase bulk density), decrease in soil 

organic matter (reduce soil aggregation), decline in micro-faunal activity (reduces soil micro-

pores), decrease in soil water holding capacities (Giertz et al., 2005; Celik, 2005; Recha et al., 

2012). 

The future watershed response of low flows to rainfall after deforestation depends on the balance 

between reduced evapotranspiration and the expected decrease in water infiltration due to 

degradation. If land degradation reaches a point where water infiltration is reduced to the extent 

that the quick flows exceeds the gain in baseflow, associated with reduced evapotranspiration 

after forest removal, then the dry season flows would decline. On the other hand, if the 

catchment properties do not change, i.e., no or minimal land degradation after forest removal and 

the original surface infiltration is maintained as before, then the effect of the reduced 

evapotranspiration may continue to be seen in high baseflow (Bruijnzeel, 2004; Brown et al., 

2005). Thus, the observed increase in discharge and baseflow in Nyangores watershed may be 

short-lived depending on the future level of land degradation. There are already some signs of 

degradation in the cultivated areas of the watershed that were converted from the forests, as 

observed by runoff plot experiments by Defersha and Melesse (2012); they reported that 

cultivated lands in Nyangores watershed yielded higher sediment loads than other watersheds 
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and land uses in the upper Mara River basin. It is also important to recognize that deforestation 

in the Mau Forest region has been progressive over time with more areas, illegally or legally, 

being carved out of the natural forest (Akotsi and Gachanja, 2004; Nkako et al., 2005; Akotsi et 

al., 2006; Mati et al., 2008; GoK, 2009; NEMA, 2013). Therefore, whereas the continued 

increase in discharge and baseflow may be due to accompanied decline in evapotranspiration, 

there may be some cultivated areas in the watershed facing high degradation, as observed by 

Defersha and Melesse (2012), whose response to rainfall may be quite opposite but their effect 

on baseflow being subdued. It is important therefore that efforts be made to arrest further 

deforestation and encroachment of the natural forests and more importantly to minimize 

degradation of the already deforested areas under cultivation. 

The residual change in streamflow (dQR) may also contain, to a limited extent, change caused by 

intra-annual climate variability (Roderick and Farquhar, 2011). This is because the catchment 

property n encodes all factors that change the separation of P into E and Q under constant 

climate. Hence, other than change in land use discussed in this section, the changes in n over 

time may also be affected by factors such as changes in precipitation intensity or seasonal 

changes in precipitation and evapotranspiration (Roderick and Farquhar, 2011; Cuo et al., 2014; 

Zhang et al., 2015). For example, whereas an increase in dry season rainfall accompanied by an 

equal decrease in cold season rainfall may have no net change in annual rainfall (Onyutha et al., 

2015), it may affect the separation of rainfall into runoff and evapotranspiration (Roderick and 

Farquhar, 2011). This is because the dry season generally has higher potential evapotranspiration 

than cold season and thus the change in evapotranspiration (occasioned by change in seasonal 

rainfall) for the two seasons may not completely balance at an annual scale. Seasonal variability 

in rainfall can be assessed by, for example, changes in quantiles (Ntegeka and Williems, 2008) or 

aggregation of rescaled series (Onyutha, 2015). However, since the change in streamflow caused 

by intra-annual variability is not separated from the residual change in streamflow dQR by the 

current version of Roderick and Farquhar, (2011) method used for this study, the seasonal 

changes in climate variability was not assessed; the qualitative description of its effect on n 

provided herein was considered sufficient and useful for further studies. We recommend use of 

more detailed hydrological models to compare the results obtained in this study.  
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In unregulated rivers like Nyangores, streamflow seasonality and persistence is more important 

measure of water availability than the total annual water yield (Döll and Schmied, 2012; 

Hoekstra et al., 2012; Bruijnzeel, 2004). Change in total water yield may also be accompanied by 

a change or shift in the seasonal streamflow (Brown et al., 2005; Zhang and Schilling, 2006). 

Although the study of streamflow seasonality is outside the scope of our paper, recent studies 

have reported that most downstream sections of the Mara River basin, which heavily rely on 

flow from the Nyangores River in dry seasons (McClain et al., 2014), are already facing water 

stress in dry months of the year (Dessu et al., 2014). Thus, further research on the effect of land 

use change on seasonal streamflow is highly recommended. Change in streamflow seasonality 

may be assessed by use of monthly/seasonal coefficient of variation (e.g. Zheng et al., 2007; 

Yang et al., 2009; Patil and Stieglitz, 2011) or non-uniformity coefficient (e.g. Li et al., 2014) 

and estimated by changes in seasonal/monthly flow duration indices (e.g. Li et al., 2014; Yang et 

al., 2009; Khaliq et al., 2008; Zheng et al., 2007). 

 

4.4.3  Future change in runoff due to climate change 
The runoff sensitivity Equation (4.20) calibrated for the watershed predicts that runoff is more 

sensitive to changes in precipitation than changes in potential evapotranspiration. Using the 

projected future climate change scenarios (Tables 4.2 and 4.5), the equation predicted that 

climate change would have a net increase in mean annual streamflow of 16% and 15% in the 

next 20 and 50 years, respectively (Table 4.5). The expected gains in discharge due to projected 

increase in rainfall would be reduced by the predicted increase in evaporative atmospheric water 

demand (Equation 4.20). The IPCC projected increase in temperature would essentially raise the 

atmospheric water demand (potential evapotranspiration), which would then buffer the 

‘expected’ gain in runoff due to projected increase in rainfall. The predicted climate change-

induced relative change in runoff for the next 50 years is slightly lower than for the next 20 years 

(Table 4.5). This is because whereas the IPCC projected an increase of mean monthly 

temperatures of about 0.50C between the two periods (Table 4.2), the rainfall increase remains 

constant at 10% (Table 4.5). Thus, the medium-term period would have a relatively higher PET 

and consequently less climate change-induced change in runoff as compared to the near-term 

period. The results indicate that direct climate change-induced change in streamflow is relatively 

moderate (i.e., 15% increase in 50 years). However, climate change may also have an impact in 
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land use and human activities as people to adapt to the changes in climate. As already discussed, 

land use change has a major impact on both water yield and temporal pattern of streamflow and 

thus the effect may be greater than predicted.  

We used the regional climate change projections based on the distribution of all the 42 models 

used in CMIP5. The purpose was to roughly show the sensitivity of runoff in the Nyangores 

based on general future projections. As already discussed in section 4.4.2, the runoff sensitivity 

model developed does not account for the intra-annual variability in climate which may also 

affect the predictions of runoff (Roderick and Farquhar, 2011). The predictions are thus 

approximate based on average values. We therefore did not select outputs from any specific 

GCM nor did we downscale the outputs of the 42 GCMs used in this study. The regional 

projections in temperature and rainfall used in this study, however, compare well with the values 

downscaled for the same study area by Dessu and Melesse (2013), and Akurut et al. (2014). 

Runoff predictions by this simple model are similar to that of the more detailed hydrological 

model implemented in SWAT by Mango et al. (2011). They reported that a future increase of 

about 10% in rainfall in the study area will have a modest increase in runoff due to increase in 

evapotranspiration, driven by accompanying rise in temperature. Unlike the complex 

hydrological models that demand much effort, data and time, the simple runoff sensitivity 

equation developed in this study can be easily used by water resources managers in the 

watershed. 

It is also important to recognize the effect the uncertainties arising from the used IPCC future 

climate projections (Tables 4.2 and 4.5) would have on the results obtained in this study. The 

future temperature values used are based on projections of RCP4.5 scenario. RCP scenarios are 

based on predicted future forcing (RF) of the climate system by natural and anthropogenic 

forcing agents such as greenhouse gases, aerosols, solar forcing and land use change (IPCC, 

2013b). The RCP4.5 scenario is based on estimated RF of 4.5 watts per square meter (W/m2). 

However, the RF could fall outside this estimate depending on actual future emissions resulting 

from forcing agents. IPCC (2013b) gives different projections of temperature and rainfall for 

other estimates of RF (i.e., RCP2.5, RCP6.0 and RCP8.5) depending on the potential emissions 

from human activities and/or natural causes (e.g., volcano eruptions). To estimate the range of 

potential future change in streamflow, based on potential range of change in temperature and 
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rainfall, future runoff prediction was carried out using the projections of the extreme climate 

change scenarios of RCP2.5 and RCP8.5 for medium-term period. For short-term period 

projection, the changes in temperature (i.e., 10C) and rainfall (i.e., 10%) are uniform across all 

the three RCP scenarios for the study area and therefore there would be no difference in the 

predicted change in streamflow (i.e., remains the same as for RCP4.5 (Table 4.5).  As shown in 

Table 4.6 and compared with RCP4.5, lower future emissions (RCP2.5) will cause a slight 

increase in streamflow (to 16%) while higher emissions (RCP8.5) will reduce the potential gain 

of streamflow to 12.7 %.  Thus, the predicted potential increase in runoff of 15% for the 2036 - 

2065 period could fall anywhere in the range between 12.7% and 16.0% depending on the actual 

future emissions. 

Table 4.6: Predicted change in runoff based on different IPCC emission projection scenarios 

RCP Scenario (for the period 2046-2065) 
RCP2.5 RCP4.5 RCP8.5 

PET (mm) 1624 1638 1671 

Change in PET (%) (reference period: 1965 - 2007, PET =1556mm) 4.4 5.3 7.4 

IPCC projected change in precipitation (%) 10 10 10 

Predicted change in runoff (%) - based on Equation (4.20) 
16 15 12.7 

 

4.5  Summary of results and conclusions 
The relative impact of land use change and climate variability on streamflow at the Nyangores 

watershed in Kenya was investigated. The climate variability impact on streamflow was further 

partitioned into effects caused by changes in precipitation and those caused by changes in 

potential evapotranspiration. Future impact of climate change on streamflow was then projected. 

Quantification of the contributions of the observed change in streamflow of River Nyangores 

caused separately by land use change and climate variability is one of the main contributions of 

this study. Though there have been previous studies that have attributed change in hydrology of 

larger Mara River basin to land use change, information on how much of the observed change in 

historical streamflow record was caused by either land use change or climate variability has been 

lacking. Another unique contribution of this study is development of a simple runoff sensitivity 

equation that can easily be used by water resources managers in the watershed to estimate 
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change in streamflow as a function of change in rainfall and potential evapotranspiration. Main 

findings and conclusions of the study are: 

 

1. There is an increasing trend in the annual streamflow at the Nyangores watershed. Trend 

analysis using the Mann Kendall tests detected a significant increasing trend in annual 

streamflow. The breakpoint for the time series trend was found to be 1977 using the 

sequential Mann Kendall test. 

2. Land use change is the main driver of the change in streamflow accounting for about 

97.5% of the change. This can be attributed to the deforestation in the Mau Forest 

complex at the headwaters of the river. Forest removal and conversion to cropland 

agriculture caused the increase in streamflow due to reduced water use of crops as 

compared to forest. We recommend further study on the effect of land use change on 

seasonal flow regime of the river and its impact on the downstream water availability. 

3. Climate variability contributed only a small percentage (2.5%) of the change of 

streamflow. There was an increase in both precipitation and potential evapotranspiration 

whose individual effect on streamflow change counters each other (increase in  both 

water input  and evaporative demand) resulting to a slight net change in runoff.   

4. Streamflow change solely caused by climate change was predicted to increase by 16% 

and 15% for the next 20 and 50 years respectively. The effect of the predicted increase in 

rainfall on runoff would be offset, to some extent, by the expected increase in evaporative 

water demand due to projected increase in temperature. Judging from our findings of the 

last decades, land use change may still be the major driver of future change in streamflow 

and may overshadow the predicted impacts of climate change. 

5. Deforestation is majorly responsible for change in Nyangores River hydrology. Thus, 

management measures that control further loss of natural forest and reduce degradation of 

farmland are required. Thus, the promotion of tree vegetation (e.g. as buffer strips or as 

integral part of agroforestry systems) may be helpful to mitigate the formation of surface 

runoff and associated soil erosion.  
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5 Chapter five: Modelling the impact of agroforestry on hydrology of Mara 
River Basin. 

 

Publication (this chapter has been published in Hydrological Processes) 

Mwangi HM, Julich S, Patil SD, McDonald MA, Feger KH. (2016). Modelling the impact of 

agroforestry on hydrology of Mara River Basin in East Africa. Hydrological Processes 30: 3139-

3155.  

Abstract: 

Land–use change is one of the main drivers of watershed hydrology change. The effect of 

forestry related land–use changes (e.g. afforestation, deforestation, agroforestry) on water fluxes 

depends on climate, watershed characteristics and spatial scale. The Soil and Water Assessment 

Tool (SWAT) model was calibrated, validated and used to simulate the impact of agroforestry on 

the water balance in the Mara River Basin (MRB) in East Africa. Model performance was 

assessed by Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta Efficiency (KGE). The NSE (and 

KGE) values for calibration and validation were: 0.77 (0.88) and 0.74 (0.85) for the Nyangores 

sub-watershed, and 0.78 (0.89) and 0.79 (0.63) for the entire MRB. It was found that 

agroforestry in the watershed would generally reduce surface runoff, mainly due to enhanced 

infiltration. However, it would also increase evapotranspiration and consequently reduce 

baseflow and overall water yield, which was attributed to increased water use by trees. Spatial 

scale was found to have a significant effect on water balance; the impact of agroforestry was 

higher at the smaller headwater catchment (Nyangores) than for the larger watershed (entire 

MRB). However, the rate of change in water yield with an increase in area under agroforestry 

was different for the two and could be attributed to the spatial variability of climate within the 

MRB. Our results suggest that direct extrapolation of the findings from a small sub-catchment to 

a larger watershed may not always be accurate. These findings could guide watershed managers 

on the level of trade-offs that might occur between reduced water yields and other benefits (e.g. 

soil erosion control, improved soil productivity) offered by agroforestry. 
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5.1  Introduction 
Forests provide a number of ecosystem services, such as improving soil water infiltration 

conditions, soil erosion control and provision of wood–related products like timber and fuelwood 

(Calder, 2005; Ong et al., 2006). The fertility potential of soils under forests and the need to 

increase crop production makes forests a target for conversion to agricultural land through 

deforestation (Pope et al., 2015; Laurance et al., 2014). There is therefore high competition for 

land between forests and agricultural production in some regions of the world, particularly in the 

tropics (Laurance et al., 2014). In such situations, agroforestry is seen as a compromise between 

agricultural production and provision of forest/tree–related benefits (Garrity, 2012). In 

agroforestry systems, trees in different forms of arrangements are integrated into agricultural 

land (Nyaga et al., 2015; Nair, 1993). This kind of arrangement therefore ensures that the 

environmental services provided by the trees/forests are met to some extent, while at the same 

time agricultural land continues with its main role of crop production (Ong et al., 2006). 

Countries, particularly those whose economy mainly rely on agriculture, find agroforestry as a 

feasible means of increasing their forest cover and a way of controlling degradation of natural 

forests (Garrity, 2012). Indeed, this may be one of the best practical solutions of increasing tree 

cover in areas that have been deforested and settled by communities whose main source of 

livelihood is agricultural cultivation (Mbow et al., 2013). In such situations, complete 

afforestation may not be practical because people’s livelihood is a priority. 

With agroforestry, the question that arises is how much land can practically and sustainably be 

converted to tree cover. At the farm level, this trade-off is highly dependent on the extent of 

available land.  However, at the watershed level, the trade-off and synergies between provisions 

of various ecosystem services is an important consideration (cf. Brauman et al., 2007).  

For water resources managers, information on how and by how much agroforestry practices will 

affect water availability is pertinent. Determination of the thresholds of area of agroforestry 

(percent of tree cover) that would not compromise provision of watershed services is of 

paramount importance (Brown et al., 2005; Mwangi et al., 2015a). The question of how change 

in vegetation affects watershed hydrology is mainly centred around the impact on different 

components of catchment water balance. This is partly because different types of vegetation 

result in different levels of rainwater infiltration capacities. For example, forests are generally 
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known to offer enhanced infiltration of rainwater compared to most other land-uses (Bruijnzeel, 

2004). This is mainly brought about by a normally higher organic matter content and little 

anthropogenic disturbance in the forest soils as compared to, for example, cultivated lands. 

Therefore, the partitioning of rainwater into surface runoff and the water that infiltrates into the 

ground differs for landscapes with different types of vegetation - even in cases where soil type is 

similar. Plant water use (transpiration) also differs with vegetation type (Jian et al., 2015; Julich 

et al., 2015). Some vegetation, especially trees, often consumes more water than other vegetation 

(Albaugh et al., 2013; Julich et al., 2015). The rooting depth of vegetation also determines the 

depth to which plants of a particular type can draw water especially in the dry seasons when the 

top soil is dry (Thomas et al., 2012; David et al., 2013). Deep-rooted vegetation is able to extract 

groundwater from deeper aquifers particularly when the water table is low compared with 

shallow rooted vegetation (Pinto et al., 2014; Nosetto et al., 2012). Consequently, the extent of 

groundwater removal by vegetation of different types influences the amount of groundwater 

released to the streams as baseflow (Salemi et al., 2012). Water extraction by deep-rooted 

vegetation reduces groundwater storage and decreases the amount released to streams (Fan et al., 

2014). It is therefore obvious that introduction of trees into crop lands (agroforestry) would cause 

changes in a watershed’s water balance (Palleiro et al., 2013; Ong et al., 2006). The direction and 

magnitude of the change in different water balance components may differ with the watershed 

characteristics (e.g. soil, topography), climate, agroforestry tree species and more importantly, 

the proportion of the watershed under tree cover (Brown et al., 2013; Julich et al., 2015).  

Field studies on the hydrological impacts of agroforestry (e.g. Zhao et al., 2011; Ghazavi et al., 

2008; Muthuri et al., 2004; Radersma and Ong, 2004) have demonstrated the need to include (or 

improve) tree water uptake (transpiration) and canopy interception in watershed modelling. 

Ghazavi et al. (2008), for example, observed decreasing water table levels near hedgerows 

during the growing season (spring and summer) in Brittany, France which they attributed to high 

transpiration by hedgerow trees. A modelling study (using Hydrus-2D model) for the same site 

by Thomas et al. (2012) showed that transpiration is a substantial component of water balance 

representing 40% of total water output. Similar conclusions were drawn by Muthuri et al. (2004) 

who modelled water use by agroforestry systems in Nyeri County, Kenya, using the WaNuLCAS 

(Water, Nutrient and Light Capture in Agroforestry Systems) model.  
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In this study, we use the SWAT (Soil and Water Assessment Tool) model (version 2012) to 

assess the impact of agroforestry on hydrology of the Mara River Basin. Although SWAT has 

been extensively used for land–use change studies, its use for agroforestry simulation studies is 

not well documented. The Mara River basin is located in East Africa and has undergone 

significant land–use changes over the last 50 years, particularly deforestation and conversion to 

agriculture in the headwaters (Mati et al., 2008). Intensive cultivation is currently predominant in 

the formerly forested areas and the Government of Kenya (GoK) is keen on restoring forest 

cover in as much area as possible (GoK, 2009; NEMA, 2013). Considering that the basin is now 

densely settled by communities whose livelihood depend on agricultural cultivation (Kanogo, 

1987), one of the feasible solutions to increase the tree cover in the upper Mara basin is through 

agroforestry (Atela et al., 2012; KFS, 2009). Because Mara is a trans-boundary river basin 

between Kenya and Tanzania, the upstream watershed activities, including land–use changes, are 

of interest not only to Kenya but also to Tanzania (Gereta et al., 2009). A thriving tourism 

industry in the shared Maasai Mara (Kenya) and Serengeti (Tanzania) game reserves ecosystem 

is also heavily dependent on the water resources provided by the Mara River (Gereta et al., 

2002). For this reason, prediction of the effect of agroforestry on the water balance of the Mara 

River basin is paramount for sustainable water resources management. 

5.2  Methods 

5.2.1  Study area 
The Mara River Basin (henceforth referred to as MRB) covers a total area of about 13,750 km2, 

which is shared between Kenya (65%) and Tanzania (35%) (Figure 5.1). The two main 

headwater tributaries of the Mara River (Nyangores and Amala) originate from the Mau Forest 

and join on the Kenyan side of the border with Tanzania to form the main Mara River which 

drains into Lake Victoria on the Tanzanian side of the border. There are three main gauging 

stations within MRB: 1LA03 at Bomet (for Nyangores sub-watershed), 1LA02 at Mulot (for 

Amala sub-watershed), and Mara mines in Tanzania (for the larger MRB) (Figure 5.1). The 

drainage areas at the three outlets are: 692 km2, 695 km2 and 10,550 km2 for Nyangores, Amala 

and Mara watersheds, respectively. The elevation of MRB ranges from about 3,000 m asl at the 

source in the Mau Forest complex to about 1100 m asl as the river drains into Lake Victoria. The 

basin experiences a bimodal rainfall pattern that varies with altitude. There are two main rainfall 

seasons i.e. from March to June (long rains) and from September to November (short rains). The 
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mean annual rainfall ranges from about 1800 mm in the forested headwaters to about 600 mm in 

the downstream sections of the basin.  

 

 

Figure 5.1: Mara River Basin. 

Forests and agriculture are the main land-uses in the upstream region of the MRB (Figure 5.1). 

Pastoralism and wildlife conservation (in Maasai Mara and Serengeti National Reserves) 

dominate the middle sections of the basin (Figure 5.1). The areas adjacent to the game reserves 

are mainly used for livestock grazing and also as wildlife dispersal areas through some 

arrangements (e.g. conservancies) with the local pastoral communities (Osano et al., 2013; 

Homewood et al., 2012; Ogutu et al., 2009; Thompson and Homewood, 2002). The downstream 

region of the MRB in Tanzania is mainly dominated by subsistence agriculture and gold mining. 

The main soil types (World Reference Base classification) are: Planosols (30%), Phaeozems 
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(26%), Andosols (12%) Vertisols (10%), and Cambisols (9%). Other soils (13%) are: Leptosols, 

Luvisols, Nitisols, Greyzems, and Regosols. 

5.2.2  SWAT Model 
SWAT is a physically based, semi-distributed, meso-scale-watershed model (Arnold et al., 1998) 

widely used for prediction of the impact of land management on water, sediment and agricultural 

chemical yields (Neitsch et al., 2011; Gassman et al., 2007). The main inputs of the model are: 

Digital Elevation Model (DEM), land-use, soil, and climate data. SWAT first sub-divides a 

watershed into sub-watersheds which are further partitioned into smaller Hydrologic Response 

Units (HRU). Each HRU in a sub-basin has unique land-use, soil type, and slope class 

combination. Simulation of agroforestry scenarios in this study was based on HRU.  

 

5.2.3  Model parameterization: SWAT input data 
Climatic data was obtained from the Kenya Meteorological Department and the Tanzania 

Meteorological Agency. Daily rainfall data from 20 stations within and in close vicinity of the 

watershed (Figure 5.1) was used. For the selected period of model calibration and validation, the 

rainfall data was nearly 100% complete for more than half of the stations. Daily data sets of the 

other climatic variables i.e. maximum and minimum temperature, humidity, radiation and wind 

speed were obtained for Narok, Kisii, Kericho, and Musoma meteorological stations (Figure 

5.1). For short gaps, missing data for a particular day was filled by arithmetic mean observed for 

the day in the neighbouring stations, whereas longer gaps (more than 10 days) were filled using 

the weather generator model, WXGEN, incorporated in SWAT (Neitsch et al., 2011) that relies 

on monthly mean values.   

Shuttle Radar Topography Mission, 90-m, DEM was used for watershed delineation in SWAT. 

Soil data (scale of 1:1 million) was obtained from Kenya Soil Survey and Soil and Terrain 

Database (SOTER) of the International Soil Reference and Information Centre (ISRIC) (Batjes, 

2002). Some soil parameters that were not available from the databases, e.g. saturated hydraulic 

conductivity, were estimated using pedotransfer functions (Nemes et al., 2005). A Land–use map 

of 1983 (GoK, 1983) was used for model setup (Figure 5.1). The map was compared with 

Landsat satellite images and land–use maps by Mati et al. (2008) for the same period. The land–

use map was deemed appropriate for periods used for calibration and validation of the SWAT 
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model. The proportions of the land-uses are: 10%, 21% and 69% for agriculture, forests, and 

rangeland, respectively (Figure 5.1). 

Discharge data (for Nyangores, Amala and Mara (at Mara mines) Rivers) was obtained from 

Water Resources Management Authority (WRMA) in Kenya and the Ministry of Water in 

Tanzania. Nyangores data was 100% complete for both periods of calibration and validation. 

Mara and Amala data had gaps which were left unfilled.  

 

5.2.4  Model parameterization: Plant growth 
Although SWAT has been widely used for land–use study in tropical watersheds, its plant 

growth module is better suited for temperate regions.  As such, it has some shortcomings in 

modelling the growth of trees and perennial crops in tropical regions (Wagner et al., 2011). This 

is because, unlike in the temperate regions, plants in the tropics do not have a dormant period 

and there is no seasonal shedding and sprouting of leaves for perennials. For this reason, the 

robustness of the model and the accuracy of the output based on default plant growth module 

parameters in the tropics or absence of information on its parameterization altogether, has been 

criticized (van Griensven et al., 2012; Strauch and Volk, 2013). Plant growth in SWAT is based 

on the heat unit theory which postulates that plants require a specific amount of heat to bring 

them to maturity (Neitsch et al., 2011). Thus, SWAT accumulates heat units from planting and 

maturity is reached when the plant-specific total heat units (PHU) are attained. A heat unit is 

equivalent to each degree of daily mean temperature above a base temperature (plant-specific 

temperature below which there is no growth).Thus, PHU is the summation of all heat units from 

planting to maturity. However, for perennials and trees, PHU are the accumulated heat units 

between budding and leaf senescence (Strauch and Volk, 2013; Neitsch et al., 2011). At the end 

of the growth cycle, plant stops transpiring and uptake of water and nutrients (in SWAT) 

(Neitsch et al., 2011). The repeat of the growth cycle for perennials and trees is triggered either 

by dormancy (in-turn triggered by latitude-dependent shortening of day length) or use of ‘kill’ 

operation (Strauch and Volk, 2013; Neitsch et al., 2011). When the growth cycle is restarted, the 

accumulated heat units drop to zero and the leaf area index (LAI) is set to minimum. LAI partly 

controls water uptake by plants (transpiration) in SWAT. In SWAT, actual transpiration is 

calculated from potential evapotranspiration (PET) by Equation 5.1 when PET is simulated using 
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the Priestley and Taylor (Priestley and Taylor, 1972), or the Hargreaves methods (Hargreaves 

and Allen, 2003). Thus, when LAI drops to minimum values, transpiration reduces accordingly.  

 

Figure 5.2: Leaf Area Index simulated using a) case 1: the default setting in SWAT (Minimum 
LAI = 0.75; ‘start growing season’ PHU fraction = 0.15) and b) case 2: adjusted values 
(Minimum LAI = 3.00; ‘start growing season’ PHU fraction = 0.001). PHU = 3500  

 𝐸𝑊 =  𝐸0
′ .𝐿𝐿𝐿
3

                                       0 ≤ 𝐿𝐿𝐿 ≤ 3   

𝐸𝑊 =  𝐸0′                                              𝐿𝐿𝐿 > 3                                                                                              (5.1)                                                                        

Where Et is the maximum transpiration on a given day (mm), E’0 is the potential 

evapotranspiration adjusted for evaporation of free water in the canopy (mm), and LAI is the leaf 

area index.  

To adapt plant growth for our study site, the ‘kill’ operation was used to restart the growth cycle 

for trees and perennials. The minimum LAI for trees was increased from the default 0.75 (which 

is based on tree physiology in temperate regions) to 3.0 which is typical for the region 

(Broadhead et al., 2003; Muthuri et al., 2005). This ensured tree water use does not go 
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unrealistically low in this tropical watershed. In SWAT, growth is initiated after a certain PHU 

fraction is attained. For this study, this fraction was reduced from the default of 0.15 to a small 

value of 0.001 to ensure that growth starts immediately after the growth cycle begins and allow 

for continuous transpiration.  Simulated forest LAI using SWAT default values and the adjusted 

values (Figure 5.2) clearly indicate that the default values do not represent the growth that is 

typical in the tropics and therefore underestimates transpiration (Equation 5.1). The Priestley and 

Taylor (1972) method was used for calculation of transpiration in this study. Considering data 

availability and quality in the study site, this method was preferred because it uses less climatic 

data, unlike the widely used Penman-Monteith method (Allen et al., 1998) which is data 

intensive. The Priestley and Taylor (1972) method has been found to give better results than 

many other methods (e.g. Lu et al., 2005; Ding et al., 2013; Juston et al., 2014) particularly in 

areas with data availability or quality challenges. 

The adjusted values (case 2 in Figure 5.2) were considered to provide a better representation of 

the leafing phenology and tree water use reported from field studies conducted in the region 

(Broadhead et al., 2003; Muthuri et al., 2004; Radersma et al., 2006; Ong et al., 2007). The 

seasonal variation in LAI also matched the bimodal pattern of rainfall in the watershed with 

minimum LAI coinciding with the dry seasons of January-February and July-August when 

growth is limited by moisture availability. July and August are also the coldest months of the 

year further limiting plant growth. Maximum LAI, and by extension high evapotranspiration, 

coincided with the long and short rains which was well simulated by the two cycles of leaf flush 

of trees observed in this region (Muthuri et al., 2004; Broadhead et al., 2003). 

5.2.5  Calibration 
Streamflow data for Nyangores tributary and the main Mara River at Mara mines were used for 

calibration and validation while that of Amala tributary was used for validation only. Nine years 

of daily streamflow data was used: four years (1979-1982) for calibration and five years (1974-

1978) for validation. A two-year ‘warm up’ period was allowed for both calibration and 

validation. Calibration and validation periods also included dry and wet years and therefore low 

and high flows were well represented. The selection of this period (1974-1982) was guided by 

consideration of the completeness and degree of confidence of both meteorological and 

streamflow data at the three gauging stations. The main gauging station at Mara Mines has no 
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recent streamflow data sufficient for model calibration; the data after 1990 is largely missing 

(McClain et al., 2014; Melesse et al., 2008). Of the two upper tributaries, the available 

streamflow data for Amala is of lower quality compared with that of Nyangores (Dessu and 

Melesse, 2012). It has many and long gaps; and we further established that the data had higher 

uncertainty for the period after 1980, arising from faulty rating equations. The land-use map used 

(for 1983) was considered appropriate to represent the land conditions during the calibration and 

validation periods. During the model setup, the MRB (up to Mara mines gauging station) (Figure 

5.1) was subdivided into 92 sub-basins. The spatial variability of the watershed conditions in the 

MRB was taken into account during the model calibration which was done in two stages: first for 

the sub-basins in the upper Mara and then for the larger basin without changing the calibrated 

parameter values obtained for the upper Mara sub-basins. 

For the upper Mara, calibration was done with the main outlet at Nyangores River at Bomet and 

the corresponding measured streamflow data for the station was used. After calibration and 

validation of the Nyangores sub-watershed, the optimized parameter set was then transferred to 

the neighbouring Amala sub-watershed. The two sub-watersheds are similar in topography, size, 

land–use, soils and climate. Due to its low quality, the streamflow data for Amala was only used 

for validation, and the validation period was prior to 1980 when the data quality was better. 

Considering the low quality of observed streamflow data for Amala and taking advantage of its 

topographical similarity with Nyangores, we sought to investigate how well the model 

parameters calibrated for Nyangores would perform when transferred to Amala. 

Calibration parameters (Table 5.1) were identified by sensitivity analysis and Latin hypercube 

sampling was used to select sets of parameter values for automatic calibration using Particle 

Swarm Optimization (PSO) algorithm (Kennedy and Eberhart, 1995; Eberhart and Shi, 2001). 

The principle of PSO is based on the social behaviour of a population of particles (i.e. swarms 

such as flocking birds) moving towards the most promising area of the search space (e.g. 

location of food) (Reddy and Kumar, 2007). PSO is initialized using a group of random particles 

(e.g. through Latin hypercube sampling) with each particle representing a possible solution. Each 

potential solution is also assigned a randomized velocity which directs the ‘flying’ of the 

particles (Eberhart and Shi, 2001; Reddy and Kumar, 2007). The potential solutions are then 

“flown” through the problem space (Eberhart and Shi, 2001; Shi and Eberhart, 1998). At the end 
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of each iteration, the position and velocity of a particle (i.e. parameter set) are updated. The 

position represents the current value within the search space and velocity represents the direction 

and the speed the search is moving in (i.e. rate of change in the dimensional space). The 

positions of the particles are changed (updated) within the search space based on the social 

tendency of the individuals (particles) to emulate the success of other individuals (Reddy and 

Kumar, 2007). All the particles have fitness values which are evaluated by the objective function 

to be optimized. Each particle keeps track of its coordinates in the solution space which are 

associated with the best solution (fitness) it has achieved so far i.e. the ‘pbest’. PSO also tracks 

the best solution achieved at any point by any particle in the population (swarm) which is 

referred to as global best solution (‘gbest’) (Poli et al., 2007; Eberhart and Shi, 2001). Each PSO 

iteration aims to move each particle, by changing its velocity, closer to its personal best (‘pbest’) 

position and the global best position. After several iterations, one good solution (optimized) is 

produced when the particles converge towards the global optima.  

Table 5.1: Calibrated SWAT model parameters 

Parameter Calibrated parameter values Parameter 
range used for 
calibration 

Description 
common Upper 

Mara 
MRB 

Surlag 3.74   0  -  4 Surface runoff lag coefficient 
AWC* 0.14   -0.20 – 0.20 Available water capacity of soil 
CN FRSE 35   35 - 40 Initial Soil conservation 

service (SCS) runoff 
curve number for 
moisture condition II 

Forest 
‘evergreen’ 

FRST 36   35 - 40 Mixed forest 
AGRR 60   60 -75 Agriculture 
SWHT 71   60 - 75 wheat 
RNGE 36   35 - 45 rangelands 

CH_N  0.12 0.09 0.01-0.3 Manning's "n" value for the main 
channel 

CH_K  3.23 2.98 0-10 Effective hydraulic conductivity in main 
channel alluvium (mm/hr) 

ALPHA_BF  0.75 0.98 0.6  -  0.99 Base flow alpha factor (l/days) 
GW_delay  31.0 4.91 0 - 31 Ground water delay time (days) 
GW_Revap  0.14 0.10 0.02 - 0.15 Groundwater "revap" coefficient 
GWQMN  200 1869 150 - 2000 Threshold depth of water in the shallow 

aquifer required for return flow to occur 
(mmH2O) 

Rchrg_dp  0.25 0.10 0.02 - 0.25 Deep aquifer percolation fraction 
*percent of the parameterized soil awc for layer of each soil 
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5.2.6  Evaluation of model performance  
Goodness-of-fit (fit-to-observation) was used as the main criterion for evaluation of model 

performance (Moriasi et al., 2007; van Griensven et al., 2012). In addition, we also evaluated the 

catchment water balance in order to ensure the various components (e.g. runoff, 

evapotranspiration and groundwater contribution to streamflow) were within reasonable ranges 

typical of the study area. The aim was to ensure a realistic representation of hydrological 

processes and watershed conditions of the MRB (fit-to-reality). We also aimed to ensure that the 

calibrated model was fit for the intended purpose of land-use change simulation (fit-to-purpose) 

(van Griensven et al., 2012). We focused on selection of realistic ranges of the model input 

parameter values in order to reduce uncertainty in the model outputs (Arnold et al., 2012). 

Selection of realistic ranges of SWAT input parameters prior to calibration has been shown to 

reduce model prediction uncertainties (Zhenyao et al., 2013; Benaman and Shoemaker, 2004). 

We particularly paid special attention to model parameters that govern the water ‘loss’ from the 

system e.g. CH_K, GWQMN, GW_Revap and Rchrg_dp (Table 5.1) (Neitsch et al., 2011). 

Wrong selection of these parameter values may lead to unrealistic water balance even when there 

is a good fit between observed and simulated streamflows. For example, high values of 

Rchrg_dp may lead to high deep percolation losses which may be compensated by unrealistically 

low levels of evapotranspiration, even in cases where streamflow is within the ranges of 

observed values. Qualitative and quantitative guidelines on the appropriate ranges of these 

parameters for the study region are given by van Griensven et al. (2012). 

Knowledge of the watershed is important in hydrologic modelling as there is no automatic 

procedure of parameterization and calibration which can substitute for actual physical knowledge 

(Arnold et al., 2012). Zhenyao et al. (2013) studied the impact of parameter distribution 

uncertainty on hydrological modelling using SWAT and recommends use of any available 

knowledge of the watershed to aid selection of realistic parameter ranges to reduce prediction 

uncertainties. Besides the guidelines by van Griensven et al. (2012), we used our watershed 

knowledge as well as knowledge from our past experience of SWAT application in the region 

(e.g. Gathenya et al., 2011, Mwangi et al., 2012a, Mwangi et al., 2015c) and literature of SWAT 

application in the area (e.g. Dessu and Melesse, 2012; Mango et al., 2011; Githui et al., 2009; 

Baker and Miller, 2013) to select reasonable SWAT input parameter ranges (Table 5.1). In 

addition, preliminary model runs were used to guide the selection of the parameter ranges that 
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represent reasonable water balance conditions of the watershed. Typical ranges of water balance 

components e.g. surface runoff, baseflow and evapotranspiration were also assessed based on the 

knowledge of the watershed as well as published literature in the region (e.g.  Dagg and Blackie, 

1965, 1970; Krhoda, 1988; Water Resources and Energy Management, 2008; Mati et al., 2008; 

Mutiga et al., 2010; Recha et al., 2012; Dessu and Melesse, 2012; Baker and Miller, 2013; 

Mwangi et al., 2016b). Dagg and Blackie (1965, 1970) reported that ‘deep percolation loss’ was 

minimal for their experimental study site in Mau forest. This information, for example, guided us 

in setting up the upper limit for the parameter Rchrg_dp and results of ‘deep percolation loss’ 

from preliminary model runs helped in adjusting the parameter value range. In another example, 

our previous study in the watershed (Mwangi et al., 2016b) showed that baseflow constitutes a 

large percentage (ca. 80%) of the streamflow of Nyangores sub-watershed. We used this 

information to evaluate the water balance components in our preliminary model runs and adjust 

relevant ranges of the relevant input parameters e.g. GWQMN (Table 5.1).   Further model 

parameterization, particularly regarding the adaptation of the plant growth module for the 

watershed, ensured that the calibrated model was fit for the purpose (i.e. land–use simulation). 

Statistical fitting of the simulated and observed streamflow was then used for model performance 

evaluation during automatic calibration. Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 

1970) was used as the objective function in the PSO algorithm. NSE is a normalized statistic 

ranging from - ∞ to 1 and is calculated as follows: 

𝑁𝑆𝐸 = 1 − � ∑ {𝑞𝑜𝑜𝑠(𝑊)−𝑞𝑠𝑠𝑚(𝑊)}2𝑛
𝑠=1

∑ {𝑞𝑜𝑜𝑠(𝑊)−𝑞𝑚𝑚𝑚𝑛𝑚𝑜𝑠}2𝑛
𝑠=1

�                                     (5.2) 

where qobs(t) is the observed discharge at time step t, qsim(t) is the simulated discharge at time 

step t, qmeanObs is the mean of the observed discharge over the simulated period, and n is the total 

number of observations.  

One limitation of NSE is that it underestimates peak flows and overestimates low flows (Gupta 

et al., 2009). In light of this, a second objective function, Kling–Gupta Efficiency (KGE) (Gupta 

et al., 2009), was used for evaluation of model performance to overcome the weakness of NSE. 

The KGE statistic is based on the decomposition of model error into three distinct components 

which measure the linear correlation, the bias and the variability of flow respectively (Gupta et 

al., 2009; Kling et al., 2012). The latter two components relate to the ability of the model to 
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reproduce the distribution of flow as summarized by first and second moments (i.e. mean and 

standard deviation) while the former relate to the ability to reproduce the timing and shape of the 

hydrograph. KGE is calculated as follows: 

𝐾𝐾𝐸 = 1 −  �(𝑎 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2             (5.3) 

𝛼 = 𝜎𝑠𝑠𝑚
𝜎𝑜𝑜𝑠

                              (5.4) 

𝛽 = 𝜇𝑠𝑠𝑚
𝜇𝑜𝑜𝑠

                                                       (5.5) 

              

where r is the correlation coefficient between simulated and observed streamflow, α is the 

variability ratio, β is the bias ratio,  𝜎 and  µ are the standard deviation and the mean of the 

streamflow respectively, and indices sim and obs represent simulated and observed values of 

streamflow respectively. 

5.2.7  Simulation of agroforestry  
After calibration and validation of the SWAT model, agroforestry land–use scenarios were 

simulated. The structure of the SWAT model allows only one plant or crop type per HRU.  The 

most typical systems of agroforestry in the watershed are: 1) intercropping sparsely distributed 

trees with different crops, 2) trees along the hedges and borders, and 3) woodlots (Nyaga et al., 

2015; Lagerlöf et al., 2014). The first two agroforestry systems posed a challenge to be explicitly 

implemented in SWAT due to the model structure. Thus, agroforestry was implemented as 

woodlots at the HRU level. Woodlots have recently become popular in Kenya due to high 

demand for wood products (Nyaga et al., 2015). The woodlots were considered to offer, at the 

watershed level, a general spatial representation of the practical agroforestry system. 

Additionally, the hydrological impact (i.e. water use and infiltration characteristics) of 

agroforestry at the farm level was, to a larger extent, captured at the sub-basin level. 

The agroforestry scenarios were simulated on land currently under cultivated agriculture 

implemented on a SWAT project based on 2014 land-use (Lariu, 2015). The selection of 

agroforestry scenarios was based on tree cover increment in the MRB upstream of Mara gauging 

station (Figure 5.1). To increase the area under agroforestry (tree cover), the number of HRUs 

with trees (forest) were increased by conversion of some HRUs previously under agriculture to 
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woodlots (i.e. pure tree stand with properties of a forest). To implement this in SWAT, we 

considered slope as a practical criteria which additionally provided another advantage of 

maintaining the same HRU configurations across all the scenarios. We therefore selected four 

slope classes i.e. 0-10%, 10%-15%, 15%-20% and over 20% when creating the HRUs and which 

were later used as the basis for implementing the agroforestry scenarios.  

All the scenarios were assessed relative to the base scenario that represents the current land-

use/cover (for year 2014) in the basin (Figure 5.3a). For clarity, Figure 5.3 only shows maps of 

land–use and agroforestry scenarios for the Nyangores sub-watershed. The first scenario was 

implemented by changing all the HRUs under cultivated agriculture, that fall within the slopes 

above 20%, to woodlots (Table 5.2). Similarly, the second scenario was simulated by converting 

the HRUs in the slope category of 15 - 20% which were under cultivated agriculture to woodlots. 

So, in total for this scenario, all the agricultural HRUs in slopes >15% were simulated as 

woodlots. The same was done for the slope class of 10 - 15% for the third scenario. Other than 

change in vegetation, infiltration properties of the target HRUs were also adjusted from that of 

agriculture to that of forest. This was accomplished in SWAT by change in curve number (Table 

5.1). The curve number is a parameter of the United States Soil Conservation Service (SCS) 

empirical equation (SCS, 1972) used for estimation of surface runoff. It is a function of soil 

permeability, land–use, and antecedent soil water conditions. Agricultural HRUs in the slope 

class of 0-10% were not converted to woodlots as that would have simulated complete 

afforestation of the upper Mara watershed which was not the objective of this study and is 

neither practical in this area where smallholder agriculture is the main source of livelihood (Atela 

et al., 2012).  
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Figure 5.3: Land–use and agroforestry scenario maps  (for Nyangores sub-watershed only): (a) 
Land–use/cover map (2014); also represents the base scenario. (b, c, and d) Agroforestry 
scenarios 1, 2, and 3 respectively (showing the forest cover in the base scenario (light green) and 
additional areas simulated with woodlot agroforestry (dark green).  

Table 5.2: size of the watershed converted to forest  under the three agroforestry scenarios  

 Mara River Basin (area = 10,550 km2)  
Scenario Lower slope threshold (%) area (ha) % of watershed area 

S1 20 18,559 1.8 
S2 15 34,321 3.3 
S3 10 63,810 6.0 

 Nyangores sub-watershed (area = 692 km2) 

Scenario Lower slope threshold (%) area (ha) % of watershed area 
S1 20 4,420 6.4 
S2 15 9,965 14.4 
S3 10 19,380 27.9 
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5.3  Results and Discussion 

5.3.1  Calibration and validation 
The monthly NSE (and KGE in parenthesis) values obtained for calibration are: 0.77 (0.88) and 

0.78 (0.89) for Rivers Nyangores and Mara respectively (Table 5.3). The validation NSE (and 

KGE) are: 0.74 (0.85), 0.75 (0.68) and 0.79 (0.63) for Rivers Nyangores, Amala and Mara 

respectively. These values indicate that the SWAT model performance for this study was better 

compared to other previous studies in the watershed (Mango et al., 2011; Dessu and Melesse, 

2012). This is probably due to better representation of tree growth (particularly with regard to 

water use) for tropical conditions. Unrealistic representation of forest transpiration in the tropics 

has been cited as one of the possible causes of marginal effect of forest-related land–use change 

on water balance in some of the previous simulation studies (e.g. Mango et al., 2011; Githui et 

al., 2009) conducted in the region (van Griensven et al., 2012). Separate calibration of the 

headwater sub-watersheds before including the rest of the basin may have also improved the 

model performance in this spatially-variable watershed. The daily hydrographs (Figure 5.4) show 

that the model, to a higher level of degree, reproduced the observed streamflow at all the gauging 

stations and thus well represented the rainfall runoff processes of the basin. This is confirmed by 

percent bias (PBIAS) which measures the average tendency of the simulated streamflow being 

larger or smaller than observed streamflow (Gupta et al., 1999). The PBIAS values for 

calibration (and validation in parenthesis) are: 1.3% (-8.9%), -0.12% (-34%) and (3.9%) for 

Rivers Nyangores, Mara and Amala respectively. All the values except for validation at Mara 

mines are within the ± 25% range proposed by Moriasi et al. (2007) for satisfactory calibration. 

The slight overestimation of average flow for Mara mines could be caused by slightly higher 

simulated peak flow which is also visible in the other hydrographs (Figure 5.4). This may be 

caused by the uncertainty in the observed streamflow data arising from inability to accurately 

measure high flows in the manual river gauging stations or from rating equations when 

converting gauge heights of high flows to discharge (cf. Juston et al., 2014). The model 

performance at Amala sub-watershed (Table 5.3; Figure 5.4c) implies watershed characteristics 

that are similar to Nyangores and that the streamflow of Nyangores River can be used to infer the 

hydrology of Amala sub-watershed (Klemeš, 1986). The validated model could also be useful in 

correcting streamflow records for Amala River for the period after 1980.  
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Table 5.3: Daily and monthly Nash-Sutcliffe efficiencies (NSE) and Klingupta efficiencies (KGE) 

Calibration 
                Daily            Monthly 
Gauging station NSE KGE NSE KGE 
Nyangores 0.65 0.81 0.77 0.88 
Maramines 0.46 0.72 0.78 0.89 

Validation 
Nyangores 0.63 0.80 0.74 0.85 
Maramines 0.56 0.52 0.79 0.63 
Amala 0.67 0.67 0.75 0.68 
 

 

 

 

 

Figure 5.4: Daily hydrographs for observed and simulated streamflow  of: a) Nyangores River at 
Bomet, b) Mara River at Mara mines and c) Amala River at Mulot  

 

 



 

119 
 

 

5.3.2  Impact of agroforestry on catchment water balance 
Simulation results (Table 5.4) demonstrate that surface runoff, lateral flow, groundwater 

contribution to streamflow and the overall water yield decreased with increase in area under 

agroforestry. This was compensated by an increased rate of evapotranspiration. Surface runoff 

decreased by about 14%, 31% and 54% (Figure 5.5a) when the area of the watershed under tree 

cover was increased by 6.4%, 14.4% and 27.9% (Table 5.2) respectively. Similarly, groundwater 

contribution to streamflow decreased by about 5%, 11%, and 20% respectively for the three 

scenarios. The overall effect of the three scenarios on total water yield was a decrease by about 

5%, 12%, and 22% respectively in that order of increasing tree cover. Meanwhile, 

evapotranspiration increased by 2%, 4% and 7% respectively. These results are consistent with 

the findings reported from paired catchment experimental studies (Brown et al., 2013; Zhao et 

al., 2012; Zhang et al., 2012; Scott and Lesch, 1997) and model simulation studies (Suarez et al., 

2014; Githui et al., 2009) that have reported decrease in water yield and increase in 

evapotranspiration following establishment or increase of watershed tree cover. 

Table 5.4: Water balance (in mm) of the Nyangores sub-watershed  for the three agroforestry scenarios  

 
Base S1 S2 S3 

Precipitation  1429.6 

Surface runoff  29.7 25.5 20.6 13.8 
Lateral flow  29.2 28.0 27.5 27.0 
Groundwater flow (GwQ)  295.4 281.4 263.9 235.7 
Revap  0.45 0.46 0.47 0.48 
Total water yield  354.3 334.9 311.9 276.5 
Evapotranspiration (ET)  1057.8 1076.4 1098.6 1133.1 

Potential ET (PET)  1605.9 
Groundwater flow (GwQ) is the groundwater contribution to streamflow.  

The decline in surface runoff can be attributed to increased infiltration (Brown et al., 2005; 

Benegas et al., 2014) and canopy interception (Ghazavi et al., 2008). Establishment of trees on 

land formerly under cultivated agriculture improves the infiltration conditions of the soil, thereby 

absorbing more rainfall and reducing the surface runoff. Field experimental study by Anderson et 

al. (2009), for example, reported significantly higher infiltration in the agroforestry buffer 

treatments compared with row crop treatments. Ketema and Yimer (2014) also reported higher 
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infiltration for agroforestry treatments than for maize treatments for their study in Southern 

Ethiopia. Practising of intensive agricultural cultivation, as is the case currently in the upper 

Mara, continually degrades the soil and reduces its capacity to absorb rainwater mainly due to 

compaction of lower soil horizons, decrease in organic carbon and porosity (Recha et al., 2012; 

Bruijnzeel, 2004). Trees on the other hand, aid in the recovery of degraded lands (Udawatta et 

al., 2008; Lagerlöf et al., 2014). High organic matter, presence of live and dead roots, increased 

soil micro-fauna and enhanced macro-pore flow are some of the factors that improve soil 

infiltration after establishment of agroforestry (Ketema and Yimer, 2014; Udawatta  and 

Anderson, 2008).  However, it should be noted that soil infiltration capacity recovery may take 

some time (Bruijnzeel, 2004) and potential gains in water infiltration reported here may not be 

achieved immediately after the establishment of agroforestry (Brown et al., 2013).  

 

Figure 5.5: Relative impact of increasing area under agroforestry on water balance  of: a) 
Nyangores sub-watershed and b) larger MRB. SurQ is the Surface runoff, LatQ is the lateral 
flow, GWQ is the groundwater contribution to streamflow, Total WYLD is the total water yield 
and ET is the evapotranspiration  

 

Although there was increased infiltration for the agroforestry scenarios, which ideally increases 

recharge of aquifers, there was also a decrease in baseflow. This can be attributed to an increase 
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in water extraction from the soil and aquifer by the trees. Trees often have deeper and more 

extensive rooting systems than other vegetation which enables them to extract groundwater to 

meet the evapotranspiration demand, especially during the dry seasons when the top soil is dry 

(Thomas et al., 2012; Doody and Benyon, 2011a; FAO, 2006; Calder, 2005; Benyon et al., 

2006). A study by Pinto et al. (2014), for example, estimated that annual soil and groundwater 

contributions to tree transpiration were about 70% and 30%, respectively. However, during the 

dry summer months the groundwater contribution became dominant and rose to 73% of 

transpiration. Additionally, trees have higher aerodynamic roughness than crops that favour 

higher evapotranspiration rates (Calder, 2005). The differences in leaf, size, shape, thickness, 

anatomy and chlorophyll content between trees and other plants and even between trees species 

also affects the rate of transpiration (Muthuri et al., 2009). Consequently, increase in tree cover 

through agroforestry also increases water use in the watershed in form of evapotranspiration. A 

study by Muthuri et al. (2004) in central Kenya found that water use in agroforestry systems was 

higher than for treatments under only maize cultivation. The decrease in groundwater in shallow 

aquifers, due to increased uptake by trees, decreases the water available and the amount released 

to the streams as baseflow (Adelana et al., 2015; Fan et al., 2014; Doody and Benyon, 2011b). 

Generally, the change in baseflow may be either positive or negative depending on the water 

budget in the aquifer storage (Bruijnzeel, 2004). If the incoming water, as a result of improved 

infiltration, surpasses the extra water removal by trees, then the extra storage may lead to 

increase in baseflow. The reverse is also true in the case of negative change in aquifer storage as 

was the case in our study (Brown et al., 2005; Bruijnzeel, 2004). The overall water yield, which 

is essentially a summation of surface runoff, lateral flow and groundwater contribution to 

streamflow, also decreased with an increase in the area under agroforestry. 

The water balance results (Table 5.4) are based on past climatic conditions (1980-1990). Because 

the base scenario was based on current land-use conditions (2014 land-use map), the changes in 

climate between the 1980’s and 2014 may slightly affect the absolute values of the water 

balance. The changes are however, expected to be minimal. For the upper Mara, Mwangi et al., 

(2016b), estimated that climate variability only contributed about 2.5% increase in streamflow 

for Nyangores sub-watershed in the last half a century, the rest being contributed by land-use 

changes.  No major changes, however, are expected on the relative results obtained for the 
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simulation of agroforestry (Figure 5.5), because all the scenarios were assessed based on the base 

scenario (i.e. same climatic conditions between base scenario and all the other scenarios).  

Similarly, climate change may as well affect the absolute values of water balance but not the 

relative changes (percentage change in water balance) due to implementation of agroforestry. 

Mwangi et al. (2016b) estimated that climate change would cause a 15% increase in streamflow 

(over the next 50 years) in the upper Mara watershed, which is indicative of how the absolute 

values of the water balance might change. The change in individual water balance components 

might, however, not be linear due change in climate seasonality (Dessu and Melesse, 2013). 

5.3.3  Impact of spatial scale 
For the larger MRB, surface runoff decreased by about 4%, 7% and 12.5% respectively for the 

three scenarios in the order of increasing area under agroforestry (Table 5.5; Figure 5.5b). The 

groundwater contribution to streamflow and the water yield similarly decreased by 2%, 4.5% and 

8.5%, and 2.5%, 5% and 9% respectively for each of the three scenarios. The evapotranspiration 

however increased by approximately 0.5%, 1%, and 2% (Figure 5.5b). The results illustrate a 

similar trend as that of the Nyangores sub-watershed (Figure 5.5a) which can be attributed to 

similar causes. The only difference is in the magnitude of the relative changes. For all the water 

balance components, the relative change (impact of agroforestry) was larger at Nyangores sub-

watershed compared to the larger MRB. This can be attributed to the differences in the ratio of 

area simulated with agroforestry to the total sizes of respective watersheds (Brown et al., 2005; 

Bruijnzeel, 2004). The proportion of watershed areas simulated with agroforestry were 1.8%, 

3.3% and 6% of the watershed area respectively for the three scenarios for the MRB compared 

with 6.4%, 14.4% and 27.9% respectively for Nyangores sub-watershed. It is therefore apparent 

that watershed scale has a profound effect on the impact of agroforestry on watershed hydrology. 

Comparison of the relative impact of the ratio of watershed under agroforestry on water yield 

between the two watersheds, reveals an interesting effect of scale (Figure 5.6). It can be seen that 

although the impact of each of the agroforestry scenarios on water yield was higher for 

Nyangores sub-watershed, the slope was higher for the MRB than for Nyangores. This may have 

been caused by climate variability within the MRB (Brown et al., 2005). From Tables 5.4 and 

5.5 it can be seen that whereas the average precipitation and potential evapotranspiration are the 

same across the three scenarios in each of the two watersheds, the values are different for the 



 

123 
 

two. The average rainfall is higher for the upstream Nyangores sub-watershed (1430 mm) than 

for the larger MRB (1045 mm). This is because the lowlands (Maasai Mara-Serengeti region) 

experience lower rainfall compared with the upper Mara (Mau Forest). Average temperatures 

however, are higher in the lowlands than highlands and consequently the potential 

evapotranspiration is slightly higher for the larger Mara (1629 mm) than for Nyangores (1605 

mm). This implies that generalisation or extrapolation of the impact of agroforestry (or of any 

other forest-related land-use change) of a small catchment to the larger watershed, may not be 

practical without considering the effect of climate variability within the watershed (Brown et al., 

2005). 

Table 5.5: Water balance (in mm) of the MRB  for the three agroforestry scenarios  

 
Base S1 S2 S3 

Precipitation  1044.6 

Surface runoff  23.8 22.9 22.1 20.8 

Lateral flow   10.3 9.9 9.8 9.7 

Groundwater flow (GwQ)  106.1 103.8 101.2 96.9 

Revap  124.4 123.9 123.5 122.8 

Total water yield  140.1 136.6 133.2 127.3 

Evapotranspiration (ET)  750.9 755.0 758.8 765.6 

Potential ET (PET)  1628.9 

Groundwater flow (GwQ) is the groundwater contribution to streamflow.  

5.3.4  Implication for water resources management 
The main finding of this study is that agroforestry would increase water demand and hence 

evapotranspiration and reduce the water yield (streamflow) of the Mara River. Reduced flows 

may be a concern by water managers who are tasked with managing the resources against an 

increasing demand (Dessu et al., 2014). However, these findings should be viewed within the 

broader context of environmental services provided by agroforestry. This is necessary because in 

the last few decades there has been a paradigm shift on how water resources should be managed 

(Sivapalan et al., 2012). Integrated Water Resources Management (IWRM) has now been 

accepted worldwide as an effective management approach of water resources (UNEP, 2010; 

GWP, 2000). IWRM advocates for a holistic approach in water management where water, land 

and other resources (e.g. forestry) are managed in an integrated manner- because they are 
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interlinked (Mwangi et al., 2015a). Agroforestry, for example, additionally provides other 

environmental services e.g. soil erosion control, provision of wood products such as timber and 

fuelwood, carbon sequestration, modification of microclimate (Ong et al., 2006; Nair, 1993). Soil 

erosion control is directly related to the findings reported here. The decrease in surface runoff 

due to agroforestry as reported in this study would consequently reduce soil erosion which is still 

a major problem in the MRB (Defersha and Melesse, 2012; Defersha et al., 2012; Kiragu, 2009). 

Reduced soil erosion would essentially reduce loss of top fertile soils in farmlands and hence 

control decline in land productivity for improved crop production. Decline in land productivity in 

the upper Mara has led to increased encroachment of the Mau forest by the local communities 

whose main economic activity is subsistence farming (Mati et al., 2008). Reduction in soil 

erosion would also minimize sedimentation in the rivers and thus improving the water quality. 

This is very important because the majority of people living in the watershed consume the water 

directly from the stream without any form of treatment (Ngugi et al., 2014; Dessu et al., 2014). 

For the few who live in towns within the watershed and who have the privilege of using treated 

water, reduced sediment loads would lower water treatment costs. Another key benefit of 

agroforestry is the provision of timber and fuelwood which would lower the pressure on the 

native forests. In Kenya, about 89% of people living in rural areas rely on fuelwood for their 

energy needs (World Resources Institute, 2007; Nyaga et al., 2015) which demonstrates the 

importance of agroforestry in the livelihoods of rural communities. Agroforestry would also be a 

means of restoring back some of the degraded parts of the watershed that was initially under 

forest. 

It is also worth mentioning that the results reported here are based on annual averages. Water 

resources management should go beyond the annual averages and consider the intra-annual 

flows. This is because streamflow seasonality is a key determinant of water availability 

(Hoekstra et al., 2012) particularly for an unregulated river like Mara (Young, 2014).  The River 

Mara is only 395 km long from the source to its mouth in Lake Victoria. This means it only takes 

a few days for water from the headwaters to drain in the Lake and therefore most of flood water 

especially in the two wet seasons ends up in the Lake and this may still be the case even in case 

of implementation of agroforestry. Flood water harvesting for the Mara would therefore be a 

very practical management strategy to ensure temporal distribution of water availability 

throughout the year.  
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Figure 5.6: Relationship between ratio (%) of watershed simulated with agroforestry and change 
in water yield  for MRB and Nyangores  

 

Our study has shown that the reduction in mean streamflow, due to implementation of 

agroforestry on MRB, would be higher on the Kenyan side of the Mara compared to the 

Tanzanian side. Integration of management of trans-boundary basins is also emphasised in 

IWRM, therefore a more holistic view of watershed management in the MRB is required. Our 

findings viewed under the lens of IWRM, would therefore provide crucial information for 

watershed management of MRB. The three scenarios further provide some guidelines on trade-

offs that can be made between streamflows and other environmental services especially by the 

Kenyan government which is keen to increase tree cover of the heavily deforested upper Mara 

basin and Mau Forest in general (GoK, 2009). 

At a global level, the SWAT model is increasingly getting wide application in land-use and water 

resources studies (Gassman et al., 2010). Because agroforestry is also a common land-use 



126 
 

practice worldwide, especially in tropical Africa, Asia and America (World Agroforestry Centre, 

2009), there is a need to provide ways/methods of modelling agroforestry in SWAT. We have 

provided a simple approach using the current model structure, with good results. However, more 

is required to make the model structure flexible to enable modelling of different agroforestry 

systems e.g. allow intercropping in the same HRU. 

5.4  Conclusions 
The SWAT model was used to simulate the impact of agroforestry on the hydrology of the MRB. 

Prior to simulation of agroforestry scenarios, the model was successfully parameterized, 

calibrated and validated. We have provided a simple approach for simulating agroforestry in 

SWAT using the current model structure. We note however that more model structure flexibility 

is required to incorporate different agroforestry systems. We provide a simple way in which the 

model can reasonably simulate tree growth in the tropics without changing the source code. 

Though simple, this kind of parameterization, which involves adjusting the minimum LAI and 

fraction of tree heat unit to initiate growth, was considered better than the use of the default 

parameters that are better suited for temperate regions. Use of this approach of parameterization 

can greatly improve SWAT land-use modelling in tropical countries of the world. 

Model simulation scenarios showed that agroforestry would generally reduce surface runoff, 

lateral flow, groundwater contribution to streamflow and the water yield while 

evapotranspiration would increase. The relative change in the water balance components was 

proportional with increase in area under agroforestry. The decrease in surface runoff was mainly 

attributed to improved water infiltration conditions offered by the trees. Overall water yield 

decline was attributed to extra water use by trees which extract water from shallow aquifer 

storage owing to their deep rooting system and also transpire more as a result of larger 

aerodynamic conductance.  

Spatial scale was found to have a significant role in determining the magnitude of change in 

hydrology; the impact of agroforestry was bigger for the smaller up-stream Nyangores sub-

watershed compared with that of the entire MRB. This shows that the impact on hydrology is 

directly related to the fraction of the watershed implemented with agroforestry. It was also found 

that the slope of change of water yield with increase in tree cover was different for the MRB 

compared to that of one of its upstream sub-watershed (Nyangores). This was attributed to the 
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spatial variability of climate within the MRB. This implies that generalization or extrapolation of 

effect of agroforestry (or any other change in tree cover) from small to larger watersheds may not 

be accurate without eliminating or taking into account climate variability within or between 

watersheds. This information is particularly important for the scientific community working on 

small experimental study sites with an aim of extrapolating the results (or modelling) to large 

watersheds. 

We conclude that these findings would be more beneficial to water resources managers when 

viewed from a broader perspective of IWRM. Agroforestry has many other related ecosystem 

services e.g. soil erosion control, which is directly related to our findings of reduction in surface 

runoff. Reduced surface runoff, and by extension soil erosion control, may also have 

multiplication of other benefits such as drinking water quality improvement and enhanced crop 

production for the subsistence farmers in the watershed. Owing to the high levels of competition 

for land between forestry and crop production in the basin, the results of the three agroforestry 

scenarios which are based on tree cover increment, may be used as a guideline to assist water 

resource managers and policy makers in making practical trade-offs between change in water 

yield and other benefits of agroforestry. 
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6 Chapter six: Synthesis and conclusions 

6.1  Land use change 
Land use change was assessed by the intensity analysis approach (Aldwaik and Pontius, 2012) 

using data from land use maps generated from Landsat satellite images taken between 1976 and 

2014 in four consecutive intervals. Forest loss and expansion of agriculture were found to be on 

the rise. Forest reduced from about 20% of the study area in 1976 to about 7.5% in 2014. 

Agriculture (small scale and large scale) increased from about 6.5% of the watershed in 1976 to 

about 21% in 2014. Swap change accounted for more than 50% of overall change during the 

entire study period. Swap change is a situation where a land use category loses at one point of 

the study area but gain of equal size occurs in another part of the study area. This implies that the 

observed net changes underestimated the total land use change, which was found to be more than 

double the net changes. The net change in closed forest between 1995 and 2003, for example, 

was only 10% of the total change (of closed forest). Swap changes accounted for 90% because 

forest loss was accompanied by forest gain (regrowth) in other parts of the watershed. Results 

from intensity analysis of land use change showed there was systematic intensive conversion of 

forest to small scale agriculture and conversion of rangeland to largescale mechanized 

agriculture throughout the study period.  

The high rate of deforestation in the watershed was attributed to encroachment and a series of 

excisions particularly on the Mau forest which has occurred since Kenya’s independence in 1963 

(GoK, 2009). The local communities have been progressively encroaching into the Mau forest 

reserve over the years to the extent that the government has started evicting them from the forest 

reserve. This process has however been faced with some challenges including political 

interference, making it slow. The encroached parts of the Mau forest are used for small scale 

agriculture, and hence the observed simultaneous rise in agriculture. The increase in largescale 

mechanized agriculture was attributed to change in land tenure of the rangeland (from communal 

to private) (Kimani and Pickard, 1998). Privatization of the rangelands enabled owners to 

directly lease out their land for large-scale farming (especially of wheat) to supplement their 

income from pastoralism (Thompson and Homewood, 2002). 
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6.2  Change in streamflow due to land use change and climate variability 
The pertinent question dealt with in chapter four was whether there was a change in watershed 

hydrology. Streamflow is the main component of catchment water balance regularly measured in 

many watersheds and its analysis can give more insights into the dynamics of watershed 

hydrology. Due to data availability and quality challenges, only data from one of the upstream 

gauging stations of the Mara River (Nyangores at Bomet) was used for the analysis. The results 

from this headwater sub-watershed were however considered to be indicative of change in 

hydrology of the entire MRB. Results show a significant increasing trend of annual streamflow 

(1965-2007) with a slope of about 4.75 mm/year. Land use change contributed about 97.5% of 

the change while the rest of the change (2.5%) was caused by climate variability. The high 

contribution of change in streamflow by land use change was mainly attributed to the high level 

deforestation observed in the watershed (chapter three). Results from land use change analysis 

(chapter three) indicate that there has been consistence conversion of forest into agriculture. 

Trees are generally known to use more water (transpire) than most vegetation. Trees also have 

deeper and more extensive roots which are able to extract groundwater at relatively larger depths 

(Bruijnzeel, 2004).  Change from forest to agricultural crops would therefore reduce vegetation 

water use and thus the observed deforestation may be the main reason for increased streamflow. 

Deforestation and conversion to agriculture may as well reduce rainwater infiltration due to soil 

degradation. This may essentially increase surface runoff and reduce groundwater recharge. For 

this study however, separation of streamflow into baseflow and quick runoff showed that 

baseflow had a similar increasing trend as streamflow. This supports the reasoning that reduced 

extraction of soil water and groundwater by vegetation is mainly responsible for increase the in 

streamflow. The ‘extra’ groundwater after deforestation is released to streams as baseflow.  

The minimal impact of climate variability (2.5% of change in streamflow) was attributed to 

counter effect of increased rainfall and increase in mean temperature. Increase in temperature 

raised the atmospheric water demand of the watershed (potential evapotranspiration). Thus, the 

expected impact of increased rainfall on streamflow (increase of 24.2%) was reduced by 21.6% 

due to the extra atmospheric demand. This information was used to develop a simple runoff 

sensitivity equation to predict impact of climate change on streamflow. It was predicted that 

climate change would have a net increase in mean annual streamflow of 15% in the next 50 

years. 
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6.3  Impact of agroforestry on watershed hydrology 
Agroforestry is one of the feasible and practical ways of increasing forest cover in some of the 

parts of the watershed previously under forest but currently under intensive cultivation. The 

SWAT model was used to investigate the impact of agroforestry on the watershed hydrology. 

Model calibration results showed that the model was able to simulate the rainfall-runoff 

processes of the watershed. The model performance was considered satisfactory based on Nash-

Sutcliffe efficiency (NSE) and Kling-Gupta efficiency (e.g. NSE values of 0.78 and 0.79 were 

obtained respectively for calibration and validation of streamflow of Mara River at Mara mines 

gauging station). It was found that implementation of agroforestry in the watershed would reduce 

surface runoff, baseflow and the overall water yield (streamflow); evapotranspiration would 

however increase. Reduction in surface runoff was attributed to increased infiltration and canopy 

interception expected after establishment of agroforestry (Brown et al., 2005; Ghazavi et al., 

2008). The decline in baseflow was attributed to increase in water extraction from soil and 

aquifers by trees. This is opposite of the observed impact of deforestation in the watershed 

(chapter 4). The results imply that any extra recharge, due to enhanced infiltration brought about 

by agroforestry, would be outweighed by extra groundwater extraction by the agroforestry trees 

i.e. increased evapotranspiration.  The observed changes (in surface runoff, baseflow, water yield 

and evapotranspiration) were proportional to increase in size of the watershed simulated with 

agroforestry. For example, an increase of tree cover of about 2% of the watershed through 

agroforestry would decrease the water yield (streamflow) by about 2.5% while a decrease of 

about 9% of streamflow would be expected if the tree cover is increased by 6% of the watershed 

through agroforestry. Since decrease in streamflow may be a concern to watershed managers, the 

results of the three scenarios of agroforestry simulated with increasing levels of tree cover may 

be useful for decision making on the level of tradeoffs (between reduced streamflow and increase 

in tree cover) appropiate for the watershed. 

The impact of agroforestry on streamflow was larger for Nyangores sub-watershed compared to 

that of the larger MRB. This was attributed to effect of spatial scale because relatively larger 

fraction of the watershed was simulated with agroforestry for Nyangores compared to that of 

MRB for each scenario (Chapter 5). It was however observed that the slope (rate) of change in 

water yield with increase in tree cover was higher for MRB than for Nyangores which was 

attributed to climate variability (rainfall and temperature) within the MRB. The mean rainfall for 
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the upstream Nyangores sub-watershed is higher than the average rainfall for the MRB. The 

mean temperatures (and consequently potential evapotranspiration) are however higher for the 

lowers sections (and hence the average for MRB) than for Nyangores. This implies that the entire 

MRB has comparatively less available water (rainfall) and higher atmospheric demand (potential 

evapotranspiration) while its opposite for Nyangores; and thus the higher impact of water 

‘removal’  by agroforestry for the MRB than for Nyangores. These findings are not only useful 

for planning of agroforestry in the Mara River Basin but also for the wider scientific community 

working on small watersheds and wish to extrapolate their results for larger basins. The findings 

imply that generalization or extrapolation of impacts of land use change (e.g. agroforestry and 

afforestation) on streamflow from small (experimental) study sites to larger watersheds need to 

take climate variability into account. 

6.4  Conclusions and recommendations for watershed management 
The Mara River Basin has undergone substantial change in land use over the last 40 years. 

Transitions from forest to small scale agriculture and from rangeland to largescale mechanized 

agriculture are dominant land use changes, which indicate intensification of deforestation and 

expansion of agriculture in the watershed. Swap change accounts for more than half of the 

overall change land use change which implies that overall land use change is more than double 

of net changes that have been previously reported. 

Streamflow of the Mara River (as indicated by data from Nyangores tributary) has increased in 

the last half a century. The observed land use (particularly deforestation and intensification of 

agriculture) contributed about 97.5% of the change (increase) in streamflow. Climate variability 

(change in rainfall and temperature) contributed the rest (2.5%) of the change in streamflow. The 

minimal contribution of climate variability to change in streamflow was caused by counter 

effects of change in rainfall (increase) and temperature (increase). Increase in temperature 

increased atmospheric water demand (potential evapotranspiration) that reduced the gains in 

streamflow that would have been caused by increase in rainfall. 

The SWAT model was capable of simulating the rainfall-runoff processes of the Mara River 

Basin (based on the model performance which was assessed using Nash-Sutcliffe efficiency and 

Kling-Gupta efficiency). SWAT simulation results suggested that implementation of agroforestry 

in the watershed would cause a reduction in surface runoff, baseflow and total water yield 
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(streamflow) and an increase in evapotranspiration. Reduction in surface runoff was attributed to 

expected improvement of the soil infiltration properties of the currently degraded lands under 

intensive cultivation and increase in canopy interception by agroforestry trees. Decline in 

baseflow was attributed ‘extra’ water extraction from soil and groundwater through transpiration. 

The changes (in surface runoff, baseflow, water yield and evapotranspiration) were proportional 

to size of the watershed simulated with agroforestry. Three scenarios with increasing levels of 

tree cover through agroforestry were simulated. The findings from these scenarios may be used 

for selection of the practical size of land that can be simulated with agroforestry, considering the 

change in water balance of the watershed. Climate variability within the basin has a profound 

effect on the impact (change) of agroforestry on catchment water balance. The difference in 

average rainfall and temperature between the entire MRB and one of its upstream sub-watershed 

(Nyangores) caused the rate of change of streamflow with increase in size of watershed 

simulated with agroforestry to be higher for MRB than for Nyangores. 

Specific recommendations are given in respective chapters of this dissertation. The focus of this 

section is general recommendations of the entire study, particularly on watershed management 

and conservation. Regarding deforestation, it is recommended that the Government of Kenya 

should put more effort in arresting further deforestation of the Mau forest. This study attributed 

the observed deforestation to progressive encroachment and excision of the forest reserves. 

Forest excisions were initiated by the government in the past political regimes and thus it would 

be easy to stop further excisions provided there is political goodwill backed up by good policies 

and functional institutions. The results indicate that closed forests are first opened up before 

conversion to agriculture i.e. open forest is a transitional land cover between closed forest and 

agriculture. There is a possibility that timber and charcoal traders could be behind the opening up 

of forest, which then gives the local community easier access for cultivation and settlement. 

Monitoring and control of timber and charcoal business around the forest reserves may therefore 

be an effective strategy for limiting further encroachment into the forest reserve. 

Land use change was found to be the main driver of change in hydrology of the Mara River and 

therefore watershed managers should prioritize and place more emphasis on reversing the 

degradation of the watershed. Agroforestry is recommended as a practical management and 

conservation strategy for the watershed that would also raise the tree cover, as desired by the 
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Government of Kenya. Agroforestry would also provide extra income to farmers through sale of 

timber and charcoal which would in turn reduce illegal logging of the remaining forests. 

Furthermore, agroforestry would also provide fuelwood to famers, most of whom depend on 

fuelwood for their energy requirements. These additional benefits would make it easier for 

adoption and acceptance of agroforestry as a conservation measure. The results (impact on water 

balance) of the simulated agroforesty scenarios (based on tree cover increment) may be used as a 

guide  to determine the additional size of the watershed that may practically and sustainably be to 

put under tree cover. Tree species with low transpiration (water uptake) should be considered for 

agroforestry because the findings of this study show evapotranspiration is the major process that 

would affect agroforestry impact on catchment water balance. It is also recommended that more 

agroforestry should be planned for high elevations at the headwaters of the basin where rainfall 

is relatively higher and atmospheric water demand (potential evapotranspiration) is lower 

compared to lowlands, thereby leading to relatively lower change (reduction) change in water 

yield. 
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