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Summary 

 

Throughout the last two centuries large areas of northern (i.e. not tropical) peatlands 

have been subject to extensive drainage, typically carried out through the digging of ditches.  

Ecosystem restoration now focuses on blocking these ditches, with various aims such as 

increasing biodiversity or sequestering carbon.  Despite the increasing number of restoration 

projects taking place, there are still large knowledge gaps concerning the effects of ditch 

blocking on biogeochemistry.  This thesis presents the results from a ditch blocking 

experiment on a Welsh blanket bog, and compares two methods of ditch blocking: damming 

using peat dams, and a reprofiling method that uses peat dams as well as infilling the ditch.   

Following ditch blocking, results suggested that water tables had risen by 

approximately 2 cm.  Post-rewetting CH4 fluxes increased substantially, with blocked ditches 

(and pools within blocked ditches) releasing large amounts of CH4.  This increase was most 

notable for reprofiled ditches, although fluxes from dammed ditches were also larger than 

those from unblocked control ditches.  Upscaling CH4 fluxes to the catchment area suggested 

that before rewetting the catchment-scale flux was 2.89 g CH4 m
-2

 yr
-1

.  Post- rewetting 

fluxes were calculated as 3.55 g CH4 m
-2

 yr
-1 

if all ditches were blocked using a damming 

method, and 4.21 g CH4 m
-2

 yr
-1

 if all ditches were blocked using a reprofiling method.  A 

detailed survey of bog pools that formed behind ditch dams showed that Eriophorum species 

colonised shallower pools (< 50 cm depth) whilst Sphagnum species dominated in deeper 

pools.  Considering that Eriophorum is well-documented as a species associated with high 

CH4 fluxes, and that certain Sphagnum species have been observed to consume CH4, we 

argue that deeper pools are desirable to facilitate the colonisation of preferential plant species 

that might have the capacity to mediate large post-blocking CH4 fluxes.     

In addition to CH4 fluxes, we also present a limited amount of carbon dioxide (CO2) 

flux data, obtained using static chambers in conjunction with an infra-red gas analyser.  

Results were very variable but CO2 uptake from Sphagnum within unblocked ditches was 

extremely high, and this therefore suggests that Sphagnum colonisation is a favourable 

outcome for both a CH4 and CO2 perspective.      

A certain degree of the low soil decomposition rates that are found in northern 

peatlands has been attributed to constraints on the activity of the extracellular enzyme phenol 

oxidase, and the associated ‘enzymic latch’ mechanism.  To test how extracellular enzymes 

respond to drainage and ditch blocking, soil samples were analysed from three different sites 



on the Migneint.  The results from one site suggested that historical peatland drainage had 

stimulated phenol oxidase activity and enhanced hydrolase activities in comparison to 

enzyme activities at an undrained site.  Results from a second drained site showed no change 

in phenol oxidase activity, but a decrease in hydrolase activity compared to the undrained 

site.  We hypothesised that this was due to vegetation differences at the second site; that large 

areas of Juncus and Eriophorum were supplying low-molecular weight root exudates to the 

soil, thus negating the demand for hydrolase enzymes that are responsible for the production 

of low molecular weight compounds.  Following ditch blocking there was no evidence of 

changes to enzyme activities, implying that activities remain enhanced as a legacy of 

previous, drained conditions.   

The effect of ditch blocking on water chemistry was examined through regular 

sampling of ditch water, pore water, and overland flow (OLF) water.  For ditch water there 

was no difference between treatments in the concentration or composition of dissolved 

organic carbon (DOC), particulate organic carbon (POC) concentration, pH, electrical 

conductivity (EC), or sulphate concentration.  For pore water there was some evidence for 

higher DOC concentrations associated with blocked ditches occurring in summer 2011.  This 

enhancement occurred one month before an increase in DOC concentration in the stream 

draining the blocked catchment (relative to an unblocked control catchment).  These results 

suggest that ditch blocking stimulates a brief flush of DOC from a catchment, possibly due to 

ecosystem disturbance during the physical act of rewetting.  Although there was no effect of 

rewetting on OLF water chemistry, we noted that the concentrations of DOC in OLF were 

very similar to ditch water DOC concentrations.  As such, we hypothesise that ditch blocking 

diverts water out of ditches, resulting in increased OLF.  We therefore suggest that ditch 

blocking studies must measure this pathway, as previous work has largely ignored it. 

In addition to elucidating the effects of ditch blocking, investigations into the use of 

spectrophotometric proxies for DOC were undertaken.  These investigations consistently 

showed that light absorbance at 254 nm is a more accurate and reliable proxy than 400 nm.  

We also propose a new DOC proxy, the concentration of phenolic compounds in a water 

sample, and show how this compares to traditional light absorbance proxies. 

 

 

 

 



 Contents 
1. Introduction           1 

 1.1. Overview          1 

 1.2. The field site         4 

2. Quantifying dissolved organic carbon concentrations in upland catchments 

     using phenolic proxy measurements       10 

2.1. Introduction         10 

 2.2. Materials and methods        11 

  2.2.1. Study sites        11 

  2.2.2. Phenolics assay        12 

  2.2.3. DOC analysis        13 

  2.2.4. UV-vis analysis        13 

  2.2.5. Statistics        13 

 2.3. Results          14 

  2.3.1. General model        14 

  2.3.2. Site specific model and comparison with UV-vis method  19 

  2.3.3. Phenolic degradation in stored samples    21 

 2.4. Discussion         23 

  2.4.1. Using the general phenolic model to calculate DOC   23 

  2.4.2. Using a site-specific model to calculate DOC    25 

  2.4.3. Comparison of phenolic-based and absorbance-based DOC 

           estimation        26 

2.4.4. Practical applications       27 

2.4.5. Conclusions        28 

3. UV-vis spectroscopy as a proxy for dissolved organic carbon (DOC): considerations  

    on wavelength and sample retention time       33 

3.1. Introduction         33 

 3.2. Materials and methods        36 

  3.2.1. DOC proxy assessment       36 

  3.2.2. Procedural comparison       37 

  3.2.3. E ratio assessment       38

  3.2.4. Absorbance degradation experiment         38 

 3.3. Results           38

  3.3.1. DOC proxy assessment       38

  3.3.2. Procedural comparison       39 

  3.3.3. E ratio assessment       42 

  3.3.4. Absorbance degradation experiment         45 

 3.4. Discussion           47 

   3.4.1. DOC proxy assessment       47

  3.4.2. Procedural comparison       49 

  3.4.3. E ratio assessment       51 

  3.4.4. Absorbance degradation experiment         52 

  3.4.5. Conclusions        53 

4. The effect of peatland drainage and rewetting on extracellular enzyme activities  59 

 4.1. Introduction         59 

 4.2. Materials and methods        60 

  4.2.1. Study sites and treatments      60 

  4.2.2. Sampling        62 

  4.2.3. Phenol oxidase analysis       62 

  4.2.4. Hydrolase analysis       63 



  4.2.5. Phenolics analysis        63 

  4.2.6. Additional water analysis      63 

  4.2.7. Statistical analysis       64 

 4.3. Results          64 

  4.3.1. Effect of ditch blocking on enzyme activity and phenolics  64 

  4.3.2. Effect of ditch blocking on soil chemistry    68 

  4.3.3. Site comparison – effect of long term drainage       68 

 4.4 Discussion          71 

  4.4.1. Effects of long term drainage      71 

  4.4.2. Effect of ditch blocking      73 

  4.4.3. Conclusions        75 

5. The short-term effect of ditch blocking on dissolved organic carbon concentrations 79 

 5.1. Introduction         79 

 5.2. Materials and methods        83 

  5.2.1. Study sites         83

  5.2.2. Water sampling        84 

  5.2.3. Water chemistry analysis      86 

  5.2.4. UV-vis analysis        87 

  5.2.5. Trihalomethane formation potential (THMFP)    88 

  5.2.6. Extracellular enzyme analysis      88 

  5.2.7. Statistical analysis       89 

 5.3. Results          89 

  5.3.1. Basic water chemistry       89 

  5.3.2. Ditch waters        90 

  5.3.3. Pore waters        96 

  5.3.4. Overland flow        99 

  5.3.5. Relationships between sample types     100 

 5.4. Discussion         102 

  5.4.1. Ditch waters        102 

  5.4.2. Pore waters        105 

  5.4.3. Overland flow        107 

  5.4.4. Comparison of sample types      108 

  5.4.5. Conclusions        109 

6. Natural revegetation of bog pools after peatland restoration involving ditch                          

    blocking – the influence of pool depth and implications for carbon cycling      117

 6.1. Introduction                    117 

 6.2. Materials and methods        118 

 6.3. Results          119 

  6.3.1. Physical pool characteristics and vegetation colonisation  119 

  6.3.2. DOC concentrations       121 

 6.4. Discussion                    122 

  6.4.1. Vegetation colonisation      122 

  6.4.2. Controls on DOC       123 

  6.4.3. Zoological changes       124 

  6.4.4. Implications for restoration      124 

  6.4.5. Conclusions        125 

7. The effect of ditch blocking on peatland methane fluxes     128 

 7.1. Introduction         128 

 7.2. Materials and methods        132 

  7.2.1. Study site         132 



  7.2.2. Static chamber CH4 and N2O gas sampling    133 

  7.2.5. Flux calculations       136 

  7.2.6. Static chamber CO2 gas sampling     136 

  7.2.7. Water table measurement      136 

  7.2.8. Statistics         137 

 7.3. Results          137 

  7.3.1. N2O fluxes        137 

  7.3.2. Pre-rewetting differences      137 

  7.3.3. Effect of ditch blocking on water tables    138 

  7.3.4. Effect of water table on CH4 flux     140 

  7.3.5. Pre- and post-rewetting treatment comparison    141 

  7.3.6. Post-rewetting treatment comparison     143 

  7.3.7. Landscape extrapolations       146 

  7.3.8. Other controls on CH4 fluxes      146 

  7.3.9. CO2 fluxes        149 

 7.4. Discussion                    149

  7.4.1. The effect of ditches on CH4 fluxes     149 

  7.4.2. The effect of ditch blocking on CH4 fluxes       151 

  7.4.3. The effect of ditch blocking at the catchment scale   153 

  7.4.4. The effect of temperature on CH4 fluxes    154 

  7.4.5. CO2 fluxes        154 

  7.4.6. Conclusions        155 

8. Synthesis and conclusions         163 

 8.1. Introduction         163 

 8.2. Methodological considerations       163 

  8.2.1. Implications for experimental design     163 

  8.2.2. Analytical considerations      166 

 8.3. The effect of ditch blocking       170 

  8.3.1. The effect of ditch blocking on carbon cycling   170 

  8.3.2. Implications for ditch blocking projects    173 

  8.3.3. Ditch blocking and biodiversity     176 

  8.3.4. Ditch blocking and flooding      176 

  8.3.5. Ditch blocking and aesthetics      177 

  8.3.6. Practical applications       177 

  8.3.7. Summary         177 

 8.4. Knowledge gaps and future research      178 

 8.5. Final word         179 

 

 
 

 

 

 

 

 

 

 

 

 

   



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

Introduction 

1.1. Overview 

Northern peatlands are vitally important ecosystems that fulfil many key functions, 

the most important of which is carbon storage.  Gorham’s (1991) oft-cited figure is that this 

store amounts to 455 Pg of carbon, but recent (and conservative) calculations have suggested 

547 Pg (Yu et al., 2010).  Considering that peatlands occupy less than 3% of the total land 

surface of the Earth (Charman, 2002) this is a sizeable amount, contributing to approximately 

15-33% of the global carbon store (Gorham, 1991, Botch et al., 1995, Turunen et al., 2002, 

Joosten & Clarke, 2002).  Additionally, peatlands store 10% of global freshwater (Joosten & 

Clarke, 2002).  Furthermore, the biodiversity of such habitats is very high, and numerous 

species of plants and animals are restricted to them (Warner & Asada, 2006, Renou-Wilson et 

al., 2011) and therefore they have considerable conservation importance. 

Smith et al. (2004) suggest that northern peatlands have been long-term net sinks of 

carbon dioxide (CO2) and net sources of methane (CH4) for around 10,000 years.  Pristine 

peatlands are generally net sinks of carbon (Limpens et al., 2008, Bridgham et al., 2006, 

Worrall et al., 2003, Rivers et al., 1998) but can be net sources during some years 

(Waddington & Roulet, 2008, Roulet et al., 2007).  The other main loss of carbon from 

peatlands is in the form of dissolved organic carbon (DOC), which is exported in drainage 

waters.   

Restoration ecology, as a discipline, was outlined by Aber & Jordan (1985) as a tool 

that could “provide a framework for this systematic study and reconstruction of communities 

and ecosystems”, “broaden the scope of ecology”, and pave the way for the “generalization 

and simplification of ecological theory”.  Due to the degradation they suffered many 

peatlands are prime candidates for restoration.  In the UK this degradation took the form of 

drainage ditches (also called ‘grips’ or ‘drains’) which were dug during the 19
th

 and 20
th

 

centuries, when such areas were viewed as useless wastelands (Johnston & Soulsby, 2000), 

and largely stopped in the mid-1980s when subsidies ended (Ramchunder et al., 2009).  The 

aim of digging ditches is to lower the water table (Hillman, 1991, Rothwell et al., 1996, 

Price, 1997), although Rothwell et al. (1996) noted that ditch spacing does not control soil 

water content, and Stewart & Lance (1991) argued that drainage in the UK did not actually 

improve the land in the intended way for either agricultural grazing or for the management of 

game birds for hunting. 
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Drainage leads to a sustained net source of CO2 (Rowson et al., 2010, Salm et al., 

2009).  Generally, drainage and drought decrease CH4 emissions and increase CO2 and N2O 

emissions (Alm et al., 1999, Martikainen et al., 1995, Glenn et al., 1993, Freeman et al., 

1993).  CO2 fluxes increase as conditions become more favourable for aerobic metabolism 

(Freeman et al., 1993) whilst CH4 fluxes decrease because the increased aerobic zone is less 

suitable for methanogenic archaea and, to a lesser extent, more suitable for methanotrophic 

bacteria (Freeman et al., 2002).  With regards to changes in DOC dynamics, increasing the 

extent of the aerobic zone causes a large store of microbially-generated DOC to be produced 

that is then flushed out after precipitation events (Mitchell, 1991, Waddington et al., 2008).  

There is also some debate about whether drainage can cause increased flood peaks 

downstream, and this probably depends on the characteristics of both the ditching and the 

peatland (Holden et al., 2004). 

Much of the peatland drainage in the UK occurred on blanket bogs, which are 

fundamentally different to other peatlands.  Blanket bogs exhibit complex topography, and on 

a landscape scale can extend across a range of altitudes and slope gradients (Graniero & 

Price, 1999).    Vegetation typically includes species such as Calluna vulgaris, Eriophorum 

vaginatum, Empetrum nigrum, Erica tetralix, Juncus squarrosus, Vaccinium myrtillus and 

Sphagnum species (Tallis, 1969).  Blanket bogs are largely ombrotrophic, and often found at 

the headwaters of river catchments, making them important sources of potable water. The 

quality of water draining these systems thus has relevance for aquatic ecosystem functioning 

(Karlsson et al., 2009), water treatment costs (McDonald et al., 2001), and human health 

issues as DOC can form carcinogenic byproducts (trihalomethanes) during water treatment 

(Chow et al., 2003). 

The low hydraulic conductivity of blanket bogs makes them more resistant to 

drainage compared to other peatlands (Boelter, 1972, Galvin, 1976, McDonald et al., 1991).  

This can be observed easily: even when intensively ditched a blanket bog is wet underfoot, 

and modelling has suggested that water tables in blanket bogs are only significantly altered 

adjacent to the ditch, due to their low lateral hydraulic conductivity, and that beyond ten 

metres the drawdown is negligible (Price et al., 2003).   

The changes associated with drainage are completely different to those caused by the 

large-scale removal of vegetation associated with peat harvesting on an industrial scale, and 

from the full-scale land-use changes to intensive grassland and cropland associated with the 

drainage of many lowland peat areas.  As such, the restoration (i.e. rewetting) of blanket bogs 

typically involves only the blocking or reprofiling of ditches, without the need for active 
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intervention to re-establish or to completely change the vegetation.  Approximately nine 

percent of deep peats in Britain have been afforested with conifers (Cannell et al., 1993), and 

for restoration to be successful these must be felled; ditch blocking alone is not sufficient 

(Anderson, 2010). 

The main aim of ditch blocking is to return the water table to pre-drainage levels to 

encourage peat-forming species to flourish, although it can take many years for the 

hydrological regime to fully stabilise (Price et al., 2003).  Further aims are reduced DOC 

flux, reduced sediment transfer, and reduced erosion (Armstrong et al., 2009).  As of 2008 

most UK restoration projects were focused on hydrology or ecology, with biodiversity 

consistently being used as a justification.  Out of fifty four peatland restoration projects, 

carbon was cited as being “extremely important” in just three incidences (Holden et al., 

2008).  Nevertheless, increasing the water table may lead to decreased total respiration 

(Urbanovä et al., 2011, Tuittila et al., 1999) thereby creating a new CO2 sink (Waddington et 

al., 2010, Komulainen et al., 1999, Tuittila et al., 1999), or a reduced source (i.e. avoided 

loss) (Waddington & Price, 2000).  A negative side effect is that CH4 fluxes rapidly increase, 

but may remain lower than those from pristine sites (Komulainen et al., 1998).  However, 

there is still considerable uncertainty concerning the magnitude of changes in gaseous carbon 

fluxes following rewetting, and more data is needed on the subject. 

Numerous materials have been used to block ditches including heather bales, peat 

turves (the most widely used in the UK), plastic piling, Perspex, plywood, wooden planks and 

stones.  Some aim to form a completely watertight dam, whilst others are designed to reduce 

water flow and stimulate the infilling of the drain (Armstrong et al., 2009).  Worrall et al. 

(2007) concluded that the method of drain blocking had no effect on water colour after 

experimenting with heather bales, piling, and turves.  They therefore advocated the use of 

peat turves as the most economical.  Armstrong et al. (2009), however, found that peat turves 

were only intermediate in terms of success, with over 5% of dams failing, and just under 60% 

being well blocked.  A more advanced option is reprofiling, where peat (or another available 

material) is used to completely fill the old ditch line. 

Despite the large body of research concerning drainage and restoration of peatlands 

there are still issues to be resolved.  Bussell et al. (2010) show that few projects monitor pre-

restoration baseline data.  This is understandable to some degree; many ditch blocking 

projects will be undertaken by stakeholders such as water companies who may only have 

limited interest in monitoring (as well as a lack of funds), and a research programme by an 

academic institution may only be added at a later date.  Alternatively, ditch blocking may 
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take place without any rigorous scientific justification, but simply because it is in vogue and a 

potential funding source is found to ‘improve’ the ecosystem.  The data from such projects 

may be extremely limited, or nonexistent.   

Another shared trait of many restoration projects is the use of a control site and a 

treatment site that may be quite geographically separated (Bussell et al., 2010).  Once again, 

this is understandable as many stakeholders will view the robustness of any scientific 

research as a secondary concern, and apply a blanket treatment (i.e. ditch blocking) across a 

whole site.  Nevertheless, the use of two distinct sites produces additional confounding 

variables that may obscure treatment effects, due to possible differences in geology, 

vegetation, aspect, gradient, and historical management.  Holden et al. (2004) point out that a 

combination of instrumentation and process-based monitoring of multiple ditch-blocking 

projects is needed to fully elucidate how future restoration should develop to be successful in 

a cost-effective manner.  

This thesis aims to go some way to addressing some of these issues by using two 

years of field measurements at one primary experimental site, where both blocked (treatment) 

and unblocked (control) ditches are present in a randomised and replicated design.  By only 

using one site, the aforementioned differences in having geographically distinct treatment and 

control sites is removed.  A second aim of this thesis is to examine the way in which DOC is 

measured and modelled.  As stated above, many projects will be constrained by monetary and 

practical limitations and, as such, various proxies are often used rather than directly 

measuring DOC concentrations.  These are evaluated so as to provide useful analytical 

information for projects where limitations impose upon monitoring.  The explicit aims of 

each experimental chapter are: 

1)  To determine if an empirical relationship exists between DOC and phenolic 

concentrations, and whether such a relationship can allow DOC concentrations to 

be calculated using phenolic concentrations as a proxy. 

2) To fully investigate the use of UV-visible absorbance measurments as proxies for 

DOC concentration and DOC quality, and to assess how absorbance changes in 

samples under storage for three months. 

3) To compare the activity of soil extracellular enzymes in pristine, ditched, and 

ditch-blocked peatlands. 
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4) To examine the effects of ditch blocking on water chemistry (DOC, particulate 

organic carbon, pH, electrical conductivity, sulphate) at both a ditch scale and a 

catchment scale. 

5) To quantify the extent of vegetation colonisation in bog pools formed during 

ditch-blocking, and to determine if the vegetation composition of pools controls 

DOC concentrations. 

6) To compare CH4 fluxes from ditched and ditch-blocked blanket bog. 

1.2. The field site        

 The primary field site is at the head of Afon Ddu catchment (latitude 52.97°N, 

longitude 3.84°W) above Ffynnon Eidda, on the Migneint blanket bog, in Snowdonia 

National Park, north Wales (UK).  Several secondary field sites were used in addition to this 

(figs. 1 and 2).  Blanket bogs form in areas that feature high rainfall and relatively low 

temperatures, and are typically found in northern locations such as the UK, Russia, and 

Canada.  In Wales, their formation has been partially attributed to anthropogenic disturbance 

during Neolithic times (Moore, 1973).  Blanket bogs are extremely common in UK uplands, 

and store large amounts of carbon (Holden, 2005).  The altitude of the Afon Ddu fieldsite is 

490 m above sea level and the aspect is north-northwest.  According to the Soil Survey of 

England and Wales the soil is raw oligo amorphous peat.  The geology consists of mudstone 

and siltstone (Lynas, 1973).  Mean peat depth at the site is 1.32 m (n = 101, SE = 0.06, 

minimum depth = 0.31 m, maximum depth = 3.14 m).  Mean annual air temperature is 8.6
o
C 

and mean annual precipitation is 2200 mm (Cooper, 2013).  Prevailing winds are from the 

west.     

The Migneint is a Site of Special Scientific Interest (SSSI) and part of the larger 

Migneint-Arenig-Ddualt Special Area of Conservation (SAC).  It is designated by the Joint 

Nature Conservation Committee as the second largest area of blanket bog in Wales after the 

Berwyns (JNCC, no date).  The conservation importance of blanket bog is recognised by its 

inclusion in the European Habitats Directive.  The vegetation of the Migneint includes areas 

of M18 (Erica tetralix-Sphagnum papillosum), M19 (Calluna vulgaris-Eriophorum 

vaginatum), and M20 (Eriophorum vaginatum) according to the JNCC National Vegetation 

Classification (NVC) (Elkington et al, 2002).  The Mignient is a Special Protection Area 

(SPA) due to the presence of Circus cyaneus (hen harrier), Falco peregrinus (peregrine 

falcon) and Falco columbarius (merlin).  The land is lightly grazed by Welsh mountain 
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sheep, generally at a rate of 0.05 LSU/ha/yr, and there is some history of burning for heather 

management (Evans et al., 2008).  There is limited evidence of peat cutting on a local scale. 

 

Figure 1. Location of the field sites used in this PhD.  1) The Migneint, which includes Afon Ddu, Llyn Serw, 

Nant y Brwyn, Bryn Du, and Llyn Conwy, 2) Peaknaze, 3) Plynlimon, 4) Llyn Teyrn, 5) Llyn Cwellyn, 6) 

Bangor (site of fen mesocosms), 7) Alwen Reservoir.  North is directly up. © Crown Copyright/database right 

2012. An Ordnance Survey/EDINA supplied service 

 

Figure 2. Location of the various Migneint field sites.  1) Afon Ddu (the primary field site), 2) Llyn Serw,  3) 

Llyn Conwy, 4) Bryn Du, 5) Nant y Brwyn. North is directly up.  Each grid square is 1 km..  © Crown 

Copyright/database right 2012. An Ordnance Survey/EDINA supplied service    
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Numerous scientific work has taken places on the Migneint: it is one of the Centre for 

Ecology and Hydrology’s (CEH) carbon catchments that attempt to quantify the full peatland 

carbon balance (Billett et al., 2010).  It has also been used extensively for both field-based 

experiments (e.g. Austnes et al., 2010, Evans et al., 2012) and laboratory-based core 

experiments (e.g. Kim et al., 2008, Boardman et al., 2011).  

Approximately 26% of the Migneint (including the field site) is owned by the 

National Trust, as part of the Ysbyty Ifan estate, who lease the land out for grazing to tenant 

farmers.  The other major stakeholder is Dŵr Cymru Welsh Water who manage Llyn Conwy, 

a Migneint lake, as a potable water supply.  The River Dee also originates on the Migneint 

and is used as a potable water supply.  As such, any management strategies that reduce DOC 

concentrations are of interest as a potential cost-saving measure in water treatment.      

The Migneint has been subjected to intense drainage throughout the 19
th

 and 20
th

 

centuries, with the most recent activity ending during the 1980s.  This has been carried out 

through the digging of ditches, first using human labour and, later, using machinery.  As 

such, observational surveys by the National Trust suggest that localised drying out around 

ditches is causing mire communities to transition to the dry heath community H12 (Calluna 

vulgaris-Vaccinium myrtillus).  The same surveys show that some ditches have naturally been 

recolonised by moss species such as Sphagnum fallax.  Ditch blocking on the Migneint was 

first undertaken by Dinsdale Moorland Services at the southern end of the SAC on Forestry 

Commission land as part of the RSPB Life Project.  This was followed by ditch blocking on 

National Trust land at the Afon Ddu field site.  This was again carried out by Dinsdale 

Moorland Services with additional support from local farmers, and as of June 2012 

approximately 350 km of ditches have been blocked.  The National Trust plan to continue 

restoration work until all ditches on their land have been blocked.  This PhD follows on from 

an earlier research project that examined the effects of ditch blocking on carbon cycling on 

the Migneint (Cooper, 2013).            
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Quantifying dissolved organic carbon concentrations in upland catchments 

using phenolic proxy measurements 

2.1. Introduction 

Dissolved organic carbon (DOC) is a fluvial export from organic rich soils.  Its 

concentration is affected by various factors, such as soil carbon pool, peat cover (Aitkenhead 

et al., 1999), hydrology (Dawson et al., 2004), and vegetation (Palmer et al., 2001), as well 

as autochthonous production (Hope et al., 1994).  DOC concentrations have been increasing 

in waters draining upland catchments in the UK (Freeman et al., 2001a), with similar trends 

being observed in waters in North America (Stoddard et al., 2003) and Scandinavia 

(Skjelkvåle et al., 2005).  One hypothesis is that these increases are driven by a recovery 

from atmospheric deposition (Monteith et al., 2007, Ekström et al., 2011, Evans et al., 2012) 

although experimental studies also demonstrate that DOC loss can be strongly affected by 

climate (e.g. Fenner & Freeman, 2011), and other factors such as hydrology, land 

management, and atmospheric carbon dioxide concentration (Clark et al., 2010).  Rising 

DOC concentrations have implications for human health, as harmful by-products can be 

formed when DOC is chlorinated during water treatment (Chow et al., 2003).  Additionally, 

high levels of DOC result in increased water treatment costs due to the use of a higher 

coagulant dose, increased filter backwashing, and the production of larger amounts of sludge 

(McDonald et al., 1991).  DOC cycling is also of interest to those studying carbon budgets, 

and significantly affects aquatic ecosystem functioning via its influence on light penetration, 

mobility and form of toxic substances, and the supply of energy and nutrients. 

DOC is typically measured by high temperature combustion using infra-red detection 

either as ‘non-purgeable’ organic carbon (i.e. that part of the total dissolved carbon that is not 

removed following acidification of the sample and sparging with oxygen gas), or by 

calculating and then subtracting inorganic carbon from total carbon.  These methods are 

expensive and time-consuming, and require access to specialist analytical equipment.  A 

second method is to use absorbance at certain wavelengths in the ultraviolet-visible (UV-vis) 

range as a proxy for DOC.  Wavelengths used include 254 nm (e.g. Edzwald, 1985), 330 nm 

(e.g. Moore, 1987), 360 nm (e.g. Collier, 1987) and 400 nm (e.g. Gibson et al., 2009).  

Routinely, a calibration curve is established between the chosen wavelength and a limited 

series of DOC measurements, so that further DOC concentrations can be calculated from the 

calibration.  Wallage and Holden (2010) demonstrate that caution must be used when using 

absorbance as a proxy for DOC, as relationships between DOC and absorbance change over 
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time, with depth, and with management practices.  Tipping et al. (2009) created a DOC 

model for non-polluted waters, using absorption at 254 nm and 340 nm, but Grayson & 

Holden (2012) argued that wavelengths under 300 nm are unsuitable as DOC proxies, as they 

display rapid fluctuations in absorbance and a lack of differentiation between wavelengths.  

However, wavelengths in the 400 nm region can sometimes be unsuitable as iron can 

interfere with absorbance readings (Kritzberg & Ekström, 2012).  Other colorimetric methods 

exist to measure DOC, whereby the chemically-induced colour change of a sample is 

measured with a spectrophotometer, such as that proposed by Bartlett & Ross (1988).  

Finally, fluorescence spectroscopy can be used as a method to characterise DOC.  This 

approach is valuable due to its high specificity and sensitivity (Chen et al., 2003).  An 

alternative method, rather than UV-vis, may therefore prove useful as a surrogate DOC 

measure. 

One feature of waters draining from wetlands, including peatlands, is the presence of 

recalcitrant phenolics (Wetzel, 1992), which are secondary plant metabolites (Hättenschwiler 

& Vitousek, 2000).  Their concentrations vary seasonally (Kaiser et al., 2001) and are 

controlled by plant characteristics (Wetzel, 1992), and physical and chemical factors such as 

photodegradation (Faust & Holgne, 1987).  They accumulate due to a lack of oxygen in 

waterlogged soils, which limits the activity of the extracellular enzyme phenol oxidase 

(Freeman et al., 2004).  Phenolics are part of the coloured component of DOC (Toberman et 

al., 2008).  They are aromatic, but DOC also includes aliphatic compounds (Leenheer & 

Croué, 2003).  Relationships between DOC and phenolics have been noted previously (Kang 

et al., 2002, Hagedorn & Machwitz, 2007).  The aim of this analysis is therefore to determine 

if an empirical relationship exists between the concentrations of DOC and phenolic-OH 

(hydroxyl group) in upland waters, and under what conditions such a relationship might exist: 

whether it is the same for different sites, soils and samples types, and how stable it is in the 

long term.  Based on the results of this analysis, the potential for using phenolics as a 

surrogate measure for DOC is critically evaluated. 

 

2.2. Materials and Methods 

2.2.1. Study Sites 

A total of 2020 water samples were taken from eight sites in northern Wales and 

northern England, UK, summarised in table 1.  At Ffynnon Eidda 192 samples were from 

ditch water and 132 samples were from pore water.  The Migneint site was split into three 

sub-sites: pore waters from two different soil types (blanket peats and peaty podzols) and soil 



14 
 

leachate samples.  The Peaknaze site was split into two sub-sites (again with pore water 

samples from blanket peat and peaty podzols).  For each peat and podzol sub-site 

approximately 600 data points were available, but random selections of 300 were taken so as 

not to bias the model towards these sites.  Other samples were taken from either standing 

water bodies or pore water (using piezometers or Rhizon samplers at 10 cm depth), or were 

generated from soil samples (from 10 cm or 30 cm depth) in the laboratory (leachate).  At all 

sites, sampling was repeated at fixed locations on a number of occasions.   

 

Table 1. Location of field sites (ordered by sample type), including soil type, sample type, and the time period 

over which sampling took place.  For pore waters, P indicates a piezometer sampler, and R indicates a Rhizon 

sampler.  The fen mesocosms consisted of rafts of vegetation floating in individual pools. 

Site Lat Lon Soil Type Sample Type 

No. 

Samples 

Altitude 

(m) Sampling dates 

Ffynnon Eidda 52.97N 3.84W Peat Ditch/Pore (P) 326 490 Oct 2010  - Nov 2011 

Migneint 52.99N 3.82W Peat Pore (R) 300 450 Aug 2007 - Jan 2012 

Migneint 52.99N 3.81W Podzol Pore (R) 300 480 Sept 2007 - Jan 2012 

Peaknaze 53.47N 1.91W Peat Pore (R) 300 440 Aug 2007 - Jan 2012 

Peaknaze 53.47N 1.91W Podzol Pore (R) 300 430 Aug 2007 - Jan 2012 

Plynlimon 52.46N 3.74W Peat Pore (R) 167 530 May 1992 – Sept 1992 

Migneint 52.99N 3.82W Peat Leachate 45 450 Sept 2011, Jan 2012 

Fen Mesocosms 53.22N 4.13W Peat Pool 210 20 June 2011 - July 2011 

Llyn Cwellyn 53.07N 4.15W Peat/Loam Lake 24 140 Nov 2009 - Oct 2011 

Llyn Conwy 52.99N 3.82W Peat Lake 24 450 Nov 2009 - Oct 2011 

Llyn Teyrn 53.07N 4.03W Peat Lake 24 370 Nov 2009 - Oct 2011 

 

2.2.2. Phenolics Assay 

Water samples were filtered through Whatman 0.45 μm cellulose nitrate filters, and 

phenolic concentrations were determined using a method adapted from Box (1983).  0.25 ml 

of sample was added to a clear microplate well.  12.5 μl of Folin-Ciocalteau reagent was 

added (using a pipette calibrated to 1.98% accuracy with a covariance of imprecision of 

0.57%), followed by 37.5 μl of Na2CO3 (200 g L
-1

).  After 1.5 hours the absorbance was 

measured at 750nm on a BMG Fluostar Galaxy or Molecular Devices M2e Spectramax plate-

reader.  Phenolic concentrations were then derived from the preparation of a standard curve 

using laboratory-prepared standards of known concentration (0, 1, 2, 4, 6, 8, 10, 15, 20 mg L
-

1
).  Additional standards (0.2, 0.5, 0.75, 1.5 mg L

-1
) were used for the analysis of samples 

from Llyn Cwellyn, Llyn Conwy and Llyn Teyrn as phenolic concentrations from these sites 

were frequently found to be < 1 mg L
-1

.  Box (1983) cited a limit of detection of 6 μg phenol 
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L
-1

 and a standard deviation of 4.1% at 1 mg phenol L
-1

 for this assay, although more recently 

the limit of detection has been cited as 25 μg L
-1

 (Thoss et al., 2002). 

 

2.2.3. DOC Analysis 

All samples were filtered through Whatman 0.45 μm cellulose nitrate filters and 

analysed using an Analytical Sciences Thermalox Total Carbon analyser.  Samples were 

acidified (pH < 3) and sparged with oxygen to remove any inorganic carbon, and DOC 

concentrations calculated using a seven point calibration curve (plus a quality control 

sample), with additional standards to check for drift, and several samples (1-3 per run) 

duplicated to check for reproducibility.  Each individual sample was injected 5 times, and the 

result accepted if the coefficient of variation of the five injections was less than 3%.   

Plynlimon samples were analysed differently.  They were diluted with sulphuric acid 

and purged with oxygen (to remove inorganic carbon), after which a digestion reagent 

(consisting of 0.044 M K2S2O8, 0.089 M Na2B4O7 and H2O) was added.  Following exposure 

to a UV source, radicals react with the organic material in the sample, which is converted into 

CO2 and H2O.  By gas dialysis the CO2 is lead into a colour reagent.  Colour intensity 

(measured at 550 nm) then decreases proportionally to the change in pH caused by the CO2, 

and this decrease is in relation to the DOC. 

 

2.2.4. UV-vis analysis 

UV-vis analysis was conducted on 192 samples from the Ffynnon Eidda site using a 

Molecular Devices M2e Spectramax plate-reader.  Light absorbance at the 254 nm and 400 

nm wavelengths was measured.   

 

2.2.5. Statistics 

Phenolic and DOC values were paired together in order to examine any relationship 

between them, and statistical analysis carried out using SPSS v16.0.1 (IBM Corporation, 

http://www-01.ibm.com/software/analytics/spss/products/statistics/).  Different sites and 

samples were compared using t-tests and ANOVAs or, where data were not normally 

distributed (identified by Kolmogorov-Smirnov Test), Mann-Whitney and Kruskal Wallis 

tests, with Bonferroni-adjusted p values.  The Bonferroni correction is a method to control the 

familywise error rate, but does increase the probability of missing real differences in the data.  

 

 

http://www-01.ibm.com/software/analytics/spss/products/statistics/
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2.3. Results 

2.3.1 General model 

 The linear regression gave the fit shown in Figure 1.   

 

Figure 1. Observed relationship between phenolic concentrations (mg L
-1

) and DOC concentrations (mg L
-1

) for 

all 2020 water samples.  r
2
 = 0.84, residual variance = 72.051, p < 0.001. 

 

This linear regression allowed DOC concentrations to be calculated directly from phenolic 

concentrations, according to the formula: 

DOC = (5.68 x Phenolics) + 1.99                (1) 

where DOC is calculated in mg L
-1

, and Phenolics is the measured phenolic concentration, 

also in mg L
-1

.  Standard errors of the model parameters are respectively (5.68) 
+
/- 0.06 and 

(1.99) 
+
/- 0.32.  Confidence intervals at 95% were 2.24 (lower) and 2.33 (upper). 

This general model was then tested using phenolic and DOC data from other sites in 

north Wales (figure 2).  These were stream samples from the Nant y Brwyn (an upland 

stream in a peat catchment, 410 m ASL), leachate samples from Alwen Reservoir (an upland 

forested peat catchment, 390 m ASL), and pore water samples from Llyn Serw (an upland 

peat catchment, 460 m ASL).  Fits were generally good (R
2
  0.75) although the model 

tended to overestimate DOC concentrations at the Nant y Brwyn and underestimate them at 

Alwen Reservoir and Llyn Serw.  The model calculated DOC to a mean accuracy of 86% 
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(modelled values were on average 1.69 mg L
-1

 different to measured, standard error 0.32 mg 

L
-1

) at the Nant y Brwyn, 81% (mean difference of 2.21 mg L
-1

, SE = 0.36 mg L
-1

 ) at Alwen 

Reservoir, and 86% (mean difference of 7.65 mg L
-1

, SE = 0.94 mg L
-1

 ) at Llyn Serw.    

 

Figure 2. Regression between measured DOC and modelled DOC (mg L
-1

) in Nant y Brwyn stream water, n=24, 

r
2
=0.90 (A), Alwen Reservoir leachate samples, n=25, r

2
=0.88 (B), and Llyn Serw pore water samples, n=44, 

r
2
=0.75 (C). p<0.001 for each relationship.  Dashed line shows 1:1 relationship. 

 

Despite the strength of the model, there was variation in the relationship between 

DOC and phenolics at the different sites.  Figure 3 shows the median ratio of phenolic to 

DOC concentrations at each site, which ranged from 0.14 : 1 to 0.27 : 1.  Differences in the 

ratios were tested using the Kruskal Wallis test, followed by Mann-Whitney tests with 

Bonferroni corrections to control the probability of false positive results.  A total of 26 tests 

were performed (table 2).  The highest mean phenolic:DOC was found at Llyn Teyrn but 

there is no significant difference when compared to the other two lakes Llyn Cwellyn and 

Llyn Conwy.  The lowest mean phenolic:DOC was in the Peaknaze podzol and the fen 

mesocosms.    It can be noted that spatial proximity of sampling sites is sometimes, but not 

always, associated with a similar response between DOC and phenolics.  For instance, the 

peat and podzol sub-sites at Peaknaze are approximately 200 m apart and have no significant 

difference in their ratios.  However, the Migneint peat and podzol pore water sample sites 

which are 500 m apart do show a significant difference. 
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Figure 3. Median phenolic concentrations (mg L
-1

) per 1 mg L
-1

 DOC concentrations for each site used in the 

model.  Table 2 shows where significant differences are found. 

 

 

Table 2. Results of Mann Whitney tests to compare for site differences in the median ratio of phenolics to DOC. 

Asterisks indicate a significant difference at a Bonferroni corrected p value <0.05. NS indicates no significant 

difference. A blank space shows where no comparison was carried out.  It is unfeasible to run all possible 

pairwise comparisons as the Bonferroni correction would then produce a critical value of significance that is too 

restrictive.  Sites along the top are abbreviated, but are in the same order as those down the side.  

  Ppe Mpod Ppod Mle Lcw Lco Lt Fe Fen Plyn 

Migneint Peat * * * NS * NS * * * * 

Peaknaze Peat   NS NS 

    

* 

 

* 

Migneint Pod     NS NS 

 

* 
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Peaknaze Pod       

      

  

Migneint Leach         

   

NS 
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 A further investigation of different samples types is useful.  For instance, there is no 

significant difference between the two podzol soils at Peaknaze and the Migneint.  Figure 4 

displays this amalgamated podzol data against its peat equivalent.  The mean ratio of 

phenolics to DOC is significantly different between the two soil types: 0.15 : 1 in the podzol, 

and 0.18 : 1 in the peat.  Additionally, the concentrations of DOC and phenolics cover a 

larger range and increase to higher values in the peat soil.  Phenolic concentrations had a 

range of 21.05 mg L
-1

 with a maximum of 21.53 mg L
-1

 in the two peat soils, compared with 

a range of 15.83 mg L
-1

 and maximum of 16.27 mg L
-1

 in the podzols.  There is also a 

difference between surface water and pore water when all sites are considered (figure 5).  The 

mean proportion of phenolics to DOC is 0.20 : 1 in pore water compared to 0.17 : 1 in surface 

water.  The three lakes all possessed a high proportion of phenolics but their relatively small 

sample sizes compared to other surface waters reduced their influence on the mean.  

Concentrations of phenolics and DOC ranged more in the pore water and reached higher 

levels.  Maximum pore water phenolic concentration was 21.53 mg L
-1

, whilst the highest 

surface water value was 12.71 mg L
-1

.   

 

Figure 4. Regression between phenolic and DOC concentrations (mg L
-1

) for the Migneint and Peaknaze podzol 

(white circles) and peat (black circles) sites. n=600 for each soil type. Podzol r
2
=0.71. Peat r

2
=0.79. For both 

soils p<0.001. 
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Figure 5. Regression between phenolic and DOC concentrations (mg L
-1

) for surface waters (white circles - 

from Ffynnon Eidda, Llyn Cwellyn, Llyn Conwy, Llyn Teyrn, and fen mesocosms – n=608) and pore waters 

(black circles - from Migneint peat, Migneint podzol, Peaknaze peat, Peaknaze podzol, and Plynlimon – n=767). 

Surface waters r
2
=0.88.  Pore waters r

2
=0.84.  For both samples types p<0.001. 

 

 As phenolic concentrations are affected by factors such as vegetation growth, 

microbial processes and phenol oxidase activity (Freeman et al., 2001b), their concentrations 

vary seasonally.  Figure 6 details these variations for a time period of just over four years.   

Although not always consistent, there are occasions when all four sites respond similarly; this 

is perhaps most pronounced in March 2011 when all sites show a large spike, with a lesser 

peak following in July/August 2011.  There are also occasions where just two sites respond 

simultaneously, such as peaks for both Migneint sites during October 2009.  There is 

extensive interannual variation, however, with peaks and troughs in the relationship occurring 

at different times during different years.      
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Figure 6. Changes in the mean proportion of phenolics to DOC for four sites from September 2007 to January 

2012, with an approximate monthly sampling frequency.  Sites are: Migneint peat – solid line, Migneint podzol 

– dotted line, Peaknaze peat – dashed line, Peaknaze podzol – dotted/dashed line. For each site and each date the 

mean is generated from n=12.     

 

2.3.2 Site-specific model and comparison with UV-vis method   

 Results indicate: 1) that the general model calculated DOC to a mean accuracy of 81-

86%; 2) that there was considerable difference between sites and soils in the mean ratio of 

phenolics to DOC.  Therefore we investigated the possibility of using phenolic measurements 

as a proxy for DOC on a specific site basis, with the hope of improving the accuracy and 

giving more appropriate modelled DOC values.  To investigate this a random selection of 100 

paired phenolic and DOC measurements were selected from surface water samples from the 

Ffynnon Eidda site, and a regression fitted to give the site-specific equation (r
2
=0.87, 

p<0.001) : 

DOC = (5.83 x Phenolics) - 0.59                (2) 

where DOC and phenolics are calculated in mg L
-1

.  Equation 2 was then applied to the 

remaining 92 surface water phenolic measurements from Ffynnon Eidda to calculate DOC, as 

was equation 1.  Equation 1 (the model using data from all sites) calculated DOC to a mean 

accuracy of 83.67% (standard error = 1.96%) whilst equation 2 (site-specific model) gave a 
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mean accuracy of 86.54% (SE = 1.57%).  A paired t-test (after the data was normalised by 

subtracting each value from 100% followed by square root transformation) showed this 

difference to be significant (p<0.05).  

 We also compared a site-specific phenolics model against a colour-carbon model: that 

is, a regression of DOC concentration against light absorbance at a certain wavelength.  For 

this, 192 data points from the Ffynnon Eidda surface water dataset were used, and phenolic 

concentrations compared against absorbance at 254 nm and 400 nm (figure 7).  Absorbance 

at 254 nm gave the best fit, closely followed by phenolic concentration, whilst absorbance at 

400 nm gave the weakest fit.   

 

 

 

 

 

 

 

 

 

 

Figure 7. Regressions of DOC concentration against A) phenolic concentration, B) absorbance at 254 nm, C) 

absorbance at 400 nm, for 192 ditch water samples from Ffynnon Eidda.  r
2
 values A) 0.87, B) 0.9, C) 0.79.  For 

all regressions p<0.001.  

  

 Finally, if phenolic concentration is to be used as a proxy for DOC it is useful to know 

if a calibration can be established using a small number of measurements, and how this 

compares to a colour-carbon calibration.  To test this a random sub-sample of 25 

measurements was taken from the Ffynnon Eidda data-set and analysed by regression; r
2
 and 

regression equation were noted – to allow a simple comparison the regression was forced 

through the origin.  This method was repeated twenty times for DOC and phenolics, DOC 

and absorbance at 400 nm, and DOC and absorbance at 254 nm.  The mean r
2
 values were 

0.83 for the phenolics model, 0.71 for the 400 nm model, and 0.85 for the 254 nm model.  

ANOVA revealed that there was no significant difference in the mean r
2
 between the 

phenolic and 254 nm model, but that the 400 nm model differed significantly from both 

(p<0.001).  The mean slope of all twenty regression equations was then compared against the 

slope of the regression that used all 192 data points; this gives a measure of the magnitude of 

error that using a small calibration brings.  The mean slope difference was 2.65% for the 
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phenolic model, 5.59% for the 400 nm model, and 3.16% for the 254 nm model.  The only 

significant difference was between the phenolic model and the 400 nm model (p<0.05).    

 

2.3.3 Phenolic degradation in stored samples 

 To investigate how phenolics degrade in stored water samples a small number of 

samples from the Ffynnon Eidda site were reanalysed for phenolic concentrations.  One set of 

samples had been in storage for 13 months whilst the second set had been stored for 8 

months.  They had been stored in plastic Nalgene® bottles (Thermo Scientific) in the dark at 

4
o
C.  The site-specific model was then applied to phenolic concentrations that had been 

measured both before and after storage (table 3).  The mean loss of phenolics during storage 

was 0.74 mg L
-1

 (11.7%) for the 8 month samples and 0.58 mg L
-1

 (8.3%) for the 13 month 

samples.  The smaller value for the 13 month samples is due to the fact that phenolic 

concentration increased in two samples.  Removing these numbers gave a mean of 0.77 mg L
-

1 
(12.9%).  After 8 months in storage the phenolic measurements calculated DOC, on 

average, to within a mean of 2.77 mg L
-1

 or 91.4% (compared to 1.87 mg L
-1

 or 93.9% before 

storage).  After 13 months DOC could be calculated to 5.29 mg L
-1

 or 84.6% (compared to 

3.43 mg L
-1

 or 89.3% before storage).  Additional analysis of pore water samples from 

Ffynnon Eidda revealed that after 8 months the mean loss of phenolics was 0.92 mg L
-1

 

(12.4%), but after 13 months there was a mean increase of 0.62 mg L
-1

 (9.4%) (table 4).    
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Table 3.  The extent of phenolic degradation in stored water samples taken from ditch water at Ffynnon Eidda.  

‘Phenolics’ is the concentration taken immediately after sampling.  ‘Phenolics
8
’ or ‘Phenolics

13
’ is the 

concentration of the same sample after either 8 or 13 months of storage in the dark at 4
o
C in plastic Nalgene® 

bottles.  ‘Phenolics
diff

’ is the concentration change following storage, - indicates a loss, +indicates a gain. ‘Meas 

DOC’ is the measured DOC concentration.  ‘Mod DOC’ is the estimate DOC concentration using the site-

specific model, calculated using the original phenolic measurement.  ‘Mod DOC
8
’ and ‘Mod DOC

13
’ are the 

estimated DOC concentrations using the site-specific model, calculated using the phenolic measurements after 

either 8 or 13 months of storage.  All concentrations are in mg L
-1

.          

Sample Phenolics Phenolics
8
 Phenolics

diff
 Meas DOC Mod DOC Mod DOC

8
 

1 6.13 5.61 -0.52 30.3 32.8 30.2 

2 4.99 4.94 -0.05 25.9 27.1 26.8 

3 5.76 5.34 -0.43 28.9 31.0 28.8 

4 5.71 5.06 -0.65 30.7 30.7 27.4 

5 6.41 5.32 -1.09 31.4 34.2 28.7 

6 6.35 5.19 -1.17 31.1 33.9 28.1 

7 5.66 4.90 -0.76 29.9 30.4 26.6 

8 7.09 5.85 -1.24 36.3 37.7 31.4 

9 5.97 5.41 -0.56 29.2 32.0 29.2 

10 6.52 4.94 -1.58 33.2 34.8 26.8 

11 6.30 5.53 -0.77 35.4 33.7 29.8 

12 4.77 4.75 -0.02 28.9 26.0 25.9 

Sample Phenolics Phenolics
13

 Phenolics
diff

 Meas DOC Mod DOC Mod DOC
13

 

13 6.92 5.54 -1.38 45 36.8 29.8 

14 5.21 4.84 -0.37 29.4 28.2 26.3 

15 5.46 4.96 -0.50 29 29.4 26.9 

16 1.93 2.26 +0.33 14.1 11.6 13.3 

17 5.92 5.23 -0.68 32.1 31.7 28.3 

18 4.66 5.04 +0.37 30.8 25.4 27.3 

19 4.87 4.79 -0.08 33.1 26.5 26.1 

20 7.02 6.03 -0.98 42.2 37.3 32.3 

21 5.88 5.15 -0.73 31.8 31.5 27.9 

22 7.72 5.65 -2.07 35.1 40.8 30.4 

23 6.23 5.38 -0.86 33.1 33.3 29.0 

24 3.43 3.41 -0.02 24.6 19.2 19.1 
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Table 4.  The extent of phenolic degradation in stored water samples taken from pore water at Ffynnon Eidda.  

‘Phenolics’ is the concentration taken immediately after sampling.  ‘Phenolics
8
’ or ‘Phenolics

13
’ is the 

concentration of the same sample after either 8 or 13 months of storage in the dark at 4
o
C in plastic Nalgene® 

bottles.  ‘Phenolics
diff

’ is the concentration change following storage, - indicates a loss, +indicates a gain.  All 

concentrations are in mg L
-1

. 

Sample Phenolics Phenolics
8
 Phenolics

diff
 

1 5.39 4.53 -0.85 

2 7.20 6.39 -0.81 

3 8.00 7.22 -0.78 

4 6.88 6.52 -0.36 

5 6.94 6.61 -0.32 

6 5.66 5.14 -0.52 

7 9.23 6.71 -2.52 

8 7.25 6.85 -0.40 

9 7.03 5.41 -1.62 

10 8.43 6.36 -2.07 

11 8.94 8.55 -0.39 

12 5.48 5.05 -0.43 

Sample Phenolics Phenolics
13

 Phenolics
diff

 

13 5.54 6.45 +0.90 

14 7.40 7.11 -0.29 

15 6.10 6.52 +0.42 

16 9.61 10.10 +0.49 

17 7.57 7.31 -0.26 

18 6.72 7.93 +1.21 

19 6.95 8.82 +1.87 

          

2.4. Discussion 

2.4.1. Using the general phenolic model to calculate DOC 

This analysis shows that phenolic concentrations can be used to give an estimate of 

DOC concentrations for the pore waters and drainage waters of peaty soils.  A general model 

using data from numerous sites allowed DOC to be calculated for three new sites at a mean 

accuracy of 81-86%; these three sites included pore water, surface water, and leachate 

samples.  For each of the three sites, there was some evidence of small systematic errors in 

DOC predictions, due to site-specific variations in the ratio of phenolics to DOC, relative to 

the whole-dataset mean.  One of the reasons for the high phenolic concentrations typically 
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observed in wetlands and uplands seems to be due to the occurrence of certain plant species.  

Sphagnum species, Vaccinium myrtillus, Calluna vulgaris, Empetrum hermaphroditum, and 

Erica australis are all phenolic-rich species (Rudolph & Samland, 1985, Gallet & Lebreton, 

1995, Kähkönen et al., 1999, Castells, 2008, Carballeria, 1980) and are typical of upland bog 

vegetation.  High water levels that maintain anaerobic conditions constrain phenol oxidase 

activity and prevent the decomposition of phenolics, causing waters drained from these areas 

to have high phenolic concentrations (Freeman et al., 2004).  Variations in factors such as 

water table, temperature, soil type and vegetation may therefore explain some of the 

variability in the relationship between sites.  For instance, the Migneint podzol site displays 

very low concentrations of phenolics per unit of DOC compared to the nearby Migneint peat 

site and this could be attributed to vegetation; the podzol site is typified by Festuca ovina and 

Juncus squarrosus and lacks the Calluna species that dominate the peat site.  There is 

therefore less potential for the vegetation to release high concentrations of phenolics.  In 

addition, it is a well drained soil so phenol oxidase activities will be higher, resulting in 

higher rates of phenolic degradation (Freeman et al., 2001b). 

A full understanding of site differences is complex, however.  Despite the Migneint 

peat and podzol sites showing differences in the phenolic to DOC ratio, the adjacent 

Peaknaze peat and podzol sites do not.  Like the Migneint sites, the peat site is predominantly 

comprised of Calluna and other bog species, whilst the podzol site largely features Festuca 

ovina, although Calluna is present.  It therefore seems likely that the presence of Calluna 

could account for the lack of an observed difference at Peaknaze.  Alternatively, it is possible 

that other environmental factors are the primary controller of phenolic concentrations at 

Peaknaze, such as shared precipitation and temperature.  The long-term data sets from the 

paired Peaknaze and Migneint sites clearly show shared changes in the phenolic to DOC 

ratio.  Some of these will be due to large scale weather events; a severe drought across the 

UK could stimulate phenol oxidase activity at all sites, thus causing an associated decline in 

phenolic concentrations.  Drought conditions have also been shown to enhance both the 

abundance and diversity of bacteria that are capable of degrading phenolic compounds 

(Fenner et al., 2005).  On a similar theme, a localised mountain storm on the Migneint would 

be observed as a spike in the phenolic to DOC ratio as phenol oxidase is suppressed due to 

anaerobic conditions facilitating the accumulation of phenolics (Freeman et al., 2004).  

Where only one of the four locations shows a change this must be attributable to localised 

factors, such as vegetation controls.  
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There was no significant difference in the ratio of phenolics to DOC in the three lakes 

(Llyn Teyrn, Llyn Cwellyn and Llyn Conwy), and they all showed relatively high proportions 

of phenolics.  This can partly be explained by the fact that all three are humic lakes; Shimp 

and Pfaender (1985) showed that when microbial communities become adapted to increased 

levels of humic acids, their capability to degrade phenolics is reduced.  Processing of fresh 

DOC can occur rapidly in lakes (Tranvik et al., 2009) and, coupled with the high dilution 

effect, differences in phenolic:DOC are unlikely to be observed on the same magnitude as 

those occurring in soils.  Phenolic concentrations and the other fractions of lake DOC will 

vary throughout the year, due to changing hydrological conditions (Sachse et al., 2001), and 

differences in the efficiency of photolysis and microbial degradation (Hwang et al., 1986). 

Leachate samples from the Migneint were not significantly different from pore water 

samples from the Migneint peat site but the phenolic content of the leachate samples varied 

by an order of magnitude; the lowest concentration of phenolics to 1 mg L
-1

 of DOC was 0.07 

mg L
-1

, whilst the highest was 0.72 mg L
-1

.  Other work from forest ecosystems has 

demonstrated that one of the main components of fresh leachate is phenolics (Yavitt & 

Fahey, 1986, Beggs & Summers, 2011) so it seems likely that  these differences are driven by 

the depth of samples from the soil profile, and the availability of phenolics from adjacent 

vegetation.  A comparison of sample types revealed that the ratio of phenolics to DOC was 

higher in pore water than surface water, and it can be hypothesised that this is due to the 

increased leaching of phenolics into pore water from fresh litter (Beggs & Summer, 2011).  

Additionally, precipitation will contribute to surface water, and organic carbon in rainfall has 

been shown to consist of <1% phenolics (Likens, 1983).       

  Taken together these findings suggest that a general model can be used to calculate 

DOC, but that variations in sample type, soil type, vegetation, and climate will all contribute 

a degree of error.  Therefore the general model should be a ‘last resort’ for situations where a 

site-specific calibration isn’t possible.  For instance, Worrall et al. (2012) applied a general 

colour-carbon calibration to sites where a site-specific calibration was unavailable.  For 

similar cases, the general phenolics model can be used to provide an additional estimate of 

DOC concentrations. 

 

2.4.2. Using a site-specific model to calculate DOC 

 Considering the uncertainty that environmental and climatic factors induce in a 

general model, it is unsurprising that a site-specific regression of phenolics and DOC at 

Ffynnon Eidda gave a stronger fit and was significantly more accurate.  The exact accuracy 
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of any site-specific model will depend on the extent of phenolic variation throughout the 

year, which will be controlled by the aforementioned external factors.  To generate a robust 

model, sampling should take place at different times throughout the year (assuming the model 

will be used to calculate DOC for an annual data series) and under different climatic 

conditions.  This should allow an ‘average’ model to be produced, rather than one that 

systematically over- or underestimates DOC. 

 

2.4.3. Comparison of phenolic-based and absorbance-based DOC estimation 

 A comparison of the performance of the site-specific phenol model to colour-carbon 

models indicated that a model based on absorbance at 254 nm produced a slightly better 

calibration than using phenolics, but that a model based on 400 nm model was not as strong 

as either.  It should be noted that none produced fits that were as good as those produced by 

Tipping et al., (2009) using a two wavelength (254 nm and 340 nm) model, but this method 

was not directly investigated here.   

The models were all created using a large number (192) of data points.  A useful 

model would, in reality, be constructed from as few data points as possible to save on the 

costs of directly measuring DOC.  Repeatedly generating models for each proxy (phenolics, 

254 nm, 400 nm) using just twenty five randomly selected data points showed that the 254 

nm model was the strongest on average, with the phenolics model only slightly weaker.  

Again, the 400 nm model was considerably weaker compared to the other two.  However, the 

phenolic model was the most accurate; on average the twenty five point regression only 

deviated from the full (192 point) model by 2.65%.  This was significantly better than the 400 

nm model (5.59%) but showed no difference to the 254 nm model (3.16%). 

 These results therefore suggest that a small-dataset, site-specific calibration of 

phenolics to DOC can be as or more accurate than a colour-carbon calibration, depending on 

the wavelength of light absorbance used.  Accuracy will vary throughout the year as phenolic 

concentrations fluctuate, but the same problem is true of colour-carbon calibrations, as these 

also vary seasonally (Watts et al., 2001, Wallage & Holden, 2010).  Additionally, this study 

shows that a colour-carbon calibration at 254 nm is more accurate than one using 400 nm as a 

proxy, at least for the site examined.  Part of the reason for this could be iron interference, as 

iron can contribute to absorbance measurements at approximately 400 nm (Kritzberg & 

Ekström, 2012).  Wilson et al. (2011) found that the best proxy for DOC concentrations from 

different catchments on blanket bog was either absorbance at 254 nm or 400 nm.  The results 

presented here suggest that studies using colour-carbon calibrations should investigate the 
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potential of both wavelengths, as many just use 400 nm (e.g. Gibson et al., 2009, Wallage & 

Holden, 2010, Rowson et al., 2010).    

 UV-vis scanning of water samples for these models must take place within a week of 

sampling to ensure accuracy, and it is often desirable to analyse samples within a day of 

collection (e.g. Wilson et al., 2011), but phenolics are relatively stable to microbial 

degradation (Chian, 1977) and thus samples do not have to be assayed immediately.  There is 

a lack of information in the literature concerning the exact time samples can be stored for, but 

Afghan et al. (1974) noted no apparent loss after 16 days, provided samples were stored in 

glass bottles.  However, our results demonstrate only a small loss of phenolics from plastic 

bottles after 8 months in storage in the dark at 4
o
C.  These samples still enabled DOC to be 

calculated to an acceptable degree of accuracy.  Samples stored for 13 months allowed DOC 

to be calculated accurately, but interestingly two samples showed an increase in phenolics 

following storage.  Theoretically this could be an analytical error, but the fact that pore water 

samples also showed phenolic increases after 13 months suggests it is a real effect.  It may be 

that the increase is due to phenolic compounds leaching into the sample from the plastic 

bottle, but it is unknown why only some samples showed increases.  More detailed work 

could focus on the specific rate of phenolic degradation over time which, if known, could 

then be incorporated into a model to allow DOC to be calculated accurately from older 

samples.  Considering these results, however, and it can be concluded that a phenolics-based 

model is preferential to a UV-vis-based one if it is not feasible to analyse samples 

immediately.  Where samples can be analysed immediately, it is likely that the two 

wavelength model of Tipping et al. (2009) will be more accurate.        

 

2.4.4. Practical applications 

If direct DOC measurements are unavailable or unaffordable then this method can be 

considered an effective substitute, considering: 1) the equipment needed is minimal, 

consisting of a few chemicals and access to a spectrophotometer able to determine 

absorbance at 750nm; 2) preparation time for the samples is quick; 3) a microplate can be 

used for the analysis, thereby allowing up to eighty four samples to be analysed at once; 4) 

only a small amount (0.25 ml) of sample is needed; and 5) it can be used on older samples.   

Some caution may be required in extending this approach to different sample types, 

for example natural waters draining non-peaty soils, or leachate samples from other types of 

organic matter.  Certain substances will also interfere with the phenolics assay; notably, iron 

concentrations higher than 2 mg L
-1

.  This was not considered to be an issue for the sites used 
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in this study; monthly samples from the Ffynnon Eidda site taken between September 2006 

and September 2011 had a mean iron content of 0.86 mg L
-1

, and only exceeded 2 mg L
-1

 on 

four occasions out of eighty four sampling dates (CEH unpublished data).  None of the 

incidences of high iron concentrations coincided with high phenolic concentrations.  Iron 

levels for a peatland stream at the Plynlimon site averaged 0.1 mg L
-1

 for the period 1990-

2005, with a maximum value of 0.81 mg L
-1

 (Neal et al., 2008).  If iron is present in samples, 

then adding a centrifugation step to the method can remove the error (Box, 1983).      

This model therefore seems ideal for certain situations, such as those involving 

practitioners and conservation agencies.  For example, in the UK the incidence of drain 

blocking on peatlands is increasing, often under the stewardship of environmental agencies 

and land managers (Armstrong et al., 2010).  Some of these projects include monitoring of 

DOC, but are more often focused on other objectives such as restoration of vegetation, 

biodiversity enhancement and erosion control (Walker et al., 2008).  With limited funds and 

equipment for detailed scientific monitoring, it may not be possible to robustly evaluate the 

impacts of rewetting on water quality.  The method described here offers a viable solution to 

gather data on the effects of rewetting on DOC, a key parameter of concern from a water 

supply and ecological perspective. This approach could replace or augment more commonly 

used colour-carbon calibrations.   

 

2.4.5. Conclusions 

 Through the analysis of data from eight sites in England and Wales we show that the 

concentration of phenolic compounds in water samples can be used as a proxy for DOC 

concentration.  A general model using data from all the sites allowed DOC to be calculated 

from phenolics at an accuracy of 81-86%.  A detailed analysis at one site revealed that a site-

specific calibration was more accurate than the general model, and that this compared 

favourably with a colour-carbon calibration.  We therefore recommend this method for use 

where estimates of DOC concentration are needed, but where time and money are limiting 

factors, or as an additional method to calculate DOC alongside colour-carbon calibrations.  

Because tests demonstrated only small amounts of phenolic degradation over time (a loss of 

0.92 mg L
-1

 after 8 months in storage) this method can be used on older samples with limited 

loss of accuracy.     
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UV-vis spectroscopy as a proxy for dissolved organic carbon (DOC): 

considerations on wavelength and sample retention time 

 

3. 1. Introduction  

 Dissolved organic carbon (DOC) is a component of the carbon cycle, influences the 

functioning of aquatic ecosystems (Karlsson et al., 2009), impacts on water treatment costs 

(McDonald et al., 1991), and has implications for human health in potable water (Chow et 

al., 2003).  Long-term increases in DOC concentrations in natural systems have been 

observed across the northern hemisphere (Freeman et al., 2001, Stoddard et al., 2003, 

Skjelkvåle et al., 2005), with the primary driver potentially being ecosystem recovery from 

acid deposition (Evans et al., 2012, Ekström et al., 2011).  Additionally, changing hydrology 

(Tranvik & Jansson, 2002, Worrall et al., 2008), rising atmospheric carbon dioxide 

concentrations (Freeman et al., 2004, Fenner et al., 2007), drought events (Fenner & 

Freeman, 2011, Tang et al., 2012), increasing temperatures (Freeman et al., 2001) and land 

management strategies such as drainage and burning (Mitchell & McDonald, 1995, Holden et 

al., 2012) have all been suggested to contribute to changes in DOC concentrations.  As such, 

widespread monitoring of DOC concentrations takes place.   

 DOC can be measured directly using laboratory methods, but this requires access to 

specialised and expensive equipment.  An alternative method is to use UV-visible (UV-vis) 

spectroscopy, as the absorbance of light by water from natural systems can be used as a proxy 

for DOC (Korshin et al., 1997).  In the water treatment industry, absorbance at 254 nm is 

often used as a surrogate for DOC because aromatic humic substances are the dominant 

component of DOC in natural waters, and these absorb light in the UV wavelength region 

(Edzwald et al.,1985).  Humic substances can contribute up to 90% of DOC in some lakes 

and wetlands, although their percentage can vary considerably (Thurman, 1985).  The link 

between aromaticity and absorbance at 254 nm has been demonstrated directly using 
13

C 

NMR spectroscopy (Weishaar et al., 2003).  By establishing a calibration between a number 

of paired DOC and absorbance values, DOC concentrations can be calculated cheaply and 

quickly by just measuring absorbance. 

 Apart from 254 nm, numerous other wavelengths have been used as proxies for DOC, 

which table 1 lists.  Occasionally DOC is calculated for a specific site using a calibration 

generated elsewhere (e.g. Worrall et al., 2012), but Wallage & Holden (2010) caution against 

this, as calibrations can vary according to factors such as peat depth, land management, and 
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over time.  However, the study in question (Wallage & Holden, 2010) investigated 400 nm as 

a proxy which is at the extreme upper end of the UV spectrum (and also part of the visible 

spectrum).  As humic substances are coloured to varying degrees (Thurman, 1985) a 

wavelength in the visible spectrum may not be the most appropriate proxy.  Measuring 

absorbance at a lower wavelength in the UV spectrum may produce more robust calibrations 

(Wang & Hsieh, 2001).   

 

Table 1. List of wavelengths that have been used as proxies for DOC. 

Wavelength (nm) Reference 

250 De Haan et al. 1982 

254 Edzwald et al.,1985 

260 Banoub, 1973 

270 Timperley, 1985 

280-400 Lawrence, 1980 

300 McKnight et al., 1997 

320 Gorham, 1957 

330 Moore, 1987a 

340 Tipping et al., 1988 

355 Muller & Tankéré-Muller, 2012 

360 Collier, 1987 

365 Carpenter & Smith, 1984 

400 Wallage & Holden, 2010 

410 Hongve & Åkesson, 1996 

420 Fosberg, 1967 

436 Hongve & Åkesson, 1996 

450 Hongve & Åkesson, 1996 

465 Hautala et al., 2000 

562 Carpenter & Smith, 1984 

 

 More sophisticated methods to calculate DOC using light absorbance have been 

proposed, such as ones using two different wavelengths (Tipping et al., 2009, Carter et al., 

2012), and the method of Wang & Hsieh (2001) which uses the area under the UV-vis spectra 

as a proxy.  Despite this, numerous environmental studies continue to rely on calibrations 

using one wavelength (e.g. Wilson et al., 2011, Muller & Tankéré-Muller, 2012).  In light of 

this, a thorough investigation of the appropriateness of different wavelength proxies is 

needed, as well as a comparison of different methods. 
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 In addition to being used as a proxy for DOC concentration, UV-vis spectroscopy is 

also used as a tool to provide information on the structure and composition of DOC (table 2).  

The E4:E6 ratio is frequently cited as a measure of humification or molecular weight 

(Thurman, 1985, Summers et al., 1987), and is the ratio of absorbance at two wavelengths; 

one around 400 nm and one around 600 nm.  Similarly, the E2:E3 ratio (absorbance at 250 

nm and 365 nm) is used as an estimation of aromaticity and molecular weight (Peuravuori & 

Pihlaja, 1997), and SUVA (specific UV absorbance: an absorbance measurement, usually 

taken at 254 nm, divided by DOC concentration) is also a measure of aromaticity (Weishaar 

et al., 2003).  E2:E4 ratios are sometimes used, where absorbance is measured at two 

wavelengths; one around 200 nm and one around 400 nm.  This ratio has been cited as a 

measure of humification (Park et al., 1999), and as a comparison of the UV-absorbing 

functional groups and coloured ones in DOC (Selberg et al., 2011, Graham et al., 2012).  

Similarly, spectral slope ratios can provide information on molecular weight (Helms et al., 

2008).  However, doubt has been expressed over the use and applicability of some of these 

ratios (O’Driscoll et al., 2006).   

UV-vis spectroscopy is also used as a tool to investigate other, non-DOC, compounds 

such as organic halogen and disinfectant chlorination byproducts (Korshin et al., 1996, Li et 

al., 2000), total dissolved mercury (Dittman et al., 2009), total nitrogen and nitrate (Ferree & 

Shannon, 2001), and in wastewater treatment (Vaillant et al., 2002).  

 

Table 2. Details of various UV-vis measures used in the investigation of DOC composition. 

Measure Wavelengths (nm) Reference 

E2:E3 ratio 250:365 Peuravuori & Pihlaja, 1997 

E2:E4 ratio 252:452 Graham et al., 2012 

  254:436 Selberg et al., 2011 

  254:465 Park et al., 1999 

E4:E6 ratio 400:600 Moore, 1987b 

  450:650 Wilson et al., 2011 

  460:660 Thurman, 1985 

  465:665 Wallage et al., 2006 

SUVA 254 Weishaar et al., 2003 

  280 Duirk & Valentine, 2006 

  400 Worrall et al., 2007 
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In view of the prevalence of spectrophotometric analysis, it is therefore worth 

considering how long a water sample can be retained in storage before analysis, and still 

produce an accurate and reliable result.  Current practice is to measure absorbance as soon as 

possible after sampling, often within one day (e.g. Wilson et al., 2011).  Under the 

Disinfectant/Disinfection By-products Rule of the US Environmental Protection Agency 

samples for UV scanning must be analysed within two days (Karanfil et al., 2002).  However, 

there does not appear to be any detailed study in the literature describing the degradation of 

absorbance in stored samples over time.   

 The aim of this experiment is therefore four-fold: 1) to investigate the appropriateness 

of different wavelengths as proxies for DOC concentration, and to observe whether this 

changes for different sets of samples (hereafter referred to as the “DOC proxy assessment”); 

2) to compare different indirect methods of DOC measurement (hereafter referred to as the 

“procedural comparison”; 3) to assess the suitability of the E2:E3, E2:E4 and E4:E6 ratios 

(hereafter referred to as the “E ratio assessment”, and; 4) to repeatedly measure the weekly 

change (if any) in absorbance for a set of water samples (hereafter referred to as the 

“absorbance degradation” experiment).  Taken together, the findings should ensure the best 

possible experimental methods for those using UV-vis spectroscopy as a tool to analyse 

natural waters.  

 

3.2. Materials and Methods 

3.2.1. DOC proxy assessment   

In order to assess the appropriateness of different wavelengths as DOC proxies, we 

took water samples from two peatland sites in north Wales: the catchment of the Afon Ddu 

on the Migneint blanket bog (latitude 52.97°N, longitude 3.84°W), and the catchment of the 

Alwen Reservoir (latitude 53.07°N, longitude 3.57°W).  Afon Ddu samples were from three 

sets: samples taken from surface water in twelve open and blocked ditches, pore water 

samples taken from twelve piezometers, and overland-flow (OLF) surface water samples 

collected from twenty four crest-stage tubes.  Ditch and piezometer samples were collected 

monthly from July 2011 to January 2012, and OLF samples were collected for January and 

July 2012.  Samples from the Alwen Reservoir catchment were taken monthly from six 

streams from October 2011 to May 2012. 

Water samples were stored in the dark at 4
o
C before analysis.  Samples were filtered 

through Whatman 0.45 μm cellulose nitrate filters and analysed for DOC using an Analytical 

Sciences Ltd Thermalox Total Carbon analyser.  Samples were acidified (pH < 3), sparged 
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with oxygen to remove any inorganic carbon, and DOC concentrations calculated using a 

seven point calibration curve, with additional standards to check for drift, (plus a quality 

control sample) and several samples (1-3 per run) duplicated to check for reproducibility.  

Each individual sample was injected 5 times, and the result accepted if the coefficient of 

variation of the five injections was less than 3%.  UV-vis analysis was conducted using a 

Molecular Devices M2e Spectramax plate-reader.  Wavelengths were scanned on a 1 nm 

increment from 230 nm to 800 nm, and results were corrected against blanks of ultrapure 

water. 

Data analysis was performed using SPSS v16.0.1 (IBM Corporation, http://www-

01.ibm.com/software/analytics/spss/products/statistics/).  For each set of samples a regression 

was performed between each individual wavelength and DOC concentration, with the aim of 

determining which wavelength gave the highest R2 value (i.e. the strongest fit between DOC 

and UV-vis). 

 

3.2.2. Procedural comparison 

In order to compare different procedures for indirect DOC estimations, we selected 

six different methods from the literature.  These were: 1) the method of Carter et al. (2012) 

that calculates DOC using absorbance at 270 nm and 350 nm, 2) the method of Wang & 

Hsieh (2001) that uses the area under the UV spectra between 250 nm and 350 nm to create a 

calibration for DOC, 3) a calibration curve created using absorbance at 254 nm, 4) a 

calibration curve created using absorbance at 400 nm,  5) a calibration created using the 

optimum absorbance wavelength derived from the DOC proxy assessment, and 6) the method 

of Peacock et al. (2013) that uses a calibration created using phenolic concentration.  UV-vis 

and DOC analysis was conducted in the same manner as the DOC proxy assessment.  

Phenolic concentrations were determined using a method adapted from Box (1983).  0.25 ml 

of sample was added to a clear microplate well.  12.5 μl of Folin-Ciocalteau reagent was 

added followed by 37.5 μl of Na2CO3 (200 g L
-1

).  After 1.5 hours the absorbance was 

measured at 750 nm on a Molecular Devices M2e Spectramax plate-reader.  Phenolic 

concentrations were then derived from the preparation of a standard curve using laboratory-

prepared standards of known concentration (0, 1, 2, 4, 6, 8, 10, 15, 20 mg L
-1

).  All six 

methods were tested on two sets of samples from the Afon Ddu catchment; one set from ditch 

water, and one set from pore water.  48 water samples were used to create the ditch 

calibrations which were then used to model DOC for 47 samples.  For the pore water set, 40 

http://www-01.ibm.com/software/analytics/spss/products/statistics/
http://www-01.ibm.com/software/analytics/spss/products/statistics/
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samples were used to create the calibrations and these were tested on 44 samples.  Data 

analysis was performed using SPSS v16.0.1.       

 

3.2.3. E ratio assessment 

 In order to assess how suitable E ratios are in characterising DOC from peatlands, we 

monitored surface and pore water in the Afon Ddu catchment, on an approximately monthly 

basis.  Surface water was collected from four ditches on 25 occasions, from October 2010 to 

October 2012.  Pore water was collected from four piezometers adjacent to each ditch on 23 

occasions, from January 2011 to October 2012.  UV-vis and DOC analysis was conducted in 

the same manner as the DOC proxy assessment.  The investigated ratios were the E2:E3 ratio 

(250 nm : 365 nm), E2:E4 ratio (250 nm : 400 nm), E4:E6 ratio (465 nm : 665 nm), and 

SUVA (254 nm : DOC).  To directly examine the molecular composition of DOC, size-

exclusion chromatography (SEC) was performed on a limited number of samples.  This was 

done using an Agilent PL-GPC 50 with a six point calibration of analytical grade standards: 

Poly(styrenesulfonic acid) sodium salt: 4300MM, 13000MM, 32000MM, 77000MM, 

155000MM, Cyanocobalamin (vitamin B12): 1340MW. 

          

3.2.4. Absorbance degradation experiment       

In order to quantify the rate of absorbance degradation in stored samples we collected 

sixty five water samples from ditches in the Afon Ddu catchment on one day in August 2012. 

Samples were stored in the dark at 4
o
C and analysed within one day.  Samples were filtered 

through Whatman 0.45 μm cellulose nitrate filters and analysed using a Molecular Devices 

M2e Spectramax plate-reader, as for the DOC proxy assessment.  After this, samples were 

reanalysed every week for 12 weeks. 

   

3. Results 

3.3.1. DOC proxy assessment 

For all four sets of samples the best fit between DOC and absorbance occurred in the 

lower wavelengths, and declined as wavelength increased (fig.1).  R2 was above 0.8 for some 

wavelengths in each of the four sample sets, indicating a strong correlation between DOC and 

absorbance.   For pore water, OLF, and Alwen Reservoir samples the strongest fit between 

absorbance and DOC (indicated by the highest R2 and lowest residual variance) was found at 

230 nm, but for ditch water the strongest fit was at 263 nm.  Whilst the R2 of the piezometer 

and Alwen Reservoir samples began dropping immediately, the R2 for the other two sample 
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sets was relatively stable up to approximately 350 nm, and then decreased after that.  For all 

samples sets the R2 values declined gradually, dropping below 0.7 in ditch water samples at 

wavelengths above 702 nm, and above 474 nm in pore water.  In OLF and Alwen Reservoir 

samples the R2 dropped below 0.7 at 435 nm and 500 nm respectively.  In the higher 

wavelengths the ditch, pore water and OLF samples show rapid, noisy fluctuations in R2 

between adjacent wavelengths, but this is absent from Alwen Reservoir samples where R2 

continues to smoothly decline to 800 nm.  Additionally, pore water samples show a ‘trough’ 

between 670 nm and 710 nm where R2 rapidly decreases then increases, suggesting a weaker 

fit between DOC and absorbance at these wavelengths.  Examination of the raw spectra 

shows that there is a small increase in absorbance between these wavelengths.      

 

Figure 1. R2 values for regressions between DOC concentration and absorbance for wavelengths between 230 

nm and 800 nm for four sites.  Solid line = Afon Ddu ditch water n=108, dotted line = Afon Ddu pore water 

n=98, dashed line = Afon Ddu OLF water n=47, dashed and dotted line = Alwen Reservoir stream water n=40. 

 

3.3.2. Procedural comparison 

The six methods detailed in section 2.2 were used to calculate DOC.  Using the results 

from the DOC proxy assessment, absorbance at 263 nm and 230 nm were chosen for ditch 

water and pore water samples, respectively.  Table 3 shows the summary results.  For ditch 

water the mean difference between modelled and measured DOC was lowest using an 
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absorbance proxy at 254 nm < abs 263 nm < method of Carter et al. (2012)/spectra area 

method < phenolics < abs 400nm.  For pore water the mean difference between modelled and 

measured DOC was lowest using the method of Carter et al. (2012) < abs 254 nm/spectra 

area method < abs 230 nm < abs 400nm < phenolics.  For both sample sets, the model R2 was 

considerably lower when using phenolic and 400 nm proxies.  However, ANOVA revealed 

that there were no significant differences in either ditch water or pore water between 

measured DOC and modelled DOC calculated using any of the six methods.  There was no 

significant difference between modelled DOC datasets for any of the six methods for ditch 

water or pore water.   

The results of the DOC proxy assessment were partially reinforced; the wavelength 

with the highest R2 values from that analysis for pore water (230 nm) produced better 

calibration and model R2 values for this experiment when compared to 254 nm.  For ditch 

water the wavelength that was selected on the basis of the DOC proxy assessment (263 nm) 

generated identical calibration and model R2 values as 254 nm.    

Table 3. Summary results for six different methods of indirectly calculating DOC in ditch and pore water 

samples.  1) the method of Carter et al. (2012) that calculates DOC using absorbance at 270 nm and 350 nm, 2) 

the method of Wang & Hsieh (2001) that uses the area under the UV spectra between to create a calibration for 

DOC, 3) a calibration curve created using absorbance at 254 nm, 4) a calibration curve created using absorbance 

at 400 nm, 5) a calibration created using the optimum absorbance wavelengths (263 nm and 230 nm) derived 

from the DOC proxy assessment, and 6) the method of Peacock et al. (2013) that uses a calibration created using 

phenolic concentration.  Mean diff is the mean difference between calculated and actual DOC, and SE is the 

standard error of the mean of this difference.  Calibration R2 is the strength of the regression for each calibration 

of DOC and the method.  The method of Carter et al. (2012) just uses absorbance to directly calculate DOC 

after model parameterisation and therefore has no calibration R2.  Model R2 is the strength of the regression 

between measured and modelled DOC.  n = 47 for ditch water and 44 for pore water.      

Ditch water Abs 270/350 nm Spectra area 254 nm 400 nm 263 nm Phenolics 

Mean diff (mg L
-1

) 1.69 1.69 1.49 2.78 1.51 2.57 

SE 0.24 0.15 0.14 0.21 0.14 0.37 

Calibration R2 n/a 0.85 0.86 0.82 0.86 0.89 

Model R2 0.97 0.98 0.98 0.93 0.98 0.91 

  

     

  

Pore water Abs 270/350 nm Spectra area 254 nm 400 nm 230 nm Phenolics 

Mean diff (mg L
-1

) 3.20 3.61 3.61 5.41 3.75 7.49 

SE 0.34 0.48 0.47 0.62 0.45 0.58 

Calibration R2 n/a 0.68 0.72 0.55 0.75 0.47 

Model R2 0.93 0.91 0.91 0.86 0.93 0.81 
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Despite the lack of a significant difference between calculated datasets, there were 

still systematic deviations for some of the models.  For instance, a phenolics proxy 

consistently underestimated DOC concentrations for both pore water and ditch water, whilst 

an absorbance proxy at 400 nm consistently underestimated DOC for pore water.  The pattern 

of over/underestimation was identical or similar for absorbance proxies in the UV range; all 

the samples that were overestimated using 254 nm in ditch water were also overestimated 

using 263 nm, and those overestimated using 254 nm in pore water were overestimated using 

230 nm.  These similarities did not exist between 254 nm and 400 nm however (table 4). 

 

Table 4. Number of over- and underestimated DOC concentrations for the six different methods of indirectly 

calculating DOC in ditch and pore water samples.  1) the method of Carter et al. (2012) that calculates DOC 

using absorbance at 270 nm and 350 nm, 2) the method of Wang & Hsieh (2001) that uses the area under the 

UV spectra between to create a calibration for DOC, 3) a calibration curve created using absorbance at 254 nm, 

4) a calibration curve created using absorbance at 400 nm, 5) a calibration created using the optimum 

absorbance wavelengths (263 nm and 230 nm) derived from the DOC proxy assessment, and 6) the method of 

Peacock et al. (2013) that uses a calibration created using phenolic concentration.   

Ditch water Abs 270/350 nm Spectra area 254 nm 400 nm 263 nm Phenolics 

No. of overestimates 23 33 32 29 32 16 

No. of underestimates 24 14 15 18 15 31 

  

     

  

Pore water Abs 270/350 nm Spectra area 254 nm 400 nm 230 nm Phenolics 

No. of overestimates 13 17 23 8 25 9 

No. of underestimates 31 27 21 36 19 35 

   

By comparing the regression intercepts for the slope equations of the model 

calibrations, the minimum possible value of DOC that can be predicted by that method can be 

calculated.  We refer to this as the lowest detection limit (LDL).  Table 5 shows these values.  

For both sets of samples the spectra area method and a proxy at 254 nm performed 

comparatively well, but for ditch water a phenolics proxy was the most suitable, as evidenced 

by a negative intercept (i.e. the LDL was zero).  For ditch water the largest value was 2.7 for 

a 400 nm proxy, but the pore water values were larger, with 8.23 at 400 nm being the largest 

such value.    
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Table 5. Regression slope intercepts (from the slope equation y = mx =b) for five different methods of indirectly 

calculating DOC in ditch and pore water samples.  1) the method of Wang & Hsieh (2001) that uses the area 

under the UV spectra between to create a calibration for DOC, 2) a calibration curve created using absorbance at 

254 nm, 3) a calibration curve created using absorbance at 400 nm, 4) a calibration created using the optimum 

absorbance wavelengths (263 nm and 230 nm) derived from the DOC proxy assessment, and 5) the method of 

Peacock et al. (2013) that uses a calibration created using phenolic concentration.  These values are the LDLs 

for calculated DOC.   

Ditch water Spectra area 254 nm 400 nm 263 nm Phenolics 

Intercept 2.23 2.14 2.70 2.17 -1.69 

  

    

  

Pore water Spectra area 254 nm 400 nm 230 nm Phenolics 

Intercept -1.84 -4.89 8.23 -9.59 7.83 

    

 

3.3.3. E ratio assessment 

 Overall means for all three E ratios were larger for pore water than ditch water, 

although this difference was only marginal for the E2:E3 and E2:E4 ratios.  SUVA was 

higher for ditch water (table 6).  Standard errors were small, except for the E4:E6 ratio where 

SEs were an order of magnitude larger.  Figure 2 shows the monthly data.  For both ditch and 

pore water the E4:E6 ratio showed considerable variation over time, whilst the E2:E3 ratio 

was the most stable.  There was some evidence of shared trends in the E4:E6 ratio for both 

sample types, for example, the increase on the 5.7.11, and the peak on the 9.7.12.   

 

Table 6. Means and standard errors for the four ratios examined.  n = 100 for ditch water, n = 86 for pore water, 

except for pore water SUVA where n = 85.    

  Ditch water   Pore water   

  Mean SE Mean SE 

E2:E3 3.65 0.02 3.70 0.01 

E2:E4 6.42 0.07 6.77 0.05 

E4:E6 5.99 0.38 7.37 0.44 

SUVA 4.58 0.09 4.00 0.05 
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Based on the results from the SEC analysis there was no evidence of changes to the 

molecular weight of the DOC.  Table 7 shows the various ratios for a set of four ditch water 

and three pore water samples, whilst figure 3 shows their respective chromatograms from the 

SEC.  An examination of the SEC results reveals that there is no visible difference in 

molecular weight.  There is little variation in each sample set for SUVA, E2:E3 and E3:E4, 

but the E4:E6 results cover a wide range of values, particularly for ditch water samples.    

 

Table 7. Ratios for a set of four ditch water samples from January 2012, and three pore water samples from July 

2012. 

Ditch water Ditch E2:E3 E2:E4 E4:E6 SUVA 

  1 3.85 6.95 5.66 3.34 

  2 3.73 6.57 9.30 2.79 

  3 3.93 7.36 12.38 4.07 

  4 3.77 6.96 12.80 3.24 

  

    

  

Pore water Ditch E2:E3 E2:E4 E4:E6 SUVA 

  1 3.76 6.92 10.77 4.30 

  2 3.73 7.00 12.14 4.10 

  3 3.60 6.80 14.31 4.60 
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Figure 2. Monthly mean values for E2:E3 ratio (continuous line), E2:E4 ratio (dotted line), E4:E6 ratio (dashed 

line) and SUVA (dotted and dashed line) for A) ditch water and, B) pore water.  For each month n = 4, with the 

following exceptions for pore water: n = 3 for 5.7.11, 25.7.11, 10.9.12, 11.10.12 and n = 2 for 15.3.11.  For pore 

water SUVA only, n = 3 for 11.5.11. 
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Figure 3. SEC chromatograms for A) four ditch water samples from January 2012 and B) three pore water 

samples from July 2012.  Differences in chromatogram height are due to differences in DOC concentration.  

Note that the y axis scale is different on each graph. 

 

3.3.4. Absorbance degradation experiment 

 After twelve weeks of repeated measurements there was no consistent decrease or 

increase in absorbance at any wavelength (fig. 4).  Instead, the mean absorbance displayed 

small fluctuations.  The mean difference in absorbance between the original and week 12 

measurements were extremely small (table 8).  ANOVA showed that there were no 

significant differences between the original absorbance values and any of the later weekly 

measurements for 250 nm, 365 nm, 400 nm and 465 nm.  For 600 nm there was a significant 

difference between the original absorbance values and those measured during week 4.  

Although the fluctuations in mean absorbance are of a larger absolute magnitude at 250 nm, 

and decrease with increasing wavelength, when expressed as a percentage of the mean 

absorbance they are similar for all wavelengths, though slightly higher at 600 nm (table 8). 
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Figure 4. Mean absorbance values for five wavelengths, for a set of surface water samples (n = 65) that were 

analysed every week for twelve weeks.  The wavelengths are 250 nm (solid line), 365 nm (dotted line), 400 nm 

(square-dotted line), 465 nm (dashed line) and 600 nm (dashed and dotted line).  Error bars show standard error 

of the mean.  

 

Table 8. The mean difference between the original absorbance measurements and week 12 absorbance 

measurements, and the mean percentage deviation of weekly measurements when compared to the original 

measurements.   

Wavelength (nm) 254 354 400 465 600 

Mean difference 0.004 0.008 0.005 0 -0.001 

Mean % deviation 3.3 4.6 5.0 4.9 9.8 

 

        

Examining the raw spectral data is another way to visually determine if there have 

been changes in the UV-vis properties of the water samples.  Figure 5 shows a random 

selection of paired spectra for four samples.   There is no obvious difference between the 

pairs for samples A and C, but samples B and D show more discrepancy, particularly in the 

low (<400 nm) wavelengths.  However, the actual shape of the spectra were not visibly  

different.      

 

 

0

0.2

0.4

0.6

0.8

1

1.2
A

b
s 



49 
 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Paired UV-vis spectra for four water samples (labelled A, B, C, D).  For each graph, the dashed line 

shows the spectra of the sample at the start of the 12 week analytical period, and the dotted line shows the 

spectra as measured during week 12.   

 

3.4. Discussion 

3.4.1. DOC proxy assessment 

For all four data sets the fit between DOC and absorbance wavelength was strongest 

in the shorter wavelengths, and declined as wavelength increased.  This is expected; for 

humic acids absorbance decreases as wavelength increases and therefore using a shorter 

wavelength would give higher resolution (Wang & Hsieh, 2001), a finding also reinforced by 

Peacock et al. (2013) who found that 254 nm was a more accurate proxy than 400 nm.  For 

three of the sample sets the most robust proxy was 230 nm; the shortest wavelength 

investigated, whilst for ditch water samples 263 nm was found to be the best proxy.  It is 

probable that this difference is derived from the exact aromatic moieties of the DOC, as 

numerous aromatic acids are present in natural waters (Thurman, 1985), and wavelengths 

such as 250 nm, 254 nm, and 280 nm have been associated with aromaticity (Peuravuori & 

Pihlaja, 1997, Weishaar et al., 2003).  For ditch water and OLF samples the fit between DOC 

and absorbance was relatively stable in the short wavelengths, suggesting that numerous 

wavelengths between 230 nm and 350 nm would function as equally accurate DOC proxies.  

This was not the case for pore water and Alwen Reservoir samples where R2 decreased 

immediately as wavelength increased from 230 nm.  This indicates that ditch water and OLF 

Wavelength (nm) Wavelength (nm) 
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DOC contained a wide array of aromatic moieties which accordingly absorbed light in a wide 

range of the UV spectrum, whereas pore water and Alwen Reservoir samples had a much 

narrower aromatic fingerprint.   

These findings call into question the use of longer wavelengths such as 400 nm as 

DOC proxies, and suggest that care should be taken when selecting a single wavelength as a 

DOC proxy.  Although 230 nm gave the most accurate proxy for three out of the four sample 

sets here, it is inappropriate for certain waters, as NO3
-
-N will interfere with absorbance at 

wavelengths shorter than 250 nm (Wang & Hsieh, 2001).  The fact that different wavelengths 

were found to be accurate for pore water and surface water at the same site is not surprising, 

as Wallage & Holden (2010) demonstrated that the relationship between absorbance and 

DOC changed with factors such as peat layer, due to changes in the proportions of 

differently-coloured compounds that comprise DOC.  Clay et al. (2012) noted similar 

changes after burning, where DOC concentration stayed the same but absorbance at 400 nm 

decreased as more years passed since the burn.    

As far as we are aware, the style of the presentation of DOC proxy data (i.e. 

individual R2 values for regression between absorbance and DOC graphed against individual 

wavelengths) in figure 1 is completely novel.  As such, it offers a new way of visualising 

absorbance data and provides new insights into the quality of dissolved organic matter.  For 

example, the ‘trough’ in the pore water samples between 670 nm and 710 nm shows an 

absorbance region where the relationship between DOC and absorbance is weaker than that 

immediately above and below this region.  This suggests that between these wavelengths 

there is a compound that absorbs light but is not DOC.  As the samples in question are pore 

water it seems logical that this is caused by some compound leaching into the water.  It has 

been proposed that the boundary between oxic and anoxic peat layers is important in the 

formation of humic-iron colloids (Heikkinen, 1994), and iron is known to contribute to water 

colour at 420 nm (Kritzberg & Ekstöm, 2012) as well as interfering with UV absorbance 

analysis (Doane & Horwáth, 2010).  The unknown compound interferes at much longer 

wavelengths however, and therefore is likely to be something different.  Iron is present in the 

waters of the Afon Ddu catchment (Austnes et al., 1010) and so the contaminant could be a 

colloidal ‘green rust’ (Satapanajaru et al., 2003) such as Fe(II) Fe(III) hydroxyl carbonate 

which has an absorbance peak at 650 nm (Hansen, 1989).  Green rusts have been found in 

hydromorphic soils (Génin et al., 1998).  Iron hydroxide is another possibility, as it is 

common in natural waters (Hem & Cropper, 1959) and absorbs light at 750 nm (Box, 1983).  
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Other similar iron compounds may exist that could interfere with absorbance as these 

wavelengths. 

 

3.4.2. Procedural comparison 

 There was no significant difference between measured and modelled DOC for any of 

the six methods used to calculate DOC.  It might be that significant differences would be 

found if the different methods were tested on larger sample sizes, as long-term environmental 

monitoring of waters typically generates large amounts of data.  The best method was found 

to be an absorbance proxy at 254 nm for surface water, and the method of Carter et al. (2012) 

that calculates DOC using absorbance at 270 nm and 350 nm for pore water.  The model that 

performed the least accurately was an absorbance proxy at 400 nm for surface water, and a 

phenolics proxy for pore water.   This was due to 400 nm consistently underestimating DOC, 

and phenolics consistently overestimating DOC in samples of these types.         

 These results are at odds with those of Wang & Hsieh (2001) who found that using 

the area under the spectra was a more accurate proxy than a single wavelength.  The R2 of 

the model calibrations was slightly higher for a proxy at 254 nm compared to one using the 

area under the spectra between 250 nm and 350 nm.  One possible explanation for this is that 

the increased number of measurements allows more scope for error to be introduced into the 

calculations.  For example, using absorbance at 254 nm from 20 water samples to produce a 

DOC calibration needs 20 absorbance measurements.  To produce the same calibration using 

the spectra area method, 2000 absorbance measurements are needed (absorbance at every 

wavelength between 250 nm and 350 nm); two orders of magnitude higher.  This large 

number of measurements may therefore lead to more incidences of analytical error which, 

however slight, accrue over time and lead to a less accurate DOC model.  Likewise, the 

results are partially at odds to those of Carter et al., (2012) who found that using a two 

wavelength model increased R2 by 0.02 or 0.05 when compared to a UV proxy at 270 nm or 

350 nm.  We report an increase in R2 of 0.02 for pore water when using a two wavelength 

model rather than absorbance at 254 nm.  However, for surface water a single wavelength 

model using 254 nm was better than the two wavelength model by 0.01.  

 The results of the DOC proxy assessment were echoed for this analysis; 230 nm, the 

wavelength that was selected from that experiment for pore water, improved the R2 values of 

the model and calibration when compared to a 254 nm proxy.  However, the calibration and 

model strengths for surface water were the same for wavelength selected from the DOC 

proxy assessment (263 nm) and 254 nm.     
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 Wallage & Holden (2010) found that using a proxy at 400 nm gave low detection 

limits of DOC, as calculated by taking the regression intercept of the model calibration.  For 

surface water all models performed well, with 2.7 mg L
-1

 being the highest LDL.  For pore 

water the LDLs showed more variation, with 8.23 mg L
-1

 being the highest LDL.  This is 

similar to results from Wallage & Holden (2010) who found that LDLs using 400 nm ranged 

from -0.77 mg L
-1

 to 10.32 mg L
-1

 for pore water in English blanket bog.  High LDLs 

indicate that a large amount of DOC is undetectable using that method.  For instance, a high 

LDL at 400 nm suggests that much of the DOC is uncoloured, and therefore does not absorb 

light at this wavelength.  This is reinforced by the much lower LDL for 254 nm, as the 

aromatic compounds that dominate humic substance absorb light in this region (Edzwald et 

al.,1985).   Our results also show some negative LDLs.  These calibrations theoretically allow 

DOC to be calculated down to 0 mg L
-1

.      

The data here support the conclusion of the DOC proxy assessment and of Peacock et 

al. (2013), in showing that 400 nm should be avoided as a DOC proxy if possible.  

Absorbance at approximately 400 nm can be subject to interference by iron concentrations 

(Kritzberg & Ekstöm, 2012).  Additionally, the relationship between DOC and absorbance at 

400 nm has been demonstrated to show considerable variation within the same catchment, 

according to changes in vegetation (Gough et al., 2012).  As such, using 254 nm as a proxy 

gave a higher R2 value for both the calibration and testing of a DOC : absorbance model, and 

allowed DOC to be modelled at lower concentrations.  Wallage & Holden (2010) state that 

“problems that we have identified in this paper will have to be overcome including problems 

of low DOC detection limits when using absorbance proxies.”  The results presented here 

suggest that this statement is true of 400 nm, but not necessarily for 254 nm.  Additionally, 

our results contradict the idea presented by Grayson & Holden (2012) that wavelengths under 

300 nm are not suitable as DOC proxies.  Their argument is based on the assertion that 

wavelengths under 300 nm show large and rapid fluctuations when measured continuously in 

streamwater using a spectrophotometer, compared to longer wavelengths that show cleaner 

signals.  However, it is highly likely that the rapid fluctuations in absorbance below 300 nm 

are real, not artefacts, and are changing as DOC concentrations also fluctuate according to 

environmental conditions such as precipitation events.  Other data gathered using the same 

type of instrument has shown that DOC concentrations can indeed fluctuate rapidly (Koehler 

et al., 2009), and the use of continuous monitoring technology has revealed that water 

chemistry determinands are actually highly dynamic, and fluctuate on an hourly basis 

(Kirchner et al., 2004).  Longer wavelengths such as 400 nm and 600 nm will not show these 
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fluctuations to the same precision as a large proportion of DOC is uncoloured (Thurman, 

1985) and therefore not detectable outside of the UV spectrum.    

 The two wavelength method of Carter et al., (2012) is clearly a useful DOC proxy.  

Using the model parameters described in their paper gave accurate predictions of DOC (data 

not shown here) but small changes in the parameters improved the calculations for the site 

investigated.  The parameters cited by Carter et al., (2012) were generated using a large 

number of samples which were all taken from surface water, and as such were unsuitable for 

calculating DOC in pore water.  However, calibrating the model parameters using DOC and 

absorbance data then produced an excellent fit for pore water.  This suggests that the model 

can potentially have widespread applicability for different types of water sample, provided a 

calibration dataset is available.    

 

3.4.3. E ratio assessment 

 Over approximately two years, the E2:E3 ratio, E2:E4 ratio, and SUVA were 

relatively stable and displayed small fluctuations within a narrow range of values for both 

ditch water and pore water.  In contrast, the E4:E6 ratio was subject to large, rapid changes, 

although values were consistent with those from the literature (Thurman, 1985).  To some 

extent the fluctuations in all four ratios will be driven by seasonal changes (Jaffé et al., 2008).  

For example, storm events will contribute increased volumes of low DOC surface run-off into 

ditches, and therefore dilute ditch water DOC (Clark et al., 2007).  Field observations 

supported this hypothesis, with water in ditches being visibly more coloured during dry 

periods, and appearing clearer after heavy precipitation events.       

The E4:E6 ratio is often used as a measure of humification, and changes to it 

following peatland rewetting have been cited as an indicator of biogeochemical changes 

(Wallage et al., 2006, Wilson et al., 2011).  The use of the E4:E6 ratio is questionable 

however, judging by the way it fluctuated at the study site where no anthropogenic changes 

were inflicted upon the monitored ditches.  In agreement with our results Park et al. (1999) 

noted consistent E2:E4 ratios but varying E4:E6 ratios when comparing samples, and 

O’Driscoll et al. (2006) found no relationship between the E4:E6 ratio and DOC 

composition.  They suggested that the E4:E6 ratio is not suitable for freshwater DOC 

analysis, as did Peuravuori & Pihlaja (1997). 

 The lack of difference in molecular weight between samples, as evidenced by SEC, 

and the associated lack of difference in the E2:E3 and E2:E4 ratios suggest that future 

peatland work should use these measurements to indirectly assess the composition of DOC.  
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However, the aforementioned ability of iron to interfere with measurements around 400 nm 

(Kritzberg & Ekstöm, 2012) means that the accuracy of the E2:E4 ratio (and E4:E6 ratio) can 

be compromised in waters with high iron concentrations.             

 

3.4.4. Absorbance degradation experiment 

 There was no consistent decrease or increase in absorbance for any wavelength after 

12 weeks of repeated UV-vis analysis, and absorbance values after 12 weeks were 

remarkably similar to those measured at the start of the experiment.  This is unexpected; 

although not always explicitly stated, there is an implied understanding that absorbance must 

be measured as soon as possible after water samples have been collected.  Carter et al., 

(2012) noted a decrease of 5% after 50-120 days, and this value falls within the observed 

range of fluctuations found here.  It is therefore plausible that the 5% value from Carter et al., 

(2012) is not the result of a steady decrease in absorbance due to degradation, but is just a 

random fluctuation similar to those reported here.  Although their 5% figure is only 

mentioned in passing, it appears that this percentage was reached due to one-off re-analysis 

of older samples, rather than a comprehensive temporally-repeated experiment.  Comparisons 

of UV-vis spectra from samples at the start of the experiment and after 12 weeks were very 

similar, with only slight differences in absorbance, and with no deviations in the shape of the 

spectra.  The probable origin of the non-significant fluctuations in absorbance over the course 

of the experiment is human and machine error; for example, small discrepancies when 

pipetting samples for analysis.   

 It is important to state that there are caveats to this result.  For example, calcium can 

cause DOC to come out of solution and to flocculate (Römkens & Dolfing, 1998), and this 

can therefore be problematic where water samples are taken from rich fens.  In such 

circumstances, absorbance must be measured before samples begin to flocculate.  

 An important inference of the lack of observed decrease in absorbance over time is 

that there must also be no change in DOC concentration.  There is a substantial body of 

literature concerning sample preservation for marine environments, though some of it is 

contradictory.  For instance, Sugimura & Suzuki (1988) recommended filtration and cold 

storage, as they concluded that both freezing and acidification did not give reliable results.  

Contrary to this, Tupas et al. (1994) suggested that cold storage (with or without filtration) 

resulted in a loss of DOC, and that freezing or acidification were preferable.  There is less 

literature concerning non-marine systems but the US Environmental Protection Agency 

recommends that water utilities should preserve samples through filtration and acidification 
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(Karanfil et al., 2002).  The absence of an observed decrease in DOC concentration here 

suggests that filtration at 0.45 µm and cold storage in the dark was sufficient to preserve 

samples from bacterial or chemical degradation.  This is obviously not true for all water types 

and samples, but more research is clearly needed to determine if it is universally true for 

peatland systems.          

 

3.4.4. Conclusions 

 The results presented here go some way towards clarifying and challenging the 

paradigms of UV-vis spectroscopy for the study of natural waters.  Out of the various DOC 

proxies that were investigated, 400 nm was found to consistently perform with less accuracy 

when compared to 254 nm, and therefore should be avoided as a DOC proxy.  Other 

wavelengths such as 230 nm and 263 nm also acted as robust proxies, depending on the site 

and sample type they were tested on.  The two-wavelength method of Carter et al. (2012) was 

found to estimate DOC remarkably well for surface waters, and parameterisation further 

improved the model, although a single wavelength proxy at 254 nm still performed 

marginally more accurately.  For pore water the two wavelength method was the most 

accurate after parameterisation.  Further investigations of the two wavelength method may be 

worthwhile, as the most accurate proxy may differ between sites.  If funds and equipment are 

available a calibration can be established to give the greatest accuracy possible.  If direct 

DOC analysis for a calibration is not possible, then the ‘universal calibration’ parameters 

provided by Carter et al., (2012) should still provide robust DOC estimations for surface 

water.  This therefore enables DOC monitoring to proceed in situations where it would 

otherwise be too expensive; for instance, low-budget peatland restoration projects.   

In summary, the most robust proxy for DOC depends on a variety of factors, such as 

the strength of the calibration regression, the intercept of the calibration regression which 

determines the LDL, and whether a proxy systematically overestimates or underestimates 

DOC concentration.  To characterise DOC, we suggest the use of the E2:E3 ratio, E2:E4 

ratio, and SUVA, and recommend avoiding the use of the E4:E6 ratio due to the large 

temporal variations it can be susceptible to.  It is easy to criticize those projects where DOC 

is not measured directly, but a lack of available funds can be restrictive, and any attempt to 

quantify DOC dynamics, particularly in relation to land-use changes such as peatland ditch 

blocking, should be lauded.  We suggest here that the use of indirect DOC measurement does 

not necessarily invalidate the data produced from such projects.    
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Finally, the results from the 12 week degradation experiment suggest that absorbance, 

and therefore DOC concentrations, do not necessarily decline during storage.  This will not 

be the case for all systems, but for the peatland catchment investigated here it was found that 

filtration at 0.45 μm followed by storage in the dark at 4
o
C was sufficient to preserve surface 

water samples.     
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The effect of peatland drainage and rewetting on extracellular  

enzyme activities 

 

4.1. Introduction 

 Northern peatlands store an estimated 547 Gt of carbon (Yu et al., 2010), making 

them important natural sinks when considering global carbon cycling.  However, extensive 

degradation has occurred as peatlands are drained for forestry and agriculture, and peat 

harvested for various uses.  For UK blanket bog, drainage is usually achieved through the 

digging of drainage ditches, which might typically be 0.5 m deep with 15 m spacing between 

ditches (Stewart & Lance, 1991).  In the UK this was mainly done in the 1960s and 1970s for 

agriculture.  The effect of ditches is to lower the water table, and this is directly dependent on 

the hydraulic conductivity of the peat.  As blanket bogs have low hydraulic conductivity 

(Galvin, 1976) they are resistant to drainage.  Nevertheless, long-term drainage at a relatively 

high density (with drain spacing in the order of 10 m) does lead to the establishment of 

deeper water tables (Holden et al., 2011), although this results in no real improvement in 

grazing value for livestock (Wilson et al., 2011a).   

 Water table drawdown and drainage alters the peatland carbon balance, leading to 

increased carbon dioxide (CO2) fluxes but decreased methane (CH4) fluxes (Freeman et al., 

1993, Martikainen et al., 1995) from the soil to the atmosphere.  In some cases this can 

convert the peatland sink into a net source of carbon (Salm et al., 2009).  It also results in 

enhanced concentrations of dissolved organic carbon (DOC) (Wallage et al., 2006) which, 

when chlorinated during water treatment, can form harmful by-products (Fenner et al., 2001, 

Chow et al., 2003).  To reverse these detrimental effects, numerous peatland restoration 

projects have been initiated in the UK.  Sites that have solely been ditched (i.e. with no peat 

harvesting) are restored by blocking the drainage ditches (i.e. rewetting), typically by 

constructing dams made of such materials as peat, heather bales, or plastic (Armstrong et al., 

2010).  The aim of such projects is to return the water-table to pre-drainage levels.  Some 

success has been observed on blanket bog; 6-7 years after rewetting, Holden et al. (2011) 

observed that a ditch-blocked site had hydrological functioning intermediate between a 

pristine site and drained site.  Similarly, Wilson et al. (2011b) recorded an average water 

table increase of 2 cm (from approximately -10 cm to -8 cm) after ditch-blocking, and 

Worrall et al. (2007) noted a 9 cm mean increase (the study does not cite the magnitude of 

the drainage drawdown previous to this).    
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 One biogeochemical aspect of drainage and rewetting that has received little attention 

is the effect on soil decomposition mediated by extracellular enzyme activity.  These 

enzymes are involved in both gaseous and fluvial peatland carbon cycling (Freeman et al., 

1997) and under the anaerobic conditions that exist in peat soils their activity is restrained.  

Recalcitrant phenolic compounds are released by plants (Wetzel, 1992) and degraded by the 

enzyme phenol oxidase, which has limited activity in peatlands due to the acidic pH and low 

oxygen content (Pind et al., 1994, Tahvanainen & Haraguchi, 2013).  The build up of 

phenolics in turn inhibits the activity of hydrolase enzymes (Wetzel, 1992), resulting in low 

rates of decomposition.  Conversely, increased peat aeration is thought to stimulate phenol 

oxidase activity, lowering phenolic concentrations, and thus removing the inhibitory effect on 

hydrolase enzymes (Freeman et al., 2001a).  As well as oxygen, increased temperatures 

increase phenol oxidase activity (Jassey et al., 2011).  This stimulation of phenol oxidase is 

not due to reestablishment of enzyme activity, but has been experimentally demonstrated to 

result from increased synthesis of phenol oxidase by the microbial community (Fenner & 

Freeman, 2011).  It can therefore be hypothesised that long-term peatland drainage would 

lead to increased phenol oxidase activity, reduced phenolic concentrations and increased 

hydrolase activity, thereby resulting in greater overall soil decomposition rates and 

contributing to carbon loss (hypothesis 1).  Theoretically, ditch blocking would reverse this 

by raising the water table, and leading to suppressed phenol oxidase activity, increased 

phenolic concentrations and reduced hydrolase enzyme activity (hypothesis 2).  The aim of 

this study was to test these two hypotheses using three sites located within a large a Welsh 

peatland.  As a caveat, it is important to acknowledge that this is a small scale study, and that 

changes to biogeochemical cycling at this scale will not necessarily translate into widespread 

catchment scale changes. 

 

4.2. Materials and Methods 

4.2.1. Study sites and treatments 

 The study was carried out on the Migneint blanket bog, in Snowdonia National Park, 

north Wales (UK).  It includes areas of M18 (Erica tetralix-Sphagnum papillosum), M19 

(Calluna vulgaris-Eriophorum vaginatum), and M20 (Eriophorum vaginatum) according to 

the JNCC National Vegetation Classification (NVC) (Elkington et al, 2002).  Three sites on 

the Migneint were used which were within approximately 3km of one another.  Table 1 gives 

further details of the sites. 
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Table 1. Site and treatment details 

Site Bryn Du Llyn Serw Ffynnon Eidda 

Lat 52.99 N 52.97 N 52.97 N 

Lon 3.82 W 3.82 W 3.84 W 

Height ASL (m) 450 460 490 

Treatment Control (undrained) Heather bales vs  Peat dams vs reprofiled  

  

 

open ditches ditches vs open ditches 

Date of blocking N/A  Aug-Sept 2008 Feb-11 

Dominant vegetation Calluna, with flushes  Calluna Calluna 

  of Juncus     

   

 Three different methods of ditch blocking were examined.  The Llyn Serw site was 

blocked in August-September 2008.  The experimental part of the site comprises a transect 

across one ditch that has been blocked by infilling with heather bales and a second transect 

across an open control ditch.  The two ditches are separated by an infilled ‘buffer’ ditch.  The 

Ffynnon Eidda site was blocked in February 2011.  The replicated experiment at this site 

comprises four ditches that have been left open as controls, and eight that have been blocked 

using two different methods.  Four have been blocked using peat dams.  The peat is extracted 

from ‘borrow pits’ adjacent to the ditch.  The other four have been blocked using a 

reprofiling technique.  This involves the ditch vegetation being removed, and the peat bottom 

being compressed to destroy any natural pipes that may be present.  The ditch is then infilled 

with peat and the vegetation is replaced.  As in the previous treatment peat dams are also 

constructed along the ditch.  This experimental design is relatively novel, as many ditch 

experiments have open and blocked ditches on different sites, lack comparable controls, or 

lack pre- and post-restoration data.  At Llyn Serw and Ffynnon Eidda, blocked and open 

ditches are both included in the same site.  The Bryn Du site contains four control plots on 

intact blanket bog that have not been ditched.   

 All three sites are operated as part of three distinct projects, but a comparison of their 

data is useful.  Data from Llyn Serw can be used to show the impact of ditch blocking two 

years after rewetting, whilst data from Ffynnon Eidda demonstrates the immediate effect.  

Bryn Du can be used as a control reference point to show the impact of long term drainage at 

the control ditches of both Llyn Serw and Ffynnon Eidda. 
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4.2.2. Sampling 

 Sampling took place at Llyn Serw every three months throughout 2010: in March, 

June, September and December.  At both the open and blocked ditch transects of four 

sampling points were established running across the ditch.  Each ditch had one sampling 

point adjacent to the ditch on either side, then another approximately 1 m further away, again 

on either side.  At Ffynnon Eidda one sample was taken from each ditch, and sampling took 

place during 2011: in June, July, August, September, and November.  At Bryn Du four 

samples were taken (one from each control plot).  Sampling took place approximately every 

month between November 2007 and December 2011. 

 Soil samples were taken from 10 cm depth.  Each sample actually comprised 2-4 sub-

samples of soil to minimise the influence of spatial variance in enzyme activity.  Samples 

were stored in the dark at field temperature before analysis.  Soil water content was 

determined by weighing a portion of sample, drying overnight in an oven at 105 
o
C, and then 

re-weighing.  

 Water samples were taken directly from the ditches at Ffynnon Eidda.  Water samples 

at Llyn Serw were extracted via piezometers at a depth of 20 cm, along the same 4-point 

transect described above for soil sampling.  Samples at Bryn Du were extracted using Rhizon 

samplers (Rhizosphere Research Products) at a depth of 10cm.  Samples were stored in the 

dark at field temperature.   

 

4.2.3. Phenol oxidase analysis  

 Phenol oxidase activity was measured using a method modified from Pind et al. 

(1994).  A small amount of soil (approximately 1 cm
3
) was weighed and combined with 9 ml 

of ultra-pure water in a stomacher bag.  This was homogenized for 30 seconds using a 

Seward Stomacher 80.  Six replicates of 750 μl of homogenate were extracted into centrifuge 

vials; of these, 750 μl of ultra-pure water was added to three replicates (as blanks), and 750 μl 

of 10 mM L-DOPA (L-3,4-dihydroxyphenylalanine) (Sigma-Aldrich) was added to the other 

three.  Samples were then left at field temperature for 9 minutes, before being centrifuged at 

10,000 rpm for 5 minutes to terminate the reaction.  300 μl of supernatant was then 

transferred to a microplate and absorbance measured at 460 nm using a Molecular Devices 

M2e Spectramax plate-reader.  The mean absorbance of the three blank replicates was 

subtracted from the mean absorbance of the three L-DOPA replicates, and phenol oxidase 

activity calculated according to the Beer-Lambert Law and the molar absorption coefficient 
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for phenol oxidase (37000).  As in Toberman et al. (2008a) no pH buffer was used so as to 

simulate field conditions as accurately as possible. 

 

4.2.4. Hydrolase analysis 

 Analysis of hydrolase activity was measured using a method modified from Freeman 

et al. (1995).  Soil samples were homogenized as for the phenol oxidase analysis, although 

7ml of methylumbelliferone- (MUF)substrates was used in place of ultra-pure water.  Four 

hydrolase enzymes were analysed using the following substrates: MUF-β-D-glucoside (β-

glucosidase), MUF-sulphate (sulphatase), MUF-N-acetyl-D-glucosamine (chitinase), and 

MUF-β-D-xylopyranoside (xylosidase), all at 400 μM concentration.  After homogenization, 

stomacher bags were incubated at field temperature for 60 minutes, and1.5 ml of homogenate 

was transferred to a centrifuge vial before centrifuging for 5 minutes at 10,000 rpm.  300 μl 

of supernatant was extracted onto a microplate.  Standard curves were prepared using 0-40 

μM MUF-free acid and soil samples, to correct for the quenching effect of phenolics.  

Fluorescence was measured at 450 nm emission and 330 nm excitation with a slit setting of 

2.5 nm, using a Molecular Devices M2e Spectramax plate-reader.      

     

4.2.5. Phenolics analysis  

Phenolic concentrations were determined using a method adapted from Box (1983).  

0.25 ml of sample was added to a clear microplate well.  12.5 μl of Folin-Ciocalteau was 

added, followed by 37.5 μl of Na2CO3 (200g L
-1

) to buffer the reaction.  After 1.5 hours the 

absorbance was measured at 750nm on a Molecular Devices M2e Spectramax plate-reader.  

Phenolic concentrations were then derived from the preparation of a standard curve using 

laboratory-prepared standards of known concentration.   

 

4.2.6. Additional water analysis 

Sulphate concentrations were determined using either a Dionex DX-120 Ion 

Chromatograph with AS40 Autosampler, or a Metrohm 850 Professional IC with 858 

Professional Sample Processor.  DOC concentrations were analysed using an Analytical 

Sciences Thermalox Total Carbon analyser after filtering samples through Whatman 0.45 μm 

cellulose nitrate filters.  Samples were acidified (pH < 3) and sparged with nitrogen to 

remove any inorganic carbon.  Specific absorbance at 254 nm (SUVA) was used to 

investigate the molecular composition of DOC.  Water samples were filtered through 

Whatman 0.45 μm cellulose nitrate filters and absorbance was measured using a Molecular 
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Devices M2e Spectramax plate-reader.   Results were corrected against blanks of ultrapure 

water.  Samples were analysed for DOC using an Analytical Sciences Ltd Thermalox Total 

Carbon analyser. 

   

4.2.7. Statistical analysis 

 Statistical analysis was carried out using SPSS v16.0.1 (IBM Corporation, 

http://www-01.ibm.com/software/analytics/spss/products/statistics/).  After testing for normal 

distribution and equal variance, ANOVAs and repeated-measures ANOVAs with Tukey HSD 

post-hoc tests were carried out to test differences between treatments at Ffynnon Eidda for 

each month.  Where data did not meet these assumptions the non-parametric Kruskal-Wallis 

test was used.  For comparisons of two treatments, t-tests were used, or the non-parametric 

Mann-Whitney test. 

 

4.3. Results 

4.3.1. Effect of ditch blocking on enzyme activity and phenolics 

At Ffynnon Eidda, 4-9 months after ditch-blocking, there was no significant 

difference between treatments for the activity of β-glucosidase, xylosidase or chitinase.  

There was a significant difference for sulphatase; activity was higher in the control ditches 

compared to the reprofiled ditches (fig.1).  Figure 2 displays the data as total hydrolase 

activity.  There was no significant treatment effect on phenol oxidase activity (fig.3).   

At Llyn Serw, 18-27 months after ditch-blocking, a repeated-measures ANOVA 

found no significant differences in hydrolase or phenol oxidase activity.  Activities of both 

phenol oxidase and hydrolases were lower at Llyn Serw when compared to Ffynnon Eidda.  

Total mean hydrolases ranged between 20.4 – 90.6 n moles g
-1

 min
-1

 MUF released at 

Ffynnon Eidda, and between 5.5 – 13.6 n moles g
-1

 min
-1

 MUF released at Llyn Serw.  

Phenol oxidase activity ranged between 6.0 – 29.2 nmol dicq g
-1

 min
-1

 at Ffynnon Eidda, and 

between 6.8 – 19.9 nmol dicq g
-1

 min
-1

 at Llyn Serw.  Mean phenolic concentrations ranged 

from 4.2 – 8.7 mg L
-1

 at Ffynnon Eidda and 4.0 – 8.6 mg L
-1

 at Llyn Serw, with no 

significant treatment difference at either site (figures 6 and 7).   

 

 

http://www-01.ibm.com/software/analytics/spss/products/statistics/
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Figure 1. Mean sulphatase activity (n moles g
-1

 min
-1

 MUF released) for open control ditches 

(continuous line), reprofiled ditches (dotted line) and dammed ditches (dashed line) at Ffynnon Eidda 

during 2011.  n=4 samples for each treatment.  Errors bars show standard error of the mean.  

Repeated-measures ANOVA shows a significant difference (p<0.05) between control and reprofiled 

ditches. 

 

 

Figure 2. Total mean hydrolase activity (n moles g
-1

 min
-1

 MUF released) (i.e. sum of mean β-

glucosidase, sulphatase, xylosidase and chitinase activity) for open control ditches (continuous line), 

reprofiled ditches (dotted line) and dammed ditches (dashed line) at Ffynnon Eidda during 2011.  n=4 

samples for each treatment.  Errors bars show standard error of the mean.  The only enzyme to show 

significant difference was sulphatase (refer to fig. 1).   

0

2

4

6

8

10

12

June July Aug Sept Nov

Su
lp

h
at

as
e 

ac
ti

vi
ty

 (
n

 m
o

le
s 

g-1
 m

in
-1

 
M

U
F 

re
le

as
ed

) 

0

20

40

60

80

100

120

9.6.11 25.7.11 16.8.11 28.9.11 10.11.11

H
yd

ro
la

se
 a

ct
iv

it
y 

(n
 m

o
le

s 
g-1

 m
in

-1
 

M
U

F 
re

le
as

ed
) 

 

June July Aug Sept Nov 



68 
 

 

Figure 3. Mean phenol oxidase activity (nmol dicq g
-1

 min
-1

) for open control ditches (continuous 

line), reprofiled ditches (dotted line) and dammed ditches (dashed line) at Ffynnon Eidda during 2011. 

n=4 samples for each treatment.  Errors bars show standard error of the mean.  There is no significant 

difference in activity.    

 

 

Figure 4. Total mean hydrolase activity (n moles g
-1

 min
-1

 MUF released) (i.e. sum of mean β-

glucosidase, sulphatase, xylosidase and chitinase activity) for open control (continuous line) and 

blocked ditches (dashed line) at Llyn Serw during 2010.  n=4 samples for each treatment.  Errors bars 

show standard error of the mean. There is no significant difference in activity.   
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Figure 5. Mean phenol oxidase activity (nmol dicq g
-1

 min
-1

) for open control (continuous line) and 

blocked ditches (dashed line) at Llyn Serw during 2010. n=4 samples for each treatment.  Errors bars 

show standard error of the mean. There is no significant difference in activity.      

 

 

Figure 6. Mean phenolic concentrations (mg L
-1

) for open control ditches (continuous line), 

reprofiled ditches (dotted line) and dammed ditches (dashed line) at Ffynnon Eidda during 2011. n=4 

samples for each treatment.  Errors bars show standard error of the mean.  There is no significant 

difference in concentration.  
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Figure 7. Mean phenolic concentrations (mg L
-1

) open control (continuous line) and blocked ditches 

(dashed line) at Llyn Serw during 2010. n=4 for each value, except n=3 for the open ditch at Llyn 

Serw during June and September due to difficulty in obtaining samples.  Errors bars show standard 

error of the mean.  There is no significant difference in concentration.  

 

4.3.2. Effect of ditch blocking on soil chemistry 

 At Ffynnon Eidda there was no treatment effect on pH.  Mean values for the length of 

the study were 4.21 (open), 4.34 (dam) and 4.20 (reprofiled).  Mean soil water content of 

samples was 90.7% (open), 89.2% (dam) and 88.1% (reprofiled).  Repeated-measures 

ANOVA showed no significant difference in mean water content.   

At Llyn Serw there was no significant difference in mean pH; 4.75 at the open ditch 

and 4.81 at the blocked ditch. Mean soil water content was 88.0% for the open ditch and 

92.0% for the blocked ditch.  Repeated-measures ANOVA showed this difference to be 

significant (p<0.05).   

 

 4.3.3. Site comparison – effect of long term drainage     

 Data from Bryn Du was used as an undrained control site, when sampling dates there 

coincided with those at Ffynnon Eidda and Llyn Serw.  For Ffynnon Eidda this was the case 

in summer and autumn 2011.  A comparison of the Bryn Du data with that from the open 

ditches at Ffynnon Eidda shows that the drained site had higher total hydrolase activity and 

phenol oxidase activity (figure 8).  This result is similar for the two ditch blocking treatments 

at Ffynnon Eidda (figures 9 and 10).  The hydrolase increase is primarily driven by 

significant enhancement of β-glucosidase activity in both months and by increased sulphatase 
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activity in September (table 2).  In conjunction with this, Bryn Du displays a significantly 

higher phenolic concentration; 5.6 mg L
-1

 compared with 4.7 mg L
-1

 at Ffynnon Eidda, and a 

significantly higher pH; 4.27 compared to 4.18.  There was no difference in the water content 

of soil samples (91.0% at Bryn Du, 90.7% at Ffynnon Eidda).  However, mean sulphate 

concentrations were higher at Ffynnon Eidda (0.84 mg L
-1

 compared to 0.67 mg L
-1

). 

 

Figure 8. Mean phenol oxidase (PO) activity (nmol dicq g
-1

 min
-1

) and total mean hydrolase activity (n 

moles g
-1

 min
-1

 MUF released) (i.e. sum of mean β-glucosidase, sulphatase, xylosidase and chitinase 

activity) at the undrained Bryn Du (control) and Ffynnon Eidda (drained) sites.  Date is pooled from 

summer and autumn 2011. n=8 samples per treatment.  Error bars show standard error of the mean.  

The difference is significant for phenol oxidase and hydrolases   

 

 

Figure 9. Total mean hydrolase activity (n moles g
-1

 min
-1

 MUF released) (i.e. sum of mean β-

glucosidase, sulphatase, xylosidase and chitinase activity) at the undrained Bryn Du (control) site and 
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the three Ffynnon Eidda  treatments: open ditches, dammed ditches, and  reprofiled ditches.  Date is 

pooled from summer and autumn 2011. n=8 samples per treatment.  Error bars show standard error of 

the mean.  The difference between Bryn Du and open ditches is significant.    

 

Figure 10. Mean phenol oxidase (PO) activity (nmol dicq g
-1

 min
-1

)  at the undrained Bryn Du (control) 

site and the three Ffynnon Eidda  treatments: open ditches, dammed ditches, and  reprofiled ditches.  

Date is pooled from summer and autumn 2011. n=8 samples per treatment.  Error bars show standard 

error of the mean.  The difference between Bryn Du and open, dammed and reprofiled ditches is 

significant.      

 

Table 2. Mean hydrolase activites (n moles g
-1

 min
-1

 MUF released) and standard errors for β-glucosidase and 

sulphatase; the two hydrolase enzyme that showed significant differences between the drained Ffynnon Eidda 

site and the undrained Bryn Du site. For each month and enzyme n = 4.    

  Bryn Du   Ffynnon Eidda 

  June September June September 

β-glucosidase 5.5 8.9 10.6 13.0 

SE 1.06 0.86 2.97 1.26 

Sulphatase 5.3 2.1 7.4 5.1 

SE 0.94 0.58 1.50 1.11 

 

For Llyn Serw there were two occasions when sampling at Bryn Du approximately 

coincided.  These were summer and autumn 2010.  During this period there was no 

significant difference in phenol oxidase activity but total hydrolase activity was lower at Llyn 

Serw (figure 11).  The difference in total hydrolase activity was driven by differences in 

sulphatase and chitinase activity.  There was no difference in phenolic concentrations (6.46 

mg L
-1

 at Llyn Serw, 6.96 mg L
-1

 at Bryn Du) but Llyn Serw displayed a higher pH (4.44 

0

5

10

15

20

25

30

Bryn Du Open Dam Reprofile

To
ta

l m
ea

n
 P

O
 a

ct
iv

it
y 

(n
m

o
l d

ic
q

 
g-1

 m
in

-1
) 



73 
 

compared to 4.27).  Additionally, samples from Llyn Serw had lower mean water content 

(86.79% compared to 92.06).  There was no significant difference in mean sulphate 

concentration (1.53 mg L-1 and 0.84 mg L-1 at Llyn Serw and Bryn Du respectively).    

 

Figure 11. Mean phenol oxidase (PO) activity (nmol dicq g
-1

 min
-1

) and total mean hydrolase activity 

(n moles g
-1

 min
-1

 MUF released) (i.e. sum of mean β-glucosidase, sulphatase, xylosidase and 

chitinase activity) at the undrained Bryn Du (control) and Llyn Serw (drained) sites.  Data is pooled 

from summer and autumn 2010. n=8 samples per treatment.  Error bars show standard error of the 

mean.  The difference in phenol oxidase is not significant, but the difference in hydrolases is 

significant.   

 

The ratio of phenolic to DOC concentrations and SUVA were used at each site as a 

basic proxy to examine the molecular weight of DOC.  The mean values were 0.19 at Bryn 

Du, 0.18 at Ffynnon Eidda, and 0.12 at Llyn Serw.  Mean SUVA values were 4.27 at 

Ffynnon Eidda, 4.42 at Bryn Du, and 3.24 at Llyn Serw. 

 

4.4. Discussion 

4.4.1. Effects of long term drainage 

 There were conflicting results from analysis examining the effects of long term 

drainage.  Results from a comparison between an intact site (Bryn Du) and a drained site 

(open ditches at Ffynnon Eidda) support hypothesis 1; that drainage leads to lower phenolic 

concentrations, and enhanced activities of phenol oxidase and hydrolases.  This is in 

accordance with Freeman et al. (2001a), who showed that increased oxygen availability 

following drainage stimulates phenol oxidase activity, which in turn degrades phenolics, and 

removes the inhibition on hydrolase enzymes.  The enhancement of hydrolase activity was 
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primarily controlled by increased β-glucosidase activity, a response which has been observed 

before (Fenner et al., 2005a).   

A small difference in acidity was observed between the sites; pH at Ffynnon Eidda 

was lower than Bryn Du.  It is probable that this difference was controlled by sulphate: 

drought events allow reduced sulphur compounds stored within the peat to be re-oxidised, 

resulting in the release of sulphate and hydrogen ions, which in turn lowers pH (Adamson et 

al., 2001).  In support of this, sulphate concentrations were higher at Ffynnon Eidda.  

Williams et al. (2000) found that for Sphagnum peat in north America, pH was the primary 

driver of phenol oxidase activity, and droughts had no effect.  Although there was a 

significant difference in pH between Ffynnon Eidda and Bryn Du it was very small (0.09) 

and unlikely to have an influence on phenol oxidase activity.  Additionally, long term 

drainage leads to greater water table fluctuations (Holden et al., 2011) which can exacerbate 

the effects of seasonal drought, leading to an associated increase in oxygen availability of a 

magnitude to override pH controls and consequently stimulate phenol oxidase activity.   

 Droughts have been observed to reduce phenol oxidase activity, and it has been 

suggested that this is due to moisture stresses affecting the microbial production of phenol 

oxidase, or that it directly affects extracellular enzyme activity (Toberman et al. 2008b).  

Such a situation is different to that involving drainage.  Samples from Ffynnon Eidda were 

taken from within the open ditches, which are still hydrologically active.  As such, there was 

no difference in the water content of samples from Ffynnon Eidda and the undrained control 

site at Bryn Du.  The ditches do have the ability to increase the aerobic zone, however, 

increasing oxygen availability to extracellular enzymes.  As such, phenol oxidase activity 

may have been enhanced at the drained site due to the increased oxygen availability, without 

any detrimental moisture stress occurring.       

 Although data from drainage at Ffynnon Eidda strongly supports the literature, that 

from the second drained site at Llyn Serw is more complex, when compared to the undrained 

site at Bryn Du.  There was no difference in phenol oxidase activity.  Despite no observed 

difference in phenolic concentrations, hydrolase activity was lower at Llyn Serw, and this 

was associated with a higher pH, and samples with a lower water content.  This is 

unexpected, as a more favourable pH and drier conditions would be expected to increase 

hydrolase activity (Fenner et al., 2005a).  The soil at Llyn Serw still possesses a high 

moisture content, and so it is unlikely that moisture stress on extracellular enzymes is a 

contributing factor, as Toberman et al. (2008b) found.  It is also true that there are occasions 

where drought has not affected extracellular enzyme activity (Yavitt et al., 2004).  Whilst the 
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Ffynnon Eidda and Bryn Du sites are dominated by Calluna, the Llyn Serw site is situated in 

a large, shallow basin, and features Calluna plus large flushes of Juncus and Eriophorum 

where water drains into the lake.  These plants could be supplying low-molecular weight root 

exudates to the soil (Saarnio et al., 2004, Ström et al., 2005), thus lessening the microbial 

demand for hydrolase enzymes (Sinsabaugh, 1994) that are usually responsible for the 

production of low molecular weight compounds such as glucose that are needed as an energy 

source by microorganisms.  Litter type has been observed to control enzyme activity, even 

overriding the effects of water table (Straková et al., 2011) and there is direct evidence in 

support of this hypothesis: the ratio of DOC:phenolics was similar at Ffynnon Eidda and 

Bryn Du, but was considerably lower at Llyn Serw.  This is suggestive of DOC being 

composed of more low molecular weight compounds.  Additionally, mean SUVA values 

were similar at Bryn Du and Ffynnon Eidda, but lower at Llyn Serw, and SUVA has been 

observed to correlate with molecular weight (Leenheer & Croué, 2003). 

 

4.4.2. Effect of ditch blocking 

 At Ffynnon Eidda there was little evidence in support of hypothesis 2: that ditch 

blocking would suppress phenol oxidase activity, leading to a subsequent increase in 

phenolics and lowered hydrolase activities.  Although hydrolase activities were consistently 

lower in the blocked ditches the only significance was for sulphatase, which was higher in the 

open ditches compared to the reprofiled ditches.  The lack of observed differences for the 

other enzymes may in part be due to the small sample size.  Data from this site was collected 

4-9 months after blocking took place.  Fenner & Freeman (2011) noted that upon rewetting 

after drought, phenol oxidase activity did not immediately decline, and remained high as a 

legacy from the previous aerobic conditions.  Furthermore, the enzyme response was 

identical for the dammed ditches and the reprofiled ditches.  It might be expected that activity 

would increase in the reprofiled ditches due to the severe disturbance that this method 

involves; large volumes of peat are removed from the adjacent borrow pits to infill the ditch, 

which theoretically would allow extensive oxygen infiltration.  Clearly, this was not the case.  

Contrary to other studies, Toberman et al. (2008a) observed an increase in phenol oxidase 

activity in peat cores one week after drainage had been impeded.  This rapid response was 

attributed to the action of submerging the cores in aerated stream water, followed by a later 

increase in pH.  As pH had not responded to ditch blocking at Ffynnon Eidda, this change 

could not occur.   
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 The suppression of sulphatase activity in the reprofiled ditches is likely to have 

repercussions on methane fluxes.  Raising the water table will directly stimulate the 

methanogenic community and increase methane emissions (Komulainen et al., 1998, 

Urbanová et al., 2011).  Coupled to this, sulphatase releases sulphate which is implicated in 

reduced methane emissions when the water table falls.  The suppression of sulphatase 

following ditch blocking is likely to result in a reduced rate of sulphate production which will 

then contribute to the enhanced methane fluxes (Freeman et al., 1997).  

 Although there has not yet been a site-wide recovery of the water table at Ffynnon 

Eidda following ditch blocking, water levels have been raised locally in relation to individual 

ditches, with large pools forming behind dams.  Holden et al. (2011) suggest that ditch 

blocking only partially restores the hydrological functioning of blanket bog, and other 

evidence suggests that it could be several years before the rewetting finally suppresses 

enzyme activity (Fenner & Freeman, 2011).  Other work has also shown no response in 

carbon-cycling enzymes upon rewetting, due to greater thermal stability and increased 

substrate availability after rewetting (Freeman et al., 1998). 

 Results following ditch blocking at Llyn Serw were similar to those from Ffynnon 

Eidda; no difference was observed in hydrolase or phenol oxidase activity.  At Llyn Serw, 

however, a significant difference was observed in soil water content, with samples from the 

blocked ditch being wetter.  This is logical, as the recovery of the water table has been noted 

at Llyn Serw following ditch blocking (Cooper et al., 2013).  It might be that these 

hydrological changes are the precursor to future enzymatic changes, with expected associated 

alterations in biogeochemical cycling.      

 Finally, data from the two experimental sites (Ffynnon Eidda and Llyn Serw) can 

briefly be compared.  A direct comparison is misleading, as data was collected during 

different years, and the thermal optimum for extracellular enzymes will potentially occur 

during different months (Fenner et al., 2005b).  Nevertheless, enzyme activities are 

consistently lower at Llyn Serw, and this provides further evidence for the presence of 

increased plant-derived low molecular weight root exudation there. 

 

4.4.3. Conclusions 

 The data presented here provide conflicting information concerning the long term 

effects of peatland drainage on extracellular enzyme activities.  Results from one site 

suggested that drainage had increased enzyme activity, but the results from a second site did 

not show this, possibly due to site difference in vegetation type, a result that Williams et al. 
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(2000) also found.  These enzymes are implicated in the cycling of greenhouse gases (Kang 

et al., 1998, Freeman et al., 2001a) and DOC (Freeman et al., 2001b) and so understanding 

their response to drainage can provide information on how gaseous and fluvial carbon cycling 

will change following drainage.   

 Following ditch blocking there was no evidence that enzyme activities were 

suppressed, even 27 months after rewetting.  This was due to a legacy of enhanced activity 

that was originally stimulated through drainage.  This supports results from Worrall et al 

(2007) who found that DOC increased one year after blocking.  They attributed this to 

increased enzyme activities after drainage, which are then not suppressed immediately upon 

rewetting.   

These results suggest that the response of extracellular enzymes to water table 

changes is complex, and that the relationship between hydrolase activites and phenolic 

concentrations is variable.  In an additional complication, high enzyme activites are likely to 

have two contrasting effects on net DOC production: 1) high phenol oxidase activites will 

degrade phenolic compounds and, as phenolics are a type of DOC, lead to decreased DOC 

concentrations; 2) high hydrolase activites will enhance decomposition rates, thereby 

increasing DOC concentrations   .  It is clear that long term monitoring is necessary to 

elucidate exactly when peatland restoration will begin to influence the activity of 

extracellular enzymes, as changes can create both positive and negative feedbacks to 

ecosystem processes (Sinsabaugh, 2010).  More substantial treatment effects following 

drainage and rewetting may have been obscured as enzyme activity varies over spatial scales 

according to local changes in pH, hydrology and vegetation.  Future work should drastically 

increase sample sizes on both temporal and spatial scales, as well as including the collection 

of replicated samples for analysis.  Such an approach might lead to a better understanding of 

extracellular enzyme responses to ecosystem changes.       
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The short-term effect of ditch blocking on dissolved organic carbon 

concentrations 

5.1 Introduction  

Dissolved organic carbon (DOC) is a fluvial export from peatland catchments.  Its 

concentration is affected by various factors, including soil carbon pool, peat cover 

(Aitkenhead et al., 1999), hydrology (Dawson et al., 2004), and vegetation (Palmer et al., 

2001, Armstrong et al., 2012), and it is also influenced by environmental changes such as 

atmospheric deposition (Monteith et al., 2007, Evans et al., 2012), climate (Freeman et al., 

2001b), rising carbon dioxide concentrations (Freeman et al., 2004) and land use 

(Clutterbuck & Yallop, 2010).  There is growing concern for human health due to the 

formation of harmful disinfectant by-products (such as trihalomethanes) when water with a 

high DOC concentration is chlorinated for drinking supplies (Chow et al., 2003), and high 

levels of DOC result in increased treatment expenditure by water companies due to the use of 

a higher coagulant dose, increased filter backwashing, and the production of larger amounts 

of sludge (McDonald et al., 1991).  Furthermore, DOC can affect the functioning of aquatic 

ecosystems (Karlsson et al., 2009), and is a significant component of the global carbon cycle 

as it is mineralised to carbon dioxide and returned to the atmosphere (Hedges et al., 1997, 

Cole et al., 2007, Bianchi, 2011) 

In the UK there has been a long history of drainage, with the aim of improving the 

land for grazing, shooting, and forestry.  This is carried out through the digging of ditches 

which are typically spaced every 15 m on blanket bog (Stewart & Lance, 1991).  These 

ditches may be enhancing DOC exports.  By increasing the extent of the aerobic zone a large 

store of microbially-generated DOC is produced (Mitchell, 1991, Waddington et al., 2008).  

Sachse et al. (2005) analysed a variety of water samples to investigate the influence of 

catchment characteristics and recorded the highest DOC concentrations and humic substances 

in fen ditch water.  Wallage et al. (2006) found evidence suggesting that drainage had 

lowered the water table and increased microbial activity to a depth of 20 cm, with a resultant 

increase in DOC production.  Extreme drying causes macropores to collapse and creates 

hydrophobic compounds thus hindering complete rewetting (Mitchell, 1991).  Following 

drought, rewetting then leads to the export of this DOC store (Fenner & Freeman, 2011).  In 

UK peatlands this cycle occurs when a summer drought is followed by a wetter autumn, 

leading to an ‘autumn flush’ of DOC (Mitchell & McDonald, 1992).  It is also seen to 

generally occur at other times of the year, whenever a dry month precedes a wet month 
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(Mitchell & McDonald, 1995, Toberman et al., 2008).  For particularly severe droughts this 

flush will not occur until the next autumn, as the first period of rewetting is insufficient to 

remove the seasonally-generated DOC store (Mitchell & McDonald, 1992).  It has also been 

shown that the clearing of old ditches increases DOC concentration, as areas of bare peat are 

exposed to weathering, therefore providing a fresh source of organic material (Baker et al., 

2008).      

Considering this, it is not unreasonable to postulate that ditch blocking might be an 

appropriate management technique to regulate DOC concentrations in peatlands.  It would 

first be expected that raising the water table through restoration would lead to a flush of DOC 

out of the system.  Added to this, many restoration techniques (including ditch blocking) use 

mechanical intervention and can be quite destructive.  For example, peat is mechanically dug 

from areas beside ditches to provide substrate for ditch dams, leaving depressions known as 

‘borrow pits’ that fill with water.  The bases of the ditches are sometimes compressed, with 

the aim of destroying soil pipes to restrict their hydrological functioning.  As ‘ecosystem 

disturbance’ has been shown to enhance DOC concentrations (Glatzel et al., 2003) it might 

be assumed that the restoration work would directly impact upon DOC cycling in the short 

term.  In support of this hypothesis, Worrall et al. (2007a) found that DOC concentrations 

approximately doubled in the year following blocking.  They attributed the increase to DOC 

flushing or the delayed suppression of extracellular enzymes that had been activated by the 

favourable conditions of the previously lowered water tables; a mechanism demonstrated by 

Fenner & Freeman following drought (2011). 

The short-term and long-term responses to restoration may not be the same.  On a 

blanket bog where ditches had been blocked six years previously, Wallage et al. (2006) found 

that pore water DOC concentrations were 60-70% lower compared to a nearby drained area, 

as well as being lower than a nearby intact site.  Modelling by Worrall et al. (2007b) 

predicted that ditch blocking could reduce DOC exports, though this was dependent on the 

spacing between ditches.  However, the model did not factor in the influence of slope on 

hydrology, and assumed that a blocked catchment reverts to DOC leaching levels equivalent 

to an intact site.  As described previously, this may not be true in the short to medium term.   

A UK-wide survey of thirty-two sites showed significantly lower DOC concentrations 

in blocked ditches.  However, the same paper also reported on an intensively monitored site 

where no difference in DOC flux or concentration was found seven years after blocking 

(Armstrong et al., 2010).  There is a caveat with regards to the intensive study: rainfall was 

1.85 m per year and yet if the runoff is calculated (using water flux and catchment size) 
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values are reached of 3.46 m yr
-1

 (blocked catchment) and 3.12 m yr
-1

 (unblocked 

catchment).  This discrepancy could either be due to difficulties in accurately measuring 

flow, or in defining the catchment of the ditches, but as water outflows considerably exceed 

rainfall then the accuracy of the calculated DOC exports is questionable.       

Gibson et al. (2009) noted a significant decrease in DOC concentration after ditch 

blocking, but only by a mean of 0.3 mg L
-1

.  The authors argue that DOC production in all 

peat is uniform, and that DOC export is controlled by hydrology.  Consequently, a reduction 

in DOC flux due to a decrease in measured runoff in blocked ditches was recorded. For this 

mechanism to reduce DOC loss, however, it is necessary either that there is a decrease in total 

water flux from the site (i.e. an increase in evapotranspiration) or that water leaving the 

catchment in unmeasured subsurface flow contains lower DOC concentrations (for example 

if this water passed through a DOC-retaining mineral horizon).  In a high rainfall blanket bog, 

however, neither mechanism appears likely.  The work of Gibson et al. (2009) also raises the 

point that ditch blocking studies can be confounded by the effects of catchment size on DOC 

exports because larger catchments are more likely to have areas of mineral soil, and will have 

increased potential for in-stream DOC removal.  This should therefore be considered if 

blocked and control ditches are in different catchments.   

Another study found that ditch blocking slightly raised DOC concentrations.  After 

one year DOC concentrations from ditches then decreased markedly, but increased in 

streams.  Another observation of the study was that instantaneous yields (i.e. flow-weighted) 

of DOC in streams declined sharply after rewetting (Wilson et al., 2011a).  This would be 

expected as blocking disrupts water flow.  The paper does not report numerous essential data 

such as catchment sizes, making it impossible to accurately duplicate their analysis.  

Nevertheless, it is difficult to reconcile the stated DOC fluxes of 0.48 g m
-2

 yr
-1

(blocked) and 

4.07 g m
-2

 yr
-1

 (unblocked) with DOC concentrations of approximately 22 mg L
-1

 (stream-

blocked) and 20 mg L
-1

 (stream-unblocked).  These figures would give unrealistic low flows 

of 0.022 m yr
-1

 and 0.204 m yr 
-1

, and are suggestive of basic discharge measurement errors.  

As in Gibson et al. (2009) the authors describe the ditch blocking as successful for lowering 

DOC exports only on the basis of reduced flow in blocked ditches.  Like Armstrong et al. 

(2010) this suggests an inherent difficulty in accurately quantifying flows.  As such, it may be 

that differences in DOC concentrations, rather than fluxes, are more reliable indicators of 

restoration success in high-rainfall systems, such as blanket bogs.   

These studies claiming that ditch blocking reduces water flow and therefore DOC 

export are perhaps not considering the entire picture.  It has been suggested that an increase 
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in evapotranspiration after blocking could not complete the water budget (Gibson et al., 

2009).  The evapotranspiration rate for two Welsh moorland catchments varied between 16-

25% of rainfall depending on the extent of forest cover (Institute of Hydrology, 1976), and 

drainage should result in decreased evapotranspiration (Richardson, 1983, Holden et al., 

2004).  Most studies of drained peats have focused on harvested sites, with reductions in 

evapotranspiration after drainage being measured in two studies as 26% and 30% 

(Richardson & McCarthy, 1994, Ledger & Harper, 1987).  However, these studies involved 

drained sites where the removal of peat and vegetation had also occurred.  Where sites have 

solely been ditched the reduction is likely to be less, and thus increased evapotranspiration 

after ditch blocking is unlikely to result in the large declines in fluxes necessary to produce 

the lowered DOC exports reported by Wilson et al. (2011a).  An obvious candidate to fill the 

gap in the water budget is therefore overland flow.  Holden et al. (2006) found overland flow 

to occur more frequently in an intact catchment compared to a drained catchment, with the 

intact catchments displaying very little runoff below a depth of 10 cm, and that overland flow 

occurred only at saturated areas.  Wilson et al. (2011b) measured an increase in occurrence of 

overland flow after ditch blocking.  This mechanism may also be promoted by the restoration 

techniques that are used; some methods of ditch blocking create dams to hold back water 

flow, and it is common practice to dig overflow channels round the side of the dams.  These 

funnel excess water out of the ditches.  Theoretically, ditch blocking would therefore reduce 

water flux down the ditch line, but increase water flux overland.  Wallage et al. (2006) 

recorded a median DOC value of 8.53 mg L
-1

 from overland flow, lower than pore water 

measurements.  More data are needed to observe the range of DOC concentrations in 

overland flow; it may not always be low.   

Turner et al. (2013) presented results from an experiment with a one year pre-

blocking control period, using a control catchment and a treatment catchment where ditches 

were then blocked.  They measured a decrease in ditch DOC concentration of 2.5% in the 

year following ditch blocking, a similar result to that of Gibson et al. (2009).  Turner et al. 

(2013) also noted a reduction in ditch water flux after blocking with an associated decrease in 

DOC export.  However, this reduction in DOC export was larger in zero order ditches than 

first order ditches (i.e. the magnitude of the reduction decreased moving down slope) and the 

authors hypothesised that the ditch dams were diverting water out of the ditches as “bypass 

flow”, or that other external water sources were contributing dilution effects at different ditch 

scales. 



85 
 

There is a dearth of information on the long-term effects of restoration but Höll et al. 

(2009) found lower DOC concentrations twenty years after rewetting compared to a 

moderately drained fen.  They stressed the importance of maintaining a stable, shallow water 

table during periods of high biological activity so as to regulate DOC concentrations.  

McDonald et al. (1991) reinforce this point by noting that it is the movement between wet 

and dry phases that generates DOC.      

Another fluvial export of carbon is particulate organic carbon (POC).  POC exports 

are not considerably lower than DOC exports, but it is often not included in sampling 

programs (Holden, 2005).  Peatland drainage has been shown to directly increase POC 

concentrations (Ahtiainen & Huttunen, 1999, Ramchunder et al., 2012).  Drainage also leads 

to an increase in the density and size of soil pipes, and the rate of pipe erosion increases 

exponentially over time enhancing POC losses (Holden, 2006).  After ditch blocking Wilson 

et al. (2001a) noted no change in POC concentrations but decreased POC exports.  They 

concluded that the pools that formed behind dams allowed POC to settle out.  An earlier 

survey by Holden et al. (2007) found lower POC yields associated with blocked ditches 

compared to open ditches.   

It can be concluded that there are two primary shortcomings of many of the ditch 

blocking experiments that have taken place so far: 1) some studies only have data taken after 

ditch blocking, with no pre-blocking baseline data, 2) some studies have blocked and 

unblocked ditches that are geographically separated, which may result in subtle but important 

differences in hydrology, vegetation, gradient, soil, and catchment size, all of which can 

affect DOC concentrations.  This study therefore aims to rectify these shortcomings by using 

a replicated, pre- and post-blocking design to test the effects of ditch blocking on DOC 

concentrations.   

 

5.2. Materials and Methods 

5.2.1. Study sites  

The study was carried out at the head of the Afon Ddu catchment (latitude 52.97°N, 

longitude 3.84°W) on the Migneint blanket bog, in Snowdonia National Park, north Wales 

(UK).  The altitude of the catchment ranges from 460-510 m with a mean peat depth of 1.32 

m.  Dominant vegetation is Calluna vulgaris with some Eriophorum and Sphagnum species.  

For the purpose of this study a catchment of 1.59 km
2
 was defined.  The total length of 

ditches within the catchment was estimated at 32.5 km.       
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The experimental part of the site comprises twelve adjacent ditches that run directly 

downslope in a north-northwest direction (fig. 1).  The ditch spacing is 10-20 m.  Ditch 

blocking throughout the catchment took place in February 2011.  At the experimental part of 

the site, four ditches were left open as controls, and eight were blocked using two different 

methods.  Four were blocked using peat dams, whereby the peat is extracted from ‘borrow 

pits’ adjacent to the ditch.  The remaining four were blocked using a reprofiling technique.  

This involves the ditch vegetation being removed, and the peat bottom being compressed to 

destroy any natural pipes that may be present and hydrologically active.  The ditch is then 

infilled with peat and the vegetation is replaced.  As in the previous treatment peat dams are 

also constructed along the ditch.  At all dams small channels were created to funnel water out 

of the ditch line.  The purpose of this is to shed water onto the peat surface with the aim of it 

infiltrating more evenly across the bog, rather than following the original drainage line.  For 

the rest of the catchment all ditches were blocked using the reprofiling technique.  

The experimental ditches were assigned their respective treatment (control, dammed, 

reprofiled) according to a randomised design, to minimise the potential influence of any 

linear change across the hill slope (such as peat depth).  Ditches were grouped using flow 

rate, i.e. the three ditches with lowest flows were each assigned a different treatment, the 

three with largest flows were each assigned a different treatment, and so forth. 

A second site was used as an unblocked control catchment.  The Nant y Brwyn is 2.5 

km away from the Afon Ddu, and is also part of the Migneint blanket bog (fig. 2).  Its site 

characteristics are similar to that of the Afon Ddu catchment: altitude ranges 400-490 m with 

mean peat depth of 1.17 m.  Dominant vegetation is Calluna vulgaris with some Eriophorum 

and Sphagnum species.  For the study a catchment of 1.57 km
2
 was used (Cooper, 2013).  

The total open ditch length within the catchment was estimated at 25.7 km.   

 

Table 1. Timeline of when different measurements were taken throughout the study.  OLF = overland flow, 

THMs = trihalomethanes.  

Year   2010           
201
1                 2012       

Month O N D J F M A M J J A S O N D J F M A M J J A 

Ditch water                                               

Pore water 
   

                                        

OLF 
   

  
     

                            
Stream 
water                                       

   
  

THMs 
   

  
          

  
      

    

Enzymes                                               
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5.2.2. Water sampling 

Water sampling in the Afon Ddu catchment took place on an approximate monthly 

basis for three different samples types.  Sampling of ditch waters commenced in October 

2010 with samples being taken directly from water flowing in the ditch.  This gave three sets 

of pre-blocking data for ditch water.  Pore water sample collection commenced in January 

2011 and samples were taken from piezometers at 15 cm depth.  Groups of two or three 

piezometers were situated together 2 m to the west of each ditch.  Water samples from each 

group of piezometers were bulked together for analysis.  This gave one set of pre-blocking 

data for pore water.  Overland flow (OLF) water sample collection started in July 2011, after 

ditch blocking had taken place.  Samples were taken from crest-stage tubes (CSTs); 

polypropylene tubes sealed at both ends, featuring holes slightly above ground level to collect 

overland flow.  CSTs were situated in groups of two or three, and were located 2 m and 4 m 

either side of each ditch.  OLF samples were bulked together from each group of CSTs.  Due 

to fluctuating water tables it was not always possible to collect a full set of piezometer and 

OLF water samples.  Samples used for this study were collected up to the end of October 

2012.   

To compare changes in DOC concentration at the catchment scale, water samples 

were taken from the stream draining the experimental catchment (Afon Ddu) and the stream 

draining the unblocked, control catchment (Nant y Brwyn).  Samples were taken 

approximately monthly from January 2007 to April 2012, as part of the Centre for Ecology 

and Hydrology (CEH) Carbon Catchment monitoring programme (Burden et al., in prep).  

After collection all samples were stored in the dark at 4
o
C until analysis.   
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Figure 1. LIDAR image of the experimental ditches in Afon Ddu catchment, taken before ditch blocking.  

Dashed line indicates the 12 experimental ditches where ditch water, pore water, and OLF was sampled from.  

Ditches drain down slope according to the arrow, and into the Afon Ddu stream.  Afon Ddu stream samples 

were taken further down (see figure 2).  North is directly up. 

Afon Ddu 

Ditches 

150 m 
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Figure 2. Map showing the sampling locations for streams draining the Afon Ddu catchment (AD) and Nant y 

Brwyn catchment (NyB) where stream samples were taken from.  The location of experimental ditches (ED) 

from figure 1 is marked, where ditch water, pore water and OLF was sampled.  Each grid square is 1 km by 1 

km. North is directly up. © Crown Copyright/database right 2012. An Ordnance Survey/EDINA supplied 

service.  

 

5.2.3. Water chemistry analysis 

Electrical conductivity (EC) was determined on unfiltered samples using a calibrated 

(KCl standards) Jenway 4320 conductivity meter. Analytical grade standards were analysed 

at regular intervals to check instrumental drift.  pH on unfiltered samples was analysed by 

titration using a 0.01N  H2SO4 solution on a Metrohm 888 Titrando (2 buffer standards, pH 4 

and 7).  To determine POC, 500 mL of deionised water was passed through Whatman GF/C 

filters, which were then placed in a furnace at 550 
o
C for three hours, and the mass 

determined once cooled. Using the same filters, 500 mL of sample was passed through and 

the filters dried for 3 hours at 105 
o
C, allowed to cool and the mass recorded.  The filters 

were placed in the furnace for a further three hours at 550 
o
C, and mass noted once cooled. 

The mass difference between the last two furnace phases provides the mass of particulate 
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organic matter, of which it is assumed that 50% of the mass is particulate organic carbon 

(Francis, 1990).   

DOC was analysed as non-purgeable organic carbon.  Samples were filtered through 

Whatman 0.45 μm cellulose nitrate filters and analysed using an Analytical Sciences 

Thermalox Total Carbon analyser.  Samples were acidified (pH < 3) and sparged with oxygen 

to remove any inorganic carbon, and DOC concentrations calculated using a seven point 

calibration curve (plus a quality control sample), with additional standards to check for drift, 

and several samples (1-3 per run) duplicated to check for reproducibility.  Each individual 

sample was injected 5 times, and the result accepted if the coefficient of variation of the five 

injections was less than 3%.   

Sulphate concentrations were determined using either a Dionex DX-120 Ion 

Chromatograph with AS40 Autosampler, using a seven point calibration of analytical 

standards, or using a Metrohm 850 Professional IC with  858 Professional Sample Processor 

with a five point calibration of analytical standards. 

Stream samples collected from the Afon Ddu and Nant y Brwyn catchments were 

analysed using comparable methods at the CEH Central Laboratory, Lancaster.  

 

5.2.4. UV-vis analysis 

Light absorbance of water samples was measured to give information on the 

molecular composition of DOC.  UV-vis absorbance was measured using a Molecular 

Devices M2e Spectramax plate-reader.  Wavelengths were scanned on a 1 nm increment from 

230 nm to 800 nm, and results were corrected against blanks of ultrapure water.  Of interest 

to the study were the E2:E3 ratio (absorbance at 250:365 nm), E2:E4 ratio (250:400 nm), 

E4:E6 ratio (465nm:665nm) and SUVA (specific ultraviolet absorption, which normalises 

absorbance at 254 nm to DOC concentration).  These measurements are used as proxies for 

aromaticity (E2:E3) (Peuravuori & Pihlaja, 1997), humification/ratio of colourless to 

coloured DOC (E2:E4) (Park et al., 1999, Selberg et al., 2011, Graham et al., 2012), 

humification (E4:E6) (Thurman, 1985, Summers et al., 1987) and aromaticity (SUVA) 

(Weishaar et al., 2003).  All ditch water samples were analysed except one set from May 

2012, due to a technical error with the Spectramax.  All pore water samples were analysed 

except sets from May 2012 and early August 2012.  OLF samples were analysed for dates 

from January to October 2012, with the exception of samples from May and early August 

2012.    
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5.2.5. Trihalomethane formation potential (THMFP)  

 To simulate the formation of harmful trihalomethanes (THMs) during water 

treatment, and any effect rewetting might have upon them, one set of ditch water samples 

from July 2012 was analysed for THMFP, using the method of Gough et al. (2012).  Samples 

were diluted to 1 mg L
-1

 DOC to provide standardised values.  2.0 mL of 0.5 M KH2PO4 was 

added to 97.5 mL of diluted sample to buffer the solution to a pH of 6.8.  0.5 mL of NaOCl 

was then added to provide 5 mg of free Cl per mg of DOC.  After a seven day darkened 

incubation period at 25
o
C, 0.4 mL of 0.8 M Na2SO3 was used to quench the reaction.  

Extraction of THMs was performed using direct immersion solid-phase microextraction 

(SPME) and quantified on a Varian 450 gas chromatograph coupled with an electron capture 

detector.          

 

5.2.6. Extracellular enzyme analysis 

 Soil samples were taken from ditches and the areas between ditches at 10 cm depth 

during 2011.  Phenol oxidase activity was measured using a method modified from Pind et al 

(1994).  A small amount of soil (approximately 1 cm
3
) was weighed and combined with 9 ml 

of ultra-pure water in a stomacher bag.  This was homogenized for 30 seconds using a 

Seward Stomacher 80.  Six replicates of 750 μl of homogenate were extracted into centrifuge 

vials; of these, 750 μl of ultra-pure water was added to three replicates (as blanks), and 750 μl 

of 10 mM L-DOPA (L-3,4-dihydroxyphenylalanine) (Sigma-Aldrich) was added to the other 

three.  Samples were then left at field temperature for 9 minutes, before being centrifuged at 

10,000 rpm for 5 minutes to terminate the reaction.  300 μl of supernatant was then 

transferred to a microplate and absorbance measured at 460 nm using a Molecular Devices 

M2e Spectramax plate-reader.  The mean absorbance of the three blank replicates was 

subtracted from the mean absorbance of the three L-DOPA replicates, and phenol oxidase 

activity calculated according to the Beer-Lambert Law and the molar absorption coefficient 

for phenol oxidase (37000).  As in Toberman et al (2008a) no pH buffer was used so as to 

simulate field conditions as accurately as possible. 

Analysis of β-glucosidase activity was measured using a method modified from 

Freeman et al (1995).  Soil samples were homogenized as for the phenol oxidase analysis, 

although 7ml of MUF-β-D-glucoside substrate was used in place of ultra-pure water, at 400 

μM concentration.  After homogenization, stomacher bags were incubated at field 

temperature for 60 minutes, and 1.5 ml of homogenate was transferred to a centrifuge vial 

before centrifuging for 5 minutes at 10,000 rpm.  300 μl of supernatant was extracted onto a 
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microplate.  Standard curves were prepared using 0-40 μM MUF-free acid and soil samples, 

to correct for the quenching effect of phenolics.  Fluorescence was measured at 450 nm 

emission and 330 nm excitation with a slit setting of 2.5 nm, using a Molecular Devices M2e 

Spectramax plate-reader.      

 

5.2.7. Statistical analysis 

Statistical analysis was performed using SPSS v20 (IBM Corporation, http://www-

01.ibm.com/software/analytics/spss/products/statistics/).  After testing for normality, 

ANOVAs or repeated measures ANOVAs were used to investigate differences between 

control ditches and the two different ditch blocking methods.  As samples could not always 

be collected from piezometers and CSTs some data were missing.  To solve this problem, 

OLF data from the four samples adjacent to each ditch were combined to give one mean 

value per ditch.  For pore waters this problem was solved by the use of a mixed model 

ANOVA with a scaled identity covariance structure matrix, with treatment as a fixed effect 

and sampling date as a random effect (as in Wills et al., 2006, Maynard et al., 2011).  T-tests 

were used to test for differences between the two years.  For analysis of ditch and piezometer 

samples, pre- rewetting data were available, and therefore samples were grouped into those 

taken before ditch blocking took place, and those taken after blocking.  This is important; if a 

statistical difference is already present before ditch blocking, then any significant difference 

after ditch blocking may be coincidental, and not due to the restoration work.  The small pre- 

rewetting sample sizes will limit the power of any tests, however.  Linear regression was used 

to test for relationships between water samples types (ditch, pore and OLF) and for enzyme 

analysis.   

 

5.3. Results 

5.3.1. Basic water chemistry 

Table 2 displays mean pH and electrical conductivity for ditch samples, piezometer 

samples, and overland flow samples.  OLF samples showed the largest variation for pH and 

EC, but the largest range for sulphate occurred in pore waters (though note that only limited 

data were available for sulphate in OLF).  For all three samples types there was no significant 

difference between treatments for pH, EC or sulphate concentration.   

 

 

http://www-01.ibm.com/software/analytics/spss/products/statistics/
http://www-01.ibm.com/software/analytics/spss/products/statistics/
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Table 2. Mean pH, electrical conductivity (EC) (in µS/cm) and sulphate concentration (in mg SO4
2-

 L
-1

) data for 

water samples from ditches, piezometers, and overland flow.   SE is the standard error of the mean.  For pH and 

EC n = 108 for each treatment for ditch samples, and n = 76 for sulphate, except n = 81 for dam pH samples (see 

appendix).  For pH piezometer samples n = 92, 95 and 87 for control, reprofile and dam treatments respectively, 

for EC samples n = 91, 92 and 85, and for sulphate n = 39 for control and reprofile treatments, and 37 for 

dammed.  For OLF samples pH and EC n = 139, 137 and 129 for control, reprofile and dam treatments 

respectively, and for sulphate n = 16.   

    Ditch   Pore   OLF   

    Mean SE Mean SE Mean SE 

pH  Control 4.24 0.01 4.13 0.02 5.11 0.08 

  Reprofile 4.22 0.01 4.11 0.01 5.31 0.08 

  Dam 4.28 0.02 4.13 0.02 5.48 0.09 

EC Control 42.8 1.37 57.4 1.17 37.6 0.99 

  Reprofile 44.6 1.39 57.4 1.4 44.5 3.15 

  Dam 40.5 1.36 58.4 1.71 50.5 4.37 

SO4
2- Control 1.13 0.11 1.86 0.38 1.18 0.13 

  Reprofile 1.15 0.09 1.54 0.26 1.29 0.12 

  Dam 1.11 0.08 2.21 0.37 1.15 0.12 

 

5.3.2. Ditch waters 

 There was no significant effect of either ditch blocking method on DOC concentration 

(fig. 3).  Mean concentrations were 24.0 mg L
-1

, 26.6 mg L
-1

, and 24.5 mg L
-1

 for the control, 

reprofiled and dammed ditches respectively.  Highest observed concentrations occurred in 

July 2011 with a mean peak (across all 12 ditches) of 48.6 mg L
-1

, and lowest concentrations 

occurred in October 2012 (mean of 8.6 mg L
-1

).  There was no significant difference in total 

mean DOC concentration between the two years (measured as October 2010 - September 

2011, and October 2011 - September 2012).  A lack of treatment effect is reinforced by a 

comparison of water samples taken from the stream (Afon Ddu) draining the experimental 

catchment and from the stream (Nant y Brwyn) draining the control catchment where ditches 

have not been blocked (fig. 4).  Mean DOC concentrations since ditch blocking were 10.5 mg 

L
-1

 at the Afon Ddu and 9.2 mg L
-1

 at the Nant y Brwyn.   As n = 1 for each stream no 

statistical comparison can be used, but a visual comparison is useful.  Each year there is a 

peak in DOC concentration in late summer, and for every occasion except 2007 this peak is 

larger in the Afon Ddu.  For most years the difference is negligible, but for 2011 it was 14.7 

mg L
-1

.  A regression analysis of the paired data from the two catchments shows that this 
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peak in the Afon Ddu is far removed from the trend line, and is therefore deviating from the 

expected concentration based on previous years (fig. 5).  DOC concentrations were generally 

lower in the streams than the ditches.  The largest peak in stream DOC occurred in August 

2010 when concentrations were 27.1 mg L-1 at the Afon Ddu and 25.5 mg L-1 at the Nant y 

Brwyn.  Lowest concentrations of 3.2 mg L
-1

 and 3.7 mg L
-1

 respectively were observed in 

January 2012.   

UV-vis analysis showed that there was no significant difference in any of the four 

measures of DOC quality (fig. 6) between each treatment.  As such, total means when all 

treatments were combined were: E2:E3 = 3.6, E2:E4 = 6.3, E4:E6 = 6.0, SUVA = 4.7.  After 

chlorination and a seven day incubation, two species of THM were detected in ditch water 

samples from July 2012.  These were chloroform (CHCl3) and dichlorobromomethane 

(CHBrCl2).  ANOVA showed no significant difference in THMFP (fig. 7), and combined 

mean STHMFP was 148 μg THM / mg DOC.   

Repeated measures ANOVA showed no significant difference in POC concentrations 

(fig. 8), but concentrations for all three treatments were extremely variable and showed large 

fluctuations.  Mean concentrations for control, reprofiled and dammed ditches were 1.5 mg L
-

1
, 2.1 mg L

-1
, and 2.4 mg L

-1
, and respective ranges were 0-11.3 mg L

-1
, 0.1-15.7 mg L

-1
, and 

0.1-41.1 mg L
-1

.  There was a suggestion that POC was generally higher in blocked ditches: 

for reprofiled and dammed treatments there were 36 and 38 samples respectively that showed 

concentrations 1-5 mg L
-1

, compared to 31 samples for open ditches.  The number of samples 

with concentrations 5-10 mg L
-1

 was 8 for each of the blocked treatments but 3 for open 

ditches, and for concentrations > 10 mg L-1 there were 4 and 6 samples for reprofiled and 

dammed treatments, and 3 for open ditches.  There was no significant difference in POC 

concentration between the two years of data.  

ANOVA showed no significant difference in the activity of phenol oxidase or β-

glucosidase (fig. 9) during summer and autumn 2011.  Total means were 16.4 n mol dicq g
-1

 

min
-1

 for phenol oxidase and 8.0 n moles g
-1

 min
-1

 MUF released for β-glucosidase.  There 

was a significant inverse relationship between β-glucosidase activity and DOC (fig. 10) 

concentration, but no relationship between phenol oxidase activity and DOC.   
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Figure 3. Monthly mean ditch DOC concentrations for open control ditches (continuous line), reprofiled ditches 

(dotted line) and dammed ditches (dashed line). n = 4 for each treatment (see appendix for cases where this is 

not true). Error bars show standard error of the mean. Red line indicates when ditch blocking occurred.  There is 

no significant difference between treatments. 

 

Figure 4. Monthly DOC concentrations for a stream draining the ditch blocked catchment (Afon Ddu, 

continuous line) and a control unblocked catchment (Nant y Brwyn, dotted line).  Red line indicates when ditch 

blocking took place in the Afon Ddu catchment. 
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Figure 5. Regression of paired monthly stream samples for DOC concentration for the Afon Ddu and Nant y 

Brwyn catchments.  Samples taken between January 2007 and April 2012. n = 63.  r
2
 = 0.84, or 0.91 if the 

August 2011 outlier is removed.  Filled data points indicate samples taken after ditch blocking had occurred at 

the Afon Ddu.  Dashed line indicates 1:1 relationship.  

 

Figure 6. Mean values for ditch water for E2:E3 ratio, E2:E4 ratio, E4:E6 ratio and SUVA for each treatment.  

For each treatment n = 100 and is averaged from 25 monthly sampling trips from October 2010 to October 

2012.  Error bars show standard error of the mean. There is no significant difference between treatments. 
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Figure 7. Standardised THMFP for ditch water samples taken in July 2012. n = 4 for each treatment.  Error bars 

show standard error of the mean. There is no significant difference between treatments.    

 

Figure 8. Monthly mean ditch water POC concentrations for open control ditches (continuous line), reprofiled 

ditches (dotted line) and dammed ditches (dashed line). n = 4 for each treatment, except for December 2010 and 

September 2012 (see appendix). Error bars show standard error of the mean. Red line indicates when ditch 

blocking occurred. There is no significant difference between treatments. 
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Figure 9. Mean enzyme activities for each treatment for phenol oxidase (PO, in n mol dicq g
-1

 min
-1

) and β-

glucosidase (β-g, in n moles g
-1

 min
-1

 MUF released). n = 20 for each treatment.  Data are from five sampling 

trips between June and October 2011.   Error bars show standard error of the mean. There is no significant 

difference between treatments.   

 

Figure 10. Relationship between β-glucosidase activity and DOC concentration in ditch waters.  Data is from 

five sampling trips between June and October 2011. n = 60, r
2
 = 0.20, p < 0.01.     

0

5

10

15

20

Control Reprofile Dam Control Reprofile Dam

PO β-g 

En
zy

m
e 

ac
ti

vi
ty

 

0

10

20

30

40

50

60

0 4 8 12 16 20

D
O

C
 (

m
g 

L-1
) 

 

β-glucosidase activity (n moles g-1 min-1 MUF released) 
 



99 
 

5.3.3. Pore waters 

 Performing an ANOVA on the one set of pre-blocking pore water samples revealed 

no difference in DOC concentration or any of the spectrophotometric measures of DOC 

quality.  Analysis of the post-blocking data revealed a significant difference in DOC 

concentrations, with mean post- rewetting values of 43.6 mg L
-1

, 49.4 mg L
-1

, and 47.6 mg L
-

1
 for control, reprofiled and dammed ditches respectively (fig. 11).  However, the differences 

between these mean values (range = 5.8 mg L
-1

) are small when compared to the range 

between the treatment means for the one set of pre-blocking data (range = 15.6 mg L
-1

).  

Highest DOC concentrations for each treatment occurred over consecutive sampling trips: 

97.7 mg L
-1

 for dammed ditches in early July 2011, 73.8 mg L
-1

 for reprofiled ditches in late 

July 2011, and 63.5 mg L
-1

 for control ditches in August 2011.  The July peak in blocked 

concentrations occurred just before the peak in stream DOC (fig. 4).  Following this peak, 

concentrations for all three treatments show signs of convergence.  Lowest concentrations 

were also recorded during different months for each treatment: 26.0 mg L
-1

 for control 

ditches in January 2011, 23.8 mg L
-1

 for reprofiled ditches in October 2012, and 22.9 mg L
-1

 

for dammed ditches in January 2012.  There was no significant difference in any of the four 

measures of DOC quality (fig. 12) following rewetting.  Total means when all treatments 

were combined were: E2:E3 = 3.7, E2:E4 = 6.8, E4:E6 = 7.4, SUVA = 4.0. 

ANOVA showed no significant difference in the activity of phenol oxidase or β-

glucosidase (fig. 13) during summer and autumn 2011.  Total means were 7.9 n mol dicq g
-1

 

min
-1

 for phenol oxidase and 4.1 n moles g
-1

 min
-1

 MUF released for β-glucosidase.  As for 

ditch waters, there was a significant inverse relationship between β-glucosidase activity and 

DOC (fig. 14) concentration, but no relationship between phenol oxidase activity and DOC.     
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Figure 11. Monthly mean pore water DOC concentrations for open control ditches (continuous line), reprofiled 

ditches (dotted line) and dammed ditches (dashed line). n = 4 for each treatment for most months (see appendix 

for dates when this is not true). Error bars show standard error of the mean. Red line indicates when ditch 

blocking occurred. The difference in pre-blocking DOC is significant, but the post-blocking difference is not. 

   

Figure 12. Mean values for pore water for E2:E3 ratio, E2:E4 ratio, E4:E6 ratio and SUVA for each treatment.  

For E ratios n = 86, 85 and 79 for control, reprofiled and dammed ditches respectively.  For SUVA n = 85, 84 

and 78 control, reprofiled and dammed ditches. Results are averaged from 23 monthly sampling trips from 

January 2011 to October 2012.  Error bars show standard error of the mean. There is no significant difference 

between treatments. 
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Figure 13. Mean enzyme activities for each treatment for phenol oxidase (PO, in n mol dicq g
-1

 min
-1

) and β-

glucosidase (β-g, in n moles g
-1

 min
-1

 MUF released). n = 12 for each treatment.  Data is from three sampling 

trips between June and October 2011.   Error bars show standard error of the mean. There is no significant 

difference between treatments.   

 

Figure 14. Relationship between β-glucosidase activity and DOC concentration in pore waters.  Data is from 

three sampling trips between June and October 2011. n = 29, r
2
 = 0.35, p < 0.01.     
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5.3.4. Overland flow 

 Although only post-blocking data was available for OLF samples, no significant 

difference in DOC concentration was found between treatments (fig. 15).  Mean 

concentrations were similar to ditch water values: 21.3 mg L
-1

, 24.1 mg L
-1

, and 23.8 mg L
-1

 

for the control, reprofiled and dammed ditches respectively.  There could be a possible 

discrepancy here, as ditch waters were collected for two years whilst OLF samples were 

collected from summer 2011 to autumn 2012.  This could potentially bias the mean 

concentration as data from two summers but only one winter is included.  However, means 

from summer 2011 to summer 2012 revealed similar DOC concentrations: 21.6 mg L
-1

, 25.0 

mg L
-1

, and 24.1 mg L
-1

 for control, reprofiled and dammed ditches.  Lowest concentrations 

for all treatments occurred in October 2012, with a combined mean of 13.3 mg L
-1

.  Highest 

concentrations occurred in July 2011 for reprofiled and dammed treatments, with means of 

37.8 mg L
-1

 and 43.4 mg L
-1

 respectively, and in August 2011 for control ditches, where a 

mean of 34.7 mg L
-1

 was recorded.  There was no significant difference in any of the four 

measures of DOC quality (fig. 16). Total means when all treatments were combined were: 

E2:E3 = 3.8, E2:E4 = 6.6, E4:E6 = 5.7, SUVA = 3.6.   

 

Figure 15. Monthly mean OLF DOC concentrations for open control ditches (continuous line), reprofiled 

ditches (dotted line) and dammed ditches (dashed line). n = 8 for each treatment (see appendix for dates when 

fewer samples were obtained). Error bars show standard error of the mean. There is no significant difference 

between treatments. 
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Figure 16. Mean values for OLF water samples for E2:E3 ratio, E2:E4 ratio, E4:E6 ratio and SUVA.  Results 

are averaged from 8 sampling trips from January 2012 to October 2012.  Error bars show standard error of the 

mean. There is no significant difference between treatments. 

 

5.3.5. Relationships between sample types 

 Between 5.7.12 and 1.10.12 data were collected for all three sample types: ditch 

water, pore water, and OLF.  Regression analysis of these data revealed significant, positive 

relationships between DOC concentrations for each sample type (fig. 17).  The strength of 

this relationship was highest for OLF and pore water, and lower for ditch water and pore 

water, and ditch water and OLF.  Comparing the monthly mean differences between the three 

sample types (figure 18) reveals that DOC concentrations are most similar between ditch and 

OLF samples.  Differences between ditch and pore water, and pore water and OLF samples 

were much larger.  On average, ditch water DOC concentration was 54% that of pore water, 

and OLF was 49% of pore water.  Nevertheless, shared trends between data sets are visible, 

such as the peak in DOC concentration during May 2012 for ditch and pore water, and the 

shared drop in concentration for all three samples types in October 2012. 
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Figure 17.  Relationships between DOC concentrations for each sample type.  Data points are means of sample 

sets taken approximately monthly between 5.7.12 to 1.10.12.  n = 18.  r
2
 values are: A = 0.52, B = 0.52, C = 

0.63.  Dashed lines show 1:1 relationship.     
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Figure 18.  Total mean DOC concentration for each sample type: ditch water, pore water and OLF, for all 

sampling dates when all three sample types were collected.  Generally n = 12 for ditch and pore water, and n = 

24 for OLF.  Solid line = ditch water, dashed line = pore water, dotted line = OLF.   

 

5.4. Discussion 

5.4.1. Ditch waters 

 There was no significant difference between open ditches and either of the two ditch 

blocking treatments for any of the measured determinands: pH, EC, sulphate concentration, 

DOC concentration, POC concentration, SUVA, E2:E3 ratio, E2:E4 ratio, E4:E6 ratio and 

THMFP.  As with the results of Wilson et al., (2011a) and Turner et al., (2013), we 

demonstrate a decrease in DOC concentration with increasing scale; that is, concentrations 

were higher in ditches than in streams.   DOC concentrations fluctuated throughout the study 

period, linked to seasonality and weather variations (Halliday et al., 2012, Muller & Tankéré-

Muller, 2012, Peacock et al., 2013).  The yearly data from the Afon Ddu stream that drains 

the experimental catchment clearly shows this seasonality, with a summer peak occurring 

each year.  This is likely to be due to a lagged temperature effect (Clark et al., 2005).  For the 

stream data, it is clear that the seasonal cycle dominates over short-term episodic variability, 

and the results of Austnes et al. (2010) also show this for the Afon Ddu stream.   

It is the stream dataset that gives the strongest hint of an effect of ditch blocking at the 

catchment (rather than ditch) scale.  The summer peak in 2011, after ditch blocking took 
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place, showed a considerably higher DOC concentration at the experimental site relative to 

the Nant y Brwyn; an unblocked control catchment.  Additionally, the high concentration was 

sustained for an extra month in the Afon Ddu.  This is suggestive of either of two 

mechanisms; one possibility is that peatland disturbance raised DOC concentrations (Glatzel 

et al., 2003), and the mechanical process of ditch blocking throughout a catchment, even 

when done sensitively, had a short-term effect on the ecosystem.  In this case, during the 

reprofiling process borrow pits were dug to provide substrate for dams, vegetation was 

removed and replaced, and ditch bases were compressed to remove any hydrologically active 

peat pipes.  Alternatively, there could be an enhanced flushing of DOC occurring as dams 

raise the water table.  Even if a site-wide recovery of the water table has not occurred, an 

estimated 1600 dams have been created within the catchment.  Each of these will raise the 

water table on a local scale and this is readily apparent as bog pools form behind dams.  The 

cumulative effect of so many small-scale changes could lead to increased DOC flushing.  

Wallage et al., (2006) proposed that after ditch blocking DOC was flushed from the peat at a 

depth of 10 cm, and the dams studied here may have raised the water table enough for this 

mechanism to function on a catchment scale.  Additionally, POC concentrations in dammed 

ditches were extremely high during July and August 2011.  As most of the ditches throughout 

the catchment were blocked using dams it is possible that concentrations in all ditches (not 

just those monitored for the experiment) were elevated at this time.  This POC could have 

been converted to DOC as it moved through the catchment, with a resultant increase in DOC 

concentration in the Afon Ddu stream. 

 If this enhancement of DOC concentration at the experimental catchment is due to 

ditch blocking, and not some other effect, it only appears to be transient, and is not present at 

the ditch scale.  After the flush is observed, concentrations in both streams return to parallel 

one another.  As such, our results are comparable to other studies of ditch water chemistry 

following rewetting which also showed little or no effect on DOC concentrations 

immediately following ditch blocking  (Wilson et al., 2011a, Turner et al., 2013), or even 

several years after blocking (Armstrong et al., 2010, Ramchunder et al., 2012). Given that 

changes in DOC flux without corresponding changes in concentration must be deemed highly 

unlikely to occur in these high-rainfall systems, we conclude that ditch blocking may not be a 

suitable technique to improve the quality of potable water draining from blanket bog 

catchments, at least within the first two years of blocking.  On the other hand, if restoration 

projects proceed for other reasons, such as biodiversity enhancement (e.g. Mazerolle et al., 

2006) or greenhouse gas management (e.g. Komulainen et al., 1999) then practitioners can be 
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secure in the knowledge that unwanted, adverse outcomes on water quality are unlikely, at 

least in the short to medium term.  This conclusion is emphasised by the finding that there 

was no significant difference in THMFP between ditch treatments.  Standardised THMFP 

was similar to values reported elsewhere from blanket peat (Gough et al., 2012), but this 

study contains the first reported measurements of THMFP following ditch blocking.     

 What then, is the reason for a lack of response of ditch DOC concentrations to ditch 

blocking?  One explanation could be that the original digging of the ditches had little effect, 

and therefore there was minimal effect for rewetting to reverse.  In places the ditches had 

partly infilled naturally, and evidence suggests that abandoned ditches can lose their function 

through erosion (Fisher et al., 1996, Holden et al., 2007).  The experimental ditches were 

relatively shallow, with a mean depth of 0.5 m, though it should be noted that further down 

hill in the blocked catchment ditches were frequently much deeper.  Surveying on the 

Migneint by the National Trust has shown that vegetation besides unblocked ditches has 

changed from mire to heath communities, suggesting localised drying out since the ditches 

were dug.  Nevertheless, blocking more heavily incised ditches might be more effective, but 

this needs to be tested.           

Another reason for the absence of any major changes may be due to an associated 

lack of microbial response following rewetting.  For example, Shannon & White (1994) 

demonstrated delayed recovery of methanogenic communities in ombrotrophic bogs 

following population declines caused by long-term exposure to lowered water levels.  A 

study of a raised bog noted a lag time in the microbial response after restoration, and the 

authors hypothesised that ubiquitous microbial species that had dominated would continue to 

do so after restoration, with changes in the microbial community only occurring slowly 

(Francez et al., 2000).  It has been shown that the activities of extracellular enzymes that are 

involved in carbon cycling remain high after rewetting, as a legacy of previous aerobic 

conditions (Fenner & Freeman, 2011), and enzyme analysis of ditch samples from the Afon 

Ddu showed no significant difference between treatments for phenol oxidase or β-glucosidase 

activity.  Changes to enzyme activities has been proposed previously as a mechanism that can 

alter DOC dynamics after ditch blocking (Wallage et al., 2006) but no studies have been 

published to support this.  It can therefore be hypothesised that no sustained changes in the 

microbial communities have yet occurred. 

 Another proposed hypothesis concerning rewetting and changes in DOC 

concentrations involves sulphate.  Worrall et al. (2007a) suggested that ditch blocking could 

affect sulphate cycling.  Aerobic conditions during drought events have been shown to 
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promote sulphide oxidation, leading to increased concentrations of sulphate and hydrogen 

ions, and thus a decrease in pH (Freeman et al., 1994, Adamson et al., 2001).  In turn, this 

has been observed to decrease DOC concentrations (Clark et al., 2005, Evans et al., 2006, 

Clark et al., 2006) due to changes in acidity and ionic strength (Evans et al., 2012).  As such, 

rewetting following ditch blocking could stimulate DOC mobility as sulphide oxidation 

decreases (Worrall et al., 2007a, Daniels et al., 2008).  As ditch blocking did not lead to any 

significant changes in sulphate concentrations then this mechanism could not function. 

 POC concentrations were within the range of other reported values for the UK 

(Dawson et al., 2002, Dawson et al., 2004, Ramchunder et al., 2012).  Wilson et al. (2011a) 

noted no change in POC concentrations following ditch blocking, a conclusion that our 

statistics support.  However, POC was extremely variable making statistical conclusions 

problematic, and POC concentrations were higher for both blocked treatments.  There is a 

dearth of information on the effects of restoration and POC concentrations.  It has been 

shown that drainage and ditch maintenance can lead to a sustained increase in sediment 

loading (Robinson & Blyth, 1982, Ahtiainen & Huttunen, 1999, Joensuu et al., 1999, 

Nieminen et al., 2010) and these POC losses increase with time due to the formation of soil 

pipes (Holden, 2006).  Research also suggests that the erosion of ditch banks is important in 

supplying suspended sediment at a catchment scale, and that the sediment transport in 

drainage networks is supply limited (Marttila & Kløve, 2010).  Ramchunder et al. (2012) 

found similar concentrations of POC in streams draining intact and ditch-blocked catchments, 

and these were considerably lower than concentrations in drained catchments.  It could be 

that the blocked ditches are promoting sedimentation behind dams (Evans. M, et al., 2006, 

Holden et al., 2007) with a resultant decrease in POC export at the catchment scale, if not at 

the ditch scale. 

 

5.4.2. Pore waters 

 As with ditch waters there was no significant difference in pH, EC or sulphate 

concentrations in pore water between treatments.  DOC concentrations were close to those 

reported for similar sampler depths in other UK blanket bogs (Wallage et al., 2006, Evans et 

al., 2012).  Compared to ditch waters, the dynamics and (lack of) response of DOC 

concentrations to ditch blocking were more complex.  Whereas there were three sets of pre-

blocking data available for ditch water samples, only one was available for pore waters.  This 

set of pre-blocking data showed no significant difference between allocated treatments, 

suggesting that pore water DOC concentrations were uniform between treatments.  Very little 
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can be inferred from a single pre-treatment sampling run, however.  Post-blocking analysis 

then returned a significant difference between treatments, with mean DOC concentrations 

being slightly higher in both blocked treatments relative to controls.  There is some evidence 

of a transient peak in DOC concentration for blocked ditches, occurring in July 2011, and 

coming one month before the DOC peak in the stream draining the catchment.  As for the 

pulse of stream DOC, this could be explained as a disturbance or flushing effect.  After this 

event, concentrations for all three treatments converge, suggesting that differences 

immediately following blocking may be real.       

Despite this, only tentative conclusions on the effectiveness of ditch blocking can be 

drawn from this data.  Firstly, despite the lack of significance in the pre-blocking data, the 

mean DOC concentrations covered a wide range of values: 26.0 mg L
-1

 for control ditches, 

41.6 mg L
-1

 for reprofiled ditches, and 31.7 mg L
-1

 for dammed ditches. A lack of 

significance in this data set is likely to be due entirely to the small sample size.  It seems 

probable that pore water DOC concentrations vary considerably across the site, in relation to 

spatial changes in hydrology and vegetation (Wickland et al., 2007, Armstrong et al., 2012, 

Sachse et al., 2001), and that the relative contribution and effect of these changes can be 

modified by seasonality (Vestgarden et al., 2010).  Secondly, there was no significant 

treatment effect on DOC quality, as measured by SUVA, E2:E3 ratio, E2:E4 ratio, and E4:E6 

ratio.  Other studies have recorded changes in some of these measurements after ditch 

blocking and have cited them as indicators of a treatment effect (Wallage et al., 2006, 

Worrall et al., 2007a, Wilson et al., 2011a).  Thirdly, no difference in phenol oxidase or β-

glucosidase activity was found between treatments, which might be expected to lead to a 

change in DOC concentrations (Freeman et al., 2001a, Freeman et al., 2001b).  Fourthly, no 

difference in sulphate concentration was found between treatments, which can influence 

DOC mobility (Evans. C, et al., 2006, Clark et al., 2006).  The fact that DOC in pore waters 

was so variable over a small spatial scale calls into question the findings of Wallage et al. 

(2006), who concluded that ditch blocking reduced pore water DOC concentrations.  Their 

study had no pre-blocking data, and sampling sites were geographically separated by up to 1 

km.  The effect of ditch blocking that they reported may actually have been due to natural 

differences between sampling sites.  These findings highlight the urgent need for long term 

baseline data in restoration projects.  

 

 

 



110 
 

5.4.3. Overland flow 

 For OLF samples only post-blocking data were available, beginning five months after 

ditch blocking had occurred.  There was no significant difference between treatments for pH, 

EC, sulphate concentration, DOC concentration or any of the four measures of DOC quality.  

Mean pH values were considerably higher than ditch or pore water and this indicates that 

OLF picks up alkaline material from the peat surface.  This could be a slight artefact of the 

CSTs which will capture the first pulse of overland flow, which is when any soluble material 

on the peat surface will be picked up. 

The lack of a treatment effect on DOC is expected considering the other results; a 

large proportion of OLF will be comprised of water that has been funnelled out of the 

blocked ditches by channels at dams.  This hypothesis is supported by the similar DOC 

concentrations observed in ditch and OLF water.  As there was no treatment effect on ditch 

DOC concentrations there was no associated difference in OLF.    

To our knowledge this is only the second ditch blocking study to measure DOC 

concentrations in OLF, the first being that of Wallage et al. (2006).  Despite using the same 

sample collection method as Wallage et al. (2006), DOC concentrations in OLF samples at 

the Afon Ddu catchment were higher, being approximately double those reported by Wallage 

et al. (2006) (21.3 - 24.1 mg L
-1 

compared to 8.5 - 12.6 mg L
-1

).  Sample collection from their 

study was from January to May, a shorter period than that reported here, but even if mean 

OLF DOC concentrations are calculated for the Afon Ddu for an identical period they are still 

higher.  More generally there is a lack of reported data on DOC in OLF.  Chapman (1993) 

recorded DOC concentrations between 11 - 32 mg L
-1

 in OLF in a peat catchment in mid 

Wales which is similar to this study.  A study of tropical, mineral, acid soils recorded mean 

DOC in OLF as 19.7 mg L
-1

 (Johnson et al., 2006).  The authors noted substantial temporal 

variation in concentrations, a trait that has also been reported in organic soils (Hinton et al., 

1998).     

Ditch blocking has been seen to increase OLF (Wilson et al., 2011b), and OLF is an 

important runoff pathway in blanket bogs (Holden & Burt, 2003).  Additionally Turner et al. 

(2013) showed that the rewetting-induced reduction in DOC export (as measured in drains 

and streams) decreased as spatial scale increased, suggesting an alternative flow pathway out 

of the blocked ditches.  Considering these facts, it seems probable that DOC in OLF is the 

missing component of many ditch blocking studies.  It is likely that ditch blocking simply 

funnels water around dams and out of ditches, creating OLF with DOC concentrations similar 

to ditch DOC.  Eventually this DOC will re-enter drainage ditches or streams, and the time 
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span of this will depend on the gradient of the catchment, and whether ditches cut directly 

down the slope (as in this study), or at an angle across the gradient.  Hinton et al. (1998) 

reached a similar conclusion concerning the importance of DOC in OLF in Canadian forested 

catchments, particularly at peak discharge.  This interpretation therefore potentially calls into 

question the conclusions of other studies that suggest that ditch blocking successfully reduces 

DOC export purely by reducing water flux (Gibson et al., 2009, Wilson et al., 2011a), as 

unmeasured OLF will simply return DOC to the drainage system further downstream, 

potentially resulting in no net change in total DOC flux.  To successfully determine the 

effects of ditch blocking on DOC concentrations, it may be necessary to monitor ditch water, 

pore water, and OLF within the restored area, as well as stream and river concentrations 

throughout the catchment.            

 

5.4.4. Comparison of sample types 

For ditch water, pore water, and OLF, there was very little difference in the E2:E3 

ratio, with respective values of 3.6, 3.7, and 3.8.  This indicates that the molecular weight and 

aromaticity of the DOC was similar for all sample types (Peuravuori & Pihlaja, 1997).  

SUVA displayed more differences between samples than the E2:E3 ratio, with values of 4.6, 

4.0, and 3.6 for ditch water, pore water, and OLF respectively.  Like the E2:E3 ratio, SUVA 

is a measure of aromaticity, with increasing values demonstrating increasing aromaticity 

(Weishaar et al., 2003).  The E2:E4 ratio, which has been cited as both a measure of 

humification (Park et al., 1999), and as a comparison of the UV-absorbing functional groups 

to coloured ones in DOC (Selberg et al., 2011, Graham et al., 2012), was relatively similar 

across sample types.  Values were 6.3, 6.8, and 6.6 for ditch water, pore water, and OLF.  

Differences in the E4:E6 ratio were larger, with values of 6.0, 7.5, and 5.7 ditch water, pore 

water, and OLF.  Some researchers have proposed that the E4:E6 ratio is a measure of 

humification (Thurman, 1985, Summers et al., 1987).  Conventionally, this therefore suggests 

that pore water DOC is more fulvic acid-dominated than surface water, and similar 

differences between ditch and pore water have been noted previously (Wallage et al., 2006, 

Wilson et al., 2011a).  However, it has also been argued that the E4:E6 ratio is unsuited to 

freshwater analysis (Peuravuori & Pihlaja, 1997, O’Driscoll et al., 2006), with conflicting 

E2:E4 and E4:E6 ratios being reported (Park et al., 1999).  Wilson et al. (2011a) concluded 

that an increase in the E4:E6 ratio since ditch blocking was representative of a decrease in 

DOC aromaticity, colour, and decomposition, and therefore an increase in lability.  However, 

analysis of time series data from the Afon Ddu study site showed that the E4:E6 ratio was 
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subject to large fluctuations between months in both ditch and pore water, and that the other 

three measures of DOC quality were more stable and therefore more appropriate to 

characterise DOC (refer to section 3.3.3).  These data and publications clearly show that 

drawing conclusions from the use of only one measure of DOC quality may be unreliable. 

All three sample types displayed significant, positive relationships between DOC 

concentrations; that is, when DOC concentrations were high in ditch water, they were also 

high in pore water and OLF.  This is markedly evident in October 2012, where lowest DOC 

concentrations were observed for ditch water, OLF, and pore water for the reprofiled 

treatment.  This is most probably due to biogeochemical mechanisms that are initiated by 

seasonality and weather events (Halliday et al., 2012, Muller & Tankéré-Muller, 2012, 

Peacock et al., 2013), and show how these factors affect both pore water and surface water 

simultaneously.  Although no relationship was found between DOC concentration and phenol 

oxidase activity, a significant inverse correlation was found between DOC and β-glucosidase 

activity in soil samples associated with ditch water and pore water.  Freeman et al. (1997) 

found the same relationship for soil samples from a peatland in mid Wales, and concluded 

that DOC represented a substrate for β-glucosidase, with the metabolic products then being 

microbially degraded under anaerobic conditions.  It may be that spatial variation in β-

glucosidase activity is controlled by localised changes in pH, water table, moisture, and 

vegetation (Williams et al., 2000, Fenner et al., 2005, Straková et al, 2011).  As such, the 

activity of this extracellular enzyme could be responsible for the variable concentrations of 

pore water DOC. 

 As a final note, these processes control DOC production in pore water, and 

approximately 50% of this is leached to surface water.  The similar timing and concentrations 

of ditch water and OLF imply that they are essentially the same thing, but travelling via 

different routes.  This calls into question the validity of DOC flux studies that only measure 

ditch water.  To reach robust conclusions, a full catchment-scale before-after-control-impact 

(BACI) approach may be necessary, with accurately defined catchments allowing total runoff 

to be captured.  

 

5.4.5. Conclusions 

 Our results show that ditch blocking has had no significant effect on DOC 

concentrations in the short term, in the first twenty months after blocking.  Additionally, there 

has been no effect on pH, EC, or DOC quality as ascertained using four different 

spectrophotometric measurements.  This is true for ditch water, pore water, and OLF water.  
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No clear change was detected in POC concentrations, although mean concentrations were 

higher in blocked ditches.  A limited analysis of ditch water samples for THMFP showed that 

ditch blocking did not lead to a change in the formation of disinfectant by-products following 

water treatment by chlorination.  Possible reasons for the absence of a treatment effect 

include the facts that rewetting had no effect on sulphate concentrations or extracellular 

enzymes activities, both of which affect DOC dynamics.  There was the suggestion of a peak 

in pore water DOC in blocked ditches during the summer following rewetting, which was 

then followed by enhanced DOC concentrations in the stream draining the catchment.  This 

may have been due to ecosystem disturbance during blocking or a flush of DOC out of the 

system.  However, this effect was transient, and given the limited number of samples 

somewhat uncertain.     

 This is only the second ditch blocking study to measure DOC in OLF, and the first 

study to measure DOC for pore water, ditch water and OLF in combination.  DOC in OLF 

was of similar concentrations to that in ditches, and we conclude that ditch blocking, rather 

than reducing water (and hence DOC) fluxes, may simply have redirected water out of 

ditches onto the peat surface, where it travels downslope to rejoin the drainage network with 

a more or less unchanged DOC concentration.  As such, those studies that postulate that ditch 

blocking is an effective way to manage DOC by lowering water fluxes down ditches may 

have missed an important pathway for water and DOC loss from ditch-blocked hillslopes.  

Clearly there is an urgent need for studies that consider both the  flux of OLF and DOC 

concentrations, to establish estimates of DOC flux transported as OLF.     

 To conclude, our data do not provide clear evidence that ditch blocking is an effective 

method to reduce DOC concentrations in blanket bog drainage waters, at least in the short 

term. Further measurements and additional studies (including pre-restoration data and 

preferably incorporating all flow pathways and/or undertaken at the larger catchment scale) 

are required in order to assess whether these results are general, and whether clearer benefits 

might be obtained over longer periods. More positively, our data do demonstrate that 

peatland rewetting (undertaken for other reasons such as biodiversity or carbon sequestration) 

is unlikely to cause deleterious short-term peaks of DOC in water supplies. This study 

highlights the importance of measuring DOC in surface and pore water, as well as prescribing 

caution to the use of limited measurement techniques of DOC quality, as different 

spectrophotometric proxies can have conflicting results.  Additionally, we stress that to fully 

understand ecosystem responses to rewetting, variables such as extracellular enzyme activity 

and sulphate concentration should be measured to fully disentangle the peatland 
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biogeochemistry.  Finally, there is a lack of data concerning DOC concentrations in OLF, and 

this is not just limited to peatlands.  We therefore echo the call of Hinton et al., (1998) that 

more research on this subject is needed.  

 

Appendix 

Table 1. Ditch 4 data is removed from the pH mean as it showed anomalous biogeochemistry, 

indicative of a groundwater emergent point, with a higher pH. 

 

Figure 1. For first ten sampling occasions (26.10.10 – 5.7.11) n = 3 for dammed ditches.  The 

original sampling location showed anomalous biogeochemistry, indicative of a groundwater 

emergent point.  As such, a new sampling location was established several metres up-ditch.    

 

Figure 6. Months when n does not equal 4 for each treatment.  C = control ditches, R = 

reprofiled ditches, D = dammed ditches.  16.12.10 n = 3 for C and D.  10.9.12 n = 2 for D.   

 

Figure 7. Months when n does not equal 4 for each treatment.  C = control ditches, R = 

reprofiled ditches, D = dammed ditches.  15.3.11 n = 2 for C and D, and n = 1 for R.  14.4.11 

n = 3 for D and R.  11.5.11 n = 3 for C, R and D.  7.6.11 n = 2 for D.  5.7.11 n = 3 for C and 

R and n = 1 for D.  25.7.11 n = 3 for C and n = 2 for D.  28.9.11 n = 3 for D and R.  26.3.12 n 

= 3 for D.  28.5.12 n = 3 for C and D.  10.9.12 n = 3 for C and R.  1.10.12 n = 3 for C and D.     

 

Figure 13. Months when n does not equal 8 for each treatment.  C = control ditches, R = 

reprofiled ditches, D = dammed ditches.  5.7.11 n = 5 for C, n = 1 for D, n = 3 for R.  25.7.11 

n = 7 for C, n = 6 for D, n = 5 for R.  16.8.11 n = 7 for D.  7.9.11 n = 6 for D.  28.9.11 n = 7 

for D.  9.7.12 n = 7 for D.  20.8.12 n = 7 for C.  1.10.12 n = 7 for C.   
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Natural revegetation of bog pools after peatland restoration involving ditch 

blocking – the influence of pool depth and implications for carbon cycling   

 

6.1. Introduction 

Northern peatlands are a vitally important component of the global carbon cycle, 

storing an estimated stock of 547 Pg of carbon (Yu et al., 2010).   Additionally, peatlands are 

important for biodiversity, as numerous species of invertebrates, birds and bryophytes are 

restricted to such habitats (Warner & Asada, 2006).  On both local and global scales, 

peatlands have been damaged through drainage and peat extraction, but attempts are now 

being made to restore them through ecological engineering techniques.   

 In the United Kingdom (UK) peatland restoration is typically carried out through the 

blocking of drainage ditches (i.e. rewetting) with the aim of raising the water table and 

encouraging the establishment of peat-forming plant species such as Sphagnum.  Blocking 

takes place using dams constructed from a variety of materials including peat, plywood, 

plastic and heather bales (Armstrong et al., 2009).  A more complex method is that of 

reprofiling, where dams are constructed and the base of the ditch is compressed by 

mechanical force to destroy any soil pipes that might flow beneath the ditch.  Following 

rewetting pools form behind dams, and in natural peatlands these pools are critical 

biodiversity hotspots (Mazerolle et al., 2006).   

There are few studies of pools and of the effect of ditch blocking on peatlands that 

have solely been drained, as most of the literature has focussed on cutaway peatlands where 

drainage and harvesting have both occurred.  In an Irish study on an abandoned cutaway 

peatland, pools of standing water were colonised by Juncus bulbosus var. Fluitans which 

spread to provide a substrate for the growth of Sphagnum cuspidatum and Sphagnum 

auriculatum.  The stabilisation of the water table using a peat bund increased the rate of this 

re-colonisation, resulting in the spread of these same pool species after two years (Farrell & 

Doyle, 2003).  It has been noted elsewhere that S. cuspidatum can act as an aquatic pioneer 

species by forming a semi-floating raft suitable for further colonisation by other species 

(Money & Wheeler, 1999).  For the restoration of pools in a Canadian cutaway peatland, 

Sphagnum species were taken from a natural site and transferred using the ‘moss layer 

transfer technique’.  After three growing seasons Sphagnum cover reached 50% along pool 

margins (Poulin et al., 2011).  Another Canadian study found that the stocking of pools with 

aquatic plants had no effect on vegetation colonisation, and that four years after restoration 
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pH and dominant plant species differed from natural pools.  The authors suggested that an 

increased stocking density might promote vegetation recolonisation (Mazerolle et al., 2006). 

Another pioneer plant of peatlands is Eriophorum vaginatum.  Ditch blocking has 

been observed to promote the spread of E. vaginatum (Komulainen et al., 1998, Lavoie et al., 

2005), and it can colonise pool margins (Poulin et al., 2011).  It typically colonises bare peat 

with a lower water table, but can tolerate higher water tables (Kivimäki et al., 2008).  The 

vegetation response to the creation of pools is important from the perspective of the carbon 

and greenhouse gas budget of a site.  Some vascular plants can act as ‘chimneys’ by 

transporting gas directly to the atmosphere via their aerenchymatous tissue, and they also 

provide substrates for methanogenesis via root exudation and litter production (Marinier et 

al., 2004). 

As vegetation communities change following peatland restoration, it is possible that 

an associated change occurs in the fluvial carbon balance.  Dissolved organic carbon (DOC) 

is exported from peatland catchments in drainage waters, and its production is affected by 

numerous factors, including vegetation (Palmer et al., 2001).  For example, Armstrong et al. 

(2012) noted that Calluna was associated with high DOC concentrations in both a plot-scale 

(pore water) and a ditch-scale (surface water).  DOC is of interest for various reasons: it is a 

component of the carbon cycle; it can affect the functioning of aquatic ecosystems (Karlsson 

et al., 2009); it is expensive to treat in raw water supplies, and it can have negative effects on 

human health due to trihalomethane formation during water treatment (Chow et al., 2003).    

 In this study, we investigated the recolonisation of bog pools that were formed 

through ditch blocking.  We hypothesised that shallow pools would be dominated by E. 

vaginatum whilst Sphagnum species would form as floating rafts as pool depth increased.  

Additionally, a link between pool vegetation and characteristics, and DOC was investigated.  

Finally, the dams are specially designed to feature small overflow paths that channel water 

either side of the dam.  By measuring DOC concentrations in transects of successive 

downstream pools we also aimed to resolve whether DOC was produced or degraded 

between pools, leading to changes in concentrations down pool sequences.   

 

6.2. Materials and Methods 

 The study was carried out at the head of the Afon Ddu catchment (latitude 52.97°N, 

longitude 3.84°W) on the Migneint, an Atlantic blanket bog, in Snowdonia National Park, 

north Wales (UK).  The bog has been extensively drained, with ditches spaced 10-20 m apart, 

but no peat harvesting has occurred.  Ditches were blocked in February 2011 using the 
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reprofiling method and peat dams, and pools of various sizes formed behind.  Pools are 

typically 2 m wide and 2-3 m long, but much larger ones have formed.  Approximately 1600 

pools have been created.  Sampling took place in August 2012.  A random selection of 60 

pools was made.  This included three transects where either five or seven successive pools in 

the same ditch were surveyed down-slope.  The dimensions of each pool were measured, and 

a depth measurement taken from the centre of the pool.  Vegetation cover at the surface of the 

pool was estimated by sight to the nearest 5% (except for very low incidences of cover that 

were estimated at 2.5%), and the plant species recorded.  A water sample was taken from the 

middle of each pool for lab analysis and stored in the dark at 4
o
C.  All pools were surveyed 

on the same day to allow a robust comparison, as DOC concentrations can fluctuate 

seasonally, and according to the prevailing meteorological and hydrological conditions.  

Additionally, pool size may change following drought or precipitation.  Seven control water 

samples were taken from an unblocked ditch to compare against pool samples. 

 Water samples were analysed the day after collection.  Absorbance was measured at a 

wavelength of 263 nm using a Molecular Devices M2e Spectramax plate-reader.  DOC 

concentrations were then calculated from this absorbance using a previously established 

calibration curve for the site.  This wavelength was chosen as it gave the highest r
2
 (0.91) 

value and lowest residual variance (RMS = 16.9).  

 A linear regression model was used to investigate the relationship between pool 

characteristics and vegetation cover.  A multiple regression model using pool depth, area, and 

species vegetation cover as predictors of DOC was not significant, so a simpler method was 

used.  Mean values were calculated for pools with ≥ 50% cover of Sphagnum or Eriophorum 

(one pool where both vegetation types were present at 50% cover was not included).  The 

area from each pool to the top of the slope was measured and used as an estimate of upstream 

contributing area, and therefore flow rate, although the contributing area was somewhat 

uncertain due to changes to drainage patterns induced by the restoration work.  Statistical 

analysis was performed using SPSS v16.0.1 (IBM Corporation, http://www-

01.ibm.com/software/analytics/spss/products/statistics/).     

 

6.3. Results 

6.3.1. Physical pool characteristics and vegetation colonisation 

 There was considerable variation in the physical characteristics of the pools and the 

proportion of vegetation colonisation (table 1).  Pools were mainly colonised by E. vaginatum 

(with some Eriophorum angustifolium) and Sphagnum species (predominantly S. 

http://www-01.ibm.com/software/analytics/spss/products/statistics/
http://www-01.ibm.com/software/analytics/spss/products/statistics/
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cuspidatum); respective means were 37% (standard error = 3.2%) for Sphagnum and 38% 

(SE = 3.6%) for Eriophorum.  Two pools showed significant amounts of algal growth, and a 

small area of one pool had been colonised by Juncus effusus.  Both mean and median 

vegetation cover values were above 75%, and only seven pools had less than 50% vegetation 

cover, indicating a high level of recolonisation with only small areas of open water.      

 

Table 1.  Summary statistics for data from 60 pools.  SE is the standard error of the mean.  

  Mean SE Median Minimum Maximum 

Depth (m) 0.41 0.04 0.33 0.03 1.15 

Width (m) 1.96 0.09 1.9 0.7 4.2 

Length (m) 2.78 0.36 1.8 0.7 17.9 

Area (m
2
) 6.37 1.04 3.48 0.63 46.54 

Vegetation cover (%) 76 3.03 81 10 100 

DOC (mg L
-1

) 22.09 0.42 21.6 16.75 30.29 

 

 There was a strong negative relationship between pool depth and Eriophorum 

colonisation (figure 1), and at depths greater than 0.5 m Eriophorum only grew on the 

shallow pool margins.  The relationship between pool depth and Sphagnum cover was 

positive but weak (figure 2), with large variations in cover at deeper depths; for example, at 

approximately 0.8 m depth different pools displayed Sphagnum cover from 0% to 90%.  

There was no evidence that upstream contributing area (and therefore flow rate) influenced 

species cover.       
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Figure 1. Percentage cover of Eriophorum versus pool depth for 60 pools. Linear regression r
2
 = 0.74, p < 0.001.  

Filled circles indicate pools where Eriophorum was only present in the shallow pool margins. 

 

Figure 2. Percentage cover of Sphagnum versus pool depth for 60 pools. Linear regression r
2
 = 0.35, p < 0.001. 

 

6.3.2. DOC concentrations 

 Mean pool DOC concentration was 22.09 mg L
-1

 (SE = 0.42 mg L
-1

)(table 1).  DOC 

concentration was 22.8 mg L
-1

 (n = 18, SE = 0.8 mg L
-1

) for Sphagnum pools, and 21.6 mg L
-

1
 (n = 21, SE = 0.6 mg L

-1
) for Eriophorum pools.  This difference was not significant at p = 

0.05 (two-sample t-test).  Further analysis revealed no significant relationships between DOC 

concentrations and pool area or depth.  The results from the three ditch transects measuring 

DOC concentrations in each successive down-slope pool showed that there was no consistent 

cumulative production or degradation of DOC down the transects (figure 3).  The mean DOC 

concentration for samples from the unblocked ditch was 20.5 mg L
-1

 (n = 6, SE = 0.4 mg L
-1

); 

one sample was removed as its concentration was very low (9.76 mg L
-1

), possibly due to the 

ditch intersecting with a groundwater emergence point. 
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Figure 3.  DOC concentrations for three ditch transects (indicated by different lines), where successive down-

slope pools were surveyed.  Pool number 1 is at the top of the transect, and each subsequent pool is the next one 

down-slope along the ditch. 

 

6.4. Discussion  

6.4.1. Vegetation colonisation 

 Our results show that ditch blocking has been successful in creating bog pools with 

consistently high rates of vegetation colonisation after eighteen months.  E. vaginatum and S. 

cuspidatum were the primary colonising species, with additional colonisation by E. 

angustifolium, Juncus effusus, algae, and other Sphagnum species.  Our hypothesis that 

shallower pools would favour Eriophorum growth was supported, with Eriophorum cover 

decreasing linearly with pool depth.   At depths greater than 0.5 m Eriophorum was restricted 

to shallow pool margins, and cover was reduced to 5% at depths greater than 0.8 m.  Poulin 

et al. (2011) noted a similar response, with pool margins being colonised by Eriophorum, and 

suggested that this invasion might be a transient phase in the early stages of restoration.  

Sphagnum cover increased with pool depth, although this relationship was weaker than that 

between Eriophorum and depth, with large variation in cover at greater depths.  There are 

several possible reasons for this.  It has been suggested that deep pools that form behind dams 

can make vegetation establishment difficult, as the low level of light penetration reduces the 

rate of vegetation colonisation (Ramchunder et al, 2009).  DOC can affect photic depth 
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(Monteith et al., 2007) but this seems an unlikely control on vegetation colonisation as 

Sphagnum cover and DOC concentration were unrelated.  Additionally, DOC effects on 

photic depth would only impede vegetation growth if Sphagnum was establishing from the 

base of the pool, not as floating mats.  Boatman (1977) established that differences in nutrient 

supply could explain S. cuspidatum growth in bog pools, and there is some spatial variation 

in ditch nitrate concentrations at the experimental site (M. Peacock, unpublished data).  

Another possible explanatory factor could be the profile of the ditch sides, as steep sides 

could impede the establishment of Sphagnum. 

 Numerous restoration studies have reported high methane fluxes from areas of 

Eriophorum (Mahmood & Strack, 2011, Tuittila et al., 2008, Marinier et al., 2004, 

Komulainen et al., 1998), but its colonisation on bare peat does lead to the creation of a 

carbon dioxide sink (Tuittila et al., 1999).  Balanced against this, S. cuspidatum has been 

shown to consume methane through symbiosis with methanotrophs (Raghoebarsing et al., 

2005) and this mechanism is found in S. cuspidatum globally (Kip et al., 2010).  Sphagnum is 

also desirable as it enhances the carbon sink of the ecosystem and, for Boreal peatlands, 

increases the strength of this sink in spring and autumn, relative to vascular plants (Kivimäki 

et al., 2008).  Contrary to this, some studies have not recorded high CH4 fluxes from 

Eriophorum (e.g. Roura-Carol & Freeman, 1999, Dinsmore et al., 2009, Wilson et al., 2013) 

and it has been hypothesised that aerenchymous tissue also facilitates oxygen ingress into the 

rhizosphere, thus leading to decreased methanogenesis.  Furthermore, Sphagnum has 

sometimes been observed to emit large fluxes of CH4 (Wilson et al., 2013).  Clearly, there is 

still some uncertainty regarding the ideal vegetation composition to mitigate CH4 fluxes.  

Finally, Pelletier et al. (2007) found that methane flux decreased with increasing pool depth 

at two sites, possibly because lower sediment temperatures reduced methanogenesis 

(although a third site showed the opposite relationship; this was attributed to greater 

ebullition).  A later study confirmed this result, with larger fluxes of both methane and carbon 

dioxide being recorded in smaller, shallower pools (McEnroe et al., 2009).  There is also the 

opportunity for methane oxidation within the water column itself (Bastviken et al., 2008).  

Considering this, methane fluxes should be lower in deeper pools.            

 

6.4.2. Controls on DOC 

 DOC concentrations were not affected by the dominant type of vegetation colonising 

the pools.  This was somewhat expected; the upstream ‘catchment’ draining into each pool is 

typically large, flow rates are moderately high, and water residence times within individual 
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pools are therefore short. A direct influence of pool vegetation on DOC would thus require 

either rapid consumption or production of DOC within the pools, which is unlikely given the 

largely terrestrial source of DOC in peat drainage waters (Evans et al., 2007) and the 

relatively recalcitrant nature of this DOC over short time periods (e.g. Wickland et al., 2007; 

del Giorgio and Pace, 2008).  Instead, it is likely that DOC will be driven by large-scale 

hillslope characteristics such as terrestrial vegetation cover, soil carbon pool, peat cover and 

hydrology (Aitkenhead et al., 1999, Palmer et al., 2001, Dawson et al., 2004).  The similarity 

of mean DOC concentrations among pools, down transects and in comparison to an 

unblocked control ditch also suggests that pools do not exert a strong influence on the 

processing of DOC.  As a final caveat, we acknowledge that a simplified model is presented 

here; in reality each pool may receive water (and therefore DOC) from the peat upslope and 

either side of the blocked ditch, as well as from the upslope pools. 

 

6.4.3. Zoological changes 

Ditch blocking on this site created 1600 new bog pools which will enhance the habitat 

heterogeneity of the site (Renou-Wilson et al., 2011).  This large amount of standing water is 

likely to benefit Tipulidae species and any bird species that predate Tipulidae (Carroll et al., 

2011).  On the spot observations supported zoological changes, with the pools being used by 

invertebrates such as diving beetles (genus: Dytiscus), whirligig beetles (family: Gyrinidae), 

and pond skaters (family: Gerridae).  The frog species Rana temporaria was regularly sighted 

in pools, and there was evidence that Lagopus lagopus scotica (red grouse) used the pools for 

drinking/feeding.   

 

6.4.4. Implications for restoration 

 Taken as a whole these findings suggest that ditch blocking can be used as a suitable 

restoration technique to create vegetated bog pools.  After eighteen months the mean 

vegetation cover was 76%.  However, there is potential for the pools to gradually paludify in 

the long term (Lindsay, 2010) and for succession to lead to the growth of species such as 

Calluna vulgaris, Vaccinium myrtillus, Erica tetralix, and Empetrum nigrum.  On the other 

hand, further Sphagnum growth may occur, and long-term monitoring is essential to 

determine if this is the case.  At the site studied here, the creation of bog pools was not a 

specific restoration objective, but has emerged as a positive side-effect that has increased the 

biodiversity of the ecosystem.              



128 
 

 To ensure that the restoration achieves the best result in terms of the peatland 

greenhouse gas balance, our results suggest that pools should be deeper than 0.5 m.  This will 

limit the invasion of Eriophorum which might otherwise result in large methane fluxes. 

Lavoie et al. (2003) however, point out that restoration activities that result in large areas of 

Eriophorum are not necessarily failures, as a process of vegetation succession has been 

initiated; this may lead to Sphagnum colonisation within 5-10 years (Lindsay, 2010).  Deeper 

pools should also provide a less favourable environment for methanogenesis, and will lead to 

a longer upward travel time for methane, and hence greater opportunity for methane 

oxidation, dependent on the oxygen concentration profile of the pool.  Neither biotic nor 

abiotic pool characteristics were associated with DOC concentrations and thus pool creation 

can be focussed on the balance between carbon cycling, vegetation colonisation, and 

zoological diversity. 

 

6.4.5. Conclusions 

 Our survey of 60 bog pools created through ditch blocking shows that vegetation 

colonisation has been rapid and extensive.  Plant species displayed clear environmental 

preferences, with Eriophorum colonising shallow pools and pool margins, and Sphagnum 

growing in deeper pools.  No relationship could be found between any pool characteristic and 

DOC concentration, and we therefore suggest that restoration should aim to create deeper 

pools to give the greatest carbon b 

enefit.   
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The effect of ditch blocking on peatland methane fluxes 

 

7.1. Introduction 

 Northern peatlands store approximately 547 Pg of carbon (Yu et al., 2010) but they 

are under-represented in the Ramsar Convention that was developed to promote conservation 

and sustainable use of wetlands (Rubec, 1996).   The Intergovernmental Panel on Climate 

Change (IPCC) currently only provides a cursory treatment of peatlands (IPCC, 2006), 

although this is now being addressed with new guidance being produced for a 2013 report.  

Smith et al. (2004) estimate that northern peatlands have been net sinks of CO2 for around 

10,000 years, as well as sources of methane (CH4).  Although CH4 only has an atmospheric 

lifetime of 12 years (compared to up to 172 years for CO2) it is the more potent GHG of the 

two and over one hundred years it has a global warming potential (GWP) twenty-five times 

that of CO2 (Forster et al., 2007).  Due to their different lifetimes, comparisons of the two 

gases are problematic on the timescales over which peat formation takes place, and 

alternatives to the GWP method have therefore been proposed for peatlands (Frolking et al., 

2006).  Nitrous oxide (N2O) is the third major greenhouse gas, with a very high GWP, but 

emissions from unfertilised bogs are generally low (Moore, 1994).     

 The draining of peatlands through the digging of ditches can affect the hydrology and 

vegetation of a site (Stewart & Lance, 1991, Bellamy et al., 2012).  There is some evidence to 

suggest that if ditches are not maintained they will naturally infill (Holden et al., 2007), but 

those on steeper slopes often continue to erode down to bedrock (Painter et al., 1974).  

Drainage results in changes to the peatland biogeochemistry.  Pristine peatlands are generally 

net sinks of carbon (Limpens et al., 2008, Bridgham et al., 2006, Worrall et al., 2003, Rivers 

et al., 1998) but can be net sources during some years (Waddington & Roulet, 2008, Roulet et 

al., 2007).  Peatlands tend to become net sources during drought years, due to the greater 

aeration of the peat matrix which leads to a sustained net source of CO2 (Rowson et al., 2010, 

Salm et al., 2009).  Generally, drainage and drought decrease CH4 emissions and increase 

CO2 and N2O emissions (Alm et al., 1999, Martikainen et al., 1995, Glenn et al., 1993, 

Freeman et al., 1993).   

CH4 fluxes change following drainage because methanogenesis (the formation of CH4 

by archaea) is an anaerobic process in the degradation of organic matter (Garcia et al., 2000), 

whilst methanotrophy (the ability of bacteria to metabolise CH4 as their sole source of energy 

and carbon) is an aerobic process (Hanson & Hanson, 1996).  The decrease in CH4 
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production following water table drawdown occurs as exposure to oxygen reduces production 

rates (Freeman et al., 2002) and increases methane oxidation rates, as methanotrophs can 

survive under anaerobic conditions (Blodau & Moore, 2003).  Additionally, aerobic 

degradation in the unsaturated layers reduces substrate availability for methanogenesis; the 

degradation utilises carbon that would stimulate methanogensis in anaerobic conditions 

(Kettunen et al., 1999).  CH4 oxidation also occurs and can equilibrate to a steady state just 

days after drainage (Blodau & Moore, 2003).         

Although CH4 fluxes from drained peatlands are often considered to be low, or zero 

(e.g. IPCC, 2006), a number of studies have shown that the ditches created during drainage 

can themselves become significant CH4 sources (Best & Jacobs, 1997, Sundh, et al., 2000, 

Hendriks et al., 2007), contributing 60-70% of total emissions in one study (Schrier-Uijl et 

al., 2010), and over 84% in another (Teh et al., 2011).  This can remain an insignificant 

contribution to the net carbon balance (Minkkinen et al., 1997) but only when there is a large 

spacing between ditches and/or where net CO2 fluxes are large.  Where the space between 

ditches is small, drainage may actually result in a net increase in CH4 fluxes compared to 

undrained sites (Roulet & Moore, 1995).  There is a lack of direct information on the 

contribution of ditches on other systems.  UK blanket bogs have been intensely drained, and 

the space between ditches can be <10m, but it is not well established whether these function 

as significant CH4 sources in the same way as those studies undertaken in other peatland 

types.  Cooper et al. (2013) found that a ditch on a Welsh blanket bog displayed low CH4 

fluxes and attributed this to: 1) water rapidly flowing along the ditch, thus limiting the 

potential for methanogenesis to occur, and; 2) a limited supply of substrate for 

methanogenesis.  Contrary to this, a study of natural gullies on English blanket peat found 

them to be significant hotspots of CH4 flux (and CO2 respiration fluxes), contributing 95.8% 

of net CH4 flux despite covering just 9.3% of the land (McNamara et al., 2008).  Similar 

results may be found for ditches, depending on the degree of revegetation that has occurred, 

water flow rate, redox status, the rate of substrate input, and other such variables, but more 

studies from blanket bogs are clearly needed, as it seems possible that the reduction in CH4 

emission following drainage may have been overestimated.  

By attempting to raise the water table to its original level, restoration aims to return 

greenhouse gas (GHG) cycling towards that of an intact peatland.  For CO2, restoration 

usually leads to decreased total respiration (Urbanová et al., 2011, Tuittila et al., 1999) due to 

the restoration of anaerobic constraints on decomposition, and closure of the enzymic latch 

mechanism (Freeman et al 2001a), thereby creating a new CO2 sink (Waddington et al., 
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2010, Komulainen et al., 1999, Tuittila et al., 1999).  Whilst this change in CO2 dynamics 

may occur for ombrotrophic bogs and for natural fens, restoration of other, more altered 

systems may produce different results; for example, rewetting an extensive peat grassland 

would potentially lead to decreased gross primary productivity (Beetz et al., 2013).  

Following rewetting CH4 fluxes rapidly increase, but, depending on how a site responds to 

raised water levels, sometimes remain lower than those from pristine sites (Komulainen et al., 

1998).  When this occurs it may be due to the delayed recovery of the methanogenic 

community following population declines caused by long-term exposure to lowered water 

levels (Shannon & White, 1994), although significant increases in both methanogenesis and 

the methanogen populations have been observed just three months after rewetting (Urbanová 

et al., 2011).  Francez et al. (2000) noted a lag time in microbial response: upon rewetting 

methanogenesis only occurred at a peat depth of 75cm, which was assumed to be the depth of 

the pre-restoration water-table.  Kettunen et al. (1999) hypothesised that methanogens and 

methanotrophs remain attached to peat particles and thus reside in the same layer of the peat 

despite water table fluctuations.  Other explanations include the release of sulphate (that is 

generated during dry conditions) upon rewetting and the stimulation of sulphate-reducing 

bacteria which competitively inhibit methanogens (Freeman et al., 1994, Dise & Verry, 

2001).   

There are effects on CH4 flux from a purely hydrological viewpoint; pulses of CH4 

(and N2O) have been observed within a matter of days due to the disturbance generated by 

the shifting water table (Hughes et al., 1999, Dinsmore et al., 2009), and ponds often become 

important CH4 hotspots (Waddington & Day, 2007).  Even if water table fluctuations are not 

completely curtailed following restoration (e.g. Lucchese et al., 2010, Holden et al., 2011) 

methanogenesis will still be higher in the long term, due to the increased extent of the 

anaerobic zone.  

As previously mentioned, post-restoration CH4 fluxes are sometimes observed to be 

lower than those from pristine sites.  On the other hand, in other studies it has been found that 

CH4 fluxes following restoration may be considerably larger than those from pristine sites.  

The spread in Eriophorum that is often observed after restoration of bogs has frequently been 

implicated in such a response.  Some vascular plants can act as ‘chimneys’ by transporting 

gas directly to the atmosphere via their aerenchymatous tissue, and they provide substrates 

for methanogenesis (Marinier et al., 2004).  As such, numerous restoration studies have 

reported high CH4 fluxes from areas of Eriophorum (Mahmood & Strack, 2011, Tuittila et 

al., 2008, Marinier et al., 2004, Komulainen et al., 1998).  Occasionally the opposite effect is 
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reported, and it has been hypothesised that aerenchymous tissue facilitates oxygen ingress 

into the rhizosphere, thus leading to decreased methanogenesis (Roura-Carol & Freeman, 

1999, Dinsmore et al., 2009) but this is rare.  Other aerenchymatous peatland plants that have 

been noted to facilitate CH4 transport include Scheuchzeria palustris (Shannon et al., 1996), 

Typha latifolia, Phragmites australis (Käki et al., 2001), Juncus effusus (Dinsmore et al., 

2009), and Carex species (Morrissey et al., 1993).  Considering plant species that can reduce 

CH4 fluxes, it has been shown that S.cuspidatum can consume methane through symbiosis 

with methanotrophs (Raghoebarsing et al., 2005). This mechanism is globally prevalent (Kip 

et al., 2010), and not just restricted to Sphagnum species: Scorpidium scorpioides, a 

submerged brown moss occurring in fens and upland minerotrophic flushes, also forms this 

symbiosis (Liebner et al., 2011).   

Most of the restoration studies discussed here are of harvested sites where peat and 

vegetation has been extracted (Tuittila et al., 1999, Francez et al., 2000, Waddington & 

Warner, 2001, Marinier et al., 2004, Anderson et al., 2006, Waddington & Day, 2007, 

Kivimäki et al., 2008, Tuittila et al., 2008, Lucchese et al., 2010, Waddington et al., 2010, 

Mahmood & Strack, 2011), or of sites that were formerly drained for forestry (Komulainen et 

al., 1998, Komulainen et al., 1999, Silvan et al., 2002, Silvan et al., 2005, Urbanová et al., 

2011) (table 1).  A handful of others have taken place where drainage has been the only 

disturbance: Salm et al. (2012) measured fluxes of CH4, CO2 and N2O from multiple sites, 

including a bog that was drained for peat mining where subsequent activity never 

commenced.  They noted that peat extraction had significant effects on gas fluxes, but that 

drainage alone had little effect, due to a lack of response in water tables.  A lack of 

hydrological response to ditching has been recorded previously in bogs, as Price (1997) 

measured similar levels of soil moisture in a drained and blocked site in a plateau bog, and 

Rothwell et al. (1996) found that ditch spacing did not control soil water content.  Such 

results are due to the low hydraulic conductivity that blanket bogs display (Galvin, 1976, 

McDonald et al., 1991), but a lack of water table response to ditching is not found in all 

peatlands.  For example, ditches in fens can lead to extensive lowering of the water table 

(Cooper et al., 1998), and ditches in tropical peats lead to large and persistent drops in the 

water table, such that it resides below the ground surface for most of the year (Page et al., 

2009).       
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Table 1. Summary of CH4 fluxes following ditch blocking.  Studies on cutover peatlands, or experiments solely 

involving water table manipulations have been excluded.  

  Treatment Comparison CH4 change Units 

Komulainen 1998 Ditch blocking, clear cutting Pre vs post 0.8 - 4.6 g/m/yr 

Urbanová 2011 Lab incubation of soils Pristine vs drained 0.0006 - 0.0060 µmol/g/hr 

Green 2011 Lab incubation of cores No infill vs Sphagnum -0.23 - 15.2 -  g/m/yr 

  
 

infill vs heather bale  7.2 - 12.8   

  
 

vs reprofiling 
 

  

Cooper 2013 Ditch blocking Drained vs blocked 4.9 - 16.3 g/m/yr 

 

In the UK there is much uncertainty concerning the exact size of the peatland carbon 

store, but just over 3 Pg has been estimated as a minimum value (Lindsay, 2010).  

Considering that blanket bog comprises 87% of all UK peatland (Baird et al., 2009) there is a 

clear knowledge gap regarding GHG fluxes following ditch blocking on blanket bog (Baird et 

al., 2009, Lindsay, 2010,).  A mesocosm experiment subjecting peat cores from blanket bog 

to simulated ditch blocking techniques found that CO2 fluxes were largest when heather bales 

were used, and smallest when Sphagnum species colonised after blocking (Green et al., 

2011).  CH4 fluxes were larger under reprofiled treatments (see section 2.1), heather bale 

dams, and damming followed by Sphagnum colonisation, compared to dams with pools 

behind.  The authors expressed the caveat that these results may be misleading, as in reality 

pools will receive water and DOC inputs from surrounding peat which may have implications 

for CH4 emissions (Green et al., 2011).  The only controlled field ditch-blocking study on 

blanket bog to date (Cooper et al., 2013) found that ditch blocking increased CH4 fluxes, and 

that this was associated with Eriophorum vaginatum that colonised the blocked ditch.  The 

authors noted that this relationship was confounded by the effect of water table, and 

speculated that measured post-restoration decreases in sulphate concentration may have 

reduced inhibitions on methanogenesis.  Additionally, bales of Calluna were used to block 

ditches which may have provided substrate for methanogenesis.  In support of this, high 

concentrations of DOC have been associated with ditch blocking using Calluna bales (Green 

et al., 2011).    

The purpose of the study described here was to measure the effect of drainage and 

ditch blocking on CH4 (and CO2 and N2O) fluxes on blanket bog; considering fluxes from 

within open and blocked ditches (including pools formed during restoration), as well as 

fluxes from blanket bog adjacent to ditches.  A further objective was to use this dataset to 

extrapolate fluxes to the landscape scale to determine what effect ditch blocking had on CH4 

fluxes throughout the catchment.  Monitoring commenced several months before ditch 
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blocking took place to provide baseline data, and a number of ditches were left unblocked to 

act as experimental controls.  This allowed a direct comparison of ditched and ditch-blocked 

treatments.  Any effects of drainage on fluxes could only be inferred, as the experiment did 

not include a pre- and post-comparison of pristine vs drained bog.  It was hypothesised that 

drainage would have reduced CH4 fluxes, whilst ditch blocking would lead to increased CH4 

fluxes due to the raised water table, with pools being particular hotspots.          

 

7.2. Materials and Methods 

7.2.1. Study site  

The study was carried out at the head of the Afon Ddu catchment (latitude 52.97°N, 

longitude 3.84°W) on the Migneint blanket bog, in Snowdonia National Park, north Wales 

(UK).  The altitude of the catchment ranges from 490 m ASL with a mean peat depth of 1.32 

m.  Dominant vegetation is Calluna vulgaris, Eriophorum, Juncus and Sphagnum species, as 

well as Erica tetralix, Vaccinium myrtillus, Empetrum nigrum, and Vaccinium vitis-idaea.  

Twelve adjacent ditches that run directly downslope in a north-northwest direction were 

selected.  The ditch spacing is 10-20 m.  Ditch blocking throughout the catchment took place 

in February 2011.  Four ditches were left open as controls, and eight were blocked using two 

different methods.  Four were blocked using peat dams, where the peat is extracted from 

‘borrow pits’ adjacent to the ditch.  The remaining four were blocked using a reprofiling 

technique.  This involves the ditch vegetation being removed, and the peat bottom being 

compressed to destroy any natural pipes that may be present and hydrologically active.  The 

ditch is then infilled with peat and the vegetation is replaced.  As in the previous treatment 

peat dams are also constructed along the ditch. 

 

7.2.2. Static chamber CH4 and N2O gas sampling 

 Fluxes were measured using the static chamber method (Livingston & Hutchinson, 

1995) with opaque chambers.  Thirty six cylindrical polyvinyl chloride collars were installed 

in June 2010.  These were 30 cm in diameter and 20 cm in height.  Four 10 mm holes were 

drilled into the bottom of each collar (i.e. that part that would be underground) to prevent 

water pooling.  Collars were inserted into the peat to a depth of 10 cm.  Each ditch had three 

collars associated with it; one collar within the ditch, one collar 1 m west of the ditch, and 

one collar 3 m west of the ditch.  Two 10 mm holes were drilled into the above-ground 

portion of ditch collars to allow water to flow through them.  These were sealed with rubber 

bungs during gas sampling.  Collars were removed approximately ten days before ditch 
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blocking took place, and were reinstalled approximately ten days after ditch blocking in the 

same locations.  Within-ditch collars for blocked treatments were reinserted as close to their 

original position as possible.  These original collars allowed a direct pre- and post- rewetting 

treatment comparison.   

In June 2011 additional collars were installed, as the restoration activity results in 

some variation in the location of the original collars that might bias results (i.e. some collars 

were just upslope of dams, some were just downslope of dams).  For all ditches new collars 

were installed as per the original collar layout (i.e. one within-ditch and two adjacent to the 

ditch).  The exception was ditch 5 as the original collars were deemed to be in a satisfactory 

position.  For each open control ditch, one within-ditch collar was on bare peat, and one was 

on an area of naturally re-established Sphagnum.  As well as the new collars, a pool behind a 

dam was selected for each of the eight blocked ditches.  At each pool, four canes were used to 

mark an area where a floating static chamber was used to measure pool fluxes.  These 

secondary collars were used to compare blocked ditches against control ditches (fig. 1 & 2).  

 

Figure 1. Schematic of two ditches (one unblocked, one blocked) showing the gas sampling collars and dipwells 

(not to scale) 
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Figure 2. LIDAR image of the experimental site, taken before rewetting. R, O and D indicate reprofiled, 

open/control, and dammed ditches respectively.  Circles represent collars (not to scale).  Black = collars 1m and 

3m adjacent to ditches.  Orange = collars within blocked ditches.  Blue = floating chambers in blocked ditches.  

Green = collars on Sphagnum in open ditches.  Brown = collars on bare peat in open ditches.  Arrow points 

downhill.  Secondary collars are those further up slope, whilst original collars are those downslope.   

 

 Static chambers were originally constructed using bell-shaped cloches made from 

injection moulded high grade UV-stabilised plastic (Haxnicks, UK) attached to sections of 

the same polyvinyl chloride that the collars were made from.  They were sealed using 

neoprene foam.  When the new collars were inserted a new chamber design was used, 

consisting of an acrylic cylinder with a flat top.  A new sealing method was used by attaching 

a small plastic gutter to the top of the collar which could be filled with water.  The chamber 

slotted into this water to create a seal.  Chambers were covered in silver radiator foil to 

reduce temperature fluctuations.  Both chamber designs featured a small electric fan attached 

to the top of the chamber to ensure complete gas mixing.  Additionally, a short acrylic tube 

protruded through the chamber wall with a balloon attached on the inside to allow pressure 

equalisation between the inside and outside of the chamber.  Temperature, pressure and 

humidity inside the chamber were monitored with a Commeter C4141 probe (Comet 

Systems, Czech Republic).  A septum in the chamber wall allowed gas samples to be 

extracted.  To sample fluxes from pools, a floatation device was attached to the same 

chambers using either an inflated rubber inner tube or a piece of foam. 
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 Gas samples were extracted using disposable syringes fitted with 21 gauge needles.  

Five samples were taken per chamber, at 0, 5, 10, 15 and 20 minutes.  Each extraction was 

preceded by triplicate purges of the syringe with the needle penetrating through the septum 

into the chamber.  For samples from July 2010 to January 2012, 25 ml of sample was 

extracted and transferred into 22 ml vials (Perkin Elmer, USA) that had been pre-evacuated 

by hand.  For samples from March 2012 onwards 15 ml of sample was extracted and 

transferred into 12 ml vials that had been mechanically pre-evacuated (Labco, UK).  Samples 

were analysed for CH4 and N2O using a gas chromatograph (GC) fitted with a flame 

ionisation detector (FID) and electron capture detector (ECD).  July 2010-January 2012 

samples were analysed on a Perkin Elmer Clarus 500 GC, and March 2012 samples onwards 

were analysed on a Varian 450 GC.  Standard analytical grade reference gases (Cryoservice, 

UK, or Scientific and Technical Gases, UK) were used for calibration and to check for drift. 

 Sampling took place on a monthly basis from July 2010 to August 2012.  The order of 

sampling of static chambers changed on each sampling occasion so as to remove any 

potential bias from diurnal patterns in temperature.  At each collar, soil temperature at 10 cm 

was measured using a CheckTemp Electronic Thermometer (Hanna Instruments, UK).  Each 

set of collars associated with each ditch was equipped with a piece of lightweight boardwalk 

which could be placed before each collar to reduce researcher-mediated artefacts (e.g. CH4 

ebullition events due to extra weight on the peat surface).  Samples were analysed within one 

week of collection.   

 

7.2.5. Flux calculations 

 Fluxes were calculated according to Denmead (2008), using the modified formula: 

      
 

 
 
   

  
   (Equation 1) 

where Fg is the gas flux density at the peatland surface (M L
-2

 T
-1

 – mg m
-2

 day
-1

), A is the 

area inside the collar (L
2
 – m

2
), gm is the mass of gas in the chamber (M – mg), and t is time 

(T – days).  gm was calculated as:   

                 (Equation 2) 

where V is the combined volume of the static chamber and the above-ground section of the 

collar, and ρg is the mass concentration of gas in the chamber (M L
-3

 – mg m
-3

).  An ordinary 

least squares linear regression was fitted through the mass and time data to give the rate of 

increase or decrease in gas mass.  If the gradient of the linear regression was found to be 
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significant (p < 0.05) and r2 > 0.7 the flux (Fg) was then calculated.  Data for some chambers 

passed these criteria but displayed high initial gas concentrations followed by a steady 

concentration increase.  This was attributed to steady ebullition and removed from the 

analysis.  Some chambers displayed high initial gas concentrations followed by a decline in 

concentration.  This was attributed to an ebullition event and subsequent bubble mixing, and 

these data were removed from the analysis.  If the change in concentration within the 

chamber was < 0.3 ppm then no flux was deemed to have occurred (i.e. zero flux).  Any data 

that did not meet the criteria for flux or zero flux was removed, e.g. due to episodic ebullition 

occurring midway through chamber deployment (Green & Baird, 2011).   

 

7.2.6. Static chamber CO2 gas sampling 

A limited number of CO2 fluxes were measured using an EGM-4 infra red gas 

analyser (PP Systems).  Field campaigns too place in summer 2011 and 2012.  Respiration 

(i.e. dark chamber fluxes) was measured on four occasions.  On three occasions in summer 

2012 both dark and light chamber fluxes were measured and therefore net ecosystem 

exchange (NEE) could be calculated.  The IRGA was typically deployed for approximately 

two minutes on each collar, as this generally allowed a linear flux to be observed. 

 

7.2.7. Water table measurement 

 Water tables were measured using dipwells.  Automated dipwells were situated on the 

peat equidistant between each pair of ditches.  They were equipped with WT-HR 1000 data 

loggers (TruTrack, New Zealand) recording every 2 hours.  Dipwells were removed 

approximately ten days before ditch blocking took place, and were reinserted approximately 

ten days after ditch blocking.  Additional dipwells were installed in June 2011, and these 

were placed besides each of the new (none-ditch) gas sampling collars that were installed that 

month.  These additional dipwells were monitored manually, and a water table reading taken 

on each gas sampling trip.  Figure 1 shows dipwells as part of a schematic of part of the field 

site. 

 

7.2.8. Statistics  

 Statistical analysis was performed using SPSS v20 (IBM Corporation, http://www-

01.ibm.com/software/analytics/spss/products/statistics/).  After testing for normality, 

ANOVAs or Kruskal-Wallis tests were used.  Tukey HSD post-hoc tests were used with 

ANOVAs.  After significant Kruskal-Wallis tests, Mann-Whitney tests were used to 

http://www-01.ibm.com/software/analytics/spss/products/statistics/
http://www-01.ibm.com/software/analytics/spss/products/statistics/


141 
 

determine between which groups significance was found.  Chi-square was used to test the 

association of vegetation/collar type and the incidence of negative flux.  

 

7.3. Results 

7.3.1. N2O fluxes 

 Fluxes of N2O were below the detection level of the GC throughout the study, and are 

therefore not presented.  This is frequently observed for blanket bogs (e.g. Wilson et al., 

2013). 

 

7.3.2. Pre-rewetting differences 

 During the pre- rewetting period (July 2010 – January 2011), all ditches were 

unblocked and therefore data could be pooled for analysis (note however that the 

measurements do not cover a full year) (fig. 3).  Mean CH4 flux from within-ditch collars was 

11.6 mg CH4 m
-2

 d
-1

, and the major contribution to this flux came from ditches that were 

subsequently dammed.  Kruskal-Wallis/Mann-Whitney tests showed this to be significantly 

higher than collars 1 m next to the ditch, where mean flux was 4.3 mg CH4 m
-2

 d
-1

.  There 

was no significant difference between fluxes from collars 3 m from ditches (mean of 8.0 mg 

CH4 m
-2

 d
-1

) and fluxes from ditch collars.  Additionally, there was no significant different 

between fluxes from collars 3 m from ditches and collars 1 m from to ditches.  Highest mean 

monthly fluxes during the pre- rewetting period were observed in July and August (15.3, 12.7 

and 21.5 mg CH4 m
-2

 d
-1

 for ditch, 1 m and 3 m collars respectively).  Lowest mean monthly 

fluxes were more widely distributed and were observed in January, September and November 

(8.2, 0.7 and 1.9 mg CH4 m
-2

 d
-1

 for ditch, 1 m and 3m collars respectively).           
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Figure 3. Mean CH4 flux for all 12 ditches in the pre-rewetting period.  Bars represent means for all pre-

blocking sampling dates from original ditch collars, collars 1 m adjacent, and 3 m adjacent to ditches. n = 39, 

46, and 42 respectively.  Error bars show standard error of the mean. Significant differences are marked by *.       

 

7.3.3. Effect of ditch blocking on water tables 

 Automatic dipwells were installed mid-way between ditches, therefore did not strictly 

belong to either blocked or unblocked treatments; that is, they were potentially influenced by 

the two ditches either side.  However, grouping the dipwells into those where the water table 

had been ‘fully-restored’ (i.e. ditches on either side had been blocked) and ‘half-restored’ (i.e. 

the ditch to one side had been blocked, and the ditch to the other left open) allowed a simple 

comparison to be made.  This showed that the depth from the peat surface to the water table 

was, on average, greater for the dipwells monitoring half restored bog, but that this difference 

existed before blocking.  A t-test showed that the pre-blocking difference between fully-

restored and half restored bog was not significant, whereas post-blocking it was significant 

(p<0.01, fig. 4). 

 Manual dipwells that were installed adjacent to collars (1 m and 3 m from ditches) 

after blocking took place showed that the depth to the water table was greater for collars next 

to open ditches.  Mean depth to water table was 9.2 cm for unblocked control ditches, 7.7 cm 

for dammed ditches, and 7.2 cm for reprofiled ditches.  ANOVA showed that this difference 
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was significant between control ditches and reprofiled ditches (p<0.05), but the difference 

between control ditches and dammed ditches was only significant at a weaker level (p<0.1) 

(fig. 5). 

 

 

 

Figure 4. Monthly mean depth to water table for restored (continuous line) and half restored (dotted line) 

blanket bog.  For each month number of dipwells is usually n = 5 for restored and 6 for half restored.  Error bars 

show standard error of the mean.  Red line indicates when ditch blocking took place.  The pre-blocking 

difference is not significant, whereas the post-blocking difference is significant.   
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Figure 5.  Monthly mean depth to water table for dipwells associated with collars for unblocked control ditches 

(continuous line), dammed ditches (dashed line) and reprofiled ditches (dotted line).  For each month number of 

dipwells is n = 8 for each treatment.  Error bars show standard error of the mean.  There were sampling trips in 

both early and late May, hence the duplication on the x axis.  The difference is significant between control 

ditches and reprofiled ditches (p<0.05), but the difference between control ditches and dammed ditches is only 

significant at a weaker level (p<0.1)    

 

7.3.4. Effect of water table on CH4 flux 

 Manually operated dipwells were installed alongside secondary (post-blocking) 

collars to provide paired CH4 flux and water table data.  It is frequently difficult to attribute 

variability in CH4 fluxes measured using static chambers to environmental variables (Levy et 

al., 2012), and therefore averaging data is often desirable to reduce noise and elucidate 

patterns (Cooper et al., 2013).  By grouping fluxes according to water table level (using 1 cm 

increments) a negative relationship was found between water table and CH4 flux.  Linear 

regression showed that there was a negative relationship between the two variables, i.e. that 

as the water table drops further from the surface CH4 flux decreases (fig. 6). At the highest 

observed mean water table depth of 21 cm, this regression suggests that the CH4 flux was 

around 25% of that observed when water table was at or above the ground surface.    
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Figure 6.  Mean CH4 flux (square root transformation) for varying water table depths. r
2
 = 0.40, p<0.05.  Error 

bars show standard error of the mean.  

 

7.3.5. Pre- and post-rewetting treatment comparison 

 The originally-installed collars were used for a direct pre- and post- rewetting 

comparison.  Before analysing post- rewetting fluxes, pre- rewetting data were compared 

according to their assigned future treatments to determine whether any pre-existing difference 

in fluxes existed.  There was no significant difference between groups for collars 1 m and 3 m 

from the ditch.  However, there was a significant difference for within-ditch collars between 

those assigned to reprofiled and dammed ditches.  The difference between means was 20.4 

mg CH4 m
-2

 d
-1

; mean flux from reprofiled ditches was – 0.3 mg CH4 m
-2

 d
-1

, and mean flux 

from dammed ditches was 20.1 mg CH4 m
-2

 d
-1

.    

Analysis of post- rewetting data revealed a significant difference in fluxes between 

open and dammed, and open and reprofiled treatments for ditch collars.  There was no 

significant difference between treatments for collars 1 m adjacent to ditches, but a significant 

difference between open and reprofiled ditches for collars 3 m adjacent to ditches (fig. 7).  

Fig. 8 displays these data as a time series.  Rewetting resulted in moderate increases in fluxes 
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from dammed blanket bog approximately four months post-blocking, which were followed 

three to five months later by extremely large flux increases from reprofiled blanket bog.  

Although the CH4 increase following ditch blocking is, to some extent, driven by high within-

ditch fluxes, collars adjacent to ditches also displayed high fluxes; examples include fluxes of 

291, 105, 553, and 302 mg CH4 m
-2

 d
-1

 for reprofiled blanket bog, and 139, 107, 102, and 79 

mg CH4 m
-2

 d
-1

 for dammed blanket bog.   

      

Figure 7.  Pre- (filled bars) and post-rewetting (open bars) CH4 fluxes from original collars within ditches, 1 m 

adjacent to ditches, and 3 m adjacent.  Error bars show standard error of the mean.  n is variable, but mean 

values are 14 pre-rewetting and 18 post-rewetting (see appendix for details).  Note that y-axis has been truncated 

for clarity, so that the upper (symmetrical) error bar for the reprofiled ditch is not shown.  Bars with shared 

letters are significantly different from each other. 
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Figure 8. Monthly mean CH4 fluxes for all original collar positions, pre- and post-rewetting, for open ditches 

(continuous line), dammed ditches (dashed line) and reprofiled ditches (dotted line).  Red line indicates when 

ditch blocking took place. Error bars show standard error of the mean.  n is variable between months and 

treatments, but mean for each treatment is n = 6 (see appendix for detail).  Sampling took place both in early and 

late August in 2012, hence duplication of dates shown on the x axis. 

 

7.3.6. Post-rewetting treatment comparison 

 Analysis of data from secondary collars suggested that ditch blocking had a 

significant effect on CH4 fluxes from within ditches (fig. 9).  Collars in reprofiled and 

dammed ditches displayed significantly larger fluxes than collars on either Sphagnum or bare 

peat in open, unblocked ditches.  Floating chambers on pools in reprofiled and dammed 

ditches also showed significantly larger fluxes than those in unblocked ditches.  Post-

blocking, the highest mean flux (186.2 mg CH4 m
-2

 d
-1

) was associated with pools within 

reprofiled ditches, and the lowest was associated with bare peat in unblocked ditches (3.6 mg 

CH4 m
-2

 d
-1

).  Differences between pool and ditch fluxes were not significant within either the 

reprofiling or damming treatments.  Similarly, there was no difference in fluxes between 

Sphagnum and bare peat collars in unblocked ditches. 

 For all treatments, CH4 fluxes were very similar for collars 1 m and 3 m adjacent to 

ditches.  For both collar locations there was no significant difference between dammed and 

reprofiled ditches, but collars next to open, unblocked ditches showed significantly larger 
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fluxes (fig. 10).  Combining data for all terrestrial collars for each treatment shows that 

reprofiled ditches had the largest overall flux, and that this was significantly higher than 

fluxes from dammed ditches and fluxes from open, unblocked ditches (fig. 11).  There was no 

significant difference between dammed and open ditches 

 

 

Figure 9. Mean CH4 fluxes for all six within-ditch collar types within treatments: Sphagnum within unblocked 

ditches (n = 36), bare peat within unblocked ditches (n = 37), collars in reprofiled ditches (n = 35), floating 

chambers on pools in reprofiled ditches (n = 35), collars in dammed ditches (n = 33), and floating chambers on 

pools in dammed ditches (n = 29).  Bars represent means for all sampling dates from secondary collars. Error 

bars show standard error of the mean.  Letters mark pairs where a significant difference in CH4 is present at 

p<0.05, except c where p=0.052. 
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Figure 10. Mean CH4 fluxes for collars 1 m and 3 m adjacent to ditches for each respective treatment.  Bars 

represent means for all sampling dates from secondary collars. From left to right n = 36, 40, 48, 36, 38, and 47.  

Error bars show standard error of the mean.  For both 1 m and 3m collars there is no significant difference 

between dammed and reprofiled treatments, but fluxes from open ditches are significantly higher. 

 

Figure 11. Mean CH4 fluxes for all terrestrial (secondary) collars (i.e. ditch, 1 m and 3 m collars) for all 

sampling dates.  n = 151, 111, and 124 for open, dammed and reprofiled treatments respectively.  Error bars 

show standard error of the mean.  There is no significant difference between dammed and open collars, but 

reprofiled fluxes were significantly higher.  
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7.3.7. Landscape extrapolations  

 Methane fluxes were calculated for the Afon Ddu catchment as follows: a catchment 

area of 1.59 km
2
 was defined using mapping and aerial photography.  Total ditch length 

within this catchment was estimated from aerial photography at 32.5 km.  A ditch width of 

0.5 m was then used to calculate the total area of ditches within the catchment.  The 

catchment was divided into ditch area, strips of bog beside each ditch 1 m in diameter, and 

remaining bog, and mean fluxes for each land type upscaled accordingly (fluxes for collars at 

3 m were used for the remaining bog).  Before upscaling, annual fluxes for each microform 

were -0.1 – 4.2 g CH4 m
-2

 yr
-1

 for open ditches, 0.1 – 2.4 g CH4 m
-2

 yr
-1

 for bog 1 m  adjacent 

to open ditches, and 2.9 – 4.4 g CH4 m
-2

 yr
-1

 for bog 3 m adjacent to open ditches.   Post-

blocking fluxes were 8.9 – 53.6 g CH4 m
-2

 yr
-1

 for blocked ditches, 17.2 – 67.9 g CH4 m
-2

 yr
-1

 

for blocked pools, 10.3 – 17.8 g CH4 m
-2

 yr
-1

 for bog 1 m adjacent to blocked ditches, and 3.5 

– 11.1 g CH4 m
-2

 yr
-1

 for bog 3 m adjacent to blocked ditches.  Upscaling these figures to the 

unblocked, drained catchment, gave a flux of 2.89 g CH4 m
-2

 yr
-1

.  Catchment fluxes were 

then estimated using two scenarios: one where ditches were blocked through damming, and 

one where ditches were blocked through reprofiling.  For both scenarios, ditches were 

considered in 10 m sections, each section consisting of a 1 m dam, a 2 m pool, and 7 m of 

blocked ditch, repeated throughout the catchment.  These scenarios suggest that damming 

ditches increases the catchment CH4 emission to 3.45 g CH4 m
-2

 yr
-1 

and that reprofiling 

ditches increases it to 4.11 g CH4 m
-2

 yr
-1

.  Borrow pits were then factored into flux estimates 

as follows: each dam was considered to have one borrow pit associated with it, of a size of 1 

m by 1 m.  Borrow pit fluxes were estimated as a mean of those from reprofiled pools and 

ditches, and this was added to the calculation.  This increased post-blocking fluxes to 3.55 g 

CH4 m
-2

 yr
-1 

for dammed ditches and 4.21 g CH4 m
-2

 yr
-1

 for reprofiled ditches.   

 

7.3.8. Other controls on CH4 fluxes 

 Negative CH4 fluxes were observed on numerous occasions (fig. 12).  They were 

observed most frequently from collars in unblocked ditches; on 16% of occasions from bare 

peat and on 17% of occasions from Sphagnum.  The lowest number of negative flux 

occasions were observed from pools in blocked ditches (3%).  A chi-squared test showed that 

the association between collar location and incidence of negative CH4 flux was significant.  

 After removing negative fluxes, and fluxes larger than 300 mg CH4 m
-2

 d
-1

, a weak 

but significant relationship was found between soil temperature at 10 cm and CH4 flux.  This 
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relationship was clarified by performing a square root transformation on the data (fig. 13).  

Fluxes showed more variation at the higher temperatures and thus this relationship could be 

clarified by taking the mean flux for each 1
o
C temperature increase (fig. 14), where a strong, 

significant underlying relationship between mean CH4 flux and temperature could be 

detected.  This approach was similar to that taken to establish the relationship between CH4 

flux and water table, and helped to remove noise from raw data.  The relationship between 

soil temperature and CH4 flux was visibly evident through time (fig. 15). 

   

Figure 12. Percentage number of incidences of negative CH4 fluxes observed for Sphagnum (n = 36) and bare 

peat (n = 37) in unblocked ditches, pools in dammed and reprofiled ditches (n = 64), blocked ditches (n = 68), 

and collars on blanket bog adjacent to blocked and unblocked ditches (n = 245).  The relationship between 

collar location and incidence of negative flux is significant. 
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Figure 13. Relationship between soil temperature at 10 cm depth and CH4 flux (square root transformation). n = 

104. r
2
 = 0.17, p<0.05. 

 

Figure 14. Relationship between soil temperature at 10 cm depth and mean CH4 flux (square root 

transformation), using data from figure 13.  Error bars show standard error of the mean (also square root 

transformation).  r
2
 = 0.69, r<0.05. 
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Figure 15.  Mean soil temperature at 10 cm (dashed line) and CH4 flux (solid line) for approximately one year.  

Data is from taken from secondary collars (including pools) and is averaged from blocked and unblocked 

treatments.  Regression between temperature and square root transformation of CH4 flux (as in figs. 11 and 12) 

gives r
2
 = 0.66, p<0.05.   

 

7.3.9. CO2 fluxes 

 Tables 2 and 3 display CO2 fluxes.  Respiration (i.e. dark chamber) fluxes were 

largest from reprofiled ditches.  NEE results suggested that bare peat within ditches was a 

source of CO2, but that Sphagnum colonising within ditches created a CO2 sink. 

 

Table 2.  Dark chamber (respiration) mean CO2 summer fluxes in mg CO2 m
-2

 hr
-1

, plus standard error of the 

mean and sample number for open, dammed and reprofiled ditches.  1m and 3m refer to collars adjacent to 

ditches by that distance.  Data is from July 2011, mid and late May 2012, and June 2012.   

  Open     Dammed     Reprofiled     

  Flux SE n Flux SE n Flux SE n 

Ditch - bare peat 67 8 12   

 

  

  

  

Ditch - Sphagnum 98 20 12   

 

  

  

  

Blocked ditch   

  

135 23 15 259 73 15 

1m  182 23 16 168 33 15 125 19 15 

3m 132 43 12 102 10 11 108 15 12 

 

-20

0

20

40

60

80

100

120

0

2

4

6

8

10

12

14

16

Ju
l-

1
1

Ju
l-

1
1

Se
p

-1
1

O
ct

-1
1

N
o

v-
1

1

Ja
n

-1
2

M
ar

-1
2

M
ay

-1
2

M
ay

-1
2

Ju
n

-1
2

Ju
l-

1
2

A
u

g-
1

2

C
H

4 
fl

u
x 

(m
g 

C
H

4
 m

-2
 d

-1
) 

Te
m

p
e

ra
tu

re
 (

o
C

) 



154 
 

Table 3.  Net ecosystem exchange mean CO2 summer fluxes in mg CO2 m
-2

 hr
-1

, plus standard error of the mean 

and sample number for open, dammed and reprofiled ditches.  1m and 3m refer to collars adjacent to ditches by 

that distance.  Data is from mid and late May 2012, and June 2012.  A negative sign indicates CO2 uptake from 

the atmosphere.           

  Open     Dammed     Reprofiled     

  Flux SE n Flux SE n Flux SE n 

Ditch - bare peat 79 12 8   

 

  

  

  

Ditch - Sphagnum -463 56 12   

 

  

  

  

Blocked ditch 

   

-302 74 11 -156 150 12 

1m  -196 94 12 -348 106 11 -239 90 12 

3m -326 96 12 -267 106 11 -242 122 12 

 

 

7.4. Discussion 

7.4.1. The effect of ditches on CH4 fluxes 

 During the pre-rewetting monitoring phase, fluxes from open ditches were 

approximately 2.5 times larger than those from blanket bog 1 m adjacent to ditches.  Fluxes 

from blanket bog 3 m adjacent to open ditches were midway between ditch and 1 m fluxes, 

but were not significantly different to either.  These results suggest that ditches have the 

effect of drying out the bog adjacent to them, and consequently suppressing CH4 fluxes.  

Additionally, the wet characteristics of the ditches appear to make them more important as 

emitters of CH4.  Mean flux from ditches before blocking was 11.6 mg CH4 m
-2

 d
-1

.  Whilst 

higher than fluxes from the adjacent bog surface, these fluxes remain substantially lower than 

fluxes from ditches in agriculturally drained peatlands where fluxes of 218 mg CH4 m
-2

 d
-1

 

(Hendriks et al., 2007), 623 mg CH4 m
-2

 d
-1

 (Teh et al., 2011), and 2950 CH4 m
-2

 d
-1 

and 8780 

CH4 m
-2

 d
-1

 (Schrier-Uijl et al., 2010) have been reported.  It is also lower than fluxes 

recorded from mined peatlands in Sweden, where average fluxes from sites were 26-600 mg 

CH4 m
-2

 d
-1

 (Sundh, et al., 2000), and from a Finnish raised bog drained for forestry where 

fluxes ranged considerably, but with a maximum of 3512 mg CH4 m
-2

 d
-1

 (Minkkinen & 

Laine, 2006).  However, results from secondary collars did not suggest that ditches lowered 

fluxes from adjacent bog, as for both 1 m and 3 m collars fluxes were largest for open control 

ditches.  Such inconsistencies demonstrate the complexity of interpreting CH4 fluxes, and are 

indicative of numerous controls (such as local differences in vegetation composition, water 

table, moisture content, and substrate availability).    
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Fluxes from ditches before rewetting at our study site were closer to those found by 

Von Arnold et al. (2005) who noted means of 9.6 and 9.8 mg CH4 m
-2

 d
-1

 from ditches at two 

drained and afforested peatland sites.  They are also similar to fluxes reported from other sites 

on the Migneint blanket bog, of 0.15–6.39 mg CH4 m
-2

 d
-1 

noted by Kang & Freeman (2002) 

or the mean value of 13.4 mg CH4 m
-2

 d
-1

 noted by Cooper et al. (2013).   It seems apparent 

that nutrient levels and substrate availability are key factors in determining within-ditch 

methane emissions, as fluxes from disturbed or agricultural peatlands are consistently higher 

than those from nutrient-poor ombrotrophic bogs.  Sundh et al. (2000) hypothesised that ditch 

fluxes were driven by within-ditch CH4 production, rather than CH4 being produced in 

anaerobic horizons in the inter-ditch areas and transported to ditches through drainage.  

Contrary to this, Minkkinen & Laine (2006) recorded larger fluxes from ditches with moving 

water, with larger fluxes from the water surface than the ditch bottom, suggestive of CH4 

transport in drainage waters from adjacent areas.  Cooper et al. (2013) suggested that steeper 

ditches in blanket bogs increased ditch run off, thereby limiting the opportunity for 

methanogenesis to occur within the ditch itself.  More research is needed to elucidate the 

pathway of ditch CH4 fluxes, and to quantify the proportion of in-ditch production versus 

drainage inputs from elsewhere, and whether these proportions are constant or change 

seasonally.   

 Sundh et al. (2000) found that vegetation within ditches was involved with mediating 

fluxes, either through aerenchymatous CH4 transport or by providing methanogenic 

substrates.  They recommended that regular cleaning of ditches to impede vegetation 

establishment would keep fluxes low.  For ditches on blanket bog this may be unnecessary as 

we found that fluxes from areas of within-ditch Sphagnum and bare peat were very similar, 

and both low.  Roulet & Moore (1995) found that drainage had the potential to result in an 

increase in net CH4 fluxes from the landscape as a whole due to the creation of ditch hotspots.  

Considering our results, and those of Cooper et al. (2013), it seems that the digging of 

drainage ditches on blanket bog will not have the same effect, because (as previously 

mentioned) our results also tentatively suggest that the digging of drainage ditches suppresses 

CH4 flux from bog adjacent to ditches.  Specifically, during the pre-rewetting phase of the 

experiment, mean fluxes from open ditches were 11.6 CH4 m
-2

 d
-1

, whilst fluxes 1 m from 

ditches were 4.3 CH4 m
-2

 d
-1

.  It can therefore be hypothesised that drainage increases fluxes 

compared with those from the pre-drained peat surface, but decreases fluxes in a narrow 

section of bog adjacent to ditches, therefore resulting in little net change.  It therefore follows 
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that the net effect of the digging of ditches on CH4 flux will depend on the spacing between 

ditches, and the width of each ditch. 

 Another finding was that unblocked ditches showed negative fluxes (i.e. CH4 

consumption) on numerous occasions.  For both bare peat and Sphagnum the incidence of 

this was respectively 16% and 17%.  In Sphagnum this is explainable, as symbiotic 

relationships between Sphagnum and methanotrophs are well-documented, with 

methanotrophs providing a carbon source for Sphagnum  (Raghoebarsing et al., 2005, Kip et 

al., 2010).  A lack of CH4 flux from Sphagnum in ditches has been observed before, and 

attributed to this mechanism (Minkkinen & Laine, 2006).  Cooper et al. (2013) observed only 

low fluxes from bare peat, and northern agricultural peats have been observed to be net sinks 

of CH4, depending on the position of the water table (Regina et al., 2007).  The fact that bare 

peat was within hydrologically active ditches might be expected to lead to large CH4 fluxes, 

due to favourable moisture conditions for methanogens.  However, research in northern 

peatlands has suggested that methanotrophy is substrate limited (Freeman et al., 2002).  As 

such, CH4 production is stimulated in wet microsites, and CH4 then diffuses to aerobic 

microsites where it is oxidised (Basiliko et al., 2007).  However, actual incidences of 

negative flux suggest that methanotrophs in bare peat have the ability to consume 

atmospheric methane under specific conditions.  Due to the relatively small number of bare 

peat flux chamber measurements displaying negative fluxes, it was impossible to elucidate if 

these specific conditions include certain water table or temperature ranges, and therefore we 

cannot adequately explain this occurrence.    

 

7.4.2. The effect of ditch blocking on CH4 fluxes    

 Data from both the manual and automatic dipwells suggested that ditch blocking has, 

to some extent, been successful at raising water tables.  This effect was clearest for reprofiled 

ditches, where water tables adjacent to ditches were, on average, 2 cm closer to the surface 

compared to unblocked control ditches.  Water tables in bog adjacent to dammed ditches 

were 1.5 cm closer to the surface compared to unblocked control ditches, but this was only 

weakly significant (p<0.1).  There was some additional evidence that ditch blocking has 

succeeding in raising water tables in blanket bog equidistant between blocked ditches, 

compared to locations where only one of the adjacent ditches has been blocked.  Although 

these changes in water table are small, similar responses to ditch blocking have been 

reported.  Other studies on blanket bog have noted average changes in depth to water table of 

2 cm and 2.6 following ditch blocking (Wilson et al., 2011, Holden et al., 2011).  It is 
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important to consider that the ditches in this study were at the very top of the catchment and 

therefore were relatively shallow and partly infilled in places.  Ditch blocking of more incised 

ditches elsewhere on the Migneint has raised water tables by an average of 7 cm (Cooper et 

al., 2013).    

After taking average CH4 fluxes for water table increments of 1 cm, a negative 

relationship was found between CH4 flux and depth to water table.  It would therefore be 

expected that ditch blocking would lead to higher water tables and associated larger 

emissions of CH4.  Data from gas sampling collars that were installed before ditch blocking 

showed large increases in CH4 fluxes following rewetting, particularly for within-ditch 

collars.  Caution must be exercised when drawing conclusions from these data, as pre- and 

post-rewetting monitoring of these collars was for different time periods: pre-blocking data 

were only collected from July 2010 to January 2011.  Additionally, there was a significant 

difference in pre-rewetting fluxes between ditch collars assigned to reprofiled and dammed 

ditches, with mean fluxes from dammed ditches being approximately 20 mg CH4 m
-2

 d
-1

 

higher than those from reprofiled ditches.  The huge increase in CH4 fluxes from reprofiled 

ditches is highly suggestive of a direct effect of ditch blocking, and the pre-existing flux 

difference between dammed and reprofiled ditches suggests that this increase is potentially 

larger than a straightforward comparison of post-blocking fluxes would suggest.  The high 

fluxes from blocked ditches are similar to those others have found: 231 mg CH4 m
-2

 d
-1

 on 

blanket bog (Cooper et al., 2013) and 38.6 mg CH4 m
-2

 d
-1

 and 164.7 mg CH4 m
-2

 d
-1

 from 

ditches and pools on a restored cutover bog (Strack & Zuback, 2013).  Evidence for an effect 

of ditch blocking is also supported by the large differences in fluxes from secondary collars 

that were installed after rewetting: the mean flux from collars in unblocked ditches was 5.1 

mg CH4 m
-2

 d
-1

 for Sphagnum and 3.6 mg CH4 m
-2

 d
-1

 for bare peat.  Mean fluxes from 

collars in dammed and reprofiled ditches were 47.3 mg CH4 m
-2

 d
-1

 and 116 mg CH4 m
-2

 d
-1

 

respectively, and pool fluxes in dammed and reprofiled ditches were 47.2 mg CH4 m
-2

 d
-1

 and 

186 mg CH4 m
-2

 d
-1

. 

 These data clearly show that ditch blocking leads to a large increase in CH4 fluxes 

from within the blocked ditches.  Bog pools have been observed to be important contributors 

to CH4 emission (Waddington & Day, 2007), and our results are comparable to static 

chamber fluxes measured from boreal beaver ponds (Dove et al., 1999).  Natural pools on 

blanket bog have also been cited as significant contributors to landscape-scale CH4 fluxes 

(Hargreaves & Fowler, 1998).  The increased within-ditch fluxes following rewetting occur 

as water tables rise and favourable conditions for net methane production are reached 
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(Freeman et al., 1993, Komulainen et al., 1998).  The two different ditch blocking techniques 

had different effects on within-ditch and pool fluxes; CH4 fluxes were higher in reprofiled 

ditches compared to dammed ditches.  Reprofiling is a more invasive technique, and involves 

compacting the peat at the base of the ditch to remove any hydrological functioning.  

Research on forestry practices on UK peat soils has shown that compacting can increase CH4 

fluxes, possibly due to the creation of favourable anaerobic conditions (Mojeremane et al., 

2012).  Another possibility is that the disturbance to the peat, and in particular the uprooting 

and burial of live plant material, is providing new substrate for methanogenesis (e.g. Glatzel 

et al., 2004).   

 For collars that were installed for pre- and post-rewetting phases there was no 

significant post-rewetting difference in CH4 flux between blocked and unblocked ditches for 

collars 1 m adjacent to ditches, although there were visible (not-significant) differences in 

CH4 flux, with emissions increasing in the order unblocked < dammed < reprofiled.  For 

collars 3 m adjacent to ditches, CH4 emissions increased in the same order unblocked < 

dammed < reprofiled and fluxes from the reprofiled treatment were significantly higher when 

compared to the unblocked treatment.  However, this result is confounded by data from the 

secondary collars that were installed after blocking where fluxes were highest from those at 1 

m and 3 m besides ditches for collars associated with open, unblocked ditches.  It is therefore 

difficult to draw any robust conclusions about the effects of ditch blocking on CH4 fluxes 

from areas between ditches.  With these caveats in mind, grouping fluxes from all secondary 

collars suggests that mean CH4 fluxes were highest in blanket bog with reprofiled ditches, 

and that fluxes from drained bog and bog rewetting through dammed ditches did not differ.   

 

7.4.3. The effect of ditch blocking at the catchment scale 

 Upscaling fluxes to the landscape-scale revealed that, before rewetting, the 1.59 km
2
 

Afon Ddu catchment had a landscape-scale mean flux of 2.89 g CH4 m
-2

 yr
-1

.  This is lower 

than calculated fluxes for two other small catchments on the Migneint blanket bog subject to 

ditching: 4.8 g CH4 m
-2

 yr
-1

 at Llyn Serw and 5.6 g CH4 m
-2

 yr
-1

 at the Nant y Brwyn (Cooper 

et al., 2013, Cooper, 2013).  However, measurements for the Afon Ddu catchment were 

conducted towards the top of a hillslope, on a relatively steep gradient for blanket bog, whilst 

the Llyn Serw site is situated in a large, shallow basin, and the Nant y Brwyn features a 

valley bottom with a riparian zone from which CH4 fluxes were found to be comparatively 

high (Cooper, 2013).  As such, the differences in landscape-scale fluxes may simply reflect 

the natural characteristics of each site.   
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 After ditch blocking, the catchment budget was calculated as 3.45 g CH4 m
-2

 yr
-1 

if all 

ditches were dammed, and as 4.11 g CH4 m
-2

 yr
-1

 if all ditches were blocked using the 

reprofiling technique.  ‘Borrow pits’ were then included in the calculation, which are the 

depressions that are left behind when peat substrate for dams is removed from the bog area 

between ditches.  These fill with water, but also have vegetation in that was replaced after 

peat substrate was removed.  Although no flux measurements were obtained from these areas 

it seems probable that they emit large amounts of CH4 and that they may function similarly to 

the reprofiled ditches, as they involve disturbance to the vegetation, and the creation of 

shallow, vegetation-filled wet depressions.  By using a mean flux value from reprofiled 

ditches and pools, they were factored into a post-blocking calculation.  Their inclusion 

increased post-blocking catchment budgets to 3.55 g CH4 m
-2

 yr
-1 

for dammed ditches and 

4.21 g CH4 m
-2

 yr
-1

 for reprofiled ditches.  These figures are closer to those for undrained 

lowland blanket bog in Ireland where a flux of 6.2 CH4 m
-2

 yr
-1 

was reached (Laine et al., 

2007), but are still higher than an earlier estimates from an undisturbed part of the Migneint 

were a flux of 1.1 CH4 g m
-2

 yr
-1

 was calculated (Kang & Freeman 2002). .  

 As such, in the immediate aftermath of rewetting (< 20 months), ditch blocking 

resulted in increases in catchment-scale CH4 flux of 23% or 46% depending on the blocking 

technique used.  It is possible that fluxes may increase further in the near future.  Peatland 

restoration has been observed to promote the spread of Eriophorum with associated increases 

in CH4 fluxes (Komulainen et al., 1998, Marinier et al., 2004, Mahmood & Strack, 2011).  

Flux increases from areas of Eriophorum have been ascribed to the plants enhancing 

methanogenesis by supplying root exudates (Saarnio et al., 2004, Ström et al., 2012) or 

simply by acting as chimneys for CH4 to bypass the aerobic zone, thus decreasing CH4 

oxidation (Greenup et al., 2000, Dorodnikov et al., 2011).  Elsewhere in the Migneint (Llyn 

Serw site), two years after ditch blocking using heather bales and reprofiling, fluxes were 16 

CH4 m
-2

 yr
-1

; three times what they were before blocking.  This was attributed to Eriophorum 

colonising bare peat on the blocked ditches, and possibly an effect of heather bales supplying 

substrate for methanogenesis (Cooper et al., 2013).  This situation is not directly comparable 

to rewetting in the Afon Ddu catchment, where ditch gradients are steeper and revegetation 

seems to have occurred more rapidly.  Four years after rewetting at Llyn Serw, areas of bare 

peat remain that have not been colonised within the infilled ditches.  Nevertheless, 

Eriophorum did colonise along blocked ditches at the Afon Ddu.  Primarily this colonisation 

occurred at the margins of pools that formed behind dams, a response that Poulin et al. (2011) 

observed following restoration of harvested peatlands.  Eriophorum also colonised within 
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pools, where pool depth did not exceed 0.5 m.  Although CH4 fluxes from Eriophorum 

associated with pools and pool margins were not measured, it is likely to be high.  Cooper et 

al. (2013) recorded a mean flux of 231 mg CH4 m
-2

 d
-1

.  This is higher than fluxes we 

measured from pools themselves, suggesting that, even though pool fluxes are high, they are 

lower than those from colonising Eriophorum.  However, measurements from pool edges 

dominated by Sphagnum and sedges from a Canadian raised bog showed a flux of 156 mg 

CH4 m
-2

 d
-1

 (Bubier et al., 1993); this is lower than mean fluxes from reprofiled pools, but 

still much higher than fluxes from dammed pools.  Clearly, exact measurements from both 

pools and pool-associated Eriophorum from the same site are needed to determine which 

outcome is preferable for the CH4 balance of ditch-blocked sites         
 
   

 

7.4.4. The effect of temperature on CH4 fluxes 

 An analysis of individual flux measurements and soil temperature at 10 cm returned a 

weak (r
2
 = 0.17) but significant (p<0.05) relationship between the two variables.  Although 

low fluxes occurred at all temperatures, there were more incidences of larger fluxes as 

temperature increased.  Considering this, a moderately strong relationship (r
2
 = 0.69) between 

the two variables was found when a mean flux value for each temperature was calculated.  

This suggested that fluxes started to rapidly increase as soil temperatures rose above 10
o
C.  

Dunfield et al. (1993) found that CH4 production was small below 10
o
C in laboratory 

experiments on Canadian peats, and suggested that methogenesis is more temperature 

responsive than methanotrophy.   

 The relationship between mean CH4 flux and mean soil temperature was also evident 

seasonally, with both variables being depressed during winter, and enhanced during summer.  

It is important to state the caveat that soil temperature was measured at 10 cm, and that 

several times (July 2011, May 2012) during the study the water table dropped below 10 cm.  

The effect of this is clear in May 2012 when the relationship between temperature and CH4 

flux diverges.  It is also important to note the wide range that the temperature fluctuates over, 

and this can partly be considered to be due to the fact that temperature is averaged from both 

drained and rewetted treatments, as well as from ditches and adjacent bog.  It is likely that 

there will be some degree of confounding here, in that other variables that control CH4 flux 

will be correlated with temperature.   For example, higher temperatures might be associated 

with an increased availability of carbon substrates (Freeman et al., 2001b), and this can be 

dependent on the vegetation type (Inglett et al., 2012).  Also, an increase in vascular green 

area of CH4-transporting species (VGAAER) will result in increased CH4 fluxes, and VGAAER 
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development will be correlated with mean temperature as both variables increase into the 

growing season (Laine et al., 2007).  

 

7.4.5. CO2 fluxes 

 Respiration (i.e. dark chamber) fluxes are comparable to those of McNamara et al. 

(2008) who recorded a mean summer respiration flux of 174 mg CO2 m
-2

 hr
-1

 for Calluna 

vulgaris on UK blanket bog.  Our results suggest that rewetting reduces fluxes from 

respiration for non-ditch areas, which has been observed elsewhere (Urbanovä et al, 2011, 

Tuittila et al, 1999).  The results show a large increase in respiration fluxes from reprofiled 

ditches when compared to both bare peat and Sphagnum in unblocked ditches.  Fluxes from 

within unblocked ditches may have been low because these ditches were hydrologically 

active, and therefore consistently wet.  The reprofiling technique disturbs the ditch material 

and infills the incised ditch; it is possible that this method leads to some oxygenation of the 

peat within the ditch.  Alternatively, this result may simply be an artefact of the small sample 

size (note that standard error was extremely high for reprofiled collars).  

 NEE fluxes are comparable to those presented by Laine et al. (2006) from an Irish 

blanket bog, but are larger, as would be expected of summer-only fluxes (i.e. mean annual 

fluxes are lower due to a lack of photosynthesis outside of the growing season).  Bare peat 

within ditches was a source of CO2 due to an absence of vegetation but within-ditch 

Sphagnum had the largest CO2 uptake of all collars.  Our survey of bog pools (refer to chapter 

6) showed rapid Sphagnum colonisation, and therefore these results suggest that this is a 

favourable outcome from a carbon perspective.  Considering the extremely large standard 

errors of the fluxes from collars 1m and 3m adjacent to ditches, and lacking a detailed 

analysis of the respective plant species composition of individual collars which likely drives 

this variation, it is difficult to draw any further conclusions of a robust nature.       

 

7.4.6. Conclusions 

 Our findings show that ditch blocking increases CH4 flux at the landscape scale, and 

that the magnitude of this increase depends on the blocking technique used.  Reprofiling, 

rather than damming, resulted in the largest flux increase, possibly due to the major within-

ditch disturbance associated with this technique.  Bog pools in both dammed and reprofiled 

ditches were important emitters of CH4.  Contrary to research from more productive peatland 

systems, we observed that unblocked ditches were not major hotspots of CH4 production, 

although they displayed fluxes that were higher than those from bog 1m adjacent to ditches.   
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 Negative CH4 fluxes were occasionally observed, and these were recorded most 

frequently in bare peat and Sphagnum within open ditches.  This finding suggests that 

Sphagnum colonisation is desirable, within both pools and ditches, as symbiotic 

methanotrophs may, to some extent, ameliorate the large fluxes that are associated with these 

anaerobic environments.  Any ditch-blocking techniques that limit the post-restoration 

expansion of Eriophorum should be encouraged, as work elsewhere on the Migneint has 

shown that these species are associated with large CH4 fluxes which contribute substantially 

to CH4 fluxes at the landscape scale.  Additionally, post-rewetting increases in CH4 flux from 

both dammed and reprofiled ditches were smaller than post-rewetting in flux increases at 

Llyn Serw on the Migneint, where ditches were completely filled in.  Here, areas of bare peat 

remain, and Eriophorum is the only major colonising species.  Considering this, a tentative 

policy suggestion is that damming or reprofiling methods both offer a more favourable 

outcome compared to completely filling in ditches, at least as far as CH4 fluxes are 

concerned.      

 

 

Appendix 

Figure 6. Values of n for open, dammed and reprofiled ditches, pre- and post-rewetting.  

  Ditch     1m     3m     

  Open Dam Re Open Dam Re Open Dam Re 

Pre 16 16 7 16 17 13 13 16 13 

Post 18 22 15 19 20 15 14 17 19 
   

Figure 7. Values of n for open, dammed and reprofiled ditches post-rewetting.  Sampling 

took place both in early and late August in 2012, hence duplication. 

  2010         2011             2012       

  Jul Aug Sep Oct Nov Jan Mar Apr May Jun Sep Nov Mar May Aug Aug 

Open 10 5 7 9 10 7 2 3 6 4 3 4 4 7 11 7 

Dam 12 6 5 8 10 8 2 4 3 4 4 3 5 8 10 6 

Re 11 8 6 9 9 9 4 4 5 3 4 3 3 6 10 5 
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Synthesis and Conclusions 

8.1. Introduction 

In Europe 52% of ‘active’ peatlands (i.e. ones accumulating peat naturally) have been 

degraded through various processes; conversion to agricultural or forested land, subjected to 

peat harvesting, inundated by water, or built on.  Approximately 20% of European peatlands 

have been lost completely (i.e. they no longer exist).  For the UK, it has been estimated that 

8% of peatlands no longer exist (Joosten & Clarke, 2002), and much of this loss has occurred 

in the English fens, where 39% of deep peat is under cultivation (Natural England, 2010).  

When these figures are acknowledged alongside the biogeochemical changes to carbon 

cycling that climate change could initiate (e.g. Chapman & Thurlow, 1998, Fenner et al., 

2007, Pärn & Mander, 2012) there is clearly cause for alarm, as climate change could 

potentially create positive feedbacks, especially in peatlands already modified by drainage, 

agriculture or forestry, and stimulate the loss of soil organic carbon (Ise et al., 2008).  From a 

UK perspective, modelling has suggested that future climate changes will decrease the 

amount of area that is suitable for the continued growth of blanket bog (Clark et al., 2010).  

Considering this, a concerted effort is now underway to restore peatland systems of various 

types.  Ditch blocking is one such restoration (i.e. rewetting) method, and the primary focus 

of this PhD thesis.  This synthesis will summarise the important findings under several 

sections: 1) methodological and analytical considerations arising from the work; 2) the effects 

of ditch blocking on carbon cycling and other ecosystem services, and policy implications, 

and; 3) ideas for future research.  Throughout this chapter, mention will be made in passing to 

note both novel research and findings, and work that did not go according to plan or failed 

completely.    

 

8.2. Methodological Considerations 

8.2.1. Implications for experimental design 

This PhD thesis has addressed one such rewetting project using several important 

approaches.  Firstly, it has featured a period of baseline monitoring before ditch blocking 

where DOC, POC, pH, EC and CH4 fluxes were all measured, something that has been 

neglected by some earlier studies (e.g. Wallage et al., 2006).  Evans et al. (2011) state in a 

report to the Joint Nature Conservation Committee (JNCC) that: “it is often difficult 

to…collect sufficient baseline measurements before the planned manipulation occurs.  It is 

then difficult to confidently attribute observed changes in measured C fluxes to the treatment 
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itself, rather than to pre-existing differences between sites.”  The importance of this is clearly 

seen in the DOC data for pore water where pre-blocking differences between DOC 

concentrations were large: mean concentrations were 26.0 mg L
-1

 for control ditches, 41.6 mg 

L
-1

 for reprofiled ditches, and 31.7 mg L
-1

 for dammed ditches.  These data represent large 

spatial variations in pore water DOC, over a small hillslope scale.  Wallage et al. (2006) 

recorded median pore water DOC concentrations of 42.9 mg L
-1

 and 13.3 mg L
-1

 for a 

drained and blocked site respectively, which were some 1 km apart.  Without pre-blocking 

data, there can be no certainty that their results are due to ditch blocking, and not some other, 

pre-existing condition. 

Secondly, this study also features the use of unblocked control ditches within a wider 

blocked catchment.  This is in contrast to some studies where all ditches within a catchment 

have been blocked, and control measurements are taken from a geographically distinct 

catchment (e.g. Worrall et al., 2007, Gibson et al., 2009, Wilson et al., 2011a).  Evans et al. 

(2011) state: “Results from any manipulation study which lacks suitable controls…cannot be 

unequivocally attributed to the effects of the manipulation.”  Although the aforementioned 

studies have control sites, their suitability should be rigorously examined.  As the pore water 

DOC data presented here shows, determinands can vary extensively across a hillslope that 

visually looks homogenous, ergo, determinands can vary extensively between apparently 

similar catchments.  Future studies should give strong consideration to establishing control 

and experimental plots within the same site.  One possible problem with this design is that it 

could lead to confounding results.  For this study, a randomised design was used with 

blocked and unblocked ditches mixed together, so as to minimise the influence of any 

underlying linear change that might be present, such as increasing peat depth.  From this 

arises the possibility that a raised water table in a blocked ditch may influence an adjacent 

unblocked control ditch.  Hydraulic conductivity in blanket bogs is typically low, making this 

unlikely, and the effects of ditches (whether blocked or unblocked) on water table are often 

relatively localised (Wilson 2011b, Bellamy et al., 2012).  Nevertheless, caution must be 

exercised to minimise the chances of such interactions.  One option is to study ditches that 

flow directly down slope, rather than at an angle where water may flow more readily from 

blocked to unblocked ditches.  The other option is to group blocked and unblocked ditches 

into adjacent groups thus limiting the potential for interactions between treatments, but this 

then introduces statistical problems involving randomisation.         

Thirdly, this study possesses replication of ditches, contrary to some other studies of 

ditch blocking (e.g. Cooper et al., 2013).  This replication allows more confident inferences 
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to be drawn that are based on sound statistical tests.  The advice of Evans et al. (2011) is that: 

“an absolute minimum of three replicates of each treatment type…is required for statistical 

analysis of plot-scale experiments.”  It can thus be seen that this study fulfils three key 

criteria of Evans et al. (2011) that are suggested as guidelines in the establishment of robust 

field manipulation experiments.  Additionally, this study has addressed gaps in the 

knowledge of carbon fluxes from peatlands that Worrall et al. (2011) list in another report to 

the JNCC.  Firstly, they also cite the lack of previous studies featuring both baseline 

monitoring and unblocked control ditches.  Secondly, they point to a lack of data concerning 

the effects of ditch blocking on CH4 fluxes from blanket bog.  Both of these are addressed 

within this study.  Thirdly, Worrall et al. (2011) point to the requirement that a better 

understanding of fluvial carbon fluxes is needed.  This study addresses this point to the fullest 

extent of any ditch blocking experiment so far, by measuring water chemistry determinands 

in surface water (both ditches and the stream draining the experimental catchment), pore 

water, and overland flow.  By monitoring these three hydrological components, new insights 

into DOC dynamics were observed suggesting that ditch water and overland flow are 

essentially different parts of the same flowpath.  This has important ramifications for 

experimental studies that have solely considered DOC concentrations and water fluxes within 

drainage networks, which therefore omit a key part of the fluvial carbon budget.  

Despite these positive findings, and in addition to the aforementioned potential for 

interactive effects on water table between open and blocked ditches, other problems were 

encountered during the study.  For example, one hypothesis for a lack of treatment effect on 

water chemistry after ditch blocking is that the original ditches did not adequately fulfil their 

intended function, or that any function had been reduced by natural infilling during the 

intervening years.  Although some sections of the experimental ditches consisted of bare peat, 

other sections had revegetated and infilled to various degrees (fig. 1).  Ditches at the bottom 

of the hillslope were much more heavily incised (fig. 1), and if monitoring had taken place 

here it is possible that a treatment effect may have been observed.  The practical reason for 

monitoring ditches at the top of the hillslope were two-fold: 1) to ensure that expensive 

equipment was distant from the road, thereby deterring would-be thieves; 2) the National 

Trust wanted any unblocked control ditches to be unobtrusive, as they did not believe that the 

general public would understand why some ditches had been left unblocked (monitoring at 

the bottom of the hillslope would entail a 500 m length of upstream ditch being left 

unblocked).   
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Another problem was encountered in estimating water fluxes from the experimental 

site.  Each ditch was equipped with a v-notch weir so as to allow fluxes of DOC and POC to 

be calculated.  Unfortunately there were extensive problems with calibrating the automatic 

loggers and so flow data is missing.  This problem arose as robust rating curves could not be 

established, due to inaccurate flow gauging methods (put simply, the containers used to 

collect discharge were too small to accurately measure high flows).  Such problems can be 

avoided by ensuring that all procedures and methods are properly documented and checked in 

advance of fieldwork.    

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Left – a naturally infilled ditch at the head of the experimental hillslope. Right – a deeply incised ditch 

at the bottom of the experimental hillslope. 

 

8.2.2. Analytical considerations 

 Peatland restoration projects typically, but not always, involve partnerships between 

various organisations that may include land owners, academic institutions, and environmental 

protection agencies.  Each separate stakeholder will often have different aims that they want 

to achieve through a project.  Where restoration projects proceed under the guidance of land 

owners there can sometimes be reluctance to carry out thorough research (Evans et al., 2011), 

and extensive disagreement can occur between stakeholders, depending on their specific area 

of interest (Dougill et al., 2006).  Such disagreements can make the funding and 
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implementation of useful scientific research difficult, resulting in either poorly replicated and 

poorly controlled studies (see previous section), or only limited money or time available for 

monitoring.  Once finance has been procured for such projects, there is often a desire among 

stakeholders to start restoration as soon as possible, and this can be at the loss of a baseline 

monitoring period.   

 As such, there is considerable current interest in the use of proxies and other novel 

approaches to gather information in a low-cost or rapid way.  For example, Gray et al. (2012) 

show that peatland CH4 fluxes can be modelled using either plant species or plant functional 

groups (e.g. the presence of aerenchyma).  On a similar theme, vegetation has been 

successfully used as a proxy for greenhouse gas emissions (Couwenberg et al., 2011). 

Remote sensing is a popular way to build useful datasets and allow extrapolation of these 

proxies to a landscape scale.  Although expensive, LIDAR (light detection and ranging; an 

airborne laser surveying technique that generates a high-resolution model of the terrain) has 

proved to be a valuable tool in upland research (e.g. Kincey & Challis, 2010).  Indeed, a 

LIDAR dataset exists for the Migneint (fig. 2), and a detailed exploration of it will no doubt 

result in numerous practical applications, such as scaling up greenhouse gas measurements to 

a landscape scale, or providing information on erosion processes.  With direct relevance to 

this project, the National Trust have been using the Migneint LIDAR dataset to prioritise 

future ditch blocking according to ditch depth, slope gradient and hydrological connectivity.  

As well as LIDAR, there are other remote-sensing techniques that are more affordable.  

Knoth et al. (2013) demonstrate the use of quadrocopters (small, rotor-powered remote-

controlled machines) fitted with modified digital cameras to record near-infrared images.  

These images were then automatically computationally screened for vegetation type to 

provide information on the success of peatland restoration.        
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Figure 2.  A small section of LIDAR data from the Migneint dataset.  This shows part of the Afon Ddu 

experimental ditch-blocking catchment (before blocking took place).  Ditches are clearly evident, as are areas of 

gullying (centre right).  The area in the bottom and right centre that displays extensive detail is a large erosion 

complex.   

  

 As part of the current interest in time and cost saving measures, this project proposed 

a new proxy for DOC concentrations: phenolic concentrations showed considerable early 

promise as a proxy for DOC, comparing favourable with UV-vis proxies.  Although a 

phenolics assay is more complicated than a UV-vis scan, it is still a relatively basic laboratory 

procedure.  The use of a plate reader allows up to 84 samples to be analysed at once, and the 

essential chemicals are cheap: one litre of Folin-ciocalteau reagent costs £79.70 (Sigma 

Aldritch) and this is enough to run approximately 80,000 samples.  One kilogram of Na2CO3 

costs £25 (Sigma Aldritch); enough to run approximately 133,000 samples.  As a 

spectrophotometer is much cheaper to purchase than an instrument to directly measure DOC 

(e.g. a total carbon analyser) then, overall, the use of a phenolics proxy offers a cheaper 

method.  Because tests showed negligible degradation of phenolics in stored samples, water 

samples can be collected and stored until a sufficient number have been collected for assay.  

Considering this, a phenolics proxy offers an easy way to analyse a large number of samples.  

Where restoration projects are taking place solely under the guidance of land managers, a 

phenolics assay could be included in a budget and contracted out to an institution with 

laboratory facilities.  This would allow real data on the effects of restoration on DOC 

concentrations to be collected cheaply, and without interfering with the other, primary aims 

of the stakeholder which may be more prosaic (e.g. a project to block a certain number of 

150 m 
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ditches with the aim of improving the conservation/aesthetic value of a site, with no scientific 

monitoring). 

Traditional thinking therefore suggests that a phenolics proxy offers an advantage 

over a UV-vis proxy, as absorbance is thought to decline quickly as samples degrade 

(Karanfil et al., 2002).  This would mean regular analysis of samples which, if contracted out 

to a laboratory, would increase staff costings.  However, as part of this project weekly UV-vis 

scans were performed on 65 water samples for three months with no consistent change 

observed.  This suggests that absorbance may sometimes be more resistant to degradation 

than previously thought, although there are caveats.  For instance, samples collected from a 

Welsh calcareous fen showed flocculation of DOC which will affect absorbance readings 

(personal observations), and this has been noted previously (Römkens & Dolfing, 1998).  If 

the absorbance of water samples from blanket bogs is consistently as stable as phenolics 

concentration, then a more useful DOC proxy is probably that proposed by Tipping et al. 

(2009) and further developed by Carter et al. (2012).  This method consists of an optimised 

model that calculates DOC using absorbance measurements from two wavelengths.  A 

comparison of this model against other proxies showed that the two wavelength model 

consistently performed well, and was the most accurate proxy for pore water DOC.  The 

parameters cited by the model developers proved adequate to calculate ditch water DOC 

concentrations, and this would be expected as the model was parameterised using surface 

water data.  As such, this provides an extremely low-cost way to estimate DOC as no prior 

direct measurements of DOC concentration are required.  This is not the case for a phenolics 

or single wavelength proxy where a number of direct DOC measurements are needed to 

establish a calibration.  As might be expected, the two wavelength model performed 

extremely poorly for pore water using the original parameters, but parameterisation against 

existing pore water DOC and absorbance measurements optimised it to a high degree of 

accuracy.  A broad collaboration between those with an interest in UV-vis and DOC would 

be fruitful if a repository of data for different sample types could be established.  This could 

include such variable as sample type (pore water including sampler depth, ditch water, stream 

water), soil type, climate (temperature, precipitation), and pollution regime.  Such an 

approach has been suggested by Couwenberg et al. (2011) as a way to gap fill and provide 

regional calibrations.  This would facilitate fine tuning of the model according to the exact 

characteristics of a site.  Practitioners wishing to estimate DOC concentrations at a new site 

could then use the parameters generated from other sites that were closest in similarity to 

theirs. 
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8.3. The effect of ditch blocking 

8.3.1. The effect of ditch blocking on carbon cycling 

 This study investigated the effects of ditch blocking on water chemistry, extracellular 

enzyme activities, CH4 flux, and the vegetation colonisation of bog pools, all on the same 

hillslope.  The results can be drawn together to provide a broad overview on the impacts of 

peatland rewetting.  Firstly, our results suggested that mean water tables adjacent to blocked 

ditches had risen by 1.5 cm in dammed ditches, and 2.0 cm in reprofiled ditches (chapter 7).  

These slight responses are similar to other observations on UK blanket bog (e.g. Holden et 

al., 2011, Wilson et al., 2011b).  Raising the water table is the primary objective of rewetting; 

if this objective is not reached, then widespread changes in biogeochemical dynamics can not 

be expected to occur.  As such, the rewetting work in the Afon Ddu catchment can be 

considered to be a success, regardless of what other results show. It is also important to note 

that reprofiling appeared to raise the water table more successful than damming.  No post-

blocking changes were found in the activities of hydrolase enzymes or phenol oxidase 

(chapter 4).  One explanation for this is that enzyme activities remained high as a legacy of 

previous conditions (Fenner & Freeman, 2011), but our data suggests that the relationship 

between phenol oxidase, phenolics and hydrolase enzymes is more complex than previously 

thought.  These enzymes have been implicated in fluvial and gaseous peatland carbon cycling 

(Freeman et al., 2001a, 2001b,), a hypothesis that our results support; we found an inverse 

correlation between β-glucosidase and DOC concentration, suggesting that DOC is a 

substrate for this hydrolase enzyme (chapter 5).  Extracellular enzymes can also be used as 

indicators of microbial growth and activity (Frankenberger & Dick, 1983).  Considering the 

lack of treatment effect in enzyme activity, it is perhaps not surprising that there was no 

sustained change in DOC concentrations or DOC quality following ditch blocking (chapter 

5).  This is in agreement with Armstrong et al., (2010) who found no change in DOC 

concentration after ditch blocking, whilst others have noted only small changes (i.e. < 2 mg 

L
-1

) (Gibson et al., 2009, Turner et al., 2013).  However, there is evidence for a peak in pore 

water DOC concentration occurring five months after blocking, and this is followed a month 

later by a peak in DOC concentration in the stream draining the experimental catchment (as 

compared to a stream draining a nearby unrestored catchment).  This transient peak is 

reflective of a short-term pulse of DOC, potentially due to the effect of ecosystem 

disturbance (e.g. Glaztel et al., 2003).  POC concentrations were not statistically different 

between open and blocked ditches due to large variations in concentration, but they were 

lower on average in open ditches.  High POC concentrations were observed more frequently 
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in blocked ditches.  Despite this, an enhanced concentration does not necessarily entail higher 

POC exports as it is possible that dams disrupt water flow down ditches and cause POC to 

settle out.  Without water flux data it is impossible to elucidate this.   

 Ditch blocking was observed to increase CH4 emissions at the catchment scale, and 

this increase was larger in reprofiled ditches compared to dammed ditches (chapter 7).   This 

again potentially highlights the importance of ecosystem disturbance upon biogeochemistry; 

one hypothesis is that in-ditch peat compaction during reprofiling creates favourable 

anaerobic conditions for methanogenesis.  Fluxes associated with blocked ditches were 

relatively stable, as opposed to fluxes associated with open ditches that displayed sudden flux 

changes and spikes over time.  This suggests that water tables were stabilised after blocking.  

Bog pools that formed behind dams released large amounts of CH4.  These pools were 

colonised predominantly by Sphagnum (which preferred deeper pools) and Eriophorum 

(which preferred shallower pools) species (chapter 6).  The balance of these two species and 

the physical characteristics of each pool will determine the strength of pool fluxes.  For 

instance, CH4 fluxes from within-ditch Sphagnum were low, and frequently negative, 

indicating CH4 consumption; fluxes from Eriophorum after ditch blocking are large (Cooper 

et al., 2013); fluxes of methane will be larger from smaller, shallower pools (McEnroe et al., 

2009).  It is important to consider that this may not always be the case, however; Eriophorum 

has sometimes been associated with low CH4 fluxes and Sphagnum has been associated with 

high CH4 fluxes (Roura-Carol & Freeman, 1999, Dinsmore et al., 2009, Wilson et al., 2013).  

Such contrasting results demonstrate that it is important to directly measure greenhouse gas 

fluxes, rather than assuming that a certain vegetation composition is the preferred option to 

creat a carbon sink.   

Upscaling CH4 fluxes to the upper Afon Ddu catchment suggested that both ditch 

blocking techniques lead to increases in catchment-scale CH4 flux, quantified as an 

enhancement of 23% for damming and 46% for reprofiling (chapter 7).  Ditch blocking 

elsewhere on the Migneint has been observed to increase CH4 fluxes by 300%, but that 

involved a recovery of the water table by a mean of 7 cm (Cooper et al., 2013).  Other studies 

have noted increases higher than 500 % (Komulainen et al., 1998, Urbanová et al., 2011).  

One reason for the comparatively low increase in the Afon Ddu catchment is that the 

measurements were conducted at the top of a slope, and therefore the bog was, relatively 

speaking, dry.  Additionally, the figures are subject to much uncertainty, and this is partly 

driven by the omission of borrow pits from the sampling design.  Borrow pits are shallow, 

flooded depressions that are created when peat is removed to build dams.  Due to their 
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inundated environment they are likely to emit large amounts of CH4, and as they are 

numerous this will be a major contribution to catchment scale fluxes.  For the calculations 

here borrow pit fluxes were assumed to be a mean of fluxes from reprofiled pools and 

ditches, but, in reality, actual fluxes may be larger or smaller than this figure.  In retrospect, it 

was an experimental oversight not to include the borrow pits, as fluxes could easily have been 

measured periodically using the floating chambers.  Additionally, there were some 

contradictory results from bog adjacent to ditches, with some collars located next to open 

ditches displaying large fluxes and some displaying small fluxes.  It is highly probable that 

much of this variation was due to localised vegetation differences, and an analysis of 

vegetation composition might have clarified this.   

 Finally, it is important to emphasize the fact that these results demonstrate only the 

short term effects (< 2 years) of ditch blocking.  Any biogeochemical changes that have been 

initiated could take many more years before they become measurable.  On such a short time 

scale it can be difficult to disentangle any treatment effects due to confounding seasonal 

variation.  As the water table has been successfully raised, it would be expected that this will 

eventually affect the microbial communities, which will bring about associated changes to 

gaseous and fluvial carbon release.  Likewise, the response of vegetation composition to 

rewetting may take several years, and the trajectory that this takes will be a major controller 

on greenhouse gas fluxes.  Over time it might be expected that the pools created on the 

blocked ditch would fill in, and such a change would further alter the net flux of gasous 

carbon from the bog.  Clearly, long term monitoring of ditch blocking projects is needed to 

provide information on the trajectories that rewetting may take.      

   

8.3.2. Implications for ditch blocking projects 

 This experiment addressed one of four research needs listed by Lindsay (2010) in an 

extensive RSPB report on peat bogs: “there is a clear need for more CH4-flux studies on UK 

bog systems generally…there is a particular need to investigate the CH4 flux associated with 

drain blocking”.  Worrall et al. (2011) stress that carrying out restoration is the preferred 

ecological and conservational option for drained peatlands, and therefore recommend 

attempting to identify ways to mitigate increased CH4 fluxes.  This project offers some 

information to find a solution to this problem in three ways: 1) it compared fluxes of CH4 

from two different ditch blocking techniques and found that they differed in their effects; 2) it 

compared fluxes from open pools of water as well as blocked ditches, and from areas of the 

bog adjacent to blocked ditches; and 3) it surveyed a number of bog pools to observe how 
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pool characteristics influence the colonisation of plant species which are directly implicated 

in mediating CH4 fluxes to the atmosphere.  The effects of blocking on CH4 fluxes from bog 

adjacent to ditches were found to be relatively uniform regardless of technique used, and so 

the net difference in CH4 emission from a restored site depending on the type of restoration 

method used (assuming all are equally effective at raising the water table) will be the balance 

of fluxes from pools, from pool and pool margin vegetation, and from the terrestrial peat 

within the blocked ditches.  Put simply: all ditch blocking is not equal.  Although there is a 

lack of research from blanket bogs, restoration is generally seen to decrease CO2 fluxes 

(Waddington et al, 2010, Komulainen et al, 1999, Tuittila et al, 1999), a finding that our 

results tentatively support.  Therefore, from a greenhouse gas viewpoint and considering the 

CH4 fluxes we measured, rewetting using damming without reprofiling will result in a more 

favourable outcome in the short term.  There is a lack of information detailing the long-term 

vegetation trajectory after restoration, and the direction of this is important.  Of concern is 

whether the increases in Eriophorum cover that is frequently observed (Lavoie et al., 2005, 

Cooper et al., 2013) is transient, or whether it is sustained.  In a restored Finnish bog the 

cover of Eriophorum continued to increase over ten years following rewetting (Haapalehto et 

al., 2011).  If this is generally the case, then the combined effects of a raised water table and 

increased aerenchymatous plant cover will have implications for the greenhouse gas balance 

in the long term.  It may be that direct intervention will be required to steer the species 

composition towards something more desirable from a greenhouse gas perspective.  For 

example, Sphagnum diaspores have been manually introduced to cutover peatlands in North 

America with considerable success (Rochefort et al., 2003), and similar management is being 

trialled on degraded blanket bog in the Peak District, UK (Carroll et al., 2009). 

 Of course, the subject of gaseous carbon cycling gets more complicated when the 

post-restoration change in global warming potential (GWP) is examined.  Although CH4 only 

has an atmospheric lifetime of 12 years, compared to up to 172 years for CO2, it is the more 

‘potent’ of the two and over one hundred years it has a global warming potential twenty-five 

times that of CO2 (Forster et al, 2007).  As such, it is possible for an ecosystem to be a net 

sink of carbon, but a net source of greenhouse gases, and therefore have a positive radiative 

forcing effect on the atmosphere (Friborg et al., 2003).  Furthermore, it is possible for the 

greenhouse gas balance of peatlands to change temporally: a site may be a sink one year, a 

source the next, and neutral the year after (Herbst et al., 2013).  Research at present suggests 

that peatland restoration can lead to the creation of a greenhouse gas sink, but that this is not 

always the case (Höper et al., 2008), and it will take longer for some sites to stabilise towards 
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their full potential carbon benefit (Artz et al., 2012).  If a favourable greenhouse gas balance 

(i.e. a sink, or a reduced source) can be reached than there is the possibility for ditch blocking 

to proceed as a mechanism to generate carbon credits, with peatlands potentially featuring 

prominently in future carbon markets (Dunn & Freeman, 2011).  Furthermore, there is the 

opportunity that peatland restoration projects will be able to procure finance through the use 

of such markets (Bonn et al., 2009).  Indeed, such an approach can be considered to be a 

simple example of carbon sequestration by geoengineering techniques (Freeman et al., 2012).  

Additionally, peatland drainage, restoration and rewetting is now being explicitly addressed 

by the Intergovernmental Panel on Climate Change, as part of a supplement to the 2006 IPCC 

Guidelines for National Greenhouse Gas Inventories Volume 4 (IPCC, 2013), and there is the 

opportunity for data from the Migneint to feed directly into this report.              

 The lack of a long-term response in DOC concentrations to ditch blocking will have 

widespread implications, as numerous restoration projects are proceeding with the 

involvement of water companies (Yorkshire Water, Dŵr Cymru Welsh Water, South West 

Water) in the hope that it offers a way to reduce DOC concentrations and therefore water 

treatment costs.  Indeed, it is not uncommon for stakeholders to refer to DOC as a pollutant, 

rather than the natural component of the carbon cycle that it actually is.  Whilst 

acknowledging that climate and management have a part to play, it has been hypothesised 

that the primary driver of the aforementioned widespread increases in DOC concentrations in 

surface waters is a recovery from acid deposition (Evans et al., 2012).  It is this increase in 

DOC concentrations that prompted the initialisation of many ditch blocking projects in the 

hope that they could halt or reverse the observed trend.  However, if acidification is the 

primary driver, than these DOC increases are indicative of ecosystems returning towards 

natural levels, rather than destabilising due to climate or some other driver.  If this is the case, 

then it seems almost futile to spend large sums of money on ecosystem rewetting in the hope 

of improving water quality, at least in the short term.  However, drainage of blanket bogs has 

been observed to increase DOC leaching, and so it could still be that ditch blocking will 

reverse these effects in the longer term.  Figure 3 displays the outcomes on the carbon 

balance following ditch blocking. 
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Figure 3.  Conceptual diagram showing the main changes in carbon cycling following ditch blocking.  Arrows 

indicate direction of flux.  Changes in arrow size represents a relative change in flux.  Ditch blocking creates a 

CO2 sink and increases the CH4 source, due to large fluxes from within blocked ditches and pools.  DOC 

concentrations remain unchanged, but flowpaths change, with more DOC in OLF after blocking.  POC 

concentrations remain unchanged.  

 

8.3.3. Ditch blocking and biodiversity 

Although ditch blocking was not effective at lowering DOC concentrations during the 

study period, it is important to consider that it did not raise concentrations, at least in the 

short term. Given the level of disturbance to the blanket bog associated with vehicle access, 

ditch reprofiling and the digging of borrow pits, this might be considered surprising, and 

could be viewed as a positive outcome of the study.  This therefore enables restoration 

activities to proceed with other goals in mind.  One such goal is the conservation of rare 

species and the maintenance of biodiversity.  Although not always considered to be of high 

zoological importance, some endemic species are restricted to peatlands and their biodiversity 

is high (Warner & Asada, 2006, Renou-Wilson et al., 2011).  A limited number of ditch 

blocking studies have considered zoology with positive conclusions.  Carroll et al. (2011) 

found that the wetter conditions following ditch blocking provided a more favourable 

environment for crane flies, and suggested that, as crane fly are a key food source for birds, 

restoration would therefore prove advantageous for both avian conservation and economies 

(i.e. grouse shooting).  Ramchunder et al. (2012) concluded that drainage reduced the 

taxonomic richness of macroinvertebrates in streams, but that ditch blocking could reverse 

this.  They hypothesised that drainage-induced increases in sediment had a deleterious effect 
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on stream ecosystems.  Research in Ireland suggested that invertebrate taxon richness, 

abundance, community composition and structure were identical for pristine and restored 

sites.  This was on a ditch-blocked site, fifteen years after restoration, where only small-scale 

peat harvesting had taken place (Hannigan et al., 2011).  It is important to consider that ditch 

blocking and the associated creation of bog pools will enhance the habitat heterogeneity of a 

peatland, with positive implications for biodiversity (Renou-Wilson et al., 2011).  

 

8.3.4. Ditch blocking and flooding 

 Another point of interest concerning the drainage and rewetting of peatlands is that of 

catchment hydrology, and the associated impact on river flows and flooding.  There is a large 

volume of somewhat conflicting evidence on the impact of ditches on flooding, which 

Holden et al. (2004) summarise.  They suggest that changes in river flows are dependent on 

the physical properties of both the peat (i.e. how Sphagnum-rich the peat is, its hydraulic 

conductivity) and the drainage network (i.e. ditch depth, ditch spacing, density of ditches), 

and that therefore drainage can increase downstream flooding in some instances.  As such, 

ditch blocking is frequently cited as having the capacity to reduce downstream flooding.  This 

is the case for ditch blocking on the Migneint (BBC, 2011), although the experimental design 

was never designed to test this hypothesis.  This can partly be assumed to be an attempt to 

increase local support for restoration projects as the Afon Conwy that drains the Migneint is 

prone to flooding (Oliver et al., 2008), and there was considerable local objection to the 

rewetting work when it was first mooted (BBC, 2007).  During 2012 there was a perception 

within Ysbyty Ifan (a village 7 km down the Afon Conwy from the Migneint) that ditch 

blocking had lowered high flows on the river (National Trust, personal communication), but 

this could easily be explained as a placebo effect; i.e. local media and the National Trust had 

claimed that flooding would be reduced, and therefore locals only notice signs that fit within 

this hypothesis.  At present there is a lack of robust evidence testing the response of river 

flows to ditch blocking.  The only relevant study so far is that of Wilson et al. (2011b), who 

recorded a decline in the magnitude and occurrence of peak flows within ditches and small 

upland streams on a Welsh blanket bog after rewetting.  

       

8.3.5. Ditch blocking and aesthetics 

It can be argued that ditch blocking has an aesthetic benefit.  Although much of the 

UK upland environment is the result of anthropogenic activity (e.g. livestock grazing, heather 

burning) (Holden et al., 2007), this is often overlooked, and moorlands are appreciated for 
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their scenery and perceived wildness (Davies, 2006).  Ditches are a more intrusive sign of 

anthropogenic activity, and it follows that the blocking of them results in a more aesthetically 

pleasing environment (Bonn et al., 2009).  In support of this hypothesis, results from our 

study site showed that vegetation rapidly colonised pools behind dams, and modelling has 

suggested that rewetting can lead to positive increases in plant species biodiversity (Bonn et 

al., 2009).  As more plant species colonise the ditches and dams, their lines will become less 

obvious and the former ditches will become less visually obvious.           

 

8.3.6. Practical applications 

 Considering the results of this thesis, direct practical advice for rewetting can be 

described.  The primary aim of ditch blocking is to raise the water table, and so a reprofiling 

method is preferred over a damming method, although this will lead to larger CH4 fluxes 

compared to a damming approach.  The creation of bog pools as a side effect of ditch 

blocking should be welcomed in part, as it will enhance the habitat heterogeneity and 

biodiversity of the bog.  Pool characteristics should not affect DOC concentrations, but will 

control CH4 and CO2 fluxes.  It may be possible to mediate these fluxes through the creation 

of deeper pools which are sometimes associated with lower fluxes. 

 Monitoring of water chemistry (DOC, pH, EC, sulphate) should take place at both a 

small scale (i.e. individual ditches) and a catchment scale (i.e. stream draining a bog), as any 

changes in biogeochemistry may not be seen at both scales.  Water chemistry should be 

monitored as frequently as is feasible, ideally at monthly intervals.  If direct DOC 

measurement is not possible then we recommend the use of a phenolic or UV-vis proxy, and 

this should provide accurate results even with a small number (< 25) of DOC calibration 

measurements.  Measurement of CH4 and CO2 fluxes should also take place on a monthly 

basis.  As static chamber sampling is time consuming the dominant vegetation types and 

microforms should be targeted where changes will be largest (i.e. blocked ditches, bog 

pools).  Enzyme analyses (or other, more direct measurements of microbial activity) should 

be welcomed but, due to the complex interpretations of such results, are not essential.   

 Finally, we again stress the need for pre-treatment baseline data, and for unblocked 

controls alongside the rewetted treatment.  Such an approach is the only sure way to eliminate 

differences between control and treatments sites that results from geographically distinct 

sites. 
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8.3.7. Summary  

After examining all the evidence, it seems that the benefits of ditch blocking are more 

numerous than the negative effects (summarised in table 3).  However, from an ecosystem 

services perspective, it should be noted that these variables are not perceived to be of equal 

value.  For example, a group of stakeholders for the Migneint concluded during a 

consultation exercise that biodiversity is the most important ecosystem service, followed by 

carbon storage, freshwater provision, and landscape (Bonn et al., 2009).  There is a danger in 

taking this approach, in that each interested party will prefer restoration tailored towards 

maximising benefits from different ecosystem services depending on their knowledge and 

area of expertise, i.e. the tourist industry may favour a ‘naturalised’/rewilded landscape as it 

attracts visitors and thus generates their revenue; water companies will favour restoration 

techniques believed to lower DOC concentrations and fluxes, etc.  Although these viewpoints 

may not be mutually exclusive they highlight the need for extensive consultation of 

stakeholders before the detailed plans of restoration projects (i.e. method of ditch blocking, 

how many ditches are blocked) are carried out.            

Table 3.  A summary of the expected changes following ditch blocking. – indicates a negative change, + 

indicates a positive change, ≈ indicates no change, and ? indicates an unknown change.  Note that these are 

negative or positive changes for each ecosystem service, not negative or positive changes in flux/concentration.   

Variable  Change 

CH4 flux – 

CO2 flux + 

GWP + 

DOC ≈ 

POC ≈ 

Biodiversity + 

Flooding ? 

Aesthetics  + 

 

 

8.4. Knowledge gaps and future research 

 Although this study has addressed numerous questions, many more remain 

unanswered.  This section will summarise some of these.   

 1)  What is the relationship between pool depth, area and CH4 flux?  The exact 

balance of fluxes from pools, pool vegetation, and pool margin vegetation needs to be 

quantified.  This would enable ditch blocking projects to aim for a pool assemblage that 
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minimises greenhouse gas fluxes.  As well as this, flux measurements from flooded borrow 

pits are urgently needed as they are likely to be important hotspots of CH4.    

 2)  Although this study gave data on DOC and POC concentrations, data on fluxes are 

still generally lacking.  Considering the large water fluxes and low rates of evapotranspiration 

in the cool, high-rainfall environments in which blanket bogs occur, DOC fluxes are unlikely 

to decrease substantially without an associated decrease in concentration.  On the other hand, 

it is entirely plausible that POC fluxes will decrease as dams disrupt ditch water flow and 

cause sediment to settle out.  It seems likely that the best approach to answer this question 

will be that of BACI (before-after-control-impact); measuring concentrations and fluxes from 

streams draining pristine, ditched, and ditch blocked catchments. 

 3)  What are the differences in transient and long-term responses, particularly for 

water chemistry determinands?  It might be that DOC concentrations eventually start to 

decrease in response to the new hydrological regime stabilising and leading to steady changes 

in vegetation cover, microbial assemblages, and other factors that influence DOC.  To begin 

to address this question, at least two more years of water chemistry data will be collected 

from the study site.   

4)  This study found a lack of water chemistry data for overland flow, and this 

knowledge gap was not restricted to blanket bogs but was universally noted.  DOC in OLF 

may turn out to be dependent on a wide range of factors: the climate, the presence of ditches 

(and of borrow pits), the vegetation species present, the gradient of the site, and numerous 

other variables. 

 5)  What is the effect of ditch blocking on the full carbon budget of a site?  CO2 flux 

measurements are needed to answer this question, and N2O fluxes may be necessary athough 

measurements taken during this study, and those from the literature, suggest that N2O will be 

negligible from blanket bog.  A full budget also requires measurements of dissolved gases 

within ditches and streams, methane ebullition, and transport of dissolved gases and DOC 

through natural peat pipes.  As other research has shown that the radiative forcing of a site 

can vary temporally, consecutive years of monitoring are needed to ensure no erroneous 

conclusions are reached. 

 6)  Considering that flood regulation is frequently cited as a reason to block ditches, 

there is a lack of information concerning stream flows and incidences of flooding after 

restoration.  It could be difficult to gather direct evidence for this, because flooding typically 

occurs far downstream, and peatlands often occupy the headwaters of rivers.  There are 

therefore many other land management and climatic factors in operation that can create high 
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or low flows, making it problematic to elucidate the effect of ditch blocking in a small, 

remote catchment area. 

  

8.5. Final word 

Peatland ditch blocking is still in its relative infancy.  Whilst it is becoming clear that 

it cannot fulfil some of its early promise (i.e. greatly decreased DOC concentrations) other 

lines of inquiry look to be worth pursuing, particularly positive changes in biodiversity and 

carbon sequestration.  Most of the published work to date has reported data on short term 

projects (i.e. only a few years after ditch blocking) and in part this is to be expected, as 

research funding is normally limited.  Any studies on older ditch blocked sites have therefore 

lacked pre-restoration data.  It is essential that new projects attempt to gain funding for longer 

monitoring periods, or that money is made available to maintain existing projects, even if this 

is at the cost of reduced frequency or range of measurements.  The history of UK moorland is 

one of changing management with changing needs, and restoration appears to be the next 

chapter in this story.  Whereas past management has been typified by exploitation, it can be 

hoped that the current wave of restoration activity marks the beginning of a more sustainable 

relationship with our upland environments.         
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