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SUMMARY 

Breeding and selection for salt tolerance has been limited because of the large 

heterogeneity of natural saline soils and the lack of efficient criteria for measuring 

salt tolerance. Regulation of salt balances in leaves is an important aspect of salt 

tolerance. This work analyses the relationship between leaf ion concentrations and 

salt tolerance with the aim of using these traits as indicators of salt tolerance. This 

is done both in solution culture (hydroponics) and field trials (sprinkler irrigation with 

saline water). 

Varieties were found to differ in the amounts of ions accumulated in their leaves. 

However, these differences did not relate directly with their level of salt tolerance. 

The lack of correlation was partly due to difficulties in estimating salt tolerance in 

the field. Also, the Triple Line Sprinkler system (TLS) used in the field experiments 

posed several problems, the most important ones being related to direct ion 

absorption by the leaves. The high concentrations of CaC12 (in addition to NaCl) used 
in the irrigation water added a further complication. 

In hydroponic experiments, a minimum of 2 mol in-' Ce' was enough to prevent an 
indiscriminate entry of Na' and to ameliorate the growth inhibition of plants growing 

at 200 mol in-' NaCl. Higher Caý' concentrations (50 mol in-' CaCl2) reduced even 

more the concentrations of Na' in leaves without significantly affecting growth. At 

these high levels of CaCl2 any toxic effect was probably caused by high Cl- 

concentrations. 

It is concluded that the salt tolerance of barley can be improved, and that methods 

to control soil salinity need to be further developed, since the TLS proved to be an 
imperfect tool for studying plant responses to soil salinity. 
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LITERATURE REVIEW 

1.1. INTRODUCTION 

Rapid population growth in recent years has resulted in increased food demands. 

However, food production has not grown at the same rate as world population, in 

spite of the expansion of cultivated areas and the increase in crop yields. This 

imbalance has resulted in food shortages in the poorest, over-populated countries, and 

the situation is expected to worsen if present trends do not change. On the other 
hand, fertile arable lands are limited, and there is a pressure for bringing into 

cultivation lands which at present are not used because of their poor quality. A 

significant proportion of these areas are affected by soil salinity. 

Estimates of the extent of land affected by salinity range from 344 million hectares 

(Ponnamperuma, 1984) to more than 900 million hectares (Szabolcs, 1989, cited by 

Szabolcs, 1991). Even the lower estimate represents a substantial area of the earth's 
land surface. From the point of view of agriculture, these salt-affected areas represent 
between 13 % (Flowers & Yeo, 1988) and 23 % (Tanji, 1990) of cultivated land, and 
between 30% (Epstein et al., 1980) and 50% (Flowers & Yeo, 1988) of the land 

under irrigation. 

Most of the world's saline soils occur in and and semi-arid regions. Crop production 
in these areas needs irrigation, and irrigation always adds salts to the soil. The 

amount of salts added in this way depends on the concentration of salts in the 
irrigation water, and the amount of water entering the soil. However, even good 

quality waters contain enough dissolved salts to result in substantial amounts of salts 
being added to the soil at the end of a cropping season. (A high quality water with 
less than 0.2 g I` of total dissolved salts, applied at a rate of 500 mm a year, adds 
I tonne of salt per hectare a year. ) When this- water is removed from the soil by 

evapotranspiration, it leaves the salts behind. 
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At the same time, as water passes through the soil it also dissolves salts. As a result, 
drainage water has higher salt concentrations than irrigation water. These drainage 

waters eventually flow to the rivers, usually downstream from where they had been 

taken. At each cycle of irrigation and drainage, water becomes more salinized. As 

a consequence, it is usually observed that the level of salinization of a river increases 

from its source to its mouth. 

Although some plants (halophytes) grow naturally in saline soils, most crop species 

are affected to some extent by high salt concentrations. A figure of 40 mol in-' NaCl 

is usually given as the level of salt concentration which begins to cause injury to most 

plants (Ponnamperuma, 1984). Because of decreased crop yields and the concurrent 

economic losses, salt-affected lands are progressively abandoned as unproductive. 
This only helps to spread desertification. 

Several strategies are available to minimize the detrimental effects of salinity. They 

include the reclamation of saline soils by leaching the excess of salts, the use of 

adequate agronomic- practices (particularly in relation to irrigation and drainage), and 
the use of salt tolerant species and varieties. 

Leaching involves the application of good quality water to the soil, which dissolves 

the soluble salts in it and removes them from the root zone by deep percolation. The 

use of this technique, however, is often limited by the availability of good quality 

water and adequate drainage. 

The adverse effects of salinity on crops may also be reduced by adequate 

management of irrigation. For example, a high uniformity and efficiency of irrigation 

may reduce the need for artificial drainage; increased irrigation frequency maintains 

a high water content in the soil and avoids additional water stress; applying water in 

excess of the crop requirements contributes to leaching and avoids accumulation of 
salts in the root zone. Other cultural practices may facilitate germination and seedling 
establishment, particularly in those crops which are more salt-sensitive at the early 
stages of growth. 
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The use of more salt-tolerant species and varieties (i. e. which are able to grow and 

produce acceptable yields at higher levels of salinity) is another step in the process 

of reclaiming salt-affected soils. It is particularly interesting for those areas where 

only poor quality (saline) water is available for irrigation. However, it has to be said 

that the use of tolerant varieties is not a solution on its own. Unless it is accompanied 

by other measures to remove salts from the soil, and to avoid their accumulation in 

the first place, in the long term soil salinity will increase and eventually reach levels 

too high even for the most tolerant crops. 

1.2. SALINE SOILS 

1.2.1. Characteristics of saline and sodic soils 

Saline soils influence the growth of plants by osmotic and specific ion effects; that 

is, they reduce the availability of water to the plant (a physical effect), and may also 
induce chemical effects due to the presence of certain ions. Thus, not only the total 

concentration of salts, but also the nature of these salts (as well as many other 
factors) will influence the responses of plants to salinity. However, some criterion 
has to be used to distinguish between saline and non-saline soils, even if this criterion 
is somehow arbitrary. 

Saline soils are usually defined as having an electrical conductivity (EQ of the 

saturation extract greater than 4 dS in-' at 25'C (, ze 40 mol rrr' NaCl) (Richards, 

1954). Sodicity refers to the accumulation of Na' ions on the exchange phase, which 
has a direct effect on soil properties, by swelling and dispersion of clays and breaking 
down of aggregates. These effects result in a lower soil permeability to water and air, 
and a loss of structure (Shainberg & Singer, 1990). In contrast, the high salt 
concentrations present in saline soils do not adversely affect the physical properties 
of the soil (Rhoades, 1990). In this sense, sodic soils are more detrimental to Plant 
growth than saline soils. 
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sodicity is estimated by several criteria, the most common ones being the 

exchangeable sodium percentage (ESP) and the sodium absorption ratio (SAR). The 

ESP is the percentage of the cation exchange capacity (CEQ of the soil which is 

occupied by Na'. Soils with ESP greater than 15 are considered sodic (Richards, 

1954). The SAR relates the activity of Na' ions to those of Ca" and Mg", and is 

defined as: 

Na' 
SAR = 

[(Ca 2+ + Mg 2+ )/21 112 

(all concentrations in milliequivalents per litre). Values of SAR exceeding 13 also 
indicate sodicity (Richards, 1954). 

By definition, saline soils have an ESP lower than 15 (Richards, 1954). Saline soils 
(EC >4 dS m-') with ESP greater than 15 are termed saline-sodic. 

One of the principal characteristics of saline soils is the irregular distribution of 

salinity in them, both in time and space. This is not only true for natural saline soils, 
but also for irrigated soils, where salt distribution depends largely on irrigation 

practices and the extent of leaching and drainage. The salt profile of an irrigated field 

usually increases with depth, with low concentrations (similar to that of the irrigation 

water) near the surface, and much higher concentrations at the bottom of the root 

zone. In some cases, if a shallow saline water table exists or if saline water is used 
for irrigation, the highest salt concentrations may be found on the top part of the soil, 
resulting in what is commonly known as an "inverted" profile. Soil salinity also 
varies with time as a result of changes in the amount of water: dilution by rain and 
irrigation, and concentration by evapotranspiration. 

1.2.2. Saline soils in the Ebro Valley 

The Ebro Valley, covering about 83000 kniý, is located in the north-east of Spain, 

and is limited in the north by the Pyrenees, which are the source of most of its 

waters. The salt-affected soils of the Ebro Valley are located in its central zone 
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(Figure 1.1) and cover an area of more than 300000 ha (Alberto et al., 1986). The 

main factors that contribute to the salinization of this region are the geology, the 

climate and the topography. 

The Ebro Valley has been formed upon materials rich in salts (CaS04, MgSOO 

Na2SO4, NaCI, MgC'2)which act as a centre of salt redistribution. The climate of the 

central area is arid or semi-arid, with an annual rainfall below 400 Run. With evapo- 

transpiration (ETP) being larger than precipitation, the leaching of salts is not 

effective, and in places where there is a shallow water table, water and salts ascend 

to the soil surface. The occurrence of strong winds intensifies the evaporation of 

water, thus increasing the concentration of salts. Because of all these factors, salinity 

may develop quite easily, especially in topographically depressed zones due to 

accumulation of water and its subsequent evaporation. 

In addition to these natural factors (geology and climate), salinization is intensified 

by human action: land cultivation, irrigation, and deforestation are all processes that 

increase the flow of water and the redistribution of salts. Under the and climatic 

conditions of the zone, dryland (rainfed) agriculture is not economically viable, and 
irrigation is essential. The large engineering works undertaken to bring into irrigation 

many areas of the Ebro Valley (started in the last century but mainly developed from 

1940 onwards) were not accompanied by drainage systems until much later, when 
flooded and salinized areas had already appeared. 

Irrigation water enhances the natural salinization process, because it reaches deeper 

layers than the small amount of natural rainfall and dissolves new salts; these ascend 
by capillary action (driven by evapotranspiration) and accumulate on the soil surface. 
This process is highlighted in low-lying areas where water tends to accumulate, 

giving rise to the typical irregular distribution of salinity found in even small areas. 

The problem is also intensified due to the poor quality of irrigation water. Some of 
the water comes from reservoirs located upstream (near the Pyrenees) and its salt 
content is low (EC: 0.2 - 0.4 dS m-'); this kind of water is found in the main 
irrigation canals (Table 1.1). However, this water is reused several times, so that 
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increasing salinities are found when looking at minor waterways (Table 1.1). If 

irrigation water comes from wells, its quality depends on the lithology of their 

location (Table 1.1) - 

Table 1.1. Quality of some waters from irrigation canals and wells in the Ebro Valley 
(after Porta & Boixadera, 1988); (EC in dS m-' at 25'C; ion concentrations in mol. 
M-3). 

Water Origin EC HC03- S04 2- Cl- Ca 2+ Mg2+ Na+ K+ 

Main Canal 0.25 1.8 0.4 0.3 2.1 0.3 0.2 0.1 
Minor Course 1.85 5.3 12.1 4.9 6.3 8.1 6.5 0.1 

Well-I 2.48 6.2 20.5 3.9 7.8 10.9 11.5 0.2 
Well-2 0.75 nd nd 0.6 2.8 4.5 0.9 0.1 

nd - not determined 

The salt-affected soils of the Ebro Valley are mainly saline soils; that is, with a high 

content of soluble salts (EC >4 dS m-1) and a favourable Ca/Na relationship (SAR 

< 13), due to the presence of gypsum and soluble Ce' in the soils. Some 

sodification processes have been reported locally (Porta et al., 1986), but these are 

not important enough to develop a sodic soil (according to the criteria of Soil 

Taxonomy (USDA, 1975)). Sodicity, when it appears, is accompanied by salinity 
(saline-sodic soils: EC >4 dS m-' and SAR > 13). 

The ionic composition of the soils varies depending on the area considered: in some 

places Cl- is the main anion, and in others S041-; the same happens with Na' and 
Mg 2+ 

. The main ions found in the saturated extract of a number of soil samples are 

shown in Table 1.2. There, the concentrations of individual ions are expressed as 

percentage of their combined concentrations (mol m-'); the variability between 

different soils is reflected by the high standard deviations. 
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Table 1.2. Relative ionic composition (percentage of total main ion concentration, in 
mol m-1, which correspond to each ion) in saturated extracts of saline soils of the 
Ebro Valley; (mean ± standard errors from 254 samples); (after Alberto et al., 
1986). 

HC03- S04 2- 

3±7 42 ± 18 

ci- cal-l- Mg 2+ Na' 

55 ± 19 15 ± 18 22 ± 23 63 ± 22 

Some authors have tried to estimate the economic cost of salinity, both of soils and 

waters, in the agriculture of the region. Thus, Albisu et al. (1988) estimated the 

losses due to irrigating with water which had a mean EC of 2 dS m-1 to be about 
22000 ptas (around ;E 110) per hectare per year. A similar figure was calculated from 

the data of Zekri et al. (1990) for an area where more than 20% of the land was 
highly saline (EC >8 dS in-'), but irrigated with water of good quality (EC < 0.4 

dS ni-I). These figures represent between 15 % and 22 % decrease in the gross benefit 

that could be obtained if the crops where producing at their maximum capacity (yield 

not reduced by salinity). 

In summary it can be said that the general presence of salts in many soils of the Ebro 

Valley makes it an impossible task to try to leach them by engineering methods, and 

the area affected by salts is large enough to have an important impact on the economy 

of the area. 

1.2.3. Line-Source Sprinkler Systems 

It is well recognised that the large heterogeneity, both spatial and temporal, of 

salinity in soils precludes the use of natural saline soils for testing crop salt tolerance 

(Shannon & Noble, 1990). That is why most of the research on the salt tolerance of 

crops has been carried out under "artificial" conditions, using solution (hydroponic) 

or sand cultures, either in growth chambers or greenhouses. However, the 

performance of crops in these conditions might be very different from that in the 

field, especially in regard to yield, so field testing under more "natural" 
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environmental and edaphic conditions is still necessary. To overcome the problem of 

the large variability of natural saline soils, systems have been developed in order to 

experiment with controlled salinity levels in the field. One such system is the Triple 

Line Source Sprinkler (TLS), developed by Aragiids et al. (1992). 

The TLS is a modification of the line-source sprinkler system developed by Hanks 

et al. (1976). The original system used a single line of sprinklers along the centre of 

a plot. to produce a continuous gradient of applied water across the plot, and was 

designed for studies of the response of crops to decreasing levels of irrigation water. 

By placing other treatment variables randomly in strips at right angles to the 

irrigation treatment, other factors can be studied. This layout has been used, among 

others, by Hanks et al. (1977) to study interactions of salinity and irrigation, and by 

Sorensen et al. (1980), who compared varieties and cultivation methods in response 

to decreasing irrigation. 

While the single line-source is useful for irrigation studies, it is unsuitable for 

research with sprinkler-applied treatments, because the gradients of the applied 

substance and water coincide, and thus their effects cannot be separated. Lauer 

(1983) extended the original layout by using a triple line-source to experiment with 

sprinkler-applied N fertilizer; this design produces a gradient of N while supplying 

a uniform amount of water, by injecting N into the middle line and water in the two 

outer lines. Other authors have used double line-source sprinklers to study salinity 
(Morkoc et al., 1985), salinity and N (Broadbent et al., 1988), and a two-crossed 

triple line system has even been developed for a study of the interactive effects of 

salinity and N (Magnusson et al., 1989). 

The line-sourcc systems have been found suitable for the application of a continuous 
gradient of water, provided that the system is operated only in low winds, and that 
the application rates are kept low to avoid ponding and runoff (Hanks et al., 1976; 
AragUs et al., 1992). One disadvantage of this layout is related to the non- 
randomization of the continuous variable treatment. The most usual statistical tests 
(anova, regression) assume that all non-controlled variability (arising from genetic 
variations, cultivation procedures, measurement errors and different soil properties) 
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is randomly distributed. But irrigation, salinization and other treatments applied by 

the line-source sprinklers are, by the nature of the design, systematically arranged, 

and those tests are no longer valid. Hanks et al. (1980) realised this limitation, and 

warned about the potential bias in the estimates of the regressions that might be 

brought about by the systematic arrangement. Johnson et al. (1983) suggested the use 

of multivariate methods to overcome the problem of non-randomization. Morgan and 

Carr (1988) used analysis of covariance to remove any fertility trends perpendicular 

to the sprinkler line (the direction in which no randomization is possible). In general, 

however, good symmetry in the response around the two sides of the centre line is 

an indicator that there are no fertility trends (unless these are also symmetrical and 

coincide with the treatment gradient). Therefore, no highly complex statistical 

analyses are used in practice. 

The Triple Line Source (TLS) sprinkler system consists of 3 parallel sprinkler lines 

which supply fresh water by the 2 outer lines, and a saline solution by the centre 
line. This results in a continuous gradient of salinity with the same volume of water 
between each lateral pair, and permits to study the response of crops to controlled 
levels of salinity under field conditions. The main drawback of the TLS seems to be 

the additional ion absorption through leaves that may occur by sprinkling with saline 

water. 

1.3. PHYSIOLOGY OF SALT TOLERANCE 

1.3.1. Effects of salinity on plants 

The most easily observable effect of salinity on plants not adapted to this condition 
is a reduction in their growth. The primary cause of this growth reduction is still not 
clear. High salt concentrations in the medium affect the plants mainly at two levels: 
in their water relations (osmotic effect), and in their ion balances (ionic effect). The 
first effect is due to the reduced availability of soil water to the plant, while ionic 

effects are involved in two other aspects: disorders in mineral nutrition, and toxicities 
due to excess of some ions. Some authors (e. g. Pasternak, 1987) also consider a third 
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effect: a change in the energy levels of the plant; but this is more a result of the 

mechanisms by which the plants adapt to salinity than a direct effect itself. 

1.3.2. osmotic stress 

The flux of water between a plant cell and the environment depends on two factors: 

the differences of water potential between the cell and the medium (the "driving 

force" for water movement) and the hydraulic conductance of the plant tissues (a 

measure of the resistance to water flow). In a saline soil, the major component of 

water potential is the osmotic potential, determined by its salt concentration. Inside 

the cell, the two important components are turgor (positive hydrostatic pressure) and 

osmotic pressure. The water potential of a cell can be defined as: T=P- 7c , where 

P is the turgor pressure and 7t the osmotic pressure (Nobel, 1983). 

A positive turgor pressure and continued water uptake are necessary for growth. 
Growth begins by a loosening of some elements in the cell wall. This results in a 
decrease in turgor and in water potential within the cell. The gradient of water 

potential across the plasmalemma drives water into the cell, increasing its volume and 

restoring the turgor, so that the cycle can begin again. However, this water influx 

tends to dilute the solutes within the cell (decrease in osmotic pressure). To 

compensate for this dilution and maintain osmotic pressure, solutes must accumulate 
inside the cell, either by uptake or by synthesis. 

The rate of cell volume increase is also related to the wall yielding properties: r= 
ý (P - Y) , where r is the growth rate, ý is the wall plastic extensibility (a measure 

of the ease with which cells undergo irreversible expansion), and Y is the yield 
threshold (a minimum turgor needed before the wall begins to expand) (Lockhart, 

1965). 

Soil salinity interferes with the plant's water relations and reduces plant growth. 
However, considering all the parameters involved in cell expansion, growth inhibition 

under salinity stress could result from alterations in any one of them: turgor pressure, 
cell wall extensibility, yield threshold or hydraulic conductance. Therefore, plants 
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growing in saline soils have to regulate their turgor (P) or adjust the wall properties 

(ý and/or Y) to maintain growth. 

1.3.3. Responses to osmotic stress: 

1.3.3.1. Turgor regulation and osmotic adjustment 

In response to decreased external water potential in saline soils, the plants have to 

decrease their internal water potential if water influx is to be maintained. At the same 

time, they must keep positive turgor pressures, necessary for growth. An increase in 

the internal osmotic pressure (osmotic adjustment) results in a decreased water 

potential while maintaining turgor. A higher internal solute concentration can be 

achieved in three ways: by accumulation of ions absorbed from the medium (Nal, 

Cl-, K'), by synthesis of organic solutes (aminoacids, sugars), or by a loss of water 
(partial dehydration). Plants commonly use a combination of these mechanisms. 

Halophytes (the plants which naturally grow in saline environments) absorb relatively 
large quantities of salts from the medium to achieve osmotic adjustment. 
Dicotyledonous halophytes use mainly Na' and Cl- as osmotica (they have high Na: K 

ratios), and tend to become succulent (increase their cell volume). Monocotyledonous 

halophytes use KI and sugars, in addition to Na' and Cl-, for osmotic adjustment, 
(their Nal and KI concentrations are similar), and their tissue water content may 
decrease (Flowers et al., 1986). 

On the other hand, many glycophytes (except, perhaps, the most salt-sensitive 
species) when exposed to moderate salinities tend to exclude salts from their leaves, 

and whatever amount of salt does get into the plant is largely accumulated in roots 
and stems (Uuchli & Epstein, 1990). Without high concentrations of ions in leaves, 

non-halophytes have to rely mostly on organic compounds for osmotic adjustment. 
However, osmotic adjustment by means of organic solutes is an expensive alternative, 
particularly in mature cells because of their large volume; (in small meristematic cells 
this is not such a limitation). The synthesis of organic solutes for osmotic adjustment 
would require large amounts of carbohydrates and/or enzymes, and would thus 
compete with other processes (e. g. growth) for their supply (Yeo, 1983). 
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1.3.3.2. Changes in cell wall characteristics: 

Traditionally, reduced turgor was viewed as one of the main factors that limits 

growth under salinity; therefore, turgor regulation and osmotic adjustment have been 

extensively studied. However, the theoretical framework developed by Lockhart 

(1965) and others permitted consideration of other parameters which take part in the 

regulation of cell growth. Thus, as Wyn Jones and Pritchard (1989) pointed out, the 

recovery of growth after a decrease in external water potential could be the result of 

one or more of the following processes: a) an osmotic adjustment to restore turgor; 

b) a decrease in yield stress threshold to maintain the effective turgor; and c) an 
increase in wall extensibility to facilitate growth at a lower turgor. 

The effects of water (osmotic) stress on cell elongation, and particularly on the cell 

wall mechanical properties, have received much attention in recent years (see Hsiao 

et al., 1985; Lawlor & Leach, 1985; Wyn Jones & Pritchard, 1989; Cramer & 

Bowman, 1994). In spite of contradictory results, there is some evidence that wall 

properties (yield threshold and extensibility) change during or after exposure to stress 
(see Cramer & Bowman, 1994, for references). 

1.3.4. Ionic stress 

1.3.4.1. Specific ion effects 

On the nutritional side, excess of certain ions in the soil may interfere with the 

absorption of other ions and cause deficiencies. There is extensive evidence, 
particularly from laboratory studies, that high Na' concentrations in the medium 
interfere with the absorption of K' and Ca", and that the addition of Call to nutrient 
solutions, above the minimum levels adequate for non-saline conditions, improves 

growth. (This aspect will be discussed in more detail in Chapter 3. ) However, except 
in the case of sodic soils (where an imbalance between Na' and Ca" does exist), the 
levels of Call in most soils are not limiting, and therefore Call deficiency is not an 
important factor in salinity stress in the field. 
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Additionally, Cl- reduces N03- uptake in plants (Cram, 1973; Aslam et al., 1984). 

This is usually observed as a decrease in leaf N03- concentrations, (although other 

nitrogen-containing fractions, such as proline and glycine-betaine, may increase 

(Gorham et al., 1986)). According to Munns and Termaat (1986), while N-deficiency 

might occur in NaCl-treated plants, this is not likely to be a major limiting effect. 

Their view is supported by the observation that applications of N fertilizer to saline 
fields, above the levels considered optimal in non-saline conditions, does not 

generally improve growth or yield (Grattan & Grieve, 1992). However, the form in 

which N is supplied (NO; or NH4+) may be important (Lewis et al., 1989). 

1.3.4.2. Toxic effects 

The fact that plant growth is not improved by restoring the nutritional imbalances 

caused by salinity constitutes indirect evidence for some kind of ion toxicity. More 

direct evidence comes from sensitive species (fruit trees, many legumes) where Na' 

or Cl- begin to reduce growth at such low concentrations that a water deficit has to 
be ruled out (Greenway & Munns, 1980). In most of these cases Cl- seems to be the 

toxic ion. Adverse effects of Na' are mainly indirect, through high Na/Ca ratios and 

poor aeration in sodic and saline-sodic soils. A case of specific Na' toxicity, 
however, has been reported for wheat (Kingsbury & Epstein, 1986), where a salt- 

sensitive variety was adversely affected by nutrient solutions containing high Na' 

concentrations, but not by iso-osmotic solutions without Na'. 

1.3.5. Responses to ionic and toxic effects 

1.3.5.1. Ion exclusion verstis ion inclusion 

Because of their high salt uptake, halophytes have usually been referred to as "salt 
includers"; glycophytes, in contrast, are called "salt excluders". However, this 
terminology is misleading, since all plants exclude salts from the medium and 
regulate the accumulation of specific ions. Even in salt-rich halophytes, ion uptake 
is tightly controlled. If there was no such regulation, the concentrations of Na' and 
Cl- in the shoot would increase much faster than they actually do. This can be easily 
calculated from transpiration rates. Using data from different authors for barley under 
salinity, transpiration rate values of 4 litres of water per kg fresh weight per day 
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were estimated; assuming water contents of around 87%, plants growing in a solution 

of 100 mot m-' NaCl would be increasing their*internal NaCl concentrations at a rate 

of 20 mot M-3 per hour, and in a few days they would be filled with solid NaCI. 

Clearly, there must be some kind of exclusion. 

The differences between halophytes and glycophytes are quantitative rather than 

qualitative. They differ in the extent to which this exclusion is achieved, and in the 

levels of salinity they are able to tolerate before their ability to regulate ion 

concentrations in shoots fails. Some very sensitive species lose this ability at low 

salinities, rapidly accumulate salts, and die in a relatively short time. 

To avoid excessive concentrations of ions in the shoots (particularly, in the 

photosynthetic tissues), Ne and Cl- may be retained at the roots by different means. 

The mechanisms for Na' exclusion are better studied. These include the existence of 

Na" efflux pumps at the plasmalemma of root cells (Jeschke, 1970); a preferential 

accumulation of Na' in root vacuoles (Jeschke, 1979); Na' reabsorption in the xylem 

parenchyma (Yeo el al., 1977); and even its extrusion back into the medium (Nassery 

& Baker, 1972). For Cl-, differences in lipid composition of the root membrane, 
(which would affect its permeability to Cl-), have been related to differences in Cl- 

exclusion in rootstocks of grapevine (Kuiper, 1968) and of citrus (Douglas & Walker, 

1983). 

1.3.5.2. Cellular ion compartmentation 

Except in the halophytic bacteria, whose enzymes are adapted to function at high 

concentrations of NaCl (Brown, 1983), high cytoplasmic concentrations of 

monovalent ions are toxic to metabolism, because they inhibit protein synthesis and 

enzyme activities. In general, the enzymes of halophytes are as sensitive to high salt 

concentrations as those of glycophytes (Flowers, 1972; Greenway & Osmond, 1972). 
Thus, the ions involved in osmotic adjustment (Ne, K, Cl-) have to be excluded to 

some extent from the cytoplasm, and stored where they do not interfere with 
metabolism; the best place for them is the vacuole. This sharp contrast between ion 

concentrations in cytoplasm and vacuole is known as intracellular ion 

COmPartmentation, and is an important aspect of salt tolerance. 
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Ion compartmentation, though, has to be complemented with osmotic compensation 

between vacuole and cytoplasm, since the tonoplast cannot sustain a gradient of 

turgor pressure across it. The cytoplasm needs to increase its osmotic pressure using 

solutes which do not interfere with metabolism. Because of the small volume of the 

cytoplasm (5%-10% of the total cell volume), a small amount of solutes can 

compensate the osmotic pressure of the vacuole, without large requirements of 

energy. A variety of organic compounds (e. g. proline, glycine-betaine, sugars and 

polyols) have been isolated from halophytes, which are believed to be involved in the 

maintenance of osmotic balance between vacuole and cytoplasm. They are called 

"compatible" solutes because they are not inhibitory to metabolism; (although some 

sugars, like sucrose, are not compatible, and they are probably located in the 

vacuole) - 

1.3.5.3. Regulation of salt balances in leaves 

Intracellular compartmentation is an important feature of salt tolerance, but not the 

only one; the regulation of ion transport in relation to growth is also important. At 

any one moment, the internal ion concentration will be the ratio between net ion 

import and growth rate. Thus, while plants are growing fast, high rates of ion uptake 

can be regulated (diluted) by growth. The other possibility is to decrease net uptake. 
This can be done by reducing the amount of ions that reach the cell (exclusion at the 

root and xylem level), or re-exporting any excess via the phloem. (Export from the 

shoot can also be achieved by excretion through salt glands, but this is a feature 

found only in some halophytic species. ) However, concentrations of Na' and Cl- in 

the phloem. are usually low under saline conditions (see Flowers & Yeo, 1988, for 

references), reflecting its cytoplasmic nature, and this pathway is not quantitatively 
important. In fact, the presence of high Na' and/or Cl- concentrations in the phloem. 
has been related to salt sensitivity in some plants (Lessani & Marschner, 1978). 

Finally, if excess ions do not accumulate inside the cell (with proper 

compartmen tation), they may remain in the cell wall (apoplast). However, because 

of the small volume of this compartment compared to that of the protoplast (;: 6%) 

and its'very low water content (30%-35%), ion concentrations (and thus osmotic 

pressure) in the apoplast would rise very fast and become imbalanced with the rest 
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of the cell. In this situation, the cell wall would tend to extract water from inside the 

cell, and this would lead to loss of turgor and dehydration. This aspect was first 

discussed by Oertli (1968) and is sometimes known as Oertli's hypothesis. There is 

some evidence (e. g. Munns & Passioura, 1984, Flowers et al., 1991) that this may 

happen, at least in some species, in the later stages of the life of a leaf, and would 

explain the premature senescence of leaves of plants growing in salinity. Significant 

apoplastic solute concentrations have also been found in some halophytes (Clipson et 

al., 1985, for Suaeda maritinza; Richardson, unpublished, for A triplex amnicola). 

Thus, excess of Na' and/or Cl- may accumulate in cell walls of leaves causing loss 

of turgor and desiccation; or they may accumulate inside the cell, where if not 

properly compartmented they may lead to ion toxicity. On the other hand, too much 

exclusion of ions from the shoot may result in insufficient osmotic adjustment and 

water deficit. Hence the importance of the regulation of ion transport to the shoot. 

1.3.6. Causes of reduced growth 

Low rates of ion uptake ("exclusion") decrease the danger of ion toxicity, but 

increase the chances of water stress. Alternatively, high rates of ion uptake 
(" inclusion") facilitate osmotic adjustment, but may lead to ion toxicity. Traditionally, 

there had been two main lines of thought about the causes of reduced growth under 

salinity: the "osmotic school" and the "specific-ion school" (Bernstein, 1975). 

However, it was often difficult to assess the relative contribution of these two factors 

to the growth inhibition under salinity. 

It is likely that the causes of reduced growth are different for sensitive and tolerant 

species. Plants in the first group lose their capacity to control ion influx at relatively 
low levels of salinity; in that situation, too much ion uptake will eventually result in 

direct toxicity from metabolic interference. At the other extreme, growth of 
halophytes at very high salinities is probably limited by insufficient ion transport to 

growing tissues, resulting in a water deficit (Munns et al., 1983). Requirements for 

solute uptake by extending cells are very large, because they have to keep their 
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turgor while at the same time increasing their volumes. If Na' and Cl- are to be used 

for osmotic adjustment, they have to be transported by the phloem, since growing 

tissues are mostly fed by the phloem; this might be the limiting step (Delane et al., 

1982). Jeschke (1984) suggested that poor recirculation of K' may also contribute to 

insufficient turgor in those tissues. 

Reduced shoot growth under salinity is mainly observed as a reduced leaf area and 

smaller shoots. Since final leaf size depends on the number and the size of the cells, 

decreased leaf expansion could be due to either reduced cell division (fewer cells) or 

reduced cell expansion (smaller cells). The latter seems to be more sensitive to 

salinity than the former, (Kriedemann, 1986; Papp et al., 1983), although both are 

affected. Unfortunately, we do not know which process is limiting cell growth (be 

it division or expansion). Many mechanisms are affected by salinity (e. g. 

photosynthesis, respiration) but it is difficult to prove a causal relationship. 

Osmotic adjustment and compartmentation, both of organic and inorganic solutes, are 

processes that require energy. (This is what some authors (e. g. Pasternak, 1987) 

refer to when they talk about a change in the energy levels of the plant. ) This energy 

can be obtained by an increase in respiration rate (maintenance respiration) or, 

alternatively, by diverting assimilates from other processes (e. g. sugars from growth 

to osmotic adjustment). Maintenance respiration has, indeed, been shown to increase 

at moderate salinities (Schwarz & Gale, 1981). Several authors (Greenway & Munns, 

1983; Yeo, 1983; Raven, 1985) have tried to quantify the metabolic cost of 

adaptation to salinity. From these studies, it is generally agreed that the extra cost of 
transport of ions and compartmentation, although high, is not excessive, and that it 

can only explain part of the observed growth reduction. 

Photosynthesis is also reduced by salinity, usually due to decreased stomatal 

conductance (e. g. Rawson, 1986). However, leaf elongation is affected before 

photosynthetic processes are (Munns et al., 1982; Papp et al., 1983), which seems 
to indicate that a decrease in leaf area available for photosynthesis (rather than a 
decrease in photosynthetic rates) is the major factor for the overall reduction in 

carbon assimilation. This fact, and the additional observation that in the long term 
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growth declines more than photosynthesis (Papp et al., 1983), support the prevalent 

view that photosynthetic rate is not the (major) limiting factor under salinity. 

Exposure to salinity causes an immediate reduction (even cessation) of leaf growth, 

but after a short time (hours) growth is partially recovered, although at lower rates. 

This short term response is presumed to be related to water stress, and the restoration 

of growth is probably due to osmotic adjustment. However, even with osmotic 

adjustment growth is inhibited under salinity in non-halophytes. While many 

halophytes accumulate Na' and Cl- in order to adjust osmotically, salt tolerance in 

non-halophytes has usually been correlated with the ability to exclude Na' and/or Cl- 

from the shoots (Munns, 1990), thus suggesting that specific ion toxicity is an 

important factor in salt stress. However, as has been pointed out by several authors, 
high ion concentrations may not only be the cause but the consequence of the injury 

(accumulation due to reduced growth) (Munns & Termaat, 1986). 

Munns and collaborators have tested several hypotheses to elucidate the causes of 

growth decrease in salinity. After ruling out the possibility of water deficit in the 

shoot (Termaat et al., 1985), specific ion effects (Munns et al., 1982), and other 

metabolic processes that could be limiting the growth of the shoot, Munns and 
Termaat (1986) suggested that in the medium term (days to weeks) the effects of 

salinity might arise from osmotic effects in roots, via a messenger which regulates 

metabolic processes in the growing leaves. That messenger would probably be a 
hormone or growth regulator (cytokinins, abscisic acid, gibberelic acid, or ethylene). 

In the long term (weeks to months) the situation is different, and specific ion effects 

are probably more important. High salt loads are usually found in older leaves, 

because once growth is finished ion concentrations are not anymore compensated by 

volume increases, and continued transpiration will cause those concentrations to rise. 
At some stage, the capacity for compartmentation within the cell will become 

saturated, and the build-up of salts in the' cytoplasm and/or the cell wall will 

eventually kill the old leaves. Munns and Ten-naat (1986) noted that if the rate of leaf 

death is greater than the rate of leaf expansion the supply of carbohydrates will 
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decrease in proportion to the reduction in photosynthetically active leaf area. With 

time, the young leaves will be unable to sustain the growth of the whole plant. 

In summary, although it is still not clear how salinity affects growth, the current line 

of thought is as follows. In the very short term, changes in the water status of the 

root medium (osmotic effect) cause a reduction (and temporarily cessation) of leaf 

growth. The plant responds by increasing its internal osmotic pressure to restore 

growth (osmotic adjustment). However, this recovery of growth is only partial, in 

spite of turgor been fully restored, thus suggesting that the cell wall properties 

(extensibility, yield threshold) are affected by the stress (Hsiao et al., 1985). Osmotic 

changes in the root medium might be sensed by the shoot by means of a messenger 

(probably an hormone) which regulates metabolic processes related to growth. In the 

long term, excess ion accumulation (ionic effect), either in the protoplast or the 

apoplast, is probably the main cause of reduced leaf longevity and high rates of leaf 

death. 

1.4. SALT TOLERANCE IN CULTIVATED PLANTS 

1.4.1. Agronomic aspects of salt tolerance 

Some authors (e. g. Levitt, 1980) distinguish two strategies for resistance to any kind 

of stress: stress avoidance and stress tolerance. In the first case, the plant is able to 

"exclude" the stress by some kind of barrier (physical or chemical) so that it does not 

affect its metabolism. A stress tolerant plant, in contrast, permits the stress to "enter" 

its tissues, but is able to prevent or repair the injury induced by the stress. In the case 

of salt resistance, the strategy of salt excluders would be an avoidance mechanism: 

avoidance of ion toxicity by exclusion, and avoidance of internal water deficits by 

osmotic adjustment with organic solutes. The strategy of salt includers could be 

regarded as a tolerance mechanism: "tolerance" to high tissue concentrations is 

achieved by ion compartmentation, either at the cellular level or at the tissue and 

organ level. Strict tolerance of enzymes and metabolism to high electrolyte 

concentrations has only been found in halophilic bacteria (Brown, 1983). Still, since 
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salt resistance is a more complex issue where several strategies are involved, the 

word tolerance will be used throughout this work in a broad sense, as a synonym of 

resistance, and including any kind of mechanism that can help the plant withstand the 

negative effects of high external salinity. 

Salt tolerance can be defined as the plant's capacity to endure the effects of excess 

salt in the medium of root growth (Maas, 1990). This is not something easily 

measured, because it depends on many factors, e. g., the type of salts involved, the 

growth stage of the plant, and the growing conditions (soil fertility, irrigation, 

climate). Thus, all these factors should be specified when giving an estimation of the 

salt tolerance of a crop. However, for comparative purposes, general values are 

commonly used for different species. 

The salt tolerance of a plant is usually assessed in one of three ways: a) its ability to 

survive on saline soils; b) its growth or yield at different levels of salinity; c) its 

relative growth or yield on a saline soil compared to its growth or yield on a non- 

saline soil (all other conditions being similar). 

Survival is an important ecological criterion, but it has little value from the 

agronomic point of view. It is usually associated with strategies which limit growth 
below the minimum economically viable levels, and it does not necessarily correlate 

well with yield reductions at more moderate salinities. From the point of view of the 
farmer, the most useful criterion might be the absolute yield under salinity. However, 

this is not only a function of salt tolerance, since it may be the result of different 

environmental factors, such as soil fertility, soil moisture, or pest and disease control, 
for example. Finally, yields can be expressed on a relative basis: that is, the yield of 

a crop under saline conditions expressed as a fraction of the yield achieved under 

non-saline, but otherwise similar, conditions. Expressing salt tolerance in such a way 
has some advantages: it is possible to make comparisons between different 

management practices, environmental conditions and even between crop species. 
Also, genotypes with high relative tolerance can be identified; these genotypes are 
interesting from a breeding point of view, because the trait may later be transferred 
to other more sensitive, but agronomically better, varieties. 
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1.4.2. Measurement of salt tolerance; models. 

For most crops, the yield response to increasing soil salinity follows a sigmoidal 

relationship. Maas and Hoffman (1977) proposed that this response could be 

simplified to two straight lines: a tolerance plateau with zero slope, and a salinity- 

dependent line where the slope indicates the yield reduction per unit increase in 

salinity. The intersection of the two lines is the threshold (EC), the maximum salinity 

of soil or water that does not reduce yield below that achieved under non-saline 

conditions. This piece-wise linear model is represented in Figure 1.2. 

The usual measure of soil salinity is the electrical conductivity of the saturated soil 

extract (EQ, in dS m-1. For EC, exceeding the threshold, the yield (Y) can be 

estimated with the following equation: 

Y. -Y.. xSx (EC, - EQ 

where Y. is the yield with no salinity (maximum yield), S is the slope of the line, 

and ECt is the salinity threshold. Expressed in relative tenus, the relative yield (Y) 

would be: 

Yr 100 -Sx (EC, - EQ 

This kind of relationship is also accurate if the osmotic potential of the soil solution 

at field capacity (OPfc) is used as a measure of soil salinity; (OPfr is not a linear 

function of EC., but its deviation from linearity is very small (Richards, 1954)). 

This model gives a general indication of the salt tolerance for a crop. However, 

carefully controlled conditions are needed to obtain meaningftil threshold and slope 

values. The threshold in particular is very sensitive to interaction with other 

environmental factors (Shannon, 1985), and several points below it (low salinity 
levels) are riecessary to get a good estimation. 

If a more accurate description of the response to salinity is needed, (and if data are 

available for many salinity levels), some non-linear models can be used (see Van 
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(Greenway & Munns, 1980). However, when comparisons are made between closely 

related genotypes with similar degrees of salt tolerance, the above rule no longer 

applies, and salt tolerance is then associated with low Na' and Cl- concentrations in 

shoots ("salt exclusion") (Greenway & Munns, 1980; Munns, 1990). 

This kind of situation can be found in two of the most important cereal crops, wheat 

and barley. When grown at low salinities, barley takes up considerably greater 

amounts of Na' (and, to a lesser extent, CI-) than hexaploid wheat (Wyn Jones & 

Gorham, 1989; Gorham & Wyn Jones, 1993); yet it is more salt tolerant. 

Nonetheless, in comparisons between barley cultivars, Cl- and Na' concentrations are 

usually higher in sensitive than in tolerant varieties (Greenway, 1962; Wyn Jones & 

Storey, 1978). Therefore, salt exclusion (rather than inclusion) is considered to be 

the major strategy in this species. This apparent discrepancy is related to the degree 

of control that plants have on their ion uptake and transport. With increasing 

salinities, this control ("exclusion") is firstly lost in wheat, whilst it is better 

maintained in barley. 

Gorham and collaborators have studied ion uptake in relation to salt tolerance within 
the tribe Triticeae, by using a wide range of germplasm, from wild relatives to 

commercial varieties, including interspecific hybrids. In particular, they identified the 
"enhanced K/Na discrimination character", which is present in hexaploid (bread) 

wheats, but not in tetraploid (durum) Wheats (Wyn Jones et al., 1984; Shah et al., 
1987). This trait controls K' and Na' transport from roots to shoots, possibly at the 

point of xylem loading, and is located on the long arm of chromosome 4D (Gorham 

et al., 1987). (For an extensive characterization of this character see Gorham, 1993). 
The higher Nal levels found in leaves of dururn wheats has been attributed to the 
lack of this enhanced selectivity. However, barley has leaf Nal concentrations as 
high as those of dururn wheats, though it is more tolerant (Richards et al., 1987; 
Rawson et al., 1988). In fact, like tetraploid wheats, barley also lacks the enhanced 
K/Na discrimination trait (Gorham et al., 1990). Thus, barley must have some other 
mechanisms which allow it to tolerate high salt loads, probably by efficient 
compartmentation of ions, both at the cellular level (in vacuoles) and at the tissue 
level (in older leaves). 
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1.5. SELECTION AND BREEDING FOR SALT TOLERANCE 

1.5-1. General 

if saline soils have to be used for crop production, two major approaches can be 

c onsidered: a) the agronomic approach (change the environment to suit the plant); 

and b) the biological approach (adapt the plant to the environment). Both approaches 

have limitations, and neither of them can provide a solution on its own. The 

technology to reclaim saline soils is usually very expensive, and sometimes limited 

by the availability of water resources. The biological approach involves adapting the 

existing crops to environments different from those where they naturally occur, 

and/or changing the traditional crops for new crops. It includes the use of crops and 

varieties with improved salt tolerance for areas of moderate salinity, and the 

domestication of halophytes to be used as new crops in areas of high salinity. 

Although the interest of breeding for salt tolerance has been recognised for a long 

time, not many results have been obtained till present. Noble and Rogers (1992) cite 

only 6 commercial varieties specifically bred for improved salt tolerance; (however, 

this number does not include selected lines developed in "Third World" countries, 

which are used in local conditions but not registered under plant breeders' rights 

schemes). The reasons for this lack of success are various: the complexity of saline 

soils (spatial and temporal variation); the interaction between salinity and other 

environmental stresses; the inadequate understanding of how plants integrate and 

respond to salinity at the whole plant level, and throughout their life cycle (variation 

with ontogeny); and the lack of efficient criteria for rating the salt tolerance of 
individuals in large segregating populations. Despite these limitations, however, it is 

generally agreed that salt tolerance of crops can be improved beyond the present 
phenotypic range. Some of these issues are discussed below. 

1.5.2. Breeding methods 

Several methods may be used for increasing the salt tolerance of existing crops. The 

most simple approach consists of screening a large number of accessions and directly 
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using the most resistant ones. However, the range of naturally occurring salt 

tolerance in many species is limited, because selection pressures in crops have 

worked against tolerance to poor environments (Shannon & Akbar, 1978; Rosielle 

& Hamblin, 1981). 

Screening only helps to identify the already tolerant phenotypes. To improve the 

existing varieties, new genotypes have to be created by recombination of different 

genes involved in salt tolerance. Some of these genes may be found in salt tolerant 

wild relatives of the existing crops, and they can be introduced into the crop species 

through interspecific hybridization. This approach has been used in tomato (e. g. Rush 

& Epstein, 1981a) and in wheat (e. g. Gorham et al., 1986). 

Richards (1992), however, questioned the contribution that wild relatives can make 

to improving the productivity of some crops, particularly when not only salinity but 

also drought are limiting yield. He argued that the physiological traits identified by 

growing plants in salinized nutrient solution are likely to be of minor importance for 

improving salt tolerance and productivity in saline soils, and that manipulating water 

use and water-use efficiency may be more appropriate. Notwithstanding the risks of 

extrapolating results obtained through solution culture to field conditions, Richards' 

(1992) conclusions may only apply to certain crops growing in non-irrigated saline 

soils. 

Another way of improving the existing varieties is by identifying physiological traits 

which are related with salt tolerance, and then recombining them into a single 

genotype. This is the "pyramiding" approach suggested by Yeo and Flowers (1986). 

It is based on the idea that salt tolerance is not conferred by a single factor (i. e. 

governed by one or few genes), but the result of several independent factors. In the 

absence of selection pressure for salt tolerance, it is not expected that the current 

varieties have evolved the optimal combination of these characters. Also, the 

presence of -these traits may not be easily detectable, because of their partial 

contribution to the overall performance of the phenotype. Thus, the physiological 

characters which help to confer resistance to salinity have to be identified and 
independently selected before they can be combined in a single genotype. 
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1.5.3. Environment for selection 

Traditionally, plant breeding has been directed towards improving the performance 

of varieties for a specific environment; this approach results in the selection of the 

highest yielding variety for that particular environment. With increased international 

cooperation in the field of plant breeding, the need to develop cultivars with 

adaptation to a wider range of environments has arisen. In subsistence agriculture, 

stable performance over a range of environments is more important than high yield 

per se. Because of the high variability of saline soils, these can be regarded as a set 

of microenvironments. Breeding for salt tolerance could, thus, be regarded as 
breeding for yield stability over a range of salinities. This is rather difficult, because 

of the complex interactions between genotype and environment. It is usually found 

(e. g. Finlay & Wilkinson, 1963; Jana, 1993) that varieties with high stability under 

various conditions do not produce high yields in favourable environments, while 

varieties with high yields in non-stress environments have much lower yields in 

unfavourable conditions. 

Discussing whether selection for salt tolerance should be done in saline or non-saline 

soils, Richards (1983) concluded that breeding for high yields in non-saline 

envirom-nents would be more efficient. His conclusion came after the observation 
that, because of the high variability in salinity within a field, 80% of the yield came 
from the 20% of that field with the lowest salinity levels. A small increase in the 

yields at the highest salinities would not make a large contribution to the overall yield 

of a particular field. Besides, selection for maximum yield in a favourable 

environment is easier and cheaper. 

However, Richards (1983) based his study on results from moderately salt tolerant 

species (barley, wheat and triticale); these results cannot be extended to more 
sensitive species, which have poor yields at relatively low salinities. Additionally, the 
field that Richards (1983) described as having a "medium" level of salinity had 73% 

of its land with less than 4 dS in-' soil salinity. This high proportion of non-saline soil 
might be common in salt-affected fields of California, but not necessarily in other 
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parts of the world. Finally, when the source of salinity is in the irrigation water (not 

in the soil) his conclusions are not valid anymore. 

Another argument against Richards' opinion is the commonly accepted view that 

maximum potential yield and stability of yield are independent factors, and thus 

controlled by different genes. Similarly, the genes that determine yield in saline 

conditions are probably different from those which control high yield under non- 

saline conditions, (although this aspect has never been investigated in detail (Shannon, 

1985)). Consequently, saline environments have to be used in a breeding progranune 

for salt tolerance, to permit the expression of these genes. 

1.5.4. Selection criteria for salt tolerance 

Different terms have been used to describe the salt tolerance of a genotype. The most 

common ones are the threshold level (as defined by Maas and Hoffman, 1977), the 

rate of yield decrease with increasing salinity (the slope in Maas and Hoffman model) 

and the salinity at which yield is reduced by half (EC50). Jana (1991) also suggested 

a tolerance range, i. e., the range of salinities in which agronomically and 

economically acceptable yields can be obtained. 

The problem with using yield as a measure of tolerance is that final yield is the result 

of a multitude of factors which interact during the life cycle of the plant. Under field 

conditions, it is difficult to maintain other environmental variables at an optimal 
level. Moreover, selection for grain yield is inefficient because of its low heritability 

(it is a quantitative trait). Still, in the absence of better characters, yield and other 

agronomic traits cannot be dismissed as part of the selection criteria for salt 
tolerance. 

In view of these limitations, it has often been suggested (Epstein et al., 1980; 
Ramage, 1980; Shannon, 1985; Tal, 1985) that breeding for increased tolerance 

might be more successful if selection is based directly on the relevant physiological 
mechanisms which determine salt tolerance. However, this is not straightforward 
either. First of all, many mechanisms are involved, and their relative importance can 



32 

vary largely between species and even varieties (Noble & Rogers, 1992). Some of 

these traits are difficult to identify because they may be obscured in the overall 

expression of the phenotype, and they do not correlate well with yield under salinity 

(Yeo & Flowers, 1986). There is also a lack of studies on the genetic control of these 

characters (Shannon, 1985; Tal, 1985). 

For these physiological mechanisms to be efficient as selection criteria in breeding 

for salt tolerance, several conditions have to be met (Tal, 1985; Noble & Rogers, 

1992). A basic one is the need for genetic variation in the relevant trait, and a 

sufficiently high heritability to permit advances through selection. Another 

requirement is that the trait be easily measured, so that it permits the screening of 

large number of genotypes without requiring large amounts of resources. 

If positive results have to be obtained in the short term, the chosen mechanism should 

also have a major effect in the overall plant tolerance. The pyramiding approach of 
Yeo and Flowers (1986) may offer greater improvements in the long term, but it 

requires more time and resources, and a better knowledge of the specific mechanisms 
involved in salt tolerance. In other words, if for a given species there exists a major 

mechanism for salt tolerance (such as salt exclusion at the root level), selection for 

a secondary trait (such as ion compartmentation at the cell level) will probably be of 
limited benefit in the short term. An example of such results may be the poor 

relationship frequently found between the performance of cells selected for salt 
tolerance in tissue culture and the response of the plants regenerated from them 
(Dracup, 1991). 

1.5.5. Physiological traits in breeding for salt tolerance 

Salt sensitivity in some crops has been attributed to the failure of the plant to keep 
Na+ and Cl- out of the transpiration stream and, thus, the cytoplasm of the aerial 
parts. Variefal differences related to the ability to regulate Cl- and/or Na+ transport 
from root to shoot (ion restriction) have been reported for barley (Greenway, 1965), 

soybean (Abel & Mackenzie, 1964) and Elytrigia pontica (Shannon, 1978). 
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In contrast to glycophytes, where ion restriction is the major strategy for salt 

tolerance, halophytes take up large quantities of ions to cope with salinity. As 

mentioned earlier, ion accumulation has to be complemented by good 

compartmentation at the cellular and tissue level. A wild relative of tomato, 

Lycopersicon cheesmanii, is thought to be more salt-tolerant than the cultivated 

species because of its capacity to accumulate ions (Rush & Epstein, 1981b). The 

interest of these wild halophytes in breeding programmes, either as sources of new 

genes to transfer into existing crops or for use as new crops after adaptation, has 

already been noted. 

osmotic adjustment and accumulation of organic solutes (sugars, glycinebetaine) have 

also been suggested as indices of salt tolerance (Rathert, 1984; Grumet & Hanson, 

1986), although if considered on their own they may not be very useful. Other 

mechanisms that can prevent loss of turgor through better water efficiency (e. g. 

fewer stomata, increased cuticle thickness) may also help. However, most of these 

strategies also affect negatively the maximum production of a crop, through reduced 

photosynthesis. 

1.5.6. Use of new technologies 

The possibility of increasing salt tolerance by selecting undifferentiated cells in tissue 

culture has been suggested by many authors (see Shannon and Noble, 1990, for 

references). However, the relationship between cellular and whole-plant response to 

salinity is not clear. Usually, plants developed from salt resistant cells do not show 
improved tolerance (reviewed by Downton, 1984, and Yeo and Flowers, 1989). Only 

in a few instances (e. g. tobacco, Nabors et al., 1980) has regeneration of salt-tolerant 

plants from cell culture been successful. 

Recent advances in molecular biology have also broadened the possibilities for gene 

manipulation. Stress may induce changes in gene expression. Indeed, salt-induced 

proteins have recently been described (reviewed by Shannon and Noble, 1990). If 

genes for salt tolerance are identified, they may then be transferred to salt-sensitive 

species by using the new techniques of genetic engineering. 
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1.6. GENERAL OBJECTIVES OF THE PRESENT WORK' 

This thesis forms part of a broader project studying salt tolerance in barley, one of 

the final objectives of which is to find physiological traits which can be used as 

selection criteria in breeding programmes for salt tolerance. In particular, the present 

work focuses on one such trait: the ion uptake and accumulation of barley under 

saline conditions. Four main points were investigated: 

1) the patterns of ion accumulation in response to salinity (field and hydroponics) of 

several varieties of barley known to differ in their salt tolerance; 

2) the salt tolerance of the above varieties, based on measurement of grain yield 
(field) and of plant growth (hydroponic culture); 

3) the effects of high Ca" concentrations in the nutrient solution (hydroponic) and 
in the irrigation water (field) on the response of the plants to (NaCl) salinity; 

4) the validity of the Triple Line System for use in studies of salt tolerance. 

The final objective was to see if the measurement of leaf ion concentrations was an 
indicator of the salt tolerance of a genotype, in which case it might be used as a 

criterion for selection in breeding programmes. 
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CHAPTER TWO 
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BARLEY IN SALINITY: 

ION UPTAKE AND OSMOTIC ADJUSTMENT 

2.1. INTRODUCTION 

In comparison to other cereals (e. g. bread wheat), high concentrations of Na' and 
Cl- are found in leaves of barley when grown in saline media. In that sense barley 

behaves like a halophyte, using these ions to achieve osmotic adjustment. However, 

monovalent cations (both Na' plus K') at high concentrations (above 200 mol M-1) 

are inhibitory to enzymes (Flowers, 1972; Greenway & Osmond, 1972), and Cl- is 

at least as toxic as Na' and K' (Gibson et al., 1984; Gimmler et al., 1984). Thus, 

it is clear that the ions involved in osmotic adjustment have to be stored mainly in the 

vacuole, while solutes with less deleterious effects are accumulated in the cytoplasm 

to maintain osmotic equilibrium across the tonoplast. The term "compatible solutes" 
has often been applied to these cytosolutes, because of their compatibility with 

metabolic functions (Brown & Simpson, 1972), although the physiological 

significance of their accumulation in salt- (and water-) stressed plants is not clear (see 

Steward & Larher, 1980; Rhodes & Hanson, 1993). 

Two of the most studied compatible solutes are glycine-betaine (= N, N, N-trimethyl 

glycine) and proline. Most halophytes contain levels of glycine-betaine 10 times 
higher than tolerant non-halophytes, while little or no betaine is found in salt-sensitive 

species (Storey & Wyn Jones, 1977). In contrast, proline only accumulates, both in 

salt-sensitive and salt-tolerant species, when growth is severely reduced, and this 

accumulatiop may be a consequence of reduced growth (Greenway & Munns, 1980). 

Increased concentrations of both solutes in leaves of salt-stressed barley plants have 

often been reported (e. g. Wyn Jones & Storey, 1978a; Delane et al., 1982). 
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The osmotic pressure of plants growing in saline media can be increased not only by 

accumulation of ions and organic solutes, but also by a decrease in the water content 

of the cell. Storey and Wyn Jones (1978) found that a decrease in cell water content 

was the main mechanism of osmotic adjustment of barley under salinity. It is 

interesting to note that, although the term osmotic adjustment is used in a wide sense 

to indicate the changes in internal osmotic pressure in response to a decreased 

external water potential, some authors (e. g. Yeo, 1983) prefer to use it in a stricter 

sense. That is, when the plant responds to a change in the external osmotic pressure 
by a net increase in the quantity of osmotically active solutes (Turner & Jones, 

1980). Other responses which can help in turgor maintenance when the external water 

potential is reduced (such as a decrease in water content or in cell volume) are not 

considered by these authors to be "osmotic adjustment" in the strict sense. 

In spite of relying mostly on ions for its osmotic adjustment, relative differences in 

salt tolerance between barley varieties have been related to the ability to exclude Na' 

and Cl- from the young leaves, while maintaining high K' concentrations. This idea 

dates back to the experiments of Greenway in the sixties (Greenway, 1962a, b), where 
it was found that the saline-treated shoots of a sensitive variety (Chevron) had higher 

Cl- and Na', and lower K', concentrations than those of two more resistant varieties. 
Later, similar conclusions were reached by Storey and Wyn Jones (1978), when the 

greater salt sensitivity of cultivar Arimar, compared to California Mariout, was 

related to its poorer capacity to regulate Na' and Cl- accumulation in the shoot. A 

significant correlation between Cl- concentrations in leaves and growth was also 
found by Rawson et al. (1988) when comparing several barley varieties (which 

included California Mariout) . 

At the cellular level, the main mechanisms for K/Na discrimination are related to 
K/Na exchange at the plasma membrane of root cortical cells (Jeschke, 1984), by 

selective influx of K' over Na' (Rains, 1972), and by K'-dependent Nal efflux 
(Jeschke & Stelter, 1973). In young tissues, the selectivity is mainly due to K' 

retranslocation from leaves to the growing tissues by the phloem. (Greenway et al., 
1965; Jeschke & Wolf, 1985; Wolf & Jeschke, 1987). The mechanisms for Cl- 

exclusion are not so well known. However, several new techniques (X-ray 
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Inicroanalysis, 'single-cell sap analysis, and isolation and analysis of protoplasts) have 

provided evidence for the preferential accumulation of Cl- in epidermal cells of barley 

leaves compared to mesophyll cells, both under "normal" and saline conditions (Dietz 

et al., 1992; Leigh & Storey, 1993; Williams et al., 1993; Fricke et al., 1994a, b). 

Preferential accumulation of Cl- in the leaf sheath also contributes to maintain low 

leaf blade Cl- concentrations, although the relevance of this mechanism in barley is 

under discussion (see Boursier et al., 1987; Huang & Van Stevenick, 1989). 

2.2. COMPARISON OF BARLEY VARIETIES UNDER SALINITY: ION 

ACCUMULATION AND GROWTH. 

2.2.1. OBJECTIVES: 

This preliminary experiment was designed to compare the growth of some varieties 

of barley under salinity stress in nutrient solution, in relation to their ability to 

regulate ion uptake. In particular, three aspects were investigated: 

a) how well does vegetative growth of plants grown in artificial culture compare with 

their known salt tolerance in the field?; 

b) does ion accumulation in leaves realistically reflect the ability of a genotype to 

grow under salinity?; 

c) is there variability in both salt tolerance and ion uptake characteristics between 

barley varieties, and if so, can we use some of these varieties as reliable "checks" 

to compare others against? 

To assess the first question, the experiment included some cultivars for which there 

was already some information about their performance in the field under saline 

conditions. While in some of these cultivars their patterns of ion accumulation were 

well known, in others this point had never been studied. Their inclusion in the 

experiment would thus provide some verification of the hypothesis that ion exclusion 
is related to salt tolerance. Finally, if some "new" tolerant or sensitive varieties could 
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be identified, they could be used as checks for future experiments, instead of having 

to rely on the traditional cultivars (CM-67, Chevron) which in some cases do not 

compare very well with other varieties better adapted to Spanish conditions. 

Seven barley cultivars were used for this experiment: CM-67, reputedly salt tolerant 

(Ayers et al., 1952; Epstein et al., 1980; Richards et al., 1987); CHEVRON, 

reputedly salt sensitive (Ayers et al., 1952; Greenway, 1962a; Wyn Jones & Storey, 

1978b); ALBACETE, a commercial variety widely used in Spain for dryland 

conditions; BARBARROSA, a commercial variety commonly used in Spain under 
irrigation; IGRI and DACIL, 2 commercial varieties that had performed well under 

salinity in previous experiments (Royo, 1989); and a presumed landrace collected by 

Dr. Wyn Jones in Morocco, where it was grown in a natural saline soil (and referred 

to as MOROCCO). 

2.2.2. MATERIALS AND METHODS: 

The experiment was conducted in a glasshouse at the University of Wales, Bangor 

(Pen-y-Ffridd Field Station) in February/March 1990. The minimum temperatures in 

the glasshouse were 18/16'C day/night, with a photoperiod of 16 hours light per day 

(natural daylight supplemented with 40OW Son-T high pressure sodium lamps; 

Osram, UK). 

Seeds of the above mentioned varieties were washed in running tap water for 24 

hours, and imbibed in aerated distilled water for another 24 hours. After that period 
they were sown (02.02.90) in rock-wool plugs (Grodan BV, Roermond, Holland) 

in plastic trays (P84, Plantpak Ltd, Maldon, Essex), one seed per cell and 5 plants 

of each variety per tray, in a randomized design. The trays were placed over wet 
vermiculite and covered with black plastic film until emergence. 

After 5 days the young seedlings were moved into hydroponic culture. The plug trays 

were suspended in 25 dM3 containers (W6, Mailbox International Ltd, Stalybridge, 

Cheshire) aerated from underneath, and containing a solution of 1 Mol m-3 Ca(N03)2 
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and 0.5 Mol In-3 MgS041 to help with root establishment. Five days later a 

Phostrogen-based (Phostrogen Ltd, Corwen, Clwyd) nutrient solution (for details see 

Gorham et al., 1984a) and micronutrients (as in Hoagland & Arnon, 1950) were 

added. 

Three levels of salinity were used: 0 (control), 100 and 200 mol m-' NaCl. CaC12 

was added at a molar ratio of 20: 1 (0,5 and 10 mol m7l CaC12, respectively). (The 

final Na: Ca ratio, however, was slightly different, since the Phostrogen solution 

already contained 0.5 mol m-I Ca2'. ) Two containers (tubs) with 5 plants of each 

variety (randomly distributed) were used for each salinity level, resulting in 6 tubs 

with 35 plants, and 10 replicated plants for each variety and treatment. 

Twelve days after sowing, salt stress was commenced by adding 50 mol rný NaCl 

daily until the appropriate final concentration was reached (2 and 4 days). The salt 

solution was replaced weekly, together with the nutrient solution. The ECs in the 

salinity treatments were around 10 and 18 dS m' for treatments of 100 and 200 mol 

m' NaCl, respectively. 

One month after the first salt was added (13.03.90) 6 plants of each cultivar and 

treatment were harvested. These replicates were chosen at random (3 from each 

tray). Two leaves per plant were sampled for sap extraction and analysis: the 

youngest expanded leaf (referred to as "young" leaf), and the second leaf below that 

one ("old" leaf). Whole plant fresh weight was recorded. Because of time and space 
limitations, only 3 plants of each cultivar and treatment were oven-dried to measure 
dry weight; their average water content was afterwards used to calculate the dry 

weight of the remaining 3 plants. 

Individual leaves were stored in Eppendorf tubes and frozen in a commercial freezer 

(-18'C) for a minimum of 24 hours. Cell sap was extracted following the method of 
Gorham et al., (1984b). This consists of crushing the thawed samples with a metal 
rod, making a small hole at the top and bottom of the Eppendorf tube, placing it 
inside another empty one, and centrifuging. The cell sap is collected in the second 
tube. 
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Major ions (Cl-, N03', H2P04_9 S04 2- 
, 

Na' and K') were analyzed by ion-exchange 

HPLC (Dionex 2000i, Dionex (UK) Ltd, Camberley, Surrey), after dilution with 

10% isopropanol (which acts as a preservative and protein precipitant) and a second 

dilution with an appropriate eluent. For anion analysis, the eluent was a solution of 

Na2C03 (3.77 mol in-') and NaHCO3 (1.31 mol ar'). The HPLC was fitted with an 

AS4A anion-exchange column and an Anion Micro-Membrane Suppressor 

regenerated with diluted H2SO4 (0.68 ml I`). For the analysis of monovalent cations, 

the HPLC was fitted with a CS1 cation-exchange column and a Cation Micro- 

Membrane Suppressor regenerated with KOH (64 mol m-'); the eluent was diluted 

HCl (0.80 ml I`). (For more details see Gorham, 1987). Ce' was analyzed by 

atomic absorption spectrophotometry (SP 2900, Pye Unicam Ltd, Cambridge, 

England), after dilution with 0.2 % LaCl3to minimize interferences. Osmotic potential 

of the extracted sap was measured with a vapour pressure osmometer (510013, 

Wescor Inc, Logan, Utah). 

Statistical analysis was performed using the Genstat-5 statistical package (Lawes 

Agricultural Trust, Rothamsted Experimental Station). The whole experiment might 
be regarded as a triple factorial (7 varieties x3 salinities x2 leaves), with the last 

factor (leaf) being nested within the combination of the othe r two. An analysis of 

variance (anova) for such a model was initially carried out for all characters studied. 
This revealed the existence of significant interactions between all factors for almost 

all the traits. Whenever interactions are significant, the comparison of main effects 
(i. e. overall means for variety, salinity or leaf) has little relevance. Furthermore, the 

effects of salinity and leaf age on ion accumulation are already well documented. 

Since the main interest of the experiment was to compare the varieties at a similar 
level of salinity, the results will be presented as if they came from 3 separate 
experiments, one for each salinity treatment. 

Within each level of salinity, a two-factor anova was carried out using varieties and 
leaves as factors. The interaction between variety and leaf was still significant in 

many cases; therefore, the comparison of varieties was done independently for the 
two leaves at each level of salinity. Separation of means (varieties) was performed 
using Tukey's test. 
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in all these statistical analyses, the individual values of the 6 replicates (plants) were 

used. These might not be considered as proper replications since, as described 

before, the minimum unit to which a treatment was assigned was the 25 dmI 

container with 5 plants of each variety; (see Mead, 1988, pp. 112-122, for a 

discussion of this topic). However, they had to be used in this case, because the 6 

similar samples had not been identified according to their origin (container). The use 

of means of 6 plants (instead of individual values) would have resulted in not enough 

degrees of freedom to perform any analysis. 

Principal component analysis was carried out to study all the ions at the same time. 

This was done with the Minitab statistical package (Minitab Inc. ). The relationships 

between ion concentrations and plant growth were examined, and linear correlation 

was used to study these relationships. 

2.2.3. RESULTS: 

2.2.3.1. Plant growth (Table 2.2.1): 

The reduction in shoot dry weight with salinity was not linear: the effect was 

proportionally less at 200 than at 100 mol nf' NaCl. At 100 mol m-' NaCl, shoot dry 

weights ranged between 48 % and 65 % of those of the controls, and at 200 mol ni-I 
between 31 % and 40 %. 

In general, there were no large differences between varieties in dry weight (Table 

2.2.1). This may partly be attributed to the way dry weights were calculated (see 

section 2.2.2), where half of the values came from estimations rather than actual 

measurements. In all 3 treatments, Albacete had the lowest dry weight (followed by 
Igri), and Chevron the highest ones. The values for Albacete were always 

significantly lower than those of Chevron (p < 0.05; Tukey's test). 

In addition to studying the absolute values in the stress conditions, it is interesting to 

see if the varieties responded differently to salinity. One way to do this is by ranking 
them for their dry weights: any change in the ranking between the control and the 
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saline treatments may be regarded as an indication of the relative tolerance or 

sensitivity of that variety. Overall, the ranking of the varieties in the saline and non- 

saline conditions did not change very much. The exceptions were Dacil, which 

performed relatively better under salinity than in the control, and Morocco, which 

ranked lower with increasing salinity. 

Table 2.2.1. Shoot dry weight (g) and fresh weight to dry weight ratios (FW: DW) 
of 7 varieties grown for one month at different NaCl concentrations; (means of 6 and 
3 plants, respectively). 

VARIETY 0 mol m-, 
DW FW: DW 

100 mol ml 
DW FW: DW 

200 mol ml 
DW FW: DW 

ALBACETE 0.46 10.3 0.25 13.1 0.15 13.0 
BARBARROSA 0.71 11.8 0.37 11.5 0.28 9.3 
CHEVRON 0.76 12.1 0.49 10.9 0.30 10.7 
CM-67 0.69 13.8 0.34 14.1 0.24 12.2 
DACIL 0.68 11.4 0.39 11.2 0.27 13.2 
IGRI 0.56 13.6 0.29 13.8 0.22 10.7 
MOROCCO 0.72 12.7 0.34 11.8 0.22 11.8 

------------------------ 
L. S. R. * 

--------- 
0.27 

--------------- 
3.0 

---------- 
0.14 

--------------- 
4.9 

----------- 
0.11 

---------------- 
4.8 

*L. S. R. = Least Significant Range, cc=0.05 (Tukey's test). 

No significant differences were detected between varieties in the ratios of fresh to dry 

weights (FW: DW) (Table 2.2.1), except for the control treatment, where Albacete 

had a lower ratio than CM-67 and Igri (p < 0.05; Tukey's test). Large standard errors 

resulted from the small number of replicates used (3 plants). 

2.2.3.2. Ion concentrations in leaves: 

i) Sodium (Table 2.2.2. a): 

As expected, Na' concentrations in leaves (young and old) increased with increasing 

salinity, although in some varieties (Albacete, Chevron) more so than in others. 
Concentrations were also higher in older leaves than in young ones, in accordance 
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Table 2.2.2. Ne (a), K' (b) and Ca" (c) concentrations (mol M-3 sap) in young (YL) 
and old (OL) leaves of 7 varieties grown for one month at different NaCl 
concentrations; (means of up to 6 samples). 

VARIETY 0 mol M-' 100 Mol M-3 200 mol M-3 

YL OL YL OL YL OL 

a) Sodium: 

ALBACETE 5.5 7.8 164 223 240 407 
BARBARROSA 4.8 5.8 134 223 268 319 
CHEVRON 5.3 15.2 210 253 295 430 
CM-67 6.3 6.8 122 216 94 266 
DACIL 5.7 7.5 190 219 186 303 
IGRI 7.5 6.0 139 190 182 290 
MOROCCO 5.5 5.2 198 271 218 345 

------------------------ 
L. S. R. * 

----------- 
3.6 

------------ 
7.0 

------------ 
41 

------------- 
53 

------------ 
66 

---------- 
142 

b) Potassium: 

ALBACETE 159 156 100 42 129 60 
BARBARROSA 166 163 120 37 115 37 
CHEVRON 169 210 74 31 43 26 
CM-67 173 169 123 52 163 82 
DACIL 182 217 96 70 133 108 
IGRI 180 186 139 57 151 64 

-MOROCCO 173 167 89 49 117 68 

------------------------ 
L. S. R. * 

---------- 
24 

------------- 
37 

------------ 
34 

------------- 
24 

------------ 
48 

---------- 
39 

c) Calcium: 

ALBACETE 3.6 9.8 1.0 0.7 0.7 0.6 
BARBARROSA 2.9 6.3 2.2 1.7 1.6 2.5 
CHEVRON 6.4 12.1 8.1 10.2 6.3 6.3 
CM-67 3.2 5.7 0.6 1.2 0.5 2.8 
DACIL 9.6 12.6 7.8 3.3 3.1 2.8 
IGRI 3.9 9.1 2.5 3.9 3.6 4.0 
MOROCCO 2.4 6.8 1.5 0.6 1.3 1.2 

------------------------ 
L. S. R. * 

---------- 
3.4 

-------------- 
6.0 

----------- 
5.5 

------------- 
3.1 

------------ 
3.9 

---------- 
4.2 

* L. S. R. = Least Significant Range, a=0.05 (Tukey's test) 
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with previous reports (Greenway, 1962a, b), with these differences being larger at 200 

11,01,11-3 NaCl than at 100 Mol M-3. 

For the youngest leaf, some differences between varieties were already apparent at 

loo mol m-3 NaCl. At this salinity level, the varieties could be arranged in two 

groups: one having less than 140 mol m73 Na' (CM-67, Barbarrosa and Igri), and the 

other having around 200 mol m-1 Na' (Dacil, Morocco and Chevron); (Albacete 

ranked somewhere in between). At 200 mol m' NaCl, however, CM-67 had 

significantly (p < 0.05; Tukey's test) lower concentrations of Na' (less than 100 mol 

m-1) than all other varieties. In Barbarrosa and Chevron Na' concentrations increased 

to almost 300 mol m-1 Na'. In relative terms, Nal concentrations in some varieties 

(CM-67, Dacil, Morocco) hardly changed from 100 to 200 mol m' NaCl, whereas 

others showed a large increase (in particular, concentrations in Barbarrosa doubled). 

In older leaves the differences were not so clear-cut, but the varieties ranked in a 

similar order. At'200 mol m-' NaCl, CM-67 had the lowest concentrations and 
Chevron the highest; these two varieties were significantly different at the 5% level 

(Tukey's test). Again, the smallest increases in Na' levels from 100 to 200 mol M-3 
NaCl were observed in CM-67 and Morocco, while the largest ones were found in 

Albacete and Chevron. 

ii) Potassium (Table 2.2.2. b): 

In general, KI concentrations were lower in both NaCI treatments than in the control, 
irrespective of the level of salinity applied. This was not the case, however, for 

variety Chevron, where concentrations were still lower at 200 than at 100 mol n17' 
NaCl. This reduction of K' concentrations in NaCl-treated plants has long been 

known (Greenway, 1962a, b; Storey & Wyn Jones, 1978), and is explained by a 
partial substitution of K' by Na' (Flowers & Lduchli, 1983). For most varieties, K' 

concentrations were very similar in the two types of leaves in the control, but much 
higher in younger than older leaves under salinity. In some varieties, though, the 
differences between leaves were larger (and of the opposite sign) in the control than 

under salinity (Chevron and Dacil). 
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In the control, K' concentrations in young leaves were very similar for all varieties 

(no significant differences at the 5% level), with values between 160 and 180 mol m- 

3. In the two salinity treatments, however, Chevron always had the lowest K+ 

concentrations; this was particularly noticeable at 200 Mol M-3, where this variety had 

values significantly lower (p < 0.01; Tukey's test) than all the others; (compare the 

40 Mol 111-3 K' of Chevron to the values above 100 Mol M-3 for the rest of the 

varieties). CM-67 and Igri were the cultivars that maintained the highest K+ 

concentrations in their young leaves under salinity; reductions from their control 

values were below 20%. 

In the older leaves, K' concentrations decreased more with salinity than in the young 

ones (over 60% reduction). The highest concentrations were found in variety Dacil, 

while Chevron again had the lowest ones (except in the control). 

iii) Calcium (Table 2.2.2. c): 

In general, Ca 2+ concentrations were lower under salinity than in the control, except 

for variety Chevron which maintained similar levels of Ca 2+ with increasing salinity. 

In fact, Chevron had larger concentrations of Ce' than any other variety, in both 

young and old leaves and at the 2 salinity treatments. Differences between leaves 

were only found with no salinity: older leaves had more Caý' than young ones. 

iv) Chloride (Table 2.2.3. a): 

As expected, the amounts of Cl- in leaves (both old and young) increased in all 

varieties with increasing salinity. Concentrations were always higher in older leaves 

than in younger ones, in agreement with the idea that young, growing leaves are well 

protected from an excess of ions in the substrate (Greenway, 1962b). The differences 

between younger and older leaves were more pronounced at the highest salinity level. 

For the young leaves, differences between varieties were not very large at 0 or 100 

rnol M-3 NaCl. At the highest salinity, however, CM-67 had significantly (p<0.05; 
Tukey's test) less Cl- than any of the other varieties (all of them above 200 mol m-1). 
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Table 2.2.3. Cl' (a), H2PO4' (b) and S04 2* (C) concentrations (mol m-' sap) in young 
(YL) and old (OLI leaves of 7 varieties grown for one month at different NaCI 

concentrations; (means of up to 6 samples). 

VARIETY 0 mol M-' loo Mol M-3 200 Mol M-3 

YL OL YL OL YL OL 

Chlolide: 

ALBACETE 62 94 160 183 231 368 
BARBARROSA 70 86 151 181 270 332 
CHEVRON 72 100 152 173 230 285 
CM-67 60 77 123 179 148 215 
DACIL 57 64 140 163 205 252 
IGRI 82 98 156 153 206 310 
MOROCCO 68 63 155 192 241 276 

------------------------ 
L. S. R. * 

----------- 
18 

------------ 
30 

------------ 
29 

------------ 
41 

------------- 
56 

---------- 
116 

b) Phosphate: 

ALBACETE 7.3 9.7 15.7 32.0 33.7 61.0 
BARBARROSA 5.5 4.0 13.5 9.2 21.8 17.8 
CHEVRON 5.8 4.2 13.5 9.0 22.8 25.8 
CM-67 6.2 2.8 20.2 12.3 31.8 27.0 
DACIL 6.2 6.2 13.0 14.5 23.2 28.8 
IGRI 5.7 3.7 11.3 10.7 25.2 26.8 
MOROCCO 6.3 7.7 21.0 34.2 33.5 61.0 

------------------------- 
L. S. R. * 

---------- 
2.5 

------------ 
3.4 

------------ 
5.0 

------------ 
13.1 

------------- 
7.6 

---------- 
12.8 

c) Sulphare: 

ALBACETE 2.7 3.8 1.0 , 0.7 1.0 1.0 
BARBARROSA 1.2 1.7 1.2 4.8 1.3 1.2 
CHEVRON 2.7 3.3 2.5 2.7 1.8 1.8 
CM-67 2.8 1.8 3.3 2.0 4.0 2.2 
DACIL 1.3 1.7 1.0 0.8 0.8 1.0 
IGRI 1.8 1.5 1.2 0.7 1.2 0.2 
MOROCCO 2.0 1.0 2.0 1.8 1.2 1.0 

------------------------ 
L. S. R. * 

----------- 
1.2 

------------- 
1.5 

------------ 
1.2 

------------ 
3.0 

------------ 
1.2 

---------- 
1.5 

* L. S. R. = Least Significant Range, a=0.05 (Tukey's test) 
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The increase in Cl- from 100 to 200 Mol M-3 NaCl was quite similar for all varieties 

(average: 45%); the exceptions were Barbarrosa, which accumulated more Cl-, and 

CM-67 which hardly changed at all. In fact, the Cl- concentrations in young leaves 

of CM-67 at the highest salinity (around 150 mol m-3) were quite similar to those 

found in young leaves of other varieties growing at only 100 mol m-3 (between 140 

and 160 mol m-3). 

Similarly, in older leaves differences between varieties were found mostly at the 

highest salinity. There, Cl- concentrations ranged from just over 200 mol m-I for 

CM-67 (only 20 % more than at 100 mol m-' NaCI), to over 350 mol m-3 for Albacete 

(which, together with Igri, doubled its concentration in relation to the 100 mol ni-I 

NaCl treatment). 

v) Phosphate (Table 2.2.3. b): 

Phosphate concentrations increased with increasing salinity. The extra H2PO4- was 
localized preferentially in older leaves. Not many differences between varieties were 
found in HY04-Concentrations of younger leaves; CM-67, Albacete and Morocco 

were the varieties with the highest levels. These last two varieties also had very large 

concentrations in their older leaves, especially in the two saline treatments 

(significantly higher than all other varieties; p<0.05, Tukey's test). 

vi) Sulphate (Table 2.2.3. c): 

Concentrations of S04 2- in sap did no exhibit a clear response to salinity. In most 

varieties, they either did not change or tended to decrease, except for CM-67 where 
S04'- levels showed a slight increase with increasing salinity (even accounting for the 

change in FW: DW ratios). No significant differences (at 5% level) between leaves 

were found, although in CM-67 the concentrations tended to be higher in younger 
leaves than in the older ones. 

vii) Nitrate: 

No results for N03- could be obtained, due to deterioration of the samples. 
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2.2.3.3. Osmotic pressure of leaf sap (Table 2.2.4): 

The measured osmotic pressure of leaf sap increased in response to salinity for all 

varieties and leaves. Differences between leaves were only important at the highest 

salinity, where older leaves had higher osmotic pressures than the youngest ones. 

This was not the case, however, for CM-67, which had similar values for both types 

of leaves (even slightly lower in older leaves). 

Table 2.2.4. Osmotic pressure (mOsmol kg-' sap) in young (YL) and old (OL) leaves 
of 7 varieties grown for one month at different NaCl concentrations; (means of up 
to 6 samples). 

VARIETY 0 mol m-, 
YL OL 

loo Mol nf3 
YL OL 

200 mol m-' 
YL OL 

ALBACETE 391 419 620 632 860 1194 
BARBARROSA 450 444 650 614 916 1035 
CHEVRON 467 617 709 673 900 1081 
CM-67 440 424 680 620 929 827 
DACIL 535 569 707 678 847 1016 
IGRI 401 468 585 534 814 882 
MOROCCO 505 470 720 761 897 982 

-------------------------- 
L. S. R. * 

----------- 
114 

------------ 
135 

------------ 
102 

------------- 
122 

------------ 
109 

------------- 
431 

* L. S. R. = Least Significant Range, (x=0.05 (Tukey's test). 

Differences between varieties were not consistent across salinities or leaves. Igri and 
Albacete tended to have low osmotic pressures, while Dacil. generally had higher 

values; however, these trends changed at the highest salinity treatment. 

2.2.3.4. Overview of ion data: 

To study the ion accumulation patterns of the varieties from a global point of view, 

only the data from the highest salinity treatment (200 mol m-' NaCl) will be 

considered, since at lower levels the differences between varieties were not very 
large. In order to reduce the number of variables, principal component analysis was 
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used. This method calculates linear combinations of the original variables with the 

aim of finding a small set of new variables (indices) which account for a large 

proportion of the total variance. 

principal component analysis was applied to the ion data of all varieties and leaves 

at the highest salinity. The variables considered were all the ions analyzed: Cl-, 

H2pO4-9 S04'-, Nal, K' and Ce'. Results are summarized in Table 2.2.5a. Only the 

two first principal components had variances (eigenvalues) larger than any one of the 

original variances after standardization (data not shown), and together they accounted 

for 78% of the total variance. Thus, only these two components will be considered. 

Table 2.2.5. Principal component analysis for the ion concentrations of young and 
old leaves (a), and young leaves only (b), of 7 varieties of barley growing at 200 mol 
M-3 NaCl. Only the first 2 principal components (PC) are shown. 

a) Young + Old 
PC1 PC2 

b) Young leaves 
PCI. PC2 

eigenvalue 3.068 1.618 3.514 1.360 
proportion 0.511 0.270 0.586 0.227 
cumulative 0.511 0.781 0.586 0.812 

--------------------- 
CI- 

----------------- 
0.520 

---------------- 
-0.178 

--------------- 
0.428 

----------------- 
-0.463 H2PO4- 0.172 -0.653 -0.330 -0.431 So 

4 
2- 

-0.337 0.100 -0.351 0.451 
Na' 0.544 -0.004 0.503 -0.176 
K' -0.506 -0.220 -0.444 -0.217 
Caý+ 0.187 0.695 0.366 0.565 

The first principal component is mainly a contrast between Na' and Cl- on one hand 

(with high, positive coefficients) and K' on the other (high, negative coefficient), and 
it effectively discriminates between young and old leaves. Figure 2.2.1a clearly 
illustrates these findings, and also points to some exceptions: old leaves of CM-67 

are classified with the young leaves of the other varieties, because of their low Na' 

and Cl- contents. The opposite happens with young leaves of Chevron, which are 

grouped with the rest of the old leaves due to their high Na' and low K' 
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Figure 2.2.1. Plot of values of the first two principal components (from principal 
components analysis) of 7 barley varieties grown at 200 mO'I rw' NaCl; a) using data 
from young (open symbols) and old (closed symbols) leaves; b) using data from 
Young leaves only. 
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concentrations. The second principal component is a contrast between Cd" and 
2+ 

112PO4 and it mainly separates Albacete and Morocco, with low Ca and high 

H2PO4- concentrations, from the rest of the varieties. 

Since the first component of the previous analysis only segregates between young and 

old leaves, the same analysis was applied to the ion data for the young leaves only 

(at 200 Mol m-3 NaCl). In this case, (Table 2.2.5b) the first component accounts for 

almost 60% of the variation, and contrasts Na', Cl- and Ca 21 (positive coefficients) 

against K+, S04 2- and H2PO4- (negative coefficients), It splits the varieties in 3 groups 

(Figure 2.2.1b): CM-67 in one extreme, Barbarrosa and Chevron in the other side, 

and Igri, Albacete, Morocco and Dacil in between (values around zero). In this case 

the second component is more difficult to interpret, but again it separates Albacete 

and Morocco from the rest of the varieties, since Ca2' and H2PO4- are two of the 

main factors contrasted. 

2.2.3.5. Relationship between leaf ion concentrations and growth: 

Values of the linear correlation coefficient between leaf ion concentrations and plant 
dry weight were calculated using the means of the 6 plants for each variety and 

treatment (because the individual plant samples were not identified). When 

considering the three treatments at the same time, some significant correlations were 
found, such as a decrease in dry weight with increasing Cl- and Na' in all types of 
leaves, or a positive correlation with KI concentrations in older leaves (data not 

shown). These correlations are well known, and they are detected because of the 

large changes that occur with increasing salinity, but they do not detect differences 

between varieties. 

When restricting the analysis to any one of the saline treatments (which would allow 
for a comparison between varieties) few significant correlations were found (Table 

2.2.6). This is due to both the small number of values used for the calculations 
(which demand a large coefficient to be significant) and to the small differences 

found in the dry weights of the plants. The only cases where a significant correlation 

was detected (positive for Ca 2+ 
, negative for H2PO4-) can be explained by the 
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to 250 mol m-' NaCl; that is, root dry weight was less affected than shoot dry weight 

from 0 to 100 mol m-' NaCl. It might be that these opposite trends for shoot and root 

with increasing salinity partly compensate each other, and explain the linear 

relationship found by those authors when considering the whole plant. 

Another factor that may explain the lack of linearity in the response in the present 

experiment is the relatively late application of the stress. Since the plants had already 

accumulated some dry matter at the time the stress was begun, any later differences 

in growth rate would have been attenuated. 

In absolute terms, Albacete had the lowest dry weights in all treatments. The poor 

performan ce of Albacete in hydroponic culture contrasts with its known tolerance to 

harsh conditions in the field (it is the preferred cultivar grown under severe drought 

conditions in Spain (Lasa et al., 1991)); but it is in accordance with previous 

observations by other researchers (J. Abadfa, personal communication). This apparent 
discrepancy might be due to a lower adaptation of Albacete to the better conditions 

of the hydroponic culture, where water is not limiting. The results can also be 

explained by the characteristic slow development of this variety during the early 

stages, when the measurements of dry weight were taken. 

At the other extreme, Chevron had the highest dry weights in all salinities. This does 

not agree with the literature, where it is usually reported as a salt-sensitive cultivar 
(Ayers et al., 1952; Greenway, 1962a). One of the reasons for these results might 
have been, again, the late application of the stress. Since Chevron was also the best 

variety in the non-saline treatment (it has a lush vegetative development, producing 
a great number of large leaves), the earlier (pre-stress) growth of this variety would 
have had a large influence in its final dry weight. Another suggested reason is related 
to the sub-optimal conditions in the greenhouse: relatively low temperatures and, 
particularly, low light intensity. These conditions probably favoured a variety like 
Chevron, adapted to colder climates (it originated in Switzerland (Greenway, 
1962a)), in opposition to CM-67 and others, better adapted to warmer conditions 
(California, Spain, etc). However, the present results for Chevron, expressed relative 
to the control, are not very different from some of those reported in the literature: 
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68% dry weight (whole plant) after 15 days in 100 mol m-' (Greenway, 1962b), and 

42% in 150 mol m-' NaCl (Greenway, 1962a); (65% and 39% in 100 and 200 mol 

m-3 NaCI respectively in this experiment). 

The presumably salt tolerant variety, CM-67, did not perform very well in any of the 

salinity treatments (49% and 35% of control dry weights at 100 and 200 mol m-' 

NaCl, respectively). Storey and Wyn Jones (1978) reported, for California Mariout 

(a variety from which CM-67 was derived), 50% and 27% of control fresh weights 

at the same salinities. Taking into account the decrease in FW: DW ratio reported by 

these authors, the above values correspond (approximately) to 61% and 44% of 

control dry weight, (higher than in the present experiment). Again, the poorer 

performance of CM-67 in this experiment may be partly attributed to the 

environmental conditions in the greenhouse. 

Another way to look at the results is by considering the ranking of the varieties in the 

different treatments (control vs salinity). Dacil moved up in the rank under salinity, 

which may indicate a higher salt tolerance, and Morocco moved down, suggesting 

a lower tolerance. For all the other varieties, though, the rankings were very similar 

with or without NaCl. This might be interpreted as an indication that the growth 
(measured as dry weight) of a variety under saline conditions depends largely on its 

potential growth under non-stressed conditions (intrinsic growth rate). A similar 

conclusion was reached by Rawson et al. (1988) using a wider range of genotypes 
(which included barley, wheat and triticale). 

For monocotyledonous plants, one of the usual ways to cope with the lower external 

water potential brought about by salinity is by reducing the water content of their 

tissues. This automatically increases their internal solute concentration and, thus, 

their osmotic pressure. In the present experiment, reduced water contents (or reduced 
FW: DW ratios) were not observed at 100 mol m' NaCl, but there was a general 
decrease in FW: DW ratios at 200 mol nf' NaCl (except in Albacete and Dacil). 

Some authors (e. g. Storey & Wyn Jones, 1978) have found a progressive decrease 

in water content of barley at all levels of salinity; others (e. g. Boursier et al., 1987) 

only found it above a certain level (50 mol m-1 NaCl). However, this trait depends 
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largely on the environmental conditions in which the plants are growing, and thus 

discrepancy between authors is not uncommon. Even no changes at all have been 

reported sometimes for water content of leaf tissue between 0 and 180 mol m-' NaCl 

(Delane et al., 1982). 

Salt tolerance in barley has been positively correlated with Nal and CY exclusion 

from the shoot (Greenway, 1973). Ion data for the two varieties used as checks in 

this experiment (CM-67 and Chevron) are in accordance with previous reports 

(Greenway, 1962a, b; Wyn Jones & Storey, 1978b) at least in relative terms; (the 

actual concentrations reported by various authors vary, depending on the particular 

conditions of each experiment). Thus, CM-67 restricted the accumulation of Nal and 

Cl-, both in young and old leaves, and maintained high concentrations of K' under 

salinity. In contrast, Chevron was not as efficient in this regulation, and leaf 

concentrations, particularly those of Na', built up steadily with increasing salinity, 

while those of K' fell dramatically. 

While the two control cultivars had the expected ion concentrations, the rest of the 

varieties had values in between those two most extreme ones, and no clear-cut 

patterns were observed. Only two of them, Dacil and Igri, had consistently lower 

concentrations of Cl- and Na' in their young leaves than the other cultivars, (although 

they still had more than CM-67). In addition, Igri also had high concentrations of K' 

in its youngest leaves. Dacil and Igri might, thus, be considered similar to CM-67 

in their ion accumulation characteristics. It might be interesting to remember that 

these two varieties had been chosen because they had performed well under salinity 
in previous field experiments. 

At the other extreme, Barbarrosa might be compared to Chevron: it had the highest 

Cl- concentrations in young leaves (even higher than Chevron), and also rather high 

Na', although it maintained higher concentrations of K' than Chevron. Thus, this 

variety might be expected to be rather salt sensitive, according to the ion exclusion 
hypothesis. Finally, Albacete and Morocco had intermediate values for the major ions 

(intermediate tolerance), but both had high H2PO4- contents and relatively low Call. 

It is worth noting that this classification is the same as that obtained by the principal 
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component analysis when this was applied to the data for ion concentrations in young 

leaves only 

As the external salinity increases, plants adjust the osmotic pressure in their cells by 

increasing the amounts of ions and/or decreasing their water content. In the present 

experiment, the water content did not change very much (see FW: DW ratios), but the 

osmotic pressure of the sap did increase considerably with salinity, and this was 

mainly due to the accumulation of ions (and perhaps other compounds, although this 

aspect was not studied in the present experiment). I 

The change in osmotic pressure of the external solution from 0 to 100 mol m-' NaCl 

was about 195 mOsmol kg-' (0.48 MPa), and about 395 mOsmol kg-' (0.98 MPa) for 

the 200 Mol M-3 NaCl; (these figures include the 1/20 CaC1, added to the NaCl 

solution). The changes in osmotic pressure of the leaf saps were, in general, similar 

or even slightly higher, indicating that these barley varieties do adjust their internal 

osmotic pressure in response to salinity. The exception was Dacil, where the increase 

in internal osmotic pressure was slightly smaller than that of the external solution. 

This fact did not affect its growth, though, since this was one of the varieties with 

highest dry weights under salinity, and the only one which improved its ranking with 

salinity compared to the control. In general, thus, osmotic adjustment does not seem 

to be limiting growth in barley; (this subject will be considered in more detail in the 

next experiments, section 2.3). 

When relating the ion data to the growth results, a further reason to explain the high 

dry weight of the sensitive cultivar (Chevron) may be suggested: the large quantities 

of ions accumulated by this cultivar might have accounted for a great proportion of 
its dry weight. To check this hypothesis, the contribution of the ions to the shoot dry 

weight was calculated. In Chevron, the weight of the main ions (Cl-, Ne and K') at 
200 mol m-' NaCl represented between 16% and 20% of its dry weight; this would 

give an "adjusted" dry weight of around 0.25 grams per plant. (A more accurate 

calculation was not possible because fresh and dry weights were taken for the whole 

shoot, while ion concentrations were measured in two different individual leaves. ) 

Still, the same calculations gave values between 15% and 19% for CM-67, the most 
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contrasting variety from Chevron in terms of ion contents. It is expected that these 

percentages would be similar for the rest of the cultivars, with intermediate ion 

concentrations. Thus, the higher weight of Chevron cannot be explained only by its 

higher content of inorganic ions. 

Another factor might have been the short duration of the experiment and the 

relatively late application of the stress. It is considered (e. g. Storey & Wyn Jones, 

1978) that a minimum of two weeks under salinity is needed for the plants to adapt 

to salinity and reach a steady-state. More than that may be needed, however, for the 

long term effects of ion accumulation to be manifest. On the other hand, the longer 

the plants are grown, the more apparent their differences in growth habits (cycle) 

become, and the more difficult it is to make comparisons. In the present case, with 

varieties differing considerably in their growing cycles (as observed in a parallel 

experiment not reported here), a compromise had to be taken. Maybe if the plants 
had been left for another 1 or 2 weeks, the effects of high Nal (and low KI) 

concentrations in Chevron would have affected its growth much more drastically. 

One of the objectives of this experiment was to see how well the measurement of the 

dry weight of young plants grown in hydroponics agreed with their known salt 

tolerance under field conditions. After seeing the results of the varieties used as 

checks it was clear that a few things had to be changed in order to get results more 
in accordance with field salt tolerance. In particular, the environmental conditions in 

the greenhouse should be improved (higher light intensity, and more realistic 
temperatures). Maybe the experiments should run for a longer period (and the stress 

applied at earlier stages), in order to allow the high ion concentrations of leaves to 

reveal their effects (as would happen under field conditions). In this case it would be 

necessary to use varieties of more similar agronomic characteristics (winter or spring 
types, 2-row or 6-row, similar growing season) to allow for reasonable comparisons. 
The problem is then in finding varieties of the desired characteristics which, at the 

same time, respond differently to salinity. With most of the present commercial 
varieties not differing in their response to salinity (as has been seen after a few years 
of field trials in Spain (A. Royo, personal communication)), there does not seem to 
be much scope for choice. 
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Another objective was to relate the data on ion accumulation to salt tolerance and 

somehow confirm the "ion exclusion" theory. In view of the results for the check 

varieties, it should be concluded that ion accumulation in leaves is not a trait simply 

related to salt tolerance, but this statement has to be taken with care, since in this 

experiment plant dry weight was not a reliable measure of salt tolerance (as already 

discussed). 

Which brings us again to the previous subject, and the third objective of this 

experiment: what about varieties other than the traditional CM-67 and Chevron? Is 

there variability in both ion accumulation and salt tolerance? The results for the ion 

contents of leaves did not find any variety which was more extreme than the 2 

already mentioned; most of them had intermediate values. 

In summary, this experiment served as an introduction to the methodology used for 

salinity studies, pointing to some deficiencies (which were improved in later 

experiments), and confirming the different patterns of ion accumulation found in the 

two check varieties (CM-67 and Chevron). Thus, it is clear that under NaCl salinity 
(up to 200 mol m-') CM-67 maintains high concentrations of K' and restricts the 

accumulation of Na' and Cl- in its young leaves, while Chevron readily accumulates 
large amounts of Na' and does not maintain high concentrations of K'. 

2.3. OSMOTIC ADJUSTN[ENT OF BARLEY UNDER SAlJNrlY 

2.3.1. OBJECTIVES: 

These experiments were designed to study the degree of osmotic adjustment in barley 

under salinity, together with the nature of the solutes that contribute to it. In the first 

of these experiments the analysis of soluble sugars could not be done for several 

reasons. However, the contribution of all inorganic and organic solutes determined 

only explained around 80% of the measured sap osmotic pressure. Therefore, the 
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experiment was repeated to see if that difference could be accounted for by sugars. 

The term osmotic adjustment is used here in a broad sense, unless it is indicated 

otherwise 

2.3.2. MATERIALS AND METHODS: 

Experiment 1. 

The experiment was carried out in a rain-shelter at the University of Wales, Bangor 

(Memorial Building), during August 1992. No supplemental heating or light were 

provided. Two varieties of barley contrasting in salt tolerance, CM-67 and Chevron, 

were grown in hydroponic culture with or without (control) the addition of 100 mol 

in' Na Cl and 50 mol in-' CaC12; (this is, approximately, the proportion of Na: Ca 

used in the field experiments). Each treatment was replicated 4 times, with 12 plants 

of each variety per replication. 

Seeds were sown (10.08.92) on plastic plug trays containing a mixture (1: 1) of sand 

and compost (John Innes Compost, nO 1). Germinated seeds were moved into 

hydroponics (17.08.92), on top of 25 dm' tubs containing Phostrogen and 

micronutrients solution. A week later the stress was begun by adding the equivalent 

of 50 mol m-1 Cl- per day, until the final concentration was reached, 4 days later. All 

solutions were replaced weekly. 

Plants were harvested when they had been under stress for two weeks, one month 

after sowing. Half of the plants were used to analyze inorganic ions and some other 

compounds, and the other half were used for the analysis of solublv sugars. In the 
first group (6 plants per variety and replicate), the 3 youngest leaves were sampled 
individually, put into Eppendorf tubes and frozen; the sap was later extracted by 

centriftigation (as described in section 2.2.2). In the other group, the 3 youngest 
leaves were also sampled, but in order to obtain a larger volume of sample, the 

corresponding leaves of the 6 plants were taken together. After cutting the leaves, 

these pooled samples were weighed, and put into pots with liquid nitrogen; this had 

to be done in the shortest time possible to prevent the degradation of sucrose by 
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sucrose-invertase. These fast-frozen samples were crushed with a glass rod, and 

sugars (and other organic solutes) were extracted with a methanol mixture (methanol- 

isopropanol-water, 7: 1: 2). 

Concentrations of inorganic anions (Cl-, N03-, H2PO4-9 S04 2-) were measured in the 

expressed saps by HPLC (Dionex 2000i), using the dilution described in section 

2.2.2. Then, the saps of the 6 replicated plants per tub (combination of variety, 

treatment and leaf) were pooled together (same amount of each one) for the other 

determinations. These included inorganic cations (Na', K+, Mg 2+ 
, Caý+), proline, 

quaternary ammonium compounds (QACs), free amino acids and osmotic pressure. 

Main cations (Na', K', Ca 2+ and Mg2+) were also analyzed by HPLC (Dionex), 

diluting first with water and later with methane-sulphonic acid solution (20 mol in-'). 
This dilution is different from the one described in section 2.2.2. The reason for it 

was the new cation-exchange column (CS 12) that had been fitted to the HPLC. This 

new column allows for the analysis of mono- and divalent cations at the same time, 

but needs a different suppressor (Self-Regenerating Cation Suppressor), which does 

not accept the use of organic solvents or HCI. 

Proline was measured by spectrophotometry (Jenway 6100 spectrophotometer) 

according to the method of Bates et al. (1973). This consists in reacting the sample 

with acid-ninhydrin and acetic acid in a hot bath (100'C) for 1 hour, mixing it with 

toluene to extract the chromophore, and reading the absorbance in the toluene phase 

at 515 mn. 

Quaternary anu-noniurn compounds (QACs; mainly glycinebetaine, and some choline) 

were determined by spectrophotometry using a modification of the method of Grieve 

& Grattan (1983). The QACs are precipitated as periodides using H2SO4 (1 MOl 1-1) 

and a I-KI rpagent in cold conditions (0-4'C) for some hours (overnight). The 

supernatant is then separated from the periodides by aspiration, and those are 
dissolved in methanol; the absorbance of this solution is read at 360 nrn. 
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Free amino acids (primary amines) were analyzed with fluorescamine, a reagent for 

the fluorometric assay of primary amines (Udenfried el at., 1972). Sodium borate 

buffer (pH=9,0.2 mul I-) is added to the sample in a test tube. This test tube is then 

placed on a vortex mixer and, while mixing, 0.5 ml of fluorescamine solution (25 mg 

in 100 ml acetone) are rapidly added. The fluorescence is then read on a Perkin- 

Elmer LS-5 luminescence spectrometer at between 475-490 nm, with the excitation 

wavelength set at 390 rim. 

Osmotic pressure was measured on the extracted sap with a vapour pressure 

osmorneter (5 1 OOB, Wescor Inc. ) 

For several reasons, the determination of sugars in the methanol extracts could not 
be done until a few months later, and by then the samples had deteriorated (sucrose 

did not appear in the chromatograms). The results were judged to be incorrect, and 

they were ignored. 

The approximate contribution of different solutes to the osmotic pressure of the sap 

was calculated according to the expression: Osmolality = Molality x N* particles x 

Osmotic coefficient (Wyn Jones & Gorham, 1983). At low concentrations (such as 

those found in the sap), the molality of a solution is almost equal to its molarity-, 

thus; the latter was used for the calculations. Na" and K' chloride salts dissociate into 

2 particles, while Ca-" and Mg"' chloride salts dissociate into 3 particles. As osmotic 

coefficients, the values of 0.92 and 0.88 were taken for Na' and K', and Caý' and 

M 2+ g, respectively (Weast, 1971). (The exact values depend on the type of salts 

present, which we do not know. Those values were taken as an approximation, and 

they correspond to the osmotic coefficients of NaCl and CaCl., presumably the major 

salts, at low concentrations. ) Proline and glycinebetaine have osmotic coefficients 

close to I (Weast, 1971). Concentrations of free amino acids were so low (<0.01 mol 

M-3) that their contribution to the sap osmotic pressure was considered to be 

irrelevant. The sum of all calculated contributions to the osmotic pressure was then 

compared to the measured osmotic pressure. 
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The increase in the internal osmotic pressure of the salt-treated plants (in relation to 

those in the control) was compared to the increase in the external osmotic pressure. 

This last one was calculated to be around 316 mOsmol kg-I (186 mOsmol kg-' due 

to NaCl + 130 mOsmol kg-' due to CaC'2)- 

Charge balance between inorganic ions (cations vs anions) was also calculated. 

Inorganic phosphate was assumed to be mainly in the form of H2PO4-, because this 

is how it dissociates in an acidic medium such as that of the vacuole; (it is assumed 

that most of the "sap" comes from the large compartment which is the vacuole). 

Statistical analysis was performed using the Genstat-5 statistical package. Values of 
6 plants of each variety in each replication (tub) were averaged for the calculations. 
The anova for a triple factorial design (variety x salinity x leaf) was carried out, and 
it revealed the existence of many significant interactions in almost all characters. It 

was decided, therefore, to present the results in terms of means and standard errors 
for each combination of variety, salinity and leaf. 

Experiment 2. 

This experiment was carried out in a rain-shelter (no extra heat or light) in the 

University of Wales, Bangor (Memorial Building), during August 1993. The 

experimental design was very similar to the previous one. The same two varieties 
(CM-67, Chevron) were tested, with or without 100 Mol m-3 NaCl and 50 mol twl 
CaCl2, with 3 replications (12 plants of each variety in each 25 dmý tub). 

Plants were harvested when they were 6 weeks old and had been in stress for 21 

days. Only the youngest expanded leaf was sampled, except in those cases where this 

was the flag leaf (in some plants of CM-67 in the saline treatment), where the leaf 

below that one was sampled. Half of the plants were again used for sap extraction 

and analysis- of inorganic ions, proline and measurement of osmotic pressure. The 

other half were used for the determination of soluble sugars and glycinebetaine. 
These samples were made of 2 pooled leaves, which were cut, weighed and frozen 

in liquid nitrogen. The extraction was done with acetone (instead of methanol). Free 
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amino acids were not determined, since their concentrations had been found to be 

almost negligible in the first experiment. 

Determinations on the extracted sap were done using the same methods as in the 

previous experiment: inorganic ions by HPLC (Dionex), proline with ninhydrin by 

spectrophotometry, and osmotic pressure was measured with a vapour pressure 

osmometer (Wescor). 

The acetone extracts were filtered through glass-wool and water was added to make 

up a known volume (10 ml). A smaller volume (5 ml) was transferred to the sample 

concentrator (70'C) until all the liquid had evaporated. The residue was diluted in 2 

ml water, mixed and centrifuged; it was then injected into a vial by filtering through 

0.45 pm pore size Whatman syringe filter, to remove any residual particles. Soluble 

sugars and glycinebetaine were analyzed by HPLC (Dionex) with a Sarasep 

Carbohydrate column (CAR-Nal) operated at 80'C, and detected with a Shodex 

refraction index detector. The eluent was Na2S04 (25 mol in-'). A sample containing 

sucrose, fructose, glucose and glycinebetaine (1 g I-) was used as a standard for 

calibration. 

The contribution of the different solutes to the measured osmotic pressure was 

calculated as before. Osmotic coefficients of the identified sugars (sucrose, glucose 

and fructose) are very close to I (Weast, 1971), and these solutes do not dissociate 

in water (at least, they do not separate into different particles). The sum of the 

contributions of all measured solutes was compared to the measured osmotic 

pressure. The changes in external (solution) and internal (sap) osmotic pressures from 

control to saline conditions were also compared. Finally, charge balance was 

calculated as the difference between cations and anions. 

Analysis of variance for 2 factors (variety and treatment) was carried out using the 
Genstat-5 package; means of 6 plants of each variety in each tub were used. Results 

will be presented, as before, in the form of means and standard errors within each 

combination of those two factors. 
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2.3.3. RESULTS: 

Experiment 1. 

2.3.3.1. Inorganic ions: 

i) Anions (Table 2.3.1 a): 

In the control treatment, Cl- concentrations were similar for the 2 varieties and the 

3 leaves studied (; t: 54 mol m-1). Under salinity, however, they were much higher in 

Chevron than in CM-67, and in older leaves than in younger ones, thus confirming 

the results of the previous experiment (Section 2.2.3.2). 

Concentrations of N03- decreased significantly in the saline treatment in relation to 

the control. This kind of response is commonly found under salinity (e. g. Gorham 

et al., 1990), and is due to the replacement of N03- by Cl- in the vacuole, where it 

acts as an osmoticum. There was a different response to leaf age in the 2 varieties 
(interaction significant, with p<0.001), particularly without salinity: in CM-67 the 

levels of N03- increased with age while in Chevron they decreased. 

Like Cl-, H2PO4- concentrations were quite similar for the 2 cultivars and 3 leaves in 

the control. The response to salinity, however, was different for the 2 varieties: in 

CM-67 the concentrations of H2PO4- in treated plants were almost twice those of 

untreated plants, especially in the younger leaves, whilst in Chevron they tended to 

decrease, particularly in older leaves. 

The response was also different for the 2 varieties regarding SO 4 2- concentrations. 
Differences were already present in the control, where amounts Of SO 4 2- were similar 
for all leaves in CM-67, but they increased with leaf age in Chevron. The ensuing 
decrease under salinity was, as a consequence, relatively larger for Chevron than for 

CM-67. 

ii) Cations (Table 2.3.1. b): 

Concentrations of Na' were, as expected, higher under salinity than in the control, 

and higher in Chevron than in CM-67. Also, in this latter variety, the concentrations 
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Table 2.3.1. Anion (a) and cation (b) concentrations (Mol M-3) in the 3 youngest 
leaves of 2 varieties of barley growing with or without the addition of 100 Mol ni-3 
NaCl and 50 mol m-3 CaCl2; (means ± standard errors of up to 24 plants). 

CONTROL SALINE 

Ion CM-67 Chevron CM-67 Chevron 

a) anions: 
L-6 Cl- 48 ±2 50 ±4 165 ± 8 241 ±4 

N03- 48 ±4 64 ±5 10 ± 2 10 ±1 
H2PO4- 29 ±1 29 ±1 57 ± 3 27 ±1 
SO 4 

2- 19 ±1 20 ±2 14 ± 1 7±1 

--------------------- 
L-5 Cl- 

------------------ 
57 ±3 

------------------- 
56 ±4 

--------------------- 
255 10 

------------------ 
308 ±5 

N03- 85 ±4 56 ±5 9 1 2±1 
H2pO4- 23 ±1 29 ±2 43 3 18 ±1 
S04 2- 18 ±1 26 ±2 9 1 5±1 

--------------------- 
L-4 Cl- 

------------------ 
61 ±4 

------------------- 
55 ±5 

--------------- 
308 ± 

------ 
7 

------------------ 
311 ±6 

N03- 93 ±3 44 ±4 7± 1 2±1 
H2PO4- 22 ±1 31 ±2 24 ± 2 17 ±1 
SO 4 

2- 16 ±1 34 ±3 5± 1 6±1 

b) cations: 
L-6 Na' 3±1 4± 1 52 ±4 164 ±7 

K' 232 ±3 209 ± 8 249 ± 11 146 ±9 
Mg 2+ 6±1 11 ± 1 5±1 3±1 
Ca2' - 7±1 14 ± 2 9±1 10 ±1 

-------------------- 
L-5 Na' 

------------------ 
4±1 

------------ 
5± 

-------- 
1 

--------------------- 
104 ±4 

-------------- 
173 ±6 

K' 251 ±7 220 ± 11 232 ± 13 155 ±8 
Mg 2+ 7±1 17 ± 1 4±1 7±1 
c2, 11 ±3 23 ± 3 10 ±1 36 ±1 

-------------------- 
L-4 Na' 

--------------- --- 
5±1 

------------ 
6± 

-------- 
1 

--------------------- 
133 ±7 

------------- 
120 ±4 

K' 240 ±9 245 ± 11 206 ± 12 178 ±5 
Mg 2+ 10 ±1 19 ± 4 6±1 15 ±1 
ca2+, 18 ±4 23 ± 5 25 ±2 51 ±1 
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increased with leaf age, while this was not so clear for Chevron (especially in leaf 

4 under salinity). 

In the control, K' concentrations were slightly higher in CM-67 than in Chevron. No 

differences between leaves were detected in the first variety, but increasing levels of 
KI were found in older leaves of Chevron. Under salinity, CM-67 always had higher 

concentrations than Chevron (as in the previous experiment), and these concentrations 

were not much lower than those in the control. The highest amounts of KI were 
found, in this cultivar, in the youngest leaf. In contrast, Chevron had significantly 
lower concentrations in the treated plants than in the untreated ones, and again the 

largest concentrations were in older leaves rather than in the young ones. 

Without salinity, concentrations of Mg" increased with leaf age, and the levels found 

in Chevron were about twice those of CM-67. The concentrations in this latter 

variety under salinity were only slightly lower than those without salinity, but in 

Chevron they were much more reduced. 

Calcium concentrations increased with leaf age, and they were always higher in 

Chevron than in CM-67. Differences between treated and untreated plants were also 
larger in the oldest leaves of Chevron. 

2.3.3.2. Organic solutes (Table 2.3.2): 

The concentrations of QACs (mostly glycinebetaine) were higher in the saline-treated 

plants than in those without salt, and higher in CM-67 than in Chevron. In the first 

variety, the amounts in younger leaves were higher than in the older ones, 

particularly under salinity; this did not happen in Chevron. Proline concentrations 

also increased with salinity. In the control plants, these concentrations were similar 
for the 2 varieties; however, under salinity they were larger in CM-67 than in 

Chevron. No large differences were found between leaves of different age. Finally, 

concentrations of free amino acids were also higher in the saline-treated plants than 
in those without salt. Their amounts tended to increase with increasing leaf age. No 

overall differences between varieties were detected. 
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Table 2.3.2. Concentrations (mot m7', except for amino acids, where they are mmol 
in-') of some organic solutes in the 3 youngest leaves of 2 varieties of barley growing 
with or without the addition of too Mot M-3 NaCl and 50 mot m-3 CaCl2; (means 
standard errors of 4 replicates, each made up of 6 leaves). 

CONTROL SALINE 

Solute CM-67 Chevron CM-67 Chevron 

L-6 QACs* 26.7 ± 2.3 21.3 ± 1.2 35.5 ± 0.4 26.2 ± 0.6 
Proline 2.0 ± 0.1 2.5 ± 0.6 7.5 ± 0.3 5.1 ± 0.4 
Aminoac. ** 37.3 ± 4.7 34.0 ± 4.1 65.5 ± 10.9 92.3 ± 7.2 

L-5 QACs 26.9 ± 1.7 20.9 ± 0.9 31.2 ± 1.3 24.2 ± 1.9 
Proline 1.2 ± 0.6 2.1 ± 0.2 10.6 ± 0.9 5.5 ± 0.5 
Aminoac. 60.8 ± 6.8 45.3 ± 7.0 76.5 ± 12.3 72.3 ± 8.2 

-------------- 
L-4 QACs 

------------- 
22.4 ± 

------- 
1.1 

--------------------- 
20.0 ± 0.8 

-------------- 
25.2 ± 

-------- 
1.9 

----------- 
25.9 ± 

----- 
1.3 

Proline 1.2 ± 0.6 1.7 ± 0.2 9.2 ± 0.7 4.1 ± 0.6 
Aminoac. 82.3 ± 6.7 58.5 ± 8.7 81.0 ± 10.6 72.8 ± 9.1 

QACs - Quaternary Ammonium Compounds 
** Aminoac. - amino acids (mmol m-'). 

2.3.3.3. Osmotic pressure and charge balance (Table 2.3.3): 

The contribution of the measured solutes to the osmotic pressure of the leaves sap 

was calculated as detailed in section 2.3.2. Without salinity, a very high proportion 
(; zz80%) of the osmotic pressure was due to K' salts. Their contribution, though, was 
higher in CM-67 than in Chevron; in this latter variety, Ce' and Mg" salts 

compensated for the lower proportion of K'. In the saline-treated plants, not only K' 

but also Na+ salts were the major contributors to the sap osmotic pressure. The 

proportion of Na+ was higher in Chevron (almost 50% in the youngest leaf) than in 

CM-67. In the older leaves of Chevron, C2' and Mg2+ salts also had some 
importance (23%). Although the concentrations of organic solutes (betaine and 

proline) increased with salinity (particularly in CM-67), their contribution to the 

osmotic pressure was not proportionally larger in the treated plants; (around 5% in 

both treated and untreated plants). 
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Table 2.3.3. Calculated osmotic contributions (mOsmol kg-') of the measured solutes 
and comparison with measured osmotic pressures (a), "osmotic adjustment" (b) and 
charge balance (c) in the 3 youngest leaves of the plants in the first "Osmotic 
adjustment" experiment. 

CM-67 

L-6 L-5 L-4 

a) calculated osmotic contfibutions: 

Chevron 

L-6 L-5 L-4 

CONTROL Na' salts (1) 5 8 10 8 9 11 
K+ salts (') 428 461 441 385 406 450 
Mg2+ salts (2) 15 18 28 29 44 49 
Ca` salts (1) 19 28 49 37 60 62 
Organic (3) 29 28 24 24 23 22 

------------------------------------- 
Total OP 

---------- 
496 

---------- 
543 

------------ 
552 

---------- 
483 

---------- 
542 

---------- 
594 

Measured OP 611 656 615 551 543 547 
Accounted (%) 81 83 90 88 100 log 

------------------------------------- 
SALINE Na+ salts (1) 

----------- 
96 

--------- 
191 

------------ 
245 

---------- 
302 

---------- 
318 

---------- 
221 

K+ salts (1) 459 427 380 270 285 327 
Mg 2+ 

salts 
(2) 15 11 16 8 19 39 

C2' salts 
(2) 24 26 65 27 94 135 

Organic (1) 43 42 34 31 30 30 
------------------------------------- 

Total OP 
----------- 

637 
--------- 

697 
------------ 

740 
---------- 

638 
---------- 

746 
---------- 

752 
Measured OP 830 926 907 795 869 817 
Accounted 77 75 82 80 86 92 

b) "Osmotic adjustment": 
EXCESS/DEFICIT (*) OP -97 -46 -24 -72 10 -46 

c) Charge balance: 

CONTROL Cations 260 290 303 263 305 334 
Anions 164 201 208 183 193 199 
Difference +96 +89 +95 +80 +112 +135 

SALINE Cations 331 364 401 338 414 429 
Anions 259 325 363 292 339 342 
Difference +72 +39 +38 +46 +75 +87 

(') Na' and K+ salts: mol m7' x2x0.92 (2) Ca" and Mg2l salts: mol m-' x3x0.88 (3) 
organic solutes (betaines + proline): Mol m-3 X1XI 

(*) Difference between change in leaf measured osmotic pressure (from control to 
saline) and change in external osmotic pressure (316 mOsmol kg-1). 
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The contributions of the different solutes were added up, and these calculated osmotic 

pressures were compared with those measured with the osmometer. In the control 

conditions between 80% and 90% of the measured osmotic pressure of CM-67 was 

accounted for in this way, and between 90% and 100% of that of Chevron. Under 

salinity, however, a higher proportion of the measured osmotic pressure was not 

explained by the contribution of the measured solutes; (between 18% and 25% in 

CM-67, and up to 20% in Chevron). 

The increase in the osmotic pressure of sap, from non-saline to saline conditions, was 

also compared to the increase in the external osmotic pressure (316 mOsmol kg-') 

(Table 2.3.3b). In almost all cases (specially in the younger leaves) there was a small 
deficit of osmotic pressure (up to 10%). 

Charge balance between anions and cations is shown in Table 2.3.3c. In general, 

there was an excess of positive charges; this was larger in the control plants than in 

those in salinity. 

Experiment 2. 

2.3.3.4. Inorganic ions (Table 2.3.4a): 

In the control plants, the concentrations of the measured anions were quite similar 
for the 2 varieties. Concentrations of N03- and S04 2- were also similar for the 2 

varieties under salinity. These two ions decreased considerably (96% and 60% 

respectively) in the treated plants, in relation to the untreated ones. On the other 
hand, Cl- concentrations increased with salinity, and much more so in Chevron than 
in CM-67, (as in all previous experiments). Finally, the concentrations of H2PO4- in 

CM-67 increased with salinity, while they tended to decrease (although not 

significantly at the 5% level) in Chevron. 

Concentrations of Na' and Ca" were also similar for the 2 varieties in the control, 
while Mg" was slightly higher in Chevron, and K' was higher in CM-67. More 
differences between varieties were found in the saline-treated plants. There, Na' and 
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Ca 2+ concentrations increased more, in relation to the untreated ones, in Chevron 

than in CM-67. On the other hand, concentrations of Mg" decreased with salinity, 

particularly in CM-67, where its levels were inappreciable. Finally, K+ 

concentrations only decreased slightly in CM-67 under salinity, but were much more 

reduced in Chevron. 

Table 2.3.4. Concentrations (mol m') of inorganic ions (a) and of some organic 
solutes (b) in the youngest expanded leaf of 2 barley varieties grown with or without 
the addition of 100 Mol M-3 NaCl and 50 mol ml CaCl2; (means ± standard errors 
of up to 18 plants for ions, and of 9 replicates, each one made up with 2 similar 
leaves, for organic solutes). 

CONTROL SALINE 

Solute CM-67 Chevron CM-67 Chevron 

a) Inorganic ions: 

Chloride 71 ±4 68 ±5 247 ±20 417 ±30 
Nitrate 41 ±5 52 ±4 1±1 3±I 
Phosphate 35 ±2 26 ±1 54 ±5 22 ±2 
Sulphate 16 ±1 19 ±2 6±1 8±I 

--------------------- 
Sodium 

------------------- 
6±1 

------------------ 
6 ±1 

-------------------- 
76 ±10 

--------------- 
239 ± 11 

Potassium 262 ±6 234 ±6 213 ±9 100 ±4 
Magnesium 13 ±2 18 ±1 I±1 6±1 
Calcium 18 ±1 18 ±1 33 ±4 50 ±4 

b) Organic solutes: 
Sucrose 0.7 ± 0.1 0.3 ± 0.1 22.8 ± 3.3 5.8 ± 1.1 

4.6 ± 0.3 4.3 ± 0.3 12.8 ± 0.8 6.0 ± 0.4 
Glucose 30.9 ± 2.7 25.3 ± 1.3 28.1 ± 1.7 21.9 ± 1.3 
Fructose 35.0 ± 2.8 32.4 ± 1.2 28.6 ± 1.6 26.5 ± 1.3 
Glycinebetaine 9.7 ± 1.1 6.0 ± 0.7 30.3 ± 1.7 28.5 ± 1.9 
?? 11.1 ± 2.0 4.8 ± 0.3 31.4 ± 3.0 7.2 ± 0.9 
Proline 0.07 ±0.01 0.07 ±0.04 0.51 ±0.08 0.12 ±0.01 

?- compound eluting between sucrose and glucose, expressed in sucrose equivalents. 
?? - compound eluting after glycinebetaine, expressed in glycinebetaine equivalents. 
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2.3.3.5. Organic solutes (Table 2.3.4b): 

Glucose and fructose were the major organic solutes found under control conditions, 

with similar concentrations for the 2 varieties. These concentrations tended to be 

slightly, although not significantly (at the 5% level), lower under salinity. The levels 

of sucrose in untreated plants were very low (< 1 mol in-'). However, this was one 

of the major organic solutes in saline-treated plants of CM-67; (sucrose 

concentrations in Chevron in the saline treatment were only slightly higher than in 

the controls). Glycinebetaine was also one of the most important organic solutes 

under salinity, with a large increase in relation to the concentrations in the control. 
No significant differences (at the 5% level) between varieties were found for this 

compound. Finally, although levels of proline increased slightly with salinity (at least 

for CM-67), they were very low in all cases (< 1 mol m-'). 

Two other compounds were separated by the chromatographic column, one eluting 
between sucrose and glucose, and the other eluting after glycinebetaine. Their areas 

were transformed into equivalent concentrations using the response factors for the 

previously eluted compound (sucrose and glycinebetaine). These 2 compounds 
increased their concentrations in salinized plants of CM-67, but only minor increases 

were observed in Chevron. 

2.3.3.6. Osmotic pressure and charge balance (Table 2.3.5): 

The contribution of the measured solutes to the osmotic pressure was calculated as 
before. Most (; zt: 70%) of the osmotic pressure in the control was due to K' salts. 
Organic solutes also had some importance (12% to 14%). These results were similar 
for the 2 varieties. Under salinity, however, the main osmolytes differed in the 2 

cultivars. In CM-67,50% of the osmotic pressure was accounted for by K' salts, 

with organic solutes and Na' salts accounting for another 19% each. The role of the 
K' salts was. taken over by Na' salts in salinized Chevron plants, providing 50% of 
the osmotic pressure. Potassium salts only accounted for 21 % of the osmotic 
pressure, and CW' salts contributed another 15%. Organic solutes had less 
importance in this cultivar (11 % of the osmotic pressure) than in CM-67. 
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In non-salinized plants, a good proportion of the measured osmotic pressure was 

explained by the measured solutes, especially in Chevron. Under salinity, however, 

there was still a high proportion (24% to 35%) of the measured osmotic pressure 

which was not accounted for by the measured solutes. 

The degree of osmotic adjustment was assessed by comparing the change in the sap 

osmotic pressure with the increase in the external osmotic pressure. Both varieties 
increased their osmotic pressures more than was needed to maintain the same 
difference between internal and external osmotic pressures; i. e., there was an excess 

of osmotic pressure, particularly in Chevron. 

Table 2.3.5. Calculated osmotic contributions (mOsmol kg-) of the measured solutes 
(a), comparison between measured and calculated osmotic pressures (b) and charge 
balance (c) in leaf sap of plants in the second "Osmotic adjustment" experiment. 

CONTROL SALINE 

CM-67 Chevron CM-67 Chevron 

a) Calculated O. P. 

Na' salts (1) 11 11 140 440 
K' salts (1) 482 431 392 184 
Mg 2+ 

salts 
(2) 34 48 3 16 

Ca2+ salts 
(2) 48 48 87 132 

Organic solutes 
(3) 92 73 155 96 

b) Comparison of O. P. 

Total OP 667 611 777 868 
Measured OP 826 640 1190 1136 
Accounted for 81 95 65 76 
Excess (increase above external change) 48 180 

c) Charge balatice 

Cations 330 312 357 451 
Anions 179 184 314 458 
Difference +151 +128 +43 -7 

") Na' and K' salts: mol m-1 x2x0.92 (2) Mg" and Caý' salts: mol m-' x3x0.88 (3) Organic compounds: Mol M-3 X1XI 
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Charge balance (calculated from inorganic ions) is shown in Table 2.3.5c. There was 

an excess of cations in control plants. This balance was better under salinity, 

especially for Chevron. 

2.3.4. DISCUSSION: 

In non-saline conditions, the major inorganic ions that contribute to osmotic 

regulation and charge balance in the plant cells are Cl-, N03- and K' (Marschner, 

1986). From the analysis of inorganic ions it can be seen that these were the most 
important ones in the control plants (both experiments). Under salinity, however, 

most of the N03- was replaced by Cl-, which was the predominant anion in salt- 

treat ed plants. Phosphate also had some (minor) importance in CM-67 under salinity, 

where the concentrations of this ion increased in relation to the control plants. 

As for cations, the predominant one in saline-treated plants continued to be K+ in 

CM-67, with Na+ coming only second in importance. In Chevron, though, both Na+ 

and K' had similar relevance, with Na/K ratios being around 1. These results 

contrast with those found in the "Comparison of varieties" experiment (section 

2.2.3.2), where under NaCl salinity alone Na+ had replaced K' to a much larger 

extent in both varieties. This discrepancy is probably due to the mixture of salts used 
in the present experiments (NaCl and CaC12 at 2: 1 molar ratio). It has to be noted 

that the saline treatment here is equivalent, in terms of Na' concentrations, to the 

medium treatment before (100 Mol m-3). Still, the Na' levels in salinized plants were 
lower in the present case, while K' concentrations were maintained high. Only in old 
leaves of Chevron was the decrease in Na' accumulation (in relation to NaCl-alone 

salts) compensated for by an increase in Ce' (the other externally applied salt). 

Relative differences between varieties and treatments were similar in the two 
"Osmotic adjustment" experiments, although absolute concentrations were different. 

Particularly, in saline-treated plants, levels of Cl-, Na' and Ca" were higher in the 

second one, while N03- and K' were slightly lower. This is probably due to the fact 

that the plants in experiment 2 had been under stress for a longer period, and the 
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leaves sampled were older; (in some plants of CM-67 the flag leaf was already fully 

expanded). As a result of extended transpiration, these older leaves had accumulated 

more salts (Cl-, Na' and Cal'), which had replaced the usual osmolYtes (N03-, KI) 

to a larger extent. It has been found, under non saline conditions, that Cal' partially 

compensates for loss of K' as the leaf ages (Hinde et al., 1992), and Cl- compensates 
for N03- (Richardson et al., 1992). In the second "Osmotic adjustment" experiment, 
higher concentrations of Cl- and Cal' and lower amounts of N03-were already found 

in the control plants, confirming the idea that the differences in relation to the first 

"Osmotic adjustment" experiment might have been due to different leaf ages. 

From the organic solutes analyzed, proline and betaines increased with salinity, 

especially in CM-67. Concentrations of free amino acids (experiment 1) were very 
low (<O. l mol m-') and they did not clearly increase with salinity. In similar 

experiments with barley (e. g. Delane et al., 1982) amino acid concentrations were 

reported to be about two orders of magnitude higher than those found here. It is 

possible that the sap samples had deteriorated (the temperature at which they were 

stored might not have been sufficiently low to prevent deterioration). 

Proline concentrations were much lower in the second experiment than in the first 

one, in both control and stressed plants. These differences between experiments might 
be due to the time of day when the plants were harvested. Proline accumulates in all 

water-stressed tissues (Hsiao, 1973), and it can do so at very high rates (Singh et al., 
1973); it also declines very fast after rehydration (Singh et al., 1973). It has been 

suggested (Wyn Jones & Storey, 1978a) that its concentrations may fluctuate during 

the day following diurnal changes of water stress (maximum at midday). Higher 

levels of proline at dusk than at dawn were found by Weimberg and Shannon (1988) 

in Thinopyrum elongatum. Here, plants in experiment 1 were harvested in the early 

afternoon (higher stress), while those in experiment 2 were harvested in the morning 
(lower stress). 

Concentrations of glycinebetaine under salinity were similar in both experiments, but 

in the un-stressed plants they were lower in the second experiment than in the first. 

The results from experiment 2 are more in accordance with the reported betaine 
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accumulation in salt-stressed plants (e. g. Wyn Jones & Storey, 1978a). The reasons 

for the high levels of glycinebetaine in the control plants in experiment 1 are not 

known. 

Among the measured soluble sugars (experiment 2), glucose and fructose were the 

predominant ones in the control plants, with concentrations of sucrose being very low 

(< 1 mol m-1). Under salinity, levels of glucose and fructose were slightly lower, but 

sucrose increased, particularly in CM-67. As a result, total soluble sugars (glucose 

+ fructose + sucrose) increased with salinity for CM-67, but they decreased slightly 

for Chevron; (although this increase might be just a reflection of reduced water 

contents). It has to be noted that the concentrations of sugars in photosynthetic tissues 

change over a 24 hours period; therefore, their absolute concentrations will vary 

depending on the time of harvesting. However, since the plants in experiment 2 were 

sampled within a few hours, no bias due to different time of day is expected. 

When the osmotic contributions of the different solutes are calculated (Tables 2.3.3 

and 2.3.5), it is evident that most of the osmotic pressure of the expressed sap is due 

to inorganic ions, either K' salts in non-saline conditions, or K' and Na' salts under 

salinity. The contribution of organic solutes is mainly due to soluble sugars, while 

the "compatible" solutes only contribute 4-5% to the total osmotic pressure. It is 

clear, then, that in order to have an osmotic role these must be located predominantly 
in the cytoplasm. 

Because of time limitations, fresh and dry weights were not measured in these 

experiments. However, using data from similar experiments, the concentrations in 

leaf sap were transformed so that they could be expressed on a dry weight basis. 

Fresh weight to dry weight ratios of 12 and 7 for control and saline-treated plants, 

respectively, were used. Data for experiment 1 is shown in Table 2.3.6. These 

results show that the only ions that did accumulate (net increase) under salinity were 
Na' and Cl- (and H2PO4_ in CM-67). In spite of this, total ion concentrations under 

salinity were lower than without salinity. Similar results were found for experiment 
2 (data not shown). This means that a good proportion of the increased osmotic 

pressure was due to the lower water content, and not to increased ion accumulation. 
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That is, there was no osmotic adjustment in the strict meaning of the term, although 

the solutes used to generate the osmotic pressure were different. (Always assuming 

that the estimations of a 40% decrease in water content, which were obtained in other 

experiments for whole young plants, can be applied to the present one). 

Table 2.3.6. Calculated inorganic ion concentrations (mmol kg-' dry weight) in the 
youngest leaf of the plants in the first "Osmotic adjustment" experiment, assuming 
FW: DW ratios of 12 for the control and 7 for the saline-treated plants. 

CONTROL SALINE 

CM-67 Chevron CM-67 Chevron 

cl- 522.7 549.1 989.4 1446.1 
N03- 529.3 706.5 57.5 59.3 
U04- 320.2 323.5 341.6 162.4 
S04 2- 213.5 214.6 52.1 40.8 

-------------------- 
Total 

---------------------- 
1585.7 

-------------------- 
1793.7 

------------------ 
1470.6 

------------------- 
1708.6 

Na' 27.5 45.1 314.0 983.5 
KI 2557.5 2302.2 1494.7 878.0 
Mg 2+ 60.5 118.9 33.0 19.2 
ce+ 78.1 153.0 55.1 62.3 

-------------------- 
Total 

--------------------- 
2723.6 

--------------------- 
2619.2 

------------------- 
1896.8 

------------------ 
1943.0 

The measured inorganic and organic solutes accounted for most of the observed 

osmotic pressure, particularly in the control plants. Between 20% and 35% of the 

measured osmotic pressure was not accounted for in the salinized plants. The solutes 

responsible for the remaining osmotic pressure are not known, but it is suggested that 
fructans of jow molecular weight might play a role, since they are found in 

significant amounts in plants that store sucrose (as opposed to starch) as the end 

product of photosynthesis, such as barley (Sicher et al., 1984; Farrar & Farrar, 

1985). 
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Charge balance revealed an excess of positive charges in most cases. This excess was 

probably compensated for by organic acids (not determined), since this is how 

electrical neutrality is usually maintained (Osmond, 1976). 

In experiment 1, the increase in sap osmotic pressure from control to saline 

treatments was a bit less than the change in the external osmotic pressure. This deficit 

was larger in younger than older leaves. In the second experiment, however, osmotic 

adjustment was complete; Chevron even over-adjusted (excess of osmotic pressure). 
There are examples in the literature where osmotic adjustment of barley under 

salinity has been found to be either complete (e. g. Storey & Wyn Jones, 1978) or 
incomplete (e. g. Termaat et al., 1985). Delane et al. (1982) found both situations: 

ftill adjustment in mature tissues and incomplete adjustment in rapidly elongating 

tissues. Absolute adjustment may not be necessary, providing that the difference 

between internal and external water potentials does not become too small. In 

experiment 1, this difference was around 500 mOsmol kg-1 for all types of leaves, 

which is considered to be high enough to maintain influx (500 mOsmol kg-' is a 

normal osmotic pressure for plants without stress (Wyn Jones & Gorham, 1983)). 

In summary, these two varieties of barley (CM-67 and Chevron), when subjected to 

a certain degree of salinity (100 mol m-' NaCl and 50 mol m7' CaCl'), adjust their 
internal osmotic pressure by a reduction in their water content (as will be seen in 

other experiments) and a net accumulation of Cl- and Na'. Under these conditions 

of salinity, the contribution of the different solutes to the osmotic pressure varies 
depending on the cultivar. In CM-67, K' (50%) and Na' (19%) salts, together with 

organic compounds (soluble sugars and glycinebetaine; 19%) are the main osmotica. 
In Chevron, salts of inorganic ions (Nal 50 %, K' 21 %, and Ca" 15 %) contribute 

mostly to the osmotic pressure, with organic solutes (glucose, fructose and 

glycinebetaine) being less important (11 %). The degree of osmotic adjustment seems 
to be sufficient to maintain the water influx into the plant. 
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CHAPTER THREE 
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SALINITY - CALCIUM INTERACTIONS 

3.1. INTRODUCTION 

The first observations on the interactions between Nal and Cal' go back to the 

beginning of this century: Kearney and Cameron, (1902; quoted by LaHaye & 

Epstein, 1971) reported that the addition of Ca" would neutralize the harmful effects 

of Na' in various plants. Later, Ratner (1935) suggested that the tolerance of plants 

to high levels of Na' depended on the availability of Ca2' in the soil. In the early 
60s, the experiments of Epstein (1961) and Jacobson et al. (1961) in barley 

demonstrated the essentiality of Ca" for selective cation absorption. In the absence 

of Ca", Na' and K' were absorbed in a non-selective manner from a solution 

containing a mixture of these ions; but the addition of Ca? ' drastically altered the 

ratio of their absorption, increasing the uptake of K' and decreasing that of Na+. 

Hyder and Greenway (1965) noted that NaCl reduced growth of barley much more 

at low nutrient concentrations (1/40 Hoagland) that at higher dilutions (1/10), and that 

growth was restored (to that of 1/10 nutrient) when Ce' was added; addition of 
other ions, however, did not improve growth. Thus, they concluded that the adverse 

effects of Na' were partly due to a low Ca: Na ratio. Similarly, LaHaye and Epstein 

(1969,1971) working with beans, a rather NaCl-sensitive species, reported that 
between 1 and 3 mol m-I Ce' were needed to improve the growth of plants in 50 

mol nr' NaCI to almost that of the controls. They proposed that the site of this Na/Ca 
interaction was the plasmalemma of the root cells. 

Nowadays, the beneficial effect on salt stress of added Ca2' is generally recognized 
(Rengel, 1992). In the very few studies where no significant effect was found (e. g. 
Leidi et al. , 1991) it was probably because the control conditions already had 

relatively high levels of Ca2l (6 mol in' Ca2' in the above paper). 
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The effects of higher Ca" concentrations in the saline medium were not restricted 

to improved growth; as had been shown with very low concentrations of Nal, they 

also influenced the absorption of other ions. Thus LaHaye and Epstein (1971) 

observed that increased Ca" depressed Na' absorption by bean roots, and its 

translocation to the leaves. The decrease in K' uptake caused by the NaCl treatments 

was also reduced by the addition of higher concentrations of Ca" (Elzam, 1971; 

Lynch & Lduchli, 1985). As a result, K/Na ratios in the plant were increased. 

Uptake of N03- under salinity has also been reported to increase with the addition of 
Ca" (Ward et al., 1986). 

It is worth noticing that the plants in these experiments, which were performed in 

solution culture, never exhibited any symptoms of Ca" deficiency under "normal" 

(control) conditions. That is, Ca" levels that ivere adequalefor growth in a balanced 

nutrient solution proved insufficient when the NalCa ratio in the growth medium was 
increased (Bernstein, 1975). This statement was to be confirmed in many other 

studies (e. g. Kent & Uuchli, 1985; Maas & Grieve, 1987). It seems that high 

external Na' strongly reduces the chemical activity of Ca" ions in the root medium, 

and thus decreases the amount of Ce' that is available for uptake by the plant 
(Cramer & Uuchli, 1986; Cramer et al., 1986). 

That Na' interferes with normal Ca" nutrition was proved by Lynch and Uuchli 

(1985) with barley plants growing in rather low salinity (30 mol m, NaCl): Ca" 

levels in shoots of those plants decreased, in comparison to the control, due to a 
lower transport of Ca" from roots to shoots. (This was not simply a result of 
decreased transpiration, since the reduction in transpiration was less than the 

reduction in Ce' transport, and Ca" transport to non-transpiring organs was reduced 
too. ) They suggested that Na' probably inhibits Ca" transport to the shoot at the 

root level, before it enters the xylem; (it seems unlikely that its movement would be 

restricted by Na' once it had entered the xylem). Later, Cramer et al. (1985) 

observed that Na' displaced Ce' from the plasmalemma of the root cells, and 

postulated that this was the primary response to salt stress. However, other authors 
(Lynch & Lduchli, 1988; Martinez & Lduchli, 1993) believe that it is intracellular 

(tonoplast) Ce', rather than that at the plasma membrane, which is affected. 
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The essentiality of Ca" for preserving the structural and functional integrity of plant 

membranes has been recognised (Hanson, 1984). Considering that these membranes 

constitute the physiological barrier to free movement of ions in plants, it is not 

surprising that any disturbance in the membrane-associated Ca" will also affect the 

status of other ions. This would explain the observed changes in Na' and K' 

concentrations: with the loss of Ca" the membranes become more permeable, 
inducing KI to leak out of the cytoplasm, and increasing the entry of Nal. The 

beneficial effect of high Ca" concentrations in a saline environment would then be 

due to the maintenance of K/Na selectivity through an improved Ca" status of the 

roots (Kent & Lduchli, 1985; Cramer et al., 1987). 

It is not clear whether the displacement of Call from binding sites in the membranes 
is Na'-specific (Cramer et al., 1985) or may also be induced by other monovalent 
ions (Lynch et al., 1987). Depending on the exact mode of action of Na' (and 

other? ) ions, the external Call concentration required to compensate for these effects 

might increase with increasing external salinity or, alternatively, be constant for any 
level of salinity (Zidan et al., 1991). That is, it is not known whether what is needed 
is a minimum concentration of Call or a minimum ratio of Call relative to Na'. 

However, even though some aspects are still uncertain, it is quite generally accepted 

that injury to membranes, through changes in Call status, is one of the initial effects 

of NaCl stress (Leopold & Willing, 1984; Rengel, 1992). 

It is important to remark that although Ca2+ plays an important role in salt tolerance, 

it is not the sole factor involved in salt stress. Additional Ca" certainly ameliorates 

the effects of NaCl and partly restores growth in most plant species, but not always 

to the levels of plants in normal conditions. Calcium deficiency cannot, therefore, be 

the main cause of growth inhibition. 

At the other extreme, high Call concentrations in the medium may also cause 

nutritional imbalances. Thus, saline irrigation water made up with CaCl2 and NaCl 

increased absorption of Call and decreased that of K' in carrots, compared to the 

controls (Bernstein & Ayers, 1953). The same authors (1951), noticing the high 

levels of Ca 21 accumulated by bean plants in a similar experiment, suspected that a 
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nutritional imbalance (additional to any osmotic effect) was the cause of their poor 

performance. Furthermore, reduced leaf Mg", together with increased leaf Ca", has 

usually been reported in plants growing at high external Cal I concentrations (Nassery 

et al., 1979; Grieve & Maas, 1988; Plaut & Grieve, 1988). 

A Ca/Mg imbalance may lead to a deficiency of Mg", which has been suggested as 

the reason for the lower growth of sesame under CaCl2 salinity (Nassery et al., 

1979), and also for the poorer performance of some sorghum genotypes at high 

(almost 4: 1) Ca: Na ratios (Grieve & Maas, 1988). Under non-saline conditions, 

Mg 2+ deficiency has been shown to reduce photosynthesis in several plant species, 

including maize (Peaslee & Moss, 1966), spinach (Bottrill et al., 1970) and sugar 

beet (Terry & Ulrich, 1974). 

In most experiments, high Cal' treatments are supplied with CaC12 because of the 

difficulty of using other salts of Cal': some of them (e. g. CaS04) are highly 

insoluble, and other anions can be more toxic than Cl- at high concentrations. In these 

conditions it is difficult to establish the origin of the toxic effects, i. e. whether high 

internal Cal' is toxic to plants (either directly or through an induced Mg2l 

deficiency), or the accompanying high Cl- concentrations are toxic. Nassery et al. 

(1979) tried to determine which ion (Cal' or CY) was the cause of the large (65%) 

growth reduction observed with sesame growing with only 15 mol nf 3 CaCl2. They 

did so by comparing different ratios of Ca(N03)2 and NaCl, and found that Ca(N03)2 

alone suppressed growth more than NaCl or any combination of the two salts. Since 

N03- had previously been found to be the least detrimental of the anions tested (Cl-, 

N03-9 S04'-, with Na' as accompanying cation), they suggested that the reduction in 

growth was due to high Cal' concentrations. 

The same authors suggested that it was not high levels of Ca" or Cl- which caused 

necrosis in CaC12-treated plants, but the low Mg2l concentrations; (Ca2I levels were 

similar to those in control plants, and Cl- levels were lower than in uninjured NaCl- 

treated plants). Plaut and Grieve (1988) reached a similar conclusion when they 

observed that maize plants grown with high CaCl2 (;: 65 mol m-3) and normal levels 

of Mg2l developed chlorosis, but when 1/3 of the Ce' was replaced with Mg2l the 
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plants remained green and uninjured. This substitution also restored in part the 

decrease inC02fixation that had been found with high Ca", which is in accordance 

with the observation that Mg2l deficiency reduces photosynthesis. These authors 

concluded that, at high external CaC'2, part of the inhibition of photosynthetic activity 

was due to Mg2l insufficiency, but part was also due to high Ca2' per se. They 

based this statement on the fact that Na' concentrations in the treatment where Caý+ 

was partly replaced with Mg2+ were similar to those in the control; they did not 

discuss, though, Cl- concentrations, which were as high as those in other saline 

treatments. Since ratesOf C02fixation were also similar to those in the high NaCl 

treatments, it might well have been the Cl- ion which was affecting photosynthesis. 

It is difficult to interpret the results when several factors are changing at the same 

time. In many experiments comparing different Na: Ca ratios the external osmotic 

pressure is kept constant by changing the absolute concentrations of the ions 

considered. The same problem is found in the last two treatments of the above- 

mentioned experiment (Plaut & Grieve, 1988), where the effects of decreasing 

Ca: Mg ratios are confounded by those due to decreased Ca". A treatment where the 

lower Ca: Mg ratio was obtained by adding Mg", instead of by replacing part of the 

Call by Mg", might have clarified the response. 

It is generally agreed that the level of free Ca" in the cytoplasm is very low, around 
1 pmol m-1 or less (Wyn Jones & Pollard, 1983). Such low levels have to be 

maintained in order to prevent interferences with other ions and with enzymes. In 

particular, excess Ca" might react with inorganic phosphate forming an insoluble 

precipitate, and phosphate-based energy metabolism would then be severely inhibited 

(Hepler & Wayne, 1985). A large proportion (up to 60%) of cytoplasmic Ca" is 

sequestered in organelles (mitochondria, chloroplasts). Any excess C2' that enters 

the cytoplasm is actively pumped out back to the apoplast, or into the vacuole which 

acts as a sink for excess C2' (Hanson, 1984). Thus, even though Ca" is usually 

reported as a non toxic ion, if it is not properly compartmented (in the same way as 
Nal and CI-) it may have damaging effects. 
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3.2. MINIMUM Ca 2+ REQUIREMENTS IN SALT-STRESSED BARLEY. 

3.2.1. OBJECTIVES: 

In a previous experiment (not reported here) no differences were found in the growth 

of barley when Na: Ca molar ratios ranging from 2: 1 to 20: 1 were used at 10 dS in-' 

(30 to 5 mol m-I Ca 2+ 
, 60 to 95 mol in-' NaCl), suggesting that the proportion used 

routinely in the experiments in Bangor (20: 1) covers the minimum requirements 

needed to ameliorate the adverse effects of salinity. The present experiment was set 

up to determine what was the minimum amount of Ca' needed to improve the 

growth of barley under a more severe (200 mol in-') NaCl salinity stress, and to 

confirm that the levels conventionally used in our hydroponic experiments were 

sufficient. Because it was suspected that this minimum level might be dependent on 

the degree of tolerance of the genotype involved, two contrasting varieties (one 

tolerant, one sensitive) were used. 

3.2.2. MATERIALS AND METHODS: 

The experiment was conducted in a glasshouse at the University of Wales, Bangor 

(Memorial Building), in August 1991. The minimum temperature was 15'C, and 

natural light was supplemented with 40OW Son-T high pressure sodium lamps 

(Osram) for a minimum of 12 hours per day. Two varieties of barley, CM-67 and 
Chevron, were used. Five Na: Ca molar ratios were used as treatments (20: 1,40: 1, 

100: 1,200: 1,400: 1) at a constant NaCI concentration of 200 mol ml, with the 

corresponding CaCl2concentrations being 10,5,2,1, and 0.5 mol m' respectively. 

Seeds of the 2 varieties were washed in running tap water for 24 hours, and sown 
(06.08.91) on rock-wool in plastic plug trays, one seed per cell and 12 seeds of each 

variety per tray. Trays were suspended on 9 dmý tubs (Z210, Mailbox International), 

containing a'solution of 1 mol nrl Ca(N03)2and 0.5 mol m-3MgSO4; a total of 5 tubs 

(one for each treatment) were used. Three days later, when 70% of the seedlings had 

already emerged, Phostrogen and micronutrients were added, as in previous 

experiments (e. g. section 2.2.2). 
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On 11.08.91, trays were "thinned" to leave 5 plants of each variety (randomly 

distributed) per tub. At the same time, the stress was started by adding 25 mol m-1 

NaCl (plus the corresponding concentration of CaC12) twice a day, until the final 

concentration was reached (4 days later). The concentration of Ca2' in the 

Phostrogen solution (0.5 mol m-') was taken into account when preparing the 

different Na: Ca ratios. All solutions were replaced at weekly intervals; their ECs 

were around 19 dS m-1. 

Plants were harvested 19 days after the final concentration was reached, when they 

were 4 weeks old (02.09.91). Harvested plants were divided into shoot and root. For 

the shoot, fresh weight and stem length (from the base of the stem to the top of the 

sheath of the youngest expanded leaf) were recorded, and leaves. number 2 ("old") 

and 4 (youngest expanded) from the base were sampled for sap extraction; the rest 

of the shoot was oven-dried to obtain dry weight. The roots were washed for 2 

minutes in aMgS04 solution of the same osmolality as 200 Mol M-3 NaCl (to avoid 

losses of salts), and dried with tissue paper; fresh weight was recorded, and the 

whole root sampled for sap extraction (same procedure as with leaves). 

On the extracted sap, major ions (Cl-, Na, K+) were analyzed by HPLC (Dionex 

2000i); CW' was determined by atomic absorption spectrophotometry (SP2900, Pye 

Unicam); (methods as detailed in section 2.2.2). 

Statistical analysis was performed using the Genstat-5 package. A 2-factor analysis 

of variance (calcium level and variety) was carried out, using individual values of 5 

plants (since only one tub had been used for each treatment). Because there were 

significant interactions (calcium x variety) in many traits, the treatments were 

compared within each variety. Separation of means was done using Tukey's test. 

3.2.3. RESULTS: 

3.2.3.1. Plant growth (Table 3.2.1): 

The two varieties behaved rather differently in relation to the growth traits measured. 
With decreasing Ca" levels, CM-67 increased its dry weight and, especially, the 
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stem length, down to 1 mol m-' Ca"; only at lower Ca" concentrations (0.5 mol 

was its growth severely reduced. On the contrary, Chevron began to decrease 

both dry weight and stem length earlier (around 2 Mol M-3 Ca2l and below). 

It is worth noting that decreasing Ca" availability induced earliness in CM-67; (a 

few plants already had the flag leaf out in the treatment with 1 mol njý3 Caý'). It 

would be interesting to see how greatly grain yield was affected (decreased) by the 

reduction in the period left for ear development. On the other hand, the same 

conditions caused a sort of dwarfing effect on Chevron (quite noticeable by 

observation, although not in all plants). 

The water content in the plant, measured as the ratio of fresh weight to dry weight, 

was slightly higher in Chevron than in CM-67. This ratio was very similar for all 

treatments in CM-67, but in the lowest Ca" treatment of Chevron it decreased 

significantly (p <5%; Tukey's test) - 

Table 3.2.1. Shoot dry weight (mg), stem length (mm), and fresh weight to dry 
weight (FW/DW) ratio of 2 varieties (CM=CM-67, CH=Chevron) grown at 200 
Mol M-3 NaCI and decreasing levels of CaCl2; (means of 5 plants). 

Ca" conc. DRY WEIGHT STEM LENGTH FW/DW RATIO 
(mol nfl) CM CH CM CH CM CH 

10 252 251 154 85 5.66 6.41 
5 283 257 193 78 5.30 6.03 
2 300 228 234 60 5.45 6.26 
1 291 179 256 59 5.29 5.65 

0.5 183 137 88 46 5.38 4.89 

-------------- 
L. S. R. * 

---------- 
123 

-------------- 
49 

-------------- 
122 

------------ 
18 

------------- 
0.98 

------- 
1.07 

* L. S. R. - Least Significant Range, cc=0.05 (Tukey's test) 
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3.2.3.2. Ion concentrations (Table 3.2.2): 

i) in leaves (young and old): 

In both varieties, chloride concentrations (young and old leaves) did not increase with 
decreasing levels of Ca" until the lowest concentrations were reached (less than 2 

mol m-' Ca 21); (Table 3.2.2a). Concentrations of Cl- were quite similar for both 

varieties, except at 0.5 Mol M-3 Ca", where concentrations in Chevron tended to be 

higher than in CM-67 (although not significantly at the 5% level). 

Like Cl-, Na' concentrations did not increase until the lowest levels of Ca2' (below 

2 mol m-') were reached, both in young and old leaves; (Table 3.2.2b). This 

behaviour was common to both varieties, although the concentrations of Nal in 

Chevron were about twice those of CM-67. 

Potassium concentrations did not change very much with decreasing Ca" in the 

external solution, particularly in older leaves; (Table 3.2.2c). Only in young leaves 

of CM-67 were the concentrations at the lowest level much lower (p < 0.05; Tukey's 

test) than in the other treatments. The concentrations of K' in Chevron were only 
half those in CM-67. 

As might have been expected, Call concentrations in leaves (both young and old) 

decreased with decreasing availability in the external solution; (Table 3.2.2d). This 

was true for both varieties, and particularly in the young leaves of Chevron, where 

the amounts of Caý' were extremely low (less than 1 Mol In-3) in the lowest 

treatments. 

ii) in roots: 

Not many differences were found in root Cl- concentrations between the 2 varieties, 

except for the 2 lowest Ca 2+ levels where the concentrations for CM-67 were higher 

(p < 0.05; Tukey's test); in Chevron, however, they did not change significantly (at 

the 5% level); (Table 3.2.2a). On the other hand, the concentrations of Na' in roots 
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Table 3.2.2. Cl- (a), Na' (b), K' (c) and C2' (d) concentrations (mol M-3 sap) in 
young leaves, old leaves and roots of 2 varieties (CM=CM-67; CH=Chevron) 
growing at 200 mol M-3 NaCl and decreasing levels of CaC12; (means of up to 5 
plants). 

Ca" conc. YOUNG LEAVES OLD LEAVES ROOTS 
(Mol M-3) CM CH CM CH CM CH 

a) Chlofide: 

10 268 281 371 410 131 142 
5 301 275 393 565 142 147 
2 276 285 363 417 145 133 
1 ns 404 408 663 182 150 

0.5 595 942 764 988 179 151 

-------------- 
L. S. R. * 

--------- 
91 

--------------- 
374 

------------ 
171 

---------------- 
317 

------------- 
29 

------------ 
33 

b) Sodium: 

10 125 269 302 450 166 156 
5 145 297 361 711 189 163 
2 158 323 347 509 203 159 
1 ns 437 450 842 257 177 

0.5 578 1082 893 1270 272 187 

- -- -- 
L. S. R. * 

-- --- ---- 
53 

---------------- 
477 

------------ 
216 

--------------- 
478 

------------- 
34 

------------ 
29 

c) Potassium: 

10 255 121 132 74 51 56 
5 247 73 104 49 32 36 
2 204 65 79 30 23 27 
1 ns 56 83 37 21 21 

0.5 103 98 102 73 14 9 
-------------- 

L. S. R. * 
----------- 

32 
--------------- 

80 
------------ 

59 
--------------- 

43 
------------- 

9 
------------ 

7 

d) Calcium: 

10 6.7 7.7 9.6 8.3 3.3 3.6 
5 4.7 4.6 9.5 8.3 2.8 2.8 
2 3.6 1.8 5.3 6.3 2.3 2.3 
1 ns 0.6 3.9 3.6 2.2 2.3 

0.5 2.0 0.3 3.1 2.5 2.1 2.1 
------------- 

L. S. R. * 
---------- 

3.3 
--------------- 

2.5 
------------ 

5.5 
--------------- 

2.7 
------------- 

0.4 
------------ 

0.6 

ns - data not available (no sap) 
* L. S. R. - Least Significant Range, (x=0.05 (Tukey's test) 
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of CM-67 were generally higher than those in Chevron, and they increased noticeably 

with decreasing the availability of Ca" in the external solution, while they hardly 

changed in Chevron; (Table 3.2.2b). Potassium concentrations in the roots of both 

varieties were very similar for a given treatment, and they decreased considerably 

with decreasing the amounts of Ca 2+ in the solution; (Table 3.2.2c). A similar 

behaviour was found for root Ca2+ concentrations; (Table 3.2.2d). 

3.2.4. DISCUSSION: 

In order to determine the minimum level of Ca" needed to ameliorate the growth 

reduction caused by 200 mol m-1 NaCl, in the present experiment the proportion of 

C2' in the saline solution was progressively decreased. The growth data shows that 

this minimum depends on the variety considered: the growth of Chevron (salt- 

sensitive) was affected at higher Ce' concentrations than that of CM-67 (salt- 

tolerant). That is, the former needed higher levels of Ca2' (minimum 2 mol m) than 

the latter (1 mol rff') to maintain its growth at that salinity. Different responses to 

supplemental Ca2' between genotypes have also been reported for growth in sorghum 
(Grieve & Maas, 1988), and for germination in triticale (Norlyn & Epstein, 1984). 

Not many similar step-down experiments with Ca2' concentrations at a given salinity 

are found in the literature; most studies only deal with the addition of moderate 

amounts of Ca? ' to the basic nutrient solution. For instance, Cramer et al. (1989) 

found that 10 mol m-' Ca2' partly ameliorated the growth of barley at 150 mol m-' 

NaCl in relation to the 0.4 mol m-1 Ca" present in their control conditions, but no 

intermediate concentrations were studied. Only in the paper by Yeo and Flowers 

(1985) were Ca2+ concentrations reduced in a gradual way. These authors found that 

the growth of rice at 50 mol m-' NaCl only decreased below 0.2 mol m' Caý' (a 

Na: Ca ratio of 250: 1), although Na+ concentrations in the shoot began to increase 

earlier (below 1 mol m-3 Ca2+). 

In many experiments (e. g. Maas & Grieve, 1987; Plaut & Grieve, 1988; Grieve & 

Maas, 1988) the Na: Ca ratios are progressively changed by substituting C2' for 

Na', in order to maintain a constant osmotic potential or Cl- concentration in the 
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external solution; but then it is difficult to separate the effects of increased Ce' with 

those due to reduced Na'. This is the case in the experiments of Subbarao et al. 

(1990) with pigeonpea, where a positive response to decreasing Na: Ca ratios was 

found up to Ca' concentrations of 10 and 15 mol m-', at a salinity of 6 dS M-1 

(corresponding to 40 and 30 Mol m-3 NaCl, and Na: Ca ratios of 4 and 2, 

respectively). 

Ward et al. (1986), working with CM-72 (a barley variety developed from CM-67), 

compared elongation rates of the second leaf of plants grown at 150 mol rný NaCl 

and either 0.5 or 3 mol m-' Ca 2+ 
. They found that the latter concentration (3 Mol M-3 

Ca2+) improved growth. In a review by Clarkson and Hanson (1980) it is mentioned 

that C2+ concentrations between 1 and 5 Mol m-3 are generally required to protect 

the roots of plants from the deleterious effects of, among other things, salinity and 

ion imbalance. The present results (, zý2 and 1 mol m- for Chevron and CM-67, 

respectively) fall within this range. 

The data for ion concentrations are in general agreement with those for growth: they 

do not change very much until the lowest C2+ treatments are reached. An exception, 
however, is found in roots, where KI concentrations decreased continuously with 
decreasing external Ca" levels for both varieties. The role of Ca 2+ in maintaining 

membrane selectivity has already been mentioned: with low external Ce+ membranes 
become more permeable and there is a leakage of K+ (efflux) out of the cell. This 

would explain the observed decreasing KI concentrations in roots with decreasing 

Ca' availability. It is interesting to note that these changes cover the whole range 

of C2' concentrations used, something not observed in the other traits studied where 

only the two lowest treatments are affected (except, maybe, root Na' concentrations 
in CM-67). According to these data, KI levels in roots respond to increasing external 
Ca2' at least up to 10 mol m-' (no higher concentrations were investigated). 

Elzam (1971) reported that K' uptake by barley roots growing in 100 mol m, NaCl 

was reduced by 95% relative to the non-saline control when external Ca" 

concentrations were low (0.5 mol m-'), but this reduction was smaller (72 %) with 4 

mol m-' external Ca2'. She did not try, though, higher levels of Ca2'. Similar results 
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were reported for cotton (Kent & Lduchli, 1985) when comparing K' concentrations 

in roots of plants growing without NaCI or with 200 mol m-1 NaCI and either 0.4 or 

10 mol m-' Ca". But again there is no information on intermediate levels. 

if we consider all the ion data for leaves and roots, particularly in the 3 treatments 

with the highest Caý" levels, it is worth noticing the differences between the two 

varieties: in CM-67, less Na' is going into the plant, and a higher proportion of it 

is being retained in roots and old leaves, than in Chevron. The opposite happens with 

K': more K' is going into CM-67, and there it is better directed towards young 

leaves, than in Chevron. This fact is well reflected in the K: Na ratios of the two 

varieties: in CM-67, young leaves had higher K: Na ratios (> 1) than roots (< 1) 

(except in the lowest Caý' treatment), while in Chevron these ratios were similar for 

young leaves and roots (< 1). This higher K: Na selectivity has been proposed as one 

of the reasons for the higher salt tolerance of CM-67 (Jeschke & Wolf, 1985). 

In view of the extreme levels of salt sensitivity/tolerance of the 2 varieties studied, 

and the fact that they were subjected to a rather high NaCl salinity, it seems quite 

safe to extrapolate and conclude that a Ca 2+ concentration of 2 mol m-3 is enough for 

most barley varieties at the range of salinities usually employed. As mentioned 

before, it is not known whether this minimum requirement is going to be constant for 

any salinity level or if, alternatively, it depends on the NaCl concentration. If the 

later case was true, then we should talk about Na: Ca ratios rather than absolute 

concentrations. This aspect was not considered in the present experiment, because the 

initial interest was in deciding if the amounts of Ca" in the hydroponic experiments 

were adequate. Typical levels of soluble Ce' in saline soils are around 15 Mol Hf 3 

(Richards, 1954); this is well above the 2 Mol M-3 required to protect membranes 
from injury and, therefore, addition of Ce' is not necessary. (The case of sodic soils 
is different. There, application of gypsum -CaS04- has a double effect: it improves 

soil structure and aeration, and it increases the Ca: Na ratio. ) In hydroponic 

experiments, however, a minimum amount of CW' (2 mol rw3) needs to be added to 

the nutrient solution. This minimum is well covered by the 20: 1 Na: Ca molar ratio 

used in the Bangor experiments, where the highest salinities do not usually exceed 
200 mol m-3 NaCl (i. e. 10 mol m' Ca"). 
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3.3. EFFECTS OF HIGH LEVELS OF Ca 2+ (AS CaCl) IN BARLEY. 

3.3.1. OBJECTIVES: 

The first of the next two experiment was set up to explore the toxicity of CaC'2. As 

this might depend on the genotype, two varieties known to differ in their response 

to NaCl were used. The results showed a large decrease in the dry weight of plants 

growing in 50 mol in-' CaCl2, which was the lowest salinity tested. Thus, a second 

experiment was set up to investigate the effect of lower concentrations and determine 

when CaC'2 begins to reduce the growth of barley. 

3.3.2. MATERIALS AND METHODS: 

Experiment 1. 

The first experiment was carried out in a glasshouse in the University of Wales, 

Bangor (Memorial Building), during July and August 1991. Conditions in the 

greenhouse were the same as in the previous experiment (section 3.2.2). Two 

varieties of barley, CM-67 and Chevron, were grown at 5 levels of CaC12 salinity: 
0 (control), 50,100,150, and 200 mol M-3 CaCl2. 

Seeds of the 2 varieties were washed in running tap water for 24 hours, and sown 
(23.07.91) in plastic plug trays suspended on 9 dm' tubs (see section 3.2.2 for 

details). A few days later, nutrient solution was added, and plants were thinned to 
leave. 5 seedlings of each variety per tub; only one tub was used for each treatment. 

Stress was begun on 28.07.91 by adding 25 mol m' CaCl2 twice a day, until the 
highest concentration was reached (4 days). Solutions were replaced at weekly 
intervals. The approximate ECs of the different treatments were: 1,9,16.5,24,31.5 

dS m-'. Plants were harvested when they were about 3 weeks old, and had been 

growing for 2 weeks under salinity; at this stage, the plants of variety Chevron at the 
highest salinities were almost dead. 
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The youngest expanded leaf was sampled for sap extraction,. and the shoot was 

weighed and oven-dried to obtain dry weight. Roots were washed for 2 minutes in 

sorbitol solutions of the same osmolality as the corresponding treatment (to avoid 
losses of ions), dried with tissue paper, weighed and sampled for sap extraction. 

On the extracted sap the following ions were analyzed: Cl- with a chloride-meter 
(Corning-Eel 920, Evans Electroselenium Ltd, Halstead, Essex), Ca" by atomic 

absorption spectrophotometry (SP2900, Pye Unicam) and K' by flame emission 

spectrophotometry (SP90, Pye Unicam). 

A two-factor analysis of variance (salinity level and variety) was done using 
individual values of 5 plants (because of lack of proper replication). Although not 

many significant interactions were detected (i. e. the 2 cultivars responded similarly 

to increasing CaCl2concentrations), the effects of increasing CaCl2were still studied 

within each variety. Separation of means was carried out using Tukey's test. 

Experiment 2. 

This experiment was conducted in a glasshouse at the University of Wales, Bangor 

(Pen-y-Ffridd Field Station) in November 1992. Environmental conditions in the 

greenhouse were as described in section 2.2.2. The same two varieties of the 

previous experiment (CM-67 and Chevron), were grown at 4 levels of CaCl2salinity: 

0 (control), 15,30 and 45 mol nrl CaC12. the highest treatment being similar to the 

lowest one before. 

Seeds of the 2 varieties were soaked overnight and sown (05.11.92) in compost (John 

Innes nO 1, L&P Peat Ltd, Carlisle) in plastic trays (P84, Plantpak). Four days 

lat er, young seedlings were moved onto hydroponics: 9 dM3 containers (Z210, 

Mailbox), with Phostrogen and micronutrients solution; four plants of each variety 

per tub, and 5 replicated tubs per treatment were used. 

On 11.11.92 stress was begun by adding 15 mol m' CaC12per day, until the highest 

concentration was reached (3 days). Solutions were replaced at weekly intervals. The 
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ECs of the different treatments were: 0.5,2.8,4.6 and 6.1 dS m'. On one occasion, 

samples of the solutions were taken for analysis of anions, because by using relatively 
high concentrations of CaC12 there might be a risk of phosphates being precipitated. 
Levels of soluble phosphate in the CaCl2 treatments were found to be about 75 % 

those in the control solution (from 0.40 to 0.48 mol m', compared to 0.60). 

Plants were harvested when they had been growing for 3 weeks under salinity (4 

weeks after sowing). The youngest expanded leaf was sampled for sap extraction; 

shoot fresh and dry weights were recorded. Extracted saps of 2 plants (same variety) 
from each tub were combined for the chemical analysis. 

Main anions (Cl-, N03-, H2pO4- andS04'-) were analysed by HPLC (Dionex 2000i) 

as previously described (section 2.2.2). Main cations (Na', K', Ca" and Mg2l) 

were also analyses by HPLC, using the same dilution as in the experiments of section 
2.3.2. 

The analysis of variance for 2 factors with interaction was done using Genstat-5. 

Mean values of the 4 plants of each variety in each tub (replication) were used. 
Separation of means was done using Tukey's test. 

3.3.3. RESULTS: 

Experiment 1. 

3.3.3.1. Plant growth (Table 3.3.1): 

With only 50 mol m-' CaCl2 (the lowest concentration) shoot dry weight was already 

reduced to almost half of that in the control, and it decreased a further 40% at 100 

Mol M-3 CaCl2. These values were quite similar for the 2 varieties, (no significant 
differences, at the 5% level, within a given treatment). Fresh weight to dry weight 

ratios were also similar for the 2 cultivars, and they decreased with increasing CaCl2 

concentrations. This decrease in plant water content (FW: DW) is a well known 

response of some plants (particularly monocots) to salinity. 
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Table 3.3.1. Shoot dry weight (mg) and Fresh Weight to Dry Weight ratio (FW: DW) 
of 2 varieties grown at increasing concentrations of CaC12; (means of 5 plants). 

CaC12 DRY WEIGHT FW: DW 
(Mol rn-3) CM-67 Chevron CM-67 Chevron 

0 601 560 9.5 9.0 
50 352 253 7.5 6.2 

100 201 163 5.3 4.2 
150 114 95 4.7 4.3 
200 105 61 4.3 3.6 

------------------- 
LSR* 

------------------- 
102 

-------------------- 
120 

--------------------- 
1.3 

----------------- 
1.2 

* LSR = Least Significant Range, oc=0.05 (Tukey's test) 

3.3.3.2. - Ion concentrations in young leaves and in roots (Table 3.3.2): 

As expected, Cl- concentrations increased with increasing CaC12, both in leaves and 
in roots. For a given treatment (external CaCl2 concentration), there were no 

significant differences (at the 5% level) between varieties in the amounts of Cl- in 

roots. In leaves, Chevron seemed to increase Cl- concentrations faster than CM-67 

above 50 mol in-' CaC12; unfortunately, there is no data available for leaves of 
Chevron at the highest CaCl2concentrations, where plants were almost dead and no 

sap could be extracted. 

Like Cl-, Ca" concentrations increased with increasing CaCI22, both in roots and in 

leaves. There were no significant differences (5 % level) between varieties in the 

amounts of Ca2+ in leaves or in roots at a given level of CaC'2- 

Concentrations of K' in roots tended to increase in variety CM-67, especially at the 
highest treatments, but they did not change significantly (at the 5% level) in Chevron. 

In leaves, and up to 100 mol m-' CaC12, KI concentrations were similar for both 

varieties and did not change very much; they even increased for CM-67 at higher 

CaCl2 concentrations; (no data for Chevron). 
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Table 3.3.2. Chloride, calcium and potassium concentrations (mol nf 3 sap) in the 
youngest leaves (a) and roots (b) of 2 varieties (CM = CM-67, CH = Chevron) grown 
at increasing concentrations of CaCl2; (means of up to 5 plants). 

CaC12 
(Mol M-1) CM 

ci- 
CH CM 

Ca 2+ 

CH CM 
K' 

CH 

a) young leaves: 

0 105 86 9 18 296 289 
50 214 187 30 36 304 224 

100 275 392 65' 89 286 295 
150 584 ns 174 ns 342 ns 
200 876 ns 267 ns 404 ns 

--------------------- 
LSR* 

------- 
193 

-------------- 
55 

----------- 
44 

--------------- 
16 

------------ 
53 

---------------- 
42 

b) roots: 
0 18 14 1.9 2.2 141 161 

50 91 89 6.7 6.0 175 151 
100 131 132 9.4 10.3 190 179 
150 171 183 19.9 16.5 225 185 
200 238 206 24.5 30.0 239 184 

--------------------- 
LSR* 

------ 
31 

--------------- 
25 

----------- 
5.9 

--------------- 
6.9 

----------- 
54 

----------------- 
37 

ns - data not available (no sap) 
* LSR - Least Significant Range, a=0.05 (Tukey's test) 

Experiment 2. 

3.3.3.3. Plant growth (Table 3.3.3): 

Shoot dry weight tended to decrease with increasing external CaC12, although not 

very much for CM-67. Only in Chevron were there some significant differences: the 

dry weight of the highest treatment was lower than those in the control and with 15 

mol m-' CaC12 (p<0.05; Tukey's test). Fresh weight to dry weight ratios also 
decreased, and slightly faster in Chevron than in CM-67. 



98 

Table 3.3.3. Shoot dry weight (mg) and Fresh Weight to Dry Weight ratios 
(FW: DW) of 2 varieties grown at low concentrations of CaCl2; (means of 20 plants). 

CaCl2 
(Mol M-') 

DRY WEIGHT 
CM-67 Chevron 

FW: DW 
CM-67 Chevron 

0 296 309 13.9 13.9 
15 317 304 12.8 11.8 
30 280 272 10.9 10.2 
45 270 240 10.0 8.8 

--------------------- 
LSR* 

----------------- 
96 

--------------------- 
62 

-------------------- 
1.3 

----------------- 
1.1 

* LSR = Least Significant Range, (x=0.05 (Tukey's test) 

3.3.3.4. Ion concentrations in young leaves (Table 3.3.4): 

As expected, Cl- concentrations tended to increase with increasing external CaC12, 

particularly in Chevron; as a result, this variety always had higher concentrations of 
Cl- than CM-67 for a given treatment (except in the control). On the other hand, 

concentrations of N03- did not change significantly (at the 5% level) with increasing 

CaC12 in CM-67, but they tended to decrease in Chevron. The latter variety always 
had lower amounts of N03- than the former for a given level of CaCl2, except in the 

control. This replacement of N03- by Cl- has already been seen in previous 

experiments (e. g. "Osmotic adjustment", section 2.3.3). 

Phosphate concentrations did not change significantly (5 % level) between treatments 
in CM-67, but in Chevron they decreased steadily with increasing external CaCl2- 

Sulphate concentrations decreased slightly in the CaC12 treatments in comparison to 

the control. A reduction in So 4 2- levels was already observed with NaCI salinity in 

previous experiments (e. g. "Osmotic adjustment", section 2.3.3) which might be due 

to interferences caused by the high Cl- concentrations. Overall, no significant 
differences between varieties were detected. 

Concentrations of KI did not change significantly (5% level) in Chevron, but they 
increased with increasing CaCl2 in CM-67. This variety had, in general, higher levels 
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of K+ than Chevron, particularly at the 2 highest treatments. Sodium concentrations 

were very low, as expected from an experiment which did not deal with NaCI 

salinity. The small differences found between treatments or varieties are probably not 
important. 

Concentrations of calcium were similar for the 2 varieties in the control, but they 

increased very fast in Chevron as soon as CaC12 was added to the external solution, 

wbilst they only increased slightly in CM-67. On the other hand, Mg2l concentrations 
hardly changed at all with increasing CaCl2, but Chevron always had higher levels 

of Mg2+ than CM-67 at a given treatment. 

Table 3.3.4. Main anion (a) and cation (b) concentrations (mol m) in young leaves 
of 2 varieties (CM = CM-67, CH = Chevron) grown at low concentrations of CaCl2; 
(means of 10 samples, each made up of 2 plants). 

a) anions: 

CaC12 
(Mol M-) 

Chloride 
CM CH 

Nitrate 
CM CH 

Phosphate 
CM CH 

Sulphate 
CM CH 

0 68 70 102 104 26.6 21.0 8.4 12.2 
15 121 141 98 85 17.9 14.4 6.0 8.5 
30 131 158 91 81 20.6 10.3 5.5 6.0 
45 147 183 91 75 23.6 8.4 6.4 5.9 

---------- 
LSR* 

------- 
21 

------------ 
14 

------------ 
12 

----------- 
9 

------------ 
11.5 

----------- 
11.0 

----------- 
7.2 

--------- 
5.8 

b) calions., 

CaCl2 
(mol m-') 

Potassium 
CM CH 

Sodium 
CM CH 

Calcium 
CM CH 

Magnesium 
CM CH 

0 207 199 3.4 4.9 2.2 3.0 2.4 4.6 
15 226 218 3.7 2.7 3.2 6.9 2.3 3.6 
30 

. 
245 222 2.7 3.1 4.6 13.1 2.3 4.7 

45 258 224 3.6 3.7 7.8 25.0 2.9 5.3 
------------- 
LSR* 

----------- 
23 

------------ 
19 

------------ 
0.9 

----------- 
1.9 

----------- 
2.9 

----------- 
7.4 

----------- 
0.8 

-------- 
1.7 

* Least Significant Range, a=0.05 (Tukey's test) 
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3.3.4. DISCUSSION: 

These two experiments were set up to investigate the toxicity of CaCl2. The results 

on dry weight clearly show that CaC12 strongly decreases the growth of barley. With 

only 50 mol rwl (experiment 1), shoot dry weight was reduced by almost 50% in 

relation to the control. In experiment 2 the reductions were not as large; only 15% 

and 22 % for CM-67 and Chevron respectively at 45 mol m-3 CaC12. This discrepancy 

can be explained by the different environmental conditions experienced by the two 

experiments: the first one was done during the summer months, with plenty of natural 

daylight and high temperatures, while the second was carried out during winter. The 

combination of lower temperatures and lower light intensity (plants were almost 

completely dependent on artificial light) would have reduced growth in all treatments 

of experiment 2. This reasoning is supported by the fact that even the control plants 

grew only half as much in the second experiment as in the first one, in spite of 
having been harvested when they were one week older. 

The considerable effect of CaCl2on growth should not be very surprising: after all, 
50 mol m-' CaCl2is equivalent to 100 mol m-' Cl-, and similar growth reductions are 
found with corresponding levels of NaCl (e. g. section 2.2.3). Further reductions in 

dry weight (with 100 Mol M-3 CaC12) are also not much different from those found 

with 200 mol M-3 NaCl. Higher CaC12 concentrations do not have much practical 
interest, and they will not be discussed in detail. 

In the first experiment, both varieties doubled their leaf Cl- and Ca2' concentrations 

at 50 mol in-' CaCl2 in relation to the control. Above that, concentrations of Cl- 

increased faster in Chevron than in CM-67, as in the case of NaCl salinity (see 

section 2.2.3). That is, above 100 Mol nj-3 external Cl-, CM-67 restricts the 

accumulation of Cl- in young leaves, while Chevron does not have such a tight 

control. This regulation of ion uptake by CM-67 seems to operate even at the highest 

treatments, *(above 200 mol m-1 external Cl-) where, in spite of very high Cl- 

concentrations in their leaves, plants of this variety were still alive, whereas those of 
Chevron were almost dead. It is easy to see that, even with such high Cl- levels in 

the leaves, some regulation of Cl- uptake must exist: with transpiration rates of 41 
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water per kg fresh weight per day (estimated from Kalaji & Nalborczyk, 1991) and 
FW: DW ratios of around 5 (Table 3.3.1), Cl- concentrations in the plants growing 
in 100 Mol M-3 CaCl2would increase by about 500 mol M-3 per day if Cl- was not 

ltexcluded" from the transpiration stream. 

CM-67 also restricted the accumulation of Ca" in leaves slightly better than 

Chevron, at least up to 100 Mol M-3 external CaC12 (experiment 1). Above that, Ca2+ 

concentrations in young leaves of CM-67 were very high (they increased almost 

exponentially), contrasting with the generally accepted idea that cereals contain low 

levels of Ca 2+ (Loneragan & Snowball, 1969). But Gorham et al. (1980) already 

showed that, in saline habitats, Ca 2+ levels in monocotyledonous halophytes were not 

lower than those of dicotyledonous. Therefore, it seems that, although in normal 

conditions monocots take up lower amounts of Ca 2+ than dicots, given ample supply 

of this mineral they may accumulate it in substantial amounts. In these conditions it 

is probably used as an osmoticum in the vacuole since, as already mentioned, 

cytoplasmic Ca' concentrations have to be maintained within very restricted limits. 

On the other hand, K' concentrations in young leaves apparently did not change with 
increasing CaC12 salinity, unlike what is usually observed with NaCl salinity 
(particularly in Chevron), where K' concentrations decrease due to both competition 

with, and replacement by, Na'. This does not happen with Ca2', because Ca 2' ions 

are (physically) too different from those of K' to either compete with, or substitute 
for, them. In fact, in both experiments, K' concentrations in leaf sap tended to 
increase at the highest treatments. However, this is only a reflection of the changes 
in FW: DW ratios with increasing external CaC12- Since FW: DW ratios decreased 
faster than the increase in K' concentrations in leaf sap, when expressed on a dry 

weight basis K+ concentrations did tend to decrease (data not shown). Thus, although 
KI is still the main cation used for osmotic adjustment in the vacuole, high external 
concentrations of Ca' seem to reduce the levels of K' accumulated in young leaves. 

In the second experiment, the patterns of ion accumulation with increasing external 
CaCl2were similar to those seen in experiment 1, although the concentrations found 
both in the control and at the highest treatment (45 mol ml CaC'2)were lower. This 
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can be partly a result of the lower light and temperature, which would have reduced 

transpiration rates and, therefore, the uptake and translocation of those ions whose 

uptake is largely related to transpiration (particularly Cal' (Marschner, 1986)). In 

general, the differences between the two experiments were larger in CM-67 than in 

Chevron, reflecting the fact that the former is a fast-growing variety adapted to warm 

climates, whilst Chevron, preferring colder conditions, was not so badly affected by 

the limiting conditions of the winter experiment. 

Concentrations of Mg` in sap (experiment 2) increased slightly with increasing 

external Caý', but this was again a reflection of the decreased water contents of the 

leaves. If expressed on a dry weight basis, Mg2l concentrations tended to decrease, 

although not very much in CM-67 (data not shown). This decrease, however, was 

not dependent on the Ca 21 concentrations (whether internal or external), but similar 
for all CaCl2 treatments. Thus, although some competition between Ca2' and Me' 

may exist, no clear effect of Ca2' on leaf Mg` concentrations was observed here. 

This is in opposition to some results found for other species (e. g. Nassery et al., 
1979, with sesame; Plaut & Grieve, 1988, with maize) where a Ca'-induced Mg2l 

deficiency was claimed. This might be due to the relatively low levels of CaCl2used 

as treatments in the present experiment, combined with the low ion uptake 

experienced by the plants. (Mg2+ concentrations in all treatments were rather low 

compared to those reported elsewhere, and some Mg2+ deficiency might, indeed, 

have occurred, but not as a result of high Ca2' levels). It is interesting to notice that 
Chevron had higher concentrations of Mg2+ than CM-67, in spite of having rather 
high Caý' concentrations too. High concentrations of Ca2' and Mg'+, though, are 

common in this variety when grown in hydroponics (see section 2.3.3). 

Concentrations of H2PO4- (experiment 2) did not change very much in CM-67, but 

they decreased steadily in Chevron, and at 45 mol nfl CaC'2, H2P04- concentrations 
in this variety (approximately 65 pmol g-' dry we ight) were approaching deficiency 
levels (the minimum necessary for adequate growth is reported to be around 60 Pmol 
9" dry weight (Marschner, 1986)). This might have been another reason why 
Chevron plants died at the highest salinities of the first experiment (though H2P04- 

was not analysed there). This nutritional imbalance was not observed in CM-67, nor 
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in the maize experiment reported by Plaut and Grieve (1988), where H2PO4- even 
increased slightly with increasing external Cal' in relation to the control. In maize, 
however, salinity may disrupt control of H2PO4- uptake and lead to toxicity levels 

(Nieman & Clark, 1976), especially under conditions of high external H2PO4-, typical 

of solution culture. Thus, H2PO4- deficiency might be another of the particular 
features of variety Chevron related to its poor ability to regulate ion uptake under 

saline conditions. In the present experiment this might have been enhanced by the low 

levels of ion uptake and the lower availability of phosphate in the external solution 

after the addition of CaC12 (see section 3.3.2). 

Concentrations of ions in roots (experiment 1) were generally in good agreement with 

the results so far discussed. Cl- and Ca" increased regularly as their concentrations 
increased in the external solution, and the same happened with K' for CM-67, but 

not for Chevron. This, combined with its inability to restrict Cl- uptake, might be an 
indication about the failure of this variety at the highest CaCl2 treatments. Older 

leaves not only accumulate harmful ions (such as Cl-) but they also provide most of 

the K' for the younger leaves and growing tissues. If the rate of leaf death (due to 

an excess of Cl-) is too fast, the supply of K' to growing tissues will be at risk, 

especially if there is not an increase in K' uptake by the roots to compensate. That 

might have been another reason for the poor performance of Chevron. 

It may be worth mentioning that at the highest treatments of the first experiment the 

plants of CM-67 were still alive, in spite of the high Cl- concentrations found in their 
leaves, and in contrast with those of Chevron which were almost dead. This fact 

might indicate that CM-67 is more resistant to CaCl2 salinity than Chevron, in the 

same way that it is more tolerant to NaCl salinity, (and this is probably due to its 

better regulation of ion uptake). This statement, however, cannot be maintained 

without further examination: how long would these plants have survived with those 
levels of Cl- in their leaves? This aspect was not investigated, because such high 

concentrations of CaC12are not usually found under natural conditions. The only safe 
conclusion to be drawn from the present data is that CaCl2 salinity decreases growth 
depending on the environmental conditions and genotype (as happens with NaCl), and 
that concentrations as low as 30 to 45 Mol m-3 may already affect some varieties. 
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3.4. COMPARISON OF SODIUM AND CALCIUM TOXICITEES 

3.4.1. OBJECTIVES: 

The decrease in growth observed in plants under salinity is usually attributed to a 

combination of osmotic effects and toxic effects. The latter could be due to either 

Na' or C1-. From the results of the experiments with CaC12 alone (section 3.3), 

where high concentrations of Ca" in leaves were found, we may speculate on a toxic 

effect of C2' itself. In the present experiments, 3 types of salt (NaCl, CaC12, and 

a mixture of both) were used in order to compare the relative toxicity of Nal and 

Ca 2+ 
. 

Since Na' is a monovalent cation and Caý' is a divalent one, it is impossible to have 

the same concentrations of Na', Ca" and Cl- at any one time for the different salts, 
2- 

and this complicates the comparison. Sodium and calcium salts of other anions(S04 , 
C03'-, N03-) could be included in the experiment as a reference, but then a new 

factor (the toxicity of the anion) would need to be considered. Many Na' salts 

(Na2C03, Na2SO4) are more toxic than NaCl, while many Ca" salts (CaC03, CaSO4) 

are highly insoluble. Nitrate cannot be used as the anion either, since it may have a 

beneficial effect (nitrogen is a macronutrient). Thus, only Cl- salts were used in this 

experiment. 

The two salts (NaCI and CaCl2) can be compared at either the same osmotic 

pressure, the same electrical conductivity, or the same concentration of Cl-. This last 

criterion was adopted in the present experiment. The comparison between the effects 

of Nal and Ca2' would be done by contrasting plant growth at similar levels of Cl- 

in the leaves. The hypothesis was that, if either of the two cations was more toxic 

than the other, a different degree of growth reduction would be observed at similar 
levels of Cl- in leaves. By plotting growth against internal Cl- concentrations, any 
differences in the toxicity of the cations would be detected by different response 
lines. A higher degree of growth inhibition could be interpreted as a greater toxicity 

of the particular cation. 
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A first experiment did not give enough evidence to decide which was the most toxic 

ion. Thus, a second one was set up in order to obtain more precise information, 

particularly at low Cl- concentrations. 

3.4.2. MATERIALS AND METHODS: 

Experiment 1. 

The first experiment was carried out in a greenhouse in the University of Wales, 

Bangor (Memorial Building) during September and October 1991. Conditions in the 

greenhouse were the same as described in previous experiments (e. g. section 3.2.2). 

Three types of salt were used: CaCl2, NaCl (with 1/20 CaC12) and a mixture (2: 1 

molar) of NaCl and CaCl2. Each salt was applied at four Cl- concentrations: 50,100, 

150 and 200 mol m-3. Only one variety (CM-67) was used, with 8 plants per 

treatment. 

After being soaked overnight in running tap water, seeds of CM-67 were sown 
(10.09.91) in plastic plug trays on top of 9 dmI tubs containing Phostrogen and 

micronutrients, as in previous experiments. A week later, stress was begun by adding 
50 mol ml Cl- a day (corresponding to 25 mol m-' CaCl2,45 mol m-' NaCl, and the 

equivalent for the 2: 1 mixture), until the highest concentrations were reached (4 

days). All solutions were replaced at weekly intervals. The electrical conductivities 

and osmotic pressures of the different treatments are shown in Table 3.4.1. 

Table 3.4.1. Electrical conductivities (dS m') and osmotic pressures (mOsmol kg-') 
of the 12 treatments (4 for each salt) in the first Na' vs Ca? ' experiment. 

Cl- ext. Electrical Conductivity Osmotic Pressure 
(Mol M-1) CaCl2 NaCl (Na+Ca) CaCl2 NaCl (Na+Ca) 

50 5.5 5.9 5.7 64 89 78 
100 9.3 10.1 9.7 128 181 157 
150 13.5 14.3 13.9 191 270 235 
200 17.5 18.4 18.0 255 360 314 
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Plants were harvested when they were five weeks old and had been growing for 25 

days in stress. Shoot fresh and dry weights were recorded, and leaves number 3 (old) 

and 5 (youngest expanded) were sampled for sap extraction. Dimensions of leaf 

number 4 were measured to estimate leaf area; this was calculated as the product of 

the length of the leaf blade by its width at half length, multiplied by a coefficient 
(0.85) that had been previously calculated for the same variety. 

In the extracted sap, Cl-, Na' and K' were analysed by HPLC (Dionex 2000i) and 
Ce' by atomic absorption spectrophotometry (SP2900 Pye Unicam), as described 

earlier (see section 2.2.2). 

As in previous experiments, a 2-way analysis of variance (type of salt and level of 

salinity) was done, using individual values of 8 plants per treatment (since the 

treatments themselves were not replicated). The main interest, however, was in the 

comparison of the different salts at similar levels of internal (leaf) Cl-. This was done 

by plotting growth (and other traits) against Cl- concentrations in leaves. Means of 
8 plants per treatment, rather than individual values, were used to make the graphs 

more intelligible. All statistical analysis were performed using the Genstat-5 package. 

Experiment 2. 

This experiment was conducted in a greenhouse in the University of Wales, Bangor 

(Pen-y-Fridd Field Station) in January - February 1993. The conditions in the 

greenhouse were similar to those described in previous experiments (e. g. section 
2.2.2). Only 2 types of salts were used this time: CaCl2 and NaCI (with 1/20 CaC12); 

(the mixture of the two salts used in the previous experiment was omitted, because 

it did not add any further information). Eight treatments were applied, corresponding 
to four levels of CaC12 (10,25,50, and 100 mol rný CaC12) and four levels of NaCI 

(25,50,100 and 200 mol m-1 NaCl, all with 1/20 CaC12). The same variety as before 

(CM-67) was used, in. 3 replicated tubs per treatment with 8 plants each. 

Imbibed seeds were sown (21.01.93) in compost (John Innes No 1) in plastic plug 
trays (Plantpak P84) and later transferred to 9 drný tubs containing Phostrogen and 
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micronutrients. A week after sowing, stress was begun by applying 50 Mol M-3 Cl- 

(or less, if required) per day to each tub (up to 4 days). All solutions were replaced 

weekly. The ECs and OPs of the different treatments are shown in Table 3.4.2. 

Table 3.4.2. Electrical conductivities (dS m-1) and osmotic pressures (mOsmol kg-1) 
of the 8 treatments (4 for each salt) in the second Nal vs Ca" experiment. 

Cl- ext. Electrical Conductivity Osmotic Potential 
(mol m-') CaCl2 NaCl CaC12 NaCl 

20/25* 2.9 3.3 26 45 
50 5.8 6.0 64 90 

100 10.1 10.5 128 181 
200 18.0 19.0 255 362 

(*) 20 mol m-1 for CaCl2,25 mol m' for NaCl 

Plants were harvested after having been under stress for 25 days, when they were 5 

weeks old. Shoot fresh and dry weights were recorded, and the second youngest leaf 

was measured (length and width at half length) for leaf area estimation. Having seen 

(in all previous experiments) that the youngest leaf is very well protected from 

"toxic" ions, especially in this variety, it was decided to consider an older leaf in the 

hope of finding larger differences between types of salt. Thus, the second youngest 

leaf (the same where the area had been measured) was sampled for sap analysis. On 

the extracted sap, major ions (Cl-, Na', K', Ca", Mg") were analysed by HPLC 

(Dionex 2000i). (Other anions (N03-, H2POi, S04'-)were not properly separated by 

the chromatographic column, which was later replaced. ) 

A 2-way analysis of variance was applied to all traits, using the means of 8 plants for 

each tub. The Anova, however, can only be applied to the external Cl- 

concentrations. To study the response to internal Cl- levels, regression analysis (linear 

regression) was used; this was based on the 3 replicates of each treatment. The 

comparison between regression lines was made following the method described in 

Snedecor & Cochran (1989; pp: 390-393). 
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3.4.3. RESULTS: 

Experiment 1. 

3.4.3.1. Ion concentrations in leaves (Table 3.4.3): 

With increasing external Cl- concentration, the amounts of this ion found in leaves 

(either young or old) also increased; (Table 3.4.3a). Although the plants growing in 

NaCl tended to have higher Cl- concentrations (except at the lowest treatment), no 

significant overall differences (at the 5% level) were detected between types of salt. 

Chloride concentrations were always higher in older leaves (overall mean 270 mol 

in-') than in younger ones (mean 183 Mol In-3) . Differences between young and old 

leaves (measured as the ratio of concentrations: YL/OQ were similar for all salt 

types. 

Concentrations of K' did not change very much with increasing external Cl-, but 

there were differences in K' levels between the different salts (Table 3.4.3b). Thus, 

plants growing in NaCl had lower concentrations of K', in both young and old 

leaves, than those growing in CaC12; the plants in a mixture of the two salts had 

intermediate levels. The reduced uptake of K' in presence of Na' due to competition 
has already been seen in previous experiments (e. g. in section 2.2.3). Partitioning of 

K' between young and old leaves also varied depending on the type of salt. Plants 

in CaC12 had similar K' concentrations in young and old leaves, while plants in NaCl 

maintained higher levels of K' in young leaves (overall mean 153 mol nfl) than in 

old leaves (mean 88 Mol m-3). Plants growing in the mixture of salts had an 
intermediate behaviour. 

Differences in Na' and Ca" concentrations between different salts were as expected: 
high Cal' and low Na' levels were found in the CaC12-alone treatments, and the 

opposite was true for the NaCl (+1/20 CaC12) treatments; the plants in the mixture 

of salts had intermediate values for the 2 ions; (Table 3.4.3c, d). In almost all cases 

the levels of Na' and Ca" in leaves tended to increase as their concentration in the 

external solution increased. The two ions accumulated preferentially in older leaves. 

However, in those cases where high amounts of these ions were entering the shoot, 
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(e. g. Na' in the NaCl treatments), a larger proportion of them accumulated in the 

younger leaves, (as measured by the ratio of concentrations YL: OL). 

Table 3.4.3. Chloride (a), potassium (b), sodium (c) and calcium (d) concentrations 
(mol m-1 sap) in young and old leaves of plants growing at different levels of CaC12, 
NaCI or a 2: 1 mixture of both ("Na+Ca"); (means of up to 8 plants). 

CI- ext. YOUNG LEAVES OLD LEAVES 
(Mol M-') CaC12 NaCI (Na+Ca) CaC12 NaCI (Na+Ca) 

a) Chloride: 

50 174 142 151 214 228 226 
100 150 165 148 240 236 224 
150 165 212 182 269 343 285 
200 234 278 191 317 350 305 

------------------ 
LSR* 

------------ 
49 

---------- 
60 

------------------ 
33 

-------------- 
32 

---------- 
87 

---------------- 
73 

b) Potassium: 

50 219 145 193 204 92 180 
100 189 143 177 177 74 141 
150 191 147 163 183 82 119 
200 195 178 182 180 105 132 

------------------ 
LSR* 

------------ 
17 

----------- 
30 

----------------- 
30 

-------------- 
18 

----------- 
30 

--------------- 
21 

c: Sodium: 

50 < 10) 101 32 <1 225 81 
100 <1 140 41 <1 253 103 
150 <1 146 63 <1 304 128 
200 <1 154 58 <1 278 142 

------------------ 
LSR* 

------------ 
<1 

----------- 
47 

----------------- 
17 

-------------- 
<1 

----------- 
59 

--------------- 
29 

d: Calcium: 

50 15 6 11 40 10 24 
100 17 6 11 58 10 25 
150 24 5 17 67 11 41 
200 51 5 19 87 9 52 

------------------ 
LSR* 

------------ 
17 

----------- 
2 

----------------- 
9 

-------------- 
13 

----------- 
3 

--------------- 
25 

<1= not detected 
Least Significant Range, a=0.05 (Tukey's test) 
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It is interesting to notice the effect of high Ca" added to NaCl: for a similar external 

Na' concentration, the amounts of Na' found in leaves (young and old) were much 

less when Ca" was present at high concentrations ("Na+Ca" treatments) than when 

they were kept to a minimum ("NaCl" treatments, which included 1/20 CaC12); 

(Figure 3.4.1). This effect was already observed when comparing the results of the 

"Osmotic adjustment" experiments (section 2.3), where a 2: 1 mixture of NaCl to 

CaC12 was used, with those from the "Comparison of varieties" experiment (section 

2.2), with only a minimum (1/20) CaC12 added to NaCl. 

3.4.3.2. Plant growth (Table 3.4.4): 

Shoot dry weight decreased with increasing external Cl- concentration. Overall, the 

plants growing in CaC12 had the lowest weights, and those growing in the mixture of 

salts had the largest weights, although this pattern did not hold for all levels of Cl- 

concentrations. Leaf area also decreased with increasing salinity, although this time 

the plants growing in CaC12 tended to have the largest leaves, (except in the lowest 

Cl- treatment). This apparent discrepancy in the data (plants with biggest leaves had 

the smallest dry weights) can be explained because of the generally higher water 

contents of the plants growing in CaC12- 

Table 3.4.4. Shoot dry weight (mg), area of leaf 4 (crn2), and shoot fresh weight to 
dry weight ratios (FW: DW) of plants growing at different concentrations of CaC12, 
NaCI or a 2: 1 mixture of both ("Na+Ca"); (means of up to 8 plants). 

Cl- ext. DRY WEIGHT. LEAF -4 AREA FW: DW RATIO 
(mol m) CaC'2 NaCl (Na+Ca) CaC12 NaCl (Na+Ca) CaC12 NaCl (Na+Ca) 

50 645 812 898 29.1 30.3 30.1 9.3 9.0 8.7 
100 497 594 565 26.3 25.0 23.7 8.1 7.5 7.6 
150 415 357 420 24.4 18.0 19.8 7.1 6.1 6.2 
200 296 284 352 17.5 15.2 16.0 5.6 6.0 5.6 

LSR* 147 156 207 6.4 8.2 6.5 0.6 0.8 1.1 

* Least Significant Range, cc=0.05 (Tukey's test) 
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Figure 3.4.1. Sodium concentrations in young (a) and old (b) leaves of plants 
growing at several levels of salinity and different Na: Ca ratios. 
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The growth responses of the plants as a function of the Cl- concentrations in their 

youngest leaf (leaf 5) are presented in Figures 3.4.2 and 3.4.3. Similar graphs were 

obtained when dry weight and leaf area were plotted against Cl- concentrations in leaf 

3 (data not shown). From these figures, no different responses seem to exist for the 

different types of salt. Dry weights of plants were also plotted against some 

characteristics of the external solution, such as Cl- concentration (Figure 3.4.4), 

osmotic pressure (Figure 3.4.5) and electrical conductivity (Figure 3.4.6). These 

figures illustrate the different responses that may be obtained depending on what basis 

the comparison is made. 

Experiment 2 

3.4.3.3. Ion concentrations in leaves (Table 3.4.5): 

With increasing external levels of Cl-, the concentrations of this ion in the second 

youngest leaf also tended to increase, particularly at the highest salinities. The rate 

of increase was not different for the 2 types of salt (regressions not significantly 
different at the 5% level; data not shown). 

As in the previous experiment, K' concentrations of plants in NaCI were lower than 

those in CaC12, due to the reduced K' absorption in the presence of high Na' 

concentrations. 

Differences between types of salt were also present for Na' and Ce' levels, as 

expected. Sodium concentrations increased when external NaCl levels were raised 

from 25 to 50 mol m-3, but remained more or less constant above that. Calcium 

concentrations tended to increase with increasing external CaCl2, especially above 

100 Mol m-3. 

Magnesium concentrations were similar for the 2 types of salt, and did not 

significantly change (5% level) with different levels of salinity (data not shown). 
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Figure 3.4.2. Dry weight of plants growing with different types of salt in relation to 
the concentrations of Cl- in their youngest leaf; (Na' vs Ca2l, experiment 1). 
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Figure 3.4.3. Area of leaf number 4 of plants growing in different types of salt, in 
relation to the concentrations of Cl- in their youngest leaf; (Na' vs Ce', experiment 
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Figure 3.4.4. Dry weight of plants growing in different salts, in relation to the 
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1- 1000- --- 11 N4CI 

vv NaCI + CaC12 
CL 

C" 
800- 

E 
600- 

400- 
>. Az 

v 

-0-- V, 

200- 
0 
0 

0 
0 100 200 300 400 

O. P. External solution (mOsmol Kg-1) 

caclz 
NaC1 

v NaC1 + CaC12 

Figure 3.4.5. Dry weight of plants growing in different salts, in relation to the 
osmotic pressure (OP) of their external solutions; (Na' vs Ca", experiment 1). 
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Table 3.4.5. Ion (Cl-, K', Na', Ce') concentrations (mol m-3 sap) in the second 
youngest leaf of plants growing at different levels of either CaCl2 or NaCl; (means 
of up to 24 plants). 

Cl- ext. CHLORIDE 
(mol m) CaCl2 NaCl 

20/25(') 156 158 
50 153 171 
100 180 173 
200 198 216 

POTASSIUM SODIUM CALCIUM 
CaCl2 NaCl CaCl2 NaCl CaCl2 NaCl 

264 210 4.1 88 7.0 3.6 
274 190 3.2 168 6.3 4.0 
300 202 3.6 195 10.9 5.8 
278 243 2.3 183 29.7 5.8 

LSR* 38 30 39 46 1.5 63 12.4 4.7 

20 mol m-' for CaCl2,25 Mol rn-3 for NaCl. 
Least Significant Range, cc=0.05 (Tukey's test) 

3.4.3.4. Plant growth (Table 3.4.6): 

Shoot dry weight and area of the second youngest leaf both decreased with increasing 

external Cl- concentrations for the 2 types of salt. They also decreased with 
increasing amounts of Cl- in the second youngest leaf, but the study of the regressions 
(dry weight and leaf area vs internal Cl-) did not find significant differences (5 % 

level) between the 2 salts (Figures 3.4.7 and 3.4.8). 

When both dry weights and leaf areas were compared at similar levels of either Na' 

or Ca2+ in the external solution, (instead of similar Cl- concentrations), CaC12 tended 

to give smaller plants than NaCl, particularly at the highest treatments; (Figures 3.4.9 

and 3.4.10). This might suggest a higher toxicity of CaCl2, compared to NaCl. 

However, it might just be a result of an increased Cl- uptake with CaC12. If Cl- 

concentrations in leaves are compared at corresponding levels of Na+ and Ca 2+ in the 

external solution, they also tend to be higher for CaC12, especially at the highest 

treatments (see Table 3.4.5). 

The water contents (FW: DW ratios) of the plants decreased with increasing external 
Cl- concentrations, but they were similar for the two types of salt at each treatment 
level. 
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Figure 3.4.7. Dry weight of plants growing with different types of salt, in relation 
to the concentrations of Cl- in their second youngest leaf; (Na' vs Ca2', experiment 
2). 
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Figure 3.4.8. Area of the second youngest leaf of plants growing in different types 
of salt, in relation to the concentrations of Cl- in the same leaf; (Na' vs C2', 
experiment 2). 



117 

1000 

800- 

........... 
.................. 

600- 

400- 

0 CaC12 
...... * NaCl 

0 
0 25 50 75 100 

Na+ or Ca 2+ in external solution (Mol M-3) 

Figure 3.4.9. Dry weight of plants growing in different types of salt, in relation to 
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C2', experiment 2). 
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(CaCl2 salt); (Nal vs Ca", experiment 2). 
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Table 3.4.6. Shoot dry weight (mg) and area of second youngest expanded leaf (cm') 
of plants growing at different levels of either CaCl2 or NaCl; (means of 24 plants). 

Cl- ext. DRY WEIGHT LEAF AREA FW: DW 
(Mol nf3) CaC12 NaCl CaCl2 NaCl CaC12 NaCl 

20/25(l) 737 696 33.4 31.6 11.87 11.33 
50 657 692 28.9 28.6 10.52 10.25 
100 594 632 24.6 21.0 9.04 8.76 
200 514 428 15.4 11.7 7.01 7.29 

------------- 
LSR* 

-------------- 
148 

-------------- 
148 

--------------- 
5.7 

--------------- 
6.2 

-------------- 
1.32 

---------- 
1.41 

20 mol rn' for CaCl2,25 Mol ni-3 for NaCl 
Least Significant Range, ct=0.05 (Tukey's test) 

3.4.4. DISCUSSION: 

The objective of these two experiments was to compare the growth of plants under 

different types of salinity (NaCl and CaC12) at similar levels of Cl- in their leaves, 

in order to establish the relative toxicity of Na' and Ce' ions. This was done in 

Figures 3.4.2 and 3.4.3 (experiment 1) and 3.4.7 and 3.4.8 (experiment 2). If one 

of the two ions had been more toxic than the other, two different response curves 

would have been expected in those figures. For instance, had Na' been more toxic 

than Ca", the response line for the NaCl treatments would have been expected to be 

below and/or steeper than that of the CaCl2 treatments. Reciprocally, higher values 

of dry weight or leaf area for NaCl than for CaCl2, at similar levels of Cl-, (response 

line of NaCl above and less steep than that of CaC'2)would have indicated a greater 

toxicity of Ce'. However, no different responses for the different types of salt were 

seen in the above figures. 

In fact, no significant differences were found in growth (dry weight and leaf area) 

of plants in different salts, no matter on which basis this was compared: internal Cl- 

concentrations, or properties of the external solution (Cl-, OP, EQ. That is, both 

salts (and their mixture) seem to have similar effects on the growth of plants. A more 
detailed study of the data might throw some light on the reason for these results. The 

following discussion will concentrate only on the measurements of dry weight, and 
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particularly those from experiment 1, since the results for leaf area were influenced 

by the water content of the leaves (which changed for the different salts), and are 

more difficult to interpret. 

At the 2 lowest treatments (50 and 100 Mol m-3 external Cl) the amounts of Cl- in 

the youngest leaf were quite similar for the 3 types of salt, and the levels of the other 
ions (Na' and Ca 2+) were generally too low to suspect any toxic effect. Only in 

NaCl-treated plants were Na+ concentrations high enough (above 100 mol no) to be 

potentially dangerous if not properly compartmented. (Although it is not clear what 
levels of Na' are actually toxic to the cytoplasm and organelles; values between 100 

and 140 mol M-3 Na+ have been found in salinity (Cheeseman, 1988; Munns, 1993)). 

Since Cl- was the ion which was present at the highest concentrations in all cases, it 

might well be that this (Cl-) is the most toxic ion. 

Chloride alone, though, is not the only factor affecting growth. Chloride 

concentrations in the youngest leaves of all plants at 100 mol rw 3 external Cl- were 

quite similar to those of plants in the lower (50 mol ml Cl-) treatment. In spite of 

this, dry weights were reduced between 23 % (CaCl2 treatments) and 37 % (mixture 

of salts). Again, concentrations of other ions (Nal and Ce') were in general too low 

to be toxic, with perhaps the exception of Na' in NaCl-treated plants. Thus, some 

other factor (external osmotic stress sensed by the roots? ) must be affecting growth 

at these relatively low levels of salinity. 

At the two highest external treatments (150 and 200 mol in-' Cl-) the situation was 
different: there was large variability in the Cl- concentrations in the youngest leaf, 

but not many differences in dry weight of the plants. Sodium concentrations in NaCl- 

treated plants were again high enough (; --t450 mol irr') to have some toxic effect, 

although they were not significantly higher than in the preceding treatment. The 

CaC12-treated plants had very low dry weights at the highest treatment (200 mol in-' 

external Cl-j, which coincided with a large increase in the concentrations of both Cl- 

and Ce' in relation to the previous treatment. It is, therefore, difficult to suggest 

which one of these ions was most responsible for that decrease in dry weight, since 

some kind of toxic effect of CW' at those levels (> 50 mol m-1 Ce') cannot be ruled 
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out. Finally, plants growing in the 2: 1 mixture of NaCl and CaC12 had the lowest Cl- 

concentrations in the two highest treatments, and their Na' and Ca2' concentrations 

were too low to be toxic. These plants had the largest weights of all (although not 

significantly higher), and thus this mixture was the least toxic salt. 

In relation to this, it is interesting to remark the different levels of Cl- accumulation 

for the different salts (Table 3.4.3). This might be due to a different rate of Cl- 

uptake: according to Marschner (1986), at high external concentrations, ions with 

lower uptake rates (such as Ca") depress the uptake rate of Cl- considerably, due to 

limitations in charge compensation. This would explain the lowest Cl- levels found 

in leaves of plants growing in CaC12 in relation to those in NaCl; (although without 

measurements of rate of ion uptake this hypothesis cannot be proved). On the other 

hand, it might be that the high Cl- concentrations found in leaves are not the cause 

but the result of reduced growth; that is, growth would be reduced first, and as a 

consequence ions would accumulate in leaves. Without measurements of growth rate, 

this cannot be proved. However, if this had been the case (the concentrations of Cl- 

reflecting the reduction in growth), larger leaf areas might have been expected for 

the plants in the mixture of salts (see Table 3.4.4). 

It is interesting to notice the effect of Ca" in reducing Na' uptake (Figure 3.4.1). 

We have to remember that the NaCl treatments included a minimum level of Ce' 

(from 2.5 to 10 Mol M-3 , depending on the NaCl concentration) to prevent rapid Na+ 

uptake (see section 3.2). It is clear from the present data that this decrease in Na+ 

uptake is even larger in the presence of higher Ca? ' concentrations. Similar results 

were found for cotton growing in 100 mol m-1 NaCl and varying concentrations (up 

to 50-100 mol rw) of CaCl2 (Gorham, unpublished results). 

In experiment 2, an older leaf (second youngest one) was sampled for analysis. Also, 

lower external Cl- concentrations and more replicates were used. With these changes 
it was expected to detect more differences than in experiment 1. However, these 
differences were not found. There was still large variation in dry weight (or leaf 

area) for a similar level of leaf Cl-, though that variation did not consistently 

correspond to any one of the two salts studied. 



121 

It is interesting to notice that leaf Cl- concentrations in experiment 2 were not much 
different from those of corresponding treatments in experiment 1. Knowing the 

pattern of Cl- accumulation in older leaves, higher concentrations were expected in 

experiment 2 in comparison to the young leaves of experiment 1, but this was not so. 
The reason for this lower Cl- levels might be related to different environmental 

conditions (lower temperatures in the greenhouse during winter). Something similar 
happened with Ca 2+ concentrations in CaC12-treated plants: they were lower in older 

leaves of experiment 2 than in younger leaves of experiment 1. As a result, Ca2 ' 

concentrations never reached high (potentially toxic) levels in the second experiment 
(maximum 30 Mol m-3). This may have contributed to the lack of differences between 

the two salts. This was not the case, however, with Na+ concentrations in the NaCl- 

treated plants of experiment 2. In this case, concentrations of Na+ in older leaves 

were higher than in young leaves of corresponding treatments in experiment 1. This 

apparent discrepancy can be explained by the more efficient compartmentation at the 

organ level (young vs old leaves) of Na' compared to Cl- (see sections 2.2.3 and 

3.2.3). 

As a summary, it seems that at relatively low salinities (up to 100 mol in-' external 

Cl-, which corresponds to around 150 Mol m-3 leaf Cl-) the amounts of Na' and Ce' 

found in leaves are not high enough to be the main cause of reduced growth, and thus 

it is difficult to find differences in their relative toxicities. Any toxic effect that may 

exist (in addition to the osmotic stress) is probably caused by Cl-. At higher salinities 
(around 200 mol m-' external Cl-), concentrations of Nal and Call in leaves begin 

to be high enough to be potentially toxic, although neither of them seems to be 

clearly more damaging than the other. The effect of Cl- is probably the primary one, 

and this overshadows the lower toxicity of any other ion (at these concentrations). 



122 

CHAPTER FOUR 
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SALT TOLERANCE IN THE FIELD 

4.1. INTRODUCTION: THE TRIPLE LINE SOURCE SPRINKLER SYSTEM 

The Triple Line System (TLS) consists of 3 parallel sprinkler lines with a lateral 

spacing of 15 m (equal to the sprinkler's wetted radius); the in-line sprinkler spacing 

is 4.5 m (30 % of the wetted radius). The sprinkler heads are Wright, model MPL-75 

(Hydro-riego Wright, Barcelona, Spain). An equal quantity of water is applied 

through each sprinkler line: fresh water into the 2 outer lines, and a saline solution 

into the centre line. This results in a continuous gradient of salinity, with the same 

volume of water, between each pair of sprinkler lines. 

The saline solution is prepared in a 31001 tank by adding equal amounts of NaCl and 

hydrated CaC12 (CaC12-2H20) to the tank and mixing with well water until complete 

dissolution; this mixture has an EC of around 50-60 dS m-1. The solution in the tank 

is then injected, using a diesel pump, into the centre line, where it mixes with well 

water (EC around 2 dS m-'). By regulating the motor's revolutions and the outlet 

valve of the tank, the salinity of the water delivered by the central line can be 

adjusted as desired; it is usually set at around 19 dS m-. The mixture of NaCI and 
CaC12 salts is set at a ratio 1: 1 in weight (approximately 2: 1 molar ratio), in order 

to get an acceptable SAR (maximum 15 equivalents m7') and thus avoid an 

alkalinization effect on the soil (loss of structure and permeability) (Ayers & Westcot, 

1985). 

Figure 4.1.1 schematically shows the design of the TLS. 

Although the salinity gradient is continuous between each pair of sprinkler lines, for 

practical reasons this area is divided into ten individual plots of 1.4 rn wide; these 

plots will be referred to as "salinity treatments". The different varieties are then 

placed in rows at right angles to the sprinkler lines. 
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Figure 4.1.1. Schematic design of the Triple Line Sprinkler System. 
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Reference evapotranspiration (ET) is determined from the measurements taken in a 

Class-A evaporation pan located at an adjacent site, with daily values averaged over 

a 10 day period. Crop evapotranspiration (ET, ) is then calculated by applying a crop 

factor (KJ which depends primarily on the developmental stage of the crop. These 

measurements are used for scheduling the irrigations. In practice, 2 to 3 irrigations 

per week are given. 

The duration of each irrigation is usually limited to 30 min, because of the high 

application rate of the system, and to avoid flooding and runoff. Irrigation is started 

only when the wind speed is less than 2 rn s-' (usually in the early morning), to 

minimize the influence of wind on the uniformity of the water and salinity applied. 

Before and after each saline irrigation a supplemental 3 min irrigation is given using 

only fresh water, to reduce the risk of direct salt absorption through leaves. 

The volume and salinity of water received by the plots (salinity treatments) are 

monitored by rai n-gauges placed in the centre of each plot in 3 lines along the field; 

(previous research had shown that salinity and amount of water applied are fairly 

uniform along the sprinkler lines (Aragii6s et al., 1992)). After each irrigation, the 

volume of water collected in these rain-gauges is measured, and its EC determined. 

Soil salinity is measured periodically during the growing season with a portable 
Geonics EM-38 electromagnetic sensor (EMS) (Geonics Limited, Mississauga, 

Ontario), placing it horizontally in the middle of each plot, at alternate rows of 

varieties. Soil samples of plots of different salinities are taken on several occasions 

each season, and the EC of their water extracts (either saturation or 1: 5 soil: water) 

are used to calibrate the readings obtained by the EMS. 

The electromagnetic sensor method is based on the linear relationship that exists 
between the soil apparent EC (EC) and the change of intensity of an electromagnetic 

wave generated by a magnetic coil positioned on the soil; (for full details of the 

method see Rhoades & Corwin, 1981). The soil ECa is a function not only of the 

number of electrolytes in the soil solution but of several other factors, such as soil 

water content, soil temperature and some physico-chemical soil characteristics. 
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Nevertheless, for a given soil with a given water content and at a reference 

temperature, the EC,, may be considered to be only a function of the salinity of the 

soil solution (or a dilution of it, such as a saturated extract solution). It is important, 

therefore, always to make the EMS measurements at the same water content (in 

practice, one day after irrigation, when the soil is approximately at field capacity), 

and to record the soil temperature. 

To obtain the EC of the saturated extract (the usual standard measure of soil salinity) 
from the EMS readings a calibration is needed. The soil samples for this calibration 

are usually taken at depth intervals of 25 cm down to 1 rn (4 samples); this is the 

depth that the electromagnetic wave reaches when the EMS is placed horizontally on 

the soil, and corresponds with the zone where most of the roots are found. The EC 

of the saturation extract (and/or that of a 1: 5 soil/water extract) is determined for 

these samples, and a weighted mean calculated to compare with the EMS readings 

obtained in the same place where the samples were taken. The weighted mean takes 

into account the contributions of the different depths to the EMS reading, and was 

established by the manufacturers of the instrument. Aragfi6s and MillAn (1986) have 

translated that relationship into the following expression: 

EC,, = [36xEC(O-25) + 2lxEC(25-50) + llxEC(SO-75) + 8xEC(75-100)] / 76 

where ECse is the EC of the saturation extract, and the figures in brackets refer to 

depth intervals in cm. 

4.2.1991/92 FIELD (TLS) EXPERMENT 

4.2.1. OBJECTIVES: 

The main objective of the 1991/92 experiment was to study the accumulation of ions 

in different leaves during vegetative growth, and to relate these data to final yield. 
To do that, an extensive calendar of sampling was established, whidh covered the 

period from early tillering to near heading time. Similar leaves were sampled at two 

stages, first as young leaves, and later as old leaves; changes in ion concentrations 
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with leaf ageing could, in this way, be followed. The results obtained would also be 

useful in deciding the most appropriate growth stage for sampling in order to 

discriminate between varieties. 

4.2.2. MATERIALS AND METHODS: 

The experiments using the TLS were conducted at Zaragoza (Spain), in the central 

part of the Ebro River Basin (0'35W, 42'05'N), on land belonging to the 

Agronomic Research Service of the Arag6n Autonomous Government (SIA-DGA). 

The 0.5 ha field where the TLS is installed is a well-drained, levelled terrace, with 

slope less than 1 %; the soil has a silt-loam texture, and is described (J. M. Salamero, 

personal communication) as a mixed, mesic, Typic Torrifluvent, according to the 

U. S. Soil Survey System (USDA, 1975). 

The field had been used for other salinity experiments with the TLS in the previous 
3 years; all these experiments were done with barley and, to a much smaller extent, 

wheat. After each season's harvest, a few irrigations with fresh water were given to 

leach the salts accumulated during the previous year; (natural rainfall in summer is 

too low to rely on it for this leaching process). It was found, however, that by 

starting each new season with very low levels of salts in the soil, the salinity gradient 

took too long to develop in the profile, and the plants were growing with less stress 

than desired. This resulted in those varieties with rapid growth and shorter life cycles 

escaping from the stress; that is, their roots were growing in areas of the soil that the 

salts had not yet reached. 

To solve this problem it was decided, in summer 1991, to cover half of the field with 

plastic film after the harvest, until the land was prepared for the following crop. This 

would prevent the salts being leached (either by fresh water irrigation or by rainfall) 
in that half of the field; the other half was treated as usual, for comparison. Thus, 

when this experiment (1991/92) was begun, part of the field already had some salts 

accumulated in the soil. Although no detailed measurements of soil salinity at the 

time of sowing are available, readings with -the EMS in a few plots confirmed that 

salinity was generally higher in the unleached area (R. Isla, personal communication). 
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To compensate for this high initial salinity, the few first irrigations were given with 
fresh water, in order to help with seedling emergence. Barley is more sensitive to 

salinity at these early stages than at the adult stage (Maas & Hoffman, 1977), and 

tolerance at germination and emergence does not usually correlate well with tolerance 

at later stages (Royo et al., 1991). An irregular seedling establishment may influence 

the later growth of the plants and interfere with the varieties' response to salinity, 

making it more difficult to interpret the results. It is thus important to get a uniform 

crop establishment. (It might be argued that this procedure of helping plant 

emergence by means of fresh water irrigation does not seem very realistic. In 

practice, though, farmers will only sow their crops in a saline soil after some rain has 

fallen and diluted the salts, so that they can expect a reasonably good germination. 
Thus, the approach adopted here is not that far from reality. ) 

Seed bed preparation was done following usual cultivation practices (ploughed and 

cultivated). Fertilizer was provided in a split application: 200 kg ha-I of 15-15-15 

complex to the seed bed, and 100 kg ha-' NH4NO3at beginning of tillering. This gave 

a total of 65 kg of N, 12.9 kg of P, and 24.9 kg of K per hectare. Pests and diseases 

were kept under control using agrochemicals as appropriate. 

On 21.11.91, three varieties of barley (Albacete, CM-67 and Chevron) were sown 
by plot-drill along the salinity gradient of the TLS in 10 plots, and 2 replicates for 

each variety; (the number of replicates was limited by the availability of space in the 

TLS). Each plot consisted of 6 rows 1.20 in long with 65 seeds/row. Row spacing 

was 28 cm, resulting in a plot 1.4 in wide. Sowing depth was 2-4 cm. Most of the 

plots belonging to this experiment were sown in the part of the field that had been 

leached, with the rest of the field where the TLS is installed being used for other 

experiments. One replicate of two varieties (CM-67 and Chevron, replicate-I), 
however, fell in the higher salinity area; this is reflected in the measurements of soil 

salinity (see Results section). 

In Figure 4.2.1 a sketch map of the field is presented. It can be seen from there that 

the distribution of varieties within block was not randomized, but systematic. In one 

of the replicates (Rep-I), the "block" was divided in 3 sub-plots ("bands") along the 
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gradient of salinity, and each variety occupied one of these bands. In the other 

replicate (Rep-II), the 3 varieties were systematically arranged within the 3 sub-plots, 

with each cultivar covering all 10 levels of salinity. 

The 3 varieties were chosen after previous experiments in Bangor had revealed large 

differences in ion accumulation between CM-67 and Chevron (see section 2.2); the 

purpose of this experiment was to see if those differences corresponded with salt 

tolerance in the field. Albacete was included as a check; it is a Spanish drought- 

tolerant cultivar, and has been used in many other experiments in the TLS. 

Dates of each irrigation, together with amount of water applied and its range of 

salinity (measured on the line of rain-gauges closest to the plots), are given in 

Appendix 1. It is seen there that the first irrigation was done with fresh water, as 

already mentioned, to help get a uniform plant establishment. Later in the season, 

some more irrigations were also done with fresh water. This was brought about by 

the high salinity levels found in the soil (measured with the EMS) at the time. (The 

salinity applied with irrigation water had been similar, at the beginning of the season, 

to the levels used in previous years. However, because of the residual salinity from 

the previous season, soil salinity increased faster, at least in that part of the field 

where no leaching had been allowed. ) To lower these excessive levels of salinity, a 
few short irrigations with fresh water were given. Afterwards, the EC of the 
irrigation water was decreased slightly. A summary of water salinity across the 

treatments is also presented in Figure 4.2.2. 

As mentioned before, to minimize the risk of salt absorption through leaves, 3 

minutes of pre- and post-irrigations with fresh water are given. This is done by 

closing the valve at the exit of the tank which contains the saline mixture, and leaving 

the central sprinkler line connected only to the fresh water source. Thus, a normal 
irrigation would consist of: 3 min fresh water, 25-35 min saline+fresh water, and 
3 min fresh water. However, it was realized that at the end of this cycle, when the 

pump was switched off and the pipes were left to drain the residual water, some 
leaking occurred in the junctions between two pipes (probably due to the low pressure 

under these conditions, since no leakages were ever found while the system was 
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working at normal pressure). Because the leaked water is fresh water (which is the 

last applied through the central line), it results in a dilution of the soil salinity in the 

plots at the highest treatment. (Any leaks that may occur in the 2 outer lines would 

not affect soil salinity, since these lines always provide fresh water. ) The effects were 
first noticed as the plants in treatment 10 (highest) were more vigorous than those at 

treatment 9 (slightly lower); later it was confirmed by measurements of soil salinity. 
As a result of this irregularity it was decided not to include treatment 10 in the 

analysis. 

From the time of ear emergence until harvest, the whole field was covered with 

netting, installed at about 2 in above the ground, to protect the developing grains 
from birds. All plots were harvested at maturity with a plot harvester (Hege 125), 

on 02.07.92. The grain collected in each plot was weighed. This grain weight (g) per 

plot was used as the main measure of yield for all calculations, although it was later 

transformed to other units (g in-') for presentation purposes. In some cases, yield was 

also transformed to the more standard units of kg ha7', which may be more indicative 

of the actual yields achieved; (although it is considered that yields obtained in small, 

experimental plots tend to overestimate the real potential of the genotypes tested, 

because of the optimal conditions usually provided in these cases). No correction for 

moisture content of the grain was made; (in the Spanish weather, natural drying of 

cereals in the field does not pose any problem). 

- Sampling for sap extraction and ion analysis: 

Observations from previous years had shown that some of the varieties tested in the 

TLS develop at very different rates, because they have different origins and are 

adapted to different conditions. One extreme case is found when comparing the short- 
duration, fast-growing CM-67 with the long-duration, non-dwarf Chevron, whose 
heading times may differ by as much as 3 weeks. Salinity also affects development 

rate so that, for a given cultivar, the 10 treatments are not always at the same growth 

stage, and by heading time they may differ by more than a week. 

The result of this is that, at any one moment, the plants in the field are at different 

development stages. Thus, when sampling the different varieties and treatments, two 
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comparisons are possible: a) at the same time but different development stage; or b) 

at the same development stage but different time. In the first case the environmental 

conditions for all the plants until the moment of sampling are the same (days from 

sowing, number of irrigations, climate, etc), but it may not be possible to use the 

same leaf for sampling in all varieties. Selecting the youngest fully expanded leaf will 

result in later leaves being sampled in short duration varieties than in long-duration 

ones, particularly in the latest samplings, since differences increase with time. On the 

other hand, with the second method we can compare similar leaves (say leaf number 
4, or flag leaf) at similar age (recently expanded), but the environmental conditions 
between different sampling dates may have changed with increasing time (lower or 
higher temperatures, number of irrigations, etc). Still, it is practically impossible to 

sample everything on a single day (or even in a few days), and thus some differences 

in time will always exist. In the present experiment it was decided to follow the 

second method, and sample each plot when a given leaf was fully expanded. 

Each plot (combination of variety, treatment and replicate) was sampled 3 times 

between early growth and heading time, when leaves number 4,6 and flag were fully 

expanded. At each sampling date, one young leaf (the youngest fully expanded) and 

one old leaf (2-3 insertions below the youngest) of 7 plants in each plot were 

sampled; this corresponds to leaves number 4 and 2 (first sampling), 6 and 4 (second 

sampling), and flag leaf and 6 (third sampling). Sampled leaves were put into plastic 
bags and taken to the lab, where they were washed in distilled water (3 times x 10 

seconds), dried with tissue paper, put individually into Eppendorf tubes and frozen 

in a commercial freezer (-18'C). 

The time of day when any given plot was sampled varied depending on several 
factors (weather conditions, irrigation being applied, amount of work to do, etc). To 

check that these differences in the time of sampling did not affect the results 

obtained, soi-ne extra leaves (of 3 salinity treatments) where sampled and analyzed. 
No significant differences in ion concentrations were found for leaves sampled from 

early morning (9 am) until mid afternoon (4 pm) (the normal times when samples 

were taken). Also, several samples were usually taken in the morning, with some of 
them being left in plastic bags inside the fridge for a few hours before being prepared 
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for storage. No significant differences in ion concentrations were found, either, for 

samples kept in the refrigerator for up to 9 hours after collection (by which time all 

samples had always been processed). 

Since the measurements of soil salinity are taken in the middle of each plot, (and the 

rain-gauges for the measurement of water salinity are also placed in this way), it was 
decided to sample one of the central rows of plants for ion analysis. The third row 
from the left was taken, and plants at the appropriate stage of development were 

chosen at random. In addition to leaves for sap extraction and ion analysis, whole 

shoots were sampled, to study fresh and dry (oven-dried) weights, and leaf area. 
These data are not relevant to the present work, and are not presented. However, the 

row where the samples came from was left with almost no plants by the time the 3rd 

sampling was finished. The few remaining plants were cut, in order to keep sim ilar 

plots with 5 whole rows. This was later taken into account for the transformation of 

yield data per plot into yield per unit area. 

In a few cases during the second sampling it was not possible to take leaf number 6 

as the youngest recently expanded (because of accumulation of work on the same 
day), and leaf number 7 was sampled instead, when it had recently expanded. 
Consequently, in the third sampling leaf number 7 was also taken as the old leaf 

(instead of number 6). This did not really affect the comparisons between young 
leaves (second sampling), but it did affect comparisons of older leaves (third 

sampling). This is because youngest, fully expanded leaves are quite similar at that 

stage, no matter whether they are number 6 or number 7, while later in the season, 

when the flag leaf appears, leaves number 6 are rather older than number 7, and 
have been accumulating ions for a longer time. This effect was observed in the 

results, with concentrations in "old" leaves 7 being lower than equivalent "old" leaves 

6. Therefore, it was decided not to include in the regression analysis the values which 

came from leaves number 7 in the third sampling. This affected treatments 3 to 5 of 

varieties Albacete and Chevron. 

Details of dates of sampling are given in Appendix 2. It can be seen from there that 

some of the high salinity treatments were not sampled, particularly at the earlier 
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harvests. The plants at these higher treatments were badly affected by frost and very 
low temperatures experienced in mid February, when soil salinity was already quite 
high, and many of them died. (This was another reason for giving some fresh water 
irrigations at that time. ) These cold conditions affected especially plants of CM-67 

and Chevron in Rep-I, which had the highest soil salinities (because they were in the 

unleached area). With only a few plants left in some plots, and with no clear 

prospects of recovery, it was decided not to sample them. Some of these plots were 

excluded altogether from the rest of the experiment, due to the small number of 

plants that survived and their irregular growth. 

It has to be stressed that these plants did not die just because of excess salinity, but 

were killed by a combination of stresses, mainly chilling. Since these stresses 

probably interact, and because the different varieties may respond differently to them, 

the decision of not taking into account the most affected plots seemed justifiable. 

The frozen leaf samples were taken to Bangor for sap extraction and chemical 

analysis. The methodology for extracting the sap has been described in previous 

experiments. Na' and K' concentrations were determined either by flame emission 

spectrophotometry, (using a Pye Unicam SP90 spectrophotometer or a Jenway PFP7 

flame photometer), or by atomic absorption spectrophotometry (Pye Unicarn SP9). 

Cl- was determined using a Jenway PCLM3 chloride-meter. Because the samples 

came from individual leaves, not enough sap was always available for carrying out 

all the measurements (especially in leaves number 2 and flag leaves, due to their 

small size); determination of Ca 2+ 
, in particular, was not done for this reason. 

Statistical methods: 

To study the changes in the amounts of ions in leaves with increasing salinity, ion 

concentrations were plotted against soil salinity. By examination of these plots it 

appeared that the relationship between the two parameters was quite linear. Thus, the 
linear correlation (Pearson's coefficient) was calculated, and a linear regression line 

was fitted. This was done for each plot, (that is, each combination of sampling time, 
leaf, variety and replicate), using means of 7 plants per plot. The soil salinity 

considered was the mean EC of the soil saturation extract (estimated from the EM-38 
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measurements) up to the time when that particular plot was sampled (or to the nearest 
day to that when an EMS measurement was taken). In practice, means up to 2' of 
March were used for the first sampling, 121 of March for the second sampling, and 
28' of April for the last one. 

For formal reasons, the 2 replicates of each variety were first considered separately, 

and the slopes and intercepts of their regression lines were compared to see if there 

was any "block" effect. In general, this was not the case, and thus the 2 replicates 

were pooled and used to derive a single regression line for each variety; these were 

used to compare the response of the 3 varieties. 

For all these comparisons of regression lines, the method described in Snedecor and 
Cochran (1989; pp: 390-393) was followed. Slopes (change in ion concentration with 
increasing salinity) were tested first and, if they were not different, y-intercepts 
(equivalent to average concentrations) were then compared. (If the slopes are 

significantly different, the intercepts cannot be compared, since the test, an analysis 

of covariance, assumes that the slopes are parallel. ) Also, whenever a variety did not 
have a significant correlation (at the 5% level) its coefficients were not included in 

the comparison. In the case of the 3 varieties not having a significant correlation with 

salinity for a given ion in a given sampling, then their mean ion concentrations were 
directly compared, (since in that case the concentrations did not depend on the level 

of salinity). 

In addition to absolute ion concentrations, comparisons between leaves of different 

age were done by using the ratio of the concentrations of old to young leaves 

(OL/YL) for any given sampling time. To follow the changes with leaf ageing, the 
difference between the concentrations in a similar leaf at two consecutive sampling 
dates was calculated. Thus, the changes in leaf 4 were calculated as the difference 

between concentrations in older leaves at the second sampling, and younger leaves 

at the first sampling. Similarly, differences between older leaves at the third sampling 

and younger leaves at the second sampling would give an indication of the changes 
in ion concentrations in leaf 6 with time. 
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For the study of yield response to increasing salinity, yields were plotted against soil 

salinity for each variety. Again, this was first done for the 2 replications 
independently, and later pooling the 2 replicates of each variety. The soil salinity 

considered this time was the EC of the soil saturation extract averaged over the whole 

growing season. 

The plots of yield vs salinity showed relationships quite linear within the range of 

salinities studied. However, since it is known that yield responses to salinity are not 
linear, but decrease faster above a certain value (threshold), three different models 

were fitted to the yield data: a simple linear regression (without threshold); the 

threshold model of Maas and Hoffman (1977); and a sigmoidal curve defined by Y 

Ym / [1+(ECJEC50)PI (Van Genuchten, 1983); (see section 1.4.2 for a detailed 

description and a graphical representation of these models). This was done using the 

SALT computer program of Van Genuchten (1983). 

To decide which model gave the best fit, the coefficients of determination between 

observed and fitted values were calculated, and the residuals studied by plotting them 

against soil salinity. Once the best model was chosen, the varieties were contrasted 
by comparing the parameters that define them under such a model. This was done 

by means of pairwise comparisons using a t-test, since the SALT program provides 

standard errors for the estimates of the parameters. Although this method is not 

usually recommended (see, for example, Carmer & Walker, 1982), no alternative 

seemed to be available in the present case (multiple comparison procedures cannot 
be easily modified for use in the threshold or exponential models). Varieties were 

also compared by using their relative yields, expressed as a percentage of their yields 

without salinity. 

4.2.3. RESULTS: 

4.2.3.1. Soil and water salinity: 

The soil salinity, measured with the EMS and calibrated with saturated extracts of 

soil samples, is presented in Figure 4.2.3. The salinities of the 3 sampling dates for 
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each plot have been averaged, since they were very similar. In that figure, the higher 

salinity levels in one replicate of CM-67 and Chevron are clearly seen. The 

regression lines (soil salinity vs plot position) for these two cases were significantly 

higher (at the 5% level) than those for the other varieties and replicates. This was 

because these plots corresponded with a part of the field that had not been leached 

prior to this experiment. 

The total amount of irrigation water applied by the TLS and its mean salinity are 

presented in Figure 4.2.4. The decrease in salinity with distance from the central 

sprinkler line was linear (r'=0.998), particularly in the central treatments; it might 

be slightly less so at the 2 extremes. The total amount of water received by the 

different treatments was also fairly regular, although a tendency towards lower 

amounts applied with increased distance from the centre line can be detected. 

However, since the coefficient of variation for this trait was less than 5%, it was 

assumed that the differences between the 10 treatments were small and unlikely to 

affect growth and yield. 

Figure 4.2.5 shows the increase in soil salinity with continued saline irrigations. The 

effect of fresh water irrigations in late February is clearly noticed in the lower 

salinities found at the fourth EMS measurement (12' March). A later irrigation with 

fresh water (early May) probably prevented soil salinity from increasing too fast, but 

only effectively decreased it in the 2 lowest treatments. 

Salinity in the soil profile at 2 different dates in some plots (taken from the whole 

field) is presented in Figure 4.2.6. Continued saline irrigations increased soil salinity 

with time, although this was limited to the upper layers (down to 50 cm). In the 

treatments with lower salinities, salt distribution in the profile was quite uniform; in 

higher treatments, salinity decreased with depth. 

4.2.3.2. Ion concentrations in leaves: 

For each sampling date and leaf, the relationship between concentrations of ions 

(means of 7 plants) and soil salinity (measured on each plot and averaged over time) 
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was studied by means of linear regression. However, some very high ion 

concentrations were occasionally found at the highest treatments, which significantly 
influenced the values of the correlation and regression coefficients. On the other 
hand, some of these highest treatments were not sampled because plants had been 

killed by frost; thus, some varieties and replicates lacked data on leaf ion 

concentrations at the highest salinities. In these conditions, the inclusion of those 

extreme figures in some cases and not in others (simply because they were not 

available) might have resulted in larger apparent differences between varieties and 

replicates. For comparative purposes, it was decided to include, within each sampling 
time, only those observations which fell within a similar range of soil salinities for 

all the varieties. That is, the upper limit of the treatments included in the regressions 

was. determined by the highest common soil salinity. 

In general, no significant block effects were found (data not shown). Only in a few 

cases, most of them in variety CM-67, were the 2 replicates significantly different. 

This was attributed to the history of the field (see above). Although the regressions 

were calculated using the values of soil salinity for each plot (i. e. the data in 

Appendix 1), and not with a hypothetical "salinity level" (e. g. treatment number), the 
higher early salinity in Replicate-I might have differently affected the plants growing 

there; otherwise a similar response ftinction should have been obtained for the same 

variety. The following results are based on the regressions obtained after pooling the 
2 replicates of each variety. (Original data on ion concentrations is not presented 
here. ) 

a) Chloride (Table 4.2.1 a and Figure 4.2.7): 

In general, the correlations were positive (Cl- increased with increasing salinity), 

although in the 3rd sampling they were very low, and sometimes not significantly 
different from zero. In young leaves, the rate of leaf Cl- increase with salinity was 

similar for all varieties (slopes not significantly different), but CM-67 tended to have 

less Cl- (lower intercept) than Chevron and Albacete. In older leaves, the rate of Cl- 

increase was faster (steeper slope) in Albacete than in CM-67, Chevron usually being 
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Table 4.2.1. Linear correlation (r) and regression coefficients between Cl- (a), Na' 
(b) and K' (c) concentrations in leaves (mol m-1 sap) and soil salinity (EC saturation 
extract) for the 3 varieties in the TLS 1991/92 experiment. Within each leaf type 
(number), estimates of slopes and of intercepts with the same letter are not 
significantly different (p < 0.05). (Units: slope: mol m-' ion per dS rw' soil salinity; 
intercept: Mol m-3 ion. ) (Correlation: *- p<0.05; ** - p<0.01; *** - p<0.001. ) 

Variety YOUNG LEAVES OLD LEAVES 

Leaf r slope interc. Leaf r slope interc. 

a) Chlotide: 
Albacete 4 0.787*** 24.8 a 85.3 a 2.0.962*** 110.2 a -126.7 # 
Chevron 0.799** 21.7 a 81.6 a 0.920*** 72.3 b -10.1 a 
CM-67 0.806** 19.1 a 46.6 b 0.860*** 62.7 b -7.4 a 

Albacete 6/7 0.747** 26.7 a 101.9 a 4 0.787*** 65.1 a 66.7 a 
Chevron 0.708** 22.5 a 93.3 a 0.832*** 92.0 a -52.3 a 
CM-67 0.461 ns 10.5 + 82.7 + 0.649* 24.4 b 92.1 # 

Albacete flag 0.581* 8.0 a 33.0 a 6/7 -0.180 ns -3.9 + 432.8 + 
Chevron 0.560* 4.6 a 45.7 a 0.475 ns 13.3 + 251.4 + 
CM-67 0.714** 9.1 a 37.1 a 0.658** 20.0 186.1 

b) Sodium: 
Albacete 4 -0.794*** -9.0 a 118.8 a 2 0.085 ns 1.2 + 105.0 + 
Chevron 0.544 ns 6.1 + 92.0 + 0.667* 9.2 a 81.1 # 
CM-67 -0.775** -8.9 a 90.7 b -0.802** -12.8 b 149.6 # 

Albacete 6/7 -0.042 ns -0.6 + 101.1 + 4 -0.220 ns -5.9 + 153.0 + 
Chevron 0.810*** 22.7 14.5 0.829*** 28.3 b 34.3 # 
CM-67 -0.450 ns -3.0 + 51.9 + -0.853*** -10.4 a 122.8 # 

Albacete flag 0.402 ns 1.7 + 24.5 + 6/7 -0.382 ns -4.7 + 162.5 + 
Chevron 0.900*** 7.4 2.0 0.866*** 15.0 b 88.8 # 
CM-67 -0.113 ns -0.4 + 35.4 + -0.712** -12.2 a 170.7 # 

c) Potassium: 
Albacete 4 -0.358 ns -4.1 +199.8 + 2 0.132 ns 1.2 + 104.0 + 
Chevron -0.868*** -12.4 a 178.5 b -0.340 ns -2.7 + 82.4 + 
CM-67 -0.789** -10.7 a 235.9 a 0.505 ns 3.1 + 125.5 + 

Albacete 6/7 0.223 ns 4.3 +172.5 + 4 0.587* 14.5 a 61.8 b 
Chevron -0.826*** -12.8 207.9 0.538* 7.1 a 47.4 a 
CM-67 0.431 ns 7.5 +174.5 + 0.246 ns 3.9 + 149.1 + 

Albacete flag -0.223 ns -3.6 +261.8 + 6/7 0.056 ns 0.6 + 177.6 + 
Chevron -0.485 ns -8.1 +265.6 + -0.039 ns -0.4 + 120.0 + 
CM-67 0.125 ns 1.5 +217.9 + 0.651** 10.2 142.8 

+- coefficients not compared: correlation not significant., 
#- no comparison possible (test for intercepts assumes that the slopes are parallel). 
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intermediate. In the 3rd sampling there were hardly any differences between varieties 
(slopes or intercepts) in the few cases when the regressions were significant. 

Comparisons between young and old leaves were made by means of ratios of their 

concentrations (old over young). For a given sampling time, Cl- concentrations in 

older leaves were usually much higher than in younger leaves. These differences 

were least pronounced in variety CM-67, particularly at the second sampling. The 

highest correlations of these new values with soil salinity were found for the first 

sampling (data not shown). However, no better information was obtained with these 

ratios, in terms of discrimination between varieties; this was as a result of the large 

variability found between treatments, and the inconsistency of results between 

sampling dates (data not shown). 

Increased Cl- concentrations with leaf age can also be seen if the same leaf is 

compared across samplings, e. g. leaf 4 in the first sampling (young) and at the 

second (old). The increase of leaf Cl- with time (old minus young for the same leaf) 

was also plotted against soil salinity, but correlations were very low (leaf 4) or not 

significant at all (leaf 6) (data not shown). No overall differences (mean of all 
treatments) between varieties were found either; again, this was due to the large 

variability and inconsistency of results between the 2 leaves (data not shown). 

b) Sodium (Table 4.2. lb and Figure 4.2.8): 

Chevron was the only variety in which the correlations were positive, that is, where 
Na' concentrations in leaves increased with increasing salinity. For Albacete and 
CM-67, Na' in leaves either did not change (correlations not significantly different 

from zero) or it decreased with salinity (negative correlations). In the latter case, the 

rate of change (slope) was similar for both varieties. However, amounts of Na+ in 

leaves of Albacete were usually higher (larger intercepts) than in CM-67. Chevron 

had the highest Na+ concentrations at almost all salinities. The young leaf in the 3rd 

sampling (flag leaf) had very low levels of Na', and again did not reveal differences 

between varieties. 
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For a given sampling date, differences between young and old leaves were not very 
large, except in the last sampling (due to low Nal concentrations in the flag leaf). 

This was particularly true for Albacete and Chevron, while CM-67 tended to partition 
Na' better towards older leaves, protecting the younger ones. This can be measured 

as the ratio of concentrations between old and young leaves, which was usually 
higher in CM-67 than in the other cultivars (data not shown). Interestingly, in CM-67 

this ratio tended to decrease with increasing salinity, suggesting that its ability to 

partition Na' between leaves is less at higher salinities. However, this might have 

been a reflection of decreased total (young plus old) Na' concentrations with salinity 
(they tended to decrease in older leaves but were kept more or less constant in the 

younger ones). No other clear tendencies or differences between varieties were found 

when studying the ratios in concentrations between leaves (data not shown). 

The changes in Na' concentrations with time in a given leaf (number 4, or number 
6) can be seen if comparisons are made across sampling dates. Quantitatively, this 
is the difference between concentrations in the same leaf with time. These values 

were positive (increased concentrations with time) in almost all occasions, but this 
increase was not proportional to the level of salinity (correlations not significantly 
different from zero, data not shown). Because of the large size of the standard errors, 

no overall differences between varieties (mean over all treatments) were found for 

this trait either (data not shown). 

c) Potassium (Table 4.2.1c and Figure 4.2.9): 

Most correlations were either not significantly different from zero or very low; that 
is, K' concentrations did not change very much in response to salinity. Wherever 

there was a significant correlation, it was negative for young leaves (K' decreased 

with salinity) and positive for old leaves (KI increased with salinity). In all cases, 
Chevron was the variety with lowest K' concentrations, while CM-67 had the highest 

levels and Albacete was intermediate. The flag leaf had, in general, slightly higher 

K' concentrations than earlier young leaves. 
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Figure 4.2.9. K' concentrations in leaves of plants in the TLS (1992) as a function 
of soil salinity. A variety name in brackets indicates a non-significant correlation. 
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In general, concentrations of K' were higher in younger than in older leaves, both 

when comparing leaves of different ages for a given sampling date, or when 

considering the evolution of the same leaf with time (successive samplings). 
However, as in the case of absolute K' concentrations, most of these changes were 

not dependent on the level of salinity (correlations not significant, data not shown). 
No new information, regarding differences between varieties, was obtained when 

considering these traits, because of large variability within variety, and inconsistent 

responses between sampling dates. 

4.2.3.3. Grain yield: 

As with the results for ions, the 2 replicates of each variety were first treated 

separately to see if there was any "block" effect. No significant differences were 
found between the 2 replicates of each variety (data not shown), so they were pooled 

together. 

The 3 models (linear regression, threshold and sigmoidal) were fitted to the data for 

each variety, and they were compared by calculating the coefficient of determination 

(0) between observed and fitted values. All models gave quite good fits (r, > 0.77), 

but in all cases the sigmoidal curve had higher r' than the other models (Table 4.2.2). 

Table 4.2.2. Coefficient of determination (r) for observed vs fitted values of the 
response models (yield vs soil salinity) in the TLS 1991/92 experiment. All 
correlations are highly significant (p<0.001). 

VARIETY model 1* model 2* model 3* 

Albacete 0.894 0.921 0.933 
Chevron 0.771 0.765 0.783 
CM-67 0.961 0.968 0.975 

* model 1: linear regression; model 2: threshold; model 3: sigmoidal curve. 
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The residuals of the different models were also studied by plotting them against soil 

salinity. In general, no trends were observed in any of the models (data not shown), 

except for variety Albacete when the simple linear r egression was fitted: the residuals 

were larger at extreme salinities (low and high) than at intermediate ones. This might 

have been expected, since yield responses to changing salinities are attenuated at the 

two extremes of the scale. This finding also suggests that models 2 and 3 are better, 

because they take into account these decreased responses at low and high levels. 

These 2 models are discussed next. Results are presented in Figure 4.2.10. 

In the Maas and Hoffman (1977) model the varieties are defined by their salinity 

threshold (EC), their slope (s) and their maximum yield (Y. ); (Figure 4.2.10a). The 

values of these parameters for each variety are shown in Table 4.2.3. No significant 

differences in thresholds were found between varieties; however, Chevron had a 

lower (p < 0.001) maximum yield and slope than CM-67 or Albacete. 

Table 4.2.3. Values of the parameters (± standard errors) that define the varieties' 
response to salinity, according to model 2, in the TLS 1991/92 experiment. Units: 
yield (Y,, ) in g m-2; salinity (EC) in dS ar'; slope in g in' per dS m-'. 

VARIETY 

Albacete 
Chevron 
CM-67 

slope 

82.2 ± 9.2 
33.5 ± 8.5 

103.8 ± 7.8 

threshold 

4.76 ± 0.50 
3.65 ± 1.12 
3.48 ± 0.43 

max. yield 

758 ± 25 
257 ± 28 
827 ± 31 

In the sigmoidal curve model the varieties are defined by their EC50 (salinity at which 

yield is reduced to half), their Y,,,, and the exponential coefficient (p) (Figure 

4.2.10b). The values of these parameters for each variety are shown in Table 4.2.4. 

Again, CheVron had aY lower (p < 0.001) than Albacete or CM-67. In this case, 
however, Albacete also had a higher (p < 0.0 1) EC,, than the other 2 varieties; that 

is, it was able to withstand higher salinities before its maximum yield was reduced 
by 50 %. No significant differences between varieties were found in the parameter p. 
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a) Maas and Hoffman (1977) model 
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Figure 4.2.10. Actual yields (symbols) and fitted models (lines) of plants in the TLS 
(1991/92 season); a) threshold model; b) sigmoidal model. 
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Table 4.2.4. Values of the parameters (± standard errors) that define the varieties' 
response to salinity, according to model 3, in the TLS 1991/92 experiment. Units: 
yield (Ym) in g n1-2; salinity (EC50) in dS m'; p (exponent) has no dimensions. 

VAMETY EC50 p-exp max. yield 

Albacete 9.32 ± 0.26 
Chevron 7.50 ± 0.52 
CM-67 7.27 ± 0.20 

4.80 ± 0.8 
5.21 ± 2.1 
4.82 ± 0.5 

756 ± 27 
250 ± 26 
823 ± 29 

Yield results with increasing salinity can also be expressed relative to their yield 

without salinity. In this way, the responses of the varieties to salinity can be 

compared without the bias introduced by differences in yield potential. In this 

experiment, because of the good fits of the two models, maximum yields were taken 

to be those calculated by the program (Y. ). The response of the varieties to salinity 

in terms of relative yields (expressed as percent of the maximum yield) is shown in 

Figure 4.2.11. It can be seen there that the responses of CM-67 and Chevron, when 

expressed in this way, were very similar, while Albacete was slightly better (higher 

relative yields) in both models. 

4.2.3.4. Relationships between leaf ion concentrations and yield: 

One way to study if there is any close relationship between the two types of trait is 

by plotting the yields of each variety as a function of their corresponding ion 

concentrations. This was done for all ions, leaves, and sampling times, using both 

absolute and relative yields. No clear trends were found. As an example, this kind 

of relationship is shown in Figures 4.2.12 and 4.2.13, for Cl- concentrations in young 

and old leaves at the second sampling. If yield was a simple function of Cl- 

concentrations in leaves, we would expect similar yields for the different varieties at 

a given level of Cl-. This is not the case, even when differences in yield potential 
(maximum yield) are taken into account (Figure 4.2.13). 
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Figure 4.2.12. Grain yield as a function of Cl- concentrations in young (a) or old (b) 
leaves in the second sampling time; (TLS, 1991/92 experiment). 
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Figure 4.2.13. Relative yield as a function of Cl- concentrations in young (a) or old 
(b) leaves in the second sampling time; (TLS, 1991/92 experiment). 
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In some cases, correlations of opposite sign were found for different varieties in the 

same trait. This was the case, for instance, of Na' concentrations in older leaves, 

where increasing amounts of Na' corresponded with lower yields in Chevron, but 

were associated with higher yields in CM-67. However, the existence of correlations 

does not prove a causal relationship. In this example, the results are only reflecting 

the opposite responses of Na' to increasing salinity in these 2 varieties. Since yield 

decreased with salinity in all cases, when it is plotted against any trait which is highly 

correlated with salinity (e. g. Cl-), it will exhibit the same kind of response. 

Consequently, these new plots of yield vs ion concentrations in most cases are just 

describing the same effect of salinity on yield, but in another (indirect) way. 

4.2.4. DISCUSSION: 

4.2.4.1. Soil and water salinity distribution: 

The distribution of water and salinity by means of the TLS was quite good, as 

measured from the water collected in the rain-gauges after each irrigation (Figure 

4.2.4). The smaller quantity of water received by the plots at the outer side of the 

TLS (treatments I to 3) can be attributed to the prevailing wind, which blows almost 

perpendicular to the sprinkler lines. This results not only in the lower precipitation 

observed at those treatments, but also in the salinity gradient having its maximum 

slightly displaced to the left of the central line (AragUs et al., 1992). Hence the 

importance of irrigating only in days with very low wind. 

Distribution of salinity in the soil, measured as the weighted mean down to the first 

1 in (as integrated by the EMS), was also quite good across treatments (Figure 

4.2.3). If the higher salinities (due to their position in the unleached area) in 

Replicate I of CM-67 and Chevron are not considered, differences between similar 

plots along the TLS were larger at low than at high salinities. This might be partly 
due to the more irregular distribution of water (lower quantities) at that side of the 

TLS (see above). 
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Soil salinity increased with time (Figure 4.2.5), due to the continued irrigation with 

saline water. A relatively high salinity gradient across treatments was found in the 

early stages (first 3 readings with the EMS), after only 5 saline irrigations. In 

previous years it had been found that it took a longer time (10 to 15 irrigations) to 
develop an appropriate gradient (AragUs et al., 1992). This was why it was decided 

not to leach the soil between experiments, in order to begin each season with a higher 

soil salinity. That this approach did work can be seen in Figure 4.2.3, where the 

gradient across treatments was larger in the non-leached plots (Rep. I of CM-67 and 
Chevron) than in the leached ones. 

The salinity distribution in depth (soil profile) was not very uniform (Figure 4.2.6). 

Although that figure is based on soil samples from a single plot for each treatment 
(no replication), it is still representative of what is commonly found in the TIS, (see 

Aragd6s et al., 1992). That is, only in the top 50 cm is salinity relatively high, 

showing substantial differences between treatments. At greater depths, salinity is 

rather low and similar for all treatments. To obtain more uniform profiles (vertical 

lines) the amount of saline water provided by irrigation should be increased, but this 
is limited by the rate of infiltration of the soil. No leaching between crops may also 
help, although this was not examined in this experiment; (the samples used for soil 

analyses came from a few plots located in different parts of the field, with no 
distinction between leached and non-leached; they were selected on the bases of the 
EMS readings in those plots). 

Although some aspects of the TLS are still not satisfactory (such as the irregular salt 
distribution in depth, or the late establishment of the gradients) from a theoretical 

point of view it does provide what was expected from its design: a linear gradient of 

salinity with similar amounts of water across treatments. Other aspects of the validity 

of the TLS as an experimental tool will be discussed in more detail in Chapter 5. 

4.2.4.2. Ion concentrations in leaves: 

In a system like the Triple Line, where saline water is applied by sprinkler irrigation, 

the concentrations of ions in leaves will be the result of salt absorption via the roots 
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(soil salinity) plus any absorption through the leaves that may occur by direct contact 

with the saline water. In order to minimize salt absorption through leaves, plants in 

the TLS are routinely pre-wetted with fresh water (3 min) prior to saline irrigation, 

and again at the end of each irrigation (3 min post-washing). When this experiment 

was done, there was some evidence indicating that ion absorption via the leaves was 

reduced by these pre- and post-washings (Adouni, 1991) and the subject of leaf 

absorption was not considered in great detail. However, some recent data (AragUs 

et al., 1994; Gorham et al., 1994) indicates that the extent of ion absorption by 

leaves can still be considerable under the TLS. Although this source of salinity has 

been recognised as a cause of foliar injury and decreased yields (Maas et al., 1982), 

little information is yet available to quantify these effects. This aspect will be further 

discussed in Chapter 5. 

Of the ions determined, Cl- had the highest positive correlations with soil salinity, 

while low or no correlations were found for Na' and K'. This lower response may 

be attributed to the high proportion of Ca" used in the irrigation water. If a higher 

Na: Ca ratio had been used (e. g, 20: 1, as in some of the hydroponic experiments) an 
increase in Na' concentrations with salinity, together with a decrease in K', might 
have been expected. However, with the 1: 1 NaCl to CaCl2- 2H20 ratio (around 2: 1 

molar) the lack of response of K' concentrations was, somehow, expected (see 

section 2.3.3). 

Surprisingly, with the exception of Chevron. (where Nal concentrations increased 

with salinity) no significant changes in Na' concentrations (Albacete), or even 

negative correlations (CM-67) with salinity were found. This could be another effect 

of the high Ca" levels used, since it has already been shown (section 3.4.3) that high 

Ca" in the solution decreases Na' absorption. It may be speculated that with 
increasing salinity more Ca" was being taken into the plant by the roots in place of 
Na'; without measurements of Ca" concentrations, however, this cannot be 

demonstrated. 

For all ions, differences between varieties were larger in older leaves than in younger 

ones. This probably reflects not only the ability for leaf-to-leaf partitioning 
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(sequestering of harmful ions in older leaves), but also the effect of ion absorption 

by leaves (prolonged exposure to saline irrigation by older leaves). It is worth 

stressing that partitioning between leaves is only possible for those ions which are 

absorbed by the roots and transported by the xylem. Transport of Na' and Cl- by the 

phloern is very limited (Munns et al., 1986; Flowers & Yeo, 1988); thus, if these 

ions are absorbed directly by the leaf, they have less chance of being re-exported, 

and will remain there. 

The flag leaf had remarkably low concentrations of Na' and Cl- in all varieties, while 

its K' concentrations were the highest of all leaves studied. It seems, therefore, that 

this leaf, which is very important for the later filling of the grain, is well protected 

from any excess of toxic ions. Greenway et al. (1965) also found lower 

concentrations of Na' and Cl- in flag leaves of barley growing in 125 mol m' NaCl, 

compared to other (young) leaves developed earlier. 

Similar results (very low Na' and relatively high K' in the top 2 leaves) were also 

found by Wolf et al. (1991) when studying Na' and K' fluxes along the stem and 

into different leaves of salt-treated barley. These authors observed that the 

composition of the xylem sap changed along the stem, with concentrations of Na' 

and Cl- decreasing and those of K' increasing (to a lesser extent) as the sap 

ascended. These gradients in concentration in the xylem sap would result in a low 

import. of Na' and CY in the top leaves, and a higher supply of K'. (Retranslocation 

of K' from older leaves was also an important component of KI supply to the top 

leaves. ) The model proposed by Wolf et al. (1991) fits well with the observed low 

Na' and Cl- concentrations in flag leaves in the present experiment. 

It iIs important to remark that, because the flag leaf (as all other "young" leaves 

considered) was sampled when it was just fully emerged (appearance of the ligule), 

it had not been directly exposed to saline irrigations for any significant length of time 

(maybe 1 or 2 irrigations). Thus, it can be assumed that the (low) ion concentrations 
found in the flag leaves resulted largely from root absorption and transport along the 

stem; foliar absorption was probably very small at that time. It is in these conditions 

that the above model can be applied. 
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Although those authors used only one barley variety . (salt-tolerant California 

Mariout), it seems from the present results that the restricted import of Na' and Cl- 

into the flag leaf is a rather widespread feature, since the same pattern was found in 

the salt-accumulating cultivar Chevron. This mechanism of protection of the flag leaf 

may be of significance for the later development of the ear and grain. 

Unfortunately, the flag leaf was only sampled as a "young" (recently expanded) leaf 

in this experiment. A later sampling, after having received several saline irrigations, 

would have provided information on the degree of salt absorption by flag leaves. It 

would be interesting to see if any mechanism exists to protect the flag leaves against 

high salt concentrations which can arise from direct foliar absorption. At the moment 

there is no evidence to suggest that this is the case. In fact, data from Grattan et al. 

(1994) in a TLS experiment seem to indicate the opposite. In flag leaves sampled 

after the ears had emerged (i. e. after they had been sprinkler-irrigated with saline 

water for some time), Cl- concentrations at increasing levels of salinity were 

significantly higher than in the corresponding leaves of plants which had received 

saline water only through the roots. 

Comparing the different sampling times and leaves, it can be concluded that early 

sampling (during tillering) is the best time to detect differences between varieties. In 

the flag leaf these differences were reduced to a minimum. Although older leaves 

exhibited larger differences between varieties than younger ones, the added effect of 

salt absorption by leaves may obscure the interpretation of results. 

Due to the type of salinity used in the TLS, Cl- is the ion which more readily 

responds to increasing salinity (since it is the predominant one in the mixture of 

salts). Larger differences between varieties may, thus, be expected to be found (as 

it was here) when comparing their Cl- concentrations. 

4.2.4.3. Grain yield: 

All three models adjusted to the yield data fitted the results very well, even the 

simplest one (linear regression). This is because the lowest levels of salinity applied 
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were already relatively high (> 2.5 dS m-'), and not many data-points were available 

at salinities below the threshold. Had there been more observations at lower 

salinities, the existence of a threshold might have been more apparent, and then the 

linear model would have resulted in poorer fits. As a comparison, Richards et al. 
(1987), expressing grain yield of barley as a simple linear function of soil salinity (no 

threshold), obtained values for the coefficient of determination (r) ranging from 38 % 

to 86 % (average 71 ft that is, much lower than here. 

With the threshold model of Maas & Hoffman (1977) Chevron had a lower maximum 

yield than Albacete and CM-67, but also a smaller slope (less decrease in yield with 
increasing salinity). In relative terms, this smaller slope might have compensated for 

its lower maximum yield. In fact, if relative yields are plotted (Figure 4.2.11 a), this 

appears to be the case: all varieties have very similar slopes. However, from an 

agronomic point of view, we have to consider the actual yields, and Chevron had 

very low yields in all treatments. 

The poor performance of Chevron in the field is not only the result of salinity. This 

is an old variety, with a very long growing cycle, and large height (non-dwarf). It 

does not compare with the modern dwarf, high yielding varieties, particularly if 

grown with the same cultural methods. The high doses of N fertilizer applied to the 

field, which stimulate vegetative growth, result in problems of lodging in non-dwarf 

varieties like Chevron (all the others were dwarf). Strong winds in the site of the 

TLS also affect this cultivar more than the shorter ones, increasing the chances of 
lodging. Finally, its grains tend to shed from the ears before they are ripe; (old 

varieties were harvested before complete maturity). This shedding problem is also 

aggravated by the strong winds. In the present experiment, an additional accident 

affected this variety: a plague of ants infested the field just before harvesting, feeding 

on the grains of Chevron; (because of its late maturity, this was the only variety 

which still had soft grains at the time). All these factors contributed to the very low 

yields of Chevron, not only under salinity, but in all treatments. 

No significant differences (at the 5% level) were found between the other two 

varieties using the threshold model. Still, Albacete had a moderately higher threshold 
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and a slightly smaller slope (see Figure 4.2.11a), which would indicate a higher 

tolerance. In spite of having a (not significantly) lower maximum yield, its overall 

yield (mean of all treatments) was higher than in CM-67. This is also an important 

feature from an agronomic point of view, since natural saline soils are very 
heterogeneous in their salinity distribution. In these conditions, a variety with a good 

overall performance might be more suitable than others which only respond well at 
low or high salinities. 

Using the sigmoidal model of Van Genuchten (1983), Chevron also had a lower 

maximum yield than CM-67 and Albacete, but it did not differ significantly from 

them in the other parameters. The exponent p, (which relates to the shape of the 

curve and might be considered equivalent to the slope in the previous model), had a 
large standard error in Chevron, and this was the reason for the lack of significance. 
That large standard error was brought about by the poorer fit of the model in this 

variety (see Table 4.2.4). 

Significant differences were found with the sigmoidal model for the 2 other varieties: 
Albacete had a higher EC50 than CM-67. This is not surprising, since this parameter 
integrates the two concepts of threshold and slope, without taking into account the 

absolute maximum yield. (Maximum yield is considered in the calculation of EC50, 

but only in relative terms. ) In this way, the small advantage that Albacete already had 

in the previous model, in terms of threshold and slope, is combined here in the EC501 

and results in significant differences. A slightly better fit of this model, compared to 

the threshold one, may have resulted in smaller standard errors for the estimates of 

the parameters, and thus helped in finding significant differences. 

From the above results it can be seen that the choice of model may influence the 

conclusions relating differences between varieties. Royo et al. (1991) applied 4 

different response models to their salinity data: the same 3 used here, plus a further, 

exponential one. They found that the threshold and sigmoidal models always gave the 
best fits, and that their results were very similar. They also concluded that the 

parameter which best estimates the salt tolerance of a variety is the EC50, since it 

does not depend on the model used. (Values of EC50 estimated from different models 
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were very similar -not significantly different- between the models. ) This is again due 

to the fact that the EC50 integrates the two parameters of threshold and slope needed 

to characterise a variety in the Maas & Hoffman (1977) model. (Notice that the EC50 

can also be calculated from the threshold model. The advantage of the sigmoidal 

model is that it provides the estimate of the EC50 together with its standard error, and 

this is useful for the statistical comparison of the varieties. ) 

4.2.4.4. Relationships between leaf ion concentrations and yield: 

Considering the two types of data together (ions in leaves and grain yield) there does 

not seem to be a simple relationship between them. Albacete and Chevron both 

tended to have very high Cl- and Na' concentrations in their leaves, but the former 

had the highest yields and the latter the lowest ones. CM-67 had low ion 

concentrations '(characteristic of this variety) but it was not more tolerant than 

Albacete. 

As mentioned earlier (section 4.2.3.4), the existence of negative correlations between 

(some) ion concentrations and grain yield when studied over all salinity treatments 

(as in Figures 4.2.12 and 4.2.13) does not imply a causal relationship. In the present 

case it is only an indirect effect of the simultaneous change of both yield and ion 

concentrations with salinity. A more direct relationship might have been suggested 
by the existence of such correlations at a constant salinity. However, with only 3 

varieties (3 data-points) this could not be investigated. 

In summary, no direct relationship between leaf ion concentration and yield was 
found. However, this subject needs further testing, using a wider range of genotypes 
(three varieties is not enough). Also, the poor performance in the field of some 

varieties (like Chevron, a non-dwarf, late-ripening, old cultivar) calls for the use of 
better adapted genotypes. These two limitations were taken into account when 

planning the field experiment on the following year (see section 4.3). 
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4.3.1992/93 FIELD (TLS) EXPERIMENT 

4.3.1. OBJECTIVES: 

Using the 1991/92 results in the TLS, it was possible to decide on the best growth 

stage for sampling to detect differences in ion concentrations between varieties. In 

order to determine whether a good relationship exists between this trait and the 

varieties yield response to salinity a larger number of genotypes was included in the 

present experiment. The ultimate aim was to determine whether leaf ion 

concentrations is a trait closely related to the salt tolerance of a genotype, in which 

case it might be useful as a selection criterion in breeding programs. 

4.3.2. MATERIALS AND METHODS: 

This experiment was done on the same site as the 1991/92 experiment. No leaching 

of salts with fresh water irrigation was done during summer 1992, so that at the 

beginning of the present experiment some residual salinity already existed in the soil. 

However, no data is available about the level of salinity at that time (no 

measurements were taken). Because some rain fell soon after sowing and during the 

first month (;:: - 20 nim), there was no need to give the first irrigations with fresh 

water to help seed germination and seedling establishment. 

Cultural practices (seed bed preparation, fertilization, etc. ) were the same as in 

1991/92. On 21.11.92, twelve varieties of barley were sown by plot-drill in 10 plots 

along the salinity gradient of the TLS. Because of space limitations, only one 

replicate per variety was sown, and the elementary unit was also reduced in relation 

to the previous year. Plot size was still the same 1.20 ra x 1.40 m, but 3 rows of 2 

varieties were sown in each half of this plot (instead of 6 rows of the same variety). 
Previous research had shown that the response to salinity is largely independent of 

the plot size (Royo & Aragii6s, 1993). Plant density was as in the previous year: 65 

seeds/row, and 28 cm between rows. Sowing depth was about 3 cm. 
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The varieties used were: Albacete (AB), Barbarrosa (BR), Begofia (BE), Berta (BT), 

CM-67 (CM), Critter (CR), Forrest (FR), Igri (IG), Mogador (MO), Olivia (OL), 

Pan6 (PA), and Viva (VI). Albacete, Barbarrosa and Igri had been used as standard 

checks in the TLS in the 4 previous years. Most of the other varieties (except 

Forrest) had also been tested in the TLS at least once before. Their EC50S for yield 

were calculated from their response to the EC of the applied water (irrigation 

corrected for rainfall), and they were compared to the mean of the 3 checks. 
According to this analysis, Begofia was rather sensitive, Berta and Olivia very 

tolerant, Pan6 and Viva quite tolerant, and CM-67, Critter and Mogador were similar 

to the checks; (Aragfi6s and collaborators, unpublished results). 

Dates of each irrigation, together with amount of water applied and its range of 

salinity (measured on the rain-gauges closest to the plots), are given in Appendix 3. 

As in the previous year, some leakage of fresh water at the completion of the post- 

saline irrigation was observed at the pipe junctions in the central sprinkler line. 

Again, this resulted in a dilution of the soil salinity in treatment 10, which was 

subsequently discarded. 

Measurements of soil salinity with the EM-38 were taken on 7 occasions, from late 

January until early June. At all those dates, except for the first one, (25 January), 

soil samples were taken to calibrate the readings obtained with the EMS. The samples 

were taken at 6 depth intervals down to 1 in, and the weighted mean was calculated 

as: 

EC = 
18xEC(o-lo) + 14xEC(IO-20) + 20xEC(2040)+12xEC(40-60)+7xEC(60-80)+5xEC(80-100) 

76 

where the figures in brackets refer to depth intervals in cm. 

The field was covered with netting from heading time until harvest. All varieties 

were harvested at maturity with a plot harvester (Hege 125), on 05.07.93. 



166 

The extensive sampling of the previous year had shown that the best growth stage for 

sampling to detect differences in ion concentrations between varieties was during 

vegetative growth, from tillering to stem elongation . This corresponded with the first 

two samplings in the 1991/92 season. For practical reasons (to space the sampling 

time evenly and to obtain larger leaves), the "first" sampling (i. e. leaves 2 and 4) 

was rejected, and the "second" sampling was chosen. Thus, leaf number 6 completely 

expanded was chosen as the young leaf, while leaf number 4 was sampled as an older 
leaf. The criterion used was, again, to sample a plot when the selected leaf (nO 6) 

was fully expanded (instead of trying to sample all varieties at the same time). 

Four replicated samples per half-plot (elementary unit) were taken, each sample made 

up of. several leaves of similar size from different plants (3 for leaf 6,4 for leaf 4); 

this would provide enough sap to run the full range of chemical analyses 

automatically. For each variety, the samples came from plants in the same row within 

the plot. No other destructive samples were taken; so, at harvest the plots still had 

3 complete rows of each variety. Leaves were put into plastic bags, taken to the lab, 

washed in distilled water, transferred into vials, and frozen. The sampling took place 

between the 9' and the 26' of March 1993; (detailed dates are presented in Appendix 

4). 

Frozen leaf samples were taken to Bangor, where sap was extracted and the ions 

determined. Chemical analysis was carried out using ion exchange chromatography 

(Dionex 2000i). For anions (Cl-, N03-9 1-I2PO4-q S04 2-), the extracted sap was diluted 

(1/110) with 4.5% isopropanol. For cations (Na', K', Mg 2+, Ca 2+), 
the dilution 

(1/85) was with de-ionized water. Details of the methods have already been given in 

previous sections (e. g. 2.2.2 and 2.3.2). 

- Statistical methods: 

Statistical analysis of the ion data was done, as in the previous year, by means of 
linear correlation between leaf ion concentrations (for each variety and leaf) and soil 

salinity. This was measured as the mean of the EM-38 readings, transformed to EC 
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of soil saturation extract, up to the 25' of March. Means of 4 replicated samples per 

plot were used in all calculations. 

Whenever these correlations were significant (p < 0.05), the regression lines (one for 

each variety) were compared for their slopes by fitting a regression model with an 
interaction term; this allows for different slopes (and also intercepts) for each variety. 
A significant F-statistic for the interaction term indicates different slopes (see 

Snedecor & Cochran, 1989). In order to separate the varieties by their slopes, a 

series of pairwise comparisons (t-tests) might be used. However, this is not 

recommended, since the overall significance level for the several tests combined is 

greater than the significance level of each separate test, and there is more chance of 

rejecting a true null hypothesis (i. e. of considering different two slopes which are 

equal ). To overcome this problem, multiple comparison procedures can be used. 
These are similar to those used for comparing variety or treatment means following 

an analysis of variance, although not many have been developed for application to 

regression analysis. One such method is the Simultaneous Test Procedure described 

by Sokal and Rohlf (1969, pp 456-458). However, when a large number of varieties 

are to be compared, these methods usually yield a large number of overlapping 

groups and complicate the interpretation of the results. 

An alternative is to use cluster analysis techniques, which divide the varieties into 

relatively homogeneous groups, so that varieties within a same group are similar and 

those from different groups are dissimilar. Cluster analysis has sometimes been used 
for comparison of variety means (e. g. Scott & Knott, 1974; Gates & Bilbro, 1978). 

A limitation of these methods (see Willavize et al., 1980) is that no significance 

statements can be made, although in some cases a "probability scale" can be added 
(Jolliffe et al., 1989). The main use of cluster analysis in this context is as a 
descriptive tool rather than as a formal test of hypotheses. 

In the present case, when the preliminary test (regression with an interaction term) 
indicated the presence of significant differences between regression lines (i. e. 
different responses), two approaches were used to further compare the varieties. The 

main aim was to reduce the rather large number of varieties (12) to a smaller number 
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of groups of similar varieties. As a first approach, the values for the slopes and 
intercepts of the regression lines were first plotted on a bi-dimensional graph to 

examine any "natural" grouping of the varieties (those with similar slopes and 
intercepts). This was accompanied by cluster analysis of the slopes and intercepts. 

The distance between pairs of varieties was measured as the Euclidean distance 

between them, and similarity between groups was assessed using the centroid method, 

where the mean of each group is used to calculate the distance. The second approach 

was to use a method very similar to the "backwards elimination" from the multiple 

regression theory. This method is described below. 

From a model which contains all (significant) varieties (n), those which have the 2 

most similar slopes are pooled as if they were only one. This results in a new, 

reduced model with (n-1) varieties. An F-test is then made between these two 

models, which tests for the significance of pooling two similar slopes in comparison 

to the full model (all varieties). A non-significant F is taken as an indication of two 

slopes not being significantly different. The next 2 most similar slopes are then 

pooled, and the new reduced model compared to the previous one. This proceeds 

until no more varieties (slopes) can be pooled (i. e. the F-statistic comparing the two 

models is significant). (It has to be noted that this method, as with the backwards 

elimination in multiple regression, has not a unique answer. It can happen that a 

variety with a slope value lying half-way between two groups could equally be 

classified with any one of them. ) 

In a second step, varieties with similar slopes were compared for their intercepts, 

using analysis of covariance (Ancova) as described in Snedecor and Cochran (1989). 

This method has the limitation that it assumes that the lines are parallel (i. e. ordy 

varieties with similar slopes can be compared). This is somehow reasonable, since 
in many cases there is not much point in comparing the intercepts of lines which have 

different slopes. However, the assumption of parallelism forces the lines to have 

exactly the same slope, and this changes their original intercept. The result is that the 

grouping obtained by comparing the means in the Ancova (which is equivalent to 

comparing the intercepts, since the lines are now parallel) does not always agree with 
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that obtained by cluster analysis, where the slopes and intercepts are considered 

simultaneously. 

In those cases where there was no significant correlation between leaf ion 

concentrations and soil salinity (i. e. ion concentrations did not change with salinity), 

the varieties were contrasted by comparing their means. This was done with an 
Anova and, if this was significant, means were separated using Tukey's test. 

However, since the latter usually resulted in several overlapping groups, the means 

were also separated using the procedure described above for the comparison of 

slopes, supplemented with cluster analysis (centroid method). This results in a smaller 

number of non-overlapping groups, and facilitates the graphical representation of the 

results. 

For the study of yield response to salinity, the 3 models used in the previous year 
(see section 4.2.2) were again fitted, and the coefficients of determination between 

observed and fitted values calculated to decide on the best fit. Varieties were then 

compared by means of t-tests (pairwise comparisons) applied to the parameters which 
define them under the different models. 

The relationships between leaf ion concentrations and yield were studied by plotting 

the yield of each variety against ion concentrations in its leaves at a given salinity 

treatment. This was done to remove any bias due to the simultaneous change in yield 

and ion concentrations with increasing salinity. 

4.3.3. RESULTS: 

4.3.3.1. Soil and water salinity: 

Figure 4.3.1. shows the distribution of water and salinity applied with the TLS. 

Salinity decreased linearly (rl=0.997) with increasing distance from the central line 

(source of saline water), while the total amount of water received by the different 
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treatments was very similar (c. v. =5 %). Differences between plots of corresponding 
treatments were quite small, as indicated by the standard errors in Figure 4.3.1. 

Steady levels of salinity in the soil were achieved early in the season (Figure 4.3.2). 

From March onwards, soil salinity only increased slightly in the highest saline 
treatments. The apparent decrease in soil salinity from January until March in the low 

saline treatments (Figure 4.3.2) might be attributed to the more regular distribution 

of salts in the profile at that time (see Figure 4.2.6 in the TLS-1992 experiment), and 
the way the EMS measures soil salinity (integrating down to 1m depth). However, 

these changes with time at the low saline treatments (T-1 to T-3) were probably not 
important, since the overall coefficient of variation was lower than 6%. 

4.3.3.2. Ion concentrations in leaves: 

Ion concentrations were studied in relation to both soil salinity and irrigation water 

salinity. The varieties' response to these two measures of salinity was in general very 

similar. In a few cases, particularly when considering the older leaves, the 

correlations of ion concentrations with irrigation water salinity was slightly higher 

than with soil salinity; the differences, however, were not generally significant. The 

following results are based on correlations with soil salinity (mean EC of soil 

saturated extract up to the time of sampling). 

a) Chloride (Table 4.3.1 a and Figure 4.3.3): 

Chloride concentrations in leaves increased with increasing salinity. Only in young 
leaves of variety Igri was this correlation not significant. The rate of increase (slope) 

was, in general, higher in older leaves than in the youngest ones. 

Differences between varieties in young leaves were only found in the average Cl- 

concentrations (different intercepts), not in the rate of Cl- increase (slopes not 

significantly different) (Figure 4.3.3a). In older leaves varieties differed not only in 

their mean Cl- concentrations, but also in the rate at which this ion changed with 
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Table 4.3.1. Linear correlation (r) and regression coefficients between Cl- (a) and 
Na' (b) concentrations in leaves (young and old) and soil salinity (EC saturation 
extract) for the 12 varieties in the TLS 1992/93 experiment. Within each type of leaf, 
estimates of slopes and of intercepts with the same letter are not significantly 
different (see text). (Units: slopes in Mol m-3 ion per dS m-' soil salinity; intercepts 
in mol M-3 ion. ) 

VARIETY YOUNG LEAF (NI 6) OLDER LEAF ( NI 4) 

--- ---------- 
r 

----------- 
slope 

----------- 

interc. 

--------------- 
r 

---------------- 
slope 

----------- 
interc. 

----------- 
a) Chloride: 

AB Albacete 0.790* 24.0 a 56.8 a, 0.891** 56.0 a 27.3 a 
BR Barbarrosa 0.926*** 32.5 a 30.2 a2 0.962*** 73.4 b -51.9 b 
BE Begofia 0.807** 17.3 a 72.7 a, 0.901*** 67.7 b -28.0 b 
BT Berta 0.980*** 25.7 a 54.6 a2 0.956*** 76.2 b -65.5 b 
CM CM-67 0.777* 26.1 a 49.5 a2 0.948*** 80.1 b -47.0 b 
CR Critter 0.750* 20.3 a 67.4 a, 0.917*** 50.8 a 33.4 a 
FR Forrest 0.827** 25.8 a 88.7 a3 0.921*** 107.7 c -80.4 c 
IG Igri 0.651 ns 19.1 + 87.3 + 0.823** 60.3 a 11.4 a 
MO Mogador 0.684* 16.7 a 65.1 a, 0.929*** 49.8 a 22.5 a 
OL Olivia 0.839** 20.3 a 105.6 a3 0.961*** 111.8 c -109.1 c 
PA Pan6 0.879** 25.7 a 28.3 a, 0.891** 70.9 b -54.9 b 
VI Viva 0.802** 20.0 a 90.3 a2 0.939*** 55.6 a 25.1 a 

b) Sodium: 

AB Albacete -0.054 ns -0.35 + 89.9 + 0.247 ns 4.8 + 1045+ 
BR Barbarrosa 0.856** 7.89 a 48.7 a 0.852** 10.3 a 70.3 a 
BE Begofia 0.305 ns 1.31 + 57.5 + 0.857** 18.2 b 20.9 b, 
BT Berta -0.380 ns -5.37 + 95.4 + 0.792* 21.3 b 25.9 bý 
CM CM-67 -0.001 ns -0.01 + 84.8 + 0.862** 20.1 b 56.6b3 
CR Critter -0.133 ns -1.22 + 72.3 + 0.843** 10.3 a 70.7 a 
FR Forrest 0.420 ns 3.82 + 62.7 + 0.873** 33.1 c -10.4 c 
IG Igri 0.647 ns 5.10 + 60.1 + 0.600 ns 8.4 + 840+ 
MO Mogador -0.056 ns -0.42 + 68.6 + 0.785* 7.5 a 77.1 a 
OL Olivia 0.763* 4.55 a 68.6 a 0.955*** 35.4 c -1.6 c 
PA Pan6 -0.017 ns -0.13 + 70.7 + 0.792* 18.1 b 47.7 bý 
VI Viva 0.915*** 8.98 a 39.6 a 0.920*** 9.6 a 75.2 a 

ns - not significant; *-p<0.05; ** -p<0.01; *** -p<0.001. 
+- coefficients not compared: correlation not significant. 
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salinity (Figure 4.3.3b). Two varieties, Forrest and Olivia, always had higher 

concentrations of Cl- and higher rates of Cl- increase with salinity than the rest. 

b) Sodium (Table 4.3. lb and Figure 4.3.4): 

Concentrations of Na' in the youngest leaf did not generally change with salinity. 
Only in varieties Barbarrosa, Olivia and Viva were these correlations significant and 

positive (Na' concentrations increased with salinity). A positive correlation was, 
however, found for most varieties in the older leaves, except in Albacete and Igri. 

Concentrations of Na' were always higher in older leaves than in younger ones. 

In young leaves, some differences between varieties were found in the mean Na' 

concentrations; these could be classified in two main groups (Figure 4.3.4a). In older 
leaves, varieties differed not only in their average Na' concentrations, but also in the 

rate at which this ion changed with salinity (slope) (Figure 4.3.4b). Varieties Forrest 

and Olivia again had higher mean Na' concentrations and higher slopes than the rest. 

c) Calcium (Table 4.3.2a and Figure 4.3.5): 

As with Na', Ca" concentrations in young leaves did not generally change with 

salinity. Only in varieties Forrest and Olivia was there a positive correlation, while 
in Albacete the correlation was negative (Caý' concentrations decreased with 

salinity). In older leaves, concentrations of Ca" increased with salinity in all 

varieties. Calcium concentrations in older leaves were always higher than in the 

youngest ones. 

The rate of increase in Cal' concentrations in the young leaves of varieties Forrest 

and Olivia were similar, as were their absolute concentrations. Some differences in 

the average Caý' concentrations of the other varieties were found; they were 

classified in 4 groups (Figure 4.3.5a). Regarding the older leaves, the varieties 
differed both in their rate of increase in Call concentrations, and in their mean 

concentrations (Figure 4.3.5b). Forrest and Olivia were again the varieties with 
higher Ca" concentrations, and higher rates of increase (slopes). 
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Table 4.3.2. Linear correlation (r) and regression coefficients between Ca" (a) and 
K' (b) concentrations in leaves (young and old) and soil salinity (EC saturation 
extract) for the 12 varieties in the TLS 1992/93 experiment. Within each type of leaf, 
estimates of slopes and of intercepts with the same letter are not significantly 
different (see text). (Units: slopes in mol M-3 ion per dS m-' soil salinity; intercepts 
in mol m-1 ion. ) 

VARIETY YOUNG LEAF (N' 6) OLDER LEAF (NI 4) 

---- ---------- 
r 

------------ 
slope 

------------ 
interc. 

-------------- 
r 

----------------- 
slope 

------------ 

interc. 

--------- 
a) Calcium: 

AB Albacete -0.753* -3.01 a 28.4 a 0.758* 9.72 a 104.5 a2 

BR Barbarrosa -0.496 ns -0.75 + 15.5 + 0.852** 10.77 a 70.3 a, 
BE Begofia -0.235 ns -0.78 + 24.5 + 0.814** 12.98 a 20.9 a. 3 

BT Berta 0.303 ns 0.82 + 17.4 + 0.859** 14.78 b 25.9 b 
CM CM-67 -0.080 ns -0.36 + 29.0 + 0.934*** 10.92 a 56.6 a. 3 
CR Critter -0.441 ns -1.33 + 16.8 + 0.813** 8.14 a 70.7 a, 
FR Forrest 0.669* 4.52 b 7.2 b 0.930*** 25.79 c -10.4 c 
IG Igri -0.458 ns -1.58 + 24.4 + 0.760* 11.66 a 84.0 a2 

MO Mogador -0.085 ns -0.39 + 19.6 + 0.958*** 8.30 a 77.1 a, 
OL Olivia 0.671* 3.87 b 7.6 b 0.966*** 22.63 c -1.6 c 
PA Pan6 0.636 ns 3.16 + 4.4 + 0.687* 11.71 a 47.7 a2 

VI Viva 0.325 ns 1.41 + 9.2 + 0.921*** 15.18 b 75.2 b 

--------------- 
b) Potassium: 

---------- ------------ -------------- ----------------- ------------ --------- 

AB Albacete 0.651 ns 13.27 + 91.4 + 0.635 ns 9.64 + 352+ 
BR Barbarrosa -0.285 ns -3.21 + 174.7 + -0.188 ns -2.91 +1111 + 
BE Begofia 0.669* 11.70 a 110.3 a2 0.253 ns 2.36 + 854+ 
BT Berta 0.516 ns 6.76 + 115.1 + -0.724* -4.92 a 91.2 a 
CM CM-67 0.875** 10.51 a 101.7 a, 0.949*** 20.67 c 17.5 c 
CR Critter 0.919*** 13.90 a 102.2 a2 0.482 ns 5.86 + 631 + 
FR Forrest -0.218 ns -2.54 + 164.9 + 0.941*** 27.38 d 2.5 d 
IG Igri 0.870** 12.24 a 92.6 a, 0.569 ns 6.47 + 491 + 
MO Mogador 0.574 ns 7.71 + 108.6 + 0.663 ns 5.99 + 514+ 
OL Olivia 0.006 ns 0.08 + 128.3 + 0.322 ns 3.32 + 419+ 
PA Pan6 0.399 ns 4.51 + 113.4 + 0.910*** 5.53 b 40.6 b 
VI Viva 0.698* 4.70 a 141.9 a2 0.301 ns 2.10 + 738+ 

ns - not significant; *-p<0.05; ** -p<0.01; *** -p<0.001. 
+- coefificients not compared: correlation not significant. 



177 

YOUNG LEAF 

9- 200 - a: Y= -3.01X + 28.4 (AB) 
E b: y=4.20X + 7.4 (FR. OL) 

0 m 1: 5z 11.4 (BR. CR) 
E 150- m,?: 5Z2 = 17.3 (IG. MO? A, V1) 

4- 
tu m3: 23 = 21.1 - (BE, BT) 

M4: 5Z4 = 27.4 (CM) 

100- 
0 

50- 
b 

+ 
CY 

.................... .............. .... 
...... 

lý7 n13 ........... 
M, 4 
M2 

m Ml a C) 0- 11 
12345678 

E. C. soil saturation extract (dS m-1) 

b) OLD LEAF 

200 

E 

-6 
E 150 

100 
-0 

50 

cm m 
00 

a,: Y=8.99X + 10.2 

a2: Y= 11.02X + 11.5 

a3: Y= 11.91X + 20.0 

b: Y= 15.15X - 4.6 

c: Y= 24.26X - 17.4 

C 

a3 
b 
a2 

al 

123456 

E. C. soil saturation extract WS 

Figure 4.3.5. Ca" concentrations in leaves of plants in the TLS (1993) as a function 
of soil salinity. Varieties with a similar response (see text) have been grouped. For 
non-significant correlations the mean value is indicated. 

(BR. CR, MO) 

(ABJG, PA) 

(BE, CM) 



178 

d) Potassium (Table 4.3.2b and Figure 4.3.6): 

Concentrations of K' in most varieties did not change with increasing salinity, in 

either young or old leaves. In those varieties where they did change, the correlations 

tended to be positive, although relatively low (K' concentrations increased slightly 

with salinity). The only exceptions were in the older leaves of CM-67 and Forrest, 

where this increase was considerable (high slope values), and in old leaves of Berta, 

where concentrations of K' tended to decrease (negative correlation). Potassium 

concentrations were generally higher in the youngest leaves than in the older ones. 

Some differences between varieties were found in the K' concentrations in young 
leaves (Figure 4.3.6a), although these were not very large (mean values ranged from 

130 to 165 Mol m-3 sap). Differences between varieties in older leaves (Figure 

4.3.6b) were mostly in average concentrations (from 55 to 125 Mol M-3 sap), 

although varieties CM-67 and Forrest had larger slopes and higher mean K' 

concentrations than all the others. 

4.3.3.3. Grain Yield: 

The 3 models (linear regression, threshold and sigmoidal) were fitted to the data for 

each variety, and they were compared by calculating the coefficient of determination 

(r') between observed and fitted values. Except in a few cases, all 3 models gave 

significant fits (Table 4.3.3), although these were generally lower than in the 

previous year (Table 4.2.2, section 4.2.3.3). The sigmoidal curve (model 3) usually 

provided the best fit; in those cases where this model was not clearly superior, 
(Berta, CM-67 and Olivia), it was at least as good as the best one. The threshold 

model (number 2) generally gave the poorest fits; it was with this model that non- 

significant fits were found in some varieties (Albacete, Barbarrosa and Pan6). 

For the comparison of the varieties in terms of yield response to salinity, only the 

sigmoidal model was used, since this was the model which best fitted the observed 

values. The values of the parameters which define the varieties' response with this 

model (Y,,,, EC50 and p) are listed in Table 4.3.4. Because of the large standard 
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Table 4.3.3. Coefficients of determination (0) for observed vs fitted values of the 
response models (yield vs soil salinity) in the TLS 1992/93 experiment. 

VARIETY model I+ model 2+ model 3 

Albacete 0.519* 0.440 ns 0.576* 
Barbarrosa 0.476* 0.315 ns 0.519* 
Begofia 0.811*** 0.792** 0.815*** 
Berta 0.473* 0.482* 0.457* 
CM-67 0.715** 0.691* 0.707** 
Critter 0.711** 0.713** 0.721** 
Forrest 0.764** 0.683* 0.765** 
Igri 0.698** 0.563* 0.703** 
Mogador 0.590* 0.593* 0.658** 
Olivia 0.770** 0.743* 0.760** 
Pan6 0.572* 0.396 ns 0.621* 
Viva 0.732** 0.733** 0.739** 

+ model 1: linear regression; model 2: threshold; model 3: sigmoidal curve. 
ns - not significant; *-p<0.05; ** -p<0.01; *** -p<0.001. 

Table 4.3.4. Values of the parameters (± standard errors) that define the varieties' 
response to salinity according to model 3 in the TLS 1992/93 experiment. Units: 
yield (Yj in gr m-2 and salinity (EC50) in dS irr'; (p has no dimensions). 

VARIETY EC50 p-exp max. yield* 

Albacete 6.42 ± 1.01 1.25 ± 0.47 505 
Barbarrosa 6.73 ± 1.23 1.78 ± 0.92 438 
Begofia 6.00 ± 0.49 1.84 ± 0.43 590 
Berta 9.35 ± 2.76 2.58 ± 2.03 297 
CM-67 7.70 ± 1.73 2.11 ± 1.77 609 
Critter 8.71 ± 1.21 2.76 ± 1.89 439 
Forrest 7.70 ± 0.87 2.07 ± 0.63 491 
Igri 7.32 ± 0.85 2.06 ± 0.69 493 
Mogador 5.52 ± 0.74 1.31 ± 0.42 692 
Olivia 6.50 ± 0.70 1.77 ± 0.51 727 
Pan6 8.96 ± 1.92 1.39 ± 0.55 512 
Viva 7.47 ± 2.79 1.73 ± 1.61 605 

* standard errors not available 
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errors (due to the relatively poor fit), no significant differences between varieties 

were found in any of the parameters. 

4.3.3.4. Relationship between leaf ion concentrations and grain yield: 

To study the relationship between leaf ion concentration and grain yield, for a given 

salinity treatment (similar soil and water salinity), the yields of each variety were 

plotted against the individual ion concentrations in the leaves of that variety. This was 
done with both absolute and relative yields, and with ion concentrations in young and 

old leaves. Some examples of the types of graphs obtained for the highest treatment 

are given in Figure 4.3.7. In general, no significant relationships were found (data 

not shown). Only in a few cases was the correlation significant, but very low Oust 

at the 5% level). It seems, thus, that no simple relationship exist between these two 

parameters. 

4.3.4. DISCUSSION. 

4.3.4.1. Soil and water salinity distribution: 

One of the most notable features of this experiment was the low salinity reached in 

the soil relative to the previous year (compare Figures 4.2.5 and 4.3.2). This was in 

spite of the slightly higher levels of salinity in the irrigation water in the 1992/93 

season (Figures 4.2.4 and 4.3.1, respectively). The discrepancies may be attributed 

to the way the electrical conductivity of the saturated extract was calculated in the 

present experiment. Since the preparation of the soil saturated extracts is a time- 

consuming technique, 1: 5 (soil: water) extracts were used to measure the EC of the 

samples taken for the calibration of the EMS readings. Only in one sampling date 

was the EC of the saturation extract (as well as that of the 1: 5 extract) measured. 
The 20 pairs of values were correlated, and a linear regression was fitted. This was 

quite similar to the one obtained in the previous season, but because the latter was 
based on more samplings (80 pairs of values), it was thought to be more accurate. 
Hence, the equation obtained in 1991/92 was used to transform the EC,.., to EC,, in 
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the 1992/93 season. In view of the results, however, the relevance of that calibration 
in this particular season is in doubt. 

4.3.4.2. Ion concentrations in leaves: 

Except for Cl-, the ion concentrations in the youngest leaves did not seem to depend 

very much on salinity, whether measured as soil salinity or as irrigation water 

salinity. The few exceptions were Barbarrosa, Olivia and Viva, which increased their 

Na' concentrations with increasing salinity, and Forrest and Olivia which increased 

their C2' concentrations (in Albacete they decreased). In some varieties (Begoiia, 

CM-67, Critter, Igri and Viva), K' concentrations in young leaves increased with 

salinity. 

Correlations in older leaves were generally higher than in the youngest ones. All the 

ions applied through the irrigation water (Cl-, Na' and Ca") increased their 

concentrations in older leaves with salinity. Only in a few cases were these 

correlations not significant (Na' concentrations in Albacete and Igri). In some 

varieties (CM-67, Forrest and Pan6) concentrations of K' in older leaves did also 
increase with salinity; in others (Berta), they decreased. 

Of the ions applied with the irrigation, Cl- was the one found in higher concentrations 

in the leaves, both young and old, and which changed (increased) most with salinity. 

This is not surprising, since this is also the ion present in the highest proportion in 

the irrigation water. At the other extreme, K+ concentrations were maintained quite 

constant across salinities. Concentrations of Na+ in leaves either did not change with 

salinity or they increased (old leaves); the negative correlation found in the previous 

year between salinity and Na' concentrations in old leaves of CM-67 was not found 

this time. 

In general terms the present results are in good agreement with those found in the 

TLS in 1991/92, although the precise concentrations of ions in leaves for a particular 

variety did change between the two seasons. 
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4.3.4.3. Grain yield: 

The 3 models used to study the yield response to salinity did not fit the observed data 

as well as in the previous year. This was probably due to the smaller size of the Plots 
(3 rows per variety instead of 6), which presumably resulted in larger errors in the 

measurement of grain yield. 

In the present experiment, and partly as a consequence of the poor fit of the models 

and the large standard errors of the estimates, no significant differences were detected 

between varieties in any of the parameters which define the yield response. Still, the 

varieties can be compared by ranking them according to their response. The EC50S 

(calculated from model 3) were used for this comparison, because this is the 

parameter which best estimates the salt tolerance of a genotype, as discussed in the 

previous experiment (section 4.2.4.2). The rankings based on the EC50 of the soil 

saturated extract and that of the irrigation water are shown in Table 4.3.5 (a and b). 

Table 4.3.5. Ranking of varieties according to their EC50 (dS m-1) of the soil 
saturation extract (a), their EC50 (dS m-') of the irrigation water (b), and their mean 
yield over all salinity treatments (c) in the TLS 1992/93 experiment. 

a) Variety EC50 So" b) Variety EC50 water c) Variety mean yield 

1- Berta (9.35) 1- Berta (19.84) 1- Olivia (457) 
2- Pand (8.96) 2- Critter (18.93) 2- CM-67 (432) 
3- Critter (8.71) 3- Pan6 (17.96) 3- Viva (406) 
4- CM-67 (7.70) 4- CM-67 (14.74) 4- Mogador (386) 
5- Forrest (7.70) 5- Viva (14.34) 5- Pan6 (356) 
6- Viva (7.47) 6- Forrest (14.09) 6- Begofia (353) 
7- Igri (7.32) 7- Igri (13.29) 7- Critter (350) 
8- Barbarrosa (6.73) 8- Barbarrosa (11.34) 8- Forrest (348) 
9- Olivia (6.50) 9- Olivia (10.71) 9- Igri (336) 
10 - Albacete (6.42) 10 - Albacete (10.12) 10 - Albacete (294) 
11 - Begofia (6.00) 11 - Begofia (10.06) 11 - Barbarrosa (279) 
12 - Mogador (5.52) 12 - Mogador (8.92) 12 - Berta (240) 
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The two measures of EC50 are very similar in ranking the varieties. The second 

column (EC50 of irrigation water) was included to compare with results from previous 

experiments in the TLS, as compiled by AragUs and collaborators (unpublished 

data). Some varieties ranked in similar positions in these two lists (that in Table 

4.3.5b and that of Aragfi6s et al. ): Begofia was one with the lowest EC50S. Pan6 and 
Berta were among the highest ones, and Barbarrosa ranked in the middle. Others, 

however, ranked very differently in the two cases: Mogador had an intermediate EC50 

in the results of those authors, while it had the lowest one in this experiment; at the 

other extreme, Olivia had the highest EC50 (21.5 dS in-') in the list of AragUs' 

group, while it was one of the worst varieties in the present experiment. The actual 

values of EC50 are rather different for the two lists, although this might have been 

expected since they come from different experiments and years, and salt tolerance is 

very sensitive to changes in environmental factors (Maas, 1990). It is usually 

considered that, in field experiments, results from a single season are not very 

representative. Thus, the lack of total agreement between the present results and 

those found in previous years might just be due to different environmental conditions. 

In Table 4.3.5, Berta is the variety with the highest EC50 in columns a and b, but it 

has to be remembered that this variety had the poorest fits with all models, just 

significant at the 5% level (Table 4.3.3). Thus, its high EC50s have to be regarded 

with some caution. Also, from an agronomical point of view it is worth noting that 

its maximum yield was very low (only half that of other varieties). This means that, 

in spite of its greater tolerance, in conditions of low and medium salinity this variety 

will be of no advantage over others with higher yield potential. In fact, in column c 

of Table 4.3.5, where the varieties are ranked by their overall yield (averaged over 

the 9 salinity treatments), Berta ranks in the last position, with just over half the total 

yield of the best varieties (Olivia, CM-67), illustrating this point. 

At the other extreme, Mogador, with the lowest EC50s, had one of the highest 

maximum yields. These results suggest that a negative correlation between these two 

parameters might exist. The idea of an inverse relationship between maximum yield 
(or yield potential) and salt tolerance is not new (e. g. Richards, 1983; Shannon, 
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1985). To explore this relationship in more detail, the values of the EC50 and Y. for 

each variety were plotted and correlated; results are presented in Figure 4.3.8. 

Although some negative correlation does exist between the two parameters, this is not 

very strong (only significant at the 5% level). Therefore, the development of high 

yielding varieties which are also salt resistant should be possible. This conclusion is 

in agreement with the findings of Richards et al. (1987). 

The dotted lines in Figure 4.3.8 show the average values for maximum yield and 
EC50. Any varieties having both values (Y. and EC50) above the mean can be 

considered salt tolerant in a broad sense, since they will have not only high relative 
tolerance, but also good yield potential. It can be seen in Figure 4.3.8 that CM-67 

and Viva are the two varieties which comply with this condition. Varieties with high 

Y. but low EC50 (Olivia, Mogador and Begofia) may be of advantage in conditions 

of low salinity, while those with high EC50 but low Y. (Berta, Pan6, Critter and 
Forrest) have high relative tolerance and might be interesting in breeding programs 

as a source of salt tolerance. Finally, varieties which have both Y. and EC50 below 

the average (Igri, Barbarrosa and Albacete) can be considered the least tolerant of 

those studied. Again, though, these conclusions have to be taken with caution, since 

they are based in only one year of field results. In the previous season ("TLS 

1991/92" experiment, section 4.2.3), Albacete was the most tolerant variety, with a 
higher EC50 than CM-67 and a similar maximum yield. 

4.3.4.4. Relationship between leaf ion concentrations and yield: 

The plots of yield vs leaf ion concentrations at a given salinity, such as those 

presented in Figure 4.3.7, were drawn in the hope that they would reveal the 

existence of some correlations between these traits. However, no clear relationships 

were found. This lack of correlation does not necessarily imply that the two traits are 

not related. There is enough evidence in the literature to prove that a strict regulation 

of ion uptake and accumulation is a key feature of salt tolerance. However, the 

control of ion uptake and accumulation can be accomplished at different levels, from 

salt exclusion in the root, to proper compartmentation at the tissue and cellular level. 

A single measure of ion concentrations in the bulk leaf does not give any information 
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on the distribution of these ions within the leaf (different cells) or within the cells 
(different compartments). 

Another aspect considered was whether differences in grain yield and in leaf ion 

concentrations were related to differences in rate of development between varieties. 
(Although the extremely slow growing variety Chevron had been excluded from this 

experiment, some differences were still found for this trait. This is reflected in the 
different dates of sampling (Appendix 4), and also in their average heading times, 

which stretched for over 2 weeks (data not shown). ) A high growth rate can help in 

maintaining low ion concentrations (particularly in young leaves) simply by a dilution 

effect. It might, thus, be expected that faster growing varieties would have lower ion 

concentrations than those with a slower development. On the other hand, later 

maturing varieties tend to be higher yielding, and differences in growth cycle may, 
in this way, overshadow any effects due to higher ion concentrations. 

No relationships, however, were found between development rate (as measured both 

by the dates when varieties were sampled and by their days to heading) and either 
leaf ion concentrations or grain yield. As an example, the two varieties with the 
highest ion concentrations (Forrest and Olivia) were among those with the shortest 

growing cycles, thus contradicting the above hypothesis. Other fast growing and early 

maturing varieties (CM-67, Pan6) did have low or intermediate ion concentrations, 
but so had some of the later maturing ones. A similar situation was found with yield: 
Viva had both one of the longest growing cycles and the highest overall yield; 
however, at the other extreme of the scale, those varieties with the lowest yields 
(Barbarrosa, Berta) differed largely in their rate of development (and the ion 

concentrations in their leaves were not very different). Therefore, it seems that the 
differences found in the degree of leaf ion accumulation between varieties are not just 

a consequence of the different growing cycles of these varieties. 
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GENERAL DISCUSSION 

The ultimate objective of this work was to determine whether the measurement of ion 

concentrations in leaves of barley is a good indicator of the salt tolerance of a 

particular genotype, in which case these traits (leaf ion concentrations) could be used 

as selection criteria in breeding programmes for salt tolerance. The approach used to 

answer this question was to compare different varieties of barley for both their salt 

tolerance and their leaf ion concentrations. While the latter is, in principle, a 

relatively straightforward measurement involving techniques of chemical analysis, the 

assessment of the salt tolerance of a genotype poses more of a problem, if only 
because there is no general agreement on how to quantify tolerance. 

- Measurement of salt tolerance in the field. - the TLS 

Ultimately, if the assessment of salt tolerance is to be of any value, plants need to be 

grown under environmental conditions comparable to those they will experience when 

grown as a crop, and this entails growing the plants in the field. The limitations of 

paturally saline soils (large heterogeneity both in space and in time) for experimental 

purposes are well recognized. To overcome these problems, the Triple Line Sprinkler 

System was used for the field experiments of the present work. Other alternatives 
involve using experimental designs and statistical techniques designed to reduce the 

(extremely large) environmental variation, such as nearest neighbour models (Bartlett, 

1978; Wilkinson et al., 1983). However, some of these analyses are rather 

complicated to perform, and they have not been properly tested wider saline 

conditions (P. A. Hollington, personal communication). 

The TLS was designed to supply a uniform gradient of salinity, with a constant 

amount of water, between the sprinkler lines. This is actually achieved with great 

precision at the ground level, as testified by the water collected in the fain-gauges. 

However, the movement of water and salts in the soil is a rather complex matter, and 
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the distribution of salinity in the soil resulting from the use of the TLS is not 

completely satisfactory. 

One of the limitations of the system (which in this work was partly overcome by not 
leaching the soil between seasons) is the relatively late establishment of the salinity 

gradient in the soil profile. This is not very different from the situation found in 

many salt-affected soils of arid and semi-arid regions. There, the growing season 
begins with low salinity after the autumn rainfall has diluted the salts, and salinity 
levels in the soil increase with time as a result of continued evapotranspiration. 
However, for salt tolerance studies, a uniform salinity during the growing season 

would be more appropriate, so that conditions can be standardized. 

The irregular distribution of salinity with depth in the TLS (where only the top 50 

cm has relatively high salinity) is another limitation. It is usually said that roots tend 

to extract water from the least saline areas of the soil (see Meiri, 1984, for 

references). A recent (1993) survey of root growth patterns of one barley variety 
(Albacete) in the TLS showed that between 95% and 98% of the roots were found 

in the top 50 cm in treatments 1 and 5, while this proportion decreased to 73 % at 

treatment 9 (Cantero, unpublished results). In this last treatment, another 20% of the 

root volume was found between 50 and 75 cm, which agrees with the above idea of 

roots growing in the areas of lower salinity. Nevertheless, this type of distribution 

of salt with depth (inverted profile) is found in some natural salt-affected soils when 

a saline water table exists close to the surface and salts are transported upwards by 

capillary flow. A similar situation occurs when crops are irrigated with low quality 
(saline) water: depending on the level of leaching and drainage salts may accumulate 
in the top layers (as in the case of the TLS). This effect is intensified by evaporation 

of water from the surface between irrigations; therefore, more frequent irrigations 

may help to alleviate the problem. (In the present case, however, the frequency of 
irrigation is usually limited by the weather, in particular strong winds. ) 

Two other problems were found in the TLS when comparing results from the 2 years 

of experiments. First, there were inconsistencies in the measurement of soil salinity 
depending on whether this was based on the EC of the saturated extract or that of a 
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1: 5 soil: water extraction. An examination of the results over the last few years 

revealed that the correlation between these two types of measurement (EC,, and 
EC1: 5) varied from year to year. This is probably due to the variability associated 

with the preparation of the saturated extract samples. It is well recognized (e. g. 
Aragii6s & MillAn, 1986) that it is difficult to obtain consistent samples of saturated 

extracts, particularly when the preparation is carried out by different people. 

A second problem was related to the poor fit of the models in the 1992/93 

experiment, compared to the previous year. This was attributed to the smaller size 

of the plots. Similar results had been found by Royo and Aragii6s (1993) when 

comparing yields from different plot sizes: smaller plots (2-3 rows) had lower r2 (an 

indication of the goodness of fit) than larger plots (6 rows). Still, these authors did 

not find significant differences in the EC50s estimated from plots of different sizes, 

and concluded that 2-row and 3-row plots can be used with reliable results. A more 

critical look at their results, however, reveals rather large differences between the 

estimates of EC50 obtained from the different plots, at least in some varieties (up to 

4.4 dS m-' -c. v. > 16%- in Albacete); the lack of significance of these differences was 
due to the large standard errors of the estimates (from 0.9 to 3.0 dS m-'). Thus, the 

assumption made by those authors that the size of the plot does not affect the results 
has to be taken with some caution. 

- Use of models to ineasure salt tolerance: 

As mentioned before, different authors do not agree on the best measurement of salt 

tolerance. Maas and Hoffman (1977) proposed to simplify the sigmoidal response of 

plants to salinity by the use of a threshold model. In this model, two parameters are 

necessary to define a variety's response: the threshold and the slope. In the sigmoidal 

model of Van Genuchten (1983), not two but three parameters are needed. 
Nevertheless, the introduction by these authors of the concept of the EC50 was 
helpful, since this is a measure of tolerance in relative terms: the salinity which 

reduces yield to half of that without salinity (maximum yield). (The Maas and 
Hoffman model can also be expressed in relative terms, and the EC50 calculated from 

the slope and threshold. ) This parameter (EC50) might be useful for an overall 



193 

comparison between varieties, when no reference is made to particular field 

conditions (levels of salinity). However, once the environment where the variety is 

to be grown is known (range of salinities), the concepts of threshold and slope (or 

the shape of the curve in the Van Genuchten model) are still needed, since varieties 

with a similar EC50may perform very differently at more extreme salinities. That is, 

for a given envirom-nent, where the range of soil salinities might be relatively small, 

the yields of the varieties at different salinities need to be considered to decide on the 

best one for those particular conditions, and these cannot be estimated from the EC. 50 
alone. 

In the 1991/92 experiment, the EC50 was the best parameter at discriminating 

between varieties. Royo et al. (1991), comparing different response models, also 

concluded that this is the best parameter for evaluating the salt tolerance of crops, 

since the values of EC5, ) estimated from different models were very similar. The 

precision in the estimation of the threshold depends on the number of data-points 

studied above and around it. Since the lowest salinity levels in the TLS are already 

relatively high (EC,, = 2.5-3 dS in-') it is difficult to get an accurate estimate of the 

threshold in those conditions. In the case of the slope, poor estimates result from 

inaccuracies at the two ends of the straight line; at high salinities because the slope 

tends to decrease, and at low salinities because of uncertainties in the threshold. 

Additionally, the use of only one parameter (EC50) to measure salt tolerance has 

obvious advantages over the need for two (or more) parameters. However, these 

advantages do not seem to be widely recognised as yet, since most authors still use 

the better known concepts of threshold and slope. Even in a paper where the 

sigmoidal model (and the SALT programme) of Van Genuchten were used (Janzen 

& Chang, 1987), the authors described their results by using the concept of 

threshold. 

- Measurement of salt tolerance in nutrient solution: 

Since it is difficult to test numerous genotypes for salt tolerance in the field (whether 

in natural saline soils or under artificially salinized. plots), most studies on salt 

tolerance are done by growing the plants in nutrient solution to which NaCl has been 
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added. Tolerance is then often based on vegetative growth rather than on yield, 
because of the difficulty of obtaining reliable estimates of yield under such artificial 

conditions. However, vegetative growth does not necessarily correlate well with yield 

under saline conditions. In many crop species (including barley) vegetative growth 
is more sensitive. to salinity than reproductive growth (Lduchli & Epstein, 1990). In 

barley in particular, Lynch et al. (1982) reported a different ranking of cultivars for 

salt tolerance depending on the development stage considered: biomass production at 

early growth, or grain yield at harvest. 

In this work, discrepancies between assessments of salt tolerance by means of 

vegetative growth and grain yield can also be found when comparing results from 

hydroponic experiments (e. g. "Comparison of varieties", in Chapter 2) and from field 

experiments (Triple Line System, Chapter 4). In hydroponics, varieties Chevron and 
Barbarrosa had the largest dry weights under salinity, while CM-67 was intermediate, 

and Igri and Albacete had the smallest dry weights. On the other hand, grain yield 

at high salinities (treatments 7 and above in the TLS) was highest for CM-67, 

intermediate for Igri and Albacete, and lowest for Barbarrosa and Chevron. Clearly, 

the ranking of varieties by early growth (hydroponics) and final yield (field) do not 

agree. 

Some of the causes for these differences have already been mentioned: Chevron has 

a lush vegetative growth but poor grain yield (resulting in very low harvest index); 

Albacete does not seem to grow well in hydroponics, while it is one of the preferred 

varieties for dry conditions in Spain. Differences in rate of development between 

cultivars is another factor affecting comparisons during the vegetative stage. A 

further complication arises from the fact that some varieties are winter types (i. e., 

require vernalization) while others are spring types (no vernalization required). 

Growing plants up to maturity in the greenhouse would entail artificially vernalizing 

them at the seedling stage, which is not always feasible. As an example, Albacete 

and Barbarrosa grow rather slowly initially (as reflected in their dates of sampling 
in the TLS 1992/93 experiment, Appendix 4), while CM-67 is much faster. Since the 

latter does not require vernalization, in the warm conditions of the greenhouse it was 

sometimes found to be booting in just 5 or 6 weeks after sowing (e. g. "Osmotic 
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adjustment" experiment 2). Comparisons of varieties based on dry matter production 

after only a few weeks of growth are, thus, heavily biased by these differences in 

intrinsic growth rate. At the final harvest, however, these differences do not seem 

to be that important, since no clear relationship between length of cycle and grain 

yield was found (see section 4.3.4.4). 

Rawson et al. (1988) have already addressed the question of how well genotypes 

grown in artificial conditions (sand culture) reflect their salt tolerance in the field. In 

that study final grain yield was not considered, because differences in development 

rate between varieties were too large and they would have biased the results. 
Comparisons were based on biomass yield (dry weight) of plants harvested at the 7- 

leaf stage and at ear emergence (i. e., later than in the experiments reported here). 

They found that the ranking of varieties correlated well with published field data only 

when plants were allowed to follow their normal phenologic development (in spite 

of large differences between genotypes). On the other hand, when plants were given 

vernalization and long photoperiods in order to accelerate floral development (and 

hence make the cultivars more similar in their development), the ranking obtained 

was rather different. According to these authors, differences in development rate do 

not seem to be an obstacle in the evaluation of salt tolerance through measurements 

of dry weight. (However, in the 'normal development experiment, where their 

results agreed with the literature, only 5 varieties of barley were tested, the rest being 

wheats and triticales. The overlapping of species in the ranking makes the direct 

comparison with published field data more difficult. ) 

An interesting result of the work of Rawson et al. (1988) was the finding that 

cultivars ranked similarly regardless of treatment; that is, with or without salinity. 
The authors concluded that the amount of biomass produced by a genotype in saline 

conditions was largely dependent on its intrinsic growth rate. Similar results were 
found in the comparison of varieties in hydroponics in this work (Chapter 2). 

However, in the TLS 1992/93 experiment (Chapter 4), where more varieties were 

studied, some changes in the rankings between low and high salinities were found. 

This was done by comparing rankings based on maximum yields (and also on mean 

yields in treatments 1 to 3) and those based on average yields at high salinities 
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(treatments 7 to 9). Thus, although yield potential probably determines the yield 

under salinity in many genotypes, a degree of salt tolerance also exists in some 

varieties. 

- Salt tolerance of barley varieties 

The need to select for salt tolerance in crops has sometimes been questioned (e. g. 
Richards, 1983). He argued that because most of the yield from patchy saline soils 

comes from the least saline areas, breeding for high yield potential would result in 

higher overall yields than specifically breeding for salt tolerance. His arguments were 

already discussed in Chapter 1 (section 1.5.3). The fields that he considered to be of 
'medium' salinity had 73 % of the land with an EC of the soil saturation extract less 

than 4 dS nr' (i. e., not saline); even a 'badly' salinized field had more than 50% of 
its land with ECS, below 4 dS in-'. Under these conditions it is easy to see why any 
increase in yield at low salinities, however small, will soon outweigh any yield gains 

at higher salinities. 

Richards (1983) also based his calculations on the assumption that selection for salt 

tolerance alone might increase the threshold or decrease the slope, but that it would 

not change the maximum yield. If increases in yield potential could be obtained at the 

same time than increases in salt tolerance Ooint selection for salt tolerance and 

maximum yield), then the expected yield gains would be equal or greater than those 

obtained by selecting only for yield potential. He argued, then, that this is not only 

more difficult to achieve in terms of breeding effort, but also that it might not even 
be possible, because of a "yield penalty" associated with higher salt tolerance. This 

conclusion was based on a previous finding of a significant inverse relationship 
between yield at low salinities and the slope of the response line (Richards et al., 
1987). 

This type of negative relationship has been observed a few times (McColl, 1987, 

cited by Jana, 1991,1993). This does not imply, however, that the two traits (yield 

potential and salt tolerance) are irreconcilable. In the present work this aspect was 

considered in section 4.3.4 (Figure 4.3.8). Only a weak (although significant) 
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correlation was found. This is in agreement with the above-mentioned comparison of 

cultivar rankings for yield at high and low salinities. And the conclusion is, again, 
that the ability to grow (and yield) under saline conditions is not directly linked to 

yield potential per se. Thus, there is scope for improving salt tolerance in barley. 

- Measurement of ion concentraions: leaf age and position 

Compared to the assessment of salt tolerance, the measurement of ion concentrations 
in leaves is an easier task, particularly under the standard conditions of hydroponic 

culture. Results from the "Comparison of varieties "experiment (Chapter 2) were in 

good agreement with previously published data. However, when the first results from 

leaves sampled in the field (TLS) were obtained (from experiments not reported in 

this work) some discrepancies were observed. These were traced back to differences 

in the age (position) of the leaves sampled, and the proportion of Ca? ' in the saline 

water, and prompted an investigation into the effects of these factors. 

In the TLS 1991/92, one of the objectives was to study ion concentrations in different 

leaves, from the early ones (number 4,6), which corresponded to the type of leaves 

analyzed in the hydroponic experiments, to the last one (flag leaf). In all varieties 

studied, independently of their level of salt tolerance, the flag leaf was found to be 

very well protected from toxic ions (low concentrations of Cl- and Na'), while it 

maintained high concentrations of K' (; tý250 mol m-'). On the other hand, 

differences between varieties were consistent when other leaves, sampled at earlier 

stages (leaves 4 and 6), were compared. 

The role of the stem in ion partitioning between leaves under salinity was studied by 

Wolf et al. (1991). These authors found that, after stem elongation, lower 

concentrations of Na' were being delivered to the leaves located at higher positions. 
(Before stem elongation, similar concentrations were found in the xylem sap reaching 
different leaves (Wolf et al., 1990). ) Their model agrees with the pattern of ion 

concentrations found in the flag leaf. The practical implication of these differences 

between leaves at different positions was the realisation that, if differences in ion 

concentrations between varieties were to be detected, lower leaves had to be sampled 



198 

at an early stage of development. This was applied in the following field experiment 
(1992/93). 

Compounded with leaf position is the effect of leaf age. A non-uniform distribution 

of K' and Na' between leaves of plants growing under salinity is usually found, with 
low concentrations of Na' and high concentrations of K' in young, developing 

leaves, and the opposite trend for mature leaves. In barley, these differences result 
from a high K/Na selectivity of phloem loading, which allows for a significant 

retranslocation of K' from old to young leaves while limiting the export of Na' from 

mature leaves (Wolf & Jeschke, 1987). With time, Na' accumulates in the older 
leaves, resulting in the observed differences between young and old leaves. The salt 

tolerance of variety California Mariout has been attributed to this ability in 

partitioning Na' and K' between leaves. Thus, it seemed interesting to study ion 

concentrations. in both young and old leaves, to see if differences between varieties 

existed. In order to do that, the leaves in the 1991/92 TLS experiment were sampled 

at two stages, as young (recently expanded) leaves, and as old (mature) leaves. 

In the hydroponic experiments, differences between young and old leaves were as 

expected: low Na' (and CI-) concentrations in young leaves, high concentrations in 

older ones, and the opposite for K'. CM-67 proved to be very efficient in this 

partitioning of ions between leaves, while in Chevron differences between leaves of 
different age were not so distinct (e. g. "Osmotic adjustment" experiments, Chapter 

2). The inability of this variety to maintain high concentrations of K' under salinity 
is probably one of the main factors contributing to its poor salt tolerance. 

Differences between young and old leaves in the TLS experiments were generally 

more pronounced than in the hydroponic experiments, particularly in some varieties. 

In this case, however, this was probably the result of ion absorption directly through 

the leaves, rather than efficient partitioning between leaves. Some recent experiments 
(Aragii6s et al., 1994; Gorham et al., 1994) have shown that the extent of ion 

absorption via leaves in the TLS can be considerable, in spite of the pre- and post- 

washings with fresh water. At the time of sampling, older leaves had been exposed 

to saline irrigations for a longer time, and it has to be remembered that the ions 
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present in the saline irrigation water (Na', Cl- and Ca") are very immobile in the 

phloem 

To further complicate matters, the degree of leaf ion absorption was found to vary 

widely for different genotypes; as an example, varieties CM-67 and Chevron showed 

completely opposite patterns of salt absorption via leaves than via roots (Gorham et 

al., 1994). In a more recent experiment designed to compare ion absorption via 

leaves and via roots in the same varieties as in the TLS 1992/93 experiment (Aloy- 

Lleonart and Gorham, unpublished), it was found that the accumulation of Na' in 

leaves of Forrest, CM-67 and Olivia was double when they received the salts (200 

mol m-'NaC1 + 100 Mol M-3 CaC12) by leaf spray than when they were applied to 

the soil. It is interesting to note that these varieties (particularly Forrest and Olivia) 

always had the highest rates of ion accumulation in older leaves in the TLS 

experiment. In the other varieties, the rate of ion absorption by leaves was similar 

to or lower than that via roots, but in no case was the amount absorbed by leaves 

negligible. 

The above-mentioned experiment involved several differences from the TLS, which 

make a direct comparison of the results difficult. First, the salinity applied was higher 

than the levels used in the TLS, and the leaves were not pre-wetted nor post-washed 

with fresh water. This probably resulted in higher rates of absorption by leaves than 

in the TLS, since the rinsing of the leaves with fresh water was found to significantly 

reduce foliar absorption in the TLS (AragUs et al., 1994). Secondly, the plants 

experienced only one type of salinity stress, either in the roots (soil) or in the leaves 

(spray), whilst in the field both types are acting, and it seems reasonable to expect 

some interactions between the two (see Grattan et al., 1994). However, the results 

are still significant from the point of view of varietal differences. 

Another source of differences between measurements of leaf ion concentrations in the 

field and the hydroponic (greenhouse) experiments is related to the environmental 

conditions in the two cases. Although the effect of sampling at different times of day 

was found to be negligible in the TLS (see section 4.2.2), sampling on different days 

may be a source of variation. This aspect was not considered in the TLS 
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experiments, since it was not possible to do all the samplings on a single day. It does 

not seem unreasonable to expect differences in ion concentrations between those 
leaves sampled soon after a saline irrigation and those sampled after a period of rain 
(dilution of salts), particularly when considering the importance of ion absorption by 

leaves. 

More general climatic effects will also add to these differences. High temperatures, 
low humidities and, particularly, strong winds at the site of the TLS will increase 

transpiration rates in the field-grown plants and may indirectly increase the rate of 

absorption of ions. That the water relations of plants in the field were different from 

those in the greenhouse can be seen from the data on water contents. Fresh weight 

to dry weight ratios of around 10-12 and 6-8 were found for the control and saline- 
treated plants respectively in the hydroponic experiments. In the TLS, these values 
decreased to 3-4 in almost all treatments (data not presented here). 

Ion concentrations: effect of high Cdl: 

Another source of differences in leaf ion concentrations between plants grown in the 

field and in hydroponics is related to the higher proportion of Ca" in the saline 
irrigation waters used in the TLS (around 2: 1 Na: Ca molar ratio). As mentioned 

earlier (section 4.1), this is done in order to maintain a SAR below 15 equivalents 

M-3 and to avoid the accumulation of Na' in the soil (the same field has been used 
for the TLS experiments for several years). On the other hand, a 20: 1 Na: Ca ratio 
is routinely used in the hydroponic experiments in Bangor, to cover the extra amount 

of Ca2' needed in saline conditions to prevent an indiscriminate entry of Na' 

(Rengel, 1992). 

Although this 20: 1 ratio was found to be enough for this purpose (see "Minimum 

Ca 2+ 11 experiment, section 3.2), the effect of even higher external Ca` in decreasing 

Na' levels in the shoot was not expected. It has to be said, though, that the effects 

of high concentrations of C2+ on Na' absorption have not been reported in much 
detail in the literature. Most studies investigating the effects of high external Ca? + 

concentrations on salinity have been done by replacing Na' by Ce+ (i. e., changing 
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Na: Ca ratios) to maintain a constant level of salinity. In these cases, the ; ffect of 
increasing Ca" is confounded with that of decreasing Na'. One of the exceptions is 

the work by Imamul Huq and Larher (1984) with cowpea (Vigna sinensis), where 

several NaCl concentrations (up to 150 mol m-' NaCl) were studied in the presence 

or the absence of added CaCl2 (at a constant Na: Ca ratio of 5: 1). In that work, 

concentrations of Na' in t he shoot were always lower in the "added Ca"' 

treatments; (treatments without extra Ca? l only had the concentration of Ca2' already 
in the nutrient solution, which was 1.5 mol m-'). 

Growth of plants was also improved at all levels of salinity in the above mentioned 

work (Imamul Huq and Larher, 1984). In the present study, growth can be compared 

at similar levels of external Na' and different amounts of external Ca" in the first 

"Sodium versus Calcium" experiment (sections 3.4.3.1 and 3.4.3.2). There, this 

response was not found. One of the reasons for these differences might be related to 

the fact that the above authors worked with a dicotyledonous plant, and it is well 
known (Loneragan & Snowball, 1969) that these need more Ce' 'for optimum 

growth than monocotyledons, at least under normal (non-stressed) conditions. It is 

not unreasonable to think that a similar situation may be found in salinity, although 

no direct comparisons between monocots and dicots seem to exist in this respect. 

This effect of high Call may have some practical implications for field conditions. 
It is usually said that no extra Ca" is needed in saline (non-sodic) soils, since their 
levels (5-15 mol -1 Ca") are above that minimum considered necessary under salinity 
(2 mol m-' Ca2'). However, if higher Ca 2+ concentrations are found to improve 

growth in salt-affected soils, the addition of extra Ca2' might need to be considered. 
This subject, though, needs further investigation, since no evident beneficial effects 

of added Ce+ under saline field conditions have been reported (see review by 

Grattan & Grieve, 1992). 

An interesting result was reported by Gorham et al. (1994) in relation to the 
interactions between Na' and Ce': high CaCl2concentrations (in addition to NaCl) 

had the opposite effect when they were applied by means of leaf sprays than when 
they were supplied by the nutrient solution (via roots). That is, they increased Na' 
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concentrations in leaves, instead of reducing them. This finding adds another 

complication in the comparison between the hydroponic experiments and those in the 

TLS. 

- Osmotic adjustment: 

Two of the experiments investigated the degree of osmotic adjustment of barley under 

salinity and the type of solutes used. The two varieties considered (CM-67 and 
Chevron) differ largely in their salt tolerance, but both of them were found to adjust 

their internal osmotic pressure in response to external salinity, suggesting that this is 

not the main cause of reduced growth in these conditions. 

Although the osmotic pressures of the extracted saps increased with salinity, as did 

the concentrations of Cl- and Nal, in most experiments reported in this work a large 

reduction in the plant's water content was observed. It was concluded, in accordance 

with other authors (e. g. Storey & Wyn Jones, 1978), that this is the main mechanism 

of osmotic adjustment in barley. When the ion concentrations were expressed on a 

dry weight basis it was found that the total concentrations of ions did not change. 
Only a net accumulation of Cl- and Na' was found (see table 2.3.6), but at the 

expense of other ions (mainly N03- and K'). The main contribution to the osmotic 

pressure of leaf sap was calculated to be that of Na' and Cl- (see section 2.2.3). 

Other ions (K' and Ce'), sugars and, to a lesser extent, glycinebetaine also 

contributed to the measured osmotic pressure. 

It is worth noting that proline, one of the putative "compatible solutes", does not 

seem to have an important role in the response of these varieties to salinity. It has 

been reported that proline begins to accumulate when the concentrations of Na' plus 
K' are above 200 pmol g-' fresh weight (Weimberg et al., 1982,1984 for sorghum; 
Weimberg & Shannon, 1988, for Thinopyrum elongatum). If the content of dry 

matter in barley leaves is about 10%, that value would be around 220 mol Nal plus 
K' per m' sap. Since concentrations of K' in young leaves of non-salinized barley 

plants already reach similar levels, any increase in leaf Na' resulting from high 

external salinity would trigger the accumulation of proline, unless it is accompanied 
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by a concurrent decrease in K'. In the experiments reported here (section 2.3), 

concentrations of Na' phis K' were around 300 mol m-1, but no accumulation of 

proline was observed. It seems, thus, that the above threshold level (200 mol m-3) 
does not apply to barley. Voetberg and Stewart (1984) already remarked that 

unstressed barley leaves had concentrations of Na' plus K' which were very close 

to that threshold. 

- General conclusions: 

This study was set up to determine whether the concentrations of ions in leaves of 

plants grown under salinity were a reliable indicator of their salt tolerance. Although 

the regulation of salt balances in leaves is an important aspect of salt tolerance, no 

clear relationships between ion concentrations in leaves and salt tolerance were found 

in the experiments reported here. In the field experiments this lack of correlation was 

partly due to the system used (sprinkling with saline water), which introduced a new 
factor (salt absorption by leaves) and complicated the original model of salt 
"exclusion" vs salt "inclusion". This difficulty did not arise when plants were grown 
in hydroponics where leaf ion concentrations resulted only from selective absorption 
by roots and controlled transport to the shoot. Still, no correlations were found. 

One of the reasons for this lack of correlation may be that ion concentrations were 
determined on whole leaf extracts, and these measurements do not give any indication 

about the location of these ions within the leaf or the cell. The varieties studied might 
have differed in their ability to compartment ions at a lower level than the leaf unit 

considered here (e. g. by accumulating them in the epidermal cells, or in different cell 

compartments: cytoplasm, vacuole, cell wall), and these differences cannot be 

detected by analysis of whole leaf extracts. It has to be noted, however, that this type 

of measurement was chosen for its simplicity, the final aim being its use as a 

criterion for selecting salt tolerant varieties. Even though finer measurements (at the 

tissue and cellular level) are now possible, the need for sophisticated techniques and 

apparatus (X-ray microanalysis, single-cell sampling, etc) may preclude their use in 

the screening of large numbers of genotypes. 
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According to the bi-phasic model of Munns and Termaat (1986), ion toxicity in older 
leaves is the cause of premature death of plants in salinity. However, in salt-tolerant 

species such as barlby, this might only happen at very high salinities, where plants 
do actually die of excess ions. No such extreme cases were found in the experiments 

reported here (except in the case of Chevron at 200 mol m-' CaCl2, section 3.3, 

experiment 1), and this may be another reason why ion concentrations in leaves did 

not correlate well with yield. At moderate salinities, the accumulation of ions in the 

cytoplasm and/or the cell wall of old leaves may kill a few leaves, but not the whole 

plant. Growth is the main parameter affected in these conditions, and this is probably 

the result of the osmotic (rather than the toxic) component of salt stress. The 

reduction in leaf area available for photosynthesis, resulting from decreased growth 

and aggravated by the premature senescence of older leaves, would then be the main 

cause. of decreased yields in salinity. 

Whatever the reason for the lack of correlation between leaf ion concentrations and 

yield under saline conditions, it has to be concluded from the present results that this 

trait (ion concentrations in leaves) is not a reliable indicator of the salt tolerance of 

a genotype. Since one of the conditions for indirect selection to be effective is that 

a high correlation exists between the two related traits, the measurement of whole leaf 

ion concentrations in either solution culture or field grown plants cannot be 

recommended as a selection criterion in breeding for salt tolerance. 

On the other hand, even though reduced vegetative growth is probably the main cause 

of yield reductions in salinity, no clear relationships were found between early growth 

and final yield. This trait, however, was not studied in detail in this work, partly 

because of the very different environmental conditions between the greenhouse 

facilities in Bangor and the field trials in Spain. Under more standardized conditions, 

a better relationship might have been obtained, since some degree of correlation 

probably exists between vegetative growth and grain yield. The difficulty lies in 

obtaining accurate estimations of salt tolerance based on yield, so that these 

correlations can be detected. More work needs to be done in this area before 

rejecting the measurement of early growth (e. g. leaf area) as a criterion to select for 

in breeding for salt tolerance. Rawson et al. (1988) already suggested that the area 
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of leaf 3 was a good indicator of salt tolerance. It has to be remembered, though, that 

they measured salt tolerance as biomass yield at ear emergence. Although this trait 
is probably correlated with final grain yield, those authors did not prove this 

relationship. 

The interest in physiological traits related to salt tolerance came from the realization 
that yield is not a good measurement of tolerance, since many other factors affect 
final yield, particularly in field experiments. However, in the absence of better 

indicators of salt tolerance, yield might need to be the criterion used. And yield has 

to be measured both in saline and non-saline conditions, since it is not clear (from 

the results presented here) that yield under salinity depends only on yield potential. 

For yield to be measured at different levels of salinity, the TLS used in these 

experiments did not prove to be a useful tool. The different problems encountered 

with this system have already been discussed, and only the most important ones will 
be outlined here. 

1) it does not provide a uniform salinity over time (late establishment of salinity 

gradient), nor in depth (inverted profile); 

2) the lowest level of salinity obtained depends on the salinity of the fresh water 

used, and if this is relatively high (as in Zaragoza) not enough treatments would be 

placed below the threshold level, making the estimation of this parameter difficult. 

3) in spite of the pre- and post-washings with fresh water, a considerable degree of 
leaf absorption results from sprinkling with saline water. This problem would not be 

so crucial if ion absorption by leaves was similar in all varieties, but this is not the 

case. 

4) the use of high concentrations of CaC12 (in addition to NaCI) in the irrigation 

water to avoid alkalinization of the soil adds a ftirther complication for the 

comparison with natural saline soils. Ca" applied by sprinkler irrigation has a 
different effect on the ion relations of the plant than the addition of Ca" to the soil. 
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The TLS may still be useftil in those cases where the source of salinity is the 

irrigation water, and where sprinkler systems are used for irrigation. However, if the 

interest is in comparing the varieties' response to soil salinity, the TLS should not be 

used, unless the problems listed above are solved. 

If breeding for salt tolerance is to be done in the field at different levels of salinity 

and line-sprinkler systems cannot be used, then other ways to control soil salinity 
have to be devised. Drip-irrigation systems with water of known levels of salinity 

may be a solution, although they might prove a bit difficult to implement. Some 

studies are currently being done into this subject in the Agronomic Research Service 

of the Arag6n Autonomous Government (SIA-DGA) in Zaragoza. The development 

and testing of statistical procedures to overcome the problems associated with high 

hete rogeneity in saline soils is another useful approach to dealing with the present 
limitations. If they have not yet been properly tested is because they need to be 

complemented with detailed monitoring of soil salinity and the establishment of 

salinity maps for each field where trials are conducted. However, with the equipment 

currently available for the measurement of soil salinity this aspect should not be a 

great limitation. The application of these methods to naturally saline soils of India 

and Pakistan is presently being investigated in the Centre for Arid Zone Studies of 

the University of Wales, Bangor. 
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Appendix 1. Irrigation data for the 1991/92 TLS experiment. The amount of applied 
water is the mean (and standard errors) of 10 rain-gauges. Minimum and maximum 
ECs correspond to the lowest and highest of the 10 salinity treatments. When a fresh- 
water irrigation was given the EC was not measured, and thus it is not shown. (These 
data do not include rainfall. ) 

Irrig. Date Amount Duration EC (dS nrl) 
N' (DD. MM. YY) (nim) (min) min. max. 

1 25.11.91 8.8 ± 0.5 25 F. W. * F. W. 
2 21.01.92 15.9 ± 0.4 41 2.0 15.7 
3 27.01.92 19.0 ± 0.4 48 1.7 14.5 
4 30.01.92 15.9 ± 0.5 38 2.3 15.6 
5 06.02.92 15.9 ± 0.8 42 1.9 17.5 
6 11.02.92 13.0 ± 0.7 36 1.7 18.1 
7 14.02.92 12.2 ± 0.9 40 F. W. F. W. 
8 18.02.92 9.8 ± 0.6 28 F. W. F. W. 
9 24.02.92 5.2 ± 0.5 15 F. W. F. W. 

10 28.02.92 7.3 ± 0.5 20 F. W. F. W. 
11 04.03.92 10.9 ± 0.7 30 2.1 13.1 
12 10.03.92 12.6 ± 0.4 36 4.4 13.2 
13 16.03.92 5.2 ± 0.4 20 F. W. F. W. 
14 17.03.92 9.7 ± 0.2 30 2.6 13.2 
15 20.03.92 15.0 ± 0.5 44 2.4 10.3 
16 26.03.92 14.2 ± 0.5 39 1.6 10.0 
17 31.03.92 15.3 ± 0.4 42 1.7 11.5 
18 03.04.92 11.9 ± 0.4 32 3.8 11.8 
19 07.04.92 12.3 ± 0.5 35 2.0 12.9 
20 14.04.92 15.8 ± 0.3 44 3.2 11.8 
21 20.04.92 15.3 ± 0.6 42 2.0 11.0 
22 24.04.92 13.2 ± 0.4 39 3.0 12.8 
23 27.04.92 13.5 ± 0.6 39 2.2 10.9 
24 04.05.92 12.2 ± 0.5 35 2.1 10.8 
25 08.05.92 10.6 ± 0.5 30 F. W. F. W. 
26 12.05.92 14.7 ± 0.4 40 3.5 12.3 
27 15.05.92 12.7 ± 0.4 38 4.5 13.2 
28 18.05.92 15.2 ± 0.3 46 3.8 12.0 
29 01.06.92 12.8 ± 0.3 15 3.1 12.9 

* "Fresh" water (EC of well water;: - 2 dS m7l). 
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Appendix 2. Dates of sampling for the different varieties and treatments in the TLS 
1991/92 experiment. Dates are given as DD. MM (day-month); all dates refer to the 
year 1992. 

VARIETY 
Treatment 

Ist sampling 
Rep-I Rep-II 

2nd sampling 
Rep-I Rep-II 

3rd sampling 
Rep-I Rep-If 

ALBACETE 

T-1 25.02 25.02 16.03 09.03 23.04 23.04 
T-2 27.02 27.02 23.03 18.03 21.04 21.04 
T-3 26.02 26.02 24.03 24.03 21.04 19.04 
T-4 27.02 27.02 25.03 25.03 19.04 15.04 
T-5 02.03 02.03 28.03 30.03 17.04 15.04 
T, -6 03.03 03.03 19.03 23.03 19.04 15.04 
T-7 03.03 03.03 23.03 24.03 21.04 21.04 
T-8 06.03 n. s. * 28.03 n. s. 23.04 24.04 
T-9 06.03 n. s. 16.03 24.03 23.04 24.04 

CHEVRON 

T-1 25.02 25.02 16.03 13.03 16.04 16.04 
T-2 27.02 27.02 19.03 18.03 15.04 15.04 
T-3 25.02 25.02 23.03 23.03 17.04 17.04 
T-4 02.03 27.02 25.03 25.03 17.04 15.04 
T-5 02.03 02.03 30.03 30.03 22.04 19.04 
T-6 n. s. 03.03 06.04 06.04 24.04 23.04 
T-7 n. s. n. s. 13.04 08.04 n. s. 24.04 
T-8 n. s. n. s. n. s. 13.04 n. s. 27.04 
T-9 n. s. n. s. n. s. n. s. n. s. 28.04 

CM-67 

T-1 26.02 26.02 11.03 09.03 08.04 10.04 
T-2 27.02 27.02 13.03 11.03 09.04 09.04 
T-3 02.03 27.02 16.03 09.03 10.04 08.04 
T-4 02.03 02.03 11.03 11.03 08.04 06.04 
T-5 03.03 03.03 12.03 12.03 06.04 02.04 
T-6 n. s. 03.03 18.03 18.03 06.04 01.04 
T-7 n. s. 06.03 n. s. 18.03 10.04 06.04 
T-8 n. s. 06.03 n. s. 19.03 n. s. 09.04 
T-9 n. s. 06.03 n. s. 19.03 n. s. 06.04 

* n. s. - not sampled. 
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Appendix 3. Irrigation data for the 1992/93 TLS experiment. The amount of applied 
water is the mean (and standard error) of 20 rain-gauges. Minimum and maximum 
ECs correspond to the lowest and highest of the 10 salinity treatments. (These data 
do not include rainfall. ) 

Irrig. 
N' 

Date 
(DD. MM. YY) 

Amount 
(mm) 

Duration 
(min) 

EC (dS m-') 
min. max. 

1 03.02.93 13.1 ± 0.4 36 1.9 12.6 
2 05.02.93 13.3 ± 0.3 36 1.8 11.0 
3 08.02.93 12.8 ± 0.2 36 1.8 13.5 
4 12.02.93 13.5 ± 0.2 36 1.9 16.5 
5 16.02.93 13.1 ± 0.2 36 2.0 18.2 
6 19.02.93 12.4 ± 0.6 36 2.0 16.8 
7 26.02.93 14.4 ± 0.4 41 2.1 20.0 
8 02.03.93 13.3 ± 0.3 39 2.1 18.8 
9 04.03.93 12.0 ± 0.3 37 2.1 19.6 

10 08.03.93 12.7 ± 0.5 36 2.2 19.1 
11 11.03.93 12.9 ± 0.6 36 2.4 21.1 
12 15.03.93 12.1 ± 0.4 37 1.9 21.6 
13 18.03.93 13.4 ± 0.2 36 2.3 20.0 
14 23.03.93 13.8 ± 0.3 38 1.9 18.7 
15 30.03.93 13.8 ± 0.4 38 1.8 20.3 
16 01.04.93 12.8 ± 0.4 35 1.8 19.6 
17 06.04.93 15.8 ± 0.7 44 3.1 17.1 
18 08.04.93 13.4 ± 0.4 36 1.9 20.1 
19 14.04.93 12.9 ± 0.5 36 1.8 18.8 
20 19.04.93 13.4 ± 0.4 39 1.9 21.5 
21 22.04.93 11.0 ± 0.3 37 1.9 20.5 
22 29.04.93 12.1 ± 0.3 34 2.0 22.4 
23 03.05.93 12.7 ± 0.3 38 2.5 21.7 
24 06.05.93 13.1 ± 0.3 39 2.5 22.7 
25 10.05.93 11.7 ± 0.2 36 3.5 24.4 
26 12.05.93 13.2 ± 0.4 39 2.0 20.3 
27 17.05.93 12.0 ± 0.4 38 5.2 24.8 
28 21.05.93 12.6 ± 0.3 37 2.5 23.9 
29 24.05.93 12.0 ± 0.3 36 5.6 25.4 
30 28.05.93 13.1 ± 0.3 39 2.9 22.0 
31 31.05.93 12.8 ± 0.2 37 2.7 23.6 
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Appendix 4. Dates of sampling for the different varieties and treatments in the TLS 
1992/93 experiment. Dates are given as DD. MM (day-month); all dates refer to the 
year 1993. 

VARIETY T-1 T-2 T-3 T-4 T-5 T-6 T-7 T-8 T-9 

Albacete 09.03 10.03 11.03 22.03 22.03 24.03 25.03 24.03 25.03 

Barbarrosa 09.03 10.03 11.03 23.03 26.03 25.03 26.03 26.03 26.03 

Begofia 09.03 10.03 11.03 16.03 16.03 21.03 21.03 22.03 24.03 

Berta 09.03 09.03 11.03 15.03 15.03 16.03 17.03 21.03 21.03 

CM-67 09.03 09.03 10.03 12.03 12.03 12.03 12.03 12.03 12.03 

Critter 09.03 10.03 11.03 22.03 22.03 26.03 25.03 24.03 25.03 

Forrest 09.03 09.03 10.03 12.03 12.03 12.03 12.03 12.03 12.03 

Igri 09.03 10.03 11.03 22.03 22.03 24.03 24.03 26.03 25.03 

Mogador 09.03 10.03 11.03 17.03 17.03 16.03 16.03 21.03 22.03 

Olivia 09.03 09.03 10.03 13.03 13.03 13.03. 17.03 21.03 21.03 

Pan6 09.03 09.03 11.03 16.03 17.03 17.03 16.03 21.03 21.03 

Viva 09.03 10.03 11.03 23.03 24.03 24.03 25.03 26.03 26.03 
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