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Abstract 

A comparative Life Cycle Assessment (LCA) was performed on two natural fibre 

thermal insulation products made from hemp and sheep wool and a benchmark 

mineral wool product. The assessment revealed both advantages and some 

disadvantages with the natural fibre materials. A major finding was the 

particularly low or absent impact in terms of global warming potential shown by 

the natural fibre materials. This was caused by the renewable carbon sequestered 

in the material withdrawing carbon dioxide from the atmosphere. With regard to 

the end of the product life, the study showed that only a proportion of the total 

amount of carbon dioxide was released in landfilling and composting scenarios. 

Dynamic vapour sorption analysis was conducted on varied natural fibres in order 

to develop a protocol for studying moisture sorption in natural fibres. Data from 

these studies were subsequently used in calculating the integral heat of wetting in 

hemp fibres. The energy release caused by the quantity of material studied in the 

LCA during predicted relative humidity fluctuations was found unlikely to affect 

the results of the LCA. However, where large quantities of natural fibres are used 

throughout a construction the heat of wetting may produce a notable difference in 

the internal temperature of a building and provide a degree of passive 

environmental control. 
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1 Introduction 

1.1 The Importance of Insulation Materials 

"The scientific evidence is now ovent, helming: climate change is a serious global 

threat, and it demands an urgent global response. " (Stern, 2006) 

Sir Nicholas Stern (2006) assessed a wide range of evidence on the impacts of 

climate change and on the economic costs, and used a number of different 

techniques to assess costs and risks to produce the Stern Review: The Economics 

of Climate Change. From all of these perspectives, the evidence gathered by the 

review leads to a simple conclusion: the benefits of strong and early action far 

outweigh the economic costs of not acting. 

Based on the evidence gathered it was reported that climate change will affect the 

basic elements of life for people around the world - access to water, food 

production, health, and the environment. Hundreds of millions of people could 

suffer hunger, water shortages and coastal flooding as the world warms. Using the 

results from formal economic models, the Stern Review estimates that if we don't 

act, the overall costs and risks of climate change will be equivalent to losing at 

least 5% of global GDP each year, now and forever. If a wider range of risks and 

impacts is taken into account, the estimates of damage could rise to 20% of GDP 

or more. In contrast. the costs of action - reducing greenhouse gas emissions to 
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avoid the worst impacts of climate change - can be limited to around I% of global 

GDP each year (Stern, 2006). 

Although the Stern Review was generally accepted as a strong message that 

economic action against the effects of climate change was needed now. it was far 

from the first of such warnings. At the United Nations Conference on 

Environment and Development (informally referred to as the Earth Summit), held 

in Rio de Janeiro in 1992, most countries joined an international treaty, the United 

Nations Framework Convention on Climate Change (UNFCCC), to begin to 

consider what can be done to reduce global warming and to cope with whatever 

temperature increases arc inevitable. In 1998, a number of nations including the 

UK had approved an addition to the treaty: the Kyoto Protocol (UN, I998), which 

has more powerful and legally binding measures (UNFCCC. online). 

Stemming from the KYOTO protocol The UK Government is committed to 

cutting its C02 emissions by 60% by about 2050 and has a domestic goal of 

reducing COZ emissions by 20% by 2010 (on 1990 levels). In the household 

sector, the UK Government aims to secure carbon savings of 4.2 Mt of carbon per 

annum by 2010 (Energy for Sustainable Development Ltd. 2005). According to 

the former Department for Trade and Industry (DTI, now the Department for 

Business. Enterprise and Regulatory Reform), the domestic housing sector is 

responsible for around 28% of total energy use in the UK. Of this, 86 per cent is 

used for space and water heating (DTI, 2003). 
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The DTI Energy White Paper published in February 2003 identified energy 

efficiency as "the cheapest, cleanest and safest way of meeting the UK's overall 

energy policy objectives" (DEFRA, 2004). If less energy is used, there will be less 

CO2 emissions as a result of burning fossil fuels. Insulation is widely accepted and 

seen as one of the key means of achieving energy efficiency (DTI, 2003). 

On recommendation from Energy for Sustainable Development Ltd, the UK 

government's Department for Environment, Food and Rural Affairs (DEFRA) 

suggested a corresponding step increase in the number of installations of cavity 

wall and loft insulation, including top-ups and of un-insulated loft, over the period 

2005-2008 (Energy for Sustainable Development Ltd, 2005) 

The recent revision to Approved Document Part L: Conservation of Fuel and 

Power of the Building Regulations, which came into effect in April 2006, was 

timed to comply with the European Union's Energy Performance of Buildings 

Directive (EU, 2002) to further improve and raise the energy efficiency standards 

of building fabric elements in existing, new and refurbished buildings (Potter, 

2005). The new regulations are set to increase the average efficiency of new 

dwellings by 20% by increased insulation and will save up to I million tonnes of 

carbon in the UK per year by 2010 (Energy Efficiency Partnership for Homes, 

2005). 
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1.2 The Performance of insulation 

As explained by Marsh (1979), all materials have the ability to transmit heat. A 

body will give up heat to a cooler surrounding by various methods until thermal 

equilibrium is reached. If the body is surrounded by a solid then heat will be 

transferred by conduction a process whereby neighbouring molecules of the 

material pass on temperature variations to one and other by atomic motion. Where 

a body is surrounded by a gas or a liquid this initial transfer by conductance will 

givc risc to convection, occurring where the area of surrounding free moving 

substance that is now "heated", will rise. This movement will produce convection 

currents where the movement of the rising free moving medium will cause 

"unheated" medium to be moved into position adjacent to the hot body where it in 

turn will be "heated". Where a body is in a vacuum the only method of heat loss is 

that of radiation. Thermal radiation is a direct result of the movements of atoms 

and molecules in a material. Since these atoms and molecules are composed of 

charged particles (protons and electrons), their movements result in the emission 

of electromagnetic radiation (photons), which carries energy away from the 

surface. 

The rate at which an insulation material will conduct heat depends on its 

conductivity (k). This is a property of the material and its thickness. Some 

materials have a greater ability to conduct heat than others, an ability usually 

dictated by the structure of the material. The more dense and compact the 

structure the quicker the heat will be conducted. Those materials of a more "open" 

structure have a greater resistance to the passage of heat. Bence the best insulating 
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materials are lightweight, usually of a cellular or fibrous nature. It is worth noting 

however that this generalisation does not apply to materials that insulate by 

reflecting radiant heat such as aluminium foil-faced building paper. However, 

'Buse metallic or metallized reflective membranes must face an air-filled, gas- 

filled, or evacuated space to be effective (Marsh, 1979). 

1.3 Types of material available 

There are many types of insulation but all have the same basic property of 

reducing unwanted heat transfer. As categorised by Al-Biomond (2005) the 

materials used to produce thermal insulation are either: 

Inorganic Materials 

" Fibrous materials such as glass, rock, and slag wool. 

" Cellular materials such as calcium silicate, bonded perlite, vermiculite, 

and ceramic products. 

" Metallic or metallized reflective membranes. 

or Organic Materials 

" Fibrous materials such as cellulose, cotton, wood, pulp, cane, or synthetic 

fibres. 

" Cellular materials such as cork, foamed rubber, polystyrene, polyethylene, 

polyurethane, polyisocyanurate and other polymers. 

Accordingly, insulating materials are produced in different forms as follows: 

28 



" Mineral fibre blankets: batts and rolls (fibreglass and Rock wool). 

9 Loose fill that can be blown-in (fibreglass, rock wool), poured-in, or 

mixed with concrete (cellulose, perlite, vermiculite). 

" Rigid boards (polystyrene, polyurethane, polyisocyanurate, and 

fibreglass). 

" Foamed or sprayed in-place (polyurethane and polyisocyanurate). 

9 Boards or blocks (perlite and vermiculite). 

" Insulated concrete blocks. 

" Insulated concrete form. 

" Reflective materials (aluminum foil, ceramic coatings). 

1.4 Current Market 

The UK thermal insulation market in 2006 was estimated to have reached £ 1075 

million at contractors' prices. Growth of the market accelerated since 2002, due to 

changes in the building regulations and government initiatives that have boosted 

the building thermal insulation market, this has led to a peak increase of II% in 

2003. As such, growth has been a feature of the market in the period between 

2002 and 2005, culminating in an increase of 29% in nominal terms. Continued 

strong growth is expected to be generated in the building thermal insulation 

sector, reflecting anticipated growth in the construction sector, the further 

tightening of thermal insulation standards in the building regulations and the 

extension of the government's EEC programme. Demand for thermal insulation is 

thus anticipated to grow over the next five years with the value of the market 
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being forecast to increase by a further 23% by 2011 (Market and Business 

Development, 2007). 

1.5 Energy balance 

Thermal insulation is used as a passive measure in the reduction of heat energy 

loss, thus it requires no further energy inputs to perform its task once installed. 

The amount of energy saved by using insulation materials as opposed to not 

insulating a building, should in general far outweigh the amount of energy used in 

the materials production. For example, mineral wool is produced by melting a 

mixture of sedimentary stones at very high temperatures (over 1000°C) in a 

furnace, then spinning the molten material into an open wool like structure 

(described in more detail later in 2.6.4.1). Over 50 years of use a very efficiently 

produced mineral wool product (in this example Rockwool Loft Roll) is able to 

save over 100 times more primary energy than was used for its production, 

transport and disposal (Rockwool, 2006b). For this reason, thermal insulation has 

been identified as playing a vital role in the reduction of energy usage in the 

construction sector (DTI, 2003). 

1.6 Purpose of study 

Non-food crops are renewable industrial feedstocks and in many cases their 

production can require lower levels of energy inputs, consumption of fossil and 

other resources and generate fewer overall environmental impacts that alternative 

materials. However, natural fibre insulation materials cannot simply be presumed 
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to have 'superior' environmental credentials, these aspects need to be examined 

objectively and on a case-by-case basis. 

Life Cycle Assessments (LCAs) have been conducted on insulation materials and 

positive results have been used in product promotion by manufacturers. In some 

cases, LCA results have also been used to discredit other manufactures or 

materials. One such example of this is an LCA commissioned by Rockwool to 

compare Rockwool stone wool insulation material with flax and paper fibre 

alternatives. The report concluded that the example of flax-based insulation 

material in the study had a poor environmental rating. This finding was used 

subsequently in a lawsuit by the insulation industry association of Germany 

against the EU Commission for endorsing the German government's decision to 

subsidise flax based insulation (Rockwool, 2004). It is clear from this example 

that LCA data and its interpretation can have an important role to play in 

evaluating the environmental 'pros and cons' of insulation products. 

The National Non-Food Crop Centre (NNFCC) believes that appropriate use of 

non-food crops can provide a route to delivering environmental and sustainability 

benefits and support for the UK Government's objectives for sustainable 

development. However, there is currently a lack of reliable data regarding the 

environmental impacts of natural fibre based insulation materials relevant to the 

UK. This study was produced in conjunction with a report commissioned by the 

NNFCC, with the aim of supplying just such data. The NNFCC study was funded 

by DEFRA. 
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1.7 The study 

The overall purpose of this study was to develop a scientific and transparent 

evidence base through the use of Life Cycle Assessments, to ascertain the 

environmental impact of non-food crop insulation materials, in comparison to 

conventional market leading materials that have been promoted as having a low 

environmental impact. Due to the large current differential in production scale 

between the Natural fibre and conventional materials, a further study regarding 

potential near future scale up was also conducted. 

Though this study was considered to be robust and transparent, the assumption 

that the natural fibre and conventional materials would perform identically over a 

60 year period was questioned when considering the water sorption characteristics 

of the fibres in question. heat released due to moisture adsorption and heat 

absorbed during moisture desorption for example, could have a significant impact 

over the lifetime of an insulation product, but this has not been considered before. 

As such, an in depth study into the effect of certain water sorption characteristics 

was performed including a study of the "heat of wetting" and its potential effect 

on the initial LCA. As this particular study and its relevant literature review is 

very different to the initial LCA work it is presented in a separate section (part 2). 

An outline of the study is presented below: 

Part I 

Chapter 2 is a literature review covering the history and current "state of the art" 

concerning modern LCA practise. This section also introduces the studied 

materials. 

32 



Chapter 3 outlines the goal and scope of the study, describes the comparative 

functional unit to be studied. The data collection process and inventory for the 

studied products is also presented prior to the initial study results. 

Chapter 4 includes a sensitivity analysis of the data supplied by the conventional 

material manufacturers, a marginal analysis of the natural fibre materials in order 

to ascertain areas of excessive environmental impact. Stemming from this, a study 

of potential near future optimisations is then presented. 

Part 2 

Chapter 5 is a literature review covering the moisture sorption and heat of wetting 

of natural fibres concentrating on plant fibres. 

Chapter 6 introduces the use of a dynamic vapour sorption (DVS) analyser 

through experiments on sorption characteristic of l) various plant fibres, and 2) 

the effect of delignification. 

Chapter 7 presents a methodology of calculating the (integral) heat of wetting 

using the DVS analyser and a calculation of the possible effect of this 

phenomenon in a plant fibre insulation product. 

Concluding Chapter 

Chapter 8 draws together the conclusions and recommendations of the preceding 

chapters to present a concise summary of the study and issues raised by it. 

33 



Part 1 

The Life Cycle Assessment of 

Natural fibre Insulation Materials 
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2 Literature review of Life Cycle 

Assessment 

2.1.1 Introduction 

Life Cycle Assessment (LCA) has been defined by the International Standards 

Organisation (ISO) as follows: 

"LCA is a technique for assessing the environmental aspects and potential 
impacts associated with a product by compiling an inventory of relevant inputs 

and outputs of a system; evaluating the potential impacts associated with those 

inputs and outputs; interpreting the results of the inventory and impact phases in 

relation to the objectives of the study " (BSI, 1997) 

In this definition the term product refers to both products and services and the 

term system refers to an industrial system i. e. raw material extraction, processing. 

manufacture, use and disposal. This ISO definition of LCA will be used in this 

rcport. 

The technical framework for life cycle assessment consists of four components, 

each having a very important role in the assessment. They are interrelated 

throughout the entire assessment and in accordance to the current terminology of 

the ISO. The components are (1) goal and scope definition, (2) inventory 

analysis. (3) impact assessment and (4) interpretation. 
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In order to understand how these components evolved and how they interact a 

brief history of the modern LCA is presented below, followed by an abbreviated 

methodology for the production of an (ISO 14040 style) LCA. These have been 

presented here to aid understanding of the main LCA study that follows, 

especially with regard to the tenons used and style of presentation. 

2.1.2 History of LCA 

Harold Smith presented what was possibly the first We Cycle Assessment style 

publication at the World Energy Conference in 1963. In this he presented his 

"cumulative energy concept" as part of a study of energy requirements for the 

production of chemical intermediates and products. This concept of finding a way 

to cumulatively account for energy use (and thus predict future resource supplies) 

stemmed from the growing concerns over limited energy and raw material 

resources around this time (Curran. 2006). 

Similarly, due to an increase in scientific knowledge regarding human impact on 

the natural environment, the 1960's also saw growing concern over the 

environmental impact of certain materials. In 1969 research was commissioned by 

the Coca-Cola Company (later published in 1974) which compared the release 

rate to the environment of varied beverage containers (Hunt et al, 1974). By 

sequentially studying which container had the lowest release rate and hence also 

the least requirement for the supply of natural resources, a methodology was 

developed which laid the foundation for the current methods of life cycle 
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ini entory analysis (Curran, 2006). Inventory in this case meaning a detailed list of 

the inputs and specific outputs involved with each material. 

After this initial work the process of quantifying the resource use and 

environmental release of products became known as, Resource and 

Environmental Profile Analysis (REPA) in America. With the onset of oil 

shortages in America approximately 15 of these REPAs were performed between 

1970 and 1975 giving rise to a standard inventory methodology. As environmental 

concerns shifted to hazardous waste issues so too did the focus of these studies, 

with around two studies being produced each year and the methodology 

continuing to adapt and become more robust towards the 1980s. 

Though some REPAs were conducted in Europe (for example by Dr Ian Boustead 

in the UK). the establishment of an Environmental Directorate (DG X 1) by the 

European Commission saw European LCA practitioners develop parallel systems 

to those being used in America. These methods where often referred to as an 

"Ecobalancc" in Europe. When solid waste became an issue in 1988 these LCAs 

were again used to analyze the problems by producing relevant inventories. 

A large step towards the modem LCA came in the early 1990s with a 

methodology developed by the Society of Environmental Toxicology and 

Chemistry (SETAC) which added an environmental impact assessment phase onto 

the relatively established inventory stage (Curran, 2006). Thus for the first time 

the reader of such reports was presented with a scale of magnitude regarding the 

environmental impact resulting from the listed outputs in the inventory type 
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studies. In some cases this would include the grouping together of similar outputs 

from the inventory phase. For example carbon dioxide and methane emissions 

could be grouped together to be expressed as a single impact from a system i. e. 

Global Warming Potential (GWP) expressed as grams of carbon dioxide 

equivalent. 

In 1991 however, the popularity of LCA style studies was tarnished when the use 

of LCA studies for the use in product promotion was denounced by eleven states 

in America after concerns over cases of inappropriate use. This denouncement 

was initiated in recognition that there was no consensus as to how this type of 

environmental comparison could be advertised "non-deceptively". This action, 

along with pressure from other environmental organisations to standardise the 

LCA methodology, led to the development of the International Standards 

Organisation (ISO) 14000 series during the period of 1997 to 2002 (Curran, 

2006). This set of standards which include the recommendation of an unbiased 

peer reviewing process is widely accepted as the frame work for the modern LCA. 

Also during this time the Society for the Promotion of LCA Development 

(SPOLD) was founded in 1992, to develop and promote a commonly acceptable 

LCA practise. This included a standard format of data that was compatible with 

varied LCA software and is still widely used today (SPOLD, 1993). 

2.1.3 The Modern LCA 

The life cycle assessment standards defined by ISO 14040-43 are at the following: 
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ISO 14040 General Principles and Framework 

Provides the basic description and framework for LCA upon which the remaining 

LCA standards are based. This standard also defines the "comparative assertion" 

requirements, including critical review (BS!, 1997). 

ISO 14041 Goal and scope definition and inventory analysis. 

Establishes at the outset the goals, purpose, audience, scope, and stakeholders that 

will be impacted or influenced by the results. This information influences the 

actual conduct of the LCA study. The inventory analysis portion is where the 

resources and emissions related to the product system are quantified (BSI, 1998). 

ISO 14042 Life cycle impact assessment. 

The phase of life cycle assessment aimed at understanding and evaluating the 

magnitude and significance of the potential environmental impacts of a product 

system (BSI, 2000a). 

ISO 14043 Life cycle interpretation 

The interpretation phase of an LCA is where the significance and relative 

contributions of the results are broken down and analyzed (BSI, 2000b). 

The use of the ISO 14040 series by many LCA practitioners is largely responsible 

for the current acceptance of LCA which is now becoming recognised within the 

scientific community, governments and organisations as an established and useful 

environmental assessment tool (1larris, 2004). 
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2.2 LCA Methodology 

An important concept regarding the ISO LCA methodology is that the production 

of an LCA should not be thought of as purely a sequential methodology, as all the 

phases are interactive (BSI, 1997). This can be seen in Figure 1 where the first 

three of the previously introduced phases, i. e. goal and scope, inventory, impact 

assessment are dependant on each other through the phase of interpretation. To 

achieve this, each phase of the methodological framework is required to interlink 

with the other phases during the study. By doing this the study can adapt in order 

to accommodate unexpected findings during the study that would have resulted in 

a less meaningful study. 

Figure 1 The Components of an LCA adapted from BSI (1997) 

As a reference point for the reader, what now follows is a summary of the LCA 

methodology produced by the ISO LCA standard series 14040-14043. 
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2.2.1 Phase 1: Goal and Scope Definition 

The Goal and Scope Definition of an LCA, sometimes referred to as the initiation 

phase, should specify the purpose of the study and then present a detailed plan of 

how the LCA study will be conducted (BSI, 1998). 

Goal 

The definition of the goal aims to clearly state the LCA study objective and the 

reasons behind this objective. The LCA initiator (commissioning body), the LCA 

practitioner and the intended audience are also described (BSI, 1998). 

Scope 

The purpose of the scope component is to produce a conceptual model of the 

inputs, processes, boundaries and outputs of the studied system. This model 

should display the simplifications and assumptions taken by the practitioner and 

disclose the structure of the subsequent LCA phases (BSI, 1998). As such the 

scope commonly contains four subcomponents; function, system boundaries, data 

quality requirements and critical review considerations: 

" The function component requires the function of the system studied, the 

functional unit and a reference flow of the LCA to be defined. These 

definitions must relate to the objectives presented in the goal definition. 

The function is the role of the studied product system, for example coppice 

wood fuel consumption. The functional unit is a quantification of the 

function for the purpose of the LCA study e. g. production of 20 AM of 
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energy. The reference flow refers to a quantified amount of the product 

that is required to produce the functional unit. However, when making a 

comparative LCA study it is imperative that the function, functional unit 

and reference flow of each product or service system is equivalent to 

generate unbiased results. So our example reference flow could be the 

production of 1 kg of chopped poplar wood or 1.1 kg of chopped willow. 

where the quantities required are slightly different due to willow having a 

slightly lower calorific value (Energy Research Centre of the Netherlands, 

2007). 

" The system boundaries define the "unit" processes to be included in the 

studied system. Ideally, the flow of each element would be modelled but 

this is rarely considered due to the complexity of most products studied. 

As such, decisions must be made regarding which of the unit processes 

shall be modelled and to what level of detail. This "cut off" should be 

performed at a point where further studies would not notably change the 

overall concussions of the study, i. e. where a further process or level of 

detail is deemed insignificant by the practitioner. As part of the system 

boundary exercise decisions are also made regarding which releases to the 

environment shall be evaluated and the level of detail in this evaluation, 

e. g. which environmental impact categories to use in the study. All 

decisions in this stage (i. e. to omit life cycle stages, processes or 

input/outputs) should be clearly stated and justified. It should also be 

considered in a comparative LCA that the system boundaries must be 

equivalent (BSI. 1998). 
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" The data quality section should provide information and assumptions 

about the data that is collected. Such data may be collected from the 

production sites associated with the unit processes (primary data) or may 

be obtained or calculated from published sources (secondary data). In 

practice all data categories may include a mixture of measured, calculated 

or estimated data (BSI, 1998). 

"A critical review is often required to increase transparency and credibility 

before a study can be made public, but is an optional component of the 

study. If an LCA study is critically reviewed, there must be a statement 

about the type of critical review e. g. external or internal, the expertise of 

the reviewers, reasons for the review etc. (BSI, 1997). 

2.2.2 Phase 2- Inventory Analysis 

This second phase of the LCA is concerned with the data collection and 

calculation procedures. After completing phase I of the LCA (the goal and 

scoping section) an initial plan for conducting the LCA study will be formulated 

and it is from this the initial plan that the life cycle inventory analysis (LCI) can 

be formed. The inventory stage comprises of three stages, data collection 

procedure definition, data collection, and inventory results calculation (BSI. 

1998). 
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2.2.2.1 Data Collection Preparation 

In order to collect consistent and meaningful data the collection process should be 

thoroughly planned, especially as the data collection may often span several 

reporting locations and published references. As such, the first step is to identify 

the system processes for which input and output data must be collected, this will 

generally include: extraction and processing of raw materials, manufacture of 

product, transportation of materials and products to markets, use by consumers, 

product disposal. 

In order to identify these processes the production of a flow diagram representing 

each system process and sub-process (within the pre-defined system boundaries) 

is advised. From this process description the correct data enquiries can be 

planned, for example in the production of a questionnaire or a spreadsheet outline. 

During consideration of how these "blanks" can be filled, the most appropriate 

method for data collection can be decided. Though the collection of primary data 

(e. g. by physical measurement of site specific energy and material flows) should 

be a priority over the use of existing datasets (e. g. industrial averages), these 

secondary data should also be considered but only if they are directly relevant to 

the study. 

2.2.2.2 Data Collection 

The procedures for data collection can vary with each unit process in the different 

systems modelled by an LCA study. As such the data collection stage relies on a 

through knowledge about each unit process (as provided by the preparation stage). 

The descriptions produced are especially important to avoid double counting or 
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gaps in the data. It is also important that each mass, energy or monetary flow is 

recorded in (or in a format where it can be converted to) comparable units. 

Where the unit process has multiple inputs and outputs (e. g. the use or production 

of by-products) data relevant for later allocation procedures is required, such as 

the weight or monetary value depending on whether a mass or economic 

allocation is to be used. This may include data from outside the initial study 

boundaries. It is recommended that both are collected because the feed back 

process may later show one method to be un-suitable, for example following the 

sensitivity analysis conducted later in the study (where different scenarios are 

used to test how robust the final model is). 

2.2.23 Inventory Results Calculation 

Several steps are generally included in the data calculation stage, these include: 

the validation of data, relating data to the unit process and functional unit, data 

aggregation and also the refining of system boundaries if necessary. 

" Data should be validated by ensuring flows into the system equal the flows 

out of the system (e. g. the mass of the product equals the sum of the 

components less any waste or by-products) and also by comparing the data 

used with similar data from other sources. This iterative data validation 

provides the LCA practitioner with the opportunity to improve or 

substitute poor quality data. 

The calculation stage should result in all system input and output data 

being referenced to the functional unit and can be accomplished by 
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normalizing the flows of all unit processes in the system to the functional 

unit. Using the previous example of 20 AU of energy from coppice wood 

fuel consumption would require all data to be relevant to the production of 

1 kg of chopped poplar wood. 

" During data calculation the system boundaries can be adjusted to include 

processes that have been found to have a significant impact on the LCA 

results or exclude insignificant processes. This interactive process is 

important to ensure the LCA is comprehensive without unnecessary data 

handling (BSI, 1998). 

A large amount of data is normally collected and data aggregation prevents it 

from being unmanageable. The majority of modern LCA practitioners use LCA 

software packages to aggregate sub processes in to manageable figures and also to 

make inventory calculations for large datasets. 

2.2.3 Phase 3- Life Cycle Impact Assessment (LCIA) 

The purpose of the LCIA phase is to examine the product system from an 

environmental perspective and provide information for further interpretation. This 

is achieved by sorting the calculated data into impact categories and category 

indicators connected with the previous LCI results. In terms of the ISO 14030 

standard method there are both mandatory and optional elements (BSI, 2000a) as 

shown in Figure 2 below. These mandatory elements are required to make the 

study a life cycle assessment rather than a presentation of LCI results, they 

include: impact category definition, classification and characterisation. 
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3rd party copyright material excluded from digitised thesis. 

Please refer to the original text to see this material. 

Figure 2 Elements of the LCIA phase from BSI, 2000a 

2.2.3.1 Impact Category Definition 

Though there are no compulsory impact categories within ISO 14042, LCA 

practitioners have formulated baseline categories, which are used in the majority 

of reputable LCA studies. These baseline impact categories include: abiotic 

resource depletion, biotic resource depletion, global warming potential (GWP), 

stratospheric ozone layer depletion, acidification, human toxicity, ecotoxicity, 

photochemical ozone creation, eutrophication and solid waste generation (Cb1L, 

2001). LCA studies may need to include other categories that are specific to the 

study objective and the selection of utilised impact categories needs to be 

justified. 
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2.2.3.2 Assignment of LCI results (Classification) 

The aim of the classification element is to assign the calculated LCI results to 

impact categories in order to highlight the environmental issues associated with 

the results. The relationship between the inventory result and its assigned impact 

category is described by a category indicator, for example: methane is linked to 

global warming by infrared radiative forcing (BSI, 2000a). It is also possible that 

inventory results can be assigned to more than one category e. g. SO2 is allocated 

in both acidification and human health. 

2.2.3.3 Characterisation 

The characterisation component involves the quantification of impact categories. 

Inventory results assigned to particular categories are aggregated to produce a 

single value for each category. This value is known as the indicator result. The 

characterisation element is required to take account of the relative importance of 

each inventory result for a specific impact category. To do this the inventory 

result needs to be converted by characterisation factor. The selection of the 

characterisation factor must be specified within the LCA study. 

The calculations for the example of methane in terms of global warming potential 

are complicated by its effective lifetime in the atmosphere of 12 years. Thus, the 

global warming potential the 1 kg of methane has a potential of 72 kg CO2 

equivalent over 20 years and but 25 kg CO2 equivalent over 100 years (IPPC 

Working Group 1.2007). As such the correct characterisation factor must be used 

depending on the impact category. 
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In order to introduce some of the terms commonly used in the LCIA phase, below 

in Table I is a presentation of these terms (with corresponding examples 

regarding the impact category of climate change) for clarification. '= 

Intergovernmental Panel on Climate Change. 

Table I Examples of terms in the LCIA phase from ISO 14042 (BSI, 2000a) 
Tom Exempt* 

Impact category Climate change 

LC i i5sub Greenhouse gases 
:: harwwaaean model IPCC " model 

;. ateg sy indicator Infrared radam forcing (WTh') 

rwacýenzab tamm Global *arming potential for each greenhouse gas 
Ikq CO rvalentskg gas) 

ks of result kq of COrequnalenti 

Category srdpoUs Coral reels forest. crops 

Env. or rvir" reference Degrss of knkags between category indicator and category 
endpoint 

2.2.3.4 Optional LCIA Elements 

The optional elements of the LCIA phase include normalisation, grouping, 

weighting and data quality assessments. They are generally used to convey 

relevant results in a way that can be understood by the intended audience. LCA 

practitioners have designed LCIA models to perform this, for example the Eco- 

Indicator 99 and CNIL baseline (essentially selected groups of impact categories 

with linked normalisation and weighting data) which used in conjunction with 

LCA software. 

These optional techniques can increase the manageability. relevance and 

significance of the indicator results. However, they are all based upon value 
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judgement rather than scientific knowledge and expertise, and thus introduce 

subjectivity to LCIA. 

Normalisation calculates the magnitude of the indicator results relative to 

reference information. Reference information may include the total global 

population, specific emissions or resource usage over a specific period of time, 

also the amount per capita or even comparison with an alternative product 

system. 

There are two types of LCIA grouping. The first involves sorting impact 

categories with similar characteristics and grouping them together. For example, 

the Eco-Indicator 99 methodology uses damage factors to group impact categories 

into the three endpoints; human health, ecosystem quality and resources. The 

second type of grouping involves qualitatively ranking the impact categories to 

show their relative importance. 

In the weighting process, indicator results are multiplied by numerical values, 

which have been subjectively chosen to depict their relative importance. When 

conducting a comparative LCA however, weighting should not be used since each 

impact will have a different relative importance for each different product system. 

Data quality analysis can be used to provide a better understanding of the 

reliability of the data collected and also of the indicator results, for example to 

help distinguish any significant differences (BSI, 2000a). 
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2.2.4 Phase 4 -Interpretation 
The aim of this final LCA phase is firstly to evaluate the completeness, accuracy 

and robustness of the results. This is conducted in reference to methodological 

choices and assumptions that where first made in the Goal Definition and Scope 

phase. Once this is completed the second aim is to identify the significant results 

generated in the preceding LCA phases and thus to present the final LCA study 

conclusions and recommendations (BSI, 2000b). 

The evaluation of the LCA data and processes in this interpretation phase requires 

the following analyses: 

" Completeness check - this is a qualitative procedure to ensure that all 

relevant information and data needed for the interpretation are available 

and complete. 

" Sensitivity check - assesses the reliability of the final results and 

conclusions by determining whether they are affected by uncertainties in 

the data, calculations etc. 

" Consistency check - determines whether assumptions, methodology and 

data are consistent with the original goal and scope 

The completion of these checks may give rise to possible reworking of original 

data sets, calculations or presentations. This interactivity and final satisfaction of 

these checks will ultimately allow the final conclusions (and recommendations) to 

be drawn and presented to the intended audience (BSI, 2000b). 
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2.3 LCA software 

Though it is possible to use commonly available spreadsheet programs such as 

Microsoft's Excel to handle the data required to produce an LCA, Various LCA 

specific software packages are available for purchase, such as those listed below: 

" GaBi 4 (http: //www. gabi-software. com/) produced by PE 

INTERNATIONAL and LBP-GaBi (University of Stuttgart) 

9 SimaPro 7 (http: //www. pre. nl/simapro/) produced by PRe Consultants 

" TEAM (http: //www. ecobalance. com/uk_team. php) produced by Ecobilan 

" GENUS (http: //wuw. oeko. de/service/gemis/en/index. htm) produced by 

Öko-Institut (Institute for applied ecology) 

They are all similar in the respect that they are tools for handling large databases 

containing environmental data, such as emissions data for given products. With 

the more powerful and more expensive programs (such as GaBi and SimaPro) it is 

possible to present the calculated impacts of a number of different products in one 

graph or table with a given selection of impact categories. In general the programs 

are supplied with substantial databases of pre-analysed materials and processes 

that can be added together to model the product being studied. These databases 

are generally made up of publicly available or purchased data that has been 

produced by other LCA practitioners and as such data on specialist materials that 

are not on these databases are generally sold on separately in a format that can be 

read by most LCA software, such as the Boustead Model (Boustead, 2007). 
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2.4 Non-ISO standard LCAs 

Besides the ISO 14040 standard there are many other types of "LCA" available to 

the construction sector, from guidelines regarding a simple calculation of the 

embodied energy or "carbon footprint", for example to satisfy the Carbon Trust 

funding application critcria (Carbon Trust, 2006) to the calculation of a specific 

range of environmental impacts such as the general The Institute of 

Environmental Sciences of Leiden University (CIM) baseline (Ch1L, 2001), the 

Council for European Producers of Materials for Construction (CEPMMC) used by 

Schmit et al. (2003). Other LCA systems may include different weightings to the 

impact categories in order to present a comparable single score, such as the 

Building Research Establishment and their Environmental Assessment Method, 

BREEAri (BRE. 2007). 

The BREEAA! method is based on a full LCA of a given product producing an 

environmental profile in the form of selected environmental impacts. These 

impacts are then combined using an agreed weighting process that is reviewed by 

members of a governing committee, to provide a single score that is used to 

compare the product to those in the same category. A list of all scores is then used 

to distribute the products "green rating" based on a certain percentage of all 

products tested being given a particular rating (Tune, personal communication). 

53 



2.5 LCAs of construction materials 

Asif ct al. (2007) considers the LCA of a3 bedroom house in Scotland, 

concentrating on the distribution of embodied energy and GWP by material used. 

They report that in the home studied 61 % of the buildings' total embodied energy 

comes from concrete alone this is followed by ceramic tiles (15%) and timber 

(14%). This is broken down to a kg to kg basis and the embodied energy and 

environmental impacts of varied materials are reported in Table 2. It is worthy of 

note that a similar but more extensive table of materials and their effects on 

resources is presented in Berge (2000) that concentrates on material and energy 

resources. 

3rd party copyright material excluded from digitised thesis. 

Please refer to the original text to see this material. 

It is unfortunate that they do not discuss the impact of insulation in this report. But 

the figures stated do give a good idea as to the varied impacts from general 
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construction materials and puts into context the results of other findings. It is not 

known whether the CO: sequestered by the timber is included in the 

environmental impacts presented in Table 2. 

Peuportier (2001) compares the LCA of three single family houses in the French 

context. Though the report only displays the results from the modelled life cycle 

of the houses as a whole and not a break down of the contributions by material it 

is concluded that the house with the greatest quantity of insulation (of varied 

materials) has the lowest general impact in most impact categories, such as 

energy. toxicity and GWPI00 (the global warming potential after a 100 year 

period). As pan of a sensitivity analysis they modelled a variation in the 

conductivity of the wall insulation used in one of the houses, and found that a 

25% variation of the conductivity, i. e. from 0.04 to 0.05 W/(m K), led to a 2.4% 

increase of the heating load and a 2.3% increase of the overall CO2 emissions over 

the 80 year period considered. 

2.6 The product systems studied 

An introduction and description of the natural fibre and benchmark products 

studied are provided below along with indicative product system diagrams. 

2.6.1 Isonat 

The Isonat insulation material is originally a French product based on non-woven 

textile technology which was produced using waste cotton from the nearby 
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apparel industry for Saint Goban. A very similar product was then sold directly 

from the manufacturer, Buitcx (in Cours le Ville, near Lyon) to the French 

construction market. The product studied in this project is a variation of this but is 

still produced by Buitex. It incorporates UK grown and processed hemp fibre in 

an even blend alongside the French recycled cotton fibre. The use of the cotton 

fibre in this case was to keep the final cost down rather than any technical benefit. 

The final blend of materials is 35% hemp fibre, 35% recycled cotton fibre 15% bi- 

component polyester fibre and 15% fire retardant (by weight). 

The materials' importation into the UK is managed by Gary Newman of Plant 

Fibre Technologies and is sold by select building outlets such as NBT (Natural 

Building Technologies) and EnergyWays. The current annual sales value of Isonat 

is around £500k (Newman, personal communication). 

2.6.1.1 Hemp Farming 

Hemp is a highly productive industrial crop and yields of up to 12 tonne/ha have 

been reported in the UK though in reality 6 tonne/ha appears to be a reliable 

average (Duckett. personal communication). Hemp is fairly tolerant to pests and 

diseases and is self-weeding so requires relatively low agricultural inputs 

compared to other fibre crops. Dual variety crops of hemp can produce seeds for 

oils and food as well as fibre and chive. However these varieties are not generally 

used where fibre production is important due to the low yield and reduced quality 

of the fibre. As hemp grows. as with all plants it absorbs CO2 from the 

atmosphere. This carbon remains locked in the fibres throughout their use and so 

like many renewable materials it can display a negative CO2 balance. 
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The hemp for the product is grown in the south east of England for primary 

processing at Ilemcore, Near Bishop's Stortford, Hertfordshire. Most of the crops 

are currently grown within 100km of the factory, generally in East Anglia. 

Though the specifics of cultivation can vary from farm to farm due to the different 

soil requirements and machinery available, the basic processes remain the same: 

Land, dc-cultivated of the previous crop, is first sprayed with herbicide. The crop 

is then sown and the required fertilizer applied. After the crop has grown it is then 

cut and spread out in order to allow the crop to ret. The crop is then raked in and 

baled and stored on farm until it is required for delivery to the processing plant 

(Duckett. personal communication). A flow chart to represent this farming stage is 

shown in Figure 3. 
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2.6.1.2 PrinwrN Processing 

The primary processing carried out by Hemcore removes the chive (spongy core 

of the plant %tem), dust and any other major impurities from the harvested hemp 

straw and produces a baled fibre for transportation to France. The main unit of the 

processing plant is a scutcher, which loosens the fibre from the %hive working on 

the principle that the %hive will break and fall away from the fibre as it is worked 

between reciprocating plates that "crimp" the %tem. The Shive fraction is sold 

once bagged and palkted. The dust produced from the process is currently taken 
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away for free and mixed with chicken manure and used as a fertilizer. In future it 

is likely be compacted into briquettes and sold as a fuel source. 

The total energy used in the factory is 810k\Vh at an average throughput of 1.5 

tonnclh of hemp straw, at an average of 16% m. c.. This varies from 0.4 -2 

tonne/h dependent on crop quality. A more streamlined unit is currently being 

planned which would require twice the energy but would process around 7 

tonnc, /hh of hemp straw (Duckett. personal communication). Figure 4 shows a flow 

chart to represent the primary hemp processing that produces the hemp fibre used 

in the Isonat insulation manufacture. 
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2.6.1.3 Insulation Manufacture 

At Buitcx in France the fibre is blended with the recycled cotton fibre, a bi- 

component polyester fibre and a fire retardant then air laid and bonded to produce 

the IM>nat Pnxiuct The hemp and the recycled cotton fibre is initially dipped in a 
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solution that contains ammonium phosphate based fire retardant and then dried in 

a gas fired oven. The fibres are then blended with the bi-component polyester 

fibre, then go through the process of air laying, thermal bonding and then 

trimming and packaging before being transported back to the UK by road and 

ferry. (Buisson, personal communication). A flow chart of the insulation 

production stage in France is shown in Figure 5. 
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2.6.2 Thermafleece 

Thenmafleece is a sheep wool based natural fibre insulation product produced by 

Second Nature UK Ltd. Second Nature was incorporated as a limited company by 

its Directors, Christine Armstrong and David Baldry in 2000. Thermafleece was 

developed as a renewable and sustainable insulation product to offer consumers 

an alternative to the mainstream and officially launched in early 2001. Popularity 

in the product has also increased through television programs such as Grand 

Designs where it has been showcased on various feature properties after being 

specified by individuals or architects due to its perceived environmental and 

health credentials. Thermafleece is sold through a network of merchants and 

distributors throughout the UK. The company has rapidly grown over the last six 

years with turnover now reaching £1 million. 

Second Nature UK buys time for Thermafleece's manufacture on a production 

facility owned by The John Cotton Group based in Mirfield, Bradford 

(Armstrong. personal communication). The John Cotton Group primarily 

produces non-woven bedding textiles such as pillows and mattress protectors. 

The John Cotton Group company was initially founded in 1918 and is still owned 

by the Cotton family with a turnover of circa £80 million. Since 1980 its home 

textiles sales have grown from £Im to circa £45m today. 

2.6.2.1 Farming 

Upland sheep are in general grown for their meat rather than for their wool. As 

pan of good animal husbandry however, upland sheep are sheared to maintain the 
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health of the animal. As soon as wool is sheared on-farm, it is insured by the 

BWAMB (The British Wool Marketing Board) against any damage or loss. Having 

been transported to one of the 17 wool depots across the UK, in this case 

Bradford, the wool passes through a series of steps before entering the 

manufacturing process. Wool is packed into standard sized bales. It then later 

packed into bales suitable for local and international transportation. The bales 

weigh in the region of 340 kg, and are made up into sale lots of approx 8 tonnes 

(24 bales) of raw or "greasy" wool, as it is known. The wool used in the 

production of is classed as a "waste" product of sheep rearing and husbandry and 

its production is not included within the system boundary of the study. The 

reasoning for this is explained further in the data collection section of the study 

(Paragraph 3.3.3.1). 

2.6.2.2 Scouring and rinsing 

The fleece is sent to one of two scouring plants in bales from collection depots 

after auction in Bradford. The fleece is ether sent to Haworth Scouring Plant in 

Bradford (Figure 6) or Thomas Chadwick and Sons in Dewsbury. It is often 

contaminated with natural substances that must be removed before further 

processing can be carried out. 
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Figure A Picture of H... orth Scouring Plant in Bradford 

WuxºI scouring in%oI cs blending the wool, de-dusting then washing in aeries of 

4 hot detergent bowl. Ahich is followed by a cries of 4 rinsing tanks to remove 

lanolin, dirt and sweat from the greasy wool. The "greasy wool" contains 70% of 

wool worth and about I% of lanolin with the remainder being of no economic 

interest (Whitaker. perx)nal communication). The values of these products are not 

disclosed here out of rc%prtt to supplier confidentiality. As part of the scouring 

process the fleeces arc dipped in a solution containing disodium octaborate 

tctrahydratc borax to protect the wool from tire and insects (Armstrong, personal 

communication). It i% then dried tu atxwt 20% moisture content. 

The wastc atcr from the xounng and rinsing process passes to Yorkshire Water 

for effluent treatment (Sagar. prr onal communication). The cleaned wool can be 

transferred pncumatkally by overhead conveyor% straight to the blending bins. 

Typically the hin% hulls 1S lk+nnt% kit ' cured wool before packing commences, 
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(Hakorth Scouring Cumpan 
. 

1999). For packing, there are presses which are 

equipped with weight-box deg ices to give consistent bale weights to he sent to the 

insulation material manufacturer the John Cotton Group. Figure 7 shows a flow 

chart to represent the priman wool processing that produces the clean raw wool 

used in the insulation manufacture. 
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2.6.2.3 Manufacturing 

The manufacture of Thermafleece involves a blending, air-laying and thermal 

bonding processing. Thermafleece is produced by metering a blend of wool and 

binding fibre (a bi-component polyester), which is then formed into a three 

dimensional web to a specific density as specified by Second Nature. This web is 

then held together through carding, and by use of "through air" bonding which 

forces the binder to cross link with the wool fibres. Any process or trimmed waste 

is reused on Thenmafleece products. The cut and trimmed batts are then packed in 

polypropylene bags bearing the product name, grade, number of batts and the 

ßßA identification mark. A flow chart of the insulation production stage is shown 

in Figure 8. 
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2.6.3 End of life scenarios of natural fibre insulation products 

The end ot hi , cnarw, , Iýn to h. )(h , 11 the natural fibre imulatioýn products 

studied are shown in Figure 9. These scenarios are discussed in more detail in 

Section 3.51 End of life xcnarno%) on page 119. 
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2.6.4 Rockwool 

Rockwool has been chosen as a benchmark product for the study as it is 

considered to be a market leading product in both popularity and low 

environmental impact. 

Rockwool Ltd has 22 factories, 19 of these are in Europe. The one UK 

manufacturing site is at Bridgend in south Wales, producing stone wool. 

Rockwool is the UK's leading manufacturer of mineral wool insulation for 

thermal, fire and acoustic protection. In 1999 Rockwool had a turnover of £52hi 

and employed 460 staff (AMUD 2001 market report). 

The data and descriptions of the Rockwool product studied here have been taken 

from a report by Schmidt et al (2003) which are based on a "stone wool HT"' 

product produced in Denmark. It has been assumed here that the Danish product is 

the same or similar to the Rockw"ool products produced in the UK. This being the 

case it has been modelled as if it has been produced in the UK and thus only a 

transportation factor from the Rockwool UK factory is included in this study. The 

data has not been altered to include the UK emissions from electricity due to the 

aggregated nature of the data presented in the report. 

The Rockwool bats is a medium density insulation product of 32 kg/m' and has a 

thermal conductivity of 0.037 W/mK. The Rockwool Product is 77% virgin raw 

material mainly in the form of diabase (igneous rock), Gotland stone (sandstone), 

limestone, cement and bauxite The remaining 23% are classed as waste materials. 

Rockwool also consists of a small amount of a synthetic thermosetting binder 
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(8%) to stabilise the fibres and make them water repellent. 0.3% of mineral oil is 

also added to seal the surface against dust production (Schmidt et al, 2003). 

2.6.4.1 Production 

The production process of mineral wool is very similar to that of glass fibre 

insulation, with only a difference in raw material and furnace type (cupola furnace 

as opposed to a melting furnace). Rockwool is made by melting the quarried 

diabase rock and recycled slag briquettes with the other raw materials in a coke 

heated cupola furnace at 1500 °C, then drawing out the minutely thin fibres by 

means of a spinning unit. The molten mineral matter cools rapidly as it is spun 

into the fibrous product. The binder and oil are added during this process and it is 

subsequently reheated to around 200 °C to cure the binder and stabilise the 

material before it is trimmed and cut to the required size ready to be packed as 

presented below in Figure 10. 
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2.7 Previous LCAs of related insulation materials 

2.7.1 Introduction 

There is currently a limited amount of publicly available reports on the LCA of 

insulation materials. Most of those available are not presented in their entirety and 

are generally used to present the environmental credentials of a material in a 

favourable way for advertisement purposes. Many of these LCA reports have been 

compiled, generally by varied LCA consultants, in order to produce data for a 

"green rating" such as the Building Research Establishment Environmental 

Assessment Method (BREEAM) and their Green Guide to Specification (BRE, 

2007). 

2.7.2 Flax and hemp fibre based insulation materials 
In a recent overview of flax and hemp as a raw material for thermal insulation by 

Kymalainen and Sjoberg (2007), which covers ninety nine references, only two of 

these were relevant to LCAs. The two mentioned are that of Behring and Murphy 

(1997) and Schmidt et al. (2004a). From extensive further searches no other 

references appear to be available in this area. What is reported by Kymalainen and 

Sjoberg (2007) are the basic conclusions from these two LCAs. The first by 

Behring and Murphy (1997) reports that there is a lower usage of energy and CO2 

emission for a flax based insulation product compared to a glass wool product. 

The second by Schmidt et al. (2004a) report a larger usage of energy and CO2 

emission for a flax based insulation product against a stone wool product - 

73 



produced by Rockwool. It is noted however that the Behring and Murphy (1997) 

figures are quoted are on a per m3 basis whereas the Schmidt et al. (2004a) figures 

are reported in a per kg basis and thus not directly comparable against each other. 

The references of Behring and Murphy (1997) and Schmidt et al. (2004a) are 

discussed separately in more detail below. 

2.7.2.1 Behring and Murphy 

Behring and Murphy (1997) set out to answer the question "Are flax based 

insulation products environmentally friendly? " and their general conclusion is that 

they are in comparison to a glass wool type insulation material. To do this they 

have followed the guidelines as presented by The Society for Environmental 

Toxicology and Chemistry (SETAC, 1992) "and related publications" in order to 

produce a comparative LCA. Their calculations for this were based on one hectare 

of land producing 1750 kg of "short" flax fibre along with 4480 kg of shive and 

770 kg of seed. It was calculated that the fibre would produce 58.33 m2 of 

insulation material using a "new short fibre technology". It is presumed that the 

insulation material is of 30 kg/m2 density as it is difficult to ascertain whether any 

other binder or fire retardant was used in the product. 

It was then calculated what emissions and energy would be saved by not using the 

same (58.33 m2) quantity of a glass wool of an unspecified density or weight. The 

glass wool production data is referenced as originating from "Ceuterick (1993)" 

but unfortunately the reference is absent from the final reference list and it was 

not possible to track down either of the authors Behring H. or Murphy D. P. L. As 
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such it was not possible to gain further data regarding its production, structure and 

performance. 

The overall comparison includes the energy gain from the chive and seed fractions 

(16 and 25 MJ/kg respectively) and CO, abatement effect (74.4 g/MJ). However, 

from the results stated it is possible to calculate the energy consumption and 

emissions of the two insulation materials. This is shown in Table 3 below. 

Table 3 The embodied energy and emissions of flax and glass wool insulation materials from 
Behring and Murphy (1997) showing two potential densities of the glass wool product. 

Energy/Emission Unit 

Flax Per kg 

(assuming 30 kg/m3) 

Glass wool per kg 

(assuming 30 kg/m3) 

Glass wool per kg 

(assuming 20 kg/m3) 

primary energy N[J 20.00 38.87 58.3 

CO, g 1776.13 2515.54 3773.32 

CH4 g 2.18 4.80 7.21 

N2O g 0.66 0.08 0.12 

CO2 Eq g 2013.74 2659.17 3988.76 

SO2 g 1.39 1.83 2.75 

NH3 g 0.77 2.71 4.06 

SO2 Eq g 5.60 8.27 12.40 

Formaldehyde g 0.04 0.30 0.45 

The original data was displayed as the comparison between 58.33 m3 of each 

insulation material. As the weight of flax fibre to provide this volume of 

insulation is given (1750 kg) and no other inputs such as binder materials are 

mentioned the approximate density of 30 kg/m` has been assumed in Table 3 

above and later in the summary table, Table 4. 
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It is not possible to approximate the density of the glass wool product and 

therefore two potential densities of the glass wool material are presented in Table 

3 in order to highlight the effect of comparing materials of different densities. 

Comparing the two assumed 30 kg/m3 density figures of flax and glass shown in 

Table 3 will give proportionally the same results the same as presented in the 

original. 

It is not clearly stated whether the carbon sequestered by the flax fibre (or its 

related portions) has been taken into account as part of the original abatement 

effect calculations, or if this abatement comes from a reduction in energy usage 

arising from the scenario stated of using the flax insulation instead of the glass 

material. It is possible to calculate that per MJ of embodied energy the presented 

materials differ in their CO2 production. As the flax material is shown to produce 

a higher quantity of CO2 per MJ than the glass material (89 and 65 g of CO2/MJ 

respectively) it can be assumed that CO2 sequestration has not been taken into 

account in this study. 

Further information is unfortunately not available regarding the flax insulation 

and its composition and production as the references used are a personal 

communication with Vlaemynck C. and two German language references by 

"KTBL" (1996) and also Patyk and Reinhardt (1997). 

2.7.2.2 Schmidt et al. 

The other LCA report referred to in the flax and hemp literature review by 

Kymalainen and Sjoberg (2007) is that of Schmidt et al. (2004a), which is the 
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first of a two part summary report (Schmidt et al, 2004b being the second part). 

The information in both of these summary reports is taken from a comprehensive 

previous report (Schmidt et al 2003) which was commissioned by Rockwool Ltd. 

In terms of satisfying the ISO 14040 standard the original report was peer 

reviewed and made publicly available in the journal LCA Documents. 

Schmidt et al. (2003) presented a comparative Life Cycle Assessment of three 

insulation materials, Stone Wool (i. e. Rockwool HT stone wool), a flax based 

material and cellulosic paper wool. The flax based insulation product studied is 

that of Heraflax from Austria, produced from: 75% flax fibre 15% Polyester 

binder, and flame retardant materials: diammonium hydrogen phosphate (9%) and 

borax (1%). The data regarding the production of the product is referenced in the 

text as originating in "Krogh et al. (2000)" but a corresponding full reference is 

not given in the final reference list. The reference of "Krogh et al. (2001)" is 

presented elsewhere in the text suggesting a possible typing error, but it is not 

possible to tell if they are actually the same reference as the latter appears to be a 

non-English text. A general conclusion from Schmidt et al (2003) was that: 

"With respect to potential environmental impacts, stone wool and paper wool are 

seen as the most preferable materials. Stone wool has the smallest consumption of 

primary energy seen over the whole life cycle, whereas paper wool performs best 

with respect to environmental impact categories like global warming, 

acidification, photochemical ozone creation and nutrient enrichment. Flax 

insulation has the largest impacts of the three materials in most of the impact 

categories examined in the study. This is to a large extent because of the binder 

used. " 
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The analysis performed by Schmidt et al. (2003) appears to cover all major 

production aspects from farming to end product which would be expected for a 

natural fibre based insulation product. Where production data was not available 

for the report, reputable "stock" data appears to have been used. For example the 

energy consumption and related emissions of the farming practices were 

calculated from information reported by Weidema (1995). 

As a conclusion the peer review, (conducted by Dennis Postlethwaite and 

presented in Schmidt et al., 2003), reported that over all it was a well conducted 

LCA and complied with the ISO 14040 format. But did raise some issues, for 

example after noting that flax and paper wool products would be expected to have 

a similar profile due to both being derived from renewable agricultural sources he 

stated that: 

"... it is perhaps curious why the total primary energy and electricity consumption 

for flax is considerably greater than that for stone wool, especially since 

production of the latter involves melting rock in a blast furnace prior to spinning 

the fibres " 

There are no notable agricultural or production practices included in the report 

that would appear to be excessive for the production of such a product. As such it 

would appear that this particular flax insulation product (Heraflax) does use more 

primary energy in production (including binder production) than the equivalent 

Rockwool product. 
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It was noted that some processes included in the study were however unlikely to 

occur in the production of other flax based materials as they where considered to 

be unnecessary. For example: 

The processing stage of drying the flax straw by "tumble drying" was included at 

1 kWh per litre of water evaporated taken from Energistyrelsen/F. R. I. (2000). It is 

possible to calculate that approximately 0.5 MJ was required per kg of finished 

product. This was considered to be a significant amount of energy to be included 

for an uncommon practice in flax processing (Newman, personal communication). 

Schmidt et al (2003) also assumed that for every kilo of fibre produced for 

insulation materials, 0.956 kg of flax seeds and 3.08 kg of shives are produced as 

co-products and that these products would thus substitute other products on the 

market with the same function. For flax seeds, it was assumed that they would 

replace the same amount of linseeds. Shives were assumed to replace grass hay. It 

is however uncommon for a fibre crop to be left growing long enough to produce 

seeds as this results in very low quality fibre (Norton et al., 2006) 

Rather importantly with regard to CO2 emission calculations, it is not mentioned 

whether the carbon sequestered by the plants' growth is taken into account in the 

final calculations. 

The results of the Schmidt et al (2003) study are shown alongside those of 

Behring and Murphy (1997) and Ardente et al. (2007) in Table 4 which 

summarises their findings. 
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2.7.3 Kenaf fibre based insulation material 

Ardente et al. (2007) produced a LCA of a Kenaf-fibre insulation board. The 

study also follows an ISO 14040 layout (BSI, 1997-2000b) and includes following 

the life cycle steps: 

Land and crop cultivation, concentrating on the production of Kenaf (Hibiscus 

cannabinus) in Italy but also Morocco and other Mediterranean countries. Data 

regarding the consumptions of fertilisers and diesel was included but water 

consumption was not. 

Transport along all stages. It was assumed that national transports occur by road 

lorry and cargo ships where employed for international transports from 

Mediterranean countries. 

Cleaning, refining and insulation board manufacturing, A typical production 

cycle from an Italian factory was monitored. 

Installation, maintenance and use, Concerning installation and maintenance, 

impacts where neglected. Regarding the use phase, the primary energy saving and 

the avoided CO2 eq. emissions where estimated during the operation time. 

End of life, Concerning to the disposal phase, the option of incineration is 

assumed. The CO2 emissions from the combustion of the kenaf fibres have been 

not taken into account. In fact the combustion of biomass does not increase the 

greenhouse effect, since the amount of CO2 emitted during the combustion is 

assumed to be equivalent to the amount of CO2 which is captured during the 

growth. The electricity produced during incineration was not considered as a 

benefit in the environmental profile of the product. 
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The life-cycle impacts of the kenaf insulation material was compared with the 

performances of other products with a similar function, such as polyurethane, 

glass wool, flax rolls, stone wool, mineral wool and paper wool. Ardente et al. 

(2007) concluded that such a comparison shows that the highest impacts are 

related to synthetic materials, while the better performances are shown by mineral 

wools (this is presented in the summary Table 4 at the end of this section). 

It was also noted that the overall ranking of the Kenaf insulation differed greatly if 

different end of life scenarios are adopted. In particular, the incineration with 

energy recovery and electricity production could decrease the global energy 

requirements of the Functional Unit (1.52kg) to 17 MJ from the original figure 

59.4 MJ. A further reduction could also be obtained with the introduction of 

recycled materials into the manufacture process or with the local production of 

kenaf plants. 

The external data for the comparisons is referred to as originating from The 

Boustead Model Version 4.4 (2001) and GEMIS Version 4.3 (no date), both of 

which are general LCA databases. In most cases it would appear the GEMIS 

database which can be accessed through its own LCA tool, refers to external data 

bases and in this case The Boustead Model was assumed. Though the stone wool, 

paper wool and flax data shares the same density and conductivity and identical 

emissions and energy consumption figures as those studied by Schmidt et al. 

(2003), the Boustead reference pre-dates this. Though the two references of 

Schmidt et al. 2004 a and b, are referred to this is only in the context of the 
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environmental benefits of biomaterials in building products (they are referred to 

as Anders CS et al. (2004 land 2) - Anders being the first name of Schmidt AC). 

Having conversed with the producer of The Boustead Model Version 4.4, Dr Ian 

Boustead, (personal communication) it was apparent that the flax data in 

particular in the model originated from a "possibly German" manufacturer, but the 

details of which are not available as the database is 10 years old and considered 

obsolete and not presented in the current version of the model (version 5). 

However, due to the identical data presented in Ardente et al. (2007) for the flax, 

paper wool and stone wool product data can been assumed to originate from 

Schmidt et al. (2004 a and b) or from exactly the same data from the 

manufacturers. It is however highly unlikely that an identical result would be 

obtained if a database had been constructed from original data due to the likely 

inclusion of different transport and end of life scenarios. As such it is most likely 

that the data originates directly from the Schmidt et al. (2004 a and b) references. 

The relationships of these references are shown in Figure 1. The author for 

correspondence for the reference Ardente et al. (2007), has not replied to an 

enquiry regarding the origin of the data. 
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3rd party copyright material excluded from digitised thesis. 

Please refer to the original text to see this material. 

As a general conclusion Ardente et al. (2007) stated that the use of natural fibres 

involves a significant reduction of the environmental impacts derived from the 

employment of synthetic insulating materials, maintaining high "thermo-physic" 

and "noise-abatement" properties. They also noted that the energy saved during 

the service life of the insulation material outweighed the energy consumption 

related to the board manufacture. 

2.7.4 Other insulation materials 

Papadopoulos and Giama (2007) studied the Environmental performance of an 

unnamed stone wool product and an unnamed extruded polystyrene product. It is 

unclear where the original industrial data comes from for either material, as only 

data from the GEMIS software is stated. However, within the further reading 
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section, reference is made to a "report on the research project" authored and 

entitled similarly to the aforementioned Schmidt et al. (2003) reference though no 

date is given (in this case however Klöpffer W and Hutzinger 0 are referenced as 

the primary authors and are noted as the editors of the Schmidt et al. (2003) 

report). Their results are displayed in Table 4 alongside other results. What is 

notable is the exceptionally low total energy consumption reported by 

Papadopoulos and Giama (2007) for both products when compared with the 

results of other insulation material LCAs. It is noted that the results reported by 

Papadopoulos and Giama (2007) are for a cradle to gate analysis (i. e. an 

accumulation of impacts from the production processes prior to leaving the 

factory gate) and does not include any impacts from installation or end of life 

scenarios. However these impacts are thought to have far less impact than the 

difference shown in Table 4 below. 

2.7.5 Summary of literature results 

Table 4 below is a summary of the reported environmental impacts of various 

insulation materials from the previously discussed references of :1 Behring and 

Murphy (1997), 2 Schmidt et al. (2004b), 3 Ardente et al. (2007) and 4 

Papadopoulos and Giama (2007) 
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Please refer to the original text to see this material. 



The references used in Table 4 above are described here: 

1 Behring and Murphy (1997), cradle to grave results, NB the density and 

conductivity of the Glass wool product are assumed to be the sam as the flax based 

product of the same author. 

2 Schmidt et al. (2004b) cradle to delivery results i. e. assuming 100% is recycled in 

road construction or similar low-grade recycling but also displayed identically in 3 

Ardente et al. (2007) 

3 Ardente et al. (2007) cradle to grave results including: installation, maintenance, use 

and end of life i. e. Kenaf is incinerated but for Glass wool, Mineral wool and PUR 

the disposal is unknown. 

4 Papadopoulos and Giama (2007) Cradle to gate results, i. e. not including delivery, 

installation or end of life scenarios. 
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3 Goal, Inventory Analysis and Impact 

Assessment 

3.1 Introduction 

This chapter covers the first three phases of an LCA study as outlined by ISO 14040. 

As such it covers the Goal and Scope Definition (phase 1), the Inventory Analysis 

(phase 2) and the Life Cycle Impact Assessment (phase 3). In this chapter the life 

cycle assessment of two natural fibre insulation materials: Thermafleece and Isonat, is 

presented and compared with a conventional insulation material made by Rockwool. 

An outline of the study is provided in the descriptions of the goal, scope and 

functions of the product system that follow. 

3.1.1 Goal of the study 

The goal of this study was to conduct a cradle to grave LCA of natural fibre insulation 

materials for construction use. In order to understand the significance of the 

environmental impacts of natural fibre insulation materials, the study included the 

assessment of a market leading insulation material for comparison. In order to avoid 

the production of what could be construed as a bias report, the market leading material 

was chosen for its' low environmental impact. i. e. it is assumed here that the 

benchmark product studied has already been awarded a BREEAM "A" rating which is 

the best rating currently possible i. e. of lowest environmental impact. 
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The Natural Fibre Insulation (NFI) products studied here are still in relatively early 

stages of product development. This being the case a major motivation for the study is 

not simply to compare how the NFI products compare against a low impacting market 

leader now, but to identify the main areas of improvements possible in the near and 

long term. 

3.1.2 Scope of the study 

The scope of this study was a cradle to grave assessment of different insulation 

materials following the principles of ISO 14040 series of international standards for 

LCA. The LCA included each stage of the raw material collection, processing, 

manufacturing, maintenance, demolition and final disposal of the insulation materials 

chosen for the study. 

Studying what has been described as a low environmental impact conventional 

material alongside more novel materials gave perspective to their calculated impacts. 

Further analysis of predicted future developments and improvements to the products. 

For example through production scale up and the replacement of high impacting 

components, would give a wider picture of how these natural fibres could play a part 

in the insulation market. As such the study concentrated on two natural fibre 

insulation materials and one conventional material for the purpose of immediate 

comparison. These products are summarized below in Table 5: 
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Table 5 Summary table of products studied from information supplied from the manufacturers' 
data sheets. 

Non food crops Insulation Materials Benchmark 
Material 

Material Hemp and 
Cotton 

Sheep's wool Mineral wool 

Product name Isonat Thermafleece Rockwool batt 
Production Address Cours la Ville. nr. 

Lyon. France 
Mirfield. England PenCoed. 13ridgend, 

Wales 

Length(mm) 1200 1200 1200 
W idth(mm) 400,600 400,60O 400,600 ) 
Thickness(mm) 
available 

50.75.100 50,75,10O 100,150.17O 

Thermal Conductivity 0.039 W/mK 0.039 W/mK 0.037 W/mK 
U value (W/m2K) 0.16 0.16 0.16 

Density (kg/m3) 35 25 32 
Thickness (mm) 

achieving U value 
0.16W/m2K for loft 

225 

(50+75+I00) 

225 

(50+75+100) 

200 

(100+100) 

Please note that the thicknesses specified in Table 5 have been rounded down to the 

nearest combination of thicknesses available. This is common practice in the 

construction industry as the contribution to the required U value from the plaster 

board and other loft materials are also taken into account. 

Data collection was to be representative of relevant geographical locations for a UK 

usage with current technology. Data was acquired from site specific sources for 

natural fibres and their manufacture into construction insulation, from generic 

databases e. g. for transport, for energy consumption and from published/available 

information. 
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3.1.3 Functions of the product system 

This study compared three ditterent insulation materials in terns of their 

environmental impact, co. ering raw material acquisition, energy used, production, use 

and end di, po%a1. to ulation materials all serve the same purpose - to improve the 

thermal and energy et iciencý of domestic buildings. 

This study focused on the loft part of the building. As a base-line, this project took a 

U-value (i. e. thermal conductance, or how easily heat is transferred across the 

insulation material) of 0.16 %%'/m=K. A. this is the requirement stated hý I' K Building 

Regulation, Document Pan L as shown in Figure Q. 
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Figure 12 Sumn r, oft ýnlues as outlined in Building Regulation Document Part I. 2006 

3.2 The functional unit 
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The functional unit (FU) of the LCA is the quantified performance of a product 

system for use as an essential reference unit for the study. The amount of a given 

product required to perform the insulation function will depend upon the specific 

material characteristics such as thermal conductivity, density, etc. in order to achieve 

the U-value (thermal conductance) of 0.16 W/m2K within the specified application. In 

this case the application is modelled on the insulation of a first floor ceiling of 

plasterboard suspended on timber rafters into an open roof void, shown in Figure 13. 

Joist or ratter Insulation between joists 

Insulation over joists 

1tVV 

10mm plasterboard 

Figure 13 Diagram of insulation installation in a pitched roof between and over ceiling joists 

The functional unit concept also encompasses attributes such as durability, stability, 

maintenance and replacement. The timeframe for the assessment was set at 60 years 

after which it is assumed that the building is demolished or substantially changed, so 

that the insulation material is sent to disposal after this period of service. 

The Functional Unit for the study was for the insulation of one square meter within 

the cold roof space of a given dwelling described as: 

"The manufacture, installation, use and disposal of an insulation material for one 

square meter of the central part of a first floor plasterboardltimber ceiling in a UK 
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domestic house to a U-value of 0.16 W/m2K for a period cif 60 
-vears service (Building 

Regulations Part L)" 

The properties and quantities required to fulfil the FU for each unit of the insulation 

products being examined is presented below in Table 6. 

Table 6 The reference flows for each insulation material required to meet the same functional 

unit of I m2 of loft insulation to achic e 0.16 «'/m2K 
Product name K value 

(W/mK) 
Density kg/m Thickness (mm) to 

achieve U-value 
Functional Unit 
(kg) 

Isonat 0.039 35 225 7.875 

Thermafleece 0.039 25 225 5.625 

Rockwool batt 0.037 32 200 6.4 

3.2.1 Allocation procedures 

Allocation is the partitioning of input or output flows of a unit process to the product 

system under study (ISO 14040). Allocation procedures are needed when dealing with 

systems involving multiple products or by-products. Allocation within this study was 

conducted on a mass allocation basis except where stated. For example, the 

"environmental burden" carried by two by-products is split between them in the same 

proportion as the different masses of the by-products resulting from the given process. 

This was used as opposed to an assumed 50% split between two products or an 

economic allocation procedure where the proportion of burden would be split by the 

same proportion as that presented by the economic value of the products. 
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3.2.2 Impact assessment categories and methodology 

The Institute of Environmental Sciences (CML) is an institute of Leiden University 

(The Netherlands) whose main area of work is research and education in the field of 

environmental sciences. Their Department of Industrial Ecology created the CML 

2002 methodology which shows set baseline of environmental impacts. It is this base 

line that was used for general comparisons between the products studied arising from 

the life cycle impact assessment (LCIA) phase. The CML impact categories were used 

for general comparisons and their abbreviations and units used are as follows: 

ADP = abiotic depletion (kg antimony eq. ) 

GWP 100 = global warming on 100 year time-frame (kg CO2 eq. ) 

ODP = ozone layer depletion (kg CFC-11 eq. ) 

HTP = human toxicity (kg 1,4-dichlorobenzene eq. ) 

FAETP = aquatic toxicity, Freshwater (kg 1,4-dichlorobenzene eq. ) 

TETP = terrestrial ecotoxicity (kg 1,4-dichlorobenzene eq. ) 

POCP = photochemical oxidant creation (kg ethylene eq. ) 

AP = acidification (kg SO2 eq. ) 

EP = eutrophication (kg P04 eq. ) 

The definition of the 10 default impact categories of CML 2000 are defined by 

Guinee, et. al, (2001) as the following: 

Abiotic resource depletion: Non-living resources like minerals, coal or crude 

oil. The debate on the characterisation of depletion categories is not yet 
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settled. In this method, characterisation is based on ultimate reserves and 

extraction rates. The unit of indicator result is kg of antimony equivalent. 

" Global warming: This category refers to the impact of emissions on the 

atmospheric radiation heat adsorption, also known as greenhouse effect. 

Emissions are characterised as the global warming potential for a 100-year 

horizon. The units of indicator result for this method are kg CO2 equivalent. 

" Stratospheric ozone depletion: This refers to the deterioration of the 

stratospheric ozone layer that stops solar UV-B radiation from entering the 

atmosphere. The units of indicator result are kg of CFC-11 equivalent. 

" Human toxicity: This category is related to the harmful effects of substances 

on human health. Emissions are characterised as human toxicity potential in an 

infinite time horizon, in kg 1,4-dichlorobenzene equivalent. 

" Ecotoxicity: Ecotoxicity is divided into two categories depending on the 

environmental sub-compartment: freshwater aquatic ecotoxicity and terrestrial 

ecotoxicity. The ecotoxicity impact categories refer to the potential toxic 

effects of substances in the natural environment. Ecotoxicity potential is 

considered to happen on a global scale and an infinite time horizon. As such 

there is much debate over its importance and interpretation. For example a 

farm dependant product will often have a high apparent impact in these 

categories but this impact will be dispersed over a larger geographical region 

than a single factory outfall. Results are expressed in kg 1,4 dichlorobenzene 

equivalent. 

9 Photochemical oxidation: Also known as photo-oxidant formation. Sunlight 

causes some emissions like VOCs and CO, in the presence of NOx to form 

chemical oxidising compounds such as ozone. Photo-oxidant formation is also 
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known as summer smog. Characterisation results are expressed in kg ethylene 

equivalent. 

" Acidification: This category is related to the acidification of the environment 

by pollutants such as SO2, NOx and NHx. These emissions react with water in 

the atmosphere and form acids that have several effects on the natural and 

man-made environment. Emissions are characterised as the acidification 

potential in kg SO2 equivalent. 

" Eutrophication: When there is an excess of nutrients in the environment, 

shifts on species distribution and excessive production of biomass may 

happen. Due to the use of fertilizers farm based products are often perform 

badly in this category however it is worth noting that all farm practice has to 

adhere to strict regulations and its impact is geographically dispersed. This 

category characterises emissions of nutrients such as N and P into kg P04 

equivalent. 

3.2.3 Normalisation 

Although normalisation is an optional element of LCA, it can show to what extent an 

impact category has a significant contribution to the overall environmental problem. It 

compares the absolute score for impact in each specific category with the profile of an 

average Western European citizen's emission in that category in the giver year (Tho, 

2005). Normalisation was used within the study to provide perspective to the scale of 

environmental impacts reported. 
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3.2.4 Data quality requirements 

Detailed information such as processing data was obtained from respective 

manufacturers of Isonat, Thermafleece, Rockwool and their suppliers where possible. 

The manufacture and disposal of common elements within the ceiling/loft unit have 

been excluded from the assessment (e. g. ceiling joists, plasterboard). As far as 

possible, primary data describing the quantities of materials, co-products, by-products 

and wastes and emissions from current processes for insulation material was obtained 

directly from manufacturers. In the case of the NFIs this was largely as disaggregated 

unit process data obtained in co-operation with the manufacturers and their suppliers. 

In the case of the Rockwool material, these were aggregated cradle-to-gate whole 

system datasets taken from the report by Schmidt et al. (2003). 

3.2.5 Assumptions and Limitations 

Systems were compared using the same functional unit and equivalent methodological 

considerations, such as performance, system boundaries, data quality, allocation 

procedures, and decision rules on evaluating inputs and outputs and impact 

assessment. The following specific assumptions will be used: 

" The meaning of "Loft" in this report is that of a ventilated space with exposed 

ceiling joists and no boarding. 

9 The roof was assumed to be a "cold" roof i. e. one where the insulation is not 

attached to the inside of the sloping roof but laid directly between and over the 

under-story ceiling joists. 
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" The loft ceiling joists assumed were set at 150 x 50 mm, evenly spaced at 

400mm centres -, 140 mm thick roll insulation can be fitted into the space 

between the joists equally and a further 100 mm roll placed cross-hatched on 

top of the joists 

" The study area was lm square, 400 mm in width between joists (different 

thickness may be required for different types of insulation materials) 

" It is assumed that there was no need to clear spaces around, cables, light 

fittings, and beneath the water tanks in the 1 m2 studied. 

" No pins or sheets were needed. 

" No compression of the material was allowed 

" Service life for insulation material was 60 years 

Further assumptions and limitations made regarding the individual products studied 

are discussed in the data collection section later in the report as part of each product's 

discussion. 
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3.3 LCA Inventory Analysis 

The life cycle inventory analysis is a process of quantifying energy and raw material 

requirements, atmospheric emissions, waterborne emissions, solid wastes, and other 

releases for the entire life cycle of the product. 

3.3.1 Data Collection Process 

In general the data collected for the natural fibre based products were, where possible, 

collected through direct contact with the manufacturer in the form of site visits and 

personal communications. The data collected from the conventional insulation 

material manufacturers were based mainly on a previously conducted LCA that had 

been commissioned by the company studied. 

3.3.1.1 Primary data 

Primary data regarding the products studied were in general obtained through 

consultation with manufacturers. An initial questionnaire was sent out to all 

manufacturers concerning insulation production process with data on: proportion and 

origins of main raw materials and co-products, by-products, transport types and 

distance, energy used, manufacturing process; location of production and 

manufacturing and dimensions of the products in available sizes. The data collection 

process is summarised below. 
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41 Thermafleece - Primary data regarding Thermafleece were obtained from 

Christine Amstrong at Second Nature Ltd, Neil Sagar and Tim Whitaker at 

Haworth Scouring Company and Carl Rushton at John Cotton Manufacturing. 

Isonat - Primary data regarding the Isonat product were obtained from; Gary 

Newman at Plant Fibre Technologies, Jean Pierre Buiton at Buitex, and Mike 

Duckett at Hemcore. 

9 Rockwool - Life cycle inventory aggregated data on Rockwool batt from the 

report by Anders Schmidt et al (2003) 

3.3.1.2 Secondary data 

It was not possible within the scope or resources of the study to acquire site-specific 

primary data for all unit processes involved within the system boundary for the 

products. As such, where data gaps existed, generic data and on occasion surrogates 

within a recognised database were used and referenced accordingly. 

The databases or libraries within SimaPro version 6 include BUWAL 250 Library 

(written by Pre Consultans in the Netherlands) which has been used for transport and 

Disposal scenarios, and Ecoinvent data (written by the Swiss Centre for Life Cycle 

Inventories) that has been used for all other processes and materials. They are both 

internationally recognised datasets and represent data based mainly on general EU or 

UK specific pollution. These have been used as it was understood that they were the 

most thorough data available in the respective areas they have been used, thus a good 

substitute for first hand collection of emissions data that could not be collected due to 

the projects time constraints. A separate independent database was used for a potential 
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PLA (Polylactic acid) based binder that written by Gareth Davies of Imperial Collage 

London using SimaPro version 6 and its database libraries. 

It is noted that the use of secondary data can be problematic. It has not been written 

for the particular product studied and will thus have its own system boundaries that 

may extend far beyond what is required. As such, the secondary data concerning 

larger impacting materials or processes was analysed to see what was included and if 

their impacts were relevant to the study. 

3.3.2 Isonat 

A description of the inventory for Isonat is given below: The carbon content of hemp 

fibre is taken as 45.7% on a dry mass basis (Energy research Centre of the 

Netherlands, 2007) 

3.3.2.1 Hemp Farming 

The hemp for the product is grown in the south east of England for primary 

processing at Hemcore, Near Bishop's Stortford, Hertfordshire. 70% of the crops are 

Currently grown within 100 km of the factory, generally in East Anglia, whereas the 

final 30% is grown an average of 190 km away elsewhere across the UK. The farming 

of UK hemp requires the following stages, this methodology has been built up as an 

average process utilized by the majority of the supplying farms. 
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After the previous crop has been harvested the field is de-cultivated with a 4m wide 

deep cultivator. Prior to sowing, the ground is then sprayed with 3 1/ha of Round Up, a 

glyphosate based contact herbicide, from a 24 m wide boom sprayer. The crop is then 

sown using a4m wide combination drill and then rolled with a9m wide roller. The 

crop is then fertilized with NPK fertilizer with a formulation that provides on average 

100 kgN/ha 30 kg/ha P and 30 kg/ha K from a 24 m wide boom sprayer and left to 

grow. The amount of P and K fertilizer varies between farms but in general usage is 

very low, just sufficient to maintain levels in soil. Depending on soil type none may 

be used for at least three years (Duckett, personal communication). At the end of the 

growing season the crop is then harvested using a 6m wide forage harvester and then 

tedded, i. e. spread out to dew ret, with a6m wide tedder. The retted crop is then 

raked up, square baled (both 6m wide) and then stored on farm before being 

transported to the factory by lorry or by tractor and trailer in cases where the farm is 

particularly near the factory. The 550 kg delivered bales require 289 g of polyester 

twine. As an average and reliable figure each farm yields around 6 tonnes dry straw 

per ha (Duckett, personal communication). 

It was found that there were some discrepancies between the best available secondary 

data used and the actual on farm processes. For example many of the Ecoinvent farm 

processes based on Swiss farming methods assume much smaller machinery than that 

used on the comparatively large scale hemp farming in East Anglia. For example the 

de-cultivating process used assumes a 2.5 m wide cultivator rather than a 4m wide 

cultivator. The temptation to reduce the process to 62.5% was not however put into 

place. Even though it could be assumed that the larger scale farming is probably more 

efficient, the use of larger machinery will also add other impacts. Because no 
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satisfactory factor could be devised, the farming processes where left unaltered. It was 

not thought to be worthwhile to look in to this matter further as farming in general had 

a relatively low impact on the overall product LCA. 

3.3.2.2 Primary Processing 

The primary processing carried out by Hemcore removes the shive, dust and any other 

major impurities from the harvested hemp straw and produces a baled fibre for 

transporting to France. This process involves a bale opener followed by a schutcher 

type decorticator and separator, from this the fibre is air cleaned to remove any further 

dust. The clean fibre is then baled using 774 g of wire per 100 kg bale and sold to 

Buitex. It is transported 872 km by road and 40 km by ferry across the English 

Channel, to Buitex in Cours le Ville, France in 25 tonne trucks. 

The Shive fraction is sold once bagged and put on pallets. The dust is currently taken 

away and mixed with chicken manure and used as a fertilizer. In the future it is 

possible that it could be compacted into briquettes and sold as a fuel source. The total 

energy used in the factory is 810 kWh at an average through put of 1.5 tonne/h of 

hemp straw (at an average of 16% moisture content). During the current process there 

is nothing major replaced regularly, only the occasional knife sharpening which is not 

included in this analysis. 

3.3.2.3 Insulation Manufacture 

At Buitex the fibre is blended with the recycled cotton fibre, a bi-component polyester 

fibre and a fire retardant then air laid and bonded to produce the Isonat Product the 

details of which are presented here: 
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The UK hemp fibre is initially dipped in a solution that contains the fire retardant and 

then dried. The fire retardant is an ammonium phosphate based material purchased 

from THOR in Germany. The material is most likely to contain mono and poly 

phosphates but the exact European formulation is not possible to obtain (Nelson, 

personal communication). The fibre is then blended with the recycled cotton fibre and 

the bi-component polyester fibre. The blended fibre then goes through the process of 

air laying, thermal bonding and then trimming and packaging, with the waste 

trimmings re-blended in to the blending process. The cotton fibre is purchased from 

the local textiles industry and transported around 5 km in the form of wire bound 100 

kg bales. The bi-component polyester is currently purchased from Korea, where it is 

shipped approximately 25,000 km to Marseille and transported 400 km to Cours la 

Ville by truck. It is packaged with one wrap of 100 g/m2 of PP per bale. The 0.56 g of 

PP/kg of fibre is shredded and used in other products within the factory. The 5% by 

weight of dust that is removed during the manufacture is compacted into briquettes 

and given away for domestic heating. The final Product is packaged using 3.5 kg/m2 

of finished product of polyethylene plastic wrap and placed on wooden pallets before 

being shipped back to the UK on 25 tonne trucks. 

The initial drying of the fibre after the fire retardant is added and the thermal bonding 

are possibly the most energy intensive parts of the process as together they require 

2.32 kWh/kg of finished product of piped gas, whereas the whole factory uses only 

0.15 kWh/kg of finished product of national grid electricity. There is generally no 

replacement of any parts required. 
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3-1.2.4 Summary of Input data 

A summary of all data tor the matrn41 and proxy es (Table 7) and transport (Table 

8) for the Isonat product is prcxnted bclow . 
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Table 8 Transport data in the Isonat system - functional unit (p) basis 
Process name Value Unit processes/materials involved Value Unit 

Transport - Cotton fibre to Buitex 1 p Truck 28t 0.0175 tkm 

Transport - fire retardant to Buitex 1 p Truck 28t 0.07 tkm 

Transport - hemp fibre to Buitex 1 p Truck 28t 3.052 tkm 

Transport - hemp straw bales to Hemcore 1 p Sea ship 0.14 tkm 

Truck 28t 0.35 tkm 

Transport - Isonat to Coventry 1 p Sea ship 0.35 tkm 

Truck 28t 8.75 tkm 

Transport - PE fibre to Buitex 1 p Truck 28t 1.4 tkm 

Sea ship 32.8 tkm 

Transport - waste wire from Buitex 1 p Truck 28t 1.75 kgkm 

3.3.3 Thermafleece 

The inventory of the Thermafleece product is given below: The carbon content of 

wool is taken as 50% on a mass basis (Roche, 1995). 

3.3.3.1 Farming 

A mass allocation has not been used in the case of the fleece supplied from upland 

sheep farming. This is because the fleece used for insulation is categorised as a waste 

by-product from the main function of sheep farming for meat production and it is of 

extremely low economic value or possibly even of negative "value" due to the costs 

of disposal otherwise (Williams et al, 2006 and Armstrong, personal communication). 

Therefore on an economic allocation basis the sheep wool has been given a zero 

allocation and thus not included in the life cycle assessment for Thermafleece as the 

upstream processes of sheep farming is assumed to be 100% allocated to meat 

production and breeding stock maintenance. 
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3.3.3.2 Scouring 

0.25 kWh of electricity, 0.8 kWh of gas and 5 litres of water per kilo of greasy wool 

were used during the scouring and rinsing process (Whitaker, personal 

communication). Raw wool is washed or scoured in tanks filled with hot water 

containing detergent to remove contaminants. The raw wool is passed through the first 

scouring bowl, then squeezed between rollers and carried into the 2nd bowl. It passes 

through four bowls until eventually it is rinsed in another bank of four bowls 

containing clean water. The Haworth facility can process 3.5 tonnes an hour of 

crossbred wool (Haworth Scouring Company, 1999), the equivalent to scouring the 

wool from 300,000 sheep a week. (Sagar, personal communication). 

3.3.3.3 Bonding 

In order to adhere the bicomponent polyester binder to the wool it is heated. Energy 

used during this thermal bonding stage is an estimated 0.58 kWh of electricity and 

0.94 kWh of gas per kg of Thermafleece (Rushton, personal communication). 

3.3.3.4 Summary of inputed data 

A summary of all data for the materials and processes (Table 9) and transport (Table 

10) for the Thermafleece product is presented below. 
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3.3.4 Rockwool 

It was als, not po sible to conduct a full site data collection for the Raxkwool 

insulation product. As such the data for the Rokkwool product used here was based 

entirely on a pre%lou% LCA conducted by Anders Schmidt of dk-Teknik Energy & 

Environment on behalf of Rtxkwool (Schmidt et u/, 2003). The data was provided in 

the form of an aggregated data . et. However from the txxty of the report the following 

points of interest have been extracted: 
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" The Rockwool Product is 77% virgin raw material in the form of diabase, 

Gotland stone, limestone, cement and bauxite. The remaining 23% are classed 

as waste materials (from various activities): white dust (cement production), 

slag (steel production), aluminium silicate (steel foundry), returned stone wool 

and recycled material from other Rockwool production sites. The proportions 

of these materials in the final product are not known. 

" The production of Grodan (17%) and briquettes for other Danish production 

sites (29%) is subtracted from the total energy used through co-product 

allocation. 

" There was a reported 10% difference (loss) from input to output in the 

inventory. This has been attributed to evaporation of water and loss on ignition 

and "non-specification densities". 

3.3.4.1 Raw material acquisition 

" It was assumed that diabase, Gotland stone and lime stone all required 0.06 

MJ/kg for their extraction. Bauxite extraction was assumed to consume about 

2.56 MJ/kg of primary energy and the cement fraction 3.67 MJ/kg in coal, 

LPG and electricity. 

" Form oil was estimated to use 40 MJ crude oil per kg, though it is only used in 

small amounts of briquette production i. e. 0.026 kg/kg briquette. 
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9 No environmental burden was placed on the waste materials other than that of 

transport. The energy used to re-melt the materials was included in the overall 

energy inventory. 

3.3.4.2 Briquette production 

From a public report issued by DEFRA (n. d. ) the following additional information has 

been shown regarding the whole UK production plant: 

The melting and fiberising stages of production account for the bulk of the 

energy consumption in roughly equal proportions, totalling about 70% of 

consumption, with a further 15% coming from the cooling and curing stages. 

3.4 Life Cycle Impact Assessment Phase (LCIA) 

The diversity of possible end of life scenarios for all the products, make direct 

comparisons difficult. Thus for reasons of simplicity the results from the LCAs are 

first shown here for the cradle to installation part of the analysis only, i. e. the whole 

production process and transport functions used for each product studied from raw 

materials to delivery to the study house. This a natural and equal cut off point for all 

the products studied and is not thought to introduce any bias and indeed the results of 

the full cradle to grave analysis are presented and discussed later in this chapter in the 

end of life Section 3.5. The environmental impacts using the CML 2 Baseline v2.1 

method were calculated from the imputed data as previously described. They are 
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presented for both NFI products on a cradle to installation basis on both a Functional 

Unit basis (in Table 15) and on aper kg basis (in Table 16) in the Appendix. 

It must be noted that only with a great deal of caution and the understanding of what 

is included in each set of data should the data presented here be used for any 

comparisons with external data. The data presented in the generalised results section 

here and in the Appendices should only be compared to data analysed with 

comparable system boundaries and assumptions. 

3.4.1 Generalised results 

The results from the LCAs of all products studied on a cradle to installation basis are 

presented in the form of a graph in Figure 14 below using the previously described 

CML baseline to present a wide selection of environmental impacts on one graph. 

The data is then show on a "normalised" basis in Figure 15 to give a sense of 

perspective to the generalised results. In this case the data presented is normalised 

against the impact of "the average West European citizen". 

112 



it 

1- 

- 
MMPM 
siy{Z 

3 

ýý 

!ý 
r 

11 
Oý 

I 
1I 

'Ic 

I 
! 

. I 

ýY 

ýý 

ý, 



o ý"ý 
 i 

U 

Ty 

1 

i 

i, ý 
Y 

JF 

1 

1 

ýö 
sý 

si 
1 

tIi 
i 

Y 

`I! 
Ti ý 

fi 

ö 

xi 

O[ 

E 

Ix Cý'I 

Y 
C 

.C 

L 

8 

P Ö 1_ 
ýL 

a 
i ö 

v 

ä 
ý x 

ý 
7 

:i 

rt 



A general result from Figure 14 is that there appears not to be a clear "winner" or 

"loser" in terms of overall environmental, impact this is emphasised further in Figure 

15 where the same results have been normalised. 

One very striking result shown in Figure 14 however, is the negative impact (i. e. 

environmental benefit) displayed by the Thermafleece product in the terms of GWP 

caused by the carbon sequestration of the wool. This is discussed further in Section 

3.4.1.1 (CO2 sequestration in natural fibres) on page 118. 

The normalised data more clearly indicates the relative importance of the impacts in 

each category. This means that, where all materials have low impacts in a category, 

the significance of the greatest of these impacts is not mistakenly viewed as equal to a 

high impact in another category. For example, the impact of the Isonat product in 

ozone layer depletion (ODP) could be perceived as an important finding based on the 

non-normalised representation in Figure 14. In Figure 15 it can be seen, perhaps more 

realistically that the impacts in this category overall are of relatively low significance 

when compared with the ozone-depletion impact of the average West European 

citizen. 

The results from the normalised data emphasize the lack of a clear "winner", as each 

product has some good and bad environmental attributes. The more important 

(comparatively) high impacts are listed below: 

Isonat Abiotic Depletion, Acidification and Fresh Water Aquatic Ecotox 

Thermafleece Terrestrial Ecotoxicity and Fresh Water Aquatic Ecotox 

115 



Rockwool Abiotic Depletion, Acidification and Global Warming (GWP 100) 

In a similar way to the use of secondary data, comparisons to aggregated datasets can 

be problematic. For example the Rockwool inventory provided does not appear to 

have any impact in any toxicology category. Due to the lack of detail available on the 

production of the aggregated dataset provided it is difficult to go into a more detailed 

comparison. 

It is possible that some emissions, that may be relevant to various impact categories, 

were not reported in the inventory. For example phenol and formaldehyde emissions 

from the Danish factory are not reported in the inventory provided for this product. 

They do however appear in the Integrated Pollution Prevention and Control (IPPC) 

emissions data for the UK factory as a whole. It is understood that this may be due to 

differences in manufacture or emissions capture techniques between the two factories 

or that the emissions of phenol and formaldehyde only occur during the production of 

other materials. It is however surprising that no emissions are reported in by Schmidt 

et al (2003) given the use of phenol formaldehyde binders. 

It is not in any way suggested that data points are omitted deliberately to mislead but 

it does highlight a difficulty encountered when interpreting aggregated data. When 

aggregated datasets are used, what is included within the system boundaries that 

produce the disclosed results are outside the control of the user. They can thus not be 

analysed to make sure a fair comparative system boundary is used for the other 

products under comparison. If the data has been abbreviated in any way to omit 

emissions that are seemingly insignificant to one study the use of this data may miss 
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out an impact that is significant using a different functional unit. Also a small 

emission removed for simplicity in one dataset may then unrealistically show up as a 

limited impact when compared to other datasets where the emission is included. A 

further discussion of the use of aggregated datasets is presented in Chapter 4 as part of 

the sensitivity analysis (Section 4.2). 

The Thermafleece product is nearly 30% less dense than the Isonat product. This low 

density requires less material and as such carries only a (proportional) fraction of the 

environmental burden of its materials and processes. As such it is a simple and 

effective method of reducing a product's environmental impact. Where LCA studies 

are reported on a per kilo basis this product advantage is not shown. 

There are some products currently available that have very low densities, e. g. the 

Knauf Crown Loft Roll 44 with a density of 10 kg/m3 which is 70% less than the 

Isonat product studied here (Knauf, 2006). Manufacturers other than Knauf do not 

produce such a low density product in general for fears that the lack of bulk will result 

in the product sagging over time and thus reduce its thermal insulation properties. It is 

not possible to say whether any of the products studied here or the Knauf product 

would do this or indeed to what extent, as there is no reliable data available on the 

performance of the products studied. 

This presents an important issue regarding the assumptions made in this study. 

Peuportier (2001) stated that a 25% variation of the conductivity, i. e. from 0.04 to 

0.05 W/(m K), lead to a 2.4% increase of the heating load and a 2.3% increase of the 

overall CO2 emissions over the 80 year period considered. A whole 25% reduction in 
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conductivity is perhaps unlikely to occur just from an occurrence of sagging except 

perhaps in severe cases. However a mineral wool insulation product is able to save 

over 100 times more energy than is used in its production compared to a non-insulated 

loft (Rockwool Ltd, 2006). A 2.490 increase in heating load due to any sagging 

therefore would he equivalent - in energy consumption terms - to more than a 200% 

increase in the energy needed to produce the insulation. This would represent a 

substantial difference between the insulation products and highlights the potential 

importance of the assumption made that insulation performance is unchanged over the 

60 year lifetime modelled. As such future studies in this area are recommended. 

3.4.1.1 CO2 sequestration in natural fibres 

GWP impacts in general stem from the use of carbon emitting fuel sources and are 

thus linked to the energy consumption of most products. It is however noted that 

although the GWP reported for the natural fibre products is far lower than that of the 

conventional material, the energy requirements are actually higher (presented in Table 

11 below). 

Table II the total energy requirement (calculated using the Ecopoints 97 V2.1 method) and the 
GWP (calculated using the ('Ml 2 baseline 2000 V2.1) for the studied products 

Impact category Unit Isonat Thermafleece Rockwool 

Energy MJ LHV 263 207 140 

Global Warming 
(GWP100) kg CO2 eq 2.72 -1.82 8.03 

For the natural fibres, the lack of a simple coupling between the energy consumption 

to make the product and its Global Warming Potential is a result of the removal of 

CO, from the atmosphere via photosynthesis. This occurs during its conversion within 
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the plant into the ligno-cellulosic fibres and other components of the plant body. In 

the case of sheep wool, the carbon sequestered by plants goes through a further 

conversion step in the animal into the proteins of wool. Thus, the sequestration of 

atmospheric CO, into the basic raw material in the natural fibre products exerts a 

strong `negative' GWP effect (removal of CO-2 from the atmosphere). In the case of 

Thermafleece (and many other renewable materials), this is of sufficient magnitude to 

more than counterbalance the GWP emissions from energy consumption in the 

manufacture of the product. 

Two critical components in assessing the overall GWP balance over the life cycle of 

natural fibre materials and products is I) their longevity in use (in this case assumed 

to he 60 years in a building) and 2) the end-of-life disposal method. It is in the 

disposal phase of the life cycle that some, or all, of the carbon sequestered into the 

product may be returned to the atmosphere, this being highly dependent upon the 

specific disposal route followed. This is reported in the end of life section that 

follows. 

3.5 End of life scenarios 

As mentioned previously there are many end of life scenarios for each of the studied 

products after the 60 year in-use period. During this assumed 60 year in-use period it 

is highly likely that legislation surrounding the disposal of construction waste will be 

changed and as such it is very difficult to assume one particular scenario will he used 

(Roberts, personal communication). A range of potential scenarios are displayed in 

Figure 16 with the selected studied scenarios shown in blue. These scenarios have 

119 



been selected to pros ide a representative display of the effect the different scenarios 

have on the LCA as a whole rather than a prediction of the most likely scenarios. 
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3.6 End of Life Scenario Analysis Results 

What follows is a study of the selected of end of life scenarios and their effect on the 

over all life cycle impact of each product. As with all results displayed in this report it 

is important that they are not taken out of context. As such a selection of these key 

issues is discussed in the sensitivity analysis that follows this section. 

3.6.1 Thermafleece and Isonat 

The results of the various end of life scenarios selected are given in Figure 17 and 

Figure 18 below. 

Landfilling emerged from this analysis as the best option for the product in terms of 

GWP, with the Thermafleece product maintaining its overall negative impact in the 

global warming category. This results from sequestered CO2 remaining in the 

products due to a predicted slow breakdown in the landfill scenario. Conversely, the 

composting and incineration options explored show release of much of this 

sequestered CO2 and as such show a higher impact in this category. It is important to 

note that not all of the sequestered CO2 is released by the composting scenario as the 

final compost product (containing around 50% of the original material's mass), will 

still retain a portion of the sequestered CO2. 
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In most other categories the impacts are relatively similar for the examples chosen, 

except for eutrophication and fresh water aquatic ecotoxicity where the landfilling 

option presents a comparatively larger impact. 

Within the composting and incineration options, some benefits accrue from 

substitutions for 1) grid electricity generation in the incineration option and 2) peat 

replacement in the composting option. 

3.6.2 Current likely option comparison - Landfilling 

The example of landfilling has been used as an example here in Figure 19 as it is 

thought to be a likely current option for an insulation material removed from a 

building during refurbishment or demolition. 

In this comparison with the bench mark products, Thermafleece and Isonat deliver 

good performance in Global Warming Potential. It is also shown that Isonat exhibits 

high impacts in some other categories (toxicity categories and ozone layer) primarily 

due to its high mass. 
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3.6.3 Example future option comparison - Composting 

It is assumed here that as legislation progressively restricts total landfilling, the 

landfilling of natural fibre products will become less likely. As such the option of 

composting is displayed here in Figure 20. As the benchmark product is not 

compostable it is displayed here using the same landfilling option as previously 

shown. This was chosen partly for continuity reasons and also as landfill is believed to 

display similar results to low grade recycling options such as use in road surfacing 

that may be a future option for such mineral based products. 

With regard to the NFI materials, Thermafleece performs well in most impact 

categories and shows the lowest (though now positive) GWP impact. In the future, 

municipal composting may become a more common waste management system in the 

UK and, assuming that reliable product identification for NFIs can be achieved upon 

disposal, they would have properties appropriate for this disposal route. 

NFIs are also appropriate for Energy-from-Waste (EfW) disposal systems with a 

renewable fibre content of -85% (or potentially better) and heating values likely to be 

approx 20 MJ/kg. Research to obtain material-specific data to characterise the 

performance of the NFIs in Municipal composting and EfW systems would be 

valuable. 
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3.7 Conclusions from Benchmark Results 

The results displayed show both advantages and some disadvantages from the NFI 

materials when compared to the provided benchmark data. However, without fully 

understanding the data used in the aggregated datasets provided for the benchmark 

product, in depth comparison is not advised (this is further discussed in the following 

sensitivity analysis). 

The NFI materials perform particularly well against the benchmark product in terms 

of GWP, due to the renewable carbon sequestered in the material withdrawing CO2 

from the atmosphere. 

While the end of life scenarios studied did show a release of some sequestered C02, 

only a portion of the total amount was released in landfilling and composting. The 

issue of CO2 sequestration in renewable materials has been highlighted as an 

important area of study. It has been shown that LCAs that do not include this quantity 

of CO2 could be missing large positive contributions in the area of GWP. 

It is important to bear in mind that all the insulation products will, in use, save a 

substantial amount of energy. As part of this function they will also recoup the energy 

needed for manufacture (and the environmental impacts of the energy production) 

several times over. This, however, is only true if the assumption that they will 

perform the same task during the product's life is correct. 
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The issue of a product sagging and thus reducing the products thickness and thermal 

insulation property has been highlighted as a functional property that would benefit 

from further work and information. The reason for this is that any small change in the 

product's performance will affect heat and thus energy loss from the studied dwelling. 

Throughout the product's service life this could, if it is a variable property between 

different insulation products, have a much more significant effect than the initial 

production energy and, as such, alter the product's overall life cycle impact. This 

aspect of functional performance over an extended time period of decades could not 

be examined in depth due to a paucity of information - the study is therefore based 

upon an assumption of no change in insulation performance over the 60 year in situ 

period modelled. Research into the issues regarding the long term performance of 

insulation products in situ will be valuable to develop more accurate, comparable 

LCAs. 

One notable characteristic of natural fibre materials is that of water sorption. This may 

affect their performance over the 60 year in situ performance studied here, especially 

when considering the heat released due to moisture adsorption and heat absorbed 

during moisture desorption. This for example, could have a significant impact over 

the lifetime of an insulation product if the quantities of heat energy involved are found 

to be significant. 
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4 Interpretation of Results 

4.1 Introduction 

This chapter completes the LCA analysis of the studied materials by means of 

Interpretation i. e. the fourth phase of the LCA study, as described in the ISO 14040 

guidelines. The Life Cycle Impact Assessment phase in Chapter 3 showed that 

currently produced natural fibre insulation materials are comparable in their 

environmental profile to a conventional material dataset. A study of the data used, in 

comparison with other existing data sets, is described here in the sensitivity analysis. 

For the natural fibre products, the major impacting processes and materials are 

identified in the following marginal analysis. This area of study reveals the potential 

areas of improvement for the products and a further study of their suggested near 

future optimization shows a potential for lower environmental impacting materials. 

4.2 Sensitivity Analysis 

4.2.1 Secondary dataset usage 

As previously mentioned it was not possible to alter the data for the Danish Rockwool 

product to include the UK emissions from electricity due to the aggregated nature of 

the data presented in Schmidt et al (2003). As such the emissions for CO2 for example 

will be lower than if the same product was produced in the UK. i. e. 1 kWh of 
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electricity production in Denmark (in 2004) produced 308 g of CO2 as opposed to 467 

g in the UK (International Energy Agency, 2006). 

Data from Ecoinvent and other inventories have been used in the preparation of the 

natural fibre insulation material inventories. The Ecoinvent datasets act to accumulate 

certain impacts, for example in the toxicity and ozone depletion categories. These 

accumulations of impacts result from the "tree algorithms" used in the production of 

Ecoinvent databases. The inclusion of an Ecoinvent dataset in SimaPro will (by 

means of the tree algorithm) call up data from other databases on materials and 

processes it requires (e. g. the electricity required to make the material requested). In 

turn these will call up further datasets and so on (e. g. a portion of materials required in 

making the power plant that produced the electricity). 

Although this method does not necessarily take data from outside the system 

boundary, it does require some caution when interpreting comparisons that are made 

against aggregated datasets (as provided for the benchmark product) which may not 

include as many "branches" or layers in their background data. 

It is therefore necessary to examine the benchmark results carefully so as to be able to 

attach the greatest possible confidence to the comparisons made and conclusions 

drawn. What follows is a comparison of the benchmark product LCA results with 

datasets for similar products conducted by other LCA practitioners. This includes 

comparisons with Ecoinvent datasets. 
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4.2.2 Rockwool data set comparisons 

As shown in the previous results section (Section 3.4.1) there appears to be a lack of 

ozone depletion and toxicity impacts in the Rockwool datasets when compared to the 

NFI materials, what follows is a comparison of the Rockwool data set produced by 

Schmidt et al (2003) and the results of various other inventories available regarding 

stone wool products. 

4.2.3 Ecoinvent data set 

The following comparison is made with the data supplied direct from Rockwool, 

compared to an existing Ecoinvent data set for a "rock wool" product and is 

displayed in Figure 21 on a functional unit basis. 
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A comparison with an Ecoinvent inventory indicated that the benchmark data used for 

this study exhibited far lower or absent values in some environmental impact 

categories. This Ecoinvent data set was produced by EMPA-DU (Centre for LCI, 

Dübendorf, Switserland). The Ecoinvent database presented here includes mechanical 

packing and the administration of the Flumroc AG rock wool factory in Switzerland 

though transportation from Switzerland has not been added for the above comparison. 

It is noted that the company Flumroc AG works on a technically high level producing 

a comparable 112500 t/a, with an automated packing and loading process. 

The results of the Ecoinvent database have some similarities with that of the data 

provided by Schmidt et al (2003). These similarities are shown in GWP, 

eutrophication and acidification. However, the impact categories concerning toxicity 

are far higher in the Ecoinvent database than that provided by Rockwool UK. Though 

many of the Schmidt et al (2003) results are lower than the Ecoinvent database, it is 

the impact categories of abiotic depletion and photochemical oxidation where 

Ecoinvent possibly under-represents the likely impact. 

4.2.4 ESU data set 

A comparison of the Rockwool data with data from ESU, Switzerland is shown in 

Figure 22 below. 
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The Mineral wool ESU database is a total aggregated system inventory. The data is 

based on the Swiss production of a Flumroc rock wool product. It is not known if this 

is based on the same Flumroc product as described in the Ecoinvent data. The energy 

and emissions are taken from BUWAL (1995). The production is described as taking 

place in an oven at 1600 °C, where various rock types (limestone, diabase), cokes and 

briquettes are melted. The molten mass is mixed with resin and spun to a mineral 

wool. The wool is cured in an oven and further treated for final delivery. Though the 

scale is not mentioned in this inventory summary it is assumed to be the same or on a 

similar scale to that described in the Ecoinvent database as it is assumed the same 

factory has been studied. 

In general the data compared is very similar to the Ecoinvent data and shows far 

higher toxicity impacts than the Rockwool UK data. The ETH-ESU database 

however, appears to also include data leading to a similar impact in abiotic depletion 

and photochemical oxidation to that provided by Schmidt et al. (2003). This being the 

case it is most likely that the format for the data entered in to the Ecoinvent library 

does not include any abiotic resource depletion impact. 

4.2.5 Sensitivity Analysis Remarks 

As found with the Ecoinvent rock wool and dataset the Ecoinvent library does not 

appear to include any abiotic resource depletion impacts. From this sensitivity 

analysis it has been shown that the databases used by Schmidt et al. (2003) were 

almost certainly not constructed using Ecoinvent data (or similarly formatted 
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datasets), as such, caution is needed in comparisons with the NFIs in the abiotic 

depletion impact category. 

In general the impacts reported by Schmidt et al (2003) in the toxicity and ozone 

depletion catagories appear to very low. It is however impossible to say if this is a 

result of different processing or lack of reported data and thus, comparisons of 

toxicity and ozone depletion impact categories must also be made with this potential 

inconsistency in mind. 

Overall the stone wool datasets presented in this section appear similar in GWP which 

would suggest comparable amounts of "embodied energy" reported by all the 

examined stone wool datasets. It is however noted that the different fuel mixes used 

by the different countries electricity generation studied may have an effect on this 

data. 

4.3 Marginal Analysis 

In this study the term marginal analysis has been used to describe the technique of 

quantifying the impacts made by each of the contributing sub-processes and materials 

used in the final products that have been studied. This technique was used throughout 

the production of the NFI product LCAs to check for wrongly inputted data or 

inappropriate use of secondary data. By doing this there was a constant method of 

feed back when building the final LCA datasets. 
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Marginal analysis has been used here to identify the principal causes of impact for a 

product by each impact category. Both the negative and positive contributions to each 

impact category are assessed by the contributing process or material. Due to the 

quantity of potential end of life scenarios and for reasons of simplicity, the results 

displayed here are only for the cradle to installation portion of the LCA. 

Due to the aggregated nature of the data set provided for the benchmark products, it is 

not possible to perform this type of analysis on the Rockwool product. 

4.3.1 Thermafleece 

Presented below are graphical representations of the contributing processes and 

materials in each of the CML impact categories for a cradle to installation analysis of 

the Thermafleece product. They are displayed as a percentage of the total impact for 

the product in Figure 23, and as a normalised representation in Figure 24. 

From Figure 23 and Figure 24 the following observations have been made: 

" In terms of abiotic depletion a large portion of the product impact is derived 

from the use of natural gas (methane) as a fuel, both in the final product 

production (used to melt the binder material) and as part of the scouring 

process within the production of clean wool. 

" The use of diesel fuel in the transport of raw materials and finished product 

also gives an impact in most categories. 

9A large negative contribution (i. e. environmental benefit) in terms of GWP is 

attributable to the renewable material fraction of the product, in this case wool. 
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The effect of the use of GB national grid electricity in the final production 

(pink) produces an impact in most catagories (presumed to be contributed to 

by the use of coal) though is not present in abiotic depletion. This is thought to 

be a short fall in the coverage of Ecoinvent data as highlighted in the 

sensitivity analysis section previously. 

" Figure 23 shows a large detrimental impact across most impact categories by 

the bi-component polyester fibre (shown in light blue). For example even 

though the fibre constitutes only 15% by weight of the material input it is 

responsible for 38% of the GWP impact. 

" Impact from PP packaging (yellow) is partially balanced out by its recycling 

(dark blue). In the impact category abiotic depletion the recycling of the 

packaging is outweighed by its initial use. This again is thought to be a 

shortfall of the Ecoinvent data used. 

" The large contribution to ozone depletion (shown in Figure 23) from transport 

is almost entirely due to two fire suppressing "Halon" chemicals. This is 

pulled through from their use in oil refineries as reported in the rigorous 

Ecoinvent transport datasets used. As shown in Figure 24 it is of 

comparatively low environmental consequence when considering the West 

European average citizen. 

A flow chart to show the GWP impact contribution by each sub-process or material is 

given in Figure 25 in order to give a visual appreciation of the relative contribution to 

this impact category of the various life cycle components. 
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Figure 215 a floe chart to shoe the process and material contribution the overall product impact 
in terms of (; N P. Impacts of less than 8% of the total have been omitted from the flow chart for 
clarit%. 

In Figure 25 the negative impact on GWP of the scouring process is apparent but is 

compensated by the). itive effect of the wool (due to carbon sequestration) in the 

product "clean, ram ooI". 

4.3.2 Isonat 

Presented in Figure 26 and Figure 27 are graphical representations of the contributing 

proccs%e,, and materials in each of the CML impact categories for a cradle to 

installation analysis of the Isonat product. They are displayed as a percentage of the 

total impact for the product in Figure 26, and as a normalised representation in Figure 

27 
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From Figure 26 and Figure 27 the following observations have been made: 

"A large negative contribution (i. e. environmental benefit) in terms of GWP is 

provided by the renewable material fraction of the product, i. e. the hemp and 

recycled cotton fractions 

" The relatively large quantity of gas used for drying and bonding the product 

(light green) contributes significantly to abiotic depletion and to GWP 

9 The bi-component polyester fibre (light blue) contributes a large detrimental 

impact across most impact categories even though the fibre constitutes only 

15% of the material input 

" The total transport (olive green) also contributes highly in many categories. A 

large proportion of this is due to the transportation of materials to and from 

France. 

An example flow chart to show the GWP impact contribution by each major sub- 

process or material is given in Figure 28 below. 

145 



Figure 28 a flow chart to %how the process and material contribution the overall product impact 
in terms of (; N P. Impacts of lei; than 8% of the total have been omitted from the flow chart for 

clarit's. 

A notable observation from Figure 28 is that the impact of the specific transport 

function is visible and not cut off at the 8% contributing impact limit as shown. This 

particular transport function shown is that of the final delivery by truck of the Isonat 

material from the factory in France to the final installation in Coventry, with the 

majority of the impact stemming from the diesel used in the truck. The ferry journey 

taken as part of this function is not shown as it is of a low overall impact. 
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4.4 Optimization of Insulation Materials 

As part of the marginal analysis of the NFI products the major impacting sub- 

processes and materials have been highlighted. In this section potential improvements 

to the products are explored that may reduce their overall environmental impact. 

The NFI materials are currently produced on a very different scale to that of the 

benchmark product. From approximations based on the respective companies' 

turnovers and product sales values, it would appear that the benchmark product is 

produced on a scale some hundred times larger than either of the NFIs. As such there 

may be a large economy of scale that could be exploited. 

4.4.1 Economies of Scale 

It is well known that an economy of scale characterizes a production process in which 

an increase in the number of units produced causes a decrease in the average 

economic cost of each unit. This can also be true in terms of the energy used for each 

unit. Rockwool for example is a long established company and operates on very large 

scale in order to make their product as efficiently and cheaply as possible. This 

enables them to compete on price in the market place. 

Taking the production of "glass products" in general as an example it is possible to 

see what effect scaling up production has on the energy usage for a furnace based 

production industry. This example is shown in Figure 29 below. 
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Figure 29 Graph to show the energy usage of different glass product manufacturers in 
approximate tonsthour against MJ/kg, between 0.25 and 80 tonnes/hour. Data supplied by Glass 
Technology Services LTD (Hartley, personal communication). 

As can be seen from Figure 29 there is a marked decrease in energy requirements per 

tonne of product produced from 1 tonne/h to 15 tonnes/h production lines. However 

little or no decrease in energy appears to occur from 20 tonne/h to 80 tonnes/h. This 

"bottoming out" of the economy of scale shown by the glass product industry is 

thought to be similar to that of glass and mineral wool. The mineral wool benchmark 

product studied is produced at a large scale and is thus likely to have limited scope for 

significant further energy savings in manufacture. For example Rockwool has reduced 

its energy consumption per unit of output by 50% from 1975 to 2000 (DEFRA, 2006). 

Over the period of 1996 to 2003 the calculated embodied energy has only decreased 

from 18.2 MJ/kg to 17.3 MJ/kg (Rockwool, 2006a), i. e. 0.49%. An advanced status of 

manufacturing efficiency suggests that opportunities for further substantial efficiency 

gains and their associated environmental improvements may be limited. 
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4.5 Optimization studies 

Due to the range and uncertainty over potential end of life scenarios and for reasons 

of simplicity, the results displayed here for improvement analysis of the NFIs are 

only for the cradle to installation portion of the LCA. 

Every effort has been made to model optimization stages that could be commercially 

feasible for manufacturers of these materials. The intention is to gain an 

understanding of the scale of effect of such operations. It is not in any way implied 

that the optimization stages modelled will be adopted and the results of the analysis 

are, equally, not an estimation of the best possible products made from natural fibres. 

4.6 Optimization of a Sheep wool fibre based product 

Shown here is a selection of potential "optimization" methods for a sheep wool 

product. These include the replacement of the binder material, a reduction in the use 

of fire retardant and a reduction in density. There are other optimization stages that 

could be considered for a new product. However due to a lack of data and/or 

commercial sensitivity, they have not been considered here. 

4.6.1 Replacement of binder material 

It was identified in the marginal analysis that the polyester based bi-component fibre 

impacted in most categories relatively highly. The replacement of the current bi- 

component fibre used to bind the fibres is a very near future option for product 
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improvement. A potential bio-derived replacement is that of poly-lactic acid (PLA) 

based fibres. Bi-component PLA fibres are available "off the peg" currently and show 

potential for environmental impact reduction. Modelled here is a direct replacement of 

the existing polyester fibre with the same quantity of PLA based fibre in the standard 

Thermafleece product. The PLA dataset used was produced at Imperial College 

London. 
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Using a PLA binder would appear to improve the products impact in some categories 

while generating more impact in others. The following observations can be made: 

" GWP in particular is reduced through the use of the PLA material. This is 

attributed to by the additional sequestration of CO2 by the maize used as a 

feedstock for the PLA fibres. 

Other impact categories are made worse due to the maize feedstock and high 

energy requirements currently incorporated in the production of the material. 

The latter has potential for reduction for some PLA based products as 

production scales increase. 

4.6.2 Borax salt usage reduction 

A reduction in the current quantity of Borax solution is a potential improvement to the 

Thermafleece product as such levels may be acceptable to satisfy the relevant fire 

safety standards. Modelled here is a 30% reduction in the quantity used in the 

standard product as this has been estimated as a possible attainable reduction. 
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The reduction in Borax usage has a small but notable impact on most impact 

categories the highest impact reduction being in GWP due to a reduction in the burden 

carried through from the energy required to produce the borax salts. 

4.6.3 Density Reduction 

In previous discussion it has been shown that a lower density product will carry a 

lower environmental burden if it fulfils the same functional unit. It has been 

calculated by the producers of the Thermafleece product, Second Nature, that a 

reduction in density from 25 kg/m3 to 22 kg/m3 could be possible without any notable 

change in production requirements or performance. The implications of this 

(approximately 10%) reduction in functional unit weight are presented here in Figure 

32. 
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As can be seen from Figure 32 the products environmental impact has been 

proportionately reduced across all categories, in reality there may be a small 

fluctuation caused by transport as it has been assumed here that the lower density 

product can be delivered with the same weight of product on the delivery truck. It is 

accepted that a product of lower density will take up more space on a weight for 

weight basis. How this equates to possible available tonnage on a delivery truck has 

not been studied and so the assumption made here has been adopted for reasons of 

simplicity. 

4.6.4 Effect of all optimization changes 

The combination of all the studied stages of optimization (in Figure 33) reveals the 

potential of a possible near future product. It is noted however that this "potential 

product" has not in any way been identified as a new product. It is merely an example 

given to show potential development opportunities and `headroom' for continued 

product improvement via selected production alterations. 
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It can be seen from Figure 33 that a sheep-wool based product, if produced with all of 

the optimization stages discussed previously, shows both positive and negative 

environmental effects when compared with the Thermafleece product. The 

combination of optimization stages increases the product's negative GWP by over 

25%. The use of PLA causes the negative impacts in some categories as discussed 

previously. 

This is in no way a suggestion as to the best possible sheep wool based product and is 

only provided to display the effects of the example minimal alterations. 
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4.7 Optimization of Hemp fibre based product 

There is great scope to reduce the environmental impact of the current Isonat product. 

A wide selection of potential improvements that have been identified from the 

marginal analysis is studied here with a discussion on the potential demand for land 

for hemp cultivation for NFI production. 

4.7.1 UK Production 

UK Production of an Isonat or a similar Hemp based product is seen as a likely 

scenario given the current increase in demand from the UK market. As well as 

improved supply logistics which may result in a more reliable product for the UK 

market, the obvious reduction in transportation is of real benefit to the products' 

environmental profile as shown in Figure 34. Studied here is the effect of transport 

reduction resulting from assumed production in the UK on the basis that such 

production is located close (-10km) to the current hemp primary production facility. 

Also studied here is the effect of removing the recycled cotton fraction as this is likely 

to be replaced by hemp fibre if such a site change were to happen. The cotton fraction 

is currently used due to the close proximity of the French production site to large 

quantities of usable recycled cotton. 
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An insulation production facility in the UK would substantially reduce the amount of 

transport required for the UK market, which has a large beneficial effect on the 

installed material's GWP and also to ozone layer depletion potential. 

Some negative factors are produced (mainly in the toxicity impacts) due to the switch 

from French to GB electricity mixes. This is mainly caused by Frances high 

dependency on nuclear derived electricity that in general has low impacts in these 

categories. The effective doubling of the scale of hemp farming process will also 

contribute to these negative impacts. 

4.7.2 Density reduction 

As previously discussed, a large reduction in environmental impact can be gained 

through lowering the density of the product. This reduces the quantity of material 

needed to produce the same volume of product. Natural fibre insulation materials 

have been made with far lower densities but with the same thermal conductivity 

value, for example a previously available flax based product (Natilin) was under 60% 

of the density of the current Isonat product. The effect of a reduction in density from 

35 kg/m3 to 20 kg/m3 is shown in Figure 35 below as calculated by a reduction in 

functional unit. 

As can be seen from Figure 35 a lower density product reduces the product's impact 

by a proportionate amount (i. e. just over 40%) when no change in transport impact is 

assumed. 
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4.7.3 Binder Material Replacement 

The marginal analysis identifies that material replacement provides scope for 

environmental impact reduction, especially in the area of energy use. This large 

energy saving comes mainly from replacing the bi-component polyester binder as it is 

a very energy intensive material to produce and based on a fossil reserve. Omitting 

the purchase of a material from Korea, where the polyester material used in the Isonat 

product is made, would further reduce the energy used in transportation. 

FIT (Fiber Innovation Technology) in America, produce a bi-component fibre which 

has been trialled by Buitex with only minor technical issues, such as a requirement for 

a tighter temperature range in the curing process. It is the higher cost however that 

currently prevents its usage, as it has been identified as an almost direct replacement 

for the polyester based binder. 

Starch based binders have been tried by other natural fibre insulation manufacturers. 

In a German hemp product (no longer in production) the starch binder used was found 

to be too brittle after long periods to be a reliable material (Newman, personal 

communication). It is still however possible that other more reliable starch based 

thermo plastics that are currently being developed may provide an alternative binder 

and so an estimate of their impact has been studied here and their effect is shown in 

Figure 36. The PLA binder was modelled using a data set produced by Imperial 

College, London and the starch binder was modelled by using existing Ecoinvent 

starch and extrusion datasets. Both were modelled as a direct replacement for the 

current polyester fibres with appropriate adjustments made to the transport to include 

shipping from America. 
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As shown in Figure 36 both the starch and a PLA based binder were found to give a 

large reduction in GWP over the Isonat product. This is due to the alternative binder 

materials sequestrating CO2. In the case of the starch binder the lower energy inputs 

than for PLA will also reduce GWP. However a commercially viable starch binder 

may (or indeed may not) require more extensive processing to make a reliable product 

than was modelled in the estimate here. 

The negative impacts that are developed in other categories such as fresh water 

aquatic ecotoxicity and terrestrial ecotoxicity, are most likely due to the farming 

inputs required for both alternatives. 

4.7.4 Fire Retardant reduction 

It is thought that through further testing a reduction in the amount of fire retardant 

(FR) currently used may be achieved. This is mainly due to a lack of optimization in 

this area so an over estimate has been used in order that the product would not fail the 

construction standards in fire safety. It is believed that a surface treatment is sufficient 

to pass the required standards. A surface treatment method would also mitigate the 

need for drying the fibre after it has been dipped in the FR solution. A 30% reduction 

is displayed here as a rough figure to show the materials impact but it is uncertain 

how much of a reduction may be expected. The assumption shown here also includes 

the use of half the current natural gas consumption (methane), in the final product 

processing as very little drying would be required. The remaining natural gas used is 

assumed here to continue being consumed in the thermal bonding stage. 
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The reduction in GWP shown in Figure 37 of some 25% accrues from reducing the 

FR quantity due to: 1) the high consumption of energy in the production of the 

ammonia (poly) sulphate material and 2) reduced energy usage from the reduced gas 

usage in drying also results in a reduced GWP. 

4.7.5 Primary processing 

The current energy usage for the primary processing of hemp is rather high due to the 

low throughput. Higher throughput machinery is available and is a logical next step 

for a growing fibre processor. Studied here is the effect of two stages of increased 

throughput (Medium Throughput - MTP and High Throughput - HTP) with their 

associated reduction in energy usage which in turn results in reduced environmental 

impact. Figure 38 shows the effect of the increased primary production throughput on 

the current product formulation and a hemp only material (i. e. with no recycled cotton 

fraction). The data used was derived from consultation with industry, though the exact 

energy and throughput figures are withheld for reasons of confidentiality. They have 

been modelled by reducing the primary energy usage accordingly within the 

traditional Isonat product formulation, manufactured in France and a UK poduced 

hemp-only based product (i. e. with the cotton fraction replaced with an increase in 

hemp fibre usage). It is apparent from Figure 38 that large reductions in GWP occur 

as the scale of operation is increased due to the reduction in processing energy per 

unit produced. This is based on a GB national grid mix of electricity and so the fossil 

fuel based impacts such as acidification and toxicity, are also seen to reduce. The 

effect of a hemp only material increases the effect of scale up in most cases, except 

for toxicity based scores where the benefit is outweighed by the increased hemp 

farming input. 
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4.7.6 Farming 

From the marginal analysis of the Isonat product it can be seen that farming only 

contributes to a small fraction of the total impact of the product. As a potential 

product is optimized however, this figure is likely to become more significant as the 

impacts from other processes and materials is reduced. There is less "headroom" for 

improvements due to the inherent processes involved with good farming practice (e. g. 

hemp uses relatively little fertiliser, no pesticides etc). It is thought however that the 

figures used in this study are conservative and the relatively large scale farming that is 

used in East Anglia to produce the hemp straw is probably more efficient than is 

displayed here. For example, no reduction in tractor usage has been accounted for 

even though wider farming tools are used that will reduce the distance travelled by the 

tractor from the examples used in the data sets. Also included in the Ecoinvent data 

sets are the manufacture of the farm machinery and the farm buildings. As such it is 

thought that further studies into specific farming practices would most likely show 

somewhat lower impacts than represented here. 

It has been considered however that if a hemp based product became popular through 

increased market demands, the demand on hemp farming would consequently 

increase. This in turn raises a question regarding how much could be supplied by 

British farming. For example, in order for hemp based insulation products to supply 

the whole of the UK loft insulation market (approx. 6.2 Mm3/year), it is calculated 

that this would require the equivalent of an 80 tonne/h straw processing line fed by 

approximately 12,000 ha of land. This is 0.064% of all UK agricultural land. Though 

this is a large quantity of land, it represents very little use of valuable food production 

land. 
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The quantity of fibre produced would also provide some 40,000 tons of shive annually 

which, with efficient and economically competitive production, could provide a 

notable supply of biomass for local heating and energy plants in line with 

Government targets for renewable energy, or could be utilized in hemp-lime 

construction techniques which are increasingly popular. This land use figure also 

assumes that the insulation product would be produced at the same relatively high 

density that is supplied currently. The production of a lower density product would 

require a proportionately reduced amount of crop and land area. 

4.7.7 Combination of most likely optimization 

A combination of the optimizations described above has been selected to represent the 

near future potential of a logically optimised product. The optimizations combined 

are: 

9 Reduction in product density from 35 kg/m3 to 20 km/m3 

" Production in the UK 

"A hemp only based by omitting the recycled cotton fibre portion 

" Reduced fire retardant usage with consequently reduced drying requirements 

"A switch to a PLA based bi-component binder. 

" An increased throughput in primary processing 

The effect of a combination of the optimizations described above shows a very strong 

environmental profile as shown in Figure 39 below 
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What is particularly noticeable in Figure 39 is the very large reduction in GWP and 

the products' potential to have a substantial GWP benefit. This effect is only possible 

with renewable resources as the carbon locked up in the product is a direct reduction 

in atmospheric CO2. This aspect of long-life NFI materials could prove to be a very 

strong positive factor in favour of their selection, both by the public and via 

government procurement schemes seeking to specify products with the lowest 

possible GWP. It is not usually possible to achieve this effect with a `synthetic' 

material. 

Further reductions in impact categories are very apparent across the whole profile 

with the exception of terrestrial ecotoxicity. This is small increase in this category is 

caused by the PLA based replacement binder derived from the initial maize farming 

needed for its production. It is noted, however, that PLA polymer manufacturing 

processes are currently in a process of intensive modification and optimisation with a 

view to reducing their environmental impact. 

This is also not intended to suggest that the example modelled here is the `best' 

possible hemp fibre based product - it is provided to demonstrate the effects that 

reasonable processing and product improvements can be expected to have on the 

overall LCA profile of this type of insulation material. The final choice of which 

optimisation routes may be adopted in practice will be influenced by a diversity of 

factors including economic costs, regulatory and market factors, investment and 

technical development. 
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4.7.8 Other Comparable Functional Units 

Although they are commonly used in cold roof type installations, both Isonat and 

Thermafleece are supplied in the form of a semi rigid "batt". This allows them to be 

used in a number of different applications including sarking, timber frame stud walls 

and lining "warm roof' spaces. It is thought that around 50% of the Isonat product is 

used for wall insulation rather than in cold roof situations (Newman, personal 

communication). This is based on the figure that half of all Isonat sales are in the form 

of 60 cm widths as oppose to the 40 cm widths commonly used in "between rafter", 

roofing situations. 

Equivalent batts are produced by many "conventional material" insulation producers 

and are in general much higher in density than their "roll" equivalents. As such a 

comparison using the functional unit of a batt will no doubt affect the impact of any 

comparative conventional materials studied. This calculation was not however 

undertaken as it was outside the Functional Unit chosen in the present comparison for 

which the selected materials represent current practice. This issue has been raised here 

to stress the importance of clearly recognising limitations imposed by the assumptions 

and system boundary decisions made in this and indeed any other LCA study. This is 

also suggested as an area for further work. 
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4.8 Conclusions 

Highlighted as part of the sensitivity analysis, was the issue of standardising 

secondary dataset usage across all products considered. This was deemed necessary as 

differently produced secondary datasets appear to present different impacts for the 

same or similar materials and processes. Though the use of similar secondary data 

was maintained within the natural fibre insulation product LCAs (i. e. BUWAL and 

Ecoinvent), it is apparent that similar datasets were likely not to have been used in the 

aggregated benchmark datasets. Though this does not invalidate any comparisons it 

does raise the point that a great deal of consideration should be used when doing so. 

An understanding of the differences presented and consideration as to whether they 

are inherent to the products or caused by the different datasets used in there 

production is required. It is suggested that some of the CML baseline impacts 

displayed can be compared with more confidence than others. It is as such noted that 

taking the results presented here for commercial product comparisons is not 

recommended. 

From the marginal analysis it was shown that both of the NFI products studied shared 

similar environmental burdens from the polyester binders and the direct and indirect 

use of fossil resources. The comparatively high use of fossil fuels is seen as an 

inherent problem with any smaller scale manufacture. As part of the optimization 

study of a hemp-based product the use of larger scale processing was shown to vastly 

reduce this energy usage. The results of which also showed negative impacts in the 

products' global warming potential, because the carbon sequestered by the material 

was found to be higher than that which would be emitted during the materials' 
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production. The larger scale machinery studied was that of standard technology, still 

on a relatively small scale to which the benchmark product was produced. It is 

thought that use of larger scale or bespoke machinery, after a period of development, 

could hold the key to even greater reductions. 

4.9 Recommendations for Further Work 

It is recommended that entire and impartial data collection is carried out for such a 

future study. It has been highlighted many times throughout this study the use of 

secondary data drastically diminishes the reliability of the finished LCAs. This makes 

un-biased comparisons between them extremely difficult especially when comparing 

against aggregated datasets that may or may not include the use of different secondary 

datasets. 

In a more commercial sense, further work studying reduced energy technologies is 

highly recommended in order to realise the potential of natural fibre products as 

shown in the optimization study of this report. Though this recommendation is made 

with reference to insulation products it is thought that a great deal of other renewable 

material based products would benefit from this work. 
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Part 2 

Moisture Sorption in Natural Fibres 
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5 Literature Review 

5.1 Introduction 

A major conclusion from the LCA work in Part 1 of this study, was that the 

assumptions regarding the in situ performance of the insulation materials studied, 

could have a large effect on the LCA outcome if they are incorrect. The example 

given previously was that of in situ "sagging", which could potentially cause a 

reduction in thermal efficiency. Due to the large quantity of energy normally saved 

through the use of insulation, any small reduction in its performance can have a large 

effect on a cradle to grave LCA. It was also shown that such a change in the in situ 

performance could have more of an impact than the initial production of the material. 

As such, work in this area is of importance if more robust LCAs are to be produced. 

Due to a lack of current data and time constraints of the study it was not possible to 

study the effects of in situ sagging. It was however identified that there is a current 

lack of understanding regarding the effect of moisture sorption regarding the 

performance of natural fibre insulation materials. As such a study of this was chosen 

as it was considered to be a valuable area of further work. 

It is the aim of this second part of the overall study to gain a better understanding of 

the relationship between natural fibres and water vapour in order to understand how 

this may affect the products' performance and thus overall environmental impact. 
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5.2 Moisture and Insulation 

As discussed by Al-Homond (2005) moisture transfers into the building structure 

from many sources. If enough moisture accumulates in the building envelope and 

cannot escape, it becomes a good environment for mold, mildew, and other moisture- 

related problems. If moisture penetrates into building thermal insulation it will cause 

it physical damage and will adversely impact its performance by increasing its 

thermal conductivity. 

The level of damage caused by moisture or what material may be affected, was not 

discussed by Al-Homond (2005). However, Padfield (1998) has shown that the 

addition of moisture in a flax based natural fibre insulation material did not reduce the 

materials' insulation property (i. e. did not increase its thermal conductivity) until very 

near or actual saturation (99% RH and above) is achieved. This was revealed by the 

conduction of experiments to study the effect of varying atmospheric moisture across 

a "hot box" style thermal conductivity experiment. It was also shown by Padfield 

(1998) that at this near saturation point, the effectiveness of mineral fibre insulation 

material is also reduced by the same degree. As such this finding would in effect not 

change any material ranking in a comparative LCA such as that shown in Part 1. 

In an experiment conducted by Huw Jenkins at Cardiff University (Jenkins, Unpub. ), 

it was also shown that there was no significant overall difference in thermal 

conductivity between a flax based natural fibre insulation material and a mineral wool 

material, after an in situ, year long experiment. There was however a notable 

difference in how the insulation behaved. It was noted that the standard deviation of 
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the RH within the space that the flax insulation occupied was notably lower than that 

of the mineral wool. 

5.3 Moisture sorption of plant fibres 

A large proportion of plant fibres are derived from polymer structures based on 

saccaride molecules. The large amount of available OH groups on such molecules and 

the porous nature of the fibres, make them capable of acquiring a relatively large 

amount of water. It is this plant fibre structure and its interaction with water vapour 

that will be described here. 

5.3.1 Composition of Lignocellulosic plant fibres 

In this section, using the example of wood fibres, the production of the main plant 

fibre components is first described. The physical composition of plant fibres is then 

further described with the use of diagrams to "zoom in" to the cell in order to aid 

visualisation of the role played by the chemical components in the complex multi- 

layered structure involved. The proportion of these chemical constituents 

encountered in varied natural fibres is then presented. 

5.3.1.1 Plant fibres at the molecular level 

Glucose and other sugars are produced by plants by means of photosynthesis. These 

sugars join to form the molecules that are the building blocks of the plant cell wall 

structure. The most important of these molecules in terms of fibre strength is that of 
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cellulose. Cellulose is derived from glucose units which are linked to form long 

straight molecules some 8000 glucose units long. These ß-D-anhydroglucopyranose 

(C6H1205) monomer units are rotated through 180° alternately along the molecule 

length resulting in a straight chain. These cellulose molecules lie in parallel to form a 

crystalline structure with neighbouring molecules running in opposite directions in 

order to facilitate chemical bonding between the chains. This crystalline structure is 

surrounded by a non-crystalline sheath composed mainly of lignin. The lignin acts as 

a matrix and the hemicellulose is an interfacial coupling agent. 

The cell wall is made up of millions of microfibrils arranged into ordered layers. 

Notably in these layers the microfibrils are wound at different angles. The most 

important of these layers is the S2 layer. It is generally the thickest layer and also the 

angle of the microfibrils, i. e. the microfibril angle (MFA), is closest to being parallel 

to the length of the cell. This arrangement provides the most (longitudinal) strength 

(Desch 1981). An overview of this structure is shown in Figure 40 below. 
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Figure 40 a drawing to show the components of the wood cell wall, as presented in Kretschmann 

121M)i1. 

In Figure 40 the foremost cell has been sectioned in order to show the layered 

structure characteristic of each cell, comprising the primary wall, the three secondary 

wall layers (S I. S2, S3) and the lumen. The grey lines in the secondary walls layers 

represent idealized cellulose microfibrils. The cellulose microfibrils in the secondary 

layer appear twisted with respect to the cell's vertical axis. (Kretschmann, 2003). 

A closer look at this cell wall structure in Figure 41 (though vastly simplified) shows 

the positioning of the previously described crystalline cellulose within the Microtibril. 

It also shows how this relates to the composition of fibrils and their positioning in the 

S2 layer. Figure 41 also shows the arrangement of the alternately rotated glucose units 

in the cellulose structure and their OH (hydroxyl) groups. 
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Figure 31 a drawing to slow the arrangement of cellulose in a microfibril, its positioning 
1surrounded b,. hemicelluM, e and lignin) in a fibril, shown extending from the S2 layer of wood 
cell wall. Adapted from hretschmann 120031 and Moore et at (199$). 

A more technical representation of a microfibril cross section is given in Figure 42. 

This shows the arrangement and approximate scale of the crystalline cellulose 

structure surrounded by a layer of hemicellulose and then lignin. 
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5.3.2 Chemical component proportions of different plant fibres 

As presented in the previous section, the main constituents of the cell wall are that of 

cellulose, hemicellulose and lignin molecules. The occurrence of OH groups or 

hydroxyls on these molecules (that can be seen in Figure 41 on the cellulose 

component of the microfibril) is very important in determining many natural fibre 

properties. The hydrogen bonding interactions between molecular components in the 

cell wall will, for example, contribute to the strength and dimensional stability 

properties of the fibre. The amount of OH groups varies between the molecular 

groups mentioned. As such, the ratios of these molecular groups will affect the overall 

fibre properties. 
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The proportion of the chemical constituents (and their arrangement) varies between 

differing plant fibres which gives rise to different physical properties in both the plant 

and its' extracted fibres. For example stiff, lignified coir fibres are suitable for brush 

bristles whereas the relatively highly cellulosic hemp fibres were traditionally used 

for making rope due to their strength and flexibility. This variation in physical 

properties occurs not only between plant species, but also between different varieties 

and even through changes in agronomic practices alone. For example, high lignin 

contents are generally found in late harvested flax fibres reducing their suitability for 

many textile products (Norton et al, 2006). 

As described by Hill (2006), the OH groups are also responsible for the absorption of 

moisture. As such the availability of the OH groups will thus affect the moisture 

sorption of a given fibre. The cellulose core of the micro fibril provides strength due 

to its linear and crystalline structure. The OH groups on these particular molecules are 

involved in hydrogen bonding between the cellulose polymers. As such these 

molecules are inaccessible to sorbed water molecules because the breaking of large 

numbers of H-bonds to allow ingress is energenetically unfavourable. Hemicellulose 

is similar to cellulose in that it possesses a large number of hydroxyl groups, however 

far less of these are used in hydrogen bonding to other cell wall polymers (which 

provides a much "looser" and less organised structure than the crystalline cellulose). 

Hence a large proportion of the OH groups on the hemicellulose are initially 

accessible to water molecules. An amorphous structure is also exhibited by the lignin 

component and so is also involved with water interactions, but as it possesses a lower 

OH to carbon ratio it is considered less important with regard to water absorption. 
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In order to show how these chemical components vary between different plant fibres 

the chemical constituents of a selection of different fibre types are presented in Table 

12 

Table 12 The approximate chemical constituents of a selection of different fibre types From (a) 
Bledzki et al. 1996 (h) Anon, 1983 in Ký malaien and Sjoberg, 2007 (c) Shawakataly, 1999 and (d) 
EURATEX (2000) in European Commission 12001). 
Fibre type Cellulose Hemicellulose Lignin Pectin Extractives 

Flax (a) 71 18.6 2.3 2.2 1.7 

Hemp (b) 67 16 3 1 0.7 

Jute (c) 69.7 12.6 13.8 2.2 

Coir (c) 47.3 15.2 31.4 4.2 

Cotton (d) 96 1.2 2.8 

5.4 Water sorption in plant fibres 

In order to understand the relationship between water and plant fibres it is first 

necessary to understand the phases of water as presented here. 

5.4.1 Phases of water 

Water can exist in three general states or phases - solid (ice), liquid, or vapour 

depending on the temperature and pressure to which it is exposed. In general this 

study is concerned mainly with water vapour and to a lesser extent liquid water and its 

relationship with plant fibres. The primary difference between the liquid and vapour 

state is the spacing between the molecules. In the liquid state the molecules are 

sufficiently close to each other so that appreciable forces of attraction and repulsion 

exist among them. The individual molecules are constantly vibrating around a region 
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of equilibrium where the force between adjacent molecules is zero. If a molecule 

attains enough energy it will escape from the other (liquid) neighbour molecules and 

become a vapour molecule. Because of their high kinetic energy such molecules will 

exert a pressure against an enclosure; this is called the vapour pressure of the water. 

The higher the temperature of the water the greater will be the number of vapour 

molecules and therefore the greater will be the vapour pressure of the water (Skaar 

1964). 

The distance between water vapour molecules is from 12 to 60 times larger than the 

spacing of liquid water molecules when the air is saturated (over the temperature 

range from 0°C to 100°C). When the vapour pressure is lower than saturated at any 

temperature, the spacing is even further apart. 

In most circumstances, the atmosphere is not saturated. The actual vapour pressure p 

is lower than the saturated vapour pressure po. The air humidity as it is known is often 

measured in terms of the partial vapour pressure h, which is defined as the ratio of the 

existing vapour pressure p to the saturation pressure po (i. e. p/po). The relative vapour 

pressure (h) is dependant on the vapour pressure (p) and also the temperature, since 

this determines the value of po. In a room for example, the actual vapour pressure 

tends to remain constant throughout the room but the temperature may fluctuate 

considerably from one location to another. For example, between a cool window and 

a radiator the temperature can vary by several degrees C. Therefore there will be wide 

variations in relative humidity (RH), the relative vapour pressure h multiplied by 100 

percent, as this is dependent on the saturation vapour pressure which varies with 

temperature. If the temperature of a room or object is particularly low, the saturated 
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vapour pressure will also be lowered. As such there will be a temperature at which 

moisture will begin to condense from the atmosphere onto an object that is colder than 

its surroundings. The temperature at which this occurs is called the dewpoint 

temperature Td (Skaar 1972). 

5.4.2 Sorption of water 

Absorption is "the take up of a liquid by a porous solid within its gross capillary 

structure as a result of surface tension forces" (Stamm, 1964). It can occur in 

capillaries large enough to be visible without magnification. It is accompanied by 

only a limited reduction in vapour pressure of the liquid. In other words, the energy 

required to evaporate an absorbed liquid is only slightly greater than that required to 

evaporate the liquid from an extensive flat surface. Adsorption, defined in Stamm 

(1964) however, "is the intimate take-up of a gas, a liquid from the vapour phase, or a 

solute from solution by a fine powder, a porous material, or a swelling gel substance" 

In many cases the take-up is only one molecule thick, i. e. monomolecular. When this 

uptake is polymolecular, the uptake rarely exceeds a layer of ten molecules thick. 

Considerable adsorption can occur at low vapour pressures which indicates that the 

attractive force of the adsorbent (e. g. fibre) for the adsorbate (e. g. water vapour), may 

be considerably greater than the attractive force of the adsorbate for itself (Stamm, 

1964). 

The previously mentioned mono-and poly-molecular layers of water are bound by 

means of hydrogen bonding as opposed to being firmly held by covalent bonding to 

the fibre cell wall. Such covalent bonding would occur when an adsorbate reacts 

chemically with the adsorbent. This is known as chemisorption. 
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It is believed that water adsorbed beyond the monomolecularly held water, from 209 

RH to at least 9014 RH is polymolecularly held in solid solution. This is not thought 

of as true capillary absorption as such pre-existing capillaries are thought to provide 

only 2% of the cell wall volume, as such this adsorption is thought to occur in 

transient capillaries or spaces that only occur with a relative vapour pressure of 0.9 

(i. e. 9(Y2 RH) or more (Stamm, 1964). The theoretical types of adsorption would 

occur at the relative humidities displayed in Figure 43. 

so 
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Figure 43 the theoretical stages of adsorption and the mechanisms used at differing relative 
humidities. 

It should he noted that Figure 43 is only a rough presentation of general theories and 

there is believed to be a great deal of overlap between the types of sorption especially 

between mono- and poly-molecular sorption. 
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Plant fibres have a large surface area for water to be adsorbed onto. For example 1 

cm3 of wood (with a specific gravity of 0.4) will have an internal, microscopically 

visible capillary surface of some 870 cm2 as opposed to the 6 cm2 surface area of aI 

cm3 metal cube. It is important to note that the grinding of a porous material such as 

wood will only slightly increase the available surface area and as such the natural 

internal surface is available to the adsorbate, even in sizable pieces, if sufficient time 

is allowed to attain equilibrium (Stamm, 1964). As water is adsorbed by a natural 

fibre it swells the fibre as it enters the cell walls. This adds its own volume to the 

volume of the fibre by forming a solid solution. 

5.5 Types of adsorption 

An adsorption isotherm is the relationship between the amount of material adsorped, 

in terms of either weight or volume of adsorbate taken up per unit weight or volume 

of adsorbent, and the gas pressure, or concentration of adsorbate in solution at a 

constant temperature. Methods of measuring the adsoption isotherm of a given 

material are described in Section 5.9 and the 5 different types of adsorption isotherm 

recognised by Brunauer (1943) is illustrated in Figure 44 below. 
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Figure 44 the the thpes of physical adsorption isotherms identified by Brunauer (1943). Note that 
the amount adsorbed is shown pureh as an example to display the shape of each type of curve 
and not as a strict reference. 

In terms of lingocellulosic materials, only the type I and 2 adsorption curves are 

thought to occur. A> such the type 3,4 and 5 curves are not described here. 

Type I adsorption, or "Langmuir adsorption" describes monolayer adsorption. It 

applies to the adsorption of gases above the critical temperature (where the gas cannot 

be condensed at any pressure) on any solid surface. It also applies to adsorption from 

solution on all type% of solids. An adsorbate that reacts chemically with the adsorbent 

i. e. during chemixxption would always exhibit this isotherm. 

Type 2 adsorption is a sigmoidal (S -shaped) type of adsorption and it has been 

dex: ribed as always polymolecular. It follows the type one isotherm at low relative 
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vapour pressures and then begins to increase steadily as the relative vapour 

approaches unity (Skaar, 1972). 

In the case of plant fibres where the adsorption of water vapour caused the formation 

of a solid solution, the adsorption that occurs on pre-existing surfaces is small 

compared to the take-up of liquid within the solid substance. It has been viewed by 

some investigators as the take-up of liquid in transient capillaries: that is capillaries 

that are formed during the process of adsorption, but disappear during the process of 

desorption. Not being true capillaries this process does not utilise true capillary 

condensation filling as a result of normal surface tension forces which involve the 

replacement of a solid-air (or solid vacuum) interface with a solid-liquid-solid 

interface. This filling of pre-existing microscopically visible capillaries only occurs in 

plant fibres above 90% RH (Stamm, 1964). 

5.6 Fibre saturation point 

The term "fibre saturation point" (FSP) expresses the maximum amount of cell wall 

water that can be taken up from the vapour phase at a given temperature by a unit 

weight of a plant fibre or component, As such it is the water content of the plant fibre 

when the relative humidity in the surrounding atmosphere is exactly 100% (i. e. dew 

point). When this point is reached further water adsorption can only occur externally 

to the cell wall. 
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Though considerable difficulty has been experienced in establishing both 

experimental measurement and definition, the concept has proved useful in the study 

of both theoretical and practical aspects, regarding the interaction of water with plant 

fibres (Browning, 1963). 

5.7 Sorption hysteresis 

The amount of water held by cellulosic materials is not only dependant upon the 

equilibrium relative vapour pressure, but is also dependant on the direction from 

which the equilibrium is approached. This phenomenon is known as sorption 

hysteresis. The amount of water adsorbed from the dry condition is always less than 

the amount retained on desorption for any given RH, as shown in Figure 45. 

3rd party copyright material excluded from digitised thesis. 
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It was previously believed this phenomenon was caused by a lack of attainment of 

true sorption equilibrium. This was disproved by greatly extending the sorption time. 

It was also believed that the presence of air was responsible for hysteresis, but several 

investigators were unable to reduce the hysteresis effect by making their sorption 

measurements in sealed evacuated systems at gas pressures as low as 0.001 mm of 

mercury. As 99.9% of the adsorption by a plant fibre (or swelling gel) results from the 

formation of solid solutions, they are unaffected by the presence of air, i. e. the 

sorption occurs involving the replacement of solid-solid interfaces by solid-liquid- 

solid interface as per a type 2 sorption (Stamm, 1964). 

A favoured explanation for sorption hysteresis is given by Urquhart (1958) is the 

change in availability of the polar hydroxyl groups of cellulose, which are believed to 

bond the water by hydrogen bonding. In the original water soaked condition (as they 

would be in the growing plant), the OH groups of cellulose and lignin are almost 

entirely satisfied by sorbed water. When a plant fibre is dried, a number of hydroxyl 

groups are freed, and as shrinkage occurs, they are drawn closely enough together, to 

bond to each other. Thus upon subsequent adsorption, part of the hydroxyl groups of 

the fibre that are bonded to each other are not freed for water adsorption, thus 

resulting in a decreased adsorption. 

Another popular theory was presented by Barkas (1949), where it was shown on 

theoretical grounds that hysteresis may also be due to stresses set up as a result of 

swelling pressure forces in a wood or cellulose gel. This is due to the fact that the 

materials studied are not perfectly elastic and as a result are capable of assuming 

permanent deformations under stress. 
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Neither of the popular theories presented here, or any the several others regarding 

hysteresis, appear to have been unequivocally proven or disproved to date. It may 

indeed be that the hysteresis effect observed is an effect of a combination of many 

mechanisms but it would appear that it is not fully understood. 

5.8 Effect of temperature on sorption. 

It has been found by a number of researchers that when "sorption" experiments (not 

necessarily distinguishing between ad or de-sorption) are conducted at a range of 

temperatures, a lower moisture content is shown at higher temperatures, for the same 

relative vapour pressure (or RH). For example as presented in Skaar (1972) in Figure 

46 below. 

3rd party copyright material excluded from digitised thesis 

Please refer to the original text to see this material. 

Figure 46 sorption isotherms at three different temperatures showing EMC (%) against relative 
vapour pressure h, (Skaar, 1972). 
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It is well documented in wood science literature (Skaar 1972, Stamm 1964 etc. ) that 

desorption curves exhibit the phenomenon shown in Figure 46 above. It is also noted 

from varied (wood, textile and food) literature that this "spread" of isotherms has also 

been exhibited by various adsorption experiments using varied plant materials, for 

example; wood, hemp and flax fibres (Stromdahl, 2000) flax straw and hemp stalks 

(and Nilsson et a!, 2005), cotton fibre (Urquhart and Williams 1924), Jute fibre 

(Macmillan et a/, 1946) and tea (Arslan and Togrul, 2006). 

5.9 Methods of measuring sorption isotherms 

There are many methods available for measuring the sorption of water vapour by 

natural fibres. In general most methods work on the same gravimetric principal 

whereby samples of known dry weight are exposed to varied humidity levels and their 

weight is measured after the (ad- or de-) sorption moisture content has been given 

time to equilibrate. The change in weight is either studied by measurement in situ, or 

by removal from the conditioned environment and measured separately. The removal 

of the sample into a different environmental condition for weighing is likely to affect 

the results in some way as the sample starts to equilibrate with its' new surroundings. 

This effect can be minimised with the use of large samples and/or limited weighing 

times. In order to maintain the required humidity levels for such experiments, a 

number of different methods have been used. For example; 

Aqueous salt solutions. Various known saturated salt solutions will produce an 

individual RH in the air above it. By enclosing samples in such an environment the 

sample will thus equilibrate to the known RH and the moisture content calculated 
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when the (oven) dry weight is also known. The management and description of 

selected salt solutions is described in ATSM E104-85 (Anon., 1991). 

Aqueous Acid concentrations. Concentrations of sulphuric acid can also be used to 

produce a known RH, with obvious hazards and potential damage to the fibres at high 

acid concentrations (low RHs) as described by Macmillan et al (1946). The 

management of such solutions is also described in ATSM E104-85 (Anon., 1991). 

Monitored "air conditioning". With the advent of computerised monitoring using 

feedback from temperature and RH probes to determine the addition or removal of 

humidity, various controlled environmental condition units have been reported, such 

as: 

" Atomizing humidification e. g. Arslan and Togrul (2006) maintained their 

required RHs by atomizing a blend of purified water and air into a "fog". It is 

worthy of note, with regard to experimental design, that in this case the use of 

an UV lamp positioned above the samples "to prevent microbial growth" does 

cast some doubt as to the actual RH surrounding the samples, especially as 

both the temperature and RH probes were positioned above the water atomizer 

the other end of the 2m long chamber. 

" Dry and saturated air mass flow. The relative humidity can also be 

controlled by mixing two air lines containing dry and saturated air. With the 

required RH set by controlling the flow of each individual line. This is used on 

a relatively large scale (approx lm3 cabinets) by Stromdahl (2000) and on a 

much smaller scale in the "dynamic vapour sorption analysis" which is 

described in detail in Chapter 6 of this study. 
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5.10 Heat of wetting 

An important phenomenon concerning the sorption of water is that of the heat of 

wetting. As previously described, considerable adsorption can occur at low vapour 

pressures caused by the attractive force of the fibre (adsorbent) for the water vapour 

(adsorbate), being considerably greater than the attractive force of the adsorbate for 

itself (Stamm, 1964). In all cases adsorption is accompanied by the evolution (release) 

of heat, i. e. the heat of wetting. 

As part of this study it is considered that where a large quantity of fibre is used, the 

heat of wetting in natural fibres may have an effect on its surrounding environment. 

The in situ performance of a natural fibre based insulation material may thus be 

affected by this phenomenon, which may in turn have a bearing in the products LCA 

outcome. Therefore, a brief description of the energies involved with the sorption 

process is presented here before a description of the methods used to gain data 

regarding the heat of wetting. 

The differing quantities of energy involved in this dynamic system are explained by 

Skaar (1972); Moisture occurs in plant fibres in three forms, analogous to the three 

states of water; There can be water vapour in the air spaces in the cell wall cavities, 

capillary or free (liquid) water in the cell cavities and hygroscopic or bound water in 

the cell walls. Water-vapour molecules are at the highest potential energy level, 

capillary-water molecules are at a lower potential energy and hygroscopic or 

molecules in the cell wall are at a still lower energetic state. 
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Continuing the analogy with regard to energetic states, the water vapour molecules in 

the cell wall cavities are in the same high energy state as water vapour outside the 

fibre. The liquid capillary-water molecules are at a very slightly lower energy level, 

than that of ordinary liquid water due to capillary-water attraction. This difference is 

normally neglected. The potential energy level of the bound water is slightly different 

to that of frozen (or solid state) water as the sorbed water molecules are held with 

varying energies depending on the fibre moisture content, whereas all the molecules 

in ice are in (practically) the same energy state. A diagrammatic representation of this 

analogy is given in Figure 47 below: 

VAPOR 

P. E. 
I 

(col/q) (4 ' Q. 1 

M LIQUID 
t SOIJN QL M -ý 

BOUND WATER 

Qs Heat of Sublimation 

Heat of Fusion 

I1 4D Heat of Vaporization 
Energy required to evaporate one gram of water from the cell wall 

1L Differential Heat of Wetting 

Total Integral Heat of Wetting 

Figure 47 a schematic diagram to show the relative potential energy levels of water vapour, 
liquid water and bound water on the left and their analogous equivalent in a plant fibre on the 
right. %ote the increase in energy shown br the bound water as the moisture 

198 



The difference Q� - Qo where Q� is the energy required to evaporate one gram of 

water from the cell wall and Qo is the energy required to evaporate one gram of water 

from the liquid state is designated as QL the differential heat of wetting of liquid 

water by a plant fibre. QL is therefore the additional heat energy over and above the 

heat of vaporisation Q. of free water, which must be supplied to evaporate one gram 

of water. This is analogous to the heat of fusion required to melt ice Qf. The value of 

Q, varies between 3470 and 2380 joules per gram of water between "ovendry" 

moisture content and fibre saturation point at 50°C. 2380 joules per gram of water is 

thus the value of Qo (Skaar, 1972). 

The total integral heat of wetting can also be calculated if the differential Heat of 

wetting (QL) is known for a number of moisture sorption points in order to plot the 

relevant curve. Integration of the resultant curve will find the area under the graph 

(shown in yellow in Figure 47) to yield the integral heat of wetting (Skaar, 1972). 

It is possible to calculate the differential heat of wetting using the results from 

sorption isotherms at two (or more) temperatures for a material. Using this method 

requires data concerning the different humidity levels needed to achieve a given 

moisture content. As previously discussed with reference to the spread of sorption 

isotherms at different temperatures, the two temperatures studied will give differing 

humidity values for the same moisture content. The results are then inputted into a 

version of the Clausius-Clapeyron equation. This method is described in detail in the 

methodology of Chapter 7. 
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5.10.1 Sorption models 

In order to use a given set of isotherms the equation of the sorption curve must be 

calculated or estimated from the experimental data points. In many cases data 

regarding sorption of plant fibres has been smoothed into a usable isotherm by means 

of the various established sorption models. These sorption models in general rely on 

various theories regarding the sorption of water onto the fibre. For example the 

Hailwood Horrobin theory calculates the sum of a theoretical mono and multi-layer 

curve to produce a model curve for a material where the required constants have been 

previously calculated from isotherm data. There are many other sorption models, such 

as the BET, Dent, and Le and Ly models described in Avramidis (1997) which can be 

used to predict sorption curves. Each model would also appear to fit data points for 

different materials more accurately than others, as described by Nilsson et al (2005) 

where five different models have been used to produce isotherms curves for hemp and 

canary grass from limited (four) data points, noting that a closer fit was exhibited by 

differing models for each different variety and stage of retting. 

5.10.2 Heat of wetting from calorimeter 

It is virtually impossible to measure the differential heat of sorption (QL) directly by 

calorimetric means, as to do so would require the addition of a small amount of water 

uniformly throughout a large enough sample of plant fibre such that its moisture 

content would remain essentially unchanged (Skaar, 1972). 

However, the integral heat of wetting can be measured directly using the calorimetric 

method by using a sorption calorimeter. In this method a small amount of a given 
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material is added to water in a sealed reaction chamber and the enthalpy change is 

thus measured. If the starting moisture content of the sample was zero, then the result 

will be the Total integral heat of wetting (i. e. the area shown in yellow in Figure 47 

previously). This method has been used to gain data on the heat of wetting of various 

materials in the past but has also been found to be unreliable for certain materials, e. g. 

flax, due to poor mixing between water and material (Dieste, personal 

communication). 

5.11 Conclusions 

A number of water sorption characteristics have been discussed in this chapter that 

raise questions over the effect of moisture in the LCA of natural fibre insulation 

materials. The work of Padfield (1998) showed that the adsorption of water vapour 

does not effect the thermal conductivity in natural fibre insulation any differently to 

that of mineral based materials, i. e. no change is noted until fibre saturation point in 

the natural fibres (and "condensation" on the mineral fibres) has most likely occurred. 

Hence further studies in this area are unlikely to produce a different outcome to a 

comparative LCA as described previously. 

However, it does appear from further review of water sorption that other 

characteristics may affect an LCA outcome. The most inportant of these would appear 

to be that of the heat of wetting, as is it may be possible that the small quantities of 

heat evolved and absorbed during moisture adsorption and desorption, respectively, 

may affect the energy use in a dwelling where a large amount of material is used. 
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6 The use of Dynamic Vapour Sorption 

6.1 Introduction 

From the previous literature review in Chapter 5 of this study, it was identified that 

the moisture sorption of natural fibres may affect the performance of an insulation 

material made from them. In particular it was noted that the heat of wetting of natural 

fibres may affect the internal environment of a studied dwelling. As such the LCA of 

such material may also be affected due to this change in environment on the 

inhabitants, during the materials' long service time. 

The use of natural fibres can effect the building environment in a number of ways, all 

of which may lead to a change in the "comfort" of the occupants thus affecting their 

potential use of ventilation and heating: 

" Sorption of water vapour releases heat, some of which will enter the dwelling 

" Sorption of water vapour will reduce the RH of the dwelling to some extent. 

" The release of moisture from natural fibres may have a role in regulating the 

building temperature and humidity. 

Dynamic vapour sorption analysers have been used to produce extremely accurate 

studies of moisture sorption in a variety of natural and synthetic materials. Many of 

these studies have been concerned with pharmaceutical and food industry studies, 
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where for example the shelf life of products is often dependant on the materials' 

sorption of water, thus knowledge of its relation to water vapour is vital. 

It was the aim of the experimental work presented in this chapter, to gain an 

understanding of the moisture sorption characteristics of various natural fibres. Rather 

than use the commonly used method of adsorption - desorption over salt solutions, 

this study uses a Dynamic Vapour Sorption (DVS) apparatus. This allowed for very 

accurate isotherms to be obtained and also allowed for these to be run at different 

temperatures. Since the DVS is not commonly used to calculate heat of wetting values 

a considerable amount of time was spent on experimental development. 

6.2 Methodology 

In this study the DVS analyser has been used to produce graphs of various natural 

fibres in order to gain a greater understanding of their atmospheric moisture sorption 

behaviour. An introduction to Dynamic Vapour Sorption (DVS) used in this study is 

presented here. 

6.2.1 The Dynamic Vapour Sorption (DVS) System 

In order to understand the operation of the Surface Measurement Systems® DVS a 

schematic diagram of the system is presented in Figure 48 below and then described. 
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3rd party copyright material excluded from digitised thesis. 
Please refer to the original text to see this material. 

As can be seen from Figure 48 one of the most important parts of the DVS is the 

Cahn® ultra-sensitive microbalance which is capable of measuring changes in sample 

mass lower than 1 part in 10 million. This type of microbalance has very good long- 

term stability and is therefore ideally suited to the measurement of vapour sorption 

phenomena, as the study of which may take anything from minutes to days or even 

weeks. The sample and reference holders that hang from the microbalance are held in 

a constant flow of variable and controlled water vapour. The required relative 

humidities are generated by mixing dry and saturated vapour gas flows in the correct 

proportions using mass flow controllers. Humidity and temperature probes are 

situated just below the sample and reference holders to give independent verification 

of system performance. 
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Both wire mesh and glass sample holders were used during the experimentation in 

this study with no difference in performance recorded, however due to easier cleaning 

of the glass sample holders they were favoured in later experimentation. 

The Cahn® microbalances have occasionally been noted (by the manufacturer) to 

exhibit slight drift over "long" time periods if exposed to high relative humidity's. 

The typical size of this problem varies from balance to balance, but may typically be 

10 µg over a 24-hour period of time. By flowing a purge of dry gas through the head 

of the balance at all times (shown in Figure 48), this drift is almost entirely eliminated 

(Surface Measurement Systems Ltd UK, 2003). 

The main part of this unit is housed in a precisely controlled constant temperature 

incubator which ensures accurate control of the relative humidity generation. The 

whole instrument is controlled by an IBM compatible PC Microcomputer. A 

schematic of which is shown in Figure 49 below. 
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The microcomputer was interfaced to the balance control unit via an RS-232 serial 

link, whereas the DVS control electronics are interfaced via a National Instruments 

analogue/digital data acquisition card. 

6.2.2 DVS Experimental 

The sample holder pan was first cleaned by rinsing it in water then ethanol, then was 

carefully placed back on the wire hanger that extends down from the microbalance 

arm and the chamber and incubator closed. The balance was then tared once it has 

settled and the sample holder is shown to be clean and dry, which is determined by 

varying the RH of the chamber and noting any change in mass that may be caused by 
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left over material adsorbing water vapour, or by water or ethanol evaporating. Taking 

the RH up to over 80% was used to diminish any static that may have built up. 

Samples of around 4 mg were then placed into the DVS sample holder using 

tweezers, ensuring that none of the sample contaminated the chamber below as this is 

very hard to clean and may also affect results. This can be achieved by covering the 

aperture with a credit card sized piece of paper. It is worthy of note that large samples 

of up to 10 mg were initially used but were found to take over a week to analyse and 

so this smaller sample size was chosen as it still produced reliable results. Once the 

balance and environmental conditions had settled the chosen experimental program 

was run. In most cases a series of 5% RH increments was programmed into the data 

acquisition software, starting from 0% and rising to 95% then returning to 0%. This 

was used in order to produce the data required to calculate detailed ad and de-sorption 

isotherms and thus a hysteresis loop. A typical program is shown in the form of a 

graph in Figure 50. Note the difference in time taken to reach the chosen cut off at 

different RHs and the identical (very nearly horizontal) angle prior to this shown by 

the red mass change line. 
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Figure 50 an example DVS mass change over time graph to represent a typical 
sorption/desorption profile as studied using a D%'S analyser. 

Time limits were not introduced for each data point, instead the DVS function of 

recognising the same rate of change in mass over time was used as this was thought 

to produce more comparable data. By allowing the DVS to calculate the same change 

in mass over a change in time, i. e. a "dm/dt" of 0.002%, a figure was produced for 

each RH studied in the experiment where a comparable change in moisture sorbtion 

had been achieved. This would be seen in Figure 50 as an identical angle of the 

individual sorption curves is shown immediately prior to the next target RH step if 

greatly magnified. 

This was found to he a superior method compared to cutting each RH studied in the 

experiment off at a particular time limit. With the latter method it can only be guessed 

a. to how near or far the sample was to equilibrium before the experiment moves on 

to the next RH. This could well be an important part of the methodology as it can also 

be seen in Figure 50 that the time taken to reach (very near) equilibrium at each RH 
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studied varied greatly. E. g the time taken to equilibrate to 40% RH (in both ad and de- 

sorption) %ka-, much shorter than the time taken to reach equilibrium at 95% RH or 0% 

RH. If the experiment was conducted with set timescales set for each RH studied then 

the fibres would not have achieved the same level of equilibrium at each RH. 

By recording the final mass achieved at each target RH, a typical sorption/desorption 

isotherm graph can he produced, as shown in Figure 51 below. Due to the presence a 

temperature/humidity probe just below the sample holder the actual RH can be plotted 

for even greater accuracy, though in most cases (i. e. around room temperature) this 

was generally not necessary as the target and sample RHs were identical. 

Figure 51 an example adsorption/desorption isotherm graph produced by flax fibre in the DVS 
analyser. 
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By subtracting the mass change (or weight percent gain) of the adsorption curve from 

the desorption curse, a graph showing the amount of hysteresis at a given RH is 

produced. As shown in Figure 52 below. 
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Figure 52 an example isotherm hysteresis graph produced by flax fibre in the DN'S analyser. 

6.3 Methods and Discussion 

An initial %et of e%penments as de%ised in order to gain an understanding of how the 

DVS analyser would perform when studying natural fibres. The results of this 

preliminary round of experimentation appeared to display some interesting results 

with regard to the chemical composition of the fibres studied. Therefore a second set 

of experiments was performed in order to provide further verification of the DVS 

analysers performance. The results and brief discussions thereof regarding both 

"experimental I" and "experimental 2" are presented here. 
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6.3.1 Experimental 1 

The DVS anale scr vv as used to study N urious natural fibres in order to gain an 

understanding of their relationship with water vapour. The origin of the fibre samples 

are described in Table 13 below. A program of between 0% to 95C/ RH was used with 

each sample at steps of 5 RH increments. The resultant adsorption and desorption 

graphs are presented below followed by the hysteresis, calculated as described in the 

methodology (Section 6.2) of this chapter. In order to produce a clearer but yet 

comparable presentation, the adsorption and desorption results are displayed 

separately in Figure 53 and Figure 54 respectively, using the same arbitrary reference 

line 

Table 13 Description of fitere , amples used in the following sorption experiments 

Fibre Description of fibre sample Origin of fibre Manufacturer 
/supplier 

lLR Mille. - arc-\arn line (ihre sliver Northern France Sancr&, 
Hemp Milled short fibre tow East Anglia, UK Hemcore 
Jute Milled pre-yarn tow fibre sliver India Wi glesworth 
Coir Milled low grade wadding fibre Unknown Enkev 
Cotton Cosmetics grade "cotton wool" Unknown Boots 

Sitka Milled sample blocks UK Forestry 
Commission 
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Figure 53 a graph to show the adsorption curves produced by various natural fibres studied by 
D%'S analysis at LS C 

x 

is 

2 

f 
.s" 

+o 

s" 

t Flax 

-0- Hemp 

Me 
Car 

REFERENCE 

Figure 54 a graph to show the desorption curves produced by various natural fibres studied by 
DVS analysis at 25 C (using the same reference line as the previous adsorption graph) 
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Figure 55 a graph to show the hysteresis curves exhibited by various natural fibres studied bý 
D''S analysis at 25 C 

From Figure 53 and Figure 54 it can be seen that there the different types of natural 

fibres studied appear to exhibit different ad and de-sorption curves. Hemp and jute 

achieved the highest changes in mass, with cotton displaying the least. Though in 

terms of ad and de-sorption between 10% and 80% RH coir possessed higher mass 

changes. 

In terms of hysteresis. as shown in Figure 55, flax, hemp and cotton all possessed 

similar characteristics, whereas jute showed a larger amount of hysteresis and coir 

larger still. 
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Figure 56 a graph to show the h? steresis exhibited by various natural fibres studied at 70 c7c RH 

As it was noted from the literature review that flax, hemp and cotton all possessed low 

quantities of lignin when compared to jute and especially coir, it was thus thought that 

a relationship between the quantity of lignin and the amount of hysteresis displayed 

by a fibre may exist as displayed in Figure 56. A brief further study was devised to 

test this theory as presented in Experimental 2 below. 

6.3.2 Experimental 2 

It was noted from Experimental I that natural fibres possessing large quantities of 

lignin also displayed large sorption hysteresis, as such an experiment was designed to 

study the affect of lignin on natural fibre sorption characteristics in a more controlled 

manner. 
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6.3.2.1 Method 

In this experiment lignin was extracted from raw coir fibre to varying extents. Coir 

was chosen as for this experiment as it possessed the highest amount of lignin of the 

fibres available. This extraction was achieved by carrying out a series of de- 

lignification experiments using a standard "Chlorite Holocellulose" experiment (using 

sodium chlorite), as described in Han and Rowell (1997) and repeated in Appendix V. 

The only difference being that the repeated experiments were carried out over 

decreasing lengths of time as shown in Table 14 below. This provided fibres with 0%, 

9%, 16% and 26% of lignin content by weight. This experiment was conducted with 

the assumptions that the initial lignin content of the starting coir fibre was 26% and 

that the only material removed in these experiments was lignin. The water sorption 

characteristics of the raw and "bleached" fibres (depicted in Table 14) were then 

studied using the DVS analyser to provide comparable isotherms at 25°C. 
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Table 14 the length of "chlorite holixd iulose" experiment conducted on coir fibre stating the 

quantit% of lignin remaining and depiction. 

Length of delignification Assumed final lignin Picture of 
procedure content (%) sample 

5 hr 0 3k N- 

f1 

-* 
M 

2 hr I 

ti 

01. ý- is I 
Ihr 16 

0 hr (raH coir) 26 

6.3.2.2 Reduction in data points 

In term% of experimental design it was also decided to remove some of the 51-/( RH 

increments programmed into the DVS for data collection. In this experimental 

(between 10% and 8(Y7 RH) they were replaced with 10'4 RH increments, thus 

speeding up the lengthy data collection period. This decision was made after it was 

observed that the most notable adsorption and desorption changes in the results 

produced by various natural fibres occurred outside of this range, i. e. in the regions of 

0-10% RH and 90-95(4 RH. 

6.3.2.3 Results 

The a%eraged results of two full adsorption/desorption cycles for each lignin content 

are presented in Figure 57 and Figure 58 below, with a presentation of the effect of 

this delignitication on the hysteresis properties following in Figure 59. 
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Figure 57 a graph tu %how the adsorption curves produced by coir fibres of varying lignin 
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Figure 58 a graph to %how the desorption curves produced by coir fibres of varying lignin 
quantities studied bý I)% S analysk at 25 C 
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Figure 59 a graph to show the h%steresis curves produced by coir fibres of varying lignin 

quantities studied b% DVS anah%is at 25 (' 

As can he seen in Figure 57 and Figure 58, there appears to be a possible negative 

correlation between the amount of lignin in the coir fibre and the quantity of water 

taken up by the fibres. In both the adsorption and desorption curves, lower levels of 

lignin in the coir fibres appear to yield higher moisture contents. 

The 26% lignin curve below 7017 RH appears to follow this trend with a similar or 

lower moisture content to that of the "16% lignin" curve, however above 7017( RH 

during adsorption and above 85' RH during desorption, the 26% lignin curves do not 

appear to follow this trend as the moisture content appears to increase, but no more 

than the 0"k lignin results. 

From Figure 59 it is noted that there appears to be a possible positive correlation 

between lignin percentage and hysteresis moisture content (especially between 30% 
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and 70% RH). However, greater differences appear to occur above 70% RH. One 

notable difference appears to regard the point of maximum hysteresis. Though there 

appears to be no real correlation regarding the amount of hysteresis at this point, there 

does appear to be a relationship regarding the RH this point occurs at. i. e. the point of 

maximum hysteresis for coir fibres with 0% lignin occurs at a higher RH 

(approximately 87%) than that of fibres with 26% lignin (approximately 73%), with 

both fibres with 9% and 16% lignin peaking at around 83%RH. 

The decision to remove some of the 5% RH increments for data collection in this 

study and replace them with 10% RH increments does not appear to have hampered 

the overall data analysis of the adsorption and desorption curves as very smooth 

curves where produced. In terms of studying hysteresis however, due to the noted 

effects of delignification on the point of maximum hysteresis, a data point at 75% RH 

may have yielded more conclusive data regarding the point of maximum hysteresis 

attained by the 9% and 16% lignin fibres. 

It is not known how the presence or removal of lignin causes the effects noted 

previously. In terms of the increase in sorption seen with a decrease in the amount of 

lignin, this is possibly caused by the removal of lignin simply making the fibre 

structure more open thus exposing more hydroxyl groups or sorption areas to the 

water vapour. It is also possible that this removal of lignin makes the fibres more 

flexible and thus its water sorption less restricted especially by the "temporary pores" 

described by Stamm (1964) that only exist in the presence of water. No further work 

was carried out in this area to try and ascertain which of these and the many other 
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theories regarding this may be more likely, as this was considered to be tangential to 

the main aim of study. 

6.4 Conclusions and Recommendations 

The main conclusions drawn from the two experiments discussed in this chapter are 

presented here: 

" Though there is a possible negative correlation between the amount of lignin 

in coir fibre and the moisture content at varied RHs (below 70% RH) the 

results are inconclusive. 

41 A reduction in lignin in coir fibres appears to cause an increase in the RH at 

which the point of maximum hysteresis is observed though further study 

would be required to verify this. 

With regard to the use of the DVS analyser with natural fibres, very smooth 

adsorption and desorption curves where exhibited for varied natural fibres, indicating 

that the data produced was of a reliable nature. From this it would appear that samples 

of natural fibres as small as 4mg can be used satisfactorily in the DVS analyser due to 

the large quantity of water adsorbed (as compared to synthetic materials studied 

previously for example). 
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The reduction in data points (omitted in experimental 2 in order to speed up data 

collection) appeared to still provide smooth and comparable sorption curves. 

However, it was noted that for comparisons between hysteresis plots a larger number 

of data points should be considered. 

No further work was carried out to investigate the likely cause of the correlations 

observed between lignin percentage and moisture sorption however it is suggested 

that the use of "solute exclusion" (to study the available micro pore sizes) or 

"deuterium exchange" (to study the quantity of available hydroxyl groups) may 

provide some useful data for further studies in this area. 
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7 Heat of Wetting Study 

7.1 Introduction 

Natural fibres behave very differently to mineral fibres in their ability to adsorb water 

during changes in RH. Just as removing water from a fibre during drying requires 

energy, conversely water adsorbed into a fibre releases energy. The energy given off 

in this process is known as the heat of wetting. The main reasoning behind this 

section of study was to ascertain the scale of impact of the integral heat of wetting on 

the life cycle of a given natural fibre insulation product. It is stated in the literature 

that the differential heat of wetting can be measured by means of calculation (using 

the Clausius-Clapeyron equation) using data from sorption isotherms that have been 

collected from experiments conducted at two or more temperatures. As previously 

described (in Section 5.10 in Chapter 5) a plot of the differential heats of wetting at 

different moisture contents can then be used by a method of integration to find the 

integral heat of wetting. It is this integral heat of wetting that represents the energy 

required (or released) during a given change in moisture content bought about by a 

change in RH. 

As an insulation material is exposed to many RH changes over its lifetime, it is 

possible that this total energy may be of a magnitude where it may affect the energy 

usage of a dwelling. If this is found to be the case then the environmental impact of 

such a material could be affected over its life cycle. As such the aim of the 
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experimental work described in this chapter is to produce data that can be used to 

calculate the effect of the (integral) heat of wetting on the products' LCA. The DVS 

analyser described in Chapter 6 was used to perform sorption experiments at different 

temperatures on a selection of materials in order to validate the methodology. These 

are Sitka spruce, hemp and flax. 

7.1.1 Importance of integral heat of wetting figures 

A preliminary calculation was performed to ascertain the possible importance of this 

area of study. Using differential heat of wetting figures for beech wood (Weichert, 

1963, presented in Skaar, 1972) in the absence of such figures for hemp fibre, it was 

possible to roughly calculate the impact of the integral heat of wetting in an example 

(2 bedroom) dwelling with a 40m` loft as follows, with the assumption that beech 

wood and hemp fibres will have a similar integral heat of wetting: 

Given an example RH change of 30% between a day (30%) and night (60%) in a 

given loft space, an approximate gain of water of 4% by weight would be expected by 

a hemp fibre insulation material i. e. a change between 4 and 8% mc. Using data from 

Weichert, (1963, presented in Skaar, 1972) on beech wood as a surrogate for the 

natural fibres in the insulation, this would release approximately 12 Joules* of energy 

per gram of water adsorbed (*the method for this calculation is given in the following 

methodology Section 7.2). 320kgs of insulation would be required to insulate the 

example loft to the required UK standard. During this 30% flux in RH some 13kg of 

water will be adsorbed releasing 156,600 Joules (or 43 watt hours) of energy. Given 

that an average household of this size uses around 6000 watt hours of energy per day 

this would equate to providing the equivalent of around 0.7% of the household's 
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energy use during a night where this flux in RH was observed in the loft space. In a 

more efficient home figures of 1000 watt hours of energy per day are reported as such 

this heat of wetting would equate to over 4% of the home's energy requirement each 

day this flux occurred. 

It is noted however that this energy would be released in all directions and thus only 

up to half of this could be associated with the dwelling space. It is also noted that 

during the next theoretical day the same amount of energy would thus be "absorbed" 

from the house by the insulation as the loft space RH reduces and the material 

releases moisture. In reality it is noted that it is during the evening and night time that 

most heating is used and this is also the time when a loft space RH generally increases 

based on data recorded by Jenkins (Unpub. ) which is when this heat energy would be 

released. 

As previously mentioned with regard to other LCA functional units, the natural fibre 

insulation material studied here is often used as a wall insulator (for sound and 

thermal insulation purposes) this being the case a far larger amount of material and 

thus energy released and "absorbed" will be used which could well make a noticeable 

difference to the energy usage of a given house. The practice of building with 

hemp/lime is also becoming more popular and the effect studied here could be very 

useful for moderating the RH/temperature in a dwelling, however without the basic 

results there is no way of knowing. As such this would appear to be a very interesting 

if not significant area for research. 
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The initial assumption that wood and hemp fibres have a similar integral heat of 

wetting is itself possibly flawed, as for example the total integral heat of wetting for 

beech has been shown to be 69.5 J/g whereas for flax (a similar fibre to hemp, though 

by no means identical) a lower figure of 54.3 J/g has been shown (Dunlap, 1913 and 

Guthrie, 1949 respectively from Stamm, 1964). There would appear to be a current 

lack of available data regarding the heat of wetting of hemp fibres that could be used 

to calculate more accurately the energies involved in the life cycle of the product. i. e. 

data regarding the differential heat of wetting so that the correct portion of the 

integral heat of wetting can be calculated. i. e. relevant to the predicted moisture 

contents found in situ. It was the aim of this experimentation to provide data for such 

a calculation. 

7.2 Methodology 

Calculating the differential heat of wetting from sorption isotherms is a well 

established method in the area of wood science. It is often referred to as the 

thermodynamic method and an adaptation of a generally accepted method is presented 

here. A short discussion regarding initial complications with the use of this method in 

conjunction with data produced by the DVS, is also included in this section in order to 

explain the final methodology used. 
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7.2.1 Calculation of the heat of wetting from sorption isotherms 

A method of determining the differential heat of wetting using an integrated form of 

the Clausius-Clapeyron equation was used in this study and was adapted from the 

thermodynamic method described in Skaar (1972). 

As previously mentioned in Chapter 5 the integral heat of wetting can be calculated if 

the differential Heat of wetting (QL) is known for a number of moisture sorption 

points in order to plot the relevant curve. Integration of the resultant curve from zero 

moisture content to fibre saturation point will find the total area under the graph 

(shown in yellow here in Figure 60) i. e. the total integral heat of wetting. If many 

figures for the differential heat of wetting at different moisture contents are known 

then a portion of the integrated graph can be calculated, e. g. the area under the curve 

between the estimated moisture contents in the example given in the introduction to 

this chapter. 
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Figure 60 a schematic diagram to show the sorption energy Q (J/9-water) of water in a plant 
fibre as a function of the moisture content %I of the fibre below and above the fibre saturation 
point %If. Adapted from Skaar 11972 1 

It is possible to calculate Q\ using the results from sorption isotherms at two or more 

temperatures inputted into the Clausius-Clapeyron equation. As Q0, is known to be 

2,378 Joule% per gram, the differential heat of wetting QL can thus be calculated. In 

order to do this the partial vapour pressure h (calculated as p/p�) achieved at a given 

moisture content ((7c) at two different temperatures must be known. These can be 

taken from sorption curves as shown in Figure 61 below. 
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3rd party copyright material excluded from digitised thesis. 

Please refer to the original text to see this material. 

In order to calculate the required humidity figures precisely from isotherm data, the 

equation for the sorption curve must first be known. As isotherm data is generally 

produced at given humidity's rather than moisture contents, these figures were 

calculated in this study by finding the best fit (6 order) polynomial equation for a plot 

of moisture content on the X axis, against humidity on the Y axis. This is show here 

in Figure 62 using the example of data presented in the Wood Handbook (U. S. Forest 

Products Laboratory, 1974) on Sitka spruce for 21.1 and 82.2°C in order to follow on 

from the example presented in Skaar (1972) as the data would appear to be identical. 
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Figure 62 a plot to show the -a% figure polynomial best fit curves obtained from the Sitka spruce 
data presented in the Nood Handbook (U. S. Forest Products laboratory, 1974). Note the very 
good fit of the cures denoted b, # the exceptionally high k' value obtained 

Using the hest tit curNes produced in the program Excel, accurate RHs (equal to p/po 

multiplied by 100) can be predicted from the curves at given moisture contents. These 

values can then be used to solve the following equation which has been adapted from 

the Clausius-Clapeyron equation (as presented in Skaar, 1972). 

Qý = 1.06172 x (Iog p, - log p2) / (IIT, ) - (1/T, ) (7.1) 

Where p is the vapour pressure at a given temperature, T is the temperature in K and 

Qý is given in J/g. The original equation presented in Skaar (1972) has been 

converted here to provide a figure in J/g from the original cal/g by applying the 

multiplication factor of 4.18 on the original constant of -0.254. 

82.2'C 
21. VC 

"1 
0( z 
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229 



In order to use this equation a value of p and T must first be calculated for 

temperatures Ti and T2. The absolute or Kelvin temperature Tin K can be derived 

from the temperature in °C by the addition of 273.1 (i. e. T= 273.1 + °C). 

Therefore: Ti = 273.1 +21.1 °C = 294.2 K (7.2) 

T2 = 273.1 + 82.2°C = 355 K (7.3) 

Calculating the vapour pressure p is more complicated, however the vapour pressure p 

at any temperature is equal to the relative vapour pressure p/po times the saturated 

vapour pressure po at the same temperature (i. e. p= po (p/po) ), remembering that 

p/po is equal to the RH divided by 100. 

From studies regarding the spacing of water molecules at different temperatures it has 

been approximated that: 

Log po = 8.94-(2260/7) (7.4) 

Where po (in mm of Hg) is the saturated vapour pressure at a given temperature and T 

is the temperature in K (Skaar, 1972), 

Thus po can be calculated for a given temperature by calculating the reciprocal log of 

this equation. Referring to the Sitka spruce example the following figures can be 

calculated: 

For p, Log po = 8.94-(2260/294.2) (7.5) 
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Log po =1.258 (7.6) 

po = 18.12 (7.7) 

for a 10% me the RH was calculated as 54.21 thus giving a p/po value of 0.5421 

PI = Po (Pi/Po) (7.8) 

p, = 18.12 x (0.542 1) (7.9) 

Therefore p, = 9.823 (7.10) 

For P2 Log po = 8.94-(2260/355) (7.11) 

Log po =2.58 (7.12) 

po = 379.47 (7.13) 

for a 10% me the RH was calculated as 72.84 thus giving a p/po value of 0.7284 

Pz = Po (P21Po) (7.14) 

P2 = 379.47 x (0.7284) (7.15) 

Therefore P2 = 276.41 (7.16) 

Using these figures the differential heat of wetting QL at 10% me can be calculated 

using the previously described adapted form of the Clausius-Clapeyron equation 

(equation 7.1) to first work out Qv: 

Qv = -1.06172 x (1og pl - log p2) / (1/Ti) - (1/TZ) (7.17) 

Qvo. i= -1.06172 x (log 9.823 - log 276.41) / (11294.2) - (11355) (7.18) 

Qvo. i -1.06172 x (1.449) / (-0.000585) (7.19) 

Qvo. i = -1.06172 x (1.449) / (-0.000585) (7.20) 

Qvo 1= 2629 J/g (7.21) 
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Remembering from Figure 60 that QL = Qv - Qo (Qo being the heat of vaporisation, 

known to be 2378 J/g) the differential heat of wetting at a 10% me for Sitka Spruce 

(QL) is therefore 251 J/g (i. e. 2629 J/g -2378 J/g). 

In order to calculate the integral heat of wetting a plot of a wide range of differential 

heat of wettings must be plotted and then integrated. Therefore if the total integral 

heat of wetting is desired then figures must be calculated from 0% me to fibre 

saturation point. This has been done using data in the Wood Handbook (U. S. Forest 

Products Laboratory, 1974) on Sitka Spruce for 21.1 and 82.2°C. Using calculations 

in the same manner as previously described the following plot is produced (shown in 

Figure 63). 
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Figure 63 the differential heat of wetting of Sitka Spruce (U. S. Forest Products Laboratory, 1974) 
as presented between 0.01 and 0.21 gIg mc. Note the near perfect linear relationship displayed by 
the data below 0.14 gIg me (R2 = 0.9999 for the line y= -3031.3X + 562.88) 
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By plotting this graph in the program Origin (6.1) the calculus function "integrate" 

was used to calculate the area under the graph. For the data provided (between 0.01 

and 0.21 g/g mc) a figure of 51 J/g is produced. 

This is close to a figure for the total integral heat of wetting except that the 

differential heat of wetting figures for 0 g/g me and fibre saturation point are missing. 

However as a means of validating the method it would be useful to calculate, as such; 

a figure for 0 g/g me is not calculable using the previously explained method due to 

the logarithms used in the equation, however it can be estimated as 562.88 J/g taken 

from the linear best fit equation for the near perfect linear section of the presented plot 

y= -3031.3X + 562.88. 

Stamm (1934) states that the fibre saturation point of Sitka spruce occurs at 0.32 g/g 

me at which the differential heat of wetting should in theory be zero. Extending the 

graph in both directions using these two extra points and re-integrating the resulting 

graph gives a figure of 59.4 J/g, for the total integral heat of wetting of Sitka Spruce. 

In comparison to other total heat of wetting figures presented in Stamm (1964) this 

figure would appear to be reasonable figure though possibly a little low as figures for 

wood samples of other species appear to vary between 62 and 84 J/g. 

7.2.2 Example using data for beech wood 

The example using data on beech wood as a surrogate presented in the introduction to 

this chapter, was calculated in a similar fashion but was approximated as the area 

between 4% and 8% (0.04 and 0.08 g/g) me using the differential heats of wetting 

figures from Weichert (1963, presented in Skaar, 1972) as presented in Figure 64. 
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Figure 63 to shoe the differential heat of wetting 1QL1 shown by Weichert (1963, presented in 
Skaar, 19721 and the approlimate integral heat of wetting value of 13 J/g between the values of 
0.04 and 0.0$ me 1 g/g I. 

The value of 13 1/g taken from Figure 64 was used in the original example shown in 

the introduction to this chapter. 

As an extra note regarding the validity of this method, extending the graph in the 

same manner as described previously with the Sitka Spruce data gives a total integral 

heat of wetting of 61 J/g which is again a reasonable figure, though slightly lower 

than that quoted by Dunlap ( 1913, presented in Stamm, 1964) of 69 J/g. 

7.3 Use of DVS data with the thermodynamic method 

During initial experºmrnt% % kith varied samples at different temperatures using the 

previously described method a major question arose: "which isotherms should be 
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used? " A short discussion of preliminary findings is presented here in order to explain 

the final methodology. 

In terms of using data from the DVS analyser it is also worth noting that when the 

adsorption graphs were first plotted using the Target RH instead of the independently 

measured Sample RH the spread of graphs was found to be opposite to that described 

in Skaar (1972) and Stamm (1964), i. e. A higher % me was shown with an increase in 

temperature. This would appear to be a product of small inaccuracies in the estimated 

target RH, especially at temperatures away from that of room temperature. As such 

the Sample RH was used in the following calculations. 

7.3.1 Which isotherms should be used? 

It was initially thought that the differential heats of wetting could be calculated by 

using the adsorption curves at different temperatures produced by the DVS analyser, 

due to assurance from the DVS manufacturer Surface Measurement Systems, that this 

was possible. It was believed that the desorption curves should not be used as they 

would in effect "start" from different points, referring to the differences found 

between the highest adsorption points (near fibre saturation point) of samples prior to 

the "descent" back through the selected RHs in a full sorption cycle experiment. In 

the unpublished document of DVS Application note 19 (Burnett et al., Unpub. ) a 

method very similar to that described by Skaar (1972) is presented, i. e. which uses the 

Clausius-Clapeyron equation and data from two adsorption curves of differing 

temperature. 
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Preliminarr %tudic-. with the DVS %howed that it was not possible to calculate the 

differential heat of vetting in this way, as there was no discernable difference shown 

bet%ccn ad' orjxºon cunc% of %anous materials at different temperatures. For example 

the three different cunt-% produced h) flax fibres at different temperatures shown in 

Figure 65. 
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As can be wen from Figure 65 there is no significant difference between the different 

temperature curve, thus resulting in (bcxh differential and integral) heat of wetting 

calculation. for the sample to be nearly zero. Initially it was thought that flax must 

simply have a very low heat of wetting, but this relationship was found for a number 

of fibre types su h as hemp, jute and in particular Sitka spruce where a measurable 
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difference was expected bearing in mind the data from the wood handbook (U. S. 

Forest Products Laboratory, 1974) used in the previous example. 

One of the first uses of the Clausius-Clapeyron equation for wood is presented by 

Stamm and Loughbrough (1934). In this paper the use of "large" (100-125g) samples 

of Sitka Spruce was thought to have eliminated the hysteresis phenomenon that is 

"encountered in desorption and adsorption measurements made on very small 

specimens under the most carefully controlled vapour pressure conditions" (Stamm 

and Loughbrough 1934). This lack of hysteresis was explained by the use of large 

samples and by the "oscillations" in relative vapour pressure during the large scale 

experiment. These oscillations were noted as ranging between 1.5 to 3% RH at higher 

temperatures and between 4 and 8% RH at lower temperatures. The reported 

isotherms in this experiment are identical to that presented in the Wood Handbook 

(U. S. Forest Products Laboratory, 1974), i. e. used in the previous example. If this is 

the case the "Sorption" isotherms described are that of an "Oscillating Desorption 

curve", rather than an adsorption or desorption curve. The same curves appear to be 

presented again in Stamm (1964) where they are rather confusingly described as 

simply "Desorption curves". 

If this is the case then it would appear that "oscillating desorption curves" are required 

for this type of calculation. This however is not possible to perform with the DVS 

analyser (or with such small samples), however it was thought that an estimate for this 

would suffice. A good approximation of an oscillating desorption curve is obtained by 

an average of the data produced by the adsorption and desorption curves at given 

temperatures to represent a single, non-hysteresis exhibiting curve. It was also 
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considered that the desorption curves alone may provide an accurate answer due to 

the differences exhibited between the large scale experiment of Stamm (1934) and the 

very small samples used in the DVS analyser as it is not known whether they are 

comparable or not. What was apparent however from both this preliminary work and 

the work of Stamm (1934) was that the adsorption curves should not be used. 

As such calculations using both an "average sorption curve" and the desorption curve 

produced by the DVS analyser, were performed and the results are displayed in the 

following section. 

7.4 Results and Discussion 

7.4.1 Verification experiment using Sitka spruce. 

In order to validate the test, samples of Sitka spruce were first studied with this 

method in order to see if the differential and integral heat of wetting figures calculated 

using results from DVS experiments, were similar to that reported in the Wood 

Handbook (U. S. Forest Products Laboratory, 1974), in the example presented in the 

previous methodology section. Calculations using both an average sorption curve 

(Figure 66) and the desorption curve (Figure 67) produced by the DVS analyser, are 

presented here. 

By plotting this graph shown in Figure 66 in the program Origin (6.1) the calculus 

function "integrate" was used to calculate the area under the graph. For the data 

provided (between 0.01 and 0.21 g/g mc) a figure of 35.8 J/g was produced for the 
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integral heat of wetting for the averaged sorption plots for Sitka Spruce using DVS 

isotherms. 
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Figure 66 a graph to show the Differential heats of wetting calculated from averaged sorption 
plots for Sitka Spruce using DVS isotherms 
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Figure 67 a graph to show the Differential heats of wetting calculated from desorption plots for 
Sitka spruce using DVS isotherms. Note the different scale used in comparison with Figure 66 
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Using the same method the graph shown in Figure 67 (also between 0.01 and 0.21 g/g 

mc) produced a figure of 61.2 J/g for the integral heat of wetting for the desorption 

plots for Sitka spruce using DVS isotherms. 

If a comparison is made between the two sets of data (average sorption and 

desorption) used here and the data given in the Wood Handbook (U. S. Forest 

Products Laboratory, 1974), then it would appear that using the desorption curves 

produced a more comparable result, i. e. an integral heat of wetting figure closer to 50 

J/g produced by the Wood Handbook data between 0.01 and 0.21 g/g mc. Another 

similarity is the linear relationship shown by (a portion of) the desorption plot. While 

both sets of the DVS data show a portion of the graph produced to be linear (between 

the 0.06 and 0.14 g/g mc), it is the desorption best fit line that is notably similar, that 

is y= -2868.5x + 560.22 (R2 = 0.9928) for the DVS desorption data compared to y=- 

3031.3X + 562.88 for the Wood Handbook data. This may indeed be a coincidence 

but similarities are nonetheless striking, especially for the point of intercept. 

Given these similarities, some uncertainty is raised over the area the below 0.06 g/g 

mc, as the differential heat of wetting calculated from the DVS data increases rapidly 

with a decrease in me whereas the data presented in the Wood Handbook continues 

linearly. It is simply not known which of the data sets is closer to being "correct" for 

this area but in terms of the aim of this study it is not thought to be problematic as 

such low moisture contents are rarely encountered in situ. This is also true of very 

high moisture contents (nearing fibre saturation point). 
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7.4.2 Integral heat of wetting of hemp fibre 

Having established that using the thermodynamic method with data from desorption 

curves produced by means of DVS analysis give comparable results to other data sets, 

at least for a certain range of moisture contents, DVS data for hemp fibres was then 

analysed in the same way. The results are presented below in Figure 68. 
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Figure 68 a graph to show the Differential heats of wetting calculated from desorption plots for 
hemp using DVS isotherms. 

By plotting this graph shown in Figure 68 in the program Origin 6.1 the calculus 

function "integrate" was used to calculate the area under the graph. For the data 

provided a figure of 41.6 JJg is produced for the integral heat of wetting between 0.02 

and 0.19 g/g me for hemp fibres. 

From this data it was possible to re-calculate the initial introductory in situ example, 

where the fluctuation between 30 - 60% RH caused a change in moisture content 

between 4 and 8%. The result is shown below in Figure 69. 

241 



1800 

1600 

1400 

1200 

1000 

O 900 

600 

400 

200 

00 
002 

- OL Hemp from 6.6 and 24.4'C 
desorption data 

"p=, z83 J/9 1 

io J08 01 012 014 016 018 0.2 

mc (gig) 

Figure 69 a graph to show the integral heat of wetting calculated from desorption plots for hemp 
using D% S isotherms between the value of 0.04 and 0.08 gig me 

As can be seen from Figure 69 (calculated in Origin 6.1) a figure of 12.83 J/g is 

produced for the integral heat of wetting between 0.04 and 0.08 g/g me for hemp 

fibre%. This figure is practically identical to the original figure (i. e. 13 J/g) calculated 

using surrogate data on beech, from Weicherz (1963), as presented in Skaar, (1972). 

A% such the initial estimate requires no correction. 
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7.5 Discussion 

7.5.1 Should the plots be linear or curved? 

It was noted that there was a difference in the plots of differential heat of wetting of 

Sitka spruce studied here and that studied by Stamm and Loughbrough (1934) with 

the former showing a curved regression and the latter showing a linear regression. 

All fibres studied here showed Type 2 isotherms, and thus will exhibit poly-molecular 

sorption. Such a sorption isotherm shows three stages of adsorption i. e. (1) mono- 

molecular sorption, (2) poly-molecular sorption and (3) capillary sorption. It may be 

expected that there are three components of differential heat of wetting corresponding 

to this, due to the difference in levels of potential energy between the different 

mechanisms of adsorption. However it is not known whether for example a change 

from mono to poly-molecular adsorption will result in a change in the type of 

differential heat of wetting plot produced, i. e. from a curved to a linear regression. It 

is not possible to say whether the first part of the plots produced here are wrong or 

not. It would however appear that they are possibly inaccurate at very low moisture 

contents, for example as shown by an estimation for the differential heats of wetting 

for flax shown in Figure 70. 
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Figure 70 a graph to show the Differential heats of wetting calculated from desorption plots for 
flax using DVS isotherms. Note the decrease in QL with a decrease in me below 0.03 g/g me 

The initial increase in QL with an increase in me below 0.03 g/g me observed in 

Figure 70 is very unlikely to occur given that a satisfaction of all monolayer sites is 

likely to cause a drop in the potential energy of the system rather than an increase as 

shown here by an increase in the differential heat of wetting. As such a question is 

raised over the limits of accuracy regarding this method. 

7.5.2 Limits of accuracy 

As shown by the anomalous behaviour of the differential heat of wetting for low 

moisture contents for flax hemp and Sitka spruce samples, there is possibly a limit to 

the accuracy of this system below around 0.05 g/g mc. In this area it is noted that the 

closer to 0 g/g me during desorption, the DVS system will be closer to the limits of 

the microbalance accuracy as it will be measuring smaller and smaller amounts of 
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weight loss. It is also noted that the effect of any background "noise" or any "drift" 

from the balance will also be greater at this point. 

The work of Stamm and Loughbrough (1934) reported the use of much larger samples 

and could be more accurate at these low me levels. This being the case it may be that 

the linear relationship observed in the "mid-range" portion of the graphs could be 

expected to extend back to the point of zero moisture content. Without comparing the 

data to other total integral heat of wetting figures (perhaps produced by Calorimetric 

methods) for the same fibre samples as studied here, this matter cannot be resolved. 

This lower limit of accuracy was not seen as a problem in terms of this particular 

study, as only in situ moisture contents were required, however, in terms of validating 

the test with comparisons against established total integral heats of wetting figures it 

is problematic. 

It is also noted that at high moisture contents the two original DVS desorption curves 

(at differing temperatures) for each fibre used for these calculations, will in effect 

"start" at similar, but slightly different moisture contents. This is due to the difference 

observed between the "target" and the "sample" RH, so in general at higher 

temperatures a higher RH and thus moisture content closer to fibre saturation point 

was achieved. This was thought to only cause inaccuracy at very high RHs i. e. over 

90-95% as once the next step of decrease in RH (e. g. 80%) is achieved then the 

readings should be comparable. This was also noted to be an area where the six figure 

polynomial best fit line, used to predict expected vapour pressure figures for given 

moisture contents, were inaccurate. Again however, this upper limit of accuracy 
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above y(1q RH gor in the case of hemp 16 g/g mc) is not seen a problem as this is 

outside o the in situ moisture contents required by this study. 

To %ummariw, the areas of most likely inaccuracies for the example of hemp has been 

given in Figure 71 below, which shows the region (B) least likely to contain 

inacxuracics. 
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Figure 71 a graph to summarise the areas of most likely inaccuracy from the experimental 
procedure. % here Bº is the area least likely to contain inaccuracies and A) and (') are the lower 
and upper areas i respecti%el, # º more likely to contain inaccuracies 

7.5.3 Use of desorption curves 

After the link hetNeen the data used in Stammen and Loughhrough ( 1934, presented in 

U. S. Forest Product% Laboratory, 1974) and in Skaar (1972) was noticed, it was 

expected that the use of a -oscillating desorption curves" would he required to 

calculate the differential heats of wetting. However in this experimentation where 

"a%eragc %orption cures" and desorption curves were compared it was found that de- 

-sorption turnes tram the E)VS produced a more accurate figure than that of the 

" OL Hemp from 6.6 and 24.4'C 
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average sorption. It is not known why this has occurred though it is noted that the 

sample weight used here was far smaller than that described by Stamm and 

Loughbrough (1934) i. e. around 4 mg rather than 100-125g. It was noted by Stamm 

and Loughbrough (1934) that the 100-125g samples they had used "were sufficiently 

large to permit the setting up of moisture gradients across the sections during the 

process of drying". It may be that in the absence of such a gradient in the small 

samples used here the desorption curves produced are more akin to the oscillating 

desorption curves produced by Stamm and Loughbrough (1934). Though this is 

unlikely given the description in Stamm of the two experiments presented in Figure 

72 below, where "very small" samples of the same wood produced notably different 

plots. 

3rd party copyright material excluded from digitised thesis. 

Please refer to the original text to see this material. 
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It is more likely however, that it is the relationship between the desorption curves 

produced (at different temperatures) that produce the similar results. The "average 

sorption curves" produced here are an average of both the adsorption and desorption 

curves. It was noted that there was no difference observed at different temperatures 

between the adsorption curves (only the desorption curves). As such the production of 

these "average sorption curves" will result in a curve with only halve the observed 

difference seen between the desorption curves. It is thus considered that the 

relationship between desorption curves produced here and the oscillating desorption 

curves of Stamm and Loughbrough (1943) are comparable, rather than the type of 

plots themselves. Specifically, it is the observed distance between the isotherms that 

governs the differential heat of wetting figures studied here. 

7.5.4 The effect of the integral heat of wetting on an LCA 

In terms of the overall bearing on the established LCA, the calculated in situ integral 

heat of wetting calculated for hemp fibre, it is unlikely to make any notable difference 

in terms of environmental impact. This is because the quantity of heat involved is 

small, thus it is unlikely to be noticed by the dwellings occupants, who are thus 

unlikely to alter their heating usage, which in turn would have made a difference to 

the energy used by the home and the LCA. 

It is however noted that in different building systems where larger amount of natural 

fibres are used (e. g. where hemp based insulation is used in wall systems, or perhaps 

in hemp lime systems or even un-treated internal timber panelling) it is possible that 

the effects of the integral heat of wetting discussed here, would have an effect on the 
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heat budget of the building. This requires further work, but is outside the scope of the 

present study. 

7.5.5 Comparison to other works 

It was noted in the Literature Review of this water sorption section (Chapter 5) that a 

spread of adsorption isotherms at different temperatures was observed by some 

researchers for various natural materials; however this was not observed with the 

materials studied here. Without repeating the experiments of others using the same 

methods it is hard to say why this difference was observed. It was noted however that 

there is a large difference in the scale of the experiments used. For example, the work 

of Stromdahl (2000) describes the use of large chambers with many samples being 

acclimatised at any one time. It is possible that in this environment that there may be a 

very slight oscillations in RH near each fibre sample as the humidity controlled air is 

not a linear flow across the sample thus there may be some discrepancy between the 

measured RH (and its variability) and that experienced by the fibre samples. If any 

oscillation is experienced then a form of "oscilating adsorption curve" will be 

produced. 

If any slight oscillation were to occur, it is also noted that in both Stromdahl's and 

other experiments where salt or acid solutions are used, increased moisture content 

drift may be experienced, especially where the sample is left for an extended time to 

reach "equilibrium" rather than the reading being taken when a certain rate of change 

has been reached (i. e. the dm/dt set for each DVS experiment). 
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This would not necessarily mean that the plots produced by these other methods are 

"wrong" but it would mean that there could be a discrepancy over the terminology 

used to describe the "adsorption curves", and that a difference in adsorption curves 

with temperature would be observed as there would be a small contribution of 

desorption associated with the figures. 

7.6 Conclusions and Recommendations 

The main conclusions arising from this section are as follows: 

9 Adapting the thermodynamic method (described by Skaar, 1972) for use with 

DVS data, appears to give reasonable heat of wetting values when desorption 

curves are used. 

" The method however, exhibits possible inaccuracies at very low moisture 

contents, and also where moisture contents approach fibre saturation point. 

" In terms of the initial LCA the (integral) heat of wetting of hemp fibre is 

unlikely to make a difference to the overall environmental impact of a hemp 

based insulation material over its life cycle. 

" If very large quantities of a natural fibre are used in a building exposed to 

fluctuations in RH, the (integral) heat of wetting may produce a notable 

difference in the internal temperature of the building. 
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It is recommended from this study in terms of future work that large numbers of 

replicate samples are studied using the DVS analyser at different temperatures 

(preferably using the same samples for each temperature). This would provide a more 

robust database that could be averaged out to produce more reliable calculations 

regarding the differential and integral heat of wetting. It is also recommended that a 

large amount of low RH readings (and thus low moisture content) below 15% RH and 

also high RHs above 85% RH are taken (for example, in 2% RH increments) as these 

are areas highlighted as more likely to contain inaccuracies. This work was not 

possible during this study due to time constraints, as for example using one DVS 

analyser this work would take a minimum of one year's study if 10-15 repeats at 4 

different temperatures for 2 fibre types were to be considered. 

It is also recommended that more data is needed from "real life" uses of the insulation 

material to gauge whether it has an effect on the occupants in terms of their comfort. 

For example even if the heat of wetting is not noticed by the occupants, is the simple 

adsorption of water vapour is likely to make the occupants more comfortable or less 

likely to feel a "chill"? This work would require very costly large scale experiments 

but is probably the only way of scientifically gauging the materials' effect on a 

comparable LCA. 

The ability of natural fibres to adsorb and desorb moisture is an important property 

that can be used to provide a passive environmental control system if used 

appropriately. The proper use of such materials requires further research. 
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8 Final Conclusions and 

Recommendations for Further Work 

8.1 Introduction 

The aim of this chapter is to summarise the main conclusions from the studies 

presented in this thesis. This chapter also makes suggestions for further work that 

could build on the knowledge gained from the work presented here and investigate 

some of the issues that arose. 

8.2 Summary of the main conclusions 

The results of the Life Cycle Assessment section of this study in Chapter 3, displayed 

both advantages and some disadvantages from the NFI materials when compared to 

the provided benchmark mineral wool product. A major finding for example, was that 

the NFI materials perform particularly well against the benchmark products in terms 

of GWP. This was mainly due to the renewable carbon sequestered in the material 

withdrawing CO2 from the atmosphere. 

While the end of life scenarios studied did show a release of some of the sequestered 

carbon, only a portion of the total amount was released in landfilling and composting. 
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The issue of CO2 sequestration in renewable materials was highlighted as an 

important area of study. LCAs of renewable materials that do not include this 

calculation are missing potentially large positive environmental contributions. 

Highlighted as part of the sensitivity analysis in Chapter 4, was the issue of 

standardising secondary dataset usage across all products. This was deemed necessary 

as independently produced secondary datasets often present different impacts for the 

same or similar materials and processes. Though the use of similar secondary data 

was maintained within the natural fibre insulation product LCAs, it was apparent that 

similar datasets were likely not to have been used in the aggregated benchmark 

dataset. Though this does not invalidate any comparisons it does raise the point that a 

great deal of consideration should be used when doing so, particularly in which 

impact categories are compared. It is thus noted that taking the results presented here 

for commercial product comparisons is not recommended. 

Marginal analysis was used in Chapter 4, to quantify the environmental impacts 

contributed to by each sub-process and material used in the production of the NFI 

materials. It was shown that both of the NFI products studied shared similar 

environmental burdens from the polyester binders used and also through the direct 

and indirect use of fossil fuels. The comparatively high use of fossil fuels is seen as an 

inherent problem with any smaller scale manufacture. As part of the optimization 

study that followed, the potential of a hemp-based product using larger scale 

processing was shown with vastly reduced energy usage. The larger scale machinery 

that was studied was that of standard technology and on a relatively small scale to 

which the benchmark product was produced. It was considered that use of larger scale 
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or more efficient bespoke machinery could hold the key to far greater reductions in 

environmental impact. 

8.2.1 Conclusions regarding the effect of water sorption on the 

LCA results 

All the insulation products studied will save a substantial amount of operating energy 

in use. As part of this function they will also recoup the embodied energy needed for 

manufacture (and the environmental impacts of the energy production) several times 

over. However, this is only true if the assumption that they will perform the same task 

(in the same way) during the product's life is correct. One notable characteristic of 

natural fibre materials that differs from most synthetic materials is that of water 

sorption. 

In Chapter 5a number of water sorption characteristics were discussed that raised 

questions over the effect of moisture in the LCA of natural fibre insulation materials. 

The work of Padfield (1998) showed that the adsorption of water vapour does not 

effect the thermal conductivity in natural fibre insulation any differently to that of 

mineral based materials, i. e. no change is noted until fibre saturation point in the 

natural fibres (and "condensation" on the mineral fibres) has most likely occurred. 

Hence further studies in this particular area were considered unlikely to produce a 

different outcome to the LCA results and were therefore ruled out. 

It was also considered that the quantities of heat energy associated with water sorption 

(i. e. the heat of wetting - the heat released due to moisture adsorption and heat 

absorbed during moisture desorption) may affect a NFI products' performance. 
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Especially over the 60 year in situ performance that was modelled in the LCA, if the 

quantities of heat energy involved were found to be significant. 

In terms of the initial LCA where a standard thickness of insulation was studied, the 

integral heat of wetting of hemp fibre (studied in Chapter 7) was found unlikely to 

make a difference to the overall environmental impact. However, it was considered 

that if larger quantities of a natural fibre are used in a building exposed to fluctuations 

in RH, the heat of wetting may produce a notable difference in the internal 

temperature of the building. 

8.2.2 Conclusions regarding the use of dynamic vapour sorption 

Chapter 6 the use of the DVS analyser provided very smooth adsorption and 

desorption curves for a variety of natural fibres. This indicated that the data produced 

was of a reliable nature. It was also found that samples of natural fibres as small as 

4mg could be used satisfactorily in the DVS analyser due to the large quantity of 

water adsorbed. A reduction in the quantity of data collection points between 10% and 

80% RH in order to speed up data collection, appeared to still provide smooth and 

comparable sorption curves. However, it was noted that for comparisons between 

hysteresis plots a larger number of data points should be considered. 

Adapting the thermodynamic method of calculating the integral heat of wetting 

(described by Skaar, 1972) for use with DVS data, appeared to give reasonable heat of 

wetting values, but only when desorption curves were used. The method did exhibit 

possible inaccuracies at very low moisture contents, and also where moisture contents 
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approach fibre saturation point. This was not however considered to be a problem for 

the calculations presented in this study, due to the limited RH fluctuation studied. 

8.3 Recommended further work 

It is recommended that future LCAs concerning renewable materials should consider 

the quantities of CO2 sequestered in the product. This is of particular importance 

especially when considering that global warming is caused by the quantity of CO2 

(and other "greenhouse" gasses) in the atmosphere at a given time. Thus, for every 

second that CO2 is sequestered by a renewable material global warming to some 

extent is mitigated. If an LCA does not include this sequestration then this 

environmental benefit is not revealed. 

In a more commercial sense, further work studying reduced energy technologies is 

highly recommended in order to realise the potential of "small scale" natural fibre 

products as shown in the optimization study of this report. Though this 

recommendation is made with reference to insulation products it is thought that a 

great deal of other renewable and non-renewable material based products would 

benefit from this work. 

The ability of natural fibres to adsorb and desorb moisture is an important property 

that could potentially be used to provide a passive environmental control system if 

used appropriately. The proper use of such materials requires further research. In 

particular more data is needed from "real life" uses of the insulation material to gauge 

whether it has an effect on the occupants in terms of their comfort. For example even 

if the heat of wetting is not noticed by the occupants, is the simple adsorption of water 
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vapour is likely to make the occupants more comfortable or less likely to feel a "chill" 

causing them to use less energy if less heating is required. This work would require 

very costly large scale experiments or survey, but is probably the only way of 

scientifically gauging the materials' performance in these areas and its effect on 

comparable LCAs. 

With regard to studies of water sorption in natural fibres, it is recommended that large 

numbers of replicate samples are studied using the DVS analyser at different 

temperatures (preferably using the same samples for each temperature). This would 

provide a more robust database that could be averaged and statistically analysed to 

produce more reliable calculations regarding the heat of wetting. It is also 

recommended that a large amount of low RH readings (and thus low moisture 

content) below 15% RH and also high RHs above 85% RH are taken (e. g., in 2% RH 

increments) as these are areas highlighted as more likely to contain inaccuracies. 

Regarding the possible correlations observed between lignin percentage and moisture 

sorption, it is also recommended that the use of "solute exclusion" (to study the 

available micro pore sizes) and "deuterium exchange" (to study the quantity of 

available hydroxyl groups) may also provide useful data for further studies in this 

area. 
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10 Appendix 

Appendix l: l able 15 helo shows all the cradle to installation results calculated 

u, ing the ('All- 2 baseline 2(XX) V2. I can a Functional Unit basis 

I ahlc 14 [fit cruºIli tu install. ºtiuii results on it !« fictional I iiil basis for I'hermalleece and Isonat 

Impact category Unit Thermafleece Isonat 

abio!, iy ýb ey 00254 0 0527 

global warming (GWP100) kg CO2 eq -1.82 2.72 

ozone layer depletion (ODP) kg CFC-1 1 eq 8.36E-07 2.02E-06 

human toxicity kg 1,4-DB eq 2.55 3.29 

fresh water aquatic ecotox. kg 1,4-DB eq 0.564 0.429 

terrestrial ecotoxicity kg 1,4-DB eq 0.0329 0.0371 

photochemical oxidation kg C2H2 0.00167 0.00214 

acidification kg SO2 eq 0.047 0.0641 

eutrophication kg PO4--- eq 0.00652 0.0104 
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Appendix II: fahle 16 helo shows all the cradle to installation results calculated 

uýrn_ the ('AlL 2 ha. eIine _'(XX) 
V2. I on a per kg basis. 

,VB. II,, J, it, i has been presented on a per kg basis as tourte other general resources 

ºt i!! present data in this way. It must he noted that only with a great deal of caution 

and the understanding of'the processes included in each set n/'cluta should it the data 

presented here he used for any comparisons ºt ith external data. It should only be 

('cnn/º(, rc-c/ tu chitu clilt t/used ºt"it/i identical or perfectly comparable svs'tent boundaries 

Will cl S %uºº7/ºt1rºº1S. 

jI)It In itic cra(II& to installation results on a per kilt) basis for Thermafleece and Isonat 

Impact category Unit Thermafleece Isonat 

t) eq 0.0045 0.0067 

global warming (GWP100) kg CO2 eq -0.3233 0.3454 

ozone layer depletion (ODP) kg CFC-11 eq 0.0000 0.0000 

human toxicity kg 1,4-DB eq 0.4529 0.4178 

fresh water aquatic ecotox. kg 1,4-DB eq 0.1002 0.0545 

terrestrial ecotoxicity kg 1,4-DB eq 0.0058 0.0047 

photochemical oxidation kg C7H2 0.0003 0.0003 

acidification kg SO2 eq 0.0083 0.0081 

eutrophication kg P04--- eq 0.0012 0.0013 
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Appendix III: Table 17 below shows the CML baseline impacts of the contributing 

processes and materials for a cradle to installation analysis of the Thermafleece 

product is presented here on a per kg basis. 

Table 17 marginal anahsis results for Thermafleece using U\1I, hasline impacts on a per kg 
basis 

Cc 

i 
D) E 

i 
r 

°'° 
Ni 

ý 
-ra 
9 o 

C o Eg p 3 o o: dco 
Impact category m W Sa o i e dö v ä 

v 0ý, 
c Lc 

o x o 
0 O, 

E 
u 

L 
(0 

7 
D (j Z M a N 

Unit Ag Sb kg C02 ' kg CFC-11 kg 1.4-DB kg 1,4-DB kg 1,4-DB kg C2H2 kg S02 kg P04--- 

eq eq eq eq eq eq eq eq eq 

Total 0.00451 -0.323 1.48E-07 0.453 0.1 0.00584 0.000296 0.00835 0.00116 

Clean, Raw Wool 00017 -1.53 0 0.106 0.0332 0.00107 0 0.00141 0.000145 

Packaging film 0 0.0681 0 0.0106 0.00294 0.000398 0 0.000666 0 

Bi-component 
0.00065 0.455 0 0.182 0.0312 0.00283 0.000124 0.00325 0.000595 Polyester 

Heat gas 0.00182 0.205 0 0.0221 0.000173 0.00019 0.000011 0.000229 0 

Electricity, 
0 0.333 0 0.0897 0.0298 0.00111 0 0.00122 0 

medium voltage 

Transport total 0.000906 0.145 1.22E-07 0.0356 0.00231 0.000113 0 0.0017 0.000277 

Recycling PP -0.00056 0.00123 0 0.00695 0.000426 0.000133 0 -0.00012 0 

276 



appendix IV: Table 18 below shows the CML baseline impacts of the contributing 

and material, fror a cradle to installation analysis of the Isonat product is 

presented here on a per kg basis. 

able IS marginal analysis results for Isonat using ('\1I, baseline impacts on a per kg basis 

U 
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or v 

Impact category ä E 9 2 Z, ö 
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oý 

-100 -5-S OV 4) AN V CL 0 d) 

Unit kg Sb hg C02 kg CFC- kg 1.4- kg 1,4- kg 1.4- kg C2H2 kg S02 kg P04-- 

eq eq 11 eq DB eq DB eq DB eq eq eq eq 

Total 
0.00669 0.345 2.56E-07 0.418 0.0545 0.00471 0.000272 0.00814 0.00132 

Hemp fibre production 0 -0.486 0 0.0708 0.01 0.000421 0 0.000437 0 

Cotton fibres recycled 0 -0.511 0 0.000432 0 0 0 0 0 

81-component Polyester 0.00065 0.455 0 0.182 0.0312 0.00283 0.000124 0.00325 0.000595 

Flame retardant 0 0.0426 0 0.0332 0.00431 0.000391 0 0.000155 0 

Kraft paper. unbleached 0 0 0 0 0 0 0 0 0 

Packaging film 0 0.0648 0 0.01072 0.003076 0.000364 0 0.000695 0 

Electricity, 

medium voltage 0 0.0139 0 0.00755 0.00176 4.10E-05 3.12E-06 8.82E-05 6.51 E-06 

Heat gas 0.00448 0.506 0 0.0546 0.000428 0.000469 2.70E-05 0.000565 6.37E-05 

Transport total 0.00164 0.263 2.21 E-07 0.0599 0.00411 0.000157 7.40E-05 0.00297 0.000534 

Recycling ECCS steel 0 -0.014 0 -0.00112 -0.00053 0 0 0 0 

Recycling PP 0 0 0 0.000204 0 0 0 0 0 

Landfill PE 0 0.0123 0 0 0 0 0 0 0 
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Appendix V: The "Chlorite Holocellulose" method as described by Han and Rowell 

(1997): 

To 2.5 g of oven dry sample add 80 ml of hot distilled water. 0.5 ml acetic acid and 1 

g of sodium chlorite in a 250 ml Erlenmeyer flask. An optional 25 ml Erlenmeyer 

flask is inverted in the neck of the reaction flask. The mixture is heated on a water 

bath at 70°C. after 60 min, 0.5 ml of acetic acid and Ig of sodium chlorite are added 

with shaking. The delignification process degrades some of the polysaccharides, and 

the application of excess chloriting should be avoided. 

Addition of 0.5 ml of acetic acid and 1g of sodium chlorite is repeated until the fibres 

are completely separated from lignin. The reaction is then cooled and filtered using 

filter paper and a Buchner funnel until the yellow colour (the colour of the 

holocellulose is white) and the odour of chlorine dioxide are removed. The lignin 

content of the original sample can be determined by subtracting the oven dry weight 

of the de-lignified holocellulose from the original oven dry weight. 
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-\ppendi-. VI: Example screen print from the SimaPro 4 program looking at the 

examplr process of Manufactured Thermalleece. 
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